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ABSTRACT 
 

Mia Rochelle Lowden: Genesis of End-to-End Chromosome Fusions 
(Under the direction of Dr. Shawn Ahmed) 

 

Telomeres are DNA-protein complexes that form a protective cap at chromosome ends 

and provide a buffer against gradual loss DNA that occurs with every round of DNA 

replication. Telomere length is replenished by telomerase. Deficiency of telomerase in 

most human somatic cells causes telomere shortening with age. When telomeres become 

critically short, they uncap and can be processed as abnormal double strand breaks to 

generate end-to-end chromosome fusions. The resulting dicentric chromosomes may 

promote tumorigenesis, but they enter fusion-breakage-bridge cycles that impede the 

elucidation of the structure of the initial fusion event and a mechanistic understanding of 

their genesis. 

Current models for fusion of critically shortened, uncapped telomeres rely on PCR-based 

assays that typically capture fusion breakpoints created by ligation of two chromosome 

ends. We used two independent approaches that rely on distinctive features of the 

nematode C. elegans to study the frequency of direct end-to-end chromosome fusions in 

telomerase mutants: 1) holocentric chromosomes that allow for genetic isolation of stable 

end-to-end fusion events, and 2) unique subtelomeric sequences that allow for an 

unbiased, nearly exhaustive PCR analysis of samples of genomic DNA harboring 

multiple end-to-end fusions. Surprisingly, only a minority of initial end-to-end fusion 

events resulted from direct end-joining with no other rearrangements. We used three
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 approaches to investigate complex fusion breakpoint structures: 1) physical analysis of 

the fusion breakpoint DNA by Southern blotting, 2) measurement of DNA copy number 

by microarray analysis, and 3) sequence analysis of fusion breakpoints recovered by 

inverse PCR. Duplications as large as two megabases were present at complex fusion 

breakpoints. Such events would have been missed by studies using typical PCR-based 

assays. Thus, duplications of various segments of the genome may be a major factor that 

drives end-to-end chromosome fusion and promotes tumor development. 
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CHAPTER 1 

INTRODUCTION 

 

Telomere function 

Upon X-ray irradiation of eukaryotic chromosomes, broken chromosome ends fuse to 

each other, but natural chromosome ends avoid these fusion events (McClintock, 1941; 

Müller, 1938). This remarkable feature of natural chromosome ends was first described 

by Hermann Müller and Barbara McClintock, who converged upon the same discovery 

while studying chromosome dynamics in the fruit fly Drosophila melanogaster and in 

maize, respectively. Müller named the natural ends of chromosomes telomeres (Müller, 

1938). Though both researchers extensively studied rearrangement of broken 

chromosomes with genetics and cytology, neither had the tools to explain the protective 

function of telomeres at the molecular level. Discovery of the structure of DNA and 

mechanisms of DNA replication exposed an additional threat for telomeres to guard 

against: progressive telomere shortening. DNA replication occurs in two coupled modes 

termed leading and lagging strand replication such that the daughter of leading strand 

replication is synthesized processively, while the daughter of lagging strand replication is 

synthesized in short stretches that are later ligated to form a continuous DNA strand. For 

the lagging strand, DNA polymerase α initiate de novo DNA synthesis by extending 

RNA primers generated by primase. Primase typically does not place primers at the end
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of the telomere, thus the region between the most distal primer and the end of the 

telomere is not replicated. In addition, after the most distal RNA primer is degraded, the 

gap at the telomere is further increased. Thus telomeres shorten progressively with every 

round of DNA replication, and a 3’ overhang persists at the telomere. (Figure 1.1) 

(Kornberg, 1974; Ohki et al., 2001; Watson, 1972; Watson and Crick, 1953; Wright et 

al., 1997). This is known as the end replication problem (Olovnikov, 1973; Watson, 

1972). Still, without more insight into telomere structure, the mechanism of telomere 

function was unclear. 
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Figure 1.1: End replication problem 

Do to the placement and degradation of the RNA used to prime DNA synthesis, 

telomeres shorten with each round of lagging strand replication. Telomeres buffer against 

the loss of vital sequences. 
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Telomere structure 

DNA Sequence 

Once methods for sequencing DNA were invented, it was possible to seek a 

deeper molecular understanding of telomeres (Sanger et al., 1977). Telomeric DNA was 

first sequenced using the ciliated protozoan Tetrahymena thermophila, which carries 

minichromosomes consisting of two copies of an rDNA gene flanked by telomeric DNA, 

such that many short, nearly identical molecules provide an abundance of telomeric DNA 

to study (Blackburn and Gall, 1978). In Tetrahymena, telomeric DNA is composed of 20 

to 70 tandem repeats of the sequence TTGGGG running 5’ to 3’ toward the chromosome 

end (Blackburn and Gall, 1978). Cloning and sequencing telomeres has shown that 

telomere sequence is conserved among most eukaryotes and features short (usually 5-8 

bp), tandem repeats of guanine rich DNA (reviewed in Brown et al., 1990). For example, 

telomere sequences in humans and C. elegans vary by one nucleotide: TTAGGG and 

TTAGGC, respectively (Moyzis et al., 1988; Wicky et al., 1996). Among vertebrates, 

telomere sequence is highly conserved: a human telomere probe detects telomeres in 

metaphase spreads from 91 vertebrate species (Moyzis et al., 1988). However, one 

organism with a strikingly different telomere sequence is Drosophila, which has non-long 

terminal repeat retrotransposons as telomeres (Levis et al., 1993). The repetitive nature of 

telomeric sequence suggests that it is non-coding DNA, which makes telomeres well-

suited for their role as buffers against gradual sequence loss. 

Protein components 

In addition to telomeric DNA, a variety of proteins are required for chromosome 

end protection via telomeres. Some of these proteins specifically interact with telomeric 
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DNA, while others were originally characterized as DNA repair proteins and were later 

found to impact telomere biology. In the former category are the six components of the 

shelterin complex that shapes and protects human telomeres: two double-stranded DNA 

Telomere Repeat-binding Factors (TRF1 and TRF2), a telomeric 3’ overhang binding 

factor Protection Of Telomeres 1 (POT1) and three proteins that interconnect the 

telomeric DNA-binding proteins (TIN2, Rap1, and TPP1) (reviewed in de Lange, 2005). 

POT1 may be conserved in nearly all eukaryotes (Baumann and Cech, 2001; Shakirov et 

al., 2005). The TRF1/2 and Rap1 are conserved in many species, while TIN2 and TPP1 

are specific to vertebrates (reviewed in de Lange, 2005). Given that telomeres avoid 

DNA repair events that occur at double-strand breaks, such as homologous recombination 

(HR) and Non-Homologous End-Joining (NHEJ), interactions between telomeres and 

DNA repair proteins are surprising. Nevertheless, at least 14 DNA repair proteins affect 

telomere stability, including the Mre11-Rad50-NBS1 complex and the DNA-dependent 

Protein Kinase complex (Ku70, Ku80, and DNA-PK catalytic subunit), which are 

involved in HR and NHEJ, respectively (reviewed in Slijepcevic, 2006). Thus, a 

functional telomere is composed of DNA and proteins that coat or interact with the 

telomeric DNA. 

G-rich 3’ overhang 

The daughter strands of both leading and lagging DNA replication have 3’ 

overhangs, although the end replication problem predicts that only the daughter of 

lagging strand replication will have a 3’ overhang, left behind after removal of the RNA 

primer used for DNA replication. A possible explanation for this is active processing of 

the leading strand can generate 3’ overhangs. The leading strand has overhangs half or a 
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third as long as the lagging strand (Zhao et al., 2008). In addition, 80% of overhangs at 

the leading strand end with the same nucleotide, whereas overhangs at the lagging strand 

end more variably (Sfeir et al., 2005). Taken together, these results suggest that 

processing events generate the overhangs at leading strands, although the mechanisms of 

processing overhangs remasin unclear (Sfeir et al., 2005). 

Telomere-loop 

POT1 protects the 3’ telomeric overhang and TRF2 remodels telomeric double-

stranded DNA and the 3’ overhang into a telomere loop (t-loop), a strand invasion 

configuration whereby the extreme tip of the chromosome is protected from 

exonucleolytic degradation and aberrant DNA repair (Griffith et al., 1999; Stansel et al., 

2001; Yang et al., 2005). T-loops are highly conserved, although the size of the loop 

varies widely between species (e.g. 1 kb loops in trypanosomes and 50 kb loops in peas) 

(reviewed in de Lange, 2004). Thus, even the architecture of the telomere may play a role 

in its protective function. 

Telomere lengthening 

Most eukaryotic telomeres shorten at a rate of 4 to 200 nucleotides per cell 

division due to the end replication problem, exonucleolytic processing, and oxidative 

damage (reviewed in Lydall, 2003; von Zglinicki et al., 2000). Telomere length is 

maintained by telomerase, a ribonucleoprotein complex that uses an RNA template and a 

reverse transcriptase to add telomeric repeats to chromosome ends (Figure 1.2) (Lingner 

et al., 1997; Shippen-Lentz and Blackburn, 1990; reviewed in Smogorzewska and de 

Lange, 2004). Most of telomeric DNA is replicated by standard DNA replication 

machinery. Telomerase extends the G-rich leading strand of telomeric DNA and then the 
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C-rich strand is filled in by standard lagging strand replication (Diede and Gottschling, 

1999; Greider and Blackburn, 1987). In agreement with the conservation of the sequence 

of its telomeric DNA substrate, the telomerase reverse transcriptase and RNA subunits 

have been identified in highly divergent organisms (reviewed in Cech, 2004). 

 

 

Figure 1.2: The enzyme telomerase adds telomeric DNA chromosome ends. 

 

In the absence of telomerase, yeast and mammalian cells can maintain telomere 

length via Alternative Lengthening of Telomeres (ALT). In ALT-positive tumor cells, 

telomeric DNA sequences are copied from one telomere to another, thus ALT occurs by 

recombination (Dunham et al., 2000). ALT-associated ProMyelocytic Leukemia (PML) 

bodies localize in the nucleus and contain many factors that may facilitate recombination 

at telomeres including homologous recombination DNA repair proteins (the MRN 

complex, RAD51, RAD52), DNA replication factor A, helicases WRN and BLM, TRF1, 

TRF2, and telomeric DNA (reviewed in Henson et al., 2002; Lombard and Guarente, 

2000; Wu et al., 2000; Yeager et al., 1999). In human cells, ALT is telomere specific, as 
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it does not affect the rate of recombination at internal chromosomal sites (Bechter et al., 

2003). 

Telomere length regulation 

 Telomeres maintained by ALT can vary widely in length as recombination generates 

sudden lengthening and deletion events (Murnane et al., 1994). In contrast, telomeres 

maintained by telomerase stay in a narrow range that varies by species and cell type, 

ranging from <30 bp in ciliates to ~50 kb in mice (reviewed in Hug and Lingner, 2006; 

Kipling and Cooke, 1990). The mechanisms underlying regulation of telomere length is 

an area of active study. There is evidence for genetic regulation of telomere length in 

yeast, maize, and mice (reviewed in Burr et al., 1992; Walmsley and Petes, 1985; Zhu et 

al., 1998). POT1, TRF1, TRF2 and proteins that interact with TRF1 are proposed to 

negatively regulate telomere length via a feedback mechanism whereby long telomeres 

containing sufficient amounts of TRF1 or POT1 proteins can inhibit recruitment of 

telomerase (without affecting levels of telomerase expression) while short telomeres 

presenting less TRF1 or POT1 can be extended by telomerase (Loayza and De Lange, 

2003; Smogorzewska et al., 2000). Consistent with this possibility, longer telomeres 

contain greater amounts of POT1 and TRF1, and telomerase preferentially elongates the 

shortest telomeres in cells (Teixeira et al., 2004; van Steensel and de Lange, 1997). 

Consequences of telomerase deficiency 

Senescence and crisis 

In most human somatic cells, telomerase expression is too low to maintain 

telomere length (Allsopp et al., 2001; Broccoli et al., 1995; Harle-Bachor and Boukamp, 
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1996; Hiyama et al., 1995; Liu et al., 1999; Masutomi et al., 2003; Son et al., 2000; 

Yasumoto et al., 1996). In this telomerase-deficient setting, telomere shortening with 

each cell division is proposed to account for the limited replicative capacity of human 

cells, possibly due to crossing a threshold telomere length that triggers a growth arrest 

phenotype termed senescence (Harley et al., 1990; Hayflick and Moorhead, 1961). 

Consistent with this prospect, critically shortened telomeres activate a persistent DNA 

damage response during senescence, analogous to well-characterized transient responses 

elicited by ionizing-radiation-induced Double-Strand Breaks (DSBs) (d'Adda di Fagagna 

et al., 2003; Gire et al., 2004; reviewed in Reaper et al., 2004). Persistent DNA damage 

signaling enforces a senescent phenotype where cells remain viable, metabolically active, 

and resistant to apoptosis (reviewed in Foreman and Tang, 2003; Wang, 1995). 

