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ABSTRACT 

Lisa Lynn Samuelson: Sca-1 Positive Pancreatic Progenitor Cells: A Replacement for 

Transplanted Islets 

(Under the direction of David A. Gerber) 

 

A major challenge in the treatment of Type I diabetes is the lack of a restorative 

therapy to replace lost islet mass.  Islet or pancreas transplant has proven effective at curing 

diabetes but its use is severely limited due to donor shortage.  An alternative therapy would 

involve transplantation of a robust, easily accessible cellular population to replace damaged 

islets and restore insulin secretion.  We have isolated a murine pancreatic progenitor cell, 

using stem cell antigen 1 (Sca-1), a marker of hematopoietic stem cells. These cells are 

capable of in vitro expansion and differentiation into pancreatic lineage, demonstrate and 

maintain expression of pancreatic transcription factors, and produce basal amounts of insulin.  

We theorize that this cell population used, in conjunction with a bioreactor-type culture 

system that mimics the niche of the pancreas in vivo will generate a viable cell source that 

has potential for use in the treatment of diabetes. 
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INTRODUCTION 

DIABETES PATHOGENESIS 

Diabetes is a disease characterized by the body’s inability to produce insulin or an 

inability to respond to insulin’s actions. Insulin is a hormone produced by the pancreas which 

regulates the amount of glucose circulating in the blood. It acts by stimulating cells to absorb 

circulating glucose and use it for energy. When cells are unable to absorb circulating glucose, 

it accumulates in the blood, a state known as hyperglycemia and fat is burned as an alternate 

source of energy. The breakdown of fat for fuel causes toxic acids, known as ketones, to be 

left behind in urine and blood. The opposite can also occur with insufficient amounts of 

glucose circulating in the blood leaving cells unable to function due to lack of an energy 

source. This state is known as hypoglycemia, or low blood sugar. Normal blood glucose 

levels are expected to be in the range of 80-140 mg/dl. Diabetics have fragile regulatory 

mechanisms with respect to glycemic control and therefore are unable to prevent hyper- and 

hypo-glycemic events. It is not uncommon for diabetic patients to experience blood sugar 

levels ranging from 30-600 mg/dl.  

There are several forms of diabetes, all having one thing in common- hyperglycemia. 

However, the types of diabetes are extremely different and the disease progression and 

presentation dissimilar. Type 1 diabetes (T1D), also known as insulin-dependent diabetes, 

results from an autoimmune attack on the Beta (β) cells of the islets of Langerhans, 

destroying their function and leaving them unable to produce even small amounts of insulin. 
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The cause of the autoimmune attack on pancreatic β-cells in T1D is unknown. There is some 

evidence for a genetic factor in the disease as it is seen in families. However, environment 

and random developmental factors seem to be key players
1
. T1D is the main focus of this 

research. 

Type 2 diabetes (T2D), or non-insulin-dependent diabetes, is due to a decrease in the 

body’s sensitivity to respond to insulin or secondary to an insufficiency in insulin production.  

This form of the disease does not result from an autoimmune attack on the islets of the 

pancreas as seen in T1D. While not fully understood, this form of diabetes is strongly 

associated with obesity and sedentary lifestyles and currently accounts for over 90% of the 

total cases of the disease
2
. It is also associated with advancing age, with increased risk 

occurring after age 45. T2D, can progress to the point of islet exhaustion. This results from 

the normally functioning islets over-compensating for the loss of function or loss of 

sensitivity to insulin and their eventual hypertrophy and cessation of activity. When this 

occurs T2D effectively becomes T1D.   

Gestational diabetes mellitus (GDM) occurs in 5-9% of pregnancies in the United 

States
3
. In this type of diabetes, women who have previously shown no signs or symptoms of 

the disease suffer from hyperglycemia during pregnancy. The exact cause of gestational 

diabetes is unknown, although there appears to be a genetic factor as the disease occurs often 

within family members. The following is a brief list of genes in which variations have been 

suggested to increase the risk of acquiring GDM- glucokinase, insulin receptor, insulin-like 

growth factor, plasminogen activator inhibitor, and hepatocyte nuclear factor-4α
4
. There is an 

increased risk of women who suffer from GDM to acquire T2D post-pregnancy
5
.  
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PANCREAS ANATOMY AND FUNCTION 

The pancreas is an organ that has both exocrine and endocrine function.  Embryonic 

pancreatic development in vertebrate animals occurs from the dorsal and ventral protrusions 

of the primitive gut epithelium, which grow, branch, and eventually fuse to form the whole 

gland around the seventh week of gestation
6
. The human pancreas is located in the abdomen 

posterior to the stomach, attached to the small intestine at the duodenum and extending to the 

hilum of the spleen. The human pancreas is roughly 20 centimeters in length and weighs 85-

90 grams
7
.   

The exocrine portion of the pancreas functions in digestion. The cells that compose 

this portion include acinar cells that secrete numerous enzymes from the pancreas into the 

duodenum aiding in digestion and breakdown of food as it passes through the digestive tract.  

These pancreatic enzymes include trypsin, lipase, amylase, and carboxypeptidase. The 

exocrine portion of the pancreas accounts for 80-85% of the organ’s makeup and is thus a 

major component of pancreas anatomy
7
.   

The endocrine portion of the pancreas is key in the study of diabetes because it is here 

that insulin is produced. In the human there are roughly 1 million clusters of cells, termed 

islets of Langerhans. The islets, making up 1-2% of the organ’s total mass, are composed of 

100-1,000 endocrine cells. There are four distinct types of endocrine cells: alpha (α) cells 

producing glucagon, beta (β) cells producing insulin, delta (δ) cells making somatostatin, and 

pancreatic polypeptide (PP) producing cells. Of the endocrine cells of the pancreas, the β-

cells, which produce all the insulin made in the body, account for roughly 60% of the human 

islet and 80% of the mouse islet
8
. It is these β-cells that are the target of autoimmune attack 

resulting in T1D. 
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COMPLICATIONS AND SIDE EFFECTS OF BLOOD SUGAR IRREGULARITIES 

All diabetic patients are at risk for serious life threatening complications secondary to 

poor glucose regulation. The Diabetes Control and Complications Research Trial 

demonstrated that maintaining blood sugar levels within defined ranges and keeping a close 

monitor of the disease can greatly decrease the risk of developing life-threatening 

complications and aide in slowing diease progression
9
.  

Several acute complications of the disease can affect diabetics on a daily basis. These 

include bouts of hypoglycemia leading to confusion, headache, fatigue, nausea, numbness, 

irritability, slurred speech, ataxia, and impaired judgment. Untreated hypoglycemia can 

ultimately lead to loss of consciousness, diabetic coma, and possible death.  Conversely, if 

blood sugar levels rise above normal, patients can experience polyuria, dizziness, confusion, 

cardiac arrhythmia, blurred vision, lethargy, and diabetic ketoacidosis as a result of ketones 

spilling into the blood and urine. 

The long-term pathogenesis of diabetes is believed to occur through three main 

pathways- (1) formation of advanced glycation end products, (2) activation of protein kinase 

C, and (3) intracellular hyperglycemia with disturbances in polyol pathways
7
. Advanced 

glycation end products target the extracellular matrix of endothelial cells altering matrix-cell 

interactions. The glycation end products trap proteins inside cells and contribute to plaque 

formation leading to cardiovascular events. Advanced glycation end products can also trigger 

the release of pro-inflammatory factors-causing endothelial cell dysfunction, leading to 

vascular injury. Activation of protein kinase C leads to increased vasoconstriction and 

decreased vasodilatation, increased deposition of extracellular matrix, vascular occlusion, 

and creation of pro-inflammatory cytokines. This contributes to the  growth of new 
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vasculature, as seen in diabetic retinopathy
7
. Intracellular hyperglycemia with disturbances in 

polyol pathways leads to oxidative stress which causes damage to all cellular components 

and affects organs like the kidneys, vasculature, nerves, and eyes.
7
.   

TREATMENT OPTIONS FOR DIABETICS 

Treatment for diabetes, especially T1D, is limited.  T2D and GDM can often be 

treated successfully with oral medication, diet, and lifestyle changes. However, T1D 

treatment is more invasive as deficiency of insulin production requires the injection of 

exogenous insulin. Insulin was discovered in the 1920’s and proven effective at lowering 

blood glucose levels in test animals and experimental patients. This form of insulin was 

generated via extraction from animal sources and its use was limited. As a result, treatment 

remained largely centered around diet and exercise and the disease continued to lead to 

premature death. It was not until the 1950’s that the amino-acid structure of insulin was 

elucidated and then the 1970’s before the first synthetic insulin was produced. With its 

production came the commercial sale of the medication in the 1980’s.  Insulin has since been 

the standard of care for type 1 diabetics with many patients receiving multiple injections 

daily in order to maintain glucose levels as close to normal as possible. Insulin can be 

administered via hypodermic injection or given mechanically through an external insulin 

pump that maintains a steady release of drug subcutaneously.  

