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ABSTRACT 

Natnaree Aimyong: Propensity Score Methods for Competing Risks 
(Under the direction of Jason P. Fine and M. Alan Brookhart) 

 

 Non-experimental studies have increasingly been used to examine the safety and 

effectiveness of medication. Challenges to this method include confounding, which may cause 

the estimator to be biased. Propensity score (PS), which is the conditional probability of 

receiving treatment given all confounders, may be used to control for confounding. Analysis of 

vulnerable populations may involve competing risks, which may occur before the event of 

interest. Statistical methods that account for competing risks are needed to obtain valid causal 

estimate. However, little knowledge attention has been given to this topic in the literature. 

 The objective of this research was to investigate the performance of estimators under 

implementation of various PS methods in competing risk survival analyses for estimating 

marginal and conditional treatment effects. The competing risk models were a cause-specific 

hazard model and subdistribution hazard model. 

According to simulation results, the weighted method produced efficient estimators for 

marginal treatment effects. However, it leads to an inflated variance when low incidence of event 

and strong confounder effects. A bootstrapping method can be used to estimate the variance 

under this scenario. For the conditional treatment effect, PS adjustment in the model performed 

the best for the null model. Depending on the sample size and the number of confounding 

variables, the subclassification and matching methods yield best performance under the 

alternative when treatment effect is non-null. 
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 Heterogeneity of treatment effect associated with statin therapy may be present in el- derly 

who experience myocardial infarction. Examining treatment effect across age groups and the 

revascularization procedure illustrated the heterogeneity of statin effects. Statins significantly reduce 

risks of heart failure among younger age groups. The combination of statins with revascularization 

procedures presents better treatment effects than occurs with statins alone. Application of propensity 

score methods to competing risks is illustrated in this study, with the analysis of treatment effects 

providing an improved understanding of the heterogeneity of the effects of statins therapy. 

The efficiency of implementing propensity score method to competing risks is illustrated in 

this study. Analyzing the treatment effects by subgroup and medical procedure contributes better 

results for estimating the heterogeneity treatment effect. 
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Chapter 1

Introduction

1.1 Motivating Examples

Cardiovascular disease (CVD) is the leading cause of mortality and is a major cause

of morbidity in the United States and worldwide (108). Increasing steadily with age, the

prevalence of CVD events is even higher in the population older than 65 years of age,

affecting more than 70% of both men and women and 66% of CVD deaths occur in people

age above 75 years old (92). As the population is aging, more people are likely to have

cardiovascular complications. Increasing attention has been drawn to the management

of CVD in the elderly population.

Statins, a class of 3-hydroxy-3-methlglutaryl coenzyme A reductase inhibitors, are

used to lower low-density lipoprotein cholesterol (LDL-c) levels to prevent CVD events

(100). LDL-c has been recognized as an established risk factor for CVD events, and re-

mains the primary focus for evaluation of pharmacologic effectiveness based on treatment

target goals. Clinical trials have demonstrated that statins are highly effective at lower-

ing LDL-c and thus help to reduce the incidence of cardiovascular events(32, 90, 112).

Post-myocardial infarction (MI) patients with high normal or only mildly elevated lipid

levels also benefit from statin treatment (85, 23). However, older populations were not

well represented in most statin trials or age-specific results were not reported. As a re-

sult, little is known about the benefits of treatment with statins in the elderly, especially

among the elderly patients who just had a MI.
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Non-experimental studies are increasingly used to evaluate the safety and effective-

ness of medications when used in usual clinical care (11). It is an appealing design for

investigation of statin treatment effects among post MI patients. However, two major

challenges are present. The first challenge is presence of possible confounding systematic

differences in prognosis between patients treated with statins and those untreated. If

left uncontrolled, the observed difference in outcome risks cannot be interpreted as a

causal effect solely due to statins. Another challenge is the presence of competing risks,

as the occurrence of some events may precede and thus preclude the occurrence of the

event of interest. In the elderly population after an acute MI, multiple comorbidities and

worsened health status put them at a higher risk of mortality. Death may thus preclude

the occurrence of the event of interest, (such as another MI) and make the evaluation

of the effect of statins on MI difficult. Sophisticated methods such as competing risks

survival analyses are needed in this setting (7, 64). Statistical methods that can account

for both competing risks and confounding are needed to obtain a valid causal estimate.

A competing risks survival analysis is a method to address the presence of multiple

events in a survival analysis of the time between the start of follow-up and either the

occurrence of the event(s) of interest or a censoring event (51). The outcomes of compet-

ing risk model are three mutually exclusive events including occurrence of the event of

interest, occurrence of a competing event, and a censoring event (lost to follow-up, end

of follow-up etc.). The regression models in competing risks may be used to estimate the

treatment effects.

The classical approach for confounding control is based on multivariable regression

models. This approach may be heavily model dependent, with different models po-

tentially giving very different results. Moreover, the correct outcome model specification

can be challenging, especially in the settings of rare outcomes, many confounders, and/or

treatment heterogeneity (11, 14). Matching and stratification methods are popular tools

used to control confounding factors. However, these methods have difficulties when ap-

plied to a large number of confounders. Propensity score (PS) methods, which estimate
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treatment effects without relying on modeling the outcome, are an approach being in-

creasingly used in non-experimental studies (96).

Competing risk survival analyses with PS methods to control for confounding can then

be used to investigate effect of statin treatment on cardiovascular events among post MI

patients. However, this approach has not been extensively explored, and little is known

about the performance of this approach compared to the existing standard methods. It is

of great interest to investigate the performance of competing risk models using propensity

score methods to control confounding for estimating marginal and conditional treatment

effects.

1.2 Causal Inference

Causal inference is the process of drawing a conclusion about whether a causal rela-

tionship does in fact exist (43). Let Yi(1) and Yi(0) be the potential outcomes that would

have been observed for individual i in the treatment group or the control (untreated)

group, respectively. Individual causal effects can then be obtained by contrasting the

values of the two potential outcomes. However, only one of the potential outcomes is ob-

served for each individual, thus, in general, individual causal effects cannot be obtained.

Since it is generally impossible to identify individual causal effects, an aggregated

causal effect, the average causal effect in a population of individuals, becomes the focus of

interest. Let P [Yz = 1] be the counterfactual risk of outcome Yz, or the risk of developing

outcome Y in all subjects in the population receiving counterfactual treatment z. An

average causal treatment effect is present when

P [Yz=1 = 1] �= P [Yz=0 = 1].

The assumptions of causal inference are the stable unit treatment value assumption

(SUTVA) and strong ignorability. SUTVA means the potential outcome of individual

i is independent of potential outcome of individual j, i �= j. The strong ignorability
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assumption is the independence of treatment assignment and outcomes conditional on

the covariates.

In randomized trials, only one potential outcome is observed for each individual.

However, the randomization process ensures that the balancing between the background

variables between treated and untreated groups. In other words, the randomization pro-

cess ensures the independent predictors of the outcome are equally distributed between

the treated and untreated groups. The treated and untreated groups are exchangeable,

and the exchangeability thus implies lack of confounding (65).

In non-experimental studies, treatment is not randomly assigned and the reason for

receiving treatment is likely to be associated with some predictors of the outcome. Thus,

exchangeability is not guaranteed. However, in weaker conditions, conditioning on many

pre-exposure covariates of the treated and untreated groups is often reasonable to allow

exchangeability. Let L be the confounding or background covariates. The conditional

exchangeability implies

P [Y = 1|L = 1, Z = z] = P [Yz = 1|L = l]

PS is the conceptual tool used to achieve accurate causal inference by balancing or

conditioning on the background variables of treated and untreated subjects (57).

1.3 Propensity score and non-experimental studies

A major challenge for non-experimental studies is confounding caused by systematic

differences in prognosis between patients exposed to intervention of interest and the

comparison group. Sources of confounding in non-experimental studies of medications

can arise from multiple areas. Physicians may tend to prescribe medications to patients

who are most likely to benefit from them, which can cause the intervention to appear to

cause events that they actually prevent (91). Patients initiating a preventive medication

may be more aware of their health status and more likely to engage in other healthy,

prevention-oriented behaviors leading to the bias known as healthy user bias (11). The
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validity of the treatment effect estimated from non-experimental studies is a concern if

these biases are left uncontrolled.

Propensity score methods have emerged as a useful method to control for confounding

in the non-experimental setting. It is widely used in a variety of areas, including medical

(95), economic (42) and social research (67). The methods were formalized by Rosenbaum

and Rubin (80) and were shown to be able to control confounding. At the beginning,

the propensity score was developed to estimate the causal effect of binary treatment

(48). A propensity score is the conditional probability of receiving treatment given all

confounders. Among patients with the same PS, treatment is unrelated to confounders.

Therefore, the two treatment groups have the same distribution of measured confounders.

The true propensity score of non-randomization studies is unknown. However, it can

be estimated from observed data. Statistical methods such as logistic regression and other

discriminant models can be used to estimate PS. Multivariable logistic regression is the

most widely used method for PS estimation. The estimation of the propensity score can

be implemented as a continuous variable via standard approaches including matching,

subclassification (stratification) by propensity score, propensity score adjustment to the

multivariate model, and weighting (96).

1.3.1 Matching

Matching on certain covariates to remove confounding by the matching variables

has been used extensively in cohort studies (96). Matching methods attempt to choose a

single or multiple patients from the untreated group with the same values of the matching

variables for each patient in the treated group. It can be easily implemented when

matching only needs to be done for a small number of covariates. A large number of

confounders in a non-experimental study makes matching on all confounders difficult.

PS as a summary score reduces these multidimensional confounders to one dimension,

which helps overcome this limitation (19).

Rosenbuam and Rubin recommended three multivariate matching criteria (82). The
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first option is nearest available matching on the estimated PS. The treated and un-

treated patients are first randomly ordered, and the first treated patient is matched with

the first untreated patient who has the nearest PS. The second option is Mahalanobis

metric matching (84). The Mahalanobis distance is the distance between two dimen-

sional points scaled by the statistical variation in each component of the point. Treated

and untreated patients are first randomly ordered, and then each treated patient is pair-

matched with the first untreated patient who has the closest Mahalanobis distance. The

third alternative is nearest available Mahalanobis metric matching within calipers defined

by PS. The treated group is first randomly ordered. For each treated patient, a group of

untreated patients are chosen given that the difference of PS between the treated patient

and the untreated patient is less than the caliper (a constant value). From this group of

untreated patients, the patient who has the closest Mahalanobis distance to that of the

treated patient is selected as the match. The third matching method produces the best

balance for the covariate distributions between the treated and untreated groups and is

considered to outperform the first two.

The two popular algorithms for creating PS matched sets are greedy matching and

optimal matching . In greedy matching, a treated patient is first selected at random.

The untreated patient whose PS is closest to this patient is chosen as a match for this

patient. This process is repeated until all the untreated patients have been matched to all

the treated patients or when all the treated patients have been matched. In contrast to

the greedy matching, which finds the nearest untreated patient, optimal matching tries

to minimize the total within-pair distance differences (83).

The most common implementation of PS matching is pair matching (one-to-one

matching). With pair matching, only one untreated patient with a similar value of PS

is matched to one treated patient to form matching pairs. Alternatives to pair matching

include many-to-one (M:1) matching (66) and full matching (33, 37, 77). In many-to-one

matching, a fixed or variable number of untreated patients are matched to each treated

patients. The approach to match with a variable number of untreated patients was found
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to have improved bias reduction. Full matching results in matched sets consisting of ei-

ther one treated patient and multiple untreated patients or one untreated patient and at

least one treated patient (77). Full matching removes bias better than pair matching and

may achieve the closer match than M:1 matching (37). However, fullmatching method

result in a wide range of ratio of treated to untreated patients (94).

In analyses using Cox proportional hazard models, PS pair-matching has been shown

to have the smallest amount of bias when compared to other methods (26, 4). Martens

showed the analysis from real data showed larger treatment effects from matching and

subclassification compared to conventional Cox proportional hazard model (62).

1.3.2 Subclassification

Another method used to implement PS to control confounding is subclassification or

stratification of PS into equal-sized strata, estimation of the treatment effect within these

strata and then combining the stratum-specific effect estimates using a weighted-average

approach. Both treated and untreated groups are grouped into equal-sized strata based

on their PSs. In general, quintiles of PS are used to create the strata. Previous reports

have shown that subclassification into five strata can remove approximately 90% of initial

bias (81) despite the fact that it can also increase the variance of the estimator (104).

1.3.3 Propensity score covariate adjustment

Adding the PS to a multivariable outcome model is the least appealing method of PS

implementation, since the validity of this approach depends upon a correct specification

of both PS and outcome models. If the PS is included as a linear term in the outcome

model, an assumption is made that there is a linear relationship between the PS and the

outcome, which is likely to be violated in real world applications.

In situations where outcome models are linear models, this regression modeling method

is the same as analysis of covariance (ANCOVA). A great amount of bias can be intro-

duced when the covariances of the treated and untreated groups are unequal and the
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variances of the treated and untreated groups differ (19). When this method is applied

to studies using survival analysis to estimate effects, the fixed parameters of the PS vari-

able suggest that the probability of receiving treatment given all measured covariates

has a constant effect on the hazard ratio. Results from our simulation study showed

that the efficiency of propensity score adjustment depended on the overlap area and the

specification of variables included into propensity score model (35).

1.3.4 Weighting

Standardization with weights generated from the PS can also be used to control

confounding. Unlike matching, this approach does not result in reduction of the original

sample size. Individuals within the original sample are weighted based on their PS to

create a pesudo-population where the covariates are well balanced in the two treatment

groups, and no association exists between the confounders and treatment. The weighting

method plays an importance role in the estimation of marginal treatment effects. There

are two types of weighting commonly used: inverse probability of treatment weighted

(IPTW), standardized mortality ratio weighted (SMRW).

IPTW is defined as the inverse of the estimated PS for treated patients and the inverse

of one minus the estimated PS for untreated patients (76). These weights create a pseudo-

pupulation where the weighted treated group and untreated group are representative

of the patient characteristics of the entire population, resulting in an estimate that is

generalizable to the entire population from which the observed study sample was drawn.

The IPTW method has been shown to have good performance for estimating marginal

treatment effects in Monte Carlo simulations (4). However, IPTW can be unstable in

some situations so a stabilized weighting method may be preferred. The stabilized weight

(STW) is calculated by multiplying the IPTW by the probability of being treated for the

treated patients and the probability of not being treated for the untreated group. STW

helps reduce the effects of extreme weights and produces a narrower confidence interval

for the estimator compared to IPTW (17).
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SMRW is set to one one for treated patients and defined as the ratio of the estimated

PS to one minus the estimated PS for the untreated (86). The untreated patients are thus

weighted to be representative of the treated population. The resulting effect estimate

is generalizable to the treated population from which the observed treated sample was

drawn. Unlike PS matching, which also often estimates average treatment effect in the

treated, no treated patients are excluded from the analysis.

In all weighting analyses, statistical methods are needed to account for the relation

between the replicated individuals created by the process of weighting. A robust sandwich

variance estimate is required to calculate the variance. This approach results in confidence

intervals that are conservative and wider than the nominal coverage.

Many studies have applied weighted methods to survival analysis. Cole and Her-

nan presented an approach to produce adjusted survival curves with inverse probability

weights which offers direct interpretation of the data (16). Hernan et al (40) applied

IPTW to study zidovedine (AZT) treatment effects on mortality and compared it to an

unweighted analysis. The weighted analysis showed that AZT reduced risks of mortality

but the unweighted analysis with a basic baseline adjustment model produced an adverse

effect of AZT on mortality (which was contrary to reality).

Simulation studies showed survival analysis via Cox model with application of the

IPTW method produced the smallest amount of bias for the estimator of interest (4, 26).

1.3.5 Variables selection for propensity score model

The identification of variables to be included in the PS model is an important process.

Good subject-matter knowledge must be used to guide this process. Studies have shown

that optimal PS models should include all variables that are related to the outcome of

interest, regardless of whether they are associated with the treatment. Including variables

that are related to treatment but which are either not related or only weakly related to

outcome increase the variability of effect estimates and, in the presence of unmeasured

confounding, increase bias (10). This idea of variable selection for the PS also exists for
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the estimator of the average treatment effect for the treated group when applying the

matching method and using a multinomial model for the outcome estimation (18, 110).

1.3.6 Assessment of the balance of the covariates

Once the PS model is fit, it is recommended to explicitly evaluate the performance of

the estimated PS model by assessing the balance of covariates after PS implementation

either through matching or weighting . Approaches to assess the covariate balance under

PS methods have been developed (3).

Evaluation of the lack of fit of the PS model is performed using the logistic regression

goodness-of-fit statistics and the c-statistic. the goodness of fit statistic summarizes the

deviation between the observed and predicted outcomes. The c-statistics value indicates

the capacity of a model to discriminate between treated subjects and untreated subjects

(46). However, both methods fail to detect the balancing of background variables between

treated and untreated groups (106).

The standardized mean difference can be applied to identify the importance of dif-

ference between the treated and untreated groups and to evaluate the covariate balance

in PS matching and weighting methods. Values of 0.2, 0.5 and 0.8 represent a small,

a moderate and a large difference, respectively; the sample size does not influence the

standardized difference (105). For subclassification method, the covariate balance can

be evaluated with a two-way analysis of variance (ANOVA). The treatment group and

subclassification group are the factors of the ANOVA model for testing the balance of co-

variates in the treated and untreated groups (81). The weighted conditional standardized

difference and quintile regression are the methods used to determine the similarity of the

baseline covariates in the treated and untreated groups (2). Recently, Imai and Ratkovic

(47) introduced a covariate balancing PS estimation method which optimizes the covari-

ate balance while estimating PS (38). This method can improve the performance of PS

weighting and matching methods.
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1.4 Marginal and conditional models

A marginal treatment effect is the average treatment effect for the population, while a

conditional treatment effect is the average treatment effect for the individual (3). In the

absence of confounding, the difference in means and risk difference are collapsible, and the

conditional and marginal effects are the same. In randomized studies, the covariates are

balanced between the two treatment groups, therefore the crude difference in means and

the adjusted difference in means will be equal. In non-experimental studies, the marginal

and conditional estimates will coincide if there was no unmeasured confounding, the

outcome was continuous, and the true outcome model was known (31). However, when

the outcome is either binary or time-to-event, and the odds ratio or the hazard ratio

is used as the effect measure, then the marginal and conditional effect will not coincide

even in the absence of confounders (34, 25).

For PS methods, the estimators from the conventional model (adjusting for con-

founders in the outcome regression model), covariate adjustment (adding the PS to a

multivariable outcome model) and matching method are estimating the conditional treat-

ment effect. The PS based weighting methods yield estimates of the marginal treatment

effect for the population.

1.5 Competing risks model

A survival analysis explores the time period from a certain point until the occurrence

of the event of interest. A competing risks survival analysis is the special case of survival

analysis where multiple events may occur and the occurrence of one event may preclude

the occurrence of the other. Competing risk events threaten the validity of studies, even

in randomized control trials. Individuals who are at higher risk of competing risk events

may be less likely to experience the absolute benefit of treatment (64). Care is needed

in statistical analysis to ensure that treatment effects are appropriately quantified.

Approaches have been developed to conduct competing risk survival analysis. The
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likelihood of the occurrence of a particular competing risk can be summarized using the

distribution of the observed data or using models representing the underlying mechanisms

that generated the observed data (54). When modeling the observed data, so-called crude

functions are utilized. The cause specific hazard and cumulative incidence functions

described below are the most widely used quantities. A popular mechanistic model

is the latent failure time model discussed below. The net function is the probability

of the occurrence of the event of interest corresponding to the latent failure time in

the hypothetical situation where the particular risk of event is the only risk present.

Additional properties of the crude and net approaches are now discussed.

1.5.1 Notation

For this discussion, the following notations are used. Let Y and C be failure and

censoring times, and ε ∈ {1, 2, ..J} be the failure event. For each individual i, i=1,...,n,

the observed failure time was Ti, T= (Y ∧C), and the observed event be εi, ∆ε = I(Y ≤

C) when I(·) is indicator function. Let Z be one for treated group and zero for untreated

group.

1.5.2 Latent failure times

There are J mutually exclusive types of failure events, and the corresponding time

until each failure type is �Tij. The observed time is minj(�Tij), with each �Tij defined as

if the other causes were not present, and with the observed cause of failure ε being the

index of the observed latent failure time. The hazard function for latent failure times is

a net hazard function defined as:

�λij = lim
∆t→0

1

∆t
P (t ≤ �Tij < t+∆t, ε = j|�Tij ≥ t), j = 1, ..., J.

The net function can be estimated when the latent failure times are independent.

This assumption of independence cannot be verified, so this approach is not realistic for

applications in data analyses.
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1.5.3 Cause-specific hazard function

To model competing risk using a cause-specific hazard function, the type-specific or

cause-specific hazard function is defined as:

hj(t) = lim
∆t→0

1

∆t
P (t < T < t+∆t, ε = j|T ≥ t), j=1,...m.

The cause-specific hazard function is the instantaneous rate for a failure of type j at

time t, in the presence of all other failure types (54). With this cause-specific hazard

function approach, an event k (k �=j) is censored at time T if events other than type j are

observed. The cumulative incidence function, P (T ≤ t, ε = j),which is the probability of

occurrence of event j at time t is defined as:

Fj(t) =

� t

0

hj(s)S(s)d s , where S is the survival function for T.

