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ABSTRACT 
 

TALIA CHALEW: Chemical Indicators of Surface Water Pollution 
(Under the direction of Dr. Howard Weinberg) 

 
High quality surface water is critical for maintaining healthy ecosystems and ensuring 

safe drinking water, yet is often compromised by point and non-point contamination 

sources.  Failed septic systems, an example of non-point source pollution, may generate 

pools of untreated or minimally treated wastewater that can runoff into nearby streams.  

There are currently no means of quickly determining the impact of this pollution on 

surface water.  

 

Representative emerging contaminants (caffeine and triclosan) were targeted as 

indicators from failed septic systems and chlorination disinfection byproducts (haloacetic 

acids) for the effluent from conventional municipal wastewater treatment plants.  

Methods for the analysis of these compounds in various matrices were developed and 

applied to both effluent types and surrounding surface waters.  Typical caffeine and 

triclosan concentrations in conventional municipal wastewater treatment plant effluents 

were 0.23µg/L and 0.3µg/L, respectively, as compared to 22µg/L and 7µg/L from septic 

tank effluents.   Excitation-emission fluorescence spectrophotometry was also 

investigated as a tool for characterizing pollution from wastewater sources. 
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CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

A common distinction between waste sources in the environment, in terms of 

qualification and regulation, is between point and non-point sources (NPS).  Point 

sources are discharged from a specific location that can be identified, quantified, and 

regulated.  In contrast, non-point sources are diffuse pollution sources that stem from 

many locations.  For example, NPS is often caused by precipitation running over the 

ground and transporting natural and anthropogenic pollution into the waterways.  

Therefore, without one specific discharge location, it is difficult to identify, quantify or 

regulate NPS pollution.  Lacking the ability to identify NPS specifically, monitoring 

programs use more general indicators of water quality and watershed health.  

Additionally, remediation efforts at water quality protection and clean up are limited by 

the inability to protect against diffuse NPS.   

The objective of this study was to develop an indicator to differentiate between 

specific point source and NPS pollution in the environment.  Knowledge of the specific 

pollution source would lead to more directed remediation and, therefore, protection of 

water quality.  Because most surface waters in North Carolina become the drinking water 

source for a community downstream, a tool to identify the pollution source and facilitate 

remediation would benefit public health.  Preventive protection of surface water quality 

might actually limit the amount of drinking water treatment necessary. 

For this study, municipal wastewater treatment plant (WWTP) discharges were 

selected as a point source.  WWTPs require regulated discharge permits from the U. S. 
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Environmental Protection Agency (USEPA).  In contrast, septic systems are a 

decentralized form of wastewater treatment and were studied as NPS.  Their failure can 

lead to diffuse sources of pollution throughout the watershed as contaminants from 

surfacing sewage that are dispersed with rain events or overland flow to surface or 

ground waters.  In this study, there were several stages to identifying chemical indicators 

of wastewater contamination of surface waters.  First, literature review was performed for 

an understanding of the treatment processes involved in municipal and on-site wastewater 

treatment.  Indicators were proposed that survived one type of treatment more 

substantially than the other in order to differentiate between these types of wastes in the 

environment.  Analytical methods were developed to determine concentrations of these 

indicators and then these methods were tested with environmental samples from 

municipal and on-site wastewater treatment and surround ing surface waters. 

 

1.1 Water Quality Regulations   

Water quality is regulated by several federal and State laws for the protection of 

the environment and public health.  These laws create monitoring programs, control 

pollution discharges and allocate financial resources. 

The first federal water pollution programs originated with the 1948 Water 

Pollution Control Act (USEPA 1999); this law was enacted to protect water quality.  As 

water quality became an increasing concern, this law was amended several times. In   

1956 and 1961, amendments allocated funding to municipalities to construct wastewater 

treatment works (USEPA 1999).  The National Pollution Discharge Elimination System 

(NPDES) Program was established by the 1972 amendments (USEPA 2003).  This 
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program required WWTPs to obtain a permit for effluent discharge into a receiving water 

and to use the most economical and best available treatment technology to meet the 

highest standards of effluent quality.  The permits established both technology-based 

limits to pollution, based on industrial standards of treatment, and water-quality-based 

limits for the additional protection of water sources.  Through NPDES permits, five 

conventional parameters: five-day biochemical oxygen demand (BOD5), total suspended 

solids (TSS), pH, fecal coliform, and oil and grease (USEPA 1999) and an additional 126 

pollutants, are regulated.  These additional pollutants are divided into two types: the 

priority pollutants, which include metals and man-made organics, and non-conventional 

pollutants, such as chlorine or ammonia.  Amendments in 1982 required municipal 

WWTPs to reduce pollution to the “maximum extent practicable” (USEPA 1999). 

The Water Quality Act of 1965 required states to develop and meet water quality 

standards, and to specifically quantify pollution discharges (USEPA 2003).  To reach this 

goal, the North Carolina Division of Water Quality (DWQ) of the Department of 

Environment and Natural Resources (DENR) has established several monitoring 

programs.  A series of 365 Ambient Monitoring Stations (AMS) were installed 

throughout the state, which have the ability to collect both grab and composite samples.  

Grab samples are collected at least once a month and analyzed for physical, chemical, 

and bacterial measurements (http://h2o.enr.state.nc.us/esb/ams.html).  The  results are 

stored in EPA’s STORET database (http://www.epa.gov/storet/).  Every five years, the 

data are summarized on the watershed level to provide Basin Assessment Reports 

(http://h2o.enr.state.nc.us/esb/bar.html).   
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Nationally, the U.S. EPA has many tools available to model and monitor water 

quality.  For example, the Watershed Assessment, Tracking, and Environmental Results 

Program (WATERS), provides computer resources for understanding water quality.  

Examples of such tools are the EnviroMapper for water quality and the ability to query 

water quality parameters from the WATERS database (http://www.epa.gov/waters/).  

EnviroMapper is a Geographic Information Systems (GIS) type program with the ability 

to map areas with different pollution sources and landscape features.  

The Source Water Assessment Program (SWAP) was created under the 1996 Safe 

Drinking Water Amendments (http://www.epa.gov/safewater/protect/swap.html).  Each 

state is required to set up a program to delineate source water assessment areas, inventory 

potential contaminants, and determine the susceptibility of public water supplies to 

contamination.  In North Carolina, the Public Water Supply (PWS) Section of the 

Department of Natural Resources (DENR) oversees NC SWAP 

(http://204.211.89.20/Swap/).   Within this program is NC SWAPinfo, a computer 

application similar to ArcGIS for mapping watersheds, water supply sources and 

pollution discharges.  This database contains watershed SWAP assessment reports, which 

classify watershed health upstream of drinking water intake locations.  The reports also 

contain useful maps that provide information on land use, annual precipitation, slope, 

permitted discharge locations, and prior pollution incidents.  

However, the usefulness of NC SWAPinfo in mapping NPS pollution is limited 

by the available data.  The data originates from state agencies and since it does not 

include county level data, not all pollution sources are identified.  For example, failed 
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septic systems are not considered in SWAPinfo, because county offices handle this 

information and do not communicate with state agencies.  

 

1.2 Municipal Wastewater Treatment and On-Site Wastewater System Design  

WWTPs and septic systems employ similar processes, but septic systems operate 

on a simpler scale.  They also differ in the amount of regulation and investment in 

infrastructure. 

 

1.2.1 Municipal Wastewater Treatment  

The main treatment processes in municipal wastewater treatment are mechanical, 

biological, and chemical.  Primary treatment uses screens,  filtration or sedimentation 

basins to separate solid from liquid waste.  This process can be facilitated by the use of 

chemicals, such as alum, to improve settling or flocculation.  Secondary treatment is the 

biological (either aerobic or anaerobic) treatment of supernatant and settled solids using 

activated sludge or trickling filter oxidizing beds.  Lastly, tertiary treatment involves a 

finishing stage, such as lagoon, micofiltration, sand-filtration, constructed wetlands or 

disinfection so that wastewater meets discharge standards.  If effluent is disinfected with 

chlorine, it is dechlorinated before being discharged into receiving waters to protect water 

quality.  However, there is the potential for disinfection-by-products (DBPs) to form as 

the chlorine reacts with organic constituents in the waste, but, the extent to which DBPs 

form depends on additional factors, such as the use of nitrification and/or denitrification 

to control ammonia content.  Figure 1.1 shows an overview of WWTP design.  As 

discussed above, WWTPs require NPDES permits from the USEPA, which are 
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administered by state and local governments.  The discharges must meet national 

standards on contaminants.  

 

Figure 1.1 Overview of a WWTP design. (http://www.state.sd.us/denr/DES/Surfacewater/img001.gif) 
 

The NPDES permits closely regulate nutrient removal in the effluent.  The main 

nutrient removal process, which occurs in the secondary treatment  stage is activated 

sludge (Mulder 2003).  In conventional nitrification/denitrification processes, nitrogen as 

ammonium is converted via nitrite to nitrate (nitrification) and then denitrification occurs 

as the nitrate is transformed into nitrogen gas and released. Another means of nitrogen 

removal is nitrification/denitrification via nitrite.  In this process, ammonia is oxidized 

into nitrite, and under anaerobic processes nitrite is converted into nitrogen gas and 

released.  In alternative treatments, such as algal ponds or constructed wetlands, ammonia 

is incorporated into algal or plant biomass. 

Despite complex treatment, there are many chemicals remaining in the effluent 

after discharge, especially pharmaceuticals and personal care products (PPCPs).  
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Conventional WWTPs are not designed to remove low concentrations of such 

compounds as PPCPs (Batt et al. 2006).  During treatment, PPCPs conjugate and either 

are transformed completely to CO2, transformed partially into metabolites, or remain 

unchanged (Jorgensen and Halling-Serenson 2000).    Soprtion onto sewage sludge or 

biosolids may be the main removal mechanism for many of these compounds within the 

WWTP (Xia et al. 2005), but its efficiency is determined by the octanol-water coefficient 

(Kow).  If a compound is extremely polar, it is unlikely to sorb, and therefore, likely to be 

found in the effluent.  PPCPs may re-enter the environment as runoff from land applied 

biosolids.   

Microbial degradation may not be possible for all PPCPs, especially antibiotics 

(Kummerer 2003).  Even if degradation is possible, it often requires a longer exposure 

time than the usual retention time within the WWTP (Batt et al. 2006).  Removal rates 

vary significantly based on compound physical properties.  For example, studies have 

shown more than 80% removal for triclosan, ibuprofen, and nonylphenols (Ternes 1998, 

Korner et al. 2000, Bester 2003).  In contrast, diclofenac, fenofibric acid, phenazone, and 

carbamezapine have low removal rates (Heberer 2002a).    

Additional wastewater treatment, such as UV disinfection and membrane 

bioreactors (MBRs), has the potential for further effluent purification.  UV disinfection, 

an oxidative treatment, has the potential to degrade compounds, but may result in the 

formation of more toxic daughter metabolites (Daughton 2002).  Adams et al. (2002) 

investigated removal of five sulfonamide antibiotics and trimethoprim using UV and 

chlorine disinfection from surface water, as a surrogate for wastewater. Ninety percent of 

sulfonamides were removed within 28 minutes and 90% of trimethoprim was removed 
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within 40 minutes with the use of chlorine.  In contrast, UV disinfection at 254nm only 

removed 50-80% of the antibiotics.   All of the antibiotics tested have been shown to 

absorb UV, so the lack of degradation may be due to competition with other natural 

organic matter (NOM) for the UV.  Competition with NOM will be even greater in 

wastewaters. 

MBRs have the ability to remove a higher percentage of suspended solids.  In a 

comparison study of pharmaceutical and endocrine-disrupting compound (EDC) removal 

rates, Clara et al. (2005) evaluated influent and effluent of MBRs in conventional WWTP 

with nitrification and denitrification.  Overall, the removal rates were similar, although 

slightly lower for MBRs.   Wintgens et al. (2004) evaluated the use of nanofiltration and 

MBRs for removal of the EDCs nonylphenols and bisphenyl A.  Results showed 70-

100% retention of compounds in the filters due to the combination of size exclusion and 

sorption onto solids that were filtered out.   

Ternes et al. (2002) conducted laboratory batch experiments to determine the 

effectiveness of different drinking water treatment technologies for the removal of 

pharmaceuticals, the results of which can be applied to wastewater treatment as well.  

Selected compounds were bezafibrate, clofibric acid, diclofenac, carbamazepine, and 

primidone, all of which can be used as indicators of a broader spectrum of PPCPs.  After 

28 days in a batch reactor, removal of compounds through sorption, aerobic, and 

anaerobic biodegradation ranged from 6 to 39%.  These low removal rates verify that 

sorption and biodegradation are not effective removal mechanisms for these types of 

compounds.  Membranes alone will not have a significant effect on removal because the 

compounds are not sorbed to particles.  Therefore, chemicals of anthropogenic origin are 
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likely to be found in WWTP effluent even with the use of advanced technology, such as 

MBRs. 

 

1.2.2 On-Site Wastewater Treatment Systems: Design and Regulations 

Despite the move to centralized wastewater treatment, approximately 25% of the 

U.S. population and 37% of new developments use septic systems (van Cuyk et al. 2004).  

Compared to WWTPs, septic systems have a much simpler design, consisting of a septic 

tank and drainfield (see Figure 1.2 for a diagram of septic system design).  Overall 

treatment relies on infiltration and percolation of liquid effluent through the soil with a 

sufficient depth and width to prevent chemicals or pathogens from reaching the 

groundwater.  Septic tank designs vary in such elements as the number of chambers, 

construc tion, material, and number of baffles, but the underlying principles are the same 

in all systems.  The tank is designed to retard wastewater flow sufficiently to allow a 

sludge layer to form as solids settle to the bottom and lighter compounds, such as grease, 

float to the surface and form a scum layer. Only the middle liquid layer can pass through 

the chamber out of the tank.  As fresh influent enters the tank, this middle layer of 

wastewater is forced out to the drainfield (CMHC 2004).   
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Figure 1.2 Overview of a simple on-site wastewater treatment system design (Hammond and Tyson 1999) 
 

Septic tanks are designed for a minimum retention time of 24 hours, with the 

assumption that ½ to ¾ of the tank volume is filled with scum and sludge.  Retention time 

is defined as the time that wastewater spends in the tank and is calculated by:  

       Retention Time (days) = Effective Volume (gallons)/Flow Rate (gallons/ day)     (1.1) 

Effective volume is the liquid volume between the scum and sludge layers, during which 

time active solids separation and anaerobic degradation occur.  If the tank is not pumped 

frequently enough, the scum and sludge layers will build up and reduce both the effective 

volume and retention time.  The amount of treatment, such as settling and digestion, that 

waste undergoes in the tank is a factor of retention time.  Anaerobic degradation within 

the septic tank is responsible for a 40% reduction of sludge volume, 60% reduction of 

BOD, and 70% reduction of TSS (Reneau et al. 1989). 

Under optimal conditions, wastewater should remain in the tank two to three days  

for sufficient  treatment.  However, several factors limit retention time and degree of 

treatment.  If a significant amount of water is flushed into the septic tank at one time, the 
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retention time decreases (Lawrence 1973).  If cleaning the tank  is very infrequent, the 

amount of scum and solids will accumulate and lower the retention time.  To prevent 

these conditions, tanks should be pumped out (cleaned) every three to five years.   

Clarified wastewater effluent leaves the tank into the drainfield, where it is 

pumped or gravity-fed below the soil surface. The effluent flows through perforated 

pipes, built into gravel- lined drainfield trenches, and seeps into the gravel soil interface 

until it infiltrates through the soil.  Drainfield size is estimated from the expected flow 

and loading rate, which are calculated by the number of bedrooms (Charles et al. 2005).  

Purification occurs as wastewater travels through the biological mat that accumulates on 

the sidewalls and bottom of the drainfield trenches.  This biomat is composed mainly of 

anaerobic microbes that can slow infiltration to the soil, creating ponds of wastewater 

before it seeps into the soil.   

Below the biomat, the wastewater flows into the unsaturated soil and eventually 

to the water table.  Infiltration of wastes into the soil is based on soil pore geometry, 

which influences the hydraulic conductivity (Reneau et al. 1989).  The effluent load to 

the drain field is typically 0.4 to 5 cm/day over the absorption area of the field (Wilhelm 

et al. 1994).  Effluent loading rates influence infiltration rates. During this time, aerobic 

degradation occurs, which is controlled by the amount of oxygen available.  Most aerobic 

degradation occurs immediately below the biomat layer and unsaturated conditions  

facilitate the volatilization and diffusion of organic compounds.  If the soil under the 

drain field becomes saturated, anaerobic conditions will persist and impede the natural 

degradation processes, which can cause system failure.  As organic matter from waste 
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accumulates in the septic tank and drainfield, sorption conditions may become a more 

significant limitation of degradation. 

The main variables that influence biogeochemical reactions are the redox level 

and pH of the waste (Wilhelm et al. 1994).  There are two major redox zones in the septic 

system: the anaerobic zone in the septic tank, which has low dissolved oxygen and high 

organic matter content and the unsaturated soil of the drainfield, where aerobic 

degradation occurs.  After passing through into the saturated zone, the waste does not 

undergo much further oxidation because oxygen supply is limited.  Oxidation of 

ammonia from the microbial degradation of effluent  in the aerobic zone releases H+, 

which alters the pH.  The pH controls many factors of degradation, such as hydrolysis, 

sorption and enzymatic degradation (Alhajjar et al. 1990).  The sand type and clay 

content of the drainfield soil also influence the effluent pH and biological activity 

(Willman et al. 1981). 

There are many potential causes of septic system failure.  High levels of 

suspended solids (SS) and BOD in the tank effluent, which occur from insufficient 

treatment within the septic tank, may affect infiltration capacity in subsurface areas, 

resulting in hydraulic failure and effluent surfacing (Charles et al. 2005).  The 

effectiveness of the biomat as a filter is diminished if the septic tank is not properly 

pumped because accumulation of solids reduces effluent treatment time and leads to an 

excess of organic material that significantly reduces permeability.  Over time, the 

hydraulic conductivity of the biomat, and not the soil, determines the effectiveness of the 

septic system in treating wastes (Wilhelm et al. 1994). 
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Uneven distribution of effluent into the drainfield leads to elevated loading rates.  

High loading can cause saturated flow conditions, which decrease infiltration (Reneau et 

al. 1989).   Therefore, uniform distribution is important to prevent soil clogging and for 

the septic system to treat wastes effectively.  Additionally, a change in the infiltration rate 

can lead to a decreased efficiency of treatment.  If the infiltration rate is too slow, wastes 

can pond and clog the system.  If the infiltration rate is too fast, the soil does not have 

sufficient time to treat the wastes.  Precipitation events can change infiltration rates and 

lead to contamination of the groundwater (Cogger et al. 1988).  Another source of system 

failure is soil clogging, which can develop with improperly treated septic tank effluent.  

More concentrated effluents lead to a greater likelihood of soil clogging because of the 

accumulation of organic matter (Siegrist and Boyle 1987). 

In contrast to WWTPs which are federally regulated by the U.S. EPA, states set 

septic system regulations, although in North Carolina, individual count ies have the ability 

to set more stringent standards.  The vertical distance between the bottom of the 

absorption trenches and the seasonal high water table is regulated differently by each 

state.  In North Carolina, the distance for individual single family systems is 30cm.  

Cogger et al. (1988) found that this distance was too small to consistently enable 

adequate waste treatment and that a larger soil buffer was necessary to protect 

groundwater sources.  Incorrect trench installation and seasonal changes further reduced 

the adequacy of waste treatment with a 30cm distance (Cogger et al. 1988).    

According to North Carolina law, local health departments are authorized by the 

State to regulate septic system installation and management.  They evaluate sites for 

proposed systems and issue permits for system installation and design.  The regulations 
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require, at a minimum, that systems be set back 100 feet from a public or private water 

source, including streams, and 50 feet from lakes.  Additionally, the long-term acceptance 

rate (LTAR), which determines the required length of drainfield trenches, is based on the 

most hydraulically limiting naturally occurring soil horizon within 3 feet of the ground 

surface or to the depth of 1 foot below trench bottom, whichever is deeper. Finally, the 

bottom of any drainfield  trench has to be at least 1 foot above any wetness condition.  

