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ABSTRACT

ANITA A. ABRAHAM: Model Selection Methods in the Linear Mixed Model

for Longitudinal Data.

(Under the direction of Dr. Lloyd J. Edwards)

 The increased use of repeated measures for longitudinal studies has resulted in the

necessity for more research in the modeling of this type of data In this dissertation, we.  

extend three candidate model selection methods from the univariate linear model to the

linear mixed model, and investigate their behavior.

 Mallows'  statistic was developed for the univariate linear model in 1964. HereG:

we propose a  statistic for the linear mixed model and show that it can be a promisingG:

method for fixed effects selection.  Of all the methods investigated in this dissertation, the

G: statistic gave the most favorable results in terms of fixed effects selection and is the

least computationally demanding of all the candidate methods.

 The KIC statistic, a symmetric divergence information criteria, explored here

appears to be promising as a model selection method for both fixed effects and

covariance structure.  In the selection of the correct covariance structure, the KIC tended

to hold middle ground between the AIC and the BIC.  In terms of fixed effects, the KIC

appears to perform significantly better than either the AIC or BIC in the selection of fixed

effects when there is no interaction effect present.

 The predicted sum of squares (PRESS) statistic  has been developed for the linear

mixed model and is available in the SAS statistical software, but its abilities as a model

selection method lacked sufficient evaluation.  From our study, it appears that the PRESS
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statistic does not add much as a fixed effect selection method compared to the  or theG:

KIC while being more computationally intensive.

 All three criteria are investigated using simulation studies and a large example

dataset evaluating health outcomes in the elderly to determine their reliability.  As a by-

product of this research, the reliability of standard selection criteria in the linear mixed

model, namely the AIC and BIC, are also evaluated.  Numerous areas of future research

within the context of model selection methods in the linear mixed model, are identified.
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CHAPTER 1

INTRODUCTION AND LITERATURE REVIEW

1.1 Objectives

 The linear mixed model is an important tool in  modeling the of continuous

outcome longitudinal data.  The linear mixed model extends the univariate linear model

with independent and identically distributed (i.i.d.) Gaussian errors in a way that

accommodates for the correlation of measurements within the same subject.  While many

different types of selection methods have been developed for the univariatefrequentist 

linear model, the quantity and quality of model selection methods that havefrequentist 

been developed for the linear mixed model leave much room for improvement The.  

linear mixed model requires selecting both a mean and a covariance model, and each

must be considered separately.  Unfortunately, only limited and ambiguous results have

been published which evaluate the candidate methods including ones considered standard

practice such as the Akaike Information Criterion (AIC, Akaike, 1974) and the Bayesian

Information Criterion (BIC, Schwarz, 1978).

 In the univariate model, Mallows'  criterion requires a pool of candidate modelsG:

which are each separately nested within a single full model.  It compares the mean square

error ( ) of each candidate model to the  of the full model, which then allowsMSE MSE

comparing one candidate to another.  Presently, there is no  statistic for the linearG:

mixed model.
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 Information theoretic criteria have played a prominent role in model selection and

is probably the most active area of current research in model selection for the linear

mixed model.  Most practitioners use the Akaike Information Criterion (AIC, Akaike,

1974) and the Bayesian Information Criterion (BIC, Schwarz, 1978). Cavanaugh (1999)  

developed a nondirectional divergence criterion, based on Kullback's symmetric

divergence, for the linear univariate model (KIC). However, no investigation of the KIC

has been done in the linear mixed model.  In addition, while the AIC and BIC are

accepted as appropriate model selection criteria in the linear mixed model, little research

has been done to look at how well they  as selection criteria.actually perform

 For modeling repeated measures data with correlated errors, Liu et al. (1999)

generalized a cross-validation model selection method, the Predicted Residual Sum of

Squares (PRESS).  Allen (1974) originally suggested  as a model selectionPRESS

criterion in the univariate linear model.  While the PRESS statistic has been developed in

the linear mixed model, no investigation of its performance has been done in the

literature.

1.2 Motivation

 As the use of repeated measures data for longitudinal studies has grown, the

necessity for more research in the modeling of this type of data has also increased.  The

linear mixed model serves the same role in longitudinal data analysis as the linear

univariate model does in cross-sectional analysis.  However,  standardin comparison to

univariate linear models, few  model selection methods have been developeder frequentist 

or evaluated for the linear mixed model.

 The literature shows a utility in the development of a  statistic (Mallows, 1973)G:

for the linear mixed model as well as a need for investigation into the ability of the KIC,

developed by Cavanaugh (1999), and the PRESS (Allen, 1974) to select correct model
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structures in the linear mixed model.  In addition, little evaluation has been done

regarding the information criteria that are considered to be standard model selection tools

in the linear mixed model, namely the AIC and BIC. In addition to the primary

consideration of the , the KIC and the PRESS, this thesis will also serve as anG:

evaluation of these standard tools.   The  and PRESS statistics will be used to select theG:

correct mean structure using a predictive approach, while the KIC will be evaluated in its

selection of both the correct mean and covariance structure (though not simultaneously).

1.3 Literature Review

 In this section, a brief overview of the available model selectionfrequentist 

techniques in linear and non-linear studies involving the criteria to be studied and their

analogs are summarized.  The first section presents and defines the univariate linear

model and reviews the studies available regarding the analogs of the criteria that will be

presented in this thesis.  The second section  defines the linear mixed model and presents

the notation that will be used throughout and contains a review of the literature available

regarding the criteria that are the primary focus of this thesis as to their use in the linear

mixed model and in other non-linear modeling techniques.

1.3.1 The Univariate Linear Model

 Since the model selection methods described in this  were firstdissertation

developed for the univariate linear model, it is important to familiarize ourselves with this

model.  The univariate linear model, also known as the general linear model for a single

response, can be represented as follows for individuals and  regression parameters8 :

(Muller and Stewart, 2006, p. 40-41):
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C \ /
Ð8 ‚ "Ñ Ð8 ‚ :Ñ Ð8 ‚ "ÑÐ: ‚ "Ñ

œ �"     

/ ! Mµ R ß8 8
#ˆ ‰5

(1.1)

This model assumes that the   are mutuallyelements of response vector C œ Ce f3
independent.  \ is a known constant design matrix of covariate values, and  is an"

unknown vector of regression parameters.  describes the The constant vector 8 ‚ " \"

mean of the responses and the  random vector  describes the variance of the8 ‚ " /

responses.

1.3.2 Model Selection: General Overview

 Model selection provides only one step of many in assessing model adequacy.

Other steps include, but are not limited to: reducing the largest model using hypothesis

tests and scientific questions of interest, assessing the fit of the model using appropriate

diagnostic tools, and assessing the strength of association between the response variable

and the predictors using appropriate statistics.  While it is important to remember that

model selection criteria are not the sole method of deciding what variables should be in a

model, it is still a necessary step in selecting the appropriate model for the data available.

In the linear mixed model, there are only a limited number of methods that have been

developed thus far , and since the structure ofin comparison to the linear univariate model

the linear mixed model is more complicated than the univariate linear model, it is

essential that more methods be developed so that there  are better possibilities to choose

the correct model.

 In general, a selection criterion scores every fitted model in a candidate class by

how effectively the model conforms to the data based on its size.  Ideally, unwanted

scores will be assigned not only to models that omit essential variables, but also to

models that adequately accommodate the data yet involve extraneous or irrelevant
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variables (Cavanaugh, 2004).  In other words, the ideal selection criterion will select the

model with the most parsimonious set of variables to describe the data available.

 A different method of model selection is cross-validation.  This method changes

the goal of model selection from explaining a given set of data to predicting a new set of

data which comes from he same background as the given set.  This is the methodt

targeted by the  and  PRESS statistics.G:

1.3.2.1 Mallows' G:

 The following conceptual predictive ( ) criterion for use in the univariate linearG:

model  was first proposed by C. L. Mallows and first published by Gorman and(1964) 

Toman :(1966)

G œ � ÒR � #Ð: � "ÑÓ
WWIÐ:Ñ

s
: #

5
(1.2)

where  is an estimate of the variance of the data.  In linear regression, the formula used5s
#

most often is:

G œ � Ò8 � #Ð: � "ÑÓ
WWIÐ:Ñ

QWIÐ:
:

7+B)
(1.3)

where  is the number of observations,  is the number of parameters in the candidate8 :

model,   is the number of parameters in the saturated (maximum) model,:7+B

QWIÐ: Ñ7+B represents the mean square error for the saturated (maximum) model, and

WWIÐ:Ñ represents the sum  of square error for the candidate model.  This criterions

requires a pool of candidate models which are each separately nested within a single full

model.  It is an estimate of the measure of adequacy for prediction given by the scaled

sum of errors (Ronchetti and Staudte, 1994).

 Mallows suggested that a value of  too large or too far above  indicates anG : � ":

inaccurate model.  In 1976, Hocking suggested requiring  in choosing a modelG Ÿ : � ":
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for prediction, and requiring  in choosing a model for parameterG Ÿ #Ð: � "Ñ � :: 7+B

estimation.

 The  statistic and are related in that they both are tests of comparisonsJ G: :

within nested models The criterion  when comparing to the saturated model is definedÞ J:

as:

J œ
WWIÐ:Ñ � WWIÐ: Ñ Î : � :

WWIÐ: ÑÎ 8 � : � "
:

7+B 7+B

7+B 7+B

c d � �� � (1.4)

The  statisticJ:  compares to an  distribution with  and J : � : � : � "7+B 7+BR

numerator and denominator degrees of freedom, respectively.  Since the  statisticJ

corresponds to a test of two models, then  corresponds to a test, using the saturatedJ:

model, of whether the  regression coefficients not in the candidate model are: � :7+B

simultaneous  zero.  If this criterion is significant, the saturated model includes variablesly

that significantly improve upon the predictive ability of the model when compared to the

model with variables. We can express the  statistic as a simple function of the : G J: :

statistic as follows:

G œ Ð: � :ÑJ � Ð#: � : � "Ñ: 7+B : 7+B (1.5)

Mallows (1973) ed expound  on the statistic saying that he "feels that the greatest value of

the device is that it helps the statistician to examine some aspects of the structure of his

data and helps him to recognize the ambiguities that confront him." He further state  thatd

"this device cannot be expected to provide a single 'best' equation when the data are

intrinsically inadequate to support such a strong inference."  Mallows found that the

ambiguous cases where the "minimum " rule will give bad results are where there are aG:

large number of subsets that have 's that are close to each other.G:

 Ronchetti and Staudte  noticed that since the  is based on least squares(1994) G:

estimation, it is very sensitive to outliers and other departures from the normality

assumption of the error distribution.  To correct this issue, they proposed a robust
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criterion for prediction, which they called , which can be used to choose the bestVG:

models that fit the majority of the data by taking into account the presence of outliers and

possible departures from the normality assumption.  The robust version of  is definedG:

as follows:

VG œ � Y � Z
[

s
: : :

:

#
5

� � (1.6)

where is a weighted residual sum of squares that is centered and rescaled based on the[:

data and where  and  are variance terms that are defined as:Y Z: :

Z œ @+< As

Y œ @+<

: 3 3

:

	

	 � �
3

3

3 3

� �$ (1.7) 

(1.8)A <s

where E  (the prediction error) and (the residual).  Plotting$3 3 3 33 3œ C � C < C � Cs sÐ Ñ œ

VG Z G :: : :vs. is the analog of the  vs.  plot.  Note that when the weights are identically

1,  becomes the residual sum of squares of a least squares fit, ,  and[ Z œ : Y œ: : : 8 � :

VG G Þ: : reduces to Mallows'   Through the use of simulated data and some classic data

examples, Ronchetti and Staudte  able to show that their  is more(1994) were VG:

efficient tha  the classical  in selecting the correct model when outliers are present.n G:

 Gilmour  look  at the problem that occurs when there are a large number(1996) ed

of models with . This can be observed in most data sets that have a reasonablyG + ::

large number of unimportant regressors.  By looking at the expectation of , he foundG:

that if there are a relatively large number of regressors, the model with the lowest  willG:

tend to overfit, that is, to suggest the inclusion of at least one unimportant regressor.  To

correct this problem, Gilmour  suggested the following adjustment:(1996)

G œ G �
� #Ð: � : � "Ñ

8 � : � $
: :

7+B

7+B
(1.9)
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 In addition to comparing this value to , Gilmour  suggest  that the plots: (1996) ed

of  vs.  be interpreted more conservatively.  He believe  an interactive approach isG :
�

: d

needed where hypothesis tests are looked at to investigate the importance of specific

variables in the models that are chosen with the smallest .  Gilmour  alsoG
�

: (1996)

comment  on the  statistic devised by Ronchetti and Staudte , stating thated (1994)VG:

since its numerator is a weighted residual sum of squares, where the weights are

calculated from the data, the distributional results cannot be worked out, therefore its

expectation cannot be found in a generalized form.

1.3.2.2 Information Criteria

 Information theoretic criteria have played a prominent role in model selection for

the linear mixed model.  Information theoretic criteria are defined as an estimate of the

measure of fit of a model to the data.  The most common criteria used in mixed models

are the Akaike Information Criterion (AIC, Akaike, 1974) and the Bayesian Information

Criterion (BIC, Schwarz, 1978). The AIC is the directed divergence between the true

model and candidate model with respect to the true model.  The BIC, on the other hand,

technically is not a divergence criterion since it does not assume a true model exists.

However, it is generally used as an approximation to a measure of directed divergence.

The AIC assumes models are nested whereas the BIC does not make the assumption.

Under the same conditions as the AIC, Cavanaugh (1999) defined the nondirectional

divergence criterion, the KIC.

1.3.2.2.1 Directed Divergences: AIC and BIC

  defined Kullback's directed divergence as a measureKullback and Leibler (1951)

of the disparity between the true model  and an approximating model .0Ð] l Ñ 0Ð] l Ñ) )! 5

For two arbitrary parametric densities  and , Kullback's directed0Ð] l Ñ 0Ð] l Ñ) )‡

divergence between  and  is defined as:0Ð] l Ñ 0Ð] l Ñ) )‡
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MÐ ß Ñ œ I
0Ð] l Ñ

0Ð] l Ñ
) )

)

)
‡

‡)œ log (1.10)

where  denotes the expectation under  (Kullback and Leibler, 1951).I 0Ð] l Ñ) )

Therefore,  defines the directed divergence between MÐ ß Ñ œ I 0Ð] l Ñ) ) )! 5 !
0Ð] l Ñ
0Ð] l Ñ)!š ›log

)
)
!

5

and  with respect to .0Ð] l Ñ 0Ð] l Ñ) )5 !

 For   and , define0Ð] l Ñ 0Ð] l Ñ) )‡

.Ð ß Ñ œ I � # 0Ð] l Ñ) ) )‡ ‡
)e flog (1.11)

 Therefore,

#MÐ ß Ñ œ .Ð ß Ñ � .Ð ß Ñ) ) ) ) ) )! 5 ! 5 ! ! (1.12)

 For the purpose of discriminating between various candidate models, we can now

say,

.Ð ß Ñ œ I � # 0Ð] l Ñ) ) )! 5 5)!e flog (1.13)

serves as a valid substitute for MÐ ß ÑÞ) )! 5

 This suggests that

.Ð ß Ñ œ I � # 0Ð] l Ñ l) ) )! 5 5 œs
^

(1.14)) ) )! 5 5
e flog

would provide a suitable measure of the separation between the generating model

0Ð] l Ñ 0Ð] l ÑÞs) )! 5and a fitted candidate model 

  suggested that  serves as an unbiased estimator ofAkaike (1974) � # 0Ð] l Ñlog )5

.Ð ß Ñ) )! 5
^

 and that the bias adjustment

I .Ð ß Ñ � I � # 0Ð] l Ñs
) )! !š › š ›) ) )! 5 5

^
(1.15)log

can often be asymptotically estimated by twice the dimension of  .  Thus, since 
^)5 5

denotes the dimension of  , under appropriate conditions, the expected value of
^)5
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EMG œ � # 0Ð] l Ñ � #5log )5 (1.16)

should asymptotically approach the expected value of

 (1.17)
^.Ð ß Ñ œ I � # 0Ð] l Ñ l) ) )! 5 5 œs) ) )! 5 5

e flog

and is therefore asymptotically unbiased.

  presented a Bayesian alternative to the AIC.  In a model of givenSchwarz (1978)

dimension, ML estimators can be obtained as large sample limits of the Bayes estimators

for arbitrary nowhere vanishing a priori distributions.  Therefore, by studying the

asymptotic behavior of Bayes estimators under a special class of priors, Schwarz arrived

at the procedure where you choose the model for which is largest.log log0Ð] l Ñ � 5 8s)5
"
#

Thus

FMG œ 0Ð] l Ñ � 5 8s "

#
log log)5 (1.18)

The BIC, though technically not a directed divergence, is generally used as an

approximation to the Kullback-Leibler directed divergence.

 Since the BIC differs from  only in that the dimension is multiplied bythe AIC

"
# log8, the BIC leans more than Akaike's toward lower-dimensional models. Both the

AIC and BIC are essentially log-likelihood values with a penalty  for the(or adjustment)

number of parameters estimated.

1.3.2.2.2 Symmetric Divergence: KIC

 Kullback's symmetric divergence is defined as:

NÐ ß Ñ œ MÐ ß Ñ � MÐ ß Ñ œ I � I Ð Ñ
0Ð] l Ñ 0Ð] l Ñ

0Ð] l Ñ 0Ð] l Ñ
) ) ) ) ) )

) )

) )
! 5 ! 5 5 !

! 5

5 !
) )! 5œ  œ log log 1.19

This divergence is symmetric in that . This symmetric divergenceN Ð ß Ñ œ N Ð ß Ñ) ) ) )! 5 5 !

measures the average combined measure of fit of a sample  generated under the true]

model  and a sample  generated under the true model .  Using0Ð] l Ñ ^ 0Ð^l Ñ) )! 5
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arguments similar to Akaike  and assuming nested models, Cavanaugh (1999)(1974)

proposed the following large sample model selection criterion:

OMG œ � # 0Ð] l Ñ � $5slog )5 (1.20)

This criterion serves as an asymptotically unbiased estimator of a variant of the

symmetric divergence between the true model and a fitted approximating model.

1.3.2.2.3 Information Criteria Performance in Various Model Types

 The articles in this section look at the performance of many types ofdiscussed 

information criteria in a variety of model settings.  Cavanaugh (1999) looked at the

performance of different criteria in an autoregressive model setting, Cavanaugh (2004)

used a univariate linear model setting, Kim and Cavanaugh (2005) used a nonlinear

model setting, and Hafidi and Mkhadri (2006) used a multivariate linear model setting.

 Cavanaugh (1999) looked at the performance of the KIC in comparison to a wide

spectrum of information criteria, namely, the AIC, the corrected AIC (AIC ) (Suguira,
-

1978) the Final Prediction Error (FPE) (Akaike, 1969), the HQ (Hannan and Quinn,ß

1979), the ABIC (Akaike, 1978), and the BIC (Schwarz, 1978), in a univariate

autoregressive (AR) process of order , in a setting in which the criteria are used to select:

: :.  This univariate AR process of order  is defined as follows:

C œ C � C �â� C � ß µ R !ß> " >�" # >�# : >�: > >
#9 9 9 & & 5iid .ˆ ‰

where " : T T ] œ C ß C ß C+ + in  candidate families with a set of observations e f" # 8áß

from such a process. Also, note that ) 5 9 9 9s ß ß ßá ß 5 œ : � "5 " # :
#= ,  and� �w

> œ : � "ß ÞÞÞß 8Þ
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 The AIC is defined above (1.16), the other criteria used in this study are defined,

within this setting, as:

EMG œ 8 � 8 �s
#8Ð: � "Ñ

8 � : � #

JTI œ 8
8 � :

8 � :
s

LU œ 8 � #: 8s

EFMG œ 8 � : � :
8s

8 � : :

C � 8s

FM

-
#

#

#

#
>œ"

8
#
>

#

ˆ ‰
Œ 

� �  
Ú ÞÝ áÝ áÝ áÛ ßÝ áÝ áÝ áÜ à
Œ �

log

log log log

log log

5

5

5

5
5

G œ � # 0 ] l � 5 8slog logŠ ‹)5

We note that Cavanaugh (1999) uses two different Bayesian information criteria.  The

FMG � # EFMG, that is defined in (1.18), is multiplied by a factor of , and the , as defined

above, is from Akaike's 1978 paper.

 Cavanaugh found that, for autoregressive modeling, the BIC, HQ and ABIC are

consistent whereas AIC, AIC  and FPE are asymptotically efficient. The KIC is also
-

asymptotically efficient for a broad class of generating models. However, the AIC, AIC ,
-

and FPE are asymptotically efficient in an even broader class.  For Gaussian white noise

processes of mean 0 and variance 1 with sample size of 40 or 60 and maximum model of

order  = 8, he found that the KIC obtains substantially more correct order selections than:

any of the asymptotically efficient criteria, consistently outperforms HQ in terms of

correct order selection, and outperforms ABIC in half of the simulations.  KIC is

generally outperformed by BIC. However, KIC does not exhibit as strong a tendency as

BIC to choose underparameterized models.

 In conclusion, Cavanaugh found that the results from the simulation study

suggested that KIC should function as an effective model selection criteria in large-

sample applications.  The results also suggested that the symmetric divergence may
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provide a foundation for the development of model selection criteria which is preferable

to that provided by the directed divergence.

 Cavanaugh (2004) derived the KIC  and the MKIC as analogs of the AIC  and the- -

modified AIC, (MAIC) (Fujikoshi and Satoh, 1997) using Kullback's symmetric

divergence (as opposed to the directed divergence used to develop the AIC family of

criteria).  Cavanaugh describes the motivation of this method by saying that "the directed

divergence which serves as the basis for the AIC is more sensitive towards detecting

overfitted models, whereas its counterpart is more sensitive towards detecting underfitted

models.  Since the symmetric divergence reflects the sensitivities of both directed

divergences, it functions as a discrepancy measure which is arguably more balanced than

either of its individual components."  Cavanaugh  also conducts a simulation study(2004)

(in the linear model) to look at the effectiveness of these new criteria comparedunivariate 

to their AIC-based counterparts. In this setting, the AIC and KIC are defined as in

equations 1.16 and 1.20 respectively. Since this study used the linear univariate model,

the parameter  here refers to the number of predictors in the model and .: 5 œ : � "

 The other criteria used in this study are defined as:

EMG œ � # 0 ] l �s #85

8 � 5 � "

QEMG œ � # 0 ] l � � #: � " � # � "s #85 8 � : 8 � :

8 � 5 � "

s s

8 � T 8 � Ts s

OMG œ � # 0 ] l � 8s

- 5

5

# #
T T
# #
: :

#

- 5

log

log

log log

Š ‹
Š ‹    � � � �� � � �
Š ‹ Œ

)

)
5 5

5 5

)  � �� �� �� �� �
 � � � �

8 8 8 � : #: � $ � #

8 � : 8 � 5 � " 8 � :
�

QOMG œ # � : � 8 � # �
8 � T � # s

s

#85

8 � 5 � "

5

5

#
:

#
T

The modified criteria (MAIC and MKIC) are based on the assumption that the true model

is a member of the largest family in the candidate class.  In this scenario,  denotesY� �T
this largest family, and its associated maximum likelihood estimates are defined as

) 5 "s s ß ÞP œ Š ‹#
T T
s
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 In Cavanaugh's simulation study he used two different frameworks: a(2004) 

nested model (NM) framework and an "all possible regressions" (APR) framework.  In

the , it is assumed that the candidate models are nested (i.e. eachNM framework

successive design matrix contains all of the regressors of its predecessors).  In the APR

framework, it is assumed that the candidate models correspond to all possible subsets of

the regressor variables.

 In the NM framework, Cavanaugh  found that the MKIC outperformed the(2004)

MAIC for smaller sample sizes.   However, as sample size increased  MAIC overtook,

MKIC.  For the 'corrected' criteria, AIC  initially outperform  KIC , but was overtaken- -ed

as sample size increased. With the original criteria, KIC outperforms AIC over all sets.  In

the APR framework, MKIC is consistently outperformed by MAIC (though it is

marginal).  However, with the 'corrected' criteria KIC  always obtains higher selection-

rates than AIC .  And again, KIC markedly outperforms AIC over all sets.-

 From these results, Cavanaugh concludes that MKIC shows promise as a small-

sample selection criteria, whereas KIC  and KIC show promise as large-sample selection-

criteria.