Defining Si(t) to be the survival function based on hi(t) where S(t) =
�

i Sj(t), one

may show that the naive Kaplan-Meier estimator for Si(t) is a biased estimator for Fi(t),

generally underestimating this quantity (73).

From the definition of the cause-specific hazard function, the parameters of the cause-

specific hazard model can be estimated using a Cox proportional hazard model. The

treatment effects of event j can be obtained by maximizing the factor of the partial

likelihood function involving event j when other event(s) are treated as censoring events.

The semiparametric model of cause-specific hazard function is defined as:

hj(t) = h0j(t)exp{β�
jZ}

1.5.4 Subdistribution hazard function

The subdistribution hazard function is the other type of competing hazard function

which is derived directly from cumulative incidence function (30),

λj = {dFj(t)dt}/{1− Fj(t)}.
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The subdistribution hazard function is probabilistically defined as

λj(t) = lim
∆t→0

1

∆t
P (t < T < t+ δt, ε = j|T ≥ t ∪ (T ≤ T ∩ ε �= j).

For the subdistribution function, the cumulative probability of occurrence of cause J

remains less than one, the subdistribution satisfies the definition of an improper proba-

bility distribution. This occurs because an individual who had an event k no longer is at

risk of failure from causes j �= k.

Similarly to the cause specific hazard, a proportional hazards model may be specified

for the subdistribution hazard function to describe the treatment effect on the risk of

a particular cause of interest. The parameters of this model can be estimated using

methods for the Fine-Gray model (21). The semiparametric model for subdistribution

hazard function is:

λj(t) = λ0j(t)exp{β�
jZ}

1.6 The application using Real Data

For this example, we identified a cohort of Medicare beneficiaries who just had a

hospitalization stay for acute MI (AMI) in 2008. The condition AMI was identified from

Medicare inpatient claims files using relevant International Classification of Diseases,

Ninth Revision, Clinical Medication (ICD-9-CM) codes (410.01, 410.11, 410.21, 410.31,

410.41, 410.51, 410.61, 410.71, 410.81, 410.91). Personal identifiers were removed from

all analytical data files.

Eligible patients included in the cohort were at least 66 years old at the admission

date, living in the United States and had been continuously enrolled in Medicare Part

A at least one year. The exclusion criteria included the absence of specific ICD codes

(410.x1) as the first or second discharged diagnosis, patients who died during hospital

admission, patients who did not survive 30 days after discharge, AMI diagnosed only

from skilled nurse facility (SNF) claims, patients who only had AMI admission prior
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to 1/1/2008 and were discharged on or after 1/1/2008. Other exclusions were patients

who had discharge code to hospice (40, 41, 42, 50, 51), transfered to other hospitals

for inpatient care, patients who were discharged or transfered to SNF or long-term care

facilities for inpatient care, or who did not have a prescription claim within 30 days after

the index AMI discharge.

The exposure of interest was statin use after discharge. Patients initiating statin

therapy were considered statin users while patients without statin prescriptions were

considered nonusers. The follow up of these patients started at 31 days following the

date of discharge and ended at the occurrence of the outcome or at the end of the study.

The outcome of interest was the occurrence of MI or heart failure (HF) or stroke or all-

cause mortality. The effect of interest in this example was the marginal and conditional

treatment effect of statins on the cardiovascular outcomes or mortality in the presence

of competing risks.

Potential confounding covariates were created, including demographic characteristics

and clinical conditions based on claims occurring in the 12-month baseline period prior to

admission were created. These covariates were identified a priori based on the literature,

substantive knowledge, and the availability of covariates within the data. The variables

included both demographic and medical record at baseline, during admission and follow

up period. A list of these covariates appears in Table 1.1.

1.7 Objective and outline

The objective of this research study was to investigate the performance of estimators

when using various PS implementation methods in competing risk survival analyses for

estimating of marginal and condition treatment effect. The PSs were estimated using

logistic regression. The implementation methods examined included subclassification,

matching, PS adjusted into the model and weighting. The competing risks models used

were the cause-specific hazard model and the subdistribution hazard model.
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Chapter 2 describes the performance of PS methods incorporated in the competing

risk survival analytic approach for estimation of marginal treatment effects. Chapter 3

presents the performance of PS methods incorporated in competing risk survival analyses

for conditional treatment effects. The results presented in both chapters were from sim-

ulation studies as well as analyses of claims data evaluating the effect of statin treatment

on the risk of cardiovascular end points and mortality. Chapter 4 presents an application

of the proposed methods in an evaluation of the heterogeneous treatment effect of statins

across different age groups and revascularization procedure groups.
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Table 1.1: Variables included into propensity score model
General character gender, age, race, income, medicare doughnut
Charlson Comorbidity AMI, Cerebrovascular Disease,
index Congentive HF, Periphral vascular disease,

Renal disease, Chronic Obstructive Pulmonary disease,
Diabetes,Peptic Ulcer disease, Cancer, Dementia,
Connective Tissue disease, Rheumatic disease,
Mild liver disease, Moderate to severe liver disease,
Paralysis, Metastatic Carcinoma, AIDS/HIV,
Diabetes with and without complication

Baseline disease CABG, STENT, PTCA, unstable angina
Ischemic heart disease, Hyperkalemia
Atrial fibrillation, Hypertension, Hyperlipidemia,
End-stage renal disease, Osteroporosis, Asthma,
Hypotension,Rhabdomyolysis, Sinus bradycardia
heart block, Angioedema&hyperkalemia, CCI total score

Baseline medication statins, STENT/PTCA, Beta blocker, ACEI/ARB
hospital admission in baseline, Number of admission
Number of days stay in hospital

Admission procedure Subendocardial infarction,Congestive HF
/diagnosis Cardiogenic shock, Acute renal failure, Hypotension,

Cardiac dysrhythmias, cardiac catheterization, CABG,
PTCA, Angiocardiography, Platelet inhibitors
Thrombolytics and platelet inhibitors
Acute respiratory failure in AMI admission
Septic shock in AMI admission, Days stay in ICU
Days stay in coronary care unit, Total days in hospital

Medication record Physician visit, Cardiologist visit,
during Follow-up Revascularization procedure,

Number of admission to short-term acute care hospital,
Number of days to short term acute care hospital,

Co-medication angiotensin-converting-enzyme inhibitor (ACEI)/
angiotensin receptor blocker (ARB), Beta blockers

Current comorbidity Valvular disease or rheumatic heart disease
and assistance Hypothyroidism, Other neurological disorders

Obesity, Coagulation deficiency, Substance abuse
Weight loss, Fluid/electrolyte disorder
Blood loss, deficiency anemia
Pulmonary Circ. Disorders, Parkinson’s disease
Osteoarthritis, Gastrointestinal bleed, Use of rehabilitation
Use of screening, use of wheelchair
Weakness, Vertigo, Fall/difficulty walking
Bladder dysfunction, Decubitus, Use of Oxygen
Use of hospital bed, Use of ambulance, Nail care
Use of other assistive devices
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Chapter 2

Marginal Treatment Effects of Completing Risks Model

2.1 Introduction

A marginal treatment effect is the average treatment effect at the population level, de-

scribing the difference in outcomes between two comparable populations where everyone

in one population receives the treatment, while in the second population everyone receives

an alternative treatment or is untreated (75). It can be estimated in both experimental

and non-experimental settings. In the experimental setting, randomization balances the

characteristics of the treatment and control groups. With the assumption that all pa-

tients could receive either of the treatments under comparison and independence of the

treatment effects among patients, the balancing of covariates between treatment groups

are expected, thus the crude analysis without any adjustment results in an unbiased esti-

mate of the marginal treatment effect. Non-experimental studies based on administrative

claims or clinical databases are increasingly used for post-marketing safety and effective-

ness evaluation of treatments (39). These studies allow for estimation of treatment effects

in settings where randomized trials are impractical or unethical. The treatment alloca-

tion in non-experimental studies is often influenced by subject characteristics, however,

resulting in systematic differences between treatment groups possibly resulting in con-

founding or other bias. Thus, an unbiased estimate of the average treatment effect cannot

be directly obtained by comparing outcomes between the two treatment groups.
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PS methods have emerged as a useful approach, formalized by Rosenbaum and Ru-

bin (80), to balance measured confounding between treatment groups and thus reduce or

minimize the effect of confounding in the non-experimental setting when estimating treat-

ment effects. The propensity score is the conditional probability of receiving treatment

given measured baseline covariates. Among patients with the same propensity score,

the treatment assignment is unrelated to measured covariates included in the propensity

score model. The two treatment groups then have the same distribution of measured

confounders, which enhances comparability between the groups. The propensity score,

a continuous variable, can be implemented in various ways, including: matching, sub-

classification (stratification), inclusion in multivariate modeling, and inverse-probability

weighting (80, 76). Of these, the matching and weighting methods play an important

role in estimating the marginal treatment effect in the overall population. Under four as-

sumptions of (1) no unmeasured confounders, (2) positivity, (3) no misspecification, and

(4) consistency, weighting creates a pseudo-population in which exposure is independent

of confounding (17). Under assumption of no unmeasured confounders, the exposure and

outcome are independent within each level of a confounder variable, then the comparabil-

ity of treated and untreated groups exists (65). The positivity assumption specifies that

there are both treated and untreated subjects at every level of all confounder variables.

The third assumption (no misspecification) is that all models, including both the PS

models and the outcome model, are correctly specified (17). The consistency assumption

is formally defined such that the potential outcome of individual for a specific exposure

is the outcome that would be observed if he/she had received that specific exposure (15).

A competing risks survival analysis is the special case of survival analysis where

multiple events may occur and the occurrence of one event (e.g., death) may preclude the

occurrence of the event of interest. Competing events can threaten the validity of studies

interested in marginal effects, even in randomized control trials (64). Competing risk

models can be summarized using the distribution of the observed data or using underlying

mechanistic models which generate the observed data. A popular mechanistic model
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is the latent failure time model, but it cannot be used without strong and unverifiable

assumptions making it unattractive for practical usage (72). When modeling the observed

data, so-called crude functions are utilized. The cause-specific hazard and cumulative

incidence functions, which are based on the observed data, are the most widely used. For

non-experimental studies of a time-to-event outcome with competing events, statistical

methods that account for both competing risks and the effect of confounding are needed

to obtain a valid causal estimate of the marginal treatment effect.

IPTW, generated from the propensity score, can be used to control for confounding.

The IPTW is defined as the inverse of the estimated likelihood of receiving the treatment

actually received, which is the propensity score for the treated patients and one minus the

propensity score for the untreated patients (76). The IPTW method creates a pseudo-

population representative of the patient characteristics of the source population, thus

producing an effect estimate generalizable to the population from which the sample was

drawn. Assuming that the PS model was correctly specified, the measured covariates of

the pseudo-population are balanced across the two treatment groups, and no association

exists between measured confounders and treatment.

The IPTW method has been shown to have good performance in the estimation of

marginal treatment effects in Cox proportional hazards models (98, 4, 26). However,

IPTW can be unstable sometimes and a stabilized weighting method can be used to

remedy the instability. The stabilized weight (STW) is calculated by multiplying the

IPTW with the marginal probability of the treatment actually received (being treated

for the treated group and one minus the probability of being treated for the untreated

group) (76). STWmethods reduce the influence of extreme weights and produce narrower

confidence intervals for the estimator compared with the non-stabilized IPTW (17). In

all weighting analyses, appropriate statistical methods are needed to account for the

correlation between the replicated individuals created in the weighting process. A robust

sandwich variance estimate is required to calculate the variance of the estimator. This

approach results in confidence intervals that are conservative and wider leading to higher
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than nominal coverage (59).

The objective of this study was to investigate the performance of the IPTW and the

STW in estimating the marginal treatment effect using competing risks survival analysis

model. Both simulation and application in a substantive data analysis were performed.

2.2 Methods

2.2.1 Monte Carlo simulation

A series of Monte Carlo simulations were conducted in order to examine the per-

formance of inverse probability treatment weighting methods with two competing risk

models: the subdistribution hazard model and the cause-specific hazard model.

Let Z be the binary exposure and X be a vector of 10 confounding variables. For each

simulated dataset, the 10 covariates , Xl, l= (1,...,10) were generated from a Bernoulli

distribution with parameter 0.5. The probability that the exposure Z was equal to one,

which is the true propensity score, was estimated as a function of the covariates (α) using

a logistic model. The exposure indicator Z was drawn from a Bernoulli distribution with

probability set by

Pr(Z = 1|Xl) = α0 + ΣlαlXl

In order to evaluate the performance of the weighting methods in a range of settings,

four levels of confounding effect and three level of proportion of interesting event were

considered. We generated the confounding effects by iteratively varying αl untill the

desired Komogorov-Smirnov (KS) distance of 0.10, 0.25, 0.40 and 0.55 (Figure 1) were

reached. The larger KS distances represent the larger difference of covariates between

treated and untreated groups found in a non-randomized study, KS distances closer to

zero represent the differences found in a randomized study. The percentage of treated

group in the simulation setting was roughly 40%. The observed events of this study were

ε ∈{1,2}, ε=1 indicated events of interest and ε=2 indicated competing event. Three
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proportions of event of interest (ε =1) were generated, proportion (p) set in turn to 0.4,

0.6 and 0.8. The right censored times (Ci) were generated from a uniform distribution on

[0, 6] to have 20% censoring. All failure time variables were generated using a competing

risk model where treatment Z and covariates X were predictor variables. For individual

i, where the effect of treatment, βj,, for failure ε=1 (with either the cause-specific hazard

or subdistribution hazard) was fixed at -0.5 and for failure ε=2 was fixed at -0.06, which

is the conditional treatment effects.

The next two sections describe how the failure times were generated under the two

different hazard functions under presence of competing risks. After which the detail of

estimating true treatment effect for marginal model and PS estimated is described.

2.2.2 Simulation for subdistribution hazard function

The simulation method followed procedures described by Fine and Gray (21). The

failure time for ε=1, was generated from

Pr(Ti ≤ t, ε = 1|Z,X) = 1− [1− p{1− exp(−t)}]exp(Zβ1+Xlγl).

which is unit exponential with mass 1-p at infinity, Z, X =0 and p∈ {0.4, 0.6, 0.8}. The

subdistribution for ε = 2 was generated from Pr(ε = 2|Z) = 1 − Pr(ε = 1|Z) and

the time until failure event conditionally on ε = 2 was generated from an exponential

distribution with rate exp{β2Z + γl2Xl}.

2.2.3 Simulation for cause-specific hazard function

Let h1(t|Z,X) = θ1exp{β1Z + γl1Xl} and h2(t|Z,X) = θ2exp{β2Z + γl2Xl} be the

cause-specific hazard function, which is dependent on Z andXl, of event ε = 1 and event ε

= 2, respectively. The overall hazard rate was h(t|Z,X) = h1(t|Z,X) + h2(t|Z,X). The

failure time for each subject was generated from exponential distribution with hazard

rate h(t|Z,X). The event types, ε were generated from a Bernoulli experiment,

P (ε = 1|T < t) = h1(t|Z,X)

h(t|Z,X)
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where the parameter values were chosen such that P (ε = 1|T < t) were 0.4, 0.6 and

0.8 for all t (9, 8).

2.2.4 True marginal treatment effect

As discussed earlier, the true marginal treatment effect can be estimated from a ran-

domized trial. We simulated a dataset with the same parameters and settings described

above to estimate the true marginal treatment effect. This approach is necessary because

performing simulations using the models in 2.2.2 and 2.2.3 does not result in a marginal

proportional hazards model, that is, the marginal treatment effect is not correctly spec-

ified via the proportional hazard models. If one employs the misspecified proportional

hazard model in a data analysis, the resulting estimator estimates a parameter defined

in large samples as the limiting value to which that estimator converges. This problem

generally occurs in survival settings, when confounders are included in the true survival

model and marginalizing over the confounders does not generally result in a proportional

hazard model. The notion of convergence just described is standard with misspecified

models, where parameter estimators do not converge to true values of parameters in the

underlying models.

To determine the limiting value of the parameter estimator, a dataset with a size

of 100,000 was generated. The same distributions for the confounders were used. The

treatment variable Z was generated from a Bernoulli distribution with a parameter of

0.5, which imitates the randomization process. The true marginal treatment effect, mea-

sured as the difference in proportion of event of interest, was determined for both the

subdistribution hazard model and the cause-specific hazard model, based on fitting these

models using standard approaches. For the subdistribution hazard model, the approach

of Fine and Gray was used without propensity scores, while for the cause-specific hazard,

a standard partial likelihood analysis was utilized. Assuming consistency of the param-

eter estimator under the misspecified model, the estimator based on large sample size of

100,000 should be extremely close to the actual value being estimated.
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2.2.5 Propensity-based estimation of the treatment effect in simulations

For the simulated dataset, four different types of marginal models were fitted with the

two different competing risk analysis approaches: a crude model, a crude model based on

region of common support (13), weighted regression using IPTW and weighted regression

using STW. A conventional multivariable regression model, which is a conditional model,

was also fitted to investigate the performance of estimating marginal treatment effects.

For the two competing risk approaches, treatment effects from the cause-specific hazard

function were estimated using a Cox proportional hazard model, while treatment effects

from the subdistribution hazard function were obtained from the Fine-Gray model. The

analyses were performed in R 3.0.1 (102) using the package survival for Cox models (103)

and the package cmprsk for the Fine-Gray model (29).

For the weighted analyses, weights were calculated from the estimated PS. We esti-

mated the PS, p̂ for individual i, using a multivariable logistic regression model:

logit(p̂) = α̂0 + Σlα̂lXl

Weights for IPTW and STW were calculated using the following formulas:

IPTW =
Zi

p̂i
+

1− Zi

1− p̂i

STW = Z
Z̄

p̂i
+ (1− Z)

1− Z̄

1− p̂i
,

where Z̄ was the proportion of treated patients in the study sample.

A weighted regression of outcome on treatment was fitted using these weights and

the simulated data. Clustered analyses for both the Cox proportional hazard model and

the Fine-Gray model were applied to adjust for the correlation introduced by the repli-

cation in the weighting process. Clustered analysis of Cox proportional hazard models is

available in most of statistical packages. The clustered analysis of Fine-Gray model has

been proposed (113)and was performed to estimate the marginal effect using the package

crrSC in R (114).
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The performance of the various estimation approaches were evaluated through several

measures: the bias of the estimator from the true marginal treatment effect, the mean

squared error (MSE) and the percent coverage (% coverage) of the nominal 0.95 con-

fidence intervals. All performance measures were averaged over the 1,000 replications.

Two different sample sizes, 500 and 2000, were used for each simulated sample.

2.2.6 Propensity-based estimation of the treatment effect in a case study

The five different models described above were also applied to the post-MI cohort to

evaluate the marginal treatment effects of statins on three different cardiovascular out-

comes (MI, heart failure, and stroke) and all-cause mortality in the presence of competing

events. The PS was estimated using the covariates listed in Section 1.4.

2.3 Monte Carlo simulation results

2.3.1 True marginal treatment effects

The true marginal treatment effects for the three scenarios of competing risks are

summarized in Table 2.1. The true marginal treatment effects decreased inversely to the

proportion of the event of interest in both hazard models.

Table 2.1: True marginal treatment effect
proportion of ε=1

Model 0.4 0.6 0.8
subdistribution hazard -0.420 -0.390 -0.373
cause-specific hazard -0.426 -0.392 -0.384

2.3.2 Propensity-based estimation performance

The results obtained from the simulations for the four marginal models and one

conditional model are summarized in Table 2.2 and Table 2.3. The PS distributions

under the four different KS distances considered are shown in Figure 2.1.
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Figure 2.1: Density plots of treated and untreated group in four scenarios

26



Table 2.2: Simulation results of marginal treatment effect using competing risks (sample size =500)

p=0.4 p=0.6 p=0.8

β̂ Var(β̂) E(V) bias MSE %co. β̂ Var(β̂) E(V) bias MSE %co. β̂ Var(β̂) E(V) bias MSE %co.