Islet transplantation is another treatment option reserved for select cases of T1D.  

This procedure continues to be a clinical focus secondary to a successful protocol where 

seven patients were left insulin-independent after transplantation with cadaveric islets
10

. 

While the immediate impact of islet cell transplant is profound, it has several limitations. One 
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major problem is the fact that it takes more than one organ donor to yield enough islets for a 

successful transplant. The average donor generates approximately 500,000 viable islets but 

the typical recipient requires roughly 1 million healthy islets to be successfully weaned from 

exogenous insulin. Another drawback to the procedure is the requirement for 

immunosuppressive treatment after transplant to prevent rejection of the transplanted 

allogeneic cells. Longstanding immunosuppression is complicated by an increased risk of 

systemic infections and malignancies in the recipient. A final limitation to islet 

transplantation is the autoimmune nature of the disease that destroyed the patient’s original 

islets. Over time this same pathologic process attacks the transplanted islets, ultimately 

leaving the patient insulin-dependent again. The Collaborative Islet Transplant Registry 

reported that 13% of islet recipients experience total loss of transplant function by 6 months 

and this increases to 42% by 3 years post-transplant
11

. Other studies are more pessimistic 

with reports that by 2 years post-transplant 76% of patients require exogenous insulin due to 

failure of the transplanted cells
12

.  

STEM-CELLS AND DIABETES 

Diabetes is a unique disease because not many other diseases are caused by loss of 

function of a single known cell type. In addition, there is already a preexisting transplant 

protocol used to treat the disease that shows a clinically successful outcome
13

.  Finding an 

alternate cell source to replace the limited number of islets available for transplant would 

alleviate the donor shortage as well as provide a potential unlimited source of cells that could 

ameliorate post-transplant declines in transplanted cell function. This cell source should be 
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highly proliferative, easily accessible, and unlimited, all qualities of a stem/progenitor cell 

population. 

EMBRYONIC STEM CELLS 

Embryonic stem cells (ES cells), were first cultivated in 1981 from mouse 

blastocysts
14

. Later experiments yielded ES cells obtained and cultivated from human 

tissues
15

. Embryonic stem cells are a potential candidate for islet replacement because they 

are pluripotent, capable of self-renewal and have the potential to differentiate into any cell 

type within the body. Subsequently, focus has been aimed at committing ES cells to a 

pancreatic β-cell fate. Early experiments with ES cells used the formation of embryoid 

bodies, or three dimensional aggregates, which were differentiated into insulin-producing 

cells
16, 17

. These approaches generate low numbers of insulin-producing cells and led 

researchers to experiment with over-expressing transcription factors that were known to force 

β-cell formation in an effort to yield robust insulin-producing populations
18

. Recent studies 

examined ES cells in conjunction with a myriad of signaling factors, growth factors, feeder 

cells, and/or culture conditions
19, 20

.  Groups have also independently reported differentiating 

human ES cells into pancreatic lineage cells by recapitulating endocrine development. These 

cells were differentiated via a protocol generating definitive endoderm, posterior foregut, 

pancreatic endoderm and finally hormone expressing endocrine cells
19, 21, 22

.  

No ES cell population or process has been developed that can replace the low 

numbers of available donor islets.  Even if that particular population is identified, multiple 

factors will have to be overcome before translating the therapy into clinical practice. These 

include the tumorigenic risk of ES cells; immunogenicity of the transplanted cells; and 
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ethical, political, and moral concerns as ES cells are derived from embryos and many people 

hold strong religious and moral beliefs about obtaining them.  

ADULT DERIVED STEM CELLS 

Because of the myriad of political, ethical, and tumorigenic issues surrounding ES 

cell use, focus has diverted to the use of adult-derived stem cells. These cells, which could 

potentially be derived from the patient, expanded, and re-implanted, circumvent some of the 

controversy surrounding ES cells. Adult stem cells, or somatic stem cells, reside in many 

parts of the body including bone marrow, neural tissues, testis, and adipose. Because of 

success with other organ systems it is feasible that an adult stem cell potentially resides in the 

pancreas. In fact, distinct cell populations have been isolated from adult pancreas and 

pancreatic duct tissue which can clonally proliferate in vitro, express pancreatic markers of 

all endocrine cell types, and produce insulin in response to glucose stimulation
23

. Other 

groups have looked at injury models as a means of stimulating proliferation of quiescent 

adult stem cells. One such experiment showed that after 90% pancreatectomy in rat there is a 

45% recovery of tissue that occurs via the pancreatic ducts 
24

. This observation suggests that 

an adult stem cell resides in the rich ductal network of the adult pancreas. Others have 

approached the possibility of an adult pancreatic stem cell by looking to the exocrine cells 

around the islets. In fact, insulin-producing cells have been generated from stellate and acinar 

cells, suggesting that these cells may express potential as endocrine progenitor cells
25-28

. 
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INDUCED PLURIPOTENT STEM CELLS 

Induced pluripotent stem cell (iPS cell) technology uses a somatic cell taken from the 

body and driven backwards in development using select embryologic factors. This brings the 

cell(s) to a phenotypic state similar to ES cells where they are capable of differentiation into 

any cell type of the body.  This technology was initially reported by Takahashi and 

Yamanaka in 2006 when they were able to retro-virally induce Oct3/4, Sox2, Klf4, and c-

Myc into mouse fibroblast cells and generate cells with properties similar to ES cells
29

. In 

2008 human skin fibroblast derived iPS cells were differentiated into insulin-secreting islet-

like clusters
30

. Although this technology creates a highly proliferative, functional cell source 

it does have its drawbacks. First and perhaps most importantly, these cells, because they are 

induced into ES-like cells with unlimited proliferative ability, give rise to teratomas when 

transplanted into animals. Because of their unlimited and unregulated proliferative potential 

there is no way to inhibit the formation of cancerous growths. Also, in order to get the 

transcription factors needed into the cells, retroviruses or lentiviruses are used. The 

implications of these technologies remain unknown but there is concern that after placing 

these cells back into humans the viral vectors could activate unwanted gene expression.   

TRANSDIFFERENTIATIONS OF STEM CELLS 

Another potential cell population for transplantation includes cells which normally 

reside in organs other than the pancreas.  Much work has been done looking at 

transdifferentiation of cells that share a common embryologic origin with the developing 

pancreas. Cells of the liver, lung, and pancreas all arise from the foregut endoderm and 

differentiate in response to signals from their adjacent germ layers
31

.  Therefore the cells of 
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these tissues may be able to transform into a pancreatic cell type if given the correct signals 

and growth factors which are conducive to pancreatic differentiation. The theory of 

transdifferentiation states that tissues derived from the same region of a developing embryo 

share transcription factors and only differ in the expression of a few factors which determine 

their ultimate fate
32

. There has been limited success with transdifferentiation of liver cell 

populations to a pancreatic phenotype via over-expression of pancreas and duodenal 

homeobox gene 1 (PDX1)
33, 34

.  In addition, groups are beginning to see a relationship 

between the biliary system of the liver and the pancreas
35

.  It has been shown that Hes1-null 

mice display conversion of their common bile duct into pancreas tissue expressing the full 

array of pancreatic cell types
36

.   

BIOREACTORS FOR CELL CULTURE AND TISSUE ENGINEERING 

For any proposed cell type to be optimized the most efficient culture system must be 

employed.  For decades cells have been grown reproducibly in 2-D petri dishes. However, in 

live organisms cells are embedded in extracellular matrix forming 3-D structures and tissues. 

Primary cells growing under two-dimensional culture conditions lose their original features 

and differentiate or dedifferentiate due to the lack of a 3-D environment like that present 

during organogenesis
37

. To circumvent monolayer limitations, growing cells in a 3-D system 

that better mimics the environment provided by nature and allowing spatial freedom 

facilitates growth and differentiation of cells in a way not seen in 2-D culture.  
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EARLY ATTEMPTS WITH BIOREACTOR DEVICES 

Bioreactor devices have proven to be effective in creating an optimal 3-D 

environment for cell culture. Early bioreactor experiments were pioneered by the National 

Aeronautics Space Administration (NASA). They recognized that space flight offers the 

potential for zero gravity culture conditions which closely mimic the developmental process 

during embryogenesis.  In 1984 human embryonic kidney cells were attached to 

microcarriers in the microgravity of space and found to have the potential for enhanced 

attachment and proliferation compared to cultures grown on Earth
38

. The success of the 

NASA space flight experiments led to the conceptual development of Earth-bound 

microgravity bioreactor systems. 