 Kim   looked at modified versions of the AIC (theand Cavanaugh (2005)

"corrected" AIC  and the "improved" AIC ) and the KIC (the "corrected" KIC  and the- M -

"improved" KIC ) in the nonlinear regression framework.  The was M ß AIC  originally-

proposed by Suguira  and was found to be useful even in relatively small samples(1978)

in linear regression models by Hurvich and Tsai .  The AIC  was originally(1989) M

proposed by Hurvich et al.  for use in autoregressive models owever  Kim and(1990) . H ,

Cavanaugh modify the AIC  in this paper to adjust for bias.  From this  (2005) M

background, Kim and Cavanaugh derived the  KIC  using Kullback's symmetric M

divergence.
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 The AIC  and the KIC are defined in this paper as follows:M M

EMG œ 8 � " � � � 8s
" 8

V s s4 4

2 4 2 4s s

OMG œ 8 � " � � 8 4 � � 8 4s s s
" 8

V s 4

�
"

s

M
#

4œ"

V

# #

M
# # #

4œ"
#

#

ˆ ‰ 	
Ô ×Ö ÙÖ ÙÖ Ù
Õ Ø� � � �

œ Š ‹ Š ‹� � � �

ˆ ‰ 	” � � � �� �
œ �

log

log log

5
5 5

$ $

5 5 5
5

5

w

� œ  •Š ‹ Š ‹� � � �
4

� " 2 4 2 4 � #8s s$ $
w

where 2 4 VsŠ ‹� �$ is the mean vector for the candidate model and  is the number of

samples generated.

 From the ,  found that generally thesimulation studies Cavanaugh and Kim (2005)

"improved" criteria outperformed the "corrected" criteria, which in turn outperformed the

non-adjusted criteria.   also found that the KIC family performed favorably againstThey

the AIC family.

 Hafidi and Mkhadri  derived a different version of the "corrected" KIC(2003)

ÐKIC ) and compared it to the AIC  derived by Hurvich and Tsai  (which was used- - (1989)

in Kim and Cavanaugh  and Cavanaugh (2004) as well). Hafidi and Mkhadri(2005)

(2003) studied the behavior of their criteria in three different settings: multiple regression

(i.e. univariate linear regression with multiple regression parameters), multivariate

regression, and univariate autoregressive models.  Multiple regression was described in

section 1.3.1 of this paper, and the univariate autoregressive models used here are

identical to those of the Cavanaugh (1999) paper.  The multivariate regression model

used here is described as:

] \ I
Ð8 ‚ ;Ñ Ð8 ‚ ;ÑÐ8 ‚ :ÑÐ: ‚ ;Ñ

œ �"     

I !µ R ß;� �D
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with the rows of ] Ð8 ‚ ;Ñ ; 8 correspond to response variables on each of  individuals,

" Ð: ‚ ;Ñ Ð8 ‚ :Ñ is a matrix of unknown regression parameters and  is a constant\

design matrix of covariate values.

 The derivation of the KIC  in this paper used the methodology of  - McQuarrie and

Tsai (1998, p. 131-132) and resulted in the following definition of the KIC (again- ß

5 œ : � "Ñ À

OMG œ OMG � Ð Ñ
#5 5 � "

8 � 5 � "
-

� �
1.21

Using simulations with various types of data structures, Hafidi and Mkhadri found that

among the efficient criteria studied (i.e., AIC, KIC, AIC and KIC , HQ and BIC), the- -

KIC performed the best in multiple and multivariate  regression.  For univariatelinear

autoregression, the KIC  was slightly outperformed by the consistent criterion BIC.  The-

signal-to-noise study found that when the sample size is small, KIC  has a greater signal--

to-noise ratio, and its probability of overfitting is almost zero.  In contrast, KIC has a

tendency to overfit, because it has a low signal-to-noise ratio, which leads to a higher

probability of overfitting.

1.3.2.3 PRESS Statistic

 The predicted residual sum of squares (PRESS) statistic was proposed by Allen

(1974). The PRESS criterion is obtained by deleting the th case from a data set,3

estimating the regression function for the subset model from the remaining  cases,8 � "

and then using the fitted regression function to obtain the predicted value   (Neter etCs( )3

al., 1996).  The PRESS residuals are defined as:

/ œ C � CsÐ3Ñ 3 3( ) (1.22)
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 This process is repeated for all observations and the PRESS statistic is then8

computed as:

TVIWW œ /	
3œ"

8

Ð3Ñ
# (1.23)

As the PRESS residuals are a measure of how well the fitted model is able to predict the

response, the smaller the PRESS statistic the better the model is for prediction. In other

words, the PRESS statistic selects the model with the smallest mean square error of

prediction.

1.3.3 The Linear Mixed Model

1.3.3.1 Notation

 The linear mixed model may be thought of as a two-stage hierarchy: an individual

stage and a population stage (Davidian, 2001). For independent sampling units (or

subjects) :3 œ "ß ÞÞÞß 7

Individual Stage:

C ^3 3œ " a D3 3 3� / / !ß µ Ð ß8 / /3 3
� �7 Ñ (1.24)

This models each subject's measurements as an individual regression line where  and C3 /3

are 8 83 3‚ " ‚ ; vectors with the "design matrix" ^3 which is  and the regression

parameter vector "3 which is ; ‚ ".

Population Stage:

" " a D3 3 ! ;œ E �. ß . µ !3 3 . .Ð ß Ñ
3
� �7 (1.25)

This describes the common features between individuals through a regression line where

"3 and  are is .3 ; ;‚ " ‚ : vectors and summarizes information like. The matrix E3 

group membership, which allows the mean of "3 to be different for different groups, and
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"! is a .   From this set up, we: ‚ " vector of unknown, constant population parameters

can see that within-unit variation is described by the covariance matrix , whileD/ /3
� �7

between-unit (or among-unit) variation is described by the covariance matrix D. .3
� �7 .

 Combining these two stages, we arrive at the standard format for the general

linear mixed model, where  (Laird and Ware, 1982; Muller and Stewart,\3 œ E^3 3

2006):

C œ \ �^ . � /3 3 3 3 3"! (1.26)

Here,  is an  vector of observations on subject ;  is an  known,C \3 8 " 3 8 :3 3‚ ‚3

constant design matrix for subject , with full column rank ;  is a  vector of3 : : ""! ‚

unknown, constant, population parameters; is an  known, constant design^3 8 ;3 ‚

matrix for subject  corresponding to the random effects , with rank ;  is a 3 ; ; ". .3 3 ‚

vector of unknown, random individual parameters; is an  vector of random/3 8 "3 ‚

errors. Also, .8 œ�
3œ"

7

38

 Throughout,  is Gaussian with mean   and covariance ,. !3 . .Ð; "Ñ‚ D
3
� �7  Ð; ;Ñ‚

independently of Gaussian   with mean   and covariance / ! Ð3 / /Ð8 "Ñ Ð8 "Ñ 83 3 3‚ ‚ D
3
� �7

‚ 8 Ñ3 , so that

i
D

DŒ ” • � � � �.

/
3

3

. .

/ /
œ

!
!Œ 3

3

7

7
(1.27)

Here  is the covariance operator,  is a positive-definite, symmetrici D� � � �† . .3
7

covariance matrix of the random effects, and is an unknown, constant positive-D/ /3
� �7  

definite matrix of the fixed effects.  Under the assumptions,   can be expressed as i� �C3

D D D D3 3 . . / /3
w� � � � � �7 7 7œ ^ ^

3 3
� . Generally, it is assumed that the covariance can be3 

characterized by a finite set of parameters represented by an  vector , which consists< B " 7

of the unique parameters in  and .  Throughout,  will be the D D ) " 7. . / /
w w w

3 3
� � � �7 7 œ =Ð ß Ñ

B " = œ : � <Þ vector of parameters for model (1), where 
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1.3.3.2 Estimation and Inference Techniques

 We consider two of the estimation techniques employed in the mixed model:

maximum likelihood (ML) and restricted-maximum likelihood (REML).  It is important

to consider both estimation techniques because the choice affects the availability of

model selection criteria.  The log-likelihood function, , , allowsPÐ Ñ" 7, œ Cl691Ò0Ð ÑÓ" 7 

finding ML estimates for model ( ):1.26

� #P œ 8691Ð# Ñ � 691l Ð � Ð �QP

3œ" 3œ"

7 7

Ð Ñ Ñ Ñ" 7 D " D ", 1 	 	3 3 3 3 3 3
w� � � �7 7l � C \ C \�"

(1.28)

The corresponding function for REML estimates is given by:

� # œ Ð8 � :Ñ691Ð# Ñ � 691 � 691lLVIQP

3œ" 3œ"

7 7

Ð Ñ \ \ l7 D1 » »	 	3
w

3 3� �7

� 691 Ð � Ð �» »	 	
3œ" 3œ"

7 7

\ \ � C \ C \3 3 3
w �" w �"

3 3 3 3 3D " D "Ñ Ñ (1.29)

where  is . From here on, we will mostly use  to denoteC ÐC ß C ß Cœ 8B" PÐ Ñ" # 7
w w w wÞÞÞß Ñ )

the log-likelihood for either ML or REML.  Since the second term in ( ),1.29

691º º�
3œ"

7

\ \3
w

3 , is a constant not depending on model parameters, it is typically omitted

from the REML likelihood.

1.3.4 Model Selection Methods in the Linear Mixed Model

1.3.4.1 Background

 Comparisons in the linear mixed model can be grouped into three types: 1)

comparing mean models using the same covariance structure, 2) comparing covariance

models using the same mean structure (where the covariance structure is either nested or

nonnested), and 3) comparing linear mixed models with different mean and covariance

structures.  in all three of these areas that warrantThere are model selection techniques 
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further exploration.  Amongst these  the KIC, the statistic  and thetechniques are ,G:

PRESS statistic.

1.3.4.2 Mallows' G:

 While the  statistic has not been developed in the linear mixed model, Cantoni,G:

et al. (2005) did derive the generalized , which they called the , for use withG KG: :

parametric and nonparametric models.  The simulation study performed used a marginal

longitudinal model with a logit link, where the linear predictor was  with "!
X X
3> 3>� B B"

and  of dimension 5. In other words, they used a population-averaged model, i.e. a"

model with no random effects. The formula for the  is given by:KG:

KG œ [WV � IÖA Ð Ñ × � # IÒÖA Ð ÑA Ð Ñ � A Ð Ñ × Ó: 3 3 3 3 3 3 3

3œ" 3œ"

O O
# # w # #
3 3 3 3 3	 	% % % % % % % $

� IÒÖA Ð ÑA Ð Ñ � ÐA Ð ÑÑ	
3œ"

O

3 3 3 33 3 3 3
# w # #% % % % %

ww

(1.30)

� %A Ð ÑA Ð Ñ × Ó3 3 3 3
w #
3 3% % % $

where  is a weight function that may be chosen to achieve a number of objectivesA3

including heteroscedasticity or robustness, is the weighted sum of residuals given[WV

by , , , , and �
3œ"

O
# # #
3 33 3 3 3 3

C �I C

@ @ @

C �I C C �Cs s
3A Ð< Ñ< < œ Z ÐC Ñ œ @ Þ% $ 5œ œ3 3

"Î# "Î# "Î#
3 3 3

3 33 3( ) ( )

5 5 5

 They explored the use of this statistic in GEE modeling of longitudinal data and

compared it to variable selection  based on Wald-type tests and score-type tests.technique

They found that the  performed as well as stepwise selection and much better thanKG:

the -test and score-test in identifying good models in the GEE framework.D
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1.3.4.3 Information Criteria

 For the linear mixed model given by ( ), the AIC for both ML and REML is1.26

defined as (Vonesh and Chinchilli 1997, pp 262-263)

EMG œ � =ßs sPŠ ‹" 7, (1.31)

The BIC for ML is given by

FMG œ � # = Ð8Ñßs sPŠ ‹" 7, (1.32)�" log

and the BIC for REML is given by

FMG œ � # = Ð8 � :Ñs sPŠ ‹" 7, (1.33)  �" log

 Both the AIC and BIC involve differences in log-likelihood values and numbers

of parameters.  For purposes of interpretation, all forms have the unfortunate

characteristic of being data scale dependent.  However, the formula for the BIC includes

the number of observations in the data, which seeks to give a finite sample correction.  In

both the AIC and BIC the model with the larger value is considered a better fit.

Equivalently, AIC and BIC  defined by using a multiplicative factor of -2,can also be

where then the smaller value is considered a better fit.

 The penalty terms used in the AIC and BIC, for longitudinalbased on formulas 

data may not always be what isfamiliar to readers of Vonesh and Chinchilli (1997), 

actually implemented in software.  Gurka (2006) showed that for some software, but not

all, , the number of unique covariance parameters only.  The unsuspecting user of= œ <

such software will be unaware that the associated form of BIC is only for covariance

model selection under REML estimation.  In addition, Gurka (2006) showed that some

software replaces the number of observations, , with the number of independent8

sampling units, , under ML and REML.  As a result, many users of such software may7
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have been misled when using AIC or BIC to select either the mean or covariance

structures in the linear mixed model.

 Gomez  looked at the performance of the Kenward-Roger method in the(2005)

linear mixed model when the covariance structure is selected using AIC and BIC.  He

investigated Type I error rates for tests of fixed effects in mixed linear models using Wald

F-statistics with the Kenward-Roger adjustment, and he generated data using 15

covariance structures.  Correct covariance structures as well as those selected using AIC

and BIC were examined.  Type I error rates for the correct models were often adequate

depending on the sample size and complexity of covariance structure.  Type I error rates

for the best AIC and BIC models were always higher than target values, but those

obtained using BIC were closer to the target value than those obtained using AIC.  For

unbalanced data , Type I error rates for the between-subjects effects were closer for

negative pairing.  Success of AIC and BIC in selecting the correct covariance structure

was low.

•  The success rate (proportion of times AIC or BIC chose the correct covariance

structure) depended greatly on the sample size and covariance structure.  The highest

success rate was 73.91%, for the largest sample size and a simple covariance structure

(ARRE). Success rates were higher for larger sample sizes and simpler covariance

structures.  AIC had a higher success rate than BIC for complicated structures,

especially for those with heterogeneity between treatments.  BIC had higher success

than AIC for simpler structures.

•  Type I error rates for Kenward-Roger method hypothesis tests were always higher

than the target values for best AIC and best BIC models.  The best BIC models

usually produced closer Type I error rates to target values than the best AIC models.

Tests for within-subject effect generally produce closer Type I error rates to target

values.
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•  Unless sample sizes are large, if AIC and BIC are used, users should be aware that

Type I error rates are higher than target values.

•  Even if the correct covariance structure is known, Type I error rates are inflated for

complex structures and small sample sizes.

1.3.4.4 PRESS Statistic

 Liu et al. (1999) generalized the PRESS statistic to multivariate linear models

with correlated errors in repeated measures data.  Liu et al.  uses the PRESS(1999)

statistic to select the linear predictor in linear models with correlated errors.  They define

the PRESS statistic in linear models with correlated errors as:

TVIWW œ / /	
3œ"

8

Ð3Ñ Ð3Ñ
w (1.34)

where  is the deleted residual with  defined as the / œ C �\ s s
Ð3Ñ 3 3 Ð3Ñ Ð3Ñ" " regression

parameter estimate when the th person is deleted from the analysis.  This definition of3

PRESS is applicable to both balanced and unbalanced data where each person has a

different number of measurements, and can only be used to select the linear predictor (the

covariance structure is treated as a nuisance parameter).  This definition is very close to

the form of the original PRESS statistic in traditional linear regression.

 Liu et al.  a new efficient computing method based on pivoting(1999) proposed

and then  to apply the PRESS model selection method to real data.  Theyproposed

compare  the top 10 models that were selected by the PRESS to the top 10 modelsd

selected by AIC, BIC and likelihood ratio tests using a linear mixed effects model. They

found that there were 5 models that were selected by both AIC and PRESS in the top 10,

but while the AIC values were very close together for the top 10 models, the PRESS

statistic had a small difference between the first two models and a large difference

between those and the other 8 models.  The BIC and the PRESS statistic had 6 of the
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same models in their top 10 and the model chosen as best by the BIC was the same as that

chosen by the forward selection likelihood ratio test with Type I error of 0.01.α œ

1.4 Aspects of Design and Summary Plan

 From this literature review we can see that while a tremendous amount of

exploration into model selection methods has occurred in the linear  modelunivariate

(and, some of these methods have been extended to include more general models), fewer

extensions have been done to include the linear mixed model.

 Exploration of the behavior of the  statistics inKIC, a proposed , and PRESSG:

the linear mixed model will allow for a wider variety of model selection methods to be

available when modeling repeated measures data.  This will thereby further increase the

probability that the correct model structure is being chosen when finding the appropriate

model for the data.

 In order to explore the behavior of these statistics in the linear mixed model

empirically, and to evaluate their performance compared to the widely used AIC and BIC,

we used both simulation studies and real data examples.  Simulation studies are useful in

that when the data are simulated, we have prior knowledge of the underlying fixed and

random effects, and therefore can determine the accuracy of our statistics in identifying

the underlying models correctly.  Our real data examples are useful in that they can be an

important gauge of how well our criteria behave when missing data are present or when

looking at other aspects of experimental design.

1.5 Summary

  In this dissertation, we attempt to both evaluate the performance of the widely-

used information criteria, AIC and BIC, and compare their performance to that of the

developed but our less familiar KIC,  , and a developed, but untested PRESS statistic.G:
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 In chapter 2, we  and evaluate a  statistic for the linear mixed model.propose G:

We developed the  statistic using the  statistic defined previously, and evaluate itsG J: :

behavior in a variety of simulations testing selection of fixed effects in a small-sample,, 

complete real data set, and in a large data set containing missing data.  In all simulations

and examples, we compare the performance of the  statistic with that of the AIC andG:

BIC.

 In chapter 3, we evaluate the performance of the KIC in comparison to that of the

AIC and BIC.  This evaluation is done by looking at the performance of all three criteria

in simulation studies where it is necessary to select the correct covariance structure when

the fixed effect structure is known, and in selecting the correct fixed effects structure

when the correct covariance structure is known.  In addition, the performance of the KIC

in selecting the correct set of fixed effects is evaluated using the same large data set with

missing data as was used in chapter 2.

 In chapter 4, we evaluate the performance of the PRESS statistic, as developed

and defined in SAS version 9.1.3 (SAS Institute, Cary, NC 2007) and compare its

performance to the  the KIC and the well-known AIC and BIC.  The simulation studyG:, 

performed here is identical to that explored in chapter 3 for selection of fixed effects

when the covariance structure is known.  In addition, the real data example used in

chapter 3 is again used in this chapter to evaluate the performance of the PRESS statistic

and to compare it to the results received in chapters 2 and 3.  We conclude in chapter 5

with an overall discussion and analysis of model selection criteria in the linear mixed

model and look into areas of future research.

 This dissertation format will follow the "manuscript" style of dissertations, where

Chapters 2, 3 and 4 will represent individual papers that are publishable in various

statistical journals.  Each of these chapters will include more detail than would normally

be seen in a journal article, however, as this is a dissertation.  A version of Chapter 2 has
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been submitted for publication, with plans to submit versions of the other two chapters in

the near future.  Each chapter contains a brief literature review with reference sections

specific to the topic.



CHAPTER 2

A  STATISTIC FOR FIXED EFFECTS VARIABLEGp

SELECTION IN THE LINEAR MIXED MODEL

2.1 Introduction

 Mallows' (G: statistic has been of great useMallows 1964, Gorman and Toman 1966) 

in the univariate linear model when selecting from a pool of models which are each

separately nested within a single full model.  It compares the mean square error ( ) ofMSE

each candidate model to the  of the full model, which then allows comparing oneMSE

candidate to another.

 In the longitudinal data setting, data analysts often use the linear mixed model with

Gaussian deviations (Demidenko, 2004; Fitzmaurice et al., 2008; Laird and Ware, 1982).

The linear mixed model serves the same role in longitudinal data analysis as the linear

univariate model does in cross-sectional analysis.  The linear mixed model extends the

univariate linear model with independently and identically distributed ( ) Gaussian eri.i.d. rors

to a wide variety of correlated and commensurate Gaussian data (all responses measured in

the same units).  Both the univariate linear model and the linear mixed model provide basic

foundations for developing model selection procedures. to standardHowever, in contrast 

univariate linear models, the quantity and quality of model selection methods for the linear

mixed model leave much room for improvement.

 there is no  statistic for the linear mixed model.Unlike the linear univariate model, G:

In this paper we propose a  statistic for fixed effects variable selection in the linear mixedG:
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model with a focus on the analysis of longitudinal data. This paper is an empirical evaluation

of this newly formed statistic. The distributional aspects have not been evaluated as of yet.  In

what follows, section 2 provides background on the  statistic in the univariate linearG:

model. In section 3 we propose a  statistic for the linear mixed model. The AIC and BICG:  

are also discussed.  To assess the performance of the proposed  statistic, we present resultsG:

of simulation studies in section 4. In section 5 we apply the proposed  statistic to actualG:

data from two different studies, one a small sample study and another a large sample study. A

discussion of the proposed G: statistic is provided in section 6.

2.2 Notation and Basic Concepts of G: for the Univariate Linear Model

  The univariate linear model is given in matrix notation as

C \ /œ �"  .

Here 1C ( ) is a vector of responses corresponding to  persons (independent samplingR R‚

units). The design matrix, ( )\ R‚ : �( 1) , consists of  independent predictors and an:

intercept.  The vector (( ) is an unknown vector of regression parameters and " : � " ‚) 1 /

( ) is a vector of independent random errors.  Typically, the rows of  are assumed to beR‚ 1 /

normally distributed with mean 0 and common variance ; i.e., For5 a 5# #/ µ ß� �! \ . 

Mallows G: statistic, the case of no intercept is handled similarly.

 The following conceptual predictive ( ) criterion for use in the univariate linearG:

model was first proposed by C. L. Mallows  and first published by Gorman and Toman(1964)

(1966):

G œ � ÒR � #Ð: � "ÑÓ
WWIÐ:Ñ

s
: #

5
( .1)2

where    is anWWIÐ:Ñ represents the sums of square error from a nested sub-model and 5s
#

estimate of the variance of .  In linearthe random error from the saturated (maximum) model

regression, the formula used most often is:



29

G œ � Ò � #Ð: � "ÑÓ
WWIÐ:Ñ

QWIÐ:
:

7+B)
( .2)R 2

where  is the number of ,  is the number of R independent sampling units independent:

predictors independent predictors in the candidate model,   is the number of  in the:7+B

maximum model maximum model, represents the mean square error for the ,QWIÐ: Ñ7+B

and represents the sum  of square error for the candidate model.  This criterionWWIÐ:Ñ s

requires a pool of candidate models which are each separately nested within a single full

model.  It is an estimate of the measure of adequacy for prediction given by the scaled sum of

errors (Ronchetti and Staudte 1994).

 Mallows suggested that a value of  too large or too far above  indicates anG : � ":

inaccurate model.  suggested requiring  in choosing a model forHocking (1976) G Ÿ : � ":

prediction, and requiring  in choosing a model for parameterG Ÿ #Ð: � "Ñ � :: 7+B

estimation.

 In the univariate linear model, can also be defined using the  statistic forG J:

comparing a candidate model to the maximum model, denoted ,J:

J œ
WWIÐ:Ñ � WWIÐ: Ñ Î : � :

WWIÐ: ÑÎ � : � "
:

7+B 7+B

7+B 7+B

c d � �� �R
( .3)2

The  statisticJ:  compares to an  distribution with  and degrees ofJ : � : � : � "7+B 7+BR

freedom.  Since the  statistic corresponds to a test of two models, then  corresponds to aJ J:

test, using the saturated model, of whether the  regression coefficients not in the: � :7+B

candidate model are simultaneous  zero.  If this criterion is significant, the saturated modelly

includes variables that significantly improve upon the predictive ability of the model, when

compared to the model with variables. We can express the  statistic as a simple function: G:

of the  statistic as follows:J:

G œ Ð: � :ÑJ � Ð#: � : � "Ñ: 7+B : 7+B ( .4)2
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  expound  on the statistic saying that he "feels that the greatest valueMallows (1973) ed

of the device is that it helps the statistician to examine some aspects of the structure of his

data and helps him to recognize the ambiguities that confront him." He further state  thatd

"this device cannot be expected to provide a single 'best' equation when the data are

intrinsically inadequate to support such a strong inference."  Mallows found that the

ambiguous cases where the "minimum " rule will give bad results are where there are aG:

large number of subsets that have 's that are close to each other.G:

2.3 Proposed G: for the Linear Mixed Model

 With  independ ), the linear mixedR ent sampling units (often  in practicepersons

model for  may be written asperson 3

C \ ^ . /3 3 3 3 3œ � �" .