Senescence can be bypassed by abrogation of cell-cycle checkpoint pathways due 

to loss of checkpoint proteins such as p53 or p16/Rb (Jarrard et al., 1999; Kiyono et al., 

1998). In this setting, cells can continue dividing until critically shortened telomeres 

trigger crisis, a devastating state which is characterized by end-to-end chromosome 

fusions, breakage-fusion-bridge cycles and apoptosis (McClintock, 1941; reviewed in 

Shay et al., 1991). About 1 in 107 cells escape crisis by regaining the ability to lengthen 

telomeres (reviewed in Shay and Wright, 2005). Thus, after going through a process that 

introduces genomic alterations, cells can achieve immortality (Wright and Shay, 1992). 

Molecular analysis of end-to-end chromosome fusions 

The genesis of end-to-end chromosome fusions is of interest because the initial 

fusion events or the genomic instability associated with the ensuing breakage-fusion-

bridge cycles may help to set the stage for tumorigenesis (McClintock, 1941; Murnane 
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and Sabatier, 2004). These genome rearrangements may result in deletions, which 

precipitate loss of heterozygosity, translocations, which place genes in a new context 

away from repressors or close to enhancers, and duplications, which may provide the raw 

material for gene amplification. Molecular analysis of end-to-end chromosome fusion 

breakpoints could reveal which DNA repair pathways mediate fusion events. Since 

uncapped telomeres elicit a DNA damage response like ionizing radiation-induced DSBs, 

they may be substrates for the major DSB repair pathways HR or NHEJ (Shrivastav et 

al., 2008). The unstable nature of dicentric chromosomes impedes analysis of fusion 

breakpoints. Nevertheless, PCR-based analysis of fusion breakpoints, followed by 

sequencing, has revealed molecular structures of fusion breakpoints in yeast, plants, 

worms, mice, and humans. All of these studies rely on PCR using primers adjacent to 

chromosome ends to amplify fusions from genomic template DNA that contains 

unknown quantities of end-to-end fusions (Capper et al., 2007; Cheung et al., 2006; 

Hackett et al., 2001; Heacock et al., 2004; Hemann et al., 2001; Mieczkowski et al., 

2003). The results of these six studies are described in detail below. 

PCR-analysis of fusion breakpoints in Saccharomyces cerevisiae est1∆ mutants, 

which are deficient for a protein required for telomerase activity in vivo, can recover 

fusion breakpoint sequences that are consistent with direct ligation of chromosome ends 

(Hackett et al., 2001). For all fusion events, terminal deletions ranging from 29 to 7379 

bp occurred at both chromosome ends. 7 of 12 fusion breakpoints contained 1 to 10 bp of 

microhomology. Similar fusion events are recovered from mTR-/- mice which are 

deficient for the RNA subunit of telomerase: subtelomere-subtelomere fusions with 

terminal deletions at both chromosome ends and microhomology occurred for every 
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fusion breakpoint (n=8) (Hemann et al., 2001). The microhomology found at some fusion 

breakpoints might point to the mechanism of fusion, however this was not tested using 

the biochemical or genetic approaches used to establish Microhomology-Mediated End-

Joining (MMEJ) as an alternative to NHEJ in S. cerevisiae, Schizosaccharomyces pombe, 

Arabidobsis thaliana, and mammalian cells and show that MMEJ typically relies on a 

minimum of 5 nucleotides homology (Bentley et al., 2004; Boulton and Jackson, 1996b; 

Decottignies, 2007; Feldmann et al., 2000; Guirouilh-Barbat et al., 2004; Heacock et al., 

2004; Kabotyanski et al., 1998; Ma et al., 2003; Manolis et al., 2001; Tsuji et al., 2004; 

Yu and Gabriel, 2003; Zhong et al., 2002).  

S. cerevisiae mec1 tel1 strains, which are deficient for homologues of ATR and 

ATM (two proteins involved in recognition and signaling to repair DSBs), accumulate 

end-to-end fusion events involving telomere sequences (Mieczkowski et al., 2003). Three 

types of fusion events were recovered: telomere-telomere (57%) and telomere-

subtelomere (43%), and no fusion breakpoints exhibited microhomology. However, since 

telomere-telomere fusion creates inverted repeats that are refractory to sequencing, it is 

only possible to completely sequence telomere-telomere fusions with less than 100 bp of 

telomeric DNA at the fusion breakpoint. Also, since the primers used in this study were 

at most 150 bp from the telomere tracts, this set the upper limit of deletion that could be 

detected. The fusion breakpoint sequences are consistent with direct ligation events. 

In Arabidopsis, C. elegans, and cultured human cells, both direct and complex 

(i.e. containing an insertion of genomic DNA) end-to-end chromosome fusions are 

recovered (Capper et al., 2007; Cheung et al., 2006; Heacock et al., 2004). In Arabidopsis 

telomerase mutants, direct fusion events occurred in three configurations: telomere-



 

 12

telomere (11%), telomere-subtelomere (78%), and subtelomere-subtelomere (11%) 

(n=37) (Heacock et al., 2004). The fusion breakpoint sequences revealed terminal 

deletions (0 to 360 bp of subtelomeric DNA) and insertions (1 to 145 bp) occur, two 

hallmarks of NHEJ. Also, 38% of fusion breakpoints exhibited microhomology. One 

complex breakpoint was recovered, and it was a telomere-subtelomere fusion event 

containing a duplication of 69 bp of subtelomeric sequence plus some telomeric repeats 

from a chromosome end. In C. elegans telomerase mutants, direct fusion events have 

either a subtelomere-subtelomere configuration with microhomology at the breakpoint or 

a telomere-subtelomere configuration without microhomology (n=3) (Cheung et al., 

2006). Complex fusion events involved duplications of 50 bp to 3800 bp (n=5). Finally, 

in human fibroblasts infected with human papilloma virus, which allows the cells to 

bypass senescence by abrogating the function of p53 and p16, both direct and complex 

fusion events exhibit terminal deletions up to 3010 bp which entirely removed the 

canonical telomeric repeat tracts at both chromosome ends at every fusion breakpoint 

(n=60 unique fusion events) (Capper et al., 2007). Although 72% of human fusion 

breakpoints contain telomere variant repeats which normally occur adjacent to canonical 

telomeric repeat tracts, variant repeats probably do not confer telomere function as they 

are not recognized by telomere binding proteins TRF1, TRF2, or POT1 (Capper et al., 

2007). 1 to 49 bp of microhomology occurs at 89% of fusion breakpoints. 15% of fusion 

breakpoints are complex and contain duplications of 49 to 1650 bp. The complex fusion 

breakpoints recovered in these studies suggest that direct ligation is not the only outcome 

for uncapped telomeres. However, PCR-based analysis of unstable fusion breakpoints can 

reveal only what is happening at one breakpoint of a given fusion event, and does not 
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address whether that one breakpoint provides a full picture of the rearrangements 

involved in an end-to-end fusion. Furthermore, complex fusion breakpoints that are 

refractory to PCR might be missed. Thus, these studies cannot show the frequency of 

direct versus complex fusion events. To bypass some of the limitations encountered in the 

above studies, we analyzed genetically isolated end-to-end fusion events from C. elegans 

telomere replication mutants. 

Goals of Dissertation 

 In C. elegans telomere replication mutants, including several alleles of the trt-1 

telomerase reverse transcriptase, telomere attrition over successive generations causes 

end-to-end chromosome fusions (Figure 1.3) (Ahmed and Hodgkin, 2000; Meier et al., 

2006). End-to-end fusions that arise in C. elegans avoid the instability inherent to 

dicentric chromosomes because the chromosomes of C. elegans are holocentric, meaning 

that the mitotic spindle attaches along the entire chromosome (Albertson and Thomson, 

1993). Furthermore, most end-to-end fusion events that arise in C. elegans telomere 

replication mutants are homozygous viable, allowing for genetic isolation of fusion 

events. 
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Figure 1.3: Phenotypes of telomerase mutants 

A) Telomeres shorten over successive generations in C. elegans telomerase mutants. As 

shown by Southern analysis with a C. elegans telomere probe. B) DAPI-staining reveals 

that oocyte nuclei from late-generation telomerase mutants have few pairs of 

chromosomes than the wild-type complement of six chromosome pairs, indicating that 

chromosome fusions occurred. 

 

Presented here are molecular structures of end-to-end fusion breakpoints from 

genetically isolated fusion events in C. elegans. The primary goal was to sequence fusion 

breakpoints and look for signatures of DNA repair pathways that create end-to-end fusion 

events. 

An additional project described here investigated the role of Ku at telomeres in C. 

elegans. Ku is a multifunctional protein heterodimer with well-conserved roles in NHEJ 

and less clear roles in telomere biology. Chapter 2 describes in detail what is known 
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about Ku at telomeres in various species and our findings that Ku plays no apparent role 

at telomeres in C. elegans.



 

CHAPTER 2 

NO ROLE FOR KU HETERODIMER AT TELOMERES IN C. ELEGANS 

Preface 

This chapter describes investigation of the effect of disrupting cku-80 and cku70, which 

encode components of the Ku heterodimer, a core component of NHEJ. I carried out the 

Southern blot analysis to determine telomere length and rate of telomere shortening. For 

one Southern blot measuring telomere length, the probe was prepared by Julie Hal. The 

results are included in an article that is currently under review at Genetics. 

Background and Significance 

Although natural chromosome termini avoid double-strand break (DSBs) repair events, 

several proteins that detect and repair DSBs localize at normal telomeres and some are 

required for telomere maintenance (reviewed in Slijepcevic, 2006). Two categories of 

DNA repair can act at DSB: homologous recombination (HR, which relies on sequence 

homology to guide repair) and non-homologous end-joining (which can join broken ends 

that lack extensive homology). Core components of both HR and NHEJ have been 

implicated in telomere function and among these the Ku heterodimer is one of the most 

studied and controversial (reviewed in Fisher and Zakian, 2005; reviewed in Slijepcevic, 

2006). Ku is essential for canonical NHEJ. In vertebrates, the Ku heterodimer (Ku70 and 

Ku80) associates with DNA-dependent Protein Kinase catalytic subunit (DNA-PKcs), 

Artemis, DNA Ligase IV and XRCC4, which work together with other proteins to 
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process, align and ligate broken chromosomes (reviewed in Lieber, 1999). Genetic 

analyses of the role of Ku at normal telomeres in yeast, plants and vertebrates revealed 

that Ku deficiency has phenotypes ranging from no effect to altered telomere length and 

end-to-end fusion. Similarly, the impact of Ku deficiency in a telomerase-deficient 

background causes phenotypes ranging from no synthetic effect to synthetic lethality or 

accelerated telomere shortening. 

Here, we assess whether NHEJ proteins play roles in telomere maintenance in 

Caenorhabditis elegans. Mutation of the C. elegans genes encoding telomerase reverse 

transcriptase TRT-1 or members of the 9-1-1 DNA damage response complex or its large 

replication factor C clamp loader subunit HPR-17 results in telomere shortening over 

successive generations, end-to-end chromosome fusions, and progressive sterility due 

telomerase deficiency (Ahmed and Hodgkin, 2000; Boerckel et al., 2007; Hofmann et al., 

2002; Meier et al., 2006). C. elegans NHEJ mutants showed no telomere defects, nor did 

NHEJ affect telomere erosion or fusion in trt-1 telomerase mutants. 

 

Materials and Methods 

Strains 

All experiments were carried out at 20°C under standard culture conditions. The 

following strains were used in this study: N2 wild type, trt-1(ok410) I, lig-4(tm750) III, 

lig-4(ok416) III, cku-80(tm1203) III, cku-80(ok861) III, cku-70(tm1524) III, and pot-

1(tm1620) III. Double mutants for trt-1 with cku-80, cku-70, and lig-4 were constructed 

by crossing NHEJ mutant males with trt-1,unc-29 hermaphrodites and selecting for Unc 

F2 whose F3 embryos all displayed an Egg Radiation Sensitive phenotype characteristic 
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of NHEJ mutants (i.e. slow growth, vulval defects, and movement defects upon 

irradiation) (Clejan et al., 2006). 

Telomere length analysis 

Genomic DNA was prepared using a Puregene DNA Isolation Kit (Gentra). DNA 

was digested with HinFI and separated on a 0.6% agarose gel at 1.5 V/cm. Southern 

blotting was carried out with a digoxigenin-dUTP-labeled probe following the 

manufacturer’s instructions (Roche). Probe was made by PCR using primers Tel2 and 

T7long to amplify telomeric repeats from the plasmid cTel55X, as described (Wicky et 

al., 1996). 

Results 

Telomere length in NHEJ mutants 

In S. cerevisiae, S. pombe, K. lactis, and Arabidopsis, the Ku heterodimer is 

required to maintain telomeres of normal length (Baumann and Cech, 2000; Boulton and 

Jackson, 1996a; Boulton and Jackson, 1996b; Carter et al., 2007; Riha et al., 2002). 