Many early suspension culture systems used stirring or mechanical agitation as a 

method of keeping cells and microcarrier beads in suspension.  These agitated cultures were 

found to be detrimental to the cells due to the high amounts of shear force and turbulence 

produced during culture which often damaged cells and lead to cell death
39

.  This lead 

researchers to examine different types of bioreactor cultures that involved less agitation, such 

as bubble free oxygenation and higher viscosity medium
40

.  It was also noted that in large 

scale bioreactor devices, less cell damage was seen in cells and microcarriers farthest from 

mechanical agitators,  because the cells came into contact with the agitation devices less 

frequently
41

. All of this culminated with NASA’s development of a small incubator size 

device that suspended microcarrier beads and cells in culture without the need for induced 

turbulence or sheer force, much like the environment of space flight
41

. This device was called 

a rotating wall vessel (RWV) and it worked via solid body rotation and oxygenation via a 

silicone rubber membrane.   
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RATIONALE AND GOALS FOR PROJECT 

Clinical advances in cell transplant techniques have made islet transplant a successful 

means of temporarily relieving diabetic patients of the need for administration of exogenous 

insulin. However, because of the limited success and the need for multiple cell infusions, 

islet transplant is reserved for only select cases. It is with this in mind that we have set out to 

identify an adult cell source which can be used to replace islets currently used for transplant.  

We have isolated an adult derived murine progenitor cell from pancreas tissue 

purified for stem cell antigen 1 (Sca-1). We theorize that this pancreatic progenitor cell 

(PPC) population can be expanded in culture and is capable of differentiation into a cell with 

β-cell characteristics. We propose that we can grow a Sca-1 positive PPC population in 2-D 

culture and maintain them over long periods of time while identifying their potential for 

differentiation and their potential to produce insulin in response to glucose increases. 

Because of this cell’s proliferative capability and pancreatic genotype and phenotype we 

postulate that it could be a suitable alternative cell type for transplant therapies for diabetes 

treatment.  

Bioreactors have shown improved islet differentiation, insulin secretion and cellular 

maintenance of endocrine precursor cells
42-45

. As a result, we set forth that by using a well 

established mouse β-cell line we can create a 3-D culture system allowing the needed 3-D 

spatial freedom required to mimic embryologic development which optimizes cell growth for 

unique populations, such as pancreatic progenitors. 

 



Materials and Methods 

MICE 

All mice were obtained from The Jackson Laboratory (Bar Harbor, ME), including 

the standard C57BL/6 strain (stock # 000664; for our purposes termed Wild Type or WT), 

and mice from a C57 background with an enhanced EGFP cDNA constitutively expressed 

using the β-actin promoter (stock # 003291, termed GFP+). Animals were maintained on 

standard rodent chow under a constant 12 hour day/12 hour night cycle. C57BL/6 and GFP 

positive mice were used for isolation of PPCs. Care and use of animals was approved by the 

Institutional Animal Care and Use Committee at the University of North Carolina at Chapel 

Hill in accordance with the principles and procedures outlined in the National Institutes of 

Health Guide for the Care and Use of Laboratory Animals. 

ISOLATION OF PANCREATIC PROGENITOR CELLS 

PPCs were isolated by a multi-step digestion process beginning with excision of the 

entire pancreas. Pancreatic tissue was manually sheered and disassociated using a 22G needle 

and forceps in a buffer of Liberase TL (Roche; Indianapolis, IN). Enzymatic digestion was 

accomplished in a 37ºC water bath for 20 minutes with agitation every 5 minutes. 

Subsequently, disruption of remaining pancreatic tissue was accomplished by pipetting with 

a 10mL pipette. Serum was added to quench the enzymatic activity of Liberase. The 
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dissociated tissue was filtered through a 70µm filter to yield a single cell suspension, 

centrifuged for 5 minutes at 1100 rpm, and then resuspended in calcium and magnesium 

chloride free Dulbecco’s Phosphate Buffered Saline (PBS; Sigma; Saint Louis, MO) 

containing 0.5% BSA and 2mM EDTA prior to sorting by MACS
®
. 

CELL ENRICHMENT AND CULTURE 

Isolated cell populations were enriched for Sca-1 positivity using magnetic activated 

cell sorting technology (MACS
®
, Miltenyi Biotec Inc.).  The cells were incubated with Sca-1 

antibody conjugated to mini-magnetic beads (Miltenyi Biotec, cat # 130-092-529; Auburn, 

CA) according to the manufacturer’s instructions. Sca-1 positive (Sca-1+) cell selection was 

confirmed with a purity of >94% by flow cytometry. Sca-1+ cells were cultured on 35mm 

tissue culture dishes. Dishes were coated with 0.5mL of 2µg/mL fibronectin solution for 1 

hour, washed with 1mL PBS, then coated with 0.5mL of 1µg/mL concavalin A solution for 

one hour, followed by a final wash with 1mL PBS. Culture medium consisted of DMEM 

(Dulbecco’s Modified Eagle’s medium; Gibco; Carlsbad, CA ) containing 10% fetal bovine 

serum (FBS), 20mM HEPES, 10mM Nicotinamide, 30mg/L L-proline, 2µM 

Dexamethasone, 1X antimycotic-antifungal, supplemented with 10ng/ml BMP-4 (R&D 

Systems; Minneapolis, MN), 1400U/ml ESGRO (Milipore; Temecula, CA), and 20µL/mL 

B27 supplement (Gibco; Carlsbad, CA). Cells were plated at a starting density of 

approximately 1 x 10
6
 cells per 35mm dish. The cells were maintained in a 5% CO2 

incubator at 37ºC. Cells were allowed to become approximately 80% confluent before being 

passaged using 1X Trypsin/EDTA at a 1:2 ratio. 
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FLUORESCENT IMMUNOPHENOTYPING AND FLOW CYTOMETRY 

Cells were stained for immunofluorescense using Sca-1 antibody conjugated to 

Phycoerythrin (PE) (BD Biosciences; San Jose, CA). Cells stained with an IgG2a antibody 

(BD Biosciences) were used as isotype controls and unstained cells used as a negative 

control. Cells were suspended at 1 X 10
6
 cells per ml in phosphate buffered saline (PBS) 

containing 2% FBS at room temperature. Cells were incubated with antibody for 20 minutes, 

centrifuged and resuspended in cold buffer twice to wash, before being analyzed on a 

Beckman-Coulter CyAn ADP flow cytometer provided by the UNC flow cytometry core 

facility. 

HISTOLOGY AND IMMUNOHISTOCHEMISTRY 

Immunohistochemistry was performed by an indirect immunoperoxidase procedure. 

Primary antibodies against Sca-1and CK19 were used (BD Biosciences; San Jose, CA). ABC 

Elite and DAB kits (Vector Labs; Burlingame, CA) were used for signal detection. DAB was 

toned with DAB enhancer (Vector Labs) and counterstained with hemotoxylin (Sigma 

Aldrich; St. Louis, MO). Slides were blocked with Protein Blocking Agent (Thermo Electron 

Solutions; Pittsburgh, PA). Negative controls included sections stained with isotype control 

antibodies. All stained slides were viewed with a Nikon Microphot-FXA microscope 

equipped with an Optronics DEI 750 3-chip CCD camera and Q Imaging Micropublisher 

CCD camera for digital image acquisition. Images were captured on an Apple Power 

Macintosh G3 computer utilizing Q imaging software and saved using Adobe Photoshop CS2 

software, all located in the Microscopy Services Lab core facility at UNC. 
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For fluorescent immunohistochemistry, indirectly labeled antibodies to Sca-1 (rat anti 

mouse Ly-6A/E; BD Biosciences; San Jose, CA), and rabbit anti-PDX-1 (Millipore; 

Temecula, CA) were used. Secondary antibodies used include goat anti-rat Texas Red 

(Molecular Probes; Carlsbad, CA), and goat-anti rabbit AF594 (Invitrogen; Carlsbad, CA) 

respectively. DAPI was used to counter stain nuclei (Sigma Aldrich; St Louis, MO). 

RT-PCR 

Polymerase chain reaction (PCR) analysis was performed on total RNA extracted from 

freshly isolated and cultured Sca-1+ cells. Islet RNA was used as a control.  A total of 2µg of 

total RNA was used as a template to create complementary DNA using RETROscript® kit 

(Ambion; Austin, TX) per the manufacturer’s protocols. The following genes of pancreatic 

progenitors were selected; Nestin, Hnf6, Ptf1alpha, PDX-1; markers of endocrine 

progenitors; Pax6, Nkx2.2, PDX-1, Ptf1alpha, Ngn3, Neuro D; and differentiated cell 

markers; insulin 1, insulin 2, and glut 2.  The presence of CK19, a ductal cell marker, was 

also assayed.  Primer sequences are listed in Table 1.  Basic conditions included a 94 degree 

denaturation following by 35 cycles of denaturation at 94 degrees, annealing at  specified 

melting points, and elongation at 72 degrees, all followed by a final elongation at 72 degrees 

and a final hold of 4 degrees.  

WESTERN BLOT ANALYSIS 

Cells were lysed in buffer containing 50mM Tris-Cl pH 7.6, 150 mM NaCl, 1% 

Nonidet P40 (Roche; Indianapolis, IN), 0.5% deoxycholate, 1mL protease inhibitor cocktail 

for every 100ml (5μg/mL aprotinin, leupeptin, pepstatin, and soybean trypsin inhibitor), and 
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Table 1:  Semi-quantitative PCR primers. 