Here,  is a  vector of observations ;  is a  known, constant designC \3 3 3 3: ‚" 3 : ‚; on person 

matrix fo ith full column rank  while  is a  vector of unknown, constant,r person , w3 ; ;‚""

population parameters.  Also  is a  known, constant design matrix with rank  f^3 3: ‚7 7 or

person  cor unknown random effects , while is a 3 : ‚"responding to the  vector of 7‚" . /3 3 3

vector of unknown random errors.  Gaussian  and  are independent with mean  and. / !3 3

iŒ  ” •” • � � � �. !
/ !
3 .3 .

3 /3 /
œ

D 7

D 7
 .

Here  is the covariance operator, while both  and  positive-definite,i D 7 D 7Ð † Ñ .3 . /3 /� � � � are

symmetric covariance matrices.  may be written Therefore iÐ ÑC3

D D 7 D 7 D3 3 3
w
3œ �^ ^.3 . /3 /� � � �.   can be characterized by a finite set ofWe assume that 

parameters represented by an vector  which consists of the unique parameters in <‚" 7 7.  and

7/.  Throughout .8 œ 8�
3œ"
R

3

 While there have been many developments in the statistic since it was proposed byG:

Mallows (1964), none of these developments have extended the  to the linear mixedG:
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model.  Cantoni, et al. (2005) did suggest the for use outside the linear model, but due toKG:

its focus on marginal longitudinal generalized linear models,  were motivated to seek awe

solution specific to the linear mixed model.  Also, while many articles differ on whether to

use the lowest value of  as the model selected by the statistic or to use the closest toG G: :

:�" G,  decided it was best to follow Mallows' decision to use the lowest value of towe :

decide what model is chosen by this statistic.

 As shown in the previous section, the  statistic and are related in that they bothJ G: :

are tests of comparisons within nested models.  In the case of the linear mixed model, we

focus our discussion on the fixed effects portion of the model. Sum of squares error or mean

squared error in the linear mixed model cannot be expressed the same as in the univariate

linear model,  due to the dual components of fixed and random effects involved in the model.

However, we are able to test the fixed effects in the linear mixed model via an  statistic.J

The global  statistic test  whether the fixed effects included in the linear mixed model areJ =

equal to zero.  , we can manipulate this statistic to form an   statistic thatHence J:

corresponds to a test, using the saturated model, of whether the regression coefficients not

included in the candidate model are simultaneous  zero. We  then use this  statistic toly can J:

derive our  statistic for the linear mixed model in the same manner as was discussed inG:

section 2.  The equation for our  statistic is:G:

G œ Ð: � :ÑJ � Ð#: � : � "Ñ: 7+B : 7+B ( )2.5

where,   is the number of parameters in the fixed effects portion of the candidate model and:

:7+B is the number of parameters in the fixed effects portion of the saturated model.

 The linear mixed model explicitly specifies not only the mean structure, but also the

covariance structure.  Therefore, three types of model comparisons can occur.  I) Compare

mean models with the same covariance structure.  Nested mean models are the most

common.  II) Compare covariance models with the same mean structure.  Two linear mixed

models may be nested or nonnested in the covariance models.  III) Compare linear mixed
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models with different mean and different covariance structures.  Here, the proposed G:

statistic is in relation to item I, i.e., comparing nested mean models with the same covariance

structure.

 In order to assess the proposed , we will compare its performance againstG:

commonly used information criteria. Information theoretic criteria have played a prominent

role in mixed model selection. Most practitioners use the Akaike Information Criterion (AIC,

Akaike 1974) and the Bayesian Information Criterion (BIC, Schwarz 1978). Both criteria are

essentially log-likelihood values with a penalty for the number parameters estimated. For the

linear mixed model we use,

EMG œ � # 0Ð] l Ñ � #5s

FMG œ � # 0 ] l � 5 8s

log

log log

)

)

5

5

(2.6)

, (2.7)Š ‹

where log  is the log-likehood evaluated at , a vector of model parameter estimates.0Ð] l Ñs s) )5 5

 When comparing models, the smaller the value of the information criterion, the

better the fit.  Both the AIC and BIC involve differences in log-likelihood values and

numbers of parameters. For purposes of interpretation,   have the unfortunateboth criteria

characteristic of being data scale dependent. The BIC includes the number of

observations in the data, which seeks to give a finite-sample correction.

 In this paper, we will compare the ability of our newly formulated  statistic toG:

select the correct set of fixed effects in the linear mixed model, to that of the AIC and

BIC.  For our simulation studies and our real data analysis we will use REML for

estimation and Kenward and Roger (1997)  statistic for inference.J
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2 4 Simulation StudyÞ

 In the following simulation study we looked at the ability of the statistic toG: 

determine the correct set of fixed effects for simulated data in three different scenarios.   All

three scenarios base their random effects structure on a classic data example from Pothoff

and Roy (1964) that is examined in greater depth later in this paper.  In addition, the first and

second scenarios are similar to the fixed effects in that paper.  In the first scenario, the fixed

effects take into account time, a group effect and an interaction effect, where the magnitude

of the group effect and interaction effect are varied.  The second scenario has fixed effects

that include only a time and group effect, and the magnitude of each are varied.  The third

scenario looks at the ability of the statistic to determine the correct set of fixed effects when

there are multiple categorical predictors.

2.4.1 First Scenario: Two Groups, Time and Interaction Effect

2.4.1.1 Introduction

 For the first scenario, the data simulated have random effects loosely based on the

Potthoff and Roy (1964) data example which was an orthodontic study with 27 children, 16

boys and 11 girls.  For each child, the distance (mm) from the center of the pituitary to the

pterygomaxillary fissure was measured at ages 8, 10, 12, and 14 years. However, in our

simulated data, we considered a sample size of 50 children with about half belonging to each

gender classification.  ixed effects for the simulation include a shared intercept, covariatesF

for time and group effect and an interaction effect between group and time.  This scenario

looks at how the , AIC and BIC statistics behave when the group effect and the interactionG:

effect are varied.
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2.4.1.2 Methods

 For this set of simulations, we used an  within-subject covariance structure i.e.,i.i.d.

D/ /3
� �7 œ 5#

!

Î ÑÐ ÓÐ Ó
Ï Ò
" ! ! !
! " ! !
! ! " !
! ! ! "

with a  between-subject covariance structure containing a random intercept andn unstructured 

slope, i.e.,

D. .3
� �7 œ Œ 5 5

5 5
1 1

1

# #
#

#
# #

#

where ,  (i.e., 5 3!
#

.œ # œ � !Þ(( , , and = .5 5 51 2 1
# # #

#œ (Þ)#$ œ !Þ!&" � !Þ%)'Ñ

 For the fixed effects, where  is the common intercept,  is the coefficient for time," "" 2

" "3 4 is the coefficient for the group membership, and  is the coefficient for the interaction

between group and time, we set  and  for all the simulations, varied the value of" "" œ $ œ "2

" "3 4 from 0.5 to 10, and varied the value of  from 0 to 2.0.�

 For each set of simulations, three different models of fixed effect were  usingassessed

SAS Proc Mixed (2007).  These three models were: 1) Model with time only, 2) Model with

time and group effect only, and 3) Model with time, group and interaction.  For this approach,

model (3) is considered the saturated model.

 The ability of the , AIC and BIC to select the correct model (i.e. model 3 whenG:

"4 Á !) is determined over 10,000 simulations, and a percentage for correctly selecting the

true linear mixed model  is determined.

2.4.1.3 Results

 Table 2.1 gives the results for the , AIC and BIC statistics from the simulationG:

study where the data simulated had a covariance structure that was i.i.d.,within-subject 

unstructured random effects covariance with random intercept and random slope, and fixed

effects given by:

I C œ $ � > � B � ÐB‡>Ñ( ) " "$ %
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where  varies between 0.5 and 10 and  varies between 0 and -2.0." "$ %

Table 2.1: Correct Model Selection by the  Statistic for Varying Group Effect G Ð Ñ: $"

and Group * Time Interaction Effect Ð Ñ"%

    % Correct Model Selection

=

Criterion 0 -0.1 -0.2 -0.3 -0.5 -0.7 -1.0 -1.2 -1.5 -2.0

0.5

AIC

"

"
%

$

:G 25.1 28.1 70.3 92.6 99.9 100 100 100 100 100

86.3 28.3 62.4 88.5 99.9 100 100 100 100 100

86.1 28.3 62.3 88.4 99.9 100 100 100 100 100

52.4 25.0 66.0 92.9 100 100 100 100 100 100

86.7 28.2 61.3 88.9 99.9

BIC

1

AIC

G:

100 100 100 100 100

86.4 28.1 61.1 88.9 99.9 100 100 100 100 100

79.3 37.7 66.0 86.1 100 100 100 100 100 100

86.6 28.4 62.1 88.6 99.9 100 100 100 100 100

BIC

3

AIC

G:

BIC

5

AIC

BIC

86.5 28.4 61.7 88.3 99.9 100 100 100 100 100

79.6 38.1 71.2 93.4 99.8 100 100 100 100 100

86.9 29.2 62.3 89.9 99.9 100 100 100 100 100

86.9 29.2 62.

G:

2 89.8 99.9 100 100 100 100 100

79.1 37.0 71.1 93.1 99.9 100 100 100 100 100

86.5 27.8 62.7 89.3 99.8 100 100 100 100 100

86.5 27.9 62.6 89.2 99.8 100 10

7

AIC

BIC

G:

0 100 100 100

78.9 37.8 71.7 93.1 99.9 100 100 100 100 100

86.5 28.0 62.7 89.2 99.9 100 100 100 100 100

86.5 28.0 62.6 89.1 99.8 100 100 100 100 100

10

AIC

BIC

G:

Figure 2.1 graphically presents the results in Table 2.2 for the  statistic but does notG:

include the results where  is less than -0.5 (as these results are all the same)."%

Figure 2.1: % Correct Model Selection by Cp for Varying 

Group Effect and Group*Time Interaction Effect
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2.4.1.4 Discussion

 From this scenario, we see that, for all of our criteria, if the interaction effect is fairly

strong (i.e. -0.5), the correct fixed effect structure is selected 100% of the time."%  

However, when the group effect is small and the interaction effect is non-existent, the G:

appears to struggle, in comparison to the AIC and BIC, in correctly identifying the fixed

effects.  In all other situations, the  is comparable to the AIC and BIC in its ability toG:

identify the correct set of fixed effects.

2.4.2 Second Scenario: Two Groups and Time

2.4.2.1 Introduction

 In this scenario, the random effects are the same as in scenario 1, and the fixed effects

are comprised of a shared intercept, a time effect and a group effect.  This scenario looks at

how the , AIC and BIC statistics perform when the time effect and group effect are varied.G:

2.4.2.2 Methods

 For this set of simulations, the same covariance structure is used as in the previous

section, and time is defined as in the Pothoff and Roy example (i.e. age 8, 10, 12 and 14

years).  For the fixed effects, where  is the common intercept,  is the coefficient for the" "" 2

group membership, and  is the coefficient for time, we set , varied the value of " " "3 2" œ $

from 0 to 10 and varied the value of  from 0 to 2."3

 For each set of simulations, two different models of fixed effects were looked at using

SAS Proc Mixed.  These three models were: 1) Model with time only and 2) Model with time

and group effect only.  For this approach, model (2) is considered the saturated model.  The

ability of the , AIC and BIC to select the correct model (i.e. model 2 when ) isG Á !: "4

determined over 10,000 simulations, and a percentage for correctly selecting the true linear

mixed model is determined.
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2.4.2.3 Results

 Table 2.2 gives the results from the simulation study where the data simulated had a

covariance structure that was i.i.d. with random intercept and random slope and fixed effects

given by:

I C œ $ � > � B( ) " "2 $

where  varies between 0.05 and 2 and  varies between 0 and 10." "2 3

Table 2.2: Correct Model Selection by the  Statistic for Varying Time Effect G Ð Ñ: "2

and Group  Effect Ð Ñ"3

    % Correct Model Selection

 =

Criterion 0.05 0.1 0.3 0.5 0.7 1.0 1.3 1.5 1.7 -2.0

0

(Coefficient for Time)

83.2 83.5 83.5 83.5 83.6 83.4 83.

"

"
#

$

:G 6 83.1 84.0 83.6

0.7 0.7 0.9 0.8 0.6 0.7 0.7 0.8 0.8 0.7

1.0 1.0 1.1 1.4 0.8 1.0 0.9 1.1 1.1 1.0

65.9 66.9 65.1 65.9 65.8 65.6 65.5 64.9 66.6 66.2

99.

AIC

BIC

1

AIC

G:

5 99.7 99.5 99.6 99.7 99.8 99.7 99.7 99.8 99.6

99.1 99.1 99.0 99.2 99.2 99.2 99.1 99.2 99.3 99.1

100 100 100 100 100 100 100 100 100 100

100 100 100 100

BIC

3

AIC

G:

100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100

100 100 10

BIC

5

AIC

BIC

G:

0 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100

100

7

AIC

BIC

10

G

G

:

: 100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100

AIC

BIC

Figure 2.2 graphically presents the results for  in Table .3 but does not include the resultsG %:

where  is greater than 3 (as these results are all the same)."3
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Figure 2.2: % Correct Model Selection by Cp for Varying 

Time Effect and Group Effect
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2.4.2.4 Discussion

 From this scenario, we see that, for all of our criteria, if the group effect is fairly

strong (i.e. 3), the correct fixed effect structure is selected 100% of the time.  However,"3  

when the group effect is non-existent, the  works fairly well but the AIC and BIC are notG:

effective at all in correctly identifying the fixed effects.  When the coefficient for the group

effect is 1, i.e.  = 1, the AIC and BIC work better than the  in correctly identifying the"3 G:

fixed effects, but the performance of the  is still fairly good.G:

2.4.3 Third Scenario: Multiple Categorical Predictors

2.4.3.1 Introduction

 The multiple categorical predictors that are used to generate the data simulate the case

where there are various factors (in addition to the time effect), such as race, gender etc., that

have an impact on the outcome variable. To determine which denominator degrees of

freedom to use for our statistic, both Kenward-Roger statistic and J the  statistic using theJ
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residual ( rank( denominator degrees of freedom (ddf)8 � \))  were used when evaluating the

simulated data

2.4.3.2 Methods

 For this set of simulations, again, we used a sample size of 50 subjects, an i.i.d.

within-subject covariance structure with a  between-subject covariancen unstructured 

structure containing a random intercept and slope.  In this simulation, 5 5!
# #œ # œ #, ,1

5 3 52 12
# #

.œ " œ !Þ#& œ !Þ$&, and  (i.e. ).

 For the fixed effects,  " "" is the common intercept,  is the coefficient for time and2

four different categorical predictors and , are considered with the correspondingß B ß B ß B B" # $ %

coefficients , , , and . And time is again defined as in the two previous scenarios" " " "3 4 5 6

(i.e. age 8, 10, 12 and 14 years) The vector for , which are coefficients"w œ Ð$ß "ß %ß $ß &ß &Ñ

that were chosen at random, and 16 different variations are considered where 0,1, 2, 3, or 4 of

the coefficients for the categorical predictors (i.e. and ) are set to 0. Therefore,B ß B ß B B" # $ %

the saturated model, which includes all coefficients for the categorical predictors and time, is

given by:

I C œ � > � %B � $B � &B � &B( )  $ " # $ %

 For each set of simulations, 16 different sets of fixed effects were using SASassessed 

Proc Mixed. In order to calculate the  statistic for the 16 different models, the saturatedG:

model is fit and tests of hypotheses about the fixed effects (contrast statements) are

conducted that test whether the covariate(s) excluded from the model of interest is equal to

zero.  This method is equivalent to the creation of an  statistic testing whether theJ:

covariate(s) equal zero.  This  statistic is then used to formulate our statistic, usingJ G: :

formula 2.1.  The model selected by the  statistic is the set of fixed effects that has theG:

smallest  value.G:
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 The ability of the  to select the correct model is determined over 1,000 simulationsG:

using REML estimation and Kenward-Roger  statistic and associated ddf. A percentage ofJ

correct model selection is calculated.

2.4.3.3 Results

 Table 2.3 gives the results from the simulation study where the data simulated had a

within-subject unstructured random effects covariancecovariance structure that was i.i.d., 

with random intercept and random slope, and fixed effects given by:

I C œ � > � B � B � B � B( )  " "" 2 " " " "$ " % # & $ ' %

Where  " "" is the common intercept,  is the coefficient for time and four different2

categorical predictors and , are considered with the corresponding coefficientsß B ß B ß B B" # $ %

" " " " "3 4 5 6, , , and .  The vector for , and 16 different variations arew œ Ð$ß "ß %ß $ß &ß &Ñ

considered where 0,1, 2, 3, or 4 of the coefficients for the categorical predictors (i.e. B ß B ß" #

B B$ %and ) are set to 0.  The table shows the correct model for the fixed effects (i.e. the model

used to simulate the data), the number of covariates in the model used, and the ability of the

G: statistic and the AIC and BIC statistics to correctly identify the model using SAS Proc

Mixed.

Table 2.3: % Correct Model Selection by  Statistic forG:

Multiple Categorical Predictors

Fixed Effects for # of Covariates % Correct Selection by 

Simulated Data C AIC BIC:

$
$
� > � %B � $B � &B � &B
� > � %B � $B � &B

" # $ %

" # $

5 100 99.9 99.9

4 84.0 1.3 1.8

4 83.6 3.1 3.8

4 80.7 1.7 2.4

4 83.8 3.1 3.5

3 70.0 0.1 0.1

3 70.9 0.4 0.4

$
$
$
$
$

� > � %B � $B � &B
� > � %B � &B � &B
� > � $B � &B � &B
� > � %B � $B
� > � %B � &B

" # %

" $ %

# $ %

" #

" $

$
$
$
$
$
$
$

� > � %B � &B
� > � $B � &B
� > � $B � &B
� > � &B � &B
� > � %B
� > � $B
� > � &B

" %

# $

# %

$ %

"

#

$

3 70.2 0.5 0.6

3 70.6 0.1 0.3

3 69.9 0.4 0.4

3 70.5 0.5 0.6

2 59.6 0 0

2 58.9 0.1 0.3

2 58.9 0.1 0.1

2 59.3 0.3 0.5

1 50.7 0 0

$
$
� > � &B
� >

%
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Figure 2.3 graphically represents the data in Table 2.3  by plotting the percentage of correct

model selection by the  statistic vs. the number of covariates in the correct model.G:

Figure 2.3: Cp, AIC and BIC Selection of Correct Fixed Effects

 in Multiple Categorical Predictor Simulation Setting

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5

# of Fixed Effects Covariates in Correct Model

%
 C

o
rr

e
c

t 
M

o
d

e
l 
S

e
le

c
ti

o
n

Cp

AIC

BIC

2.4.3.4 Discussion

 From the results of this part of the simulation study, we can clearly see that in this

situation, our statistic far exceeds the AIC and BIC statistics in its ability to identify theG:

correct set of fixed effects.  The AIC and BIC are only able to correctly identify the fixed

effects when the saturated model is the correct model.  On the other hand, our  statistic isG:

able to correctly identify the fixed effects in more than half of the simulated data sets

regardless of the identity of the correct model.

2.4.4 Conclusions

 From the three different scenarios covered in this simulation study, we see that while

there are moments where the AIC and BIC outperform the  statistic, the  statisticG G: :

performs well overall.  In comparison, while the AIC and BIC have moments where their
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performance is near perfection, when these criteria do not perform well, they perform

abysmally.

 From the scenario where multiple categorical predictors are simulated, we see that

while the AIC and BIC are not capable of correctly identifying the fixed effects in any setting

other than when the saturated model is simulated, the  statistic is able to correctly identifyG:

the fixed effects over 50% of the time in all settings.

2.5 Example Data

 To further investigate the performance of the  statistic for fixed effects variableG:

selection in the linear mixed model, we looked at two different example datasets.  The first

set of example data is well-known and come from a Potthoff and Roy (1964) dental data

study.  The second set of example data come from a larger study of blood pressure

measurements containing missing data from the North Carolina Established Populations for

the Epidemiologic Studies of the Elderly (EPESE).

2.5.1 Example Data: Dental Study

2.5.1.1 Background

 We used a well known example from Potthoff and Roy (1964) for  firstthe

investigation into the utility of the  statistic.  G: The data come from an orthodontic study that

involved 27 children, 16 boys and 11 girls.  For each child, the distance (mm) from the center

of the pituitary to the pterygomaxillary fissure was measured at ages 8, 10, 12, and 14 years

with complete data for each child.  The objectives of the dental study were to determine

whether, on the average over time, distances are larger for boys than for girls and whether, on

the average over time, the rate of change of the distance is similar for boys and girls.

2.5.1.2 Methods

 As the only explanatory variables for the outcome are age and gender, we looked at

the values of the  statistic for the linear mixed model with four different fixed effectsG:
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structures 1) model with continuous age effect alone, 2) model with classification gender

effect alone, 3) model with both continuous age effect and classification gender effect, and 4)

model with continuous age, classification gender and their interaction (maximum model).

The covariance structure we used had random intercepts and slopes with unstructured

covariance for the random effects, 2 2 , and  (i.e. i.i.d.) for theD D. . / /3 3
� � � �7 7� �‚ œ 5!

#
8M 3

covariance structure of the within-subject error. The covariance structure of the random 

effects can be represented as:

D. .3
� �7 œ Œ 5 5

5 5
1 1

1

# #
#

#
# #

#

where * .5 5 51 1#
#

#œ 3.*

 In order to calculate the  statistic for each set of fixed effects, we fit the saturatedG:

model (i.e. the model that included age, gender and the interaction term), and then set up

contrast statements that test whether the excluded covariate in the models of interest are equal

to zero, thus formulating the appropriate  statistics, and then calculating the  for theJ G: :

model using equation 3.1.

 For example, to find the  for model (1), we use a contrast statement that includesG:

both "gender" and "age*gender", this creates an  statistic testing whether these two termsJ:

are equal to zero.  To then calculate the  for this model, where  and 3, weG : œ " : œ: 7+B

get:

G œ #‡J: :(model 1)

2.5.1.3 Results

   Table 2.4 provides the estimates, standard errors, and -values for fixed effects inp

Models 1, 2, 3 and 4 described above and the estimates of covariance parameters.  Table 2.5

gives the calculated  statistic and the AIC and BIC statistics for the models. G: Figure 2.4

give a graphical representation of the data in table 2.4 (excluding Model 2).
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Table 2.4: Mixed Model Fixed Effect Estimates, Standard Errors (SE),  p-values

 and Covariance Estimates for Dental Data

 Covariance Estimates

Model Fixed Effect Estimate SE p-value Random effects Error

1 Intercept 16.76 0.775 <0.001

Age 0.66 0

5 5s sœ œ1
# #

!5.415 1.716

.071 <0.001

2 Intercept 22.37 0.583 <0.001

Gender 2.15 0.757 0.0055

3 Intercept 15

5

3

5 5

5

3

s œ

s œ �

s sœ œ

s œ

s œ �

2

2

1

#

.
# #

!
#

.

0.051

0.61

54.63 1.716

0.482

52.96

.49 0.944 <0.001

Age 0.66 0.071 <0.001

Gender 2.15 0.758 0.0055

4 Intercept 17.37 1.2284 <0.001

5 5

5

3

5

s sœ œ

s œ

s œ �

s œ

1

2

1

# #
!

#

.
#

 7.823 1.716

 0.051

0.77

 5.786 1.716

 0.033

0.66

5

5

3

s œ

s œ

s œ �

!
#

#

.