Conflicting data exist in mammals regarding the involvement of Ku in telomere length 

regulation, whereas spontaneous fusions are observed consistently in ku70- or ku80-

mutant mice (though not in yeast, plants or chickens) (Bailey et al., 1999; d'Adda di 

Fagagna et al., 2001; Difilippantonio et al., 2000; Gilley et al., 2001; Goytisolo et al., 

2001; Maser et al., 2007; Samper et al., 2000). To address the role of the Ku heterodimer 

at telomeres in C. elegans, strains harboring deletions in cku-70 (tm1524), cku-80 

(tm1203 or ok861), or lig-4 (ok416 or tm750), each of which confers a strong NHEJ DSB 

repair defect (Clejan et al., 2006), were outcrossed multiple times versus wild type. 
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Homozygous mutant lines were established and then examined for chromosome fusions 

or changes in telomere length. Propagation of these strains for 30 generations did not 

result in sterility, as occurs for telomerase mutants, nor in even modest drops in brood 

size . Furthermore, the NHEJ mutants failed to exhibit even low levels of dominant High 

Incidence of Males (Him) or embryonic lethal phenotypes indicative of chromosome 

missegregation, which occurs during meiosis when chromosome fusions are 

heterozygous  (Herman et al., 1982). To assess telomere length, genomic DNA was 

isolated from cku-70, cku-80, or lig-4 mutant strains and subjected to Southern analysis 

with a C. elegans (TTAGGC)n telomere repeat probe. For each allele, multiple 

independently outcrossed homozygous mutant lines were examined. Telomere length for 

cku-70, cku-80 and lig-4 mutants was similar to that of wild type, with telomeres ranging 

from 2 to 7 kb (Figure 2.1A and data not shown). In contrast, pot-1(tm1620) is an 

example of a mutation that elicits a significant increase in telomere length by generation 

F8 (Figure 2.1A). Thus, mutation of C. elegans genes encoding NHEJ proteins does not 

affect telomere length or result in spontaneous end-to-end fusions. 
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Figure 2.1: Ku-deficiency has no affect on C. elegans telomeres 

A) Telomere length of cku-80 mutant strains. Genomic DNA was isolated from strains 

that were homozygous for their given mutations for eight generations. B) Time to sterility 

for trt-1 single and trt-1;NHEJ double mutant strains. Arrows indicate median. C) 

Telomere erosion in trt-1 single and trt-1;cku-80 double mutant strains. 
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Impact of Ku on telomere shortening in telomerase mutants 

Mutation of genes encoding Ku and telomerase genes results in synthetic lethality 

or rapid telomere shortening in yeast and plants, respectively. (Baumann and Cech, 2000; 

Heacock et al., 2004; Nugent et al., 1998; Riha and Shippen, 2003). In mice, disruption of 

Ku causes sterility (Barnes et al., 1998; Samper et al., 2000; Vogel et al., 1999), so 

synthetic effects of Ku with telomerase were examined in cells derived from mouse 

strains that had been homozygous for telomerase-deficiency for one or more generations 

but had been homozygous for Ku-deficiency for only a single generation; no synthetic 

phenotype was observed (Espejel et al., 2002a). To test whether there is a functional 

interaction of telomerase with NHEJ components in C. elegans, we constructed double 

mutants defective for telomerase reverse transcriptase trt-1, and deletion alleles of three 

NHEJ components that correspond to Ku70, Ku80, or DNA ligase IV. Upon propagation, 

trt-1;cku-70, trt-1;cku-80 or trt-1;lig-4 double mutants reached sterility at similar 

generations as trt-1 alone, where the median generation at sterility was 17, 18, 21, and 18, 

respectively (Figure 2.1B, arrows). Consistent with these observations, Southern analysis 

using a telomeric probe showed that deficiency for cku-80 or lig-4 did not affect the rate 

of telomere shortening in a trt-1 background (Figure 2.1C and data not shown). Rates of 

telomere shortening were 106±27 bp/generation for trt-1, 119±15 bp/generation for trt-

1;cku-80, and 117±46 bp/generation for trt-1;lig-4 (n=2 strains each), which were not 

significantly different from one another (P>0.5 in all cases by t-test). Thus, mutation of 

Ku or DNA ligase IV does not cause synthetic effects in the absence of telomerase in C. 

elegans. 
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Discussion 

 In this study, we have demonstrated that disruption of C. elegans Ku does not 

affect telomere length or cause spontaneous telomere uncapping and end-to-end 

chromosome fusion, phenotypes that have been observed in other systems, but are either 

controversial or not conserved (Figure 2.1 and data not shown). Furthermore, in a 

telomerase-deficient background, disruption of Ku did not increase the rate of telomere 

shortening or cause a synthetic lethal or accelerated senescence phenotype (Figure 2.1).  

Studies in Saccharomyces cerevisiae  yeast and plants indicate that the Ku 

heterodimer can suppress long 3’ overhangs but has variable effects on telomere length. 

In S. cerevisiae, disruption of YKU70 or YKU80 causes telomere shortening and 

constitutive resection of the C-rich strand of telomeric DNA (Bertuch and Lundblad, 

2003; Boulton and Jackson, 1996a; Gravel et al., 1998; Maringele and Lydall, 2004; 

Polotnianka et al., 1998; Porter et al., 1996). In S. pombe, disruption of pku70+ causes 

short telomeres, rearrangements of telomere associated sequences, and enhanced 

resection of the C-rich strand during S and G2 phases of the cell cycle (Baumann and 

Cech, 2000; Kibe et al., 2003; Manolis et al., 2001). In Kluyveromyces lactis, disruption 

of Ku80 does not alter telomere length but causes elongation of the 3’ overhang and 

increased subtelomeric recombination, indicating that Ku has a capping function in K. 

lactis (Carter et al., 2007). In Arabidopsis, disruption of Ku70 or Ku80 leads to extension 

of the telomere repeat tract and resection of the C-rich strand of telomeric DNA (Gallego 

et al., 2003; Heacock et al., 2004; Riha and Shippen, 2003; Riha et al., 2002). 

 Conflicting results have been reported for the effects of Ku and DNA-PKcs at 

vertebrate telomeres. In Ku-deficient chicken cells, telomeres and telomeric G-overhangs 
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are normal in length and telomere-telomere fusions are not observed (Wei et al., 2002). 

Three studies observed that Ku deficiency in mice may cause either telomere shortening 

(d'Adda di Fagagna et al., 2001) or slight telomere elongation (Espejel et al., 2002a; 

Samper et al., 2000), whereas telomeric G-strand overhang length is normal (d'Adda di 

Fagagna et al., 2001; Espejel et al., 2002a; Samper et al., 2000). Several studies show that 

disrupting mouse Ku causes end-to-end chromosome fusions (Bailey et al., 1999; d'Adda 

di Fagagna et al., 2001; Difilippantonio et al., 2000; Espejel and Blasco, 2002; Hsu et al., 

2000; Samper et al., 2000) that either lack telomeric repeats or contain long telomere 

tracts at fusion breakpoints (d'Adda di Fagagna et al., 2001; Espejel et al., 2002a; Samper 

et al., 2000). Suppression of spontaneous end-to-end fusions by mammalian Ku may 

indicate a ‘telomere capping’ function distinct from the overhang protection function 

observed in yeast and Arabidopsis. Mice that are mutant for the gene encoding DNA-

PKcs have normal telomere length and 3’ overhangs and display end-to-end chromosome 

fusions with long telomere tracts at fusion breakpoints (Bailey et al., 2004; Bailey et al., 

1999; Espejel et al., 2002b; Gilley et al., 2001; Goytisolo et al., 2001). Thus, like Ku, the 

mammalian NHEJ subunit DNA-PKcs helps to cap telomeres. Upon targeted disruption 

of both copies of human ku86 in a telomerase-positive somatic cell line, cell death was 

observed after 8 to 10 population doublings (Li et al., 2002). When heterozygous for 

ku86, these cells exhibit telomere shortening, elongated G-strand overhangs and 

chromosome fusions (Myung et al., 2004). When Ku86 expression is knocked down by 

RNA interference in telomerase-positive HeLa cells, a 50% reduction in protein levels 

caused telomere shortening, chromosome fusions, apoptosis and reduced cell 

proliferation (Jaco et al., 2004). In contrast, another study found that human cell lines 
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heterozygous for either ku86 or ku70 exhibited moderate telomere elongation and no 

genome instability (Uegaki et al., 2006). At present, no reports have been published on 

the effect of DNA-PKcs-deficiency on telomere length in humans. However, two studies 

have shown that 50% reduction of DNA-PKcs protein levels by RNAi does not cause 

end-to-end fusions (Zhang et al., 2005; Zhang et al., 2006). In summary, Ku and DNA-

PKcs suppress spontaneous end-to-end fusions in mice by a mechanism that is unclear, as 

no consistent effects on other aspects of telomere metabolism have been reported. Ku 

may play a more vital role in telomere metabolism in humans, though these data are 

controversial. 

 Much species-based variation has also been observed for double deficiency for 

Ku and telomerase, thereby generating further controversy regarding the relationship 

between Ku and chromosome termini. In S. cerevisiae, double mutants of est1 or tlc1 

(which are deficient for telomerase in vivo) with yku70 or yku80 exhibit synthetic 

lethality (Nugent et al., 1998). S. pombe double mutants for telomerase and Ku exhibit 

accelerated telomere degradation and senescence compared to telomerase mutants 

(Baumann and Cech, 2000; Nakamura et al., 1997). In telomerase-deficient Arabidopsis 

plants, disruption of Ku70 hastens telomere shortening and the onset of chromosome 

fusions (Heacock et al., 2004). In mouse Ku/telomerase double mutants, telomeres 

shorten at the same rate as those of telomerase mutants, the G-strand overhang is normal, 

and chromosomes fuse with telomere tracts at the fusion breakpoint, distinct from fusions 

in telomerase mutants that are devoid of telomere tracts (Espejel et al., 2002a). However, 

two additional studies have reported distinct phenotypes for mice deficient for both 
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DNA-PKcs and telomerase: end-to-end fusions either were or were not suppressed by 

mutation of DNA-PKcs (Espejel et al., 2002b; Maser et al., 2007). 

The severe effects of Ku deficiency in yeast or plant telomerase mutants contrast 

sharply with the lack of such effects in C. elegans or mice, suggesting that the role of Ku 

at telomeres in multicellular animals has been significantly altered, possibly in the 

context of functional redundancy (Baumann and Cech, 2000; Boulton and Jackson, 

1996a; Boulton and Jackson, 1996b; Carter et al., 2007; Riha et al., 2002). 



 

CHAPTER 3 

FREQUENCY OF DIRECT END-TO-END CHROMOSOME FUSION EVENTS 

 

Preface 

This chapter describes the molecular structures of end-to-end chromosome fusions 

genetically isolated from telomerase mutants. Three of the mutants described here were 

isolated by Bettina Meier. I performed linkage analysis and terminal deletion analysis to 

map fusion breakpoints, PCR to amplify fusion breakpoints, and Southern blotting for 

physical analysis of fusion breakpoints. The results described here are part of an article 

that is currently under review at Genetics. 

Background and Significance 

 The natural ends of eukaryotic linear chromosomes present a special challenge for 

genome integrity: they must be protected from exonucleolytic degradation and must 

avoid repair by pathways that respond to DNA double-strand breaks. Furthermore, 

terminal DNA sequences shorten progressively due to the inability of DNA polymerases 

to replicate the ends of chromosomes and due to processing events that generate 3’ 

overhangs at chromosome termini (reviewed in Lansdorp, 2005; Olovnikov, 1973; 

Watson, 1972). Protection of chromosome ends is provided by telomeres: DNA-protein 

complexes typically consisting of short, guanine-rich tandem DNA repeats (TTAGGG in 

humans) and specific proteins that bind telomeric DNA to promote the integrity and 
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proper function of telomeres (reviewed in de Lange, 2005). Telomere shortening is offset 

by telomerase, which adds telomeric DNA repeats to chromosome ends using an RNA 

template and the telomerase reverse transcriptase (Greider and Blackburn, 1985; Greider 

and Blackburn, 1987). When cells are deficient for telomerase, their telomeres shorten 

progressively and eventually become dysfunctional, which can lead to end-to-end 

chromosome fusion and genomic instability (Harley et al., 1990; Hastie et al., 1990). In 

addition to telomere length, an important factor in capping is telomere structure, as 

perturbing telomere binding proteins by altering the telomeric DNA sequence or by 

expressing dominant-negative telomere binding proteins can lead to end-to-end fusion of 

telomeres of normal length (Ferreira and Cooper, 2001; Kirk et al., 1997; McEachern and 

Blackburn, 1995; Miller et al., 2005; Pardo and Marcand, 2005; Prescott and Blackburn, 

1997; Underwood et al., 2004; van Steensel et al., 1998). 

 Given that non-homologous end-joining (NHEJ) ligates DNA sequences that lack 

homology, this DNA repair pathway may mediate the fusion of uncapped telomeres. 

