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ABSTRACT 
 

Nathaniel Adam Sowa: Characterization of ectonucleotidases in nociceptive circuits 
 (Under the direction of Mark J. Zylka, Ph.D.) 

 
Pain is one of the most common medical complaints in the United States, affecting 

almost a quarter of American adults.  There are numerous treatments for acute and chronic 

pain, but none of them are completely effective and many have intolerable side effects.  New 

treatments are needed that are safer, more efficacious, and more cost-effective.  We have 

focused on trying to understand better the mechanisms involved in the regulation of pain 

(nociceptive) signaling in order to develop novel therapies.  Two important compounds 

involved in pain signaling are adenosine triphosphate (ATP) and adenosine.  ATP has pro-

nociceptive properties, while adenosine is antinociceptive.  ATP can be converted to 

adenosine through a step-wise process catalyzed by enzymes on the surface of cells called 

ectonucleotidases.  These enzymes could play a pivotal role in regulation of nociception by 

degrading pro-nociceptive ATP while simultaneously producing antinociceptive adenosine.  

Prior to this work, the exact ectonucleotidases present in nociceptive circuits were unknown.  

Here, we identify and characterize the first two known AMP-degrading 

ectonucleotidases involved in nociception, prostatic acid phosphatase (PAP) and Ecto-5’-

nucleotidase (NT5E).  Genetic deletion of these enzymes does not affect acute nociception, 

but leads to enhanced pain sensitivity in chronic inflammatory and neuropathic pain models.  

Conversely, intraspinal injection of PAP or NT5E protein has antinociceptive, 

antihyperalgesic, and antiallodynic effects that last longer than the opioid analgesic
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morphine.  Both PAP and NT5E suppress pain by the production of adenosine from 

endogenous AMP and subsequent activation of the A1-adenosine receptor (A1R).  Further, 

chronic activation of A1R by PAP leads to depletion of cellular levels of the signaling 

molecule PIP2.  Depletion of PIP2 before or after chemical or physical injury (through 

injection of PAP) reduces pain hypersensitivity, highlighting an important role for PIP2 levels 

in the modulation of nociceptive signaling.  We are the first to show this important role for 

PIP2 in setting the dynamic pain threshold in nociceptors.  These studies not only identify 

two potentially new targets for the development of chronic pain therapy, but also highlight a 

new model for the dynamic modulation of pain sensitivity through the regulation of neuronal 

PIP2 levels. 
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CHAPTER 1 
 

Introduction and Background 
 

  

1.1) The Burden of Chronic Pain 

 Pain – be it physical or emotional – is one of the most common medical complaints in 

the United States.  In a recent survey, over one-quarter (26%) of all adults in the U.S. 

reported that they suffered from pain (of any type) that persisted for greater than 24 hours 

during the month prior to interview (2006).  Almost one-half of these individuals (42%) 

reported their pain had lasted for greater than 1 year.  Chronic pain can be extremely 

debilitating, affecting physical and mental well-being and profoundly diminishing quality of 

life.  Patients reporting moderate to severe chronic pain describe difficulty performing 

everyday activities, including exercising, sleeping, doing chores, participating in social 

activities, working, and caring for children (1999).  Moderate to severe chronic pain sufferers 

also report difficulty maintaining attention and focusing on important tasks, as well as 

emotional difficulties, including listlessness, feelings of worthlessness, anxiety, and 

depression (1999).  All of these problems significantly worsen when pain is inadequately 

controlled.      

 The treatment of pain is extremely expensive.  The direct costs of pain treatment, 

including medical practitioner and hospital visits, drugs, and therapies are estimated to be 

over $100US billion annually (2006; Luo et al., 2004).  These costs do not take into account 

other societal costs, including loss of work time and productivity.  Together, these make pain 
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one of the most costly human conditions.  Despite these impacts on personal and societal 

well-being, pain remains largely undertreated and poorly understood.  These factors led the 

U.S. Congress to declare the decade starting in 2001 as the “Decade of Pain Control and 

Research.”  (Title VI, Sec. 1603, of H.R. 3244).   

 Treatments for pain – both scientifically vetted and otherwise – abound.  

Pharmaceutical treatments are the most common, and include non-steroidal anti-

inflammatory drugs (NSAIDS; aspirin, ibuprofen, acetaminophen, naproxen), COX 

inhibitors (celecoxib, rofecoxib), opioids (morphine, codeine, oxycodone, fentanyl), 

antidepressants, anticonvulsants, and specific ion channel blockers.  While they are some of 

the most commonly prescribed drugs on the market, pain relievers also carry significant side 

effects that many patients cannot tolerate, making other modes of therapy necessary.  Other 

treatments include injections of local anesthetics (lidocaine), nerve blocks, physical therapy, 

electrical stimulation, psychological therapy, surgery, and acupuncture.  In addition, chronic 

pain patients are constantly bombarded with advertisements for alternative therapies, 

homeopathic remedies, and natural supplements which claim to treat pain.  This menagerie of 

treatments can be very confusing, expensive, and time consuming for patients, further raising 

the burden of disease.  Further, no single treatment is often sufficient for many patients, 

leading to frustration, anger, and additional emotional challenges that often worsen the pain 

symptoms.  Thus, while many modes of “pain relief” are available to patients, many still 

suffer, requiring further advances in pain therapy.   

 It is with this knowledge in mind that we have set out to better understand the 

nociceptive (pain-sensing) nervous system, in order to design better treatments for both acute 

and chronic pain.  We have focused on understanding the endogenous mechanisms present in 
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the nociceptive nervous system that modulate signaling in order to identify new targets for 

therapy.  We hope that these studies provide increased knowledge of pain signaling and 

pathology and will also lead to novel therapeutic approaches which are so desperately needed 

by millions of people.   

 

1.2) The Nociceptive Nervous System 

 Every moment, the body receives a wealth of information about its surrounding 

environment.  The task of detecting, integrating, and transmitting this information belongs to 

the peripheral sensory nervous system.  Highly specialized nerve fibers provide information 

to the central nervous system about the environment and the state of the organism.  In the 

skin alone, there are fibers that detect cooling, warmth, vibration, pressure, noxious 

chemicals and touch.  Some fibers can detect several of these stimuli (polymodal), while 

others are specialized for one particular type of input (Julius and Basbaum, 2001; Meyer et 

al., 2006).  Within these groups, there are fibers belonging to neurons that are specialized in 

the detection of noxious (injurious or potentially injurious) stimuli, which are called 

nociceptors (Sherrington, 1906).  These fibers have been shown, using electrophysiological 

studies, to be excited by noxious heat, intense pressure, and chemical irritants, but not by 

innocuous warming or light touch (Burgess and Perl, 1967).  It is these neurons that are 

responsible for protecting organisms from potentially harmful stimuli in their environment.   

 Fibers innervating the head and body have their cell bodies in the trigeminal and 

dorsal root ganglia (DRG), respectively, which lie in and along the dorsal regions of the 

brainstem and spinal cord.  These pseudo-unipolar neurons have a very long axon that 

branches into two distinct processes (Meyer et al., 2006).  The distal process extends into the 
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periphery to detect and relay information from external stimuli, while the proximal process 

extends into the central nervous system, synapsing with neurons in the spinal cord or 

brainstem.  Information is then carried to higher levels of the CNS for integration and 

interpretation. 

There are three broad classes of sensory neurons found in the trigeminal ganglia and 

DRG that supply the skin (Figure 1.1).  Large diameter neurons give rise to relatively large 

diameter, myelinated Aβ fibers.  These fibers conduct action potentials very rapidly, and are 

largely involved in the detection of innocuous stimuli applied to skin, muscles, and joints 

(Julius and Basbaum, 2001).  Slightly smaller in diameter are the thinly myelinated Aδ 

fibers.  These fibers transmit action potentials more slowly than Aβs and their activation is 

thought to lead to pricking, sharp, and perhaps aching pain (Julius and Basbaum, 2001; 

Meyer et al., 2006).  There are two broad classes of Aδ nociceptors (Type I and Type II) that 

differ in their thermal thresholds, ability to respond to mechanical stimuli, and their 

functional firing properties (Dubner and Hu, 1977; Meyer et al., 2006; Treede et al., 1998).  

These fibers are thought to play some role in detection of noxious heat and in the 

sensitization process following burn or chemical injury (Campbell et al., 1979; Ringkamp et 

al., 2001; Treede et al., 1998).  The smallest diameter DRG neurons give rise to small, 

unmyelinated C fibers.  C-fiber nociceptors are mostly polymodal, responding to noxious 

thermal, mechanical, and chemical stimuli (Julius and Basbaum, 2001; Meyer et al., 2006).  

They propagate action potentials rather slowly, and are thought to give rise to a burning pain 

sensation when activated.  C fibers have slowly adapting responses to mechanical and 

thermal stimuli, and are heavily involved in the sensitization (hyperalgesia) process 

following tissue injury (Meyer et al., 2006; Peng et al., 2003).   
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1.3) Classification of Nociceptors Based on Molecular Markers 

 In addition to their general size and firing properties, nociceptors can be further 

characterized by particular cellular markers that allow for study of their peripheral and 

central projections.  These markers include cell surface receptors, peptides stored and 

released by the cells, and enzymes (Meyer et al., 2006).  They often differ in their relative 

abundance between species (Zwick et al., 2002) and can change following inflammation or 

nerve injury (Meyer et al., 2006), but can be extremely useful in understanding general 

properties about classes of neurons and can even highlight functional and anatomically 

distinct circuits (Cavanaugh et al., 2009; Zylka et al., 2005).  Large-diameter DRG neurons 

(Aβ and some myelinated Aδ) are uniformly labeled with antibodies against the 

phosphorylated heavy chain neurofilament protein NF200.  This marker can easily 

distinguish between these larger sensory neurons and small DRG cells, for which there are 

many more markers.   

 Small DRG neurons are broadly subdivided into peptidergic and nonpeptidergic 

neurons (Figure 1.2) (Julius and Basbaum, 2001; Meyer et al., 2006; Zylka, 2005).  

Peptidergic neurons contain neuropeptides, such as substance P, calcitonin gene-related 

protein (CGRP), and somatostatin.  These neurons also express TrkA, the high-affinity 

tyrosine kinase receptor for nerve growth factor (NGF) and depend upon NGF-TrkA 

signaling for survival during development (Fitzgerald, 2005).  Studies examining substance P 

or CGRP expression in rat have shown that about 40% of all DRG cells – 50% of C fibers, 

and 20% of Aδ fibers – are classified as peptidergic (Lawson et al., 1996; McCarthy and 

Lawson, 1989).  Peptidergic neurons project specifically to lamiae I and IIouter in the dorsal 
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horn of the spinal cord (Hunt and Mantyh, 2001; Zylka, 2005), and they extend their axons 

into visceral, dermal, and epidermal targets (Perry and Lawson, 1998; Zylka et al., 2005). 

 Nonpeptidergic neurons contain fluoride resistant acid phosphatase (FRAP), bind the 

plant lectin IB4 from Griffonia simplicifolia, and express the ATP-gated ion channel P2X3 

(Meyer et al., 2006; Silverman and Kruger, 1988a; Silverman and Kruger, 1988b; Snider and 

McMahon, 1998; Vulchanova et al., 1998).  Nonpeptidergic nociceptors lose expression of 

TrkA during development and rely on signaling through the receptor tyrosine kinase Ret for 

survival (Fitzgerald, 2005).  While staining for IB4 or FRAP has traditionally been used to 

discriminate nonpeptidergic neurons from peptidergic cells, it should be noted that there is 

some colocalization of both of these markers with substance P and/or CGRP in DRG 

(Bergman et al., 1999; Carr et al., 1990; Wang et al., 1994).  Nonpeptidergic neurons project 

specifically to lamina IIinner in the dorsal horn and extend their axons primarily to the skin, 

with some afferents projecting to muscle (Perry and Lawson, 1998; Zylka, 2005). 

 While these classifications are not necessarily functional in nature, they do provide 

some insight into broad classes of nociceptors.  For example, the remarkable segregation of 

peptidergic and nonpeptidergic axon terminals in the dorsal horn hints at a unique central 

connectivity between these classes.  In addition, peptidergic and nonpeptidergic neurons can 

also have different morphological and anatomical characteristics within a given tissue type, 

hinting at conserved functional differences in these regions (Zylka et al., 2005).  Further, 

certain receptors involved in signal transduction also segregate between peptidergic and 

nonpeptidergic nociceptors.  For example, the pro-nociceptive ATP receptor P2X3 is found 

almost exclusively in IB4+ neurons, while the noxious heat and capsaicin receptor TRVP1 is 

expressed primarily in peptidergic neurons in the mouse.  These segregations hint at 
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functional differences between these nociceptor classes and can be useful in understanding 

expression patterns and possible functions of newly discovered proteins and markers.   

  

1.4) Important Transducers and Modulators of Nociception 

 Understanding the properties of nociception requires a basic knowledge of the 

important players in the detection and production of nociceptive signals from afferent 

neurons.  Here I will outline, briefly in some cases and in detail in others, the mechanisms of 

noxious stimuli detection and the important channels and receptors involved in the creation 

and modulation of nociceptive neurotransmission.   

 

1.4.1) Detection of Mechanical Stimuli 

 Nociceptors are capable of detecting noxious mechanical stimuli due to direct 

pressure, tissue deformation or osmotic stress.  While the properties of nociceptor responses 

to these stimuli have been intensely studied (Meyer et al., 2006), surprisingly, the 

identification of the direct mechanotransducers present in mammals remains elusive.  

Candidates have been identified from invertebrate systems, but studies on mammalian 

orthologs have been inconclusive.   

 Studies from the worm Caenorhabditis elegans have shown members of the 

DEG/ENaC ion channel family to be important in the detection of gentle touch (Julius and 

McCleskey, 2006).  Mammalian homologs of these channels (ASIC1, ASIC2, and ASIC3) 

are expressed in primary sensory neurons (Garcia-Anoveros et al., 2001), but targeted 

deletions of these genes produce only subtle alterations in mechanosensitivity in mice, 
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questioning their role in mechanotransduction (Price et al., 2000; Price et al., 2001; Roza et 

al., 2004).   

 Studies from yeast, flies, and worms have also implicated members of the transient 

receptor potential (TRP) family of ion channels in the detection of mechanical stimuli.  

However, their role in mammalian mechanotransduction remains unclear (Christensen and 

Corey, 2007).    TRPA1 is thought to be involved in acute noxious mechanosensation and 

cold sensation.  However, mice null for TRPA1 show normal mechanical sensitivity to most 

stimuli, with only a deficit in the detection of intense stimuli at high g-forces (Kwan, 2006; 

Petrus et al., 2007).  In addition, while antagonists of TRPA1 decrease nociceptor responses 

to mechanical stimuli in vitro, application in vivo does not affect acute mechanosensation 

(Kerstein et al., 2009; Petrus et al., 2007).  Thus, while TRPA1 likely plays a role in 

mechanosensation, possibly through indirect activation due to release of reactive compounds 

from damaged tissue or increases in intracellular calcium, there is no evidence for direct 

activation of the channel by mechanical stimuli (Christensen and Corey, 2007; Hinman et al., 

2006; Macpherson et al., 2007; Zurborg et al., 2007).  Another TRP channel, TRPV4, is 

activated in vitro by changes in osmolarity (Liedtke et al., 2000; Strotmann et al., 2000).  

However, targeted disruption of TRPV4 in mice leads to only minor changes in 

mechanosensory responses, suggesting it may not be important in mechanotransduction in 

vivo (Liedtke et al., 2000; Mizuno et al., 2003; Suzuki et al., 2003). 

 

1.4.2) Detection of Thermal Stimuli 

 1.4.2.1) Detection of Cold 
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Exposure to noxious cold temperatures (< 4ºC) leads to intense, burning pain.  

Activation of nociceptors by noxious cold has been proposed to occur through a number of 

mechanisms, including activation of Ca2+- and/or Na2+-permeable channels, inhibition of 

background K+ channels, inhibition of Na+/K+-ATPases, or differential effects of  cold on 

voltage-gated Na+ or K+ conductances (Julius and McCleskey, 2006).  Recent work has 

shown the potential for specific excitatory “cold receptors.”  Most prominent among these is 

the TRP channel family member TRPM8, which is gated by both menthol (the ingredient 

responsible for the “cool” sensation in gum, cigarettes, and other products) and cold 

(McKemy et al., 2002).  TRPM8 is activated by both cool (26ºC-15ºC) and cold (<15ºC) 

temperatures in vitro and is responsible for detection of cool temperatures in vivo.  

Interestingly, while TRPM8 is upregulated following neuropathic pain (Frederick et al., 

2007; Proudfoot et al., 2006), its role in mediating cold, mechanical, or thermal 

hypersensitivity under pathophysiological conditions is unclear.  In fact, TRMP8 agonists 

can actually attenuate thermal and mechanical hypersensitivity in some models of 

neuropathic pain, highlighting a possible role for the channel in cold-mediated analgesia 

(Proudfoot et al., 2006; Xing et al., 2008).  Mice null for TRPM8 still retain an aversion to 

intense cold, suggesting TRPM8 is responsible for detection of only cool and some noxious 

cold temperatures in vivo (Bautista et al., 2007; Colburn et al., 2007; Dhaka et al., 2007).  

Thus, other mechanisms must be responsible for detection of extreme cold temperatures.    

Another candidate for a noxious cold sensor is the aforementioned TRPA1.  When 

heterologously expressed in CHO cells, TRPA1 is activated by cold temperatures with a 

threshold that is lower than TRPM8 (Bandell et al., 2004b; Sawada et al., 2007; Story et al., 

2003c).  However, the role of TRPA1 in detection of noxious cold is controversial due to 
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discrepancies in cold activation in different heterologous expression systems (Jordt et al., 

2004; Nagata et al., 2005), the possibility of indirect channel activation due to rises in 

intracellular Ca2+ release (Zurborg et al., 2007), a lack of correlation between responses of 

somatosensory neurons to both mustard oil (a known TRPA1 agonist) and cold (Babes et al., 

2004; Bautista et al., 2006b; Jordt et al., 2004), and conflicting reports of cold-sensing 

deficits in TRPA1 null mice (Bautista et al., 2006b; Kwan et al., 2006).  While a recent study 

attempted to address these concerns, showing direct cold-activation of TRPA1 in vitro, 

expression of the channel in a distinct subset of cold-sensitive primary sensory neurons, and 

a distinct noxious cold-sensing deficit in TRPA1 null mice (Karashima et al., 2009), the 

controversy over TRPA1’s role in noxious cold sensation  is likely to continue.   

 

1.4.2.2) Detection of Heat 

In cell culture, approximately 45% of small- and medium-diameter DRG neurons 

show heat-evoked membrane currents that initiate at an activation threshold of ~42ºC (Julius 

and McCleskey, 2006; Nagy and Rang, 1999).  Based on size and heat responsiveness, these 

are likely C-fiber and Type II Aδ-fiber nociceptors.  In addition, about 5% of the medium- to 

large-diameter Type I Aδ fiber DRG neurons respond to heat at the higher activation 

threshold of ~51ºC (Cesare et al., 1999b; Nagy and Rang, 1999).  These different properties 

suggest a different mechanism of thermosensation and activation.  It is now clear that the 

thermal sensitivity of the smaller, C-fiber and Type II Aδ-fiber nociceptors is due to the 

expression of the capsaicin and noxious thermosensor TRPV1.  Since TRPV1 plays an 

important role in the following studies, I will spend some time describing the characteristics 

of this important channel.   
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1.4.2.2.1) TRPV1 

TRPV1 is a nonselective cation channel that responds to noxious heat at temperatures 

above 43ºC, similar to the properties seen in small- and medium-diameter DRG neurons in 

culture (Caterina et al., 1997).  Fittingly, TRPV1 is expressed predominantly in a subset of 

small- and medium-diameter DRG neurons in mice (Pingle et al., 2007).  The channel has 

equal selectivity for the passage of most univalent cations, and is moderately selective for 

divalent cations (Caterina et al., 1997).  In addition, it is highly permeable to protons, large 

polyvalent cations, polyamines, and several organic cationic dyes (Ahern et al., 2006; Meyers 

et al., 2003).  The relative permeability and large pore size of the channel has allowed it to be 

used as a tool to deliver small-molecule anesthetics (Binshtok et al., 2007; Binshtok et al., 

2009).   

Activation of the channel by heat shows a steep temperature dependence (Liu et al., 

2003), and increases in temperatures in the subthreshold range (< 43ºC) can synergistically 

enhance currents produced by other TRPV1 agonists (Babes et al., 2002).  The exact 

mechanism underlying heat activation of the channel is unclear, but is likely due to changes 

in intrinsic voltage-sensitivity of the channel as a result of changes in temperature (Nilius et 

al., 2005).  What is clear is that cells heterologously expressing TRPV1, as well as TRPV1+ 

DRG neurons, show heat-evoked single-channel currents, indicating TRPV1 is an 

intrinsically heat-activated channel that underlies the native “moderate” threshold 

thermosensation seen in C- and Aδ-fiber nociceptors (Caterina and Julius, 2001).   

In addition to heat, other stimuli can activate the channel.  TRPV1 was initially 

cloned based on its ability to respond to capsaicin, the pungent ingredient found in chili 
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peppers (Caterina et al., 1997).  Activation by capsaicin and other vanilloids (including 

resiniferatoxin and olvanil) occurs following binding at intracellular regions of the channel 

(Pingle et al., 2007) and has similar characteristics to activation with noxious heat, explaining 

why ingestion or exposure to these compounds leads to an intense burning sensation.  Other 

compounds similar in structure to vanilloids can also activate the channel, including the 

endocannabinoid anandamide, oleoyl-dopamine, the lipoxygenase product 12-HPETE, and 

N-acetylethanolamines (Ahern, 2003; Pingle et al., 2007; Ross, 2003).  In addition, TRPV1 is 

activated by allicin (the pungent compound in garlic) (Macpherson et al., 2005; Macpherson 

et al., 2006), nitric oxide (Yoshida et al., 2006), camphor (Xu et al., 2005), spider toxins 

(Siemens et al., 2006), and is potentiated by ethanol (Trevisani et al., 2002).   

Extracellular protons and cations can also activate or sensitize the receptor.  The 

channel is activated directly at pH < 6 and sensitized at pH 6 – 7 or by the presence of high 

levels of extracellular Na+, Mg2+, or Ca2+ (Ahern et al., 2005; Tominaga et al., 1998).  This is 

due to electrostatic interactions with positively charged extracellular domains (Jordt et al., 

2000; Welch et al., 2000).  Interestingly, responses to cations or protons are greater following 

TRPV1 sensitization, suggesting they play a role in inflammatory pain signaling (Ahern et 

al., 2005).   

 

Sensitization of TRPV1 

Numerous stimuli can lead to sensitization of TRPV1.  The release of inflammatory 

mediators (prostaglandin E2, glutamate, bradykinin, nerve growth factor (NGF), and ATP) 

following tissue injury or inflammation can indirectly sensitize the channel through a variety 

of mechanisms (Levine and Alessandri-Haber, 2007).  This sensitization leads to activation 
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of the channel at much reduced thermal thresholds, leading to the thermal hyperalgesia 

experienced following injury (Liang et al., 2001; Tominaga et al., 1998).  Several 

mechanisms of sensitization have been proposed.  First, NGF-receptor activation leads to 

downstream activation of p38 mitogen-activated protein kinase (MAPK), which in turn, 

increases transcription and surface expression of TRPV1 (Ji et al., 2002).  NGF-receptor 

activation can also lead to phosphorylation of the channel by Src kinase, which increases 

insertion of the channel into the surface membrane (Zhang et al., 2005a). 

Phosphorylation of the channel by other kinases can also sensitize TRPV1.  Protein 

kinase C (PKC) is capable of phosphorylating several sites on TRPV1 (Huang et al., 2006c), 

but only two residues have been shown to affect function of the channel to date (Bhave et al., 

2003; Trevisani et al., 2002).  Phosphorylation by PKC increases channel activity by 

increasing the channel’s open probability time following activation (Vellani et al., 2001), 

leading to increased thermal hyperalgesia in vivo (Bolcskei et al., 2005; Cesare et al., 1999a).  

Protein kinase A (PKA) can also phosphorylate TRPV1 at multiple amino acid residues, of 

which three are functionally important (Huang et al., 2006c).  Although PKA activation 

sensitizes capsaicin- and heat-evoked currents in vitro (Lopshire and Nicol, 1998; Luciano 

De et al., 2001), PKA-mediated phosphorylation of the channel actually leads to decreased 

desensitization rather than true sensitization (Mohapatra and Nau, 2003).  Regardless of the 

exact mechanism, the ultimate effect of PKA pathway activation is increased thermal 

hyperalgesia in vivo (Hucho and Levine, 2007a).  Interestingly, while PKC and PKA are 

usually activated through different signaling pathways, activity of protease-activated receptor 

2 (PAR2) , which is activated during inflammation, leads to activation of both PKC and PKA 

and subsequent TRPV1 sensitization (Amadesi et al., 2006).  
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Desensitization of TRPV1 

One of the important physiologic properties of the channel is that upon activation, it 

undergoes desensitization.  This is true whether the channel is activated by a long-lasting 

single application of agonist or by repeated short-term applications (tachyphylaxis) (Pingle et 

al., 2007).  Desensitization ultimately requires the presence of intracellular Ca2+, but likely 

involves more than one mechanism.  In one model (Rohacs, 2009; Rohacs et al., 2008), Ca2+ 

that enters the cell through the stimulated channel activates the calcium-sensitive 

phospholipase C (PLC) (Figure 1.3).  Once activated, PLC degrades its target phospholipid 

phosphoinositol 4,5-bisphosphate (PIP2) into inositol triphosphate (IP3) and diacylglycerol 

(DAG).  PIP2 activates TRPV1 through a direct interaction with the channel (see below).  

Thus, by depleting PIP2, PLC activation decreases channel activity.  This model is supported 

by several lines of evidence, including a requirement for PIP2 for TRPV1 activity in excised 

patches (Klein et al., 2008; Lukacs et al., 2007; Stein et al., 2006), a dependence on the re-

synthesis of PIP2 for removal of desensitization (Liu et al., 2005), a reduction of 

desensitization in the presence of PLC inhibitors (Lishko et al., 2007; Lukacs et al., 2007), 

and the reduction of desensitization by the application of exogenous PIP2 in whole-cell patch 

clamp experiments (Lishko et al., 2007; Lukacs et al., 2007).  While this data is compelling, 

PLC inhibition or PIP2 application are insufficient to completely block desensitization, 

suggesting other mechanisms are involved (Lukacs et al., 2007).  Indeed, direct interaction of 

the Ca2+ sensor calmodulin is though to be involved in desensitization, as is calmodulin 

dependent activation of calcineurin and subsequent channel dephosphorylation (Docherty et 
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al., 1996; Lishko et al., 2007; Mohapatra and Nau, 2005; Numazaki et al., 2003; Rosenbaum 

et al., 2004).  

 

PIP2 regulation of TRPV1  

Regulation of TRPV1 activity by PIP2 was first proposed by Chuang and colleagues 

(2001), who suggested that PIP2 tonically inhibits the channel and this inhibition is released 

upon PLC activation and PIP2 hydrolysis.  They later hypothesized that PIP2 bound to 

TRPV1 via a polybasic region in the C-terminus of the channel (Prescott and Julius, 2003).  

However, the inhibitory role of PIP2 was later refuted by electrophysiologic studies in 

excised patches, which showed consistent activation of TRPV1 by PIP2, as well as by the 

related phosphoinositides PI(3,4,5)P and PI(3,4)P (Klein et al., 2008; Lukacs et al., 2007).  In 

addition, as discussed above, PIP2 has been convincingly shown to reduce desensitization, 

further disputing an inhibitory role for the lipid (Rohacs, 2009).  How can these seemingly 

contradictory results be reconciled?   

One model has been proposed by Rohacs and colleagues (2008), based on the 

stimulus intensity placed on the channel.  They point out that sensitization of TRPV1 

following PIP2 depletion occurs when the channel is moderately stimulated at low capsaicin 

concentrations (< 1 µM).  Further, the inhibitory effect of PIP2 is not seen in studies 

conducted in excised patches, suggesting the effect is indirect in nature.  They have shown 

that depletion of the lipid in whole cells leads to further activation of the channel when 

stimulated by moderate heat or capsaicin concentrations, suggesting a partial inhibition by 

PIP2 in intact cells (Lukacs et al., 2007).  They propose this may be due to either competition 

between inhibitory PIP2 and a stimulatory cytosolic protein for a regulatory binding region 
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on the channel, or the presence of an inhibitory cytosolic protein that interacts with the 

channel only when bound to PIP2  (Rohacs et al., 2008).  However, with stimulation of high 

capsaicin concentrations, the channel is activated, not inhibited by PIP2.   

Based on these results, they proposed a dual inhibitory and activating effect at low 

stimulus inputs that could result in a bell-shaped dependence on PIP2 (Figure 1.4).  In this 

model, if resting PIP2 concentrations are high, moderate depletion of PIP2 results in 

activation of the channel, while a more severe depletion results in inhibition.  At high 

stimulus levels, they propose a simplified model where depletion of PIP2 leads to inhibition 

of the channel.  It should be noted, however, that another group has shown that depletion of 

PIP2 at both low and high stimulus levels leads to inhibition of TRPV1, arguing against any 

inhibitory role for PIP2 (Klein et al., 2008).  However, differences in experimental protocols 

could be responsible for the discrepancies between the studies.   

   Further complicating the picture is the recent discovery of the PIP2-binding protein 

Pirt (Kim et al., 2008a).  Pirt is expressed specifically in DRG neurons and can bind to both 

TRPV1 and phosphoinositides.  Deletion of Pirt reduces capsaicin-evoked currents, while 

addition of Pirt enhances these currents in vitro.  It was suggested that Pirt is required for the 

stimulatory effect of PIP2 on TRPV1, but this is probably not strictly true, since even low 

amounts of PIP2 can enhance TRPV1 activity in excised patches where Pirt is unlikely to be 

present.  While Pirt may not be entirely necessary for the stimulatory effect of PIP2 on 

TRPV1, it clearly plays an important role in addition to the effects of direct lipid binding to 

the channel.   

The most telling information on the role of TRPV1 in thermosensation comes from 

studies on TRPV1-null mice (Trpv1-/-) (Caterina et al., 2000a; Davis et al., 2000a).  These 
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mice show reduced pain behavior at temperatures > 48ºC in hot plate and radiant heat tests, 

but show normal thermosensation at temperatures below 48ºC.  Consistent with this, 

electrophysiologic studies from these mice revealed the presence of heat-sensitive C fibers, 

indicating that other thermosensors are present besides TRPV1.  Amazingly, Trpv1-/- mice 

fail to develop thermal hyperalgesia following induction of inflammation by CFA, mustard 

oil, or pro-algesic molecules like bradykinin (Caterina et al., 2000a; Chuang et al., 2001; 

Davis et al., 2000a).  Thus, in addition to a role in detection of noxious thermal stimuli 

TRPV1 plays a vital role in the production of thermal sensitization following pro-

inflammatory insults in vivo.  However, the behavior of Trpv1-/- mice point to the presence of 

additional thermosensors involved in noxious heat sensation. 

 

1.4.2.2.2) Other Thermosensors 

TRPV2, TRPV3, and TRPV4 are all responsive to warm or hot temperatures, but 

their roles in thermosensation are still undetermined (Levine and Alessandri-Haber, 2007).  

TRPV2 has a high threshold of activation (>52ºC) and is expressed in medium-diameter 

DRG neurons, making it a good candidate for the thermosensor in Aδ fiber nociceptors 

(Ahluwalia et al., 2002; Caterina et al., 1999).  However, mice lacking TRPV2 have normal 

thermal responses, making its role unclear in vivo (Park et al., 2008).  TRPV3 is activated by 

warm temperatures (>34ºC) and is sensitized by camphor and several natural irritants (Peier 

et al., 2002; Xu et al., 2006).  While mice null for TRPV3 show impaired thermosensation in 

warm preference and tail immersion tests (Moqrich et al., 2005), TRPV3 is not expressed in 

the DRG in mice (Peier et al., 2002), suggesting this effect is due to channel activity 

elsewhere.  TRPV4 is activated by innocuous heat (>27ºC), as well as numerous other stimuli 
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(Guler et al., 2002; Levine and Alessandri-Haber, 2007).  Trpv4-/- mice do not show deficits 

in acute thermosensation, but develop reduced thermal hyperalgesia in response to capsaicin 

or carrageenan (Todaka et al., 2004).  However, whether these effects are due to TRPV4 

activity in sensory neurons or in keratinocytes is unclear.   

 

1.4.3) Modulators of Nociception 

 While the sections above highlight specific transducers of nociceptive signals, there 

are numerous chemical mediators that are released upon tissue injury that can sensitize 

nociceptors.  This sensitization leads to increased or abnormal nociceptor activity and is 

important in the development of hyperalgesic states seen in chronic pain.  An exhaustive 

review of all inflammatory mediators involved in nociception is beyond the scope of this 

dissertation.  However, Table 1.1 lists many pro-nociceptive molecules and their actions.  For 

purposes of these studies, this dissertation will focus on the actions of adenosine and 

adenosine phosphates in the modulation of pain.   

 

1.5) Adenine-containing Nucleotides and Nociception 

 The adenine-containing nucleotides ATP, ADP, and adenosine are important for 

neurotransmission and nociception (Bleehen and Keele, 1977; Burnstock, 1972).  

Importantly, ATP and ADP are pro-nociceptive, while adenosine is predominantly 

antinociceptive.  These characteristics highlight the fact that ATP and ADP act through a 

different class of receptors (P2 receptors) than adenosine (P1 receptors) (Burnstock, 2009).  

Because of their prominent roles in nociception, receptors in both classes have become 

important therapeutic targets for acute and chronic pain.  Since interconversion of these 
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different adenosine phosphates readily occurs in both intracellular and extracellular spaces, 

significant attention has also been paid to the mechanisms underlying these reactions.  

Control of these pathways could allow for shifting of purinergic signaling from pro-

nociceptive ATP and ADP to antinociceptive adenosine in states of hyperalgesia.  Below, I 

will highlight the roles of these compounds in nociception and discuss the enzymes involved 

in their interconversion in the nervous system.   

 

1.5.1) ATP and ADP in Nociception 

 Early studies with ATP established it as a potential initiator of pain when applied onto 

skin or infused into muscle (Bleehen and Keele, 1977; Collier et al., 1966; Mork et al., 2003).  

In addition, ATP potentiated pain sensation due to other pro-nociceptive stimuli, such as 

capsaicin or ultraviolet light (Hamilton et al., 2001; Tsuda et al., 2000).  Since then, the role 

of ATP as a pro-nociceptive molecule has been confirmed in numerous animal models of 

acute, inflammatory, and neuropathic pain (see Wirkner et al., 2007).  From these studies a 

unifying hypothesis of the role of purinergic signaling in the initiation of pain has emerged, 

which has been expanded in recent papers (see Burnstock, 2009).   

 ATP and ADP exert their effects through P2 receptors, of which there are two 

families – P2X and P2Y.  P2X receptors are ligand-gated, cation-selective channels that are 

permeable to Na+ and Ca2+
 (Sawynok, 2007).  There are seven known P2X receptor subunits 

currently identified (P2X1-7) (Khakh et al., 2001).  Of these, only four (P2X2, P2X3, P2X4, 

and P2X7) are thought to be involved in nociception (Sawynok, 2007).  P2Y receptors are 

metabotropic G-protein coupled receptors whose stimulation leads to activation of various 

signaling pathways, depending on the specific receptor type (Burnstock, 2009).  There are 
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eight known P2Y receptors, of which only four (P2Y1, P2Y2, P2Y4, and P2Y6) have been 

potentially implicated in nociception (Wirkner et al., 2007).  While P2X receptors respond 

predominantly to ATP or ATP analogs, some P2Y receptors respond to both pyrimidine and 

purine nucleosides (Burnstock, 2009).  In addition, some P2Y receptors are preferentially 

activated by nucleoside diphosphates (Burnstock, 2009).  As a result of their different 

agonists and signaling properties, P2X and P2Y receptors have different roles in nociception. 

 

1.5.1.1) P2X receptors 

 While all seven cloned mammalian P2X receptors are present in sensory ganglia, only 

three have been implicated in the regulation of nociception (Khakh, 2001).  Of these, P2X3 is 

the most prominent.  Approximately 40% of cultured rat DRG neurons show 

immunoreactivity for P2X3, and the vast majority of these cells also express IB4 (Bradbury et 

al., 1998; Vulchanova et al., 1997).  P2X3 colocalizes extensively with other markers of 

nonpeptidergic neurons, including MrgprD and FRAP (Zylka et al., 2005; Zylka et al., 2008).  

P2X3
+ neurons project to inner lamina II in the dorsal horn of the spinal cord.  In addition to 

forming homotrimeric receptors, P2X3 can also form heterotrimeric receptors with P2X2, 

which is also expressed in some DRG neurons (Wirkner et al., 2007).  While P2X2/3 

heteromeric receptors play a role in nociception, they are not necessary for mediating acute 

pain responses, as P2X2 null mice do not show changes in acute nocifensive behavior 

(Cockayne et al., 2005).  There is no evidence that homomeric P2X2 receptors play a role in 

nociception.   

 Numerous studies support a role for P2X3 and P2X2/3 receptors in acute, 

inflammatory, neuropathic, visceral, and migraine pain (see Wirkner et al., 2007 for review).  
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Highlights of these studies include the following.  Administration of ATP or the P2X3 

receptor agonist αβ-methylene ATP (αβ-MeATP) excites C-fibers in vitro and in vivo 

(Dowd et al., 1998b; Hamilton et al., 2001; Hilliges et al., 2002).  Peripheral administration 

of ATP and αβ-MeATP induces spontaneous pain behaviors, thermal hyperalgesia, and 

mechanical allodynia, which are enhanced by inflammation (Hamilton et al., 1999; Sawynok 

and Reid, 1997; Tsuda et al., 2000).  This is not surprising, since inflammation leads to 

upregulation of P2X3 expression and sensitizes the receptor to ATP, possibly through 

phosphorylation (Dai et al., 2004a; Paukert et al., 2001; Xu and Huang, 2002).  This is 

particularly important because inflammation leads to elevated levels of extracellular ATP 

(Gordon, 1986).  Intrathecal administration of ATP produces long-lasting mechanical 

allodynia due to activation of P2X2/3 receptors (Nakagawa et al., 2007).  P2X3 receptors are 

upregulated in DRG and spinal cord following nerve injury in regions corresponding to the 

inputs of the injured nerve, and administration of P2X3 agonists following nerve injury 

increases the thermal hyperalgesia and allodynia that develops (Chen et al., 2001; Novakovic 

et al., 1999; Zhou et al., 2001).  Knockdown of P2X3 using spinally administered antisense 

oligonucleotides reduces αβ-MeATP-induced hyperalgesia, inflammatory hyperalgesia, and 

nerve injury-induced hyperalgesia (Baumann et al., 2004; Dorn et al., 2004; Honore et al., 

2002).  Systemically-administered P2X3 antagonist reduces inflammatory pain and nerve-

injury induced allodynia (Jarvis et al., 2002a).  While all of these studies suggest a strong 

pro-nociceptive role for P2X3 receptors, complicating matters is the fact that P2X3 null mice 

show normal acute thermal and mechanical sensitivity, have normal responses to carrageenan 

and capsaicin, but develop greater thermal hyperalgesia due to CFA (Souslova et al., 2000).  

The reasons for discrepancies between studies using acute inhibition of the receptor by 
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antagonists or antisense oligonucleotide knockdown and those in P2X3 null mice could be 

due to developmental compensation in the knockout mice.   

 Recently, an important role for P2X4 receptors has been shown in the development of 

neuropathic pain following nerve injury (Tsuda et al., 2003).  P2X4 receptors are expressed in 

both neuronal and non-neuronal tissues, but are strongly upregulated in microglia following 

peripheral nerve injury (Khakh et al., 2001; Tsuda et al., 2003).  Intrathecal administration of 

ATP-activated microglia produced allodynia through P2X4 receptors (Tsuda et al., 2003).  

These actions require signaling through MAPK and subsequent release of cytokines and 

chemokines that sensitize neighboring neurons (Tsuda et al., 2005; Tsuda et al., 2004).  

Administration of P2X4 antagonists or knockdown of the receptor using antisense 

oligonucleotides reduces nerve-injury induced neuropathic pain (Tsuda et al., 2003).  

Interestingly, chronic inflammation does not lead to P2X4 upregulation or microglial 

activation (Rabchevsky et al., 1999).  P2X4 knockout mice show normal acute nocifensive 

responses in several assays, but develop significantly less mechanical allodynia following 

inflammation by CFA or nerve injury (Tsuda et al., 2009).  These studies show P2X4 

receptors to be important targets for the treatment of chronic pain.   

 Microglia and macrophages express P2X7 receptors.  Activation of these receptors 

leads to release of inflammatory cytokines, particularly interleukin-1β (IL-1β), which can 

lead to upregulation of other pro-nociceptive compounds, such as NGF and Cox-2 (North, 

2002; Wirkner et al., 2007).  Systemic administration of P2X7 antagonists significantly 

reduces nociception in models of inflammatory and neuropathic pain, predominantly through 

blockade of IL-1β release (Honore et al., 2006; McGaraughty et al., 2007; Nelson et al., 

2006).  While P2X7 knockout mice have normal acute nociception, they fail to develop 
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chronic inflammatory or neuropathic pain states following injection of CFA or nerve injury, 

respectively (Chessell et al., 2005).  This, again, is due to decreased release of IL-1β and 

other inflammatory mediators.  Since P2X7 seems to play a key upstream role in a 

transduction pathway common to several pain states, it is seen as a very promising target for 

the treatment of chronic pain.   

 

1.5.1.2) P2Y receptors 

 Unlike P2X receptors, there have been few studies examining the role of P2Y 

receptors in modulation of nociception. Even the specific P2Y receptors expressed in DRG is 

controversial, as early studies showed mRNA expression of P2Y2 and P2Y4 (Okada et al., 

2002), but more recent studies suggest expression of P2Y1 and P2Y2, but not P2Y4 mRNA in 

DRG neurons (Kobayashi et al., 2006).  Non-neuronal DRG cells express P2Y2, P2Y12, and 

P2Y14 receptors (Wirkner et al., 2007).  P2Y receptors can be studied using the agonists UTP 

and UDP, which avoid concomitant activation of P2X receptors.  UTP evokes sustained 

action potential firing in some C fibers, most likely through P2Y1 and P2Y2 activation 

(Okada et al., 2002; Stucky et al., 2004).  Further, P2Y1 and P2Y2 activation is thought to 

sensitize TRPV1 through phosphorylation (Moriyama et al., 2003; Tominaga et al., 2001).  

However, activation of excitatory P2X3 and N-type calcium channels is inhibited by the P2Y1 

agonist ADP (Gerevich et al., 2005; Gerevich et al., 2007).  In addition, intrathecal 

administration of UTP and UDP has antinociceptive effects in both thermal and mechanical 

assays (Okada et al., 2002).  UTP and UDP injection also produces antiallodynic effects after 

sciatic nerve ligation.  Thus, while activation of P2Y1 and P2Y2 receptors may provoke 

neuronal firing in vitro, it appears to have an antinociceptive effect in vivo.   
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Recently, P2Y12 receptors on microglia were shown to be necessary for development 

of neuropathic pain following nerve injury (Haynes et al., 2006).  In addition, intrathecal 

delivery of a P2Y12 antagonist prevents development of tactile allodynia following nerve 

injury (Tozaki-Saitoh et al., 2008).  The pro-nociceptive effects of P2Y12 activation most 

likely occurs through activation of the p38 MAPK pathway, similar to P2X4 (Kobayashi et 

al., 2008).  Based on these data, development of selective P2Y12 antagonists could prove 

helpful in treatment of neuropathic pain following nerve injury. 

 

1.5.2) Adenosine in Nociception 

   Adenosine regulates nociceptive neurotransmission at spinal, supraspinal, and 

peripheral sites (Dickenson et al., 2000; Sawynok and Liu, 2003).  This regulation is 

important in the initiation and maintenance of inflammatory and neuropathic pain.  

Adenosine exerts its effects through activation of the four subtypes of P1 receptors – A1, A2A, 

A2B, and A3 (Abbracchio et al., 2009; Burnstock, 2009).  These are seven-transmembrane 

domain GPCRs that couple to different types of G proteins.  A1 and A3 receptors couple to Gi 

or Go proteins, which inhibit cAMP production and activate or enhance phospholipase C 

activity (Jacobson and Gao, 2006; Murthy and Makhlouf, 1995b).  A2A and A2B receptors 

couple to Gs (and occasionally Gq), and their activation stimulates production of cAMP.  All 

four classes of receptors show a widespread distribution in the nervous system and play a 

role in nociception.  However, not all effects of adenosine are due to receptor activation at 

neuronal sites.  Direct modulation of signaling through nociceptors and transmission neurons 

occurs predominantly through activation of A1 and A2A receptors, while indirect effects on 
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pain transmission occur through activation of A2A, A2B, and A3 receptors on glia in the CNS 

and inflammatory cells at peripheral sites (Sawynok and Liu, 2003).   

 

1.5.2.1) A1 Adenosine Receptors 

 Delivery of adenosine analogs via supraspinal, spinal, and systemic routes leads to 

antinociceptive effects, due largely to activation of A1Rs.  A1Rs are expressed on DRG and 

trigeminal ganglion neurons (predominantly small- and medium-diameter), as well as at 

postsynaptic sites in the dorsal horn of the spinal cord, in lamina IIinner near IB4+ terminals 

(Carruthers et al., 2001; Schulte et al., 2003).  Activation of A1Rs in vitro results in reduced 

Ca2+ entry, decreased cAMP generation, and decreased substance P and CGRP release from 

DRG neurons (Carruthers et al., 2001; Haas and Selbach, 2000; Santicioli et al., 1993; 

Sjolund et al., 1997).  In addition, activation of A1Rs in the substantia gelatinosa of the dorsal 

horn of the spinal cord inhibits neurotransmission through both pre- and postsynaptic 

mechanisms (Lao et al., 2001; Li and Perl, 1994; Patel et al., 2001).  The postsynaptic 

mechanism is due to an increase in K+ channel activity, leading to increased 

hyperpolarization and decreased action potential firing in secondary spinal cord neurons (Li 

and Perl, 1994; Salter et al., 1993).  This mechanism leads to inhibition of substance P and 

excitatory amino acid-evoked activity, and is important in the inhibition of wind-up seen 

following application of A1R agonists (DeLander and Wahl, 1991; Doi et al., 1987; Reeve 

and Dickenson, 1995).  In addition, A1R activation can augment the antinociceptive actions 

of morphine under some conditions, and blockade of A1Rs can inhibit morphine 

antinociception at the spinal level (Contreras et al., 1990; DeLander and Hopkins, 1986; 

Jurna, 1984; Malec and Michalska, 1988). 
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 Activation of A1R also leads to antinociceptive effects in the periphery in animals.  

Local administration of A1R agonists into the hindpaw of rats leads to antinociception in a 

pressure hyperalgesia model, the formalin model, inflammatory models, and following nerve 

injury (Aley et al., 1995; Aumeerally et al., 2004; Karlsten et al., 1992; Liu and Sawynok, 

2000; Taiwo and Levine, 1990).  Increases in peripheral adenosine due to blockade of 

adenosine deaminase also lead to antinociception through A1R activation (Liu and Sawynok, 

2000; Sawynok, 1998).  These antinociceptive effects are due to inhibition of adenylate 

cyclase and subsequent decreases in intracellular cAMP (Carruthers et al., 2001; Taiwo and 

Levine, 1990).  Importantly, the antinociceptive properties of peripheral A1R activation can 

be counteracted by activation of pro-nociceptive A2A, A2B, and A3 receptors (see below).   

In humans, a more complex situation is present.  Application of adenosine to human 

blister base, as well as i.v. administration of adenosine by bolus injection causes pain 

(Bleehen and Keele, 1977; Crea et al., 1992; Crea et al., 1990; Sylven et al., 1988; Sylven et 

al., 1986).  Some studies suggest these effects are due to activation of A1R and subsequent 

increase in C-fiber activity (Dowd et al., 1998a; Gaspardone et al., 1995; Hong et al., 1998; 

Kirkup et al., 1998; Pappagallo et al., 1993).  These findings are at odds with those showing 

peripheral antinociception through A1R, and further studies are needed to determine the role 

of A1Rs in human nociception. 

 Centrally, spinal application of A1R agonists is antinociceptive in models of acute, 

inflammatory, and neuropathic pain (for review, see Dickenson et al., 2000; Sawynok, 1998).  

These actions can be blocked by A1R antagonists (Gomes et al., 1999; Lee and Yaksh, 1996; 

Poon and Sawynok, 1998), and are due to effects of A1R activation on postsynaptic K+ 

channel activity and inhibition of pre-synaptic glutamate and neuropeptide release 
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(Carruthers et al., 2001; Lao et al., 2001; Li and Perl, 1994; Patel et al., 2001; Sjolund et al., 

1997).  In addition to direct activation by agonists, A1R can be activated by increased 

endogenous adenosine levels through use of inhibitors of adenosine metabolism, namely 

adenosine kinase and adenosine deaminase inhibitors.  These drugs are also antinociceptive 

in models of inflammatory and neuropathic pain states, due to A1R activation (Jarvis et al., 

2002c; Kowaluk and Jarvis, 2000; McGaraughty et al., 2001; McGaraughty et al., 2005).  

Direct administration of adenosine itself has long-lasting analgesic properties when delivered 

centrally in neuropathic rats and humans (Belfrage et al., 1999; Lavand'homme and Eisenach, 

1999).  Spinal administration of adenosine produces analgesia that is specific for sensitized 

states, while intravenous adenosine reduces experimental, post-operative, and neuropathic 

pain in humans (Belfrage et al., 1999; Eisenach et al., 2002; Segerdahl et al., 1995a; 

Segerdahl et al., 1995b; Segerdahl et al., 1994; Segerdahl et al., 1996; Sollevi et al., 1995).  

All of these data suggest great potential for targeting of A1R for treatment of chronic pain.  

However, studies using high doses of A1R-selective agonists have shown side effects, 

including motor paralysis and autonomic dysfunction (Sawynok, 1998).  The motor side 

effects are likely due to activity at A1 or A2 receptors on motor neurons and could be reduced 

or eliminated by usage of lower doses or modulators of endogenous adenosine metabolism 

(Reppert et al., 1991).   