Age 0.4795 0.1037 <0.001

Gender 1.0321 1.5957 0.519

Age*Gender 0.3048 0.1347 0.026

2

�

Table 2.5: , AIC and BIC Results G: for Dental Data

Model Fixed Effects J G EMG FMG: :

1 Age 6.31 12.62 450.6 455.8

2 Gender 52.28 104.56 479.2 484.3

3 Age, Gender 5.12 7.12 443.2 448.4

4 Age, Gender, Age*Gender 4.00 440.6 445.8�

 

Figure 2.4: Cp, AIC and BIC for Dental Study Data
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2.5.1.4 Discussion

 When looking at the results, we see that the lowest , AIC and BIC is associatedG:

with the full model which includes the interaction term.  By definition, the  of the fullG:

model is always equal to , but in our example, it is also the lowest  value overall.: � " G:

This assertion is sustained is further supported when looking at the p-values for the parameter

estimates for Model 4, where we see that the interaction term is significant at a level of

α œ !Þ!&.

2.5.2 : Elderly Blood Pressure StudyExample Data

2.5.2.1 Background

 This data comes from a retrospective longitudinal cohort study  from the North

Carolina Established Populations for the Epidemiologic Studies of the Elderly (EPESE)

(Blazer and George, 2004). The goals of the EPESE project were to describe and identify

predictors of mortality, hospitalization, and placement in long-term care facilities and to

investigate risk factors for chronic diseases and of functioning among the elderly.   The North

Carolina cohort was established in a 1986-1987 baseline survey, and was a sample of persons

65 or older residing in households in Durham, Warren, Franklin, Granville, and Vance

counties (one urban, four rural) in the Central Piedmont area of North Carolina.  The site was

over 50% black, and the geographic area selected was diverse, allowing both racial and

urban/rural comparisons to be made regarding the distribution of certain risk factors and

disease. Of the 4162 subjects selected on the basis of a four-stage, race-stratified sampling

design, 48% (including similar proportions of Blacks and Whites) lived in the urban

community. Participants were surveyed at four time periods: Wave 1(1986); Wave 2 (1990);

Wave 3 (1994); and Wave 4 (1998).

 2.5.2.2 Methods

 To investigate the behavior of the  statistic this data,  used an all-possibleG: using we 

regressions approach (where time in years is in every model) for the outcome variable using
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mixed models.   looked at average diastolic blood pressure as the response variable andWe

used only main effects .  here were 12 separate main effects chosen for study as predictors T

from a set of predictors numbering larger than 50: including time in years, 4 self-reported

illness indices, race, marital status, gender, weight, diagnosis of diabetes, diagnosis of heart

disease and whether the subject lived in a rural area). All predictors were binary categorical

variables, except for time (which was labeled as 0, 4, 8, and 12 years).  calculated the We G:

statistic for 2048 sets of fixed effects for the outcome variable. We used an unstructured

random effects covariance structure,  2 2 , and i.i.d. within-subject errorD 7. .3
� � � �‚

covariance, .D 7/ /3
� � œ 5!

#
8M 3

2.5.2.3  Results

 When the outcome was diastolic blood pressure, there were 4 models that had a G:

statistic less than or equal to the number of parameters including the intercept, i.e.  ., : � "

Figure 2.5 is a graph of the  of these 4 models vs. the number of parameters. Table 2.6 listsG:

the models with the lowest  statistic for  number of parameters. Table 2.7 lists the modelsG ::

with the 3 lowest AIC and BIC values. Figure 2.6 plots  vs.  for these models. TableG : � ":  

2.8 lists the models and parameter estimates of the 3 models that had the lowest  values.G:

Figure 2.5: Cp vs. p+1 
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Table 2.6:  Results for Elderly Blood Pressure DataG: Diastolic 

Models with the lowest  statistic for  number of covariatesG ::

: J GFixed Effects : :

1 year 89.60 976.59

2 year, weight 83.23 825.28

3 year, fair_ill, poor_ill 53.52 476.72

4 year, fair_ill, poor_ill, heart 42.72 338.77

5 year, weight, fair_ill, poor_ill, heart 29.86 208.06

6 year, weight, fair_ill, poor_ill, heart, diabet 19.28 116.70

7 year, weight, fair_ill, poor_ill, heart, diabet, blackpat 7.65 41.25

8 year, weight, fair_ill, poor_ill, heart, diabet, blackpat, rural 4.26 22.04

9 year, weight, fair_ill, poor_ill, heart, diabet, blackpat,  rural, male 2.76 15.29

10 year, weight, fair_ill, poor_ill, heart, diabet, blackpat, rural, male, poor_hlth 0.20 9.40

11 year, weight, fair_ill, poor_ill, heart, diabet, blackpat, rural, male, poor_hlth, married 0.17 11.17

12 year, weight, fair_ill, poor_ill, heart, diabet, blackpat, rural, male, poor_hlth, married, fair_hlth 13� .00

Table 2.7: AIC and BIC Results for Elderly Blood Pressure DataDiastolic 

Models with the 3 lowest AIC and BIC values

Fixed Effects AIC BIC

year, weight, fair_ill, poor_ill, heart, diabet, blackpat, rural, male, poor_hlth, married 72397.35 72422.41

year, weight, fair_ill, poor_ill, heart, diabet, blackpat, rural, male, poor_hlth, married, fair_hlth 72398.00 72423.05

year, weight, fair_ill, poor_ill, heart, diabet, blackpat, rural, poor_hlth, married 72405.48 72430.54

Figure 2.6: Cp vs. p+1

 EPESE Data: Diastolic BP
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Table 2.8: Mixed Model Fixed Effect Estimates, Standard Errors (SE),

 p-values, and Covariance Estimates for the 3 Models with Lowest  ValuesG:

(Outcome = Diastolic BP)

 Covariance Estimates

Fixed Effect Estimate SE p-value Random effects ErrorG:

9.40 Intercept 65.48 0.78 <0.001

year 0.65

5 5s s œ1
# #

!œ 47.11 82.55

� 0.03 <0.001

weight 0.04 0.004 <0.001

fair_ill 7.03 0.30 <0.001

poor_ill 9.96 0.41 <0.001

heart 4.83 0.41 <0.001

diabet 3.95 0.38

5

3

s œ

s œ �

2
#

.

0.26

0.16

�

� <0.001

blackpat 2.65 0.31 <0.001

poor_hlth 1.17 0.38 0.002

rural 1.41 0.30 <0.001

male 0.96 0.34 0.004

11.17 Intercept 65.61 0.78 <0.001

�

5 5s s1
# œ 47.19 !

#

#

.

œ

s

s œ �

82.46

0.26

0.16

year 0.66 0.03 <0.001

weight 0.04 0.005 <0.001

fair_ill 6.98 0.30 <0.001

poor_ill 9.94 0.41 <0.001

heart 4.87 0.40 <0.0

�

�

5

3

2 œ

01

diabet 3.93 0.38 <0.001

blackpat 2.62 0.31 <0.001

poor_hlth 1.08 0.38 0.005

rural 1.42 0.30 <0.001

male 1.05 0.36 0.004

married 0.16 0.32 0.632

11.

�

�

�

23 Intercept 65.51 0.78 <0.001

year 0.65 0.03 <0.001

weight 0.04 0.004 <0.001

fair_ill 7.02 0.30 <0.001

po

5 5

5

3

s s œ

s

s œ �

1

2

# #
!

#

.

œ

œ

47.08 82.58

0.26

0.16

�

or_ill 9.96 0.41 <0.001

heart 4.82 0.40 <0.001

diabet 3.94 0.38 <0.001

blackpat 2.66 0.31 <0.001

poor_hlth 1.22 0.40 <0.001

rural 1.42 0.30 <0.001

ma

�

�

�

le 0.96 0.34 0.004

fair_hlth 0.11 0.26 0.663�
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2.5.2.4 Discussion

 From the results we can see that for the outcome of diastolic blood pressure,  we have

that the model with the smallest  statistic was the model whose fixed effects were allG:

significant.  The second best model, according to the  statistic, adds "married" as a fixedG:

effect, but it is not significant the same occurs in the third best model.  Therefore, it canand 

be said that the  statistic successfully chose the most parsimonious set of fixed effects forG:

this outcome variable.

 From the results using the information criteria, we see that both the AIC and the BIC

selected the model that was selected as "second-best" by the When we look at theG Þ:

estimates and p-values for this model, we see that the "married" covariate is not significant at

the =0.05 level, and therefore should be excluded.  Therefore the AIC and BIC's "bestα

model" included an extraneous covariate.

2.5.3 Conclusions

 From the results of both real data applications of the   statistic, we can seeproposed G:

that this statistic  be valuable as a model selection tool for mean structure in the linearmay

mixed model.  In both real data examples, it appears that using the lowest  statistic as aG:

gauge for the best model resulted in finding the model which was most parsimonious in

describing the amount of variation in the data  and which had the mostdue to the fixed effects

significant fixed effects.  On the other hand, we see that the AIC and BIC agreed with the

proposed  statistic only when using the dental data set.G:

2.6 Discussion

 , we find that our  statistic tends to do a good job ofUsing empirical studies G:

selecting  in most cases.  It significantly outperforms the AIC and BIC in fixed effects the

simulation study for multiple categorical predictor setting, and in almost all cases, selects the

correct set of fixed effects with at least 50% accuracy.
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 Looking at the results from the Potthoff and Roy data, we can see that our  statisticG:

agrees with the AIC and BIC and selects the model with the interaction term. We also find

that this interaction term is significant, and therefore the saturated model is best in this case.  

 This statistic, from both example data sets used here, appears to accurately identify

the best set of fixed effects available to describe the data provided.  In both the small data set

with complete data and the large data set with missing data, the model with the smallest G:

statistic was also the model which had fixed effects that were all significant at the level of

α=0.05.  Going to the model with the next smallest  statistic would cause the user to eitherG:

omit a statistically important covariate or to add a covariate that was not statistically

significant.

 In comparison the AIC and BIC, the  statistic appears to work as well or betterto G:

than  information criteria in most cases.  In addition,  information criteria are morethe the

computationally intensive in that they require that every candidate model be fit in order to

determine which one is best.  For our  statistic, we only need to fit the saturated model,G:

and look at different in order to calculate thetests of hypotheses about the fixed effects 

statistic for each set of fixed effects in our candidate models.  The ease of these calculations

in combination with the improved performance leads us to conclude that this statistic can be a

valuable tool in the linear mixed model.

 We note that this investigation was purely an empirical study of this new  statistic.G:

The distributional properties of this statistic have yet to be explored.
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CHAPTER 3

SELECTING THE BEST LINEAR MIXED MODEL

USING THE KIC

3.1 Introduction

 In general, a selection criterion scores every fitted model in a candidate class by

how effectively the model conforms to the data based on its size.  Ideally, unwanted

scores will be assigned not only to models that omit essential variables, but also to

models that adequately accommodate the data yet involve extraneous or irrelevant

variables (Cavanaugh, 2004).  In other words, the ideal selection criterion will select the

model with the most parsimonious set of variables to describe the data available.

 Information theoretic criteria have played a prominent role in model selection and

is probably the most active area of current research in model selection for the linear

mixed model.  These criteria are defined as an estimate of the measure of fit of a model to

the data.  The most common criteria used in mixed models are the Akaike Information

Criterion (AIC, Akaike 1974) and the Bayesian Information Criterion (BIC, Schwarz

1978) which are both directed divergences.  In 1999, Cavanaugh defined the

nondirectional divergence criterion, the KIC.  o investigation of the KIC hasHowever, n  

been done in the linear mixed model.

 In the linear univariate model, the sample squared multiple correlation coefficient,

V#, measures the  overall linear association of  dependent variable withmaximum a single

several independent variables.  In the univariate model,  corresponds to comparing twoV#
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models (Muller and Fetterman, 2002, Chapter 6, Sections 6.9–6.11):  1. a  model thatfull

consists of  independent predictors and an intercept; 2. a null model that has only the:

intercept.  It also estimates the proportionate reduction of total variation in the dependent

variable associated with the set of  independent variables.  Most linear regression and:

ANOVA software packages provide the model (overall) .  However, until recently,V#

little attention has been given to developing an  statistic for the linear mixed model.V#

 With  independ ), the linear mixedR ent sampling units (often  in practicepersons

model for  may be written asperson 3

C \ ^ . /3 3 3 3 3œ � �" .

Here,  is a  vector of observations ;  is a  known, constantC \3 3 3 38 ‚" 3 8 ‚; on person 

design matrix fo ith full column rank  while  is a  vector of unknown,r person , w3 ; ;‚""

constant, population parameters.  Also  is a  known, constant design matrix with^3 38 ‚7

rank  f responding to the  vector of 7 7‚"or person  cor unknown random effects ,3 .3

while is a  vector of unknown random errors.  Gaussian  and  are independent/ . /3 3 3 3: ‚"

with mean  and!

iŒ  ” •” • � � � �. !
/ !
3 .3 .

3 /3 /
œ

D 7

D 7
 .

Here  is the covariance operator, while both  and  positive-i D 7 D 7Ð † Ñ .3 . /3 /� � � � are

definite, symmetric covariance matrices.  may be written Therefore iÐ ÑC3

D D 7 D 7 D3 3 3
w
3œ �^ ^.3 . /3 /� � � �.   can be characterized by a finite set ofWe assume that 

parameters represented by an vector  which consists of the unique parameters in <‚" 7 7.

and 7/.  Throughout .8 œ 8�
3œ"
R

3

 Edwards et al. (2008) have derived an  statistic for the fixed effects in theV#

linear mixed model.  The proposed  statistic is interpreted as a multivariate measure ofV#

association of the response  and the fixed effects given by .  While this paper can notC \

be considered a formal examination of this statistic, we have included its calculation in
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the simulation studies as a method of observing its behavior for further, more in-depth

studies.

3.1.1 Directed Divergences: AIC and BIC

 In 1951, Kullback and Leibler defined Kullback's directed divergence as a

measure of the disparity between the  true model  and angenerating or 0Ð] l Ñ)!

approximating model . For two arbitrary parametric densities  and0Ð] l Ñ 0Ð] l Ñ) )5

0Ð] l Ñ 0Ð] l Ñ 0Ð] l Ñ) ) )‡ ‡, Kullback's directed divergence between  and  is defined as:

MÐ ß Ñ œ I
0Ð] l Ñ

0Ð] l Ñ
) )

)

)
‡

‡)œ log (3.1)

where  denotes the expectation under  (Kullback and Leibler, 1951).I 0Ð] l Ñ) )

Therefore,  defines the directed divergence between MÐ ß Ñ œ I 0Ð] l Ñ) ) )! 5 !
0Ð] l Ñ
0Ð] l Ñ)

)
)š ›log !

5

and  with respect to .0Ð] l Ñ 0Ð] l Ñ) )5 !

 For   and , define0Ð] l Ñ 0Ð] l Ñ) )‡

.Ð ß Ñ œ I � # 0Ð] l Ñ) ) )‡ ‡
)e flog (3.2)

 Therefore,

#MÐ ß Ñ œ .Ð ß Ñ � .Ð ß Ñ) ) ) ) ) )! 5 ! 5 ! ! (3.3)

 For the purpose of discriminating between various candidate models, we can now

say,

.Ð ß Ñ œ I � # 0Ð] l Ñ) ) )! 5 5)!e flog (3.4)

serves as a valid substitute for MÐ ß ÑÞ) )! 5

 This suggests that

.Ð ß Ñ œ I � # 0Ð] l Ñ l) ) )! 5 5 œs
^

(3.5)) ) )! 5 5
e flog
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would provide a suitable measure of the separation between the generating model

0Ð] l Ñ 0Ð] l ÑÞs) )! 5and a fitted candidate model   However, we cannot evaluate .Ð ß Ñ) )! 5

because  is unknown.)!

 In 1974, Akaike suggested that  serves as an unbiased estimator of� # 0Ð] l Ñlog )5

.Ð ß Ñ) )! 5
^

 and that the bias adjustment

I .Ð ß Ñ � I � # 0Ð] l Ñs
) )! !š › š ›) ) )! 5 5

^
(3.6)log

can often be asymptotically estimated by twice the dimension of  .  Thus, since 
^)5 5

denotes the dimension of  , under appropriate conditions, the expected value of
^)5

EMG œ � # 0Ð] l Ñ � #5log )5 (3.7)

should asymptotically approach the expected value of

 (3.8)
^.Ð ß Ñ œ I � # 0Ð] l Ñ l) ) )! 5 5 œs) ) )! 5 5

e flog

and is therefore asymptotically unbiased.

 In 1989, Hurvich and Tsai developed the corrected AIC (AIC ), as a correction of-

use, in particular, when the sample size is small.  The formula for this statistic is as

follows:

EMG œ � # 0Ð] l Ñ �
#8Ð5 � "Ñ

8 � 5 � #
- 5log ) (3.9)

Note: In this paper we are focused primarily on large sample situations, therefore, we did

not include the AIC in our investigation.-

 In 1978, Schwarz presented a Bayesian alternative to the AIC.  In a model of

given dimension, ML estimators can be obtained as large sample limits of the Bayes

estimators for arbitrary nowhere vanishing a priori distributions.  Therefore, by studying

the asymptotic behavior of Bayes estimators under a special class of priors, Schwarz

arrived at the procedure where you choose the model for which islog log0Ð] l Ñ � 5 8s)5
"
#
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largest.

 Thus

FMG œ 0Ð] l Ñ � 5 8s "

#
log log)5 (3.10)

The BIC  another directed, though technically not a directed divergence, is treated as

divergence.

 Both the AIC and BIC are essentially log-likelihood values with a penalty (or

adjustment) for the number of parameters estimated.  Since the BIC differs from Akaike's

only in that the dimension is multiplied by , the BIC leans more than Akaike's"
# log8

toward lower-dimensional models.

3.1.2 Symmetric Divergence: KIC

 Kullback's symmetric divergence is defined as:

NÐ ß Ñ œ MÐ ß Ñ � MÐ ß Ñ œ I � I
0Ð] l Ñ 0Ð] l Ñ

0Ð] l Ñ 0Ð] l Ñ
) ) ) ) ) )

) )

) )
! 5 ! 5 5 !

! 5

5 !
) )! 5œ  œ log log Ð Ñ3.11

This divergence is symmetric in that . This symmetric divergenceN Ð ß Ñ œ N Ð ß Ñ) ) ) )! 5 5 !

measures the average combined measure of fit of a sample  generated under the]

generating or candidate true model  and a sample  generated under the  model0Ð] l Ñ ^)!

0Ð^l Ñ)5 .  Using arguments similar to Akaike and assuming nested models, Cavanaugh

(1999) proposed the following large sample model selection criterion:

OMG œ � # 0Ð] l Ñ � $5 Ð Ñslog )5 3.12

This criterion serves as an asymptotically unbiased estimator of a variant of the

symmetric divergence between the true model and a fitted approximating model.
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3.1.3 Previous Model Selection Studies Using Information Criteria

 Cavanaugh (1999) looked at the performance of the KIC in comparison to a wide

spectrum of information criteria, including the AIC, the corrected AIC (AIC ) and the-

BIC, in a univariate autoregressive (AR) process of order , in a setting in which the:

criteria are used to select .  This univariate AR process of order  is defined as follows:: :

C œ C � C �â� C � ß µ 33. R !ß Þ> " >�" # >�# : >�: > >
#9 9 9 & & 5ˆ ‰

where " : T T ] œ C ß C ß C+ + in  candidate families with a set of observations e f" # 8áß

from such a process. Also, note that ) 5 9 9 9s ß ß ßá ß 5 œ : � "5 " # :
#= ,  and� �w

> œ : � "ß ÞÞÞß 8Þ

 Cavanaugh found that, for autoregressive modeling BIC is consistent whereas the

AIC and AIC  are asymptotically efficient. The KIC is also asymptotically efficient for a
-

broad class of generating models. However, the AIC, AIC  are asymptotically efficient in
-

an even broader class.

 For Gaussian white noise processes of mean 0 and variance 1 with sample size of

40 or 60 and maximum model order  = 8, KIC obtains substantially more correctof :

order selections than any of the asymptotically efficient criteria.  KIC is generally

outperformed by BIC, however, KIC does not exhibit as strong a tendency as BIC to

choose underparameterized models.

 In conclusion, Cavanaugh found that the results from the simulation study

suggested that KIC should function as an effective model selection criteria in large-

sample applications.  The results also suggested that the symmetric divergence may

provide a foundation for the development of model selection criteria which is preferable

to that provided by the directed divergence.

 Gomez et al.  looked at the performance of the Kenward-Roger method in(2005)

the linear mixed model when the covariance structure is selected using AIC and BIC.

They investigated Type I error rates for tests of fixed effects in mixed linear models using
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Wald F-statistics with the Kenward-Roger adjustment, and he generated data using 15

covariance structures.  Correct covariance structures as well as those selected using AIC

and BIC were examined.  Type I error rates for the correct models were often adequate

depending on the sample size and complexity of covariance structure.  Type I error rates

for the best AIC and BIC models were always higher than target values, but those

obtained using BIC were closer to the target value than those obtained using AIC.  For

unbalanced data , Type I error rates for the between-subjects effects were closer for

negative pairing.  Success of AIC and BIC in selecting the correct covariance structure

was low.

 The success rate (proportion of times AIC or BIC chose the correct covariance

structure) depended greatly on the sample size and covariance structure.  The highest

success rate was 73.91%, for the largest sample size and a simple covariance structure

(ARRE). Success rates were higher for larger sample sizes and simpler covariance

structures.  AIC had a higher success rate than BIC for complicated structures, especially

for those with heterogeneity between treatments.  BIC had higher success than AIC for

simpler structures.

3.1.4 Investigation of the KIC and R  in This Chapter#

 As information criteria can be used as a model selection method in the linear

mixed model for selection of the correct covariance structure and the correct fixed effect

structure, in our simulation studies, we investigated the abilities of the KIC for both of

these situations.  First, we looked at the ability of the KIC to select the correct covariance

structure when the fixed effect structure was correctly identified and different parameters

of the random effects and fixed effects were varied. Secondly, we looked at the KIC's

ability to select the correct fixed effect structure when the covariance structure and

random effects structure was correctly identified.  In both cases, we compared the ability

of the KIC to that of the AIC and BIC as provided in the standard SAS output. We also
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looked at the average value of the R  statistic as defined by Edwards, et al. (2008) to see#

if there was any correlation between the behaviors of this statistic and the various

information criteria.

 In this paper, section 2 looks at the results of the simulation study examining the3.

selection of the correct covariance structure give  the correct mean structure is identified,n

section  looks at the results examining the correct selection of the mean structure when3.3

the covariance structure is identified, section 4 applies the KIC to the EPESE data3.

example that was introduced in Chapter 2 and section 4 discusses the results from both3.

types of simulation studies and the data example.

3.2 Simulation Study: Covariance Structure Selection

3.2.1 Introduction

 This simulation study looked at the ability of the KIC to select the correct

covariance structure when the correct fixed effects structure was specified.  The

performance of the KIC was compared to that of the AIC and BIC. We considered only

the large sample performance with complete data in all our scenarios, and used Kenward-

Roger  denominator degrees of freedom and REML likelihoodJ  and associated

estimation.

3.2.2 Methods

 Data were simulated from a true linear mixed model consisting of the following

fixed effects: an intercept, a dummy variable indicating membership in one of two

groups, and a continuous covariate.  To look at the impact of a varying  statistic, weV#

looked at two different fixed effects structures: one where the true linear mixed model has

" "œ œ(1,1,1)' corresponding to an intercept, group and slope and one where (1,1,2)'

which will result in a higher value for , due to the  signal.  Two differentV# stronger
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covariance structures were simulated : an independent andfor the within-unit error

identically distributed (i.i.d.) structure and an autoregressive structure of order 1 (i.e.

AR(1)).

 An i.i.d.  matrix is represented as:covariance

D/ /3
� �7 œ 5#

!M83 ,

where  is an  identity matrixM8 3 33
8 ‚ 8 .  An AR(1) structure is often used when it is

expected that the correlation between observations "tails off" as the observations grow

further apart in time.  Formulaically, this is represented as:

D/ /3
� � Î ÑÐ Ó

Ï Ò7 œ 5#
!