K-S=0.10

SH crude -0.406 0.027 0.026 0.014 0.027 0.940 -0.379 0.019 0.018 0.011 0.019 0.940 -0.363 0.014 0.014 0.010 0.014 0.960

cru. CS -0.409 0.027 0.026 0.011 0.027 0.940 -0.381 0.018 0.019 0.009 0.018 0.950 -0.365 0.014 0.015 0.008 0.014 0.960

IPTW -0.439 0.023 0.027 -0.019 0.023 0.960 -0.410 0.015 0.020 -0.020 0.016 0.980 -0.391 0.010 0.015 -0.018 0.011 0.980

STW -0.414 0.025 0.026 0.005 0.025 0.960 -0.387 0.017 0.019 0.003 0.017 0.960 -0.371 0.013 0.015 0.002 0.013 0.970

Conv. -0.521 0.028 0.027 -0.101 0.039 0.910 -0.511 0.020 0.019 -0.122 0.035 0.870 -0.513 0.014 0.015 -0.140 0.034 0.810

CSH crude -0.395 0.030 0.028 0.031 0.031 0.940 -0.369 0.020 0.018 0.023 0.020 0.940 -0.352 0.015 0.013 0.032 0.016 0.930

cru. CS -0.398 0.030 0.029 0.028 0.031 0.950 -0.372 0.019 0.019 0.020 0.020 0.940 -0.355 0.014 0.014 0.029 0.015 0.940

IPTW -0.417 0.028 0.030 0.009 0.028 0.960 -0.392 0.017 0.020 -0.000 0.017 0.960 -0.378 0.012 0.014 0.006 0.012 0.970

STW -0.412 0.027 0.030 0.014 0.028 0.960 -0.387 0.017 0.019 0.005 0.017 0.960 -0.373 0.012 0.014 0.011 0.012 0.960

Conv. -0.511 0.034 0.031 -0.085 0.041 0.910 -0.511 0.022 0.020 -0.119 0.036 0.860 -0.514 0.017 0.014 -0.130 0.034 0.790

K-S=0.25

SH crude -0.262 0.026 0.025 0.158 0.051 0.810 -0.241 0.018 0.018 0.149 0.040 0.790 -0.233 0.014 0.014 0.140 0.033 0.790

cru. CS -0.277 0.025 0.026 0.143 0.046 0.840 -0.254 0.018 0.019 0.135 0.037 0.840 -0.246 0.013 0.015 0.127 0.030 0.830

IPTW -0.450 0.026 0.031 -0.030 0.027 0.960 -0.421 0.018 0.022 -0.031 0.019 0.980 -0.405 0.013 0.018 -0.032 0.014 0.980

STW -0.352 0.025 0.028 0.068 0.029 0.940 -0.327 0.017 0.021 0.062 0.021 0.940 -0.315 0.012 0.016 0.058 0.016 0.960

Conv. -0.510 0.031 0.029 -0.090 0.039 0.910 -0.502 0.023 0.021 -0.112 0.035 0.870 -0.507 0.016 0.016 -0.134 0.034 0.830

CSH crude -0.279 0.031 0.029 0.147 0.052 0.840 -0.256 0.019 0.019 0.136 0.037 0.830 -0.286 0.035 0.034 0.098 0.044 0.910

cru. CS -0.291 0.031 0.030 0.135 0.049 0.860 -0.268 0.019 0.019 0.124 0.034 0.850 -0.298 0.035 0.035 0.086 0.042 0.930

IPTW -0.433 0.033 0.035 -0.007 0.033 0.960 -0.407 0.019 0.023 -0.015 0.020 0.960 -0.444 0.038 0.041 -0.060 0.042 0.950

STW -0.413 0.032 0.035 0.013 0.032 0.970 -0.388 0.019 0.022 0.004 0.019 0.960 -0.425 0.037 0.040 -0.041 0.038 0.950

Conv. -0.512 0.038 0.034 -0.086 0.045 0.910 -0.509 0.022 0.021 -0.117 0.036 0.880 -0.513 0.042 0.039 -0.129 0.059 0.890

K-S=0.40

SH crude -0.640 0.027 0.028 -0.221 0.075 0.740 -0.595 0.020 0.019 -0.205 0.062 0.700 -0.566 0.016 0.015 -0.193 0.053 0.660

cru. CS -0.599 0.028 0.029 -0.179 0.060 0.830 -0.554 0.020 0.021 -0.165 0.047 0.800 -0.527 0.016 0.016 -0.154 0.040 0.790

IPTW -0.429 0.046 0.048 -0.009 0.046 0.960 -0.389 0.031 0.034 0.001 0.031 0.960 -0.375 0.022 0.026 -0.002 0.022 0.970

STW -0.474 0.042 0.044 -0.055 0.045 0.950 -0.433 0.028 0.031 -0.043 0.030 0.950 -0.415 0.020 0.024 -0.042 0.022 0.960

Conv. -0.524 0.038 0.036 -0.104 0.048 0.920 -0.511 0.028 0.025 -0.121 0.042 0.880 -0.509 0.021 0.020 -0.136 0.039 0.830

CSH crude -0.588 0.027 0.028 -0.162 0.053 0.850 -0.557 0.018 0.018 -0.165 0.045 0.780 -0.536 0.013 0.014 -0.152 0.037 0.770

cru. CS -0.555 0.028 0.030 -0.129 0.045 0.910 -0.524 0.019 0.020 -0.132 0.036 0.850 -0.503 0.014 0.015 -0.119 0.028 0.850

IPTW -0.422 0.043 0.048 0.004 0.043 0.960 -0.386 0.029 0.032 0.006 0.029 0.960 -0.368 0.021 0.023 0.016 0.021 0.960

STW -0.434 0.041 0.046 -0.008 0.041 0.960 -0.398 0.027 0.030 -0.006 0.027 0.970 -0.379 0.019 0.022 0.005 0.020 0.970

Conv. -0.525 0.040 0.038 -0.099 0.049 0.920 -0.516 0.027 0.025 -0.124 0.042 0.870 -0.515 0.020 0.018 -0.131 0.037 0.840

K-S=0.55

SH crude -0.744 0.030 0.028 -0.324 0.134 0.510 -0.691 0.020 0.019 -0.302 0.111 0.410 -0.658 0.014 0.015 -0.285 0.095 0.360

cru. CS -0.665 0.031 0.031 -0.245 0.091 0.710 -0.614 0.022 0.022 -0.224 0.072 0.690 -0.585 0.015 0.017 -0.212 0.060 0.650

IPTW -0.434 0.097 0.077 -0.014 0.097 0.920 -0.398 0.065 0.056 -0.008 0.065 0.940 -0.377 0.047 0.044 -0.004 0.047 0.960

STW -0.477 0.090 0.071 -0.057 0.094 0.920 -0.437 0.059 0.052 -0.047 0.062 0.940 -0.414 0.042 0.040 -0.040 0.044 0.960

Conv. -0.524 0.044 0.041 -0.104 0.055 0.910 -0.509 0.031 0.029 -0.119 0.045 0.880 -0.511 0.024 0.023 -0.138 0.043 0.840

CSH crude -0.675 0.031 0.028 -0.249 0.093 0.670 -0.647 0.019 0.018 -0.255 0.084 0.510 -0.631 0.013 0.014 -0.247 0.074 0.440

cru. CS -0.613 0.032 0.031 -0.187 0.067 0.820 -0.583 0.019 0.020 -0.191 0.055 0.720 -0.564 0.014 0.015 -0.180 0.047 0.690

IPTW -0.419 0.073 0.067 0.007 0.073 0.950 -0.405 0.048 0.046 -0.013 0.048 0.950 -0.382 0.035 0.037 0.002 0.035 0.970

STW -0.433 0.069 0.063 -0.007 0.069 0.950 -0.417 0.046 0.044 -0.025 0.046 0.950 -0.393 0.033 0.035 -0.009 0.033 0.970

Conv. -0.508 0.044 0.043 -0.082 0.051 0.930 -0.511 0.028 0.028 -0.119 0.042 0.900 -0.514 0.021 0.021 -0.130 0.038 0.860

p=proportion of ε=1, β̂=estimator, Var(β̂)= empirical variance, E(V)=average variance, SH=subdistribution hazard function,

CSH=cause-specific hazard function, conv.=conventional model Crude = Crude model: λ1(t|Z) = λ0(t)exp{βZ} ,Cru.-CS= crude model under common support ,

IPTW= weighted model by IPTW, STW=weighted model by stabilized weighted,Conv.=conventional model.
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Table 2.3: Simulation results of marginal treatment effect using competing risks (sample size =2000)

p=0.4 p=0.6 p=0.8

β̂ Var(β̂) E(V) bias MSE %co. β̂ Var(β̂) E(V) bias MSE %co. β̂ Var(β̂) E(V) bias MSE %co.

K-S=0.10

SH crude -0.398 0.006 0.006 0.022 0.007 0.950 -0.376 0.004 0.005 0.013 0.004 0.960 -0.358 0.003 0.004 0.015 0.003 0.950

cru. CS -0.398 0.006 0.006 0.022 0.007 0.960 -0.377 0.004 0.005 0.013 0.004 0.960 -0.358 0.003 0.004 0.015 0.003 0.950

IPTW -0.430 0.006 0.007 -0.010 0.006 0.970 -0.406 0.004 0.005 -0.016 0.004 0.970 -0.386 0.003 0.004 -0.013 0.003 0.980

STW -0.401 0.006 0.006 0.019 0.006 0.960 -0.380 0.004 0.005 0.010 0.004 0.960 -0.361 0.003 0.004 0.012 0.003 0.960

Conv. -0.502 0.007 0.007 -0.082 0.013 0.830 -0.502 0.005 0.005 -0.113 0.017 0.620 -0.501 0.003 0.004 -0.128 0.020 0.450

CSH crude -0.395 0.007 0.007 0.031 0.008 0.930 -0.372 0.004 0.005 0.020 0.005 0.940 -0.349 0.003 0.003 0.035 0.005 0.910

cru. CS -0.395 0.007 0.007 0.031 0.007 0.940 -0.372 0.004 0.005 0.020 0.005 0.950 -0.349 0.003 0.003 0.035 0.004 0.910

IPTW -0.418 0.007 0.007 0.008 0.007 0.970 -0.396 0.004 0.005 -0.004 0.004 0.980 -0.374 0.003 0.004 0.010 0.003 0.980

STW -0.412 0.006 0.007 0.014 0.006 0.960 -0.391 0.004 0.005 0.001 0.004 0.980 -0.370 0.003 0.003 0.014 0.003 0.980

Conv. -0.502 0.008 0.007 -0.076 0.013 0.850 -0.504 0.005 0.005 -0.112 0.017 0.630 -0.502 0.004 0.004 -0.118 0.018 0.500

K-S=0.25

SH crude -0.263 0.007 0.006 0.157 0.031 0.480 -0.245 0.005 0.005 0.145 0.025 0.420 -0.231 0.004 0.004 0.142 0.024 0.340

cru. CS -0.267 0.007 0.006 0.153 0.030 0.500 -0.249 0.005 0.005 0.141 0.024 0.460 -0.235 0.003 0.004 0.138 0.022 0.360

IPTW -0.449 0.007 0.007 -0.029 0.007 0.950 -0.423 0.004 0.005 -0.033 0.005 0.960 -0.401 0.003 0.004 -0.028 0.004 0.970

STW -0.343 0.006 0.007 0.077 0.012 0.860 -0.323 0.004 0.005 0.067 0.009 0.860 -0.305 0.003 0.004 0.068 0.008 0.840

Conv. -0.505 0.007 0.007 -0.085 0.014 0.830 -0.502 0.005 0.005 -0.113 0.018 0.640 -0.500 0.004 0.004 -0.126 0.020 0.480

CSH crude -0.398 0.007 0.007 0.028 0.007 0.930 -0.377 0.005 0.004 0.015 0.005 0.940 -0.358 0.003 0.003 0.026 0.004 0.920

cru. CS -0.398 0.007 0.007 0.028 0.008 0.930 -0.376 0.005 0.004 0.016 0.005 0.940 -0.357 0.003 0.003 0.027 0.004 0.920

IPTW -0.413 0.007 0.008 0.013 0.007 0.960 -0.391 0.004 0.005 0.001 0.004 0.960 -0.370 0.003 0.004 0.014 0.003 0.960

STW -0.412 0.007 0.008 0.014 0.007 0.960 -0.390 0.004 0.005 0.002 0.004 0.960 -0.369 0.003 0.004 0.015 0.003 0.950

Conv. -0.501 0.008 0.008 -0.075 0.014 0.860 -0.503 0.006 0.005 -0.111 0.018 0.650 -0.500 0.004 0.004 -0.116 0.017 0.510

K-S=0.40

SH crude -0.628 0.007 0.007 -0.208 0.050 0.290 -0.594 0.005 0.005 -0.204 0.047 0.170 -0.566 0.004 0.004 -0.193 0.041 0.120

cru. CS -0.610 0.007 0.007 -0.190 0.043 0.370 -0.576 0.005 0.005 -0.187 0.040 0.240 -0.549 0.004 0.004 -0.176 0.035 0.190

IPTW -0.412 0.011 0.012 0.008 0.011 0.960 -0.386 0.007 0.008 0.004 0.007 0.970 -0.368 0.005 0.006 0.006 0.005 0.970

STW -0.465 0.010 0.011 -0.045 0.012 0.940 -0.436 0.006 0.008 -0.047 0.008 0.940 -0.416 0.005 0.006 -0.043 0.007 0.940

Conv. -0.501 0.009 0.009 -0.081 0.015 0.860 -0.499 0.006 0.006 -0.110 0.018 0.700 -0.500 0.005 0.005 -0.127 0.021 0.550

CSH crude -0.583 0.007 0.007 -0.157 0.032 0.560 -0.560 0.005 0.005 -0.168 0.033 0.290 -0.537 0.004 0.003 -0.153 0.027 0.260

cru. CS -0.569 0.007 0.007 -0.143 0.028 0.630 -0.545 0.005 0.005 -0.153 0.028 0.380 -0.522 0.004 0.003 -0.138 0.023 0.350

IPTW -0.398 0.011 0.012 0.028 0.012 0.950 -0.377 0.006 0.008 0.015 0.007 0.960 -0.356 0.004 0.006 0.028 0.005 0.960

STW -0.413 0.010 0.011 0.013 0.011 0.960 -0.391 0.006 0.007 0.001 0.006 0.970 -0.369 0.004 0.006 0.015 0.004 0.980

Conv. -0.503 0.009 0.009 -0.077 0.015 0.870 -0.507 0.006 0.006 -0.115 0.019 0.690 -0.503 0.004 0.004 -0.119 0.019 0.570

K-S=0.55

SH crude -0.732 0.007 0.007 -0.312 0.104 0.030 -0.693 0.005 0.005 -0.303 0.097 0.010 -0.663 0.004 0.004 -0.290 0.088 0.000

cru. CS -0.693 0.007 0.007 -0.273 0.082 0.090 -0.656 0.005 0.005 -0.266 0.076 0.040 -0.627 0.004 0.004 -0.254 0.068 0.020

IPTW -0.406 0.020 0.022 0.014 0.020 0.960 -0.388 0.015 0.016 0.002 0.015 0.960 -0.373 0.012 0.012 -0.000 0.012 0.960

STW -0.455 0.017 0.020 -0.035 0.019 0.950 -0.431 0.013 0.014 -0.041 0.015 0.940 -0.413 0.010 0.010 -0.040 0.012 0.930

Conv. -0.497 0.010 0.010 -0.078 0.016 0.870 -0.499 0.007 0.007 -0.109 0.019 0.760 -0.506 0.006 0.006 -0.133 0.024 0.580

CSH crude -0.672 0.007 0.007 -0.246 0.067 0.150 -0.641 0.005 0.005 -0.249 0.067 0.030 -0.622 0.003 0.003 -0.238 0.060 0.020

cru. CS -0.642 0.007 0.007 -0.216 0.054 0.290 -0.610 0.005 0.005 -0.218 0.052 0.100 -0.590 0.003 0.004 -0.206 0.046 0.070

IPTW -0.398 0.019 0.020 0.028 0.020 0.960 -0.374 0.012 0.013 0.018 0.012 0.960 -0.358 0.009 0.010 0.026 0.010 0.960

STW -0.414 0.018 0.019 0.012 0.018 0.960 -0.388 0.011 0.013 0.004 0.011 0.960 -0.371 0.008 0.010 0.013 0.009 0.970

Conv. -0.503 0.010 0.010 -0.077 0.016 0.880 -0.502 0.007 0.007 -0.110 0.019 0.730 -0.503 0.005 0.005 -0.119 0.019 0.620

p=proportion of ε=1, β̂=estimator, Var(β̂)= empirical variance, E(V)=average variance, SH=subdistribution hazard function,

CSH=cause-specific hazard function, conv.=conventional model Crude = Crude model: λ1(t|Z) = λ0(t)exp{βZ} ,Cru.-CS= crude model under common support ,

IPTW= weighted model by IPTW, STW=weighted model by stabilized weighted,Conv.=conventional model.
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As shown in Table 2.2 and Table 2.3, the model adjusted by weighed methods, either

IPTW or STW, had the highest percent of true estimator coverage and the least amount

of bias under all scenarios considered. The percent of true value coverage of the weighted

model was higher than 95% for all scenarios. The bias-variance trade-off can be observed

in weighted models, however, the percent coverage of both weighted methods were close.

In the weighted model, the bigger amount of bias showed with the larger KS distance.

The two weighted regressions also performed better than the other models when sample

sizes were smaller. In situations with a low occurrence of the event of interest and a large

KS distance, the estimators of the weighted methods had variances remarkably different

from the other models. In the IPTW model and KS =0.55, the variance estimator from

the model based approach was reduced by 80% when using the bootstrapping method.

In the STW, variance from bootstrapping method was reduced to 60% with the same

KS.

For the crude model, which is unadjusted, the marginal treatment effects can be

estimated from a randomized study. However, the same model, used in an observational

study where confounding variables are present, may result in a biased estimator. As the

level of confounding increases, the bias increases. In this study, the crude models were

more sensitive than the weighted models to the level of confounding as measured by KS

distance. When the KS distance increased from 0.1 to 0.55, the amount of bias increased

less than three times for the weighted estimators. In comparison to the crude model, the

crude model under common support showed improved efficiency in terms of bias, MSE

and percent coverage.

The conventional model, which yielded estimators of the conditional treatment effects

by including all confounding in the model, was shown to be a poor estimator of the

marginal treatment effects. The estimators from the conventional model were more stable

than the other models when the confounding level increased. However, the estimator from

conventional model may not be the true causal estimator.
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2.4 Case study results

In the study of statin treatment effects in the elderly who experienced myocardial

infarction, randomization was unethical and the mortality event highly competed other

cardiovascular disease outcomes. The cardiovascular outcomes of interest were MI, HF

and stroke while all-cause mortality was a competing event. A total of 71,030 patients

from the Medicare claims data were included in the analysis, and 64.5% of them received

statins after discharge. As presented in Table 2.4, the unadjusted percentage of patients

that had the occurrence of MI, mortality, stroke and heart failure were lower in the statin

users group. All cause mortality constituted the highest percentage among observed

events in both statin user and non-user groups.

Table 2.4: Number and percent of observed outcomes

Survived Mortality MI stroke heart failure

Non-statins number 14529 5749 2812 506 1643

percent 57.6 22.8 11.1 2.0 6.5

Statins number 31509 6318 4415 831 2718

percent 68.8 13.8 9.6 1.8 5.9

For the PS estimated using a logistic regression, the strong predictors for the proba-

bility of receiving statin treatment were baseline statins (α̂= 1.66), admission for CABG

(α̂=0.68), admission for stent/PTCA (α̂=0.66), beta blocker users (α̂=0.99) and moder-

ate to severe liver disease (α̂=-0.58). Those variables were consistent with the indications

for treatment with statins (56, 52, 101) The KS distance between the PS distribution of

statin users and non-statin user was 0.418, and the c statistics was 0.767.

As shown in Table 2.5, the unadjusted crude model showed large marginal treatment

effects for all outcomes, indicating bias in non-experimental studies. The results from

crude model showed that statins significantly reduced the risk of recurrent MI, stroke,

heart failure and all cause mortality. The use of the IPTW resulted in a large amount of

weighting, the maximum weighting was 46. The weighted models, which were expected
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to show a good efficiency for the estimator, did not show a significant effect for statins

for statins for reducing the risk of stroke or recurrent MI, but did show that statins

significantly reduced the risk of HF and all-cause mortality. IPTW and STW methods

showed an inconsistency when the event was recurrent MI.

The estimated statin treatment effects for stroke from STW presented different results

for the Fine-Gray model and the Cox proportional hazard model. The estimators from

the cause-specific hazard function were larger than subdistribution hazard function for

all outcomes. In addition, the estimator from the cause-specific hazard function can

be overestimated when summarized from the competing risks survival model with the

cumulative incidence function. The estimators from applying STW to subdistribution

hazard function seem to be reasonable to use for the marginal treatment effects for this

data.

To account for the large variance resulting from the low occurrence of event of interest

and the great separation in the propensity score distributions, a bootstrapping method

was used to obtain variance estimates. With this approach, the variance of the estima-

tors were decreased to 40% and 20% of the model-based sandwich variance estimator for

IPTW and STW methods, respectively (Table 2.6). As a result, the effect estimate for

MI and heart failure from the IPTW model changed from non-significant to significant

(α = 0.05). STW also showed a different result, in terms of significance of effect, for the

stroke endpoint. This finding of the large reduction in variances observed here has not

been described previously. This may be due, in part, to the large number of confounders

being adjusted for in the propensity score. In general, greater reductions in variance can

be expected from larger propensity score models.
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Table 2.5: The treatment effects of statins for elderly who were hospitalized for an AMI

subdistribution model cause-specific model

Failure β̂ SE p-value β̂ SE p-value

MI Crude -0.153 0.024 0.000 -0.222 0.024 0.000

Crude-CS -0.153 0.024 0.000 -0.222 0.024 0.000

IPTW∗ 0.041 0.016 0.011 0.039 0.016 0.017

STW∗ 0.003 0.024 0.905 -0.010 0.024 0.676

Conv. -0.003 0.027 0.900 -0.021 0.027 0.440

All-cause Crude -0.553 0.018 0.000 -0.581 0.018 0.000

mortality Crude-CS -0.553 0.018 0.000 -0.581 0.018 0.000

IPTW∗ -0.045 0.013 0.001 -0.042 0.014 0.002

STW∗ -0.126 0.018 0.000 -0.129 0.018 0.000

Conv. -0.132 0.021 0.000 -0.130 0.021 0.000

Stroke Crude -0.101 0.056 0.075 -0.196 0.056 0.001

Crude-CS -0.101 0.056 0.074 -0.196 0.056 0.001

IPTW∗ -0.056 0.036 0.125 -0.057 0.036 0.116

STW∗ -0.097 0.053 0.068 -0.112 0.053 0.034

Conv. -0.095 0.063 0.130 -0.112 0.063 0.075

HF Crude -0.095 0.031 0.002 -0.176 0.031 0.000

Crude-CS -0.095 0.031 0.002 -0.176 0.031 0.000

IPTW∗ -0.067 0.022 0.003 -0.065 0.022 0.003

STW∗ -0.077 0.032 0.016 -0.088 0.032 0.006

Conv. -0.048 0.035 0.170 -0.066 0.035 0.059

*Standard error estimated from bootstrapping method
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Table 2.6: Comparison of the variance of the model-base sandwich and bootstrapping
method

subdistribution hazard cause-specific hazard

β̂ SE p-value % reduc. β̂ SE p-value % reduc.