 Knockout mice for A1R (A1R
-/-) further show the important role of this receptor in 

nociception.  These mice show enhanced thermal sensitivity in the tail flick assay, but have 

normal responses to mechanical or cold stimuli at baseline (Johansson et al., 2001; Wu et al., 

2005).  They also show increased thermal hyperalgesia (both hot and cold) following 

inflammation (carrageenan) or nerve injury (ischemic sciatic nerve injury), but normal 
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mechanical allodynia (Wu et al., 2005).  A1R
-/- mice also have reduced antinociception in 

response to intrathecal R-PIA (an A1R agonist) and morphine (Wu et al., 2005).  Taken 

together these data confirm an important role for A1R in the modulation of thermal 

nociception and morphine analgesia.   

 

1.5.2.2) A2A Adenosine Receptors 

 A2A receptors are expressed in DRG neurons and glial cells, but are traditionally 

thought to be absent from the spinal cord (Cunha et al., 2006; Hasko et al., 2005; Hussey et 

al., 2007; Kaelin-Lang et al., 1998).  However, a recent study suggests the possible 

expression of the receptor in spinal cord, where it may affect nociception (Bura et al., 2008).  

Signaling through these receptors is predominantly pro-nociceptive.  Local peripheral 

application of A2AR agonists increases mechanical hyperalgesia and flinching in response to 

formalin, and application of A2AR antagonists reduces nociceptive behavior (Doak and 

Sawynok, 1995; Khasar et al., 1995; Taiwo and Levine, 1990).  The pro-nociceptive effects 

following receptor activation are due to increased cAMP levels, leading to activation of PKA 

and modulation of Na+ channels (Gold et al., 1996; Khasar et al., 1995; Taiwo and Levine, 

1991).  The role of A2ARs centrally is unclear, as spinal application of both A2AR agonists 

and antagonists produce antinociception (Godfrey et al., 2006; Hussey et al., 2007; Ledent et 

al., 1997; Regaya et al., 2004; Yoon et al., 2005).  A2AR knockout mice (A2AR
-/-) show 

reduced thermal nociceptive responses in a number of tests, reduced nocifensive responses to 

formalin (both phases), reduced thermal hyperalgesia and mechanical allodynia following 

nerve injury, as well as changes in responses to opioids (Bailey et al., 2002; Berrendero et al., 

2003; Bura et al., 2008; Godfrey et al., 2006; Ledent et al., 1997).  These results support a 
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pro-nociceptive role for A2ARs.  The effects following nerve injury corresponded with 

decreased activation of microglia and astrocytes in A2AR
-/- mice, suggesting a possible role of 

A2ARs on glial cells in modulation of nerve injury-induced pain (Bura et al., 2008).      

 

1.5.2.3) A2B and A3 Adenosine Receptors 

 A2B and A3 receptors are expressed peripherally on mast cells, and their activation has 

pro-nociceptive effects.  This is predominantly due to subsequent release of mast cell 

mediators, such as histamine and serotonin (Sawynok et al., 1997).  Local application of A3R 

agonists leads to nociceptive responses similar to those seen following formalin injection, 

while systemic A3R agonists produce thermal hyperalgesia (Abo-Salem et al., 2004; 

Sawynok et al., 1997).  Systemic application of an A2BR antagonist reduces thermal 

nociception due to peripheral receptor blockade (Abo-Salem et al., 2004).  Surprisingly, 

A2BR knockout mice have not yet been tested for changes in nociception.  A3R knockouts 

show normal thermal and mechanical thresholds at baseline, although there is one report of 

reduced thermal nociception in the hot plate test (Fedorova et al., 2003; Wu et al., 2002).  

These mice show reduced heat hyperalgesia, plasma extravasation, and edema following 

injection of carrageenan, suggesting a pro-inflammatory role for A3R (Wu et al., 2002).  

Further study of these receptors is needed to fully understand their activity in nociceptive 

signaling. 

 

1.5.3) Sources of Endogenous Adenosine 

 As a result of the importance of adenosine and adenine nucleotides in the modulation 

of neuronal function, there are a number of mechanisms involved in the production, release, 



30 
 

and regulation of these molecules in the nervous system.  Surprisingly, there is a substantial 

amount of extracellular adenosine present in many systems, enough to activate high affinity 

adenosine receptors (A1 and A2A) at basal levels (Dunwiddie and Masino, 2001).  This 

activation leads to the “purinergic tone” seen in these systems.  This tone explains the effects 

of drugs that block these receptors at baseline, such as caffeine and methylxanthines.  In the 

spinal cord, it partially explains why mice null for A1R show a nociceptive phenotype at 

baseline (Johansson et al., 2001; Wu et al., 2005).  Extracellular adenosine primarily arises 

from two general sources (Figure 1.5): 1) release of adenosine from the intracellular space 

via several mechanisms and 2) dephosphorylation of extracellular adenine nucleotides (ATP, 

ADP, and AMP).   

 Adenosine can be produced intracelluarly from several sources and released via 

multiple mechanisms.  Intracellular concentrations of ATP are approximately 50 times higher 

than those of AMP, creating a gradient for the breakdown of ATP by ATPases to AMP, 

which is then acted upon by intracellular 5’-nucleotidase ((cN)-I) to produce adenosine 

(Latini and Pedata, 2001; Sawynok and Liu, 2003).  In addition, adenosine can be made by 

conversion of intracellular cyclic AMP (cAMP).  This cAMP is made following activation of 

cellular GPCRs, and is first converted to AMP by phosphodiesterase, then broken down to 

adenosine by (cN)-I (Brundege et al., 1997; Rosenberg and Li, 1995).  Finally, adenosine can 

be made from S-adenosyl-homocysteine (SAH) by SAH hydrolase (Latini and Pedata, 2001).  

The role of this pathway in the spinal cord is not known.  As stated above, this intracellular 

adenosine can be directly released into the intracellular environment in response to several 

stimuli, including elevated K+, veratridine (opens Na+ channels, modeling neuronal 

activation), substance P, glutamate, and morphine (Cahill et al., 1993; Cahill et al., 1997; 



31 
 

Conway et al., 1997; Sandner-Kiesling et al., 2001; Sweeney et al., 1987a; Sweeney et al., 

1987b).  In addition, under conditions of high intracellular adenosine, it can pass into the 

extracellular space through equilibrative nucleoside transporters.  The properties and 

mechanisms of release in response to these stimuli and conditions are reviewed extensively 

in Sawynok and Liu (2003). 

 There are multiple mechanisms whereby adenine-containing nucleotides can be 

released into the extracellular space of the spinal cord (for review, see Yegutkin, 2008).  ATP 

is a well-known neurotransmitter, and can be co-localized with serotonin, acetylcholine, 

dopamine, or norepinephrine (Dunwiddie and Masino, 2001).  Upon neuronal stimulation, 

ATP is released and can act via its receptors (see above).  In the spinal cord, ATP is released 

from sensory afferent terminals via spinal cord synaptosomes (Sawynok et al., 1993; 

Sawynok and Liu, 2003).  It is also co-released with γ-aminobutyric acid (GABA) from 

spinal cord interneurons, and from glial cells following activation of ionotropic glutamate 

receptors (Jo and Schlichter, 1999; Queiroz et al., 1997).  Once in the extracellular space, 

ATP is quickly dephosphorylated to terminate its action at P2X and P2Y receptors.  This 

process can involve several enzymes, including ecto-nucleoside triphosphate 

diphosphorylases (E-NTPDases), ecto-nucleotide pyrophosphatase/phosphodiesterases (E-

NPPs), Ecto-5’-nucleotidase (NT5E), and alkaline phosphatases (ALP) (Yegutkin, 2008; 

Zimmermann, 2006).  The final product of this process is adenosine, which can act on 

adenosine receptors, be converted extracellularly to inosine, or be taken back up into cells via 

equilibrative nucleoside transporters.  Once inside the cell, adenosine is phosphorylated to 

AMP by adenosine kinase (AK) or deaminated to inosine by adenosine deaminase (AD).  

Blockade of AK or AD increases basal and evoked adenosine release in vivo and in vitro, 
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and leads to antinociceptive effects through activation of A1R (Latini and Pedata, 2001).  The 

extracellular production of adenosine by this nucleotide degradation pathway is extremely 

pertinent to my work and is discussed in greater detail below. 

 

1.5.4) Ectonucleotidases in Nociception 

     As discussed above, the extracellular production of adenosine relies on the activity of 

several different enzymes that can degrade adenine-containing nucleotides in a step-wise 

manner.  These enzymes thus play important roles in the regulation of both P1 (through 

production of adenosine) and P2 (through degradation of ATP and ADP) receptor activation.  

Since their activity can decrease activation of pro-nociceptive receptors (P2X) and increase 

activation of antinociceptive receptors (A1R), these enzymes may play an important role in 

the modulation of nociceptive circuits.  Surprisingly, the molecular identity and function of 

specific ectonucleotidases in the spinal cord and DRG was not significantly studied prior to 

this dissertation work.  The identification and characterization of these ectonucleotidases 

could provide novel therapeutic targets for the treatment of acute, inflammatory, or 

neuropathic pain.  The ectonucleotidases that metabolize nucleotides in other regions of the 

nervous system are highlighted below, and are further reviewed by Zimmermann (2006), as 

well as Yegutkin (2008). 

 

1.5.4.1) Ecto-nucleoside triphosphate diphosphorylases (E-NTDPases) 

 Eight different E-NTPDase genes have been identified in mammals (NTPDase1-8), 

four of which are expressed on the cell surface – NTPDase1, 2, 3, and 8 (Zimmermann, 

2006).  NTPDase5 and 6 are secreted, while NTPDase4 and 7 are intracellular and face the 
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lumen of cytoplasmic organelles (Yegutkin, 2008).  The cell-surface family members (1, 2, 3, 

and 8) are highly glycosylated and contain two predicted transmembrane domains at the N- 

and C-termini.  They also contain five highly-conserved sequence domains, known as 

“apyrase conserved regions” (ACR) (Robson et al., 2006; Smith and Kirley, 1999).  They 

may exist on the cell surface as monomers or homooligomers (dimeric, trimeric, or 

tetrameric) (Stout and Kirley, 1996).   

 The NTPDases can hydrolyze a variety of nucleoside di- and triphosphates, but 

preferences and rates of reaction differ between the enzymes.  These properties are of 

considerable significance for the regulation of nucleotide signaling.  All four surface-

expressed NTPDases can degrade ATP and UTP, but have varying degrees of activity 

towards nucleoside diphosphates (Zimmermann, 2006).  Indeed, the ATP:ADP hydrolysis 

ratios for NTPDase1, 2, 3, and 8 vary widely: ~1.3; ~20-30; ~4; ~1.6, respectively (Kukulski 

et al., 2005; Zimmermann, 2001b).  However, recent studies suggest that the estimated 

ATPase activity of these enzymes is overestimated by traditional methods, and more reliable 

tests show much higher ADPase activity (Marcus et al., 1997; Yegutkin et al., 2001).  

Regardless, NTPDase2 and 3 show much higher preference for triphosphates than 

diphosphates.  The differences in catalytic properties are better understood by examining 

product formation, as well as substrate degradation.  NTPDase1 directly converts ATP to 

AMP without significant ADP production, bypassing potential nucleoside diphosphate 

receptor (P2Y) activation (Zimmermann, 2006).  However, UTP hydrolysis by NTPDase1 

does lead to significant UDP production (Kukulski et al., 2005).  Unlike NTPDase1, 

NTPDase2 makes ADP from ATP, which is then slowly converted to AMP, allowing for 

more extensive diphosphate receptor activity.  NTPDase3 and 8 have intermediate patterns of 
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product formation (Kukulski et al., 2005; Zimmermann, 2001b).  These catalytic preferences 

and activities are important in the degradation of P2X and production of P2Y receptor 

substrates.     

 All four surface-located E-NTPDases show overlapping tissue distribution, but none 

are expressed in the same cells (Bigonnesse et al., 2004; Zimmermann, 2001a).  In the 

nervous system, NTPDase1 is expressed at the surface of endothelial and smooth muscle 

cells and microglia (Braun and Zimmermann, 2001).  NTPDase2 is in neural progenitors of 

the brain, immature and non-myelinating Schwann cells, and satellite glia in DRG and 

sympathetic ganglia (Braun et al., 2003; Braun et al., 2004; Shukla et al., 2005).  NTPDase3 

is in the brain, but specific cellular localization is unknown, while expression of NTPDase8 

is either low or absent in the brain (Bigonnesse et al., 2004; Lavoie et al., 2004; Smith and 

Kirley, 1999; Vorhoff et al., 2005).  A recent attempt to localize these enzymes by in situ 

hybridization in the DRG and spinal cord in our lab has revealed that NTPDase3 is highly 

expressed in DRG neurons of all sizes, as well as in motor neurons of the ventral horn of the 

spinal cord.  There is weak expression in laminae I and II of the dorsal horn.  Expression of 

NTPDase1, 2, or 8 in these regions is either low or absent.  Further studies are needed to 

determine the importance of these enzymes in nociception.   

 

1.5.4.2) Ecto-nucleotide pyrophosphatase/phosphodiesterases (E-NPPs) 

 There are seven related mammalian E-NPPs (NPP1-7), but only three – NPP1, NPP2, 

and NPP3 – can degrade various nucleotides (Yegutkin, 2008).  NPP1 and NPP3 are type II 

transmembrane glycoproteins, while NPP2 is produced as a pre-pro-enzyme and is secreted 

(Robson et al., 2006; Yegutkin, 2008).  Physiological substrates of these enzymes include 
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NAD, nucleotide sugars, ATP, and dinucleoside polyphosphates (Bollen et al., 2000; Goding 

et al., 2003; Vollmayer et al., 2003; Zimmermann, 2000).  Hydrolytic activity of these 

enzymes reaches optimum at very alkaline pH, similar to that of alkaline phosphatase.  All 

three enzymes can degrade both nucleoside tri- and diphosphates.  Hydrolysis of ATP 

proceeds directly to AMP, bypassing production of ADP and nucleoside diphosphate 

receptor activation (Zimmermann, 2006).  In addition, all three enzymes also degrade 

diadenosine polyphosphates (Ap3A, Ap4A, and Ap5A) at comparable rates and are the most 

important enzymes in metabolism of extracellular diadenosine polyphosphates (Vollmayer et 

al., 2003).  Hydrolysis of these substrates is asymmetric, producing AMP and Apn-1, meaning 

this activity could also produce adenosine tetraphosphate, ATP, or ADP, and cause 

subsequent P2 receptor activation (Rotllan et al., 2002).  Thus, similar to E-NTPDases, E-

NPPs can either hydrolyze or produce ligands for nucleotide receptors, potentially 

modulating nociceptive signaling.  In the nervous system, NPP1 is found in capillaries of the 

brain, NPP2 is in choroid plexus, and NPP3 is associated with a specific subset of brain glial 

precursors (Goding et al., 2003; Zimmermann, 2006).  Expression in DRG or spinal cord has 

not been studied, and their physiological relevance in nociceptive signaling is unknown. 

 

1.5.4.3) Alkaline Phosphatases (APs) 

 Of the four known alkaline phosphatases (intestinal AP, placental AP, germ cell AP, 

and tissue non-specific AP (TNAP)), only TNAP is thought to be expressed in neuronal 

tissues (Zimmermann, 2006).  APs are glycosylphosphatidyl inositol (GPI)-anchored proteins 

and act as non-specific phosphomonoesterases.  They can act on numerous phosphorylated 

compounds, including adenine nucleotides, pyrophosphate, phosphatidates with various fatty 
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acid chains, inorganic polyphosphates, β-glycerophosphate, and glucose-phosphates (Fonta 

et al., 2005; Narisawa et al., 1994; Yegutkin, 2008).  As the name would suggest, activity of 

the enzymes is greatest at alkaline pH (8 – 11).  Since TNAP can perform the entire stepwise 

hydrolysis of nucleoside triphosphates to nucleoside (i.e., ATP � ADP � AMP � 

Adenosine), it could have a profound role on the regulation of both P1 and P2 receptors.  

TNAP is expressed in the neural tube and in various brain regions during late-stage 

embryonic development, and in neuropil of various regions in adult mice (Fonta et al., 2005; 

Narisawa et al., 1994).  Recent studies in our lab suggest TNAP is expressed in all regions of 

the gray matter of the spinal cord.  However, the role of TNAP in nervous system function 

has not been studied in detail.   

 

 1.5.4.4) Ecto-5’-nucleotidase (NT5E) 

 In humans, there are seven known 5’-nucleotidases, but only one version (NT5E, also 

known as CD73) is expressed on the cell surface as a GPI-anchored enzyme (Yegutkin, 

2008).  This enzyme is made of two 60-70 kDa glycoprotein subunits tethered together by 

non-covalent bonds, which are necessary for enzyme activity (Martinez-Martinez et al., 

2000).  The enzyme binds to divalent metal cations which can have stimulatory (Zn2+ or 

Mg2+) or inhibitory (Pb2+ and Hg2+) effects on activity (Fini et al., 1990; Ong et al., 1990).  

NT5E selectively hydrolyzes nucleoside 5’-monophosphates, and has little or no activity 

towards nucleoside 2’- or 3’-monophosphates (Hunsucker et al., 2005; Zimmermann, 1992).  

The enzyme has a Km towards AMP and IMP in the low micromolar range (1 – 50 µM), and 

Vmax/Km ratios show 5’-AMP to be the best substrate for the enzyme (Zimmermann, 1992).  

NT5E can be inhibited competitively by ATP, ADP, and adenosine 5’-[α,β-
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methylene]diphosphate and non-competitively by concanavalin A (Zimmermann, 1992).  In 

addition, some reports suggest that methylxanthines like theophylline and caffeine also 

inhibit NT5E (Fredholm et al., 1978; Heyliger et al., 1981).  The pH optimum for enzyme 

activity is in the range of 7 – 8.   

While some studies suggest a role of NT5E in intracellular signaling and mediation of 

cell-cell and cell-matrix adhesions (Airas et al., 1997; Resta et al., 1998), the major 

physiological role of the enzyme is the regulation of purinergic signaling.  Indeed, NT5E is 

likely to be the most important, rate-limiting step in the conversion of extracellular ATP to 

adenosine in many systems (Dunwiddie et al., 1997).  This activity leads to decreased 

stimulation of P2 receptors and increased stimulation of P1 receptors.  Through this function, 

NT5E is important in a number of physiological functions, including epithelial ion and fluid 

transport, maintenance of tissue barriers (i.e., intestinal or vascular permeability), ischemic 

preconditioning in the heart and kidneys, adaptation to hypoxia, and anti-inflammatory 

effects on neutrophils (for review, see Colgan et al., 2006).  Indeed, studies using mice null 

for NT5E (Nt5e-/-) have confirmed roles for the enzyme in the mediation of tubuloglomerular 

feedback and renal function (Castrop et al., 2004; Huang et al., 2006a), cardioprotection 

during myocardial ischemia (Eckle et al., 2007c), immunomodulatory and thromboregulatory 

responses (Koszalka et al., 2004; Thompson et al., 2004a; Zernecke et al., 2006), pulmonary 

integrity and lung function (Eckle et al., 2007a; Volmer et al., 2006), and maintenance of 

vascular barrier function during hypoxia (Thompson et al., 2004a).  Surprisingly, while 

purinergic signaling is extremely important for nervous system function, NT5E has not been 

studied in this context.   
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NT5E is thought to be expressed in a number of different tissues, including liver, 

heart, blood vessels, lung, colon, kidney, brain, and spinal cord (Moriwaki et al., 1999; 

Yegutkin, 2008; Zimmermann, 1992; Zimmermann, 1996).  Expression has been largely 

based on biochemical or histochemical assays, as antibodies against the protein have either 

been inadequate for tissue localization or shown conflicting results.  For example, in the 

brain, enzyme histochemistry suggests broad NT5E expression in many locations in 

developing synapses, sprouting nerve fibers, and microglia, while immunocytochemical 

studies suggest expression only in glia, choroid plexus, and vascular epithelium 

(Zimmermann, 1996).  A recent study using enzyme histochemical assays in Nt5e-/- mice 

confirmed broad expression of the enzyme in the brain, including the hippocampus, the 

cingulate cortex, the caudoputamen, the olfactory bulb and cortex, and the cerebellum 

(Langer et al., 2008).  Despite this, a functional role for NT5E in any of these brain regions 

has not been shown.  

A few studies suggested NT5E may be expressed and functional in the spinal cord 

and DRG.  Early enzyme histochemical studies showed strong NT5E-like activity in the 

substantia gelatinosa along the total length of the spinal cord in mice and rats, predominantly 

in laminae II and III (Suran, 1974).  In DRG, these studies showed NT5E-like activity in 

most neurons, although staining in large-diameter neurons was different in quality from 

staining in small-diameter neurons (Nagy and Daddona, 1985).  In addition, more recent 

studies examined a possible role for NT5E activity in the modulation of nociception.  Two 

studies suggested that NT5E-like activity was decreased in spinal cord synaptosomes 

following repeated stress, and this change led to hyperalgesia to thermal stimuli (Fontella et 

al., 2005; Torres et al., 2002).  One study showed hypothyroidism-induced reduction in 
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thermal nociception corresponds with decreased NT5E-like activity in the spinal cord (Bruno 

et al., 2005).  An additional study used a push-pull microprobe to study NT5E-like activity in 

the spinal cord in vivo, and showed that adenosine production was likely to be partially due 

to NT5E activity, based on the use of a selective inhibitor of the enzyme (Patterson et al., 

2001).  This NT5E-like activity reversed capsaicin-induced nociception (Patterson et al., 

2001).  While these anatomical and functional studies suggest NT5E is present and active in 

nociceptive circuits, a major caveat overshadows this work.  All of these studies used 

degradation of the substrate 5’AMP (or another 5’-monophosphate) to measure the presence 

or activity of NT5E.  While NT5E can certainly perform this reaction, it is not the only 

enzyme capable of doing so.  Indeed, AP (see above) and FRAP (see below) can both 

dephosphorylate 5’AMP to adenosine and are thought to be expressed in DRG and spinal 

cord.  Thus, it cannot be excluded that the observed AMPase activity in any of these studies 

was due to another surface enzyme besides NT5E.  Further studies using Nt5e-/- mice or more 

specific NT5E inhibitors may help clarify the enzyme’s role in nociception.   

 

 1.5.4.5) Fluoride resistant acid phosphatase (FRAP) 

 Fifty years ago, Colmant recognized that small- and medium-diameter sensory 

neurons could be labeled using a technique that examined the degradation of a 

phosphorylated substrate by an acid phosphatase (1959).  This acid phosphatase was 

subsequently shown to be relatively resistant to inhibition by fluoride (unlike a known 

lysosome-located acid phosphatase), and was named “fluoride-resistant acid phosphatase” or 

FRAP.  FRAP was localized specifically to C- and some Aδ-fiber nociceptors in the DRG, 

and to axonal terminals in lamina II of the dorsal spinal cord (Csillik and Knyihar-Csillik, 
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1986).  Later studies revealed that FRAP could also degrade a number of substrates, 

including many 5’-nucleoside monophosphates (UMP, GMP, IMP, AMP, and TMP) (Dodd 

et al., 1983; Dodd and Jessell, 1982; Silverman and Kruger, 1988a).  In fact, the ability to 

specifically degrade 5’thiamine monophosphate (TMP) led the enzyme to also be called 

“TMPase” (Knyihar-Csillik et al., 1986).   

 FRAP was used by many labs as a marker of nociceptive neurons.  FRAP staining is 

seen specifically in the cell bodies of small- to medium-diameter DRG neurons, in central 

synaptic terminals of the substantia gelatinosa of the spinal cord at all levels, as well as in 

Lissauer’s tract in the spinal cord, in the trigeminal ganglion in the brainstem, and in 

peripheral somatic and autonomic nerves (Coimbra et al., 1974; Csillik and Knyihar-Csillik, 

1986; Dalsgaard et al., 1984).  Examination of colocalization with neuropeptides and other 

markers showed FRAP was a selective marker for nonpeptidergic nociceptors in several 

mammalian species, including mice, rats, rabbits, dogs, cats, cows, monkeys, and humans 

(Dodd et al., 1983; Nagy and Hunt, 1982; Ribeiro-Da-Silva et al., 1986; Silverman and 

Kruger, 1988a).  While FRAP activity is most intense at acidic pH (~5), it is also active at 

neutral pH (~7) (Silverman and Kruger, 1988a).   Importantly, FRAP activity is membrane-

localized in the plasma membrane, golgi, and endoplasmic reticulum in DRG and axon 

terminals of the substantia gelatinosa, but not in lysosomes where lysosomal acid 

phosphatase is found (Csillik and Knyihar-Csillik, 1986; Knyihar-Csillik et al., 1986).   

 Interestingly, changes in FRAP activity are seen following anatomical or chemical 

changes in sensory circuits.  After complete dorsal rhizotomy, a decrease in FRAP activity 

was seen in the dorsal spinal cord ipsilateral to the surgery, while activity in the contralateral 

cord was unchanged (Coimbra et al., 1974; Csillik and Knyihar-Csillik, 1986; Knyihar et al., 
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1974).  In fact, FRAP activity was completely eliminated at the spinal cord level 

corresponding to the injury site.  Similarly, partial nerve injury or nerve crush led to 

decreased dorsal horn staining at sites corresponding to injury (Colmant, 1959; Csillik and 

Knyihar, 1978; Shields et al., 2003; Tenser, 1985; Tenser et al., 1991; Vadakkan et al., 2005).  

These studies suggest that the staining in the spinal cord is in terminals of dorsal root origin, 

and the loss of staining is due to the death of axon terminals in the spinal cord following 

nerve injury.  Studies have used this disappearance of FRAP following injury as a technique 

to map projections of peripheral nerves to the spinal cord (Rustioni et al., 1972; Rustioni et 

al., 1971).  Following ligature of the dorsal root, FRAP accumulation was seen at the ligature 

site closest to the DRG, suggesting the enzyme is made in the neuronal cell body and 

transported to spinal cord terminals (Csillik and Knyihar-Csillik, 1986).  This is supported by 

studies showing decreased FRAP staining following interruption of axonal transport (Csillik 

and Knyihar-Csillik, 1982; Fitzgerald et al., 1984).  Together, these studies suggest FRAP is 

made in a subset of DRG neurons and transported to the axons of these neurons.   

 Because it was found in nociceptive circuits, FRAP was intensively studied for a 

potential role in pain transmission.  As mentioned above, nerve injury due to transection, 

ligation, or crush led to loss of FRAP activity.  This loss of activity corresponded with the 

onset of neuropathic pain symptoms seen following nerve injury, suggesting decreased FRAP 

activity may contribute to the allodynia and hyperalgesia associated with neuropathic pain.  

In addition, neonatal administration of capsaicin led to a subsequent reduction in FRAP 

activity, suggesting a possible involvement in nociceptive neurotransmission (Fitzgerald, 

1983; Nagy et al., 1981).  Conversely, injection of the TRPA1-activating substance formalin 

increased FRAP activity ipsilateral to the injection (Kantner and Kirby, 1982).  In addition, 
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FRAP activity was increased in spinal cords of rats in a model of adjuvant arthritis 

(Schoenen et al., 1985), as well as in a model of heat-induced cutaneous inflammation 

(Glykys et al., 2003), further suggesting a role for FRAP in modulation of inflammatory pain.  

These data, along with its localization led some to suggest a possible role for FRAP in 

metabolism of neurotransmitters involved in nociceptive signaling.  In fact, its ability to act 

on specific nucleotides led some to suggest that FRAP might play a role in nucleotide or 

purinergic neurotransmission (Fyffe and Perl, 1984; Silverman and Kruger, 1988a; Stone, 

1981).  However, no studies examined the possibility of FRAP acting as an ectonucleotidase 

in nociceptive circuits.     

Despite its promise as a potential player in nociception, research on FRAP waned in 

the 1990’s for two primary reasons.  First, the discovery of the ability of isolectin IB4 from 

Griffonia simplicifolia to also bind nonpeptidergic DRG neurons and colocalize extensively 

with FRAP provided a much simpler and more powerful method for identifying this subset of 

nociceptors (Silverman and Kruger, 1988b; Silverman and Kruger, 1990).  Second, the gene 

for FRAP was never identified, making it impossible to perform immunohistochemical, 

molecular, and genetic studies that might further elucidate its role in nociception.   

An attempt to identify the phosphatase responsible for FRAP activity was made by 

Dodd et al. who partially purified FRAP protein from rat DRG using column 

chromatography (1983).  By binding the compound L-tartrate (a known inhibitor of FRAP) 

to a column, they were able to acquire a purified version of the functional enzyme.  The 

electrophoretic mobility of the enzyme was identical to that of human prostatic acid 

phosphatase, (PAP) which also has similar substrate specificity to FRAP.  They then made 

monoclonal antibodies against the purified FRAP protein, and tested these, as well as 
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antibodies against PAP in rat DRG and spinal cord.  Unfortunately, none of the antibodies, 

including those directed against PAP, stained small-diameter DRG neurons or lamina II of 

the spinal cord where FRAP activity is located.  This discrepancy prevented the authors from 

determining if PAP was indeed the enzyme responsible for FRAP activity.  In addition, 

studies using neurotoxin treatment to target sensory neurons suggested that FRAP was of low 

molecular weight, resistant to tartrate, sensitive to fluoride inhibition, and associated with 

enzymes, all of which are inconsistent with PAP’s characteristics (McDougal et al., 1985; 

McDougal et al., 1983).  These findings cast further doubt on the possible relationship 

between FRAP and PAP.  Despite these negative findings, recent work in our lab indicates 

that PAP isthe phosphatase responsible for FRAP activity in the DRG and spinal cord (see 

Chapter 2).   

PAP is a member of the histidine acid phosphatase family of proteins, which contain 

a highly conserved RHGXRXP motif within their active sites (Van Etten, 1982).  Mutation 

of the active site histidine residue (His12) to an alanine eliminates the phosphatase activity of 

the enzyme (Ostanin et al., 1994).  PAP is either expressed as a transmembrane (TM) protein 

with the active site on the extracellular side of the membrane, or as a secreted protein 

(Quintero et al., 2007).  Both forms are homodimers with subunits related by a twofold axis 

(Schneider et al., 1993).  The secreted form of the protein (S-PAP) is found mainly in the 

prostate and can be used as a marker for the detection of metastatic prostate cancer (Ostanin 

et al., 1994; Roiko et al., 1990).  The TM version of the protein has only been recently 

identified and is widely expressed in mouse tissues, including prostate, salivary gland, 

thymus, lung, kidney, brain, spleen, thyroid, and Schwann cells (Quintero et al., 2007).  
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When expressed heterologously, TM-PAP is localized to plasma membrane and intracellular 

vesicles.   

As a result of its role in prostate cancer, the protein has been highly characterized.  As 

its name suggests, PAP is optimally active at acidic pH, but functions over a broad pH range 

(~3 – 8) (Lam et al., 1973; Van Etten, 1982).  It is inhibited by L-tartrate, as well as a 

number of benzylaminophosphonic acids (Beers et al., 1996; Van Etten, 1982).  However, 

there are currently no known activators of the protein.  PAP is a nonspecific 

phosphomonoesterase and can dephosphorylate a number of different substrates, including 

phosphoryl-o-tyrosine, phosphoryl-o-serine, β-glycerophosphate, para-nitrophenyl phosphate 

(p-NPP), lysophosphatidic acid, and many nucleotides, especially nucleotide 

monophosphates (i.e., TMP, AMP, GMP, CMP, UMP, XMP, and IMP) (Dziembor-

Gryszkiewicz et al., 1978; Ostrowski and Kuciel, 1994; Silverman and Kruger, 1988a; 

Tanaka et al., 2004).  The enzyme’s Km for AMP at pH 7 is in the low millimolar range.   

PAP has little to no activity on nucleoside di- or triphosphates at physiologic pH (Lam et al., 

1973).  The physiological roles of TM-PAP or S-PAP are unknown, although some studies 

suggest PAP may be involved in cell growth and division and that down-regulation of PAP 

may be involved in prostate cancer progression (Lin et al., 1994; Lin et al., 2001; Meng et al., 

2000; Quintero et al., 2007).   

 

1.6) Rationale for Dissertation Research 

 Adenosine and adenine-containing nucleotides clearly play important roles in the 

modulation of pain signaling.  Despite this, knowledge of the enzymes responsible for the 

production and breakdown of these compounds in nociceptive circuits is minimal.  Indeed, 
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despite hints from enzyme histochemistry, the molecular identity of any ectonucleotidases 

present in the DRG and spinal cord is unknown.  This is surprising, given the importance 

these enzymes could have in decreasing signaling through P2X and P2Y receptors and in 

increasing signaling through P1 receptors.  Knowledge of the identity of these proteins would 

allow for further manipulation and possible targeting for the development of novel 

therapeutic approaches for the treatment of acute or chronic pain.   

 The stepwise extracellular breakdown of ATP to adenosine can involve several 

possible enzymes and routes.  Despite this, the clear rate-limiting step in this process is the 

breakdown of AMP into adenosine (Dunwiddie et al., 1997).  Enhancing this reaction both 

increases the production of the anti-nociceptive compound adenosine and reduces the levels 

of the pro-nociceptive compound ATP.  Thus, the enzymes responsible for this reaction in 

the spinal cord are of particular interest.  It was the broad goal of this research project to 

molecularly identify and characterize the AMPases present in nociceptive circuits.  Since 

some studies have already suggested potential expression and function of NT5E and 

FRAP/PAP in these regions, I will focus my studies on these enzymes.  The experiments 

below are designed to address the following:  

- Is PAP the molecular identity of FRAP? 
 

- Are PAP and NT5E expressed in DRG neurons and spinal cord at the protein 
level? 

 
- If PAP and NT5E are expressed in DRG, are they specific for particular classes of 

nociceptive neurons? 
 
- Do PAP and NT5E act as ectonucleotidases in nociceptive circuits? 
 
- Does PAP or NT5E activity lead to activation of adenosine receptors in 

nociceptive circuits? 
 

- Does manipulation of endogenous PAP or NT5E affect nociception? 
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- Can soluble forms of PAP or NT5E be used to treat hyperalgesia or allodynia? 
   

 By addressing these questions, I intend to further the understanding of purinergic 

signaling in nociceptive circuits and to establish ectonucleotidases as viable targets for novel 

therapeutic approaches for the treatment of pain that are so desperately needed.  
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1.7) Figures and Tables 

 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1.1.  Primary afferent nerve types.  Peripheral nerves have different properties and 

functions in detection of external stimuli.  (Figure modified from Julius and Basbaum, 2001). 

(Back to text) 
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Figure 1.2.  Nociceptive neurons and connections.  Peptidergic neurons (red) express 

CGRP, substance P (Sub P), and Somatostatin (Somat) and project to laminae I and IIouter in 

the dorsal spinal cord.  Nonpeptidergic neurons (green) stain for IB4 and FRAP activity, 

express MrgprD and P2X3, and project to lamina II.  Lamina IIm(iddle) has been proposed as a 

subsection of lamina IIinner, where the majority of nonpeptidergic neurons appear to terminate 

(Zylka, 2005).  (Figure modified from Zylka, 2005).  (Back to text)  
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Figure 1.3.  Desensitization of TRPV1 due to depletion of PIP2.  Activation of TRPV1 by 

Capsaicin (Cap) or heat causes influx of Ca2+ that activates phospholipase C (PLC).  PLC 

degrades PIP2 in the membrane into IP3 and DAG, removing PIP2 from its binding site on 

TRPV1.  Loss of PIP2 binding leads to inhibition of TRPV1 activity.  This model does not 

take into account desensitization through calmodulin or calcineurin (see text).  (Figure 

modified from Rohacs et al., 2008).  (Back to text) 
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Figure 1.4. Model of PIP2 regulation of TRPV1.  PIP2 has inhibitory and activating effects 

on TRPV1 activity depending on stimulus intensity.  Rohacs et al. propose this model to 

explain these effects.  (A) At low stimulus intensity, PIP2 indirectly inhibits TRPV1 (red 

curve) but directly activates the channel (black curve).  The sum of these two effects is the 

bell-shaped dose-response to PIP2 levels (blue dashed line).  If the resting PIP2 levels in a cell 

are at the point of the vertical dashed line, a moderate decline in PIP2 will lead to activation 

of the channel, while a more severe decline will lead to inhibition.  An increase in PIP2 will 
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lead to inhibition of the channel.  (B) At high stimulus intensity, a depletion of any amount of 

PIP2 will lead to inhibition of the channel, while increases may or may not affect channel 

activity.  Regulation of the channel by PIP2 is more complex than this model, but it provides 

a possible explanation for the observed co-existence of inhibitory and stimulatory effects of 

PIP2 on TRPV1 activity.  (Figure modified from Rohacs et al., 2008).  (Back to text). 
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Figure 1.5. Intracellular and extracellular metabolism of adenosine.  Inside the cell,  

adenosine (ADO) is made from ATP, cAMP, or SAH, while outside the cell it comes from 

release through equilibrative nucleoside transporters or catabolism of ATP.  See text for 

details.  PDE = Phosphodiesterase.  (Figure modified from Sawynok and Liu, 2003).  (Back 

to text) 
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Table 1.1.  Prominent modulators of nociception 

Molecule Origin  Receptor(s) Nociceptive Actions References 

Adenosine 
triphosphate 
(ATP) 

Released from 
synaptic 
vesicles and 
damaged cells 

P2X3 
P2X4 

P2X7 
P2Y1, 2 
 
 

-Direct application evokes pain and 
excites C fibers 
 
-ATP-induced pain increased in 
response to PGE1 and carrageenan 
 
-Important in development of 
neuropathic pain – activates spinal 
microglia 
 

(Cook and 
McCleskey, 2002; 
Coutts et al., 1981; 
Hilliges et al., 
2002; Ralevic and 
Burnstock, 1998; 
Sawynok et al., 
2000; Stucky et al., 
2004; Tsuda et al., 
2003) 

Bradykinin 
    (BK) 

Kininogen 
precursor 
proteins from 
activation of 
plasma or 
tissue kallikrein 
enzymes 

B2 

-Acts directly to induce nociceptor 
firing through PKC activation 
 
-Sensitizes TRPV1 to induce thermal 
hyperalgesia 
 
-Stimulates production of pro-
nociceptive molecules, including 12-
HPETE and leukotriene B4 

 

(Calixto et al., 
2004; Cesare et al., 
1999a; McMahon 
et al., 2006; 
Premkumar and 
Ahern, 2000; Shin 
et al., 2002) 

Histamine 

Released from 
mast cells in 
response to 
substance P 

H1-4 

-Excites polymodal visceral 
nociceptors 
 
-Potentiates nociceptor responses to 
BK and heat 
 

(Koda et al., 1996; 
McMahon et al., 
2006; Mizumura et 
al., 1995) 

Nerve growth 
factor (NGF) 

Increased 
synthesis and 
release from 
cells in 
inflamed 
tissues induced 
by growth 
factors and 
cytokines 

TrkA 
TrkB 
TrkC 

-Induces inflammatory pain responses 
 
-Sensitizes nociceptors and induces 
spontaneous firing activity 
 
-Sensitizes TRPV1 and TTX-resistant 
Na+ channels 
 
-Induces release of histamine and 
serotonin from mast cells 
 
-Induces expression of cytokines in 
mast cells 
 

(Bullock and 
Johnson, 1996; 
Chuang et al., 
2001; Horigome et 
al., 1994; Kerr et 
al., 2001; 
McMahon, 1996; 
McMahon et al., 
2006; Meyer et al., 
2006) 
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(Back to text) 

 

 

Nitric oxide 
(NO) 

From activation 
of spinal nNOS 

 

-Important in the initiation and 
maintenance of inflammatory 
hyperalgesia 
 
-Production of cGMP from NO-
sensitive guanylyl cyclase (NO-GC) 
and subsequent activation of pro-
nociceptive cGMP-dependent protein 
kinase I (cGKI) 
 
-Activation of Cox enzymes and 
production of PGE2 and PGI2 
 

(Handy and 
Moore, 1998; 
McMahon et al., 
2006; Schmidtko 
et al., 2009; 
Toriyabe et al., 
2004) 

Prostaglandins 
(PGE2, PGI2) 

Breakdown of 
arachidonic 
acid by Cox 
enzymes to 
PGH2, then 
further 
synthesis to 
PGE2 or PGI2 

EP1, 3, 4 
IP 

-Sensitization of afferent neurons to 
noxious chemical, thermal, and 
mechanical stimuli 
 
-Reduces threshold for activation of 
TTX-resistant Na+ channels 
 
-Increases intracellular cAMP 
 
-Increases neuronal excitability 
 

(Birrell et al., 
1991; England et 
al., 1996; Gold et 
al., 1996; Meyer et 
al., 2006; 
Mizumura et al., 
1987) 

Protease-
activated 
receptor 2 
(PAR2) 

Activated by 
tryptase 
following tissue 
damage and 
inflammation 

PAR2 

-Produces prolonged thermal and 
mechanical hyperalgesia 
 
-Enhances TRPV1 activity through 
PKC and PKA 
 

(Amadesi et al., 
2004; Dai et al., 
2004b; Kawabata 
et al., 2002; 
Kawabata et al., 
2001; Meyer et al., 
2006) 

Protons (H+) 

Produced in 
response to 
tissue 
inflammation, 
hypoxia, and 
anoxia 

 

-Causes prolonged activation of 
sensory nerves and produce sharp, 
stinging pain 
 
-Activates and sensitizes TRPV1 
 
-Activation of pro-nociceptive acid 
sensing ion channels (ASICs) 
 
-Inhibits K+ channels 
 

(Baumann et al., 
2004; Jones et al., 
2004; Lindahl, 
1962; Steen and 
Reeh, 1993; 
Sutherland et al., 
2001; Tominaga et 
al., 1998) 

Serotonin (5-
HT) 

Released from 
platelets and 
mast cells in 
inflamed tissue 

5-HT1B 
5-HT1D 
5-HT2A 
5-HT2B 
5-HT3B 
5-HT4 

-Produces thermal hyperalgesia 
following inflammation 
 
-Reduces resting K+ conductance 
 
-Increases TTX-resistant Na+ channel 
activation 
 

(Abbott et al., 
1996; Cardenas et 
al., 1997; 
Nicholson et al., 
2003; Todorovic 
and Anderson, 
1990; Tokunaga et 
al., 1998) 



CHAPTER 2 
 

Prostatic Acid Phosphatase Suppresses Pain by Generating Adenosine 
 

ABSTRACT: Thiamine monophosphatase (TMPase, also known as fluoride-resistant acid 

phosphatase) is a classic histochemical marker of small-diameter dorsal root ganglia neurons. 

The molecular identity of TMPase is currently unknown. We found that TMPase is identical 

to the transmembrane isoform of prostatic acid phosphatase (PAP), an enzyme with unknown 

molecular and physiological functions. We then found that PAP knockout mice have normal 

acute pain sensitivity but enhanced sensitivity in chronic inflammatory and neuropathic pain 

models. In gain-of-function studies, intraspinal injection of PAP protein has potent 

antinociceptive, antihyperalgesic, and antiallodynic effects that last longer than the opioid 

analgesic morphine. PAP suppresses pain by functioning as an ecto-5′-nucleotidase. 

Specifically, PAP dephosphorylates extracellular adenosine monophosphate (AMP) to 

adenosine and activates A1-adenosine receptors in dorsal spinal cord. Our studies reveal 

molecular and physiological functions for PAP in purine nucleotide metabolism and 

nociception and suggest a novel use for PAP in the treatment of chronic pain. 

 

This work was previously published: Zylka, M.J*., Sowa, N.A*., et al. (2008).  Neuron 60; 
111-122. 
 
*Authors contributed equally
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2.1) Introduction 

Painful and tissue-damaging stimuli are sensed by small-diameter nociceptive 

neurons located in the dorsal root ganglia (DRG) and trigeminal ganglia (Woolf and Ma, 

2007) For nearly 50 years, it was known that many small-diameter DRG neurons expressed a 

histochemically identifiable acid phosphatase (Colmant, 1959), commonly referred to as 

fluoride-resistant acid phosphatase (FRAP) or thiamine monophosphatase (TMPase) (Dodd 

et al., 1983; Knyihar-Csillik et al., 1986). TMPase dephosphorylates diverse substrates, 

including the vitamin B1 derivative thiamine monophosphate (TMP) and 5′-nucleotide 

monophosphates (Dodd et al., 1983; Sanyal and Rustioni, 1974; Silverman and Kruger, 

1988a). 

TMPase was intensively studied in the 1980s in an effort to determine its molecular 

identity and function. TMPase marks most nonpeptidergic DRG neurons, a subset of 

peptidergic DRG neurons, and unmyelinated axon terminals in lamina II of the dorsal spinal 

cord (Carr et al., 1990; Dalsgaard et al., 1984; Dodd et al., 1983; Hunt and Rossi, 1985; 

Knyihar-Csillik et al., 1986; Nagy and Hunt, 1982; Silverman and Kruger, 1988a). Since 

peptidergic and nonpeptidergic neurons are generally considered to be nociceptive (Woolf 

and Ma, 2007), these anatomical studies suggested that TMPase might function in 

nociception. Moreover, TMPase staining in lamina II of spinal cord is reduced or eliminated 

when peripheral nerves are damaged (Colmant, 1959; Shields et al., 2003; Tenser, 1985; 

Tenser et al., 1991). Ultimately, studies of TMPase waned when it was found that isolectin 

B4 (IB4) colocalized with TMPase and was an easier-to-use marker of nonpeptidergic 

neurons (Silverman and Kruger, 1988b).  More importantly, the gene encoding TMPase was 
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never identified, making it impossible to study the molecular and physiological function of 

TMPase in sensory neurons. 

In an attempt to identify the TMPase gene, Dodd and coworkers partially purified 

TMPase protein from rat DRG using chromatography (Dodd et al., 1983). The partially 

purified rat protein was inhibited by the nonselective acid phosphatase inhibitor L(+)-tartrate 

and was similar in molecular weight to the secretory isoform of human prostatic acid 

phosphatase (PAP, also known as ACPP), the only known isoform of PAP at the time 

(Ostrowski and Kuciel, 1994). These biochemical experiments hinted that TMPase might be 

secretory PAP (Dodd et al., 1983). However, subsequent studies using anti-PAP antibodies 

failed to immunostain small-diameter DRG neurons and their axon terminals in lamina II 

(i.e., the neurons and axons that contain TMPase) (Dodd et al., 1983; Silverman and Kruger, 

1988a). As summarized by Silverman and Kruger in 1988, these data made it impossible to 

determine whether TMPase was PAP or some other enzyme. 

In light of this unsolved question regarding the molecular nature of TMPase and the 

historical use of TMPase as a nociceptive neuron marker, we sought to definitively identify 

the TMPase gene and ascertain its function in nociception. Our experiments revealed that 

TMPase was a recently discovered transmembrane (TM) isoform of PAP (TM-PAP) 

(Quintero et al., 2007) and was not the secretory isoform of PAP. This molecular 

identification then allowed us to use modern molecular and genetic approaches to rigorously 

study the function of PAP/TMPase in nociceptive circuits. Using our PAP knockout mice, we 

found that deletion of PAP increased thermal hyperalgesia (increased pain sensitivity) and 

mechanical allodynia in animal models of chronic pain. Conversely, a single intraspinal 

injection of PAP protein had antinociceptive, antihyperalgesic, and antiallodynic effects that 
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lasted for up to 3 days, much longer than a single injection of the commonly used opioid 

analgesic morphine. Mechanistically, we found that PAP is an ectonucleotidase that 

dephosphorylates extracellular AMP to adenosine and requires A1-adenosine receptors 

(A1Rs) for antinociception. 

PAP has been intensively studied for 70 years in the prostate cancer field (Gutman 

and Gutman, 1938). Despite decades of research, the molecular and physiological functions 

for PAP remained unknown. Our studies with pain-sensing neurons identify the in vivo 

substrate, the molecular mechanism, and the physiological function for this medically 

relevant protein. Moreover, we show that PAP functions in nociception. Considering that 

TM-PAP is expressed throughout the body (Quintero et al., 2007), PAP could regulate 

diverse physiological processes that are dependent on adenosine (Jacobson and Gao, 2006). 

 

2.2) Materials and Methods 

All procedures and behavioral experiments involving vertebrate animals were 

approved by Institutional Animal Care and Use Committees at the University of North 

Carolina at Chapel Hill and at the Universities of Oulu and Helsinki. 

 

2.2.1) Molecular Biology 

The full-length expression construct of PAP-transmembrane isoform (nt 64–1317 

from GenBank accession # NM_207668) was generated by RT-PCR amplification, using 

C57BL/6 mouse trigeminal cDNA as template and Phusion polymerase. PCR products were 

cloned into pcDNA3.1 and completely sequenced. Isoform-specific in situ hybridization 

probes of PAP, secreted variant (nt 1544–2625 from GenBank accession # NM_019807), and 
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PAP, transmembrane variant (nt 1497–2577 from GenBank accession # NM_207668) were 

generated by PCR amplification, using C57BL/6 mouse genomic DNA as template and 

Phusion polymerase, then cloned into pBluescript-KS. 

In situ hybridization was performed as described previously using digoxygenin-

labeled antisense and sense (control) riboprobes (Dong et al., 2001).  We confirmed that PAP 

was expressed in human DRG by performing RT-PCR with RNA from human DRG 

(Clontech) and primers that spanned three introns (exon 6 primer: 5′ ctttcaggattacatggccagg; 

exon 9 primer: 5′ cgtcaagtggcaagaagcatag). 

 

2.2.2) Tissue Preparation 

Adult male mice, 6–12 weeks of age, were sacrificed by cervical dislocation, 

decapitation, or pentobarbital overdose. Lumbar spinal cord and DRG (L4–L6) were 

dissected and then immersion fixed for 8 hr and 2 hr, respectively, in 4% paraformaldehyde, 

0.1 M phosphate buffer, pH 7.4. Tissues were cryoprotected in 20% sucrose, 0.1 M 

phosphate buffer, pH 7.3 at 4°C for 24 hr, frozen in OCT, sectioned with a cryostat at 15–20 

µm, and mounted on Superfrost Plus slides. Slides were stored at −20°C. Free-floating 

sections were sectioned at 30 µm and immediately stained. 