State regulations also require routine health department inspections for non-conventional 

septic systems, the frequency of which is dependent on the size and complexity of the 

septic system.  During inspections, the health department checks the frequency of 

pumping, the alarm and electrical systems, the functionality of the dosing pumps, piping 

failure, and adherence to other regulations.  If a system is not in compliance, the owner 

has a set period of time to fix the problem and have the system re-inspected.   Overall, the 

septic tank owner is responsible for its maintenance.   

Along with inspections, the local health departments educate homeowners about 

functions and maintenance of the septic systems to preserve their longevity and protect 

water quality.  However, in general, homeowner knowledge of septic system functioning 

and maintenance is limited. Schwartz et al. (1998) conducted a survey to assess 

homeowner understanding of their septic system design and maintenance requirements in 

three counties in upstate New York.  In two counties, less than 50% of homeowners had 

pumped their septic tank within the past five years and one third had never pumped their 

tank.  Respondents could not accurately describe the components of their septic system or 

identify which authorities to contact for help with water quality or septic system pollution 

issues.  Their study also found that socio-demographic factors influenced whether 
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homeowners contacted local authorities for help with their system.  A similar study in 

North Carolina showed that 43% of homeowners incorrectly believed that a septic system 

did not need pumping until it failed (Halvorsen and Gorman 2006).   

Septic system failure is often not reported to the health department because the 

homeowner wants to avoid the expense of repairs.  If a homeowner is unaware of the 

warning signs of septic system failure, a system may be causing pollution for an extended 

period of time before it is repaired.  In this regard, an indicator of NPS pollution from 

septic systems could identify failing systems before they fail beyond repair. 

 

1.2.3 Septic System Pollution Research 

Past research into septic system pollution has focused on nutrients, bacteria  and 

viruses, not on chemical degradation.  Van Cuyk et al. (2004) tested virus removal in lab 

and field septic systems and found 98-99.9% removal of surrogate bacteriophages 

through a simulated drainfield before reaching groundwater.  Harrison et al. (2000) 

measured fecal coli bacteria in septic tank effluent and in the drainfield through suction 

lysimeters.  Their study found 91.1% removal of bacteria from the effluent to the drain 

field.  With additional sand-filtration pre-treatment, reduction of bacteria rose to 99.8%.  

Scandura and Sobsey (1997) showed that even in sandy soils extensive reduction of 

viruses, bacteria and nutrients can be achieved if the clay content is over 15%. 

Geary (2005) found that the majority of nitrogen entered the septic tank as 

organic nitrogen degraded to ammonium.  As effluent reached the aerobic drainfield, the 

ammonia was quickly oxidized.  Harrison et al. (2000) found a 47% decrease in total 

nitrogen between septic tank effluent and drain field  lysimeters: 79% of nitrogen 
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collected in lysimeters was present as organic-N and NH4-N, with the remainder as NO2-

N or NO3-N.  In contrast, a system employing sand-filtration pre-treatment resulted in a 

74% decrease of nitrogen from the effluent to the drainfield, with lysimeters containing 

over 91% of nitrogen as NO3-N.  A visualization of nitrogen removal processes within 

the drainfield is shown in Figure 1.3. 

 
Figure 1.3 Potential sources, transformations, and losses of nitrogen in an on-site treatment system 
(Harrison et al. 2000). 
 
 
1.3 Indicators of Pollution 

There are several uses and benefits to an indicator of pollution which can be 

physical, chemical or biological.  An indicator can track a type of pollution through the 

environment, indicate the presence of more harmful compounds or act as a surrogate for 

the behavior of a wide range of possible compounds.  Additionally, a chemical indicator, 

that is representative of a variety of compounds, can be targeted for monitoring, because, 

it is time consuming and expensive to search for all possible compounds.   

The objective of this study was to identify chemical indicators that could track 

and perhaps distinguish point and NPS pollution through the environment, which would 
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be a useful tool for directed cleanup of an impaired waterway.  Targeting the known 

pollution source would be an effective use of limited resources available for remediation 

of contaminated natural waters.   

 

1.3.1 Microbial Indicators and Disadvantages 

Many researchers have studied microbial indicators to determine whether water 

bodies and drinking water sources have been impaired (Scott et al. 2002, Glassmeyer et 

al. 2005).  A common indicator is fecal coliform, which is found in human and animal 

wastes.  It is easy to monitor, indicates the presence of more harmful pathogens found in 

fecal matter, and can provide an indication of waterways that have been polluted by 

waste.  However, there are many disadvantages to bacterial indicators.  Glassmeyer et al.  

(2005) explain that biological techniques can be time consuming (e.g.  taking at least 18 

hours to complete the assay).  For determining dangerous pathogens in water, this time 

lag could have a detrimental impact on public health.  Barrett et al. (1999) found, in their  

review of marker species for urban groundwater recharge, that microbial indicators may 

be effective only when used in combination.  Individually, however, they are not 

effective indicators because of misdetection, die-off, or the presence of competitive 

organisms. 

The main drawback to microbial indicators is the ir lack of specificity.  Sometimes 

the presence of high concentration of an indicator cannot be attributed to fecal 

contamination (Glassmeyer et al. 2005).  Even if fecal pollution is determined, microbial 

indicators often cannot differentiate between human and animal sources, which limits 

their usefulness for guiding remediation. 
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Ahmed et al. (2005) studied fecal indicator bacteria for tracking septic system 

pollution.  Samples were collected from septic tanks, and both up- and downstream in a 

watershed containing septic systems.  Significantly higher levels of fecal bacteria were 

found downstream than upstream; however, there was greater bacterial diversity in the 

stream than in the septic tank.  This implies other sources contributed fecal bacteria to the 

stream and that the presence of fecal bacteria could not pinpoint septic tanks as the 

pollution source. 

 

1.3.2 Benefits of Chemical Indicators 

Compared to microbial assays, chemical indicators have many advantages.  In 

many cases, the processing time of chemical indicators is much shorter than microbial 

methods.  Chemical indicators can target categories of chemicals, measure their usage, 

and transformation by humans, and thereby identify the pollution source and differentiate 

between human and animal pollution sources.   

Various studies have proposed and rejected different chemical constituents as 

potential indicators, either individually or in combination.  Barrett et al. (1999) found that 

nitrogen isotopes in combination with microbial methods were effective  indicators of 

waste.  Verstraeten et al. (2005) also proposed nitrogen species, specifically ammonia, as 

indicators to identify septic contamination of drinking water wells.  However, as nitrogen 

species move through the aquifer, they are biologically mediated and can no longer be 

used for source tracking.  Additionally, the  variety of other potential nitrogen sources, 

such as fertilizer, animal waste and geological sources, limits its usefulness as an 

indicator of specific waste source.   
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Several pharmaceutical products used only by humans, such as clifobric acid, 

carbamazepine or diclofenac, have been suggested as potential indicators of WWTP 

pollution.  Heberer (2002a) detected these compounds in an average of six German 

WWTP effluents at 0.48µg/L, 1.63µg/L, and 2.51µg/L, respectively.  However, other 

studies have not found comparable levels of these compounds.  Weigel et al. (2002) 

found watershed levels of clifobric acid ranging from 0.01–1.35ng/L.  Carbamazepine 

was detected in 70% of low-flow samples of stream water downstream of urban areas, in 

the range of 0.14ng/L-0.263µg/L (Kolpin et al. 2004).  Stackelberg et al. (2004) detected 

carbamazepine in 100% of stream samples collected below two WWTPs, all at levels 

above the reporting limit of 0.01µg/L. Thomas and Foster (2004) tested for diclofenac in 

WWTP effluent treated with biological nutrient-removal processes and UV disinfection, 

but did not detect it.  Ibuprofen, another potential indicator, has been detected in WWTP 

effluents in concentrations ranging from 0.01-0.1µg/L (Heberer 2002ab, Thomas and 

Foster 2004).  Other possible chemical indicators include musk compounds, fluorescent 

whiting agents or DEET (Heberer 2002a, Buerge et al. 2003a, Xia et al. 2005), but their 

domestic usage is low and too inconsistent to enable them to be effective measures, 

especially of septic system pollution. 

 

1.4 Chosen compounds: Caffeine, Triclosan, HAAs 

For this study, caffeine and triclosan were chosen as potential indicators of septic 

system pollution and haloacetic acids (HAAs) were chosen as potential ind icators of 

WWTP pollution.  Their high usage in the United States, detection in the respective 

domestic waste stream, and the fact that homeowners would feel comfortable discussing 
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their use make them effective indicators.  For example, pharmaceutically active agents 

(PhACs), such as anti-epileptics (e.g., carbamazepine), which have been proposed as 

indicators (Heberer 2002a), may not have high enough usage levels to be detected in 

septic systems, and homeowners may be unwilling to discuss prescription medications if 

a usage study were undertaken to estimate analyte concentrations in septic influent. To 

select a pollution indicator distinguishing point from non-point sources, compounds 

chosen as potential indicators from septic systems need to have high removal rates during 

municipal wastewater treatment, whereas indicators of municipal treatment effluent 

should not be found in the effluent from on-site treatment. 

 

1.4.1 Caffeine 

1.4.1.1 Chemical Parameters 

 The structure of caffeine is shown in Figure 1.4. Caffeine is unlikely to degrade in 

surface waters based on its low Kow and high solubility.  See Appendix 1 for further 

chemical properties. 

 
Figure 1.4 Caffeine structure. 
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1.4.1.2 Usage 
 
Caffeine usage is abundant in modern society.  Worldwide, the largest consumers 

of caffeine are Europeans, who consume an average of 4.6kg/person/year.   North and 

Central America consumers ingest 3.6kg/person/year, whereas the rate in Oceania and 

South America is 2.3kg/person/year (Carrillo and Benitez 2000).   

Caffeine is an ingredient in food, beverages and medications.  Caffeine content in 

chocolate ranges from 5 to 35mg/oz (Ferreira et al. 2005).  In drinks, caffeine averages 

about 40 mg in a 12 oz. can of soda, with a range of 30-60mg (Carrillo and Benitez 2000, 

Ferreira et al. 2005).  Caffeine in coffee varies with brewing method, type of coffee bean, 

quantity brewed, serving size and portion of drink consumed.  It can be as high as 92-

120mg caffeine/serving (Grosso and Bracken 2005).  In the United States, average 

consumption of coffee is over 150mg/day (Grosso and Bracken 2005).  Additionally, 

caffeine is found in over-the-counter medications, such as Anacin and Excedrin at 

concentrations ranging from 30-200mg per tablet (Ferreira et al. 2005).     It is estimated 

that over 80% of adults in North America are caffeine consumers, with an estimated 

average intake of 200-250mg/day (Carrillo and Benitez 2000).  When this intake is 

corrected for an average bodyweight, average intake is 2.5mg/kg/day for adults and 

1mg/kg/day for children under 18 (Carrillo and Benitez 2000).   

Caffeine is efficiently metabolized by the human body with only 0.5-10% 

unmetabolized caffeine excreted (Buerge et al. 2003b) and an average half- life in the 

body of 3-6 hours (Carrillo and Benitez 2000).  After oral ingestion, caffeine reaches its 

maximum concentration in the blood after approximately one hour.  Because of its 

hydrophobic nature, caffeine crosses all membranes and is found in blood, saliva, human 



 22 

milk and feces.  Bonati et al. (1982) tested dosing and elimination rates of caffeine 

exposure in four men and determined an absorption rate constant of 6.3±1.9h-1 and 

elimination rate constant of 0.11±0.02h-1.  The absorption rate was found to increase with 

increasing dose of caffeine. Standley et al. (2000) found that after drinking coffee 

containing 170mg/L caffeine, 3mg/L was excreted in urine.   

Despite its efficient human metabolism, caffeine is detectable in wastewaters.  Its 

presence in wastewaters is mainly due to the washing of residual coffee granules, rinsing 

of pots, or pouring liquid coffee or tea down the drain (Gardinali and Zhao 2002).  The 

abundance of caffeine and its high consistent consumption rates make it a good potential 

indicator of wastewater contamination. 

 

1.4.1.3 Occurrence 

Caffeine has been detected in many occurrence studies, including in samples 

collected upstream of WWTP discharges (see Table 1.1).  In a recent study, Glassmeyer 

et al. (2005) detected caffeine in 70% of samples, down to a reporting limit of 0.016µg/L.  

In their study, caffeine was detected in 63% of upstream samples, 73% of wastewater 

treatment plant effluents, 80% of downstream samples close to WWTPs, and 60% of 

sampling locations farther downstream.  However, there was insufficient information 

about the proximity of upstream sampling to WWTPs to determine whether upstream 

locations were pristine. Bendz et al.  (2005) detected caffeine upstream of a WWTP but at 

levels below 5ng/L.  In their study of a Brazilian watershed, Ferreira et al. (2005) 

detected caffeine in all river samples ranging from 130-350µg/L, although they do not 

indicate proximity of sampling locations to wastewater treatment plant discharges.   
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Conventional wastewater treatment results in a high removal rate of caffeine. 

Bendz et al. (2005) calculated the overall removal efficiency for caffeine at 89%.  In a 

survey of sixteen WWTPs in Switzerland, Buerge et al. (2003a) found an average 

caffeine removal efficiency of 99.6±0.2%.  Thomas and Foster (2005) found that aerobic 

and anaerobic degradation was responsible for the majority (51-99%) of caffeine 

degradation.  Up to 44% of the compound removal was found to occur in primary 

treatment, when suspended solids settle out.  However, even with these high removal 

rates, caffeine has been detected in WWTP effluent.  Weigel et al. (2004) detected 

caffeine in effluents from four WWTPs that used manual filtration without biological 

treatment : levels ranged from 30-120µg/L.  Stackelberg et al. (2004) detected caffeine in 

100% of samples collected downstream of WWTP discharge, all at levels above the 

reporting limit of 0.014µg/L. 

Once in the environment, photolysis and photo-degradation are the main 

degradation mechanisms by which caffeine is degraded. In batch experiments where 

samples were exposed to natural sunlight, caffeine was degraded following first-order 

decay with a half- life of about 12 days : sorption to particles in the surface water was 

found to be an insignificant removal factor (Buerge et al. 2003a).  Ogunseitan (2002) 

suggested that it is rare to find microorganisms capable of degrading caffeine in 

freshwater systems.  

Godfrey and Woessner (2004) identified caffeine in community and individual 

household septic tanks.  Caffeine concentrations in community systems were detected at 

levels as high as 500µg/L and in individual household systems in concentrations as high 

as 400µg/L.  Wren (2001) collected septic tank effluent grab samples from a multi-



 24 

housing unit and a condominium complex and detected caffeine in the tank effluents at 

137 and 95mg/L, respectively. However, these values represent the results of isolated 

individual samplings and may not represent average septic tank effluent concentrations. 

Seiler et al. (1999) detected caffeine in groundwater wells in combination with 

nitrate, which they concluded stemmed from septic system pollution.  In another study of 

groundwater contamination, Verstraeten et al. (2005) detected caffeine in 9 out of 19 

groundwater wells tested, but the concentrations were not specified. 

Table 1.1 Occurrence data for caffeine and triclosan from the literature 
Location Caffeine 

Concentration Range 
References Triclosan 

Concentration Range 
References 

WWTPs, 
influent 

20µg/L 
7-50µg/L 

(Siegener and Chen 2002, 
Buerge et al. 2003a) 

500-1300ng/L 
3.8-16.6µg/L 
70-650ng/L 

(Lindstrom et al. 
2002, Sabaliunas 

et al. 2003) 
 

WWTPs, 
effluent 

0.06-0.08 µg/L 
6.7µg/L 

28-9480ng/L 
 

(Seiler et al. 1999, 
Siegener and Chen 2002) 

42-213ng/L 
0.18µg/L 

 

(Singer et al. 
2002, Paxeus 

2004) 

Rivers 
and 

streams  

<0.014-6µg/L 
160-357µg/L 

<0.014-115 ng/L 
13+/- 28 ng/L 

 

(Standley et al. 2000, 
Kolpin et al. 2002, 
Ferreira et al. 2005) 

 

1.4-74ng/L (Lindstrom et al. 
2002) 

Septic 
tanks 

95-137mg/L 
0.0014-1.008mg/L 

(Wren 2001, Godfrey and 
Woessner 2004) 

3.4-6.4mg/L (Wren 2001) 

 

1.4.1.4 Caffeine’s Potential as a Tracer 

Although common in the environment, caffeine is considered an effective 

indicator of urban pollution for several reasons.  Because it is  not naturally present in the 

environment, the presence of any caffeine indicates anthropogenic influences.  In 

addition, its low sorption potential to solids (Seiler et al. 1999) and low degradation under 

anaerobic conditions suggest that caffeine is more likely to survive septic tank treatment 

than conventional WWTP processes.  
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Caffeine has been used as an indicator of pollution from various sources.  

Standley et al. (2000) proposed its use in combination with fragrances (HHCB and 

AHTN) as an indicator of WWTP effluent, because the detection of these compounds in 

series correlated with WWTP discharges in the watershed. In contrast, Buerge et al.  

(2003a) concluded that caffeine was source-specific from domestic wastewater.  Because 

of WWTP’s high removal efficiency of caffeine, they determined that caffeine 

concentrations in the environment were linked to high rainfall events when storm water 

flooded WWTPs and untreated effluent was discharged in the environment.   Seiler et al. 

(1999) proposed that the presence of caffeine in groundwater samples indicated septic 

system pollution. 

Although caffeine has been linked to domestic wastewater, identification of its 

specific source is difficult.  Occurrence data on caffeine concentrations in WWTP 

effluents and surface water are variable, depending on the type of WWTP sampled and 

the time and location of sampling.  Caffeine, in this study, is proposed as an indicator of 

septic system pollution because of its high removal rates from WWTP, its low sorption 

rates, and the fact that aerobic degradation as the primary removal mechanism.  Because 

of these properties, it is hypothesized that minimal caffeine degradation will occur within 

the septic tank and that caffeine concentration from the effluent of a failed septic system 

will be detectable downstream. 

 

1.4.1.5 Toxicology/ Public Health Significance 

Little research has been conducted into the environmental impact of caffeine at 

sub-therapeutic levels, such as those found in the environment, except for a few studies 
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on amphibians. Smith and Burgett (2005) tested the effect of high concentrations of 

caffeine on American Toad tadpoles and found no significant change in tadpole activity 

with exposure to caffeine.  However, tadpoles exposed to caffeine had higher levels of 

developmental anomalies, and they hypothesized that exposure to sub- lethal doses could 

affect predation, survivorship, and reproduction.  In another study, Fraker and Smith 

(2004) found that caffeine, even at low environmental doses, affected tadpole activity and 

the startle response, which could affect their survivor.   

1.4.1.6 Analytical Methods 

There are several methods for the analysis of caffeine in surface and wastewaters 

described in the literature.  Most researchers use some form of extraction, either solid 

phase (SPE) with differing cartridges or liquid- liquid (LLE) combined with liquid 

chromatography-mass spectrometry (LC-MS) or gas chromatography-mass spectrometry 

(GC-MS) analysis.  Standley et al. (2000) extracted drinking water influent samples with 

C-18 cartridges eluted with CH2Cl2 and CH3OH.  Extracts were derivatized with N-

methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) and analyzed by GC-MS for a 

recovery rate of 82%.  Ferreira et al. (2005) used CH2Cl2 with LLE analysis by high 

performance liquid chromatography (HPLC) with a variable ultraviolet detector for 

extraction of surface water samples.   Buerge et al. (2003a) extracted wastewater and 

river samples with Bio-Beads eluted with CH2Cl2, passed over silica mini-columns for 

clean-up, eluted with 95:5 ethyl acetate (EtOAc):methanol (MeOH) and analyzed using 

gas chromatograph-mass spectrometry-single ion monitoring (GC-MS-SIM) for a limit of 
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detection (LOD) of approximately 10ng/L.  The elution solvents for the above methods 

are toxic and are, therefore, not considered as a reasonable option for this current study.  