Cytological studies indicate that while a core component of the canonical NHEJ 

machinery is required to fuse acutely uncapped telomeres of normal lengths, disruption of 

NHEJ does not significantly impair fusion of critically shortened, uncapped telomeres 

(Maser et al., 2007; Smogorzewska et al., 2002). Other studies rely on PCR to capture 

transient fusion events that arise as a consequence of telomere erosion, which have 

revealed DNA sequences for some end-to-end fusion breakpoints (Capper et al., 2007; 

Cheung et al., 2006; Hackett et al., 2001; Heacock et al., 2004; Hemann et al., 2001; 

Mieczkowski et al., 2003). These PCR-based studies indicate that NHEJ or 

microhomology-mediated end-joining (MMEJ) are the major pathways that fuse 
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uncapped telomeres. However, PCR of genomic template DNA containing end-to-end 

fusions can bias the fusion events that are recovered. For example, due to limits to 

product size and molecular structures that are amenable to PCR, large insertions or 

inverted repeats may have been missed in such assays. In addition, fusion breakpoints 

that involve exonucleolytic attack of subtelomeric DNA beyond the PCR primer target 

sites would be missed. Furthermore, PCR primers used in end-to-end fusion experiments 

typically target only a subset of chromosome ends. Although PCR-based assays have 

demonstrated that end-to-end fusion can occur as a consequence of direct ligation of 

uncapped chromosome ends, the frequency of direct ligation events in comparison to the 

full spectrum of telomeric fusion breakpoint structures has not been quantified in any 

system. 

Mutation of trt-1, the C. elegans telomerase reverse transcriptase, results in 

telomere shortening over successive generations, end-to-end chromosome fusions, and 

progressive sterility (Cheung et al., 2006; Meier et al., 2006). Here, we address the 

frequency of direct fusion events that arise in trt-1 mutants, which can be quantified in a 

relatively unbiased manner in C. elegans because its chromosomes are holocentric and 

thus end-to-end chromosome fusions can be genetically isolated and maintained as stable 

lines. Our analysis of an unbiased sample of fusion events suggests that direct ligation 

events favored by PCR assays may not represent the primary mechanism of repair of 

critically shortened uncapped telomeres. 
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Materials and Methods 

Isolation of end-to-end chromosome fusions 

trt-1(ok410),unc-29 or trt-1(ok410),unc-29;lig-4(tm750) strains were propagated 

for multiple generations until brood size had dropped as a consequence of end-to-end 

fusion. Hermaphrodites from these strains were crossed with wild-type males, and non-

Unc F1 L4 hermaphrodites were singled (i.e. transferred to fresh plates, one 

hermaphrodite per plate). At larval stage L4, hermaphrodites are virgins and singling 

them ensured that all progeny were self-progeny and not the result of mating with males. 

F1 that gave rise to a dominant high incidence of males (Him) phenotype in the F2 

indicated the presence of an X-autosome fusion (Ahmed and Hodgkin, 2000). F2 males 

from Him F1 were crossed with unc-1 or unc-3 hermaphrodites to map the X-linked 

fusion breakpoint to the left or right end of the X chromosome. For each fusion, a total of 

three outcrosses with unc-1 or unc-3 were performed before X-autosome fusion 

homozygotes were isolated. The unc-29-linked trt-1 mutation was removed during these 

outcrosses. 

Complementation and linkage analysis of fusion breakpoints 

To determine which autosome ends were involved in the end-to-end chromosome 

fusions, complementation and linkage analyses were performed. For complementation, 

fusion strain hermaphrodites were crossed with wild-type males. The resulting male 

progeny, all carrying an X-autosome fusion, were crossed with a hermaphrodite from an 

independent fusion strain. F1 hermaphrodites were singled and the F2 progeny were 

scored for the dominant Him phenotype. A Him phenotype indicated complementation 
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and the presence of X-autosome fusions with different breakpoint orientations, whereas a 

non-Him phenotype indicated that the fusions belonged to the same complementation 

group. For linkage analysis, the following genetic marker strains were used: unc-1 X, 

unc-3 X, bli-3 I, unc-54 I, sqt-2 II, unc-52 II, unc-45 III, unc-64 III, dpy-9 IV, unc-17, 

dpy-20 IV, unc-60 V, and unc-51 V. Males carrying an X-autosome fusion were crossed 

with genetic marker hermaphrodites, F1 hermaphrodites were singled, 20 F2 progeny that 

appeared wild type for the genetic marker mutation were singled, and F3 progeny were 

scored for the segregation marker phenotype and the dominant Him phenotype, which is 

tightly linked to each fusion breakpoint. Strains homozygous for a fusion would be non-

Him and the lack of marker siblings would indicate linkage. 

Molecular analysis of fusion breakpoints 

Genomic DNA was prepared using a Puregene DNA Isolation Kit (Gentra). For 

each fusion strain, all 12 chromosome ends were checked for terminal deletion by PCR 

using the following subtelomeric primers within the last 1 kb of the telomere. 

IL: TCGTCAGCCTTGTTATGTCAACC, GCCTAAGCCTAAAAGAATATGGTAG  

IR: TAAGCCTAAGACCAATACCGCAAC, CATTAGGACTGACAGATTGAAAGC 

IIL: CATCGCACTTTGAGGACTTTTCC, GCCTAAGCCTAAAATAGTGACTCTG 

IIR: ACGCTGTCATCCGAAGCATTGG, GCCTAAGCCTAAAAGCCGCAGC 

IIIL: AGTCAGATGGAGGCACGAGTTG, AAAAATAAAATCGGGCTTTTCGACC 

IIIR:TGCATTTGTTTTTCCACTTCTGCG, 

GGCTTTTCAGATAAAAAAATTGTTTTG 

IVL: CAATCAATTTTCGGATTTTTTTTCCC, AAGCCTAAGCCTAAGAAGAGACC 

IVR: TTGAAAACTCTGTTTTTTGACGGAG,  
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 CCATTTCTTGTTTTTCTTTCAATAGC 

IVR: TCCCATAACCCAAGCCAGTTGC, GCCTAAGCCTAAGCCAGAGAGT 

VL: TTTTGAGTTTTTCATTGAGTCGCTG, CATGTCTCTGTACCGACGATATTC 

VR: CAATGTATTTTCAATGATTAAAAGCGG, GCCTAAGCCTAAGCAAATCCCC 

XL: TTTTCGGAGCTGCAACTTTGTG, CTAAGCCTAAGCCTAATCTGTGC 

XR: GCTCTGCTGAATCGACATTTTGC, AATTCTCATTATTCGATAGTAAACCC 

PCR assay to detect end-to-end chromosome fusions in late-generation strains deficient 

for telomerase 

Fusion breakpoints were amplified using subtelomeric primers facing telomeres in 

all pairwise combinations. Optimal PCR conditions were determined by testing primers 

in pairs that targeted one chromosome end, and primers giving strong, reproducible 

results were selected to target pairs of chromosome ends. 

Physical analysis of fusion breakpoint 

Genomic DNA was prepared using a Puregene DNA Isolation Kit (Gentra). DNA 

was digested with the indicated enzymes and separated on a 0.6% agarose gel at 3.5 

V/cm. Southern blotting was carried out with a digoxigenin-dUTP-labeled probe 

following the manufacturer’s instructions (Roche) which were made using N2 wild-type 

genomic DNA as template and the following primers: 

ypT27 

XR probe: TTGTCAATCTAACCGAACTTATGC, ATGGCGTCACACTTTTCAGG 

VL probe: CACTGTGCCATATGGATTCG, TAGCTCTTTTCGAGGCATGG 

ypT21 

XR probe: TTGATTGAGTAAGGGCTATTTGG, CTGGAAAAATGTGGCAAAGC 
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IVR probe: TTGCACGGGAAATTTTTATTG, GCACTTCCTTGTAATGCAACC 

 

Results 

Isolation of end-to-end chromosome fusions 

Molecular analysis of unstable end-to-end fusions from yeast, plants, C. elegans, 

mice and humans has typically relied on PCR using primers adjacent to chromosome 

ends to amplify fusions from genomic template DNA that contains unknown quantities of 

end-to-end fusions (Capper et al., 2007; Cheung et al., 2006; Hackett et al., 2001; 

Heacock et al., 2004; Hemann et al., 2001; Mieczkowski et al., 2003). Although these 

studies address pathways that process dysfunctional telomeres, the approaches used are 

biased to recover direct fusions, likely mediated by NHEJ or MMEJ. To test whether 

direct ligation was the major repair event at critically shortened telomeres, 19 X-

autosome end-to-end fusions were isolated genetically from independent strains that were 

homozygous for the telomerase reverse transcriptase deletion mutation trt-1(ok410). 

Given that dysfunctional telomeres may be substrates of canonical NHEJ, an additional 

19 X-autosome end-to-end fusions were isolated from trt-1(ok410);lig-4 double mutant 

strains that were deficient for the LIG-4 ATP-dependent ligase that is vital for NHEJ-

mediated double-strand break repair in C. elegans (Clejan et al., 2006; Robert and 

Bessereau, 2007). The trt-1 telomerase mutation was separated from each of the 38 

fusions that were isolated, and each fusion was outcrossed three times versus a genetic 

background with wild-type telomeres. All isolated end-to-end chromosome fusions were 

homozygous viable, indicating that chromosome fusion in the context of telomerase 

deficiency typically occurs prior to resection that would disrupt essential genes near 



 

 33

uncapped chromosome ends . As a preliminary step towards molecular analysis of the 

fusion breakpoints, linkage analysis was performed. The breakpoints of each end-to-end 

fusion were mapped to an end of the X chromosome and to an end of an autosome using 

genetic marker mutations (Figure 3.1A). Complementation tests confirmed the fusion 

breakpoint map positions, where non-disjunction was not observed for trans-

heterozygotes carrying end-to-end fusions with the same X and autosome fusion 

breakpoints . At least one fusion event was recovered for all 12 chromosome ends (Figure 

3.1A). 
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Figure 3.1: Mapping genetically isolated end-to-end chromosome fusion events 

A) Fusion breakpoints of 38 X-autosome end-to-end fusions, as determined by linkage 

analysis. Genetic names of each independent fusion are to the right of their fusion 

orientation. End-to-end fusions that were amenable to PCR are indicated by underlined, 

bold font. B) Terminal delete analysis to map fusion breakpoints molecularly. PCR 

results are shown for one chromosome end involved in a fusion. Arrows indicate primers. 

In this example, one fusion strain was tested with primers targeting 5 kb of subtelomeric 

DNA. N2: wild-type control. f: X-autosome fusion strain. C) Distribution of extent of 

deletion at chromosome ends. D) Frequency of fusion breakpoint configurations. 

Observed frequencies (%), expected frequencies (Exp) and P-values are shown. 
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Terminal deletion analysis 

Genomic DNA was prepared from each fusion strain and PCR was performed 

targeting subtelomeric DNA within 1 kb of telomeric tracts at every chromosome end. If 

a primer pair generated a PCR product using template genomic DNA from N2 wild type 

but not from a fusion strain, then the targeted region may have been deleted in the fusion 

strain. Deletions occurred only at chromosome ends that involved a fusion breakpoint 

(Tables I and II), confirming that outcrossing of each end-to-end fusion had successfully 

eliminated most unlinked telomeric aberrations that might have been segregating in the 

telomerase-deficient backgrounds. 

 

Table I. Terminal deletions at X-autosome fusion breakpoints 

 
Strain  Deletion (bp) 

  X chromosome  Autosome 
ypT2  2406  5137 
ypT28  10230  4364 
ypT44  1836  4598 
ypT40  994  1261 or 8488# 
ypT41  954  27627 
ypT47  216  314 
ypT23  27601  2321 

 

#Based on BLAST analysis of the fusion breakpoint sequence, the autosomal deletion breakpoint for ypT40 occurred at 

one of two possible sites within a terminal array of rDNA repeats on chromosome IR (Wicky et al., 1996) 

  

Breakpoints of those fusions harboring terminal deletions were mapped at 1 kb 

resolution and then at 5 kb resolution for chromosome ends with more than 5 kb of 

subtelomeric DNA deleted. In the example in Figure 3.1B, between 2 and 3 kb of 
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subtelomeric DNA was deleted in the fusion strain, as products were generated for primer 

pairs 1 and 2, but not for primer pairs 3 to 5. Once an intact region of DNA was found, 

additional primers were utilized to map the deletion breakpoint at ~500 bp resolution. 