IPTW MI model 0.041 0.031 0.186 0.039 0.031 0.208

boots. 0.040 0.016 0.012 73.4 0.038 0.016 0.018 73.4

Death model -0.045 0.023 0.050 -0.042 0.023 0.068

boots. -0.044 0.013 0.001 68.1 -0.058 0.014 0.000 62.9

Stroke model -0.056 0.070 0.424 -0.057 0.070 0.415

boots. -0.057 0.036 0.113 73.6 -0.058 0.036 0.107 73.6

HF model -0.067 0.040 0.094 -0.065 0.041 0.113

boots. -0.068 0.022 0.002 69.8 -0.067 0.022 0.002 71.2

STW MI model 0.003 0.030 0.920 -0.010 0.030 0.739

boots. 0.005 0.024 0.835 36.0 -0.008 0.024 0.739 36.0

Death model -0.126 0.023 0.000 -0.129 0.023 0.000

boots. -0.125 0.018 0.000 38.8 -0.127 0.018 0.000 38.8

Stroke model -0.097 0.068 0.154 -0.112 0.068 0.100

boots. -0.098 0.053 0.064 39.3 -0.113 0.053 0.033 39.3

HF model -0.077 0.039 0.048 -0.088 0.039 0.024

boots. -0.077 0.032 0.016 32.7 -0.088 0.032 0.006 32.7

β̂=treatment effect estimator,

%reduc. = percent of variance reduction from model-base variance

model=model-base sandwich variance estimator, boots=bootstrapping variance estimator
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2.5 Discussion

In this study we examined the performance of propensity score-based methods in the

presence of competing risks . Two hazard functions for competing risk methods were

considered: the cause-specific hazard function and the subdistribution hazard function.

Two weighting methods, IPTW and STW were shown to have the smallest amount of

bias and the highest percent coverage compared to other models. The advantage of the

STW method had over the IPTW methods shown in Xu et al (111) for conventional

linear regression models was not clearly exhibited for the competing risks model in this

study. Suarez et al (99) examined the differences between marginal structural models

(MSMs) and conventional models and found that the estimators from MSMs had a 20%

difference in effect size from a conventional model, but MSMs estimators had a 19%

larger standard error. This study also saw inflated variances in the weighted models in

comparison with the conventional model and the crude models. This inflation was more

pronounced when the occurrence of the event of interest was low and the separation

between propensity score distributions of the two treatment groups was high. Hahn (36)

demonstrated that PS does not decrease the asymptotic variance bound when estimating

average treatment effect. In this situation, the bootstrapping method is recommended

to obtain the variance.

The estimates for the true marginal treatment effect calculated from the random-

ization trial simulation were not equal to the true parameters specified in the setup of

simulations. This was due to the non-collapsibility characteristic of estimators from non-

linear models. The conventional conditional model yielded greater biases in the effect

estimator due to the same non-collapsibility of estimators from nonlinear models. The

marginal treatment effects from nonlinear models, such as survival analysis, are usually

closer to the null compared to a conditional model (71). It is also possible that there

was an imbalance in the data. Gail et al (25) showed that the estimator from unadjusted

analyses of randomized trials could be biased when important variables were not well
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controlled. It is similar to the situation where the assumption of no model misspecifi-

cation was violated in MSMs. In order to obtain an unbiased estimator, one needs an

excellent knowledge of confounders and risk factors for the question of interest. Our

analyses were limited to data available in Medicare claims, which may not capture all

potential risk factors.

The KS distance was used to characterize the differences between density functions of

the propensity scores of the two treatment groups. The KS distance increases when the

confounding variables are highly predictive of the probability of receiving treatment. In

simulations presented in this study, efficiency of estimators decreased as the KS distance

increased, which also produced an increase in bias and a decrease in percent coverage.

We chose KS distance as a measure of confounding for several reasons. In studies using

propensity score methods, c-statistics are widely used to show how well the propensity

score model can discriminate between treatment groups (46). Westreich (107) demon-

strated that higher values of the c-statistics may be associated with less overlap of propen-

sity score distributions between the treated and untreated groups. Austin et al (5) found

that c-statistics has no association with the ability of propensity scores to balance con-

founding factors between the treated and untreated groups when matching methods were

used. In comparison, the KS distance is based on the empirical distribution function,

and the supremum of absolute differences between the empirical distribution of treated

and untreated is reported (63). We thus believe the KS distance is a better measure for

this study.

Our findings should be interpreted in light of some limitations. This study consid-

ered a relatively small number of dichotomous confounding factors in the simulations.

In practice, the number of confounding factors in observational studies can be large,

the confounding factors may be continuous (such as age), and continuous confounding

factors increase the chance of model misspecification. Further investigations are needed

to evaluate the performances of these models when continuous confounding variables are

present.
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In conclusion, the weighted methods, IPTW and STW, could be used to control for

confounding when conducting competing risk analyses to estimate the marginal treatment

effects. Appropriate variance estimation approaches are needed when the frequency of

the event of interest is low and the distance between propensity score distributions of the

two treatment groups are high. In this situation, a bootstrapping method can be used

to obtain variance estimates which appropriately take advantage of the estimation of the

propensity score.
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Chapter 3

Conditional Treatment Effects of Competing Risks Models

3.1 Introduction

A conditional treatment effect is the average effect of treatment on the individual.

Non-experimental studies are increasingly used to evaluate the effect of treatments on

outcomes, especially for medications that have been released on the market (11). In

these studies, the treatment choice is often influenced by the characteristics of patients,

and this may lead to confounding due to characteristics present in patients before the

treatment choice is made that may influence both the choice and future events (96).

Therefore, in order to obtain a valid estimate of the treatment effect on outcomes, one

must account for these systematic differences.

Multivariable regression adjustment has been widely used to control for confounding

by including potentially confounding baseline covariates in the outcome model. Recently,

methods based on PS have been increasingly used to control for confounding in estimation

of the treatment effects in non-experimental studies. Such approaches may be used to

obtain unbiased estimates of adjusted treatment effects from regression models (which

include confounding variables also present in the PS models) as well as the marginal

treatment effects discussed in Chapter 2.

The performances of PS methods have been investigated in both Monte Carlo simula-

tions and systematic reviews. When applied to linear regression, the PS methods showed

similar or better results as a multivariate regression (88, 89, 70). Using PS methods
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with logistic regression leads to better control of imbalances between treatment groups

than conventional logistic regression provides when the event to confounder ratio is less

than 7:1 (14). In time-to-event analyses where PS methods were applied to Cox pro-

portional hazard models, the PS pair-matching method had the smallest amount of bias

compared to other methods (26, 4). PS matching and subclassification yielded a larger

treatment effect compared to conventional Cox proportional hazard models (62). Little

has been done to evaluate the performance of PS methods when used with competing

risks analyses.

Competing risk methods extend the applicability of survival analysis to situations

where there are multiple outcome events but only the first occurring event for each sub-

ject is observable. These methods are being increasingly used in studies where competing

events are likely to occur. However, competing risk models conventionally use multivari-

able adjustment, including all the covariates in the outcome model, which is not suitable

in studies where the outcome of interest is rare and a large number of confounders are

present (11). It was natural to consider applying PS methods to reduce or diminish the

effect of confounding in competing risks analysis. This study aimed to investigate the

performance of PS methods to estimate conditional treatment effects when applied to

competing risks analyses where a large number of confounders are present.

3.2 Methods

3.2.1 Monte Carlo simulation

We conducted a series of Monte Carlo simulations in order to examine the perfor-

mance of several PS methods with two competing risk models for estimating conditional

treatment effects: the subdistribution hazard model and the cause-specific hazard model.

Let Zn×1 be the matrix of binary treatment, Z ∈ {0, 1}, where z=1 if treated and

z=0 if untreated. Let Xn×l T be the matrix of confounding variables with sample size

n ∈ {500, 1000, 2000} and l numbers of confounding variables l ∈ {5, 15, 50, 100}.
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The set of confounders consisted of both binary and continuous variables. The binary

confounding were generated from a Bernoulli distribution with parameter p = 0.5. The

continuous confounding variables were generated from a normal distribution with zero

mean and unit variance. The total number of confounding variables dictated the number

of continuous variables that were generated: for a total of 5 or 15, one continuous variable

was generated; for a total of 50 confounders, 3 continuous variables were generated; for

a total of 100, 5 variables were generated.

The probability that the exposure was equal to one, which is the true PS, was gen-

erated as a function of the confounding. The vector Z was drawn from a Bernoulli

distribution with probability set by

logit(θ) = α0 + ΣlαlXl

where θ is the probability to receive treatment, and αl are parameters for covariates

included in the PS model. The values of α were fixed at levels such that the distance

between PS distributions of the treated and untreated group measured by KS distance

was equal to 0.2.

Two types of hazard model used in competing risks analysis were considered: cause-

specific hazard function (51) and subdistribtion hazard function (30). Failure times were

generated using the two hazard functions given the presence of competing events using

methods similar to those presented in Chapter 2. Two types of observing event and the

proportion of the event of interest was 0.6. The true treatment effects (β) on the outcome

considered were 0 for the null model and -0.5 for the alternative model. The censored

data (Ci) were generated from a uniform distribution to generate 20% of censoring.

3.2.2 Propensity-based estimation of the treatment effect in simulations

For each simulated dataset, five different models were fitted with the two different

competing risk analysis approaches: PS matching, PS matching under common support

area, subclassification, PS adjustment in the model.
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3.2.2.1 PS matching

PS matching methods attempt to choose a single or multiple patients from the un-

treated group with the same values of the PS variable for each patient in the treated

group. There are three ways to implement PS matching: pair matching (one-to-one

matching), many-to-one matching and full matching. Pair matching method is the most

common method for PS matching. Full matching includes all subjects and groups them to

their best matching sets. This method reduces bias more effectively than pair matching

and result in closer matches than many-to-one matching (37). Full matching results in

matched sets consisting at least one treated and at least one untreated, thus potentially

creating a wide range of treated to untreated ratio (94).

In this simulation, we used full matching. The distance matrix was constructed from

rank based Mahalanobis distance and the caliper was 0.2×S.D of PS (79). The sample

was matched using two different methods, the entire sample approach and the common

support approach. The common support approach included only subjects who fell under

the overlap area between PS distribution of the treated and untreated.

A stratified Cox model was applied to estimate the conditional treatment effect with

the cause-specific hazard function. For the full matching method, the number of strata

increases as the sample size increases, which could impact the power of Cox model (103).

The cause-specific hazard function for the kth stratum is

hk(t, Z,X) = h0k(t)exp(βZ + γX)

Stratification for the Fine-Gray model was developed with two stratification regimes

, highly stratified and regular stratified (115). The highly stratification method applies

when the size of stratum is finite as n → ∞. The regular stratification method is used

when the number of strata is finite, a larger total sample size can produce larger sample

size in the stratum.

The subdistribution hazard function for the kth stratum (group of matching PS) is
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λk(t, Z) = λ0k(t)exp(βZ)

whereλ0k is the baseline hazard function for stratum k.

3.2.2.2 Subclassification

Subclassification is a method used to adjust for confounding factors by classifying the

treated and untreated into strata based on percentiles of PS. We used quintiles of PS,

as is generally done to divide the subjects into strata, to conduct subclassification. The

quintiles of PS can remove approximately 90% of the initial bias due to confounding (81).

For the cause-specific hazard function analysis, a stratified Cox model was employed

to estimate the treatment effect. With this model, the baseline hazard function varies

by each subclass or stratum. The number of strata from subclassification is smaller than

the full PS matching used in Section 3.2.2.1, and it may have less impact on the sample

sizes and power of the Cox model.

The regular stratification method of the Fine-Gray model was applied to the subdis-

tribution hazard function data analysis (115).

3.2.2.3 Adjustment for PS in the model

Including PS adjustment in an outcome regression model is another standard PS

implementation method. This approach assumes a specific function form for the rela-

tionship of the PS to the outcome. Violation of this assumption can introduce a large

amount of bias when the covariance of the treated and untreated group are unequal (19).

For this study, a multivariable Cox model was used to estimate the treatment effect

for the cause-specific hazard function and a multivariable Fine-Gray model was used to

estimate the treatment effect for the subdistribution hazard function.

All analyses in this study were performed in R version 3.0.1 (102). The package

survival (103) was employed for the cause-specific hazard function. The packages cmprsk

(29) and crrSC (114) were used to analyze the data from the subdistribution hazard
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function. The package optmatch (38) were used for PS matching. The performance of

the various estimation approaches were evaluated through several measures: the bias of

the estimator from the true treatment effect, the mean squared error (MSE), power and

the percent coverage of the nominal 0.95 confidence intervals. All performance measures

were averaged over the 1,000 replications. Three different sample sizes, 500, 100 and

2000 were used for each simulated sample. The null model and alternative model were

tested, the true treatment effect for null model was fixed at 0 while true treatment effect

for alternative model was fixed at -0.5.

3.2.3 Propensity-based estimation of the conditional treatment effect in a

case study

The five different models described above were also used with the dataset extracted

from the Medicare claims data of the elderly post-AMI cohort to evaluate the conditional

treatment effects of statins on three different cardiovascular outcomes (MI, HF, and

stroke) and all-cause mortality. The patients who died within 30 days after discharge

were excluded from the analysis. The patients were followed up from 31 days after

discharge until the occurrence of the first event: MI, stroke, HF or death.

The PS was estimated in a logistic regression model using a list of 134 covariates

identified a priori, including baseline demographics, comorbidities, medications, proce-

dures, current cormorbidities, medication and diagnoses during admission, interaction

terms between age and group of total CCI also included in the PS model. Details of the

variables included in the model and estimators appear in Appendix 1.

The competing risks models, one using the subdistribution hazard function and the

other using the cause-specific hazard function, were applied to estimate treatment effects

of statins on the risk of MI, stroke, HF and mortality. The R package was used to analyze

the data.
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3.3 Simulation results

The estimators for conditional treatment effects under all considered scenarios are

summarized in Table 3.1- Table 3.4. The performance of the estimators was different

for each of the following: different numbers of confounding variables, the type of model

(null, alternative), and the hazard function (subdistribution, cause-specific). For smaller

numbers of confounding variables, the PS-based estimator’s performance was similar to

that from the conventional model.

PS methods yielded good efficiency for the estimator in the model with heavy con-

founding. In the scenario of small sample size and heavy confounding, the large variance

of the estimator from the conventional model was noticeable. In the scenario of heavy

confounding, the power of the estimator from the subdistribution hazard model was larger

than that from the cause-specific hazard model. The estimator from PS adjusted into

multivariate model presented a high percent coverage and small bias in the null model.

Subclassification methods showed the smallest MSE for alternative model with heavy

confounding.

3.3.1 Under the null model

The objective of simulations under a null model was to study the false negative

results. Estimators of covariate adjustment method using the PS performed the best and

presented the smallest bias, MSE and the highest percent coverage (> 95%) for both the

cause-specific hazard function and the subdistribution hazard function under all scenarios

considered.

For the PS subclassification method, high percent coverage and small MSE were

present under the cause-specific hazard function but not under the subdistribution haz-

ard function. Under the subdistribution hazard function, the percent coverage of the esti-

mators from PS subclassification method noticeably decreased with heavier confounding.

The PS matching estimators showed low percent coverage and a large MSE under all
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settings. Matching under the common support approach yielded estimators with minimal

improved efficiency for the treatment effect for both types of hazard functions. Among

all methods, the PS matching estimators had the largest variance.

3.3.2 Under the alternative model

In the scenario of heavy confounding (50 and 100 confounder variables), estimator

from subclassification hazard model had small MSE and high power of the test. However,

those results did not show in the estimators from the cause-specific hazard model. For

the cause-specific hazard model, the conventional model presented a small bias, a small

MSE and a high percent coverage. For the non-heavy confounding (5 and 15 confounder

variables) the conventional model outperformed the other methods. The conventional

model estimators had a smaller bias, a smaller MSE and greater percent coverage for

both the subdistribution hazard function and the cause-specific hazard function.

For the estimators from the PS covariate adjustment method, although they per-

formed the best under the null model, they were shown to be the worst estimator for

the alternative models. The estimators from PS matching and matching under common

support showed the largest variance for all scenarios. In the scenario of small sample size

and heavy confounding (100 confounding variables), the performance of PS matching

improved, the estimator had the smallest bias and the highest percent coverage.
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Table 3.1: Simulation result of conditional model of 5 confounders
No. confounders=5 Subdistribution model Cause-specific model

Sample size β β̂ V(β̂) E(V) bias MSE %cov. power β̂ V(β̂) E(V) bias MSE %cov. power

500 CONV. 0.000 0.000 0.019 0.019 0.000 0.019 0.948 0.052 0.004 0.018 0.018 0.004 0.018 0.948 0.052

PS Adj. 0.000 0.000 0.017 0.019 0.000 0.017 0.962 0.038 0.003 0.016 0.018 0.003 0.016 0.962 0.038

Subclass 0.000 0.079 0.017 0.017 0.079 0.023 0.908 0.092 0.006 0.016 0.018 0.006 0.016 0.965 0.035

Matching 0.000 0.078 0.029 0.030 0.078 0.036 0.926 0.074 0.089 0.036 0.035 0.089 0.044 0.931 0.069

Match.-CS 0.000 0.079 0.031 0.031 0.079 0.037 0.923 0.077 0.072 0.037 0.037 0.072 0.043 0.939 0.061

CONV. -0.500 -0.505 0.024 0.023 -0.005 0.024 0.945 0.918 -0.498 0.021 0.021 0.002 0.021 0.950 0.942

PS Adj. -0.500 -0.467 0.022 0.023 0.033 0.023 0.952 0.887 -0.447 0.018 0.021 0.053 0.021 0.955 0.896

Subclass -0.500 -0.387 0.021 0.021 0.113 0.034 0.877 0.767 -0.443 0.019 0.021 0.057 0.022 0.947 0.888

Matching -0.500 -0.390 0.036 0.035 0.110 0.048 0.893 0.560 -0.375 0.039 0.041 0.125 0.055 0.910 0.475

Match.-CS -0.500 -0.388 0.039 0.036 0.112 0.051 0.887 0.531 -0.394 0.044 0.043 0.106 0.055 0.909 0.486

1000 CONV. 0.000 0.002 0.009 0.009 0.002 0.009 0.946 0.054 -0.001 0.009 0.009 -0.001 0.009 0.947 0.053

PS Adj. 0.000 0.001 0.008 0.009 0.001 0.008 0.963 0.037 -0.000 0.008 0.009 -0.000 0.008 0.968 0.032

Subclass 0.000 0.080 0.008 0.008 0.080 0.015 0.849 0.151 0.004 0.008 0.009 0.004 0.008 0.964 0.036

Matching 0.000 0.075 0.014 0.015 0.075 0.020 0.909 0.091 0.071 0.017 0.017 0.071 0.022 0.917 0.083

Match.-CS 0.000 0.079 0.014 0.015 0.079 0.020 0.910 0.090 0.071 0.017 0.018 0.071 0.022 0.923 0.077

CONV. -0.500 -0.497 0.011 0.011 0.003 0.011 0.955 -0.505 0.011 0.010 -0.005 0.011 0.949 0.999

PS Adj. -0.500 -0.461 0.009 0.011 0.039 0.011 0.954 0.998 -0.454 0.009 0.010 0.046 0.011 0.936 0.997

Subclass -0.500 -0.381 0.009 0.010 0.119 0.024 0.790 0.969 -0.450 0.009 0.010 0.050 0.012 0.928 0.996

Matching -0.500 -0.378 0.017 0.017 0.122 0.032 0.840 0.823 -0.398 0.020 0.020 0.102 0.030 0.892 0.819

Match.-CS -0.500 -0.381 0.017 0.018 0.119 0.031 0.858 0.820 -0.396 0.021 0.021 0.104 0.031 0.878 0.802

2000 CONV. 0.000 -0.003 0.005 0.005 -0.003 0.005 0.940 0.060 -0.001 0.009 0.009 -0.001 0.009 0.947 0.053

PS Adj. 0.000 -0.003 0.004 0.005 -0.003 0.004 0.948 0.052 -0.000 0.008 0.009 -0.000 0.008 0.968 0.032

Subclass 0.000 0.072 0.005 0.004 0.072 0.010 0.803 0.197 0.004 0.008 0.009 0.004 0.008 0.964 0.036