Eaton et al. (2004) used hydrophilic- lipophilic balanced (HLB) cartridges eluted 

with acidic methanol to separate an extract, which was injected onto an HPLC-UV for 

detection of caffeine from wastewater samples but found that this method was not 

sensitive enough because of the complexity of the matrix.  Chen et al. (2002) used on- line 

SPE extraction of surface water samples followed by analysis with HPLC using 

individual test columns: C-18, poly(styrene-divinylbenzene) (PRP-1), polymeric reversed 

phase (PLRP-s) or Bond-Elut Env.  Recovery rates ranged from 84 to 98%, with PLRP-s 

yielding the highest recovery.  Positive electrospray ionization (ESI+) mode of LC-MS 

was used for analyte detection with a LOD of 0.1µg/L.   Gardinali and Zhao (2002) used 

LLE with CH2Cl2 to extract caffeine from 1L surface water samples: they analyzed these 

samples using LC-MS, yielding 89% recovery and LOD of 4ng/L.  Thomas and Foster 

(2004) used Oasis HLB cartridges eluted with ETOAc to extract wastewater.  The 

extracts were derivatized with N,N-Bis(trimethylsilyl)trifluoroacetamide (BSTFA) in an 

oven at 60°C and analyzed using gas chromatograph-mass selective detector (GC-MSD) 

yielding only 34% recovery for caffeine with a method detection limit (MDL) of 19ng/L.   
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1.4.2 Triclosan 

1.4.2.1 Physical Properties  

 Triclosan (Figure 1.5) has a relatively high Kow, indicating that it is likely to sorb to 

particles once in the environment.  Because its pKa of 8.1 is in the pH range of natural water 

(7-9), the specific pH of the water will influence speciation and less sorption will occur at 

higher pH values.  Triclosan is stable against hydrolysis. For further properties, see Appendix 

1. 

 

Figure 1. 5 Triclosan structure. 
 

1.4.2.2 Usage 

Triclosan is present as an anti-microbial agent in many personal care products; such 

as toothpaste, shampoo, mouthwash, deodorants, skin care products, lotions, and hand soaps; 

at weight-based concentrations ranging from 0.1-0.3% (Sabaliunas et al. 2003).  Despite the 

low concentration, these products are washed down the drain and enter the waste stream.  In 

addition, triclosan is found in plastic cutting boards and sports apparel, such as underwear, 

socks and shoes (Bester 2003). 

 

1.4.2.3 Occurrence 

Triclosan has been detected in a wide range of environmental samples (see Table 

1.1).  Glassmeyer et al. (2005) detected triclosan in 62.5% of samples collected around 

WWTPs: 11% of upstream samples, 100% of WWTP effluents, 70% of initial downstream 
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samples, and 60% of samples found farther downstream.  However, there was no indication 

whether the upstream sampling sites were themselves downstream of another WWTP. 

Lindstrom et al. (2002) detected triclosan, ranging from 0.5-1.3µg/L, in the influents 

of all WWTPs sampled during research in Switzerland.  Normalizing these concentrations for 

the populations served by these plants, they determined an average of 0.5mg/person/day, 

which is equivalent to approximately 0.2g/person/year.   

Triclosan has been found to be well removed during conventional wastewater 

treatment.  In general, triclosan removal is over 90%. McAvoy et al. (2002b) found 96% 

removal from activated sludge plants, 71% for trickling filter plants, and 32% for primary 

treatment plants. Sabaliunas et al. (2003) measured over 95% removal of triclosan through 

both activated sludge and advanced trickling filter WWTPs.   

Bester et al. (2003) looked at the removal processes of triclosan within the WWTP.  

They found that 65% of triclosan in the influent “disappeared” (i.e., was not detected in the 

sludge or effluent water).  About 5% of triclosan was found to be released through hydrolysis 

processes within the WWTP, 30% of triclosan was sorbed to sludge, and 50% of triclosan 

was found to be transformed into unknown metabolites or bound to residues.  Singer et al. 

(2002) determined that a large proportion of the triclosan degradation was due to aerobic 

degradation and sorption to sludges.  Federle et al. (2002) found triclosan to be mineralized 

in activated sludge.   

Even though triclosan is an antibiotic, at low levels of concentration small microbial 

communities degrade this chemical.  With a gradual increase in exposures to triclsoan at 

higher concentrations, the ability of the microbial community to degrade triclosan also 
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increases.  This hypothesis was proven with the detection of triclosan resistant bacteria in the 

environment that were able to co-metabolize triclosan (Meade et al. 2001).   

Despite high levels of removal from WWTP, triclosan has been detected in WWTP 

effluents in concentrations ranging from 42-213ng/L (Singer et al. 2002).  Once in the 

environment, there are many removal processes for triclosan, such as sorption or transport 

into sediments, chemical or biological degradation, volatilization or photolysis (Lindstrom et 

al. 2002).  Lindstrom et al.  (2002) used laboratory data to model triclosan degradration in the 

environment and determined there would be high seasonal variability in rates of photolysis.  

Sabaliunas et al.  (2003) measured triclosan at several points downstream of WWTP effluents 

and found a die-away rate of 0.21±0.08ng/L.  Triclosan was still detected 3.5km downstream, 

with an estimated travel time of 5.2 hours.  Using a computer model, they found average 

removal rates of triclosan were 0.06-0.33h-1.   

Morrall et al. (2004) studied triclosan degradation in rivers.  They found first-order 

loss rate of triclosan to be 0.06h-1, corresponding to a half- life of 11 hours.  In an 8km reach 

of stream, they measured a 19% loss of triclosan to sorption and settling.  This study showed 

a possible half- life of triclosan in surface waters of 15 minutes due to photolysis from direct 

sunlight.  However, rates of photolysis are dependent on many variables, such as pH, 

suspended solids, turbulence, river depth and intensity of sunlight, which is affected by 

season and weather (Sabaliunas et al. 2003). 

McAvoy et al. (2002b) developed a mathematical model to predict the fate of analytes 

found in products disposed of down the drain into a septic system.  The study assumed that 

the compounds were water soluble at concentrations used by consumers. The model 

predicted that under unsaturated conditions, analytes would sorb or biodegrade.  Sorption 
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was the main removal mechanism in the near field, but biodegradation became more 

important in the far field (McAvoy 2002a).  However, under saturated conditions, analytes 

were expected to reach the groundwater because of the shift in the soil environment to 

oxygen- limited and anoxic conditions, thereby, limiting degradation.  The implications are 

that most of the sorption and degradation occur in the drainfield, under aerobic conditions.  If 

a septic system fails, triclosan emerging from the tank is expected to be at similar 

concentrations to those found in influent. 

 

1.4.2.4 Toxicology/ Public Health Significance 

The effects of triclosan in the environment are only beginning to be understood. 

Triclosan has been found in human breast milk, up to levels of 300µg/L, although the effects 

of this concentration have not been studied (Adolfsson-Erici et al. 2002).  Triclosan is acutely 

toxic to many aquatic organisms.  For example, the concentration where 50% of the effects 

are observed (EC50) for rainbow trout is 350µg/L (Lindstrom et al. 2002).  Triclosan in the 

environment has been shown to be toxic to certain algal species, such as Scenedesmus 

subspicatus, which has a no-observed effects level (NOEL) of 500ng/L (Singer et al. 2002).  

Adolfsson-Erici et al. (2002) measured levels of triclosan in the bile of fish exposed to 

WWTP effluent and found concentrations of triclosan up to 120mg/kg of bile.  

Triclosan has the potential to cause microbial resistance to antibiotics.  It blocks lipid 

biosynthesis by inhibiting the enzyme enoyl-acyl carrier protein reductase (Singer et al. 

2002).  With larger exposure and concentrations of triclosan in the environment, microbial 

resistance can build up and reduce efficacy of antibiotic soaps and drugs in killing disease 

organisms (Rooklidge 2004). 
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1.4.2.5 Analytical Methods 

Most methods in the literature use SPE to concentrate triclosan from aqueous samples 

with analysis by GC-MS.  Thomas and Foster (2004) used Oasis HLB cartridges eluted with 

ETOAc for extraction of wastewater samples, with the extracts being derivatized with 

BSTFA in a heated oven and analyzed by GC-MS with 89% recovery. Lindstrom et al.  

(2002) extracted surface water samples with bio-beads to concentrate triclosan, which was 

then eluted with MeOH/CH2Cl2 and subsequently analyzed by GC-MS with LOD of 0.4ng/L.  

Wastewater samples extracted with bio-beads were eluted with 50:50 MeOH:acetone onto 

silica gel cartridges for clean up.  They eluted silica gel cartridges with 95:5 EtOAc:MeOH 

and analyzed extracts using LC-ESI-MS with LOD of <2ng/L.  Boyd et al. (2004) used SDB-

XC Empore disks (Varian, Palo Alto CA) to extract surface water and eluted the extract with 

MeOH and CH2Cl2 followed by silica gel clean up and GC-MS analys is. The MDL without 

the silica gel cleanup was 0.2ng/L.  McAvoy et al. (2002b) developed a method, which was 

later used by other researchers, of extracting surface and wastewater with C18 cartridges 

eluted with ETOAc, toluene, and hexane; these extracts were subsequently concentrated and 

analyzed by GC-MS, yielding 79% recovery from WWTP influent (Sabaliunas et al. 2003, 

Morrall et al. 2004). Paxeus (2004) developed a method for extraction of surface and 

wastewater that used C18 SPE cartridges eluted with acetone and methylated with methyl 

chloroformate before GC-MS analysis.  In contrast, Bester (2003) extracted wastewater using 

LLE with toluene, which  was analyzed directly using GC-MS for 88% recovery with a limit 

of quantification (LOQ), the lowest level quantifiable from the method, of 3ng/L. 
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1.4.3 Haloacetic Acids 

1.4.3.1 Chemical Parameters 

Haloacetic acids (HAAs) are strongly acidic and hydrophilic with pKa values ranging 

from 0.63-2.9 (Loos and Barcelo 2001).  For this study, only two HAAs, dichloroacetic acid 

(DCAA) and trichloroacetic acid (TCAA), as depicted in Figures 1.6 and 1.7, were targeted 

as by-products of WWTP chlorination because of the higher likelihood of their formation.   

Low values of Kow indicate that these compounds are unlikely to sorb to particles, and 

therefore, would be detected downstream.   For additional chemical parameters, see 

Appendix 1. 

 
Figure 1.0.6 Dichloroacetic acid structure. 

 
Figure 1.0.7 Trichloroacetic acid structure. 

 

1.4.3.2 Occurrence 

DBPs are formed by the interaction of chlorine and organic matter in waters.  

Hypochlorous acid is a common disinfectant in water and wastewater treatment plants and is 

formed after the addition of sodium or calcium hypochlorite or gaseous chlorine to the water.  

During chlorination, natural humic and fulvic compounds, as well as wastewater-derived 

compounds, are transformed into DBPs (Westerhoff et al. 2004). 
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Krasner et al. (2005) detected DBPs formed from chlorination of wastewater effluent.  

The level of ammonia in the effluent has a significant influence on the formation of DBPs.  

Chlorine first interacts with ammonia to create combined chlorines (chloramines) and then 

with natural organic matter to form DBPs.  High ammonia levels result in lower 

concentrations of some halogenated DBPs, but can generate higher levels of nitrosamines.  

Low levels of HAAs were detected in the effluents examined, but all the treatment plants had 

high levels of ammonia, which likely limited the ir formation. 

Most research on DBP formation and biodegradation has been performed in drinking 

water; however, these results can be extrapolated to surface water.  Sirivedhin et al.  (2005) 

studied the disinfection by-product formation potential (DBPFP) of various waters.  Their 

study found that formation of DBPs was more likely in waters with an anthropogenic 

influence, caused by the high levels of dissolved organic carbon (DOC).  The DCAA 

concentrations, for example, were higher in anthropogenically influenced waters than in 

pristine waters.  This implies that the high levels of DOC in wastewater effluent (relative to 

drinking water) are likely to contribute to a high DBPFP. 

In studies of drinking water treatment plants, HAAs formed more quickly than 

trihalomethanes (THMs) upon reaction with chlorine, and therefore are more likely to form 

during water treatment  (Speight and Singer 2005).  Given the relatively short time between 

chlorine addition and dechlorination in wastewater treatment, HAAs are also likely to be 

found in the treated water, provided there is a free chlorine residual.  Hence, HAAs may be 

potential indicators of WWTP effluent.  

HAAs have been detected in environmental samples.  Scott et al. (2000) detected 

HAAs in lake waters in North America.  Concentrations of DCAA ranged from <1-1500ng/L 
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and TCAA levels ranged from <1-37ng/L, with higher concentrations in lakes in closer 

proximity to urban populations.  Their study also found HAAs in precipitation samples in 

Canada; DCAA was detected in the range of <0.4-7300ng/L and TCAA was detected in the 

range of <0.4-870ng/L.   

Calculations were performed using EPISuite software for an estimation of 

biodegradation and environmental persistence.   SMILES notation, generated from the 

chemical structure created in ChemSketch was imported, along with water solubility and 

melting point (www.chemfinder.com).  DCAA biodegradation was estimated to occur on the 

order of weeks, whereas TCAA was estimated to biodegrade over weeks to months.  Total 

estimated removal from WWTP for DCAA was 1.9%.  Of this amount, biodegradation 

accounts for 0.09%, sludge adsorption for 1.79%, and volatilization for 0.02%.  It was also 

estimated that the half- life of DCAA in a model river was 79 days.  Total removal for TCAA 

was 1.93%, of which 0.09% comes from biodegradation, 1.84% from sludge adsorption, and 

there was no volatization.  The estimated half life of TCAA in the river was 2310 days. 

 

1.4.3.3 Toxicology/ Public Health Significance 

DBPs in drinking water are considered carcinogenic, mutagenic, and teratogenic to 

both humans and animals (Sirivedhin and Gray 2005).  The USEPA has set a maximum 

contaminant level for the sum of the five regulated HAAs at 60µg/L.  Because HAAs are 

unlikely to sorb to particles and have a low biodegradation rate, it is likely that DBPs in 

WWTP effluent will be found downstream, possibly in drinking water treatment plant 

influents.  Hanson and Solomon (2004) determined that HAAs at current environmental 

concentrations do not pose a threat to aquatic vegetation using both probabilistic and 



 36 

deterministic methods.  Investigating toxicity to phytoplankton found that monochloroacetic 

acid (MCAA) was the most toxic of the HAAs, but that other species had the potential for 

toxicity. 

 

1.4.3.4 Analytical Methods 

The most common method for the detection of HAAs in water is EPA Method 552.2 

(Urbansky 2000), which uses liquid-liquid extraction (LLE), with methyl-tert-butyl ether 

(MtBE) as the organic phase, from an acidified sample.  Diazomethane, which is able to 

convert acids to esters, is often used as the methylating agent (Urbansky 2000).  The 

methylation reaction is shown in Figure 1.8.  This method may be less effective for more 

complex matrices. 

 
Figure 1.8  Mechanism for methylation of a  carboxylic acid with diazomethane (Urbansky 2000). 
 

Additionally, there are several methods used to concentrate HAAs using SPE.  

Martinez et al. (1998) compared the effectiveness of four different SPE cartridges for 

concentration of HAAs with a range of sample volumes.  They acidified samples to below 

pH 0.5 and conditioned cartridges with 5mL MeOH then 5mL LGW at pH 0.5.  After 

samples were passed, the cartridges were washed with LGW at pH 0.5 and eluted with 2mL 

50:50 v:v MeOH:LGW.  Researchers compared SAX-LiChrolut EN, LiChrolut EN, Envi-

Carb, Oasis-HLB solid phase with LLE.  LiChrolut EN was found to be the most effective at 

recovering analytes, especially DCAA and TCAA.   For 100mL sample, recovery of DCAA 
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and TCAA was 94 and 95% from LiChrolut EN, 65 and 78% from HLB, and 70 and 80% 

from LLE. 

Loos and Barcelo (2001) also compared the efficiency of SPE cartridges in 

concentrating HAAs.  Samples were acidified to pH 1.8 and cartridges were conditioned with 

5mL MeOH then 3mL LGW at pH 2.5.  After samples were extracted the cartridges were 

washed with 1mL LGW at pH 2.5 and eluted with a 4mL mixture of 0.5mL LGW + 3.5mL 

MeOH:acetone (1:1, v:v).  Fifty mL samples were tested using LiChrolut EN, Isolute ENV+, 

and Oasis HLB cartridges.  Recovery for DCAA and TCAA were 55 and 75%, respectively,  

from LiChrolut EN and 42 and 51% from HLB. 

Yoo et al. (1992) used C18 disks for the concentration of HAAs, and showed 71% 

recovery of DCAA from 200mL samples when two disks were used in series.  From 100mL 

of sample using two C18 disks in series, DCAA recovery was 83% and TCAA recovery was 

95%.  Sample pH was adjusted below 1 and cartridges were washed with 10mL MtBE, 10mL 

MeOH, and two rinses of 10mL LGW.  After passing the sample, the cartridges were 

individually eluted with 10mL of MtBE. 

 

 

1.5 Fluorescence spectroscopy 

Fluorescence spectroscopy is an emerging tool in water quality management, 

particularly because of its potential for real- time analysis.  Water samples exhibit unique 

fluorescence patterns ; therefore, excitation and emission spectral data can be used to provide 

both intensity data and an indication of the water source.  Samples can be analyzed on- line, 

yielding results in minutes. 
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Approximately 40-60% of natural organic matter is fluorescent mainly because of the 

presence of proteins and organic acids (Baker 2001).  When these molecules are excited, 

such as with a high energy light source, they release energy in the form of light, which can be 

measured to provide a fluorescence excitation-emission matrix (EEM). Common zones are 

characterized by general types of fluorescent material: aromatic compounds, described as 

humic and fulvic substances, and aromatic proteins (mainly tryptophan and tyrosine).  An 

explanation of general fluorescence regions and wavelengths is shown in Table 1.2 and in 

Figure 1.9 and 1.10.  Tryptophan shows maximum fluorescence around an excitation 

wavelength of 280nm and an emission wavelength of 360nm.  Tyrosine shows a maximum at 

275nm excitation, and 305nm emission.  Fulvic-like molecules fluoresce with peak 

maximum at 320-340nm excitation and 410-430nm emission, whereas humic- like molecules 

fluoresce at 370-390nm excitation and 460-480nm emission.    

Water types are distinguishable by the intensity of various types of fluorescence. 

Sewage samples show high intensity around the tryptophan area and to a lesser extent, the 

fulvic- like area, expressed as a broad fluorescence band at 350nm and two less intense bands 

at 390 and 430nm (Reynolds 2003).  In comparison, samples collected after aerobic digestion 

have a reduced signal around 350nm.  Comparing water samples collected throughout a 

catchment area, samples with high tryptophan- like intensity correlated with poor chemical 

water quality parameters and urban streams polluted by wastewater (Baker and Inverarity 

2004).   

Baker et al. (2003) collected monthly river samples for a reconnaissance study of 

water quality using fluorescence spectroscopy.  They found that incidents of above- average 

tryptophan intensity correlated with sewerage overflow and the release of untreated sewerage 
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into the stream.  In a separate study, Baker (2001) collected water samples up- and 

downstream of WWTPs.  There was a significant difference in the intensity and variability of 

tryptophan fluorescence between these locations, characterized by tryptophan intensity and 

the tryptophan/ fulvic ratio.  Fluorescence, therefore, has potential as an indicator and 

monitoring tool to differentiate between point and NPS pollution. 

Table 1.2  Description and location of fluorescence regional integration areas (Chen et al. 2003) 
 Organic matter 

type 
excitation wavelength 
(nm) 

emission wavelength 
(nm) 

Region I Aromatic proteins 230-260 300-340 

Region II Aromatic proteins 230-260 340-380 
Region III Fulvic acids 230-260 380-500 

Region IV Soluble microbial 
products 

260-400 300-380 

Region V Humic acids 260-400 380-500 
 

 
Figure 1.9  Location of EEM peaks (circles) based on literature reports and excitation- emission wavelength 
boundaries (dotted lines) for five EEM regions (Chen et al. 2003). 
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Figure 1.10 Example EEM from WWTP2 effluent showing fluorescence regions. 
 