 Both ends of chromosome IV presented difficulty with precise terminal deletion 

analysis. The subtelomeric sequence abutting the right end of chromosome IV (IVR) has a 

tract of DNA composed of 49 copies of a 25-bp direct repeat (Wicky et al., 1996) and is 

difficult to PCR through (M. Lowden, unpublished data). Thus, terminal deletion analysis 

at IVR relied on primers upstream of the subtelomeric repeats, 1.4 kb from the start of the 

telomere repeat DNA. The subtelomeric repeats were deleted at one of six IVR fusion 

breakpoints (Table II). Abutting IVL is a 23.5 kb inverted repeat (Wilson, 1999). While 

the spacer between the two copies of the inverted repeat was intact for two of three IVL 

fusion breakpoints, this structure limited further terminal deletion analysis. 
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Table II. Terminal deletions at X-autosome fusion breakpoints 

 
Strain  Origin  X deletion (kb)  Autosome deletion (kb) 
ypT29  trt-1(ok410)  XR 0.0#  IL 0.0 
ypT22  trt-1(ok410)  XR 104.7 to 105.3  IIL 1.1 to 1.3 
ypT24  trt-1(ok410)  XR 0.0  IIL 13.2 to 13.4 
ypT25  trt-1(ok410)  XR 11.0 to 11.4  IIL 0.0 to 0.4 
ypT16  trt-1(e2727)  XL 0.0  IIR 4.0 to 4.5 
ypT3  trt-1(e2727)  XL 0.0  IIR 3.6 to 8.3 
ypT17  trt-1(ok410)  XL 0.0  IIR 0.0 to 2.1 kb 
ypT32  trt-1(ok410);lig-4  XL 0.0  IIR 10.7 to 11.1 
ypT33  trt-1(ok410);lig-4  XL 0.0  IIR 0.0 to 2.1 kb 
ypT42  trt-1(ok410);lig-4  XR 0.2 to 0.5  IIR 8.3 to 8.8 
ypT43  trt-1(ok410);lig-4  XR 0.2 to 0.5  IIR 10.7 to 11.1 
ypT52  trt-1(ok410);lig-4  XR 20.4 to 20.9  IIR 0.0 
ypT20  trt-1(ok410)  XL 0.0  IIIL 0.6 to 5.6 
ypT4  trt-1(ok410)  XL 0.0  IIIL 0.9 to 1.2 
ypT34  trt-1(ok410);lig-4  XL 0.0 to 0.3  IIIR 0.0 
ypT18  trt-1(ok410)  XL 0.0 to 0.3  IVL 0.0 
ypT26  trt-1(ok410)  XR 10.4 to 11.0  IVL >47.6 
ypT45  trt-1(ok410);lig-4  XR 30.7 to 31.0  IVL 0.0 
ypT35  trt-1(ok410);lig-4  XL 0.0  IVR 0.0 
ypT36  trt-1(ok410);lig-4  XL 0.0  IVR 0.0 
ypT37  trt-1(ok410);lig-4  XL 0.0  IVR 0.0 
ypT38  trt-1(ok410);lig-4  XL 0.0  IVR 0.0 
ypT21  trt-1(ok410)  XR 0.8  IVR 0.0 
ypT31  trt-1(ok410)  XR 23.9 to 30.7  IVR 1.4 to 1.8 
ypT7  trt-1(e2727)  XR 4.2 to 4.4  VL 0.0 
ypT27  trt-1(ok410)  XR 0.0  VL 4.2 to 4.4 
ypT30  trt-1(ok410)  XR 36.1 to 36.7  VL 0.0 
ypT46  trt-1(ok410);lig-4  XR 42.7 to 43.2  VL 1.3 to 1.7 
ypT50  trt-1(ok410);lig-4  XR 0.1  VL 0.0 
ypT48  trt-1(ok410);lig-4  XR 0.0  VR 0.8 to 2.7 
ypT49  trt-1(ok410);lig-4  XR 2.7 to 3.0  VR 0.8 to 1.0 
 
#0.0 indicates that subtelomeric DNA sequence was intact 
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 Excluding seven IVL or IVR fusion breakpoints for which no deletion could be 

detected, 27/69 chromosome ends involved in a fusion event contained telomere repeats. 

Of 47 chromosome ends with subtelomeric DNA deletions, excluding ypT40 where the 

fusion breakpoint could have occurred at two possible sites, 14 were less than 1 kb, 17 

were 1 to 5 kb, and 16 were 9 to 105 kb (Figure 3.1C). With respect to terminal deletion 

analysis, three types of fusion breakpoints occurred: telomere-telomere (3%), telomere-

subtelomere (44%), and subtelomere-subtelomere (53%). Telomere-telomere fusions 

were infrequent, based on the hypothesis that the three configurations were equally likely 

to occur (P<2×10-5 by t-test) (Figure 3.1D). 

 All fusion strains containing terminal deletions appeared wild type when 

homozygous, consistent with the observation that, with one exception, no known genes 

with visible or lethal phenotypes were disrupted by the terminal deletions 

(http://www.wormbase.org). The exception is ypT41, which carries a 27.6 kb deletion at 

IIL that removes sqt-2 (SQuaT), which encodes a collagen protein (Kusch and Edgar, 

1986). The two alleles of sqt-2 that have been characterized, sc3 and sc108, each carry a 

missense mutation that results in C. elegans mutants with short fat bodies that are 

helically twisted so that they roll when they move (Kusch and Edgar, 1986). For all C. 

elegans collagen mutants characterized, a defect in body morphology is caused by point 

mutations in collagen genes, but no aberrant phenotype occurs for null mutations. Thus, it 

is not surprising that ypT41 has no visible phenotype, despite harboring a deletion of sqt-

2. 
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PCR of mapped fusion breakpoints 

After refining the locations of the deletion breakpoints of end-to-end fusions to 

within ~500 bp, primers facing each fused chromosome end were utilized to amplify 

fusion breakpoints. At least two sets of validated primers were tested for each fusion 

breakpoint. For fusions involving IVR, the two IVR primers used were as follows: one 

upstream of the subtelomeric repeats (which may have worked if the subtelomeric repeats 

were deleted) and one overlapping the subtelomeric and telomeric repeats (which may 

have worked if IVR subtelomeric DNA were intact). No products were amplified for the 

IVR fusions. Fusions involving IVL were not tested. Based on PCR analysis, it is unclear 

whether the fusions of IVR or IVL were direct. For the remaining 29 fusions whose 

breakpoints had been clearly mapped, seven yielded PCR products that spanned the 

fusion breakpoint (Figure 3.1A, underlined and bold). For each fusion breakpoint that 

was amenable to PCR, terminal deletions occurred at both chromosome ends (Table I and 

Figure 3.1B). The lack of telomere repeats at direct fusion breakpoints suggests that 

telomere repeat DNA or telomere binding proteins may repress end-joining in C. elegans, 

as supported by in vitro studies of the mammalian telomere binding proteins RAP1 and 

TRF2 (Bae and Baumann, 2007). 

 Sequence analysis demonstrated that all but one of the fusion breakpoints 

amplified by PCR were simple direct ligations (Table III and Figure 3.1B). For ypT2 and 

ypT28, isolated from trt-1, there was no homology between the X chromosome and the 

autosome at the fusion breakpoint, suggesting that these fusions may have been mediated 

by canonical NHEJ (reviewed in Lieber, 1999). Of four end-to-end fusions isolated in the 

absence of lig-4, three (ypT40, ypT41 and ytT47) displayed microhomology at the fusion 
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breakpoints, consistent with observations that MMEJ is a significant end-joining pathway 

in the absence of the canonical NHEJ machinery (Feldmann et al., 2000; Heacock et al., 

2004; Ma et al., 2003; Moore and Haber, 1996; Yu and Gabriel, 2003). The fourth trt-

1;lig-4 fusion breakpoint, ypT44, lacked microhomology and occurred in the context of a 

4.2 kb inverted repeat normally present at IIR, which is flanked by two segments of short 

tandem DNA repeats, whose repeat sequence is identical (Figure 3.2A). The IIR 

breakpoint occurs within one set of tandem repeats such that the entire inverted repeat is 

lost and only ~4 of 16 tandem repeats remain. In yeast and mammalian cells, direct and 

inverted repeats cause genomic instability and are hotspots for mitotic recombination 

between chromosomes, which can lead to almost complete deletion of the inverted repeat 

(Lobachev et al., 1998; Lobachev et al., 2000; Waldman et al., 1999). Analogously, the 

site of the ypT44 fusion breakpoint may reflect an unusual MMEJ- and lig-4-independent 

mechanism of DSB repair. Finally, the fusion breakpoint of ypT23, which had occurred in 

a strain containing wild-type lig-4, had a 410 bp inversion that occurred precisely at its 

XR fusion breakpoint (Figure 3.2B). The inversion is flanked on either side by 1 bp of 

microhomology, suggestive of MMEJ, though the mechanism by which this inversion 

occurred is unclear. 
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Table III. Fusion breakpoints defined in this study. Strains carrying outcrossed 

homozygous X-autosome fusions are indicated as yp strains. Sequence present at 

breakpoints is in upper case black font, deleted sequence is in lower case gray font, and 

microhomology is underlined and bold. 

 

Strain  Origin Fusion Sequence 
   
 

ypT2 
  

trt-1(ok410) 
XR

breakpoint
IIL

ACGAGCTTTAtcactaggta 
ACGAGCTTTACATTCACACA 
ttcccacaacCATTCACACA 

   
 

ypT28 
  

trt-1(ok410) 
XR

breakpoint
VL

GTTTCAAATCcatggaagcc 
GTTTCAAATCATTCAGTTGT 
atgaggtaatATTCAGTTGT 

   
not 

isolated# 
 trt-1(ok410).a 

generation F10 
IIR

breakpoint
VL

TTTGTCAAAAatccaatttc 
TTTGTCAAAAGTACCGACGA 
tcatgtctctGTACCGACGA 

   
 

ypT44 
  

trt-1(ok410);lig-4 
XR

breakpoint
IIR

GTATATTTTTtcagtacatg 
GTATATTTTTCCCAGCTTCA 
gatacagaacCCCAGCTTCA 

   
 

ypT40 
  

trt-1(ok410);lig-4 
XR

breakpoint
IR

CATTTTGCTAattttttaaa 
CATTTTGCTACCTTGTTACG 
cctacaGCTACCTTGTTACG 

   
 

ypT41 
 

  
trt-1(ok410);lig-4 

XR
breakpoint

IIL

ACCCAAGCTTtgccacattt 
ACCCAAGCTTCATGTTGGAA 
tttgacaCTTCATGTTGGAA 

   
 

ypT47 
  

trt-1(ok410);lig-4 
XR

breakpoint
VR

GTGCACGGAGtcgagaaacc 
GTGCACGGAGGTTTTTAAAG 
tttacaGGAGGTTTTTAAAG 

 
#Non-outcrossed fusion recovered by PCR using template genomic DNA from a telomerase mutant harboring end-to-

end chromosome fusions 
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Figure 3.2: Fusion breakpoint structures of two direct fusions 

A) The drawing depicts the fusion breakpoint for ypT44. Sequencing shows that some 

subtelomeric direct repeats  remain intact. Below the breakpoint sequence is the structure 

of inverted repeats and direct repeats at wild-type IIR. B) An inversion at the fusion 

breakpoint of ypT23 is shown. A 3 bp deletion occurred at the inversion, denoted by a dot 

above the breakpoint sequence. Bold and underlined font indicates microhomology at the 

breakpoints. 
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In summary, despite careful genetic and molecular mapping of 29 fusion 

breakpoints, only 7 were amplified, 6 of which were direct ligations and one of which 

contained a small inversion. Thus, our results indicate that direct ligation may not be the 

major pathway for the genesis of end-to-end fusions that occur as a consequence of 

telomere attrition. 

PCR of unmapped fusion breakpoints 

To confirm our observations that the frequency of direct fusion was low, we 

utilized an approach similar to previous PCR-based studies performed in other organisms. 

Genomic template DNA from mid- to late-generation C. elegans telomere replication 

mutant strains that had accumulated end-to-end fusions was analyzed using a PCR-based 

strategy that examines almost all possible permutations that could result from end-to-end 

fusion of C. elegans chromosomes. The haploid number of chromosomes in C. elegans is 

six. Although some regions of subtelomeric DNA are repeated at internal genomic sites, 

the subtelomeric sequences at each chromosome end differ from one another and possess 

unique primer targets (http://www.wormbase.org, Wicky et al., 1996). Fifty pairwise 

combinations of subtelomeric primers were utilized to encompass every possible fusion 

event between different chromosomes, excluding IVR (see above). To test whether PCR 

could amplify fusion breakpoints from late-generation telomere replication-defective 

strains that may have accumulated multiple fusions, controls were performed with pooled 

genomic DNA from wild type and from six isolated X-autosome fusion strains (Figure 

3.3) where direct ligation of chromosome ends had occurred (such that DNA from each 

fusion strain was diluted 1:9). Under these conditions of non-homogeneous template 

genomic DNA, mapped fusions breakpoints were amplified robustly and consistently . 
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Additional controls were performed to test primers targeting 11 chromosome ends 

(excluding IVR), individually and in pairs, to ensure that all the primers worked 

effectively and specifically under the same reaction conditions. Once appropriate primers 

and conditions were selected, the following telomere replication mutants were analyzed 

for fusion breakpoints: trt-1 or mrt-2 single mutants, and four double mutants: trt-1;mrt-

2, trt-1;cku-80(ok861), trt-1;lig-4(ok416), and trt-1;lig-4(tm750) (n=28 mid- to late-

generation telomere replication-defective strains). mrt-2 encodes a subunit of the 9-1-1 