 

2.2.3) Histology 

Enzyme histochemistry was performed essentially as described by Shields et al., with 

modifications suggested by Silverman and Kruger (Shields et al., 2003; Silverman and 

Kruger, 1988a). Briefly, cells or tissue sections were washed twice with 40 mM Trizma-

Maleate (TM) buffer, pH 5.6, then once with TM buffer containing 8% (w/v) sucrose. 
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Samples were then incubated at 37°C for 2 hr in TM buffer containing 8% sucrose (w/v), 6 

mM thiamine monophosphate chloride or adenosine monophosphate (0.3 mM for tissue 

sections, 6 mM for HEK293 cells), and 2.4 mM lead nitrate. Lead nitrate must be made fresh 

immediately prior to use. To reduce nonspecific background staining, samples were washed 

once with 2% acetic acid for 1 min. Samples were then washed three times with TM buffer, 

developed for 10 s with 1% sodium sulfide, washed several times with PBS, pH 7.4, and 

mounted in Gel/Mount (Biomeda). When assaying HEK293 cells using TMP or AMP 

histochemistry, we stained duplicate samples with and without 0.1% Triton X-100 in the 

initial TM wash. Images were acquired using a Zeiss Axioskop and Olympus DP-71 camera. 

Immunofluorescence was performed using antibodies and procedures essentially as 

described (Zylka et al., 2005), although we substituted high salt TBS + TX (50 mM Tris, 

2.7% NaCl, 0.3% Triton X-100, pH 7.6) for PBS + TX in all wash and antibody incubation 

steps. Additional antibodies included 1:750 rabbit anti-CGRP (T-4032; Peninsula), 1:250 

mouse anti-NeuN (MAB377, Chemicon), 1:300 guinea pig anti-P2X3 (GP10108, 

Neuromics), 1:1000 goat anti-VR1 (sc-12498, Santa Cruz), and 1:1000 rabbit anti-human 

PAP (Biomeda). We found that it was necessary to amplify the anti-PAP antibody signal by 

using secondary antibodies conjugated to biotin, then using either 1:250 streptavidin-Cy3 

(Jackson) or the Tyramide Signal Amplification kit (New England Nuclear, following 

manufacturer's protocol). Images were obtained using a Leica TCS-NT confocal microscope. 

 

2.2.4) Injections and Drugs 

For intrathecal drug delivery, 5 µL was injected into unanesthetized mice using the 

direct lumbar puncture method (Fairbanks, 2003). Human PAP (Sigma, P1774, 100 U/ml) 
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was dialyzed against 0.9% saline using Slide-A-Lyzer Mini dialysis units (Pierce, 69576) for 

4 hr at 4°C. After dialysis, samples were diluted in 0.9% saline to a final concentration of 1.3 

mg/ml (50 U/ml) and stored at −80°C. S-hPAP was heat-inactivated by incubating at 65°C 

for 40 min. Bovine prostatic acid phosphatase (bPAP, Sigma, P6409) was dissolved (aided 

by sonication) in 0.9% saline to a final concentration of 30 mg/ml (0.3 U/ml). Enzyme 

activity was quantified using the EnzChek Phosphatase Assay Kit (Invitrogen, E12020) 

following the manufacturer's protocol. Bovine serum albumin (BSA, Sigma, A3912) was 

dissolved in 0.9% saline to a final concentration of 1.3 mg/ml. Recombinant bovine alkaline 

phosphatase was purchased from Sigma (P8361, expressed in Pichia pastoris, >4000 U/mg 

protein). Morphine sulfate (Sigma, M8777) and N6-cyclopentyladenosine (Sigma, C8031; 10 

mM stock in dimethylsulfoxide; DMSO) were diluted into 0.9% saline. 8-cyclopentyl-1, 3-

dipropylxanthine (C101, Sigma) was dissolved in 0.9% saline containing 5% DMSO, 1.25% 

1 M NaOH, and injected i.p. 

 

2.2.5) Behavior 

Pap−/−  and A1R
−/−  mice were backcrossed to C57BL/6 mice (Jackson) for 10 and 12 

generations, respectively. Isogenic wild-type mice were then derived from the Pap−/−  line 

and used as wild-type controls. C57BL/6 male mice were purchased from Jackson 

Laboratories for all behavioral experiments involving PAP protein injections. Unless 

indicated otherwise, male mice, 2–4 months old, were used for all behavioral experiments. 

All mice were acclimated to the testing room, equipment, and experimenter for 1–3 days 

before behavioral testing. The experimenter was blind to genotype and drug treatment during 

behavioral testing. 
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Thermal sensitivity was measured by heating one hindpaw with a Plantar Test 

apparatus (IITC) following the Hargreaves method (Hargreaves et al., 1988). The radiant 

heat source intensity was calibrated so that a paw-withdrawal reflex was evoked in 10 s., 

on average, in wild-type C57BL/6 mice. Cutoff time was 20 s. One measurement was taken 

from each paw per day to determine paw-withdrawal latency (with the exception of our 

morphine and CPA dose-response experiments, which required multiple measurements per 

day). To perform the tail-immersion assay, mice were gently restrained in a towel and the 

distal one-third of the tail was immersed in 46.5°C or 49°C water. Latency to withdrawal the 

tail was measured once per mouse. For the hot plate test, mice were placed on a metal surface 

heated at 52°C and latency to jump, lick paws, or shake paws was measured. Mechanical 

sensitivity was measured using semiflexible tips attached to an electronic von Frey apparatus 

(IITC) as described elsewhere (Cunha et al., 2004; Inoue et al., 2004). Three measurements 

were taken from each paw (separated at 10 min intervals) then averaged to determine paw-

withdrawal threshold in grams. 

To induce inflammatory pain, 20 µl complete Freund's adjuvant (CFA, from Sigma or 

MP Biomedicals) was injected into one hindpaw, centrally beneath glabrous skin, with a 30G 

needle. The spared nerve injury (SNI) model of neuropathic pain was performed as described 

(Shields et al., 2003) 

 

2.3) Results 

2.3.1) Prostatic Acid Phosphatase Is TMPase in Dorsal Root Ganglia Sensory Neurons 

In rats, mice, and humans, PAP is expressed as a secreted protein or as a type 1 

transmembrane (TM) protein, with the catalytic acid phosphatase domain localized 
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extracellularly (Figure 2.1A) (Quintero et al., 2007; Roiko et al., 1990; Vihko, 1979). The 

secretory isoform has been used as a diagnostic marker for prostate cancer for nearly 70 

years, whereas the TM isoform was only recently discovered (Gutman and Gutman, 1938; 

Quintero et al., 2007). To determine whether either PAP isoform is expressed in DRG, we 

performed in situ hybridization with isoform-specific antisense riboprobes. These 

experiments revealed that TM-PAP was expressed in a subset of small-diameter DRG 

neurons (Figure 2.1B), while the secretory isoform was expressed at low-to-undetectable 

levels (Figure 2.1C). Importantly, TM-PAP is localized to the plasma membrane and 

vesicular membranes, just like TMPase (Csillik and Knyihar-Csillik, 1986; Quintero et al., 

2007). We also found that PAP was expressed in human DRG using RT-PCR and intron-

spanning primers (data not shown), consistent with localization of TMPase to small-diameter 

human DRG neurons (Silverman and Kruger, 1988a). 

To directly test whether PAP had TMPase histochemical activity, we overexpressed 

mouse TM-PAP in HEK293 cells, then stained these cells using TMP histochemistry. Cells 

transfected with TM-PAP were heavily stained when the plasma membrane was left intact 

(Figure 2.2A), indicating that TM-PAP can dephosphorylate TMP extracellularly. TMPase 

staining was even greater when the plasma membrane was permeabilized with detergent 

(Figure 2.3H). In contrast, control cells transfected with empty vector were not stained 

(Figure 2.2B). Two additional phosphatases (soluble acid phosphatase 1 [ACP1] and 

placental alkaline phosphatase) lacked TMPase activity (Figure 2.3). 

DRG neurons express at least eight different acid phosphatase genes (M.J.Z, 

unpublished data), any one of which could be TMPase. To determine whether PAP was the 

only enzyme in sensory neurons capable of dephosphorylating TMP, we analyzed DRG and 
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spinal cord tissues from PAP∆3/∆3 (henceforth referred to as Pap−/− ) knockout mice (P.V. 

et al., abstract from Proceedings of the AACR, 2005, 96th Annual Meeting, Anaheim, CA). 

In these mice, deletion of exon 3 causes complete loss of secretory and transmembrane PAP 

catalytic activity (P.V. et al., abstract from Proceedings of the AACR, 2005). Strikingly, 

TMP histochemical staining of DRG neurons and axon terminals in spinal cord was 

abolished in Pap−/−  mice (Figures 2.2C–2.2F). Absence of TMP staining in Pap−/−  mice was 

not due to developmental loss of DRG neurons, as wild-type and Pap−/−  mice had equivalent 

numbers of P2X3-expressing neurons relative to all NeuN+ neurons in lumbar ganglia 

(43.4% ± 1.9% verses 42.4% ± 1.9% (SEM); 1500 NeuN+ neurons counted per genotype). 

P2X3 is an ATP-gated ion channel that is colocalized with PAP (see below). Moreover, loss 

of TMPase staining in the spinal cord was not due to loss of axon terminals in the dorsal horn 

(Figure 2.4). These gain- and loss-of-function experiments conclusively prove that TMPase 

in small-diameter DRG neurons is the transmembrane isoform of PAP. 

In addition, by combining immunofluorescence and TMP histochemistry, we 

observed colocalization between PAP and TMPase in DRG neurons (Figures 2.5A–2.5C) and 

in axon terminals in lamina II of the spinal cord (Figures 2.5D–2.5F). This anti-PAP antibody 

did not stain DRG or spinal cord sections from Pap−/−  mice, confirming antibody specificity. 

Finally, upon finding that PAP was TMPase, we reanalyzed two published microarray data 

sets that measured changes in gene expression in DRG following peripheral nerve injury 

(Costigan et al., 2002; Davis-Taber and Scott, 2006). In both studies, PAP was one of the 

most heavily downregulated genes. This is consistent with the fact that TMPase 

histochemical activity is greatly reduced in DRG and dorsal horn after peripheral nerve 
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injury (Colmant, 1959; Csillik and Knyihar-Csillik, 1986; Shields et al., 2003; Tenser, 1985; 

Tenser et al., 1991). 

 

2.3.2) PAP Is Primarily Expressed in Nonpeptidergic DRG Neurons 

TMPase was previously localized to nonpeptidergic DRG neurons and a small 

number of peptidergic neurons (Carr et al., 1990; Dalsgaard et al., 1984; Hunt and Mantyh, 

2001; Nagy and Hunt, 1982; Silverman and Kruger, 1988b). To show that PAP had a similar 

distribution and to identify additional proteins that were colocalized with PAP, we performed 

double-label immunofluorescence with our anti-PAP antibody and various sensory neuron 

markers. Cell counts from confocal images revealed that virtually all nonpeptidergic DRG 

neurons, as defined by the markers IB4, Mrgprd-EGFPf, and P2X3, coexpressed PAP 

(Figures 2.6A–2.6I and Table 2.1). Moreover, PAP+ axons terminated in lamina II of spinal 

cord in association with nonpeptidergic neuron markers (Figures 2.7A–2.7F). In contrast, a 

smaller percentage (17.1%) of peptidergic CGRP+ neurons (n = 1364 cells counted) 

expressed PAP (Figures 2.6J–2.6L and Table 2.1), and there was minimal overlap between 

PAP+ and peptidergic (CGRP+) axon terminals in spinal cord (Figures 2.7G–2.7I). Finally, 

19.1% ± 1.3% of PAP+ neurons expressed the capsaicin and noxious heat receptor TRPV1 

(Figures 2.6M–2.6O). Taken together, these confocal imaging studies revealed that PAP was 

preferentially expressed in nonpeptidergic, presumably nociceptive, DRG neurons. 

 

2.3.3) Chronic Pain-Induced Thermal Hyperalgesia and Mechanical Allodynia Are 

Enhanced in Pap Knockout Mice 
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PAP was generally thought to function only in the prostate (Ostrowski and Kuciel, 

1994). However, our expression data suggested that PAP might also function in nociceptive 

neurons. To evaluate pain-related functions for PAP, we tested age-matched wild-type 

C57BL/6 and Pap−/−  male mice (backcrossed to C57BL/6 for ten generations) using acute 

and chronic pain behavioral assays. We found no significant differences between genotypes 

using a measure of mechanical sensitivity (electronic von Frey) or several different measures 

of acute noxious thermal sensitivity (Table 2.2). In contrast, Pap−/−  mice showed 

significantly greater thermal hyperalgesia and mechanical allodynia relative to wild-type 

mice in the complete Freund's adjuvant (CFA) model of chronic inflammatory pain (Figures 

2.8A and 2.8B). In addition, Pap−/−  mice showed significantly greater thermal hyperalgesia 

in the spared nerve injury (SNI) model of neuropathic pain (Figures 2.8C and 2.8D) (Shields 

et al., 2003). 

 

2.3.4) PAP Has Potent and Long-Lasting Antinociceptive Properties 

Since deletion of PAP enhanced sensitivity in two different models of chronic pain, 

we hypothesized that excess PAP should have the opposite effect and reduce pain. To test 

this, we took advantage of the fact that secretory PAP protein is commercially available and 

has the same N-terminal catalytic region as TM-PAP (Figure 2.1A). We injected wild-type 

mice intrathecally (i.t.) into the lumbar region of spinal cord with pure human (S-h)PAP 

protein (the secretory isoform). Control mice were injected i.t. with an equivalent amount of 

heat-denatured, and hence phosphatase-inactive, S-hPAP protein. In all cases, we determined 

that S-hPAP was active or inactive using a sensitive fluorometric-based phosphatase assay 

(see Materials and Methods). We then measured noxious thermal and mechanical sensitivity 
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before (baseline, BL) and after S-hPAP injections (Figures 2.9A and 2.9B). Six hours after 

i.t. injection of S-hPAP, paw-withdrawal latency to a noxious thermal stimulus significantly 

increased relative to controls and remained elevated for 3 days (Figure 2.9A). This 

antinociceptive effect was dose dependent (Figure 2.10) and required PAP catalytic activity 

(Figure 2.9A). Active S-hPAP did not alter mechanical sensitivity (Figure 2.9B) nor did it 

cause paralysis or sedation. This long-lasting antinociceptive effect was species conserved, as 

a single i.t. injection of bovine (b)PAP also increased thermal withdrawal latency for 2 days 

but had no effect on mechanical sensitivity (Figure 2.11). Finally, i.t. injection of an 

unrelated protein (bovine serum albumin) or large quantities of a different secreted 

phosphatase (bovine alkaline phosphatase) did not alter thermal or mechanical sensitivity 

(Figures 2.11 and 2.12). 

We next used the same behavioral assay to compare PAP antinociception to the 

commonly used opioid analgesic morphine. We found that PAP and morphine 

antinociception were similar in magnitude following a single i.t. injection (40.8% ± 3.3% 

versus 62.2% ± 9.9% increase above baseline at the highest doses, respectively) but that PAP 

antinociception lasted much longer than morphine (3 days verses 5 hr at the highest doses, 

respectively; Figures 2.10 and 2.13). Similarly, Grant and colleagues found that the same 

high dose of morphine (50 µg, i.t., single injection) lasted 4.6 ± 1.0 hr in mice (Grant et al., 

1995). 

We next evaluated the extent to which S-hPAP affected hyperalgesia and allodynia in 

the CFA model of inflammatory pain and the SNI model of neuropathic pain. For both 

chronic pain assays, we used the uninjured paw as control. Strikingly, in both chronic pain 

models, a single i.t. injection of active S-hPAP was antihyperalgesic and antiallodynic in the 
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inflamed/injured paw (Figures 2.9C–2.9F). As before, a single injection was effective for 

several days, and phosphatase activity was required for these antinociceptive effects. 

Since Pap−/−  mice showed enhanced hyperalgesia and allodynia in the CFA 

inflammatory pain model (Figures 2.8A and 2.8B), we next tested whether S-hPAP could 

rescue these enhanced thermal and mechanical phenotypes in Pap−/−  mice. We found that i.t. 

injection of S-hPAP increased thermal withdrawal latency in the control paw of Pap−/−  mice 

to the same extent as wild-type mice (Figure 2.14A, blue lines). This demonstrated that 

Pap−/−  mice were competent to respond to acute increases in PAP activity. Strikingly, 

injection of S-hPAP rescued the thermal and mechanical inflammatory pain phenotype in the 

inflamed paw of Pap−/−  mice (Figures 2.14A and 2.14B, compare red lines where PAP was 

injected to black lines where inactive PAP was injected). Importantly, these data also suggest 

that localized, spinal injection of S-hPAP can rescue the behavioral deficit caused by deletion 

of PAP throughout the animal. 

 

2.3.5) PAP Suppresses Pain by Generating Adenosine, a Known Analgesic in Mammals 

The antinociceptive effects of PAP require catalytic activity. This suggested PAP 

might generate, via dephosphorylation, a molecule that regulates nociceptive 

neurotransmission in the spinal cord. PAP and TMPase can dephosphorylate many different 

substrates (Dziembor-Gryszkiewicz et al., 1978; Sanyal and Rustioni, 1974; Silverman and 

Kruger, 1988b; Vihko, 1978). We focused on AMP because dephosphorylation of AMP 

produces adenosine—a molecule that inhibits nociceptive neurotransmission in spinal cord 

slices and has well-studied analgesic properties in mammals (Li and Perl, 1994; Liu and 

Salter, 2005; Post, 1984; Sawynok, 2007). 
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At the time we began our studies, there was no direct proof that PAP or TMPase 

could generate adenosine from AMP. Instead, production of adenosine was inferred by 

measuring production of inorganic phosphate (Vihko, 1978). To directly test whether PAP 

could generate adenosine from AMP and other adenine nucleotides, we incubated PAP with 

1 mM AMP, ADP, or ATP at pH 7.0 for 4 hr. We then detected adenine nucleotides and 

adenosine using high-performance liquid chromatography (HPLC) and UV absorbance 

(Lazarowski et al., 2004). These studies revealed that PAP can rapidly dephosphorylate AMP 

and, to a much lesser extent, ADP to adenosine (Figures 2.15A and 2.15B). Importantly, no 

unexpected peaks were seen in the chromatograms (Figure 2.15B, data not shown), ruling out 

the possibility that PAP had additional hydrolytic activities toward nucleotides. 

Next, we tested the extent to which PAP could dephosphorylate extracellular AMP in 

HEK293 cells, DRG neurons, and spinal cord using AMP enzyme histochemistry. HEK293 

cells transfected with TM-PAP were heavily stained, whereas control cells were not (Figures 

2.15C and 2.15D), highlighting that TM-PAP dephosphorylates extracellular AMP and hence 

has ecto-5′-nucleotidase activity. In addition, small-diameter DRG neurons from wild-type 

mice were intensely stained while large-diameter neurons had weak granular cytoplasmic 

staining. In contrast, only weak granular staining was present in DRG neurons from PAP−/−  

mice (Figures 2.15E and 2.15F). These data indicate that PAP is the predominant ecto-5′-

nucleotidase on the soma of small-diameter neurons. Finally, AMP histochemical staining of 

axon terminals in lamina II was reduced in PAP−/−  relative to wild-type mice, but was not 

eliminated (Figures 2.15G and 2.15H). This indicates that PAP is one of perhaps many 

enzymes in spinal cord with the ability to dephosphorylate AMP to adenosine. 
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Adenosine mediates antinociception through Gi-coupled A1-adenosine receptors 

(A1Rs) (Lee and Yaksh, 1996; Sawynok, 2007). To directly test whether A1Rs were required 

for PAP antinociception, we next i.t. injected S-hPAP into wild-type C57BL/6 and A1-

adenosine receptor knockout mice (A1R
−/− , Adora1−/− ; backcrossed to C57BL/6 mice for 12 

generations), then measured noxious thermal and mechanical sensitivity (Hua et al., 2007; 

Johansson et al., 2001). Strikingly, S-hPAP increased thermal paw-withdrawal latency for 3 

days in wild-type mice but was without effect in A1R
−/−  mice (Figure 2.16A). Similarly, 

bPAP increased paw-withdrawal latency to the noxious thermal stimulus in wild-type mice 

but had no effect in A1R
−/−  mice (Figure 2.17). As expected, S-hPAP did not affect 

mechanical sensitivity in uninjured animals (Figure 2.16B). 

We next tested wild-type and A1R
−/−  mice using the CFA chronic inflammatory pain 

model and the SNI neuropathic pain model. Reproducing previous findings (Wu et al., 2005), 

A1R
−/−  mice showed greater thermal hyperalgesia compared to wild-type mice after CFA 

injection and after nerve injury (but before PAP injection; Figures 2.16C and 2.16E). 

Following i.t. injection of S-hPAP, thermal and mechanical thresholds increased in the 

inflamed/injured paws of wild-type mice but not in A1R
−/−  mice (Figures 2.16C–2.16F). 

Likewise, the selective A1R antagonist 8-cyclopentyl-1, 3-dipropylxanthine (CPX; 1 mg/kg, 

i.p.) transiently reversed the antinociceptive effects of S-hPAP in control and inflamed 

hindpaws (Figure 2.18). Conversely, injection (i.t.) of the selective A1R agonist N6-

cyclopentyladenosine (CPA) into wild-type mice produced dose-dependent increases in paw-

withdrawal latency to our thermal stimulus (Figure 2.19), similar to i.t. S-hPAP. However, 

unlike S-hPAP, CPA had short-term effects (lasting hours not days) and CPA caused 

transient paralysis at the two highest doses. When taken together, our results demonstrate that 
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the antinociceptive effects of PAP are due to generation of adenosine followed by activation 

of A1Rs. Moreover, our data demonstrate an in vivo function for PAP as an ectonucleotidase. 

 

2.4) Discussion 

For 70 years, PAP was thought to be a secreted protein found only in the prostate and 

was used as a diagnostic marker for prostate cancer (Gutman and Gutman, 1938; Ostrowski 

and Kuciel, 1994). Despite years of research, little was known about how PAP functioned 

in vivo at a mechanistic level or which PAP substrate was most biologically relevant. In 

biochemical assays, PAP can dephosphorylate diverse substrates, including β-

glycerophosphate, lysophosphatidic acid, phospho-amino acids, and 5′-nucleotides 

(Dziembor-Gryszkiewicz et al., 1978; Li et al., 1984; Porvari et al., 1994; Tanaka et al., 

2004; Vihko, 1978). 

In our efforts to solve an old and unanswered question in the pain field, we found that 

PAP was expressed in nociceptive neurons, was antinociceptive, and functioned as an 

ectonucleotidase. Importantly, we found that the in vivo effects of PAP were eliminated by 

deletion of one gene, the A1-adenosine receptor. This makes it unlikely that PAP suppresses 

pain by generating any other molecules besides adenosine. Moreover, the in vivo effects of 

PAP on acute and chronic pain mimic the effects of i.t. adenosine and A1R agonists 

(Figure 2.19) (Liu and Salter, 2005; Sawynok, 2007). Notably, both PAP and adenosine 

receptor agonists have antiallodynic and antihyperalgesic properties in animal models of 

inflammatory and neuropathic pain, both have a long (>24 hr) duration of action after a 

single i.t. injection, and both lose their ability to suppress pain in A1R
−/−  mice or following 

injection of A1R antagonists (Belfrage et al., 1999; Cui et al., 1997; Eisenach et al., 2002; 
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Gomes et al., 1999; Johansson et al., 2001; Lavand'homme and Eisenach, 1999; Lee and 

Yaksh, 1996; Maione et al., 2007; Poon and Sawynok, 1998). In addition, both A1R
−/−  and 

PAP−/−  mice show enhanced thermal hyperalgesia, but not enhanced allodynia, in 

neuropathic pain models (Figures 2.8C and 2.8D) (Wu et al., 2005). This shared modality-

selective phenotype further supports our conclusion that endogenous PAP works via A1R 

activation. Although our studies were focused on nociceptive neurons, PAP is expressed in 

many other tissues (Quintero et al., 2007) and thus could function as an ectonucleotidase 

throughout the body. 

 

2.4.1) PAP Has Potent and Long-Lasting Antinociceptive Effects when Compared to 

Opioid Analgesics 

Morphine and other opioids are powerful analgesics but have side effects that limit 

their long-term use. We found that a single i.t. injection of S-hPAP (250 mU) produced an 

increase in paw-withdrawal latency of 40.8% ± 3.3% (relative to baseline; n = 74 mice) in the 

Hargreaves test (Figure 2.10C) and reproducibly lasted for 3 days (Figure 2.9, Figure 2.14 

and Figure 2.16, 2.10A, and 2.18). Using the same behavioral test, we found that 1 µg and 10 

µg of morphine produced an increase in paw-withdrawal latency of 24.9% ± 5.3% and 55.9% 

± 13.7%, respectively, but lasted 1–4 hr in mice (Figure 2.13). Similarly, others found that 1 

µg and 10 µg of morphine (i.t., single dose) produced an increase in paw-withdrawal latency 

of 36% and 60%, respectively (Dirig and Yaksh, 1995), that lasted hours in rats (Nishiyama 

et al., 2000; Zhang et al., 2005b). Higher doses of i.t. morphine cause motor impairment and 

death (Figure 2.13) (Dirig and Yaksh, 1995; Grant et al., 1995; Nishiyama et al., 2000). 

Although high doses of A1R agonists also cause motor impairment (Figure 2.19) (Sawynok, 
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2007), we found no such side-effects at the highest dose of PAP tested. These comparisons 

reveal that the magnitude of PAP and morphine antinociception is similar; however, PAP 

antinociception lasts substantially longer. In fact, using area under the curve (AUC) 

measurements that integrate magnitude of antinociception over time, the 250 mU dose of S-

hPAP is eight times more effective than the highest dose of morphine tested (Figures 2.10B 

and 2.13B). These long-lasting and A1R-dependent antinociceptive effects of PAP are 

supported by previous studies showing that adenosine produces long-duration (>24 hr) 

analgesia in humans and rodents (Belfrage et al., 1999; Eisenach et al., 2002; Lavand'homme 

and Eisenach, 1999). Finally, we found that PAP antinociception could be transiently 

inhibited with an A1R antagonist (Figure 2.18). This suggests that PAP is stable in spinal 

cord following injection and is capable of producing adenosine for days. Likewise, PAP has a 

very long (11.7 day) half-life in blood (Vihko et al., 1982). 

 

2.4.2) PAP Is an Ectonucleotidase in Nociceptive Circuits 

Nucleotides like ATP and ADP play key roles in pain mechanisms (Burnstock, 2007; 

Sawynok, 2007; Tozaki-Saitoh et al., 2008). Nucleotides are released extracellularly by 

stimulated sensory neurons and activate purinergic P2X and P2Y receptors on neurons and 

microglia. Activation of these receptors facilitates neurotransmission, sensitizes neurons, and 

causes pain. The excitatory effects of extracellular nucleotides can be terminated by several 

membrane-bound and, in some cases, secreted ectonucleotidases. These ectonucleotidases 

dephosphorylate extracellular ATP, ADP, and AMP to adenosine (Zimmermann, 2006). 

While ATP has excitatory effects and causes pain, adenosine has inhibitory effects and 

suppresses pain (Nakagawa et al., 2007; Sawynok, 2007). 
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One or more ectonucleotidases were known to exist in nociceptive circuits (Nagy and 

Daddona, 1985; Scott, 1967; Suran, 1974). Considering the key roles nucleotides and 

adenosine play in pain mechanisms, it is surprising to note that none of these 

ectonucleotidases have been molecularly identified. Using electrophysiological approaches, 

two groups found that application of ATP, ADP, or AMP inhibited postsynaptic neurons in 

the dorsal spinal cord indirectly via metabolic conversion to adenosine (Li and Perl, 1995; 

Salter and Henry, 1985). Likewise, Patterson and colleagues used indwelling microprobes 

and found that adenosine was metabolically generated in vivo when the dorsal spinal cord 

was perfused with AMP (Patterson et al., 2001). Dephosphorylation of AMP to adenosine 

was partially blocked by coperfusion with α,β-methylene-ADP (Patterson et al., 2001), an 

inhibitor of ecto-5′-nucleotidase (CD73). This enzyme has not yet been molecularly 

characterized in DRG neurons or spinal cord. 

Our studies clearly show that PAP is expressed in small-diameter DRG neurons, that 

PAP dephosphorylates AMP to adenosine in vitro, in heterologous cells, in DRG neurons, 

and in lamina II of the spinal cord, and that PAP antinociception requires A1Rs. To our 

knowledge, none of the known ectonucleotidases (Zimmermann, 2006) have been studied at 

this level of detail in nociceptive circuits. Collectively, our studies define PAP as an 

ectonucleotidase in nociceptive circuits. 

 

2.4.3) PAP Is Well Localized to Modulate A1-Adenosine Receptors in Spinal Cord 

Lamina II 

Our data highlight a close functional relationship between PAP and A1Rs. This raises 

the question of where PAP acts to modulate A1Rs and nociceptive behaviors. Within the 
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spinal cord, A1Rs are concentrated in lamina II, particularly on postsynaptic neurons that are 

in close contact with IB4+ axon terminals, but not in close contact with CGRP+ axon 

terminals (Schulte et al., 2003). A1Rs are also found presynaptically in small- to medium-

diameter DRG neurons, and possibly in the axon terminals of these neurons (based on 

accumulation of A1Rs proximal to dorsal root ligature) (Schulte et al., 2003). In addition, 

A1R activation inhibits presynaptic glutamate release primarily from unmyelinated terminals 

and inhibits postsynaptic neurons in the substantia gelatinosa (lamina II) of spinal cord (Lao 

et al., 2001; Li and Perl, 1994; Patel et al., 2001). 

Considering that virtually all PAP+ neurons and axons are IB4+ (Table 2.1) and 

terminate in lamina II (Figure 2.7), this makes PAP well localized to generate extracellular 

adenosine and modulate A1Rs on presynaptic terminals and on postsynaptic neurons in the 

IB4-binding region of lamina II. In addition, PAP (TMPase) is enriched on the presynaptic 

membranes of DRG neurons at the level of electron microscopy (Knyihar-Csillik et al., 1986) 

and has a broad pH optimum (pH 3–8) (Van Etten, 1982), making PAP capable of generating 

adenosine locally at synapses. 

Further support for a central site of action comes from the fact that dephosphorylation 

of extracellular AMP in lamina II is reduced in Pap−/−  mice and PAP is antinociceptive when 

injected intraspinally. Moreover, central injection of PAP can rescue behavioral deficits 

caused by deletion of PAP throughout the animal (Figure 2.14). 

Although our data clearly support a central mechanism of action, we cannot exclude 

the possibility that PAP might also generate adenosine peripherally to mediate 

antinociception. Peripheral administration of adenosine has long-lasting antinociceptive and 

analgesic effects in rodents and humans, just like central administration (Hayashida et al., 
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2005; Sawynok, 2007). We detected PAP on axons in the dermis of the skin; however, our 

antibody was not sensitive enough to detect PAP on axon terminals in epidermis (B.T-B. and 

M.J.Z, unpublished). Moreover, others found that TMPase (PAP) accumulated proximal to a 

ligature of the sural nerve, suggesting that PAP is transported peripherally (McMahon and 

Moore, 1988). 

 

2.4.4) Physiological Function of PAP throughout the Body—Insights from Pain-Sensing 

Neurons 

In prostate, PAP is thought to function as a tumor suppressor. Notably, prostate 

cancer cell growth rate is reduced when secretory S-hPAP (referred to as “cellular” PAP by 

the authors) is overexpressed (Lin et al., 1992; Meng and Lin, 1998; Veeramani et al., 2005). 

Conversely, deletion of PAP (secreted and TM isoforms) in mice leads to prostate 

hyperplasia followed by prostate cancer (P.V. et al., abstract from Proceedings of the AACR, 

2005). The mechanism by which PAP mediates growth suppression is, at present, unclear. 

Correlative data from Lin and colleagues suggests that secretory (“cellular”) PAP regulates 

growth directly by dephosphorylating phosphotyrosine residues in the cytoplasmic tail of 

ErbB2 (Veeramani et al., 2005). This direct mechanism seems unlikely, particularly since the 

cytoplasmic tail of ErbB2 is not accessible to the active site of secretory PAP (which is 

located extracellularly (Figure 2.1A) and in the lumen of vesicles). Instead, PAP could 

indirectly regulate proliferation by generating adenosine. 

In support of this, there are four adenosine receptor subtypes, with A1 and A3 coupled 

to inhibitory Gi-proteins and A2a and A2b coupled to stimulatory Gq and Gs proteins 

(Jacobson and Gao, 2006). PAP could differentially modulate intracellular signaling 
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depending upon which adenosine receptor subtypes are expressed by cells. Notably, A3-

adenosine receptors are found on prostate cancer cells and A3-agonists inhibit the growth of 

these cells (Fishman et al., 2003). 

Adenosine regulates many other physiological processes besides pain and cancer, 

including anxiety, inflammation, blood pressure, pulmonary function, and renal function 

(Jacobson and Gao, 2006). TM-PAP is expressed throughout the body (Quintero et al., 2007). 

As such, TM-PAP could regulate diverse physiological processes that are dependent on 

adenosine. Finally, our study overturns the long-held belief that PAP is a generic “acid 

phosphatase” by discovering a specific in vivo function for PAP as an ectonucleotidase. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 



78 
 

2.5) Figures and Tables 

 

 
 
Figure 2.1.  DRG neurons express the transmembrane isoform of PAP.  (A) Secreted and 

transmembrane isoforms of PAP.  Both isoforms have identical N-terminal regions, including 

the signal peptide (SP) and extracellular catalytic acid phosphatase domain.  Alternative 

splicing at the last intron-exon junction (arrow) results in the inclusion or exclusion of a 

transmembrane (TM) domain.  (B, C) In situ hybridization of mouse lumbar DRG with 

riboprobes complimentary to the unique 3’ untranslated regions of (B) the transmembrane 

isoform or (C) the secreted isoform.  Scale bar: 50 µm in (B), (C).  (Back to text) 
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Figure 2.2.  PAP dephosphorylates TMP in HEK 293 cells and nociceptive circuits.  (A) 

HEK 293 cells were transfected with a mouse TM-PAP expression construct or (B) with 

empty pcDNA3.1 vector and then stained using TMP histochemistry.  The plasma membrane 

was not permeabilized so that extracellular acid phosphatase activity could be assayed. (C-D) 

Lumbar DRG and (E-F) spinal cord from wild-type and Pap-/- adult mice stained using TMP 

histochemistry.  Identical results were obtained from 14 additional mice of each genotype.  

TMP (6 mM) was used as substrate and buffer pH was 5.6 in all panels.  Scale bar: 50 µm in 

(A-D); 500 µm in (E), (F).  (Back to text) 



80 
 

 

 

Figure 2.3.  TM-PAP is the only phosphatase tested with TMPase activity. HEK 293 

cells were transfected with full-length expression constructs for (A, E) GFP, (B, F) mouse 

soluble acid phosphatase 1 (ACP1), (C, G) human placental alkaline phosphatase (PLAP) 

or (D, H) mouse TM-PAP. The plasma membrane (A-D) was left intact (-TX) or (E-H) was 

permeabilized with the detergent Triton X-100 (+TX). Extracellular phosphatase activity is 

detectable in the absence of detergent whereas extracellular and intracellular phosphatase 

activity is detectable when cells are treated with detergent. The image in panel D was also 

shown in Figure 2.2A. All samples were stained using TMP histochemistry (6 mM TMP, pH 

5.6). Scale bar: 50 µm in A-H.  (Back to text) 
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Figure 2.4.  Axon terminals are anatomically normal in Pap-/- mice. Lumbar spinal cord 

sections from (A) wild-type and (B) Pap-/- mice were stained with antibodies to CGRP (to 

mark peptidergic nerve endings), isolectin B4 (IB4, to mark nonpeptidergic nerve endings) 

and antibodies to protein kinase C-γ (PKCγ, to mark interneurons in laminas IIinner and III). 

Confocal image analysis revealed no gross anatomical differences between genotypes (n=2 

mice from each genotype). Scale bar: 150 µm.  (Back to text) 

 

 

Pap-/- Wild-type 
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Figure 2.5.  TMP histochemical activity and PAP protein are co-localized in mouse 

DRG neurons and on axon terminals in lamina II of the spinal cord.  (A-C) Lumbar 

DRG and (D-F) spinal cord were immunostained with (A, D) PAP antibodies and imaged by 

confocal microscopy. (B) An adjacent section was then processed for TMP histochemistry 

and counterstained with cresyl violet. (E) The same section depicted in (D) was processed for 

TMP histochemistry. (C, F) Merged images. Arrowheads mark examples of double-labeled 

neurons. Arrow marks Lamina II. Scale bar: 50 µm in (A-C); 200 µm in (D-F).  (Back to 

text) 
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Figure 2.6.  PAP is primarily expressed in nonpeptidergic neurons.  (A-O) Mouse L4-L6 

DRG neurons were stained with antibodies against various sensory neuron markers (green) 

and with antibodies against PAP (red).  Tissue from adult Mrgprd∆EGFPf mice was used to 

identify Mrgprd-expressing neurons.  Arrowheads mark examples of double-labeled cells.  

Images were acquired by confocal microscopy.  Scale bar (bottom right panel): 50 µm for all 

panels.  (Back to text) 
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Figure 2.7.  PAP protein is localized to nonpeptidergic axon terminals in lamina II of 

the mouse spinal cord. Lumbar spinal cord sections were double-labeled with antibodies 

against selected axonal markers (A, D, G; green) and PAP (B, E, H; red). IB4 and 

Mrgprd∆EGFPf  mark nonpeptidergic endings. CGRP marks peptidergic endings.  Images were 

acquired by confocal microscopy. Scale bar: 150 µm for all panels.  (Back to text) 
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Figure 2.8  Pap-/- mice show enhanced nociceptive responses following inflammation 

and nerve injury.  (A, B) CFA inflammatory pain model.  Wild-type and Pap-/- mice were 

tested for (A) thermal sensitivity using a radiant heat source and (B) mechanical sensitivity 

using an electronic von Frey semi-flexible tip before (baseline, BL) and following injection 

of CFA (CFA-arrow) into one hindpaw.  The non-inflamed hindpaw served as control.  (C, 

D) SNI neuropathic pain model.  The sural and common peroneal branches of the sciatic 

nerve were ligated then transected (Injure-arrow).  Injured and non-injured (control) 

hindpaws were tested for (C) thermal and (D) mechanical sensitivity.  (A-D) Paired t-tests 

were used to compare responses at each time point between wild-type (n=10) and Pap-/- mice 

(n=10); same paw comparisons.  * P < 0.05; ** P < 0.005; *** P < 0.0005.  All data are 

presented as means ± s.e.m.  (Back to text) 



86 
 

 

Figure 2.9.  S-hPAP protein has long-lasting analgesic and antinociceptive effects when 

injected intraspinally.  (A, B) Wild-type mice were tested for (A) thermal and (B) 

mechanical sensitivity before (baseline, BL) and following i.t. injection of active or inactive 

S-hPAP (hPAP-arrow).  (C, D) CFA inflammatory pain model.  CFA was injected into one 

hindpaw (CFA-arrow).  Active or inactive S-hPAP was i.t. injected one day later (hPAP-

arrow).  Inflamed and non-inflamed (control) hindpaws were tested for (C) thermal and (D) 
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mechanical sensitivity.  (E, F) SNI neuropathic pain model.  The sural and common peroneal 

branches of the sciatic nerve were ligated then transected (Injure-arrow).  Active or inactive 

S-hPAP was i.t. injected six days later (hPAP-arrow).  Injured and non-injured (control) 

hindpaws were tested for (E) thermal and (F) mechanical sensitivity.  (A-F) 250 mU S-hPAP 

injected per mouse.  Paired t-tests were used to compare responses at each time point 

between mice injected with active hPAP (n=10 mice per experiment) to mice injected with 

heat-inactivated hPAP (n=10 mice per experiment); same paw comparisons.  * P < 0.05; ** 

P < 0.005; *** P < 0.0005. All data are presented as means ± s.e.m.  (Back to text) 
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Figure 2.10.  Dose-dependent anti-nociceptive effects of intrathecal S-hPAP. (A) Effects 

of injecting (i.t.) inactive S-hPAP or increasing amounts of active S-hPAP (hPAP-arrow) on 

paw withdrawal latency to the radiant heat source. (B) The same data plotted as area under 

the curve [AUC; units are in Latency (s) x Time post injection (h); integrated over 72 h (3 

days) post injection] relative to mice injected with inactive PAP. (B-Inset) Plotted on log 

scale. (C) Data from the two day time points plotted as percent maximal increase in paw 

withdrawal latency relative to baseline (BL). (C-Inset) Plotted on log scale. (A-C) Injection 
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(i.t.) volume was 5 µL. n=8 wild-type mice were used for the 0.25 mU, 2.5 mU and 25 mU 

amounts. n=24-74 wild-type mice were used for the inactive S-hPAP and 250 mU amounts; 

this reflects pooled data from many of the wild-type mice used during the course of this 

study. All data are presented as means ± s.e.m.  Curves were generated by non-linear 

regression analysis using Prism 5.0 (GraphPad Software, Inc). Significant differences are 

shown relative to baseline (paired t-tests); * P < 0.05; ** P < 0.005; *** P < 0.0005. All data 

are presented as means ± s.e.m.  (Back to text) 
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Figure 2.11.  Bovine (b)PAP has anti-nociceptive effects on noxious thermal sensitivity, 

but not mechanical sensitivity, when injected intrathecally into lumbar spinal cord. (A, 

B) Wild-type mice were tested for (A) thermal and (B) mechanical sensitivity before 

(baseline, BL) and following i.t. injection of active bPAP (0.3 U/mL; 1.3 mg/mL) or bovine 

serum albumin (BSA, 1.3 mg/mL); (arrow). Paired t-tests were used to compare responses at 

each time point between mice injected with bPAP (n=10 mice) to mice injected with BSA 

(n=10 mice). Significant differences are shown; * P < 0.05; ** P < 0.005; *** P < 0.0005. 

All data are presented as means ± s.e.m.  (Back to text) 
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Figure 2.12.  Bovine alkaline phosphatase (ALP) has no effect on noxious thermal or 

mechanical sensitivity when injected intrathecally into lumbar spinal cord.   

Wildtype mice (n=9) were tested for (A) thermal and (B) mechanical sensitivity before 

(baseline, BL) and following i.t. injection of recombinant ALP (5000 U/mL; 25,000 mU 

total); (arrow). Note that the unit definition for PAP and ALP is essentially the same (1 U 

will hydrolyze 1 µmole of 4-nitrophenyl phosphate per minute at 37°C at pH 4.8 or pH 9.8, 

respectively). Thus, 25,000 mU ALP has 100x more phosphatase activity than the 250 mU S-

hPAP we used throughout this study. Paired t-tests were used to compare responses at each 

time point to baseline values. There were no significant differences at any of the time points 

in these assays. All data are presented as means ± s.e.m. (some of the error bars are obscured 

due to their small size). We tested a lower concentration of ALP (250 mU, i.t.) and found that 

it also did not reduce thermal or mechanical sensitivity (data not shown).  (Back to text) 
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Figure 2.13.  Dose-dependent anti-nociceptive effects of intrathecal morphine. Effects 

of injecting (i.t.) vehicle or increasing doses of morphine sulfate (Morphine/V-arrow) on 

paw withdrawal latency to the radiant heat source. We observed side-effects at the two 

highest doses [10 µg dose: three mice were paralyzed and displayed a Straub tail lasting 

3-5 h. 50 µg dose: two mice died while three other mice were paralyzed and displayed a 

Straub tail lasting 1-2 h. Straub tail is visualized as a stiff tail held above horizontal.  High 

doses of i.t. morphine are known to cause motor impairment and lethality (Dirig and Yaksh, 

1995; Grant et al., 1995; Nishiyama et al., 2000). (B) The same data plotted as area under the 

curve [AUC; units are in Latency (s) x Time post injection (h); integrated over entire time 
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course] relative to mice injected with vehicle. (B-Inset) Plotted on log scale. (C) Data from 

the 1 h time points plotted as percent maximal increase in paw withdrawal latency relative to 

baseline (BL). (C-Inset) Plotted on log scale. (A-C) Injection (i.t.) volume was 5 µL. n=8 

wild-type mice were used per dose. Curves were generated by non-linear regression analysis 

using Prism 5.0 (GraphPad Software, Inc). Significant differences are shown relative to 

baseline (paired t-tests); * P < 0.05; ** P < 0.005; *** P < 0.0005. All data are presented as 

means ± s.e.m.  (Back to text)
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Figure 2.14.  Intraspinal PAP has anti-nociceptive effects in Pap-/- mice and rescues the 

chronic inflammatory pain behavioral phenotype in Pap-/- mice. Wild-type and Pap- /- 

mice were tested for (A) thermal sensitivity and (B) mechanical sensitivity before (baseline, 

BL) and following injection of CFA (CFA-arrow) into one hindpaw. The noninflamed 

hindpaw served as control. One day later, half of the wild-type and Pap-/- mice were injected 

with active S-hPAP (hPAP-arrow; 250 mU, i.t.; red and blue lines) while the other half were 

injected with inactive S-hPAP (black lines). Note: Data from these inactive S-hPAP injected 

mice were presented in Figure 2.8A, B. Paired t-tests were used to compare responses at each 

time point between wild-type (n=10/group) and Pap-/- mice (n=10/group); same paw 

comparisons (n=40 mice were used for this experiment). * P < 0.05; ** P < 0.005; *** P < 

0.0005. All data are presented as means ± s.e.m.  (Back to text)



95 
 

 

 

Figure 2.15.  PAP has ecto-5’-nucleotidase activity as revealed by dephosphorylation of 

AMP to adenosine in vitro, in cells and in nociceptive circuits. (A) S-hPAP (2.5 U/mL) 

was incubated with 1 mM AMP, ADP, or ATP at pH 7.0. Reactions (n=3 per time point) 

were stopped by heat denaturation at the indicated times. Conversion of nucleotides to 

adenosine was measured by HPLC. (B) HPLC chromatogram before (t=0) and after (t=240 

min) incubation of 1 mM AMP with S-hPAP. Peaks corresponding to adenosine (ado) and 

AMP are indicated. Arbitrary units (a.u.). (C) HEK 293 cells were transfected with a mouse 

TM-PAP expression construct or (D) with empty pcDNA3.1 vector and then stained using 

AMP histochemistry. The plasma membrane was not permeabilized, so that extracellular 

Pap-/- Wild-type 
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phosphatase activity could be assayed. (E-F) Lumbar DRG and (G-H) spinal cord from wild-

type and Pap-/- adult mice stained using AMP histochemistry.  Motor neurons in the ventral 

horn of wild type and Pap-/- spinal cord were also stained.  Identical results were obtained 

from five additional mice of each genotype. AMP (6 mM in (C), (D) and 0.3 mM in E-H) 

was used as substrate and buffer pH was 5.6. Scale bar: 5 µm in (C-F); 500 µm in (G), (H).  

(Back to text)
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Figure 2. 16.  PAP requires A1-adenosine receptors for anti-nociception. (A, B) Wildtype 

and A1R-/- mice were tested for (A) thermal and (B) mechanical sensitivity before (baseline, 

BL) and following i.t. injection of S-hPAP (hPAP-arrow). (C, D) CFA was injected into one 

hindpaw (CFA-arrow) of wild-type and A1R-/- mice. Active or inactive S-hPAP was i.t. 

injected one day later (hPAP-arrow). Inflamed and non-inflamed (control) hindpaws were 
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tested for (C) thermal and (D) mechanical sensitivity. (E, F) The SNI model was used to 

induce neuropathic pain (Injure-arrow) in wild-type and A1R-/- mice.  Active or inactive S-

hPAP was i.t. injected four days later (hPAP-arrow). Injured and noninjured (control) 

hindpaws were tested for (E) thermal and (F) mechanical sensitivity.  For all experiments, 

250 mU hPAP was injected per mouse. T-tests were used to compare responses at each time 

point between wild-type (n=10) and A1R-/- mice (n=9); same paw comparisons. * P < 0.05; ** 

P < 0.005; *** P < 0.0005. All data are presented as means ± s.e.m.  (Back to text) 
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Figure 2.17.  A1-adenosine receptors are required for bovine (b)PAP anti-nociception. 

Wild-type mice (n=7) and A1R-/- mice (n=7) were tested for (A) thermal and (B) mechanical 

sensitivity before (baseline, BL) and following i.t. injection of active bPAP (0.3 U/mL); 

(arrow). Paired t-tests were used to compare responses at each time point between wild-type 

and knockout mice. Significant differences are shown; * P < 0.05; ** P < 0.005; *** P < 

0.0005. All data are presented as means ± s.e.m.  (Back to text) 
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Figure 2.18.  The anti-nociceptive effects of PAP can be transiently inhibited with a 

selective A1R antagonist. Wild-type mice were tested for (A) noxious thermal and (B) 

mechanical sensitivity before (baseline, BL) and following injection of CFA (CFA arrow) 

into one hindpaw. The non-inflamed hindpaw served as control. All mice were injected with 

active S-hPAP (hPAP-arrow; 250 mU, i.t.). Two days later, half the mice were injected with 

vehicle (CPX/V-arrow, circles; intraperitoneal (i.p.); 1 h before behavioral measurements) 

while the other half were injected with 8-cyclopentyl-1, 3- dipropylxanthine (CPX/V-arrow, 

squares; 1 mg/kg i.p.; 1 h before behavioral measurements). CPX transiently antagonized all 

anti-nociceptive effects of S-hPAP. In contrast, CPX did not affect thermal or mechanical 

sensitivity when injected on day 9 – four days after the anti-nociceptive effects of S-hPAP 

wore off. These experiments highlight a selective effect of CPX on S-hPAP anti-nociception 

and further demonstrate that PAP suppresses pain via adenosine production and A1R 

activation. Paired t-tests were used to compare responses at each time point between vehicle 

(n=10) and CPX-injected mice (n=10); same paw comparisons. *** P < 0.0005. All data are 

presented as means ± s.e.m.  (Back to text) 



101 
 

 

Figure 2.19.  Dose-dependent anti-nociceptive effects of intrathecal N6-

cyclopentyladenosine (CPA), a selective A1-adenosine receptor agonist. Effects of 

injecting (i.t.) vehicle or increasing doses of CPA (CPA/V-arrow) on paw withdrawal latency 

to the radiant heat source. Almost all mice injected with the two highest doses of CPA 

reached the cutoff of 20 s because of fore- and hindlimb paralysis lasting one hour (boxed 

region). High doses of adenosine receptor agonists are known to cause motorparalysis 

(Sawynok, 2006). (B) The same data plotted as area under the curve [AUC; units are in 

Latency (s) x Time post injection (h); integrated over entire time course] relative to mice 

injected with vehicle. (B-Inset) Plotted on log scale. (C) Data from the 1 h time points plotted 
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as percent maximal increase in paw withdrawal latency relative to baseline (BL). (C-Inset) 

Plotted on log scale. (A-C) Injection (i.t.) volume was 5 µL.  n=8 wild-type mice were used 

per dose. All data are presented as means ± s.e.m. Curves were generated by non-linear 

regression analysis using Prism 5.0 (GraphPad Software, Inc). Significant differences are 

shown relative to baseline (paired t-tests); * P < 0.05; ** P < 0.005; *** P < 0.0005. All data 

are presented as means ± s.e.m.  (Back to text)
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Table 2.1.  Quantitative analysis of PAP and sensory neuron marker co-localization 
within  wild-type adult mouse L4-L6 DRG neurons.  

