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ABSTRACT 
 

DEEPALI JERE: Evaluation of a biopolymer matrix for cell based bone repair 
 

(Under the direction of Dr. Lyndon Cooper) 
 

 Autogenous bone grafts are often associated with unpredictable success 

rates and donor site morbidity.  There is clear medical need for cost-effective bone 

graft material that overcomes these short-comings.  

 Aim: To test a thermally stable, macro-porous collagen scaffold, DuraGen® 

for bone repair and study its ability to stimulate healing of critical size defects in rat 

calvaria engrafted with Mesenchymal Stem Cells(MSCs).  

 Methods: Craniotomy defects, 8.9mm diameter were created in 28 adult 

Sprague-Dawley rats, randomly divided into four groups, 6-Empty(E), 6-Collagen 

only(C), 8-Collagen+MSCs(C+M), 8-Collagen+rhBMP-2(C+B).  Two transgenic rats 

served as stromal cell donors by means of femoral marrow lavage. 

 Results: Bone repair at 28 days was measured using radiographs and 

histology. Histology showed mean bone fill of 9.25%(10.82), 19.07%(17.38), 

44.21%(3.93) and 66.06%(15.08) respectively.  Statistical analysis demonstrated 

significant differences between: E & C, C & C+M, C+B; none between C+M & C+B.  

 Conclusion: This study clearly displays osteogenic properties of collagen 

scaffold implanted with MSCs. 
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CHAPTER 1 

INTRODUCTION 

 

Multiple bacterial dental diseases, trauma, congenital defects and cancer therapy 

result in loss of alveolar (jaw) bone and teeth.  As the population continues to age, 

the percentage of individuals with missing teeth is also increasing.  Their desire for 

teeth is often limited by lack of supporting bone.  This is especially true for 

replacement of teeth with dental implants.  Optimal functional rehabilitation requires 

replacement of bone and teeth, the later often using endosseous implants.  Bone 

regeneration procedures must be developed to be simple, rapid and devoid of 

second surgical donor sites which are frequently associated with increased 

morbidity. 

 

Use of autografted bone from the iliac crest, the “gold standard” bone graft material 

for this procedure, results in non-union failure rates ranging from 5% to 35% (Boden 

SD, 1995; Betz RR, 2002) with morbidity and pain at the donor site reported in up to 

25% of cases after two years.  The most common alternative to autografts is 

allografts and they have associated problems with host rejection, excessive 

resorption and bone revascularization (Mankin HJ, 1983; Prolo DJ, 1985).  

Xenografts are less common alternatives due to their concerns with immunogenicity 

and disease transmission (Kenley RA, 1993).  
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There is clear medical need for a bone graft material that improves the success 

rates and eliminates donor site morbidity.  This study is designed to produce a bone 

implant composite that eliminates use of autologous bone and results in successful 

bone grafting in a high percentage of procedures.  In this study, DuraGen® was 

engineered for use in bone regeneration procedures.  This research will provide the 

basis for a new therapeutic alternative for bone regeneration and specifically provide 

a cost effective approach for improving the outcome of bone regeneration 

procedures performed each year. 

 

A.  Specific aim 

This research project will test thermally stable, macroporous cell regenerative 

scaffolds for bone repair; and evaluate the ability of the scaffolds engrafted with 

Mesenchymal Stem Cells (MSCs) to stimulate healing of 8.9 mm diameter critical 

size bone defects in rat calvaria. 

 

B.  Clinical Significance 

Predictable bone regeneration can enhance the prognosis of dental and maxillofacial 

treatment when deficiency in bone mass can compromise or prohibit optimum 

treatment.  It can be employed clinically for functional replacements of damaged or 

diseased bone tissues to improve the orofacial function and esthetics (Alsberg E, 

2001).  In the future, this approach of bone regeneration using collagen (DuraGen®) 

scaffolds and MSCs can potentially be applied in efficiently recreating missing 

osseous structures especially in case of vertical bone loss, repairing craniofacial 
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deformities and improving the long-term success and stability of implant therapy 

(Earthman JC, 2003).  

 

C.  Hypothesis 

If a collagen / proteoglycan scaffold (DuraGen®) is a biomimetic agent providing 

features of embryonic extracellular matrix, then engraftment of mesenchymal stem 

cells using DuraGen® (type I collagen) will support tissue-specific differentiation. 

 

 

 

 

 

 

 



 

 

CHAPTER 2 

LITERATURE REVIEW 

 

A.  Tissue Engineering 

Tissue engineering is an interdisciplinary field which aims to restore function or 

replace damaged or diseased tissues through the application of engineering and 

biological principles (Alsberg E, 2001).  There is a significant need for functional 

replacement of missing tissues in the oral-maxillofacial complex due to dental 

disease, trauma, congenital defects and cancer therapy.  Over 1 million operations 

in the United States annually involve bone repair (Langer R, 1993).  While all of 

them may not need bone grafting, an estimated 426,000 bone grafting procedures 

were performed in the United States alone in 1996.  Of these, 247,000 used 

autografts, 145,000 allografts, and 34,000 other materials (Boyce T, 1999).  

According to Boyce T in 1999, the number of these grafting procedures has 

enormously increased in the recent decades.  The clinical consequence of this 

experiment is to evaluate the use of a collagen scaffold, DuraGen® with bone 

marrow stromal cells to more efficiently regenerate bone in surgical wounds and 

bone defects that otherwise will not heal or heal slowly. 
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A1.  Approaches to tissue engineering 

Three main approaches to tissue engineering have been discussed in literature, 

namely osteoinduction, osteoconduction and cell-transplantation (Alsberg E, 2001). 

 

A1a.  Osteoinduction  

It is a process by which osteogenesis is induced by bioactive factors.  It involves 

stimulation of undifferentiated or pluripotent cells to develop into osteogenic cells. A 

very common example of this process is fracture healing where immature, 

pluripotent cells are stimulated to differentiate into preosteoblasts (Albrektsson T, 

2001).  Many modern experiments in osteoinduction using bone morphogenic 

proteins have been performed ever since Urist discovered the inductive growth 

factors in 1965 (Urist MR, 1965).  

 

A1b.  Osteoconduction 

As Wilson-Hench mentioned in 1987, osseoconduction is the process by which bone 

is directed to regenerate and adapt to a material’s surface (Albrektsson T, 2001).  

This technique makes use of a barrier membrane placed over the bone defect in 

order to inhibit the nonosteogenic cells of the surrounding tissues from entering the 

defect site while permitting osteogenic cells from the bone marrow cavity to access 

the defect (Hermann JS, 1996).  Guided bone regeneration which has been used for 

many years in Periodontics is a good example of osteoconduction. 
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A1c.  Cell transplantation 

In this technique, seeded cells with a potential to stimulate or differentiate into 

osteogenic cells are applied at the defect site.  Some examples of such cells could 

be chondrocytes and marrow stromal cells which are often seeded on 

osteoconductive scaffolds (Alsberg E, 2001). 

BMPs and associated osteoinductive agents have shown promising results and are 

currently in clinical trials (Kawai T, 2006).  Osteoconductive approaches passively 

facilitate regeneration of tissues and may be employed in small bony defects 

(Alsberg E, 2001; Kaigler D, 2001).  Cell transplantation provides a cost-effective 

approach for large bone regeneration procedures where transplanted cells and 

possibly entire bone structures can be grown in vitro (Kaigler D, 2001). 

 

B.  Types of grafts 

B1.  Autografts 

The most commonly used and the gold standard for bone regeneration is autologous 

grafting.  But, autografts are often challenging in cases where extensive grafting is 

needed since large volumes of autogenous bone may not be available (Alsberg E, 

2001).  In wide spread grafting situations, iliac crest bone graft is often used and it 

has been associated with significant morbidity (Arrington ED, 1996; Kenley RA, 

1993; Aichelmann-Reidy ME, 1998).  Apart from extensive donor site morbidity, a 

second surgical procedure may result in chronic pain which may be disabling in 25% 

of cases (Summers BN, 1989).  Other associated problems could include poor 

contouring and the difficulty involved in harvesting bone (Alsberg E, 2001). 
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B2.  Allografts 

Historically, the most popular alternative to autograft has been human cadaver bone 

or allograft (Mankin HJ, 1983; Prolo DJ, 1985).  For most part, it is used in situations 

where extensive grafting is necessary and autograft is not a viable alternative 

(Boyce T, 1999).  However, allografts have higher failure rates than autografts and 

have additional disadvantages related to extensive resorption, unpredictable 

outcome, and potential host rejection (Mankin HJ, 1983; Prolo DJ, 1985).  Although 

allografts these days may be safer with regard to disease transmission when 

satisfactorily packaged and stored, (Boyce T, 1999; Horowitz B, 1993; Friedlander 

GE, 1983) they still have problems related to bone revascularization (Mankin HJ, 

1983; Prolo DJ, 1985). 