Primer 5’-3’ 
   

Annealing 
Temp 

Size 

Ptf1alpha catagagaacgaaccaccctttgag 
cttgagacaggtcctttgaggcacg 

60 294 

Nkx2.2 aaaggtatggaggtgacgcct 
tcatgttgcgggtcatgtcga 

54 190 

Ngn3 aagagcgagttggcactgagc 
gcgtatcgcctggtgtcgaa 

56 223 

Insulin 1 tagtgaccagctataatcagagac 
agccaaggtctgaaggtc 

70 288 

Insulin 2 ccctgctggccctgctctt 
aggtctgaaggtcacctgct 

60 213 

Nestin ggagagtcgcttagaggtgc 
gaagagaaccgaaaggactg 

58 327 

Glut 2 ggataaattcgcctggatga 
tcaaggtctttggtttcctt 

53 298 

 
NeuroD 

cttggccaagaactacatctgg 
ccgttgaagagaaagtttgtgc 

53 430 
 

CK19 ctgcagatgacttcagaacc 
ggccatgatctcatactgac 

62 299 

Pax 6 tcacagcggagtgaatcag 
cccaagcaaagatggaag 

58 332 

Hnf6 gcaatggaagtaattcagggcag 
cgtgacagtcgttgaagaagtac 

60 471 

PDX-1 ctttcccgtggatgaaatcc 
gtcaagttcaacatcactgcc 

60 205 
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1mL phosphatase inhibitor for every 100mL. Lysates were purified by centrifugation at 

14,000g for 2 minutes and stored at -20ºC. Protein concentrations were determined by using 

a standard Bradford assay on a BioTek microplate reader. Total cell proteins (50µg/lane) 

were separated by SDS-PAGE, transferred to nitrocellulose membrane, incubated with 

blocking buffer (5% nonfat dry milk in Tris Buffered Saline with 0.05% Tween 20, pH 7.5), 

and probed with primary antibodies overnight. Antibodies were directed against Glucagon 

(1:1000), Amylase (1:2000), Insulin Receptor alpha (1:1000), Ngn3 (1:1000) (Santa Cruz 

Biotechnology; Santa Cruz, CA), Pdx1 (1:5000), and Glut-2 (1:1000) (Milipore; Billerica, 

MA).  After 1 hour incubation with appropriate HRP secondary antibodies (Dako; 

Carpinteria, CA), peroxidase activity was detected by enhanced chemiluminescence. 

Densitometric signals from western blots were analyzed with NIH-ImageJ software 

(http://rsb.info.nih.gov/ij/). Protein levels were calculated in arbitrary units (AU) normalized 

with β-actin protein levels. 

INSULIN ELISA 

Insulin secretion of cultured cells from both neonatal and adult mice was measured 

using an enzyme linked immunoabsorbance assay (ELISA). Experiments began by placing 

cultures in high and low glucose medium (40mM and 2.8mM respectively) for 48 hour 

durations. Supernatants were collected and placed in -20º storage.  Because the presence of 

FBS in culture media has the potential to affect readings our later experiments used Krebs 

Ringer Bicarbonate Buffer (Zenbio; Research Triangle Park, NC) with added glucose at low 

5.55mM concentrations, and high 25mM concentrations, over a 4 hour time point.  

Supernatants were collected at 30 minutes, 1, 2, and 4 hours of culture and frozen at -20º.  A 

http://rsb.info.nih.gov/ij/
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final set of experiments were performed in an attempt to generate a large difference in insulin 

produced by using low glucose (0mM) and high glucose (100mM) conditions over 1 hour of 

culture. All samples were analyzed for insulin concentration according to manufacturer’s 

protocol for the Mercodia Mouse Insulin ELISA (Alpco Diagnostics; Salem, NH). Assays 

were performed by the UNC Center for Gastrointestinal Biology and Disease (CGIBD) 

immunotechnology core facility. Values were expressed in ng/mL.  

CELLULAR PROLIFERATION ASSAY 

Cell growth and proliferation were measured using the CyQUANT
® 

NF Cell 

Proliferation Assay Kit (Invitrogen Molecular Probes
™

; Eugene, OR) which measures DNA 

content. Cells were allowed to proliferate in 96 well culture dishes for set time points of 0, 1, 

4, 7, 14, and 21 days.  On test day growth medium was removed and 50µl of 1X binding dye 

from kit added. Cells were further incubated for 30 minutes and assayed on a BioTek 

Microplate reader at emission wavelengths of 485 and 530nm. Absorbance values obtained 

were correlated to cell numbers using a standard curve (created previously with a rapidly 

proliferating cell line). 

MICROCARRIER PREPARATION 

Cytodex 3 microcarrier beads were purchased from GE HealthCare (Piscataway, NJ). 

Beads were rehydrated and prepared according to manufacturer’s protocol. Dry microcarriers 

were hydrated in Ca
2+

 and Mg
2+

 free PBS at 50ml/g for 3 hours at room temperature.  They 

were sterilized by removing supernatant and adding 70% isopropyl alcohol. The carriers 

were washed twice in this manner and incubated overnight in the 70% ethanol solution, 
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50ml/g. The next day the solution was removed and the beads washed three times with sterile 

PBS.  Before use with PPCs beads were suspended in 2mL of 2µg/mL fibronectin solution, 

washed with 2mL PBS, then resuspended in 2mL of 1µg/ml concavalin A followed by 

washing with PBS. Cell lines were mixed with beads immediately after third PBS wash.   

BIOREACTOR CULTURE 

Bioreactor cultures were contained in VueLife™ transparent fluoro ethylene 

propylene (FEP) closed culture bags. (American Fluoroseal Corporation; Gaithersburg, MD). 

These culture bags are designed specifically for cell culture and allow high permeability to 

oxygen and carbon dioxide, thus allowing cells to respire normally without being open to 

contamination. Microcarrier beads were added to bags at a concentration of 0.02g/bag in 

1mL fresh warmed culture media.  β-TC6 cells (catalog numberCRL-11506) in standard 

DMEM with 15% FBS (American Type Tissue Culture; Manassas, VA) where added, at a 

concentration of 1-2x10
6
 cells per bioreactor. Bags were then placed into a rotating culture 

device set to approximately 25 revolutions per minute (rpm) and continuously rotated. The 

bioreactor is capable of rotation rates of 2-30 rpm. Media was changed in bioreactors twice 

weekly by stopping rotation, allowing cells and beads to settle, and then removing the media 

via a 22G syringe through the bags port.  Fresh media was then substituted through the same 

port via another 22G syringe. 

 



Results 

ISOLATION OF A PANCREATIC PROGENITOR CELL 

Cellular Localization Within Murine Pancreas 

Sca-1 has been demonstrated as a stem cell marker of murine hematopoietic, 

endothelial, adipose, kidney, and hepatic cells
46-50

. Because of the common lineage of 

pancreatic and hepatic tissues during embryonic development of these organs, Sca-1 was 

chosen as a candidate progenitor marker for murine pancreas.  To test for Sca-1 expression in 

the pancreas, tissue sections were obtained from mice of varying ages.  Murine pancreas was 

analyzed from: neonatal, 1-2 weeks old, and adult (>5 week old) animals.  In adult mice, Sca-

1 expression is seen along the ductal epithelia and in the peri-islet space (Figure 1). In 

neonatal mice Sca-1 expression is seen along the ductal epithelia of the organ and scattered 

around the pancreatic acini.  No expression is observed within the β, α, δ, PP, or somatostatin 

cells that compose the islet.  Because Sca-1 expression is seen along the peri-ductal space of 

the pancreas, pancreatic tissue was stained for the expression of CK19, a known ductal 

epithelial marker. Figure 1C shows CK19 staining in the pancreas and delineates the ductal 

areas, which correspond to those areas that demonstrate cells which are positive for Sca-1 

expression.  
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Figure 1. Sca-1 expression in normal murine pancreas tissue. Immunohistochemical staining shows 

Sca-1 expression along the ductal epithelium as well as in the peri-islet space of adult mice 6weeks of age 

(A). Sca-1 is also seen along the ductal network of neonate mice 2 weeks of age (B).   Cytokeratin19 is a 

common marker of ductal epithelium and serves as a control to delineate the rich ductal network of the 

pancreas (C). Images (D) and (E) represent isotype controls for Cytokeratin 19 and Sca-1 respectively. 

20X (A,C,D), 10X (B,E). 
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Enrichment and Purification of Sca-1+ PPCs 

Fluorescence-activated cell sorting analysis was utilized to quantitatively assess the 

number of the total Sca-1+ cells in the murine pancreas. Results show that 1.13 ± 1.28%  and 

2.3 ± 0.21%  of neonatal and adult pancreatic cells are Sca-1+ respectively. Adult mice 

generated a higher percentage of Sca-1+ cells but fewer cells overall (690 compared to 

16,950 from neonates).  For this reason, neonatal mice, ~2 weeks of age were used in all 

experiments because they gave a higher yield of Sca-1+ cells. Adult mice were used in 

selected comparison studies.   