 

1.6 Objectives of Research 

Currently, state and national monitoring programs can identify impaired waterways, 

but cannot specifically determine pollution sources, which limits these programs’ usefulness 

in remediation and improving water quality.  This deficiency is particularly apparent with 

septic system pollution.  Homeowners are responsible for maintenance of their septic 

systems, but often do not understand their functioning and are unable to perform proper 

upkeep.  The high percentage of septic systems in North Carolina and throughout the United 

States and their high failure rate combine to create a great pollution potential.  A rapid 

Region I: 
Aromatic 
Protein 

Region IV: 
Soluble microbial 
by-product-like 

Region V: 
Humic acid-like 

Region III: 
Fulvic acid-like 

Region II: 
Aromatic 
protein II 
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indicator of such pollution would have the ability to monitor changes in water quality, 

prevent long-term septic system impairment, and potentially help identify the source of 

pollution.   

Additionally, little research has been conducted on concentrations of analytes in 

septic systems. Use of an indicator as a tracer of pollution through the system will give an 

indication of the potential ability of septic systems to degrade these compounds. 

The objectives of this study were to identify potential chemical indicators to 

differentiate between point and non-point source pollution in the environment.  The tools will 

facilitate for more efficient remediation and protection of water quality, with all its 

ramifications.  This work is the beginning of a larger study to differentiate between point and 

non-point sources of pollution in the aquatic environment. 



 

CHAPTER 2: MATERIALS AND METHODS 

2.1 Materials 

2.1.1 Chemicals and SPE Resins 

Acetonitrile (ACN, Optima HPLC grade), ethyl acetate (ETOAc, HPLC grade),  

methanol (MeOH, HPLC grade), sulfuric acid (ACS grade), and potassium hydroxide were 

purchased from Fisher Scientific (Pittsburgh, PA).  Acetone (HPLC grade) was procured 

from Burdick and Jackson (Morristown, New Jersey), while methyl tert-butyl ether (MtBE, 

Ultra-Resi Analyzed grade), silicic acid, sodium acetate, and sodium azide were from J.T. 

Baker (Phillipsburg, NJ).  Hexane (95%+, HPLC grade), diazald, anhydrous magnesium 

sulfate, 1,2-dibromopropane neat standard, citric acid monohydrate, perfluorotributylamine 

(PFTBA), and carbitol (diethylene glycol monethyl ether) were obtained from Sigma-Aldrich 

(St. Louis, MO).  N,N-Bis(trimethylsilyl)trifluoroacetamide (BSTFA + 1% TMCS), 

hexachlorobenzene (HCB) neat standard, haloacetic acids 9 (HAA9) Mix 552, and the 

haloester EPA 552.2 ester calibration mix were purchased from Supelco (Bellefonte, PA).  

Sodium hydroxide pellets and pyridine were from Mallinckrodt (Paris, KT).  Caffeine neat 

standard, triclosan neat standard, quinine hemisulfate salt monohydrate purum (98+%), and 

sulfuric acid (95+%) were from Fluka (St. Louis, MO). Triclosan deuterated standard 

(triclosan-d3) was purchased from Toronto Research Chemicals (North York, Canada) while 

deuterated dichloroacetic acid-d2 (DCAA-d2) and deuterated caffeine (caffeine-d3; 1-methyl-

d3) were obtained from CDN Isotopes (Pointe-Claire, Canada).  Laboratory grade water 

(LGW) was prepared in-house from a Pure Water Solutions (Hillsborough, NC) system, 
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which pre-filters chloraminated tap water to 1µm, removes residual disinfectant, reduces total 

organic carbon to less than 0.2 ppm with an activated carbon resin, and removes ions to 18 

MO with mixed bed ion-exchange resins. 

Stock solutions were prepared for caffeine, caffeine-d3, and triclosan at 1g/L by 

weighing the standards into Fisher brand plastic weigh boats (1.5” by 1”) or directly into a 

volumetric flask using Fisher Scientific Balance (accu124D dual range).  The weigh boat was 

rinsed into the volumetric flask with solvent and the flask was then filled to the mark with the 

same high purity solvent.  Stock solutions were stored in amber vials for several months in a 

freezer at -15°C.  HAAs, triclosan-d3 and dichloroacetic acid-d2 stock solutions were 

prepared by dilution from neat standards and were stored in amber vials in the freezer.  

Primary dilutions and working standards were prepared by dilution of stock standards and 

were stored in amber vials in the freezer for up to four months. A working internal standard 

of 12.8mg/L HCB was prepared in 5mL pyridine and stored for up to four weeks in an amber 

vial in the freezer. 

Several types of SPE cartridges were utilized;  200mg/6cc Strata X cartridges 

(Phenomenex, Torrence, CA), Oasis HLB cartridges, both 200mg/6cc and 60mg/3cc sizes 

(Waters, Milford, MA), C-18 cartridges 500mg/6cc (Alltech, Deerfield, IL), SAX Bond Elute 

cartridges 500mg/6cc (Varian, Palo Alto, CA), silica gel cartridges SupelClean Si 

200mg/3mL (Supelco, Bellefonte, PA) and Strata Si 200mg/3mL (Phenomenex, Torrence, 

CA). 

All glassware was detergent washed, followed by 3x LGW rinses, soaked in a 10% 

nitric acid bath for >4 hours, final LGW rinse (3x), then a 3x wash with MeOH for 
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volumetric glassware or drying in an oven at 110°C for non-volumetic glassware.  PFTE 

tubing was washed with MeOH and LGW. 

2.1.2 Instrumentation 

Gas chromatographic analysis was performed on a Varian 3800 GC with Saturn 2000 

ion trap MS, a Hewlett Packard (Palo Alto, CA) HP5890 GC Series II with HP5972 

quadrupole mass selective detector (MSD), or HP5890 GC Series II with an electron capture 

detector (ECD).  The GC columns were either Varian (Palo Alto, CA) Factor-Four, VF-

5ms/DB5-ms, 30m x 0.25mm with 0.25µm film thickness or J & W Scientific (Folsom, CA) 

DB1 30m x 0.30mm with 1.0µm film thickness. 

 

2.1.2.1 Ion Trap MS 

A Varian 8200 autosampler injected 1µL of sample extract through a Varian 1079 

injection port fitted with a deactivated glass SPI liner (Restek, Bellefonte, PA).  The carrier 

gas was UHP Helium set at a constant flow rate of 1.5mL/min.  The injection port 

temperature was held at 60°C for 0.1 minutes and then was ramped at 200°C/minute to 250°C 

for analysis by an ion trap mass spectrometer in electron ionization (EI) mode.   

After a 5 minute solvent delay, the trap was set to run in EI mode with axial 

modulation voltage set at 4.0v, emission current at 10µamps, the scan range from mass-to-

charge ratio (m/z) of 65 to 550, and automatic gain control (AGC) on.   The oven program 

for caffeine and triclosan was adapted from the method of Ollers et al. (2001), which started 

at 90°C, held for 1 minute, then ramped at 15°C/min until 150°C, and held at 150°C for 15 

minutes.  The temperature was then ramped at 5°C/min until 200°C, held at 200°C for 5 

minutes and then ramped at 15°C/min to 290°C where it was held for 6 minutes.  An 
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additional GC method utilized was adapted from a method by Thomas and Foster (2004), 

with initial temperature at 60°C held for 2 minutes and then ramped 5°C/min to 290°C, where 

it was held for 6 minutes.   

The instrument settings remained the same as above when using chemical ionization 

(CI) mode to analyze for HAAs.  Injection port temperature started at 60°C for 0.1 minute, 

was increased to 150°C at a rate of 100°C/min and held at 150°C for the duration of the 

analysis.  Initial oven temperature was 37°C held for 21 minutes, ramped to 136°C at 

20°C/min and held at 136°C for 1 minute before ramping to 250°C at 25°C/min where the 

temperature was held for 4 minutes. Data were analyzed using the Varian MS Workstation 

software v. 6.41.  Ion chromatograms were extracted for targeted ions and used for 

quantification with a minimum chromatographic peak signal to noise of 10 and a minimum 

peak area of 1000 counts.   

 

2.1.2.2 GC- ECD 

 A Hewlett Packard 6890 autosampler injected 1µL of sample extract through an 

injector port fitted with split/splitless injector sleeve, containing deactivated glass wool of 

4mm inner diameter (Supelco, Bellefonte, PA).  The carrier gas was UHP Helium set at a 

flow rate of 1.0-1.5mL/min.  The make-up gas was UHP Nitrogen set at a flow rate of 

50mL/min.  The injector port temperature was held constant at 180°C. 

 The oven program for detection of HAAs used an initial temperature of 37°C which 

was held for 21 minutes before ramping to 136°C at a rate of 5°C/min, this temperature was 

held at 136°C for 3 minutes, before a final ramp to 250°C at a rate of 20°C/min when the 

temperature was held for 3 minutes. 
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2.1.2.3 GC- MSD 

A Hewlett Packard 7673 autosampler injected 1µL of sample extract through an 

injector port fitted with split/splitless injector sleeve containing deactivated glass wool of 

4mm inner diameter (Supelco, Bellefonte, PA).  The carrier gas was UHP Helium set at a 

constant flow rate of 1.0-1.5mL/min.  The injector port was held constant at either 180° (for 

HAAs) or 250°C (for caffeine and triclosan).   

After a 4 (for caffeine and triclosan) or 6.5 (for HAAs) minute solvent delay, single 

ions were targeted for monitoring.  Electron multiplier (EM) voltages ranged from 1940 to 

2025V during this study.  The quadrupole temperature was set at 165°C.  

Perfluorotributylamine (PFTBA) was used for internal calibration during daily tuning 

methods.  The data were processed using an older version of Hewlett Packard (HP) 

Chemstation (B.02.02) with data analysis G1034C Version C.01.05. 

Oven temperature for caffeine and triclosan was based on the method of Thomas and 

Foster (2004).  Inlet temperature was 250°C and detector at 300°C.  Initial oven temperature 

was 60°C held for 2 minutes, ramped to 230°C at a rate of 5°C/min, ramped to 290°C at a rate 

of 15°C/min and held for 6 minutes.  Hexachlorobenzene (HCB) was targeted by selecting 

the fragment ion at m/z 184, immediately after the 4 minute solvent delay.  Concurrently, 

caffeine was targeted through its fragment ion at m/z 194 and deuterated caffeine at m/z 197, 

beginning at 26 minutes into the run.  Triclosan at m/z 347, and deuterated triclosan at m/z 

352 were simultaneously targeted from 32 minutes into the run. 

The HAA program has a 6.5 minute solvent delay.  Inj ector temperature was held 

constant at 180°C.  Initial oven temperature was 37°C held for 3 minutes, raised to 112°C at a 
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rate of 5°C/min, and held at 112°C for 2 minutes.  The temperature was then ramped to 

250°C at a rate of 20°C/min and held for 3 minutes.  During the same time segments, 

dichloroacetic acid (DCAA), with fragment ions at m/z 83 and 85, and DCAA-d2, with 

fragment ions at m/z 84 and 86, were targeted from 6 minutes.  TCAA, with fragment ions at 

m/z 117 and 119, was targeted from 8.5 minutes and internal standard, 1,2-dibromopropane, 

with fragment ions 121 and 123, was targeted from 7.6 minutes. 

 

2.1.2.4 Fluorescence 

A Hitachi F-4500 Fluorescence Spectrophotometer (Parsippany, NJ) with a xenon 

lamp was used to generate excitation-emission matrices (EEMs) for filtered aqueous samples.  

A 5cm slit was opened as the excitation scanned from 200-900nm and emission scanned 

from 250-900nm. Daily standards were prepared at 100, 250, and 500µg/L from a stock 

solution of 7426ppb quinine hemisulfate (in 0.05M H2SO4) in 25mL volumetric flasks of 

LGW containing 69µL concentrated H2SO4.  Hitachi FL solutions software and SigmaPlot 

(Systat, Point Richmond, CA) were used for data analysis and presentation. 

 

2.1.3 Additional Software 

U.S. EPA EPI Suite software was utilized to estimate Koc values, overall 

biodegradation potential and estimated removal through WWTPs 

(http://www.epa.gov/opptintr/exposure/docs/episuite.htm). The EPI Suite SMILES notations 

were generated from the chemical structure created in ChemSketch 8.0 FreeWare 

(http://www.acdlabs.com/download/chemsk.html).  Additional properties of the compounds 
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necessary from calculations, such as water solubility and melting point, were imported from 

www.chemfinder.com (CambridgeSoft Corporation, Cambridge, MA).   

ArcGIS 9.1 (ESRI, Redlands, CA) was utilized to create maps of sampling areas.  A 

Garmin Geographic Positioning System (GPS) unit (Olathe, KS) was used to collect latitude 

and longitude locations during sampling trips.  Accuracy was within 7-10 feet.  

Discrepancies are visible between data points and geographical data layers as stream 

sampling locations and WWTPs do not exactly align with streams. The Minnesota 

Department of Natural Resources (DNR) extension was used to import GPS data points into 

ArcGIS.  Geographical data layers, such as North Carolina streams, roads, and county 

information, were obtained from UNC GIS Libraries.  ArcGIS was used to calculate 

distances between sampling locations.  ArcGIS, with appropriate data, could be used to 

calculate additional information about runoff potential and overland flow, using contour data 

and stream distances. 

 

2.2 Site Descriptions  

All sampling sites were within the Piedmont region of North Carolina. 

 

2.2.1 On-Site Wastewater Systems 

2.2.1.1 Advanced treatment systems 

Two advanced treatment septic systems were chosen for sampling due to ease of 

sampling location and as a surrogate for individual household systems.  Both systems, a high 

school and  an office building, were designed by Dr. Halford House and Integrated Water 

Systems (IWS, Pittsboro, NC).  The high school advanced septic treatment system (HS) was 
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upgraded from the original septic system in 1997 by IWS.  Figure 2.1 shows the original IWS 

engineering designs for the system upgrade.  However, neither the recirculation of effluent 

from the first pass vegetated sand filter to the septic tank nor primary dosing tank was built.  

Estimated population of the school was 405 students and staff.  Facilities included a 

gymnasium, cafeteria, and field house with washing machines that also enter the septic tank.  

The treatment system was comprised of the following components:  grease trap, septic tank, 

dosing tank, equalization/pump tank, dual recirculating sand filters, programmable controller 

system, and ultraviolet disinfection system discharging into a creek. The system was 

designed and permitted for processing 10,000gpd during the school week, but actual capacity 

averages about 50% of this capacity, at about 35,000gal/week.   

Figure 2.1  Engineering diagram of the high school advanced treatment system. 

 

Two vegetated sand filters, approximately 42 by 42 by 46 feet, were dosed on an 

hourly cycle with effluent.  The system was designed for an average dosing volume of 474 

gallons/hour cycle, with the pump running for 5.7 minutes so the filter floods 3.2 inches.  

There was a 50% target recirculation of effluent to the second vegetated sand filter.  The 
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second sand filter was dosed 400 gallons on a 45 minute cycle to target at 50% recirculation 

ratio.  Schematic diagrams of the high school system are shown in Figure 2.2, where 

sampling locations are shown with an asterisk.  

 
Figure 2.2 Overview of high school on-site wastewater treatment system. * indicates sampling locations.  
 

The second advanced treatment system is at the IWS office at the Old Triangle 

School in Pittsboro, NC.  A schematic of the IWS system is shown in Figure 2.3, where 

sampling locations are highlighted with an asterisk.  Waste from the building entered a septic 

tank, for settling and anaerobic degradation.  Effluent passed through an aerobic wetland, an 

anaerobic wetland, and another aerobic vegetated filter in the greenhouse.  Sampling 

locations were after the aerobic wetland (AW*), after the anaerobic wetland (ANW*), after 

the greenhouse treatment (GH*), and in the retention tank after chlorination (RT*).  The 

effluent was chlorinated and split approximately in half between landscape irrigation and 

reuse in office toilets.  The system was designed for a maximum of 60 people and 900 gpd, 

however, average daily usage ranged between 500-700 gallons. 
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Figure 2.3 Overview of design of IWS Triangle School on-site wastewater treatment system. Sampling 
locations are indicated by *. 

 

2.2.1.2 Individual Household Systems 

Several individual households, mobile home parks, and a hotel were sampled with the 

help of the Orange County Health Department and North Carolina Department of Natural 

Resources (NCDENR) during inspections.  Every five years, Orange County Health 

Department conducts inspections of household systems and NCDENR inspects systems 

installed with additional treatment, such as sand filter pre-treatment. If a system requires any 

advanced pre- or post treatment, such as sand filtration or land application of sewerage, 

NCDENR, and not the county health department, is responsible for permiting installation and 

inspecting system maintenance. Failed on-site wastewater systems were also identified 

through the Orange County Health Department.  During routine inspections or investigations 

of failed septic systems, grab samples were collected from the septic tank, pump tank, 

surfacing sewage, and nearby surface waters.   
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After establishing an initial telephone conversation, Tom Konsler, from the Orange 

County Health Department, explained septic system installation, maintenance, local and state 

regulations and offered permission to attend septic system inspections, installations, and 

investigations into failed septic systems.  After this initial contact, relationships were 

established with soil scientists.  In Orange County, soil scientists are responsible for 

approving installations and repairs.  They would call if a failed system was reported and 

allow me to sample the septic tank during repairs.  After witnessing several installation and 

repair inspections, connections were established with local septic system operators who 

would provide information on additional failed systems.   

 

2.2.2 Municipal Wastewater Treatment Plants (WWTPs) 

WWTP 1 served a population of approximately 70,000, with a treatment capacity of 

12 MGD.  Until February 2006, effluent was disinfected with chlorine in the form of 15% 

sodium hypochlorite solution at an average dose rate of 2.5mg/L.  Effluent was dechlorinated 

with 38% sodium bisulfite solution with an average dose of 3.5mg/L.   The average contact 

time for chlorine contact was calculated based on a 24 hour flow rate of 8 MGD, for 

approximately 1 hour/gallon.   The WWTP had two chlorine contact chambers each with a 

0.183MG capacity.  The contact time increased during lower flows and decreased during 

higher flows.  In February 2006, the plant switched from chlorine to UV disinfection, using 

low pressure, high output lamps which maximized the “UV-C” wavelengths around 254nm.  

Average exposure of wastewater to the UV rays was 5-8 seconds.  

Nitrification occurred in the aeration basins and in the clear water at the top end of the 

chlorine contact chambers.  The NH4
+-N levels in the effluent averaged below 0.5mg/L.  
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Figure 2.4 shows the locations of sample collection, which were 0.27 miles upstream of the 

point of discharge from the WWTP into the receiving creek (WWTP1 US), effluent collected 

straight from the discharge pipe (WWTP1 EFF), from the creek as the effluent was 

discharged (WWTP1 DIS), and 0.51 miles downstream of the point of discharge from the 

WWTP (WWTP1 DS). The WWTP1 DIS sampling location became inaccessible over the 

course of this study and sampling was discontinued from this location only.  Upstream and 

downstream flow data were obtained from the U. S. Geological Survey (USGS) stream 

gages, available on-line at http://nc.water.usgs.gov/triangle/stations/.  Monthly discharges 

were averaged from 2003-2004, for an average upstream discharge as 7.6ft3/s, with a range 

of 0.43-32.2ft3/s.  Average downstream monthly discharge from 2003-2004 was 50ft3/s, with 

a range of 13.3-194ft3/s.  Effluent discharge was estimated by subtracting upstream flow 

from downstream flow resulting in an average for 2003-2004 of 42.4ft3/s with a range of 

11.3-156ft3/s. 

 
Figure 2.4  Map of sampling locations around WWTP1. 
 

WWTP1 
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WWTP 2 had a treatment capacity of 12 MGD and an average treatment of 7-8 MGD 

of domestic and industrial sewage.  In 1996, the population served by this WWTP was 

26,000.  WWTP discharges contributed 86% of stream flow during low flow conditions.  

Gaseous chlorine was injected directly using a jet chlorination system to disinfect the 

wastewater effluent, which was then dechlorinated with sulfur dioxide.  Most of the time, the 

plant nitrified the waste, so NH4
+-N was usually below analytical detection limit.  Some 

denitrification occur red in the anoxic zone in the aeration basins, resulting in average effluent 

concentrations of 6-9mg/L total N, with 3-5mg/L NO3-N and NO2-N.  Sampling locations, 

shown in Figure 2.5, were 1.5 miles upstream of the point of discharge from the plant into the 

receiving creek (WWTP2 US), an effluent sampling point within the plant immediately 

before stream discharge (WWTP2 EFF), at the point of discharge into the receiving creek 

(WWTP2 DIS), and 0.39 miles downstream of point of discharge (WWTP2 DS). 