 
 

Marker 

 
Percentage of PAP+ 
neurons expressing 
indicated marker 

 

 
Percentage of marker+ 

neurons expressing 
PAP 

 
 

IB4 
 

 70.6 ± 3.8 
 

91.6 ± 2.8 
 

Mrgprd-EGFPf 
  

66.2 ± 3.2 
 

99.2 ± 0.8 
 

P2X3 
 

84.5 ± 6.1 
 

92.6 ± 3.1 
 

TRPV1 
 

19.1 ± 1.3 
 

14.4 ± 1.3 
 

CGRP 
 

16.9 ± 3.9 
 

17.1 ± 3.2 
 

At least 350 cells were counted per combination.  Data are expressed as 
means ± s.e.m.   
(Back to text) 
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Table 2.2.  Acute mechanical and thermal sensitivity are normal in Pap-/- mice. 
 
Behavioral Assay 
 

 
Wild-type 

 
Pap-/- 

  
Withdrawal threshold: 

 
Electronic von Frey 

 
7.2 ± 0.4 g  

 
7.8 ± 0.5 g 
 

 Withdrawal latency: 
 
Radiant heating of hindpaw 
(Hargreaves Method) 

 
9.1 ± 0.7 s  

 
9.9 ± 0.9 s 

 
Tail immersion at 46.5°C 
 

 
18.4 ± 2.8 s 

 
16.4 ± 1.6 s 

 
Tail immersion at 49.0°C 
 

 
9.9 ± 0.7 s 

 
9.8 ± 0.9 s 

 
Hot plate at 52°C 
 

 
20.0 ± 1.1 s 

 
19.3 ± 1.3 s 

Data are expressed as means ± s.e.m.  No significant differences 
between genotypes in any of the listed behavioral assays, paired t-
test, P>0.05.  n=10 male mice tested per genotype for all assays 
except hotplate and tail immersion at 49°C.  For these latter two 
assays, n=14 mice (8 females, 6 males) were tested per genotype. 

  (Back to text) 
 

 



CHAPTER 3 
 

Recombinant Mouse PAP has pH-Dependent Ectonucleotidase Activity and Acts 
through A1-adenosine Receptors to Mediate Antinociception 

 
ABSTRACT: Prostatic acid phosphatase (PAP) is expressed in nociceptive neurons and 

functions as an ectonucleotidase.  When injected intraspinally, the secretory isoform of 

human and bovine PAP protein have potent and long-lasting antinociceptive effects that are 

dependent on A1-adenosine receptor (A1R) activation.  In this study, we purified the 

secretory isoform of mouse (m)PAP using the baculovirus expression system to determine if 

recombinant mPAP also had antinociceptive properties.  We found that mPAP 

dephosphorylated AMP, and to a much lesser extent, ADP at neutral pH (pH 7.0).  In 

contrast, mPAP dephosphorylated all purine nucleotides (AMP, ADP, ATP) at an acidic pH 

(pH 5.6).  The transmembrane isoform of mPAP had similar pH-dependent ectonucleotidase 

activity.  A single intraspinal injection of mPAP protein had long-lasting (three day) 

antinociceptive properties, including antihyperalgesic and antiallodynic effects in the 

Complete Freund’s Adjuvant (CFA) inflammatory pain model.  These antinociceptive effects 

were transiently blocked by the A1R antagonist 8-cyclopentyl-1, 3-dipropylxanthine (CPX), 

suggesting mPAP dephosphorylates nucleotides to adenosine to mediate antinociception just 

like human and bovine PAP.  These studies indicate that PAP has species-conserved 

antinociceptive effects and has pH-dependent ectonucleotidase activity.  The ability to 

metabolize nucleotides in a pH-dependent manner could be relevant to conditions like 
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inflammation where tissue acidosis and nucleotide release occur.  Lastly, our studies 

demonstrate that recombinant PAP protein can be used to treat chronic pain in animal 

models. 

 

 

 
This work was previously published: Sowa, N.A., Vadakkan, K.I., and Zylka, M.J. (2009).  
PLoS ONE 4, e4248. 
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3.1) Introduction 

Small-diameter dorsal root ganglia (DRG) neurons contain a classic, histochemically-

defined enzyme known as Fluoride-Resistant Acid Phosphatase (FRAP) or Thiamine 

Monophosphatase (TMPase) (Csillik and Knyihar-Csillik, 1986; Dodd et al., 1983).  

Recently, we found that TMPase was molecularly equivalent to Prostatic Acid Phosphatase 

(PAP, also known as ACPP) (Zylka et al., 2008).  In mammals, PAP is expressed as a 

secreted protein or as a transmembrane protein (Quintero et al., 2007; Roiko et al., 1990; 

Vihko, 1979).  These isoforms have identical N-terminal regions, including a signal peptide 

and extracellular acid phosphatase domain, but differ at the C-terminus due to the inclusion 

or exclusion of a transmembrane domain.  Using in situ hybridization with isoform-specific 

riboprobes, we found that small-diameter DRG neurons primarily express the transmembrane 

isoform of PAP (Zylka et al., 2008).  Moreover, using immunohistochemistry, we found that 

PAP protein is localized to a majority of all nonpeptidergic nociceptive neurons, a subset of 

peptidergic nociceptive neurons and to axon terminals located in lamina II of the dorsal 

spinal cord (Zylka et al., 2008). 

We also found that PAP functions in nociceptive circuits as an ectonucleotidase by 

dephosphorylating adenosine monophosphate (AMP) to adenosine (Zylka et al., 2008).  This 

was based on our observation that intrathecal injection of human (S-h)PAP protein (the 

secreted isoform) produced long-lasting antinociceptive, antihyperalgesic and antiallodynic 

effects that were dependent on A1-adenosine receptor (A1R) activation (Zylka et al., 2008).  

These antinociceptive effects were eight-times more effective than the commonly used 

analgesic morphine.  When injected intrathecally, bovine (b)PAP also had long-lasting 

antinociceptive effects that were dependent on A1R activation.  Conversely, PAP knockout 



108 
 

(Pap-/-) mice showed enhanced sensitivity in animal models of chronic inflammatory pain 

and neuropathic pain (Zylka et al., 2008), a phenotype that was similar to A1R
-/- mice (Wu et 

al., 2005).  Lastly, dephosphorylation of extracellular AMP was greatly reduced in small-

diameter DRG neurons and dorsal spinal cord of Pap-/- mice. 

For our initial study, we used secretory isoforms of PAP that were purified from 

human seminal fluid and from bovine prostate (Zylka et al., 2008).  The secretory isoforms of 

human, bovine and mouse PAP are ~80% identical to one another at the amino acid level 

(based on pairwise sequence comparisons), suggesting they might have similar 

antinociceptive effects in vivo.  At the time we performed our initial studies, we were unable 

to test mPAP protein for antinociceptive effects because there were no commercially 

available sources of pure mPAP protein.  Moreover, without pure protein, we could not 

determine the substrate specificity for secretory mPAP.  To overcome these limitations, we 

synthesized and purified recombinant mPAP protein (secretory isoform).  Strategies for 

generating recombinant human and rat PAP protein were previously described (Ostanin et al., 

1994; Vihko et al., 1993).  At neutral pH, mPAP primarily dephosphorylated AMP.  In 

addition, we found that mPAP could dephosphorylate all purine nucleotides (AMP, ADP, 

ATP) under acidic pH conditions.  This suggested a broader function for PAP in nucleotide 

metabolism and has implications in inflammatory pain conditions where extracellular pH is 

reduced.   

Recombinant proteins can be produced in large quantities, purified for use in humans 

(Burch et al., 2000; Dorr, 1993; Zucchini, 2008) and are not likely to be contaminated with 

human pathogens.  Thus, the approaches outlined in this study could be used to purify and 

test recombinant mouse or human PAP as a treatment for chronic pain in humans. 
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3.2) Materials and Methods 

3.2.1) Molecular Biology and Protein Purification 

The mPAP-Tr-(His)6 baculovirus expression clone (encompassing nt 61-1206 from 

GenBank accession # NM_019807) was generated by PCR amplification, using a full-length 

expression construct of mPAP (secreted isoform) as template and Phusion polymerase.  PCR 

products were cloned into pFastBac1 (Invitrogen) and completely sequenced.  Primer 

sequences contained XbaI sites (underlined) to facilitate cloning (N-terminal primer: 5’-

cgctctagaaccatgcgagccgttcctctgc.  C-terminal thrombin-(His)6 tag primer:  5’-

gcgtctagattaatgatgatgatgatgatgggagccacgcggaaccagattccgtccttggtggctgc).  There are no 

thrombin cleavage sites in the mPAP protein except for the cleavage site we introduced.  This 

vector was then used to generate recombinant mPAP protein using the Bac-to-Bac 

Baculovirus Expression System (Invitrogen).  Briefly, we infected Hi5 insect cells with high-

titer recombinant baculovirus, incubated the cells for 48 hours at 27°C, then harvested and 

concentrated the supernatant containing secreted mPAP protein.  Then, mPAP protein was 

purified from the concentrated supernatant using Ni-NTA HisTrap agarose (GE Healthcare 

Life Sciences) affinity chromatography and imidazole as eluant.  Lastly, mPAP protein was 

dialyzed against PBS to remove imidazole.  Protein purity was confirmed by SDS-PAGE, 

staining for total protein with GelCode Blue (Pierce/Thermo Scientific, Cat. # 24590) and 

western blotting with Penta-His antibody (Qiagen, Cat. # 34660).  Amersham full-range 

rainbow molecular weight markers (GE Healthcare) were used for SDS-PAGE and 

MagicMark XP markers (Invitrogen, Cat. # LC5602) were used for western blots.  This 

purification strategy is based on the observation that recombinant rat PAP is secreted into the 
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medium of baculovirus-infected insect cells (Vihko et al., 1993).  Recombinant mPAP was 

kept at 4°C for short-term (1-2 months) use and at -80°C for long-term storage. 

 

3.2.2) Enzyme Assays 

 Enzymatic reactions (50 µL final) were carried out with recombinant mPAP at 37°C 

for 3 minutes in 10 mM sodium acetate, pH 5.6 or 10 mM HEPES, pH 7.0 with AMP, ADP 

or ATP as substrate.  Reactions were stopped by adding 950 µL of the malachite green color 

reagent [0.03% (w/v) malachite green oxalate, 0.2% (w/v) sodium molybdate, 0.05% (v/v) 

Triton X-100, dissolved in 0.7 M HCl] then incubating at room temperature for 30 minutes.  

Inorganic phosphate was quantified by measuring OD650 and comparing to an inorganic 

phosphate (KH2PO4) standard curve (Lanzetta et al., 1979). 

Enzyme activity of mPAP was determined using 4-nitrophenyl phosphate as substrate 

following Sigma’s Quality Control Test Procedure for PAP (SSPNPP11, revision 8/29/97).  

Unit (U) definition:  1 U hydrolyzes 1 µmole of 4-nitrophenyl phosphate per minute at 37°C 

at pH 4.8. 

 

3.2.3) Cell Culture and Histochemistry 

HEK 293 cells were cultured and transfected as previously described (Zylka et al., 

2008).  Enzyme histochemistry was performed as previously described (Zylka et al., 2008) 

using 6 mM AMP, ADP, or ATP as substrate and Tris-maleate buffer at pH 5.6 or 7.0. 

 

3.2.4) Behavior 
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All behavioral experiments involving vertebrate animals were approved by the 

Institutional Animal Care and Use Committee at the University of North Carolina at Chapel 

Hill. 

C57BL/6 male mice, 2-4 months old, were purchased from Jackson Laboratories and 

used for all behavioral experiments.  All mice were acclimated to the testing room, 

equipment and experimenter for at least three days before behavioral testing.  The 

experimenter was blind to drug treatment during behavioral testing.   

Thermal sensitivity was measured by heating one hindpaw with a Plantar Test 

apparatus (IITC) following the Hargreaves method (Hargreaves et al., 1988).  The radiant 

heat source intensity (Plantar test apparatus, IITC) was calibrated so that a paw withdrawal 

reflex was evoked in ~10 s., on average, in wild-type C57BL/6 mice.  Cutoff time was 20 s.  

One measurement was taken from each paw per time point to determine paw withdrawal 

latency.  Mechanical sensitivity was measured using semi-flexible tips attached to an 

Electronic von Frey apparatus (IITC) as described elsewhere (Cunha et al., 2004; Inoue et al., 

2004).  Three measurements were taken from each paw (separated at 10 min intervals) then 

averaged to determine paw withdrawal threshold in grams.  To induce inflammatory pain, 20 

µL Complete Freunds Adjuvant (CFA, from MP Biomedicals) was injected into one 

hindpaw, centrally beneath glabrous skin, with a 30G needle.  8-cyclopentyl-1, 3-

dipropylxanthine (C101, Sigma) was dissolved in 0.9% saline containing 5% DMSO, 1.25% 

1 M NaOH for i.p. injection.  Sedation and motor dysfunction were assessed by visually 

observing motor activity following injections.  None of the mPAP-injected mice displayed 

reduced mobility or paralysis following injection.   
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3.2.5) Intrathecal Injections 

We used concentrated mPAP protein (in PBS; 1.1 mg/mL; 400 U/mL) or diluted 

mPAP (in 0.9% saline) for injections.  mPAP was heat-inactivated by incubating at 65ºC for 

40 min.  Loss of activity was confirmed using the EnzChek Phosphatase Assay Kit 

(Invitrogen, E12020) following the manufacturer’s protocol.  Active or heat-inactivated 

mPAP was intrathecally injected (5 µL) into unanesthetized mice using the direct lumbar 

puncture method (Fairbanks, 2003). 

 

3.3) Results 

3.3.1) Purification of Recombinant mPAP using the Baculovirus Expression System 

Large quantities of recombinant human or rat PAP (secretory isoform) can be 

generated in yeast or baculovirus expression systems (Ostanin et al., 1994; Vihko et al., 

1993).  We generated a baculovirus expression construct containing the entire open-reading 

frame of secretory mPAP, encompassing the signal peptide (SP) and catalytic domain fused 

to a C-terminal thrombin-hexahistidine (Tr-H6) epitope tag (Figure 3.1A, 3.1B).  Although 

the thrombin cleavage site can be used to efficiently remove the epitope tag (Figure 3.1B, 

data not shown), we performed our studies below with recombinant mPAP-Tr-H6 (henceforth 

referred to as mPAP) containing the C-terminal epitope tag because removal of the tag 

required additional purification steps and did not impact enzyme activity.  

We detected large quantities of mPAP protein in the tissue culture supernatant of Hi5 

insect cells two days after infection with recombinant baculovirus.  We purified mPAP from 

the supernatant in one step, using nickel chelate affinity chromatography.  We confirmed 

protein purity by running mPAP on an SDS-PAGE gel and staining for total protein (Figure 
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3.1C) and western blotting (Figure 3.1D).  In both cases, we observed one predominant band 

at ~45 kDa, corresponding to the calculated molecular weight of monomeric mPAP (45.2 

kDa).  The weakly stained ~90 kDa band on our overloaded western blot likely reflects a 

small amount of non-denatured mPAP, consistent with the fact that native PAP is a dimer 

(Ostrowski and Kuciel, 1994; Schneider et al., 1993).  No additional bands were observed, 

indicating that mPAP protein was pure and largely intact.  This purified, recombinant mPAP 

protein effectively dephosphorylated the generic acid phosphatase substrates para-

nitrophenyl phosphate (p-NPP) and 6,8-difluoro-4-methylumbelliferyl phosphate (DiFMUP) 

and was inhibited by the acid phosphatase inhibitor L-(+)-tartrate (IC50=1.45 mM; Figure 

3.2).  Recombinant human and rat PAP are similarly inhibited by L-(+)-tartrate (Ostanin et 

al., 1994; Porvari et al., 1994; Vihko et al., 1993). 

 

3.3.2) Recombinant mPAP Dephosphorylates Purine Nucleotides in a pH-dependent 

Manner 

 We previously found that S-hPAP (secreted isoform) generated adenosine by 

dephosphorylating AMP and, to a much lesser extent, ADP at neutral pH (Zylka et al., 2008).  

To determine if secretory mPAP had similar substrate specificity and to evaluate pH 

dependence, we incubated mPAP with AMP, ADP or ATP at pH 7.0 or pH 5.6, then detected 

inorganic phosphate using the malachite green assay.  We found that mPAP 

dephosphorylated AMP and, to a lesser extent, ADP at neutral pH (Figure 3.3A), consistent 

with our previous findings using hPAP (Zylka et al., 2008).  At pH 5.6, mPAP 

dephosphorylated AMP and ADP, and to a lesser extent, ATP (Figure 3.3B).  This latter 

finding was consistent with a previous study showing that secretory hPAP could 
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dephosphorylate all nucleotides under acidic conditions with a rank order AMP > ADP > 

ATP (Vihko, 1978). 

We previously found that the transmembrane isoform of mouse PAP (TM-PAP) 

could dephosphorylate extracellular AMP at pH 5.6 using enzyme histochemistry, indicating 

that PAP had ectonucleotidase activity (Zylka et al., 2008).  At the time, we did not test 

hydrolysis at neutral pH or hydrolysis of other nucleotides.  To determine if TM-PAP could 

dephosphorylate additional nucleotides extracellularly, and if dephosphorylation was pH 

dependent, we transfected mouse TM-PAP into HEK 293 cells and stained non-

permeabilized cells using enzyme histochemistry.  Use of non-permeabilized cells allowed us 

to measure extracellular nucleotide hydrolysis in a cellular context.  At pH 7.0, TM-PAP 

transfected cells were heavily stained using AMP as substrate and much less intensely 

stained using ADP as substrate (Figure 3.4A-C).  At pH 5.6, TM-PAP transfected cells were 

heavily stained using AMP and moderately stained using ADP as substrate (Figure 3.4D-F).  

Control cells transfected with the fluorescent protein Venus were not intensely stained under 

any of the conditions examined (Figure 3.4G-L).  When taken together, these data suggest 

TM-PAP has pH-dependent ectonucleotidase activity, with AMP being the preferred 

substrate at neutral pH and AMP and ADP being substrates at acidic pH.  Moreover, these 

data suggest PAP could generate adenosine following hydrolysis of AMP, ADP or ATP 

under acidic pH conditions (Zylka et al., 2008). 

    

3.3.3) Recombinant mPAP has Long-lasting Antinociceptive Properties 

A single intrathecal injection of S-hPAP protein has antinociceptive, antihyperalgesic 

and antiallodynic effects that last for three days (Zylka et al., 2008).  To determine if mPAP 
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also had long-lasting antinociceptive effects, we intrathecally (i.t.) injected wild-type mice 

with two doses of recombinant mPAP protein (Figure 3.5).  Control mice were injected i.t. 

with heat-denatured, and hence phosphatase-inactive, mPAP.  We then measured noxious 

thermal and mechanical sensitivity before (baseline, BL) and after mPAP injections.  Six 

hours after i.t. injection, paw withdrawal latency to the noxious thermal stimulus was 

significantly increased relative to controls and remained elevated for three days (Figure 

3.5A).  This antinociceptive effect was dose-dependent and required catalytic activity, as 

evidenced by loss of antinociception upon heat-inactivation of mPAP (Figure 3.5A).  Active 

mPAP did not alter mechanical sensitivity (Figure 3.5B) nor did it cause paralysis or 

sedation. 

We next tested mPAP for antihyperalgesic and antiallodynic effects using the CFA 

inflammatory pain model.  To do this, we injected CFA into one hindpaw to induce 

inflammation and used the non-inflamed paw as a control.  Intrathecal injection of mPAP 

produced a significant increase in withdrawal latency to the noxious thermal stimulus 

(relative to latency on Day 1, pre-injection) in the inflamed paw (Figure 3.6A, white open 

circles).  This antihyperalgesic effect persisted for three days.  mPAP also caused a 

significant increase in paw withdrawal latency in the non-inflamed paw (Figure 3.6A, grey 

open circles, relative to day 1 values), reproducing results presented in Figure 3.5A.  In 

addition, mPAP produced a significant increase in withdrawal threshold to the mechanical 

stimulus (relative to latency on Day 1, pre-injection) only in the inflamed paw (Figure 3.6B, 

white open circles).  This antiallodynic effect lasted for three days. 

 

3.3.4) mPAP acts through A1Rs to Mediate Antinociception 
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The antinociceptive, antihyperalgesic and antiallodynic effects of S-hPAP are 

dependent on A1R activation (Zylka et al., 2008).  Since our biochemical experiments 

suggested that mPAP could generate adenosine by dephosphorylating nucleotides, we next 

evaluated whether mPAP had antinociceptive properties that were dependent on A1R 

activation.  To do this, we injected a second group of CFA-inflamed mice with the selective 

A1R antagonist 8-cyclopentyl-1, 3-dipropylxanthine (CPX; 1 mg/kg i.p.).  CPX transiently 

antagonized all antinociceptive effects of mPAP, including the antihyperalgesic (Figure 

3.6A) and antiallodynic (Figure 3.6B) effects.  This same i.p. dose of CPX did not affect 

thermal or mechanical sensitivity in the control or CFA-inflamed paw once the 

antinociceptive effects of PAP wore off (see Figure S10 in (Zylka et al., 2008)).  Taken 

together, these data suggest that the antinociceptive effects of mPAP were due to 

ectonucleotidase-dependent generation of adenosine followed by activation of A1Rs.  

 

3.4) Discussion 

We previously found that PAP was expressed in nociceptive neurons and functioned 

as an ectonucleotidase by dephosphorylating AMP to adenosine.  Moreover, PAP had 

antinociceptive properties that were dependent on A1R activation (Zylka et al., 2008).  At the 

time, we could not perform in vivo gain-of-function studies with mPAP because there were 

no commercially available sources of secretory mPAP protein.  To overcome this limitation, 

we generated and purified recombinant mPAP protein and then studied the biochemical 

properties of mPAP and the effects of mPAP on pain sensitivity.   

Our studies revealed that recombinant mPAP has very similar biochemical properties 

when compared to PAP from other mammalian species, including human (Ostrowski and 
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Kuciel, 1994; Vihko et al., 1993).  Both mPAP and hPAP are inhibited by L-(+)-tartrate 

(Figure 3.2), both predominantly dephosphorylate AMP at neutral pH (Figure 3.3A; (Zylka et 

al., 2008)) and both dephosphorylate all adenine nucleotides (with relative activity 

AMP>ADP>ATP) at acidic pH (Figure 3.3B, (Vihko, 1978)).  The Km values (0.9 – 1.6 

mM) we obtained for mPAP using AMP as substrate were within the range of Km values 

(0.37 – 2 mM) reported for hPAP using AMP as substrate (Dziembor-Gryszkiewicz et al., 

1978; Dziembor and Ostrowski, 1971; Lam et al., 1973).  Mouse TM-PAP also 

dephosphorylated extracellular adenine nucleotides in a pH-dependent manner, although 

ATP was not a substrate for TM-PAP as it was for secretory PAP.  This substrate 

discrepancy could reflect biochemical differences between these isoforms.  Or, more likely, 

this reflects reduced sensitivity of the histochemical assay relative to the in vitro enzyme 

assay.  When taken together, our findings suggest PAP functions as an ecto-5’ nucleotidase 

(with relative selectivity for AMP) at neutral pH and as a generic ectonucleotidase (with 

selectivity for AMP, ADP and ATP) at acidic pH. 

This pH-dependent hydrolysis of purine nucleotides is intriguing, especially when 

considering that tissue injury produces an “inflammatory soup” containing protons and 

nucleotides (Julius and Basbaum, 2001).  Protons produce tissue acidosis, modulate the 

capsaicin receptor TRPV1 and activate acid-sensing ion channels (ASICs) half-maximally at 

pH values ranging from 4.9 to 6.8  (Caterina et al., 1997; Waldmann et al., 1997; Wemmie et 

al., 2008).  ATP and ADP activate purinergic P2X and P2Y receptors (Burnstock, 2007; 

Stucky et al., 2004).  Stimulation of these diverse receptors sensitizes nociceptive neurons, 

activates spinal microglia and causes pain (Burnstock, 2007; Nakagawa et al., 2007; 

Sawynok, 2007; Tozaki-Saitoh et al., 2008; Tsuda et al., 2005).  PAP is extensively co-
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localized with the ATP receptor P2X3 and is co-localized in 14.4% of all TRPV1+ DRG 

neurons in the mouse (Zylka et al., 2008).  Since PAP protein is localized on peripheral 

terminals of these neurons (Zylka et al., 2008) and can dephosphorylate adenine nucleotides 

at acidic pH, PAP could metabolize pain-producing ATP and ADP in the inflammatory soup 

and reduce the subsequent sensitization of nociceptive neurons.  This is consistent with our 

observation that Pap-/- mice show enhanced thermal hyperalgesia and mechanical allodynia 

following inflammation (Zylka et al., 2008).   

In addition, PAP is localized on the central terminals of nociceptive neurons (Zylka et 

al., 2008) and could metabolize nucleotides to adenosine in a pH-dependent manner at 

central synapses.  The pH of synaptic vesicles is 5.6 ± 0.7 (Miesenbock et al., 1998) and 

intense neural activity can lead to acidosis within synapses that lasts for seconds (Wemmie et 

al., 2008).  Likewise, inflammation, tissue injury and repetitive stimulation cause acidosis of 

up to 0.25 pH units in the dorsal horn of spinal cord when measured with pH-sensitive 

microelectrodes (Chesler and Kaila, 1992; Sykova and Svoboda, 1990; Sykova et al., 1988).  

Considering the size of these microelectrodes relative to the small volume of a synapse, these 

microelectrode recordings likely underestimate the magnitude of the pH change that occurs 

within the confines of a synapse.   Thus, PAP may be exposed to low extracellular or 

endosomal pH when spinal synapses are activated for sustained periods of time. 

  Intrathecal injection of mPAP produced dose-dependent, potent and long-lasting (3 

days) antihyperalgesic effects that were specific for the thermal modality in uninjured 

animals (Figure 3.5) and antihyperalgesic and antiallodynic effects in CFA-inflamed animals 

(Figure 3.6).  Likewise, hPAP and bPAP had similar antinociceptive effects lasting three 

days and two days, respectively (Zylka et al., 2008).  And, just like hPAP and bPAP 



119 
 

mediated antinociception, A1R receptor activation was required for mPAP mediated 

antinociception.  When combined with our biochemical results, this suggests that mPAP 

converts extracellular nucleotides to adenosine in vivo.  Moreover, these data suggest a 

species-conserved function for human, bovine and mouse PAP as an ectonucleotidase.  

 Adenosine and A1R agonists have potent and, in some studies, long-lasting (>24 h) 

analgesic effects in rodents and humans when injected peripherally or centrally (Hayashida et 

al., 2005; Lavand'homme and Eisenach, 1999; Sawynok, 2007).  However, adenosine and 

A1R agonists are not used clinically to treat chronic pain because of side-effects, including 

transient lower back pain (Belfrage et al., 1999; Eisenach et al., 2003), and motor paralysis 

when administered at high doses (Sawynok, 2007).  Motor side-effects could be due to 

widespread expression of A1R throughout the spinal cord, including relatively high-level 

expression in motor neurons (Reppert et al., 1991).   

 We did not observe motor paralysis at the highest doses of mouse and human PAP 

tested, despite the fact that PAP also works via A1R activation (Figures 3.5, 3.6; (Zylka et al., 

2008)).  This could be due to the fact that, as an enzyme, the amount of adenosine produced 

by PAP is limited by substrate concentration.  Thus, through catalytic restriction, PAP may 

produce sufficient amounts of adenosine to mediate antinociception but not enough 

adenosine to cause overt motor side-effects.   

The resting CSF concentration of AMP in humans is 1.8 µM (Rodriguez-Nunez et al., 

2000), well below the Km of mPAP and hPAP for AMP.  Since this AMP concentration is 

below Km, PAP could produce linear increases in adenosine as the extracellular AMP 

concentration increases.  This would allow PAP to dynamically generate adenosine over a 
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wide range of nucleotide concentrations.  This could be relevant in chronic pain states where 

extracellular nucleotides are likely to be elevated (Holton, 1959; Tsuda et al., 2005).   

Recombinant proteins, such as human growth hormone and interferons, are routinely 

used to treat a variety of human diseases and disorders (Dorr, 1993; Zucchini, 2008).  We 

found that recombinant mPAP protein functions as a pH-dependent ectonucleotidase and has 

antinociceptive effects in an animal model of inflammatory pain.  Unlike direct injections of 

adenosine and A1R agonists which produce antinociception and motor side effects, mPAP 

injections indirectly elevate adenosine levels and produce antinociception without side-

effects.  Interestingly, other methods that indirectly elevate adenosine, such as using 

adenosine kinase inhibitors, also produce antinociception without motor side effects (Jarvis et 

al., 2002b; Keil and DeLander, 1992; Poon and Sawynok, 1995; Poon and Sawynok, 1998).  

Considering how readily recombinant mPAP and hPAP can be purified (Ostanin et al., 1994), 

and the fact that recombinant hPAP (fused to GM-CSF; also known as PA2024, a component 

of the Provenge/Sipuleucel-T immunotherapy) is safe to use in humans (Burch et al., 2000; 

Burch et al., 2004), recombinant PAP could be developed as a protein-based therapeutic for 

chronic pain.  Moreover, it might be possible to further optimize PAP stability and kinetic 

parameters for therapeutic purposes, using site-directed mutagenesis and the PAP three-

dimensional structure as a guide (Jakob et al., 2000; Ostanin et al., 1994; Porvari et al., 1994; 

Schneider et al., 1993).  
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3.5) Figures and Tables 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.1.  Purification of recombinant mPAP.  (A) A thrombin cleavage site (Tr) 

followed by hexahistidine tag (H6) and stop codon (*) were added to the C-terminus of the 

secretory isoform of mPAP.  SP = signal peptide of mPAP.  Map is not drawn to scale.  (B) 

Amino acid sequence at the junction between the catalytic domain and Tr-H6 tag.  Arrow 

marks thrombin cleavage site.  Asterisk marks stop codon.  (C) GelCode blue-stained SDS-

PAGE gel and (D) western blot of purified recombinant mPAP protein (1 µg and 5 µg, 

respectively).  The western blot was probed with an anti-hexahistidine antibody. (Back to 

text) 
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Figure 3.2.  Inhibition of mPAP by L-(+)-tartrate .  The indicated concentrations of L-(+)-

tartrate were added to reactions (n=3 per concentration) containing mPAP (1 U/mL), 100 

mM sodium acetate, pH 5.6 and the fluorescent acid phosphatase substrate DiFMUP.  

Relative fluorescence units (RFU).  All data are presented as means ± s.e.m.  Prism 5.0 

(GraphPad Software, Inc) was used to generate curve.  (Back to text) 
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Figure 3.3.  mPAP dephosphorylates purine nucleotides in a pH-dependent manner.  

Plot of initial velocity at the indicated concentrations of AMP, ADP and ATP at (A) pH 7.0 

and (B) pH 5.6.  Reactions (n=3 per point) were stopped after 3 min.  Inorganic phosphate 

was measured using malachite green.  All data are presented as means ± s.e.m.  Error bars are 

obscured due to their small size.  (Back to text) 
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Figure 3.4.  TM-PAP dephosphorylates extracellular purine nucleotides in a pH-

dependent manner.  HEK 293 cells were transfected with expression vectors containing (A-

F) mouse TM-PAP or (G-L) the fluorescent protein Venus as a control.  Cells were then 

histochemically stained using AMP, ADP or ATP (each 6 mM) as substrate at pH 7.0 or pH 

5.6.  Cells were not permeabilized with detergent.  Scale bar (bottom right panel), 50 µm for 

all panels.  (Back to text) 
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Figure 3.5.  Dose-dependent antinociceptive effects of intrathecal mPAP.  (A) Effects of 

increasing amounts of mPAP on paw withdrawal latency to a radiant heat source.  (B) Paw 

withdrawal threshold to a semi-flexible tip mounted on an electronic von Frey apparatus.  (A, 

B)  BL=Baseline.  Injection (i.t.) volume was 5 µL.  n=8 wild-type mice were used per dose.  

There were significant differences over time between mice injected with heat-inactivated (0 

U) mPAP and mice injected with active (1 U or 2 U) mPAP (Repeated measure two-way 

ANOVA; P < 0.0001 for each dose).  Post-hoc paired t-tests were used to compare responses 

at each time point between mice injected with active mPAP to mice injected with heat-

inactivated mPAP (** P < 0.005; *** P < 0.0005).  For the heat-inactivated mPAP control, 

the protein concentration was equivalent to the maximum 2U dose of mPAP (1.1 mg/mL).  

All data are presented as means ± s.e.m.  (Back to text) 
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Figure 3.6.  The antinociceptive effects of mPAP can be transiently inhibited with a 

selective A1R antagonist.  Wild-type mice were tested for (A) noxious thermal and (B) 

mechanical sensitivity before (baseline, BL) and following injection of CFA (CFA-arrow) 

into one hindpaw.  The non-inflamed hindpaw served as control.  All mice were injected with 

active mPAP (mPAP-arrow; 2 U, i.t.).  Two days later, half the mice were injected with 

vehicle (CPX/V-arrow, circles; intraperitoneal (i.p.); 1 hr before behavioral measurements) 

while the other half were injected with 8-cyclopentyl-1, 3-dipropylxanthine (CPX/V-arrow, 

squares; 1 mg/kg i.p.; 1 hr before behavioral measurements).  There were significant 

differences over time between mice injected with vehicle and mice injected with CPX 

(Repeated measure two-way ANOVA; P < 0.01).  Post-hoc paired t-tests were used to 

compare responses at each time point between vehicle (n=10) and CPX-injected mice 

(n=10); same paw comparisons.  *** P < 0.0005.  All data are presented as means ± s.e.m.  

(Back to text)

 



CHAPTER 4 

 

Prostatic Acid Phosphatase Reduces Pain Sensitization and TRPV1-dependent Thermal 
Sensitivity by Depleting PIP2 

 

ABSTRACT: Prostatic acid phosphatase (PAP) is an ectonucleotidase that inhibits noxious 

thermal sensitivity for days by generating adenosine and activating the A1-adenosine receptor 

(A1R).  Currently, the mechanism through which PAP regulates sensitivity to noxious 

thermal stimuli is unknown.  We found that sustained activation of A1R by PAP inhibits 

signaling through the thermosensor TRPV1 by decreasing phosphatidylinositol 4,5-

bisphosphate (PIP2) levels in cells and dorsal root ganglia (DRG).  In support of this, the 

thermal antinociceptive effects of PAP were blunted in Trpv1-/- mice and blocked when PIP2 

levels were pharmacologically restored.  Additionally, PAP-mediated depletion of PIP2 

inhibits signaling through receptors that sensitize nociceptive neurons, including 

lysophosphatidic acid (LPA) and ATP receptors.  Thus, PAP acts through A1R to reduce 

TRPV1-dependent thermosensation and pro-nociceptive receptor sensitization by decreasing 

PIP2.  Moreover, our studies suggest selective depletion of PIP2 in nociceptive circuits could 

be used to treat chronic pain before or after it is initiated.  

 

This work has been submitted and is under review: Sowa, N.A., Vihko, P, and Zylka, M.J.  
Manuscript submitted and in review.
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4.1) Introduction 

Chronic pain affects more individuals than heart disease, diabetes and cancer 

combined (American Pain Foundation).  Many of the analgesics that are used to treat pain act 

on subsets of nociceptive (pain-sensing) neurons located in the dorsal root ganglia or their 

postsynaptic targets in the dorsal spinal cord.  Recently, we found that the transmembrane 

(TM) isoform of Prostatic Acid Phosphatase (PAP; also known as ACPP) is expressed in 

nociceptive neurons and functions as an ectonucleotidase (Zylka et al., 2008).  Both the TM 

and secretory isoforms of PAP (S-PAP) dephosphorylate extracellular adenosine 

monophosphate (AMP) to adenosine (Sowa et al., 2009; Vihko, 1978; Zylka et al., 2008).  

Strikingly, we found that a single intrathecal (i.t.; intraspinal) injection of S-PAP had long-

lasting antinociceptive effects that significantly outlasted the commonly used analgesic 

morphine (Sowa et al., 2009; Zylka et al., 2008).  In addition, S-PAP had thermal 

antihyperalgesic and mechanical antiallodynic effects that lasted for three days in animal 

models of chronic inflammatory pain and nerve injury-induced neuropathic pain.  All of 

these antinociceptive effects were completely eliminated in A1R
-/- mice indicating that S-PAP 

generates adenosine in vivo and inhibits nociception by activating A1R over a sustained time 

period.   

Although adenosine and A1R agonists have well-studied antinociceptive effects when 

administered to rodents and humans (Eisenach et al., 2003; Sawynok, 2006), it is currently 

not known how acute or sustained A1R activation regulates nociception at the molecular 

level.  A1R is a Gαi/o-coupled receptor whose activation leads to inhibition of adenylate 

cyclase, and hence inhibition of protein kinase A (PKA).  In addition, A1R stimulation 

activates phospholipase C (PLC; including PLCβ3) via Gβγ proteins (Jacobson and Gao, 
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2006; Murthy and Makhlouf, 1995a).  Acute A1R activation can also inhibit neurotransmitter 

release from nociceptive neurons and inhibit postsynaptic spinal cord neurons (Lao et al., 

2001; Li and Perl, 1994).  While such a mechanism could account for some aspects of A1R-

mediated antinociception, inhibition of neurotransmission does not readily explain why 

sustained A1R activation by PAP selectively inhibits noxious thermal sensitivity without 

affecting mechanical sensitivity in naïve mice (Sowa et al., 2009; Zylka et al., 2008).  In turn, 

this selectivity suggests PAP might regulate thermal nociception by acting through a specific 

thermosensory channel or mechanism. 

The capsaicin and noxious heat receptor TRPV1 is expressed in DRG neurons and 

functions as a thermosensor in vivo (Caterina et al., 2000b; Caterina et al., 1997; Davis et al., 

2000b).  These findings, combined with our observation that PAP and TRPV1 are co-

expressed in DRG neurons (Zylka et al., 2008), suggested PAP might regulate thermal 

sensitivity through TRPV1.  Using cell-based and behavioral assays, we found that sustained 

activation of A1R by PAP led to PLC-mediated depletion of the phosphoinositide PIP2.  This 

reduction in PIP2 inhibited TRPV1 activity and reduced thermosensation in vivo (Figure 4.1).  

Our in vivo findings are consistent with several in vitro studies showing that TRPV1 requires 

PIP2 to function (reviewed in (Rohacs et al., 2008)).  Additionally, we found that PAP 

inhibited signaling through diverse pro-nociceptive G protein-coupled receptors (GPCRs) by 

activating A1R and depleting PIP2 (Figure 4.1).  Altogether, our studies suggest that many of 

the potent antinociceptive effects of PAP are mediated by sustained A1R activation followed 

by depletion of PIP2.  Moreover, our studies are the first to demonstrate a role for PIP2 in the 

modulation of nociception in vivo. 
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4.2) Materials and Methods 

All procedures and behavioral experiments involving vertebrate animals were 

approved by the Institutional Animal Care and Use Committee at the University of North 

Carolina at Chapel Hill. 

 

4.2.1) Histology 

Enzyme histochemistry and immunofluorescence staining was performed as 

described (Zylka et al., 2005; Zylka et al., 2008). 

 

4.2.2) Molecular Biology 

Full-length expression constructs for mouse TM-PAP (nt 64- 1314 from GenBank 

accession # NM_207668) and human TM-PAP (nt 51-1304 from GenBank accession # 

BC007460) were generated by RT-PCR amplification using C57BL/6 mouse trigeminal 

cDNA or human placental cDNA (Clontech) as template and Phusion polymerase.  The red 

fluorescent protein mCherry was then fused in-frame to the C-terminus of all TM-PAP 

constructs.  Mouse TM-PAP(H12A) was generated by PCR-based mutagenesis using mouse 

TM-PAP as template (His12 corresponds to His43 of the mPAP preprotein).  This active site 

mutant was previously described and lacks catalytic activity (Figures 4.5, 4.6) (Ostanin et al., 

1994; Schneider et al., 1993).  All constructs have a Kosak consensus sequence, were cloned 

into pcDNA3.1 and were sequence verified.  We obtained additional constructs from others 

(see Acknowledgments).  We confirmed that adenosine receptors were expressed in Rat1 

fibroblasts by RT-PCR (A1R primers:  5’ CATTGGGCCACAGACCTACT and 5’ 

GGCAGAAGAGGGTGATACA). 
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4.2.3) Calcium Imaging 

Rat1 fibroblasts were grown on glass bottom culture dishes (MatTek Corp, P35G-0-

10-C) in DMEM containing 10% Fetal Bovine Serum, 100 U/mL penicillin and 100 µg/mL 

streptomycin and transfected with Lipofectamine Plus (Invitrogen) according to 

manufacturer’s protocol.  The total amount of DNA per well was adjusted to 1 µg by adding 

pcDNA 3.1 as carrier.  Following transfection (18-24 hours), cells were loaded for one hour 

at room temperature with 2 µM Fura-2 AM (Invitrogen, F-14185) in Hank’s Buffered Salt 

Solution (HBSS + Calcium and Magnesium) assay buffer (HBSS + 9 mM HEPES + 11 mM 

D-Glucose + 0.1% fatty-acid free BSA, pH 7.4).  Cells were then washed 3 times with HBSS 

assay buffer and sat for at least 30 min prior to imaging.  A Nikon TE2000U microscope and 

Sutter DG4 light source were used to image calcium responses (excitation 340 nm / 380 nm; 

emission 510 nm).  Cells were stimulated with 1 µM capsaicin, 100 nM LPA, 1 U/mL 

thrombin, 10 µM ATP or 1 µM bradykinin for 1-5 min, washed in HBSS assay buffer for 1 

min, then stimulated with 0.006% SDS to evoke maximal calcium responses for 

normalization.  We did not use ionomycin to normalize responses because this calcium 

ionophore activates Ca2+-dependent PLC enzymes.  As a result, the magnitude of the 

ionomycin-induced Ca2+ influx is also proportional to PIP2 levels in cells.   

Calcium responses were normalized by calculating the area under the curve (AUC) 

during ligand stimulation for each cell, and then dividing by the maximum SDS-evoked 

calcium response in each cell (Figure 4.3).  These values were averaged over all cells for a 

given condition and then normalized relative to untransfected cells in the same field of view 

or relative to control cells (with the untransfected or control cell response set to 100%).   
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For thapsigargin experiments, HBSS assay buffer lacking Ca2+ and containing 1 mM 

EGTA was used to eliminate extracellular calcium.  10 µM thapsigargin was added for 5 

min, the cells were then washed for 2 min with HBSS assay buffer, and stimulated with 

0.006% SDS.  For PTX experiments, Rat1 fibroblasts were incubated for 18 hours with 500 

ng/mL PTX prior to loading with Fura-2 AM and stimulation with 100 nM LPA.  For 

experiments with adenosine and cannabinoid receptor antagonists, PLC inhibitor (U73122), 

PKC inhibitor (staurosporine), or PKA inhibitor (KT5720), cells were incubated with 

antagonists for 3-4 hours, loaded in the presence of antagonists/inhibitors with Fura-2 AM 

for one hour, and then stimulated with 100 nM LPA or 10 µM ATP.   

For experiments with capsaicin, Rat1 fibroblasts were transfected with TRPV1-GFP 

alone or various constructs and then were stimulated with 1 µM capsaicin (from 100 mM 

stock in 100% DMSO, dissolved to final concentration in HBSS assay buffer) for 1 min, 

followed by a 5 min wash in HBSS assay buffer, then stimulation with 0.006% SDS.  In 

some cases, cells were incubated with CPX (5 µM), KT5720 (1 µM), or staurosporine (100 

nM) for 3 hours prior to stimulation with capsaicin. 

 

4.2.4) PIP2 Quantification 

For quantification of PIP2 in vitro, HEK293 cells or Rat1 fibroblasts were plated onto 

glass coverslips and transfected with the construct PLCδ-PH-GFP along with indicated 

constructs using Lipofectamine Plus (Invitrogen), according to manufacturer’s protocol.  18-

24 hours later, the cells were fixed with 4% paraformaldehyde (PFA)-PBS.  Cells were 

imaged on a Leica TCS-NT confocal microscope.  GFP fluorescence on the plasma 

membrane of cells compared to the cytoplasm was quantified using ImageJ (National 
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Institutes of Health) by taking cross-sectional averages of pixel intensity at the plasma 

membranes and dividing by the average of pixel intensity in the cytoplasm.  Cells (n=30 to 

70) were analyzed per condition.   

For quantification of PIP2 in DRG, age-matched, adult male C57BL/6 or Pap-/- mice 

were injected i.t. with 5 µL of 15% lidocaine + 50 U/mL hPAP (250 mU total) or 15% 

lidocaine alone.  Lidocaine causes transient (5-20 min.) paralysis of both hindlimbs, 

permitting us to visually determine if each mouse received a successful i.t. injection (we only 

quantified PIP2 levels in mice that showed transient bilateral paralysis).  One day later, mice 

were sacrificed and L3-L6 DRGs were dissected bilaterally (n=8 ganglia / sample) and 

placed in PBS on ice.  For each sample, DRG wet weight was determined then lipids were 

extracted and quantified using the PI(4,5)P2 Mass ELISA Kit from Echelon (K-4500) 

following the manufacturer’s protocol.  PIP2 levels were normalized by dividing by the wet 

weight of DRG tissue.   

 

4.2.5) Injections and Drugs 

For intrathecal drug delivery, 5 µL was injected into unanesthetized mice using the 

direct lumbar puncture method (Fairbanks, 2003).  Human S-PAP (Sigma, P1774) and heat-

inactivated S-hPAP were prepared as described previously (Zylka et al., 2008).  18:1 

Lysophosphatidic acid (Avanti Polar Lipids, 857130) was dissolved in 0.9% ethanol and then 

diluted to final concentrations in either HBSS assay buffer (calcium imaging) or 0.9% saline 

(injections).  Adenosine 5’-triphosphate (ATP, Sigma, A26209) was dissolved in either 

HBSS assay buffer (calcium imaging) or 0.9% saline (injections).  Capsaicin (Sigma, 2028 – 

1 mg) was dissolved in 0.9% saline/10% ethanol/0.5% Tween 80 and 5 µl was injected for 
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intrathecal delivery, while 20 µL was injected for intraplantar delivery.  U73122 (Tocris, 

1268) was first dissolved into DMSO, then further diluted in 0.9% saline for i.t. injection.  

The PI(4,5)P2 Shuttle PIP Kit (Echelon, P-9045) was used to increase PIP2 levels in vivo.  

PtdIns(4,5)P2 di-C16 was first dissolved into 10% DMSO in 0.9% saline.  Carrier 2 (Histone 

H1) was dissolved into 0.9% saline.  Prior to injection, PIP2 and Carrier 2 were mixed in a 

1:1 molar ratio and incubated at room temperature for 15 min.  Thrombin (Sigma, T4648) 

was first dissolved to 100 Units/mL in 0.1% BSA and further diluted in HBSS assay buffer to 

final concentrations.  BK was dissolved to 1 mM in DMSO and further diluted in HBSS 

assay buffer to final concentrations.  PTX (Sigma, P7208) and caffeine (Sigma, C0750) were 

dissolved in water.  8-Cyclopentyl-1,3-dimethylxanthine (CPT) (Sigma, C102), 8-

Cyclopentyl-1,3-dipropylxanthine (CPX) (Sigma, C101), SCH58261 (Sigma, S4568),  

MRS1754 (Sigma, M6316), MRS 1523 (Sigma, M1809), staurosporine (Sigma, S4400), 

KT5720 (Tocris, 1288), and U73122 (Tocris, 1268) were dissolved in DMSO and further 

diluted in HBSS assay buffer to final concentrations.   

 

4.2.6) Behavior 

Pap-/- and Trpv1-/- (B6.129X1-Trpv1tm1Jul/J) mice were backcrossed to C57BL/6 mice 

for at least 10 generations.  Knockout mice were matched to C57BL/6 control animals for 

age and weight.  For all other experiments male, C57BL/6 mice were purchased from 

Jackson Laboratories.  Male, 2-4 month-old mice were used for all behavioral studies.  All 

mice were acclimated to testing room, equipment, and experimenter for 1-3 days before 

behavioral testing.  The experimenter was blind to genotype and drug treatment during 
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behavioral testing.  Thermal and mechanical sensitivity were measured as described 

previously (Zylka et al., 2008). 

For the LPA and ATP injection experiments in WT vs. Pap-/- mice, after taking 

baseline measurements, 5 µl of LPA (5 nmol) or 5 µl of ATP (100 nmol) was injected into all 

mice.  Thermal and mechanical sensitivity were then measured 1, 2, 3, 4, 5, and 12 days 

following LPA or ATP injection. 