DNA damage response complex that is required for telomerase activity in vivo (Ahmed 

and Hodgkin, 2000; Meier et al., 2006). Strains were subjected to a population bottleneck 

of six individuals every two generations and passaged until every animal contained 

multiple fusions, some of which might have been shared based on common ancestry, 

prior to preparation of genomic DNA for PCR analysis. In an exhaustive attempt to 

amplify fusion breakpoints, each chromosome end was targeted by one primer within 2 

kb of the telomeric tract, which mimics other PCR-based end-to-end fusion assays where 

primers are usually targeted within 1 kb of telomere repeat tracts. A total of 50 primer 

pairs tested on 28 telomere replication mutant strains. Although weak bands were 

occasionally observed, none were reproducible, and no fusion breakpoints were amplified 

(Figure 3.3A). 
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Figure 3.3: PCR amplification of end-to-end fusions from telomerase mutants. Three 

primer pairs were utilized on 16 strains, including the wild-type contol, as indicated. M: 1 

kb ladder (Invitrogen). A) PCR targeting IIR and VL. All of the PCR reactions containing 

genomic DNA from telomerase-deficient strains displayed non-specific, weak bands or 

smears. B) PCR targeting IIL and VL. Arrowheads indicate PCR products for one strain, 

trt-1(ok410).a for all three primer pairs. While all three reactions contained the same 

primer targeting IIR each reaction contained a different primer targeting VL at sites 1371 

bp 1651 bp and 1768 bp from the start of the telomere repeats for VL3 VL29, and VL31 

respectively. 
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 In agreement with our poor success at amplifying unmapped fusion breakpoints 

using primers that target the terminal 2 kb of subtelomeric DNA, deletions of 2 kb 

typically occurred at one or both chromosome ends for genetically isolated end-to-end 

fusions where direct ligation had occurred (Table I). In addition, most of the isolated X-

autosome fusion strains harbored fusion events involving chromosomes II and V (Figure 

3.2A). Accordingly, PCR reactions using template DNA from each of the individual mid- 

to late-generation telomere replication strains were performed using 24 primer pairs 1 to 

5 kb away from the telomere tracts of chromosomes II and V. Three reactions amplified a 

fusion breakpoint for one trt-1 strain, whose PCR product sizes were consistent with the 

amplification of the same fusion breakpoint (Figure 3.3B). Sequencing of those PCR 

products revealed a fusion breakpoint that contained deletions of 2,229 and 112 bp at IIR 

and VL, respectively, and displayed no microhomology. The lack of microhomology 

indicates that this fusion event probably arose as a consequence of canonical NHEJ, in 

agreement with the two breakpoints from genetically isolated fusions derived from trt-1 

strains with wild-type lig-4 (Table III). Thus, we recovered a single autosome-autosome 

fusion event from genomic DNA of 28 strains that each harbored multiple end-to-end 

fusions. 

 Taken together, analysis of genetically isolated end-to-end fusions whose 

breakpoints were precisely mapped, as well as PCR-based analysis of non-outcrossed, 

unmapped fusions of mid- to late-generation telomere replication mutant strains, revealed 

that end-to-end fusions typically do not occur as a consequence of simple end-joining. 

Under our conditions, the maximum size of the PCR products that could be amplified 

from C. elegans genomic DNA was 11 kb. Thus, the remaining fusion breakpoints may 
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involve genome duplications greater than 11 kb in length. An alternative possibility is 

that all fusion breakpoints occurred as a consequence of direct ligation of uncapped 

chromosome ends, but that PCR failed at these fusion breakpoints due to the presence of 

DNA sequences that are not amenable to PCR. To distinguish between these possibilities, 

Southern blotting was performed. 

Physical analysis of fusion breakpoints 

By using genetically isolated end-to-end fusions, large quantities of DNA from 

many animals homozygous for a single fusion event can be obtained, which allows for 

physical analysis by Southern blotting. To examine the physical structure of fusion 

breakpoints that were refractory to PCR, genomic DNA isolated from fusion strains 

ypT21 and ypT27 was subjected to Southern analysis using probes designed to hybridize 

to either side of their mapped fusion breakpoints. The genomic DNA for each strain was 

digested with restriction enzymes to produce restriction fragments of various sizes at each 

fusion breakpoint. If the fusion events occurred as a consequence of direct ligation, then 

flanking probes ought to detect a single fusion breakpoint restriction fragment. 

Alternatively, detection of restriction fragments of different sizes would indicate that an 

insertion of DNA containing additional restriction sites had occurred at a fusion 

breakpoint. For strain ypT27, which carries a XR-VL fusion, probes targeting XR and VL 

hybridized to different restriction fragments: AvaII, 1.7 kb and 3.2 kb fragments, 

respectively; HindIII, 1.3 kb and 5.2 kb fragments, respectively; and PflMI, 2.9 kb and 

2.4 kb fragments, respectively (Figure 3.4A-B). For ypT21, an XR-IVR fusion, genomic 

DNA digested with HpaII, the XR and IVR probes hybridized to 2.4 kb and 3.5 kb 

fragments, respectively (Figure 3.4D-F). For ypT21 digested with PmlI, the results were 
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ambiguous because the XR probe hybridized to multiple fragments and showed the same 

pattern as wild type. Nevertheless, the HpaII data clearly support the conclusion that 

there is an insertion containing additional restriction sites at the fusion breakpoint of 

ypT21. The probes used to analyze the fusion breakpoints for ypT27 or ypT21 detected 

the predicted restriction fragments of wild-type genomic DNA, confirming that the 

probes were targeting the correct restriction fragments (Figure 3.4). Thus, physical 

analysis supports the interpretation that fusion breakpoints that are refractory to PCR do 

not occur as a consequence of direct ligation, but instead represent complex DNA repair 

events that result in duplication of one or more segments of the genome at a fusion 

breakpoint. 
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Figure 3.4: Southern analysis of fusion breakpoints that were refractory to PCR. 

Wild-type and mutant DNA digests using the enzymes indicated are shown. A) ypT27 

fusion breakpoint was probed with XR and B) VL subtelomeric probes. Wild-type signals 

were as predicted: >1.4 kb, >1.3 kb, and >1.0 kb (XR) and 4.3 kb, 4.5 kb, and >7.2 kb 

(VL) for AvaII, HindIII or PflMI, respectively. The bounds of the smeary signals 

associated with terminal restriction fragments (containing telomeric DNA) are indicated 

by dashes to the left of a given lane. C) The restriction fragments predicted to be detected 

by each probe for wild type and ypT27 are shown. D) ypT21 was probed with XR and (E) 
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IVR subtelomeric probes. Wild type signals were as predicted: >1.6 kb and >1.7 kb (XR) 

or >3.2 kb and >3.1 kb (IVR) for HpaII and PmlI, respectively. F) The restriction 

fragments predicted to be detected by each probe for wild type and ypT21 are shown. 
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Discussion 

 Here, we have demonstrated that C. elegans telomere replication mutants can 

accumulate end-to-end fusions in the absence of DNA ligase IV. Our findings are in 

strong agreement with studies that show DNA ligase IV is not required for end-to-end 

fusion of critically shortened telomeres in telomerase mutants in S. cerevisiae, S. pombe, 

Arabidopsis, or mice (Baumann and Cech, 2000; Hackett et al., 2001; Heacock et al., 

2004; Maser et al., 2007). In contrast, end-to-end fusion of uncapped telomeres of normal 

length in S. cerevisiae, S. pombe and K. lactis and mice depends on DNA ligase IV 

(Carter et al., 2007; Ferreira and Cooper, 2001; Mieczkowski et al., 2003; Pardo and 

Marcand, 2005; Smogorzewska et al., 2002). Thus, processing and fusion of acutely 

uncapped long telomeres can rely on a specific DNA repair pathway (canonical NHEJ), 

whereas fusion of telomeres that shorten progressively in the absence of telomerase may 

be a more promiscuous process that can occur via several DNA repair pathways 

(reviewed in Riha et al., 2006). 

 Molecular analyses of dysfunctional telomeres in yeast, plants, worms, mice and 

humans reveal that end-to-end fusion can be mediated by direct ligation of uncapped 

telomeres (Capper et al., 2007; Cheung et al., 2006; Hackett et al., 2001; Heacock et al., 

2004; Hemann et al., 2001; Mieczkowski et al., 2003). However, the frequency of 

directly ligated fusion breakpoints could not be determined in these studies, which would 

miss 1) direct fusion events that involve extensive terminal deletions, or 2) complex 

fusion breakpoints with insertions of large segments of DNA. The holocentric 

chromosomes of C. elegans result in stable end-to-end fusions where an unbiased 

collection of fusion events can be outcrossed and recovered for quantitative analysis in a 
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manner that is not possible in most model systems. We found that direct fusion events at 

critically shortened telomeres occur infrequently (Figure 3.1A and Table III). In a parallel 

approach resembling PCR-based experiments conducted in other systems, PCR primers 

at 11 out of 12 chromosome ends failed to reveal significant levels of direct end-to-end 

fusions in genomic DNA from 28 strains harboring end-to-end fusions. Thus, 

independent approaches indicate that direct ligation does not explain the majority of 

DNA repair events at critically shortened telomeres. 

 How, then, do the majority of end-to-end chromosome fusions arise? Southern 

analysis of genetically isolated end-to-end fusions revealed that probes flanking fusion 

breakpoints that were refractory to PCR detected restriction fragments of different sizes, 

whereas a single fusion breakpoint restriction fragment would have been detected for a 

direct ligation event (Figure 3.4). Thus, many fusion breakpoints that arise when 

telomerase is deficient may contain insertions of large segments of genomic DNA. In 

human cells, end-to-end chromosome fusion results in dicentric chromosomes that often 

break during anaphase and subsequently form new fusions, which impedes analysis of 

their fusion breakpoints (reviewed in Bailey and Murnane, 2006). Either these fusion 

events or the ensuing genomic instability associated with breakage-fusion-bridge cycles 

(McClintock, 1941) may promote tumorigenesis (Murnane and Sabatier, 2004). Our 

results suggest that end-to-end chromosome fusion breakpoints that arise when 

telomerase is deficient may represent complex recombination events. 

 Studies in other systems are consistent with our observations. Molecular and 

genetic analyses of telomerase-deficient yeast mutants reveal that dysfunctional 

telomeres can copy large segments of DNA from an intact chromosome end via break-
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induced replication (Hackett et al., 2001). End-to-end fusion and recombination between 

sister chromatids occurs at dysfunctional telomeres in mammalian cells and can generate 

duplications at chromosome ends, as shown in cytological studies (reviewed in Bailey 

and Murnane, 2006). Furthermore, a complex fusion breakpoint involving a small 

duplication of one chromosome end was recovered by PCR in the context of telomerase 

deficiency in Arabidopsis, an observation that agrees with cytogenetic measurements of 

fusion between homologous chromosomes or sister chromatids (Heacock et al., 2004; 

Siroky et al., 2003). Sister chromatid recombination events also have been observed in C. 

elegans using template genomic DNA from trt-1 mutants and a PCR primer that targets a 

single chromosome end (Cheung et al., 2006). Together, the latter observations suggest 

that alternatives to direct end-to-end fusion exist. Thus, the low frequency of direct fusion 

events observed for end-to-end chromosome fusions genetically isolated from C. elegans, 

as well as in genomic DNA from late-generation telomerase mutants, may be broadly 

relevant. 

 We conclude that the majority of end-to-end fusions that occur as a consequence of 

telomere erosion may be fundamentally different in nature from the direct fusion events 

that can be detected by PCR-based analysis of heterogeneous mixtures of genomic DNA 

harboring end-to-end fusions. The structures of complex fusion breakpoints isolated from 

C. elegans telomerase mutants are currently under investigation and are the topic of 

Chapter 4. 

 



 

CHAPTER 4 

MOLECULAR STRUCTURE OF COMPLEX END-TO-END FUSION EVENTS 

 

Preface 

This chapter describes the molecular structures of complex fusion breakpoints that could 

not be amplified by PCR using primers at each fused chromosome end. I carried out 

inverse PCR analysis and prepared DNA for microarray analysis. Stephane Flibotte a 

faculty member at University of British Columbia in Vancouver, BC, Canada designed 

the microarray and analyzed the raw data to determine the log2(fusion/wild type signal). 

Probe preparation and hybridization and scanning of the microarray were done by 

NimbleGen. The work described here is ongoing and has not yet been submitted for 

publication. 

Background and Significance 

Metaphase spreads reveal at a glance the dramatic chromosomal aberrations that can 

occur in tumor cells. The underlying mechanisms driving these aberrations are largely 

unknown. Molecular details of chromosomal rearrangements may explain the phenotypic 

diversity among tumors. For example, changes in DNA copy number may contribute to 

changes in mRNA expression that contribute to the difference between a fast-growing 

‘basal-like’ tumor associated with a high mortality rate and a ‘luminal A’ tumor that has a 

good prognosis (Perou et al., 2000; Pollack et al., 2002). Thus, understanding the 
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mechanisms underlying alterations to tumor genomes may help in diagnosis or treatment 

of cancer. 

Cancer incidence increases and telomere length decreases with age. In cultured 

cells, critically shortened telomeres are responsible for the phenomenon of crisis, where 

end-to-end fusions accumulate and most cells die. One or more fusion events may 

promote escape from crisis and oncogenesis, perhaps by activation of telomerase or ALT. 