 

B3.  Xenografts 

Xenogenic or animal grafts are widely available, but scarcely applied in extensive 

grafting procedures owing to concerns with immunorejection and disease 

transmission (Alsberg E, 2001; Kenley RA, 1993).  Bovine-derived bone graft 

materials such as Bio-Oss® are popularly used in smaller defects.   

 

B4.  Alloplasts 

This term is often applied to biocompatible, inorganic materials such as synthetic 

calcium phosphate ceramics, polymers and bioactive glasses which can be used in 

conjunction with autogenous or allografts.  The main advantage of alloplasts is that 

they have no potential for disease transmission (no author, JADA 2002). With the 
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substantial increase in number of bone grafting procedures done every year (Boyle 

T, 1999), and their significant role in functional replacement and rehabilitation of 

damaged or diseased orofacial structures, there is a clear and pressing need for a 

cost-effective bone graft material that improves predictability of the procedures and 

eliminates donor site morbidity. 

 

Reddi AH in 2000 suggested that bone tissue engineering primarily involves three 

important ingredients namely the osteoinductive signaling molecules, host cells / 

stem cells responding to the signal and suitable scaffolding for the stimulated cells. 

 

C.  Signaling molecules 

The first ingredient for tissue engineering as suggested by Reddi AH, 2000 are the 

signaling molecules.  Several growth factors and hormones act as signaling 

molecules and they play an important role in osteogenesis by stimulation, 

differentiation and protein synthesis in osteoblastic cell cultures (Reddi AH, 2000).  

Different animal models have been used to identify the major bone growth factors 
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which include, bone morphogenic proteins (BMPs), transforming growth factor beta 

(TGF-b), insulin-like growth factors I and II (IGF-I and IGF-II), platelet derived growth 

factor (PDGF) and basic and acidic fibroblast growth factor (bFGF and aFGF).  

Usually, they are polypeptides or glycoproteins, present in specific tissues in 

extremely low concentrations where they modulate cell functions.  Localization of 

various growth factors influences the spatial patterning and temporal sequence of 

bone healing (Solheim E, 1998). 

 

C1.  Bone Morphogenic Proteins (BMPs) 

Marshall R Urist in 1965 discovered that demineralized bone extract could induce 

bone formation when implanted intramuscularly (Urist MR, 1965).  His key discovery 

led to the identification of the osteoinductive molecule as bone morphogenic proteins 

and plenty of experiments have been done since then to isolate and as well as clone 

them (Croteau S, 1999; Solheim E, 1998; Wozney JM, 1988).  BMPs have been 

identified as members of the TGF-b superfamily and are present in very low 

concentrations in the bone matrix (Croteau S, 1999).  At least twenty types BMPs 

have been identified in humans so far (Gautschi OP, 2007).  

 

Several groups have acknowledged the bone inductive capacity of recombinant 

forms, BMP-2 and BMP-7 in healing critical size bone defects in various animal 

models such as sheep, rats, dogs (Harakas NK, 1984; Gerhart TN, 1993; Stevenson 

S, 1994; Itoh T, 1998).  During bone healing, activation of BMP receptors plays a 

major role in regulating osteoblastic differentiation and subsequent osteogenesis 
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(Reddi AH, 2000; Gautschi OP, 2007; Solheim E, 1998).  These factors seem to be 

expressed in mature bone as well as during embryonic development (Urist, 1977). 

 

Many in vitro experiments have tried to investigate the intracellular events which 

include alkaline phosphatase monitored BMP-2 activity and receptor activation with 

kinase activity (Heldin CH, 1997; Ryoo HM, 2005).  This cascade of events may in 

turn lead to receptor regulated Smad (R-Smad) activation, and stimulation of 

osteogenic transcription factors, such as Runt-related gene 2 (Runx2), Osterix 2 

(Osx), Distal-less homeobox 5 (Dlx5), and Msh-like homeobox 2 (Msx2).  In BMP-2 

induced osteogenesis, it was found that Dlx5 was the earliest to be stimulated by R-

Smads and that it regulated other well-known master transcription factors such as 

Runx2 and Osx (Ryoo HM, 2005). 

 

Despite numerous animal studies (Wang EA, 1988) on bone induction potential of 

BMPs, there is still a huge scarcity of well-designed clinical trials (Gautschi OP, 

2007; Chen D, 2004).  BMP-2 and BMP-7 have been clinically used in patients with 

non-union fractures.  However their routine usage is not yet a possibility particularly 

due to the extremely high costs of manufacturing these glycoproteins (Gautschi OP, 

2007). 

 

C2.  Transforming Growth Factor beta (TGF-β) 

They are also members of TGF-β super family with five subtypes (Solheim E, 1998).  

They stimulate cells of mesenchymal origin while inhibiting cells of ectodermal origin 
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(Lind M, 1996).  Bone contains the largest concentration of TGF-β since they are 

produced by osteoblasts and stored in bone matrix (Bonewald LF, 1990).  Animal 

experiments with TGF-β have shown increased osteoblastic activity and enhanced 

bone in growth (Lind M, 1996).  TGF-β along with BMPs may have a potential for 

clinical use, according to Lind. 

 

C3.  Insulin-like Growth Factors (IGFs) 

IGF-1 has been proven to have the potency to accelerate bone repair in critical- size 

defects in rat calvaria (Thaller SR, 1993).  IGF-1 is supposed to be two to seven 

times more potent than IGF-2 as suggested by Lind, 1996.  The major effect of IGF 

in bone formation is that they stimulate preosteoblastic cell replication which in turn 

enhances bone collagen synthesis and matrix formation (Hock JM, 1988; McCarthy 

TL, 1989). 

 

C4.  Platelet derived growth factor (PDGF) 

It is synthesized by blood platelets, monocytes, macrophages and endothelial cells 

and chiefly affects the mesodermal cells (Solheim E, 1998).  They mainly influence 

by mitogenesis which is not specific for osteoblastic cell line (Abdennagy B, 1992).  

Upon local application of PDGF in rat muscle along with demineralized bone, it 

enhanced osteogenesis (Howes R, 1988).  Two receptor subunits for PDGF, namely 

alpha and beta have been characterized (Solheim E, 1998). 
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C5.  Fibroblast Growth Factor (FGF) 

FGFs are made up of a family of polypeptides which influence the mitogenic activity 

of the mesodermal and neuroectodermal cells (Mabilleau G, 2008; Lind M, 1996).  

They are characterized in two forms, acidic and basic FGF.  Acidic FGF is most 

commonly manifested in humans (Solheim E, 1998).  In recent studies by a French 

group, FGF was able to stimulate bone regeneration in rabbits with the usage of an 

appropriate vehicle (Mabilleau G, 2008).  FGFs play a major role in revascularization 

of bone during wound healing due to their angiogenic potential (Lind M, 1996). 

 

D.  Cell sources for bone repair 

The second ingredient suggested by Reddi AH in 2000 for successful tissue 

engineering is cells. 

 

D1.  Embryonic Stem cells 

Most often, embryonic stem cells are derived from inner cell mass of a blastocyst or 

from the primordial gonadal ridge of the fetus (Elisseeff J, 2005; Handschel J, 2006).  

They have great potential to differentiate into any tissue in the body. However, they 

have major limitations concerning purity of the isolated cell populations and 

immunogenicity. 