 
Figure 2.5 Map of sampling locations around WWTP2. 
 



 55 

 WWTP 3 served a population of almost 9,000, with a treatment capacity of 2.5 MGD 

and average treatment of 1.1 MGD.  WWTP discharges contributed over 90% of stream flow 

during low-flow conditions.  Wastewater effluent was chlorinated then dechlorinated with 

sulfur dioxide.  The plant was not designed to denitrify, but typical effluent contained about 

4.0mg/L total N.  Samples were collected 0.2 miles upstream of the point of WWTP 

discharge into the receiving creek (WWTP3 US), within plant effluent from a sampling 

location following dechlorination immediately before discharge (WWTP3 EFF), 1.51 miles 

downstream of point of discharge (WWTP3 DS1), and from 3.6 miles downstream of point 

of discharge (WWTP3 DS2) (see Figure 2.6). 

 
Figure 2.6  Map of sampling locations around WWTP 3. 
 
 

 

 

 

WWTP3 
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2.3 Methods  

2.3.1 Sample Collection Methods 

 Sample collection and storage bottles were detergent- and acid-washed amber glass 

bottles, except for high-density polypropylene plastic nalgene detergent-washed bottles used 

in the river sampler.  River samples were collected either by submerging the sample bottle 

directly into the stream or by using a 1L bridge sampler (see Figure 2.7).  The bridge sampler 

was lowered from a bridge above the river to collect up to 1L of sample, which was then 

transferred to an amber glass bottle at the sampling site.  The bridge sampler was rinsed with 

sample before sample collection and with LGW and MeOH between samples.  Septic tank 

grab samples were collected using a plastic dipping cup on a pole, the contents of which were 

then transferred into an amber glass bottle.  The dipping cup was rinsed with sample before 

collection and then rinsed with LGW and 70% ethanol between samples.  WWTP effluent 

samples were collected either directly into the amber bottle from the effluent flow or by 

using a plastic dipping cup for transfer.  All field samples were stored in a cooler filled with 

ice or ice packs during sampling trips.  Upon returning to the UNC laboratory, samples were 

stored in a walk- in cooler at 4°C until processing time.  A HACH (Loveland, CO) chlorine 

test kit pocket colorimeter was used to measure free and total chlorine in samples.   

 
Figure 2.7 Bridge sampler with high density polypropylene nalgene bottle. 
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Samples for SPE analysis of caffeine and triclosan were measured in 250mL aliquots 

using a volumetric flask and then transferred into 250mL amber bottles before spiking with 

1.8µg/L deuterated standards when these became available.   Suspended solids were removed 

from septic samples by successive filtration through Whatman (Florham Park, NJ) glass fiber 

filters GF/D (2.7µm) and 934-AH (1.5µm) filters. Wastewater effluent and river samples 

were only filtered with 1.5µm filters.  Caffeine and triclosan samples were processed within 

a few hours of filtration.   

Samples for HAA analysis were transferred without head space to 40mL clear glass 

vials containing 80µg/L sodium azide and approximately 20mg of ammonium sulfate.  These 

samples were held at 4°C for up to two weeks prior to analysis.  When HAAs were extracted 

from samples using SPE or larger volume LLE, 100mL aliquots were measured with a 

volumetric flask into 125mL amber bottles and the samples were spiked with 4µg/L DCAA-

d2, once it was available for the project.  Samples collected from septic tanks were 

successively filtered with 2.7 and 1.5µm glass fiber filters, while surface and WWTP effluent 

was filtered only with 1.5µm filters.  After filtration, samples were returned to 125mL amber 

bottles, preservatives were added (125µL of 80mg/L sodium azide and approximately 50g 

ammonium sulfate) and samples were stored at 4°C for no more than two weeks before 

analysis. 

 

2.3.2 Use of Deuterated Standards 

Isotopically labeled compounds were evaluated for potential use in quantifying 

recovery of target analytes from wastewaters.  These were caffeine-d3, triclosan-d3, and 

DCAA-d2, which are distinguishable from their non-deuterated counterparts using targeted 
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ion analysis in mass spectrometry.  Since the only differences between deuterated and non-

deuterated compounds are two or three mass units, the deuterated compounds should behave 

identically to the non-deuterated analytes in terms of partitioning and solubility.  Deuterated 

compounds added to the samples at known concentrations can be used as surrogates to 

account for losses in non-deuterated analyte through the extraction of matrix samples.  

Additionally, the deuterated surrogate allows for comparison of extraction between matrices.  

The deuterated compounds were spiked into all measured sample aliquots before filtration.  

For each non-deuterated analyte, environmental concentrations were first determined 

approximately and then deuterated standards were spiked into samples at an equivalent 

concentration.   DCAA-d2 was also evaluated as a surrogate for TCAA since labeled TCAA 

was not available. 

Estimated concentrations of the analytes in wastewaters were determined using the 

approach described in EPA method 1668 for deuterated standards (EPA 1999). To determine 

concentrations of non-deuterated standards, a calibration curve was prepared in solvent 

containing deuterated standards at the concentration selected by the method just described.  

Non-deuterated standards were added at increasing concentrations that include the expected 

concentration range of analytes extracted from the environmental sample.  For each point in 

the calibration curve, a relative response ratio (RR) was calculated using Equation 2.1, which 

compares the areas of the deuterated and non-deuterated compounds: 

RR=  (area of non-deuterated × concentration of deuterated)        (2.1)                                
(area of deuterated × concentration of non-deuterated) 

 
In this equation, “area of non-deuterated” is the area of the non-deuterated analyte for a 

specific calibration point.  The concentration of the deuterated standard is constant for each 

point, since the deuterated compound was always spiked at the same level.  The “area of the 
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deuterated” is the area (detector response) of the deuterated compound in each calibration 

sample.  The “concentration of the non-deuterated” is the calibration spike concentration.  

The relative response ratios for all calibration points are averaged, and the coefficient of 

variation (CV) should be less than 20% to ensure the ratio remains similar throughout the 

entire concentration range.  The average RR is then utilized to calculate the non-deuterated 

analyte concentration in environmental samples according to Equation 2.2: 

 Concentration= (area of non-deuterated × concentration of deuterated) (2.2) 
     (area of deuterated × average RR) 
 
In this equation, the “area of the deuterated” and “non-deuterated” are from the analysis of 

environmental samples, the “concentrated deuterated” is the concentration of the spike into 

the samples and calibration curve and the average RR is calculated from the solvent 

calibration curve.  The ratio of the deuterated and non-deuterated should remain constant 

assuming that the analytes behave similarly through all matrices and processing.   The RR is 

determined separately for each batch of samples and each calibration curve.  This is the so-

called deuterated standard method. 

 For one batch of samples, the method of standard addition and deuterated standard 

methods for concentration estimation were compared for caffeine.  Effluent from the sand 

filter at the high school advanced treatment system was selected as the matrix.  Duplicate sets 

of 250mL sample aliquots were spiked with 0.1, 0.2, and 0.4µg/L caffeine (standard 

addition).  Triplicate unspiked sample aliquots (A,B,C) were prepared simultaneously.  All 

aliquots were spiked with deuterated standards, filtered with 1.5µm filter, extracted using the 

caffeine and triclosan SPE method described in section 2.3.4, derivatized and analyzed by 

GC-MSD.  The deuterated standard method for concentration estimation is described above.  
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The trendline equation from the standard addition curve, shown in Figure 2.8, was used to 

calculate concentrations using analyte areas from the unspiked extracts.    

 Standard Addition curve

y = 107555x - 1584.3
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Figure 2.8 Standard addition trendline and equation for calculation of caffeine concentration in septic tank 
samples. 
 

Overall, the concentration calculated from deuterated standards was 44% higher (as 

measured by relative percent difference (RPD)) than as calculated from standard addition, as 

shown in Table 2.3.  In this table, areas are the absolute areas under the analyte peak on the 

chromatogram, which was integrated using the automatic integration with Varian MS 

WorkStation software.  However, if sample A is considered an outlier, the difference drops to 

32%, which is an acceptable level.  Discrepancy between the estimated concentrations could 

be due to difficulties differentiating deuterated and non-deuterated caffeine by resolution of 

ions during analysis, especially in samples with high caffeine concentration.  There was 

overlap of ions between these two compounds, which lead to high variability in the average 

RR calculation and therefore the concentration calculations. Despite this uncertainty, all 

environmental samples analyzed for caffeine and triclosan used the deuterated standard 
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method for determining analyte concentration and therefore, the comparisons between 

surface and wastewaters remains valid. 

Table 2.3  Comparison of deuterated standard and standard addition methods for calculation of caffeine 
concentration in septic tank samples. 
  Concentration (ng/L)  

Sample Area 
Deuterated 
Standard 

Standard 
Addition RPD 

A 4133 107 53 68 
B 2665 53 40 30 
C 2225 50 35 33 
     
Avg 3008 70 43 44 
Avg without A 2445 52 37 32 

   

  
2.3.3 Caffeine and Triclosan SPE Extraction Methods 

The Thomas and Foster (2004) method was selected as the basis of the method for 

this current project due to demonstrated high recoveries of triclosan, use of smaller sample 

volumes, and practicality of analyzing for both caffeine and triclosan simultaneously.  All 

materials used by Thomas and Foster were available at UNC laboratories and the same model 

GC-MSD (HP 5971) was utilized.  Since parameters were similar, it was possible to contact 

the authors for help with the method, which was done when the caffeine peaks became broad 

and difficult to integrate. 

The SPE methods were adjusted from the method of Thomas and Foster (2004) to 

increase caffeine recovery. The method development experiments and results are described in 

Results section 3.1.  The final SPE Method was as follows: Strata X SPE cartridges were set 

up using a Supelco 24-port vacuum manifold.  Cartridges were conditioned at a rate of 

15mL/min using, in sequence, 3mL hexane, 3mL MtBE, 3mL MeOH and 5mL 10mM pH 7 

phosphate buffer (diluted from 0.5M buffer prepared by measuring 16g of KH2PO4 into 

500mL LGW).  Filtered aqueous samples were loaded onto the cartridges using PTFE tubing 
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at a rate of 15mL/min and subsequently, the cartridges were rinsed with 5mL phosphate 

buffer to waste and allowed to dry under vacuum for an hour and then under UHP nitrogen at 

20psi for 20 minutes.  Two syringe volumes of air were forced over the cartridges to ensure 

removal of any last drops of sample.  Cartridges were washed with 2mL hexane to waste and 

then eluted with 2mL 3:7 MtBE:Acetonitrile over silica gel cartridges (Bond Elute, Varian, 

Palo Alto, CA), which was captured in a test tube. Silica gel cartridges were conditioned with 

4mL 3:7 MtBE:ACN, and after extraction were rinsed with 2mL 3:7 MtBE:ACN, which was 

captured along with the extracts into 10mL conical test tubes.  The collected extracts were 

blown to dryness using either a Zymark (Hopkinton, MA) Turbocap-LV or Pierce (Rockford, 

IL) Reacti-Vap Model 18780 under a gentle flow of UHP nitrogen at 40° C.   

Extracts were reconstituted in 200µL of ACN, 50µL of BSTFA, and 50µL of pyridine 

containing 12mg/L HCB.   BSTFA was used to replace a hydroxyl group with a 

trimethylsilyl group on the triclosan molecule, the result of which is that these molecules 

interact less with the chromatographic column during subsequent analysis and increase 

sensitivity of detection.  Extracts were vortexed three times, derivatized in a heated water 

bath at 65° C for 35 minutes, transferred to inserts inside 2mL autosampler vials, and 

analyzed with either GC-MS or GC-MSD.  For this project, gas chromatography was chosen 

to analyze caffeine and triclosan since analysis is more sensitive than LC-MS and therefore 

requires smaller environmental sample volumes.   

 Average percent recovery for extraction of analytes from spiked LGW through the 

entire method compared to a solvent standard was 90% for caffeine and 79% for triclosan, as 

shown in section 3.2.10 of the Results chapter.  The practical quantitation limit (PQL) was 

determined by the lowest calibration point area with a signal to noise ratio of three and 
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considering the concentration factor through the entire method for an estimated value of 

60ng/L for both compounds. 

 Analyte concentration in environmental samples was calculated in two ways.  Before 

acquisition of deuterated standards, sample concentration was extrapolated from the trendline 

equation of the standard addition curve.  After deuterated standard acquisition, 

concentrations were calculated using the approach described in section 2.3.4. 

 The main reasons how this final method differed from the original Thomas and Foster 

method are the utilization of Strata X cartridges instead of HLB.  Three:seven MtBE:ACN 

instead of EtOAc as an elution solvent, and silica gel cartridges were used for sample clean-

up. 

 

2.3.3.1 Detection of Triclosan with GC-ion trap-MS 
 

A 0.5mg/L working solution of triclosan was prepared in ACN, derivatized as 

described in section 2.3.4, and analyzed on the GC-MS according to the method  of Ollers et 

al. (2001), described in section 2.1.2.1.  Figure 2.9A shows the total ion chromatogram and 

Figure 2.9B indicates the extracted ions at the retention time of 32.5 minutes for triclosan at 

m/z 347. Numbers underneath ion masses indicate abundance.  Spectra have been 

background corrected.  Figure 2.10 shows the structure of derivatized triclosan and MS 

breakdown products visible in Figure 2.9B.  The mass of the derivatized triclosan is 362.  

The presence of three chlorines is visible by the chlorine isotope pattern surrounding ions 

m/z 362 and 347, which represents the loss of one methyl group. The relative ratio for 

345:347:349 is 3:3:1. 
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Figure 2.9  0.5mg/L derivatized triclosan in ACN analyzed by GC-MS, EI mode, using the GC temperature 
method of Ollers et al. (2001):  (A) total ion chromatogram, (B) triclosan extracted with ion m/z 347. 
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Figure 2.10  Structure of derivatized triclosan.  Possible MS breakdown products are highlighted.  The arrow 
indicates direction of break and the mass of the product. 
 
 

Triclosan-d3 has an additional three mass units compared to triclosan, which is 

evident by the comparison of the spectra of the same concentration of derivatized standards 

of triclosan and triclosan-d3 in ACN, shown in Figure 2.11.  Table 2.4 shows the abundance 

of ions for both analytes.  Ion 352 was selected as the targeted ion for triclosan-d3 during 

SIM.  Although ion 350 has a higher abundance in triclosan-d3, 352 is not present in 

triclosan.   The relative ratio for triclosan ions m/z 345:347 is 1:1, as is the relative ratio of 

348:350. 
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Figure 2.11 Spectra for derivatized working standards of (A) deuterated and (B) non-deuterated triclosan in 
ACN, analyzed by GC-MS in EI mode.   The spectra represent the relative abundance of each ion m/z. 
 
Table 2.4 Ions and abundance in spectra of triclosan and deuterated triclosan. 

 Response in analyte (Intensity) 
Ion Triclosan Triclosan- d3 
345 344 10 
346 59 17 
347 331 102 
348 79 977 
349 114 291 
350 37 1064 
351 31 236 
352 - 396 
355 38 69 
360 102 24 
362 101 13 
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2.3.3.2 Detection of Caffeine with GC-ion trap--MS 

A 0.5mg/L working standard of caffeine was prepared in ACN and analyzed on the 

GC-MS according to the GC method by Ollers et al. (2001), described in section 2.1.2.1.  

Figure 2.9 shows the total ion chromatogram and Figure 2.12B indicates the extracted ions at 

a retention time of 23.8 minutes for caffeine at m/z 194. Numbers underneath ion masses 

indicate abundance.  Spectra have been background corrected.  Figure 2.13 shows the 

structure of caffeine and possible MS breakdown products to obtain ions m/z 56 and 109, 

which are visible in Figure 2.9. 
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Figure 2.12  (A) Total ion chromatogram and (B) spectra of 0.5mg/L caffeine in ACN, extracted for ion m/z 
194 using MS WorkStation software.  Major ions are: 194, 109, and 56. 
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Figure 2.13 Structure of caffeine.  Possible MS breakdown products are highlighted.  Arrows indicate the 
direction of breaks and the masses of the products. 
 

 

2.3.4 HAA Methods 

 For sample processing, three different HAA methods were utilized.  The first method 

was based on EPA method 552 for detection of HAAs in finished drinking water (Brophy et 

al. 2000). This method was used to process all types of matrix samples, including surface and 

wastewaters, without any method adjustments.  Twenty mL aliquots of sample were 

measured into 40mL glass vials and acidified with 1.5mL concentrated sulfuric acid. Four 

mL of MtBE containing 50µg/L internal standard, 1-2, dibromopropane, was added to extract 

the HAAs out of the water, with the addition of 6g baked sodium sulfate.  The vials were 

vortexed for one minute and allowed to sit for five minutes.  Two mL of the MtBE extract 

transferred into a 2mL volumetric flask were derivatized with 220µL of a 

diazomethane/MtBE solution in the refrigerator at 4°C for 15 minutes.  For the 

diazomethane/MtBE solution, two reagents were prepared. Reagent 1 combined 3.3g diazald, 

5mL carbitol, and 5mL MtBE mixed with a magnetic stir bar on a stir plate.  Reagent 2 

combined 6mL LGW, 10mL MeOH, and 4mL KOH and then gently swirled to mix.  Six mL 

of each reagent were combined into a 40mL glass vial, which was connected with a 

56 

109 
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diazomethane generator to a 40mL glass collection vial containing 10mL MtBE.  The 

diazomethane generator used PFTE tubing, which was submerged into the MtBE of the 

collection vial.  The cap on the collection vial had a glass capillary tube to release pressure.  

Derivatization converts the HAAs into esters that can be analyzed using gas chromatography. 

Excess diazomethane remaining after derivatization reaction was quenched with silicic acid 

and the extracts were transferred to 2mL autosampler vials for analysis using GC-ECD.  

DCAA and TCAA concentrations in environmental samples were extrapolated from the 

trendline of the calibration curve prepared simultaneously with sample extraction of spiked 

LGW.  No adjustments were made to account for method differences across matrices. 

 A second method for matrix samples, such as surface and wastewaters, used two 

60mg/3cc Oasis HLB SPE cartridges in-series to concentrate DCAA and TCAA based on the 

method of Loos and Barcelo (2001).  Several methods were tested and compared (described 

in Results section 3.3) before selection of the final SPE concentration method, which is as 

follows: the SPE cartridges were conditioned using 5mL MeOH and 3mL LGW adjusted to 

pH 2.5 with concentrated H2SO4.  The two cartridges were then connected in series and 

100mL filtered and then acidified (7.5mL concentrated H2SO4) aliquots were loaded at a rate 

of 5mL/min.  Cartridges were subsequently rinsed with 1mL LGW at pH 2.5, dried under 

vacuum for one hour, dried under UHP nitrogen for 20 minutes, and finally air was forced 

through with a plastic syringe to remove any last drops of water.  Each cartridge was 

separately eluted into the same test tube with 2mL MtBE each.  Extracts were blown down to 

dryness at 30°C under a gentle stream of UHP nitrogen, reconstituted in 250µL MtBE, spiked 

with 50µg/L 1,2-dibromopropane internal standard, and derivatized with 25µL diazomethane 

for 15 minutes in 4°C.  After the derivatization reaction, excess diazomethane was quenched 
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with silicic acid and the extract was transferred to inserts inside 2mL auto-sampler vials.  

These extracts were analyzed using single ion monitoring (SIM) on the GC-MSD or in CI 

mode on the GC-ion trap-MS.  Average recoveries were calculated from extraction of spiked 

LGW through the entire method compared to a solvent standard, at 100% theoretical 

recovery.  Recoveries were DCAA 98%, TCAA 91%, and DCAA-d2 84%, as shown in 

section 3.1.3.8 of the results chapter.  DCAA and TCAA concentrations in environmental 

samples were calculated from the deuterated standard, DCAA-d2, as described in section 

2.3.2. 

 The third method was a larger volume LLE, based on the first method.  One hundred 

mL filtered sample aliquots, such as surface and wastewater samples, were acidified with 

7.5mL concentrated H2SO4 and placed into a 250mL separatory funnel.  Twenty mL MtBE 

was added to extract the HAAs with the addition of 6mg baked sodium sulfate.  After several 

complete inversions of the flask, phases were allowed, for approximately five minutes, to 

separate.  The bottom aqueous layer was drained off and the MtBE layer was collected into 

40mL glass vials.  These were blown down to dryness using the Turbovap in a 30°C water 

bath under a gentle stream of nitrogen.  Extracts were reconstituted in 2mL MtBE containing 

50µg/L 1,2-dibromopropane internal standard (IS) and transferred to 2mL volumetric flasks.  