Immunomagnetic separation was utilized to isolate Sca-1+ cell fractions instead of 

flow sorting as the former technique produces a higher yield of viable cells during the 

isolation and purification process.  Immunomagnetic
 
technology works by labeling our cell 

population with a magnetic microbead specific for a given antigen (e.g., Sca-1). The cells are 

passed through a magnetic filter and the Sca-1 population is retained while the negative 

population is washed out. Given that the parameters are not as tightly controlled with 

immunomagnetic technology (compared to flow sorting), the purity of resulting cell 

preparations underwent confirmatory tests by flow cytometry analysis.  As seen in Figure 2, 

flow cytometry analysis shows that the Sca-1+ population obtained using immunomagnetic 

separation technology is an enriched and distinct population. This technique yields an 

average of 94% of the cell preparation staining positive for Sca-1. 

 

 

 



24 
 

 

 

 

 

 

 

 

Figure 2. Flow cytometry analysis of immunomagnetically separated Sca-1+ PPCs. MACS
©
  

separation generates a reliable Sca-1+ cell population. Flow cytometry analysis shows unlabeled 

cells (blue) as a distinct population from PE labeled Sca + cells (red), verifying purity in magnetic 

separation. 
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Two Dimensional Culture of Sca-1+ Pancreatic Progenitor Cells 

Figure 3 demonstrates cell colony morphology. These images are representative of 

the colonies demonstrated when Sca-1+ PPCs are grown using modified cell propagation 

medium conditions
51

.  Our modified conditions include low glucose DMEM with 10% FBS, 

1.4 units ESGRO, 1µl/mL BMP4, and B27 supplement. Using the immunomagnetic 

separation technique, MACS
®
, approximately 1.5 million Sca-1+ cells are recovered from a 

single murine pancreas. Upon initially plating the cells they are seen as individual, single 

cells. Very early in culture (day 1-3), small colonies form (colony diameter ranging from 50-

100µm) (Figure 3a). The colonies are comprised of small and tightly packed cells with a high 

nuclear to cytoplasm ratio.  The cells comprising these colonies rapidly proliferate and 

expand to form larger colonies several hundred microns in diameter. The morphology of the 

cells changes while they proliferate. Within two weeks the cells exhibit increasing cytoplasm 

and their morphologic features are consistent with an epithelial appearance while the colony 

rapidly expands across the tissue culture dish (Figure 3b). By day 21 of culture, the colonies 

approach confluence and require passage to maintain viability.  After the first passage, cells 

acquire a fibroblastic phenotype and lose their colony-forming capacity. While small 

colonies are no longer seen, cells continue to rapidly proliferate and can be maintained 

through 35+ passages (Figure 3C). 

CHARACTERIZATION OF SCA-1+ PANCREATIC PROGENITOR CELL 

Immunohistochemical Analysis of Sca-1+ Colonies In-Vitro 

MACS
®
 separation is limited by allowing non-specific cells to contaminate the Sca-

1+ cultures. To prove that the contaminating cells were not forming the colonies, we assessed  
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Figure 3. Changes in Sca-1+ colony morphology throughout culture. Sca-1+ colony 

morphology changes over the duration of  standard culture. Initial colonies are typical of those 

seen with other stem cell sources.  Colonies are tightly packed with individual small cells each 

containing a high nuclear to cytoplasm ratio (A).   By day 21 of culture colonies spread over 90% 

of dishes and have a cobble stone type appearance (B).  After passage cells take on a fibroblastic 

appearance, no longer forming stem cell-like colonies throughout the duration of culture (C).  All 

images 10X magnification.  (A) Day 3 of culture, (B) Day 21 of culture (C) Passage 1, day 2 of 

culture. 
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progenitor colonies by fluoro-immunohistochemistry for Sca-1 expression and confirmed 

that the colonies are composed of Sca-1+ cells (Figure 4). 

PPC Expansion and Capacity to Proliferate 

 The CyQuant proliferation assay was utilized to assess PPC proliferation. The assay 

is based on fluorescent dye binding to DNA of viable cells.  As evidenced by the graph in 

Figure 5, twenty-four hours after isolating and plating the cells there is a decrease in viable 

cell number to 60% of the starting cell population. This decrease likely reflects the fact that 

the isolation procedure leads to cellular necrosis due to the fragile nature of this primary cell 

population. Mechanical and enzymatic stress as well as removing cells from their natural 

environment contributes to cell death.  Additional cells are lost from the culture as some cells 

do not attach to the dishes after plating.  Cell numbers continue to decline through day 4 and 

at that point our cell population represents approximately 36% of cells compared with the 

starting population. After day 4 the viable cells undergo a period of recovery and notable 

proliferation. By day 7 there is an increase to 102% of cells present compared with Day 4.  

Cell numbers continue to increase and by day 14 there is an 8.7-fold increase compared with 

the numbers seen at day 4.  By day 21, cell numbers plateau and remain constant at 11x the 

numbers seen on day 4. This coincides with visible confluence of cells on the dish and likely 

cell-cell contact inhibition secondary to a depletion of space for the cells to further 

proliferate. 

Interim Conclusions 

A novel stem cell population that is positive for Sca-1 has been identified in the 

murine pancreas.  In vivo the cell is localized around the peri-islet space as well as along  
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Figure 4. Sca-1 immunohistochemistry in culture. Colonies in standard culture are formed from Sca-1+ cells, not contaminating 

cell types. DAPI staining delineates nuclei within a common colony at day 3 of culture (A, E, F).  Sca-1 expression of colony (B). 

Merged DAPI and Sca-1 staining (C,D).  Staining control-isotype control (G), Staining control,-secondary alone (H). (A,B,D,E,F,G,H) 

20X, (C) 10X. 
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Figure 5. Proliferative ability of Sca-1+ PPCs. After an initial phase of degredation following plating, Sca-1+ PPCs are a highly proliferative, 

robust cell population. Cells undergo rapid recovery and proliferation over a 3 week culture period. Error bars represent standard  error. 
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ducts of the pancreas.  There is no Sca-1 expression seen within the islets or within the acinar 

cells of the organ. We are able to consistently isolate and purify this cell population using 

 immunomagnetic cell separation technology specific for Sca-1 and obtain a population with 

94% purity. Sca-1+ cells form rapidly proliferating colonies of tightly packed small cells 

when placed in culture.  Initially these colonies are compact and composed of cells that have 

a high nuclear to cytoplasm ratio. However, as the cells continue to proliferate their 

morphology changes and they develop an epithelioid appearance with larger cytoplasm.  

Once cells are confluent they are capable of passage. When passaged morphology changes 

again and cells appear fibroblastic in nature for the remainder of culture.  Cells positive for 

Sca-1 maintain their expression in culture after forming stem cell colonies. Sca-1+ PPCs are 

a highly proliferative cell population.  Upon initial plating cells undergo a period of cell 

death.  After 4 days in culture cells recover and a period of rapid proliferation ensues with 

ultimate cell numbers being 11 times higher than their lowest numbers on day 4 of culture.   

TRANSCRIPTION AND TRANSLATION OF SCA-1+ PPC’S 

PPCs Express Transcription Factors Indicative of β-Cell Lineage as well as all Other Cell 

Fates of Adult Pancreas 

 Transcription factors of interest were selected based on a review detailing necessary 

factors required during differentiation of embryonic endoderm to liver and pancreatic fates
52

. 

Distinct genes are required for differentiation to particular cell types of the pancreas.  Figure 

6 is a schematic of selected genes and their significance in the developmental pathway 

leading to the pancreas. Sca-1+ cell populations were evaluated immediately after isolation 

(P0) and during in vitro culture after select passages (P2 and P4). Murine islets were used as 

a control population.  Immediately after isolation the PPC population expresses  
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Figure 6. Transcription factors of interest in pancreatic progenitor development. Liver and 

Pancreas share a common lineage in embryogenesis with specific transcription factors being 

essential to drive pancreatic  development. Pancreas is formed from fusion of the dorsal and 

ventral endoderm under the influence of factors shown.  As pancreas tissue grows and develops 

specific factors are needed to drive formation of individual cell types- progenitor, endocrine, and 

exocrine.  Transcription factors assayed at each stage in our experiments are listed. 
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developmental markers Hnf6, Ptf1α, and PDX-1 (Figure 7). During cell culture (passage 2) 

the markers Hnf6 and PDX-1 are down-regulated.  Hnf6 is subsequently up-regulated by P4. 

  Expression of markers leading to an endocrine progenitor fate Nkx2.2, Ptf1alpha, 

Ngn3, and NeuroD were analyzed. Nestin, which has been shown to be necessary to 

differentiate embryonic stem cells toward a pancreatic cell fate was also analyzed
53

. These 

genes persist throughout passage, while Pax6 and PDX-1 disappear as passage number 

increases. Markers of endocrine cells, Insulin 1 and 2 are present at P0 and P2, but decrease 

by P4.  Another differentiated cell marker, Glut 2 is very weakly expressed at P2 and P4. 