 

D2.  Mesenchymal stem cells (MSCs) 

Experiments using multipotent bone marrow stromal cells can be dated back to 1968 

through the work of Friedenstein and his team (Friedenstein AJ, 1968). These cells 
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have the capacity to divide and form two equal daughter cells and differentiate into 

tissue-specific cells on stimulation by signaling molecules (Elisseeff J, 2005).  These 

multipotent cells can proliferate and differentiate into various cell types to repair 

tissues (Bianco P, 2001).  MSCs can be cultured in the lab and combined with 

appropriate carrier to the site of defect.  On transplantation, these progenitor cells 

can differentiate to form the entire bone organ which includes bone, cartilage, 

adipocytes and blood vessels (Bianco P, 2001).  While the haemopoitic cells are 

provided by the host, the bone trabaculae, cortices, matrix and adipocytes are of 

donor origin (Friedenstein AJ, 1966).  Several animal studies have demonstrated the 

effectiveness of mitotically expanded MSCs in supporting bone regeneration either 

alone or along with growth factors (Krebsbach PH, 1998; Petite H, 2000).  The 

cultured stem cells require a suitable scaffold or vehicle before implantation for bone 

regeneration. 

 

E.  Delivery systems or Scaffolds 

The third ingredient required for bone tissue engineering as suggested by Reddi AH, 

2000 are scaffolds or delivery vehicles for the graft materials.  Various materials 

have been investigated as delivery systems for bone tissue replacements.  Some of 

them include ceramics (Gazdag AR, 1995), demineralized bone matrix, collagen 

composites, fibrin, calcium phosphate, polyacrylic acid, hydroxyapatite, dental 

plaster, titanium (Croteau S, 1999). 
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Ideally a scaffold should have a biomimetic matrix similar to the bone tissue 

environment and possess osteoinductive capacity.  Biocompatibility is also desirable 

in that, the material should not be immunogenic or cause unexplained inflammation 

(Temenoff JS, 2000).  Additionally, mechanical properties of the material should 

match that of the tissue to be regenerated (in this discussion, bone) and these are 

often tested under functional loads.  The following most widely studied scaffolds will 

be discussed in this section. 

 

E1.  Ceramics 

Ceramics have been applied in multiple bone regeneration studies.  Several 

combinations of calcium phosphate have been evaluated, the most common among 

them being hydroxyapatite and biphasic calcium phosphate.  The material has been 

used in powder and paste forms.  Pastes seem to have better initial mechanical 

properties compared to powders.  But powders can be sterilized by gamma 

radiation. Although they have good compressive strengths, the tensile strengths are 

still not close to that of bone.  The injectable ceramics have several advantages, in 

that they can easily conform to the shape of the bone defect and produce efficient 

bone regeneration. Some studies have shown that they degrade very slowly and 

sometimes also cause inflammation due to the acid formation (Bermudez O, 1994).  

However a recent study confirmed the bone forming ability of calcium phosphate and 

they found minimal inflammatory cell infiltrate with complete resorption and 

replacement by new bone (Moon, 2005). Additionally, recombinant forms of TGF–β1 

in combination with the cement form have shown to produce bone formation (Blom 
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EJ, 2001).  Ectopic osteoinduction was observed when injectable biphasic calcium 

phosphate was packed with bone mesenchymal stem cells (Trojani C, 2006). 

 

E2.  Polymers 

Many polymers have been evaluated for bone repair.  In general they have distinct 

advantages: low cost, injectable, acceptable mechanical properties and degradation 

times.  Poly(propylene fumarate) (PFF) has been successfully studied as a 

osteoconductive scaffold for osteoblasts to stimulate bone formation without 

producing long-term inflammatory effects in rats (Payne RG, 2002;  Temenoff JS, 

2000). 

 

Poly (lactic-co-glycolic acid) (PLGA) has been tested as a delivery vehicle for BMP-

2.  It is a biocompatible synthetic polymer easily manufactured with predictable 

biodegradability (Woo BH, 2001).  Other copolymers of PLGA such as Poly (alpha-

hydroxy acids) (PHA) have been thought to be promising due to their 

biodegradability (Hollinger JO, 1995). 

 

 Recently a study by Mylonas D concluded that early bone healing was promoted 

when polyaxomer, thermoplastic carrier and a granular inorganic matrix was used in 

combination with allogenic mesenchymal stem cells in non-critical size defects in 

dogs (Mylonas D, 2007). 
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E3.  Hydrogels 

Elisseeff J, 2005 defined hydrogels as “crosslinked polymeric systems that are 

capable of absorbing large volumes of aqueous solution”.  Hydrogels can be 

modified to be very similar to the bone matrix due to their permeability and 

mechanical integrity.  Alginate, pluronics, chitosan, and fibrin glue are few examples 

of hydrogels (Elisseeff J, 2005).  Alginate seems to act by enhancing cell attachment 

and mineralization (Nyugen H, 2003).  Cross-linking induction chemistries have been 

used to alter mechanical properties.  However, ionic cross-linking of alginates 

reduces its mechanical properties over time (Rowley JA, 1999).  Bone marrow 

stromal cells applied locally in rats using temperature-dependent polymerizing 

polyethylene oxide hydrogel vehicle revealed new bone formation (Chen F, 2003).  

Elisseeff J and coworkers also developed multilayered hydrogel systems to engineer 

tissues such as bone and cartilage (2005). 

 

E4.  Collagen scaffolds 

Previous studies have demonstrated the ability of type I collagen to act as a carrier 

matrix to bring about bone formation in critical sized bone defects in rats at 6 weeks 

(Saadeh, 2001).  Studies by Lutolf and co-workers showed critical sized defects in 

rat calvaria treated with collagen matrix in conjunction with rhBMP-2, demonstrated 

high density of localized bone regeneration, especially close to bone-tissue interface 

(Lutolf MP, 2003).  The collagen matrix used in our study, DuraGen® has been 

successfully used for dural repair and containment of CSF (Narotam, 2004). 
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The polymeric matrix (a collagen / proteoglycan co-polymer) to be evaluated for 

bone repair has been investigated as a collagen matrix for primary dural closure. It 

easily conforms to complex surfaces of any shape and size and is fully absorbed 

after complete tissue closure of the dural defect.  Unlike some of the hydrogels 

which have been tested by our laboratory, the dural graft material is pliable and easy 

to handle.  It is made from bovine tendon which is supposed to be one of the purest 

sources of Type I collagen.  This kind of collagen is currently used in manufacture of 

artificial skin, absorbable sponges and wound dressings. The manufacturers claim 

that inactivation of the pathogens is done using sodium hydroxide.  It is suggested to 

promote repair by supporting neovascularization, growth and differentiation of cells.  

 

The collagen / proteoglycan co-polymer is designed to mimic the open polar 

structure of early embryonic extracellular matrix (ECM).  Tissue morphogenesis 

during development and tissue homeostasis and remodeling throughout life depend 

on interactions between the ECM and neighboring cells (Adams JC, 1993; Damsky 

CH, 1997).  Signals contained within the ECM and released during ECM remodeling 

bind to cells through receptors such as integrins and modulate gene expression, 

tissue differentiation and the survival of osteoblast and fibroblast (Damsky CH, 

1999).  If a collagen / proteoglycan material can offer suitable handling for bone 

repair, then it must also present morphological cues to the healing tissue.  It is the 

aim of this project to determine if the collagen / proteoglycan copolymer maintains its 

biological activity when implanted with mesenchymal stem cells.  
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F.  Critical Size Defects 

Frequently, bone healing in large alveolar bony defects and extraction sites is less 

than ideal.  An unfortunate consequence of orofacial cancer survival is that surgical 

resection of affected bone and soft tissue is limited by current technology and 

techniques.  Current methods of regenerating bone have moderate morbidity and/or 

risks, providing only a limited framework for the bone to refill the defect.  Results with 

these techniques can be unpredictable.  Bone loss beyond healing capacity of the 

body to regenerate bone is called a "critical size defect".  In this situation the body 

heals by forming scar tissue not restoring the functionality of the area.   

 

Schmitz and Hollinger established the use of ‘critical size defect’ as an acceptable 

experimental model for bone research in the mid-1980s.  They suggested a rationale 

for testing materials in a hierarchy of animal models with the initial testing to be done 

in the calvaria of rats and rabbits followed by mandibles of dogs and monkeys 

(Schmitz-Hollinger, 1986).  Subsequently, several research groups have 

successfully adopted this rationale for testing of bone substitutes (Sikavistas VI, 

2002).  In general, adult rats are more reliable models to evaluate bone grafting 

materials due to the innate capacity of weanling rats to spontaneously heal 

extensive defects (Takagi K, 1982).  The size of CSD for adult rat model varies in 

scientific literature from 5 to 8mm (Jager M, 2005). 
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The regeneration or repair of craniofacial osseous defects of dimensions exceeding 

those associated with spontaneous repair as well as larger defects exceeding 

autogenous sources of bone for grafting require bone-substitutes. 