The extract volume was adjusted to exactly 2mL with MtBE + IS, derivatized as described in 

the first method and analyzed using SIM on the GC-MSD or CI mode on the GC-ion trap-

MS.  Average recoveries were calculated from extraction of spiked LGW, compared to a 

solvent standard at 100% theoretical recovery.  Recoveries were DCAA: 83- 75% and 85- 

58%, TCAA: 117- 58% and 119- 42%, and DCAA-d2: 84- 62% and 86- 7.5%, as shown in 

section 3.1.2 of the results chapter. 
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2.3.4.1 Analysis of DCAA, TCAA and DCAA-d2 by GC-ion trap-MS  

One mg/L HAA6 ester mix in MtBE was analyzed in CI mode on the ion trap GC-MS 

using the instrument settings described in section 2.1.2.1.  During derivatization, the acids are 

methylated and the addition of the CH3 group results in a mass increase of 14.  Therefore, the 

masses of the ester forms of DCAA, TCAA and DCAA-d2 are 143, 177, and 144, 

respectively.  CI, with softer ionization, reduces background noise and results in clearer 

peaks, although reduced sensitivity may result.  Figures 2.14A and 2.15A show the total ion 

chromatograph for this standard mix and Figures 2.14B and 2.15B  indicate extracted ions for 

DCAA (m/z:143, 145, 147) and TCAA (m/z: 177, 179, 181) respectively. Numbers 

underneath ion masses indicate abundance.  Spectra have been background corrected.  

According to the identification of the targeted ions, retention time is 9.23 minutes for DCAA 

and 16.85 minutes for TCAA.  

Chlorine has two natural isotopes at m/z 35 and 37, which appear in the DCAA, 

TCAA, and DCAA-d2 mass spectra in the classic pattern for chlorine.  DCAA chlorine peak 

relative ratios, as seen in Figure 2.14, at m/z 143:145:147 were 10:7:1.  TCAA chlorine peak 

relative ratios, as seen in Figure 2.15, at m/z 177:179:181 were 4:4:1.  

 



 72 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.14 (A) Total ion chromatogram and (B) spectra of 1mg/L esters in CI mode, GC-MS, extracted for 
ions m/z 143.  Spectra shows DCAA at retention time 9.23 minutes, identified by ions at m/z: 143, 145 and 147. 
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Figure 2.15 (A) Total ion chromatogram and (B) spectra of 1mg/L esters in CI mode, GC-MS, extracted for ion 
m/z 177.  Spectra shows TCAA at retention time 16.85, identified by ions m/z: 177, 179 and 181. 
 

DCAA-d2 was prepared at 1mg/L in MtBE, derivatized according to method 1, 

section 2.3.5, and analyzed by GC-ion trap-MS, CI mode.  Figure 2.16A shows the total ion 

chromatogram and Figure 2.16B indicates the extracted ions for DCAA-d2 (m/z= 

144,146,148) from which the retention time of 9.09 minutes is confirmed. Although the 

deuterated DCAA had two deuterated ions, one was lost in derivatization and, therefore, the 

methylated deuterated DCAA was only one mass unit higher than DCAA.  The relative ratio 

of chlorine peaks as seen in Figure 2.16B for m/z 144:146:148 was 10:6:1.  After retention 

TCAA 

B 

A 
R

el
at

iv
e 

A
bu

nd
an

ce
 

A
re

a 
C

ou
nt

s 

Minutes 

Ions m/z 



 74 

times and ions were determined, chromatographs were extracted using these targeted ions for 

each analyte.  
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Figure 2.16 Methylated DCAA-d2 analyzed by GC-MS, CI mode.  Spectra shows DCAA-d2 retention time at 
9.09 minutes, identified by ions at m/z: 144, 146 and 148. 
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determine retention time and targeted ions for SIM.  Instrument conditions are described in 
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of the ester, and therefore, should be present for all esters. Figure 2.18 shows the spectra for 

DCAA, with retention time around 7.2 minutes. Figure 2.19 shows the DCAA ester structure 
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with indications of where the molecule fragments in the mass spectrometer. The most 

common fragments occur due to the removal of the methylated half of the molecule or the 

chlorine half of the molecule, which distinguishes DCAA from the other HAAs.  This unique 

half was targeted with ions m/z 83 and 85, with their characteristic ratio of 3:2, which was 

representative of the two chlorine atoms.  

Figure 2.20 shows the spectra for TCAA, with retention time around 9.5 minutes.  

Figure 2.21 shows the TCAA ester structure with indications of where possible MS 

fragments occur.  The expected fragments result from removal of the methylated half of the 

molecule, which was common to all esters.  The other half, which includes the three chlorine 

atoms that distinguish TCAA from the other HAAs, was targeted with ions m/z 117 and 119 

at a relative ratio of 1:1 characteristic of a molecule with three chlorine atoms. For compound 

confirmation, two ions were targeted for each compound.   

DCAA and DCAA-d2 retention times were 7.2 minutes, TCAA was 9.6 minutes, and 

internal standard, 1,2- dibromopropane, was 7.7 minutes.  To analyze the data with HP 

ChemStation software, targeted ions were extracted and each extracted chromatogram was 

integrated separately, setting integration parameters at a threshold height of 3 and width of 

0.08.   
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Figure 2.17  Highlight of full scan chromatogram of HAA6 ester mix by GC-MSD, extracted with ion m/z 59 
to identify esters.  Axis represent time and abundance. 
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Figure 2.18  Spectra of methyl DCAA on GC-MSD, EI mode. 
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Figure 2.19 Structure of DCAA ester, showing possible MS fragments with arrow directions and accompanying 
masses. 
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Figure 2.20 Spectra of methyl TCAA on GC-MSD, EI mode, retention time 9.5. 
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Figure 2.21 Structure of TCAA ester, showing possible MS fragments with arrow directions and accompanying 
masses.  

 

2.3.5 Fluorescence Methods 

 At least 4mL of sample were filtered through a 0.2µm Whatman (Florham Park, NJ) 

nylon syringe filter.  Samples were filtered as soon as possible after sample collection into 

10mL glass vials and stored in the freezer for up to one week until analysis.  

 Instrument performance was evaluated from daily working standards.  One hundred, 

250, and 500µg/L solutions of quinine hemisulfate were prepared in 25mL of LGW with 

69µL of concentrated H2SO4.  These standards were run and analyzed for linearity of 
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intensity at the 350/440 excitation/emission wavelengths at the start of each run of sample 

processing. Quartz cuvettes were used for sample and standards analysis and were rinsed 3x 

with LGW between samples.  The 250 standard was re-analyzed at the end of the run. 

 The FL solutions exported excitation/emission wavelengths and accompanying 

intensities to Excel.  The Ramen/Raleigh scattering were removed and data were transferred 

to SigmaPlot.  Contour graphs were created in SigmaPlot as a visual representation of the 

fluorescence image. 



  

CHAPTER 3: RESULTS AND DISCUSSION 

3.1 Caffeine and Triclosan: Method Development. 

The caffeine and triclosan SPE extraction method published by Thomas and Foster 

(2004) was initially tested without any adjustments to determine recovery of analytes and 

clean-up of environmental sample extracts.  Dirty extracts and low analyte recovery 

necessitated further experiments to obtain a method with sample extracts sufficiently clean to 

preserve the analytical instruments and to achieve acceptable analyte recoveries 

 

3.1.1 Initial test of Thomas and Foster Method 

Oasis HLB 200mg/6cc (Waters, Milford, MA) cartridges were evaluated for the 

recovery of caffeine and triclosan from environmental samples using an elution and 

conditioning method based on work by Thomas and Foster (2004).  Duplicate 500mL 

aliquots of WWTP1 US were spiked with 1µg/L caffeine and 0.2µg/L triclosan (Samples A 

and B). Cartridges were conditioned with 3mL hexane, 3mL EtOAc, 3mL MeOH, and 5mL 

10mM pH 7 phosphate buffer at rate of 15mL/minute.  After conditioning, the aqueous 

samples were passed at a rate of approximately 5mL/minute, after which the cartridges were 

rinsed with 5mL of 10mM phosphate buffer, allowed to dry for a half hour each under 

vacuum and nitrogen, and then rinsed with 2mL hexane.  The cartridges were eluted with 

3mL EtOAc, blown down to dryness, reconstituted in 100µL ACN and derivatized with 

50µL BSTFA and 50µL pyridine containing 12mg/L HCB, internal standard (IS).  The 

derivatized extracts were analyzed using GC-ion trap-MS, EI mode, with the GC method by 
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Ollers et al. (2001) as shown in Table 3.1.  Extracts were very dark and triclosan was not 

detected, suggesting the need for clean-up prior to extraction and further tests to increase 

recovery.  Areas were integrated under the ion- extracted chromatogram peak using Varian 

MS WorkStation software.  Relative area was normalized to HCB area. 

Table 3.1 Variability caffeine and triclosan analysis in WWTP1 US by GC-ion trap-MS, EI mode. Targeted 
ions are: HCB-284, caffeine-194 and triclosan-347. 
 HCB Area Caffeine Area Relative Area Triclosan Area 
Sample A 19575 33286 1.70 ND 
Sample B 12037 20844 1.73 ND 
     
Avg 15806 27065 1.7  
RPD 48 46 1.8  

ND= not detected 

 

3.1.2 Testing Three  SPE Methods with WWTP Effluent for Recovery 

Five hundred mL aliquots of WWTP1 effluent were extracted with three different 

SPE methods to test effectiveness of method clean-up on both filtered and unfiltered samples.  

Method 1 was described in section 3.1.1. Method 2 was a combination SAX/HLB method.  

SAX cartridges (500mg/6cc) were conditioned with 2mL methanol followed by 2mL citric 

acid buffer.    Citric acid buffer was prepared with 41.5g citric acid monohydrate and 200mL 

1M NaOH in 1L LGW, then diluted to 40mM with a pH between 4.6 and 4.7.   

The SAX cartridges were washed with 2mL 0.04M citric acid buffer and 2mL 0.1M 

sodium acetate and then connected in series with conditioned 60mg/3cc HLB cartridges.  The 

0.1M sodium acetate solution was prepared with 8.40g of anhydrous sodium acetate 

measured into a 1L volumetric flask containing LGW. The HLB cartridges were separately 

conditioned with 3mL 40% MeOH in LGW, 3mL LGW and 2mL 10% MeOH/ 2% 

ammonium hydroxide in LGW before connection to the SAX cartridges.   The WWTP1 

effluent samples were passed over cartridges in tandem (SAX then HLB) and the SAX was 
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removed.  The HLB cartridge was dried under vacuum for one hour, dried under nitrogen for 

15 minutes, and then eluted with 6mL 10% MeOH in MtBE. Method 3 evaluated HLB 

cartridges using the conditioning and elution of Method 2.  

Extracts from all methods were very dark and, therefore, were not blown down or 

derivatized.  For an accurate measure of turbidity, solvent blanks (either EtOAc or 10% 

MeOH in MtBE) and the extracts were analyzed using a Beckman single beam UV 

Spectrophotometer, model DU 650 (Fullerton, CA) at 254nm. The comparative absorbances 

are shown in Table 3.2.  The lowest absorbance was from filtered 2 samples, extracted using 

SAX/HLB.  Method 2 was then tested with another elution solvent in an attempt for cleaner 

extracts. 

Table 3.2 Average absorbance of solvents and SPE extracts measured on a UV spectrophotometer. 
 Absorbance  Average 
Ethyl acetate blank 0   0 
Filtered Method 1 0.51 0.52 0.52 0.52 
Filtered Method 1 0.5036 0.5101 0.5118 0.5085 
10% Methanol in MtBE blank 0   0 
Filtered Method 2 0.2734 0.2732 0.2732 0.2733 
Unfiltered Method 2 0.3315 0.3323 0.3325 0.3321 
Unfiltered Method 3 0.3048 0.3054 0.3056 0.3053 
Filtered Method 3 0.5526 0.553 0.553 0.5529 
Rerun 10% methanol in MtBE blank 0   0 

 

3.1.3 Testing Effectiveness of Acetonitrile as Elution Solvent 

Caffeine and triclosan were spiked into 500mL LGW at 5 µg/L each and extracted 

with Method 1, described in section 3.1.1, and Method 2, described in section 3.1.2, using 

both the original elution solvent (either EtOAc or 10% MeOH in MtBE) and ACN.  All 

extracts were blown down to dryness, reconstituted with 100µL ACN, derivatized with only 

50µL BSTFA, and analyzed by GC-ion trap-MS.  Visually, the extracts were clear.  A 

solvent standard was prepared at the theoretical 100% concentration for comparison. 
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The results of this experiment are shown in Table 3.3. Extracts were derivatized 

without pyridine, so IS was not present to normalize results.  Qualitatively, Method 1 was 

more effective at recovering both analytes than Method 2.  Caffeine from Method 2 was 

reported as not detected (ND) since area counts were below 500.    

Table 3.3 Caffeine and triclosan areas from LGW extracted with SPE using Methods 1 and 2 and evaluating 
two different elution solvents.  Areas represent area under chromatogram peak, integrated using MS 
WorkStation software. 
 
 HCB Area Caffeine Area Triclosan Area 
Solvent Standard ND 38044 268827 
Meth 1 original ND 128536 109150 
Meth 1 ACN ND 140958 71414 
Meth 2 original ND ND 41954 
Meth 2 ACN ND ND 57979 

ND= not detected 
 

3.1.4 Testing SPE Methods 1 and 3 with New Elution Solvent 

Experiments in section 3.1.3 testing SPE extraction of spiked LGW showed that 

EtOAc, the original elution solvent from Method 1, was effective at recovering analytes but 

resulted in extracts that were too dark to analyze on the GC-ion trap-MS.  Testing ACN as an 

alternative elution solvent resulted in slightly higher areas for caffeine but lower triclosan 

areas, as shown in Table 3.3. An elution solvent mixture, with a similar polarity to EtOAc, 

was prepared to maximize recovery of both analytes and to yield cleaner extracts.  Solvent 

polarities are shown in Table 3.4.   Solvent mixture polarities were calculated from solvent 

polarities and the concentration of the solvents in the mixtures. 

Table 3.4  Polarity of different elution solvents . 
Solvent Polarity 
Ethyl Acetate 4.4 
Acetonitrile 5.8 
MtBE 2.5 
MeOH 5.1 
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One hundred mL LGW aliquots were spiked with 2µg/L caffeine and triclosan.  

Several methods were tested: Method 1, described in section 3.1.1; Method 3, described in 

section 3.1.2; and a fourth method using Strata X cartridges that differs in conditioning and 

elution solvents. Method 1 was tested using three elution solvents: (a) EtOAc (b) 1:1 MeOH: 

ACN (polarity = 5.45) and (c) 3:7 MtBE: ACN (polarity = 4.8).    A solvent standard was 

prepared at the theoretical 100% concentration. 

The Strata X cartridges were conditioned with 3mL MeOH and 3mL LGW.  After the 

sample was passed, the cartridges were washed with 3mL 5% MeOH in LGW, dried under 

vacuum for 30 minutes, and eluted with 3mL 1:1 MeOH:ACN.   

The HLB cartridges, conditioned according to Method 1 and eluted with EtOAc, were 

used to test further clean up.  Silica gel cartridges (200mg/3cc) (Supelclean, Supelco, 

Bellefonte, PA) were conditioned with 10mL 65:35 hexane:acetone (Ternes et al. 1999).  The 

HLB cartridge  extract was loaded onto the conditioned silica gel cartridges, which were then 

eluted with 6mL of 65:35 hexane:acetone.  The extracts were blown to dryness, reconstituted 

in 200µL ACN and derivatized with BSTFA and pyridine containing IS.  Results are shown 

in Table 3.5. Both analytes were recovered from Method 1 with different solvents.  The 

variability in the HCB areas was unexplainable.  Comparing absolute areas, there was no 

significant difference between the elution solvents in Method 1.  Comparing relative areas, 

MtBE:ACN as an elution solvent was most effective.  Although silica gel visually cleans up 

the extracts, triclosan appears to get lost in the process. 



 84 

Table 3.5 Caffeine and triclosan recoveries from method 1 with different elution solvents and silica gel clean-
up compared to Strata X. Areas are integrated under the extracted ion peak from the chromatogram.   

 
HCB 
Area 

Caffeine 
Area 

Caff- Rel 
Area 

% 
recov 

Triclosan 
Area 

Tric- Rel 
Area 

% 
recov 

Solvent Standard 22628 15103   16869   
Meth 1 MeOH: ACN 54829 18999 0.35 52 18702 0.34 46 
Meth 1 MtBE: ACN 32130 18853 0.59 88 17290 0.54 72 
Strata X 39435 12415 0.31 47 ND   
Meth 1 EtOAc with 
Silica 14720 6620 0.45 

 
67 ND  

 

 

3.1.5 Evaluating SPE Extraction Method on Environmental Samples 

Method 1 using 3:7 MtBE:ACN as elution solvent (renamed Method 1a) was tested 

on duplicate 100mL aliquots of WWTP1 US and LGW.  Aliquots were spiked with 1.5µg/L 

caffeine and triclosan.  A solvent standard was prepared for comparison at the 100% 

theoretical concentration. Results show that the method was effective for recovery of 

analytes in LGW and surface water, as shown in Table 3.6.  Percent recovery was calculated 

as a comparison of the relative area in the analyte compared to the relative area of the solvent 

standard. Percent recovery provided a qualitative estimation of the method efficiency to 

optimize the method parameters.  Recoveries over 100% for surface water were due to 

background concentration of analytes in the matrix, since no unspiked US was run for 

correction.   

Table 3.6 Caffeine and triclosan recovery from spiked LGW and WWTP1 US water. Percent recovery is 
compared to solvent standard. 

 
HCB 
Area 

Caff 
Area 

RPD Rel 
Area 

% 
recov 

Tric 
Area 

RPD Rel 
Area 

% 
recov  

Solv std 32623 16401  0.50  17581  0.54  
Avg LGW   28977 11899 12 0.41 83 13841 4.7 0.48 89 
Avg WWTP1 US   27912 15349 1.3 0.55 110 14753 5.1 0.53 98 
          
Avg 29280 14179  0.49  14953  0.51  
RPD 6.8 17  16.7  11  6.9  
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3.1.6 Evaluating Silica Gel Clean-Up from Surface Water 

Triplicate 100mL WWTP1 DS, spiked with 1.5µg/L caffeine and triclosan, and one 

un-spiked LGW aliquot were used to test several clean up methods in combination with 

Method 1a (described in section 3.1.5).  Physical clean-up was performed by filtration with 

either 1.5µm glass microfiber filter (GMF) or ultrafine filter (UF) before SPE.  Silica gel 

cartridges, using the conditioning and elution method described in section 3.1.4, were tested 

as clean up after HLB.  The HLB elution extract was passed over conditioned silica gel 

cartridge.  The eluant from the silica gel cartridge was captured in a test tube, derivatized, 

and analyzed.  Since the results from Table 3.6 suggest triclosan is lost through the silica gel 

clean-up, the “wash” step, as HLB extract was passed over silica, was analyzed to determine 

analyte break through. A solvent standard, at theoretical 100% recovery (75µg/L), was 

prepared concurrently.  After derivatization, extracts were analyzed with GC-ion trap-MS, EI 

mode. 

Visually, there was no  significant difference between extract color from different size 

filters.  Results of filtration and silica gel clean-up are shown in Table 3.7. Although silica 

gel visually cleans extracts, detection of analytes from silica wash indicated analytes were 

eluting in the wash step.  Filtration with 0.45µm (UF) yielded no significant difference than 

1.5µm filtered (GMF) sample and therefore, was not worth the extra time this filtration step 

required.  From this experiment, further clean-up methods were tested to ensure cleaner 

extracts to maintain instrument performance. 
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Table 3.7 Caffeine and triclosan recoveries from various clean-up methods, analyzed with GC-ion trap-MS, EI 
mode. Areas were integrated under the peak of the chromatogram with MS WorkStation software. 