Matching 0.000 0.065 0.008 0.008 0.065 0.012 0.884 0.116 0.071 0.017 0.017 0.071 0.022 0.917 0.083

Match.-CS 0.000 0.073 0.008 0.008 0.073 0.014 0.855 0.145 0.071 0.017 0.018 0.071 0.022 0.923 0.077

CONV. -0.500 -0.506 0.005 0.006 -0.006 0.005 0.940 1 -0.505 0.011 0.010 -0.005 0.011 0.949 0.999

PS Adj. -0.500 -0.469 0.005 0.006 0.031 0.006 0.947 1 -0.454 0.009 0.010 0.046 0.011 0.936 0.997

Subclass -0.500 -0.392 0.005 0.005 0.108 0.017 0.682 1 -0.450 0.009 0.010 0.050 0.012 0.928 0.996

Matching -0.500 -0.394 0.009 0.009 0.106 0.020 0.797 0.991 -0.398 0.020 0.020 0.102 0.030 0.892 0.819

Match.-CS -0.500 -0.386 0.009 0.009 0.114 0.022 0.758 0.976 -0.396 0.021 0.021 0.104 0.031 0.878 0.802

β=treatment effect, Var(β̂)= empirical variance, E(V)=average variance,

CONV.=conventional model, PS adj.= Propensity score adjusted into the model, Subclass=subclassification,

Match.-CS= Matching under common support
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Table 3.2: Simulation result of conditional model of 15 confounders
No. confounders=15 Subdistribution model Cause-specific model

Sample size β β̂ V(β̂) E(V) bias MSE %cov. power β̂ V(β̂) E(V) bias MSE %cov. power

500 CONV. 0.000 0.003 0.018 0.017 0.003 0.018 0.944 0.056 -0.000 0.018 0.018 -0.000 0.018 0.943 0.057

PS Adj. 0.000 0.005 0.013 0.017 0.005 0.013 0.975 0.025 0.005 0.014 0.018 0.005 0.014 0.976 0.024

Subclass 0.000 0.039 0.015 0.015 0.039 0.016 0.936 0.064 0.007 0.014 0.018 0.007 0.014 0.973 0.027

Matching 0.000 0.035 0.028 0.030 0.035 0.030 0.952 0.048 0.039 0.038 0.038 0.039 0.039 0.948 0.052

Match.-CS 0.000 0.039 0.032 0.031 0.039 0.034 0.944 0.056 0.045 0.038 0.040 0.045 0.040 0.959 0.041

CONV. -0.500 -0.514 0.021 0.020 -0.014 0.021 0.944 0.950 -0.516 0.023 0.021 -0.016 0.024 0.941 0.941

PS Adj. -0.500 -0.409 0.015 0.020 0.091 0.024 0.921 0.867 -0.409 0.017 0.020 0.091 0.026 0.922 0.849

Subclass -0.500 -0.373 0.017 0.017 0.127 0.033 0.835 0.829 -0.408 0.018 0.021 0.092 0.026 0.922 0.833

Matching -0.500 -0.380 0.035 0.034 0.120 0.049 0.889 0.553 -0.391 0.041 0.044 0.109 0.053 0.929 0.450

Match.-CS -0.500 -0.373 0.035 0.035 0.127 0.051 0.892 0.522 -0.384 0.045 0.046 0.116 0.059 0.908 0.421

1000 CONV. 0.000 -0.001 0.009 0.008 -0.001 0.009 0.939 0.061 0.006 0.009 0.009 0.006 0.009 0.941 0.059

PS Adj. 0.000 0.000 0.006 0.008 0.000 0.006 0.974 0.026 0.009 0.007 0.009 0.009 0.007 0.976 0.024

Subclass 0.000 0.036 0.007 0.007 0.036 0.009 0.926 0.074 0.011 0.007 0.009 0.011 0.007 0.976 0.024

Matching 0.000 0.036 0.015 0.015 0.036 0.016 0.944 0.056 0.057 0.019 0.020 0.057 0.022 0.936 0.064

Match.-CS 0.000 0.042 0.015 0.016 0.042 0.017 0.945 0.055 0.056 0.020 0.020 0.056 0.023 0.929 0.071

CONV. -0.500 -0.510 0.010 0.010 -0.010 0.010 0.949 0.998 -0.503 0.011 0.010 -0.003 0.011 0.924 0.996

PS Adj. -0.500 -0.412 0.007 0.010 0.088 0.015 0.891 0.991 -0.405 0.009 0.010 0.095 0.018 0.863 0.986

Subclass -0.500 -0.375 0.009 0.009 0.125 0.024 0.735 0.979 -0.404 0.009 0.010 0.096 0.018 0.867 0.988

Matching -0.500 -0.382 0.016 0.017 0.118 0.030 0.861 0.841 -0.375 0.023 0.023 0.125 0.039 0.858 0.710

Match.-CS -0.500 -0.379 0.017 0.018 0.121 0.032 0.851 0.835 -0.379 0.022 0.023 0.121 0.037 0.871 0.729

2000 CONV. 0.000 -0.000 0.004 0.004 -0.000 0.004 0.939 0.061 0.002 0.004 0.004 0.002 0.004 0.949 0.051

PS Adj. 0.000 -0.000 0.003 0.004 -0.000 0.003 0.972 0.028 0.006 0.003 0.004 0.006 0.003 0.968 0.032

Subclass 0.000 0.035 0.004 0.004 0.035 0.005 0.911 0.089 0.007 0.003 0.004 0.007 0.003 0.965 0.035

Matching 0.000 0.035 0.008 0.008 0.035 0.009 0.935 0.065 0.049 0.009 0.010 0.049 0.012 0.926 0.074

Match.-CS 0.000 0.037 0.008 0.008 0.037 0.009 0.936 0.064 0.049 0.010 0.010 0.049 0.012 0.918 0.082

CONV. -0.500 -0.503 0.005 0.005 -0.003 0.005 0.949 1 -0.500 0.004 0.005 -0.000 0.004 0.963 1

PS Adj. -0.500 -0.409 0.004 0.005 0.091 0.012 0.757 1 -0.405 0.004 0.005 0.095 0.013 0.741 1

Subclass -0.500 -0.372 0.004 0.004 0.128 0.020 0.514 1 -0.404 0.004 0.005 0.096 0.013 0.745 1

Matching -0.500 -0.384 0.009 0.009 0.116 0.022 0.777 0.989 -0.382 0.011 0.011 0.118 0.025 0.804 0.953

Match.-CS -0.500 -0.378 0.009 0.009 0.122 0.024 0.749 0.985 -0.379 0.011 0.011 0.121 0.026 0.794 0.953

β=treatment effect, Var(β̂)= empirical variance, E(V)=average variance,

CONV.=conventional model, PS adj.= Propensity score adjusted into the model, Subclass=subclassification,

Match.-CS= Matching under common support
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Table 3.3: Simulation result of conditional model of 50 confounders
No. confounders=50 Subdistribution model Cause-specific model

Sample size β β̂ V(β̂) E(V) bias MSE %cov. power β̂ V(β̂) E(V) bias MSE %cov. power

500 CONV. 0.000 0.003 0.026 0.020 0.003 0.026 0.919 0.081 0.009 0.026 0.020 0.009 0.026 0.922 0.078

PS Adj. 0.000 -0.001 0.013 0.018 -0.001 0.013 0.983 0.017 0.017 0.014 0.018 0.017 0.014 0.979 0.021

Subclass 0.000 -0.163 0.017 0.016 -0.163 0.043 0.732 0.268 0.014 0.014 0.019 0.014 0.014 0.978 0.022

Matching 0.000 -0.166 0.033 0.031 -0.166 0.061 0.835 0.165 -0.011 0.037 0.037 -0.011 0.037 0.947 0.053

Match.-CS 0.000 -0.159 0.033 0.033 -0.159 0.059 0.845 0.155 -0.012 0.039 0.040 -0.012 0.039 0.955 0.045

CONV. -0.500 -0.551 0.029 0.024 -0.051 0.031 0.915 0.928 -0.548 0.031 0.024 -0.048 0.033 0.906 0.923

PS Adj. -0.500 -0.362 0.015 0.021 0.138 0.034 0.875 0.749 -0.361 0.017 0.021 0.139 0.036 0.874 0.726

Subclass -0.500 -0.524 0.019 0.018 -0.024 0.020 0.942 0.971 -0.365 0.017 0.021 0.135 0.036 0.878 0.715

Matching -0.500 -0.532 0.040 0.036 -0.032 0.041 0.947 0.813 -0.407 0.044 0.043 0.093 0.053 0.932 0.498

Match.-CS -0.500 -0.531 0.037 0.038 -0.031 0.038 0.948 0.792 -0.411 0.049 0.046 0.089 0.057 0.923 0.472

1000 CONV. 0.000 -0.008 0.010 0.009 -0.008 0.010 0.934 0.066 0.002 0.010 0.009 0.002 0.010 0.930 0.070

PS Adj. 0.000 -0.005 0.006 0.009 -0.005 0.006 0.981 0.019 0.009 0.006 0.009 0.009 0.006 0.978 0.022

Subclass 0.000 -0.166 0.008 0.008 -0.166 0.035 0.544 0.456 0.007 0.006 0.009 0.007 0.006 0.979 0.021

Matching 0.000 -0.168 0.017 0.017 -0.168 0.045 0.757 0.243 -0.019 0.019 0.020 -0.019 0.020 0.959 0.041

Match.-CS 0.000 -0.172 0.017 0.018 -0.172 0.046 0.762 0.238 -0.014 0.021 0.021 -0.014 0.022 0.958 0.042

CONV. -0.500 -0.527 0.011 0.010 -0.027 0.012 0.935 1 -0.524 0.012 0.010 -0.024 0.013 0.917 1

PS Adj. -0.500 -0.365 0.007 0.010 0.135 0.025 0.756 0.984 -0.367 0.008 0.010 0.133 0.025 0.739 0.987

Subclass -0.500 -0.523 0.009 0.009 -0.023 0.010 0.944 1 -0.369 0.008 0.010 0.131 0.025 0.757 0.987

Matching -0.500 -0.542 0.020 0.019 -0.042 0.021 0.933 0.988 -0.415 0.024 0.024 0.085 0.031 0.908 0.774

Match.-CS -0.500 -0.535 0.021 0.020 -0.035 0.022 0.942 0.976 -0.414 0.025 0.024 0.086 0.033 0.899 0.760

2000 CONV. 0.000 0.001 0.005 0.004 0.001 0.005 0.939 0.061 0.001 0.004 0.004 0.001 0.004 0.941 0.059

PS Adj. 0.000 0.003 0.003 0.004 0.003 0.003 0.980 0.020 0.008 0.003 0.004 0.008 0.003 0.982 0.018

Subclass 0.000 -0.160 0.004 0.004 -0.160 0.030 0.285 0.715 0.006 0.003 0.004 0.006 0.003 0.983 0.017

Matching 0.000 -0.169 0.009 0.009 -0.169 0.038 0.578 0.422 -0.017 0.011 0.011 -0.017 0.011 0.954 0.046

Match.-CS 0.000 -0.159 0.009 0.009 -0.159 0.035 0.584 0.416 -0.018 0.010 0.011 -0.018 0.011 0.952 0.048

CONV. -0.500 -0.511 0.005 0.005 -0.011 0.005 0.936 1 -0.510 0.005 0.005 -0.010 0.005 0.941 1

PS Adj. -0.500 -0.365 0.003 0.005 0.135 0.022 0.506 1 -0.366 0.004 0.005 0.134 0.022 0.493 1

Subclass -0.500 -0.521 0.004 0.004 -0.021 0.005 0.952 1 -0.368 0.004 0.005 0.132 0.021 0.511 1

Matching -0.500 -0.539 0.010 0.010 -0.039 0.012 0.930 0.999 -0.415 0.013 0.012 0.085 0.020 0.868 0.966

Match.-CS -0.500 -0.545 0.009 0.010 -0.045 0.011 0.947 1 -0.413 0.013 0.013 0.087 0.020 0.869 0.969

β=treatment effect, Var(β̂)= empirical variance, E(V)=average variance,

CONV.=conventional model, PS adj.= Propensity score adjusted into the model, Subclass=subclassification,

Match.-CS= Matching under common support
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Table 3.4: Simulation result of conditional model of 100 confounders
No. confounders=100 Subdistribution model Cause-specific model

Sample size β β̂ V(β̂) E(V) bias MSE %cov. power β̂ V(β̂) E(V) bias MSE %cov. power

500 CONV. 0.000 0.003 0.040 0.028 0.003 0.040 0.891 0.109 0.001 0.036 0.030 0.001 0.036 0.926 0.074

PS Adj. 0.000 -0.001 0.012 0.020 -0.001 0.012 0.983 0.017 0.012 0.013 0.021 0.012 0.013 0.988 0.012

Subclass 0.000 -0.216 0.015 0.015 -0.216 0.061 0.578 0.422 0.011 0.013 0.022 0.011 0.013 0.991 0.009

Matching 0.000 -0.223 0.026 0.025 -0.223 0.075 0.696 0.304 -0.020 0.029 0.030 -0.020 0.030 0.955 0.045

Match.-CS 0.000 -0.185 0.027 0.028 -0.185 0.061 0.802 0.198 -0.009 0.033 0.034 -0.009 0.033 0.951 0.049

CONV. -0.500 -0.623 0.046 0.034 -0.123 0.061 0.865 0.906 -0.621 0.046 0.037 -0.121 0.060 0.881 0.885

PS Adj. -0.500 -0.308 0.014 0.023 0.192 0.051 0.800 0.535 -0.335 0.017 0.024 0.165 0.044 0.855 0.590

Subclass -0.500 -0.531 0.017 0.017 -0.031 0.018 0.947 0.989 -0.337 0.017 0.025 0.163 0.044 0.856 0.587

Matching -0.500 -0.544 0.029 0.028 -0.044 0.031 0.937 0.908 -0.374 0.035 0.034 0.126 0.051 0.896 0.540

Match.-CS -0.500 -0.515 0.029 0.032 -0.015 0.029 0.965 0.828 -0.371 0.038 0.039 0.129 0.055 0.889 0.472

1000 CONV. 0.000 0.000 0.012 0.010 0.000 0.012 0.917 0.083 -0.000 0.014 0.010 -0.000 0.014 0.908 0.092

PS Adj. 0.000 -0.001 0.005 0.009 -0.001 0.005 0.987 0.013 0.009 0.007 0.009 0.009 0.007 0.975 0.025

Subclass 0.000 -0.220 0.008 0.007 -0.220 0.056 0.268 0.732 0.006 0.006 0.009 0.006 0.007 0.978 0.022

Matching 0.000 -0.234 0.016 0.014 -0.234 0.070 0.492 0.508 -0.018 0.016 0.017 -0.018 0.016 0.957 0.043

Match.-CS 0.000 -0.218 0.016 0.015 -0.218 0.064 0.553 0.447 -0.013 0.018 0.018 -0.013 0.018 0.937 0.063

CONV. -0.500 -0.546 0.015 0.011 -0.046 0.017 0.886 0.999 -0.543 0.015 0.012 -0.043 0.016 0.907 0.995

PS Adj. -0.500 -0.306 0.006 0.010 0.194 0.044 0.515 0.916 -0.328 0.007 0.011 0.172 0.037 0.635 0.940

Subclass -0.500 -0.523 0.008 0.008 -0.023 0.009 0.942 1 -0.332 0.007 0.011 0.168 0.035 0.653 0.945

Matching -0.500 -0.544 0.016 0.016 -0.044 0.018 0.939 0.990 -0.374 0.017 0.020 0.126 0.033 0.868 0.780

Match.-CS -0.500 -0.542 0.016 0.017 -0.042 0.018 0.933 0.987 -0.365 0.020 0.020 0.135 0.038 0.844 0.731

2000 CONV. 0.000 -0.000 0.005 0.004 -0.000 0.005 0.932 0.068 0.007 0.005 0.005 0.007 0.005 0.924 0.076

PS Adj. 0.000 0.000 0.002 0.004 0.000 0.002 0.989 0.011 0.012 0.003 0.004 0.012 0.003 0.980 0.020

Subclass 0.000 -0.218 0.004 0.004 -0.218 0.051 0.048 0.952 0.010 0.003 0.004 0.010 0.003 0.978 0.022

Matching 0.000 -0.230 0.008 0.008 -0.230 0.061 0.249 0.751 -0.011 0.010 0.009 -0.011 0.010 0.951 0.049

Match.-CS 0.000 -0.238 0.008 0.008 -0.238 0.064 0.236 0.764 -0.014 0.009 0.009 -0.014 0.009 0.956 0.044

CONV. -0.500 -0.525 0.005 0.005 -0.025 0.006 0.923 1 -0.519 0.006 0.005 -0.019 0.007 0.926 1

PS Adj. -0.500 -0.312 0.003 0.005 0.188 0.038 0.151 1 -0.334 0.004 0.005 0.166 0.031 0.319 0.999

Subclass -0.500 -0.524 0.004 0.004 -0.024 0.004 0.942 1 -0.337 0.004 0.005 0.163 0.030 0.326 0.999

Matching -0.500 -0.544 0.008 0.009 -0.044 0.010 0.940 1 -0.376 0.011 0.011 0.124 0.026 0.756 0.959

Match.-CS -0.500 -0.568 0.009 0.009 -0.068 0.013 0.887 1 -0.378 0.011 0.011 0.122 0.026 0.774 0.952

β=treatment effect, Var(β̂)= empirical variance, E(V)=average variance,

CONV.=conventional model, PS adj.= Propensity score adjusted into the model, Subclass=subclassification,

Match.-CS= Matching under common support
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3.4 Case study results

A total of 71,030 patients were included in the analysis, and 64.5% of them received

statins after discharge. At the end of two years of follow up, the percentage of patients

who had an MI, stroke or HF was 10.2%, 1.8%, 6.1% respectively, the percent who died

was 17.0% (mortality was a competing risk for the CVD events).

We summarized the results from three different confounding control methods under

the cause-specific hazard function and the subdistribution hazard function in Table 3.5.

We were not able to apply the PS matching methods due to technical difficulties resulting

from the large sample size. The results from both competing risk models suggested that

statins treatment had no effect on the risks of MI, stroke and HF in this cohort. The

reduction in the risk of all-cause mortality was substantial among the treated group.

This may represent healthy user bias, namely, that a healthier or stronger patient is

more likely to get treatment.

In summary, the conditional models suggest that statin use resulted in a large and

statistically significant reduction in mortality, smaller marginally significant effects on

HF and stroke, and a small and not statistically significant effect on MI. These results

can be interpreted as the effect at the individual level conditioning on all the confounders.
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Table 3.5: The estimated treatment effects of statins from conditional models

subdistribution model cause-specific model

β̂ SE p-value β̂ SE p-value

MI Conv. -0.003 0.027 0.900 -0.021 0.027 0.440

PS adj 0.012 0.028 0.660 -0.001 0.028 0.970

subclass -0.011 0.027 0.680 -0.031 0.027 0.260

all-cause Conv. -0.132 0.021 0.000 -0.130 0.021 0.000

mortality PS adj -0.115 0.021 0.000 -0.115 0.021 0.000

subclass -0.163 0.021 0.000 -0.166 0.021 0.000

Stroke Conv. -0.095 0.063 0.130 -0.112 0.063 0.075

PS adj -0.105 0.064 0.100 -0.120 0.064 0.060

subclass -0.112 0.063 0.076 -0.135 0.063 0.032

HF Conv. -0.048 0.035 0.170 -0.066 0.035 0.059

PS adj -0.052 0.036 0.140 -0.064 0.035 0.069

subclass -0.065 0.035 0.065 -0.084 0.035 0.016

β=treatment effect estimator, MI=myocardial infarction,

CONV.=conventional model,

PS adj.= Propensity score adjusted into the model,

Subclass=subclassification,

Match.-CS= Matching under common support
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3.5 Discussion

In this study, we examined the performance of several PS methods in the estimation

of the conditional treatment effect in competing risk analysis. The simulation studies

showed that the covariate adjusted PS method performed the best under the null, and

subclassification performed best under the non-null models, particularly for the subdis-

tribution hazard function with heavy confounding.

Gayat et al (26) and Austin et al (6) examined performance of the PS used in the

standard Cox model via Monte Carlo simulation. The number of confounders of both

studies was small with only 9 variables. They also did not present the extent of overlap

in PS distributions between the treated and untreated groups. Gayat et al. showed that

the matched-robust-adjusted method gave an unbiased estimator, however, this approach

used matched samples, and included confounders into the model. The estimator from

this model was the treatment effects for the treated group. The estimators from the

matched model without adjustment were poor. Austin et al. presented similar results

but also a larger relative bias.

The conventional model was sensitive to sample size. When the sample size was

small and there was a large number of confounding variables, the estimator was biased

and had a large variance. In the real world applications of these methods to studies

using administrative claims data, where the sample size is large and there are many

confounding variables, we recommend that the PS approach be used to reduce the large

number of confounding variables dimensions to one dimension.

The PS matching methods may not be applicable to big datasets. The optimal

matching method needs to create a distance matrix with dimensions of treatment by the

number of untreated patients and use the caliper to find the best matching group (79).

This method requires a lot of time and computing power. In addition, the matching

method has been mostly applied to studies with more untreated patients than treated

patients. However, in studies where treatment is common, the treatment group may be
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larger than the untreated group and in this case PS matching may result in a reduction

of the sample size.