" â

ã ã ã ã ã

â "

3 3 3

3 3 3

V V
#

V
�"

V V
�" �#

V

8

8 8

3

3 3

.

 Random effect structures took three different forms: (1) no random effect; (2)

random intercept only; and (3) a random intercept and a random slope. When there are no

random effects and the within-unit error is independent and identically distributed (i.i.d.),

the structure reduces to a univariate linear model with variance .  When there is a5#
!

random intercept only, the variance of the random effects, i.e. .D. .3
� �7 , is given by 51

#

When there is a random intercept and random slope, the variance of the random effects is

given by:

D. .3
� � Œ 7 œ

5

5
1
#

#
#

3

3
.

.

5 5

5 5
1 2

1 2

 The random intercepts, random slopes (where applicable) and within-unit error

terms were generated as independent normal random variables with means zero and

variances  and , respectively.  Datasets were simulated using varying values of5 5 51
# # #

# !ß

variance: for random effect structure (1) 1 and 4; for (2)  1 and 4; and5 5 5! !
# # #œ œ œ1

for (3) 1 and 4. To look at the impact of varying parameters of the5 5 51 2
# # #

!œ œ œ

AR(1) structure on the performance of the criteria, data were simulated using  0.10,3R œ
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0.25, 0.50 and 0.75 for the within-subject correlation  When a random intercept and slopeÞ

were present, we looked at cases where there correlation between theseis small or no 

effects, 0, 0.1 and 0.2.  Large sample performance was assessed using simulated3. œ

datasets which consisted of 200 subjects and 5 observations each in the interval [0,1] and

involved 1,000 realizations.

 In order to assess the performance of the criteria in choosing the  covariancetrue

structure, eight candidate models were fit for each generated dataset, and the number of

times the criteria chose the correct model from this set of 1,000 was tallied.  The set of

candidate models consisted of eight models each having the same correct set of fixed

effects but random effects structures corresponding to: (1) no random effects;covariance 

(2) a random intercept only; (3) a random intercept and a random slope with unstructured

covariance; and (4) a random intercept and a random slope with variance components

(VC) covariance.  covariance st uctures correspond  to: (1)Within-unit error r ed

independent and identically distributed (i.i.d.); and (2) autoregressive structure of order 1

(i.e. AR(1)). The number of times out of the 1,000 possibilities that the criterion in

question chose the correct model (based on the model by which the data werecovariance 

simulated) as the best model was recorded. All simulations in both scenarios were run

using REML estimation, Kenward-Roger , and associated denominator degrees ofJ

freedom (ddf).

3.2.3 Results

 Tables 3.1, 3.2 and 3.3 display the results of the simulations for iid models with

no random effects, a random intercept only, and both a random intercept and random

slope, respectively. Figure 3.1 and 3.2 graphically illustrate the ability of the information

criteria to select the correct model for varying values of  when the V# true within-unit

error the model hadcovariance structure was i.i.d. and , respectively, no random effects or

a random intercept alone.
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Table 3.1: Monte Carlo Assessment of  Model Selection:Covariance

 iid , No Random EffectsWithin-Unit Error Covariance

1,000 datasets, 200 subjects each, 5 observations per subject
Percentage Correct Model Selection

  1 2

0.5 1 2 0.5 1 2

Mean 

KIC

AIC

" "

5
1 1œ œ

œ

V
!
#

# 0 0 0 0 0 0.494 .346 .226 .602 .430 .274

88.1 87.4 88.1 88.5 89.4 89.2

75.6 76.4 75.6 76.1 80.4 79.0

96.6 97.0 96.6 96.2 97.4 96.9BIC

Figure 3.1: % Correct Model Selection vs. R
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Table 3.2: Monte Carlo Assessment of  Model Selection:Covariance

iid , Random Intercept OnlyWithin-Unit Error Covariance

1,000 datasets, 200 subjects each, 5 observations per subject
Percentage Correct Model Selection

  1 2

, 0.5 1 2 0.5 1 2

Mean 

KIC

A

" "

5 5
1 1œ œ

œ

V
!
# #

#
1

0 0 0 0 0 0.251 .144 .079 .520 .352 .215

86.9 87.5 89.4 87.0 87.9 87.0

IC

BIC

73.5 76.8 77.6 74.6 80.1 73.6

96.4 96.2 97.8 97.3 96.9 96.3
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Figure 3.2: % Correct Model Selection vs. R
2 

(iid Covariance;  Random Intercept Only)
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Table 3.3: Monte Carlo Assessment of  Model Selection:Covariance

iid , Random Intercept and Random SlopeWithin-Unit Error Covariance

1,000 datasets, 200 subjects each, 5 observations per subject
Percentage Correct Model Selection

  1; 0 2; 0

, , 0.5 1 2 0.5 1 2

Mean 

KIC

" "

5 5 5
1 1œ œ œ œ

œ

V

3 3. .

 

.251 .144 .079 .520 .352 .215

86.9 87.5 8

!
# # #

#
1 2

0 0 0 0 0 0

9.4 87.0 87.9 87.0

73.5 76.8 77.6 74.6 80.1 73.6

96.4 96.2 97.8 97.3 96.9 96.3

 

.

AIC

BIC

  1; 0 1  2; 0 1

, , 0.5 1 2 0.5 1 2

Mean 

" "

5 5 5
1 1œ œ Þ œ œ Þ

œ

V

3 3. .

!
# # #

#
1 2

0 186 .104 .055 .408 .257 .149

92.1 92.2 92.0 91.0 90.3 92.6

85.6 85.8 85.5 82.6 82.0 83.3

93.6 98.4 97.3 97.0 97.1 97.6

0 0 0 0 0

KIC

AIC

BIC

1; 0 2 2;" "1 1œ œ Þ œ œ3 3. . 0 2

, , 0.5 1 2 0.5 1 2

Mean 

KIC

AIC

BIC

Þ

œ

V

 

.262 .102 .055 .407 .339 .149

90.6 89.6 90.4 89.7 92.4 92.4

83.1 83.8 83.7 81.2 84.3 84.3

98.0 96

5 5 5!
# # #

#
1 2

0 0 0 0 0 0

.8 97.0 95.9 98.0 97.7

 Tables 3.4, 3.5, 3.6 and 3.7 display the results of the simulations for AR(1)

models with no random effects, a random intercept only, and both a random intercept and
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random slope, respectively, Tables 3.6 and 3.7 differ in that the variance parameters in

Table 3.7 is twice that of the variance parameters in Table 3.6. Varying parameters for the

AR(1) structure are described by the within-unit correlation . Figure 3.3 graphically3V

illustrates the data for an AR(1) covariance structure with random intercept and slope

when " 5 5 51 1 2œ œ Þ œ2; 0 2 and , , 2 (i.e. the last quadrant of Table 3.7).3. !
# # #

Table 3.4: Monte Carlo Assessment of  Model Selection:Covariance

AR(1) , No Random EffectsWithin-Unit Error Covariance

1,000 datasets, 200 subjects each, 5 observations per subject
Percentage Correct Model Selection

  1; 1 2; 1

0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75

Mean 

" 5 " 5

3
1 1œ œ œ œ

œ

V

# #
! !

V 

.249 .219 .185 .185 .406 .37# 0 0 0 0 0 0 7 .356 .400

76.2 95.3 94.0 94.5 76.6 96.3 94.4 93.8

76.5 89.6 87.7 86.5 77.7 91.2 89.1 87.8

66.1 99.1 98.9 99.2 65.3 98.9 98.5 98.9

0 0

KIC

AIC

BIC

  1; 2" 51 œ œ#
!  2; 2

0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75

Mean 

KIC

" 5

3
1 œ œ

œ

V

#
!

V 

.145 .124 .103 .103 .254 .233 .217 .251

75.8 94.5 94.7 94.3 78.4 95.1 94.6 94.

# 0 0 0 0 0 0 0 0

8

76.7 88.1 86.8 86.5 79.4 89.1 89.2 88.4

62.8 98.9 98.7 88.4 68.3 98.9 99.2 98.8

AIC

BIC

Table 3.5: Monte Carlo Assessment of  Model Selection:Covariance

AR(1) , Random Intercept OnlyWithin-Unit Error Covariance

1,000 datasets, 200 subjects each, 5 observations per subject
Percentage Correct Model Selection

  1; , 1 2; , 1

0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75

Mean 

" 5 5 " 5 5

3
1 1œ œ œ œ

œ

V

! !
# # # #

#

1 1

 

.137 .131 .128 .14

V

0 0 0 0 6 .337 .405 .319 .371

54.1 94.2 94.7 63.8 59.6 95.2 95.8 65.5

59.8 87.4 88.5 71.0 65.7 89.8 90.0 72.2

36.6 98.3 97.8 42.9 38.8 97.3 98.4 44.3

0 0 0 0

KIC

AIC

BIC

  " 5 5 " 5 5

3
1 1œ œ œ œ

œ

V

1; , 2  2; , 2

0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75

Mean 

KIC

! !
# # # #

#

1 1

 

.074 .069 .068 .081 .123 .127 .191 .229

55.2 93.3 94.

V

0 0 0 0 0 0 0 0

0 65.2 54.3 94.6 94.1 65.0

63.1 88.6 88.8 72.8 62.5 90.0 87.8 73.3

36.2 97.8 97.7 48.2 36.2 98.2 98.2 45.4

AIC

BIC
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Table 3.6: Monte Carlo Assessment of  Model Selection:Covariance

AR(1) , Random Intercept and Random SlopeWithin-Unit Error Covariance

1,000 datasets, 200 subjects each, 5 observations per subject
 , , 15!

# 5 51 2
# # œ

Percentage Correct Model Selection

  1; 0 2; 0

0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75

Mean 

" "

3
1 1œ œ œ œ

œ

V

3 3. .

  

.100 .096 .093 .098 .251 .240

V

# 0 0 0 0 0 0 0 0.240 .256

44.8 93.9 95.7 93.4 42.4 93.9 96.3 91.6

54.5 96.6 98.0 95.0 54.0 88.1 98.7 93.1

22.6 84.9 82.2 83.1 21.5 89.9 83.9 83.1

KIC

AIC

BIC

  1; 0 1"1 œ œ Þ3.  2; 0 1

0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75

Mean 

KIC

"

3
1 œ œ Þ

œ

V

3.

 

.098 .094 .093 .098 .244 .236 .237 .256

33.9 95.3 98.8 95.9 34.6 95.7 98.7 97

V

# 0 0 0 0 0 0 0 0

.1

48.3 97.0 99.8 96.3 47.3 97.6 99.5 97.8

17.4 87.3 92.5 91.0 14.2 87.1 92.0 92.6

  

AIC

BIC

1; 0 2 2; 0 2

0.10 0.25 0.50 0.75 0.10 0.25 0.50 0

" "

3
1 1œ œ Þ œ œ Þ

œ

3 3. .

V .75

Mean 

KIC

AIC

BIC

V# 0 0 0 0 0 0 0 0.095 .092 .090 .097 .239 .232 .229 .257

25.6 94.0 99.8 98.8 25.9 92.5 99.8 99.6

40.9 97.1 99.9 98.8 43.8 96.3 100 99.7

8.8 79.7 99.5 97.1 8.3 78.7 98.1 97.9

Table 3.7: Monte Carlo Assessment of  Model Selection:Covariance

AR(1) , Random Intercept and Random SlopeWithin-Unit Error Covariance

1,000 datasets, 200 subjects each, 5 observations per subject
 , , 25 5 5!

# # #
1 2 œ

Percentage Correct Model Selection

  1; 0 2; 0

0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75

Mean 

" "

3
1 1œ œ œ œ

œ

V

3 3. .

  

.054 .052 .050 .053 .143 .137

V

# 0 0 0 0 0 0.136 .147

42.9 94.6 95.2 92.3 41.9 94.8 96.5 92.2

55.3 97.2 98.7 93.9 54.2 96.5 98.7 94.2

21.5 87.3 80.7 83.7 22.9 86.7 83.4 81.6

0

KIC

AIC

BIC

  1; 0 1  "1 œ œ Þ3. "

3
1 œ œ Þ

œ

V

2; 0 1

0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.75

Mean 

KIC

3.

 

.052 .051 .049 .052 .141 .135 .133 .147

36.2 93.8 98.1 92.0 34.6 94.5 98.8 97.

V

# 0 0 0 0 0 0 0 0

8

48.7 96.4 99.6 96.8 48.2 96.9 99.8 98.5

14.7 84.7 92.5 91.6 16.7 86.0 92.8 93.9

  

AIC

BIC

1; 0 2 2; 0 2

0.10 0.25 0.50 0.75 0.10 0.25 0.50 0.

" "

3
1 1œ œ Þ œ œ Þ

œ

3 3. .

V 75

Mean 

KIC

AIC

BIC

V# 0 0 0 0 0 0 0 0.051 .048 .048 .052 .138 .133 .131 .148

26.7 92.5 99.5 99.2 27.5 92.6 99.8 99.3

41.1 96.0 99.9 99.5 33.3 95.8 99.8 99.5

8.5 79.1 97.9 98.5 9.0 79.3 99.2 98.0
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Figure 3.3: % Correct Model Selection and R
2
 vs. ρρρρr 

AR(1) Within-Unit Error Covariance with 

Random Intercept and Slope
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3.2.4 Conclusions

 From the results of this simulation study, we see that the BIC is the information

criteria with the best performance when the correct covariance structurewithin-unit error 

is i.i.d .  However, when the correct and the random effects covariance varied within-unit

error  and the random effects covariance variedcovariance structure is AR(1) , the AIC is

the best performer of the information criteria.  In all scenarios, the KIC tends to hold the

middle ground.

 When the time effect was doubled in magnitude, the  statistic, as expected,V#

increased due to the increase in the signal-to-noise ratio.  However, as can be seen in

Figures 3.1 and 3.2, this increase did not significantly ffect the ability of any of thea

information criteria as far as correct model selection was concerned.  Also, as seen in

Figure 3.3, while the change in 3V  has a great impact on the performance of the

information criteria when the covariance structure is AR(1), thiswithin-unit error 

variation has little impact on the magnitude of the  statistic.  On the other hand, anV#
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increase in the variance parameters, ,  and  does result in a decrease in the 5 5 5!
# # # #

1 2 V

statistic in both the i.i.d. and AR(1) scenarios.

 While the KIC was not the best performer in any of the scenarios, its ability to

hold the middle ground in all scenarios asserts that it may be the best criterion to use

when one is truly unaware of what the underlying covariance structure may be.

3.3 Simulation Study: Mean Structure Selection

3.3.1 Introduction

 This simulation study investigated the ability of the KIC to select the correct mean

structure when the correct covariance structure was identified, and we compared its

ability to that of the AIC and BIC.  We also observed the behavior of the  statistic inV#

these scenarios.  For both scenarios investigated, we used an i.i.d. covariance structure,

REML estimation, and Kenward Roger   withJ  statistic and associated ddf for inference

complete data.

3.3.2 Methods

3.3.2.1 Methods: Scenario One

 For the first mean structure selection scenario, a repeated measures study

consisting of 3 measurement occasions was simulated that assumes compound symmetry

of the data; that is, the data generated were based on a model with only a random

intercept and an independent and identically distributed (i.i.d.) within-unit error term  i.e.,

D. .3
� �7 œ 5#

"  and

D/ /3
� �7 œ 5#

!M83 ,

where  is an  identity matrixM8 3 33
8 ‚ 8 . Therefore, the compound symmetry structure was

simulated such that  where is the total variance,  is the variance of the5 5 5 5 5# # # # #
" ! "œ �
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random intercept, and  is the variance of the within-unit error term. Datasets were5!
#

simulated using varying values of the total variance, namely 1, 4 and 8, to get a5# œ

sense the true variance on the performance of the criteria.  Correspondingof the impact of 

to the standard model assumptions, the random intercepts and within-unit error terms

were generated as independent normal random variables with means zero and variances

5 5" !
# # and , respectively.  To  impact of the within-unit correlations on theunderstand the

performance of the criteria, data were simulated using correlations between observations

3 3 5 5œ œ0.25, 0.50 and 0.75, where / ."
# #

 As for the mean structure, data were simulated from a true linear mixed model

consisting of the following fixed effects: an intercept, a dummy variable indicating

membership in one of two groups, and a continuous covariate.  Nine different variations

of these fixed effects were considered to see how the information criteriamodels for 

performed in their ability to select the correct set of fixed effects.  The fixed effects

models simulated took on three variations: 1) model with intercept and time only, 2)

model with intercept, time and group effect, and 3) model with intercept, time, group and

interaction between group and time.  In each variation, three values for the coefficient

associated with the time effect, i.e. , were considered: and . " "1 1 œ !Þ&ß "ß # Thus, with

three models for fixed effects and three values for , we have nine different variations of"1

models for the fixed effects.  In addition, when the correct model included an interaction

term, two values for the coefficient associated with the interaction, i.e. , were"3

considered:  Large sample performance was assessed; simulated datasets"$ œ !Þ#&ß !Þ&Þ

consisted of 200 subjects with 5 observations each in the interval [0,1].  Each simulation

for the varying sample sizes, variances and correlation values consisted of 1,000

realizations.

 In order to assess the performance of the criteria in choosing the proper set of

fixed effects based on the simulation study, a set of candidate models was fit for each

generated dataset, and the number of times the criteria chose the correct model from this
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set of 1,000 was tallied.  The set of candidate models consisted of three models each

having the same covariance structure and fixed effects corresponding to:  (1) a model

with common intercept and common slope; (2) a model with common intercept, a slope,

and an additional group covariate; and (3) a model with intercept, slope, group, and group

x slope interaction.  For example, if the true model was one with a common intercept and

common slope, we assessed the performance of the criteria in choosing the true model as

a candidate model or the other two candidate models.  The number of times out of the

1,000 possibilities that the criterion in question chose the correct model as the best model

and the average  for the correct model was recorded.V#

3.3.2.2 Methods: Scenario Two

 The multiple categorical predictors that are used to generate the data simulate the

case where there are various factors (in addition to the time effect), such as race, gender

etc., that have an impact on the outcome variable. The REML estimation, Kenward-

Roger , and associated ddfJ  were used when evaluating the simulated data.

 For this set of simulations, we used an i.i.d within-subject covariance structure

i.e.,

D/ /3
� �7 œ 5#

!M&,

with a between-subject covariance structure that contained either a random intercept

alone, or a random intercept and slope, i.e., D 7. .3
� � œ 5#

"  or

D. .3
� �7 œ Œ 5 5

5 5
1 1

1

# #
#

#
# #

#

In this simulation, 5 5 5 3 5!
# # # #

.œ # œ # œ œ !Þ#& œ, , 0 or 2, and  when 21 2 2

(5 5 51 1 2#
# œ 3. )Þ

 For the fixed effects,  " "" is the common intercept,  is the coefficient for time2

and four different categorical predictors and , are considered with theß B ß B ß B B" # $ %

corresponding coefficients , , , and   The vector for , and 16" " " " "3 4 5 6.
w œ Ð$ß "ß %ß $ß &ß &Ñ

different variations are considered where 0,1, 2, 3, or 4 of the coefficients for the



71

categorical predictors (i.e. and ) are set to 0. Therefore, the saturated meanB ß B ß B B" # $ %

model, which includes all coefficients for the categorical predictors and time, is given by:

I C œ � > � %B � $B � &B � &B( )  $ " # $ %    

For each set of simulations, 16 different sets of fixed effects .  We looked atwere assessed

the ability of the KIC compared to the AIC and BIC to select the correct fixed effect

structure among the 16 possible outcomes over the 1,000 simulations, and also recorded

the average  statistic for the correct fixed effect model.  All simulations were doneV#

using  and REML likelihood.Kenward-Roger , associated ddf,J

3.3.3 Results

3.3.3.1 Results: Scenario One

 Tables 3.8, 3.9, 3.10 and 3.11 display the results for the fixed effects model

selection when the correct model included time alone, time and group alone, and time,

group and their interaction.  Tables 3.10 and 3.11 differ in that in Table 3.11 the

interaction effect has double the magnitude of the interaction effect in Table 3.10.  In all

tables the variation of the variance, covariance and time effect parameters are illustrated.

Figures 3.4, 3.5 and 3.6 are a graphic representation of the middle panels in Table 3.9 to

illustrate the impact of the increase in the variance parameter on the  and theV#

performance of the information criteria.  As the AIC and BIC have identical values in

these tables, only the AIC is graphed (in addition to the KIC and ).V#
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Table 3.8: Monte Carlo Assessment of Fixed Effects Model Selection:

1,000 datasets, 200 subjects each, 5 observations per subject

Correct Model: " "! "� >

Percentage Correct Model Selection

1 0.5 1 1 1 2

 = 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

Mean R

5 " 5 " 5 "

3

# # #
" " "

#

œ ß œ œ ß œ œ ß œ

0 0 0 0.041 .060 .112 .145 .201 .334 .401 .501 .667

98.1 98.0 97.9 98.7 98.2 97.5 98.0 98.2 97.4

87.2 84.3 84.2 87.4 84.7 85.1 87.7 85.1 84.7

87.2 84.3 84.2 87.4 84.7 8

0 0 0 0 0

KIC

AIC

BIC 5.1 87.7 85.1 84.7

.012 .016 .031 .042 .060 .112 .146 .2

5 " 5 " 5 "

3

# # #
" " "

#

œ ß œ œ ß œ œ ß œ4 0.5 4 1 4 2

 = 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

Mean R 0 0 0 0 0 0 0 0 02 .333

95.8 93.5 94.9 96.0 95.2 93.6 96.9 95.2 95.9

63.4 57.8 56.9 64.8 60.8 58.5 61.9 55.6 59.8

63.4 57.8 56.9 64.8 60.8 58.5 61.9 55.6 59.8

0

KIC

AIC

BIC

85# œ ß œ œ ß œ œ ß œ" 5 " 5 "

3

" " "
# #

#

0.5 8 1 8 2

 = 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

Mean R

KIC

0.006 0.00 0.01 0.0 0.032 0.06 0.079 0.114 0.202

93.8 92.2 9

* ' #" !