For the S-hPAP injection followed by LPA and ATP injection experiments, after 

taking baseline measurements, 5 µl of heat-inactivated S-hPAP or 250 mU of S-hPAP was 

injected i.t.  One day later, thermal and mechanical sensitivity were measured in all mice, and 

then 5 µl of LPA (5 nmol) or 5 µl ATP (100 nmol) was injected i.t. into all mice.  Thermal 

and mechanical sensitivity were then measured 1, 2, 3, and 7 days following LPA or ATP 

injection.   

For the nerve injury experiment, heat-inactivated S-hPAP or 250 mU of S-hPAP was 

injected i.t. and thermal and mechanical sensitivity were measured 6 hours later.  The next 

day the spared nerve injury (SNI) model of neuropathic pain was performed as described 

(Shields et al., 2003), and thermal and mechanical sensitivity was measured 1, 2, and 7 days 

post injury. 

For the inflammatory pain study in WT and Trpv1-/- mice, after taking baseline 

measurements, 20 µL of complete Freund’s adjuvant (CFA, MP Biochemicals, 642851) was 

injected into one hindpaw, centrally beneath glabrous skin using a 30G needle.  One day 

later, heat-inactivated S-hPAP or 250 mU S-hPAP was injected i.t.  Thermal and mechanical 

sensitivity were measured 1, 2, 3, and 4 days following S-hPAP injection. 
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For the capsaicin experiments, mice were acclimated to a plexiglass chamber for at 

least 30 minutes prior to capsaicin injection.  For intraplantar experiments, 20 µl of 0.1 

mg/ml capsaicin in 0.9% saline, 10% ethanol, 0.5% Tween-80 was injected (2 µg total) into 

the hindpaw, and the amount of time spent licking or biting the paw was measured for the 

first 2 min following injection.  For intrathecal experiments, 5 µl of 0.1 mg/ml capsaicin (0.5 

µg total) was injected by acute lumbar puncture and the amount of time spent licking or 

biting the caudal half of the body was measured for the first 5 min following injection. 

For the PLC inhibitor (U73122) experiment, after taking baseline measurements 250 

mU of S-hPAP was injected i.t. into two groups of WT C57BL/6 mice, while a third group of 

mice was not injected.  Thermal sensitivity was measured 1 day later.  Two days after S-

hPAP injection, U73122 (5.4 nmol) or vehicle (20% DMSO in 0.9% saline) was injected i.t. 

and thermal sensitivity was measured 30 min, 1 hr, 2 hr, 3 hr, 4 hr, 5 hr, 6 hr, 7 hr, 24 hr, and 

48 hr after injection.   

For the PIP2 injection experiment, after taking baseline measurements, 250 mU of S-

hPAP was injected i.t. into two groups of WT C57BL/6 mice, while a third group of mice 

was not injected.  Thermal sensitivity was measured 1 day later.  Two days after S-hPAP 

injection, PIP2 + Carrier 2 or Carrier 2 alone was injected i.t., and thermal sensitivity was 

measured 30 min, 1 hr, 2 hr, 3 hr, 4 hr, 5 hr, 6 hr, 24 hr, and 48 hr after injection. 

For PIP2 co-injection with LPA, after taking baseline measurements, mice were 

injected with either PIP2 + Carrier 2 or Carrier 2 alone and thermal and mechanical 

sensitivity were measured 1d, 2d, 3d, 4d, 5d, and 12d after injection. 

 

4.3) Results 
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4.3.1) PAP acts through A1R to Inhibit TRPV1 Receptor Activation 

We previously found that secretory human PAP (S-hPAP) reduced noxious thermal 

sensitivity for three days in naïve mice by generating adenosine and activating A1R (Zylka et 

al., 2008).  Precisely how such sustained A1R activation regulates thermal sensitivity is 

unknown.  TRPV1 is a nonselective cation channel that can be activated by noxious thermal 

stimuli or capsaicin (Caterina et al., 1997), suggesting that PAP might reduce thermal 

sensitivity by inhibiting TRPV1.  To test this hypothesis in a cell-based context, we 

transiently transfected Rat1 fibroblasts with TRPV1 or with TRPV1 and mouse 

transmembrane PAP (TM-PAP) then measured capsaicin-evoked Ca2+ influx using the Ca2+ 

indicator Fura-2 AM.  We found that both the amplitude and duration of capsaicin-evoked 

Ca2+ influx was significantly reduced in cells transfected with TM-PAP relative to cells 

expressing TRPV1 alone (Figure 4.2A, 4.2B, 4.3).  In contrast, capsaicin-evoked Ca2+ influx 

was not reduced in cells transfected with mouse TM-PAP(H12A), a phosphatase-dead mutant 

of TM-PAP (Figure 4.2B) (Ostanin et al., 1994; Schneider et al., 1993).  Additionally, the 

A1R-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (CPX) blocked the effect of 

TM-PAP on capsaicin-evoked signaling (Figure 4.2B; Rat1 cells express A1R, Figure 4.4).  

Collectively, these data suggest that TM-PAP reduces TRPV1 signaling through activation of 

A1R.  Note that all TM-PAP constructs were fused to the red fluorescent protein mCherry 

and were expressed at similar levels in Rat1 cells and HEK293 cells (used below), but only 

the H12A mutant lacked catalytic activity (Figures 4.5, 4.6).   

Next, to test whether the thermal antinociceptive effect of PAP was dependent on 

TRPV1 activity in vivo, we injected S-hPAP (i.t.) into WT and Trpv1-/- mice then measured 

paw withdrawal latencies to a noxious thermal stimulus.  There were no significant 



138 
 

differences at baseline between WT and Trpv1-/- mice when stimulating the hindpaw with 

radiant heat (Figure 4.2C), consistent with previous studies (Caterina et al., 2000b).  Paw 

withdrawal latency significantly increased (relative to baseline) 30 min after injecting (i.t.) S-

hPAP and remained elevated for three days in WT mice, as expected (Zylka et al., 2008).  

However, the effects of S-hPAP on thermal sensitivity were significantly blunted in duration 

(2 days; relative to baseline) and in magnitude (p < 0.001 by two-way ANOVA; relative to 

WT) in Trpv1-/- mice (Figure 4.2C).  In contrast, S-hPAP was equally effective at reducing 

mechanical allodynia in WT and Trpv1-/- mice following CFA-induced inflammation (Figure 

4.2D; black dashed line verses red dashed line), ruling out the trivial possibility that Trpv1-/- 

mice were less sensitive to all antinociceptive effects of S-hPAP.  We were unable to 

compare the effects of S-hPAP on CFA-induced thermal hyperalgesia in WT and Trpv1-/- 

mice because Trpv1-/- mice do not develop thermal hyperalgesia following inflammation 

(Figure 4.2E), as previously found by others (Caterina et al., 2000b; Davis et al., 2000b).  

Collectively, these data suggest S-hPAP decreased thermal sensitivity, in part, through 

inhibition of TRPV1.  

Considering that PAP is expressed in 19% of all TRPV1+ neurons (Zylka et al., 2008) 

and reduced TRPV1 activity, we hypothesized that deletion of PAP might enhance TRPV1 

activity.  To test this hypothesis, we injected the selective TRPV1 agonist capsaicin into the 

hindpaw of WT and Pap-/- mice then measured the amount of time spent licking the injected 

hindpaw (Caterina et al., 2000b).  We also injected capsaicin i.t. then measured the amount of 

time spent licking the caudal half of the body (Mousseau et al., 1994).  Following both 

intraplantar and i.t. injections, capsaicin-induced licking behavior was significantly greater in 

Pap-/- mice compared to WT controls (Figure 4.2F).  These enhanced responses were not due 
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to a difference in the percentage of TRPV1+ DRG neurons between WT and Pap-/- mice 

(Table 4.1).  Nor were these enhanced responses due to neuroanatomical differences between 

genotypes as nociceptive circuit anatomy was normal in Pap-/- mice (Zylka et al., 2008).  

Taken together, our cell-based and in vivo data suggest injected (S-) and endogenous (TM-) 

PAP reduce thermal and capsaicin sensitivity by inhibiting TRPV1. 

 

4.3.2) Activation of A1R by TM-PAP Depletes PIP2  

Our findings raised the question of how A1R activation by PAP inhibits TRPV1 at a 

mechanistic level.  A1R stimulation inhibits PKA via pertussis toxin (PTX)-sensitive Gαi/o-

proteins.  In addition, A1R stimulation activates PLCβ3 via PTX-sensitive Gβγ subunits 

(Dickenson and Hill, 1998; Murthy and Makhlouf, 1995a).  PLC enzymes then hydrolyze 

PIP2 in the membrane to diacylglycerol (DAG) and inositol triphosphate (IP3).  These facts 

suggested sustained activation of A1R by PAP might inhibit TRPV1 activity by inhibiting 

PKA, activating protein kinase C (PKC; via DAG), depleting intracellular calcium stores (via 

IP3) or depleting PIP2 (via PLC activation).  Although TRPV1 can be modulated by PKA and 

PKC (Bhave et al., 2003; Bhave et al., 2002; Huang et al., 2006b), TM-PAP did not inhibit 

TRPV1 through PKA or PKC pathways (Figure 4.7A, 4.7B).  Furthermore, TM-PAP did not 

deplete intracellular calcium stores (Figure 4.7C).  

TRPV1 can also be directly modulated by PIP2 and this modulation is affected by 

capsaicin concentration and extracellular Ca2+ (Klein et al., 2008; Lishko et al., 2007; Liu et 

al., 2005; Lukacs et al., 2007; Prescott and Julius, 2003; Rohacs et al., 2008; Stein et al., 

2006; Yao and Qin, 2009).  At high capsaicin concentrations (1-10 µM) and in the presence 

of extracellular Ca2+, PIP2 is required for TRPV1 channel activity while depletion of PIP2 
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desensitizes the channel (our cell-based assays above were performed with 1 µM capsaicin in 

the presence of extracellular Ca2+).  This requirement for PIP2 suggested TM-PAP might 

inhibit TRPV1 activity by activating A1R in a sustained manner then deplete PIP2. 

To test this possibility, we quantified the levels of PIP2 in cells using the PIP2 

biosensor PLCδ-PH-GFP (Varnai and Balla, 1998).  When PIP2 levels are high, PLCδ-PH-

GFP is primarily localized to the plasma membrane (PM).  When PIP2 is depleted, PLCδ-PH-

GFP translocates from the membrane to the cytosol.  This translocation can be quantified by 

measuring the GFP signal intensity on the PM relative to the cytosol (expressed as a ratio 

PM/Cytosol).  We used HEK293 cells for these experiments because this biosensor was 

difficult to visualize in Rat1 fibroblasts (although we reproduced our key finding in Rat1 

cells; Figure 4.9).  In HEK293 cells expressing only PLCδ-PH-GFP, the majority of the GFP 

signal was in the PM, giving a PM/cytosol ratio of 3.43 ± 0.35 (Figure 4.8A, 4.8E).  In 

contrast, PLCδ-PH-GFP was redistributed to the cytosol in cells co-transfected with TM-PAP 

or PLCβ3 (PM/cytosol ratio of 1.60 ± 0.06 and 1.70 ± 0.9, respectively) (Figure 4.8B, 4.8E).  

This finding suggested TM-PAP and PLCβ3 deplete PIP2 to a similar extent.  Importantly, 

the A1R antagonist CPX blocked the TM-PAP mediated redistribution of PLCδ-PH-GFP to 

the cytosol (Figure 4.8C, 4.8E).  In addition, the PLC inhibitor U73122 blocked TM-PAP-

mediated PLCδ-PH-GFP redistribution (Figure 4.8E).  Further, the TM-PAP- and PLCβ3-

mediated redistribution of PLCδ-PH-GFP was blocked by overexpressing 

phosphatidylinositol-4-phosphate-5-kinase (PIPK; Figure 4.8D, 4.8E).  PIPK dramatically 

increases PIP2 levels in transfected cells (Lin et al., 2005; Milosevic et al., 2005), suggesting 

TM-PAP- and PLCβ3 alter PLCδ-PH-GFP membrane localization by depleting PIP2. 
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4.3.3) TM-PAP Reduces TRPV1 Receptor Signaling by Depleting PIP2 

Next, we genetically manipulated PIP2 levels to determine if increasing or decreasing 

PIP2 affected capsaicin-evoked Ca2+ responses.  Both TM-PAP and PLCβ3 deplete PIP2 to a 

similar extent (Figure 4.8E) but only PLCβ3 hydrolyzes PIP2 directly.  Likewise, we found 

that both TM-PAP and PLCβ3 reduced capsaicin-evoked Ca2+ responses to a similar extent 

(Figure 4.8F), suggesting indirect or direct depletion of PIP2 was sufficient to reduce TRPV1 

activity.  Similarly, others found that capsaicin-evoked responses through TRPV1 could be 

inhibited by selectively depleting PIP2 with a rapamycin-inducible PIP2 phosphatase (Klein et 

al., 2008; Yao and Qin, 2009).  Conversely, increasing PIP2 levels by overexpressing PIPK 

(which regenerates PIP2) blocked the TM-PAP- and PLCβ3-mediated reduction in capsaicin-

evoked Ca2+ (Figure 4.8F).  This finding suggested signaling through TRPV1 was reduced as 

a direct result of PIP2 depletion, consistent with the findings of others using cultured cells 

(Klein et al., 2008; Lishko et al., 2007; Liu et al., 2005; Lukacs et al., 2007; Rohacs et al., 

2008; Stein et al., 2006; Yao and Qin, 2009).  In addition, TM-PAP did not affect capsaicin 

evoked Ca2+ influx in cells expressing TRPV1∆42(777-820) (Figure 4.10), a TRPV1 mutant 

that is missing a putative PIP2 binding domain (Kim et al., 2008a; Kwon et al., 2007; Prescott 

and Julius, 2003).  Taken together, these data show that TM-PAP reduces TRPV1 activity in 

vitro through sustained activation of A1R and subsequent depletion of PIP2. 

 

4.3.4) PAP Regulates PIP2 Levels in vivo 

Considering that PAP regulated PIP2 levels in cultured cells, we hypothesized PAP 

might also regulate PIP2 levels in vivo.  To test this hypothesis, we measured PIP2 levels in 

lumbar (L)3-L6 DRG from wild-type (WT) mice, S-hPAP injected WT mice, and Pap-/- 
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mice.  We found that PIP2 levels were inversely related to the amount of PAP activity such 

that, relative to WT mice, PIP2 levels were reduced following S-hPAP injection and 

increased when PAP was deleted (Figure 4.11A).   

Since our data suggested that PAP depletes PIP2 by activating PLC, we next 

evaluated whether the thermal antinociceptive effect of S-hPAP could be blocked using the 

PLC inhibitor U73122.  This inhibitor was previously injected i.t. to block PLC activation by 

a delta opioid receptor ligand (Narita et al., 2000).  Indeed, i.t. injection of U73122 

transiently blocked the thermal antinociceptive effects of S-hPAP, providing evidence that S-

hPAP acted through PLC to reduce thermal sensitivity in vivo (Figure 4.11B, 4.11C). 

To directly determine if S-hPAP reduced thermal sensitivity by depleting PIP2, we 

replenished PIP2 in lumbar spinal cord and DRG through i.t. injection of PIP2 complexed 

with a carrier molecule.  This PIP2 shuttle was previously used to increase PIP2 levels in 

cultured cells (Ozaki et al., 2000), but to our knowledge has never been used in vivo.  

Strikingly, i.t. injection of PIP2 (complexed with carrier) transiently reversed S-hPAP-

mediated thermal antinociception whereas carrier alone had no effect (Figure 4.11D, 4.11E).  

In addition, PIP2 caused modest thermal hyperalgesia in control animals injected with PIP2, 

suggesting thermal sensitivity can be transiently enhanced when PIP2 levels are elevated 

above normal levels.  Importantly, the magnitude of this effect on thermal sensitivity in 

control animals was smaller than in animals that were injected with S-hPAP and PIP2.  This 

argues that PIP2 replenishment was sufficient to block the thermal antinociceptive effect of 

S-hPAP independent of how PIP2 affects thermal sensitivity in control animals. 

We previously found that PAP activates A1R over a sustained three-day time period 

in vivo (Sowa et al., 2009; Zylka et al., 2008).  This finding combined with our present data, 
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suggests a mechanism (Figure 4.11F) where (1) TM- and S-hPAP function as 

ectonucleotidases to generate adenosine.  Adenosine then stimulates (2) A1R in a sustained 

fashion, followed by (3) PLC activation and (4) PIP2 hydrolysis.  As a result, the amount of 

PIP2 available to regulate TRPV1 activity (5) is reduced, leading to decreased channel 

activation and decreased noxious thermal sensitivity.  In addition, our data suggest a novel 

approach for reducing PIP2 levels in vivo for days by pharmacologically or genetically 

controlling PAP activity.   

 

4.3.5) PAP Inhibits Pro-nociceptive LPA Receptor Signaling by Acting through A1R to 

Deplete PIP2 

Diverse chemicals are released upon injury and inflammation and sensitize 

nociceptive neurons, in many cases, by activating pro-nociceptive GPCRs (Hucho and 

Levine, 2007b; Julius and Basbaum, 2001).  Activation of many of these receptors leads to 

downstream activation of PLC, which hydrolyzes PIP2 into the second messengers DAG and 

IP3.  Considering that pro-nociceptive receptors require PIP2 for effective signaling and PAP 

can deplete PIP2 upon sustained A1R activation, we hypothesized that PAP might also reduce 

signaling through pro-nociceptive receptors.  In turn, reduced signaling might reduce 

sensitization following receptor activation.  To evaluate this possibility, we first focused on 

LPA receptors because LPA sensitizes nociceptive neurons, has long-lasting pro-nociceptive 

effects when injected intrathecally (i.t.) and is implicated in neuropathic pain mechanisms 

(Elmes et al., 2004; Inoue et al., 2004; Park and Vasko, 2005).  In addition, LPA receptors 

are coupled to Gαq/11 proteins, signal through PLC activation and evoke calcium (Ca2+) 
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influx when stimulated in many cell-types, including Rat1 fibroblasts (which endogenously 

express LPA receptors) (Kelley et al., 2006; Mills and Moolenaar, 2003).   

First, we transiently transfected Rat1 fibroblasts with mouse TM-PAP then measured 

LPA-evoked Ca2+ influx.  We found that the amplitude and duration of LPA-evoked Ca2+ 

influx were significantly reduced in cells transfected with TM-PAP relative to untransfected 

cells in the same field of view (Figures 4.12A, 4.12D).  This “PAP effect” was species-

conserved as cells transfected with human TM-PAP (TM-hPAP) were also less responsive to 

LPA stimulation (Figures 4.12B, 4.12D).  In contrast, LPA-evoked Ca2+ influx was not 

reduced in cells transfected with catalytically inactive mouse TM-PAP(H12A) (Figures 

4.12C, 4.12D). 

Next, to determine if TM-PAP inhibited LPA-evoked signaling by generating 

adenosine and activating A1R, we assessed whether PTX (an inhibitor of Gαi/o-coupled 

receptors) or adenosine receptor antagonists could block the effect of TM-PAP on LPA-

evoked signaling.  We found that PTX completely blocked the PAP effect, as evidenced by 

no significant differences between untransfected cells and TM-PAP transfected cells that 

were treated with PTX (Figure 4.12E).  Additionally, the PAP effect was blocked by the 

A1/A2B adenosine receptor antagonist caffeine (Caff) and by two different A1R-selective 

antagonists: CPT (8-cyclopentyl-1,3-dimethylxanthine) and CPX (Figure 4.12E).  In contrast, 

selective antagonists of all other adenosine receptors (A2AR: SCH 58261; A2BR: MRS 1754; 

A3R: MRS 1523) did not block the PAP effect (Figure 4.13). 

Next, we genetically manipulated PIP2 levels to determine if increasing or decreasing 

PIP2 affected LPA-evoked Ca2+ responses.  As found above, both TM-PAP and PLCβ3 

depleted PIP2 to a similar extent (Figure 4.8E) but only PLCβ3 hydrolyzes PIP2 directly.  
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Likewise, both TM-PAP and PLCβ3 reduced LPA-evoked Ca2+ responses to a similar extent 

(Figure 4.12E), suggesting indirect or direct depletion of PIP2 was sufficient to reduce 

signaling.  Conversely, increasing PIP2 levels by overexpressing PIPK blocked the TM-PAP- 

and PLCβ3-mediated reduction in LPA-evoked Ca2+ responses (Figure 4.12E).  This finding 

indicated that TM-PAP and PLCβ3 inhibit LPA receptor signaling as a direct result of PIP2 

depletion.  Additionally, the inhibitory effect of TM-PAP on LPA-evoked signaling was 

blocked with the PLC inhibitor U73122 (Figure 4.12E), demonstrating that TM-PAP acts 

through PLC to deplete PIP2. 

As found above with TRPV1, TM-PAP did not reduce LPA signaling by acting 

through other pathways that are downstream of A1R, including Gαi/o-mediated inhibition of 

PKA, DAG-mediated PKC activation or IP3-mediated depletion of intracellular calcium 

stores (Figures 4.7C, 4.14A, 4.14B). 

Collectively these data support a mechanism (Figure 4.12F) where (1) TM- and S-

hPAP function as ectonucleotidases to generate adenosine.  Adenosine then stimulates (2) 

A1R in a sustained fashion, followed by (3) PLC activation and (4) PIP2 hydrolysis.  This 

reduces the amount of PIP2 available for (5) Gαq/11/PLC-mediated LPA receptor signaling.  

With less PIP2 available, there is less IP3 (and DAG) generated following LPA receptor 

stimulation, resulting in smaller LPA-evoked Ca2+ responses.   

 

4.3.6) TM-PAP Reduces Signaling through Several Pro-nociceptive GPCRs 

To determine if this mechanism generalized to other classes of pro-nociceptive 

Gαq/11-coupled receptors, we assessed whether TM-PAP could reduce Ca2+ influx from 

protease activated receptors (using the ligand Thrombin, Thr), purinergic receptors (using the 
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nonselective P2Y ligand ATP), and bradykinin (BK) receptors.  Importantly, activation of 

these receptors evokes transient Ca2+ influx in Rat1 cells and has pro-nociceptive effects in 

vivo (Burnstock, 2007; Dale and Vergnolle, 2008; Kelley et al., 2006; Sawynok, 2006; Wang 

et al., 2006).  Strikingly, Ca2+ responses induced by Thr, ATP and BK were reduced in TM-

PAP transfected cells relative to untransfected cells, and these reductions were blocked by 

the A1R antagonist CPX or by overexpression of PIPK (Figure 4.15).  Collectively, these 

data suggest that TM-PAP interferes with signaling through multiple pro-nociceptive 

receptors by activating A1R and depleting PIP2. 

 

4.3.7) PAP Blocks LPA-, ATP- and Nerve Injury-induced Hyperalgesia and Allodynia 

Since PAP reduced signaling through pro-nociceptive receptors by depleting PIP2 in 

Rat1 fibroblasts and reduced PIP2 in DRG in vivo, this finding suggested PAP might also 

reduce signaling through pro-nociceptive receptors in vivo.  To test this possibility, we took 

advantage of the fact that both LPA and ATP produce long lasting (>7 day) thermal 

hyperalgesia and mechanical allodynia when injected i.t. (Inoue et al., 2004; Nakagawa et al., 

2007).  In comparison, S-hPAP has antinociceptive, antihyperalgesic and antiallodynic 

effects that last for three days when injected i.t. (Zylka et al., 2008).  We reasoned that if S-

hPAP were injected one day before ATP or LPA, we could ascertain whether S-hPAP 

directly reduced LPA- and ATP-evoked signaling in vivo by measuring LPA- and ATP-

evoked hyperalgesia and allodynia on days four and eight; corresponding to one and five 

days (respectively) after the three day antinociceptive effects of PAP wore off. 

First, we measured baseline (BL) noxious thermal sensitivity and mechanical 

sensitivity in three groups of WT mice.  One day later, we injected S-hPAP (i.t.) into two of 
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the groups and heat inactivated S-hPAP into the third (control; catalytically dead) group.  As 

previously found (Zylka et al., 2008), S-hPAP increased paw withdrawal latency to the 

noxious thermal stimulus but had no effect on mechanical sensitivity, whereas inactive S-

hPAP had no effects on thermal or mechanical sensitivity (Figure 4.16A-D).  One day later, 

we injected (i.t.) either 5 nmol LPA (Figure 4.16A, 4.16B) or 100 nmol ATP (Figure 4.16C, 

4.16D).  Both pro-nociceptive compounds produced long-lasting (8 day) thermal 

hyperalgesia and mechanical allodynia in the control mice.  In contrast, these pro-nociceptive 

compounds had no or minimal effects in mice injected with S-hPAP.  Specifically, the S-

hPAP + LPA and S-hPAP + ATP injected mice did not develop thermal hyperalgesia or 

mechanical allodynia.  In fact, their thermal and mechanical sensitivities were at or near 

baseline levels on days four and eight (i.e., after the antinociceptive effects of S-hPAP wore 

off).  These data provide compelling evidence that PAP, via sustained A1R activation and 

PIP2 depletion, can reduce signaling through two distinct pro-nociceptive receptors in vivo.  

Conversely, since Pap-/- mice had elevated levels of PIP2 in lumbar DRG, we 

hypothesized LPA and ATP receptors might signal more effectively and produce greater 

sensitization when activated in these animals.  Indeed, we found that the thermal 

hyperalgesia and mechanical allodynia induced by LPA and ATP were enhanced in Pap-/- 

mice relative to WT mice (Figure 4.17), suggesting these receptors signal more effectively 

when PIP2 levels are elevated in vivo. 

Since higher PIP2 levels in DRG of Pap-/- mice led to increased LPA-induced 

hyperalgesia, we next asked if we could also enhance LPA-hyperalgesia in wild-type mice by 

transiently increasing PIP2 in the DRG of these animals.  To do this, we directly injected PIP2 

using the shuttle system described above.  Importantly, i.t. injection of PIP2 alone using this 
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system only affects thermal sensitivity for a period of one hour after injection (Figure 4.11E) 

and has no direct long-term effects on either thermal or mechanical sensitivity (Figure 4.18C, 

4.18D).  Strikingly, co-injection of LPA + PIP2 + Carrier led to significantly greater thermal 

hyperalgesia and mechanical allodynia than that seen in mice injected with LPA + Carrier 

alone (Figure 4.18A, 4.18B).  Since PIP2 itself is not having any effect over such a long 

period of time, this likely reflects increased LPA receptor signaling due to increased PIP2 in 

the DRG at the time of receptor activation.  This suggests that the activity of the nociceptors 

can be dynamically modulated by changes in cellular PIP2 levels. 

While LPA and ATP are pro-nociceptive when injected i.t., these chemicals may not 

fully model the complex pathologies that are associated with chronic pain conditions.  To 

determine if reducing PIP2 levels with S-hPAP had a more generalized effect on the signals 

that initiate chronic pain, we tested the effects of S-hPAP in the spared nerve injury (SNI) 

model of neuropathic pain.  Strikingly, i.t. injection of S-hPAP prior to nerve injury 

eliminated thermal hyperalgesia and greatly reduced mechanical allodynia for eight days 

compared to mice injected with inactive S-hPAP (Figure 4.19A, 4.19B).  This finding 

suggests that lowering PIP2 levels with S-hPAP can interfere with the signals that initiate 

neuropathic pain. 

 

4.4) Discussion 

We previously found that PAP had potent antinociceptive effects that were entirely 

dependent on A1R activation, including inhibitory effects on noxious thermal and mechanical 

sensitivity (Sowa et al., 2009; Zylka et al., 2008).  How PAP and A1R activation regulated 

sensitivity to such stimuli at the molecular level was unknown.  By using in vitro and in vivo 
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assays to study two distinct classes of proteins that require PIP2 for activity (TRPV1 and 

GPCRs), our study provides complementary support that several of the antinociceptive 

effects of PAP are due to sustained A1R activation followed by PLC-mediated PIP2 

depletion.  In particular, depletion of this important phosphoinositide has inhibitory effects 

on signaling through the thermosensor TRPV1 and blocks sensitization through several pro-

nociceptive Gαq/11-coupled GPCRs (Figures 4.1, 4.11F, and 4.12F).  The effects of PIP2 

depletion have not been studied following sustained A1R activation, presumably because the 

genetic tools to measure and manipulate PIP2 only recently became available (Varnai et al., 

2007).  Lastly, our studies are the first to demonstrate a role for PIP2 in the modulation of 

pain sensitivity in vivo. 

 Numerous studies found that TRPV1 can be modulated by PIP2 in vitro, with effects 

that are dependent on capsaicin concentration and extracellular calcium (reviewed in (Rohacs 

et al., 2008)).  At low capsaicin concentrations and in the absence of extracellular Ca2+, PIP2 

partially inhibits TRPV1 (Prescott and Julius, 2003).  In comparison, at high capsaicin 

concentrations and in the presence of extracellular Ca2+, PIP2 is required for TRPV1 

activation and PIP2 depletion inhibits TRPV1 through desensitization (Klein et al., 2008; 

Lishko et al., 2007; Liu et al., 2005; Lukacs et al., 2007; Stein et al., 2006; Yao and Qin, 

2009).  All these studies examined PIP2 modulation of TRPV1 using excised patches or 

cultured cells.  This seemingly complex relationship between PIP2 levels and TRPV1 activity 

in cell-based (in vitro) assays makes it difficult to predict how PIP2 levels might affect 

TRPV1 in vivo.  In our present study, we increased or decreased PIP2 levels for extended 

periods of time in vivo by manipulating PAP activity and then measured how these changes 

affected TRPV1-dependent behaviors.  We found that elevated PIP2 levels enhanced TRPV1 
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activity, as evidenced by increased capsaicin-evoked licking in Pap-/- animals.  Conversely, 

decreasing PIP2 levels reduced TRPV1 activity, as evidenced by reduced TRPV1-dependent 

thermal sensitivity following PAP injections.  Furthermore, acutely restoring PIP2 levels, by 

pharmacologically inhibiting PLC activation with U73122 (Figure 4.11B, 4.11C) or by 

injecting PIP2, blocked the thermal antinociceptive effect of S-hPAP.  Injection of PIP2 in 

naïve mice without prior S-hPAP injection led to a small but significant decrease in thermal 

withdrawal latencies (Figure 4.11D, 4.11E), suggesting elevated levels of PIP2 produce 

thermal hyperalgesia.  Mechanistically, this could reflect enhanced activity of temperature 

sensitive ion channels like TRPV1.  Taken together, our findings indicate that the net effect 

of PIP2 is to enhance TRPV1-mediated thermal sensitivity in vivo.  This is consistent with a 

recent study showing that TRPV1 activity was enhanced in vitro and in vivo through 

interactions with PIRT, a phosphoinositide-binding protein (Kim et al., 2008a).  Our in vivo 

studies are more biologically-relevant than studies which exclusively use cultured cells.  This 

includes DRG neurons, especially since the culturing process can change TRPV1 expression 

or activity (Shu and Mendell, 1999; Story et al., 2003b; Stucky et al., 2009). 

Pro-nociceptive ligands sensitize TRPV1 by activating PKC, which is downstream of 

PLC activation (Bhave et al., 2003; Huang et al., 2006b).  Considering that A1R is also 

coupled to PLC enzymes (Jacobson and Gao, 2006; Murthy and Makhlouf, 1995a), why then 

does PAP inhibit TRPV1 activation upon A1R activation, as we observed, instead of 

sensitizing TRPV1?  This likely reflects differences in how pro-nociceptive GPCRs and A1R 

couple to PLC enzymes and downstream signaling pathways.  For example, pro-nociceptive 

receptors, like LPA receptors, are coupled to PLC isoforms via Gαq/11 and Gβγ proteins and 

evoke a large but transient calcium influx and PKC activation upon sustained agonist 
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stimulation (Figure 4.12A, 4.12B) (Kelley et al., 2006; Mills and Moolenaar, 2003).  In 

contrast, A1R is coupled to PLC isoforms exclusively via Gβγ proteins and does not 

desensitize (as measured by CPX-sensitive antinociception) when activated for up to three 

days by PAP ectonucleotidase-generated adenosine (Sowa et al., 2009; Zylka et al., 2008).  

Moreover, long-term expression of TM-PAP or treatment of cells with S-hPAP did not alter 

baseline Ca2+ levels when compared to cells not exposed to PAP (Figure 4.3 and data not 

shown), suggesting sustained activation of A1R by PAP does not detectably alter Ca2+ influx.  

Moreover, this suggests PAP activates PLC enzymes at a low level and for sustained periods 

of time.  This low level activation is sufficient to deplete PIP2 in an A1R-dependent manner 

(Figure 4.8E) but is unlikely to produce sufficient amounts of DAG to activate PKC or to 

reduce intracellular calcium stores by producing IP3.  Indeed, we found that PAP did not 

inhibit TRPV1 activity by acting through PKC (Figure 4.7A) and PAP did not reduce 

intracellular (IP3-sensitive) Ca2+ stores (Figure 4.7C).  Thus, acute, high-level PLC 

activation, as occurs following pro-nociceptive ligand stimulation, could readily account for 

why PLC activation sensitizes TRPV1 through PKC.  Conversely, sustained, low-level PLC 

activation, as occurs following activation of A1R by PAP, could account for why PLC 

activation inhibits TRPV1 through PIP2 depletion.   

Puntambekar and colleagues recently found that adenosine could bind directly to 

TRPV1 and inhibit its activity (Puntambekar et al., 2004).  However, adenosine made by 

PAP is unlikely to inhibit TRPV1 directly considering that:  1). PIPK, an enzyme that 

generates PIP2 intracellularly, blocked PAP inhibition of TRPV1; 2). the A1R antagonist 

CPX blocked PAP inhibition of TRPV1 and 3). PAP had no inhibitory effects on Ca2+ influx 
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through TRPV1∆42, a functional version of TRPV1 that lacks a putative PIP2 binding 

domain (Kim et al., 2008a; Kwon et al., 2007; Prescott and Julius, 2003). 

We found that most of the thermal antinociceptive effects of PAP were lost in Trpv1-/- 

mice while the mechanical antinociceptive effects of PAP were preserved (Figure 4.2C, 

4.2D).  This dissociation suggests most of the thermal antinociceptive effects of PAP are 

mediated through TRPV1, while the remaining thermal and mechanical antinociceptive 

effects of PAP are mediated by other channels or proteins.  PIP2 generally increases the 

activity of many ion channels while depletion of PIP2 reduces channel activity (Suh and 

Hille, 2005).  PIP2 depletion also inhibits synaptic vesicle exocytosis (Di Paolo and De 

Camilli, 2006).  Further studies will be needed to determine if additional antinociceptive 

effects of PAP are due to inhibition or modulation of other PIP2 sensitive channels, proteins 

or mechanisms. 

 

4.4.1) PAP Reduces Pro-nociceptive Receptor Signaling and Sensitization 

Our findings with PAP and TRPV1 led us to test whether PAP could regulate other 

aspects of nociception, particularly sensitization, by depleting PIP2.  Diverse pro-nociceptive 

compounds sensitize nociceptors centrally and peripherally by activating Gαq/11-coupled 

GPCRs (Hucho and Levine, 2007b; Julius and Basbaum, 2001; Woolf and Ma, 2007).  This 

sensitization contributes to allodynia and hyperalgesia in chronic pain conditions.  Our 

studies reveal that PAP inhibits signaling through multiple pro-nociceptive receptors in vitro 

by depleting PIP2.  With less PIP2 available, there should be less DAG and IP3 produced 

upon pro-nociceptive receptor stimulation to sensitize neurons via PKC/DAG-dependent and 

Ca2+-dependent pathways.  Indeed, we found that PAP completely blocked sensitization 
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caused by two long-lasting pro-nociceptive compounds (LPA and ATP) in vivo.  The 

antinociceptive effects of PAP in sensitized states, including inflammatory and neuropathic 

pain (Sowa et al., 2009; Zylka et al., 2008), might similarly be due inhibition of pro-

nociceptive GPCR signaling.  Lastly, we found that PAP preemptively blocked thermal 

hyperalgesia and blunted mechanical allodynia following nerve injury.  Thus, by inhibiting 

signaling through multiple pro-nociceptive receptors, PAP might more effectively be used to 

treat chronic pain, before or after it is initiated, when compared to antagonists that selectively 

target individual pro-nociceptive receptors. 

 

4.4.2) PIP2 Levels Affect Responses to Nociceptive Stimuli 

All cells constitutively release low nanomolar concentrations of ATP that are then 

converted to ADP, AMP and adenosine by ectonucleotidases (Yegutkin, 2008; Zimmermann, 

2000).  Similarly, basal ATP release increases in DRG after nerve injury and following 

stimulation (Holton, 1959; Matsuka et al., 2008).  PAP generates adenosine from 

extracellular nucleotides and is found on nociceptive neurons along with A1R (Schulte et al., 

2003; Zylka et al., 2008).  This makes PAP well-localized to dynamically regulate PIP2 

levels as a function of the concentration of extracellular nucleotides, the activity levels of 

PAP and other ectonucleotidases, and ultimately the level of basal A1R activation.  As has 

been hypothesized for other systems (Boison, 2008), this “adenosine tone”, and as our studies 

suggest “phosphoinositide tone”, allows neural circuit activity to dynamically adjust as inputs 

change. 

In addition, our studies suggest PIP2 levels affect the extent to which pro-nociceptive 

signals—be they thermal, chemical (LPA, ATP, capsaicin) or pathological (inflammation, 
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nerve injury)—produce hyperalgesia, allodynia and nociceptive behaviors.  We observed a 

direct correlation between PIP2 levels and induced pain sensitivity—PAP knockout mice 

have elevated levels of PIP2 in DRG and show enhanced sensitivity following LPA injection 

(Figure 4.17A, 4.17B), ATP injection (Figure 4.17C, 4.17D), capsaicin injection (Figure 

4.2F), inflammation, and nerve injury (Zylka et al., 2008).  Likewise, thermal sensitivity was 

transiently enhanced following direct intraspinal injection of PIP2, and co-injection with PIP2 

increased LPA-induced hyperalgesia (Figure 4.18A, 4.18B).  Conversely, injection of PAP 

lowers PIP2 levels in DRG and reduces sensitivity following LPA injection (Figure 4.16A, 

4.16B), ATP injection (Figure 4.16C, 4.16D), inflammation, and nerve injury (Zylka et al., 

2008).  Taken together, our studies suggest selective depletion of PIP2 in nociceptive circuits 

could provide a novel approach to preemptively block chronic pain before it is initiated as 

well as to treat chronic pain once it is established. 
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4.5) Figures and Tables 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.1.  Proposed model—PAP reduces TRPV1-dependent noxious thermal 

sensitivity and pain sensitization by depleting PIP2.  PAP is an ectonucleotidase that 

generates adenosine (ADO) and activates A1R for days without desensitizing.  Sustained A1R 

activation leads to phospholipase C (PLC) activation and PIP2 depletion.  Depletion of PIP2 

reduces noxious thermal sensitivity through TRPV1.  Pro-nociceptive GPCRs sensitize 

nociceptive neurons when activated.  Depletion of PIP2 reduces signaling through pro-

nociceptive GPCRs, thus reducing nociceptor sensitization.  (Back to text) 
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Figure 4.2.  PAP decreases activity of the capsaicin and noxious heat receptor TRPV1.  

(A) Capsaicin (1 µM)-evoked Ca2+ influx in Rat1 fibroblasts expressing TRPV1 alone or 

with TM-PAP.  The 340/380 ratio is directly proportional to calcium concentration.  n= 80 

cells per condition.  (B) Normalized capsaicin-evoked calcium responses in Rat1 fibroblasts 

transfected with the indicated constructs.  The indicated cells were incubated with CPX (5 

µM) for 3 hr prior to stimulation.  n = 40-60 cells per condition.  T tests relative to TRPV1 

only condition.  (C) The hindpaws of wild-type mice (WT, black) and Trpv1-/- mice (red) 

were tested for noxious thermal sensitivity before (baseline, BL) and after i.t. injection of S-

hPAP (250 mU).  Paired t tests were used to compare responses within each genotype to BL 

(black asterisks) and to compare responses between genotypes (red asterisks).  n = 10 mice 

per genotype.  (C-Inset) Detailed time course to determine onset of antinociception.  (D) 

Mechanical (E) and thermal sensitivity of WT and Trpv1-/- mice before (BL) and after 

injection of Complete Freund’s adjuvant (CFA) into one hindpaw.  One day later, the 
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indicated mice were injected i.t. with S-hPAP (250 mU) or heat inactivated S-hPAP (0 mU).  

CFA-injected and non-injected (control) hindpaws were tested.  Paired t tests were used to 

compare responses at each time point between WT mice and Trpv1-/- mice injected with S-

hPAP (red asterisks).  n = 8 mice per group.  (F) Nocifensive licking responses to intraplantar 

(2 µg) and i.t. (0.5 µg) injection of capsaicin in WT and Pap-/- mice.  n = 8 mice per group 

per condition.  (B-F) *P < 0.05, **P < 0.005, ***P < 0.0005.  All data are presented as 

means ± s.e.m.  (Back to text) 
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Figure 4.3.  TM-PAP reduces capsaicin-evoked Ca2+ responses but not SDS-evoked 

Ca2+ responses.  Raw (non-normalized) capsaicin (1 µM)- and SDS (0.06%)-evoked Ca2+ 

responses in Rat1 fibroblasts expressing TRPV1 alone or co-transfected with TM-PAP.  

Since TM-PAP did not affect SDS responses, SDS responses were used to normalize area 

under the curve (AUC) values in all calcium imaging experiments (see Experimental 

Procedures for details).  n = 40 cells per condition.  Points are mean 340/380 ratios ± s.e.m.  

Data up to the 200 s timepoint were also presented in Figure 1A.  (Back to text) 
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Figure 4.4.  Rat1 fibroblasts express A1R.  RT-PCR on samples from Rat1 fibroblasts.  

Glyceraldehyde 3-phosphate dehydrogenase (G3PDH) positive control.  (Back to text) 
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Figure 4.5.  Mouse and human TM-PAP constructs dephosphorylate extracellular AMP 

and thiamine monophosphate (TMP) in Rat1 fibroblasts.  Rat1 fibroblasts were 

transfected with (A-C) mouse TM-PAP, (D-F) mouse TM-PAP(H12A), or (G-I) human TM-

PAP (TM-hPAP) and then imaged for (A, D, G) mCherry fluorescence or stained using (B, 

E, H) AMP or (C, F, I) TMP histochemistry at pH 7.0.  The plasma membrane was not 

permeabilized, so that extracellular phosphatase activity could be assayed.  AMP and TMP 

are PAP substrates.  Scale bar is 50 µm.  (Back to text) 
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Figure 4.6.  Mouse and human TM-PAP constructs dephosphorylate extracellular AMP 

and TMP in HEK293 cells.  HEK293 cells were transfected with (A-C) mouse TM-PAP, 

(D-F) mouse TM-PAP(H12A), or (G-I) human TM-PAP (TM-hPAP) and then imaged for 

(A, D, G) mCherry fluorescence or stained using (B, E, H) AMP or (C, F, I) TMP 

histochemistry at pH 7.0.  The plasma membrane was not permeabilized, so that extracellular 

phosphatase activity could be assayed.  AMP and TMP are PAP substrates.  Scale bar is 50 

µm.  (Back to text) 
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Figure 4.7.  Activation of protein kinase C (PKC) or inhibition of protein kinase A 

(PKA) does not explain TM-PAP effect on capsaicin-evoked Ca2+ responses and TM-

PAP does not deplete intracellular Ca2+ stores.  (A) Normalized capsaicin (1 µM)-evoked 

Ca2+ responses in Rat1 fibroblasts expressing TRPV1 alone or co-transfected with TM-PAP.  

The indicated cells were incubated with the PKC inhibitor staurosporine (Staur, 100 nM) or 

(B) the PKA inhibitor KT5720 (KT, 1 µM) for 3 hr prior to stimulation.  KT5720 did not 

mimic the effects of TM-PAP, ruling out the possibility that PAP reduced Ca2+ influx by 

Gαi/o-mediated inhibition of PKA.  (C) Normalized thapsigargin (TG, 10 mM)-evoked Ca2+ 

responses in untransfected Rat1 fibroblasts and in cells transfected with TM-PAP.  

Experiments were done in the presence of EGTA to reduce extracellular calcium.  TG is an 

inhibitor of the endoplasmic reticulum calcium pump and evokes Ca2+ influx independent of 

IP3.  TM-PAP did not alter TG-evoked calcium responses, ruling out an effect of PAP on 
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calcium stores.  n = 50-70 cells per condition.  T tests relative to cells expressing TRPV1 

alone.  ***P < 0.0005.  All data are presented as means ± s.e.m.  (Back to text) 



164 
 

Figure 4.8.  TM-PAP reduces capsaicin-evoked Ca2+ influx by decreasing PIP2.  (A-E) 

Subcellular localization of the PIP2 biosensor PLCδ-PH-EGFP (PLCδ-PH) in HEK293 cells, 

imaged by confocal microscopy.  PLCδ-PH (A) alone, (B) co-transfected with TM-PAP, (C) 

co-transfected with TM-PAP and incubated with 5 µM CPX for 3 hr prior to fixation, (D) co-

transfected with TM-PAP and PIPK.  Scale bar, 50 µm.  (E) Quantification of PLCδ-PH 

subcellular localization after co-transfection with the indicated constructs or following 

incubation with CPX or U73122.  Fluorescence values in the plasma membrane (PM) and 

cytosol were quantified from cell cross-sections using ImageJ and expressed as a ratio.  n = 

30-70 cells per condition.  (F) Normalized capsaicin (1 µM)-evoked Ca2+ responses in Rat1 
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fibroblasts transfected with the indicated constructs.  n = 40-100 cells per condition.  T tests 

were used to compare (E) untransfected cells to transfected cells and (F) TRPV1 transfected 

cells to co-transfected cells.  *P < 0.05, **P < 0.005, ***P < 0.0005.  All data are presented 

as means ± s.e.m.  (Back to text) 
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Figure 4.9.  TM-PAP reduces PIP2 levels in Rat1 fibroblasts.  (A-C) Subcellular 

localization of PIP2 biosensor PLCδ-PH-EGFP (PLCδ-PH) in transfected Rat1 fibroblasts, 

imaged by confocal microscopy.  PLCδ-PH (A) was expressed alone or (B) with TM-PAP.  

Scale bar, 50 µm.  (C) Quantification of PLCδ-PH subcellular localization alone or after co-

transfection with TM-PAP.  Fluorescence values in the plasma membrane (PM) and cytosol 

were quantified from cell cross-sections using ImageJ and expressed as a ratio.  n = 20 cells 

per condition.  T test was used to compare untransfected cells to TM-PAP transfected cells.  

*** P < 0.0005.  Data presented as means ± s.e.m.  (Back to text) 
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Figure 4.10.  TM-PAP has no effect on capsaicin-evoked Ca2+ influx through 

TRPV1∆∆∆∆42, a mutant version of TRPV1 that is missing a putative PIP2-binding 

domain.  Normalized capsaicin (1 µM)-evoked calcium responses in Rat1 fibroblasts 

transfected with the indicated constructs.  n = 50-70 cells per condition.  There were no 

significant differences between conditions.  Values are presented as means ± s.e.m.  (Back to 

text) 
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Figure 4.11.  PAP activity alters PIP2 levels in vivo.  PIP2 levels in L3-L6 DRG were 

quantified in wild-type (WT) mice, Pap-/- mice, or WT mice injected (i.t.) one day earlier 

with 250 mU S-hPAP.  All mice were injected i.t. with lidocaine (see Experimental 

Procedures for details).  n=3 mice per condition.  (B, C) The hindpaws of wild-type mice 

were tested for noxious thermal sensitivity before (baseline, BL) and after i.t. injection of S-

hPAP (250 mU) or saline.  Two days later, the indicated mice were injected i.t. with either 

U73122 (5.4 nmol) or vehicle (V) and thermal sensitivity was measured every hour for the 

first 7 hours as well as for the next two days.  Data in (C) is from the boxed area in (B).  n = 

8 mice per group.  (D, E) The hindpaws of wild-type mice were tested for noxious thermal 

sensitivity before (BL) and after i.t. injection of S-hPAP (250 mU) or saline.  Two days later, 

the indicated mice were injected i.t. with either PIP2 (3 nmol) + carrier (Car) or carrier alone 

then thermal sensitivity was measured every hour for the first 6 hours after injection as well 

as for the next two days.  Data in (E) is from the boxed area in (D).  (F) Model showing how 

PAP interferes with TRPV1 channel activity (see text for details).  For (A), values were 
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compared to WT by paired t test.  For (C), mice injected with U73122 were compared to 

vehicle-injected mice at each time point by paired t test.  For (E), mice injected with PIP2 

after S-hPAP were compared to vehicle-injected mice at each time point by paired t test.  *P 

< 0.05, **P < 0.005, ***P < 0.0005. All data are presented as means ± s.e.m.  (Back to text) 
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Figure 4.12.  TM-PAP reduces LPA-evoked Ca2+ influx in Rat1 fibroblasts through 

activation of A1R.  (A-C) LPA (100 nM)-evoked Ca2+ influx in untransfected cells and in 

cells transfected with the indicated constructs.  n=15 cells per condition.  (D) Normalized 

LPA-evoked Ca2+responses from four separate experiments.  n = 40-60 cells per condition.  
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(E) LPA-evoked Ca2+ responses in cells expressing the indicated constructs and after 

incubation with PTX (500 ng/mL), caffeine (Caff, 1 mM), CPT (500 nM), CPX (5 µM) or 

U73122 (5 µM).  Incubation time was 18 hours for PTX and 3 hours for all other compounds.  