In conclusion, the PS method is a popular method to balance the different base-

line characteristics between treatment groups in observational studies. We have shown

through simulations that the PS methods can be incorporated into competing risk anal-

yses. Recommendations for appropriate PS methods in specific situations have been

provided.
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Chapter 4

Application of Propensity Score Methods for Competing Risks Under
Heterogeneity

4.1 Introduction

Cardiovascular diseases (CVD) are a major leading cause of mortality in the elderly

worldwide (108). High levels of low-density lipoprotein cholesterol (LDL-c) are associated

with an increased risk for CVD events and statins, a class of 3-hydroxy-3-methlglutaryl

coenzyme A reductase inhibitors, are used to lower LDL-c levels, thus helping to prevent

CVD events (100). Clinical trials have demonstrated that statins are highly effective at

lowering LDL-c, which in turn yields great benefit in reducing the number of cardiovas-

cular events (32).

The incidence of CVD rises steeply with age. In 2012, the rate of CVD in men ages

85-94 (7.4%) was more than 20 times that seen in 35-44 year of men (0.3%). Women

followed the same pattern, but 10 years later in life than the men. Adults who were

free from CVD had lifetime cumulative risks of developing CVD of 51.7% (men) and

39.0% (women). The factors related to recurrence of CVD included age, CVD burden

and whether any prevention procedures were performed (109). People surviving an initial

acute myocardial infarction (AMI) are 1.5 to 15 times more likely to suffer a repeat AMI

or death, depending on the comorbidities present and their health status (27). This

strong effect

The incidence of CVD rises steeply with age, in 2012, CVD rate increased from 0.3%

at age 35-44 to 7.4% at age 85-94 in men, and schedule 10 years later for women (92).
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The adults who were free from CVD illustrated the life time risks for developing CVD

after 50 year of age with 51.7% in men and 39.2% in women. The factors related to

recurrence of CVD included age, CVD burden and prevention procedure (109). The

people who survived after acute myocardial infarction (AMI) are more likely to suffer

and death 1.5 to 15 times more depending on clinical conditions (27). This strong effect

of age on cardiovascular related events led to research on how to treat older patients and

whether the treatment effects of statins seen in clinical trials in fact exist for the older

population.

The effects of statins treatments in the elderly have been investigated, but most results

come from small subgroups, thus are less statistically reliable (28). A meta-analysis of

clinical studies showed the benefit of statins in reducing the risks of all-cause mortality,

MI and stroke in an elderly population, but the most study included the patients who

were free from CVD (87, 1). Also, little evidence is available on the treatment effects

of statins for different (combinations of) condition. Due to the potential complexity of

existing comorbidities in the elderly, investigation of treatment effects in this group poses

several challenges including risk of competing events and confounding.

Decreasing rates of coronary heart disease (CHD) during the last two decades come

from improvements in treatment approaches, which Coronary Artery Bypass Grafting

(CABG) or stent or Percutaneous transluminal coronary angioplasty (PTCA) contributed

11% the decrease. Improvements in surgical techniques (including CABG or stent or

PTCA) have improved the survival of MI patients compared with medical therapy alone

(50). The patients who underwent CABG/stent/PTCA possibly lower risks of mortality

and CHD events.

In the previous two chapters, we have shown that propensity score (PS) methods

can be incorporated into competing risk models to evaluate marginal and conditional

treatment effects in non-experimental studies. The approaches have advantages over

conventional models in studies where a large number of confounders exist. However, the

results assume that the treatment effects of statins are homogeneous. In this chapter,
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where we are interested in estimating heterogeneous treatment effects, the PS methods

based on competing risk model are deemed more appropriate.

Heterogeneity treatment effects are the variation in treatment effects among different

populations (55). The inclusion criteria of clinical research reduces the heterogeneity

treatment effects and the randomized treatment assignment results in an unbiased esti-

mator. For the non-randomized study, an increase in sample size can reduce sampling

variability but it may not lower heterogeneity (78). A method which can eliminate ma-

jor sources of heterogeneity is important to a non-randomized study. The homogeneity

analyzing by subgroup is the common approach to verify heterogeneity treatment effects.

Age and CABG/stent/PTCA during admission may cause the heterogeneity of statins’s

effects in elderly who AMI. The increasing frailty of old age is likely related to the

risks and the benefits of statins (61). CABG/stent/PTCA procedures are the prefer-

able medical methods to restore the blood flow to the heart by removing or bypassing

the atherosclerosis that causes the blockages in coronary arteries. These procedures can

reduce the risk of overall mortality and recurring MI (53) which may be related to the

interaction of treatment effects between those procedures and statins. The baseline risks

of patients who underwent CABG/stent/PTCA may be different from those who did

not have those procedures done; the subgroup analysis resulted in a reduction of those

differences.

The objective of this study is to investigate the treatment effect of statins in an elderly

population which recently experienced an acute MI. The treatment effect across several

age groups and CABG/stent/PTCA procedures were examined to glean information of

the treatment effects, which hopefully can inform the management and prevention of

cardiovascular events in the elderly population.
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4.2 Method

4.2.1 Source of data and population

We identified a cohort of Medicare beneficiaries who just had a hospitalization stay

for AMI in 2008. AMI was identified from Medicare inpatient claims files using relevant

International Classification of Diseases, Ninth Revision, Clinical Medication (ICD-9-CM)

codes (410.01, 410.11, 410.21, 410.31, 410.41, 410.51, 410.61, 410.71, 410.81, 410.91).

Eligible patients included in the cohort were at least 66 years of age at the index date,

living in the United States and had been continuously enrolled in Medicare Part A, B

and D for at least one year prior. The exposure of interest was statin use after discharge.

4.2.2 Outcome and covariates

These patients were followed up from the 31st day after discharge until the occur-

rence of the first cardiovascular event (recurrent MI, stroke, heart failure) or death. We

created a number of covariates for demographic characteristics and clinical conditions

based on claims occurring in the 12-month baseline period prior to statin initiation.

These covariates were identified a priori based on the literature, substantive knowledge,

and the availability of covariates within the data. The variables included demographic

characteristics age and gender, Charlson comorbidity index (CCI), baseline and current

comorbidities, baseline and current medications, diagnoses and procedures for admission,

and medical procedures during hospital stay (details in Section 1.4).

4.2.3 Statistical analysis

To determine if the treatment effect of statin is heterogeneous across age groups and

patients with or without cardiovascular related procedures during hospital stay for AMI,

we conducted the aforementioned analyses for subgroups. For age, the groups were 66 to

74, 75 to 84, and 85 an older. For the procedure subgroup analysis, patients were grouped

together if they had CABG, stent, or PTCA during the hospital stay. The comparison
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group consisted of patients who did not have any of these procedures.

To estimate the marginal and conditional effect of statin treatment on the risk of

cardiovascular events (recurrent MI, heart failure, and stroke) as a risk in competition

with mortality, we conducted a competing risk analysis with appropriate PS methods

to control for confounding. The competing risk models based on subdistribution hazard

function and cause-specific hazard function were used. For the marginal treatment effect,

we used a crude model, weighted regression with inverse probability treatment weight-

ing (IPTW) (76) and stabilized treatment weighting (STW) (17). For the conditional

treatment effect, we used a conventional model, covariate adjustment using PS and a

subclassification model. The R statistical computing software was used for all analyses.

The R library crr , crrc and crrs were used for subdistribution hazard function based

Fine-Gray model (21). The R library coxph was used to estimate the treatment effect

from cause-specific hazard function based Cox model (103).

4.3 Results

The age distribution of the patients was: 35.1% ages 66-74 years, 40.3% ages 75-84

years, and 24.6% age 85 years and above. Older age groups showed a greater percentage

of patients - the group aged 85 years and older accounted for 40% of total mortality.

Non-statin users ages 66-74 years had twice the risk of dying as did statin users in the

same age group, and 25% of non-statin users aged 85 and older died.

The patients who established hospitalized AMI received CABG/stent/PTCA 42.9%.

75.7% of the patients receiving CABG/stent/PTCA during hospitalization were pre-

scribed statins, but only 56% of patients who did not undergo a revascularization pro-

cedure were prescribed statins. Approximately one-fifth of patients not undergoing

CABG/stent/PTCA who were not prescribed statins died, compared with only 5% of

patients receiving both revascularization and statins. Nearly 14% of patients not under-

going revascularization had heart failure, whether they were prescribed statins or not.
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Table 4.1: Number and percent of observed events

Survived Death MI Stroke HF

Number(%) Number(%) Number(%) Number(%) Number(%)

statins

age 66-74 14609 (73.51) 1545 ( 7.77) 1481 ( 7.45) 447 ( 2.25) 1791 ( 9.01)

age 75-84 9932 (67.25) 1549 (10.49) 1267 ( 8.58 ) 401 ( 2.72) 1619 (10.96)

age > 84 3985 (53.84) 1246 (16.83) 911 (12.31) 225 ( 3.04) 1035 (13.98)

non-Vasc. 12293 (56.36) 3341 (15.32) 2508 (11.50) 616 (2.82) 3055 (14.01)

Vasc. 17561 (79.58) 1152 ( 5.22) 1274 ( 5.77) 499 ( 2.26) 1580 ( 7.16)

Non-statins

age 66-74 5680 (61.83) 1236 (13.45) 864 ( 9.40) 275 ( 2.99) 1132 (12.32)

age 75-84 4638 (57.25) 1347 (16.63) 766 ( 9.45) 266 ( 3.28) 1085 (13.39)

age > 84 2610 (43.61) 1598 (26.70) 689 (11.51) 165 ( 2.76) 923 (15.42)

non-Vasc. 8369 (49.04) 3801 (22.27) 1831 (10.73) 535 ( 3.14) 2529 (14.82)

Vasc. 5083 (71.83) 515 ( 7.28) 563 ( 7.96) 196 ( 2.77) 719 (10.16)

4.3.1 Propensity Score model

A multiple logistic regression model was used to estimate propensity score for each age

group and each procedure group. The distribution of PS for treated and untreated groups

were different for age groups and revascularization group (Figure 4.1 and Figure 4.2). The

discrimination of distribution between statins users and non-statins users increased by

age groups. The shape of the density function of statins and non-statin group differed

among patients who underwent CABG/stent/PTCA during admission and patients who

did not undergo those procedures.

The important variables that predicted the probability to be prescribed statins for

all age groups were baseline statins, beta blocker users and admission for CABG or stent

or PTCA. The patients who had CCI for moderate to severe liver disease reduced the

probability of statin in elderly less than 85 years old. Patients ages 75 to 84 years who

had hyperkalemia at baseline were more likely to be prescribed statins, as were patients

58



with rhabdomyolysis in the 85+ age group.

The important variables that predicted the probability of receiving statins for the

patients who did not have CABG/stent/PTCA at admission were statin or beta blocker

users at baseline, and the CCI for moderate to severe liver disease. For patients who

received CABG/stent/PTCA, the important variables that predicted the probability of

being prescribed statins were the CCI for diabetes, the CCI for uncomplicated diabetes,

a baseline CCI score greater than 9, ACEI, baseline statins and beta blocker users.

4.3.2 Treatment effects of statins for different age groups

The marginal model presented in the previous chapter showed that statins reduced

the risk of mortality and heart failure in the elderly patient who recently experience AMI.

The treatment effect of statins from the conditional model was associated only with a

reduction of mortality hazard. The treatment effect of statins varied by age group -

for patients aged 66 to 74 years, statins were associated with a reduction of the risk of

heart failure, but this was not the case for the other age groups. The treatment effect of

statins with respect to the risk of heart failure was the lowest for those age 85+, whereas

the treatment effect of statins with respect to the risk of mortality was the least in the

younger age groups.

The estimator from marginal model for mortality and heart failure outcome differed in

the conditional model for the 66-74 age group. The weighted model from both subdistri-

bution hazard model and cause-specific model showed a non-significant effect for statins

on reduce the risks of mortality but patients who prescribed statins showed significantly

lower risks of mortality in the the conventional model and subclassification model. In

contrast, the average treatment effects of statins significantly reduced the risk of heart

failure but conditional model showed the opposite results.

Then, the average treatment effects of statins reduced the risk of heart failure in

patients age 66-74 with a recent AMI but this results did not apply at the individual

level. The individual who was prescribed statins has a similar risk of a cardiovascular
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Figure 4.1: Distribution of propensity score of statins users and non-users by age group–
66-74 yrs. (above), 75-84 yrs. (middle), at least 85 (below)
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Figure 4.2: Distribution of propensity score of statins user and non-user by revasucular-
ization status
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event as the individual not prescribed statins and was as likely to be prescribed statins.

In summary, statins showed less of an effect on the risk of CVD, MI, stroke or heart

failure in the older age groups. Healthier older patients may have had a greater chance of

being prescribed statins, thus the statins group showed a lower risk of mortality, especially

for the older patients.
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Table 4.2: Results of treatment effects from the marginal, conditional risks and competing risks models, by age group

age 66-75 yrs. age75-84 yrs. age ≥ 85 yrs.

SH CSH SH CSH SH CSH

β̂ SE p β̂ SE p β̂ SE p β̂ SE p β̂ SE p β̂ SE p

Mortality

Crude -0.537 0.039 0.000 -0.563 0.039 0.000 -0.503 0.029 0.000 -0.528 0.029 0.000 -0.406 0.029 0.000 -0.427 0.029 0.000

Crude-CS -0.536 0.039 0.000 -0.563 0.039 0.000 -0.502 0.029 0.000 -0.528 0.029 0.000 -0.040 0.029 0.000 -0.425 0.029 0.000

IPTW
∗

0.003 0.028 0.909 0.008 0.028 0.786 -0.060 0.021 0.004 -0.060 0.021 0.004 0.058 0.022 0.009 -0.060 0.023 0.008

STW
∗

-0.029 0.043 0.505 0.027 0.043 0.526 -0.124 0.029 0.000 -0.126 0.029 0.000 -0.184 0.034 0.000 -0.193 0.027 0.000

Conv. -0.120 0.044 0.006 -0.096 0.044 0.030 -0.140 0.033 0.000 -0.154 0.033 0.000 -0.124 0.034 0.000 -0.118 0.034 0.000

PS-Adj. -0.078 0.045 0.084 -0.070 0.045 0.120 -0.122 0.034 0.000 -0.121 0.034 0.000 -0.115 0.034 0.001 -0.121 0.033 0.000

Subclass. -0.152 0.043 0.000 -0.152 0.044 0.000 -0.173 0.033 0.000 -0.176 0.033 0.000 -0.145 0.033 0.000 -0.155 0.033 0.000

Non-Fetal MI

Crude -0.256 0.046 0.000 -0.302 0.046 0.000 -0.102 0.040 0.010 -0.166 0.040 0.000 0.013 0.041 0.750 -0.062 0.041 0.130

Crude-CS -0.256 0.046 0.000 -0.302 0.046 0.000 -0.103 0.040 0.009 -0.166 0.040 0.000 0.015 0.041 0.710 -0.060 0.041 0.150

IPTW
∗

-0.016 0.032 0.616 -0.011 0.032 0.736 0.025 0.027 0.359 0.019 0.027 0.476 0.091 0.029 0.001 0.076 0.029 0.008

STW
∗

-0.053 0.047 0.259 -0.051 0.047 0.276 0.009 0.040 0.822 -0.003 0.040 0.941 0.060 0.049 0.222 0.024 0.049 0.624

Conv. -0.057 0.051 0.265 -0.061 0.052 0.240 -0.008 0.045 0.866 -0.033 0.044 0.457 0.050 0.047 0.293 0.031 0.047 0.513

PS-Adj. -0.036 0.052 0.490 -0.036 0.052 0.490 0.010 0.045 0.820 -0.003 0.045 0.950 0.053 0.047 0.260 0.028 0.047 0.550

Subclass. -0.081 0.051 0.110 -0.090 0.051 0.077 -0.010 0.044 0.820 -0.030 0.044 0.500 0.038 0.047 0.430 0.006 0.047 0.890

Stroke

Crude -0.212 0.095 0.026 -0.279 0.095 0.003 -0.105 0.087 0.220 -0.188 0.087 0.030 0.001 0.120 0.990 -0.097 0.120 0.420

Crude-CS -0.212 0.095 0.026 -0.279 0.095 0.003 -0.106 0.087 0.220 -0.188 0.087 0.030 -0.005 0.120 0.970 -0.103 0.120 0.390

IPTW
∗

-0.102 0.067 0.129 -0.097 0.067 0.150 -0.079 0.064 0.216 -0.083 0.063 0.191 0.007 0.083 0.936 -0.004 0.084 0.966

STW
∗

-0.121 0.092 0.186 -0.122 0.092 0.184 -0.119 0.082 0.144 -0.132 0.082 0.107 0.028 0.144 0.847 -0.014 0.108 0.893

Conv. -0.128 0.106 0.225 -0.136 0.106 0.200 -0.126 0.097 0.194 -0.142 0.097 0.142 -0.048 0.137 0.723 -0.075 0.136 0.582

PS-Adj. -0.138 0.107 0.200 -0.142 0.108 0.190 -0.129 0.098 0.180 -0.144 0.097 0.140 -0.054 0.138 0.700 -0.079 0.137 0.560

Subclass. -0.143 0.106 0.180 -0.158 0.106 0.140 -0.156 0.096 0.110 -0.178 0.096 0.065 -0.044 0.137 0.750 -0.082 0.136 0.550

Heart Failure

Crude -0.175 0.057 0.002 -0.229 0.057 0.000 -0.093 0.048 0.052 -0.164 0.048 0.001 0.025 0.061 0.680 -0.061 0.061 0.310

Crude-CS -0.176 0.057 0.002 -0.230 0.057 0.000 -0.091 0.048 0.056 -0.163 0.048 0.001 0.027 0.061 0.660 -0.583 0.061 0.340

IPTW
∗

-0.093 0.036 0.010 -0.086 0.036 0.018 -0.036 0.033 0.276 -0.039 0.033 0.234 -0.087 0.044 0.051 -0.095 0.044 0.032

STW
∗

-0.108 0.052 0.039 -0.105 0.052 0.045 -0.066 0.045 0.140 -0.076 0.045 0.089 -0.023 0.075 0.759 -0.057 0.052 0.277

Conv. -0.064 0.063 0.312 -0.070 0.064 0.272 -0.033 0.053 0.534 -0.057 0.053 0.282 -0.075 0.069 0.277 -0.098 0.069 0.156

PS-Adj. -0.059 0.064 0.360 -0.061 0.065 0.350 -0.035 0.054 0.510 -0.048 0.054 0.380 -0.084 0.069 0.220 -0.104 0.069 0.130

Subclass. -0.082 0.063 0.200 -0.092 0.063 0.140 -0.044 0.053 0.410 -0.064 0.053 0.230 -0.079 0.070 0.260 -0.109 0.069 0.120

*SE estimated from bootstrap method, SH=subdistribution model, CSH=cause-specific model
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4.3.3 Treatment effects of statins for patients who had a revascularization

procedure

The effects of statins for patients who underwent CABG/stent/ptca procedures at ad-

mission were different from those of patients who did not undergo CABG/stent/PTCA.

The treatment effects of statins of patients with those procedure showed significant re-

ductions in the risks of recurring MI, heart failure and all cause mortality. However,

prescriptions of statins to patients of this group did not significantly reduce the risks of

stroke. The estimator from the cause-specific model were larger than the estimator from

the subdistribution hazard function.

Prescribing statins to non-CABG/stent/ptca patients did not reduce the risks of MI,

stroke and heart failure but it significantly reduced the risks of all-cause mortality. How-

ever, the estimator of marginal model from the subdistribution hazard model showed a

significant increasing the risk of MI for patients from non-CABG/stent/PTCA group.

The results of significant level between marginal and conditional were the same direction

except the estimator of the non-CABG/stent/PTCA group for the risk of MI. The re-

sults from marginal model Fine-Gray model and Cox PH model were different when the

outcome was MI in the non-CABG/stent/PTCA group.

In conjunction with CABG/stent/PTCA, prescribing statins improved the effects of

medical treatment for recurrent MI and heart failure, compared with only prescribing

statins. The association of statins with a reduced risk of death was demonstrated in

both groups. These results may have healthy patient bias effects. The Cox PH model

showed larger treatment effects than did the Fine-Gray model.