 

 

 



 

 

CHAPTER 3 

MATERIALS AND METHODS 

 

Based on a recent literature review, the rat model is a commonly employed model by 

the majority of researchers in this field.  We utilized this species and followed 

standardized procedures in order to minimize the number and risk to the animal 

subjects, and to be able to compare our results with those obtained in the past by 

other institutions. 

  

We selected the rat cranium as the site of our experiments based on literature 

review due to its poor healing response.  The critical size defect in the rat calvarium 

is a particularly good model, since it provides an excellent challenge to the tested 

materials due to the natural lack of a primary nutrient artery in the rat, and also 

because of its relatively low marrow content.  Our preliminary studies using the 

collagen scaffold demonstrated partial to complete bone repair of the rat calvarial 

defects and compared favorably with BMP-2 directed healing. 

 

To determine efficacy of the DuraGen® scaffold, four different treatment groups 

were compared using the standardized calvarial defect.  A total of 30 rats were used 

for this experiment. 2 rats served as bone marrow stromal cell donors by means of 

femoral bone marrow lavage.  They were divided randomly into four groups of with 6 
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or 8 animals each.  Animals were treated using implants with bone marrow stromal 

cells-containing matrix and compared to untreated defects as well as implants with 

bone morphogenic protein.  The animals and treatments will be distributed as follows 

Table 3.1. 

Group # Number of animals Treatment 

1 6 Empty / Negative control 

2 6 Matrix + Saline 

3 8 Matrix + MSCs 

4 8 Matrix + BMPs / Positive control 

  

Table 3.1. Distribution of animals in the four treatment groups. Note that the matrix used in 

this experiment is DuraGen® 
 

Prior to beginning the experiments, the protocol was submitted for approval by 

Institutional Animal Care and Use Committee (IACUC).  UNC Department of 

Laboratory Animal Medicine (DLAM) requirements were fulfilled. 

 

A.  Surgical procedures  

Adult, male Sprague-Dawley rats weighing 250-300g and 5 months old were used 

for our project.  They were gently restrained by a surgical assistant and anesthetized 

presurgically by intraperitoneal injection of ketamine/xialzine (40-80mg/kg; 2-

10mg/kg).  The animals were monitored for respiration rate, toe-pinch and eye reflex 

throughout and after the procedure as a way to ensure an appropriate level of 

anesthesia.  Immediately after the surgery, each animal was given a subcutaneous 

injection of buprenorphine (0.15mg/kg; Henry Schein, Melville, NY) for post-
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operative analgesia, and an intraperitoneal injection of 3 ml of normal saline (0.9% 

Sodium Chloride NaCl; Henry Schein).  This is to compensate for sensible and 

insensible fluid losses during the post-op recovery periods.  In order to prevent 

excessive drying of the conjunctiva, ‘Perlube’ lubricant in the form of ointment was 

applied in the rats’ eyes.  The incision site and wound area were shaved gently with 

an electric shaver.  The surgical field was cleaned with Providine, 10% Povidone-

Iodine antiseptic solution.  

 

Adhering to aseptic technique guidelines, a midline skin incision from the mid-nasal 

bone area to the posterior nuchal line was made, and the underlying periosteum 

incised and dissected.  A trephine bur with an internal diameter of 8.0mm and 

external diameter of 8.9mm was attached to a rotating slow-speed, straight dental 

hand-piece which was used to create a 0.89-cm circular defect in the rat calvaria.  

The dura and surrounding blood vessels were carefully guarded to avoid any 

perforation or damage.  Constant irrigation with a mixture of normal saline was used 

on the drilling site to minimize bleeding.  Once the bone defect was prepared, the 

circular piece of bone was saved for future evaluation.  After ensuring that the 

animal was stable, implants were set in place.  Collagen (DuraGen®, Integra, NJ) 

scaffolds were precut using 8.0mm tissue punch into 2mm thick implants.  The 

scaffolds were saturated with 2-3 drops of sterile 0.9% saline and/or 5μg/ml of 

rhBMP-2 solution or 5 x 106 cells/ml of rat MSCs as required by the treatment 

groups. 
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The surgical wound was closed by approximating the overlying tissues and suturing 

in layers with resorbable 4 or 5-0 Vicryl sutures (Ethicon, Somerville, NJ).  The 

animals were then housed individually at room temperature, and observed by trained 

personnel until they ambulated and did not show any visible signs of distress.  Once 

they were ambulant, they were transferred in individual labeled cages with soft 

bedding and were given free access to water and soft diet.  Approximately 8 hours 

after surgery, once the animals recovered from sedation, each animal was given 

another subcutaneous injection of buprenorphine (0.15mg/kg; Henry Schein, 

Melville, NY), an opioid analgesic for prolonged post-operative analgesia.  Each 

animal was given a subcutaneous injection of ketoprofen (dose of 5mg/kg; Henry 

Schein) 24 hours after the surgery in order to provide long-term analgesia.  Then the 

animals were monitored daily for signs of complications related to surgery or illness.  

They were housed at room temperature and had unrestricted access to food and 

water.  Daily records of each animal were kept in writing.  The animals were 

euthanized by Carbon-di-oxide (CO2) inhalation as per the standard protocol, 28 

days after surgery.  Death was ensured using thoracotomy on the rats. 

 

After the euthanasia was complete, 10% formalin was injected for perfusion fixation.  

Upon debriding the soft tissue, craniotomy site was separated along with 

surrounding bone using bone rongeurs.  Care was taken during the procedure to 

maintain the calvarial periosteum intact.  The recovered bone was then placed in 4% 

paraformaldehyde solution.  It is immediately placed in the cold room at 40C with the 

vibrator operating at low speed.  The paraformaldehyde was changed out after 24 
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hours.  Another 24 hours later, the bone specimens were washed with PBS and 

micro CT scanning was done. Then, 45ml of 0.5M EDTA, pH 8.0 was added to 

initiate the process of decalcification.  Every 3 days, fresh EDTA was replenished.  

After 14 to 30 days of being immersed in EDTA, the decalcified bone specimens 

were ready for paraffin embedding.   

 

A1.  Bone marrow isolation 

6-week old Green Fluorescent Protein (GFP) transgenic rats of Sprague-Dawley 

type were used for bone marrow isolation.  The rats were euthanized using the 

protocol for CO2.  Immediately after that, the rats’ femur was isolated.  The femur 

was excised at its head as well as above the knee at the diaphysis.  Medium was 

premade by mixing alpha Minimum Essential Medium (alpha-MEM), 10% Fetal 

Bovine Serum (FBS) and 1% antimycotic agent.  Using a 5ml syringe and 18 gauze 

needle, medium was passed through and through the shaft of bone into a 50ml tube.  

This was done repeatedly using additional 15-25ml of media until the bone becomes 

white.  The entire mixture of medium and cells are pipetted several times to remove 

cell clumps.  Each femur was plated into two 150ml dishes, labeled and allowed to 

culture in an incubator.  The plates were rinsed extensively with PBS several times 

and the culture medium was replaced on second, fourth and sixth days.  When the 

cells were approximately 90% confluent, they were split and plated. 

  

Splitting was done by removing the medium and washing with PBS.  About 5ml of 

Trypsin or EDTA was added to a 150mm dish with at least 90% confluent cells.  The 
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dishes were lightly tapped on the bottom and incubated for approximately 5 minutes 

to allow the cells to detach.  10ml of medium was added and centrifuged for 4 

minutes at 1000 rpm.  The supernatant was removed and resuspended in growth 

medium.  The solution was pipetted to remove all cell clumps and then plated in 

additional 150mm dishes. 

 

A2.  Freezing MSCs 

The following protocol was used for freezing the MSCs. 

- Label vials with date, cell type, initials. 

- Trypsinize, centrifuge cells as explained previously to get a cell pellet. 