Responses normalized to untransfected cells (Untrans).  n = 70-100 cells per condition.  (F) 

Model showing how PAP interferes with LPA receptor signaling (see text for details).  For 

(A-C), 2-way ANOVA was used to compare transfected and untransfected cells (P values 

indicated on graphs).  For (D, E), t tests were used to compare untransfected cells to 

transfected cells.  ***P  < 0.0005.  All data are presented as means ± s.e.m.  (Back to text) 
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Figure 4.13.  TM-PAP inhibits LPA-evoked Ca2+ responses via A1R but not by other 

adenosine receptor subtypes.  LPA-evoked Ca2+ responses in cells expressing mPAP-

Cherry and after incubation with CPX (5 µM; A1R antagonist), SCH58261 (500 nM; A2AR 

antagonist), MRS1754 (500 nM; A2BR antagonist), or MRS1523 (500 nM; A3R antagonist).  

n = 75 cells per condition.  T tests relative to untransfected cells.  ***P < 0.0005.  All data 

are presented as means ± s.e.m.  Untrans, TM-PAP, and TM-PAP + CPX data in this figure 

are the same as presented in Figure 4E.  (Back to text) 

 
 
 



173 
 

 
 
Figure 4.14.  Activation of protein kinase C (PKC), inhibition of protein kinase A 

(PKA) or depletion of intracellular Ca2+ stores does not explain TM-PAP effect on 

LPA-evoked Ca2+ responses.  (A) Normalized LPA (100 nM)-evoked Ca2+ responses in 

untransfected Rat1 fibroblasts and in cells transfected with TM-PAP.  The indicated cells 

were incubated with the PKC inhibitor staurosporine (Staur, 100 nM) or (B) the PKA 

inhibitor KT5720 (KT, 1 µM) for 3 hr prior to stimulation.  KT5720 did not mimic the 

effects of TM-PAP, ruling out the possibility that PAP reduces Ca2+ influx by Gαi/o-mediated 

inhibition of PKA.  n = 75 cells per condition.  T tests relative to untransfected cells.  ***P < 

0.0005.  (Back to text) 
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Figure 4.15.  TM-PAP reduces signaling through diverse pro-nociceptive receptors in 

an A1R-dependent manner.  Normalized Ca2+ responses in untransfected Rat1 fibroblasts or 

in cells transfected with the indicated constructs and stimulated with LPA (100 nM), 

thrombin (Thr, 1 U/mL), ATP (10 µM) or bradykinin (BK, 1 µM).  Some cells were 

incubated with CPX (5 µM) for 3 hr prior to stimulation.  Responses were normalized to 

untransfected cells stimulated with these ligands.  n = 70-110 cells per condition.  T tests 

relative to untransfected cells.  ***P < 0.0005.  All data are presented as means ± s.e.m.  

(Back to text) 
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Figure 4.16.  Secretory PAP inhibits pro-nociceptive receptor signaling in vivo.  (A-D) 

The hindpaws of wild-type mice (n=10 per group) were tested for noxious thermal and 

mechanical sensitivity before (baseline, BL) and after i.t. injection of S-hPAP (250 mU) or 

heat inactivated S-hPAP (0 mU).  One day later, the indicated mice were injected i.t. with (A, 

B) 5 nmol LPA or (C, D) 100 nmol ATP.  Paired t tests were used to compare responses at 

each time point (A-D) between mice injected with active S-hPAP (open squares) to mice in 

the two other groups.  *P < 0.05, **P < 0.005, ***P < 0.0005. All data are presented as 

means ± s.e.m.  (Back to text) 
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Figure 4.17.  Pap-/- mice show enhanced LPA- and ATP-induced thermal hyperalgesia 

and mechanical allodynia.  (A, B) The hindpaws of wild-type (WT) and Pap-/- mice were 

tested for (A) noxious thermal and (B) mechanical sensitivity before (baseline, BL) and after 

i.t. injection of LPA (5 nmol) or ATP (100 nmol).  n = 10 mice per genotype.  Pap-/- mice 

developed significantly greater thermal hyperalgesia (P < 0.0001 by 2-way ANOVA) and 

mechanical allodynia (P < 0.0001 by 2-way ANOVA) in response to i.t. LPA or ATP.  Post-

hoc paired t tests were used to compare responses at each time point between genotypes.  *P 

< 0.05, **P < 0.005, ***P < 0.0005.  All data are presented as means ± s.e.m.  (Back to text)  
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Figure 4.18.  Co-injection with PIP2 enhances LPA-induced hyperalgesia and allodynia.  

(A, B) The hindpaws of wild-type mice were tested for (A) noxious thermal and (B) 

mechanical sensitivity at baseline (BL).  The same day, the mice were injected i.t. with either 

LPA (5 nmol) + PIP2 (3 nmol) + carrier (Car) or LPA + Car alone, and thermal sensitivity 

was measured on the indicated days.  (C, D) The hindpaws of wild-type mice were tested for 

(C) noxious thermal and (D) mechanical sensitivity at baseline (BL).  The same day, the 

indicated mice were injected i.t. with either PIP2 (3 nmol) + carrier (Car) or carrier alone, and 

thermal sensitivity was measured. Paired t tests were used to compare groups at each time 
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point.  *P < 0.05, **P < 0.005, ***P < 0.0005. All data are presented as means ± s.e.m.  

(Back to text) 
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Figure 4.19.  Secretory PAP partially blocks the initiation of neuropathic pain.  (A, B) 

The hindpaws of wild-type mice (n=10 per group) were tested for noxious thermal and 

mechanical sensitivity before (baseline, BL) and after i.t. injection of S-hPAP (250 mU) or 

heat inactivated S-hPAP (0 mU).  One day later, peripheral nerves were injured using the 

SNI model of neuropathic pain (Injure-arrowhead).  Injured and non-injured (control) 

hindpaws were tested.  Paired t tests were used to compare responses at each time point 

between mice injected with S-hPAP (open square; injured paw) and those injected with 

inactive hPAP (open circles; injured paw).  *P < 0.05, **P < 0.005, ***P < 0.0005. All data 

are presented as means ± s.e.m.  (Back to text) 
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Table 4.1.  No significant differences in the percentage of TRPV1+ L4-L6 DRG neurons 
in WT verses Pap-/- mice 
 
    TRPV1+ DRG 

neurons 
NeuN+ 

DRG neurons 
 

% TRPV1+ 

Wild-type 1120 3141 35.7 ± 1.7 

Pap-/- 1340 4051 33.1 ± 0.7 

P = 0.115 

Percentage expressed as mean ± s.e.m.  DRG from three mice per genotype were 
immunostained and counted (total of 12 DRG sections per genotype).  Counter was blind to 
genotype. 
(Back to text) 
 
 
 
 
 
 
 
 



CHAPTER 5 

 

Ecto-5’-nucleotidase is Present in Nociceptive Neurons and Inhibits Pain Transmission 

 
ABSTRACT:  Ecto-5’-nucleotidase (NT5E) is a 5’-AMPase present in many tissues.  It 

rapidly converts 5’AMP to adenosine, affecting numerous physiologic processes.  We have 

recently shown that another ectonucleotidase, prostatic acid phosphatase (PAP), is present in 

nociceptive (pain-sensing) neurons where it plays an important role in the modulation of 

nociceptive signaling.  Previous studies hinted that NT5E is present and functional in 

nociceptive circuits, but definitive studies are lacking.  Here we show, using Nt5e knockout 

mice, that NT5E is expressed in nociceptive neurons in the DRG that terminate in laminae I 

and II of the dorsal spinal cord.  NT5E can degrade AMP to adenosine in these regions in situ 

and in vivo.  Loss of NT5E leads to increased thermal hyperalgesia and mechanical allodynia 

following inflammatory insult or peripheral nerve injury.  Conversely, injection of NT5E 

protein has antinociceptive, antihyperalgesic, and antiallodynic effects that depend on 

activation of A1-adenosine receptors.  These properties were similar to that seen following 

injection of PAP.  These studies reveal an important role for NT5E in the modulation of 

nociception, as well as highlight the potential of ectonucleotidase-targeted therapies for the 

treatment of chronic pain. 

 

This work is in preparation for submission: Sowa, N.A., Taylor-Blake, B., Voss, M., and 
Zylka, MJ.  Manuscript in preparation. 
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5.1) Introduction 

 Nucleotides play important roles in the initiation and maintenance of pain (Burnstock, 

2007; Sawynok, 2007; Tozaki-Saitoh et al., 2008; Tsuda et al., 2005).  Nucleotides like ATP 

and ADP are released extracellularly from stimulated sensory neurons and activate purinergic 

P2X and P2Y receptors on neurons and microglia.  Activation of these receptors facilitates 

neurotransmission, sensitizes neurons, and causes or enhances pain.  The effects of ATP and 

ADP are terminated through the action of ectonucleotidases.  These enzymes degrade ATP, 

ADP, and AMP in a step-wise manner to adenosine, which either acts on its receptors or is 

taken up into cells and converted back to AMP or into inosine (Sawynok and Liu, 2003; 

Zimmermann, 2006).  Activation of central adenosine receptors inhibits neuronal 

transmission and suppresses pain (Nakagawa et al., 2007; Sawynok, 2007).  Thus, 

ectonucleotidases can suppress pain in two ways: 1) through removal of pro-nociceptive ATP 

and ADP, and 2) through production of antinociceptive adenosine.   

 Ectonucleotidases have been putatively studied in nociceptive circuits for almost 50 

years (Nagy and Daddona, 1985; Scott, 1965; Scott, 1967; Suran, 1974).  Their presence was 

determined through the use of enzyme histochemical techniques that rely on the degradation 

of adenine-containing nucleotides in situ.  However, these techniques are not specific for a 

given enzyme, as several enzymes are capable of performing these reactions.  Thus, despite 

their potential importance in the modulation of pain, the exact molecular identity of the 

ectonucleotidases present in nociceptive circuits remains largely unknown.   

Recently, we identified prostatic acid phosphatase (PAP) as the first ectonucleotidase 

present in nociceptive circuits (Zylka et al., 2008).  PAP is found predominantly in 

nonpeptidergic nociceptive neurons in the dorsal root ganglia (DRG) whose axons terminate 
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in lamina II of the dorsal horn of the spinal cord.  Genetic deletion of PAP leads to enhanced 

nociceptive responses in models of inflammatory and neuropathic pain.  Further, injection of 

a soluble form of the PAP protein inhibits nociception in several pain models.  These effects 

are due to PAP’s ability to degrade AMP to adenosine and activate anti-nociceptive A1-

adenosine receptors (A1Rs).  These studies not only identified PAP as the first known 

ectonucleotidase in nociceptive circuits, but also confirmed the importance of 

ectonucleotidases in general in the modulation of pain.  Interestingly, mice null for PAP 

(Pap-/-) retain some residual AMPase activity in the DRG and dorsal spinal cord.  This led us 

to investigate the identity of additional ectonucleotidases present in these regions which may 

also be involved in nociceptive signaling. 

Ecto-5’-nucleotidase (NT5E) is a nucleoside 5’-monophosphatase that 

dephosphorylates AMP to adenosine in many different tissues.  Through this action, NT5E 

plays an important role in epithelial fluid transport, maintenance of tissue barrier function, 

adaptation to hypoxia and ischemia, and inflammation (Colgan et al., 2006).  NT5E has been 

thought to be expressed in nociceptive pathways based on enzyme histochemical studies 

using AMP as a substrate (Nagy and Daddona, 1985; Scott, 1967; Suran, 1974).  Recent 

studies also suggest a possible functional role for NT5E in the modulation of nociceptive 

signaling, based on the measurement of AMPase activity in the spinal cord (Fontella et al., 

2005; Patterson et al., 2001).  However, other enzymes, such as PAP, are also capable of 

degrading AMP to adenosine, and thus, definitive proof for the expression and function of 

NT5E in nociceptive circuits is lacking.   

Here, we used immunofluorescence in wild-type mice and mice null for NT5E (Nt5e-

/-), to definitively show that NT5E is expressed in nociceptive circuits and can degrade AMP 
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to adenosine in these regions.  Further, we showed an important functional role of NT5E in 

nociception, as loss of NT5E led to increased thermal hyperalgesia and mechanical allodynia 

following inflammation or nerve injury.  Conversely, addition of NT5E, through intraspinal 

injection of recombinant NT5E protein, had antinociceptive, antihyperalgesic, and 

antiallodynic effects that lasted for up to 2 days.  These antinociceptive properties required 

the presence of A1R, confirming that NT5E converts AMP to adenosine in vivo.  Together 

our results not only identify NT5E as one of the major AMPases in nociceptive circuits, but 

also emphasize the importance of ectonucleotidases in the modulation of nociception and 

their viability as a potential target for the treatment of chronic pain. 

 
5.2) Materials and Methods 

All procedures and behavioral experiments involving vertebrate animals were 

approved by Institutional Animal Care and Use Committee at the University of North 

Carolina at Chapel Hill. 

 

5.2.1) Molecular Biology and Protein Purification 

The mNT5E-His6 baculovirus expression clone (encompassing nt 130 -1696 from 

GenBank accession # NM_011851) was generated by PCR amplification, using a full-length 

expression construct of mNT5E as template and Phusion polymerase. PCR products were 

cloned into pAcSecG2T (BD Biosciences) and completely sequenced. Primer sequences 

contained EcoRI sites (underlined) to facilitate cloning (N-terminal primer: 5’-

cgcgaattcattgggagctcacgatcctgcacaca. C-terminal –His6 tag primer: 5’-

gcggaattcttaatgatgatgatgatgatgatggaacttgatccgcccttcaacg). This vector was used to generate 

recombinant mNT5E protein using the Bac-to-Bac Baculovirus Expression System 
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(Invitrogen). Briefly, we infected Hi5 insect cells with high-titer recombinant baculovirus, 

incubated the cells for 48 hours at 27°C, then harvested and concentrated the supernatant 

containing secreted mNT5E protein. Then, mNT5E protein was purified from the 

concentrated supernatant using Ni-NTA HisTrap agarose (GE Healthcare Life Sciences) 

affinity chromatography and imidazole as eluant.  Lastly, mNT5E protein was dialyzed 

against PBS to remove imidazole.  Protein purity was confirmed by SDS-PAGE, staining for 

total protein with GelCode Blue (Pierce/Thermo Scientific, Cat. # 24590) and western 

blotting with anti-mNT5E antibody (RD Systems, Cat. # AF4488).  Recombinant mNT5E 

was kept at 4°C for short-term (1-2 months) use and at -80°C for long-term storage. 

 

5.2.2) Tissue Preparation 

Adult male mice, 6–12 weeks of age, were sacrificed by cervical dislocation, 

decapitation, or pentobarbital overdose. Lumbar spinal cord and DRG (L4–L6) were 

dissected and then immersion fixed for 8 hr and 2 hr, respectively, in 4% paraformaldehyde, 

0.1 M phosphate buffer, pH 7.4. Tissues were cryoprotected in 20% sucrose, 0.1 M 

phosphate buffer, pH 7.3 at 4°C for 24 hr, frozen in OCT, sectioned with a cryostat at 15–20 

µm, and mounted on Superfrost Plus slides. Slides were stored at −20°C. Free-floating 

sections were sectioned at 30 µm and immediately stained. 

For DRG cultures, all DRGs were collected and pooled from adult male wild-type 

and Nt5e-/- mice.  DRGs were dissociated using collagenase (1 mg/mL; Worthington, CLS1) 

+ dispase (5 mg/mL; Gibco, 17105-041) in HBSS and neurons were cultured on poly-D-

lysine + laminin-coated glass coverslips in DH10 media (1:1 Hams F12/DMEM + 10 % FBS 
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+ 1 % penicillin/streptomycin) with 25 ng/mL GDNF (Chemicon, GF030) at 37C.  

Histochemistry was performed 72 hours after culturing. 

 

 

5.2.3) Histology 

Enzyme histochemistry was performed essentially as described previously (Zylka et 

al., 2008) using 3 mM or 6 mM AMP as substrate and Tris-maleate buffer at pH 5.6 or 7.0.  

Immunofluorescence was performed essentially as described (Zylka et al., 2005), although 

we substituted high salt TBS + TX (50 mM Tris, 2.7% NaCl, 0.3% Triton X-100, pH 7.6) for 

PBS + TX in all wash and antibody incubation steps. Additional antibodies included 1:50 

(DRG) or 1:100 (spinal cord) sheep anti-NT5E (AF4488, R+D Systems), 1:750 rabbit anti-

CGRP (T-4032; Peninsula), 1:250 mouse anti-NeuN (MAB377, Chemicon), 1:750 rabbit 

anti-P2X3 (RA10109, Neuromics), 1:750 rabbit anti-TRPV1 (RA14113, Neuromics), 1:600 

(DRG) or 1:750 (spinal cord) chicken anti-GFP (GFP-1020, Aves), 1:500 rabbit anti-NF200 

(AB1982, Chemicon), and 1:4000 chicken anti-human PAP (in-house), with amplification as 

described previously (Zylka et al., 2008).  Secondary antibodies used included 1:25 rat anti-

mouse IgG1-FITC (Zymed/Invitrogen), 1:200 donkey anti-chicken IgY-Biotin (Jackson), 

1:200 donkey anti-chicken IgY-FITC (Jackson).  IB4 (Invitrogen) was used at 1:100.  Images 

were obtained using a Leica TCS-NT confocal microscope. 

 

5.2.4) Intrathecal Injections 

We used concentrated mNT5E protein (0.34 units/µL; 0.48 µg/µL) for injections.  

mNT5E activity was determined by malachite green assay using AMP as substrate at pH 7.0 



187 
 

as described previously (Sowa et al., 2009).  For injections of AMP and ITU, 5’-adenosine 

monophosphate (Fluka, 01930) and 5-iodotubericidin (Biomol, EI-293) were made up in 

0.9% saline and DMSO stock solutions and diluted to final concentrations in 0.9% saline.  

All solutions were intrathecally injected (5 µL) into unanesthetized mice using the direct 

lumbar puncture method (Fairbanks, 2003).   

 

5.2.5) PIP2 Quantification 

For quantification of PIP2 in dorsal root ganglia (DRG), age-matched, adult male 

C57BL/6, A1R
-/-, or Nt5e-/- mice were sacrificed and L3-L6 DRGs were dissected bilaterally 

(n=8 ganglia / sample) and placed in PBS on ice.  For each sample, DRG wet weight was 

determined and then lipids were extracted and quantified using the PI(4,5)P2 Mass ELISA 

Kit from Echelon (K-4500) following the manufacturer’s protocol.  PIP2 levels were 

normalized by dividing by the wet weight of the DRG tissue.   

 

5.2.6) Behavior 

Nt5e-/- and A1R
−/−  mice were backcrossed to C57BL/6 mice (Jackson) for 10 and 12 

generations, respectively. Isogenic wild-type mice were then derived from the Nt5e-/- line and 

used as wild-type controls. C57BL/6 male mice were purchased from Jackson Laboratories 

for all behavioral experiments involving mNT5E protein injections. Unless indicated 

otherwise, male mice, 2–4 months old, were used for all behavioral experiments. All mice 

were acclimated to the testing room, equipment, and experimenter for 1–3 days before 

behavioral testing. The experimenter was blind to genotype and protein injection during 

behavioral testing. 
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Thermal sensitivity was measured by heating one hindpaw with a Plantar Test 

apparatus (IITC) following the Hargreaves method (Hargreaves et al., 1988). The radiant 

heat source intensity was calibrated so that a paw-withdrawal reflex was evoked in ~ 10 s., 

on average, in wild-type C57BL/6 mice. Cutoff time was 20 s. One measurement was taken 

from each paw per day to determine paw-withdrawal latency, with the exception of the AMP 

± ITU experiments, where measurements were made every hour for 6 hours after injection.   

To perform the tail-immersion assay, mice were gently restrained in a towel and the distal 

one-third of the tail was immersed in 46.5°C or 49°C water. Latency to withdrawal the tail 

was measured once per mouse. For the hot plate test, mice were placed on a metal surface 

heated at 52°C or 55ºC and latency to jump or lick the hindpaws was measured. Mechanical 

sensitivity was measured using semiflexible tips attached to an electronic von Frey apparatus 

(IITC) as described elsewhere (Cunha et al., 2004; Inoue et al., 2004). Three measurements 

were taken from each paw (separated at 10 min intervals) then averaged to determine paw-

withdrawal threshold in grams.   

To induce inflammatory pain, 20 µl complete Freund's adjuvant (CFA, from Sigma or 

MP Biomedicals) was injected into one hindpaw, centrally beneath glabrous skin, with a 30G 

needle.  The spared nerve injury (SNI) model of neuropathic pain was performed as 

described (Shields et al., 2003). 

 

5.3) Results 

5.3.1) NT5E is Expressed in DRG Sensory Neurons and Produces Adenosine 

 NT5E is thought to be expressed in mouse DRG and spinal cord based on 

histochemical assays that utilize the degradation of nucleotide monophosphates to stain these 
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tissues.  However, other enzymes present in these regions, such as  PAP, are also capable of 

degrading nucleotide monophosphates (Zylka et al., 2008).  It is thus difficult to conclude 

based solely on functional assays if NT5E is indeed expressed in DRG and spinal cord.  To 

test if NT5E protein is expressed in these regions, we performed double-label 

immunofluorescence with a commercially available anti-NT5E antibody and antibodies for 

various sensory neuron markers in these tissues.  The anti-NT5E antibody specificity was 

confirmed by both an absence of staining when primary antibody was excluded and an 

absence of staining in tissues from Nt5e-/- mice (data not shown) (Thompson et al., 2004a).   

In agreement with published studies using histochemical staining, NT5E is 

predominantly expressed in small diameter DRG neurons, with only a small percentage of 

large-diameter neurons showing NT5E staining (Figures 5.1A-5.1V).  Cell counts from 

confocal images revealed that only 4.5 ± 0.9% of NT5E+ neurons express NF200, a marker 

of myelinated neurons (Figures 5.1T-5.1V and Table 5.1).  NT5E is expressed in the vast 

majority of nonpeptidergic DRG neurons, as defined by the markers IB4, Mrgprd-EDGPf, 

and P2X3 (Figures 5.1D-5.1L and Table 5.1).  Interestingly, nearly all NT5E+ neurons also 

express PAP, which is also predominantly found in nonpeptidergic nociceptors (Figures 

5.1A-5.1C and Table 5.1) (Zylka et al., 2008).  In addition, NT5E was also expressed in a 

substantial number (38.0 ±2.4%) of peptidergic CGRP+ neurons (Figures 5.1M-5.1O and 

Table 5.1).  Fittingly, NT5E+ axons terminated in both laminae I and II in the spinal cord in 

association with peptidergic and nonpeptidergic axons, respectively (Figures 5.2A-5.2M).  

Finally, 18.9 ± 2.4% of NT5E+ neurons express the capsaicin and noxious heat receptor 

TRPV1 (Figures 5.1P-5.1S and Table 5.1).  Together, these imaging studies show that NT5E 
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protein is in fact expressed in DRG and spinal cord, predominantly in nonpeptidergic, but 

also in peptidergic nociceptive neurons.   

 To test if it NT5E degrades AMP in nociceptive circuits, we stained spinal cord as 

well as DRG sections and cultures from WT and Nt5e-/- mice using AMP histochemistry at 

pH 7.0.  In spinal cord, AMP histochemical staining was dramatically reduced in Nt5e-/- mice 

relative to WT in laminae I and II of the dorsal horn, where NT5E+ axons terminate (Figure 

5.3A-5.3D).  This loss of staining in  Nt5e-/- mice was not due to loss of axon terminals in the 

dorsal horn (Figure 5.4).  In WT DRG sections, staining was most intense in small-diameter 

neurons, fibers, and the epineural sheath, with some weak granular cytoplasmic staining in 

large-diameter neurons (Figure 5.3E).  In DRG sections from Nt5e-/- mice, staining was much 

less intense in small-diameter and large-diameter neurons, while fiber and epineural staining 

was almost entirely eliminated (Figure 5.3F).  The reduction in staining in Nt5e-/- mice was 

not due to developmental loss of DRG neurons, as wild-type and Nt5e-/- mice had equivalent 

numbers of P2X3-expressing neurons and CGRP-expressing neurons relative to all NeuN+ 

neurons in lumbar ganglia (Table 5.2).  In DRG neurons cultured from WT animals, staining 

is seen predominantly in small-diameter neurons in both the cell body and the projecting 

neurites (Figure 5.3G).  The cellular staining is reduced in cultured DRG neurons from Nt5e-

/- mice, and strikingly, the neurite staining is completely eliminated (Figure 5.3H).  Residual 

staining in both the DRG and spinal cord is most likely due to PAP activity, which we have 

previously shown to be an AMPase in these regions (Zylka et al., 2008).  Together these data 

show that NT5E is present in nociceptive neurons and can degrade AMP to locally produce 

adenosine. 
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5.3.2) NT5E Protein and AMPase Activity are Reduced in the Spinal Cord Following 

Nerve Injury   

 Many genes are up- and down-regulated following nerve injury and can impact the 

development or maintenance of subsequent neuropathic pain.  For example, PAP is 

downregulated in DRG and spinal cord following nerve injury (Costigan et al., 2002; Davis-

Taber and Scott, 2006), and restoring PAP activity can attenuate neuropathic pain behaviors 

in mice (Zylka et al., 2008).  To determine if NT5E protein and activity levels were altered 

following nerve injury, we conducted immunofluorescence and AMP histochemistry on 

lumbar spinal cord collected from WT mice fourteen days after unilateral sciatic nerve injury 

using the spared nerve injury (SNI) model.  In this model, the peroneal and sural branches of 

the sciatic nerve are ligated, while the tibial branch is left intact.  This injury results in 

profound ipsilateral mechanical allodynia and mild thermal hyperalgesia.  Strikingly, nerve 

injury resulted in the complete loss of NT5E protein expression and a decrease in AMPase 

activity in the regions of lamina II of the spinal cord that receive input from the transected 

peroneal and sural nerves (Figure 5.5A-5.5E).  IB4 labeling was reduced in these regions, 

while CGRP labeling was unaltered.  This loss of NT5E expression and activity following 

nerve injury could contribute to the subsequent development of mechanical allodynia and 

thermal hyperalgesia associated with neuropathic pain. 

 

5.3.3) Chronic Pain-induced Thermal Hyperalgesia and Mechanical Allodynia are 

Enhanced in Nt5e-/- Mice. 

 Since our imaging studies suggest NT5E is expressed in nociceptive neurons, we next 

tested age-matched WT C57BL/6 and Nt5e-/- male mice in a number of acute and chronic 
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pain behavioral assays.  We found no significant differences between genotypes using a 

measure of acute mechanical sensitivity (electronic von Frey) (Table 5.3).  In examining 

acute thermal sensitivity, we saw no significant differences between the genotypes in the 

Hargreaves radiant light source or hotplate tests.  However, Nt5e-/- mice did have shorter 

latencies in the tail immersion test at both temperatures studied (46.5ºC and 49ºC), indicating 

an increased acute thermal sensitivity in this assay (Table 5.3).  In addition, Nt5e-/- mice 

showed significantly greater thermal hyperalgesia and mechanical allodynia compared to WT 

in the complete Freund’s adjuvant (CFA) model of inflammatory pain (Figures 5.6A, 5.6B).  

Further, Nt5e-/- mice showed significantly greater thermal hyperalgesia in the SNI model of 

neuropathic pain (Figures 5.6C, 5.6D).  Taken together, Nt5e-/- mice show only a slight 

increase in acute thermal sensitivity and no change in acute mechanical sensitivity at 

baseline, but develop significantly greater thermal hyperalgesia and mechanical allodynia 

following inflammation or nerve injury.  Interestingly, similar patterns of behavior are also 

seen in Pap-/- and A1-adenosine receptor knockout mice (A1R
-/-) (Wu et al., 2005; Zylka et al., 

2008). 

 We have recently shown that chronic activation of A1Rs through the AMPase action 

of PAP leads to depletion of intracellular stores of the phospholipid phosphatidylinositol 4,5-

bisphosphate (PIP2) (Figure 4.8).  Conversely, PIP2 levels are significantly higher in Pap-/- 

mice compared to wild type animals (Figure 4.11A), and this elevation in PIP2 corresponds 

with increased responses to pro-nociceptive compounds, including CFA.  Since both PAP 

and NT5E are AMPases that make adenosine and activate A1Rs, we measured PIP2 levels in 

L3-L6 DRG from Nt5e-/- and A1R
-/- mice and compared them to wild type controls.  PIP2 

levels were significantly increased in Nt5e-/- and A1R
-/- mice (Figure 5.7), suggesting that loss 
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of A1R activation leads to increases in PIP2, which may be responsible for the enhanced 

nociception seen in Nt5e-/-, A1R
-/-, and Pap-/- mice.   

 

5.3.4) Nt5e-/- Mice are Deficient in Degrading AMP in the Spinal Cord in vivo 

 Numerous studies have shown the antinociceptive properties of adenosine and 

adenosine analogs acting on A1Rs in the spinal cord (Hayashida et al., 2005; Lavand'homme 

and Eisenach, 1999; Sawynok, 2007).  Further, AMP has antinociceptive properties when 

infused into the spinal cord in the setting of capsaicin-induced mechanical hyperalgesia 

(Patterson et al., 2001).  This effect was proposed to be due to AMP degradation to adenosine 

by NT5E and other ectonucleotidases.  We thus utilized the antinociceptive effects of AMP 

to look at the role of NT5E in the degradation of exogenous AMP to adenosine in the spinal 

cord. 

 To test this, we measured thermal sensitivity in WT, Nt5e-/-, and A1R
-/- mice before 

and after intrathecal (i.t.) injection of a combination of AMP and the adenosine kinase 

inhibitor 5-iodotubercidin (ITU).  Adenosine kinase inhibitors block phosphorylation of 

adenosine to AMP and prolong the half-life of extracellular adenosine (Kowaluk and Jarvis, 

2000).  We found it was necessary to combine AMP and ITU, as injection of either 

compound alone had no effect on thermal sensitivity (Figure 5.9A, 5.9B).  Injection of AMP 

+ ITU significantly increased paw withdrawal latency to a noxious thermal stimulus for up to 

2 hours in WT and Nt5e-/- mice (Figure 5.8A).  However, the effect was significantly greater 

in WT mice compared to Nt5e-/- mice, suggesting that NT5E is at least partly responsible for 

the AMPase activity in WT animals.  There was no effect of AMP + ITU in A1R
-/- animals, 
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showing that adenosine receptor activation is required for the antinociceptive effect of these 

compounds (Figure 5.8A).   

We also examined the effect of AMP + ITU in the setting of ongoing inflammation.  

We injected one hindpaw of WT and Nt5e-/- mice with CFA to induce thermal hyperalgesia.  

One day later, i.t. injection of AMP + ITU significantly reduced thermal hyperalgesia in the 

injected paw for up to three hours in WT mice and for up to two hours in Nt5e-/- mice (Figure 

5.8B).  The antinociceptive effect was also significantly less in Nt5e-/- mice compared to WT.  

Taken together, these data show that NT5E is capable of degrading AMP to adenosine to 

reduce thermal nociception in vivo. 

 

5.3.5) Recombinant Mouse NT5E Protein has Long-lasting Antinociceptive Properties 

through Activation of A 1Rs 

 We desired to inject a soluble form of NT5E protein to see if it had long-lasting 

antinociceptive properties similar to soluble PAP (Sowa et al., 2009; Zylka et al., 2008).  

However, the only source of soluble NT5E protein available was a purified version of the 

protein from snake venom (Croatalus species, (Aird, 2005)).  We were concerned about 

injecting snake proteins into mice, and thus attempted to make a recombinant version of the 

mouse NT5E protein using the baculovirus expression system.  We have previously used this 

system to produce large quantities of functional recombinant mouse PAP (Sowa et al., 2009).    

 We generated a baculovirus expression construct containing a version of NT5E where 

the C-terminal GPI anchor was removed and replaced by a hexahistidine (H6) epitope tag ( 

mNT5E-His6, henceforth referred to as mNT5E) (Figure 5.10A, 5.10B).  We detected large 

quantities of mNT5E protein in the tissue culture supernatant of Hi5 insect cells two days 
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after infection with recombinant baculovirus.  We purified mNT5E from supernatant in one 

step, using nickel chelate affinity chromatography.  We confirmed protein purity by running 

mNT5E on a SDS-PAGE gel and staining for total protein and western blotting (Figure 

5.10C).  In both cases, we observed one predominant band at ~60 kDa, corresponding to the 

calculated molecular weight of mNT5E.  This purified, recombinant mNT5E protein 

effectively dephosphorylated AMP at pH 7.0, indicating the protein is fully functional 

(Figure 5.10D).   

 We next tested mNT5E’s ability to modulate nociception in vivo.  We measured 

thermal and mechanical sensitivity in WT and A1R
-/- mice before and after initiation of 

inflammatory pain by intraplantar injection of CFA into one hindpaw.  As seen previously 

(Wu et al., 2005), A1R
-/- mice develop significantly greater thermal hyperalgesia in response 

to CFA injection (Figure 5.11A).  One day later, we injected all animals i.t. with 1.7 units 

(2.4 µg) mNT5E.  In WT mice, mNT5E caused a significant reversal of both thermal 

hyperalgesia and mechanical allodynia in the injected paw that lasted for 2 days (Figure 

5.11A, 5.11B).  In addition, paw withdrawal latency also increased in the contralateral, 

uninjected control paw for up to 2 days.  However, mechanical sensitivity was unchanged in 

the control paw.  Thus, mNT5E can reduce thermal nociception in the naïve and 

inflammatory states, while only affecting mechanical sensitivity in the inflammatory state.  

No change in thermal or mechanical sensitivity was seen in the inflamed or control paws of 

A1R
-/- mice after mNT5E injection, suggesting the protein is affecting nociception through 

activation of A1Rs.  In all cases, mNT5E did not cause paralysis or sedation.  Taken together, 

recombinant mNT5E inhibits nociception through production of adenosine and activation of 

A1Rs. 
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5.4) Discussion 

 NT5E has been studied in a number of tissues, including colon, kidney, brain, liver, 

heart, and lung (Colgan et al., 2006; Yegutkin, 2008).  Detection of NT5E in these tissues has 

been largely dependent on enzyme histochemistry, as studies using antibodies directed 

specifically against NT5E have shown conflicting results (Braun et al., 1994; Schoen et al., 

1988; Zimmermann, 1996).  These histochemical studies typically use AMP as a substrate at 

neutral pH.  However, this is not specific for NT5E activity, as other enzymes, including 

PAP, are also capable of degrading AMP under these conditions (Zylka et al., 2008).  In the 

brain, a recent study confirmed that NT5E is expressed broadly in the cortex, hippocampus, 

and cerebellum using enzyme histochemistry in Nt5e-/- mice (Langer et al., 2008).  However, 

such definitive studies have not been done in the spinal cord or DRG.  Thus, while NT5E-

like activity had been assumed to be present in these regions, prior to our study there was no 

direct experimental proof that NT5E was expressed and functioned in nociceptive circuits.   

 In order to address this, we used a commercially available antibody directed against 

recombinant mouse NT5E protein to show the expression of NT5E in spinal cord and DRG.  

These studies show that NT5E is indeed expressed in DRG neurons, primarily in the small-

diameter, unmyelinated subset.  The majority of NT5E+ neurons also express markers of the 

nonpeptidergic subclass of DRG neurons, while a smaller, but still substantial percentage of 

NT5E+ neurons express the peptidergic marker CGRP (Figure 5.1).  Fittingly, NT5E protein 

is seen predominantly in the spinal cord in laminae I and II of the dorsal horn, where 

peptidergic and nonpeptidergic neurons terminate.  Further, these immunofluorescence 

studies agree with our own enzyme histochemistry studies, which show abundant AMPase 
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activity in small diameter DRG neurons and the superficial laminae of the dorsal horn.  This 

AMPase activity is severely reduced in Nt5e-/- mice, confirming the ability of NT5E to 

degrade AMP in situ (Figures 5.3A-D).  We are thus the first to show definitively that NT5E 

protein is expressed in nociceptive circuits and is responsible for at least some of the 

AMPase activity seen in these regions.   

 Given that NT5E is expressed in nociceptive neurons and can generate adenosine, it is 

not surprising that genetic deletion of NT5E leads to changes in pain sensation.  Indeed, 

Nt5e-/- mice show increased thermal sensitivity in the tail immersion test at baseline and 

increased thermal hyperalgesia and mechanical allodynia in inflammatory and neuropathic 

pain states (Figures 5.6A-D).  Importantly, this particular phenotype is nearly identical to that 

seen in A1R
-/- mice (Wu et al., 2005) and very similar to that seen in Pap-/- mice (Zylka et al., 

2008).  It is thus likely that both NT5E and PAP are acting through a similar mechanism – 

production of adenosine from the degradation of AMP and subsequent activation of A1Rs.   

NT5E+ neurons are ideally located to act on A1Rs, as these receptors are concentrated 

in lamina II of the spinal cord, specifically in close contact with IB4+ neurons and in small- 

to medium-diameter DRG neurons (Schulte et al., 2003).  Thus, NT5E can act locally to 

generate extracellular adenosine and modulate A1Rs on presynaptic terminals and 

postsynaptic neurons in the dorsal horn of the spinal cord.  A1R activation at these sites 

inhibits presynaptic glutamate release from unmyelinated terminals and inhibits postsynaptic 

neurons in the substantia gelatinosa of the spinal cord (Lao et al., 2001; Li and Perl, 1994; 

Patel et al., 2001).  In addition, we have recently shown that PAP, through chronic activation 

of A1Rs, can deplete intracellular stores of PIP2 in DRG (Figures 4.8, 4.11).  This PIP2 

depletion decreases pro-nociceptive signaling through the noxious heat sensor TRPV1 and 
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GPCRs.  Pap-/- mice have increased levels of PIP2 in their DRG, corresponding with 

increased nociception.  Nt5e-/- and A1R
-/- mice also show elevated levels of PIP2 in DRG 

compared to wild type animals, again corresponding with increased nociception (Figure 5.7).  

Whether loss of NT5E activity at A1Rs is directly leading to this increase in PIP2 requires 

further study, but remains a potential mechanism for the inhibition of nociception by 

endogenous NT5E.  Regardless of its exact mechanism of action downstream of A1Rs, our 

data suggest that modulation of NT5E activity is a promising new therapeutic approach for 

the treatment of chronic pain. 

 

5.4.1) The Role of Multiple AMPases in Nociceptive Circuits 

 Recently, we were the first to identify PAP as an ectonucleotidase in nociceptive 

circuits (Zylka et al., 2008).  PAP is expressed in small-diameter, predominantly 

nonpeptidergic DRG neurons, degrades AMP to adenosine in vitro and in vivo, and inhibits 

thermal hyperalgesia and mechanical allodynia induced by inflammation or nerve injury 

through activation of A1Rs.  In the course of our studies, we recognized that while PAP was 

partly responsible for the visible AMPase activity in DRG and lamina II of spinal cord, some 

of this activity remained in Pap-/- mice, suggesting there is at least one additional 

ectonucleotidase in these regions.  Here, we have shown that NT5E is largely responsible for 

this remaining AMPase activity.  Somewhat surprisingly, not only is NT5E expressed in 

these regions, but its expression pattern closely mimics that of PAP.  Like PAP, NT5E is 

found predominantly in nonpeptidergic DRG neurons, as defined by the markers P2X3, IB4, 

and MrgprD.  In fact, virtually all (95.5 ± 1.1%) NT5E+ neurons also express PAP, while the 

vast majority of PAP+ neurons also express NT5E (82.7 ± 1.5%).  In addition, NT5E and 



199 
 

PAP expression overlap significantly in the dorsal horn of the spinal cord, although PAP 

seems to be limited to lamina II, while NT5E extends slightly into lamina I as well.    

Why is there overlap in the expression of two enzymes that seemingly perform the 

same action, namely degradation of AMP to adenosine?  While both NT5E and PAP can 

indeed dephosphorylate AMP, their functional profiles are very different.  NT5E hydrolyses 

exclusively 5’-monophosphates, with 5’-AMP being its favored substrate (Zimmermann, 

1992).  Its Km for AMP is in the low micromolar range and its pH optimum is somewhere 

between 7 and 8 (Zimmermann, 1992).  PAP, on the other hand, is capable of 

dephosphorylating numerous substrates, including para-nitrophenyl phosphate (p-NPP), β-

glycerophosphate, lysophosphatidic acid, and many nucleotides, especially nucleotide 

monophosphates (AMP, TMP, XMP, CMP, GMP, IMP, and UMP) (Ostrowski and Kuciel, 

1994; Silverman and Kruger, 1988a).  Among adenine-containing nucleotides, PAP can 

dephosphorylate AMP, ADP, and ATP at acidic pH (with relative activity AMP > ADP > 

ATP), but predominantly acts on AMP at neutral pH (Sowa et al., 2009).  The Km of PAP for 

AMP at neutral pH is in the low millimolar range, and the enzyme has activity over a very 

broad pH range (pH 4 – 8) (Dziembor-Gryszkiewicz et al., 1978; Lam et al., 1973; Sowa et 

al., 2009).   

Thus, while both NT5E and PAP are capable of degrading AMP, their functional 

properties hint at different roles depending on the conditions outside of the cell.  At normal 

extracellular pH, it seems NT5E is much better suited to rapidly degrade AMP to adenosine, 

as it has a much greater affinity for AMP than PAP under these conditions.  However, when 

external pH deviates from neutral, PAP is still capable of making adenosine, while NT5E is 

not.  This is particularly important considering that tissue injury produces an “inflammatory 
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soup” containing protons and nucleotides that can reduce extracellular pH (Julius and 

Basbaum, 2001).  Under “resting” conditions NT5E may be more important than PAP in the 

degradation of AMP, but PAP might play a more vital role following repeated neuronal 

activation or inflammation.  Studies of AMP degradation under different conditions in vivo in 

mice lacking one or both of the enzymes might help clarify their specific roles.   

In addition, while NT5E is limited in its activity to 5’-nucleoside monophosphates, 

PAP is much more promiscuous and might also be important in the dephosphorylation of 

other substrates.  For example, PAP is capable of directly degrading pro-nociceptive 

compounds like lysophosphatidic acid and creating antinociceptive compounds like 2-

arachidonylglycerol (Hillard, 2000; Nakane et al., 2002; Sugiura et al., 2000; Tanaka et al., 

2004).  While our previous studies pointed to PAP’s AMPase activity as the main source of 

its antinociceptive action, it is possible PAP is also important in the degradation of pro-

nociceptive compounds or the production of antinociceptive compounds under conditions we 

haven’t examined.   

Finally, while our data suggest that NT5E and PAP are the main AMPases present in 

the DRG and dorsal horn of the spinal cord, the possibility remains that there are other 

ectonucleotidases in these regions that could also make adenosine from AMP.  For example, 

alkaline phosphatases are non-specific phosphomonoesterases which are capable of 

degrading nucleoside 5’-tri-, -di-, and –monophosphates, including AMP (Zimmermann, 

2006).  Tissue-nonspecific alkaline phosphatase (TNAP) is expressed in the spinal cord, but 

its detailed expression and role in modulation of nociceptive signaling has not been studied.  

Further, while AMP conversion to adenosine is the rate-limiting step in the pathway of 

degradation of ATP to adenosine, other ectonucleotidases, such as E-NTPDases, are capable 



201 
 

of catalyzing the upstream reactions of ATP and/or ADP dephosphorylation (Zimmermann, 

2006).  These enzymes have not been studied in the nociceptive system, and given the 

importance of adenine nucleotides in pain signaling, they could also be important targets for 

the treatment of chronic pain.     

 

5.4.2) Therapeutic Potential of Recombinant NT5E 

 A promising and exciting new approach for the treatment of chronic pain is the use of 

recombinant NT5E protein.  Here we have shown that purified recombinant mouse NT5E is 

has long-lasting antinociceptive properties.  In fact, a single i.t. injection lasted for several 

days and was antihyperalgesic specifically in the thermal modality in uninjured animals and 

was antihyperalgesic and antiallodynic in CFA-inflamed animals.  These effects were 

dependent on A1R activation, confirming that recombinant mNT5E acts through the 

production of adenosine from AMP.  The nature and duration of the antinociceptive effects 

of mNT5E are similar to purified human PAP (hPAP) and recombinant mouse PAP (mPAP), 

both of which also act through activation of A1Rs (Sowa et al., 2009; Zylka et al., 2008).  

Amazingly, like hPAP and mPAP, a single injection mNT5E has antinociceptive properties 

that are similar in magnitude but much longer in duration than the commonly used analgesic 

morphine (Zylka et al., 2008). 

 Somewhat surprising is the absence of obvious side effects following injection of 

mNT5E.  While adenosine A1R agonists have antinociceptive properties in humans and in 

animal models of chronic inflammatory and neuropathic pain (Hayashida et al., 2005; 

Lavand'homme and Eisenach, 1999; Sawynok, 2007), they are not clinically used due to 

severe side effects, including transient lower back pain and motor paralysis at high doses 
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(Belfrage et al., 1999; Eisenach et al., 2003; Sawynok, 2007).  Motor side effects are not 

surprising, given the high expression of A1Rs in motor neurons (Reppert et al., 1991).  While 

mNT5E presumably produces adenosine and activates A1Rs throughout the spinal cord, we 

do not see motor effects at the dose of mNT5E tested.  This could be due to the fact that, as 

an enzyme, the amount of adenosine produced by mNT5E is limited by the substrate 

concentration, in this case AMP.  Thus, mNT5E may be producing a sufficient amount of 

adenosine in the dorsal horn of the spinal cord to mediate antinociception, but not enough to 

inhibit motor function in the ventral horn.  This catalytic restriction could also explain the 

absence of motor side effects following injection of hPAP or mPAP (Sowa et al., 2009; 

Zylka et al., 2008).   

 Recombinant proteins are routinely used to treat a number of human diseases and 

disorders.  These proteins are relatively easy to produce and purify and are safe to use in 

humans.  Thus, it is likely that a recombinant human form of NT5E could be produced as a 

treatment for not only chronic pain, but also for a number of other conditions where 

production of adenosine is important in mediation of the disease process.  In fact, 

administration of NT5E is beneficial in other experimental scenarios.  For example, soluble 

NT5E promotes vascular barrier function and decreases neutrophil accumulation in 

inflammatory models of lung disease, reduces macrophage trafficking in ischemic brain 

tissue, protects renal tissue from ischemic injury, and decreases myocardial infarct size 

through ischemic preconditioning (Eckle et al., 2007b; Eltzschig et al., 2004; Grenz et al., 

2007; Petrovic-Djergovic et al., 2007; Reutershan et al., 2009; Thompson et al., 2004b).  The 

NT5E used in these studies is not human, but rather collected from the venom of rattlesnakes 

(typically from the genera Crotalus) (Aird, 2005).  Obviously, the development of a 



203 
 

recombinant form of the human NT5E protein would be much more desirable for therapeutic 

purposes in humans.  Such a protein, when delivered locally, could play an important role in 

the treatment not only of chronic pain, but of many disease processes, including myocardial 

ischemia/infarction, stroke, acute lung injury, and renal failure. 

 



204 
 

5.5) Figures and Tables 

 

Figure 5.1.  NT5E is expressed primarily in nonpeptidergic DRG neurons.  (A-V) Mouse 

L4-L6 DRG neurons were stained with antibodies against various sensory neuron markers 

(green) and with antibodies against NT5E (red).  Arrowheads mark examples of double-

labeled cells.  Images were acquired by confocal microscopy.  Scale bar (see panel V) is 50 

µm for all panels.  (Back to text) 
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Figure 5.2.  NT5E protein is localized primarily to nonpeptidergic and some peptidergic 

axon terminals in dorsal spinal cord.  Lumbar spinal cord sections were double-labeled 

with antibodies against selected axonal markers (A, D, G, J; green) and NT5E (B, E, H, K; 

red). IB4, Mrgprd∆EGFPf , and PAP mark nonpeptidergic endings in lamina II. CGRP marks 

peptidergic endings in lamina I.  Images were acquired by confocal microscopy. Scale bar: 

150 µm for all panels.  (Back to text) 
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Figure 5.3.  NT5E has AMPase activity in nociceptive circuits.  (A-D) Spinal cord, (E, F) 

lumbar DRG, and (G, H) cultured DRG neurons from wild-type (WT) and Nt5e-/- adult mice 

stained with AMP histochemistry.  (A, B) Staining was primarily localized to the dorsal horn 

(arrowhead) of spinal cord, and was diminished in Nt5e-/- mice.  (C, D) are the same spinal 

cords from (A, B) at higher magnification.  (E, F) Staining was diminished in cell bodies of 

DRG neurons and eliminated in fibers and epineurium in Nt5e-/- mice.  (G, H) Staining was 

diminished in DRG cell bodies and eliminated in neurites in Nt5e-/- mice (arrowheads).  AMP 
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(3 mM in [A-D] and 6 mM in [E-H]) was used as substrate, and buffer was pH 7.0.  Scale bar 

is 500 um in (A) and (B), 200 um in (C) and (D), and 50 um in (E-H).  (Back to text)   
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Figure 5.4.  Axon terminals are anatomically normal in Nt5e-/- mice.  Lumbar spinal cord 

sections from (A) wild-type and (B) Nt5e-/- mice were stained with antibodies to CGRP (to 

mark peptidergic nerve endings), isolectin B4 (IB4, to mark nonpeptidergic nerve endings) 

and antibodies to protein kinase C-γ (PKCγ, to mark interneurons in laminas IIinner and III).  

Confocal image analysis revealed no gross anatomical differences between genotypes (n=2 

mice from each genotype). Scale bar: 100 µm.  (Back to text) 
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Figure 5.5.  NT5E protein and activity is reduced following peripheral nerve injury.   

(A-E) Lumbar spinal cord from a wild-type mouse (A) stained using AMP histochemistry or 

labeled with antibodies against the indicated axonal markers 14 days after unilateral injury to 

the left peroneal and sural nerves.  The region of the spinal cord receiving innervation from 

these injured nerves (arrowheads) showed reduced staining and labeling.  For (A) AMP (3 

mM) was used as substrate and buffer pH was 7.0.  Scale bar 200 µM.  (Back to text) 
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Figure 5.6.  Nt5e-/- mice show enhanced nociceptive responses following inflammation 

and nerve injury.  (A, B) CFA inflammatory pain model.  Wild-type and Nt5e-/- mice were 

tested for (A) thermal and (B) mechanical sensitivity before (BL) and following injection of 

CFA (arrow) into one hindpaw.  The contralateral hindpaw served as control.  (C, D) SNI 

neuropathic pain model.  Wild-type and Nt5e-/- were tested for (C) thermal and (D) 

mechanical sensitivity prior to (BL) and after ligation and transaction of the sural and 

common peroneal branches of the sciatic nerve.  (A-D) Paired t tests were used to compare 

responses at each time point between wild-type and Nt5e-/- mice (n = 10 per genotype); same 

paw comparisons.  *P < 0.05, **P < 0.005, ***P < 0.0005.  All data are presented as means 

± s.e.m.  (Back to text) 



211 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7.  PIP2 levels are increased in A1R
-/- and Nt5e-/- mice.  PIP2 levels in L3-L6 DRG 

were quantified in wild-type (WT) mice, A1R
-/- mice, and Nt5e-/- mice.  n=3 mice per 

condition.  *P < 0.05 compared to WT by paired t test.  Values are means ± s.e.m.  (Back to 

text) 
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Figure 5.8.  NT5E degrades AMP to adenosine in vivo.  (A) AMPase-induced 

antinociception in wild-type (WT), Nt5e-/-, and A1R-/- mice.  Thermal sensitivity was 

measured at baseline (BL) and after i.t. injection of AMP (200 nmol) + 5-iodotubercidin 

(ITU; 5 nmol).  Paired t tests were used to compare responses at each timepoint to BL values 

(black asterisks) within a given genotype (n = 8 mice per genotype).  Paired t tests were also 

used to compare responses at each time point between WT and Nt5e-/- mice (red asterisks).  