4.4 Discussion

Statins did not reduce the risks of CVD for those aged 75 years or more but do provide

a reduction in the risk of all-cause mortality. A Canadian observational study of patients

ages 66-85 years with heart failure showed an effect of statins on mortality and stroke,

64



Table 4.3: Treatment effects of statins by status of revascularization procedure

CABG/stent/PTCA non-CABG/stent/PTCA

SH CSH SH CSH

β̂ SE p β̂ SE p β̂ SE p β̂ SE p

Mortality

Crude -0.395 0.043 0.000 -0.427 0.043 0.000 -0.338 0.021 0.000 -0.343 0.021 0.000

Crude-CS -0.394 0.043 0.000 -0.425 0.043 0.000 -0.338 0.021 0.000 -0.343 0.021 0.000

IPTW
∗

-0.133 0.032 0.000 -0.141 0.032 0.000 -0.060 0.014 0.000 -0.056 0.014 0.000

STW
∗

-0.095 0.050 0.060 -0.101 0.050 0.045 -0.175 0.019 0.000 -0.171 0.019 0.000

Conv. -0.186 0.046 0.000 -0.210 0.046 0.000 -0.107 0.023 0.000 -0.099 0.023 0.000

PS-Adj. -0.170 0.047 0.000 -0.181 0.047 0.000 -0.100 0.023 0.000 -0.095 0.023 0.000

Subclass. -0.205 0.046 0.000 -0.222 0.046 0.000 -0.127 0.023 0.000 -0.124 0.023 0.000

Non-Fetal MI

Crude -0.323 0.047 0.000 -0.357 0.047 0.000 0.088 0.028 0.002 0.035 0.028 0.220

Crude-CS -0.322 0.047 0.000 -0.356 0.047 0.000 0.088 0.028 0.002 0.035 0.028 0.220

IPTW
∗

-0.093 0.033 0.005 -0.102 0.033 0.002 0.044 0.020 0.030 0.037 0.020 0.063

STW
∗

-0.098 0.050 0.048 -0.105 0.050 0.036 0.067 0.027 0.013 0.044 0.027 0.102

Conv. -0.144 0.051 0.005 -0.174 0.051 0.001 0.059 0.032 0.069 0.047 0.032 0.150

PS-Adj. -0.128 0.051 0.013 -0.141 0.051 0.006 0.061 0.032 0.060 0.048 0.032 0.140

Subclass. -0.158 0.050 0.002 -0.175 0.050 0.001 0.060 0.032 0.063 0.042 0.032 0.190

Stroke

Crude -0.161 0.089 0.073 -0.214 0.089 0.017 -0.099 0.075 0.190 -0.158 0.075 0.035

Crude-CS -0.155 0.090 0.084 -0.208 0.090 0.020 -0.099 0.075 0.190 -0.158 0.075 0.035

IPTW
∗

-0.060 0.061 0.322 -0.074 0.061 0.224 -0.106 0.053 0.045 -0.111 0.053 0.035

STW
∗

-0.081 0.096 0.397 -0.092 0.096 0.338 -0.088 0.065 0.178 -0.111 0.065 0.090

Conv. -0.088 0.097 0.362 -0.115 0.096 0.232 -0.116 0.085 0.174 -0.127 0.085 0.135

PS-Adj. -0.082 0.097 0.400 -0.104 0.097 0.290 -0.125 0.086 0.150 -0.135 0.085 0.110

Subclass. -0.100 0.096 0.300 -0.128 0.096 0.180 -0.129 0.085 0.130 -0.147 0.085 0.084

Heart Failure

Crude -0.251 0.053 0.000 -0.290 0.053 0.000 0.053 0.039 0.180 -0.002 0.039 0.950

Crude-CS -0.251 0.053 0.000 -0.290 0.053 0.000 0.054 0.039 0.170 -0.002 0.039 0.970

IPTW
∗

-0.132 0.036 0.000 -0.141 0.036 0.000 -0.044 0.028 0.114 -0.047 0.028 0.092

STW
∗

-0.117 0.057 0.039 -0.123 0.057 0.030 0.017 0.034 0.609 -0.004 0.033 0.904

Conv. -0.125 0.057 0.028 -0.155 0.057 0.006 -0.023 0.045 0.610 -0.033 0.045 0.457

PS-Adj. -0.123 0.058 0.033 -0.138 0.058 0.017 -0.023 0.045 0.600 -0.033 0.045 0.460

Subclass. -0.151 0.057 0.008 -0.171 0.057 0.003 -0.037 0.045 0.400 -0.053 0.044 0.240

*SE estimated from bootstrap method, SH=subdistribution model, CSH=cause-specific model
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but not for MI (12). Younger age groups (less than 85 years old) showed a greater effect

of statins than did those over 84 years of age. A meta-analysis in patients (maximum

age 82) who did not have cardiovascular disease but had cardiovascular risk factors found

that statins reduce the risk of death, major coronary events and major cerebrovascular

events (12).

Statins were associated with a reduced risk of mortality in all age groups but older

elderly showed a greater reduction in mortality risk than did the younger elderly. The

effect of statins on mortality has been documented by many studies but with contradic-

tory results. Observational studies of patients with heart failure found that statins can

reduce risks of mortality (69, 24, 45, 22). In contrast, the meta-analysis of randomized

controlled trials of subjects without CVD at baseline did not show the same effects of

statins on all cause mortality (74). A long-term follow-up study of CHD patients or high

risks in CHD patients found that statins significantly reduced mortality from cardiovas-

cular disease but it did not reduce non-cardiovascular mortality (60). The difference in

medical history of patients affected the treatment effects of statins on mortality.

Statins are associated with a reduced risk of death in the oldest age group, but show

non-significant treatment effects on the risk of MI, stroke and heart failure. Moreover,

the treatment effects are reversed for MI. For the oldest age group, statins appear to

operate using a different prediction model. The oldest elderly were vulnerable and frail.

Optimal medication use in the elderly must take into account both the benefit and risks,

especially for patients with a short life expectancy (44). In addition, the elderly often have

several comorbidities and polymedication, therefore the standard guidelines may not be

suitable for all elderly patient (93). Although statins are associated with the prevention

of CVD in the elderly, they also may cause myopathy (41). Lee and colleagues (58) found

that intermediate acute coronary syndrome patients aged 81+ years were less likely to

be prescribed secondary prevention medication such as ARB, ACE or statins. Whether

statins are prescribed depends on the patient’s medical condition and the decision of their

physician. However, statins are recommended for the elderly, particularly the healthy
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elderly with more years of life left who may benefit more from statin’ effects (28).

Although the effects of statins in patients who underwent CABG/stent/PTCA pro-

cedure have been shown, adherence to statins after a procedure was low compared to

revascularization procedures alone (49). Prescribing statins tend to be performed more

in younger age groups (almost 80% of those 75 years of age or older are not routinely

treated), demonstrating a healthy bias effect.

The heterogeneity of statins treatment effects can be seen in this study, since age and

CABG/stent/PTCA procedures modify the effect of statins. Overall treatment effects

under heterogeneity need the weighted methods. The standardized method including

IPTW allows the summary estimation of treatment effects in certain populations (97).

Limitation

Including both new and recurring MI into the cohort causes the different probabilities

of recurrence of MI (68). Clinical data, such as the size and the area of infarction, were not

included in the model. Underlying cause of death cannot be reliably linked to CHD. The

dataset constructed for this analysis did not include the initiation date nor the length of

use of statins. Discontinuing use of statins after discharge showed strong harmful effects

in patients, which were not seen in patients not prescribed statins (20).
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Chapter 5

Conclusion

This study investigated the efficiency of estimators when propensity score methods

were used to reduce or eliminate the effect of confounding in competing risks survival

analysis. We investigated the treatment effects estimator from both marginal and con-

ditional models. The PS methods for estimating marginal treatment effects included a

crude model and weighted model. The subclassification model, matching and PS were

included in a multivariate model; the matching model used the PS methods to estimate

conditional treatment effects. This study also applied a conventional model which in-

cluded all confounding into the model to compare efficiency of the conventional method to

PS methods. The competing risks models of this study included a cause-specific hazard

model and a subdistribution hazard model.

The PS methods showed the good performance for estimate marginal treatment effect

when applied to competing risks analysis. The weighted model showed a small amount

of bias in the MSE, and a high percent of coverage. However, we found the inflated

variance of estimator in the scenario of low occurrence of the interesting event and the

heavy confounder. The bootstrapping methods applied to obtain the variance estimator

appropriately take advantage of the estimation of variance for weighed models. A future

research topic for the estimator from the marginal model will be the investigation of the

behavior of the inflated variance from the weighted model in different scenarios. Another

topic for future research is the development of a better method to estimate the variance

of the weighted model.
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The estimator from PS methods also showed the good performance for conditional

model especially given the large amount of confounding present. PS adjusted into multi-

variate competing risk model showed good performance for null model, which illustrated

high percent coverage, small bias and MSE for all scenarios. For alternative model, when

the PS model included heavy confounders, the subclassification model showed the small-

est MSE of subdistribution hazard model. However, subclassification showed a larger bias

compared to conventional model. For the cause-specific hazard model, the conventional

model showed a small bias, small MSE and high percent coverage. Under Monte Carlo

simulation, the confounder variables were independent, but may have been correlated.

The performance of PS methods under certain level of correlation between confounder

variables should to be investigated in the future.

We presented the case study of applying PS methods to estimate treatment effects

with a competing risks model. The Medicare claims data included a cohort of patients

who were recently hospitalized for AMI in 2008. The treatment effect of statins in this

population was investigated. The outcomes of interest were MI, stroke, heart failure

and all cause mortality. We believe that the estimators from weighted model showed

the best marginal estimator. The estimators from PS, added to the multivariate model,

produced a good estimator for null model, while the good estimators for the alternative

model of subdistribution hazard model and the cause-specific model were the subclassifi-

cation model and the conventional model respectively. The marginal estimator from the

weighted model demonstrated the benefit of statins in reducing hazard of heart failure

and all cause mortality in this population. However, the conditional model showed the

effect of statins of all-cause mortality.

The dataset for this hospitalized elderly contains the variation contributed by indi-

viduals and their medical condition. The heterogeneity treatment effects may show in

the results for the different age and medical procedure group. The heterogeneity treat-

ment effect represents the interaction between treatment effects and individual patient

characteristics. However, the PS methods cannot include the interaction between effect
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and confounding factors needed to investigate heterogeneity of treatment. The subgroup

analysis is the considering tool to estimate treatment effect when the heterogeneity treat-

ment effect possibly present.

The results showed a heterogeneity of treatment effects by age group and procedure

of CABG/stent/PTCA. The younger elderly showed a greater effect of statins on the

secondary prevention of heart failure than was seen in older elderly. The patients who

underwent CABG/stent/PTCA showed more of an effect of statins on MI and heart

failure than those patients who were only prescribed statins. However, the results of

heterogeneity treatment effect may be related to the healthy bias effect. The younger

elderly and the patients who had CABG/stent/PTCA were stronger and healthier than

other groups.

The appropriate PS model showed good performance in controlling confounder in

competing risks survival analysis. PS methods produced good estimators for both sub-

distribution and cause-specific hazard models. When the heterogeneity treatment effects

may be present, subgroup analysis should be performed to investigate the treatment

effects for each subgroup.
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APPENDIX: Propensity Score model

Table 5.1: Propensity score model

Variables Estimation SE P-value
intercept -1.094 0.092 0.000
Age ×comobidity 0.027 0.016 0.099
gender 0.013 0.020 0.516
Age 65-74 yrs.
Age 75-84 yrs. -0.045 0.022 0.045
Age 85 yrs. and more -0.118 0.029 0.000
White
Black 0.042 0.034 0.207
Asian 0.072 0.056 0.201
Hispanic 0.205 0.071 0.004
Other race 0.216 0.071 0.002
Income less than $30,001
Income $30,001-$60,000 0.105 0.073 0.141
Income $60,001-$100,000 0.168 0.074 0.024
Income $100,001-$150,000 0.201 0.083 0.015
Income more than $150,000 0.211 0.106 0.046
Charlson Comorbidity index
Acute Myocaridal Infarction 0.108 0.045 0.016
Cerebrovascular Disease -0.012 0.031 0.687
Congentive heart failure 0.011 0.031 0.758
Periphral vascular disease 0.032 0.030 0.291
Diabetes -0.036 0.111 0.747
Renal disease 0.147 0.039 0.000
Chronic Obstructive Pulmonary disease 0.095 0.036 0.009
Peptic Ulcer disease 0.064 0.072 0.371
Cancer -0.007 0.039 0.860
Dementia 0.003 0.055 0.956
Connective Tissue disease Rheumatic disease 0.008 0.051 0.877
Mild liver disease -0.160 0.071 0.024
Moderate to severe liver disease -0.578 0.213 0.007
Paralysis 0.079 0.097 0.414
Metastatic Carsinoma -0.024 0.103 0.813
AIDS/HIV -0.033 0.374 0.931
Diabetes without complication 0.000 0.109 0.999
Diabetes with complications 0.036 0.042 0.384
Baseline disease
Stent -0.002 0.162 0.510
PTCA -0.101 0.112 0.365
Unstable angina 0.034 4.020 0.391
Ischemic heart disease -0.334 0.023 0.000
Atrial fibrillation -0.065 0.030 0.031
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Variables Estimation SE P-value
Hypertension 0.006 0.025 0.794
Hyperlipidemia -0.221 0.022 0.000
End-stage renal disease 0.027 0.088 0.760
Osteroporosis 0.011 0.036 0.756
Asthma 0.098 0.042 0.019
Angiodedma&hyperkalemia 0.084 0.198 0.672
Hypotension -0.015 0.043 0.730
Sinus bradycardia&heart block -0.012 0.026 0.647
Rhabdomyolysis -0.234 0.138 0.090
Hyperkalemia 0.021 0.204 0.917
Baseline CCI=0 -0.080 0.035 0.023
Baseline CCI=1-2 -0.171 0.038 0.000
Baseline CCI=3-5 -0.233 0.063 0.000
Baseline CCI=6-8 -0.305 0.100 0.002
Baseline CCI more than 9 -0.387 0.146 0.008
Baseline medication
Baseline Beta blocker -0.230 0.020 0.000
Baseline ACEI/ARB -0.157 0.021 0.000
Baseline STATINS 1.659 0.022 0.000
BaselineCoronary Artery bypass grafting 0.076 0.116 0.510
Baseline STENT/PTCA -0.127 0.190 0.503
Admission procedure/diagnosis
Subendocardial infarction -0.104 0.022 0.000
Congestive heart failure -0.094 0.021 0.000
Cardiogenic shock 0.097 0.064 0.129
Acute renal failure 0.029 0.029 0.314
Hypotension 0.047 0.041 0.248
Cardiac dysrhythmias -0.062 0.020 0.002
Cardiac catheterization 0.118 0.036 0.001
CABG 0.682 0.043 0.000
PTCA -0.142 0.518 0.784
STENT/PTCA 0.655 0.518 0.206
Angiocardiography 0.162 0.035 0.000
Thromblytics and patelet inhibitors -0.029 0.121 0.811
Platelet inhibitors 0.177 0.046 0.000
Number of days in ICU=0
Number of days in ICU=1-3 0.044 0.022 0.042
Number of days in ICU=4-10 0.015 0.027 0.579
Number of days in ICU ¿10 -0.016 0.064 0.807
Number of coronary care unit=0
Number of coronary care unit= 1-3 0.129 0.024 0.000
Number of coronary care unit= 4-10 0.113 0.030 0.000
Number of coronary care unit ¿10 0.057 0.077 0.457
Total number of days in hospital
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Variables Estimation SE P-value
1 day in hospital -0.091 0.053 0.087
2-5 days in hospital 0.048 0.032 0.130
6-10 days in hospital -0.045 0.031 0.141
More than 10 days in hospital -0.102 0.049 0.039
Acute respiratory failure/ -0.061 0.032 0.056
Mechventilation in AMI admission
Septic shock in AMI admission -0.161 0.129 0.212
Physician visit during follow-up 0.143 0.023 0.000
Cardiologist visit during follow-up 0.120 0.021 0.000
Revascularization procedure during follow-up 0.127 0.037 0.001
Number of hospital admission in baseline -0.027 0.018 0.143
Number of days in hospital in baseline 0.001 0.001 0.656
Indicator for hospital admission in baseline 0.044 0.033 0.184
Number of admission to short-term -0.004 0.029 0.893
Acute care hospital during follow up
Number of days to short term -0.009 0.004 0.033
Acute care hospital during follow up
Medicare DOUGNUT -0.012 0.030 0.691
Low comorbidity level
Moderate comorbidity level -0.122 0.046 0.008
High comorbidity level -0.095 0.076 0.211
Current Beta blockers 0.987 0.022 0.000
Current ACEI/ARB 0.319 0.081 0.000
CurrentACEI 0.342 0.081 0.000
CurrentARB 0.186 0.076 0.014
Current comorbidity
Valvular disease or rheumatic heart disease -0.010 0.023 0.667
Other neurological disorders -0.030 0.029 0.304
Obesity -0.013 0.041 0.746
Coagulation deficiency -0.028 0.041 0.486
Weight loss -0.021 0.036 0.560
Fluid/electrolyte disorder -0.054 0.025 0.033
Substance abuse -0.025 0.072 0.731
Blood loss&deficiency anemia -0.087 0.022 0.000
Hypothyroidism -0.041 0.022 0.063
Pulmonary Circ. Disorders -0.034 0.039 0.379
Osteoarthritis -0.026 0.020 0.210
GI bleed -0.031 0.037 0.396
Parkinson’s disease -0.045 0.071 0.522
Weakness 0.041 0.046 0.371
Vertigo 0.010 0.026 0.708
Fall/difficulty walking 0.036 0.028 0.193
Bladder dysfunction 0.006 0.030 0.848
Decubitus -0.032 0.039 0.412
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Variables Estimation SE P-value

Use of Oxygen -0.031 0.033 0.348

Use of hospital bed 0.055 0.057 0.336

Use of ambulance 0.019 0.023 0.398

Nail care 0.025 0.027 0.345

Use of other assistive devices -0.011 0.045 0.815

Use of screening 0.029 0.023 0.196

Use of wheelchair 0.053 0.042 0.207

Use of rehabilitation -0.009 0.026 0.721

Figure 5.1: Distribution of the propensity score of statins users and non-users by revas-

cularization procedure group
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Table 5.2: Propensity score model by age groups

age 66-74 yrs. age 75-84 yrs. age 85 and older
Variables Estimation SE P-value Estimation SE P-value Estimation SE P-value
Intercept -0.490 0.479 0.307 -0.901 0.427 0.035 -0.029 0.501 0.954
Gender 0.000 0.033 0.999 0.024 0.031 0.430 -0.002 0.041 0.969
Age -0.005 0.006 0.396 -0.323 0.005 0.522 -0.015 0.005 0.003
White
Black 0.083 0.055 0.132 0.004 0.054 0.939 0.035 0.071 0.620
Asian -0.044 0.112 0.693 0.111 0.082 0.179 0.092 0.106 0.386
Hispanic 0.066 0.132 0.616 0.244 0.109 0.025 0.286 0.134 0.032
Other race 0.133 0.112 0.234 0.285 0.118 0.016 0.280 0.149 0.060
Income less than $30,001
Income $30,001-$60,000 0.151 0.120 0.211 0.103 0.118 0.382 0.058 0.149 0.696
Income $60,001-$100,000 0.186 0.123 0.131 0.189 0.120 0.113 0.112 0.151 0.458
Income $100,001-$150,000 0.137 0.142 0.337 0.231 0.133 0.082 0.203 0.164 0.215
Income more than $150,000 0.088 0.198 0.657 0.323 0.169 0.056 0.166 0.198 0.402
Charlson Comorbidity index
Acute Myocaridal Infarction 0.170 0.079 0.031 0.070 0.072 0.326 0.029 0.087 0.737
Cerebrovascular Disease 0.042 0.056 0.453 -0.036 0.047 0.437 -0.051 0.062 0.404
Congentive heart failure 0.005 0.066 0.943 0.066 0.058 0.257 -0.073 0.074 0.318
Periphral vascular disease -0.012 0.054 0.828 0.028 0.047 0.548 0.084 0.061 0.166
Diabetes 0.101 0.190 0.596 -0.385 0.176 0.029 0.288 0.215 0.181
Renal disease 0.188 0.070 0.007 0.094 0.061 0.121 0.155 0.078 0.047
Chronic Obstructive Pulmonary disease 0.116 0.063 0.065 0.120 0.056 0.032 0.005 0.077 0.944
Peptic Ulcer disease -0.116 0.128 0.363 0.184 0.111 0.099 0.086 0.142 0.546
Cancer -0.052 0.070 0.458 0.003 0.059 0.964 0.004 0.081 0.965
Dementia -0.024 0.149 0.869 0.120 0.088 0.170 -0.052 0.088 0.550
Connective Tissue disease Rheumatic disease -0.022 0.087 0.800 -0.070 0.077 0.363 0.194 0.109 0.076
Mild liver disease -0.167 0.108 0.122 -0.142 0.114 0.211 -0.251 0.171 0.143
Moderate to severe liver disease -0.692 0.319 0.030 -0.617 0.332 0.063 -0.271 0.593 0.647
Paralysis 0.197 0.162 0.234 0.038 0.154 0.805 -0.199 0.203 0.325
Metastatic Carsinoma 0.199 0.173 0.250 -0.121 0.156 0.439 -0.247 0.232 0.287
AIDS/HIV 0.049 0.421 0.908 -0.211 0.884 0.812
Diabetes without complication -0.142 0.187 0.449 0.364 0.174 0.036 -0.337 0.212 0.112
Diabetes with complications -0.028 0.070 0.686 0.135 0.065 0.038 -0.046 0.091 0.611
Baseline disease
BaselineCoronary Artery bypass grafting 0.185 0.161 0.251 0.072 0.179 0.688 0.006 0.519 0.990
Stent 0.022 0.263 0.932 0.002 0.236 0.993 0.060 0.421 0.888
PTCA -0.006 0.160 0.970 -0.213 0.176 0.227 -0.171 0.349 0.623
Unstable angina -0.039 0.067 0.557 0.142 0.063 0.025 -0.052 0.085 0.539
Ischemic heart disease -0.370 0.041 0.000 -0.380 0.036 0.000 -0.212 0.044 0.000
Atrial fibrillation -0.014 0.062 0.821 -0.090 0.046 0.054 -0.056 0.054 0.297
Hypertension -0.054 0.043 0.209 0.047 0.039 0.228 0.087 0.048 0.069
Hyperlipidemia -0.313 0.040 0.000 -0.194 0.035 0.000 -0.168 0.045 0.000
End-stage renal disease 0.007 0.135 0.960 0.003 0.135 0.980 0.138 0.222 0.533
Osteroporosis -0.031 0.077 0.683 0.054 0.056 0.328 -0.003 0.060 0.959
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age 66-74 yrs. age 75-84 yrs. age 85 and older