 HCB Area 
Caffeine 

Area 
Rel 

Area % recov 
Triclosan 

Area 
Rel 

Area % recov 
Solv std 6197 558 0.09  1831 0.30  
LGW 6953 660 0.09 105 1268 0.18 61 
Avg UF  7453 2767 0.37 412 1539 0.21 70 
Avg GMF  7199 2569 0.36 396 1506 0.21 71 
Avg Si extract  6432 350 0.06 63 ND   
Avg Si Wash  7232 879 0.11 119 1366 0.21 70 

 

3.1.7 Evaluating SPE Methods on Septic Tank Effluent 

Method 1a, described in section 3.1.5, was tested on grab samples from a household 

(HOUSE) and IWS office septic tank  (IWS).  Several batches of approximately 20mL of 

sample were poured into 40mL vials and centrifuged (2500rpm, 25° C for 15 minutes).  The 

supernatant was filtered with 1.5µm filters and combined into triplicate 100mL aliquots.  

Filtered supernatant and triplicate 100mL LGW aliquots were spiked with 1.5µg/L caffeine 

and triclosan.   

Post clean-up with silica gel was evaluated with another conditioning and washing 

solvent. Silica gel was conditioned with 4mL 3:7 MtBE: ACN. The HLB cartridges were 

eluted onto conditioned silica gel cartridges, which were captured in a test tube.  Silica gel 

cartridges were rinsed with 2mL 3:7 MtBE:ACN into the same test tube.  These extracts were 

blown down to dryness, reconstituted in 200µL ACN and derivatized with BSFTA and 

pyridine containing HCB. This method (renamed Method 1b) visually removed all the color 

from the extracts.  A solvent standard containing caffeine and triclosan was concurrently 

prepared at the concentration representing 100% recovery of 0.5mg/L taken through the 

entire extraction process.   

The caffeine peaks from all extracts were short and broad, and therefore, difficult for 

Varian WorkStation software to integrate.  Peaks were manually integrated after smoothing 
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the chromatograms and the results are shown in Table 3.8.  Percent recovery was compared 

to solvent standard and was not corrected for background concentrations of analytes in 

environmental samples, since unspiked samples were not analyzed.  It is unclear why 

triclosan was not detected in any HOUSE extracts. The solvent standard and LGW were re-

analyzed with duplicate injections to provide a more accurate indication of method recovery, 

as shown in Table 3.9. 

Table 3.8 Caffeine and triclosan recoveries from Method 1b, analyzed using GC-ion trap-MS, EI mode. 

 
HCB 
Area 

Caffeine 
Area 

Rel 
Area 

% 
recovery 

Triclosan 
Area 

Rel 
Area 

% 
recovery 

Solv std  5941 1523 0.26  3323 0.56  
LGW  5943 860 0.14 60 2452 0.41 75 
IWS 5724 14906 2.60 1015 3321 0.58 104 
HOUSE 5887 118625 20.15 7860 ND   

  

Table 3.9  Caffeine and triclosan recoveries from LGW method test of Method 1b, GC-ion trap-MS, EI mode. 

 HCB Area Caffeine Area 
 

RPD 
% 

recovery Triclosan Area 
 

RPD 
% 

recovery 
Solv std 11440 3606   7479   
Avg LGW  11755 3322 55 90 6048 7.5 79 

 

3.1.8 Caffeine Derivatization Test 

Since caffeine peaks were broad and difficult to integrate, it was hypothesized that 

derivatization caused a reaction in caffeine that resulted in the tailing peaks.  Caffeine was 

detectable without derivatization, and therefore, caffeine standard both derivatized and 

underivatized were compared for peak shape and area. Duplicate 200µL aliquots of ACN 

were spiked with 700µg/L caffeine. One sample was derivatized and both were analyzed by 

GC-ion trap-MS.  Derivatization did not significantly affect area, signal strength, or peak 

shape, as shown in Table 3.10. 
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Table 3.10 Results of derivatization experiment. Area and signal to noise ratio were calculated by MS 
WorkStation software.1 
 Caffeine area Caffeine S:N 
Caffeine  1365 43 
Caffeine derivatized 1386 44 

 

3.1.9 Comparison of HLB and Strata X Cartridges Using Method 1B 

Triplicate 250mL aliquots of LGW were spiked with 2µg/L of caffeine, triclosan and 

caffeine-d3.  Aliquots were extracted using SPE Method 1b, as described in section 3.1.7.  

SPE HLB and Strata X SPE cartridges were compared. The deuterated caffeine, caffeine-d3, 

was acquired mid-way through the project and was used as a caffeine surrogate to test the 

recovery of caffeine through the extraction method.  Table 3.11 shows caffeine and triclosan 

recovery from HLB and Strata X SPE cartridges.  Strata X more effectively recovered 

caffeine and deuterated caffeine than HLB, but HLB was more effective for triclosan.  

Overall, recoveries from Strata X were less variable in analyte recovery.    

Table 3.11 Results of HLB- Strata X cartridge comparison, analyzed with GC-ion trap-MS, EI mode. 

 
HCB 
Area 

% 
CV Caff Area 

% 
CV 

Rel 
Area Tric Area 

% 
CV 

Rel 
Area 

Caffeine-d3 
Area 

HLB 10505 7.8 1509 26 0.14 17817 15 1.72 930 
Strata X 10498 9.7 2608 14 0.25 13316 10 1.28 1384 
         
Strata vs HLB  61  56 -41  -48 28 
RPD   42  55 3.9  10 63 

 
 

3.1.10 Evaluating Methods on Septic Tank Samples 

Triplicate pump tank samples collected from the septic system at the IWS office were 

spiked with 2µg/L caffeine, triclosan, and deuterated caffeine (caffeine-d3). For each 

cartridge type, there were duplicate unspiked aliquots.  In Table 3.12, spiked samples are 

labeled HLB-sp; Strata-sp and unspiked samples are labeled HLB and Strata.  Instead of 

centrifuging septic tank samples, samples were successively filtered with 2.7µm and 1.5µm 
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filters.  Filtered samples were extracted using Method 1b, as described in section 3.1.7.    

Relative areas were compared to HCB area, as shown in Table 3.12. 

Table 3.12 Caffeine and triclosan areas from septic tank samples, GC-ion trap-MS, EI mode. Areas are 
integrated under the chromatogram peak. Relative areas are normalized to the HCB area. 

Sample 
HCB 
Area 

Caff 
Area 

% 
CV/ 
RPD Rel Area 

Tric 
Area 

% 
CV/ 
RPD Rel Area 

Caff-d3 
Area 

Avg Hlb 10939 6065 18 0.55 3889 15 0.36 3110 
Avg Hlb-sp 11887 30637 22 2.56 9416 34 0.79 5922 
Avg Strata 11443 25327 18 2.2 4255 23 0.37 4905 
Avg Strata-sp 11831 24194 14  7250 38  4477 
         
Average 11592       4723 
Stdev 708       1528 
CV 6.1       32 

 

Comparing relative areas in Table 3.12, Strata X recovered more caffeine than HLB. 

Strata X unspiked absolute areas were higher than HLB, but HLB recovery from spiked 

samples was higher. Overall, the two cartridge types were comparable for analyte recovery.  

Strata X was chosen for practicality and ease of using one cartridge instead of two cartridges 

in series, as had been the case for HLB. 

 
 3.1.11 Method Development Summary 
 
 The caffeine and triclosan SPE method was altered from work by Thomas and Foster 

(2004).  Experiments were conducted to increase caffeine recovery and extract clean-up to 

yield extracts that would not compromise the performance and longevity of the instruments. 

 The main changes from the original method are outlined below. Strata X SPE 

cartridges were utilized instead of HLB.  A 3:7 MtBE:ACN solvent mixture was used to 

elute the Strata X cartridges, instead of EtOAc.  SPE extract was subjected to post-treatment 

using silica gel cartridges, conditioned and washed with the same solvent mixture. As they 

became available, deuterated caffeine and triclosan were spiked into the samples to 
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calculate losses of non-deuterated compounds through the methods and concentrations 

across matrices.  Overall, recovery of spiked LGW through the method was 90% for 

caffeine and 79% for triclosan. 

 

3.2 Application of Caffeine and Triclsoan Method on Environmental Samples 
 

Caffeine and triclosan were proposed as indicators for failed on-site wastewater 

treatment systems.  These compounds have high prevalence in the domestic waste stream, 

and prior literature has demonstrated high removal from WWTPs (Seiler et al. 1999, Singer 

et al. 2002).  The main routes of triclosan and caffeine removal are aerobic biodegradation, 

therefore, it was hypothesized that under the anaerobic conditions in septic tanks, little 

degradation of these compounds will occur.  In the case of failed on-site systems, triclosan 

and caffeine concentrations were expected to be high enough in the tank that even with 

aerobic environmental degradation, these compounds would be detectable downstream.  

Caffeine was proposed as a surroga te of hydrophilic compounds and triclosan as a surrogate 

for hydrophobic compounds.  Their behavior can represent a wider range of chemicals with 

similar properties. 

A method was developed to extract caffeine and triclosan simultaneously from 

varied matrices, which was used to process all the samples. A summary of the analytical 

method follows: deuterated caffeine and triclosan were spiked into all samples at 

environmental concentrations before filtration with 1.5µm filter. The Strata X SPE 

cartridges were conditioned with hexane, MtBE, MeOH and phosphate buffer.  Strata X 

cartridges were eluted onto silica gel cartridges with 3:7 MtBE:ACN.  Silica gel cartridges 

were washed with the same solvent mixture and the extract was then blown to dryness, 
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reconstituted in ACN, derivatized with BSTFA and pyridine spiked with HCB.  Extracts 

were analyzed by GC-MSD, targeting ion m/z 284 for HCB, 194 for caffeine, 197 for 

caffeine-d3, 347 for triclosan and 352 for triclosan-d3.  Concentrations were calculated 

using the deuterated standard method, which applies the ratio of deuterated to non-

deuterated areas obtained from a solvent calibration curve to environmental samples.  An 

example calibration curve is shown in Appendix 2. 

 
3.2.1 Caffeine and Triclosan Occurrence from Surface Water Surrounding WWTPs 

 
For comparison, three WWTPs in North Carolina were selected for sampling.  These 

WWTPs represented differing treatment capacities, population served sizes, and both UV and 

chlorine disinfection.  These plants provided an indication of the concentration ranges from 

WWTPs throughout North Carolina and were sampled throughout the year for an indication 

of seasonal variability.  WWTP samples were collected upstream, from within plant effluent, 

at the point of discharge into the receiving water (if this point was accessible) and 

downstream of the WWTP discharge.  Specifics on sampling locations and procedures are 

shown in Methods section 2.2.2 and 2.3.1.   

For an indication of possible analyte concentrations from a range of WWTPs, the 

results of the three treatment plants were compiled.  Samples were collected from WWTP1 

on 6 dates, WWTP2 on 3 dates and WWTP3 twice.  The results are presented to portray the 

range of concentrations over the sampling period by using box and whisker plots.  The 

whiskers represent the 10 and 90 percentile values.  The box displays the 25 to 75 percentile 

values, with the median value represented by the line in the box.  This type of graph 

represents the data range, since the box encapsulates 50% of the values and the whiskers 

indicate outliers.  The actual data points are overlaid  on the box and whisker plots, since 
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sample size was not always large enough to be statistically represented by a box and whisker 

plot.  All data points are shown, however, sometimes the points are not distinguishable due to 

high concentration of dots in a small range.  Discrepancies in sample sizes between caffeine 

and triclosan was due to non- detection of analytes. Maximum analyte concentrations 

detected in the effluents were 1.2µg/L caffeine and 1µg/L triclosan, as shown in Figures 3.1 

and 3.2.   

Overall, the majority of sample concentrations were in a narrow range with high 

outliers.  Outliers could be due to temporal variation in analyte influent concentration or 

rainfall events that introduce other pollution sources into the surface water and may flush 

wastewater through the plant without proper treatment. One set of samples for WWTPs 2 and 

3 were collected during a rain event, where plants experienced higher than average WWTP 

flows and could lead to outliers.  The likelihood of triclosan to sorb to particles and variable 

sample storage time could contribute to concentration variation, since only the dissolved 

component of triclosan was measured with this method.   

Other sources of concentration variation could be due to other non-point sources 

entering into the receiving water.  For example, WWTP1 has higher upstream concentrations 

of both caffeine and triclosan than the other two plants, possibly due to failed on-site 

wastewater system pollution or community storm-water runoff upstream of the WWTP 

discharge.  This plant represented the situation where caffeine was ubiquitous in the 

watershed, due to anthropogenic influences.   Around WWTP1, upstream concentrations 

ranged from BD-400ng/L for caffeine and BD-300ng/L triclosan.   
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Figure 3.1 Caffeine concentration ranges compiled from three WWTPs and surrounding surface water. 
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Figure 3.2 Triclosan concentration ranges compiled from three WWTPs and surrounding surface water. 

 
 

n=16      n=19    n=9       n=17 

n=9      n=16    n=9        n=10 
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3.2.2 Caffeine and Triclosan Occurrence in On-Site Wastewater Systems 
 

Samples were collected from the septic tanks of a number of on-site wastewater 

treatment systems to obtain a representative sample of analyte concentrations found in 

septic tanks across North Carolina, with different influent sources.  This occurrence data 

were used to test the hypothesis that caffeine and triclosan were present in septic tank 

waste at higher concentrations than from WWTP effluents.   

Septic tank results were compiled from the advanced treatment systems and 

households, as shown in Figure 3.3.  The details of site selection are described in Methods 

section 2.2.1.  Samples were collected over the course of the year for temporal and 

seasonal variability.  IWS and the high school system were sampled four times and 

households were sampled on three dates.  Even though samples were analyzed in triplicate, 

some samples were lost during processing or were not sufficiently clean for instrument 

analysis. 

The wide concentration range from the septic tanks was most likely due to sample 

collection before and after lunch time at the high school system, which yielded a large 

range of influent concentrations.  The other tanks have good precision, although this may 

be due to insufficient sample size to capture the variability of analytes in the waste stream.  

Caffeine and triclosan septic tank concentrations were in the µg/L range, as compared to 

the ng/L range detected from WWTP effluents, as seen in Figures 3.1 and 3.2.   
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Figure 3.3 Comparison of caffeine and triclosan occurrence from septic tanks, both households and advanced 
treatment. 
 

Advanced treatment systems were hypothesized to be comparable to functioning on-

site wastewater treatment system, since they both employ similar treatment processes: 

settling, aerobic, and anaerobic degradation.  Samples were collected throughout the high 

school advanced treatment system for an indication of caffeine and triclosan degradation 

through a functioning system (Sampling locations are shown in Figure 2.2).  Figure 3.4 

shows average caffeine and triclosan concentrations through the high school system, with 

error bars representing the standard deviation.  Outliers were removed from consideration.  

After aerobic and anaerobic treatment in the vegetated sand filter (1x), caffeine and 

triclosan concentrations were greatly reduced from septic tank effluent.  After further 

aerobic degradation, concentrations (Pre-UV) were comparable to background leve ls as 

n=3  n=12     n=3      n=8 
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seen in upstream samples.  Detection of caffeine at the same concentration up and 

downstream suggested that the system did not contribute additional analytes into the river.   
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Figure 3.4 Average caffeine and triclosan occurrence throughout the high school advanced treatment system.  
(US n= 5 caffeine, 0 triclosan; Effluent n= 10, 1x n= 5, Pre -UV n= 5, and downstream n= 5 caffeine, 0 
triclosan)   
 

Extrapolating the results shown in Figure 3.4 to a functioning on-site wastewater 

treatment system imply that effluent from a functioning system (estimated by Pre-UV 

concentrations) would contain analyte levels in the concentration range of WWTP effluent 

and not septic tank effluent. It appears that effluent from a functioning system would not be a 

significant source of caffeine or triclosan to surface waters.  Extrapolation of caffeine and 

triclosan to the broader spectrum of chemicals they represent indicates effective degradation 

of both hydrophilic and hydrophobic compounds within functioning septic systems. 

  Comparison of the analyte concentrations in WWTP and septic tank effluents show 

an order of magnitude difference, as seen in Figures 3.5.  The average of all three WWTP 

effluent concentrations was 230ng/L caffeine (n=30) and 300ng/L triclosan (n=31).  In 

ND ND 
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contrast, average septic tank concentrations, including both households and advanced 

treatment, were 22µg/L caffeine (n=16) and 6.8µg/L triclosan (n=23).   Extrapolation of 

advanced treatment to a functioning septic system suggested that effluent from a functioning 

system would be an average of 70ng/L for both analytes. 
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Figure 3.5 Comparison of average caffeine and triclosan concentrations between wastewater treatment plants 
and septic tank effluent.  

 
 

3.2.3 Estimating Caffeine and Triclosan Persistence Downstream  
 

Septic tank caffeine and triclosan concentrations were high enough that it was 

hypothesized that in the event of a septic system failure, where effluent flowed out from the 

tank into the environment, caffeine and tric losan would travel overland to surface water, be 

detectable downstream and persist at levels above WWTP effluent.  This assumption was 

tested with dilution calculations and laboratory experiments. 

Avg:     0.23      0.3       22      6.8 



 98 

The persistence of compounds downstream of a WWTP and a failed system were 

estimated using degradation equations presented by Morrall et al. (2004) and average 

concentrations from both wastewaters. The following equation was used to estimate the time 

and stream distance of analyte degradation:   

CT(t) = CT(0)e-k
T

t       (3.1) 

where CT  = total chemical concentration (ng/L), CT(t) = chemical concentration at time t 

(ng/L),  CT(0) = initial chemical concentration (ng/L), kT  = total chemical first-order loss rate 

(h-1), and t = time (h).  Initial concentrations were the average concentrations from septic 

tanks and WWTP effluent, kT was 0.06/h (Morrall et al. 2004), and average stream flow 

(m3/s) was estimated from Morgan Creek USGS monitoring station from 2004-2005 at a rate 

of 0.078 m3 /s. (http://nwis.waterdata.usgs.gov/nc/nwis/qwdata/?search_site_no=02097464).  

Table 3.13 shows calculations of triclosan removal via sorption and settling from both 

average septic (6772 ng/L) and WWTP effluent (293 ng/L) concentrations.  Using these 

calculations in combination with the SPE PQL of 60ng/L, triclosan was below the detection 

limit from WWTP effluent discharge into surface waters after 25 hours, or 2 miles.  Triclosan 

from septic tanks was estimated to be detectable for over 75 hours and 6 miles downstream.  

Additionally, triclosan from septic tanks was estimated to be detectable for 50 hours and 4 

miles downstream of failed septic system at a concentration above the average WWTP 

effluent.  These estimations may overestimate detectable time and distances since they do not 

include photolysis or microbial degradation.  However, these calculations provide an 

indication of the persistence of triclosan in water downstream of potential septic system 

failure.   
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Table 3.13 Triclosan removal calculations from average WWTP and septic tanks . 
Time (hours) CT  WWTP (ng/L) Distance (miles) CT  septic (ng/L) 

0 293 0 6772 
1 276 0.1 6378 
5 217 0.4 5017 

10 161 0.8 3717 
20 88 1.6 2040 
25 65 2.0 1511 
30 48 2.4 1119 
40 27 3.1 614 
50 15 3.9 337 
60 8.0 4.7 185 
70 4.4 5.5 102 
75 3.3 5.9 75 
80 2.4 6.3 56 
90 1.3 7.1 31 
100 0.7 7.9 17 

 

Caffeine persistence was estimated from Equation 3.1 with estimated caffeine 

biodegradation rate constants of 1.25x10-4-2.92x10-4 h-1 (Buerge et al. 2006).  Equation 

parameters were: kT  = 1.67x10-4 h-1, average stream flow = 2.77 or 0 078 . m3/s and CT  was 

the average caffeine concentrations from WWTPs (226 ng/L) and septic tanks (22232 ng/L).  

Results are shown in Table 3.14.   

Table 3.14 Biodegradation calculations of caffeine from WWTP and septic effluent. 