Stable end-to-end fusion events in C. elegans provide a unique opportunity to investigate 

the structures that arise upon fusion of critically shortened telomeres. While some fusion 

events isolated from C. elegans telomerase mutants were direct ligation events, others 

contained duplications and may be analogous to the complex aberrations that can occur in 

tumor cells. To investigate the molecular structures of complex end-to-end fusion events 

isolated from C. elegans telomerase mutants, inverse PCR was used to gain information 

about fusion breakpoints that had been refractory to direct PCR with primers targeting 

fused chromosome ends. Sequencing inverse PCR products revealed insertions at some 

fusion breakpoints which were too large to be defined by further PCR analysis. 

Microarray analysis to look for changes in DNA copy number confirmed duplications 

that were predicted by inverse PCR, and, intriguingly, revealed a significant degree of 

complexity to the DNA repair events that create end-to-end fusions. Preliminary results 

for this phase of my project are described here. 

Materials and Methods 

Inverse PCR 

Genomic DNA was prepared using a Puregene DNA Isolation Kit (Gentra). DNA 

was digested with ScaI, RsaI. Digested DNA was purified and then subjected to ligation 
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by T4 DNA ligase (New England Biolabs). Ligations were purified and then used as 

templates in PCR reactions. After one round of PCR, products were purified and 

subjected to a second round of PCR. 

Microarray analysis 

Worms were grown on NGM agarose glucose plates until starvation, harvested 

from plates, washed 7 times, returned to fresh plates overnight, harvested again and then 

frozen. Subsequently, genomic DNA was prepared using a Puregene DNA Isolation Kit 

(Gentra). This treatment ensured that little or no bacteria remained on the worms or in 

their guts, and thus bacterial DNA would not interfere with microarray analysis. Genomic 

DNA was fragmented and labeled by NimbleGen as follows. Genomic DNA was 

sonicated and an aliquot was run on a gel to confirm that fragments were between 500 

and 2000 bp. Fusion DNA samples were labeled with Cy3 and the wild type DNA sample 

was labeled with Cy5 by amplifying genomic DNA with Klenow and dye-labeled random 

9-mers (TriLink BioTechnologies, Inc.) Labeled DNA was purified by isopropanol 

precipitation and DNA concentration was measured using a spectrophotometer. Samples 

were hybridized in the NimbleGen Service Facility. Labeled fusion and wild type DNA 

samples were combined and were hybridized to a microarray. The microarray was 

washed with NimbleGen wash buffers and scanned on an Axon scanner (Model # 

4000B). 
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Results 

Inverse PCR 

As presented in Chapter 3, Southern blotting revealed that insertions occurred at 

two fusion breakpoints that were refractory to PCR. To identify the duplicated sequences, 

inverse PCR was performed as follows: genomic DNA was digested with a restriction 

enzyme that cuts near the fusion breakpoint, ligated under conditions that favor 

circularization, and PCR-amplified with primers that targeted one chromosome and faced 

away from each other (Figure 4.1A). Using this strategy, an insertion at the fusion 

breakpoint may be cut into a fragment that is amenable to PCR and subsequently can be 

sequenced. Controls to amplify circularized templates that did not contain fusion 

breakpoints were successful using wild type or fusion genomic DNA, whose products 

ranged in size from 0.1 to 6.2 kb . 
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Figure 4.1: Inverse PCR to amplify fusion breakpoints. A) Inverse PCR using 

template genomic DNA from wild type and from four fusion strains (F1, F2, F3, F4) 

revealed fusion-specific PCR products. Inverse PCR at the X chromosome fusion 

breakpoint revealed recombination of an uncapped telomere and an internal telomeric 

tract at XR for (B) ypT27 and (C) ypT29 or (D) at IVL for ypT12. Duplications mediated 

by direct ligation occurred for (E) ypT50 and (F) ypT21. Bold font and dot indicate 

microhomology and insertion, respectively. 
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 Since 12 fusion breakpoints occurred within 1 kb of the telomeric repeat tracts at 

XR, they were tested using the same restriction enzyme (ScaI) and nested primer pairs. 

PCR products were made for 8/12 fusion breakpoints. Two fusion breakpoints gave 

smeary products that were unsuitable for sequencing. Three direct fusion events were 

included in the inverse PCR analysis, and all made products. Four fusion breakpoints 

showed clear evidence for insertions, while two remaining fusion breakpoints were less 

clear. The latter two sets of fusion breakpoints are described in detail below. An 

additional fusion breakpoint was recovered in an inverse PCR experiment targeting 13 XL 

fusion breakpoints. In wild type, a 10 kb inverted repeat abuts the telomere at XL. 

Although one primer used for inverse PCR should have specifically targeted the terminal 

copy of the inverted repeat since the final two nucleotides at the 3’ end of the primer 

were unique, all XL fusions produced the same product as wild type for inverse PCR with 

one enzyme and no product for a second enzyme. For the sole exception, a unique PCR 

product was amplified. 

Insertions occurred at 5 fusion breakpoints that were consistent with either 

recombination between telomere and internal telomeric sequences or NHEJ (Figure 4.1B-

F). For ypT27 and ypT29, recombination occurred between the XR telomere and an 

internal telomeric sequence tract 54 kb from the XR telomere, likely as a result of sister 

chromatid recombination (Figure 4.1B,C). Since the recombination event went towards 

XL, the extent of the insertion is not clear, but most likely the duplication does not extend 

all the way to XL as this might cause the same phenotype as an animal carrying three 

copies of the X chromosomes, dumpy (short fat) body morphology (Hodgkin et al., 

1979). For ypT27, the inverse PCR product captured an initial recombination event with 
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an internal telomeric sequence which was followed by an inversion event 2 to 3 kb away. 

For ypT12, recombination occurred between the XL telomere an internal telomeric 

sequence tract 455 kb from IVL (Figure 4.1D). This recombination event went toward 

IVR, suggesting that the fusion breakpoint has a 455 kb deletion of IVL. However, this is 

not consistent with terminal deletion analysis at IVL and a 455 kb deletion would remove 

genes known to cause lethal and visible phenotypes (e.g. dpy-9, spl-1, and rps-1).The 

extent of the insertion is not clear. Since trisomy for chromosome IV does not cause 

lethality or other visible phenotypes, an upper limit for the insertion cannot be predicted 

(Herman and Kari, 1989). A 24 kb insertion VL occurred at the fusion breakpoint of 

ypT50, an XR-VL fusion (Figure 4.1E). The insertion starts 24 kb from the telomeric 

repeat tract of VL and moves toward VL. The breakpoint exhibits 3 bp of microhomology, 

consistent with direct ligation events isolated from trt-1;lig-4 double mutants (Chapter 3). 

The inverse PCR product for ypT21, an XR-IVR fusion, reveals that XR had a terminal 

deletion of 951 bp and was fused to a site 2.1 Mb from the IVR telomere within an 

inverted repeat (Figure 4.1F). Thus, the orientation of the insertion is not clear. However, 

as a 2.1 Mb deletion would be lethal, it is likely that a 2.1 Mb duplication occurred. The 

fusion breakpoint exhibits no microhomology, consistent with direct ligation events 

isolated from trt-1 mutants with wild-type lig-4. Thus, HR, MMEJ, or NHEJ may all act 

to repair uncapped telomeres. 

Sequencing of the inverse PCR products for two fusion events gave unclear 

results. For ypT42 and eT3, the PCR products were smaller than the expected minimum 

product sizes. The expected and observed product sizes were 0.5 versus 0.3 kb (ypT42) 

and 0.6 versus 0.3 kb (eT3). The orientation of the DNA sequences did not indicate that 
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inversions occurred. However, sequencing only worked with the primer facing the 

ligation site, and not with the primer facing the fusion breakpoint. Furthermore for ypT42, 

the sequence was consistent with a 0.9 kb deletion at XR, in disagreement with terminal 

deletion analysis which indicated a 0.2 to 0.5 kb deletion. Similarly, terminal deletion 

analysis shows that XR is intact for eT3, but the inverse PCR product sequence is 

consistent 0.2 kb deletion. Perhaps a rearrangement occurred for both of these fusion 

events, but the details are unclear. 

Inverse PCR was useful to confirm that insertions occurred at some fusion 

breakpoints, however, this method provides limited information. Comparative genomic 

hybridization (CGH) microarray analysis could show the extent of an insertion. In 5/5 

cases, insertions at the fusion breakpoint involved one of the chromosome ends shown by 

linkage analysis to be involved in the fusion event. But it's possible that while inverse 

PCR captures only a small part of an insertion, the global view provided by CGH 

microarrays could reveal copy number changes at chromosome ends that have been 

implicated in the fusion event. 

Microarray Comparative Genomic Hybridization 

Recently, the first study of CGH microarray analysis in C. elegans was published 

by the research group of Dr. Donald Moerman (Maydan et al., 2007). The paper 

especially stood out because of the high resolution of the microarray. Our initial attempts 

at microarray CGH failed because the array did not have sufficient resolution. However, 

in collaboration with the Moerman lab, a chip was designed specifically for analysis of 

the fusion strains. The coverage was fairly uniform across the genome, with extra 

coverage in the terminal 2 Mb of each chromosome end (where duplications might be 
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expected) and even more coverage in the last 5 kb (where many deletions occurred), as 

well as at 1 kb regions flanking all mapped fusion breakpoints that occurred more than 5 

kb from telomeres. This design should allow all of the fusion breakpoints to be analyzed 

using the same array design, which may help to remove bias or artifacts that may occur as 

a consequence of the array itself or of the genetic backgrounds from which the 

chromosome fusions were derived. 

In a pilot experiment, three X-autosome fusion strains were tested: ypT41, ypT21, 

and ypT27. ypT41 (XR-IIL) was a control fusion strain where a direct end-to-end fusion 

event and the accompanying terminal deletions were the only predicted changes to the 

genome. Inverse PCR for ypT21 (XR-IVR) targeting XR indicated that XR had a terminal 

deletion of 796 bp and may have contained a 2 Mb insertion of IVR mediated by NHEJ. 

Terminal deletion analysis at IVR was limited by subtelomeric direct repeats that abut the 

telomere and impeded PCR. Thus, ypT21 has either no terminal deletion at IVR or a 

deletion less than 1.4 kb. Inverse PCR for ypT27 (XR-VL) indicated that XR was intact 

and its telomere recombined with an internal telomeric sequence that is normally present 

54 kb from the XR telomere. The duplication is at least 5 kb and could have involved a 

significant portion of the X chromosome. Terminal deletion analysis indicated that VL has 

a 4.4 to 4.6 kb deletion. 

For the control direct fusion event, ypT41, microarray analysis agreed with 

sequencing data that revealed terminal deletion of 954 bp and 27627 bp at XR and IIL, 

respectively. No other copy number changes occurred, except for a deletion at IVR, which 

may have been in the genetic background, as it appeared for ypT27 as well. 
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Figure 4.2: Microarray CGH data for ypT41. The Y-axis represents the ratio of array 

signal intensity for fusion versus wild type, where a negative ratio indicates a decrease in 

fusion copy number. Lone circles represent noise. Strong peaks are clusters of adjacent 

oligos with altered copy number. The X-axis scale is non-linear due to non-uniform oligo 

density on the arrays, which results in slight smiles in the middle of each chromosome. 
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Microarray analysis of ypT27 revealed an expected terminal deletion at VL, as 

well as the extent of genome duplication associated with recombination between an 

unapped telomere and an internal telomeric tract. Based on inverse PCR, we anticipated a 

duplication starting 54 kb from XR and moving toward XL, but, surprisingly, the terminal 

61 kb of XR were duplicated instead, which was associated with a triplication event 

immediately to the left of the initial recombination event. While a log2(fusion/wild type) 

with an amplitude of 0 indicates no copy number change and an amplitude of 1 indicates 

a duplication in the fusion DNA, an amplitude of 1.6 would indicate a triplication. A 

signal of 1.6 or greater occurred 61 kb from XR and spanned 10 kb. The precise sequence 

of this amplification event is not clear based on microarray analysis alone, although PCR 

and sequencing may confirm how it occurred.  
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Figure 4.3: Microarray CGH data for ypT27. The Y-axis represents the ratio of array 

signal intensity for fusion versus wild type, where a positive ratio indicates a increase in 

fusion copy number. Lone circles represent noise. Strong peaks are clusters of adjacent 

oligos with altered copy number. Orange, green, or blue arrows and lines indicate 

deletion, duplication, and triplication, respectively. The X-axis scale is non-linear due to 

non-uniform oligo density on the arrays, which results in slight smiles in the middle of 

each chromosome. 
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Microarray analysis of ypT21 presented a global view that complemented and 

exceeded the information provided by inverse PCR. A 2.1 Mb duplication of IVR 

occurred, beginning at an inverted repeat, in agreement with the PCR results. However, 

starting 4 kb from the IVR telomere, there was a 40 kb discontinuity in the duplication, 

such that this region was present in a wild-type copy number. The 1.2 kb tract of direct 

subtelomeric repeats present at wild-type IVR was excluded from the microarray, as were 

all highly repetitive sequences, because probes targeting such sequence give poor results. 