Because prior histological analysis showed Sca-1+ cells correlating with ductal areas we 

subsequently evaluated expression levels of CK19, which was present at all time points in 

culture and passage. 

 PDX-1 expression is required for differentiation of pancreatic stem cells toward a 

pancreatic β-cell
54

. Based on this information and the fact that we see transcription of the 

gene we analyzed the Sca-1+ progenitor population for co-expression of PDX-1.  PDX-1 

expression in the Sca-1+ colonies was analyzed by fluoro-immunohistochemistry.  Figure 8 

shows that Sca-1+ progenitor colonies do exhibit PDX-1 in their cytoplasm. PDX-1 is 

normally found located in the nucleus of cells. Expression in the cytoplasm of PPCs would 

suggest transcription but not translation of the protein into an active form.  As seen by other  

investigators, in rat and human islets PDX-1 is found in an inactive form in the cytoplasm of 

the islet when glucose concentrations are low. PDX-1 is then activated by phosphorylation 

when glucose concentrations increase and the active form is translocated to the cell nucleus
55-

58
. 
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Figure 7. Semi quantitative PCR analysis of Sca-1+ PPCs. PCR analysis shows that PPCs 

differentiate toward multiple lineages of pancreatic fate and not toward simply endocrine β-cell 

fate.  Cells were assayed at passage 0, 2, and 4 for the listed pancreatic transcription factors.  

Ck19 was also analyzed since it’s expression was seen in staining in vitro. 

 



 

 
 

3
4
 

 

Figure 8. PDX-1 expression of Sca-1+ colonies. PDX-1 is expressed by all β-cells of the pancreas and is necessary in formation of β-

cell tissue from progenitor cell origins. PDX-1 is expressed on day 3 Sca-1+ colonies. Expression is strongly shown in the cytoplasm 

and not the nuclear region of the cells.  Transmission image with DAPI delineating nuclei (A,B), PDX-1 expression  of the same 

colonies using PE conjugated antibody (C,D). DAPI transmission (E,F). Controls corresponding to DAPI transmission, isotype control 

(G), secondary alone (H). (A-D) 10X, (E-H) 20X. 
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Differentiation of PPCs into Multiple Pancreatic Cell Fates 

Western blot analysis was employed to analyze cell cultures to determine 

differentiation toward the endocrine and exocrine features of the pancreatic population. Cells 

were assayed at passage 0, 2, 4, and 7. Ngn3 and Pdx1 were chosen as products of early cell 

differentiation associated with β cell fate; insulin receptor alpha, a marker of fully developed 

Beta cells; glucagon a marker of alpha cells; and amylase a product of the acinar cells.  Final 

analysis shows cellular expression of PDX-1 and Ngn3 at low levels after isolation and 

throughout the time points assayed. Insulin receptor alpha expression was higher at all time 

points but there was no significant variation throughout culture. Amylase was likewise 

observed at low levels throughout the culture period. Results are summarized in Figure 9. 

Interim Conclusions 

Transcriptional analysis of Sca-1+ PPCs during culture shows variability in the 

markers expressed.  Initially cells express many of the developmental markers associated 

with pancreatic and endocrine progenitor cells, including Hnf-6, Ptf1α, PDX-1, Pax6, 

Nkx2.2, Ngn3, NeuroD, and Nestin. These markers vary in expression, at times down-

regulated at passage 2, but are ultimately up-regulated and expressed throughout the culture 

period. Cells also express many differentiated cell markers such as Insulin1, Insulin2, Glut2,  

and CK19. There are again fluctuations in the degree of expression of these transcription 

factors but they are persistent throughout the culture duration.  The reason for the fluctuation 

in progenitor and differentiated cell factors could be due to differentiation as a result of cell 

to cell-interactions. Although the cells are purified for Sca-1 expression other cells do get 

mixed in with the cell preparations. MACS
®
 technology while allowing for greater purity  



 

3
6
 

 

 

 

Figure 9. Protein expression of Sca-1+ PPCs. Western blot analyses performed at passage numbers 0, 2, 4, and 7 for pancreatic proteins 

Amylase, Insulin Receptor Alpha, Glucagon, Ngn3, and Pdx-1. Values are reported in arbitrary units. Results correspond with transcription data in 

that there is no clear line of differentiation. No statistical significance was observed. Error bars reflect standard error. Arbritraty units are 

normalized for expression of control protein β-actin. 
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does not provide a 100% pure population of Sca-1+ cells. In addition, maintaining the cells in 

a 2-D environment limits their ability to develop normally and forces the cells to differentiate 

based on constraints of the culture vessel as well as causing cell death due to limited space.  

PDX-1 is a transcription factor that is present not only in early development in the pancreas 

but is also essential for the differentiation of mature β-cells.  For this reason its presence 

would be essential in any cell population with potential of becoming an islet-like cell.  PPCs 

do in fact express PDX-1 throughout culture at the transcriptional level. We also analyzed 

cells in culture for the presence of PDX-1 after colony formation and found that the colonies 

do express PDX-1 in their cytoplasm.   

Protein analysis of the Sca-1+ PPC population was done via western blot.  Analysis 

shows that cells express the developmental markers Ngn3 and PDX-1 throughout culture and 

passage. The cells also express mature endocrine proteins Glucagon and Insulin Receptor α. 

Likewise, mature exocrine cell marker Amylase is expressed throughout culture. The 

expression levels of each protein vary throughout the culture duration showing the ability for 

endocrine and exocrine function, but a significant trend is in a particular direction is not 

observed.  

FUNCTIONAL ANALYSIS OF SCA-1+ PPC’S 

PPCs Release Basal Amounts of Insulin In Vitro 

ELISA was performed to assay insulin production secondary to glucose stimulation.  

Neonatal mice and adult mice 20+ weeks of age were used to compare functional differences. 

Cells from both age groups produce a basal level of insulin in both high and low glucose 

conditions over a 48 hour period (Figure 10). While cells from adult mice produce a  
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Figure 10. Functional ability of Sca-1+ PPCs to produce insulin. ELISA was utilized to 

measure sustained secretion of insulin by both adult (20 week) and neonate (2 week) Sca-1+ 

donor cells.  Cells were stimulated with low (2.8mM) and high glucose (40mM) conditions for a 

48 hour period and supernatant collected at the conclusion. Error bars represent standard error. 

No statistical significance was noted.  
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relatively constant amount of insulin across time points and glucose concentrations, neonatal 

cells spike in insulin production at P2 and then return to immediate post isolation (P0) levels 

by P4. There is no statistically significant increase in insulin secretion from low to high 

glucose conditions at any passage for either age group.  

Initial ELISA data was collected allowing 48 hours for the cells to be glucose 

stimulated. As insulin secretion is typically measured by analyzing the rapid spike in 

response to acute changes in glucose concentration this physiologic cellular response could 

be missed over longer collection times like those delineated in Figure 10.  To test the cells’ 

acute phase response an experiment was performed using a 4 hour assessment with sample 

collections at 30 minutes, 1 hour, 2 hours, and 4 hours after glucose challenge (Figure 11).  

Islets were used as a control to demonstrate normal rapid response to changes in glucose 

conditions.  Sca-1+ cells produced basal amounts of insulin throughout the process, without a 

significant increase in production as a response to increased glucose concentrations in the 

media.  PPCs in low glucose conditions produced slightly more insulin than their high 

glucose counterpart. 

Interim Conclusions 

Sca-1+ PPCs have the functional ability to produce insulin in vitro. However, this 

ability is not responsive to glucose stimulation. Sca-1+ cells from adult mice produce a 

steady state of insulin across passages and over a 2 day period of culture. Release of insulin 

is independent of glucose concentration.  Neonatal mice are capable of responding to glucose 

spikes at passage 2, but are not able to maintain this ability after passage 4.  Acute ability to 

secrete insulin was also analyzed. Over the course of 4 hours there is no increase in insulin 

secretion in Sca-1+ cells in high glucose conditions.  In fact, cells in low glucose conditions  
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Figure 11. Rapid response of Sca-1+ PPCs  to high glucose conditions. Insulin ELISA was 

utilized to measure rapid response to increased glucose conditions. Neonatal cells were stimulated 

for a 4 hour duration with either high (40mM) or low (5.55mM) glucose conditions in the absence 

of FBS. Supernatants were collected at 30 min, 1, 2, and 4 hours.  Cells were assayed at Passage 0 

of culture during the time period when small colonies are visible.  Mature islets were used as 

controls. Units are expressed in ng/ml normalized for 50µg of protein. Error bars represent 

standard error. 
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released more insulin than their high glucose counterparts.  This was in stark contrast to islets 

which showed a drastic increase in insulin secretion at high concentrations and only a minor 

increase in low glucose conditions.  