- Re-suspend cell pellet in non-supplemented, cold culture media, using half 

the final volume. Keep on ice. 

- Once the cells were resuspended, 10μL was used and placed in the 

haemocytometer for counting. Average cells per square were counted.  

- Then cold Supplemented Media (40% FBS, 20% sterile DMSO - Dimethyl 

Sulphoxide) was slowly added drop-by-drop until the desired volume was 

obtained. 

- Aliquot into freezing vials and cap by keeping on ice for 30 minutes. 

- The vials were transferred into Mr. Frosty. 

- Mr. Frosty was stored in -80oC freezer. 

- After freezing overnight, the vials were transferred to liquid Nitrogen for long 

term storage. 

- Each plate was frozen in 2 vials to yield about 1.5 x 106 cells per vial. 
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8 plates of confluent rat MSCs were resuspended in 200μL of media. It was then 

added to precut Duragen scaffolds in a 24-well dish and allowed to sit for 2 hours.  

Then 1ml of growth media was added. 

 
 
B.  Evaluation 
 
B1.  Radiomorphometry 

After debriding the soft tissue, harvested tissues were placed in 4% para 

formaldehyde.  Radiographs were obtained using table-top micro-CT scanner 

(Skyscan, Belgium) to demonstrate defect size and the amount of mineralized bone 

within the defects.  The bone specimens were gently rinsed with water.  The 

periosteoum was cut with a #15 blade or diamond disc to leave about 2mm of the 

surrounding bone intact.  The specimens were positioned on a holder in the digital 

image receptor at right angles to the source of the beam and exposed to 66kVp, 

8mA for 0.06 seconds.  The images were reconstructed in 3 dimensions.  

Densitometric tracing of the radiographs was used to estimate bone fill.  Mean grey 

values (MGV) was calculated for each radiograph using the Image J 1.37 for 

Windows software.  The range of values noted was between 0 (Black) and 255 

(White).  Denser bone would look darker. 

 

B2.  Histomorphometry 

All excised bone samples were decalcified using EDTA and bisected along a line 

parallel to the sagittal suture.  Two sections were made along the same plane for all 
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specimens to enable accurate comparison of the groups.  The specimens were 

processed for regular histology.  All paraffin-embedded specimens were sent to NC 

State University College of Veterinarian Medicine where they were sectioned at 5μm 

and stained with hematoxylin and eosin (H&E) and Mason’s Trichrome.  The total 

defect and bone areas were measured using the Image J 1.37 software.  Those two 

parameters excluding the area occupied by voids were measured in each of the two 

histological sections in mm2.  The bone fill estimates were calculated as a 

percentage of the total defect area.  The estimates for each of the two sections were 

averaged for an individual specimen.  Group means and standard deviations were 

calculated for the percentage of defect area occupied by bone in the 

microradiographs and the histological sections. 

 

Mason’s Trichrome histochemical staining was also carried out on all the slides for 

identifying areas of osteoid production within the critical size calvarial defects. 

 

Two evaluators were calibrated for measurement of bone fill using both micro CT 

and histology.  However, the measurement of bone in histological sections was 

carried out by one evaluator only and consensus was obtained regarding certain 

questionable areas of new bone formation.  

 



 

 

CHAPTER 4 

RESULTS 

 

A.  Radiography 

After the bone specimens were fixed with 4% paraformaldehyde solution, 

radiographs were taken using the Micro CT scanner (Skyscan, Belgium).  The Mean 

Gray Values (MGV) obtained using the measurements from Image J 1.37 were 

noted for each specimen. 

 

Descriptive statistics was done using SPSS and as represented in Table 4.1., the 

average MGV and standard deviation measurements were noted for the four 

treatment groups.   

 

Groups N Average MGV Standard 
deviation 

Empty 6 217 13.45 

Matrix + Saline 4 192.92 32.64 

Matrix + MSCs 6 168.74 7.67 

Matrix + BMP 8 149.46 20.99 

 

Table 4.1.  Average MGV and Standard deviation for the four treatment groups obtained by 

Image J measurements of Micro CT radiographs 
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Figure 4.1.  Bar graphs comparing average MGVs and standard deviation for the four 

treatment groups 

 

The above bar graph (Figure 4.1.) displays the average of mean gray values 

measured using the micro CT radiographs for each of the four treatment groups.  

The higher mean gray value correlates to lesser density of bone.  Accordingly, the 

empty and DuraGen® matrix groups showed significantly less density of bone 

formation when compared to the groups with MSCs and rhBMP-2 along with 

DuraGen® matrix. 
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Some representative micro CT images of each of the groups tested are included.               

       

                        

Figure 4.2.  Micro CT image of Empty / negative control at 4 weeks 

 

As seen in the radiographs (Figure 4.2.) in the empty group, there is almost no 

evidence of bone formation at 4 weeks. The average MGV and standard deviation 

for this group was calculated to be 217 and 13.45 respectively (Table 4.1.). 
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Radiographs of DuraGen® + saline group (Figure 4.3.) show some evidence of bone 

formation, especially around the periphery of the circular defect.  The average MGV 

was shown to be 192.92 and the standard deviation was 32.64 (Table 4.1.). 

 

                       

Figure 4.3.  Micro CT image of DuraGen® + saline at 4 weeks 

 

However, in the group implanted with DuraGen® and MSCs (Figure 4.4.), there is 

definite evidence of bone formation both peripherally and centrally in the critical size 

cranial defect.  The amount and density of bone formation seems very similar to that 

seen in rhBMP-2 group, if not better.  The average MGV and standard deviation 

values for this group were 168.74 and 7.67 respectively (Table 4.1.). 
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Figure 4.4.  Micro CT image of DuraGen® + MSCs at 4 weeks 
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Figure 4.5.  Micro CT image of DuraGen® + BMP / positive control at 4 weeks 

 
As expected, the DuraGen® + BMP group, which was our positive control had the 

highest density of new bone.  The average MGV for this group was 149.46 and the 

standard deviation was 20.99 (Table 4.1.). 
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B.  Histology 

Table 4.2. and Figure 4.6. summarize the descriptive statistics for percentage of 

bone fill measured using the H&E histological sections for each specimen of the four 

treatment groups. 

 

Groups N Mean bone fill 
(%) 

Standard 
deviation 

Empty 6 9.25 10.82 

Matrix + Saline 4 19.07 17.38 

Matrix + MSCs 6 44.21 3.93 

Matrix + BMP 8 60.06 15.08 

  
Table 4.2.  Mean bone-fill (in percent) and standard deviation for the four treatment groups 

obtained by Image J measurements of the Histological images 
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Figure 4.6.  Bar graphs comparing the mean bone-fill (in percent) and standard deviation 

for the four treatment groups 

 

The empty and DuraGen® + saline groups had only 6 animals of which one rat died 

after intraperitoneal injection of ketamine/xialzine (40-80mg/kg; 2-10mg/kg) just 

before the surgery was completed.  8 animals were surgically operated for the 

rhBMP-2 group.  Although all 8 animals in the MSC group survived, two of them had 

severe inflammation at the surgical site which was evident during the histological 

evaluation.  Hence, values obtained from them were discarded for statistical 

analysis. 
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Two representative photographs of the histological sections for each group are 

included to demonstrate bone regeneration at four weeks.  

 
 

 
 
Figure 4.7.  H and E image of Empty / negative control at 4 weeks 

 

The specimens in empty group which was used as the negative control in our study 

showed very little evidence of osteoid formation.  The mean bone fill was calculated 

to be 9.25% (<10%) and the standard deviation was 10.82 (Table 4.2. and Figure 

4.6.). 
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Figure 4.8.  H and E image of Empty / negative control at 4 weeks 

 

Figures 4.7. and 4.8. are low-magnification pictures of H & E sections showing 

minimal bone formation within the defect.  Few suture fragments can be observed in 

the middle of the graft. 
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Figure 4.9.  H and E image of DuraGen® + saline at 4 weeks 

 
 
The DuraGen® + saline group, which is represented by Figures 4.9. and 4.10. in 

low-magnification photographs of H & E stained sections, there is some evidence of 

bone formation.  The mean bone fill for this group was calculated to be 19.07% & 

while the standard deviation was 17.38 (Table 4.2.). 