Quite unexpectedly, starting 698 kb from the start of the telomere repeat tract at XR, a 

301 kb region of the X chromosome was triplicated (Figure 4.5). Just to the right of the 

triplication, a 45 kb duplication and then a 5 kb deletion occurred. Finally, after a 346 kb 

stretch of XR that was present in wild-type copy number, a terminal deletion of 1 kb 

occurred, in agreement with the terminal deletion determined by inverse PCR. The linear 

arrangement of the amplifications associated with the ypT21 breakpoint are presently 

unclear. 
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Figure 4.4: Microarray CGH data for ypT21. The Y axis represents the ratio of array 

signal intensity for fusion versus wild type, where a positive ratio indicates a increase in 

fusion copy number. Lone circles represent noise. Strong peaks are clusters of adjacent 

oligos with altered copy number. Orange, green, or blue arrows and lines indicate 
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deletion, duplication, and triplication, respectively. The X axis scale is non-linear due to 

non-uniform oligo density on the arrays, which results in slight smiles in the middle of 

each chromosome. 
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Discussion and Future Directions 

We found that end-to-end fusion of the holocentric chromosomes of C. elegans 

resulted in large insertions at some fusion breakpoints. Sequence analysis revealed the 

identity and orientation of insertions at five fusion breakpoints. For two complex fusion 

breakpoints, while inverse PCR captured a small part of an insertion and hinted at the size 

of the insertion, microarray CGH provided a global view of copy number changes in the 

genome. Only the chromosome ends shown to be fused based on linkage analysis 

exhibited changes in copy number. 

For fusion breakpoints that contained an insertion based on inverse PCR targeting 

the X chromosome, inverse PCR targeting the fused autosome end failed, despite 

attempts with different PCR primer pairs and restriction enzymes. It is possible inverted 

repeats occurred at some autosome fusion breakpoints, perhaps via sister chromatid 

fusion, which may impede PCR. Alternatively, it could be that, by chance, none of the 

restriction enzymes used so far were able to make restriction fragments small enough to 

be amenable to PCR. This seems unlikely because the restriction enzymes used had short 

target sequences and were likely to be frequent cutters. 

In total, 43 fusion events will be analyzed by microarray CGH. Strains that were 

refractory to PCR and some direct fusions will be tested. Microarray CGH of direct 

fusions will test the hypothesis that the only aberration associated with direct fusions is 

direct ligation of two terminally deleted chromosome ends. For the fusions refractory to 

PCR, microarray CGH will test the hypothesis that insertions occurred. PCR analysis will 

be used to determine the arrangement of amplifications revealed by microarray analysis. 

In addition, Southern analysis may be the best approach to test whether inverted repeats 
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that make a nearly perfect palindrome occurred at fusion breakpoints, given that Capper 

et al. constructed a model sister chromatid fusion and found that it is refractory to PCR 

(Capper et al., 2007). 

Based on inverse PCR, Southern analysis, and microarray CGH, two fusion 

breakpoints exhibited a classical combination of rearrangements: inversion, duplication, 

and deletion. For monocentric chromosomes, heterozygosity for inversion event leads to 

an inversion loop during meiosis which causes different rearrangements depending on the 

type of inversion. Meiotic recombination of a pericentric inversion, which involves the 

centromere, results in chromosomes carrying deletions or duplications. Meiotic 

recombination of a paracentric inversion, which does not involve the centromere, results 

in dicentric and acentric chromosomes that each carry deletions or duplications. Although 

C. elegans chromosomes behave as holocentrics during mitosis, they are monocentric 

during meiosis, when either chromosome end can function as a centromere (Albertson 

and Thomson, 1993; Zetka and Rose, 1992). Since the centromere is localized to a 

chromosome end in C. elegans, it is likely that inversions are paracentric. Zetka and Rose 

showed that a C. elegans strain carrying an inversion on chromosome I produced 

recombinants carrying deletions and duplications of chromosome I, consistent with a 

paracentric inversion (Zetka and Rose, 1992). Thus, the monocentric behavior of 

chromosomes during meiosis might predict that although the final product of end-to-end 

fusion can be stably maintained when chromosome fusions are homozygous, breakage 

may occur during meiosis when end-to-end chromosome fusions are heterozygous. Thus, 

the presence of inversion, duplication, and deletion events at fusion breakpoints may be 
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evidence that breakage has occurred and more than one repair event may mediate a 

complex fusion. 

What predictions can be made for the fusion events that remain to be analyzed by 

PCR and microarray? One prediction is that fusion breakpoints with terminal deletions at 

both chromosome fused ends will be direct fusions. However, 6 of 12 such fusion 

breakpoints have been refractory to PCR with primers facing the fusion breakpoint. We 

predict that some fusion events will exhibit duplications mediated by recombination or 

direct ligation, as observed for ypT27 and ypT21. It will be interesting to see the relative 

frequency of recombination versus direct ligation events and whether the repair event will 

correlate to the presence of terminal deletions. For example, PCR revealed that 

chromosome ends with some telomere sequence intact participated in recombination 

events, while chromosome ends with terminal deletions were involved in direct ligation 

events. Since only the X chromosome fusion breakpoint was sequenced for each complex 

fusion and some autosomes were refractory to inverse PCR, microarray analysis may be 

very useful to provide a basis for additional experiments. It could be that for the fusion 

strains with insertions of the autosome, a sister chromatid fusion is present at the 

autosome breakpoint. The orientation of the insertion is consistent with this possibility. 

However, in contrast to this somewhat simple possibility, microarray analysis of ypT21 

revealed that both chromosome ends involved in the fusion event can experience 

amplification. Finally, microarray analysis may reveal new rearrangements, such as 

amplification of genomic DNA not implicated by linkage analysis. Even though such an 

event was not predicted by the pilot microarray results, a larger sample size may contain 

a broader spectrum of complex rearrangements. 
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In addition to the possibility that chromosome rearrangements subsequent to 

telomere dysfunction may contribute to oncogenesis, rearrangement of subtelomeric 

DNA commonly occurs during genome evolution (Linardopoulou et al., 2005; Murnane 

and Sabatier, 2004). Chromosome size varies from one person to another by as much as 

10-45% and most of the variability is due to alteration of pericentromeric and 

subtelomeric sequences (Knight, 2002; Mefford et al., 1997; Trask et al., 1989; Wilkie et 

al., 1991). In the last 5 million years, half of the sequence at human subtelomeres (1.13 

Mb) arose from NHEJ events followed by interchromosomal recombination events, such 

that blocks of DNA 13 to 500 kb are present at multiple subtelomeres (Ambrosini et al., 

2007; Linardopoulou et al., 2005). Thus, subtelomeres are a patchwork of duplications 

that appear on many chromosome ends (Linardopoulou et al., 2005). At the boundaries of 

nearly all these duplications are internal telomeric tracts, suggesting they may be 

remnants of telomere-telomere fusion events or may have played a role in creating the 

complex organization at human subtelomeres (Ambrosini et al., 2007). In support of the 

first prospect, in normal proliferating or senescent cultured human cells, sudden 

stochastic deletion events can create critically shortened telomeres that fuse at a 

frequency of 4×10-6, even when most telomeres are of normal length (Capper et al., 

2007). Fusion of sporadic uncapped telomeres occurs in both telomerase-deficient and 

telomerase-expressing cell lines (Capper et al., 2007). In agreement with a possible 

mechanistic role for internal telomeric tracts, we showed that two cases of recombination 

occurred between an uncapped XR telomere and the internal telomeric tract that was 

closest to the XR telomere (Figure 4.5). This suggests that the site of recombination was 

not random and that the internal telomeric tracts may be nucleating the recombination 
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events. For the third fusion breakpoint involving telomere recombination, an uncapped 

XL telomere recombined with the internal telomere tract that was fifth closest to IVL. 

This event originated in a mrt-2 strain, which is partially defective for homologous 

recombination. Perhaps the defect in homologous recombination explains why an 

autosome was targeted or why internal telomeric repeat tract closest to the IVL telomere 

was not used. Thus, on a large time scale, recombination events involving uncapped 

telomeres may drive evolution of human subtelomeres. This process may be recapitulated 

on a much shorter time scale in turmorigenesis and in C. elegans telomerase mutants. 
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Figure 4.5: Distribution of internal telomeric repeat tracts. The plots show the 

positions of 1,381 internal telomeric repeat tracts on the six chromosomes of C. elegans. 
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The X-axis represents chromosome position. The Y-axis represents the length and 

orientation of the internal telomeric repeats. Vertical lines extending above or below zero 

correspond to tracts in a forward or reverse orientation along the chromosome, 

respectively. The vertical lines at the extreme left or right of each plot correspond to the 

telomeres, and the colored horizontal line demarcates the extend of the chromosome. The 

internal telomeric repeat tracts (blue block arrow) involved in recombination events with 

uncapped telomere (green block arrow) are shown on the right, along with all of the tracts 

that occur in the last 1 Mb of IVL or XR. 
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While cytogenetic measurements can show chromosomal alterations at a gross 

level, simultaneous sequence and physical analysis of a rearrangement triggered by 

telomere uncapping is difficult in most systems. It is intriguing that we have observed 

large telomeric duplication and triplication events that may be analogous to events that 

shape our own rapidly evolving subtelomeric DNA, which is a complex and highly 

heterogeneous portion of the human genome that may contribute substantially to the 

diversity of phenotypes that occur in the human race. Thus, the studies described here 

may eventually provide mechanistic insights into an important phenomenon relevant to 

genome evolution: the molecular basis of chromosomal rearrangements triggered by 

telomere uncapping. 

 



 

CHAPTER 5 

CONCLUDING REMARKS 

 

Contribution to telomere field 

The primary goal of this study was to examine repair events at uncapped 

telomeres in C. elegans to provide a model for the genesis of end-to-end chromosome 

fusions. C. elegans is uniquely suitable to address this issue, allowing a broader spectrum 

of fusion events to be studied at the molecular level than has been possible previously in 

other organisms (Capper et al., 2007; Cheung et al., 2006; Hackett et al., 2001; Heacock 

et al., 2004; Hemann et al., 2001; Mieczkowski et al., 2003). Our study was not fully 

dependent on the generation of a PCR product or biased by using PCR primers targeted 

very close to the telomere. Another advantage was that we could perform Southern blots 

or microarray analysis to provide physical evidence to verify the PCR data. This study 

took advantage of a variety of approaches available in C. elegans to elucidate the 

molecular structure of end-to-end chromosome fusions. 

This work will change how the field of telomeres looks at the fate of dysfunctional 

telomeres. Previous studies suggest that direct ligation is the predominant repair event at 

uncapped telomeres. Based on molecular and physical analysis of genetically isolated 

end-to-end chromosome fusions, we conclude that while direct ligation occurred at some 

fusion breakpoints, complex events involving amplification of large segments of genomic 
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DNA drive end-to-end fusion. The results of inverse PCR and the pilot microarray 

experiment suggest that inversions may occur at fusion breakpoints. The model that 

inversion may promote duplications and deletions will provide a starting point to 

investigate the linear order of segmental amplifications and deletions. A more complete 

model of genesis of end-to-end fusions awaits additional microarray CGH, accompanied 

by PCR and Southern analysis, which should reveal more about the complex events. 

The results described here will help to develop C. elegans as a system to study 

telomere dysfunction, which occurs in aged and cancer cells in humans. C. elegans 

provides a genetically tractable model to find genes required for telomere function and 

allows the consequences of telomere dysfunction to be examined at the molecular level. 

Rearrangement of chromosomes contributes to oncogenesis (reviewed in Gebhart, 2005) 

and other types of human disease (reviewed in Shaw and Lupski, 2004). Subtelomeres 

are hot spots of recombination between chromosomes (Linardopoulou et al., 2005), and 

the rearrangements described here may contribute to models of genome evolution, if 

occasional uncapping and fusion of telomeres is a natural occurrence. 

 

Contribution to C. elegans field 

We also investigated whether a core component of NHEJ contributes to telomere 

lengths homeostasis: the Ku heterodimer, an NHEJ component whose functions in 

telomere biology are well-studied, if somewhat plastic and controversial (reviewed in 

Fisher and Zakian, 2005; reviewed in Slijepcevic, 2006). This work contributes to the 

development of C. elegans as a model for telomeres by establishing that Ku has no 
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synthetic effects with telomerase. In this respect, the telomere biology of C. elegans is 

like that of mice. 

 This work provides a fantastic resource to the C. elegans community by 

providing ~50 characterized translocations and deletions that could be used for many 

applications. Already we have two collaborators using the strains to understand how 

dosage compensation complexes behave at the breakpoint of an X-autosome 

translocation: does the complex spread from the X chromosome to the autosome, and if 

so how far does it spread? Precisely mapped breakpoints offer a wonderful starting point 

to address this question. Another collaborator will use ypT41, which contains a direct 

fusion of XR and IIL, for complementation analysis to map an apoptosis mutation. The 

mutation is near sqt-2, which is deleted in ypT41, but low rates of recombination in the 

area have hampered mapping. Thus, the fusion strains can be used to study a variety of 

areas unrelated to telomere uncapping. 
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