1.8 94.4 91.5 91.6 95.7 91.8 90.7

29.5 29.2 26.2 29.2 27.2 23.5 30.8 25.3 20.9

29.5 29.2 26.2 29.2 27.2 23.5 30.8 25.3 20.9

AIC

BIC
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Table 3.9: Monte Carlo Assessment of Fixed Effects Model Selection:

1,000 datasets, 200 subjects each, 5 observations per subject

Correct Model:  + " " "! "� > B2

Percentage Correct Model Selection

1 0.5 1 1 1 2

 = 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

Mean R

5 " 5 " 5 "

3

# # #
" " "

#

œ ß œ œ ß œ œ ß œ

0 0 0 0.144 .130 .160 .227 .251 .361 .442 .522 .673

96.9 98.4 98.6 97.7 97.4 98.4 96.4 97.8 97.6

82.7 86.8 90.9 82.2 86.8 91.8 83.3 87.2 90.9

82.7 86.8 90.9 82.2 86.8 9

0 0 0 0 0

KIC

AIC

BIC 1.8 83.3 87.2 90.9

.042 .037 .047 .070 .078 .124 .167 .2

5 " 5 " 5 "

3

# # #
" " "

#

œ ß œ œ ß œ œ ß œ4 0.5 4 1 4 2

 = 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

Mean R 0 0 0 0 0 0 0 0 14 .342

92.9 93.6 95.2 94.6 94.5 93.5 93.1 94.9 94.4

53.7 65.6 77.0 51.3 67.5 77.6 52.2 64.8 78.8

53.7 65.6 77.0 51.3 67.5 77.6 52.2 64.8 78.8

0

KIC

AIC

BIC

85# œ ß œ œ ß œ œ ß œ" 5 " 5 "

3

" " "
# #

#

0.5 8 1 8 2

 = 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

Mean R

KIC

0.022 0.020 0.025 0.037 0.042 0.068 0.091 0.121 0.208

87.4 85.4 78.8 88.6 82.7 80.7 88.7 85.6 80.0

0 35.7 66.0 0 34.6 65.9 0 34.7 64.7

0 35.7 66.0 0 34.6 65.9 0 34.7 64.7

AIC

BIC

Figure 3.4: % Correct Model Selection, R
2
 vs. ρ  ρ  ρ  ρ 

Correct Model: ββββ0+ββββ1t+ββββ2x; ββββ1=1, σσσσ
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Figure 3.5: % Correct Model Selection, R
2
 vs. ρ  ρ  ρ  ρ 

Correct Model: ββββ0+ββββ1t+ββββ2x; ββββ1=1, σσσσ
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Figure 3.6: % Correct Model Selection, R
2
 vs. ρ  ρ  ρ  ρ 

Correct Model: ββββ0+ββββ1t+ββββ2x; ββββ1=1, σσσσ
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Table 3.10: Monte Carlo Assessment of Fixed Effects Model Selection:

1,000 datasets, 200 subjects each, 5 observations per subject

Correct Model:  +  + ; =0.25" " " " "! "� > B B‡>2 3 3

Percentage Correct Model Selection

1 0.5 1 1 1 2

 = 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

Mean R

5 " 5 " 5 "

3

# # #
" " "

#

œ ß œ œ ß œ œ ß œ

0.186 0.174 0.222 0.273 0.300 0.420 0.480 0.555 0.702

25.7 37.2 64.5 25.7 37.5 61.5 27.5 37.8 62.8

56.0 68.6 86.5 56.9 70.1 85.8 59.5 67.6 85.8

56.0 68.6 86.5 56.9 70.1 8

KIC

AIC

BIC 5.8 59.5 67.6 85.8

0.056 0.052 0.068 0.089 0.099 0.154 0.187 0.2

5 " 5 " 5 "

3

# # #
" " "

#

œ ß œ œ ß œ œ ß œ4 0.5 4 1 4 2

 = 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

Mean R 38 0.371

13.2 16.1 21.4 12.9 16.5 21.7 13.7 14.5 21.6

60.9 57.6 53.1 59.1 55.8 54.8 58.0 51.7 55.7

60.9 57.6 53.1 59.1 55.8 54.8 58.0 51.7 55.7

KIC

AIC

BIC

85# œ ß œ œ ß œ œ ß œ" 5 " 5 "

3

" " "
# #

#

0.5 8 1 8 2

 = 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

Mean R

KIC

0.030 0.028 0.037 0.047 0.054 0.085 0.106 0.135 0.228

14.4 14.5 13.8 16.3 14.4 16.5 16.3 14.4 15.1

100 72.4 53.9 100 73.3 55.2 100 72.0 54.4

100 72.4 53.9 100 73.3 55.2 100 72.0 54.4

AIC

BIC

Table 3.11: Monte Carlo Assessment of Fixed Effects Model Selection:

1,000 datasets, 200 subjects each, 5 observations per subject

Correct Model:  +  + ; =0.50" " " " "! "� > B B‡>2 3 3

Percentage Correct Model Selection

1 0.5 1 1 1 2

 = 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

Mean R

5 " 5 " 5 "

3

# # #
" " "

#

œ ß œ œ ß œ œ ß œ

0.233 0.227 0.291 0.319 0.351 0.478 0.512 0.586 0.728

82.7 95.4 100 85.9 94.5 99.8 84.8 95.9 99.9

96.8 99.3 100 96.3 99.3 99.9 96.4 99.4 100

96.8 99.3 100 96.3 99.3 99.9 9

KIC

AIC

BIC 6.4 99.4 100

0.073 0.071 0.096 0.107 0.121 0.187 0.211 0.263 0.4

5 " 5 " 5 "

3

# # #
" " "

#

œ ß œ œ ß œ œ ß œ4 0.5 4 1 4 2

 = 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

Mean R 01

39.2 49.3 72.8 40.9 49.8 73.3 37.3 50.2 72.1

83.0 84.0 94.3 82.6 86.6 93.2 81.0 83.9 93.7

83.0 84.0 94.3 82.6 86.6 93.2 81.0 83.9 93.7

KIC

AIC

BIC

8 05 "#
"œ ß œ .5 8 1 8 2

 = 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

Mean R

KIC

5 " 5 "

3

# #
" "

#

œ ß œ œ ß œ

0.039 0.037 0.051 0.058 0.065 0.105 0.118 0.151 0.252

28.7 34.9 47.3 30.3 34.3 52.2 28.6 35.7 50.1

100 85.1 83.2 100 86.9 87.7 100 85.5 83.3

100 85.1 83.2 100 86.9 87.7 100 85.5 83.3

AIC

BIC
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3.3.3.2 Results: Scenario Two

 Tables 3.12, 3.13, 3.14 and 3.15 illustrate the results of the simulation study

where there are multiple categorical predictors present.  Tables 3.12 and 3.13 contain a

random intercept only covariance structure while Tables 3.13 and 3.15 have both random

intercept and random slope.  Tables 3.12 and 3.13 have large sample sizes, and Tables

3.14 and 3.15 have smaller sample sizes.  Figures 3.7 and 3.8 illustrate the data in Tables

3.12 and 3.13 respectively, and include a linear trendline for the R  data # (dashed line in

figure).  Again, since the results for AIC and BIC were identical, only AIC was plotted (in

addition to the KIC and the R ).#

Table 3.12: Monte Carlo Assessment of Fixed Effects Model Selection:

1,000 datasets, 200 subjects, 5 observations per subject

Scalar Covariance for Random Intercept Only
Fixed Effects for # of Mean % Correct Selection by 

Simulated Data Covariates R KIC AIC BIC#

$
$
� > � %B � $B � &B � &B
� > � %B � $B

" # $ %

" #

5 .781 100 100 100

� &B
� > � %B � $B � &B
� > � %B � &B � &B
� > � $B � &B � &B
� > � %B � $B

$

" # %

" $ %

# $ %

" #

4 .765 95.2 56.9 56.9

4 .755 96.7 68.5 68.5

4 .775 96.5 70.0 70.0

4 .764 95.3 72.0 72.0

$
$
$
$ 3 .733 90.1 42.1 42.1

3 .755 92.4 43.3 43.3

3 .744 91.4 48.2 48.2

3 .744 88.9 39.4 39.4

3 .733 92.5 52.1 52.

$
$
$
$

� > � %B � &B
� > � %B � &B
� > � $B � &B
� > � $B � &B

" $

" %

# $

# % 1

3 .754 91.8 50.2 50.2

2 .722 88.5 29.2 29.2

2 .707 87.7 32.8 32.8

2 .734 85.7 28.0 28.0

2 .719 88.4 34.6 34.6

$
$
$
$
$
$

� > � &B � &B
� > � %B
� > � $B
� > � &B
� > � &B
� >

$ %

"

#

$

%

1 .694 82.0 20.8 20.8
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Table 3.13: Monte Carlo Assessment of Fixed Effects Model Selection:

1,000 datasets, 200 subjects, 5 observations per subject

Unstructured Covariance for Random Intercept and Slope
Fixed Effects for # of Mean % Correct Selection by 

Simulated Data Covariates R KIC AIC BIC#

$
$
� > � %B � $B � &B � &B
� > � %B � $B

" # $ %

" #

5 .259 100 100 100

� &B
� > � %B � $B � &B
� > � %B � &B � &B
� > � $B � &B � &B
� > � %B � $B

$

" # %

" $ %

# $ %

" #

4 .222 83.7 0.5 0.5

4 .203 88.3 0.2 0.2

4 .240 88.8 0.2 0.2

4 .219 88.4 0.3 0.3

3 .163 74.

$
$
$
$ 4 0 0

3 .203 73.5 0.1 0.2

3 .181 75.5 0 0

3 .181 75.8 0 0.1

3 .158 78.1 0.2 0.2

3 .201 76.5 0.2 0.2

$
$
$
$
$
$

� > � %B � &B
� > � %B � &B
� > � $B � &B
� > � $B � &B
� > � &B � &B

" $

" %

# $

# %

$ %

� > � %B
� > � $B
� > � &B
� > � &B
� >

"

#

$

%

2 .139 65.2 0.1 0.2

2 .114 65.0 0 0.1

2 .161 66.4 0 0.1

2 .135 69.3 0.1 0.1

1 .089 62.1 0 0.1

$
$
$
$

Figure 3.7: % Correct Model Selection, R
2
 vs. # of Covariates 

Multiple Categorical Predictors; Random Intercept Only
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Figure 3.8: % Correct Model Selection, R
2
 vs. # of Covariates 

Multiple Categorical Predictors; Random Intercept and Slope
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Table 3.14: Monte Carlo Assessment of Fixed Effects Model Selection:

1,000 datasets, 50 subjects, 4 observations per subject

Scalar Covariance for Random Intercept Only
Fixed Effects for # of Mean % Correct Selection by 

Simulated Data Covariates R KIC AIC BIC#

$
$
� > � %B � $B � &B � &B
� > � %B � $B

" # $ %

" #

5 .807 100 100 100

� &B
� > � %B � $B � &B
� > � %B � &B � &B
� > � $B � &B � &B
� > � %B � $B

$

" # %

" $ %

# $ %

" #

4 .791 86.5 0.1 0.1

4 .780 88.4 1.6 1.6

4 .799 88.7 1.1 1.1

4 .789 90.6 2.1 2.1

3 .759 76.

$
$
$
$ 2 0 0

3 .782 76.2 0 0

3 .770 81.0 0.5 0.5

3 .770 75.4 0 0

3 .759 85.7 0.3 0.3

3 .779 78.8 0.1 0.1

$
$
$
$
$
$

� > � %B � &B
� > � %B � &B
� > � $B � &B
� > � $B � &B
� > � &B � &B
� >

" $

" %

# $

# %

$ %

� %B
� > � $B
� > � &B
� > � &B
� >

"

#

$

%

2 .746 66.7 0 0

2 .732 69.4 0 0

2 .758 68.0 0 0

2 .745 72.8 0.1 0.1

1 .714 61.3 0 0

$
$
$
$
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Table 3.15: Monte Carlo Assessment of Fixed Effects Model Selection:

1,000 datasets, 50 subjects, 4 observations per subject

Unstructured Covariance for Random Intercept and Slope
Fixed Effects for # of Mean % Correct Selection by 

Simulated Data Covariates R KIC AIC BIC#

$
$
� > � %B � $B � &B � &B
� > � %B � $

" # $ %

"

5 .298 92.7 100 99.9

B � &B
� > � %B � $B � &B
� > � %B � &B � &B
� > � $B � &B � &B
� > � %B � $B

# $

" # %

" $ %

# $ %

" #

4 .262 41.5 0 2.4

4 .238 61.9 0.5 1.5

4 .275 61.7 0.2 1.8

4 .257 64.4 0.2 0.7

3 .195 28.

$
$
$
$ 6 0 0

3 .238 28.9 0 0

3 .217 41.1 0 0.1

3 .184 29.3 0 0

3 .194 43.0 0 0

3 .236 42.3 0 0.1

2 .11

$
$
$
$
$
$

� > � %B � &B
� > � %B � &B
� > � $B � &B
� > � $B � &B
� > � &B � &B
� > � %B

" $

" %

# $

# %

$ %

" 6 19.1 0 0

2 .144 18.6 0 0

2 .191 19.2 0 0

2 .163 30.7 0 0

1 .115 13.4 0 0

$
$
$
$

� > � $B
� > � &B
� > � &B
� >

#

$

%

3.3.4 Conclusions

 From both scenarios, we see that the AIC and BIC are nearly identical in their

ability to select the correct mean structure when the correct covariance structure is

specified, in all the variations explored.  The KIC outperforms both criteria in every

situation except when the correct mean structure includes an interaction term between

time and group effect.

 From the first scenario, when there is only one group effect present, we see that

the KIC performs better than the other information criteria when there are no interaction

effects present.  When there are only main effects, the performance of the KIC does not

seem to be as affected by the increase in total variance as the AIC and BIC, whose

performance decrease in these two scenarios. Again, as in the selection of the covariance

structure, we see that the increase in the  statistic, due to the increased signal-to-noiseV#

ratio from the increase in the coefficient associated with the time effect does not affect the

ability of any of the information criteria to select the correct fixed effect structure.
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 When the interaction effect is present, the AIC and BIC outperform the KIC in

every variation. In this case, since the correct model is the model with all the available

covariates included, it seems as though the fact that the AIC and BIC tend to included

extraneous covariates serves as an advantage.  This is most evident in the high variance

case, i.e. where   We also see that when the strength of the signal of the5# œ 8.

interaction term is increased, the ability of all the criteria to correctly identify the model

increases significantly. Also, we see that as the variance increased, the KIC was less

likely to select the correct model, while the AIC and BIC was more likely to select the

correct model.  In this situation, the KIC appears to be more sensitive to the change in

variance than the AIC and BIC.

 From all the cases in this scenario, we see that as the correlation between

observations were increased, the  increased and the ability of the criteria to select theV#

correct model also tended to increase. 

 In the second scenario, we see that the KIC performs best in all scenarios.  It is the

least likely of all the information criteria to add extraneous covariates to the model.  We

also see that the AIC and BIC only succeed in selecting the correct fixed effect structure

when the covariance structure is simple, i.e., composed of a random intercept alone.

While the ability of the KIC to select the correct fixed effect structure does decrease when

the covariance structure is more complex, its ability to select the correct the fixed effect

far exceeds that of the other criteria in the large sample size case.  When the smaller

sample size is used, we see that AIC and BIC lose all ability to identify the fixed effects

regardless of covariance structure.  Again, for the KIC, while its ability decreases, it still

succeeds over 50% of the time in both cases when the covariance structure is composed

of only a random intercept and in both larger sample size cases.
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3.4 Example Data: Elderly Blood Pressure Study

3.4.1 Background

 In order to investigate how the KIC performs in comparison to the AIC and BIC in

a real world setting, we applied these criteria to the same example dataset used in Chapter

2 with the  statistic.  This data comes from a retrospective longitudinal cohort studyG:

from the North Carolina Established Populations for the Epidemiologic Studies of the

Elderly (EPESE). The goals of the EPESE project were to describe and identify predictors

of mortality, hospitalization, and placement in long-term care facilities and to investigate

risk factors for chronic diseases and of functioning among the elderly.  The study

followed 4162 subjects, aged 65 years and older, over a period of 12 years. The more

intricate details of the study population can be found in Chapter 2.  It should be noted that

due to the subject matter (i.e. the elderly) and timeline of this project, this large dataset

contains a great deal of missing data.  Participants were surveyed at four time periods:

Wave 1(1986); Wave 2 (1990); Wave 3 (1994); and Wave 4 (1998).

3.4.2 Methods

 As was done in Chapter 2, to investigate the performance of the information

criteria on this dataset, we used an all-possible regressions approach (where time in years

is included in all models) using linear mixed models.   looked at average diastolicWe

blood pressure as the response variable and used only main effects .  here as predictors T

were 12 separate main effects chosen for study from a set of predictors numbering larger

than 50: including time in years, 4 self-reported illness indices, race, marital status,

gender, weight, diagnosis of diabetes, diagnosis of heart disease and whether the subject

lived in a rural area). All predictors were binary categorical variables, except for time

(which was labeled as 0, 4, 8, and 12 years).



82

  calculated the KIC, AIC and BIC for 2048 sets of fixed effects for theWe

outcome variable. We used a random intercept, , and i.i.d. within-subjectD 7. .3
� � œ 5#

"  

error covariance, .  The 3 models with the lowest KIC, AIC and/or BICD 7/ /3
� � œ 5!

#
8M 3

values are further investigated by comparing what fixed effects were chosen and excluded

by these models and by looking at the corresponding p-values for these fixed effects.

3.4.3 Results

 Table 3.16 lists the fixed effects and information criteria values for the three

models that were selected as 'best' (i.e. the smallest information criterion value) by the

KIC, AIC and BIC.  The three information criteria selected the same three models.

 Table 3.17 lists the models and parameter estimates of these 3 models that had the

lowest KIC, AIC and BIC values.

Table 3.16: KIC, AIC and BIC Results for Elderly Blood Pressure DataDiastolic 

Models with the 3 lowest KIC, AIC and BIC values

Fixed Effects KIC AIC BIC

year, weight, fair_ill, poor_ill, heart, 72469.33 72397.35 72422.41

            diabet, blackpat, rural, male, poor_hlth, married

year, weight, fair_ill, poor_ill, heart, 72472.99 72398.00 72423.05

            diabet, blackpat, rural, male, poor_hlth, married, fair_hlth

year, weight, fair_ill, poor_ill, heart, 72474.40 72405.48 72430.54

           diabet, blackpat, rural, poor_hlth, married
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Table 3.17: Mixed Model Fixed Effect Estimates, Standard Errors (SE),

 p-values, and Covariance Estimates for the 3 Models with Lowest KIC Values

(Outcome = Diastolic BP)

 Covariance Estimates

KIC Fixed Effect Estimate SE p-value Random effects Error

72469.33 Intercept 65.60 0.78 <0.001

year

5 5s s œ1
# #

!œ 45.99 87.92

�

�

�

0.65 0.02 <0.001

weight 0.04 0.005 <0.001

fair_ill 6.96 0.30 <0.001

poor_ill 9.88 0.41 <0.001

heart 4.88 0.40 <0.001

diabet 3.96 0.38 <0.001

blackpat 2.63 0.31 <0.001

poor_hlth 1.10 0.38 0.004

rural 1.40 0.30 <0.001

male 1.05 0.36 0.004

married 0.18 0.32 0.578

72472.99 Intercept 65.61 0.78 <0.001

�

�

5s s œ1
# #

!œ 45.97 87.945

year 0.66 0.02 <0.001

weight 0.04 0.005 <0.001

fair_ill 6.96 0.30 <0.001

poor_ill 9.89 0.41 <0.001

heart 4.87 0.40 <0.001

diabe

�

�

t 3.96 0.38 <0.001

blackpat 2.63 0.31 <0.001

poor_hlth 1.15 0.40 0.004

rural 1.40 0.30 <0.001

male 1.05 0.36 0.004

married 0.18 0.32 0.576

fair_hlth

�

�

�

� 0.10 0.26 0.697

72474.40 Intercept 65.18 0.77 <0.001

year 0.65 0.02 <0.001

weight 0.05 0.004 <0.001

fair_ill 6.96 0.30 <0.001

p

5 5s s œ1
# #

!œ 46.29 87.86

�

oor_ill 9.90 0.41 <0.001

heart 4.81 0.40 <0.001

diabet 4.03 0.38 <0.001

blackpat 2.62 0.31 <0.001

poor_hlth 1.11 0.38 0.004

rural 1.41 0.30 <0.001

ma

�

�

�

rried 0.18 0.30 0.560
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3.4.4 Conclusions

 From this investigation, we see that the models chosen as best by the KIC are the

same as those chosen by the AIC and BIC.  In Chapter 2, where the same models were

chosen by the AIC and BIC, we found that these models appeared to include extraneous

variables.  This conclusion again appears to be confirmed here, as we can see in Table

3.17.  In this table we see that in the model that is chosen as 'best' by the three criteria, the

covariate "married" is included, but from its associated p-value, it appears to not be a

significant predictor of diastolic blood pressure in this dataset.

3.5 Discussion

 The exploration of the ability of the KIC to select the correct covariance structure

when the correct mean structure is specified, and the correct mean structure when the

covariance structure is specified, has given us a great deal of information regarding the

behavior of this criterion in comparison to other information criteria.  In addition this

study has provided us with more information with regards to the behavior of information

criteria in general.  While the AIC  was recorded in all aspects of this study, the results-

were not posted here as they were identical to that of the AIC (due to the large sample

nature of all the scenarios explored here).

 From the exploration of the selection of the correct covariance structure when the

mean structure is specified, we see that the strength of the BIC lies in being able to detect

an i.i.d. covariance structure when it is the true structure, while the AIC excels in

identifying the AR(1) structure when it is true.   This confirmed the conclusions of

Gomez (2005), who stated that the BIC worked best with simple covariance structures

while the AIC worked best in more complex structures.

 When looking at the selection of the correct mean structure when the covariance

structure is specified, we see that the behavior of the AIC and BIC are nearly identical in

all circumstances, and that the KIC far exceeds the other criteria in performance in all
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situations except when an interaction term between group and time effect is present.  We

also see that the AIC and BIC are more sensitive to increases in variability of the data as

opposed to the KIC which seems to work well (when the main effects models are correct)

in all of the different variance scenarios.

 Where the interaction effect is present, we see that the KIC does not work as well

in detecting the presence of the interaction effect compared to the AIC and BIC.  Also, in

contrast to the situations where only main effects are present, the KIC is much more

sensitive to changes in variance than the AIC and BIC when there is an interaction effect.

It seems that the AIC and BIC are more apt than the KIC to include extraneous variables

when selecting the mean structure, and this inclination may explain the better selection

rates by these criteria when the interaction term is present.

 From the observation of the  statistic, we see that it is a good measure of theV#

signal-to-noise ratio with regards to the mean structure in the linear mixed model.  We

also notice that the increase in the signal-to-noise ratio does not translate into an increase

in the ability of any of the information criteria to correctly select the right set of fixed

effects . or covariance structures

 From our examination of the KIC using the real data from the EPESE project, we

see that the KIC s the same results as the AIC and BIC in this scenario.  The tendencygive

of these information criteria to choose the model that contains an extraneous variable may

be due to the high variability in the data or the presence of a large amount of missing data

in the dataset.  Regardless, we can see that there are shortcomings in all of the

information criteria examined here.

 The use of the KIC in the realm of information criteria needs to be explored

further in the linear mixed model as this simulation study and example data study show

that it works as well as the criteria available in the situations tested here.  From these

explorations, we see that the KIC can be extremely valuable as a method of selection of
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fixed effects, and can be as good as the standard measures as a selection method for

covariance structure.

 In addition to being an examination of the abilities of the KIC, this chapter has

also served as an examination of the AIC and BIC.  From our simulation studies, we can

see that while these criteria are often blindly accepted as being accurate methods of model

selection in the linear mixed model their error rates are extremely variable, and the user

should be cautious with them and should not use them as the sole method of model

selection.

 Further studies could include an exploration of the penalty term of the KIC to

accommodate for its use in the linear mixed model, as well as explorations into situations

involving missing data and unbalanced designs.
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CHAPTER 4

SELECTION OF FIXED EFFECTS IN THE LINEAR MIXED

MODEL USING THE PRESS STATISTIC

4.1 Introduction

 The linear mixed model is an important tool in the modeling of continuous

outcome longitudinal data.  The linear mixed model extends the univariate linear model

with independent and identically distributed (i.i.d.) Gaussian errors in a way that

accommodates for the correlation of measurements within the same subject.  While many

different types of frequentist selection methods have been developed for the univariate

linear model, frequentist the quantity and quality of model selection methods that have

been developed for the linear mixed model leave much room for improvement The.  

linear mixed model requires selecting both a mean and a covariance model, and each

must be considered separately.

 With  independ ), the linear mixedR ent sampling units (often  in practicepersons

model for  may be written asperson 3

C \ ^ . /3 3 3 3 3œ � �" .

Here,  is a  vector of observations ;  is a  known, constantC \3 3 3 38 ‚" 3 8 ‚; on person 

design matrix fo ith full column rank  while  is a  vector of unknown,r person , w3 ; ;‚""

constant, population parameters.  Also  is a  known, constant design matrix with^3 38 ‚7

rank  f responding to the  vector of 7 7‚"or person  cor unknown random effects ,3 .3
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while is a  vector of unknown random errors.  Gaussian  and  are independent/ . /3 3 3 3: ‚"

with mean  and!

iŒ  ” •” • � � � �. !
/ !
3 .3 .

3 /3 /
œ

D 7

D 7
 .

Here  is the covariance operator, while both  and  positive-i D 7 D 7Ð † Ñ .3 . /3 /� � � � are

definite, symmetric covariance matrices.  may be written Therefore iÐ ÑC3

D D 7 D 7 D3 3 3
w
3œ �^ ^.3 . /3 /� � � �.   can be characterized by a finite set ofWe assume that 

parameters represented by an vector  which consists of the unique parameters in <‚" 7 7.

and 7/.  Throughout .8 œ 8�
3œ"
R

3

 As discussed previously in this dissertation, model selection in the linear mixed

model is complicated as both the correct mean structure and covariance structure need to

be correctly identified and they cannot be selected simultaneously. Previously, we have

looked at the ability of the  criterion as a method of mean structure selection and at theG:

ability of the KIC as a method of mean structure and covariance structure selection.