 

Note the graft material is harboring osteoid and bone formation in the center of the 

graft.  Suture material is also seen at the superficial aspect of the wound.  No 
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significant inflammation is seen.  However, osteoid formation did not cover the entire 

length of the defect.  

 
 
 

 
 

Figure 4.10.  Hand E image of DuraGen® + saline at 4 weeks 
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In the DuraGen® with MSC group, bone formation was seen along the entire length 

of the cranial defect at 4 weeks. It seems to be consistent in all the specimens.  The 

mean bone fill for this group was measured to be 44.21% and the standard deviation 

was 3.93 (Table 4.2.). 

 
 

 
 

Figure 4.11.  H and E image of DuraGen® + MSCs at 4 weeks 

 

Low-magnification photographs of the histological sections of DuraGen® + MSCs 

group (Figures 4.11. and 4.12.) show there is complete osteoconduction of the 

defect by the graft.  The density and thickness of the bone are slightly less than the 
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native bone at the defect’s edge.  Some adipose tissue was also present within the 

graft.  Significant bone formation within the critical size defect was present.   

 
 

 
 

Figure 4.12.  H and E image of DuraGen® + MSCs at 4 weeks 

 

Similarly, in the Duragen with rhBMP-2 group, osteoid formation was quite dense 

and extended all along the length of the defect.  Mean bone fill and standard 

deviation values for this group were 60.06% and 15.08 respectively (Table 4.2.). 
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Figure 4.13.  H and E image of DuraGen® + BMP-2 at 4 weeks 

 

Low-magnification images of H&E section (Figures 4.13. and 4.14.) on the matrix 

and rhBMP-2 group showed complete osteoconduction and healing of the critical 

size defect.  Note the focal lamellar architecture of the new bone.  The thickness and 

density of the bone resembles that of the adjacent native bone.  Suture material is 

also present at the superficial aspect of the wound.  No significant inflammation was 

observed. 
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Figure 4.14.  Histological image of DuraGen® + BMP-2 at 4 weeks 

 

C.  Statistical Analysis 

Using SPSS 14 version, one-way ANOVA was used to evaluate the differences in 

bone fill among the treatment groups.  When the F ratio was found to be significant, 

Tukey HSD test for multiple comparisons was done to determine the statistically 

significant differences between the groups.  The Type 1 probability error (α) was set 

at 0.05. 
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C1.  Radiomorphometry 
 

 
Group N Mean Standard 

Deviation
Groups 

compared 
p-value 

Empty 6 217 13.45 Matrix + Saline 
Matrix + MSC 
Matrix + BMP 

 

0.248 
0.002* 
0.000* 

Matrix + Saline 4 192.92 32.64 Matrix + MSC 
Matrix + BMP 

 

0.245 
0.008* 

Matrix + MSCs 
 

6 168.74 7.67 Matrix + BMP 0.282 

Matrix + BMP 8 60.06 20.99 - - 

 
* Significant p<0.05 
 

Table 4.3.  Summary results of Tukey HSD multiple comparison test using radiology data 

 
 
SPSS 14 was used to analyze the radiology and histology data.  Densitometric 

tracings using Image J 1.37 quantified the mean gray values (MGV) for each 

specimen.  Table 4.3. summarizes the results of one-way ANOVA and Tukey’s 

multiple comparison test.  One way ANOVA revealed significant difference between 

the groups (Appendix A).  When the F statistic was found to be significant, Tukey’s 

test for multiple comparisons was done to compare the individual groups.  

Radiological data analysis showed that the density of bone regeneration was 

significantly different in the empty group when compared with MSC and BMP 

groups.  However, no significant difference was found between the empty and 

DuraGen® groups.  Although bone fill in DuraGen® group was significantly different 

from BMP group, it was not different when compared to the MSC group.  The BMP 

and MSC groups were not significantly different in this analysis.   



 45

C2.  Histomorphometry 

 
 

Group N Mean 
(%) 

Standard 
Deviation

Groups 
compared 

p-value 

Empty 6 9.25 10.82 Matrix + Saline 
Matrix + MSC 
Matrix + BMP 

 

0.628 
0.001* 
0.000* 

Matrix + Saline 4 19.07 17.38 Matrix + MSC 
Matrix + BMP 

 

0.027* 
0.000* 

Matrix + MSC 
 

6 44.21 3.93 Matrix + BMP 0.123 

Matrix + BMP 8 60.06 15.08 - - 

 
* Significant p<0.05 
 

Table 4.4.  Summary results of Tukey HSD multiple comparison test using histology data 

 

Using Image J 1.37, the bone forming areas were delineated and measured by an 

Oral Pathologist.  Mean bone fill was calculated as a percentage of the total area of 

the defect.  Group means and standard deviations are also included in Table 4.4.  

The first two specimens in the MSC group showed severe inflammation and it was 

clear that the grafts had failed.  Hence those two specimens were excluded from the 

analysis.  One of the specimens in the DuraGen® + saline group had to be excluded 

at the time of histological evaluation due to labeling error.  ANOVA showed 

statistically significant differences between the groups.  Then Tukey HSD multiple 

comparison test was performed which demonstrated mostly similar results as that for 

micro CT except that in histology, significant difference was found between saline 

and MSC groups.  However, histological analysis confirmed that the bone 
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regeneration in MSC group was not significantly different from BMP group which 

was the positive control in this study. 

 

 

 



 

 

CHAPTER 5 

DISCUSSION 

 

A.  Validity of the experimental design 

The rat model which was employed in our project is a convenient, inexpensive 

model that is very commonly used in several in vivo studies.  The cranium was used 

as the site of our experiments due to its natural lack of nutrient artery.  The rat 

cranium is a more suitable site than the long bone defects due to the relative lack of 

motion and elimination of the need for fixation (Wang J, 1999).  A critical- size defect 

in such a site would mean unfavorable healing response.  In contrast to non-unions 

which could result in inadequate bony or fibrous healing, a CSD would not heal by 

bone regeneration during the life time of the animal (Hollinger JO, 1990).  Hence this 

makes a sound experimental design for in vivo evaluation of bone regeneration 

materials.  

Rats have different bone remodeling patterns compared to humans with a higher 

bone turnover rate.  But if the differences are accounted for while interpreting the 

data, the rat model seems excellent for initial testing of bone grafting materials 

(Whitfield JF, 1998). 
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B.  DuraGen® 

DuraGen® was used as matrix or carrier for MSCs and rhBMP-2 in our study in the 

form of pre-cut discs.  DuraGen® was introduced in the market as a fully resorbable 

collagen matrix for primary dural closure.  The collagen matrix has shown to be 

successful in cerebrospinal fluid containment in a vast majority of cases studied by 

Narotam and colleagues in 2004.  It has been demonstrated to support survival of 

cerebral cortical neurons in vitro (Rabinowitz L, 2005).  Danish and others compared 

the performance and complications of DuraGen® with AlloDerm as alternatives for 

duraplasty.  The study concluded that both materials could be safe alternatives with 

DuraGen® requiring significantly shorter operative time since sutures are not 

necessary (Danish SF, 2006). 

 

With the rat cranium being the site of critical size defect, DuraGen® seems like an 

appropriate choice to not only promote dural wound healing, but also to act as a 

vehicle for delivering growth factors and cells to the defect area.  It has adequate 

tensile strength and porosity required to carry cells and/or growth factors to the 

surgical site.  According to the manufacturer, DuraGen® is made from bovine 

achilles tendon which is known to be one of the purest sources of type I collagen.  

Several studies have observed the binding capacity of demineralized bone matrix 

(DBM) to osteoinductive growth factors of the TGF family such as BMPs (Zhao Y, 

2008).  DBM typically consists of 99% type I collagen.  Sweeney and colleagues 

found in a similar study that animals treated with type I collagen gels alone showed 

bone repair of 92.5% at 20 weeks (Sweeney TM, 1995).  Saadeh, 2001 also 
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demonstrated the ability of type I collagen to heal critical sized bony defects in rat 

mandible.  He suggested that type I collagen would make a suitable carrier matrix for 

improved approaches to bone tissue engineering. 