(B) AMPase-induced antinociception in WT and Nt5e-/- mice following inflammation.  Mice 

were tested for thermal sensitivity before (BL) and after injection of CFA (arrowhead) into 

one hindpaw.  One day later, all mice were injected i.t. with AMP (200 nmol) + ITU (5 nmol) 

and thermal sensitivity was measured for several hours after injection.  Paired t tests were 

used to compare responses following AMP + ITU injection to the response 1 day after CFA 

injection in the same paw.  n = 8 mice per genotype.   *P < 0.05, **P < 0.005, ***P < 

0.0005.  All data are presented as means ± s.e.m.  (Back to text) 
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Figure 5.9.  Injection of AMP or 5-iodotubercidin (ITU) alone has no effect on thermal 

sensitivity.  Thermal sensitivity was measured before (baseline, BL) or after intrathecal (i.t.) 

injection with (A) AMP (200 nmol) or (B) ITU (5 nmol).  No significant differences from BL 

values were seen in any genotype.  n = 8 mice per genotype.  All data are presented as means 

± s.e.m.  (Back to text) 
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Figure 5.10.  Purification of recombinant mNT5E.  (A) A hexahistidine tag (H6) and stop 

codon (*) were added to the C-terminus of mouse NT5E.  Map is not drawn to scale. (B) 

Amino acid sequence at the junction between the catalytic domain and H6 tag.  A four 

amino-acid putative GPI anchor site (arrow) was removed at the C-terminus, just upstream of 

the H6 tag.  Asterisk marks stop codon. (C) GelCode blue-stained SDS-PAGE gel and 

western blot of purified recombinant mNT5E protein (1 mg and 5 mg, respectively). The 

western blot was probed with an anti-NT5E antibody.  (D) AMP (400 µM) degradation by 

mNT5E as measured by moles of released inorganic phosphate over time.  (Back to text) 
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Figure 5.11.  mNT5E protein has long-lasting antinociceptive effects when injected 

intraspinally.   Wild-type (WT) and A1R
-/- mice were tested for (A) thermal and (B) 

mechanical sensitivity before (baseline, BL) and after injection of CFA into one hindpaw 

(arrow).  One day later, mNT5E protein (1.7 units) was injected i.t. into all mice (arrowhead) 

and thermal sensitivity was measured for several days.  Inflamed and non-inflamed (control) 

hindpaws were both measured.  Paired t testes were used to compare responses at each time 

point between genotypes (n = 10 animals per genotype).  *P < 0.05, **P < 0.005, ***P < 

0.0005.  All data are presented as means ± s.e.m.  (Back to text) 
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Table 5.1.  Quantitative analysis of NT5E and sensory neuron marker co-localization 
within wild-type mouse L4-L6 DRG neurons. 
 

 

Marker 

 

 
Percentage of NT5E+ neurons 
expressing indicated marker 

 
Percentage of marker+ neurons 

expressing NT5E 

 
PAP 

 

 
95.5 ±±±± 1.1 

 

 
82.7 ±±±± 1.5 

 
 

P2X3 
 

 
89.3 ±±±± 1.0 

 

 
82.3 ±±±± 1.9 

 

 
IB4 

 

 
83.6 ±±±± 2.6 

 

 
87.4 ±±±± 2.5 

 

 
MrgprD-EGFPf 

 

 
74.9 ±±±± 1.4 

 

 
98.5 ±±±± 0.3 

 

 
CGRP 

 
44.6 ±±±± 3.6 

 

 
38.0 ±±±± 2.4 

 

 
TRPV1 

 
18.9 ±±±± 2.4 

 

 
26.1 ±±±± 3.0 

 
 

NF200 
 

4.5 ±±±± 0.9 
 

 
4.4 ±±±± 0.9 

 
 

 
At least 500 cells were counted per combination.  Data are means ± s.e.m. 
(Back to text) 
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Table 5.2.  Comparison of CGRP-containing and P2X3-containing populations in L4-L6 
DRG from wild-type and Nt5e-/- mice. 
 

 % CGRP+ % P2X3
+ 

 
Wild-type 

 
45.0 ±±±± 1.6 

 

 
45.3 ±±±± 1.2 

 
 

Nt5e-/- 
 

44.5 ±±±± 0.9 
 

 
44.6 ±±±± 1.1 

 
                P = 0.782       P = 0.685 
 
 

Percentage of total NeuN+ neurons expressing the markers was calculated.  Dorsal root 
ganglia from three mice counted per genotype.  Counter was blind to genotype.  Data 
expressed as means ± s.e.m. 
(Back to text) 
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Table 5.3.  Acute mechanical and thermal sensitivity in Nt5e-/- mice. 
 

 
Behavioral Assay 
 

 
Wild-type 

 
Nt5e-/- 

  
Withdrawal threshold: 

 
Electronic von Frey 

 
8.1 ± 0.2 g  

 
7.7 ± 0.2 g 
 

 Withdrawal latency: 
 
Radiant heating of hindpaw 
(Hargreaves Method) 

 
10.6 ± 0.3 s  

 
10.3 ± 04 s 

 
Tail immersion at 46.5°C 
 

 
13.8 ± 1.1 s 

 
9.5 ± 0.5 s** 

 
Tail immersion at 49.0°C 
 

 
5.6 ± 0.3 s 

 
4.2 ± 0.2 s** 

 
Hot plate at 52°C 
 
 

 
29.4 ± 2.1 s 

 
31.4 ± 2.7 s 

Hot plate at 55ºC 
 

15.3 ± 1.9 s 15.8 ± 1.5 s 

 
Data are expressed as means ± s.e.m.  Paired t-tests were used to compare genotypes for each 
test, **P  < 0.005.  n=10 male mice tested per genotype.   
(Back to text) 
 



CHAPTER 6 
 

Conclusions and Discussion 
 

6.1) Summary of Findings 

The major findings presented in this work include: 

Prostatic Acid Phosphatase Suppresses Pain by Generating Adenosine 

1) Prostatic acid phosphatase (PAP) is the molecular identity of the fluoride resistant acid 

phosphatase (FRAP)/TMPase present in dorsal root ganglia and spinal cord. 

2) PAP is expressed predominantly in the nonpeptidergic class of nociceptive DRG neurons 

whose axons terminate in lamina II of the dorsal spinal cord. 

3) PAP colocalizes extensively with IB4, P2X3, and MrgprD and only minimally with 

CGRP in DRG.  There is some overlap with TRPV1. 

4) Genetic deletion of PAP does not affect acute nociception. 

5) Genetic deletion of PAP leads to greater thermal hyperalgesia and mechanical allodynia 

following inflammatory insult. 

6) Genetic deletion of PAP leads to greater thermal hyperalgesia following nerve injury. 

7) Intrathecal injection of soluble PAP leads to dose-dependent thermal antinociception in 

naïve mice that lasts for up to three days. 

8) Intrathecal injection of soluble PAP partially reverses thermal hyperalgesia and 

mechanical allodynia in inflammatory and neuropathic pain models.
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9) PAP acts as an AMP-degrading ectonucleotidase in vitro, in situ, and in vivo. 

10) PAP’s antinociceptive effect depends on activity at A1-adenosine receptors. 

11) PAP is the first extensively characterized ectonucleotidase in nociceptive circuits. 

 

Recombinant Mouse PAP has pH-Dependent Ectonucleotidase Activity and Acts 

through A1-Adenosine Receptors to Mediate Antinociception 

1) Large quantities of recombinant mouse PAP (mPAP) can be made using the baculovirus 

expression system. 

2) mPAP is an ectonucleotidase in vitro, capable of degrading AMP > ADP > ATP at pH 

5.6 and AMP at pH 7.0.   

3) Intrathecal injection of mPAP has dose-dependent thermal antinociceptive effects in 

naïve mice that last for three days.   

4) Intrathecal injection of mPAP partially reverses thermal hyperalgesia and mechanical 

allodynia in inflammatory pain. 

5) mPAP’s antinociceptive action depends on activity of A1R, suggesting it acts as an 

ectonucleotidase in vivo. 

 

Prostatic Acid Phosphatase Reduces Pain Sensitization and TRPV1-dependent Thermal 

Sensitivity by Depleting PIP2 

1) PAP inhibits activity of the noxious heat and capsaicin receptor TRPV1 in vitro and in 

vivo. 

2) PAP’s action on TRPV1 depends on its ability to act as an ectonucleotidase and activate 

A1R. 
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3) PAP’s thermal antinociceptive effects when injected intrathecally are partially due to 

inhibition of TRPV1. 

4) Genetic deletion of PAP enhances capsaicin-evoked pain responses. 

5) PAP activation of A1R leads to depletion of cellular levels of PIP2 in vitro through a 

PLC-dependent process. 

6) PAP-mediated depletion of cellular PIP2 reduces TRPV1 activity in vitro. 

7) Genetic deletion of PAP increases levels of PIP2 in DRG in vivo, while injection of PAP 

decreases levels of PIP2 in DRG. 

8) PAP’s antinociceptive effects in vivo are blocked by inhibition of PLC or direct addition 

of PIP2.   

9) PAP inhibits signaling through pro-nociceptive GPCRs by activation of A1R and 

depletion of cellular PIP2 in vitro. 

10) PAP blocks ATP-, LPA-, and nerve-injury induced hyperalgesia and allodynia. 

 

NT5E is Expressed in Nociceptive Circuits and Suppresses Pain by Generating 

Adenosine 

1) NT5E is expressed predominantly in nonpeptidergic nociceptive neurons and in some 

peptidergic neurons in DRG that terminate in laminae I and II in the dorsal spinal cord. 

2) NT5E is responsible for some of the AMP-degrading ectonucleotidase activity in the 

DRG and dorsal spinal cord in situ and in vivo. 

3) NT5E expression and activity is reduced following peripheral nerve injury. 

4) Genetic deletion of NT5E increases PIP2 levels in DRG. 

5) Genetic deletion of NT5E increases acute thermal nociception. 
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6) Genetic deletion of NT5E increases thermal hyperalgesia and mechanical allodynia 

following inflammation and increases thermal hyperalgesia following nerve injury. 

7) NT5E degrades AMP to adenosine and suppress nociception in vivo. 

8) Large quantities of functionally active recombinant mouse NT5E (mNT5E) can be made 

using the baculovirus expression system. 

9) Intrathecal injection of mNT5E leads to thermal antinociceptive effects in naïve mice that 

last for two days. 

10) Intrathecal injection of mNT5E partially reverses thermal hyperalgesia and mechanical 

allodynia following inflammation. 

11) mNT5E’s antinociceptive effects depend on the presence of A1R, suggesting it acts as an 

AMPase in vivo. 

 

6.2) Multiple AMPases in Nociceptive Circuits 

 The work presented here represents the first known attempt to molecularly identify 

and characterize ectonucleotidases present in nociceptive circuits.  Given the important role 

of adenine-containing nucleotides in the modulation of nociception, it is surprising no one 

has previously systematically studied these enzymes.  While ectonucleotidase activity had 

been shown to be present in nociceptive circuits through several different lines of evidence, 

no follow-up had occurred in the cloning era to more precisely identify these important 

genes.  Our work not only molecularly identifies the first two known ectonucleotidases in 

nociceptive circuits (see Figure 1.5, red text), but also demonstrates the importance of these 

enzymes in the modulation of nociceptive signaling.  Further, we demonstrate the potential 

for targeting these enzymes for novel therapeutic approaches.   
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 Both PAP and NT5E are expressed in similar neuronal populations in the DRG, and 

are present in axon terminals with overlapping expression in the dorsal horn.  In fact, 

virtually all (95.5 ± 1.1%) NT5E+ neurons also express PAP, while the vast majority of PAP+ 

neurons (82.7 ± 1.5%) also express NT5E.  This high degree of overlap is somewhat 

surprising given both enzymes inhibit nociception through the same mechanism: degradation 

of AMP to adenosine and subsequent activation of A1R.  This apparent shared pathway is 

demonstrated by the similar phenotypes seen in PAP-/-, Nt5e-/-, and A1R
-/- mice (Figure 2.8; 

Wu et al., 2005).  All three knockout strains show minimal thermal nociceptive deficits in 

naïve animals, and significantly greater thermal hyperalgesia following inflammation and 

nerve injury.   

It is of special note that deletion of a single ectonucleotidase enzyme produces a 

phenotype in these models that is identical to that seen in A1R
-/- mice.  This suggests that loss 

of one enzyme is enough to reduce DRG and spinal adenosine production below that 

necessary to activate anti-nociceptive A1R in the setting of inflammation or nerve injury.  

This result is somewhat surprising and could demonstrate a real physiologic effect or could 

reflect an inability of our measures to tease out small differences in thermal or mechanical 

sensitivity.  Indeed, the tools we use for mechanical (electronic Von Frey) and thermal 

(radiant light source; Hargreaves) sensitivity testing are unlikely to pick up very subtle 

differences between animals.  Regardless, our results demonstrate that endogenous PAP and 

NT5E act through similar pathways to reduce nociception.   

 This similarity of action is also demonstrated in the antinociceptive effects seen 

following intraspinal injection of soluble forms of the PAP and NT5E proteins.  Both 

enzymes produce selective thermal antinociception in naïve animals and can reverse thermal 
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hyperalgesia and mechanical allodynia following inflammation.  Their antinociceptive effects 

are similar in onset, magnitude, and duration and require activity of A1R, suggesting a similar 

mechanism of action (namely degradation of AMP to adenosine).  Notably, A1R agonists 

also produce antinociceptive effects that are selective for the thermal modality in naïve 

animals, while decreasing both thermal and mechanical hyperalgesia in inflamed or nerve-

injured animals (Dickenson et al., 2000; Sawynok, 1998).  There are also reports of long-

lasting antinociceptive effects following intraspinal delivery of adenosine or adenosine 

receptor agonists (Belfrage et al., 1995; Eisenach et al., 2003), similar to what we see with 

soluble PAP and NT5E.   

Unlike adenosine or A1R agonists, PAP and NT5E do not produce motor side effects 

when given intrathecally.  This is likely due to the fact that as enzymes, PAP and NT5E are 

restricted in their activity by the abundance of their substrate, namely AMP.  It seems likely 

that both enzymes are producing adenosine throughout the spinal cord, but while the amount 

made in the dorsal horn is sufficient to mediate antinociception, the amount made in the 

ventral horn is not enough to inhibit motor function due to lower levels of endogenous AMP.  

This catalytic restriction may limit the amount of A1R activation and subsequent 

antinociception capable with PAP or NT5E administration, but could be advantageous by 

avoiding unwanted side-effects.   

 Perhaps the most revealing findings concerning the functional redundancy of PAP 

and NT5E come from our experiments examining AMP-induced antinociception in vivo.  

When injected intrathecally in conjunction with an adenosine kinase inhibitor, AMP 

produces a transient, thermal-selective antinociceptive effect.  This effect is dependent upon 

activation of A1R, suggesting it is due to AMP degradation to adenosine in vivo by neuronal 
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ectonucleotidases.  Interestingly, AMP injection still results in antinociception in Pap-/- and 

Nt5e-/- mice, although the effect is significantly lower than that seen in WT animals (Figures 

5.8A, 6.1).  The knockout strains have very similar phenotypes, suggesting the enzymes have 

similar abilities to degrade AMP in vivo.  Amazingly, genetic deletion of both enzymes 

(Nt5e-/-; Pap-/-) leads to almost a complete inability to degrade AMP to adenosine and 

suppress acute nociception in vivo , suggesting the vast majority of the effect is due to these 

two enzymes (Figure 6.1).  However, a minor antinociceptive effect is seen in Nt5e-/-; Pap-/- 

mice, suggesting there is still some AMPase activity in the spinal cords of these animals.  

This effect is relatively minor, and could be due to alkaline phosphatases, which are also 

expressed in nociceptive circuits (see Section 1.5.4.3).  Regardless of this minor effect, our 

experiments suggest that PAP and NT5E have similar efficacies in degrading AMP to 

adenosine in vivo, and that these two enzymes are the most important AMPases in 

nociceptive circuits. 

 The most obvious question that arises from these results is why does the nociceptive 

nervous system contain two enzymes in almost the exact same population of neurons that 

perform the same function.  As discussed in Chapter 5, there could be two major reasons for 

this.  First, while both PAP and NT5E are capable of acting as AMPases in vitro and in vivo, 

these enzymes have very different functional profiles.  NT5E is an exclusive 5’-

monophosphatase that selectively hydrolyzes 5’-AMP with a Km in the low micromolar 

range and a pH optimum somewhere between pH 7 – 8.  PAP is a promiscuous nonspecific 

phosphomonoesterase that can degrade numerous 5’-nucleoside monophosphates with a Km 

in the low millimolar range and a broad pH range (pH 3 – 8).  The differences in activity at 

varying pH values are especially important in the nervous system, where repeated neuronal 
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stimulation can produce slightly acidic conditions (Wemmie et al., 2008).  Also, following 

tissue injury, an “inflammatory soup” arises that contains protons and nucleotides (Julius and 

Basbaum, 2001).  In these settings, PAP, which is more active at acidic pH, may be more 

capable of degrading AMP to adenosine than NT5E.  However, our preliminary data 

examining AMP antinociception in the setting of CFA-induced inflammation suggests that 

both PAP and NT5E are equally important in degrading AMP under these conditions (Figure 

6.2).  Study of AMP degradation under different conditions in our knockout strains may help 

clarify potentially different roles of the enzymes.   

In addition to possible differences in activity under varying extracellular conditions, 

PAP is also capable of degrading a wide range of other substrates besides nucleotides, while 

NT5E is restricted to only 5’-nucleoside monophosphates.  While other physiologically 

relevant substrates of PAP have not been clearly demonstrated, it has been suggested that the 

enzyme is capable of acting on cellular substrates to inhibit cell growth and replication (Lin 

et al., 1992; Lin et al., 1994; Lin et al., 2001; Quintero et al., 2007).  Thus, PAP could play an 

important regulatory role in cell homeostasis, survival, or communication.   

In addition, PAP can degrade the pro-nociceptive compound LPA (Tanaka et al., 

2004).  LPA is released from platelets and neurons following tissue injury and produces 

prolonged hyperalgesia and allodynia following activation of central LPA receptors (Inoue et 

al., 2004; Moolenaar et al., 2004).  While we have shown that soluble PAP is capable of 

completely degrading LPA in vitro (Figure A1.1), our data suggest PAP decreases LPA 

receptor signaling through changes in downstream receptor signaling rather than directly 

through LPA dephosphorylation (Figures A1.2, 4.15).  However, LPA-degrading enzymes 

can significantly lower extracellular LPA levels through direct breakdown (Pilquil et al., 
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2001; Xu et al., 2000), suggesting PAP may also be capable of performing this action.  While 

the antinociceptive actions of PAP appear to be dependent on adenosine production, it is 

possible that in the setting of long-term elevations in LPA, PAP could debulk LPA levels and 

affect nociception or other LPA-induced processes.   

In addition, breakdown of some forms of LPA produces the antinociceptive 

cannabinoid 2-arachidonylglycerol (2-AG) (Hillard, 2000; Nakane et al., 2002).  Thus, in one 

step, PAP could degrade a pro-nociceptive compound and produce an antinociceptive one.  

However, more studies are needed to determine if PAP performs these reactions in the 

nervous system in vivo and if they are physiologically relevant.  The potential roles of PAP 

in the nervous system may go beyond degradation of AMP, while NT5E’s actions are likely 

to be limited in scope.   

 

6.3) Regulation of Cellular PIP2 by Ectonucleotidases 

 In elucidating the mechanism of action of PAP, we have proposed a potentially novel 

mode of regulation of cellular activity by ectonucleotidases.  Using cellular Ca2+ responses as 

a measure of receptor activation, we have shown that PAP reduces activation of the capsaicin 

and noxious heat receptor TRPV1, as well as signaling through LPA, ATP, thrombin, and 

bradykinin receptors (Figures 4.2, 4.12, 4.15.).  Further, blocking A1R activation, blocking 

PLC activation, or restoring PIP2 levels by overexpression of a PI(4,5)P kinase all reverse 

this PAP-mediated inhibition.  This led us to propose a model whereby PAP-mediated 

inhibition occurs through chronic activation of A1R and subsequent depletion of cellular PIP2 

in vitro (Figure 4.1).  Importantly, we also show that inhibiting PLC activity or directly 

restoring PIP2 levels in vivo blocks PAP-mediated thermal antinociception.  In addition, 
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genetic deletion of PAP leads to increased levels of PIP2 in DRG, while PAP injection 

decreases DRG PIP2 levels.   

We also have preliminary data that suggests NT5E might act through the same 

mechanism.  While overexpression of NT5E alone leads to only small (but significant) 

reductions in LPA-evoked Ca2+ responses, this effect can be significantly increased through 

overexpression of both NT5E and A1R (Figure A2.1B).  Whether or not this effect is due to 

PIP2 depletion has yet to be determined.  However, PIP2 levels are significantly increased in 

DRG from Nt5e-/- and A1R
-/- mice (Figure 5.7), suggesting loss of the ectonucleotidase 

increases cellular PIP2 in vivo.  The antinociceptive effects of recombinant mNT5E are 

dependent on A1R activation, but whether they are due to downstream PIP2 depletion is 

unknown.  However, taken together, these data suggest a novel mechanism for the regulation 

of cell signaling by AMP-degrading ectonucleotidases, where chronic activation of A1R by 

adenosine leads to low-level PLC activation and depletion of cellular PIP2.    

We should point out that activation of A1R also leads to other downstream effects, 

including inhibition of adenylate cyclase, decreased cellular levels of cAMP, decreased PKA 

activity, and DAG-mediated activation of PKC.  While these signaling pathways are 

important in sensitization or desensitization of nociceptors through various mechanisms, our 

studies show that these pathways are not involved in PAP-mediated antinociception (Figures 

4.7, 4.14).  Indeed, all of our data support changes in cellular PIP2 levels rather than changes 

in kinase activity as the mechanism of action of PAP.  However, while the antinociceptive 

effects of PAP clearly depend on PIP2 depletion, we cannot rule out additional effects of PAP 

through modulation of these other signaling pathways.  
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Our model of ectonucleotidase-mediated antinociception emphasizes the importance 

of cellular PIP2 levels.  We propose that the “phosphoinositide tone” of the nociceptor sets its 

relative excitability, and that dynamic changes in PIP2 levels allow the neural circuitry to 

easily adjust to abrupt changes in synaptic input (Figure 6.3).  This is supported by our 

observations using S-hPAP injection and Pap-/- mice that basal PIP2 levels in DRG are 

directly correlated with nociceptive responses, such that low PIP2 levels at the time of 

chemical insult (LPA or ATP) result in the development of negligible hyperalgesia, while 

high PIP2 levels at the time of insult lead to excessive hyperalgesia (Figures 6.4A, 6.4B).  

Further, directly increasing PIP2 levels acutely at the time of LPA injection enhances the 

subsequent thermal hyperalgesia and mechanical allodynia,  (Figures 4.18A, 4.18B) while 

decreasing PIP2 levels through injection of PAP prior to physical nerve injury reduces 

subsequent hyperalgesia (Figure 4.19).  Surprisingly, directly increasing PIP2 levels in DRG 

and spinal cord increases thermal sensitivity in naive animals (Figures 4.11D, 4.11E), 

suggesting not only a role for PIP2 in sensitized states, but also in setting the gain of 

nociceptors in unsensitized states. These results suggest a novel approach to the treatment of 

pain, namely the direct modulation of PIP2 levels.  This approach should not be entirely 

surprising, given that numerous ion channels known to be involved in nociception are 

regulated by PIP2 (see below).  The development of tools to directly and rapidly adjust PIP2 

levels in vitro and in vivo will be key in supporting this new model. 

We should point out that we have yet to determine the exact location in the nervous 

system where PAP and NT5E are activating A1R and depleting PIP2.  Specifically, are these 

effects occurring in peripheral terminals of primary afferents, in DRG cell bodies, in primary 

afferent terminals in the dorsal spinal cord, or on post-synaptic terminals of dorsal horn 
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neurons?  While we cannot make definitive conclusions based on our current data, we can 

speculate about these various possibilities.  It seems unlikely that sufficient levels of PAP, 

NT5E, or A1R are present in peripheral terminals to have large effects on PIP2 levels there.  

However, peripheral injection of capsaicin into the hindpaw of mice produced enhanced 

nocifensive responses in Pap-/- mice, suggesting loss of the enzyme led to increased activity 

of TRPV1 in peripheral terminals (Figure 4.2F).  Whether this was due to increased PIP2 is 

unclear and will be difficult to test, as no good methods currently exist to measure PIP2 in 

axon terminals.   

Centrally, endogenous PAP and NT5E are ideally suited to act on A1R in the spinal 

cord.  A1Rs are concentrated in lamina II of the dorsal spinal cord, particulatly on 

postsynaptic neurons that are in close contact with IB4+ neurons (Schulte et al., 2003).  

Evidence also exists for the presence of A1R in presynaptic terminals in lamina II from 

small- to medium-diameter DRG neurons (Lao et al., 2001; Li and Perl, 1994; Schulte et al., 

2003).  Thus, PAP and NT5E could be activating A1R on both pre- and postsynaptic 

membranes to deplete cellular levels of PIP2 in both locations.  While it is difficult to 

measure PIP2 levels in these regions, this could be tested using electrophysiology in spinal 

cord slices with direct addition or sequestration of PIP2.  Intrathecal injection of S-hPAP 

should not only activate A1R in dorsal horn neurons and terminals, but also in other spinal 

cord regions.  This includes not just other neurons, but also microglia and astrocytes that 

express adenosine receptors.  It is likely this would also reduce PIP2 in these other regions 

and cell types, but whether this reduction has physiologic effects is unclear. 

 

6.4) PIP2 Modulation of TRPV1 
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 The direct modulation of TRPV1 by PIP2 has been a controversial topic of debate for 

quite some time.  Initial reports of a direct inhibitory role for PIP2 by binding to TRPV1 have 

subsequently been refuted by evidence supporting a direct activating effect of the lipid in 

excised patches and other systems (see Section 1.4.2.2.1).  This has led some to propose dual 

activating and inhibitory effects of PIP2 at low stimulus concentrations and a simple 

activating effect at high stimulus concentrations (see Figure 1.4) (Rohacs et al., 2008).  

Numerous studies now seem to support this model, particularly the activating effect of PIP2 

on TRPV1 and the requirement of PIP2 for the recovery of the channel from desensitization 

(see Figure 1.3 and Section 1.4.2.2.1).   

Our data also support an activating effect of PIP2 on TRPV1 activity.  Importantly, 

we have been the first to directly modify PIP2 levels in vivo through injection of PAP (to 

reduce PIP2) or direct injection of PIP2 and to show effects on thermal hyperalgesia, 

predominantly through TRPV1 (Figure 4.12).  These in vivo results are more compelling and 

more biologically relevant than in vitro studies using exclusively cultured cells, where 

differences in cell-line characteristics, expression of regulatory proteins, expression levels, 

and functional properties can vary.  This includes cultured DRG neurons that can change 

TRPV1 expression or activity as a result of the culturing process (Story et al., 2003a).  While 

our studies will add to the bulk of the published data that supports a stimulatory role of PIP2 

on TRPV1, the debate will likely continue until direct in vivo manipulation of PIP2 coupled 

with measurement of TRPV1 currents occurs.   

 

6.5) Other Channels Potentially Affected by Ectonucleotidase-Mediated PIP2 

Modulation 
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 A growing body of evidence shows that PIP2 is not only important in regulating 

TRPV1 signaling, but also a whole host of other ion channels that are important in 

nociceptive signaling.  This PIP2 modulation of ion channels is very advantageous, as it 1) 

prevents channels from becoming active until they are incorporated into the plasma 

membrane, and 2) allows for dynamic regulation of channel activity following 

neurotransmitter-mediated activation of PLC and subsequent PIP2 depletion (Suh and Hille, 

2008).  By modulating cellular levels of PIP2, PAP or NT5E could also regulate the activity 

of these channels.  While we have shown that a portion of PAP’s thermal antinociceptive 

effect is due to inhibition of TRPV1, the remaining thermal effects and all of the mechanical 

effects could be due to changes in activity in these other PIP2-sensitive channels.  Here I will 

highlight several candidate channels that are involved in nociception and are known to be 

regulated by cellular PIP2 levels.  These channels are potential downstream targets of 

ectonucleotidase activity.   

Voltage-gated Ca2+ channels (VGCCs) are expressed in almost all excitable cells and 

transduce electrical activity to intracellular biochemical signals at neuronal synapses (Cao, 

2006).  They are large, multi-protein complexes made up of a central, pore-forming α1 

subunit surrounded by auxiliary α2δ, β, and γ subunits.  VGCCs are very diverse, due to 

different combinations of auxiliary subunits, as well as alternative splicing of the gene 

encoding the α1 subunit (Cav2.2).  VGCCs are divided into two categories: 1) the high-

voltage activated (HVA) channels, including L-, N-, P/Q-, and R-type Ca2+ channels and 2) 

the low-voltage activated T-type Ca2+ channels.  Only the P/Q- and N-type channels have 

been definitively shown to be regulated by PIP2 (Suh and Hille, 2008).  
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 N-type Ca2+ channels are abundantly expressed in peptidergic DRG neurons (with 

both PAP and NT5E) and are upregulated following both nerve injury and tissue 

inflammation (McGivern and McDonough, 2004; Westenbroek et al., 1998; Yaksh, 2006).  

Blockers of N-type Ca2+ channels reduce hyperalgesia and allodynia in models of 

neuropathic and inflammatory pain, and Prialt®, the synthetic form the N-type Ca2+ channel 

blocker ω-conotoxin MVIIA, is used in humans for intractable neuropathic and cancer pain 

(Olivera et al., 1994; Vanegas and Schaible, 2000; Yaksh, 2006).  P/Q-type Ca2+ channels are 

expressed in synaptic terminals in laminae II through VI of the dorsal horn and work with N- 

and R-type Ca2+ channels to trigger neurotransmitter release (Westenbroek et al., 1998).  The 

effects of P/Q channels on nociception is unclear, as some studies suggest a role for the 

channels in inhibiting neurotransmission and antinociception, while others suggest a role in 

activating neurotransmission and hyperalgesia (Ebersberger et al., 2004; Luvisetto et al., 

2006; Ogasawara et al., 2001; Takahashi and Momiyama, 1993; Vanegas and Schaible, 

2000).   

Both P/Q- and N-type Ca2+ channels are positively regulated by PIP2, as the lipid 

delays rundown and shifts the voltage-dependence of both channels to increase activity at 

negative potentials (Delmas et al., 2005; Michailidis et al., 2007).  Depletion of PIP2 by 

ectonucleotidases would thus decrease channel activity and decrease nociception in 

neuropathic and inflammatory pain models.  These channels are of particular interest to us, as 

PAP and NT5E have selective effects on thermal nociception in naïve animals, but have both 

thermal and mechanical antinociceptive effects in models of inflammatory and neuropathic 

pain.  VGCCs are key in the development of mechanical allodynia following nerve injury, 

and decreased activity of these channels due to depletion of PIP2 could be responsible for the 
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antiallodynic effects PAP and NT5E.  Importantly, knockouts of the α1B gene (Cav2.2) exist, 

and while they have significantly attenuated thermal hyperalgesia and mechanical allodynia 

following peripheral nerve injury, some hypersensitivity still exists (Saegusa et al., 2002).  

Injection of PAP or NT5E into nerve-injured α1B knockouts could be used to test the ability 

of these ectonucleotidases to modulate N-type Ca2+ channels.  In addition, many 

pharmacological tools are available to investigate the effects of ectonucleotidase activity on 

VGCCs (of all types) in vitro and in vivo (Cao, 2006).  

As discussed previously, TRPM8 is a non-specific cation channel expressed in 

sensory neurons that is activated by moderately cold temperatures and the cooling agents 

menthol and icillin (See section 1.4.2.1).  The channel is found in small-diameter DRG 

neurons and is necessary for detection of cool and some noxious cold temperatures in vivo 

(Bautista et al., 2007; Colburn et al., 2007; Dhaka et al., 2007).  Several studies have shown 

that TRPM8 requires PIP2 for activity.  The channel’s activity runs down in response to PIP2 

depletion and is reactivated by direct application of the lipid (Liu and Qin, 2005; Rohacs et 

al., 2005).  Activation of PLC by cell surface receptors, Ca2+ influx, or pharmacological 

activators inhibits TRPM8, as does PIP2 depletion by a rapamycin-inducible phosphatase or 

high concentrations of wortmannin (Daniels et al., 2009; Liu and Qin, 2005; Rohacs et al., 

2005; Varnai et al., 2006; Wang et al., 2008).  PIP2 is also involved in the Ca2+-dependent 

desensitization of the channel, as the process is slowed by the presence of the PIP2-

synthesizing enzyme PIPK5 and is accelerated by the presence of the highly Ca2+ sensitive 

PLC isoform PLCδ1 (Daniels et al., 2009; Rohacs et al., 2005).  Interestingly, the affinity of 

TRPM8 for PIP2 increases in response to cold, menthol, or depolarization (Rohacs, 2009; 

Rohacs et al., 2005).  All of these data would suggest that increases in PIP2, such as seen in 
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Pap-/- and Nt5e-/- mice, would lead to increased icillin- or cold-induced nociceptive 

behaviors, while decreases in PIP2, such as those seen following injection of PAP, would 

lead to decreased icillin- and cold-induced nociception.  It should be noted that TRPM8 is not 

found in either the peptidergic or nonpeptidergic subsets of nociceptors, so the channel may 

not localize with PAP or NT5E.  We have yet to perform any studies examining the possible 

effects of endogenous or exogenous PAP or NT5E on cold behaviors, so possible effects on 

TRPM8 are unknown.   

Another TRP channel, TRPA1 is also activated by noxious cold temperatures, as well 

as by a long list of pungent compounds and irritants (Cortright and Szallasi, 2009).  This 

channel is solely responsible for the algesic effects of many of these compounds, including 

mustard oil, formalin, and cinnamaldehyde (Bandell et al., 2004a; Bautista et al., 2006a; 

McNamara et al., 2007; Namer et al., 2005).  TRPA1 is found predominantly in peptidergic 

nociceptors, but its colocalization with PAP or NT5E is unknown.  Activation of the receptor 

produces acute pain, hyperalgesia, and neurogenic inflammation.  As discussed in section 

1.4.2.1, TRPA1 is also thought to be important in the detection of noxious cold, although this 

is still in dispute.  Also in dispute is the effect of PIP2 on the modulation of the channel.  

Some studies have suggested a stimulatory role for PIP2 in regulating the channel, as the lipid 

activated TRPA1 in excised patches and reduced Ca2+-induced desensitization, while 

depleting PIP2 with wortmannin inhibited the channel (Akopian et al., 2007; Karashima et 

al., 2008).  However, other studies have suggested an inhibitory action of PIP2 on TRPA1, as 

the lipid inhibited the channel in excised or whole cell patches, and PIP2 sequestration by 

poly-lysine or an anti-PIP2 antibody activated TRPA1 in the presence of inorganic 

polyphosphate (Dai et al., 2007; Kim et al., 2008b).  Complicating matters further, a 
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rapamycin-inducible PIP2 phosphatase that depletes PIP2 and inhibits TRPM8 neither 

activated nor inhibited TRPA1 (Wang et al., 2008).  Thus, different effects of the lipid on the 

channel are seen depending on the system studied and the investigators, making it difficult to 

predict the effects of PAP and NT5E on TRPA1.  However, this contradictory data is similar 

to the situation seen in the literature on TRPV1, which in our hands is activated by PIP2.  We 

are currently initiating projects to investigate the effects of ectonucleotidases that deplete 

PIP2 on TRPA1 in vitro and in vivo.  Our studies should provide some of the first in vivo 

evidence for the role of PIP2 in modulating TRPA1.   

As discussed previously, ATP-activated P2X receptors on neurons and glia are very 

important in nociceptive signaling and modulation, as well as in the development of 

pathologic chronic pain (See section 1.5.1.1).  All homomeric P2X receptors have been 

shown to be activated directly by PIP2 through direct binding of the lipid to the C-terminus of 

the channels (Bernier et al., 2008; Mo et al., 2009; Zhao et al., 2007).  Thus, PAP and NT5E 

activity could decrease pro-nociceptive P2X receptor signaling through two mechanisms: 1) 

depletion of ATP through mass-action degradation and 2) PIP2 depletion following activation 

of A1R.  Both PAP and NT5E colocalize extensively with P2X3 receptors in DRG, making 

them ideally suited to modulate activity of these receptors.  We have not studied the effects 

of ectonucleotidases on P2X receptor activation, but could examine this using our knockout 

mice and soluble recombinant proteins in conjunction with P2X agonists and antagonists. 

Finally, in addition to directly modulating channels, PIP2 has important roles in other 

cellular functions, including serving as a targeting anchor for proteins that catalyze 

endocytosis and exocytosis, for small molecular weight GTPases, and for actin cytoskeleton 

components (Suh and Hille, 2008).  In fact, PIP2 plays a vital role in synaptic vesicle 
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trafficking and recycling in the brain, as depletion of the lipid leads to delayed recycling and 

defective synaptic transmission (Di Paolo et al., 2004).  By depleting PIP2, PAP and NT5E 

could also affect these other cellular processes in neurons, which may affect nociception.  

 

6.6) Ectonucleotidases and the Treatment of Pain in Humans 

  Our studies provide tantalizing evidence that ectonucleotidases in the nervous system 

are important modulators of nociception.  This is particularly exciting, as it provides new 

molecular targets for the development of pain therapies.  Our animal studies show that not 

only can these enzymes relieve “chronic” inflammatory and neuropathic-like pain, but they 

can prevent the development of chemical- and nerve-induced pain in the first place.  

Importantly, these effects occur without the development of obvious motor side-effects, a 

major limiting factor in the use of adenosine-receptor agonists and inhibitors of adenosine 

metabolism in humans.  We propose that this is likely due to catalytic restriction of the 

adenosine production by the enzymes.  By acting on endogenous substrate (namely, locally-

produced AMP), PAP and NT5E are limited in their effects to those regions where AMP 

levels are abundant enough to lead to significant adenosine production by the enzymes.  Our 

data suggest that modulation of endogenous PAP and NT5E or delivery of exogenous 

ectonucleotidases could be important new approaches for the prevention and treatment of 

chronic pain.   

Clearly, our studies are only the very first steps in the potential development of new 

therapies.  Many more studies are needed before this technology could be moved into 

humans.  For example, we have shown that injection of recombinant proteins into the 

intrathecal space in mice has seemingly dose-dependent, long-lasting antinociceptive effects 
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with minimal side-effects.  However, we have not closely monitored animals for important 

adenosine-mediated side-effects, including subtle changes in motor function, changes in 

cardiac function or blood pressure, or changes in sleep patterns.  Further, we have not 

examined if repeated delivery of the proteins leads to desensitization of the antinociceptive 

response (tolerance) or dependence.  In addition, we have only studied the effects of the 

proteins in one strain of male mice (C57BL/6).  Studies on females and on males of different 

strains could prove useful, as both sex and genetic background can affect nociception 

(Greenspan et al., 2007; Mogil et al., 2006).  In addition, we have only studied the effects of 

intrathecally-delivered PAP and NT5E.  While this route of delivery can be used clinically, it 

is not well-accepted by patients.  Studies on systemically- or orally-delivered forms of the 

proteins would be desirable.  Finally, while the models of acute and chronic nociception we 

use are well-accepted in the field, they are relatively poor models for pathological pain in 

humans.  The effects of PAP and NT5E in models that more closely mimic human chronic 

pain syndromes (for review, see Mogil, 2009) could provide important insight into the 

potential for these enzymes in the treatment of human disease.  Despite these challenges, we 

remain optimistic that ectonucleotidases have great therapeutic potential as a novel treatment 

for chronic pain.  What could these novel therapeutic approaches entail? 

 Obviously, the simplest tactic for the use of ectonucleotidases in pain therapy is the 

delivery of exogenous protein.  We have already shown that this is effective in animals and is 

easily accomplished through the development of human recombinant proteins.  These 

proteins can be abundantly produced in commercially-available systems and are safe for 

injection into humans (Burch et al., 2004; Zucchini, 2008).  The biggest obstacle for the use 

of recombinant proteins is the mode of delivery of the drug.  Peptides cannot be efficiently 
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delivered as oral medications, requiring local or systemic injection to bypass the digestive 

process for efficacy.  Further, we anticipate that systemic delivery of ectonucleotidases could 

produce several unwanted side-effects, including motor dysfunction, cardiac dysfunction, and 

hypotension.  Thus, recombinant hPAP or hNT5E could be injected locally or intrathecally 

(Figure 6.5).  While this is not ideal for the treatment of chronic conditions, local delivery 

could be beneficial before or after surgery, dental procedures, childbirth, or local injury, such 

as burns, post-herpetic neuralgia, or isolated peripheral nerve injury.   

 Another way to deliver exogenous ectonucleotidases would be through the delivery of 

viral vectors that contain the genes for PAP or NT5E (Figure 6.5).  This gene therapy 

approach could have several advantages.  First, viral vectors can be developed that 

specifically target nociceptors, leading to increased expression of the proteins only in these 

neurons.  This could be accomplished by using sensory neuron-selective viruses, or gene 

promoters that would express PAP or NT5E only in particular neuronal populations.  This 

approach would obviously avoid the unwanted side-effects of adenosine production 

systemically or even in other regions of the nervous system.  Further, by using viruses that 

incorporate their genomes into the host cell genome, expression of the ectonucleotidase could 

be enhanced for long periods of time, potentially indefinitely for the lifetime of the neuron.  

This could be very advantageous for individuals suffering from long-term chronic pain.  We 

have recently begun studying different viral strains and genetic promoters to identify ideal 

conditions for the delivery of genes specifically to DRG neurons in mice.  These early studies 

show that acute intrathecal injection of virus can lead to specific infection and expression in 

DRG neurons, giving us hope for the development of this strategy.  Certainly the challenges 

and pitfalls of gene therapy are great and this type of approach in humans is certainly far-off 
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into the future, but the potential for big breakthroughs in the treatment of chronic pain using 

this strategy is great. 

 In addition to delivery of exogenous PAP or NT5E, we could design strategies that 

attempt to enhance the activity of endogenous ectonucleotidases in the nervous system 

(Figure 6.5).  This approach would have the advantage of increasing adenosine production 

only in those regions where the proteins are normally expressed in nociceptive neurons.  An 

early attempt in our lab was made to identify potential selective activators of PAP using a 

high-throughput screen of 30,000 small molecules.  This screen examined the ability of these 

molecules to affect PAP-mediated degradation of a generic fluorescent substrate.  While we 

were successful in identifying some new potential inhibitors of PAP, we did not identify any 

selective activators of the enzyme.     

A more exciting strategy is the use of selective pro-drugs that could be acted upon by 

PAP or NT5E (Figure 6.5).  These are essentially versions of the A1R-selective agonist N6-

cyclopentyladenosine (CPA) that have various protecting groups that make them selectively 

dephosphorylated by only PAP or NT5E, resulting in the antinociceptive compound CPA.  

These drugs have several advantages, including the ability to modify them for easy systemic 

and oral delivery.  This makes them more desirable for the treatment of chronic conditions, 

but also opens the possibility of off-site effects.  This is of special concern for pro-drugs for 

NT5E, since the enzyme is widely expressed in many tissues.  Pro-drugs specific for PAP 

would be highly desirable, as it has a more restricted tissue expression profile.  Early studies 

with several of these drugs have shown promising antinociceptive effects when delivered 

intrathecally, systemically, and orally.  However, further work is needed to examine possible 

side effects and pharmacological properties, such as tolerance and dependence.   
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Finally, an additional approach for the use of endogenous PAP or NT5E to treat pain 

would be to upregulate gene expression in DRG or spinal cord through chemical or genetic 

approaches.  This tactic would be especially important in the setting of nerve injury-

neuropathic pain, as both PAP and NT5E show dramatic downregulation in expression 

following peripheral nerve injury (Shields et al., 2003; Vadakkan et al., 2005) (Figure 5.5).  

This strategy would require detailed knowledge of the gene structure and identification of 

activators of gene expression.  Unfortunately, the regulation of PAP and NT5E expression is 

largely unknown, making this approach difficult at this time.  Future work on PAP and NT5E 

gene regulation could, however, make this an appealing strategy. 

Clearly all of the potential therapeutic approaches outlined above provide challenging 

obstacles.  However, these are problems worth tackling.  Chronic pain is an enormous 

problem in the Western world, resulting not only in severe deleterious effects to the 

individual patient, but also significant financial burdens to society as a whole.  The current 

treatments for chronic pain conditions are only moderately effective and have undesirable 

side effects.  As a result, the identification and study of new targets for pain therapy, such as 

ectonucleotidases, provide hope for the development of new and better treatments to reduce 

both the immense suffering of afflicted patients and the societal ills associated with chronic 

pain therapy.   

   

6.7) Other Potential Therapeutic Applications of Ectonucleotidases 

 Adenosine receptors are involved in numerous physiologic processes throughout the 

body.  Numerous studies have examined the use of adenosine receptor analogs or antagonists 

in the modulation of receptor activity in disease states (for review, see Jacobson and Gao, 
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2006).  Some of these compounds are in clinical trials for the treatment of specific 

pathological conditions.  Another approach to modulation of adenosine receptors that could 

avoid some of the known side effects is to target ectonucleotidases. By increasing or 

decreasing ectonucleotidase activity globally or locally, it could be possible to affect other 

pathological conditions besides pain that involve adenosine receptors.  Below, I highlight 

several processes known to involve adenosine receptor signaling that could potentially be 

treated through the use of some of the therapeutic approaches described in the previous 

section.   

Sleep 

Adenosine is an important player in the modulation of sleep.  This is identifiable for 

most adults who rely on the stimulant caffeine, a well-known antagonist of A1 and A2A 

receptors, to get through the day.  Numerous studies have elucidated the important role of 

adenosine in the regulation of several aspects of sleep.  Specifically, local adenosine levels 

rise in certain brain areas during waking and decline during sleep (Huston et al., 1996; 

Murillo-Rodriguez et al., 2004; Porkka-Heiskanen et al., 1997).  Further, this adenosine 

mediates the somnogenic effects of prior wakefulness and is vital in regulating the duration 

and depth of sleep after wakefulness (Landolt, 2008; Porkka-Heiskanen et al., 1997).  

Inhibition of adenosine metabolism (and thus increases in extracellular adenosine) prolongs 

sleep and increases the intensity and depth of non-REM sleep (Okada et al., 2003; Radek et 

al., 2004; Radulovacki et al., 1983).  This effect is similar in magnitude and character to the 

effects of prolonged sleep deprivation.  Early evidence suggested this effect was due to 

activity at A1R (Benington et al., 1995; Schwierin et al., 1996; Thakkar et al., 2003), but A1R
-

/- mice do not show changes in homeostatic aspects of sleep-wake regulation (Stenberg et al., 
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2003).  More recently, A2AR has been shown to play a major role in mediating these effects, 

as A2AR agonists induce non-REM sleep and A2AR
-/- mice do not show non-REM sleep 

rebound after sleep deprivation (Hayaishi et al., 2004; Methippara et al., 2005; Satoh et al., 

1999; Urade et al., 2003).  Further, A2AR is thought to be the main target for caffeine-induced 

wakefulness (Huang et al., 2005).   

Endogenous NT5E likely plays an important role in these adenosine-mediated sleep 

effects, as it is expressed widely in the brain (Langer et al., 2008).  Current data suggests it is 

found mostly on astrocytes and not neurons (Jacobson and Gao, 2006), but we have not 

tested our anti-NT5E antibody in brain to confirm this.  We have not been able to identify 

PAP expression in the brain.  Changes in sleep patterns in Nt5e-/- mice have not yet been 

studied.  However, in theory, drugs that modulate NT5E or PAP activity could prove to be 

important in regulation of sleep.  Pro-drugs, activators, or recombinant proteins could 

provide a promising approach for treatment of sleep maintenance insomnia.  Conversely, 

inhibitors of NT5E could be stimulants, similar to caffeine that could be used for treatment of 

excessive sleep conditions (narcolepsy).  Of course, limiting the usefulness of such drugs 

would be the potential side-effects due to off-site actions through global effects on adenosine 

production.   

Hypoxia 

Adenosine plays a vital role in the adaptation to hypoxia in a number of tissues.  

Tissue and plasma adenosine levels increase dramatically during hypoxic stress (Gnaiger, 

2001), and this adenosine is thought to be an adaptive response to conditions of low oxygen 

through several different adenosine-receptor induced processes.  Activation of A1Rs helps 

prevent neurotoxicity (through inhibition of neuronal firing) and decreases metabolic activity 
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and ATP demands (Matherne et al., 1997).  Activation of A2AR leads to vasodilation and 

increased ventilation (Conde et al., 2009; Jacobson and Gao, 2006; Monteiro and Ribeiro, 

1987).  A2BR activation induces vasodilation in some vascular beds (Rubino et al., 1993; 

Szentmiklosi et al., 1995), promotes angiogenesis (Feoktistov et al., 2004), inhibits growth of 

vascular smooth muscle cells (Dubey et al., 2000), and inhibits cardiac fibroblast growth 

(Chen et al., 2004).  In addition, several studies have suggested a protective role for A2 

receptors in maintaining vascular barrier function (Weissmuller et al., 2005), which can 

breakdown in severe hypoxia (such as seen at high altitude), leading to cerebral or pulmonary 

edema.  The combination of these effects through different adenosine receptors leads to a 

complex system of beneficial adaptations to both acute and chronic hypoxia.   