Recently, SAS  has  a predictedProc Mixed ( ) includedSAS Institute, Cary, NC, 2007

residual sum of squares (PRESS)  that can be output when modeling the computation

linear mixed model. , However very little is known its performance since no broad studies

have been conducted.  In this chapter we will look at how this PRESS statistic performs

as a method of fixed effect selection in the linear mixed model and we will compare its

performance to that of the  statistic and the KIC, in addition to the standardG:

information criteria used in the linear mixed model, the AIC and BIC.

4.1.1 Overview of the PRESS Statistic

 The PRESS statistic uses a method of model selection called cross-validation.

This method changes the goal of model selection from explaining a given set of data to

predicting a new set of data which comes from he same background as the given set.t

Conceptually "predictive", it is the same  method that is used with the  statistic.G:
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 Proposed by Allen he PRESS criterion is obtained by deleting the th case(1974), t 3

from a data set, estimating the regression function for the subset model from the

remaining  cases, and then using the fitted regression function to obtain the8 � "

predicted value   (Neter et al., 1996).  The PRESS residuals are defined as:Cs( )3

/ œ C � CsÐ3Ñ 3 3( ) (4.1)

This process is repeated for all observations and the PRESS statistic is then computed8

as:

TVIWW œ /	
3œ"

8

Ð3Ñ
# (4.2)

As the PRESS residuals are a measure of how well the fitted model is able to predict the

response, the smaller the PRESS statistic the better the model is for prediction. In other

words, the PRESS statistic selects the model with the smallest mean square error of

prediction.

 Liu et al. (1999) generalized the PRESS statistic to multivariate linear models

with correlated errors in repeated measures data.  Liu et al.  use the PRESS statistic(1999)

to select the linear predictor in linear models with correlated errors.  They define the

PRESS statistic in linear models with correlated errors as:

TVIWW œ / /	
3œ"

8

Ð3Ñ Ð3Ñ
w (4.3)

where  is the deleted residual with  defined as the / œ C �\ s s
Ð3Ñ 3 3 Ð3Ñ Ð3Ñ" " regression

parameter estimate when the th person is deleted from the analysis.  This definition of3

PRESS is applicable to both balanced and unbalanced data where each person has a

different number of measurements, and can only be used to select the linear predictor (the

covariance structure is treated as a nuisance parameter).  This definition is very close to

the form of the original PRESS statistic in traditional linear regression.
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4.1.2 Studies Using the PRESS Statistic in the Linear Mixed Model

 Liu et al.  a new efficient computing method based on pivoting(1999) proposed

and then  to apply the PRESS model selection method to real data.  Theyproposed

compare  the top 10 models that were selected by the PRESS to the top 10 modelsd

selected by AIC, BIC and likelihood ratio tests using a linear mixed effects model. They

found that there were 5 models that were selected by both AIC and PRESS in the top 10,

but while the AIC values were very close together for the top 10 models, the PRESS

statistic had a small difference between the first two models and a large difference

between those and the other 8 models.  The BIC and the PRESS statistic had 6 of the

same models in their top 10 and the model chosen as best by the BIC was the same as that

chosen by the forward selection likelihood ratio test with Type I error of 0.01.α œ

4.1.3 Calculation of the PRESS Statistic in SAS

 The most recent version of SAS (version 9.1.3, Cary, NC) includes the calculation

of PRESS residuals as part of its experimental "influence" option (Schabenberger 2005).

The definition of the PRESS residuals used here is given as:

/ œ C � Bs s
3ÐYÑ 3 3

w
ÐYÑ" (4.4)

where the subscript  denote quantities obtained without observations in the set .TheÐYÑ Y

PRESS statistic is then computed as the sum of these squared residuals.  The "influence"

option in SAS allows for influence diagnostics to be calculated iteratively or non-

iteratively.  A noniterative influence analysis relies on closed-form update formulas for

the fixed effects without updating the covariance parameters, while an iterative influence

analysis involves iterative reestimation of the covariance parameters.  In this paper, an

iterative influence analysis is performed to obtain the PRESS statistics where the

covariance parameters are updated up to five times for each deletion set.
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4.1.4 Investigation of PRESS and Comparison to KIC and  in This ChapterG:

 In this chapter, we will compare the performance of the PRESS statistic to that of

the  and the KIC, using the same method of simulation study for fixed effects and theG:

same data example as  used in Chapter 3.  From this investigation, we will be able towere

determine the strengths and limitations of all three criteria explored in this dissertation

and compare them to the standard criteria used in the linear mixed model, the AIC and

BIC.

4.2 Summary of Past Results

 In the last two chapters we have investigated two model selection methods in the

linear mixed model: the  statistic and the KIC.  The  statistic is a method ofG G: :

selection for the fixed effects and requires that the models be nested.  The KIC is an

information criterion that requires comparison to another model that is similar to it, but

can be used for selection of both fixed and random effects.  In both chapters, we

compared the model selection abilities of these two criteria to those provided in the

standard SAS output, namely the AIC and the BIC.

 In Chapter 2, we found that the  appeared to work as well or better than theG:

AIC and BIC, in most cases, as a selection criterion for the fixed effects in linear mixed

model.   In addition, information criteria are more computationally intensive in that they

require that every candidate model be fit individually in order to determine which one is

best.  In contrast, in order to calculate the  statistic, the full (or saturated) model is fit,G:

and the  is calculated via  statistics generated through contrasts within the sameG J:

model.  The ease of these calculations in combination with the improved performance led

us to conclude that the  statistic can be a valuable tool for fixed effects selection in theG:

linear mixed model.

 In Chapter 3, when looking at the selection of the correct mean structure when the

covariance structure is specified, we saw that the KIC far exceeded the AIC and BIC in
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performance in all situations except when an interaction term between group and time

effect were present.   It seemed that the AIC and BIC are more apt than the KIC to include

extraneous variables when selecting the mean structure, while the KIC was more adept at

selecting the most parsimonious model, and this trait may explain why the AIC and BIC

performed better in our study involving the interaction term.

4.3 Simulation Study: Mean Structure Selection

4.3.1 Introduction

 This simulation study investigates the ability of the PRESS to select the correct

mean structure when the correct covariance structure is identified, and we compare its

ability to that of the , KIC, AIC and BIC.  Again, since this is a large sample study, weG:

found that the behavior of the AIC  was identical to that of the AIC, so it is omitted here.-

The scenarios used are identical to those in Chapter 3 when looking at KIC performance

in the selection of fixed effects. For both scenarios investigated, we used an i.i.d. within-

unit error covariance structure and REML estimation with complete data.  For the PRESS

statistic we used residual denominator degrees of freedom, due to the computational

intensity involved with calculating the PRESS. Kenward-Roger denominator degrees of

freedom were used for the other criteria.

4.3.2 Methods

4.3.2.1 Methods: Scenario One

 For the first mean structure selection scenario, a repeated measures study

consisting of five measurement occasions was simulated that assumes compound

symmetry of the data; that is, the data generated were based on a model with only a

random intercept and an independent and identically distributed (i.i.d.) within-unit error

term  i.e.,   andD. .3
� �7 œ 5#

"
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D/ /3
� �7 œ 5#

!M&,

where  is a 5 5 identity matrixM& ‚ . Therefore, the compound symmetry structure was

simulated such that  where is the total variance,  is the variance of the5 5 5 5 5# # # # #
" ! "œ �

random intercept, and  is the variance of the within-unit error term. Datasets were5!
#

simulated using varying values of the total variance, namely 1, 4 and 8, to get a5# œ

sense the true variance on the performance of the criteria.  Correspondingof the impact of 

to the standard model assumptions, the random intercepts and within-unit error terms

were generated as independent normal random variables with means zero and variances

5 5" !
# # and , respectively.  To  impact of the within-unit correlations on theunderstand the

performance of the criteria, data were simulated using correlations between observations

3 3 5 5œ œ0.25, 0.50 and 0.75, where / ."
# #

 As for the mean structure, data were simulated from a true linear mixed model

consisting of the following fixed effects: an intercept, a dummy variable indicating

membership in one of two groups, and a continuous covariate.  Nine different variations

of these fixed effects were considered to see how the information criteriamodels for 

performed in their ability to select the correct set of fixed effects.  The fixed effects

models simulated took on three variations: 1) model with intercept and time only, 2)

model with intercept, time and group effect, and 3) model with intercept, time, group and

interaction between group and time.  In each variation, three values for the coefficient

associated with the time effect, i.e. , were considered: and . " "1 1 œ !Þ&ß "ß # Thus, with

three models for fixed effects and three values for , we have nine different variations of"1

models for the fixed effects.  In addition, when the correct model included an interaction

term, two values for the coefficient associated with the interaction, i.e. , were"3

considered:  Large sample performance was assessed; simulated datasets"$ œ !Þ#&ß !Þ&Þ

consisted of 200 subjects with 5 observations each in the time interval [0,1].  Each
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simulation for the varying sample sizes, variances and correlation values consisted of

1,000 realizations.

 In order to assess the performance of the criteria in choosing the proper set of

fixed effects based on the simulation study, a set of candidate models was fit for each

generated dataset, and the number of times the criteria chose the correct model from this

set of 1,000 was tallied.  The set of candidate models consisted of three models each

having the same covariance structure and fixed effects corresponding to:  (1) a model

with common intercept and common slope; (2) a model with common intercept, a slope,

and an additional group covariate; and (3) a model with intercept, slope, group, and group

x slope interaction.  For example, if the true model was one with a common intercept and

common slope, we assessed the performance of the criteria in choosing the true model as

a candidate model or the other two candidate models.  The number of times out of the

1,000  that the criterion in question chose the correct model as the best modelrealizations

was recorded.

4.3.2.2 Methods: Scenario Two

 The multiple categorical predictors that are used to generate the data simulate the

case where there are various factors (in addition to the time effect), such as race, gender

etc., that have an impact on the outcome variable.

 For this set of simulations, we again used an i.i.d within-subject  covarianceerror

structure i.e.,

D/ /3
� �7 œ 5#

!M&,

with a between-subject covariance structure that contained either a random intercept

alone, or a random intercept and slope, i.e., D 7. .3
� � œ 5#

"  or

D. .3
� �7 œ Œ 5 5

5 5
1 1

1

# #
#

#
# #

#
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In this simulation, 5 5 5 3 5!
# # # #

.œ # œ # œ œ !Þ#& œ, , 0 or 2, and  when 21 2 2

(5 5 51 1 2#
# œ 3. )Þ

 For the fixed effects,  " "" is the common intercept,  is the coefficient for time2

and four different categorical predictors and , are considered with theß B ß B ß B B" # $ %

corresponding coefficients , , , and   The vector for , and 16" " " " "3 4 5 6.
w œ Ð$ß "ß %ß $ß &ß &Ñ

different variations are considered where 0,1, 2, 3, or 4 of the coefficients for the

categorical predictors (i.e. and ) are set to 0. Therefore, the saturated meanB ß B ß B B" # $ %

model, which includes all coefficients for the categorical predictors and time, is given by:

I C œ � > � %B � $B � &B � &B( )  $ " # $ %    

For each set of simulations, 16 different sets of fixed effects .  We looked atwere assessed

the ability of the PRESS compared to the , KIC,  AIC and BIC to select the correctG:

fixed effect structure among the 16 possible outcomes over the 1,000 simulations.

4.3.3 Results

4.3.3.1 Results: Scenario One

 Table 4.1 displays the results for the fixed effects model selection when the

correct model is time alone. Figures 4.1, 4.2 and 4.3 illustrate the results from the middle

panel of this table (i.e. when "" œ 1).  Table 4.2 displays the results when the correct

model is time and group, and Figures 4.4, 4.5 and 4.6 illustrate the results from the

middle panel of this table (again when "" œ 1). Table 4.3 and 4.4 display the results

when the correct model is time, group and their interaction.  Tables 4.3 and 4.4 differ in

that in Table 4.4 the interaction effect has double the magnitude of the interaction effect

in Table 4.3.  Again, Figures 4.7, 4.8, 4.9 and 4.10, 4.11, 4.12 illustrate the results from

the middle panel of these two tables, respectively (when In all tables the"" œ 1). 

changes of the variance, covariance and time effect parameters are illustrated.  As the

AIC and BIC have identical values in all of these tables, only the AIC is graphed.
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Table 4.1: Monte Carlo Assessment of Fixed Effects Model Selection:

1,000 datasets, 200 subjects each, 5 observations per subject

Correct Model: " "! "� >

Percentage Correct Model Selection

1 0.5 1 1 1 2

 = 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

PRESS

5 " 5 " 5 "

3

# # #
" " "œ ß œ œ ß œ œ ß œ

77.6 80.4 80.4 77.6 81.0 81.2 79.2 79.6 79.1

77.6 77.1 79.8 77.0 79.1 79.9 79.2 78.5 78.9

98.1 98.0 97.9 98.7 98.2 97.5 98.0 98.2 97.4

87.2 84.3 84.2 87.4 84.7 85.1 87.7 85.1 8

G:

KIC

AIC 4.7

87.2 84.3 84.2 87.4 84.7 85.1 87.7 85.1 84.7

79.1 78.1 79.8 7

BIC

4 0.5 4 1 4 2

 = 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

PRESS

5 " 5 " 5 "

3

# # #
" " "œ ß œ œ ß œ œ ß œ

9.3 80.4 79.7 78.9 79.4 81.0

78.6 76.9 79.1 80.9 80.7 77.2 78.4 79.3 81.7

95.8 93.5 94.9 96.0 95.2 93.6 96.9 95.2 95.9

63.4 57.8 56.9 64.8 60.8 58.5 6

G:

KIC

AIC 1.9 55.6 59.8

63.4 57.8 56.9 64.8 60.8 58.5 61.9 55.6 59.8

80.3 7

BIC

8 0.5 8 1 8 2

 = 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

PRESS

5 " 5 " 5 "

3

# # #
" " "œ ß œ œ ß œ œ ß œ

8.5 80.3 78.9 79.1 78.9 80.9 79.5 78.6

80.1 77.5 79.1 78.2 76.5 78.8 79.9 76.2 76.1

93.1 92.2 91.8 94.4 91.5 91.6 95.7 91.8 90.7

29.5 29.2 26.2 29.2 2

G:

KIC

AIC 7.2 23.9 30.8 25.3 20.9

29.5 29.2 26.2 29.2 27.2 23.9 30.8 25.3 20.9BIC
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Figure 4.1: % Correct Model Selection vs. ρ ρ ρ ρ 

Correct Model: ββββ 0+ββββ 1t; ββββ 1=1 σσσσ
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Figure 4.2: % Correct Model Selection vs. ρ ρ ρ ρ 

Correct Model: ββββ 0+ββββ 1t; ββββ 1=1 σσσσ
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Figure 4.3: % Correct Model Selection vs. ρ ρ ρ ρ 

Correct Model: ββββ 0+ββββ 1t; ββββ 1=1 σσσσ
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Table 4.2: Monte Carlo Assessment of Fixed Effects Model Selection:

1,000 datasets, 200 subjects each, 5 observations per subject

Correct Model:  + " " "! "� > B2

Percentage Correct Model Selection

1 0.5 1 1 1 2

 = 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

PRESS

5 " 5 " 5 "

3

# # #
" " "œ ß œ œ ß œ œ ß œ

80.6 81.0 77.6 82.5 77.8 78.8 82.4 79.3 77.1

84.2 84.9 85.0 83.9 85.8 85.7 84.9 84.5 84.4

96.9 98.4 98.6 97.7 97.4 98.4 96.4 97.8 97.6

82.7 86.8 90.9 82.2 86.8 91.8 83.3 87.2 9

G:

KIC

AIC 0.9

82.7 86.8 90.9 82.2 86.8 91.8 83.3 87.2 90.9

81.6 77.8 75.7 8

BIC

4 0.5 4 1 4 2

 = 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

PRESS

5 " 5 " 5 "

3

# # #
" " "œ ß œ œ ß œ œ ß œ

1.8 79.0 73.7 79.6 79.9 74.0

85.3 83.9 82.4 85.8 84.9 82.2 83.4 83.3 83.9

92.9 93.6 95.2 94.6 94.5 93.5 93.1 94.9 94.4

53.7 65.6 77.0 51.3 67.5 77.6 5

G:

KIC

AIC 2.2 64.8 78.8

53.7 65.6 77.0 51.3 67.5 77.6 52.2 64.8 78.8

79.8 7

BIC

8 0.5 8 1 8 2

 = 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

PRESS

5 " 5 " 5 "

3

# # #
" " "œ ß œ œ ß œ œ ß œ

5.1 66.5 79.4 70.1 66.7 79.3 75.5 66.5

82.9 82.3 77.3 84.4 78.6 79.4 85.2 82.8 78.7

87.4 85.4 78.8 88.6 82.7 80.7 88.7 85.6 80.0

0 35.7 66.0 0 34.6 65.

G:

KIC

AIC 9 0 34.7 64.7

0 35.7 66.0 0 34.6 65.9 0 34.7 64.7BIC



100

Figure 4.4: % Correct Model Selection vs. ρ ρ ρ ρ 

Correct Model: ββββ 0+ββββ 1t+ββββ 2x; β β β β 1=1 σ σ σ σ
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Figure 4.5: % Correct Model Selection vs. ρ ρ ρ ρ 

Correct Model: ββββ 0+ββββ 1t+ββββ 2x; β β β β 1=1 σ σ σ σ
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Figure 4.6: % Correct Model Selection vs. ρ ρ ρ ρ 

Correct Model: ββββ 0+ββββ 1t+ββββ 2x; β β β β 1=1 σ σ σ σ
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Table 4.3: Monte Carlo Assessment of Fixed Effects Model Selection:

1,000 datasets, 200 subjects each, 5 observations per subject

Correct Model:  +  + ; =0.25" " " " "! "� > B B‡>2 3 3

Percentage Correct Model Selection

1 0.5 1 1 1 2

 = 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

PRESS

5 " 5 " 5 "

3

# # #
" " "œ ß œ œ ß œ œ ß œ

50.9 63.9 79.2 52.0 67.2 79.1 54.4 63.3 77.5

54.2 71.9 93.7 54.9 73.2 92.0 58.0 70.5 91.4

25.7 37.2 64.5 25.7 37.5 61.5 27.5 37.8 62.8

56.0 68.6 86.5 56.9 70.1 85.8 59.5 67.6 8

G:

KIC

AIC 5.8

56.0 68.6 86.5 56.9 70.1 85.8 59.5 67.6 85.8

28.5 36.6 43.0 2

BIC

4 0.5 4 1 4 2

 = 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

PRESS

5 " 5 " 5 "

3

# # #
" " "œ ß œ œ ß œ œ ß œ

8.1 35.7 41.7 29.1 34.0 44.4

28.7 37.6 48.0 27.5 34.8 48.1 26.5 31.9 49.4

13.2 16.1 21.4 12.9 16.5 21.7 13.7 14.5 21.6

60.9 57.6 53.1 59.1 55.8 54.8 5

G:

KIC

AIC 8.0 51.7 55.7

60.9 57.6 53.1 59.1 55.8 54.8 58.0 51.7 55.7

22.9 26

BIC

8 0.5 8 1 8 2

 = 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.5 0.75

PRESS

5 " 5 " 5 "

3

# # #
" " "œ ß œ œ ß œ œ ß œ

.9 31.7 27.4 26.2 33.5 26.3 24.1 30.5

21.9 26.1 34.3 23.6 24.0 34.4 24.5 23.1 33.1

14.4 14.5 13.8 16.3 14.4 16.5 16.3 14.4 15.1

100 72.4 53.9 100 73.3

G:

KIC

AIC 55.2 100 72.0 54.4

100 72.4 53.9 100 73.3 55.2 100 72.0 54.4BIC
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Figure 4.7: % Correct Model Selection vs ρ ρ ρ ρ 

Correct Model: ββββ 0+ββββ 1t+ββββ 2x+ββββ 3x*t; ββββ 1=1, ββββ 3=0.25, σσσσ
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Figure 4.8: % Correct Model Selection vs ρ ρ ρ ρ 

Correct Model: ββββ 0+ββββ 1t+ββββ 2x+ββββ 3x*t; ββββ 1=1, ββββ 3=0.25, σσσσ
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Figure 4.9: % Correct Model Selection vs ρ ρ ρ ρ 

Correct Model: ββββ 0+ββββ 1t+ββββ 2x+ββββ 3x*t; ββββ 1=1, ββββ 3=0.25, σσσσ
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Table 4.4: Monte Carlo Assessment of Fixed Effects Model Selection:

1,000 datasets, 200 subjects each, 5 observations per subject

Correct Model:  +  + ; =0.50" " " " "! "� > B B‡>2 3 3

Percentage Correct Model Selection

1 0.5 1 1 1 2

 = 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

PRESS

5 " 5 " 5 "

3

# # #
" " "œ ß œ œ ß œ œ ß œ

91.9 96.0 98.6 92.5 95.8 99.1 92.0 95.5 98.5

96.8 99.6 100 96.3 99.7 100 96.4 99.4 100

82.7 95.4 100 85.9 94.5 99.8 84.8 95.9 99.9

96.8 99.3 100 96.3 99.3 99.3 96.4 99.4 100

G:

KIC

AIC

BIC 96.8 99.3 100 96.3 99.3 99.3 96.4 99.4 100

55.0 63.3 75.7 56.4 62.0 7

5 " 5 " 5 "

3

# # #
" " "œ ß œ œ ß œ œ ß œ4 0.5 4 1 4 2

 = 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

PRESS 9.3 51.1 64.4 78.1

57.4 70.8 92.6 57.6 72.7 91.2 55.9 70.7 90.7

39.2 49.3 72.8 40.9 49.8 73.3 37.3 50.2 72.1

83.0 84.0 94.3 82.6 86.6 93.2 81.0 83.9 9

G:

KIC

AIC 3.7

83.0 84.0 94.3 82.6 86.6 93.2 81.0 83.9 93.7

39.3 45.8 55.9 3

BIC

8 0.5 8 1 8 2

 = 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

PRESS

5 " 5 " 5 "

3

# # #
" " "œ ß œ œ ß œ œ ß œ

9.4 46.2 58.7 39.0 46.0 56.1

37.9 49.8 70.4 40.9 49.0 73.3 39.7 49.6 71.5

28.7 34.9 47.3 30.3 34.3 52.2 28.6 35.7 50.1

100 85.1 83.2 100 86.9 87.7 100

G:

KIC

AIC 85.5 83.3

100 85.1 83.2 100 86.9 87.7 100 85.5 83.3BIC
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Figure 4.10: % Correct Model Selection vs ρ ρ ρ ρ 

Correct Model: ββββ 0+ββββ 1t+ββββ 2x+ββββ 3x*t; ββββ 1=1, ββββ 3=0.50, σσσσ
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Figure 4.11: % Correct Model Selection vs ρ ρ ρ ρ 

Correct Model: ββββ 0+ββββ 1t+ββββ 2x+ββββ 3x*t; ββββ 1=1, ββββ 3=0.50, σσσσ
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Figure 4.12: % Correct Model Selection vs ρ ρ ρ ρ 

Correct Model: ββββ 0+ββββ 1t+ββββ 2x+ββββ 3x*t; ββββ 1=1, ββββ 3=0.50, σσσσ
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4.3.3.2 Results: Scenario Two

 Tables 4.5, 4.6, 4.7 and 4.8 illustrate the results of the simulation study where

there are multiple categorical predictors present.  Tables 4.5 and 4.7 contain a random

intercept only while Tables 4.6 and 4.8 have both random intercept and random slope.