 

Bone matrix comprises predominantly of collagen type I which is thought to be a 

natural polymer.  This kind of collagen can be extracted from various animal or 

human sources.  Decalcification, purification, sterilization and modification may be 

some of the steps involved in extraction of commercial collagen (Wahl DA, 2006).  

Collagen and calcium phosphate as composites and individually have been found to 

increase osteogenesis.  The rationale for using the composites to form bone 

substitute is that the collagen matrix will act as a medium in which the rigid 

hydroxyapatite crystals deposit and crosslink the fibers to form calcium ion bridges 

(Hellmich CH, 2002).  However, the mechanical properties of these composites have 

been found to be lower than that of natural bone (Wahl DA, 2006). 

 

B1.  BMPs 

The rhBMP-2 implanted on DuraGen® served as the ‘positive control’ or the ‘gold 

standard’ for bone regeneration in our experiments.  It has been well-documented 

that rhBMP-2 has the potency to induce dose-dependent bone formation in animals 

and humans.  However in therapeutic concentrations, the BMPs have a very short 

half life and are rapidly diffused by the body fluids.  Chen 2007 developed a 

collagen-based BMP-2 targeting bone repair system and tested its efficacy in a 

rabbit mandibular CSD model.  They concluded that it induced ‘better and 
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homologous bone formation’ possibly due to enhanced retention of BMP-2 by 

collagen fibrils (Chen B, 2007).  The results of our study also validate this finding 

since the bone formed in the collagen (DuraGen®) and rhBMP-2 group was better in 

quantity and density when compared with the empty and collagen only groups.  

Although the mean bone formation for the rhBMP-2 group was 60.06%, the high 

variance as indicated by the standard deviation of 15.08 could lead us to speculate 

on the predictability of bone formation using rhBMP-2. 

 

B2.  MSCs 

The multipotent mesenchymal stem cells, derived from rat bone marrow have 

exhibited their ability to proliferate extensively and differentiate into tissue-specific 

cell lineages.  In an in vitro study, a compatible commercial collagen scaffold was 

found to possess the ability to support rat MSC osteogenic differentiation.  

Expression of osteopontin and osteocalcin, both proteins essential for Calcium 

binding and alkaline phosphatase actiivity were considered as specific markers for 

osteogenic differentiation (Donzelli E, 2006).  The relative ease of obtaining these 

stem cells and the potential to expand them in vitro make them an attractive 

alternative for bone regeneration.  In our study, we tried to combine the 

osseoconductive properties of the collagen matrix with the osseoinductive properties 

of the mesenchymal stem cells and evaluated them for bone regenerative capability 

in vivo. 
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C.  Results 

C1.  Radiomorphometry 

Radiographical assessment of bone formation was done using the Micro CT data by 

calculating the Mean Gray Values (MGV).  This analysis served dual purposes.  

Firstly, to compare the accuracy of the radiomorphometry results with histology 

which is currently the ‘gold standard’ for evaluating bone formation. Secondly, a 3D 

reconstruction would allow us to visualize the cranial defect from axial view which is 

not possible in histological sections.  

 

A significant advantage of radiomorphometry is that it can be done as early as 24 

hours after surgical removal of the osteotomy defects.  This analysis can provide 

preliminary results quite efficiently whereas the preparation of slides for histology 

can take up to a few months (Hollinger JO, 1990). 

 

Radiography using a table-top system can inherently induce a discrepancy in the 

observed mean gray values and local bone density which has been related to the 

effect of beam hardening.  However, this error is assumed to be similar for all 

specimens since they were comparably of the same size and composition. (Verna C, 

2002) 

 

In our study, the results of radiolographical assessment correspond fairly well with 

those of histology.  The only variation using radiography was lack of significant 
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difference between DuraGen® + saline and DuraGen® + MSCs groups which was 

found in histological findings. 

 

Many authors have ratified the use of micro CT data as a valid tool for 3D 

assessment of bone structure for preclinical trials, yet they recommend the use of 

histology for more conclusive results (Verna C, 2002; Engelke K, 1999). 

 

C2.  Histomorphometry 

On histological examination, two rats in the DuraGen® + MSCs group which were 

the first to be operated on showed severe inflammation.  Contamination could have 

occurred at any of the several steps involved in the study such as culture of MSCs, 

during or after surgery.  The bone fill estimates for these two specimens were 

considered as outliers and they were not included in the statistical analysis.   

 

During bone removal, the surrounding periosteum was maintained intact to delineate 

the defect site from newly formed bone.  The area of the CSD between the margins 

of the periosteum was outlined and the area of newly formed bone was calculated as 

a percentage of the total area of CSD. 

   

Histological measurements confirmed the findings from radiographical assessments.  

The results showed that bone fill in DuraGen® + MSC group was not significantly 

different from that in DuraGen® + BMP group.  However, the density of bone in 

rhBMP-2 group seemed higher.  The most significant finding from our study was the 
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consistency with which the DuraGen® + MSCs group made new bone.  This was 

demonstrated by the narrow range of measurements (standard deviation: 3.93) for 

the MSC group.  

 

Additional type of staining called the Mason’s Trichrome was done to detect the 

areas of osteoid formation. 

 

Figure 5.1.  Mason’s Trichrome histochemical staining photograph showing osteoblasts 

and osteoid formation 
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Figure 5.2.  Mason’s Trichrome histochemical staining photograph showing the border 

between intact periosteum and new bone formed at the defect site 

 

Figure 5.1. demonstrates a photograph of the Mason’s Trichrome stained slide.  The 

lining of cells seen in the photograph are the osteoblasts and the blue layer adjacent 

to it denotes the osteoid tissue.  The light blue areas represent unmineralized bone 

matrix while the pink areas indicate more mineralized bone.  Figure 5.2. shows the 

border between the intact periosteum represented by pink and newly formed bone at 

the defect site which is seen in blue.   
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D.  Advantages of the technique 

Duragen has been shown to be a biocompatible, safe material which aids in 

accelerated wound healing.  Clinical evidence suggests this material is 

immunologically well tolerated (Nartoram PK, 1995).  Duragen is easy to handle, 

non-friable and resorbable onlay graft material.  It conforms to surfaces like normal 

soft tissue.  Its porosity helps deliver the implant material effectively to the site of 

defect. 

 

 The main advantage of using this scaffold seeded with MSCs could be its cost 

effectiveness especially in comparison with the gold standard in our study, rhBMP-2.  

 

E.  Limitations of the study 

Resorption of the collagen scaffold prior to completion of bone formation may lead to 

incomplete bone fill.  Though this may not be a problem with rat MSCs because of 

their ability to regenerate bone much faster, this could be a potential problem to 

consider while doing clinical studies using adult human MSCs. 

 

The small sample size could be another limitation of this study.  Similar results from 

a bigger sample size would be more valuable.  

 

Delineation between the intact periosteum and new bone formation was not clear in 

the radiographs and sometimes also in histological specimens.  Although 

standardized measurement criteria were applied for all specimens, there could be 
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some under or over estimation of bone fill.  This error could be more pronounced in 

radiographical assessments. 

 

Another variable which could affect the bone healing response in the rat calvaria is 

the surgical technique.  Despite using a standard protocol, differences in the 

experience level of the surgeons could to some extent affect the outcomes. 

 

Further validation of the results from this study needs to be done to evaluate the 

ability of DuraGen® matrix to support osteodifferentiation of human MSCs.  

 

F.  Potential mechanism of action 

Osteoinduction involves recruitment and stimulation of multipotent stem cells to 

differentiate into osteogenic cell lineage.  The intact periosteum (Agata H, 2007) and 

dura have been shown to positively influence bone healing by many studies. (Hobar 

PC, 1993; Wang J, 1999).  The periosteum plays a role by providing osteogenic and 

angiogenic cells to the healing site.  The preexisting osteoblasts at the defect site 

produce growth factors that induce osteogenic cells to differentiate into bone.  But, it 

is well known that less than 10% of a critical sized defect can be repaired by these 

natural processes of bone healing (Albrektsson T, 2001; Hollinger JO, 1990). 

 

The principle mode of action here seems to be osteoconduction.  DuraGen®, the 

scaffold material used in our study is an excellent osteoconductive surface which 

permits bone growth on or through its porous surface.  The collagen matrix provides 
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a suitable environment for the native bone cells and implanted MSCs to differentiate 

into osteoprogenitor cells.  It enhances bone formation by providing mechanical 

support for osteogenic marrow stromal cells while acting as a barrier for ingrowth of 

nonosteogenic cells.  