THREE DIMENSIONAL CULTURE 

Bioreactor Culture of Sca-1+ PPCs 

Bioreactor culture devices were designed and created with assistance from Dr Robert 

Dennis of the department of Biomedical Engineering at UNC (Figure 12).  The base design is 

a rotating wall vessel which circles around a fixed point creating conditions of zero gravity 

and allowing cells to remain suspended throughout the duration of culture. The device 

measures 8 X 8 X 6 inches and is maintained inside a carbon dioxide infused incubator.  

Initial experiments integrated the bioreactor devices with our Sca-1+ PPCs isolated 

from neonatal mice.  Experiments were designed to assess the cells’ potential for growth and 

viability in the bioreactor cultures.  Cells are cultured on Cytodex 3 microbeads (Figure 13A) 

in FEP culture bags that allow diffusion of gases across their surface and thus do not require 

the infusion of biological gases through mechanical methods (Figure 13B). Initially PPCs 

attach to microbeads at single contact points.  Over the course of 2-3 weeks the cells begin to 

spread and eventually cover the entire bead. After the beads are covered, the cells begin to 

form bridges with adjacent beads, attaching and forming aggregates of multiple beads. This 

indicates that the cells remain viable in this unique 3-D culture condition. GFP-positive cells 

were used to enable cellular visualization over the course of the two week culture period 

(Figure 14). 
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Figure 12. Design of 3-D tissue culture bioreactor. The bioreactor consists of a pivoting 

platform that rotates around a fixed point. A small motor behind the platform controls power and 

speed of rotation. 
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Figure 13. Microcarriers and culture bags for bioreactor experimentation. Cytodex 3 

microcarrier beads are used as a substrate for cells to adhere in rotating culture (A). Beads and 

cells are loaded into fluoroethylene propylene culture bags (B) prior to being attached to 

bioreactor platforms. 20X (A). 
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Figure 14: Attachment of Sca-1+ PPCs to microcarrier culture beads. Sca-1+ PPCs have the 

ability to adhere and proliferate in 3-D bioreactor cultures. Initially cells attach to cytodex beads 

at individual points. Image at day 5 (A). Cells are then observed to spread and cover the entire 

bead surface. Image at day 10 (B).   Once bead surfaces are covered cells begin to branch out and 

attach to neighboring beads, forming aggregates. Image at day 13(C). 10X (A), 20X (B,C). 
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Insulin Secretion of Sca-1+ PPCs in Bioreactors 

Cultures were kept in bioreactors until PPCs proliferated to the point where they 

covered the microcarrier beads. At this point they were placed in high glucose conditions and 

analyzed for their ability to secrete insulin over 4 hours.  Insulin levels increased over a 2  

hour time period but levels then declined by 4 hours of increased glucose stimulation (Figure 

15). This pattern, which is similar to that seen in fully functioning islets, was a new 

observation. All previous attempts at glucose challenge of the PPCs resulted in a steady 

release of insulin over the entire experimental time and no spike in secretion in response to 

increased glucose. By simply removing PPCs from a monolayer culture and placing them 

into a 3-D environment they demonstrate a physiologically ability to function in a more 

normal manner. 

Bioreactor Culture of β-TC6 Cell Line 

Further experimentation to analyze PPC differentiation was attempted on multiple 

replicates but due to limited numbers of primary cells and the necessity of a large number of 

cells for bioreactor culture we identified an alternative endocrine pancreatic cell line that we 

could use to study the bioreactor’s effects.  The β-TC6 cell line was chosen for subsequent 

bioreactor experiments because of its proven endocrine function
59, 60

.  The β-TC6 line is 

derived from β-cell tissue of a mouse pancreatic tumor. This cell line is highly proliferative 

and easily maintained making it a suitable cell source to analyze an ex vivo culture system’s 

effects on pancreatic cells. β-TC6 cells initially attach to Cytodex beads at single points and 

begin to cluster on their surface. Over time, clusters detach from beads and form free floating 

suspended clusters (Figure 16). These clusters vary in size and have been observed to reach  
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Figure 15. Sca-1+ PPCs respond to increased glucose in 3-D bioreactor cultures. Insulin 

secretion was measured in response to a 55.5mM concentration of glucose over a 4 hour time 

period.  Insulin levels increase over a 2 hour period and then decline by the 4
th
 hour. Error bars 

represent standard error.  
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Figure 16. Morphology of β-TC6 cell when grown in monolayer versus bioreactor culture. 

β-TC6 cells in adherant cultures attach to the dish and form small monolayer colonies (A). In 

bioreactor cultures cells initially form clusters while attached to the surface of cytodex beads (B).  

Over time these clusters break off and form self standing structures (C). All images are day 5 of 

culture. 
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up to 200 µm. As evidenced in Figure 17, the 3-D architecture of these cell clusters 

resembles that of viable islets and is strikingly different than the monolayer dish architecture. 

Comparison of 2-D and 3-D Transcription 

Semi-quantitative PCR shows that over the course of 12 days transcription of 

pancreatic markers is up-regulated in bioreactor cultures compared to monolayer dish 

cultures.  At day 5 the amounts of mRNA expressed are similar. However, by day 12 there is 

a trend towards increased mRNA expression in bioreactor cultures across all transcription 

factors studied (PDX1, NeuroD, Insulin1, Insulin2, Isl1, Pax4, Pax6, GATA4, GATA6).  

Also of interest is the observation that developmental markers Nestin and Ngn3, and exocrine 

markers Amylase and Ptf1α are expressed by day 12 in bioreactors, but not expressed in 2-D 

static dish cultures.  Figure 18 graphically illustrates these results. 

Comparison of 2-D and 3-D Translation 

Western blot analysis reveals that islet proteins Glut2 and PDX-1 are expressed in 

greater quantities in the bioreactor cultures over 2 weeks of culture.  As seen in Figure 19, at 

day 5 there is a ten-fold increase in PDX-1 expression in bioreactors compared to 2-D dishes.  

By day 7, expression is reduced in both dishes and bioreactors, but the bioreactors still 

express twice the amount of PDX compared with the dishes. By day 14 expression has 

increased again in both conditions with bioreactors having 4 times the expression.  The 

pattern is similar for Glut2 where day 5 dishes have 1/5 the expression of bioreactors, 0.31 

AU compared with 1.5 AU, respectively. By day 7 dishes increase to 0.54 AU and 

bioreactors decrease to 0.84 AU.  Finally by day 14 dishes express Glut2 at 0.54 AU and  
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Figure 17. Cell clusters formed by β-TC6 cells in bioreactors resemble normal islets in 

architecture. Islets from human pancreas are stained with DTZ a common marker of islet tissue 

(A). Clusters of β-TC6 cells formed in 3-D bioreactor after 5 days of culture are similar to normal 

islets (B) while β-TC6 cells in dishes are flat and one dimensional (C). 4X (A), 20X (B), 10X (C). 
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Figure 18. Semi quantitative PCR results for β-TC6 cell line in monolayer and bioreactor culture. Cells were cultured in either dish or 

bioreactor cultures for 5 and 12 days and RNA collected.  PCR analysis was then performed to assay the amount of mRNA present for the 

pancreatic makers listed.  Trending was toward up-regulation of expression in bioreactors by day 12.  No statistical significance was observed. 

Error bars represent standard error. Arbitrary units (A.U.) are normalized for expression of control mRNA β-actin.  
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Figure 19. Comparison of protein expression from β-TC6 cells contained in culture dishes 

and 3-D bioreactors. Expression of both PDX-1 and Glut2 is increased in bioreactor cultures 

compared to dish cultures.  No statistical significance was noted.  Arbritraty units (A.U.) are 

normalized for expression of control protein β-actin. Error bars represent standard error. 
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bioreactors 1.61 AU. Although expression differences were different between bioreactor and 

dish cultures the values did not reach statistical significance. 

Improved Insulin Secretion in Bioreactor 

β-TC6 cell lines were cultured in standard monolayer dish cultures and 3-D bioreactor 

cultures. We then measured the ability of the cells to secrete insulin in response to glucose 

stimulation. Figure 20 shows that over the course of an hour there was only a minor response 

by β-TC6 cells on dishes to an increased glucose concentration; 22.1ng/ml at 30 minutes, 

25.3ng/ml at 1 hour. This was surprising as cells cultured in the absence of glucose (0nM) 

produced higher amounts of insulin 26.9ng/ml at 30 minutes, 45.7 ng/ml at 1 hour than cells 

in high glucose conditions (100mM). Alternately, cells cultured in bioreactors showed a 

measurable increase in insulin production in high glucose conditions with 51.6ng/ml at 30 

minutes, 182.5ng.ml at 1 hour. All low glucose conditions in bioreactors resulted in lower 

readings of insulin production 55.8ng/ml at 30 minutes, 78.4ng/ml at 1 hour.  