An important role for endogenous NT5E in adenosinergic adaptive responses to 

hypoxia is supported by many findings.  First, the increase in adenosine seen in the CNS in 

response to hypoxia is almost completely due to extracellular nucleotide degradation (Koos 

et al., 1997).  Further, hypoxia induces upregulation of NT5E expression, through a hypoxia-

inducible factor-1 (HIF-1)-mediated mechanism (Eltzschig et al., 2003; Ledoux et al., 2003; 

Synnestvedt et al., 2002).  This increase in NT5E expression is also functionally important, 

as hypoxia-induced vascular leak syndromes in several organ systems (lung, heart, intestine, 

and kidney) are significantly accentuated following pharmacologic blockade or genetic 

deletion of NT5E (Thompson et al., 2004a). 

Due to the importance of extracellular adenosine production in the adaptation to 

hypoxia, ectonucleotidase-targeting therapies could prove beneficial in individuals 

anticipating exposure to hypoxic conditions.  Two broad strategies could be attempted.  First, 

enhancement of endogenous NT5E activity could be used to increase extracellular adenosine 
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to levels at or above those seen in hypoxia.  This could be accomplished either through 

increasing the expression of NT5E (as is seen to occur following HIF-1α pathway 

activation), increasing the activity of the protein using small-molecule activators, or 

increasing the levels of NT5E substrate present through the delivery of pro-drugs.  Second, 

increased ectonucleotidase activity could be accomplished through the delivery of 

recombinant PAP or NT5E.  In fact, delivery of NT5E protein isolated from rattlesnake 

venom reduced vascular permeability in wild-type mice at both normoxic and hypoxic 

conditions, reducing subsequent pulmonary edema (Thompson et al., 2004a).  This suggests 

that delivery of ectonucleotidases prior to exposure to hypoxic conditions (such as high 

altitude) could prevent vascular leak.  Of course, as discussed previously, systemic 

administration of recombinant PAP or NT5E could be limited by potential cardiac and 

hemodynamic side effects.   

Cardiac Ischemia 

Adenosine is released from cells of the cardiovascular system in response to stress or 

injury.  This adenosine acts on receptors on various cell types to produce a significantly more 

ischemia-tolerant phenotype (Eltzschig et al., 2003).  This effect is called ischemic 

preconditioning (IP), and can dramatically attenuate the size of subsequent myocardial 

infarction (Eckle et al., 2007c; Headrick et al., 2003).  Surprisingly, the exact mechanisms 

and adenosine receptors involved in this cardioprotective effect are largely unknown 

(Headrick et al., 2003).  IP leads to a dramatic increase in the expression of NT5E in the 

myocardium through a HIF-1-dependent mechanism, and NT5E AMPase activity is thought 

to be the major source of adenosine produced during IP (Eckle et al., 2007c; Eltzschig et al., 

2003; Kitakaze et al., 1999).  Pharmacologic inhibition or genetic deletion of NT5E 
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effectively eliminates the beneficial effects of IP on myocardial infarction size, highlighting 

an important role for the enzyme in endogenous responses to ischemia (Eckle et al., 2007c).   

Given the substantial cardioprotective effects of IP, it would be desirable to 

potentially replicate these effects prior to severe ischemic insult in individuals with coronary 

artery disease.  While many current studies are focusing on the use of selective adenosine 

receptor agonists for this purpose (Jacobson and Gao, 2006), drugs mimicking or 

accentuating the effects of ectonucleotidases could also be advantageous.  Similar to the 

situation for hypoxia, two broad strategies could be imagined.  First, enhancement of 

endogenous NT5E present in the myocardium could increase background adenosine levels to 

mimic those seen in IP.  This could be accomplished by increasing the expression of the 

protein, increasing the activity of the protein using small-molecule activators, or increasing 

the levels of NT5E substrate through the delivery of pro-drugs.  Second, delivery of 

exogenous recombinant PAP or NT5E could enhance baseline levels of adenosine to mimic 

IP.  It should be noted, however, that delivery of NT5E isolated from rattlesnake venom did 

not produce effects similar to IP, nor did it enhance IP effects on myocardial infarct size 

when delivered in one model (Eckle et al., 2007c).  In addition, systemic administration of 

these proteins could lead to significant side-effects due to adenosine receptor activation at 

other sites in the body.   

Inflammation 

Adenosine has anti-inflammatory properties primarily through A2ARs.  This receptor 

is expressed on almost all immune cells and attenuates inflammation and reperfusion injury 

in several different tissues (Sitkovsky et al., 2004b).  This primarily occurs through inhibition 

of neutrophil accumulation, inhibition of T-cell activation, inhibition of production of pro-
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inflammatory cytokines, and enhancement of production of anti-inflammatory cytokines 

(Erdmann et al., 2005; Jacobson and Gao, 2006; Lappas et al., 2005; Sitkovsky et al., 2004a).  

Adenosine activity at A2AR is crucial in the limitation and termination of prolonged 

inflammation (Ohta and Sitkovsky, 2001), and A2AR agonists are being tested for use in 

several conditions, including sepsis, inflammatory bowel disease, arthritis, and reperfusion 

injury (Hasko and Cronstein, 2004; Odashima et al., 2005; Sullivan et al., 2004).   

NT5E is expressed extensively in the immune system and may play a role in 

regulation of inflammation through extracellular production of adenosine.  In particular, 

pharmacologic inhibition or genetic deletion of NT5E leads to increased neutrophil 

accumulation following hypoxia, suggesting adenosine production by NT5E is anti-

inflammatory through prevention of neutrophil accumulation (Eltzschig et al., 2004).  In 

addition, the anti-inflammatory effects of the drugs methotrexate and sulfasalazine (used for 

treatment of rheumatoid arthritis) depend on the activity of NT5E to make adenosine 

(Cronstein, 2005; Morabito et al., 1998).  Thus, enhancement of endogenous NT5E or 

delivery of recombinant PAP or NT5E could have anti-inflammatory properties in different 

pathologic conditions, especially chronic inflammatory conditions like arthritis and 

inflammatory bowel disease.  

Taste 

Adenosine and adenine-containing compounds play important roles in taste sensation.  

Early studies suggested a possible direct role for adenosine in modulation of taste intensity.  

These studies showed increases in sensation of tastants of different quality (especially sweet 

and bitter) in the presence of the methylxanthines caffeine and theophylline, which are 

known inhibitors of A1R and A2BR (Schiffman et al., 1986; Schiffman et al., 1985).  This 
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effect could be counteracted by co-application with adenosine.  However, later studies by 

other groups could not replicate this data, and a direct role in taste modulation for adenosine 

through its receptors is not known (Brosvic and Rowe, 1992; Mela, 1989).  More recent 

studies have shown a clear role for AMP in the modulation of detection of bitter tastants.  

AMP directly inhibits activation of gustducin (the G-protein involved in bitter detection) in 

vitro and also inhibits detection of bitter compounds in animals and humans (Keast and 

Breslin, 2002; Keast et al., 2004; Ming et al., 1999).  Interestingly, while several AMP-

related compounds also inhibit gustducin activation in vitro (3’AMP, ADP, ATP, and 

adenosine 2’-monophosphate), others could not, including adenosine and cAMP.  In addition 

to AMP, ATP also plays an important role in taste detection.  ATP is the primary 

neurotransmitter released from taste cells (type II) and acts on P2X receptors on presynaptic 

(type III) cells to initiate taste transduction (Roper, 2007).  Loss of P2X2 and P2X3 receptors 

reduces responses to umami, sweet, and bitter compounds (Finger et al., 2005).    

Due to the importance of adenosine-containing compounds in taste sensation, 

potential roles for the modulation of these processes by ectonucleotidases exist.  One 

ectonucleotidase, E-NTPDase2, is expressed in type I taste receptor cells (Bartel et al., 2006).  

This enzyme degrades ATP and could play an important role in the termination of P2X 

receptor signaling, thereby inhibiting/terminating taste detection.  In addition to directly 

terminating P2X receptor activation, E-NTPDase2 could provide substrate for further 

breakdown to AMP, which can directly inhibit bitter sensation.  Further degradation of AMP 

by NT5E or PAP would actually enhance bitter taste sensation, which could be an 

evolutionary advantage, as many toxic compounds have bitter qualities.  
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 Preliminary studies in our lab suggest that NT5E and PAP are both expressed in 

tongue (data not shown), although the exact location of their expression is still unclear.  

Activity of these enzymes in taste buds could inhibit umami, sweet, and bitter taste detection 

through mass-action effects on ATP depletion, and/or could enhance bitter sensation through 

depletion of AMP.  In addition to expression in the tongue, we have shown that both PAP 

and NT5E are expressed in the salivary gland (see Figures A5.1, A5.2, and A5.3).  This 

raises the possibility that both ectonucleotidases are secreted in saliva and present in the 

buccal cavity.  By breaking down AMP present on the tongue, these enzymes could enhance 

bitter taste sensation.   

Inhibition of PAP or NT5E present in saliva and taste receptors could be beneficial in 

two ways.  First, preventing breakdown of AMP to adenosine could increase local AMP 

concentrations, thereby inhibiting bitter taste sensation.  This could be important for the 

development of more desirable drug formulations, which often have bitter qualities.  

Reducing bitterness could thus aid in patient compliance with prescribed regimens.  In 

addition, makers of processed foods employ a number of techniques to hide bitter compounds 

created during processing, including addition of sweeteners, lipids and emulsifiers, 

carbohydrates, proteins, and flavors, all of which can affect the nutritional quality of the food 

(Roy, 1997).  Inhibitors of ectonucleotidases could be a healthier alternative to these 

strategies.  Blockade of AMP breakdown could also lead to an upstream increase in ATP 

levels in the taste bud, which could enhance taste transduction.  Loss of taste sensitivity is a 

common problem among the elderly, and increasing taste cell signaling could be an effective 

strategy to increase taste sensation.  Obviously, further studies are needed to determine the 

importance of ectonucleotidases in taste. 
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6.8) Figures and Tables 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.1.  PAP and NT5E are the main AMPases in nociceptive circuits.  AMPase-

induced antinociception in wild-type (WT), Pap-/-, Nt5e-/-, Nt5e-/-; Pap-/-, and A1R
-/- mice.  

Thermal sensitivity was measured at baseline (t = 0) and after i.t. injection of AMP (200 

nmol) + 5-iodotubercidin (ITU; 5 nmol).  Significant increases over baseline were seen at 

days 1, 2, and 3 in WT (***, ***, *), Pap-/- (***, ***, *), and Nt5e-/- (***, **, *) mice.  A 

significant increase over baseline was seen at day 1 in Nt5e-/-; Pap-/- (*) mice.  Paired t tests 

were used to compare responses at each timepoint to BL values within a given genotype (n = 

8 mice per genotype).  *P < 0.05, **P < 0.005, ***P < 0.0005.  All data are presented as 

means ± s.e.m.  (Back to text) 
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Figure 6.2.  PAP and NT5E can degrade AMP during inflammation.  AMPase-induced 

antinociception in WT, Pap-/-, and Nt5e-/- mice following inflammation.  Mice were tested for 

thermal sensitivity 1 day after injection of CFA (1d CFA) into one hindpaw.  One day later, 

all mice were injected i.t. (arrowhead) with AMP (200 nmol) + ITU (5 nmol) and thermal 

sensitivity was measured for several hours after injection.  Paired t tests were used to 

compare responses following AMP + ITU injection to the response 1 day after CFA injection 

in the same paw.  n = 8 mice per genotype.   *P < 0.05, **P < 0.005, ***P < 0.0005.  All data 

are presented as means ± s.e.m.  (Back to text) 
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Figure 6.3.  Phosphoinositide tone is a dynamic modulator of nociceptor activity.  Levels 

of PIP2 in the plasma membrane determine the relative excitability of nociceptive neurons in 

response to noxious stimuli, such as pro-nociceptive ligands and noxious heat.  Activation of 

the nociceptor under conditions of high PIP2 levels leads to increased nociception, while 

activation during a period of low PIP2 results in little or no nociception.  (Back to text)  
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Figure 6.4.  PIP2 levels affect behavioral responses to noxious thermal and mechanical 

stimuli after i.t. injection of LPA or ATP .  PIP2 levels in L3-L6 DRG were quantified in 

wild-type (WT) mice, Pap-/- mice, or WT mice injected (i.t.) one day earlier with 250 mU 

hPAP (same data as shown in Figure 4.11A).  Values are means ± s.e.m.  n=3 mice per 

condition.  Overlayed are the mechanical (closed squares) and thermal (open circles) 

sensitivities of mice one day after i.t. injection of (A) 5 nmol LPA or (B) 200 nmol ATP, 

expressed as percent change from baseline (BL) values.  Values were calculated from data in 

Figures 4.16A-D (WT + hPAP, WT) and in Figures 4.17A-D (WT, Pap-/-).  When compared 

to WT mice, lower PIP2 levels (as seen in WT + hPAP animals) correlate with no effects or 

antinociceptive effects on thermal and mechanical sensitivity following LPA or ATP 

injection, while higher PIP2 levels (as seen in Pap-/- animals) correlate with enhanced 

mechanical and thermal sensitivity following LPA or ATP injection.  (Back to text) 
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Figure 6.5.  Potential therapeutic approaches targeting ectonucleotidases to treat pain.  

Targeting ectonucleotidases for treatment of pain could be done using recombinant versions 

of PAP or NT5E locally, delivery of Pap or Nt5e genes in viral vectors to the nervous 

system, oral or systemic administration of prodrugs acted on by endogenous PAP or NT5E to 

make anti-nociceptive products, or local or systemic administration of activators of 

ectonucleotidase gene expression or activators of PAP and NT5E enzyme activity.  (See text 

for further details). 
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APPENDIX I   

PAP can Directly Degrade LPA in vitro but Non-competitively Decreases LPA-evoked 
Ca2+ Responses 

 
 
Summary 

 LPA is a common bioactive phospholipid that regulates a number of basic biological 

processes, including proliferation, cell differentiation, and cell survival (Brindley et al., 2002; 

Mills and Moolenaar, 2003; Moolenaar et al., 2004; Tigyi et al., 1994).  LPA is released from 

platelets and neurons following tissue injury and leads to a wide range of downstream 

effects.  These effects are mediated through a family of G-protein coupled receptors 

(GPCRs), three of which (LPA1, LPA3, and LPA5) are expressed in DRG neurons (Inoue et 

al., 2004; Lee et al., 2006; Renback et al., 2000).  Activation of these receptors can be 

measured through a variety of downstream effects, including changes in internal Ca2+ 

concentrations (Mills and Moolenaar, 2003; Moolenaar et al., 1997; Takuwa et al., 2002).   

 LPA is directly implicated in the modulation of nociceptor activity and pain 

behaviors.  LPA leads to  increases in intracellular Ca2+ levels in DRG neurons and increases 

in nociceptive flexor responses when injected into the hindpaw of mice (Elmes et al., 2004; 

Renback et al., 1999).  Furthermore, intrathecal (i.t.) injection of LPA produces prolonged 

tactile allodynia and thermal hyperalgesia in mice, mimicking a neuropathic pain state (Inoue 

et al., 2004).  Thus, LPA can directly affect activity of DRG neurons and lead to pathological 

pain states.  Termination of LPA receptor signaling occurs by receptor desensitization and/or 

LPA degradation.  PAP has been shown in one study to degrade LPA in vitro (Tanaka et al., 

2004).  We wished to determine if PAP could indeed degrade LPA in vitro and if this action 

can lead to decreased receptor activation in a cell-signaling system.  By measuring Ca2+ 
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signals in response to LPA in Rat1 fibroblasts, we show that incubation of LPA with soluble 

PAP protein completely eliminates LPA activity at its receptors.  Expression of the 

transmembrane (TM) form of PAP also decreases LPA-evoked calcium responses, although 

in a non-competitive manner.  These studies suggest that while PAP is capable of directly 

degrading LPA, TM-PAP decreases LPA receptor signaling non-competitively downstream 

of receptor activation. 

 

Methods and Results 

 To test the ability of PAP to degrade LPA in vitro, 0.5 units of soluble human PAP 

(hPAP) was incubated with 0.2 mM LPA for 0, 10, 30, or 60 min at 37ºC.  Following 

incubation, hPAP enzyme activity was stopped by freezing the samples at -80ºC until use.  

Degradation of LPA was determined by examining the ability of the incubated LPA to 

activate receptors on Rat1 fibroblasts.  To study LPA-evoked Ca2+ responses in whole cells, 

Rat1 fibroblasts were plated on glass-bottom dishes and loaded with the ratiometric calcium 

indicator dye Fura-2 AM (Invitrogen) (For detailed methods, see Section 4.2.3).  LPA 

incubated with hPAP was added to the loaded cells and changes in internal calcium were 

monitored for several minutes.  LPA that was incubated with hPAP for 0 minutes (the 

enzyme was frozen immediately after adding to LPA) showed a robust, transient increase in 

internal Ca2+ (Figure A1.1).  Incubation of LPA with hPAP for increasing amounts of time 

led to decreases in LPA-evoked Ca2+ responses, such that after 60 min of incubation, almost 

all LPA activity was eliminated.  This suggests PAP can directly degrade LPA and prevent it 

from activating its receptors.  
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 To test if the TM form of PAP could also degrade LPA and decrease LPA-evoked 

signaling, Rat1 fibroblasts were transfected with mouse TM-PAP tagged with the fluorescent 

protein mCherry (see Section 4.2.2).  LPA stimulation of TM-PAP-transfected cells led to a 

transient increase in intracellular calcium that was significantly lower in amplitude and 

duration than responses in untransfected control cells (see Figure 4.12A).  We then 

conducted a dose-response of LPA-evoked Ca2+ responses in TM-PAP expressing cells 

versus untransfected controls.  If TM-PAP is directly degrading LPA, the dose-response in 

these cells should be shifted to the right compared to untransfected cells.  However, TM-PAP 

expression led to a shift in the dose-response down and to the right, suggesting a non-

competitive mechanism of action (Figure A1.2A).  This effect was due to the phosphatase 

activity of TM-PAP, as a catalytically inactive form of the protein (TM-PAP(H12A), see 

Section 4.2.2) did not significantly change the LPA dose-response (Figure A1.2B).  

Together, these results suggest that while PAP is capable of directly degrading LPA, it is 

most likely decreasing LPA-receptor activity in a cellular context by inhibiting some aspect 

of cellular signaling downstream of receptor activation. 

 

Figures 
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Figure A1.1.  PAP can degrade LPA in vitro.  LPA (0.2 mM) was incubated with soluble 

hPAP (0.5 U) for the indicated amounts of time and then added to Rat1 fibroblasts loaded 

with the calcium indicator dye Fura-2 AM.  Increases in intracellular calcium are seen as 

increases in the 340/380 ratio.  Increasing the incubation time with hPAP led to decreased 

LPA-evoked Ca2+ responses, indicating increased LPA degradation.  Values are means ± 

s.e.m. for 50 cells per dish and curves are representative experiments for each incubation 

time. 
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Figure A1.2.  TM-PAP non-competitively decreases LPA-evoked Ca2+ responses.  (A, B) 

Dose-response curves with the indicated constructs.  AUC = Area under the Ca2+ response 

curve during 1 min. of LPA stimulation (see Section 4.2.3).  Data are from four separate 

experiments.  2-way ANOVA was used to compare transfected and untransfected cells (P 

values indicated on graphs).  All data are presented as means ± s.e.m. 
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APPENDIX II 
 

Inhibition of LPA-evoked Ca2+ Responses by NT5E Following Co-Expression of A1R 

 
Summary 

 The ectonucleotidase PAP inhibits LPA-evoked Ca2+ responses in Rat1 fibroblasts 

through activation of A1R and subsequent depletion in PIP2.  NT5E is also expressed on the 

cell surface and can rapidly degrade AMP to adenosine.  We hypothesized that expression of 

NT5E in Rat1 fibroblasts would also inhibit LPA-evoked Ca2+ responses, perhaps through an 

A1R-mediated mechanism.  We made and expressed the mouse version of NT5E in Rat1 

cells and stimulated them with LPA.  NT5E-expressing cells showed a very small, but 

significant decrease in LPA-evoked Ca2+ responses.  This NT5E-mediated inhibition could 

be enhanced through co-expression with the mouse A1R receptor, suggesting NT5E can 

inhibit LPA receptor signaling, but only in the presence of abundant A1R. 

 

Methods and Results 

 In order to look at the activity of NT5E in vitro, we made a full-length expression 

construct of the mouse NT5E gene (GenBank accession #NM_011851.3) by RT-PCR 

amplification, using C57BL/6 mouse cDNA as template and Phusion polymerase.  PCR 

products were cloned into pcDNA3.1 and completely sequenced.  To test the effects of NT5E 

on LPA-evoked Ca2+ responses, we transfected Rat1 fibroblasts with mouse NT5E and the 

fluorescent protein Venus, waited 24 hours post-transfection, and then loaded the cells with 

Fura-2 AM.  We stimulated these loaded cells with 1 µM LPA and measured the change in 

the 340/380 ratio inside transfected and untransfected cells in the same field of view.  Cells 
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expressing NT5E did have a small, but significant decrease in LPA-evoked Ca2+ responses 

compared to untransfected controls (Figure A2.1B).   

 In order to try and increase this NT5E effect, we co-expressed mouse NT5E with a 

full-length expression construct of the mouse A1-adenosine receptor (Adora1; GenBank 

accession #NM_001008533.2) that we generated via RT-PCR and cloned into pcDNA3.1.  

Surprisingly, expression of the A1R alone caused a dose-dependent decrease in LPA-evoked 

Ca2+ responses (Figure A2.1A).  However, co-expression of NT5E + A1R led to a 

significantly greater reduction in LPA responses than either of the proteins alone, suggesting 

a synergistic effect of NT5E and A1R (Figure A2.1B).  Taken together, these data suggest 

that NT5E can inhibit LPA-evoked Ca2+ responses in vitro, perhaps through an A1R-

mediated mechanism. 

 

Figures 

Figure A2.1.  NT5E inhibits LPA-evoked Ca2+ responses when co-expressed with A1R.  

(A) Transfection with increasing amounts of mouse A1R inhibited LPA-evoked Ca2+ 
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responses in Rat1 fibroblasts loaded with Fura-2 AM.  (B) LPA-evoked Ca2+ responses in 

Rat1 fibroblasts expressing the indicated constructs.  Expression of NT5E or A1R (0.125 µg) 

alone slightly inhibited responses, while co-expression of both proteins led to significantly 

more inhibition.  For both (A) and (B), responses are the areas under the curve of the change 

in the 340/380 ratio over baseline normalized to the responses in untransfected control cells. 

For (B) t tests were used to compare untransfected cells to transfected cells, as well as cells 

expressing both NT5E + A1R to cells expressing either NT5E or A1R alone.  *P < 0.05, ***P  

< 0.0005.  All data are presented as means ± s.e.m.    

 

 

 

 

 

 

 

 

 

 

 



263 
 

APPENDIX III 
 
 

NT5E, but not PAP, can Rapidly Convert AMP to Adenosine and Activate A2BR in 
vitro 

 

Summary 

 Both NT5E and PAP can activate A1R, leading to decreased GPCR-induced Ca2+ 

responses.  This suggests that both enzymes are capable of degrading AMP to adenosine in 

vitro.  The A1R-mediatd effect on cellular signaling is most likely through a low-level, 

chronic activation of the receptor.  This does not allow us to determine if PAP or NT5E are 

capable of rapidly degrading AMP to adenosine and activating adenosine receptors in a 

cellular context.  To study this, we used A2BR, which is coupled to Gq/11 and when activated, 

leads to PLC activation, IP3 production, and increases in intracellular Ca2+.  We transfected 

Rat1 fibroblasts with A2BR alone or with PAP and/or NT5E, loaded the cells with the 

calcium indicator dye Fura-2 AM, and added AMP to the cells.  Cells expressing just A2BR 

showed an increase in intracellular calcium to addition of adenosine, but not in response to 

AMP.  Cells expressing A2BR with NT5E or NT5E + PAP responded to AMP, suggesting 

NT5E can rapidly degrade AMP to adenosine.  Only a small number of cells expressing PAP 

+ A2BR showed a response to AMP, suggesting that PAP has limited ability to rapidly 

degrade AMP.  These results suggest that NT5E is much more capable of rapid AMP 

degradation and adenosine production than PAP.  

 

Methods and Results 
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 To study A2BR activation, we transfected Rat1 fibroblasts with a full-length 

expression construct of the human A2BR tagged with the yellow fluorescent protein (YFP) 

(gift of Rob Tarran), and 24 hours later loaded the cells with the calcium indicator dye Fura-2 

AM.  We then added 1 mM adenosine (Sigma) for 5 minutes to the cells.  Approximately 

50% of all transfected cells showed an increase in intracellular calcium in response to 

adenosine (Figure A3.1A).  We next added 1 mM of 5’AMP (Sigma) to cells expressing just 

A2BR.  Only 3.33% of cells showed any increase in intracellular Ca2+, and these responses 

were very small in magnitude (Figure A3.1B).  This suggests that these cells cannot rapidly 

degrade AMP to adenosine under these conditions.  We next added AMP to cells co-

expressing A2BR + mouse TM-PAP, A2BR + mouse NT5E, or cells expressing A2BR + TM-

PAP + NT5E.  Only 7.34% of cells expressing A2BR + TM-PAP showed Ca2+ responses to 

AMP, and these responses were moderate in magnitude and duration.  It should be noted that 

significantly more A2BR + TM-PAP cells responded to AMP than cells expressing only 

A2BR, suggesting TM-PAP is producing some adenosine under these conditions.   

 Strikingly, 45% of cells expressing A2BR + NT5E and 40% of cells expressing A2BR 

+ TM-PAP + NT5E showed Ca2+ responses to AMP.  These responses were larger in 

magnitude than those seen in A2BR + TM-PAP cells.  Taken together, these results suggest 

that NT5E is capable of rapid AMP degradation to adenosine and subsequent adenosine 

receptor activation in vitro.  We should note that while PAP seemed to be only weakly 

capable of degrading AMP to adenosine in this assay, it is possible that PAP could be making 

adenosine rapidly, but this adenosine is incapable of quickly activating A2BR before being 

taken up into the cells.  Evidence exists that suggests some ectonucleotidases may actually 

have a very close association with adenosine receptors, essentially shuttling produced 
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adenosine directly to the receptor to maximize activation (Cunha et al., 1998).  This could be 

the case for NT5E, while PAP may not be closely coupled to A2BR in this experimental 

setup.  Further studies are needed to test this hypothesis.   

 

Figures 

 

 
Figure A3.1.  NT5E and PAP can rapidly degrade AMP to adenosine and activate A2BR.  

(A) Percent of total Rat1 fibroblasts expressing the indicated constructs that showed an 

increase in intracellular Ca2+ in response to AMP (1 mM) or adenosine (ADO; 1mM).  An 

increase in intracellular Ca2+ was defined as an area under the curve value > 5 over the first 

minute of AMP addition for a given cell.  Four separate experiments were conducted for each 

condition.  (B) The mean Ca2+ response seen in cells transfected with the indicated constructs 

that showed an increase in intracellular Ca2+ in response to AMP (1 mM) or adenosine 

(ADO; 1 mM).  For (A) and (B), paired t tests were used to compare values for A2BR 
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stimulated with AMP to all other conditions.  *P < 0.05, ***P  < 0.0005.  All data are means 

± s.e.m. 
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APPENDIX IV 
 

Thiamine as an Antinociceptive Compound: Potential Development of TMP as an 
Antinociceptive Pro-drug 

 

Summary 

 The B vitamins, particularly thiamine (B1), riboflavin (B2), pyridoxine (B6), and 

cyanocobalamin (B12) have all been implicated in proper nervous system function.  

Deficiencies in these vitamins lead to pathological conditions, including chronic pain 

(Zimmermann, 1988).  Conversely, supplying pyridoxine and thiamine can relieve pain in 

humans associated with neuropathic disorders, carpal tunnel syndrome, rheumatoid arthritis, 

and premenstrual tension (Abbas and Swai, 1997; Bernstein, 1990; Bernstein and Dinesen, 

1993; Jorg et al., 1988; Wyatt et al., 1999; Yxfeldt et al., 2003).  B vitamins also potentiate 

the antinociceptive effects of nonsteroidal anti-inflammatory drugs (NSAIDs) in many 

painful conditions (Jurna, 1998; Kuhlwein et al., 1990; Reyes-Garcia et al., 2002; Reyes-

Garcia et al., 1999; Rocha-Gonzalez et al., 2004).  In addition, B vitamins also attenuate 

neuropathic pain syndromes in animals following peripheral nerve injury, DRG compression, 

or induction of diabetic neuropathy (Caram-Salas et al., 2006; Sanchez-Ramirez et al., 2006; 

Song et al., 2009; Wang et al., 2005).  Interestingly, some studies suggest that thiamine has a 

selective effect on reducing nerve injury-induced thermal hyperalgesia, while not affecting 

mechanical allodynia (Song et al., 2009; Wang et al., 2005).  Some studies suggest an 

immediate effect of B vitamins on acute nociception, as measured in the acetic acid writhing, 

formalin, and hotplate tests (Moallem et al., 2008; Reyes-Garcia et al., 2001; Sanchez-

Ramirez et al., 2006).  The physiologic effects responsible for this anti-nociception are 
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unclear, although two studies have suggested direct inhibitory actions of thiamine on DRG 

and spinal cord dorsal horn neurons (Fu et al., 1988; Song et al., 2009).  In addition, B 

vitamins are important in nerve conduction, enhance antinociceptive cyclic GMP production, 

and play a role in reconstruction of degenerated nerves (Fujii et al., 1996; Itokawa and 

Cooper, 1970; Vesely, 1985).   

 Thiamine production in the nervous system is under the control of enzymes that 

breakdown thiamine phosphate esters, including thiamine triphosphatase (TTPase), thiamine 

pyrophosphatase (TPPase), and thiamine monophosphatase (TMPase) (Knyihar-Csillik et al., 

1986; Reggiani et al., 1984; Rindi et al., 1984).  We recently identified PAP as the molecular 

identity of TMPase, and this enzyme is the only one responsible for the breakdown of TMP 

to thiamine in DRG and dorsal spinal cord (Zylka et al., 2008).  By degrading TMP, PAP 

could cause antinociception due to production of thiamine.  In order to initiate studies on this 

possibility, we attempted to study the effects of thiamine on cellular signaling and acute 

nociception.  We show that incubation of Rat1 fibroblasts expressing the A1R with thiamine 

reduces LPA-evoked Ca2+, suggesting a possible role for thiamine in reducing pro-

nociceptive cell signaling.  Further, we show that intrathecal injection of thiamine has 

antinociceptive properties in two tests of acute thermal sensitivity, and some of this effect is 

eliminated in A1R
-/- mice, suggesting a possible role of thiamine in activating A1R signaling.   

 

Methods and Results 

 In order to test the effect of systemic thiamine injection on acute thermal nociception, 

we first attempted to recreate published data (Moallem et al., 2008) looking at latency to 

nocifensive responses in the hotplate test before and after intraperitoneal (i.p.) injection of 
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thiamine (125 mg/kg; Sigma) dissolved in 0.9% saline.  We used two groups of adult male 

mice – 6 C57BL/6 animals, and 5 A1R
-/- animals.  Based on PAP’s requirement for A1R

-/- for 

its antinociceptive effect and a lack of an identified thiamine receptor, we used A1R
-/- mice as 

controls to see if part of PAP’s effect was due to thiamine production from TMP and 

activation of A1R.  WT and A1R
-/- mice had similar latencies to nocifensive response at 

baseline (defined as licking hindpaw or jumping) (Figure A4.1A).  Withdrawal latencies 

were significantly increased over baseline 30 min after i.p. injection of thiamine in both 

genotypes, suggesting a thermal antinociceptive effect due to thiamine that does not depend 

on A1R activation.  

We also tested the ability of thiamine to affect acute thermal nociception in the 

radiant heat (Hargreaves) test.  For this test, we injected thiamine i.p. (125 mg/kg) and 

measured hindpaw withdrawal latencies at 30, 60, and 120 min after thiamine injection.  

Thiamine caused a small, but significant increase in withdrawal latency at 30 min in WT, but 

not A1R
-/- mice (Figure A4.1B).  There were no changes in withdrawal latency at the later 

time points.  This suggests that central injection of thiamine has thermal antinociceptive 

effects that may depend on A1Rs.   

 To further test the ability of thiamine to affect cellular signaling through A1R, we 

looked at LPA-evoked calcium responses in Rat1 fibroblasts expressing A1R with or without 

prior incubation with thiamine.  Transfected cells were incubated with 1 mM thiamine or 

vehicle for 3 hours, then loaded with Fura-2 AM.  LPA-evoked Ca2+ responses were 

measured as described above.  As described in Appendix III (see Figure A3.1A), expression 

of A1R alone caused a decrease in LPA-evoked Ca2+ responses.  Incubation of these cells 

with thiamine further decreased LPA-evoked Ca2+ responses, suggesting thiamine may 
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decrease cell signaling through an A1R-dependent process (Figure A4.2).  Further studies 

using A1R-selective antagonists are necessary to confirm this result.  Taken together, our 

results suggest that thiamine has effects on acute thermal nociception that may act through 

activation of A1Rs.  Interesting follow-up studies could be performed examining the possible 

anti-nociceptive properties of TMP through degradation to thiamine by PAP.  If this is the 

case, TMP could be used as a selective pro-drug for activation by PAP for treatment of 

chronic pain that could avoid the side-effects of AMP analogs.   

 

Figures 

Figure A4.1.  Thiamine reduces acute thermal nociception in vivo.  (A) Nocifensive 

response to noxious heat stimulus (52ºC) on hotplate in wild-type (WT; n = 6) and A1R
-/- (n = 

5) mice.  Responses were taken at baseline (BL) on two consecutive days, followed by two 

consecutive days where responses were taken 30 min after i.p. injection of thiamine (125 

mg/kg).  A positive response was defined as licking of the hindpaws or jumping.  (B) 

Withdrawal latency to noxious thermal stimulus (radiant light source) in WT (n = 4) and A1R
-

/- (n = 6) mice at baseline (BL) and after i.p. injection of thiamine (125 mg/kg; arrow).  For 
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(A) paired t tests were used to compare responses at baseline to responses at 30 min within 

each genotype.  For (B) paired t tests were used to compare responses at BL to responses at 

later timepoints within each genotype (black asterisk) and to compare responses between 

genotypes at each timepoint (red asterisks).  *P < 0.05, **P < 0.005.  All data are means ± 

s.e.m. 

 

 

 

 

 

 

 

 

 

 

Figure A4.2.  Thiamine reduces LPA-evoked Ca2+ responses in Rat1 fibroblasts.  LPA 

(100 nM)-evoked Ca2+ responses in Rat1 fibroblasts transfected with the indicated constructs.  

Some cells were incubated for three hours with 1 mM thiamine (Thi) prior to LPA addition.  

Responses were normalized to untransfected controls.  n = 180 – 240 per condition.  Paired t 

tests were used to compare responses in untransfected cells to all other conditions and to 

compare A1R to A1R + Thiamine.  ***P  < 0.0005.  All data are presented as means ± s.e.m. 
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APPENDIX V 
 

Expression of PAP and NT5E in Salivary Glands of Mice 
 

Summary 

 Nucleotide signaling is important in the regulation of salivary gland function.  Both 

P2X (P2X4 and P2X7) and P2Y (P2Y1 and P2Y2) receptors are present in salivary glands and 

are involved in numerous processes, including chloride and sodium ion transport, secretion, 

response to glandular damage, and mediation of inflammation or cell death (Ahn et al., 2000; 

Gibbons et al., 2001; Lee et al., 1997; Turner and Camden, 1990; Zeng et al., 1997).  In 

addition, ATP and its degradation products are secreted into saliva that eventually resides in 

the buccal cavity.  Here, AMP and adenosine can modulate taste sensation through actions at 

taste buds (Keast and Breslin, 2002; Keast et al., 2004; Ming et al., 1999).  ATP can be 

released in salivary glands from parasympathetic nerve terminals (Tenneti et al., 1998), and 

can also be released from salivary ductal cells in response to shear stress and distension due 

to salivary flow (Ralevic and Burnstock, 1998).  The actions of ATP at its receptors are 

terminated through degradation of ATP to adenosine.  Ectonucleotidases must be present in 

the salivary gland to mediate this process.  Immunohistochemistry suggests the expression of 

E-NTPDase1 and E-NTPDase 2 in many different salivary gland cells types (Kittel et al., 

2004), while more recent biochemical studies suggest E-NTPDase 3 may be present (Henz et 

al., 2006).  Biochemical studies have also detected AMPase activity that was attributed to 

NT5E (Henz et al., 2006).  However, recent evidence suggests that PAP is also expressed in 

mouse salivary gland and could also be responsible for some of the AMPase activity 

(Quintero et al., 2007).   
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Using enzyme histochemistry and immunohistochemistry in knockout animals, we 

attempted to detect the expression of NT5E and PAP in mouse salivary gland.  We were able 

to show expression and activity of both PAP and NT5E in the salivary gland, suggesting 

these enzymes could play important roles in the modulation of glandular function, as well as 

in modulation of taste perception. 

 

Methods and Results 

In order to examine AMPase and TMPase activity in mouse salivary gland, whole 

salivary glands were harvested from WT, Pap-/-, Nt5e-/-, and Nt5e-/-;Pap-/- mice, fixed for 3 

hours in 4% PFA-PBS, washed in 30% sucrose, sectioned, and mounted onto Permafrost 

slides.  AMPase and TMPase activity was performed as described previously (Zylka et al., 

2008), using 5 mM of substrate at either pH 5.6 or 7.0.  AMPase staining was very intense in 

the parotid gland of WT mouse, in acini, ducts, and connective tissue at both pH 5.6 and 7 

(Figures A5.1A, A5.1B).  In Pap-/- mice, staining was similar in pattern, but reduced in 

magnitude compared to WT, suggesting PAP is responsible for some of the AMPase activity 

in the WT gland (Figures A5.1C, A5.1D).  In Nt5e-/-, staining was diminished in the 

connective tissue of the gland, but still strong in the acini and ducts at pH 5.6 (Figure A5.1E).  

Staining at pH 7.0 was strikingly diminished in all regions, suggesting NT5E is responsible 

for the bulk of the AMPase activity in the WT gland (Figure A5.1F).  In Nt5e-/-;Pap-/- mice, 

staining was greatly reduced in all regions at pH 5.6 and was completely absent at pH 7.0 

(Figures A5.1G, A5.1H).  This suggests that PAP and NT5E are responsible for most, if not 

all AMPase activity in the gland.   
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Since we have previously shown that PAP is entirely responsible for TMPase activity 

in the spinal cord and DRG, we also looked at TMPase staining in the parotid gland at pH 5.6 

and 7.0.  TMPase staining was eliminated in both Pap-/- and Nt5e-/-;Pap-/- mice at both pHs, 

while it was similar to wild-type in Nt5e-/- tissue, suggesting that PAP is expressed and 

functional in mouse salivary gland (Figures A5.2A-A5.2H).   

In order to test for expression of NT5E protein, we used immunofluorescence to label 

salivary glands from WT, Pap-/-, and Nt5e-/- mice using a commercially available anti-NT5E 

mouse antibody.  In WT and Pap-/- mice, staining was intense in all regions of the salivary 

glands, similar to the AMPase activity in Pap-/- animals (Figures A5.3A, A5.3B).  In Nt5e-/- 

tissue, staining was nearly completely eliminated (Figure A5.3C).  The only residual staining 

appeared to be in some ducts suggesting this staining was due to non-specific binding of the 

antibody in these regions.  These studies confirmed the presence of NT5E protein in mouse 

salivary gland.  We also attempted to label mouse salivary gland with anti-PAP mouse 

antibody, but saw similar staining patterns in all genotypes tested, suggesting significant 

background staining in these tissues with this antibody (data not shown).  Taken together, our 

studies confirm that both NT5E and PAP are expressed and are functional in mouse salivary 

gland.  Their roles in salivary gland function remain to be determined. 

 

Figures 
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Figure A5.1.  AMPase activity in mouse salivary gland.  (A-H) Parotid gland from (A, B) 

wild-type (WT), (C, D) Pap-/-, (E, F) Nt5e-/-, and (G, H) Nt5e-/-;Pap-/- mice stained with AMP 

histochemistry.  AMP substrate concentration was 5 mM at the indicated pH.  Scale bar is 50 

µm for all images.   
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Figure A5.2.  TMPase activity in mouse salivary gland.  (A-H) Parotid gland from (A, B) 

wild-type (WT), (C, D) Pap-/-, (E, F) Nt5e-/-, and (G, H) Nt5e-/-;Pap-/- mice stained with TMP 

histochemistry.  TMP substrate concentration was 5 mM at the indicated pH.  Scale bar is 50 

µm for all images.   
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Figure A5.3.  NT5E protein is expressed in mouse salivary gland.  (A-C) Parotid gland 

from (A) wild-type, (B) Pap-/-, and (C) Nt5e-/- mice labeled with anti-NT5E antibody.  Scale 

bar is 50 µm for all images.     
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APPENDIX VI 

 

Risk Factors and Characteristics of HIV Painful Neuropathy in a South African 
Population 

 
Summary 

 Nowhere has the effects of HIV been felt on a grander scale than in the country of 

South Africa.  Poverty, social instability, restricted access to medical care, and political 

indifference have combined to produce an epidemic in which over 5.7 million South Africans 

(18.1% of the population between 15-49) are infected (UNAIDS, 2008).  The magnitude of 

the epidemic has had profound effects on South African society, leading to a dramatic 

reduction in life expectancy, an increase in deaths among young adults, an increase in child 

orphans (over 1.7 million “AIDS orphans”), a rise in unemployment, a stifling of the national 

economy, and a rise in social unrest (Booysen et al., 2003; SAIR, 2009; SSA, 2008).  Social 

stigma and AIDS denialism amongst government officials have led to a delay in treatment of 

HIV-infected individuals and has also contributed to the magnitude of the epidemic, as it is 

estimated only 32% of those in need of treatment are currently receiving antiretroviral 

medications (WHO, 2008).  However, the new South African government has pledged to 

increase the number of HIV-infected individuals receiving treatment, with a goal to provide 

treatment to 80% of individuals who need it by 2011 (Muir and Bass, 2009).  

 Peripheral sensory neuropathies (PSNs) are the most common neurological 

complication of HIV infection (Luciano et al., 2003; Wulff et al., 2000).  PSNs result from 

damage to peripheral nerves that cuase slowly progressive numbness and paresthesias with 

burning sensations in the extremeties (Gonzalez-Duarte et al., 2007).  Some patients develop 
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severe pain, but up to 30% are asymptomatic (Morgello et al., 2004; Schifitto et al., 2002; 

Schifitto et al., 2005).  All individuals with PSNs are at high risk of damage to peripheral 

structures (hands and feet) and more serious bodily injury as a result of the progressive 

numbness in these regions.  In addition, patients with HIV-associated sensory neuropathy 

have significantly lower scores in measures of quality of life, especially in perceived physical 

functioning, level of pain, energy level, and perceived overall health (Pandya et al., 2005). 

There are two broad classifications of HIV-associated sensory neuropathy.  Distal 

sensory polyneuropathy (DSP) is a primary complication of advanced HIV disease, seen in 

greater than 30% of patients with AIDS (de la Monte et al., 1988; Norton et al., 1996).  The 

pathogenesis of DSP is unclear, but is characterized by prominent small-diameter axonal loss 

likely due to inflammation and is associated with low CD4 counts and elevated HIV plasma 

viral loads (Pardo et al., 2001; Simpson et al., 2002; Simpson et al., 1998; Tagliati et al., 

1999).  Antiretroviral toxic neuropathy (ATN) is a second type of HIV-associated neuropathy 

that is due to direct toxic effects of certain types of antiretroviral medications used to treat 

HIV infection.  ATN is particularly associated with high doses of nucleoside reverse 

transcriptase inhibitors (NRTIs), including zalcitabine (ddC), didanosine (ddI), and stavudine 

(d4T) (Browne et al., 1993; Lambert et al., 1990; Yarchoan et al., 1988).  These drugs could 

cause neuronal damage through mitochondrial dysfunction (Gonzalez-Duarte et al., 2007).  

Rates of HIV-associated neuropathies are increasing, with prevalence over 50% in some 

studies, and this is thought likely due in part to the development of ATN in antiretroviral-

treated individuals (Morgello et al., 2004; Watters et al., 2004).  However, definitive studies 

on the risks of antiretrovirals for development of ATN have not been performed.   
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Antiretroviral therapy (ART) in South Africa consists of one of two NRTIs – d4T or 

zidovudine (AZT) –  together with lamivudine (3TC) and a non-NRTI – either nevirapine or 

efavirenz (Wilson et al., 2002).  While the dose of d4T has been lowered recently, there is 

some concern that use of the drug in a population that is already at risk for polyneuropathy 

due to the high prevalence of malnutrition, alcohol use, and prio anti-tuberculosis therapy 

could lead to even higher levels of ATN.  In fact, a recent cross-sectional study in a South 

African HIV-infected population showed that the frequency of HIV-associated sensory 

neuropathy increases significantly from 23% prior to initiation of ART to 40% in ART-

exposed subjects (Maritz et al., 2009).  In addition, a history of prior Mycobacterium 

tuberculosis (TB) infection was an additional risk factor for HIV-associated sensory 

neuropathy, irrespective of ART treatment status.  This is especially troublesome, as South 

Africa has one of the highest incidence rates of TB in the world.  This study seems to suggest 

that ART and TB treatment are significant risk factors for the development of HIV-

associated sensory neuropathy.  However, this study is limited by its cross-sectional design.  

A more rigorous, longitudinal study could more directly study the effects of ART, TB 

treatment, and other risk factors for the development of HIV-associated sensory neuropathy.  

It is exactly such a study I will be assissting in conducting. 

 

Methods  

 A longitudinal study has been launched under the direction of Drs. Jeannine Heckmann 

(University of Cape Town), Michael Benatar (Emory University), and Taylor Harrison 

(Emory University) on site at the University of Cape Town Medical School and the 

Crossroads Community Health Center (CCHC) within the city of Cape Town, South Africa.  
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The CCHC provides all HIV care to approximately 5000 HIV-infected individuals in the 

Crossroads community.  The basic study design will be similar to that of a recently 

completed cross-sectional study carried out in the same clinic (Maritz et al., 2009).  Subjects 

will be included if they meet the following criteria: (1) age ≥ 18; (2) HIV infection 

documented by ELISA and confirmed by Western Blot; (3) No prior history of antiretroviral 

therapy; and (4) Patient or patient’s legal next of kin understands the purpose and 

requirements of the study and has provided Informed Consent.  Patients will be excluded on 

the basis of the following: (1) Cognitive impairment which, at the discretion of the site 

investigator is felt to preclude cooperation with the study protocol; (2) signs and symptoms 

suggestive of either radiculopathy or myelopathy that, in the opinion of the investigator, 

complicates the diagnosis of neuropathy; and (3) family history of neuropathy. 

 A total of three study visits will occur: a baseline visit at study entry and two follow-up 

evaluations at 6-month intervals.  Evaluations at the baseline visit will include 

anthropometric data (height, weight, heart rate, blood pressure, etc.), completion of dietary, 

nutritional, and lifestyle questionnaires, detailed collection of past medical and social history 

(including the frequency and quantity of alcohol consumption, prior history of tuberculosis 

with documentation of regimen and treatment duration), as well as a general physical 

examination.  Laboratory screening for diabetes through fasting blood glucose and a 2-hour 

oral glucose tolerance test will be performed.  Subjects will also have a complete blood 

count, CD4+ count, HIV viral load, RPR, hepatitis B and C serology, albumin, ALT, lipids, 

lactate, B12, insulin level, and TSH measured.   

 A brief (< 30 minutes) examination of peripheral nervous system function will focus 

attention to extremity muscle strength, bulk, and tone, as well as to assessment of the 
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following primary sensory modalities: pinprick, vibratory thresholds, and proprioception.  

Pinprick sensitivity will assess for a symmetric, distal-to-proximal gradient of sensory loss.  

Vibratory thresholds measured at the distal interphalangeal joint at the first toe will be 

deemed abnormal if the subject is unable to report sensation beyond 10 seconds after a 

maximal strike of a 128-Hz tuning fork.  Proprioception will be assessed at the distal phalynx 

of the great toe.  Muscle stretch reflexes will be assessed to determine either the absence or 

side-to-side asymmetry of ankle jerks, or the presence of a distal-to-proximal gradient of 

impaired reflex elicitation.  Data will be recorded in both the Brief Peripheral Neuropathy 

Screen (BPNS) (Cherry et al., 2005) and a modified version of the reduced Total Neuropathy 

Score (TNSr) (Cornblath et al., 1999).  These are both well-accepted and standard means of 

measuring neuropathy in the field.  The BPNS assesses three sensory domains (pain, 

numbness, and “pins and needles” or parasthesias) graded on a 10 cm visual analogue scale 

(VAS) as well as two examination domains consisting of vibratory sensation and reflexes.  

The TNSr incorporates neuropathic symptoms and clinical examination of pinprick and 

vibratory sensation (as described above), muscle stretch reflexes and strength.  For this study, 

we will exclude assessment of autonomic symptoms, electrophysiology, and quantitative 

sensory testing.  Local ethics committee approval has been secured and both neuropathy 

assessment tools have been translated into Xhosa.  Criteria for neuropathy diagnosis, 

classification, and methods of grading severity are detailed in the section entitled “Outcome 

Measures.”   

 Follow-up evaluations at 6 and 12 months will include the neuropathy assessment with 

completion of the BPNS and the TNSr as well as the following laboratory measures: 
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complete blood count, CD4 count, HIV viral load, glucose tolerance test, insulin level, ALT, 

albumin, lipids, and serum lactate. 

 All procedures have been approved by the University of Cape Town research ethics 

committee.  All participants will provide written informed consent. 

 I will be involved in the process by performing the clinical neuropathic evaluations; 

these will include a brief pain symptom visual analogue scale and a brief peripheral 

neuropathy assessment.  I will be trained and observed by study personnel during this time.  I 

will also observe other aspects of the study. Clearly this process will not be completed at the 

time of submission of this document.  This study will give solid evidence on the risk factors 

for the development of HIV-associated neuropathy in this population, with particular interest 

in the dangers of ART use and TB therapy.  Findings from the study could prove useful in 

designing future treatment paradigms that limit the development of HIV-associated 

neuropathies.   
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