 

G.  Clinical significance 

The clinical consequence of this experiment is to develop a graft material to more 

efficiently regenerate bone in surgical wounds and bone defects that otherwise will 

not heal or heal slowly. 

 

In the future, bone regeneration can be applied in cases of craniofacial tissue loss 

due to congenital diseases, severe injury or cancer therapy.  In general, it can be 

applied clinically where lack of adequate bone mass can compromise or inhibit 

optimum treatment.  In such situations, the prognosis of final treatment can be 

drastically improved by functional replacements of damaged or missing tissues.  

 

Functional rehabilitation of the craniofacial structures involves recreating missing 

osseous structures for correction of orofacial defects as well as replacement of teeth 

which most often requires usage of endosseous implants.  Bone regeneration in 

situations with extensive vertical bone loss is challenging, and if predictably done 

can enhance functionality and long-term stability of implant therapy. 
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H.  Future directions 

More studies need to be done using larger sample sizes in higher primates. 

According to Schmitz’s protocol, the next step would be to use larger CSDs in a non-

human primate. 

 

Safety and immunogenicity of Duragen has already been tested in humans.  But 

clinical application would require evaluating its biocompatibility to support 

osteogenesis using human MSCs. 

 

 

 

 

 

 

 

 

 

 

 



 

 

CHAPTER 6 

CONCLUSIONS 

 

Within the limitations of this in vivo study, we can conclude that: 

1. DuraGen® (type I collagen matrix) when implanted with bone marrow stromal 

cells clearly displays osteogenic properties comparable to that of BMP in rat 

critical size defects. 

2. The predominant mechanism of action implicated is osseoconduction of 

MSCs by the collagen matrix while osseoinduction by the cells adjacent to the 

periosteum may be a contributing factor. 

3. Further investigations are needed in larger number of CSDs in other non-

human primates before clinical trials of these scaffolds using human MSCs 

are conducted. 
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APPENDICIES 
 

A.  SPSS 14 Statistical analysis of Radiography data 
 
MicroCT                                                                                        Descriptives 
 

  N Mean 
Std. 

Deviation Std. Error 
95% Confidence Interval for 

Mean Minimum Maximum 

          Lower Bound Upper Bound     
Empty 6 216.9983 13.45139 5.49151 202.8820 231.1147 199.65 234.90
Dur + Saline 4 192.9200 32.63941 16.31971 140.9834 244.8566 153.96 223.66
Dur + MSCs 6 168.7383 7.67145 3.13186 160.6876 176.7890 156.21 176.65
Dur + BMP 8 149.4563 20.99194 7.42177 131.9065 167.0060 122.02 183.88
Total 2

4 178.4063 32.65358 6.66538 164.6179 192.1946 122.02 234.90

 
 
 
 Test of Homogeneity of Variances 
 
MicroCT  

Levene 
Statistic df1 df2 Sig. 

5.583 3 20 .006
 
 
 ANOVA 
 
MicroCT  

  
Sum of 

Squares Df Mean Square F Sig. 
Between Groups 17044.321 3 5681.440 15.192 .000 
Within Groups 7479.579 20 373.979    
Total 24523.900 23     
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Post Hoc Tests 
 
 Multiple Comparisons 
 
Dependent Variable: MicroCT  
Tukey HSD  

95% Confidence Interval 

(I) Group (J) Group 

Mean 
Difference 

(I-J) Std. Error Sig. Lower Bound Upper Bound 
Dur + Saline 24.07833 12.48297 .248 -10.8607 59.0174
Dur + MSCs 48.26000(*) 11.16511 .002 17.0096 79.5104

Empty 

Dur + BMP 67.54208(*) 10.44400 .000 38.3100 96.7742
Dur + Saline Empty -24.07833 12.48297 .248 -59.0174 10.8607

Dur + MSCs 24.18167 12.48297 .245 -10.7574 59.1207
Dur + BMP 43.46375(*) 11.84239 .008 10.3177 76.6098
Empty -48.26000(*) 11.16511 .002 -79.5104 -17.0096
Dur + Saline -24.18167 12.48297 .245 -59.1207 10.7574

Dur + MSCs 

Dur + BMP 19.28208 10.44400 .282 -9.9500 48.5142
Dur + BMP Empty -67.54208(*) 10.44400 .000 -96.7742 -38.3100

Dur + Saline -43.46375(*) 11.84239 .008 -76.6098 -10.3177
Dur + MSCs -19.28208 10.44400 .282 -48.5142 9.9500

*  The mean difference is significant at the .05 level. 
 
 
Homogeneous Subsets 
 
 MicroCT 
 
Tukey HSD  

Subset for alpha = .05 
Group N 1 2 3 
Dur + BMP 8 149.4563   
Dur + MSCs 6 168.7383 168.7383  
Dur + Saline 4  192.9200 192.9200
Empty 6   216.9983
Sig.   .362 .187 .190

Means for groups in homogeneous subsets are displayed. 
a  Uses Harmonic Mean Sample Size = 5.647. 
b  The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not 
guaranteed. 
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B.  SPSS 14 Statistical analysis of Histology data 
 
Histology Bone fill Descriptives 

 
 
 
 Test of Homogeneity of Variances 
 
Bone density  

Levene 
Statistic df1 df2 Sig. 

1.565 3 20 .229
 
 
 ANOVA 
 
Bone fill 

  
Sum of 

Squares df Mean Square F Sig. 
Between Groups 10467.948 3 3489.316 22.084 .000 
Within Groups 3160.058 20 158.003    
Total 13628.006 23     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 N Mean 
Std. 

Deviation 
Std. 
Error 

95% Confidence Interval 
for Mean Minimum Maximum 

          
Lower 
Bound 

Upper 
Bound     

Empty 6 9.2517 10.81750 4.41623 -2.1006 20.6039 .37 23.27
Dur + Saline 4 19.0725 17.38454 8.69227 -8.5902 46.7352 3.41 43.38
Dur + MSCs 6 44.2117 3.93093 1.60480 40.0864 48.3369 39.09 48.41
Dur + BMP 8 60.0625 15.07618 5.33023 47.4585 72.6665 39.09 84.54
Total 2

4 36.5654 24.34177 4.96874 26.2868 46.8440 .37 84.54
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Post Hoc Tests 
 
 Multiple Comparisons 
 
Dependent Variable: Bone fill 
Tukey HSD  

95% Confidence Interval 

(I) Group (J) Group 

Mean 
Difference 

(I-J) Std. Error Sig. Lower Bound Upper Bound 
Dur + Saline -9.82083 8.11385 .628 -32.5310 12.8893
Dur + MSCs -34.96000(*) 7.25725 .001 -55.2726 -14.6474

Empty 

Dur + BMP -50.81083(*) 6.78853 .000 -69.8115 -31.8102
Dur + Saline Empty 9.82083 8.11385 .628 -12.8893 32.5310

Dur + MSCs -25.13917(*) 8.11385 .027 -47.8493 -2.4290
Dur + BMP -40.99000(*) 7.69747 .000 -62.5347 -19.4453
Empty 34.96000(*) 7.25725 .001 14.6474 55.2726
Dur + Saline 25.13917(*) 8.11385 .027 2.4290 47.8493

Dur + MSCs 

Dur + BMP -15.85083 6.78853 .123 -34.8515 3.1498
Dur + BMP Empty 50.81083(*) 6.78853 .000 31.8102 69.8115

Dur + Saline 40.99000(*) 7.69747 .000 19.4453 62.5347
Dur + MSCs 15.85083 6.78853 .123 -3.1498 34.8515

*  The mean difference is significant at the .05 level. 
 
 
Homogeneous Subsets 
 
 Bone fill 
 
Tukey HSD  

Subset for alpha = .05 
Group N 1 2 
Empty 6 9.2517  
Dur + Saline 4 19.0725  
Dur + MSCs 6  44.2117
Dur + BMP 8  60.0625
Sig.   .566 .181

Means for groups in homogeneous subsets are displayed. 
a  Uses Harmonic Mean Sample Size = 5.647. 
b  The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not 
guaranteed. 
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