Interim Conclusions 

The bioreactor device provides a 3-D microgravity culture environment that changes 

proliferation and function in a cell population. The device uses technology modeled after 

rotating wall vessel bioreactors and allows cells to attach to microcarrier beads while being 

constantly rotated around a fixed point, and thus never settling to the bottom of the culture 

vessel. Initial experiments with Sca-1+ PPCs in the bioreactor show that the cells 

successfully attach to beads and are capable of proliferation and maintenance in culture. Cells 

initially attach to beads at single points and then begin to cover the entire bead surface.  Once 

beads are covered cells begin to reach out and form aggregates of cells/bead combinations. 
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Figure 20. Bioreactors allow for increased secretion of insulin in response to glucose 

compared to monolayer cultures. Cells cultured in monolayer dishes produce very little insulin 

in response to increases in glucose concentrations while cells in 3-D cultures produce measurable 

amounts. Cells were stimulated with low glucose (0mM) and high glucose (100mM) 

concentrations for 2 hours with samples taken at 30 minutes and 1 hour. No statistical 

significance was observed. Error bars represent standard error.  
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When assayed for their ability to release insulin PPCs in bioreactors demonstrate function not 

seen in dish culture. Over the course of 2 hours the amount of insulin released steadily 

increased by 6 fold in response to continuing culture in high glucose surroundings.   

The β-TC6 cell line was used for the majority of bioreactor experiments because of its 

high proliferative ability and similarities to our endocrine progenitor cell type, notably its 

ability to produce insulin. When placed in 3-D bioreactors the β-TC6 cells form aggregates 

on microcarrier beads. These aggregates then break away from the beads and form free 

standing structures that remain suspended in the culture medium.  Aggregates are very 

similar to islets in their architecture and morphology.  In contrast, the same cells on culture 

dishes form flattened layers of cells that look endothelial in nature.   

Transcriptional data shows that β-TC6 cells consistently up-regulate transcription 

factors required for development and differentiation of the endocrine pancreas.  Over the 

course of 12 days in culture developmental genes NeuroD, Pax4, Pax6, Hnf3β, Hnf4α, 

GATA4, GATA6, and Nestin were consistently expressed at higher concentrations in 

bioreactor cultures compared to dishes.  Likewise, the developmental marker Ngn3 was not 

seen in dish cultures but was up-regulated in bioreactors. Differentiated cell markers 

Insulin1, Insulin2, and Isl1 were also increased in bioreactors after 12 days.  Bioreactors also 

showed increased protein expression. Over the course of 14 days PDX-1 protein was 

expressed more robustly in bioreactors compared to dishes.  While both culture conditions 

fluctuated in expression, with levels decreasing at day 7, by day 14 expression in bioreactors 

was 4 times higher than that of dishes. The same pattern was observed with Glut2 with 3 

times the amount of protein expression observed at day 14.  
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The functional ability of the β-TC6 cell line was also enhanced in bioreactor 

conditions. While dishes show no response to glucose stimulation, bioreactors show a 3.5 

fold increase in the amount of insulin released over a 30 minute period. Although largely 

different, values did not reach statistical significance.  

 



Discussion 

SUMMARY 

Diabetes is currently the seventh leading cause of death in the US, the leading cause 

of kidney failure, lower limb amputations, and blindness, as well as a major contributor to 

heart disease and stroke
61

. Over 220 million people worldwide currently have diabetes
62

. 

Twenty-six million people (or 8.3% of the population) have diabetes in the United States 

alone
61

.  It is predicted that by the year 2025, 333 million people worldwide will suffer from 

the disease
63

. 

Current treatment options for Type 1 diabetics do not offer strict enough control of 

blood sugar levels to prevent the development of the previously mentioned complications.  

Islet cell transplant is a clinically proven method to treat Type I diabetes but it is challenged 

by severe limitations in donor availability, poor long term success rate, and requirement for 

immunosuppression. For these reasons an alternative cell source that could provide 

physiologic glucose responsiveness while replacing islet transplantation could offer a cure to 

the approximately 2 million newly diagnosed T1D patients each year in the US alone
61

. 

The primary goals of this research project were (i) to identify a novel progenitor cell 

source from pancreas tissue, (ii) to characterize this cell population and its functional ability 

to produce insulin and (iii) determine whether a three dimensional culture mechanism would 

be beneficial in propagation of these pancreatic cells, with the ultimate goal of one day using 

them as a replacement for transplanted islets.  
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ISOLATION OF A NOVEL SCA-1+ PANCREATIC PROGENITOR CELL 

There is much debate in the field of stem cell biology whether an adult derived 

progenitor cell exists in pancreatic tissue.  Initial studies showed that new β-cells arise as a 

result of division of pre-existing β-cells throughout life and after pancreas injury, thus casting 

doubt on the idea of stem cell contributions
64

.  Subsequent reports aimed to confirm this 

phenomenon verify that β-cells are maintained by replication of already differentiated β-

cells
65-67

.  Alternately, others have shown that a stem cell does in fact exist in the pancreas. 

Seaberg et al. reported in 2004 that pancreatic precursors could be isolated from adult mouse 

pancreas
23

. They were able to demonstrate that the cells are positive for many β-cell markers 

and capable of releasing insulin in response to glucose stimulation. However, the amount of 

insulin produced by these cells was much lower than what is produced by a normal β-cell. 

Recent reports have shown that endocrine precursors can be derived from surgically resected 

portions of human pancreas and that islets themselves contain a population of mesenchymal 

stem cells
68, 69

. 

We have shown that it is possible to isolate a tissue derived progenitor cell from 

murine pancreas and that the cell can be identified and purified by its expression of Sca-1. 

Sca-1 has been identified as one of the early cell surface markers of hematopoietic stem 

cells
70

. Other reports have found Sca-1 expressed in progenitor cells of the kidney, liver, 

cardiac and skeletal muscle, and mammary tissue but to our knowledge this is the first report 

of a Sca-1+ progenitor cell residing in murine pancreas
46, 50, 71-73

.  Our population produces a 

large amount of insulin in vitro but the cells do not appear to be responsive to glucose 

stimulation.  This is different than most other published findings where insulin secretion is 

very limited.  
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BIOREACTOR CULTURE FOR IMPROVED PANCREATIC PROGENITOR CELL FUNCTION 

Three dimensional culture offers unlimited potential in cultivation of cell populations.  

Unlike static dish cultures, 3-D systems allow for more robust growth of cell populations 

while enhancing cell to cell interaction and cell migration. Cells have expanded surface area 

to differentiate and divide without the predefined basement membrane of a culture dish.  

Normal cell division occurs through a series of events that relies on spatial and temporal 

organization as well as mechanical cues, communication between cells and their matrix, and 

communication between individual cells, all of which are enhanced in a 3-D environment
74

. 

Previous research has shown that pancreatic cell lines from rat exocrine tissue are 

highly proliferative when placed in a rotating 3-D culture and that they are able to maintain 

their cell markers and potential for differentiation
43

. Porcine pancreatic tissue has also been 

cultured in 3-D and demonstrated the ability to form islet-like structures and secrete inslin
75

. 

Similarly, islets have been placed in 3-D culture devices along with co-cultures of sertoli rat 

cells and show preservation of physiologic function
76

.  

Many types of bioreactors are commercially available for medical research.  One of 

the most popular is the stirred bioreactor which uses propeller type appendages to keep media 

and cells in suspension. These are particularly useful for applications such as production of 

microbes or vaccines because they can be built on large scale
77

. However, mechanical 

agitation in this type of reactor can cause cell death when they come into contact with the 

propellers. For this reason we chose to model our bioreactor device after a RWV. In addition 

our model allows the addition of a culture bag that provides efficient gas exchange. This 

circumvents the need to filter biologic gases through ports or other mechanical means. 
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Using our bioreactor a murine endocrine cell line, β-TC6, forms islet-like structures 

not seen in static monolayer culture. We have also demonstrated up-regulation of 

transcription and translation of progenitor and differentiated pancreatic markers as well as 

improved insulin secretion ability of this cell line when compared to dish cultures. Initial 

experiments with our Sca-1+ PPC population in a 3-D environment demonstrate cell stability 

and proliferation in culture while the cells gain the ability to respond to changes in glucose in 

their environment. We have shown a physiologic change in the ability to produce insulin for 

the β-TC6 cell line when moving it from a static 2-D culture to a dynamic 3-D bioreactor.   

FUTURE DIRECTIONS 

One major obstacle to overcome with the Sca-1+ PPC population is the fact that there 

is no ortholog for Sca-1 in humans. The Sca-1+ cells are co-localized in the peri-ductal 

region of the pancreas and we postulate that they may also be positive for CK19, a ductal 

marker in the pancreas. Recent reports have identified progenitor cells along the ductal 

epithelia of murine pancreas
78-80

. Further investigation into this staining may offer a key to 

finding and isolating these cells in other mammals.  

Studies also need to be done with our Sca-1+ population to test their ability to 

function after transplantation into a diabetic model.  We have initiated transplant studies but 

factors such as site and method of transplant, animal model selection, engraftment, and 

optimal cell number are all major issues that need to be fully elucidated to design a robust 

series of experiments.  After we identify a reproducible transplant methodology the cells will 

be tested for viability and restoration of function in a disease model. 
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