Tables 4.5 and 4.6 have large sample sizes, and Tables 4.7 and 4.8 have smaller sample

sizes.  Figures 4.13-16 illustrate the data present in Tables 4.5-4.8 respectively.  Again,

since the results for AIC and BIC were nearly identical, only AIC was plotted.
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Table 4.5: Monte Carlo Assessment of Fixed Effects Model Selection:

1,000 datasets, 200 subjects, 5 observations per subject

Scalar Covariance for Random Intercept Only
Fixed Effects for # of % Correct Selection by 

Simulated Data Covariates PRESS KIC AIC BICG:

$
$
� > � %B � $B � &B � &B
� > � %B �

" # $ %

"

5 100 100 100 100 100

$B � &B
� > � %B � $B � &B
� > � %B � &B � &B
� > � $B � &B � &B

# $

" # %

" $ %

# $ %

4 81.0 84.6 95.2 56.9 56.9

4 80.3 83.1 96.7 68.5 68.5

4 81.9 85.3 96.5 70.0 70.0

4 80.7 82.7 95.3

$
$
$ 72.0 72.0

3 65.7 72.7 90.1 42.1 42.1

3 65.5 72.2 92.4 43.3 43.3

3 63.3 69.7 91.4 48.2 48.2

3 60.8 69.1 88.9

$
$
$
$

� > � %B � $B
� > � %B � &B
� > � %B � &B
� > � $B � &B

" #

" $

" %

# $ 39.4 39.4

3 65.1 71.7 92.5 52.1 52.1

3 65.3 70.1 91.8 50.2 50.2

2 52.0 62.0 88.5 29.2 29.2

2 55.7 60.9 87.7 32.8 32.8

$
$
$
$

� > � $B � &B
� > � &B � &B
� > � %B
� > � $B

# %

$ %

"

#

$
$
$

� > � &B
� > � &B
� >

$

%

2 49.9 56.7 85.7 28.0 28.0

2 51.0 60.2 88.4 34.6 34.6

1 41.3 48.2 82.0 20.8 20.8

Figure 4.13: % Correct Model Selection vs. # of Covariates 

Multiple Categorical Predictors

 (Random Intercept Only; Large Sample Size)
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Table 4.6: Monte Carlo Assessment of Fixed Effects Model Selection:

1,000 datasets, 200 subjects, 5 observations per subject

Unstructured Covariance for Random Intercept and Slope
Fixed Effects for # of % Correct Selection by 

Simulated Data Covariates PRESS KIC AIC BICG:

$
$
� > � %B � $B � &B � &B
� > � %B

" # $ %

"

5 30.1 100 100 100 100

� $B � &B
� > � %B � $B � &B
� > � %B � &B � &B
� > � $B � &B � &B

# $

" # %

" $ %

# $ %

4 23.2 83.6 83.7 0.5 0.5

4 22.0 83.9 88.3 0.2 0.2

4 28.7 84.7 88.8 0.2 0.2

4 24.5 83.7 88.4 0.3 0.

$
$
$ 3

3 20.9 70.5 74.4 0 0

3 22.8 70.2 73.5 0.1 0.2

3 21.2 71.3 75.5 0 0

3 22.3 71.9 75.8 0 0.1

3 20.6 7

$
$
$
$
$

� > � %B � $B
� > � %B � &B
� > � %B � &B
� > � $B � &B
� > � $B � &B

" #

" $

" %

# $

# % 0.6 78.1 0.2 0.2

3 24.2 68.9 76.5 0.2 0.2

2 15.5 60.9 65.2 0.1 0.2

2 15.0 59.3 65.0 0 0.1

2 18.7 60.7 66.4 0 0.1

2 17.

$
$
$
$
$

� > � &B � &B
� > � %B
� > � $B
� > � &B
� > � &B

$ %

"

#

$

% 9 59.9 69.3 0.1 0.1

1 15.6 53.0 62.1 0 0.1$ � >

Figure 4.14: % Correct Model Selection vs. # of Covariates 

Multiple Categorical Predictors

 (Random Intercept and Slope; Large Sample Size)
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Table 4.7: Monte Carlo Assessment of Fixed Effects Model Selection:

1,000 datasets, 50 subjects, 4 observations per subject

Scalar Covariance for Random Intercept Only
Fixed Effects for # of % Correct Selection by 

Simulated Data Covariates PRESS KIC AIC BICG:

$
$
� > � %B � $B � &B � &B
� > � %B �

" # $ %

"

5 100 100 100 100 100

$B � &B
� > � %B � $B � &B
� > � %B � &B � &B
� > � $B � &B � &B

# $

" # %

" $ %

# $ %

4 80.8 86.0 86.5 0.1 0.1

4 79.5 83.2 88.4 1.6 1.6

4 79.4 84.0 88.7 1.1 1.1

4 80.7 84.7 90.6 2.1 2.1

$
$
$
$
$
$
$
$

� > � %B � $B
� > � %B � &B
� > � %B � &B
� > � $B � &B
� > � $B � &B

" #

" $

" %

# $

# %

3 62.5 71.4 76.2 0 0

3 63.3 72.6 76.2 0 0

3 64.3 71.4 81.0 0.5 0.5

3 61.1 70.6 75.4 0 0

3 62.1 69.5 85.7 0.3 0.3

3 65.3 70.5 78.8 0.1 0.1

2 50.1 59.0 66.7 0 0

2 48.8 59.4 69.4 0 0

2 49.9 59.8 68.0 0 0

2 50.9 58.1 72.8 0.

$
$
$
$
$

� > � &B � &B
� > � %B
� > � $B
� > � &B
� > � &B

$ %

"

#

$

% 1 0.1

1 39.1 51.5 61.3 0 0$ � >

Figure 4.15: % Correct Model Selection vs. # of Covariates 

Multiple Categorical Predictors

 (Random Intercept Only; Small Sample Size)
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Table 4.8: Monte Carlo Assessment of Fixed Effects Model Selection:

1,000 datasets, 50 subjects, 4 observations per subject

Unstructured Covariance for Random Intercept and Slope
Fixed Effects for # of % Correct Selection by 

Simulated Data Covariates PRESS KIC AIC BICG:

$
$
� > � %B � $B � &B � &B
� > � %

" # $ % 5 12.9 80.2 92.7 100 100

B � $B � &B
� > � %B � $B � &B
� > � %B � &B � &B
� > � $B � &B � &B

" # $

" # %

" $ %

# $ %

4 10.9 70.4 41.5 0 0.1

4 13.5 70.7 61.9 0.5 0.8

4 16.2 81.8 61.7 0.2 0.4

4 15.6 70.6 64.4 0.2 0.

$
$
$ 4

3 13.1 61.3 28.6 0 0

3 16.1 73.2 28.9 0 0

3 14.5 68.6 41.1 0 0

3 13.3 62.0 29.3 0 0

3 14.7 56.7 43.

$
$
$
$
$

� > � %B � $B
� > � %B � &B
� > � %B � &B
� > � $B � &B
� > � $B � &B

" #

" $

" %

# $

# % 0 0 0

3 16.0 68.8 42.3 0 0

2 15.1 59.8 19.1 0 0

2 12.4 47.8 18.6 0 0

2 14.9 62.0 19.2 0 0

2 16.3 58.0 30.7 0 0

1 15.2 50.

$
$
$
$
$
$

� > � &B � &B
� > � %B
� > � $B
� > � &B
� > � &B
� >

$ %

"

#

$

%

6 13.4 0 0

Figure 4.16: % Correct Model Selection vs. # of Covariates 

Multiple Categorical Predictors

 (Random Intercept and Slope; Small Sample Size)
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4.3.4 Conclusions

 In the scenarios explored here, we see that all three criteria investigated in this

dissertation, namely the  statistic, the KIC and the PRESS statistic, outperform theG:

standard AIC and BIC in almost every variation.  The only time where the AIC and BIC

outperform the other criteria is when there is an interaction term present.

 In the first scenario, when the interaction term is not included in generating the

data, the KIC is best in all situations.  However, the  and the PRESS do fairly well inG:

all of these situations as well.  The performance of the KIC,  and PRESS do not seemG:

to be affected by the changes in the variance in any of the situations investigated.  On the

other hand, the performance of the AIC and BIC decreases significantly as the total

variance in the generating data increases.

 When there is an interaction term present, the performance of the KIC,  andG:

PRESS decreases as the total variance of the generating data increases.  The opposite is

true of the AIC and BIC, their performance increases as the variance increases.  Another

difference can be seen in the pattern of behavior as the correlation between measurements

increase.  For the KIC,  and PRESS, as the correlation increases, the ability of theseG:

criteria to identify the correct model increases.  However, for the AIC and BIC, when the

total variation is high and the correlation increases, the ability of the AIC and BIC to

correctly identify the correct model decreases.  As mentioned in Chapter 3, the AIC and

BIC may have an advantage in the situation where the interaction term is present, as they

tend to include extraneous variables, and in this situation, it is the model with the most

variables that is correct.  The difference in the patterns of behavior of the AIC and BIC

compared to the other criteria seems to support this theory.

 When there are multiple categorical predictors present, the KIC performs best in

both of the large sample cases and in the small sample case when there is only a random

intercept.  However, both the  and PRESS statistic tend to do as well when only aG:

random intercept is present.  In fact, the  statistic appears to fare the best in thisG:



111

scenario as it does as well or better than all the criteria in all four situations.  On the other

hand, the PRESS statistic is only able to detect the correct mean structure when there is

only a random intercept, and the AIC and BIC can perform satisfactorily only when the

sample size is large and there is only a random intercept.

 From all simulation scenarios, it appears as though the PRESS statistic tends to

behave similar to the  statistic in most of the variations investigated.  However, theG:

PRESS statistic's performance is poor compared to that of the  statistic in the secondG:

scenario, when multiple categorical predictors are present and the random effects consist

of a random intercept and slope.  In general, the PRESS statistic outperforms the AIC and

BIC in all situations, except where there is an interaction effect present.

4.4 Example Data: Elderly Blood Pressure Data

4.4.1 Background

 As in Chapters 2 and 3, we decided to explore a "real world" application of the

PRESS statistic by applying it to the large data set from the North Carolina Established

Populations for the Epidemiologic Studies of the Elderly (EPESE).  As stated previously,

the goals of the EPESE project were to describe and identify predictors of mortality,

hospitalization, and placement in long-term care facilities and to investigate risk factors

for chronic diseases and of functioning among the elderly.  The study followed 4162

subjects, aged 65 years and older, over a period of 12 years. The more intricate details of

the study population can be found in Chapter 2.  It should be noted that due to the subject

matter (i.e. the elderly) and timeline of this project, this large dataset contains a great deal

of missing data.  Participants were surveyed at four time periods: Wave 1(1986); Wave 2

(1990); Wave 3 (1994); and Wave 4 (1998). Here, we will focus on the outcome of

diastolic blood pressure.
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4.4.2 Methods

 Originally, when planning to explore the ability of the PRESS statistic on this

data, we expected to use the same all-possible regression approach that we used in

Chapters 2 and 3.  However, we found the calculation of the PRESS statistic by the SAS

system to be so computationally intensive that performing this calculation for all 2048

possible models was not possible.  Therefore, in order to evaluate the PRESS statistic in

comparison to the , KIC, AIC and BIC, we looked at the three best models as selectedG:

by the  statistic and the three best models selected by the KIC, AIC and BIC (all threeG:

criteria selected the same models). As both the  and the information criteria selectedG:

the saturated model as one of its three best models, there were a total of five models

evaluated using the PRESS statistic.  As was done in Chapter 3, the models were

investigated using an i.i.d.  error covariance with a random interceptwithin-unit

(compound symmetry for the response).  However, since the PRESS is computationally

intensive, residual denominator degrees of freedom were used as opposed to the Kenward

Roger denominator degrees of freedom.

4.4.3 Results

 Table 4.9 shows the PRESS, , KIC, AIC and BIC results for the 5 models thatG:

for which the PRESS statistic was calculated.  Table 4.10 gives the fixed effect estimates,

standard errors, p-values and covariance estimates for the models selected as best by

either the PRESS, KIC, AIC and BIC or the  statistic.G:
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Table 4.9: PRESS,  KIC, AIC and BIC Results forG:ß

 Elderly Blood Pressure DataDiastolic 

Models with the lowest KIC valuesand/or  G:

(Model) Fixed Effects PRESS KIC AIC BIC

(1)

 

 year, weight, fair_ill, poor_ill, heart, diabet,

G:

"&"Þ*"B"! (#%'*Þ$$ (#$*(Þ$& (#%##Þ%"( ""Þ"(

         black, rural, male, poor_hlth, married

year, weight, fair_ill, poor_ill, heart, diabet,(2) "&"Þ*'B"! "$Þ!! (#%(#Þ** (#$*)Þ( !! (#%#$Þ!&

"&#Þ*!B

         black,  rural, male, poor_hlth, married, fair_hlth

 year, weight, fair_ill, poor_ill, heart, diabet,(3) "! "(Þ&! (#%(%Þ%! (#%!&Þ%) (#%$!Þ&%

"&

(

         black, rural, poor_hlth, married

 year, weight, fair_ill, poor_ill, heart, diabet, (4) %Þ$"B"! (#'%$Þ!% (#%$!Þ$$ (#%%*Þ"#

"

( *Þ%!

         black, rural, male, poor_hlth

 year, weight, fair_ill, poor_ill, heart, diabet, (5) &%Þ$&B"! ""Þ#$ ($'%'Þ'* ($'!(Þ'* ($'#'Þ%)(

         black, rural, male, poor_hlth, fair_hlth

Table 4.10: Mixed Model Fixed Effect Estimates, Standard Errors (SE),

 p-values, and Covariance Estimates for the Models with the

Lowest KIC and PRESS Value (Model 1) and

the Model with the Lowest Statistic Value  (Model 4)G:

(Outcome = Diastolic BP)
Covariance Estimates

Fixed Effect Estimate SE p-value Random effects Error

Model 1 Intercept 65.60 0.78 <0.001

year 0.65

5 5s s œ1
# #

!œ 45.99 87.92

� 0.02 <0.001

weight 0.04 0.005 <0.001

fair_ill 6.96 0.30 <0.001

poor_ill 9.88 0.41 <0.001

heart 4.88 0.40 <0.001

151.91x10 diabet

KIC

PRESS

72469.33

�

�( 3.96 0.38 <0.001

blackpat 2.63 0.31 <0.001

poor_hlth 1.10 0.38 0.004

11.17 rural 1.40 0.30 <0.001

male 1.05 0.36 0.004

married 0.18 0.32 0.578

G: �

�

Model 4

KIC

Intercept 65.48 0.78 <0.001

year 0.65 0.02 <0.001

weight 0.04 0.005 <0.001

fair_ill 7.00 0.30 <0.001

poor_ill 9

5 5s s œ1
# #

!œ 45.72 88.10

�

72643.04

.90 0.40 <0.001

heart 4.82 0.40 <0.001

diabet 3.97 0.38 <0.001

blackpat 2.67 0.31 <0.001

poor_hlth 1.26 0.40 0.002

9.40 rural 1.4

PRESS �

�

�

154.31B"!(

G:

0 0.30 <0.001

male 0.94 0.34 <0.001
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4.4.4 Conclusions

 From Table 4.9, we see that the PRESS statistic tends to order the models in the

same way as the information criteria.  The PRESS, KIC, AIC and BIC all considered

Model 1, which includes all variables except the "fair_health" covariate, as best, while the

G: statistic chose Model 4, which excludes both the "fair_health" covariate and the

marital status covariate (i.e. "married") as best.

 From Table 4.10, we see that in Model 1, (the model chosen as 'best' by the

PRESS, KIC, AIC and BIC) the "married" covariate appears to be extraneous to the

outcome of diastolic blood pressure, as it is not significant at  = 0.05.  On the otherα

hand, Model 4, (the model chosen by ) does not appear to include any covariates thatG:

are not significant at  = 0.05.α

 While our exploration of the EPESE data using the PRESS statistic is not ideal, in

that an all-possible regression approach could not be used, it appears as though the

PRESS statistic arrives at the same conclusion as the KIC, AIC and BIC.  This conclusion

apears to include an extraneous covariate, and it seems as though of the criteria explored

here, the  statistic may be best when our dataset is large, includes many covariates, andG:

missing data, if our goal is to be as parsimonious as possible when choosing the correct

model.

4.5 Discussion

 From our exploration of the PRESS statistic in this chapter via simulation studies

and a data example, we have discovered a great deal about this statistic's abilities and

limitations in comparison to that of the  statistic and the information criteria availableG:

for the linear mixed model.

 From our simulation studies, we see that the PRESS works about as well as theG:

statistic when the random effects are composed of only a random intercept.  In general, as

long as there is no interaction term , the PRESS statistic performs in the fixed effects
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better than the current standard model selection criteria, the AIC and the BIC. The

performance of the PRESS statistic was weakest in the multiple categorical predictor case

when the random effects were composed of a random intercept and slope.

 In the real data example, however, the PRESS seemed to behave more like the

information criteria than the  statistic.  From the limited information we have, theG:

PRESS seemed to favor the same models that the KIC, AIC and BIC favored, rather than

choosing the more parsimonious model chosen by the  statistic.  This difference inG:

behavior may have been due to a number of factors, including the presence of missing

data, the larger sample size, or the large number of covariates being investigated.

 The greatest limitation of the PRESS statistic is its computational intensity.  From

simple observation, we noticed that the PRESS statistic took up to five times longer than

the information criteria when trying to determine the correct model from the same

scenarios and this problem prevented us from being able to fully explore the statistic

when using the EPESE study. This issue serves great hindrance in using the PRESSas a 

statistic as a model selection criterion in the linear mixed model.
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CHAPTER 5

DISCUSSION AND FUTURE RESEARCH

5.1 Discussion

 The increased use of repeated measures for longitudinal studies has resulted in the

necessity for more research in the modeling of this type of data.  While the linear mixed

model is an extension of the linear univariate model that accounts for longitudinal data,

few model selection methods have been developed or evaluated for the linear mixed

model.  In this dissertation, we investigated the behavior of three candidate model

selection methods that have all been extended from the univariate linear model to the

linear mixed model.

 Mallows'  statistic was developed for the univariate linear model in 1964 andG:

our extension of its use into the linear mixed model has shown that it can be a promising

method for fixed effects selection.  Of all the methods investigated in this dissertation, the

G: statistic we used gave us the most favorable results in terms of fixed effects selection.

In addition to that, this statistic is the least computationally demanding of all the

candidate methods in that it only requires one model to be fit in order to determine which

subset of fixed effects is best for modeling the response.

 The statistic is limited in that it is a model selection method that requiresG:

nested models.  In other words, the determination of how well a specific model fits the

data using the  statistic can only be seen relative to the  statistic of another modelG G: :
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nested within the original saturated model. Also, when the number of potential covariates

is large, the number of subsets of covariates that need to be considered can be

overwhelming.  This shortcoming is illustrated by the 2047 subsets of covariates that

were evaluated in order to investigate the EPESE data set discussed in Chapter 2.

 The KIC statistic explored in Chapter 3 appears to be promising as a model

selection method for both fixed effects and covariance structure.  In the selection of the

correct covariance structure, the KIC tended to hold middle ground between the AIC and

the BIC.  While it was never the best method in terms of selection of covariance structure,

it seems that it  can be a useful method when one is completely unsure of what type of

covariance structure is best.  Unlike the AIC, which worked best when the covariance

structure was complex, or the BIC, which excelled with a simple underlying covariance

structure, the consistency of the KIC makes it appealing when aspects of the covariance

structure are unknown.

 In terms of fixed effects, the KIC appears to perform significantly better than

either the AIC or BIC in the selection of fixed effects when there is no interaction effect

present.  It appears from our study of the selection of fixed effects that the KIC is far

more conservative than the AIC and the BIC when it comes to allowing additional

covariates into the model.  In addition, the KIC was able to maintain its performance level

better than the AIC and BIC when parameters in the covariance structure or random

effects structure changed.

 A shortcoming of the KIC, unlike the , is that in order to determine whichG:

subset of fixed effects is best, each individual model must be fit.  In addition, the value of

the KIC, as with all information criteria, is only meaningful when compared to another

model in the same family.  For example, when looking for the correct set of fixed effects,

KIC values must be compared with those of other models with the same covariance
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structure. And if the covariance is structure is being evaluated, KIC values of models with

the same mean structure must be compared.

 The PRESS statistic has been developed for the linear mixed model in a widely

available statistical software package (SAS), but its abilities as a model selection method

were never evaluated.  From our study, it appears that the PRESS statistic does not add

much as a fixed effect selection method compared to the  or the KIC.  The selection ofG:

fixed effects in the simulation studies appeared to mirror the abilities of the  statistic,G:

except that the PRESS statistic appeared to be more susceptible to changes in covariance

and random effects structures.  However, when looking at the EPESE study data, the

PRESS ranked models in a similar fashion as the information criteria, which selected a

model that appears to have an extraneous covariate.

 The greatest drawback of the PRESS statistic is its computational requirements.

When initially trying out this statistic using the computations provided by SAS v9.1, I

experimented with both the non-iterative and iterative analyses.  I found that both

analyses required the same amount of time and computational intensity, and therefore

proceeded with the iterative analysis, hoping that it would provide the best results. The

computation of the statistic required at least five times more time than the information

criteria, which took significantly longer to calculate compared to the   In fact, thisG:.

drawback prevented us from conducting the same level of research with the PRESS as

was done with the and the KIC.  The fact that the PRESS requires this muchG:

computational power and does not provide results that far surpass the performance of the

other candidate methods evaluated here leads us to believe that the PRESS is probably

best used as an influence diagnostic and not as a more general model selection criterion.

 When comparing the results of Chapter 2 to those of Chapter 4 involving the G:

statistic and the AIC and BIC, we notice that in Chapter 2, it appeared that the  statisticG:

was better than the AIC and BIC at correctly identifying the fixed effects in all scenarios,
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including when the correct model included an interaction term, while in Chapter 4, it was

the AIC and BIC that performed better in this scenario.  This difference in outcomes is

probably due to the fact that in Chapter 2, the simulations involved smaller sample sizes

of 50 subjects as opposed to the 200 subject sample size used in the similar simulation

studies in Chapter 4.  As we saw in Chapters 3 and 4, when looking at the multiple

categorical predictor setting, the AIC and BIC work best when there is a larger sample

size.  The decrease in the sample size resulted in a dramatic decrease in these information

criteria's abilities to detect the correct fixed effect structure.

 With regards to the EPESE data set, it should be noted that the distribution of the

variables investigated in the models were not evaluated beforehand to detect if they were

normally distributed.  As this is the case, transformations on this data to ensure normal

distrbution may result in different results.  In addition, using a more complex covariance

structure with this data could allow for a closer fit.

 Perhaps the most interesting development of this research is the revelation of how

variable the information criteria that are available as standard output in most packages for

linear mixed model computing (i.e. the AIC and BIC) performed in many of the

simulation scenarios explored here.  While investigators tend to accept these criteria as

good measures of the fit of linear mixed models to their data, we see now that the results

received when using these criteria should be taken with a grain of salt.

5.2 Future Research

 The results of this dissertation shine a light on many different areas of further

research for model selection in the linear mixed model.  In addition to distributional

aspects of some of the candidate methods explored here, further computational studies

will also lead to important results.
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 The  statistic that was used in Chapter 2 was developed as a pure extensionG:

from the one developed by Mallows for the univariate linear model.  Our exploration of

this suggested statistic was purely empirical in nature and none of the distributional

aspects were explored.  Further research of the  statistic should include development ofG:

the distributional aspects of this statistic for the linear mixed model and correction terms

that account for the complexity involved in using the linear mixed model.

 The KIC statistic used in Chapter 3 was directly taken from the univariate linear

model.  Further research for this statistic would look at refining the criterion to take into

account the number of parameters estimated when using the linear mixed model.

 The PRESS statistic used in Chapter 4 could use a great deal of refinement.  The

development of a technique that would not be as computationally intensive, yet would

yield the same or better results in terms of model selection would be a great service to this

field.  Christiansen et al. (1992), suggest a method of providing case-deletion diagnostics

in the linear mixed model via one-step estimates of diagnostics for variance components.

This technique may lead the way to the development of a less computationally intensive

method of finding the PRESS statistic in the linear mixed model.

 For all three criteria, further computational studies could include an investigation

of model selection performance when the sample size is small, when missing data are

present, and when there are multiple interaction terms involved in generating the data.  It

may also be beneficial to design further simulation studies based on the parameters of

classic data sets, similar to what was done in the simple mean structure simulation studies

performed in Chapter 2, where the simulations were based on the underlying fixed effect

and covariance parameters of the Pothoff and Roy data.  By looking at simulated

variations based on real data, we may be able to get a better picture of how our criteria

will perform in the real world.  In addition, it would be useful to know how robust our

statistics are when the data investigated are not normally distributed, and a further
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investigation of their performance in a wider variety of covariance structures would also

be useful.

 As the use of longitudinal studies continue to grow in popularity, it is increasingly

important that we refine and discover additional tools that can be useful in confirming

the models we choose accurately describe the data we receive from these studies.
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