Variables Estimation SE P-value Estimation SE P-value Estimation SE P-value

Asthma 0.134 0.069 0.052 0.136 0.066 0.038 0.003 0.090 0.976

Angiodedma&hyperkalemia 0.314 0.336 0.351 -0.270 0.303 0.373 0.300 0.426 0.481

Hypotension -0.017 0.078 0.823 0.083 0.067 0.216 -0.155 0.081 0.056

Sinus bradycardia&heart block -0.082 0.051 0.107 0.041 0.041 0.316 -0.040 0.048 0.400

Rhabdomyolysis -0.081 0.255 0.751 -0.155 0.228 0.496 -0.497 0.246 0.043

Hyperkalemia -0.273 0.349 0.434 0.503 0.313 0.108 -0.313 0.437 0.474

Baseline CCI=0 -0.079 0.060 0.188 -0.055 0.056 0.327 -0.059 0.068 0.387

Baseline CCI=1-2 -0.247 0.066 0.000 -0.111 0.059 0.061 -0.137 0.076 0.070

Baseline CCI=3-5 -0.265 0.109 0.016 -0.201 0.097 0.038 -0.202 0.129 0.119

Baseline CCI=6-8 -0.337 0.174 0.053 -0.298 0.154 0.054 -0.233 0.209 0.265

Baseline CCI more than 9 -0.412 0.251 0.101 -0.408 0.225 0.070 -0.265 0.311 0.393

Baseline medication

Baseline Beta blocker -0.268 0.036 0.000 -0.240 0.032 0.000 -0.157 0.039 0.000

Baseline ACEI/ARB -0.119 0.037 0.001 -0.197 0.032 0.000 -0.119 0.040 0.003

Baseline STATINS 1.483 0.037 0.000 1.652 0.034 0.000 1.901 0.044 0.000

Baseline STENT/PTCA -0.218 0.298 0.464 -0.029 0.284 0.919 0.032 0.530 0.952

Admission procedure/diagnosis

Subendocardial infarction -0.167 0.037 0.000 -0.057 0.035 0.100 -0.100 0.045 0.025

Congestive heart failure 0.010 0.038 0.804 -0.100 0.032 0.002 -0.167 0.038 0.000

Cardiogenic shock 0.002 0.096 0.985 0.122 0.102 0.232 0.250 0.158 0.114

Acute renal failure 0.003 0.052 0.954 0.067 0.044 0.132 0.015 0.055 0.790

Hypotension 0.045 0.072 0.534 -0.016 0.064 0.800 0.162 0.082 0.047

Cardiac dysrhythmias -0.059 0.037 0.113 -0.050 0.032 0.118 -0.080 0.039 0.043

Cardiac catheterization 0.181 0.056 0.001 0.021 0.055 0.704 0.127 0.095 0.181

CABG 0.674 0.064 0.000 0.693 0.067 0.000 0.611 0.160 0.000

PTCA -0.153 0.830 0.854 -0.214 0.670 0.749 -8.110 119.468 0.946

Angiocardiography 0.036 0.054 0.503 0.223 0.053 0.000 0.247 0.094 0.009

Thromblytics and patelet inhibitors 0.078 0.189 0.680 -0.180 0.184 0.327 0.134 0.311 0.665

Platelet inhibitors 0.040 0.068 0.551 0.243 0.072 0.001 0.443 0.134 0.001

Number of days in ICU=0

Number of days in ICU=1-3 -0.028 0.037 0.461 0.070 0.034 0.040 0.081 0.043 0.061

Number of days in ICU=4-10 -0.032 0.049 0.520 0.006 0.042 0.880 0.053 0.052 0.038

Number of days in ICU ¿10 0.017 0.107 0.875 -0.021 0.096 0.825 -0.151 0.151 0.317

Number of coronary care unit=0

Number of coronary care unit= 1-3 0.094 0.040 0.018 0.123 0.038 0.001 0.168 0.050 0.001

Number of coronary care unit= 4-10 0.018 0.053 0.734 0.175 0.046 0.000 0.098 0.059 0.096

Number of coronary care unit ¿10 -0.044 0.125 0.728 0.070 0.115 0.543 0.184 0.188 0.329

STENT/PTCA 0.634 0.830 0.445 0.723 0.670 0.280

Total number of days in hospital

1 day in hospital -0.072 0.089 0.421 -0.083 0.085 0.329 -0.139 0.111 0.210

2-5 days in hospital 0.027 0.060 0.654 0.029 0.051 0.561 0.106 0.058 0.069

6-10 days in hospital -0.094 0.057 0.097 -0.031 0.049 0.529 -0.022 0.057 0.699

More than 10 days in hospital -0.203 0.089 0.022 -0.057 0.077 0.460 -0.096 0.099 0.334

Acute respiratory failure/
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age 66-74 yrs. age 75-84 yrs. age 85 and older
Variables Estimation SE P-value Estimation SE P-value Estimation SE P-value
Mechventilation in AMI admission -0.011 0.052 0.836 -0.116 0.049 0.018 -0.097 0.070 0.164
Septic shock in AMI admission 0.170 0.214 0.429 -0.356 0.193 0.064 -0.506 0.324 0.118
Physician visit during follow-up 0.191 0.042 0.000 0.123 0.038 0.001 0.119 0.044 0.006
Cardiologist visit during follow-up 0.091 0.036 0.012 0.129 0.033 0.000 0.127 0.044 0.004
Revascularization procudure during follow-up 0.055 0.056 0.325 0.135 0.058 0.020 0.264 0.099 0.007
Number of hospital admission in baseline -0.024 0.031 0.447 -0.043 0.028 0.124 -0.011 0.040 0.779
Number of days in hospital in baseline 0.001 0.003 0.765 0.004 0.002 0.064 -0.004 0.003 0.148
Indicator for hospital admission in baseline 0.116 0.058 0.045 0.007 0.052 0.897 0.035 0.070 0.623
Number of admission to short-term
acute care hospital during follow up -0.037 0.051 0.471 -0.019 0.045 0.676 0.048 0.058 0.412
Number of days to short term acute
care hospital during follow up -0.003 0.008 0.747 -0.012 0.007 0.080 -0.014 0.009 0.099
DOUGNUT -0.029 0.051 0.572 -0.002 0.047 0.961 0.002 0.063 0.976
Low comorbidity level
Moderate comorbidity level -0.067 0.060 0.265 -0.047 0.052 0.361 -0.078 0.062 0.211
High comorbidity level -0.047 0.072 0.515 -0.026 0.062 0.672 0.133 0.081 0.100
Current Beta blockers 1.113 0.037 0.000 0.921 0.034 0.000 0.952 0.043 0.000
Current ACEI/ARB 0.324 0.133 0.015 0.291 0.135 0.031 0.389 0.163 0.017
CurrentACEI 0.312 0.128 0.015 0.436 0.131 0.001 0.210 0.158 0.185
CurrentARB 0.199 0.121 0.102 0.284 0.127 0.025 0.010 0.153 0.947
Current comorbidity
Valvular disease or rheumatic heart disease 0.028 0.043 0.510 -0.050 0.036 0.160 -0.008 0.043 0.853
Other neurological disorders -0.016 0.056 0.769 -0.025 0.045 0.576 -0.043 0.053 0.414
Obesity 0.064 0.057 0.259 -0.106 0.066 0.111 -0.055 0.134 0.683
Coagulation deficiency -0.055 0.075 0.468 -0.015 0.062 0.810 -0.043 0.079 0.587
Weight loss -0.023 0.072 0.755 -0.073 0.056 0.191 0.021 0.065 0.744
Fluid/electrolyte disorder -0.113 0.047 0.016 -0.047 0.040 0.233 -0.002 0.048 0.975
Substance abuse -0.018 0.099 0.855 -0.127 0.124 0.307 -0.093 0.213 0.661
Blood loss&deficiency anemia -0.065 0.042 0.122 -0.077 0.035 0.027 -0.116 0.041 0.005
Hypothyroidism -0.051 0.042 0.221 0.011 0.035 0.751 -0.109 0.041 0.008
Pulmonary Circ. Disorders -0.123 0.071 0.082 -0.047 0.060 0.439 0.056 0.074 0.444
Osteoarthritis -0.069 0.037 0.062 0.004 0.032 0.895 -0.019 0.039 0.627
GI bleed 0.008 0.069 0.912 -0.086 0.056 0.124 0.004 0.070 0.954
Use of screening 0.050 0.041 0.227 -0.024 0.037 0.511 0.044 0.042 0.301
Use of wheelchair -0.028 0.082 0.733 0.049 0.069 0.480 0.121 0.072 0.090
Parkinson’s disease -0.094 0.150 0.529 -0.046 0.105 0.662 -0.052 0.130 0.692
Use of rehabilitation -0.072 0.047 0.125 0.075 0.041 0.067 -0.072 0.051 0.162
Weakness 0.200 0.095 0.035 -0.020 0.072 0.785 0.027 0.080 0.737
Vertigo -0.078 0.048 0.103 0.045 0.040 0.259 0.035 0.048 0.464
Fall/difficulty walking 0.082 0.055 0.135 0.008 0.043 0.857 0.047 0.048 0.332
Bladder dysfunction -0.040 0.059 0.501 -0.010 0.046 0.833 0.075 0.056 0.178
Decubitus 0.010 0.074 0.897 -0.053 0.062 0.400 -0.031 0.070 0.659
Use of Oxygen 0.013 0.057 0.815 -0.053 0.051 0.298 -0.077 0.068 0.256
Use of hospital bed 0.126 0.111 0.259 0.146 0.093 0.114 -0.052 0.098 0.597
Use of ambulance 0.090 0.041 0.030 -0.027 0.035 0.444 -0.015 0.043 0.723
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age 66-74 yrs. age 75-84 yrs. age 85 and older
Variables Estimation SE P-value Estimation SE P-value Estimation SE P-value
Nail care 0.035 0.057 0.545 -0.015 0.042 0.714 0.052 0.046 0.255
Use of other assistive devices -0.014 0.090 0.878 -0.128 0.071 0.051 0.125 0.081 0.121
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Table 5.3: Propensity score model by revascularization procedure group

CABG/stent/PTCA No CABG/stent/PTCA
Variables Estimator SE p-value Estimator SE p-value
Intercept 0.139 0.205 0.498 -1.368 0.116 0.000
Gender -0.043 0.032 0.170 0.034 0.026 0.185
Age 66-74 yrs.
Age 75-84 yrs. -0.047 0.032 0.138 -0.017 0.030 0.556
Age 85+ yrs. -0.038 0.049 0.435 -0.052 0.034 0.119
White
Black -0.037 0.062 0.555 0.100 0.041 0.013
Asian 0.086 0.098 0.383 0.091 0.069 0.191
Hispanic 0.322 0.130 0.013 0.169 0.086 0.051
Other race 0.362 0.129 0.005 0.160 0.087 0.066
Income less than $30,001
Income $30,001-$60,000 0.007 0.125 0.952 0.168 0.092 0.068
Income $60,001-$100,000 0.078 0.127 0.538 0.229 0.094 0.014
Income $100,001-$150,000 0.094 0.141 0.503 0.269 0.104 0.010
Income more than $150,000 0.237 0.176 0.177 0.199 0.137 0.145
Charlson Comorbidity index
Acute Myocaridal Infarction 0.104 0.087 0.234 0.059 0.053 0.262
Cerebrovascular Disease -0.031 0.056 0.573 -0.011 0.037 0.777
Congentive heart failure 0.049 0.071 0.485 -0.043 0.044 0.329
Periphral vascular disease 0.053 0.055 0.340 0.017 0.037 0.648
Diabetes -0.619 0.181 0.001 0.268 0.138 0.052
Renal disease 0.123 0.075 0.101 0.131 0.047 0.005
Chronic Obstructive Pulmonary disease 0.178 0.066 0.007 0.055 0.044 0.219
Peptic Ulcer disease 0.156 0.137 0.253 0.007 0.086 0.939
Cancer 0.077 0.070 0.270 -0.061 0.049 0.212
Dementia 0.207 0.140 0.139 -0.036 0.062 0.563
Connective Tissue disease Rheumatic disease 0.040 0.086 0.638 -0.034 0.065 0.602
Mild liver disease -0.213 0.121 0.079 -0.132 0.089 0.135
Moderate to severe liver disease -0.272 0.461 0.556 -0.679 0.247 0.006
Paralysis 0.021 0.206 0.919 0.071 0.111 0.523
Metastatic Carsinoma 0.421 0.207 0.043 -0.149 0.122 0.222
AIDS/HIV 0.354 0.651 0.587 -0.213 0.462 0.644
Diabetes without complication 0.570 0.179 0.001 -0.301 0.136 0.027
Diabetes with complications 0.080 0.076 0.293 0.001 0.051 0.987
Baseline disease
BaselineCoronary Artery bypass grafting -0.055 0.176 0.756 0.232 0.154 0.133
Stent -0.025 0.228 0.914 0.069 0.226 0.760
PTCA -0.214 0.136 0.115 0.206 0.212 0.332
Unstable angina 0.065 0.066 0.322 -0.006 0.051 0.903
Ischemic heart disease -0.495 0.038 0.000 -0.234 0.029 0.000
Atrial fibrillation 0.086 0.059 0.144 -0.108 0.036 0.003
Hypertension 0.049 0.039 0.210 -0.003 0.032 0.932
Hyperlipidemia -0.425 0.037 0.000 -0.111 0.029 0.000
End-stage renal disease -0.061 0.167 0.714 0.064 0.103 0.537
Osteroporosis -0.010 0.065 0.877 0.022 0.043 0.616
Baseline CCI=0 -0.037 0.052 0.475 -0.082 0.049 0.090
Baseline CCI=1-2 -0.163 0.063 0.009 -0.128 0.049 0.010
Baseline CCI=3-5 -0.295 0.113 0.009 -0.144 0.078 0.063
Baseline CCI=6-8 -0.468 0.188 0.013 -0.194 0.121 0.110
Baseline CCI more than 9 -0.635 0.279 0.023 -0.246 0.176 0.161
Baseline Beta blocker -0.246 0.033 0.000 -0.204 0.026 0.000
Baseline ACEI/ARB -0.089 0.034 0.008 -0.185 0.027 0.000
Baseline STATINS 1.211 0.035 0.000 1.896 0.027 0.000
Baseline STENT/PTCA 0.003 0.256 0.990 -0.323 0.302 0.285
Asthma 0.073 0.076 0.337 0.093 0.051 0.068
Baseline medication
Angiodedma&hyperkalemia -0.313 0.330 0.343 0.262 0.247 0.289
Hypotension 0.017 0.084 0.836 -0.048 0.050 0.338
Sinus bradycardia&heart block -0.065 0.048 0.176 0.009 0.032 0.783
Rhabdomyolysis 0.106 0.287 0.712 -0.362 0.164 0.027
Hyperkalemia 0.270 0.346 0.436 -0.106 0.254 0.678
Admission procedure/diagnosis
CABG -0.013 0.119 0.914
PTCA -0.143 0.517 0.782
Stent/PTCA -0.078 0.531 0.883
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CABG/stent/PTCA No CABG/stent/PTCA
Variables Estimator SE p-value Estimator SE p-value
Subendocardial infarction -0.155 0.032 0.000 -0.029 0.031 0.346
Congestive heart failure -0.103 0.037 0.006 -0.088 0.025 0.000
Cardiogenic shock 0.081 0.080 0.309 -0.012 0.113 0.914
Acute renal failure -0.006 0.053 0.910 0.055 0.034 0.107
Hypotension 0.046 0.064 0.477 0.037 0.054 0.493
Cardiac dysrhythmias -0.029 0.034 0.382 -0.087 0.026 0.001
Cardiac catheterization 0.007 0.046 0.883 0.035 0.091 0.703
Angiocardiography 0.044 0.043 0.307 0.259 0.091 0.004
Thromblytics and patelet inhibitors -0.164 0.161 0.307 0.088 0.184 0.633
Platelet inhibitors 0.035 0.055 0.525 0.425 0.092 0.000
Number of days in ICU=0
Number of days in ICU=1-3 -0.030 0.035 0.387 0.069 0.028 0.015
Number of days in ICU=4-10 -0.002 0.048 0.968 0.000 0.033 0.993
Number of days in ICU ¿10 -0.086 0.097 0.379 -0.003 0.088 0.976
Number of coronary care unit=0
Number of coronary care unit= 1-3 0.076 0.036 0.034 0.137 0.033 0.000
Number of coronary care unit= 4-10 0.080 0.049 0.100 0.105 0.038 0.006
Number of coronary care unit ¿10 -0.106 0.106 0.319 0.249 0.116 0.032
Total number of days in hospital
1 day in hospital 0.068 0.090 0.451 -0.197 0.068 0.004
2-5 days in hospital 0.044 0.060 0.459 0.045 0.039 0.245
6-10 days in hospital -0.080 0.056 0.155 -0.038 0.038 0.317
More than 10 days in hospital -0.090 0.087 0.299 -0.117 0.062 0.054
Acute respiratory failure/
Mechventilation in AMI admission -0.024 0.054 0.659 -0.076 0.040 0.056
Septic shock in AMI admission -0.081 0.290 0.781 -0.168 0.146 0.250
Physician visit during follow-up 0.245 0.041 0.000 0.096 0.029 0.001
Cardiologist visit during follow-up 0.034 0.034 0.321 0.147 0.028 0.000
Revascularization procudure
during follow-up -0.002 0.044 0.960 0.412 0.071 0.000
Number of hospital admission in baseline 0.028 0.041 0.491 -0.050 0.021 0.017
Number of days in hospital in baseline 0.002 0.003 0.507 0.001 0.001 0.595
Indicator for hospital admission in baseline 0.058 0.063 0.353 0.041 0.041 0.319
Number of admission to short-term
acute care hospital during follow up 0.005 0.047 0.913 -0.028 0.037 0.449
Number of days to short term acute
care hospital during follow up -0.024 0.007 0.001 -0.003 0.006 0.600
DOUGNUT -0.076 0.053 0.158 0.016 0.037 0.663
Low comorbidity level
Moderate comorbidity level -0.076 0.053 0.158 -0.072 0.040 0.071
HIgh comorbidity level -0.092 0.077 0.231 0.022 0.048 0.650
Current Beta blockers 1.128 0.036 0.000 0.896 0.027 0.000
Current ACEI/ARB 0.065 0.143 0.648 0.476 0.103 0.000
CurrentACEI 0.600 0.139 0.000 0.185 0.099 0.063
CurrentARB 0.482 0.134 0.000 0.004 0.096 0.964
Current comorbidity
Valvular disease or
Rheumatic heart disease -0.021 0.041 0.620 -0.008 0.028 0.765
Other neurological disorders -0.037 0.056 0.510 -0.015 0.034 0.654
Obesity -0.056 0.065 0.387 0.028 0.053 0.599
Coagulation deficiency 0.029 0.080 0.715 -0.048 0.048 0.315
Weight loss 0.010 0.073 0.895 -0.018 0.043 0.677
Fluid/electrolyte disorder 0.059 0.048 0.213 -0.096 0.031 0.002
Substance abuse -0.218 0.134 0.105 0.084 0.086 0.330
Blood loss&deficiency anemia -0.052 0.040 0.193 -0.094 0.027 0.001
Hypothyroidism -0.047 0.038 0.220 -0.038 0.028 0.175
Pulmonary Circ. Disorders -0.099 0.078 0.200 -0.020 0.045 0.659
Osteoarthritis -0.048 0.034 0.159 -0.014 0.026 0.598
GI bleed -0.021 0.071 0.768 -0.044 0.044 0.316
Use of screening 0.045 0.039 0.246 0.004 0.029 0.901
Use of wheelchair 0.108 0.097 0.268 0.044 0.048 0.353
Parkinson’s disease -0.069 0.137 0.618 -0.038 0.084 0.648
Use of rehabilitation -0.017 0.045 0.695 -0.004 0.033 0.898
Weakness 0.124 0.096 0.198 0.026 0.053 0.630
Vertigo -0.002 0.044 0.973 0.017 0.032 0.592
Fall/difficulty walking 0.003 0.052 0.954 0.056 0.033 0.091
Bladder dysfunction -0.035 0.053 0.512 0.037 0.037 0.326
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CABG/stent/PTCA No CABG/stent/PTCA

Variables Estimator SE p-value Estimator SE p-value

Decubitus -0.121 0.077 0.114 -0.005 0.046 0.913

Use of Oxygen -0.016 0.065 0.809 -0.021 0.039 0.581

Use of hospital bed 0.145 0.146 0.321 0.052 0.063 0.411

Use of ambulance 0.060 0.040 0.130 0.001 0.028 0.975

Nail care 0.067 0.052 0.197 0.131 0.032 0.683

Use of other assistive devices -0.156 0.092 0.091 0.029 0.053 0.588
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