Time (hours) CT  WWTP (ng/L) Distance (miles) CT  septic (ng/L) 
0 226 0 22232 
1 226 0.1 22228 

10 226 0.8 22195 
50 224 3.9 22048 
100 222 7.9 21865 
500 208 39.4 20454 

1000 191 78.7 18819 
5000 98 393.6 9662 

10000 43 787.1 4199 
 

A laboratory experiment was conducted to estimate dilution of septic tank discharged 

into surface waters.  High school advanced treatment septic tank samples were diluted with 

upstream surface water collected by the on-site treatment system.  Triplicate dilutions were 
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prepared at 1:20, 1:50, and 1:100 in 250mL aliquots.   Average septic tank flow rates of 69.3 

gallons/person/day, estimated by Mayer et al. (1999), were used assuming a four person 

household for an average of 277.2 gpd.  Assuming that 100% of effluent from a failed tank 

reached surface water, dilution calculations at this range represent small streams, shown in 

Table 3.15, which may not accurately represent the size of streams near failed septic systems.  

Analytes were considered detectable if the concentration was higher than the SPE method 

PQL of 60ng/L for caffeine and triclosan.  Although there was only a five-fold increase in the 

dilution factor between 1:20 and 1:100 dilutions, there was a ten-fold decrease in caffeine 

concentration, which implied that dilution and degradation of analytes may not be linear.  A 

non- linear relationship creates uncertainty regarding estimates from Tables 3.13 and 3.14. 

Table 3.15 Dilution experiment with effluent from the septic tank at the high school system.  

 
Caffeine 

Conc (µg/L) RPD 
Triclosan 

conc (µg/L) RPD 

Stream 
flow 

(ft3/s) 

Stream 
flow (m3/s) 

Effluent (n=2) 8.1 1.8 0.68 7.1   
1:20 Dilution (n=2) 0.32 25.2 0.05 10 0.009 2.55x10-4 
1:50 Dilution (n=1) 0.09  -  0.021 5.95x10-4 
1:100 Dilution (n=1) 0.03  -  0.043 1.22x10-3 
Upstream (n=1) 0.18  0.06    

 

 3.2.4 Detection of Caffeine and Triclosan in Surfacing Septage 

 Occurrence data was collected to test the assumptions presented for caffeine and 

triclosan as potential indicators of on-site wastewater failure pollution: that caffeine and 

triclosan would be present in septic tanks at higher concentrations than WWTPs, caffeine and 

triclosan in the septic tank effluent would persist in the event of a system failure, analytes 

have the potential to travel overland and would be detectable downstream.   

Triplicate samples were collected from both the septic tank and pooled surface 

sewage next to the septic tank of a failed septic system in a mobile home park.  This system 
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was identified by the Orange County Health Department.  Effluent had been flowing straight 

out of the tank from the broken drainage pipe for several days before sample collection.  

Average concentrations of caffeine and triclosan in the septic tank and pooled sewage are 

shown in Figure 3.6 (n=3), with error bars representing standard deviation. Both analytes 

were detected in the sewage on the ground even after several days of potential microbial 

degradation and photolysis.  Analytes in ponded sewage have the potential to travel to 

surface water via overland flow or rainfall.  Even though analyte concentrations in the 

surface sewage were considerably lower than the septic tank, they remained higher than 

maximum WWTP effluent concentrations.  These results verify that a failed septic system 

would release these analytes into the environment.   
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Figure 3.6 Average caffeine and triclosan occurrence in septic tank effluent and ponded surface sewage. 
 
 

3.2.5 Detection of Caffeine and Triclosan in Surface Water Downstream of Failed 
Septic System 

 
 A second failed septic system, near a stream, was identified with the help of the 

Orange County Health Department.  This system failed due to soil clogging in the drainfield.  
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Therefore, the effluent had undergone some aerobic and anaerobic degradation before 

surfacing and running off into surface waters.  At the time of inspection, a small pool of 

surfacing sewage was visible on the surface at the far end of the drainfield.  Grab samples 

were collected from within the septic tank and upstream of a nearby stream.  These samples 

were analyzed in triplicate.  During a rain event several days later, up and downstream 

samples were collected to capture potential pollution.  Triplicate samples were collected at 

three sampling times in an attempt to capture the rising limb of the stream hydrograph.  The 

rising limb was the expected time of highest runoff and, therefore, highest pollution potential.  

Without a stream gauge to accurately assess stream stage, stream height was measured during 

sampling. Stream height continued to rise throughout the sampling period, so it was assumed 

that the stream would continue to rise as it continued raining. Figure 3.7 shows the locations 

of the sampling sites. The failed system is approximately 180 meters (0.11 miles) from the 

stream over land and approximately 290 meters (0.19 miles) upstream of the downstream 

sampling location.   

 
Figure 3.7 Sampling locations around failed septic system. 
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Even with large distances of overland flow and in-stream movement downstream, 

caffeine was detected in all triplicate samples from the last sample collection in the rain 

event.  Septic tank and stream caffeine and triclosan concentrations are shown in Figure 3.7, 

with error bars representing standard deviation (n=3).  Average caffeine concentration 

downstream of the failed system was 270ng/L, which was slightly higher than the average 

caffeine concentration from WWTP effluents and higher than concentrations found 

downstream of WWTPs.  
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Figure 3.8 Average caffeine and triclosan occurrence in a failed septic tank and downstream surface water 
(n=3). 
 

The detection of analytes in both sewage pooled on the surface and downstream of 

failed systems implies the ability of analytes to migrate overland and persist downstream, 

despite possible environmental degradation through sorption, settling, photolysis and 

microbial degradation.  

 

ND ND ND 
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3.3 DCAA and TCAA: Method Development 

Literature findings of HAA formation in drinking water treatment can be extrapolated 

for an indication of HAA formation during chlorination of wastewater effluent.  HAA 

formation is limited by the amount of nitrification in the effluent.  If the wastes are highly 

nitrified, chlorine will first interact with ammonia to form chloramines and then NOM to 

form DBPs, such as HAAs.  Research by Sirivedhin and Gray (2005) indicated that waters 

with high DOC, such as wastewaters, have a higher disinfection by-product formation 

potential (DBPFP) than natural waters with exposure to chlorine. Krasner et al. (2005) 

showed that HAAs can form during chlorine disinfection of municipal WWTP effluent.  

However, only low levels of HAAs were detected due to high concentrations of ammonia in 

the waste. These findings suggest that HAAs will form at detectable concentrations as 

wastewater effluent is chlorinated and will persist downstream of municipal WWTP 

discharges.  

This hypothesis was tested on waters surrounding WWTP1, which chlorinated and 

de-chlorinated the effluent.  Upstream, effluent, and downstream samples were collected and 

extracted using EPA method 552.  Early applications of this method showed DCAA and 

TCAA concentrations below the PQL of 2µg/L.  An additional calibration point was added to 

lower the PQL to 1µg/L, but, many DCAA and TCAA concentrations were still below this 

value.  In order to quantify low DCAA and TCAA concentrations, method development was 

undertaken to increase the concentration factor during extraction by several methods: 

concentration of solvent extraction volume, larger volume liquid- liquid extraction (LLE) and 

solid phase extraction (SPE). 
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3.3.1 Evaluating Effect of Extracting Solvent Concentration by Blow-down  

HAAs exist in the environment in acid form, and they need to be derivatized to 

methyl esters for detection using gas chromatography.  In order to test the effectiveness of 

solvent blow down as a concentration step, experiments were first performed to determine if 

greater recovery resulted from blowing down the acid or ester form.  Esters were diluted 

from the haloester 6 standards stock mixture containing methyl DCAA at 600µg/L and 

methyl TCAA at 200µg/L.  Since methyl DCAA and methyl TCAA were present in the 

mixture at different concentrations, separate dilutions were prepared to obtain similar 

concentrations for both analytes.  Mix A contained 110µg/L methyl TCAA and 330µg/L 

methyl DCAA and mix B contained 11µg/L methyl TCAA and 33µg/L methyl DCAA.  Mix 

C had 40µg/L methyl TCAA and 120µg/L methyl DCAA and mix D was 4µg/L methyl 

TCAA and 12µg/L methyl DCAA.  All solutions were prepared in 2mL volumetric flasks 

containing MtBE.  The low concentration solutions were transferred to 10mL centrifuge 

tubes, blown down to approximately 200µL under nitrogen (visually assessed) and analyzed 

on the GC-ECD alongside aliquots of the original solutions to calculate recoveries.  During a 

separate evaluation, it was determined that visual approximation of 200µL was off by an 

average of 24µL.  Table 3.16 shows the results of this experiment, which indicate ester form 

blow down was more effective at lower concentrations.  Initial concentrations are the 

concentrations before blow down.  If 100% of the TCAA and DCAA esters remained after 

blow down, then the concentrations in the blown down solution would be 110 and 120µg/L, 

respectively.  Expected areas for blown down concentration was the area of the 110 or 

120µg/L solution. Percent recovery (% recov) was calculated by:  

Percent recovery=     (detector response of blow down solution)                    × 100          (3.1) 
          (detector response of the concentrated source solution) 
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Table 3.16 DCAA and TCAA ester recovery from blow down, analyzed by GC-ECD.  Expected areas of blown 
down solvents were the areas of the non- blown down solvent mixtures. 

 
Blown 
Down 

Initial 
DCAA 
conc 
(µg/L) 

Methyl 
DCAA 
Area 

Expected 
Area 

% 
recov 

Initial 
TCAA 
conc 
(µg/L) 

Methyl 
TCAA 
Area 

Expected 
area 

% 
recov 

Mix A  330 13317   110 18763   
Mix B Y 33 12038 13317 90 11 8920 18763 48 
Mix C  120 5035   40 2548   
Mix D Y 12 5975 5035 119 4 2889 2548 113 
          
Avg     108    81 
% CV     28    81 

 

Evaluation of the effect of blow down on the acids was undertaken on duplicate 

1µg/L solutions prepared in 2mL volumetric flasks of MtBE (Acid replicate A and B).  

Solutions were transferred to 10mL centrifuge vials, and blown down to approximately 

200µL under nitrogen, which was visually assessed.  Blown down extracts were derivatized 

with 25µL diazomethane/MtBE for 15 minutes at 4°C, quenched with a few grains of silicic 

acid, and analyzed on the GC-ECD alongside derivatized solutions of the original 1µg/L.    

Table 3.17 shows the recovery of DCAA and TCAA using this technique.  If no loss of acid 

had occurred during blow-down, the area response of the concentrated solution would be 

given by Equation 3.2:   

   Area of concentrated solution =  area of source solution × concentration factor         (3.2)   
       

For this experiment, the estimated concentration factor was nine, since 1.8mL was reduced to 

approximately 200µL. This recovery calculation was made from a single point measurement 

rather than from a calibration curve, which could generate error. Although acids were 

derivatized into esters for analysis, results are presented as acids to distinguish when using 

ester stock. 
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Table 3.17 DCAA and TCAA recovery from blow down of acid form, analyzed by GC- ECD.  Expected areas 
were extrapolated from Equation 3.2 

 
Blown 
down 

DCAA 
Area 

Expected 
Area 

% 
recovery 

TCAA 
Area 

Expected 
Area 

% 
recovery 

Acid replicate A  4083   4889   
Acid replicate A Y 23734 36747 65 70148 44001 160 
Acid replicate B  3544   4320   
Acid replicate B Y 19062 31896 62 60339 38880 155 
        
Avg    62   157 
RPD    8   3 

 

There was a discrepancy in acids and esters concentrations, which may be due to 

degradation of the ester stock.  To calculate accurate concentrations, 500µg/L acids were 

prepared in 2mL MtBE, derivatized and analyzed on the GC-ion trap-MS, CI mode.  Analyte 

area of derivatized acids were compared to a solution of 555µg/L esters, which accounted for 

the mass difference between the acids and esters and represents the concentration if all the 

acids were recovered.  Actual concentrations of ester stock were estimated as TCAA: 

240µg/L and DCAA: 370µg/L.   

The ester portion of the above experiment was repeated in duplicate, using dilution 

calculations based on estimated ester stock concentration.  DCAA and TCAA recovery is 

presented in Table 3.18.  Dilutions of the stock solution were prepared at 12µg/L and 

120µg/L using corrected concentrations for both analytes.  Duplicates were prepared of lower 

concentration mixtures for analysis of precision in blow-down. Mix A contained 120µg/L 

methyl TCAA and 185µg/L methyl DCAA, while mixes B and C had 12µg/L methyl TCAA 

and 18.5µg/L methyl DCAA.  Mix D had 120µg/L methyl DCAA and 78µg/L methyl TCAA 

and mixes E and F contained 12µg/L DCAA and 7.8µg/L methyl TCAA.  Internal standard, 

1-2, dibromopropane, was added after blow down at a concentration of 50µg/L to ensure that 

variability in detector response was not due to injection error. If 100% of the 12µg/L ester 
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was recovered after blow-down, the chromatographic response would be equivalent to that of 

ten times the concentration (i.e. 120µg/L). Comparing the results of Tables 3.17 and 3.18, 

DCAA area was in the order of magnitude expected from 1µg/L acid areas but TCAA was 

enhanced. Comparing the average recoveries in Table 3.15 and 3.18, the repeat experiment 

yielded lower average recoveries.   

Table 3.18 Repeat of esters blown down and recovery experiment, analyzed by GC-ECD.  Expected area was 
calculated using Equation 3.2. 

 
Blow  
down 

Initial 
DCAA 
conc 
(µg/L) IS Area 

Methyl 
DCAA 
Area 

Exp 
Area 

% 
recov 

Initial 
TCAA 
conc 
(µg/L) 

Methyl 
TCAA 
Area 

Exp 
Area 

% 
recov 

Mix A 185  601603   120 1584094   
Mix B Y 18.5 22347 627945 601603 104 12 775520 1584094 49 
Mix C Y 18.5 29825 671833 601603 112 12 823547 1584094 52 
Mix D 120  256187   78 616720   
Mix E Y 12 49980 166159 256187 65 7.8 195076 616720 32 
Mix F Y 12 33612 206164 256187 80 7.8 246326 616720 40 
           
Avg   33941   90    43 
% CV   34   24    21 

 

 3.3.1.1 Solvent Blow Down After LLE 

Twenty mL duplicates of LGW and WWTP1 upstream (WWTP1 US) water samples 

were spiked with 2µg/L DCAA and TCAA and processed using LLE extraction (Brophy et 

al. 2000).  MtBE extract was transferred to 2mL volumetric flasks, extract was derivatized 

and 200µL was transferred using a micropipetter to an insert inside a 2mL auto-sampler vial 

for GC-ECD analysis.  The remaining volume was transferred to a 10mL centrifuge vial, and 

blown down to approximately 200µL under nitrogen, which was visually assessed.  Fifty 

µg/L IS was added and transferred to an auto-sampler insert for GC-ECD analysis. Results 

are shown in Table 3.19. Expected area was calculated using Equation 3.2.  For this 

experiment, the concentration factor was nine, since 1.8mL was blown down to 

approximately 200µL.  
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Table 3.19 Average DCAA and TCAA recovery from spiked LGW and WWTP1 US following LLE and blow-
down, analyzed by GC-ECD. 

 

Blow
down 

IS Area 
DCAA 
Area Exp Area 

%  
Reco

v 
TCAA 
Area Exp Area 

% 
recov 

Avg LGW  254602 40643   185724   
Avg LGW Y 562878 141753 365787 39 542924 1671516 32 
Avg WWTP1 US  224248 45663   208208   
Avg WWTP1 US Y 682825 215565 410967 52 787217 1873872 42 

 

The results show lower recovery, particularly for DCAA in acid form, than when the 

ester standard is blown down.  However, this could be partially explained by less than 100% 

recovery of the acid during extraction.  Experiments of ester form blow down from extracts 

of LGW and surface water yield lower recoveries than experiments in pure solvent (Section 

3.3.1) and a similar effect could be happening with the acid forms.   Blow down of internal 

standard yielded areas 2-3 times as large as non-blown down extracts, rather than the nine-

fold expected concentration factor, but this was most likely due to volatility losses of the 

compound. Recovery was higher for DCAA when blowing down in ester form than as an 

acid, but for TCAA it was higher when blown down in acid form.  However, blowing down 

as acids was less variable, practically easier, and avoided the presence of magnesium sulfate 

and silicic acid granules, which were used for derivatization, during blow-down.  For these 

reasons, HAAs were blown down in acid form. 

 

3.3.2 Larger Volume Liquid-Liquid Extraction 

Liquid-liquid extraction (LLE) was evaluated using a larger aqueous volume.  

Duplicate 100mL LGW aliquots were spiked with 2µg/L of DCAA and TCAA and sample 

pH was adjusted to a value below 1 with 7.5mL of concentrated H2SO4.  The sample was 

transferred to a 250mL separatory flask, 20mL MtBE as extraction solvent was added, 
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followed by 6mg of sodium sulfate to salt out the acids.  Extraction was conducted by 

capping the separatory flask, inverting several times, and allowing the water and organic 

phases to separate for approximately five minutes.  After separation, the aqueous layer was 

drained and the remaining MtBE organic solvent layer was collected into 40mL glass vials.  

The extract was then blown down under nitrogen to slightly less than 2mL, transferred to a 

2mL volumetric flask and adjusted to volume with MtBE.  One hundred µg/L IS was added 

to the extracts, which were then derivatized according to the method by Brophy et al. (2000) 

and the resulting esters analyzed on the GC-ECD.  The total concentration factor was 50, 

which, assuming 1005 recovery, would generate an ester concentration in the final extract of 

just over 100µg/L.   
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Table 3.20 shows the experiment results: average of 10% for DCAA and 35% for TCAA.  

Expected response was calculated using the trendline equation from absolute areas of the 

calibration curve, which had been prepared by smaller volume LLE. The fact that the 

estimation of 125µg/L was obtained from the smaller volume LLE adds uncertainty to the 

results.  However, general recovery from LLE extraction should be comparable, despite 

volume differences.  Method losses could be due to concentration of extraction solvent in 

acid form after LLE.  Results from Table 3.18, of spiked LGW extracted using LLE for 

estimated extract concentration of 10µg/L, show DCAA area around 40,000 counts, which 

was larger than this area for estimated concentration of 100µg/L.  This discrepancy implies 

that larger volume LLE was not as effective at recovering DCAA.  
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Table 3.20 DCAA and TCAA recovery from larger volume LLE with extraction solvent blow down, analyzed 
by GC-ECD. 

 IS Area 
DCAA 
Area 

Expected 
results 

% 
recovery 

TCAA 
Area 

Expected 
results 

% 
recovery 

LLE A 546499 26309 254883 10 355110 750140 47 
LLE B 605535 27897 254883 11 166366 750140 22 
        
Avg 576017 27103  11 260738  35 
RPD 10 5.9  5.9 72  72 

 

Recovery of DCAA and TCAA extracted through larger volume LLE was retested.  

Triplicate 100mL aliquots of LGW were spiked with 2µg/L DCAA, TCAA and DCAA-d2 

were extracted as described above, derivatized and analyzed on the GC-MSD along with a 

solvent standard prepared at the theoretical 100% recovery concentration.  Table 3.21 shows 

the results of the retest of analyte recovery through larger volume LLE extraction.  Percent 

recovery was the average area of LGW extracts compared to the average standard area for 

that ion.   Recovery was higher than the first experiment, but DCAA-d2 ion m/z 86 has very 

low recovery.  There are practical limitations to LLE; it was more time consuming than SPE 

and there were a limited number of separatory flasks available to perform multiple sample 

extractions. 

Table 3.21 DCAA (ions m/z 83 and 85), TCAA (ions m/z 117 and 119) and DCAA-d2 (ions m/z 84 and 86) 
recovery from larger volume LLE analyzed on GC-MSD. 

 
83- % 

recovery 
85- % 

recovery 
117- % 

recovery 
119- % 

recovery 
84- % 

recovery 
86- % 

recovery 
Avg LGW  75 58 58 42 62 7.5 

 
 
 

 3.3.3 Solid Phase Extraction (SPE) 

Several SPE cartridges and conditioning/elution methods were tested to concentrate 

DCAA and TCAA from aqueous samples and remove interfering humics and other organics.   

The use of C18 cartridges (Alltech, Deerfield, IL) was based on the method of Yoo et 

al. (1992).  Duplicate 250mL unfiltered aliquots of WWTP1 US were spiked with 1µg/L of 



 113 

both DCAA and TCAA, 2mL MeOH was added, and the solution was acidified to pH < 1 

with concentrated H2SO4.   The C18 cartridges were conditioned with 3mL MtBE, 3mL 

MeOH, and 2 x 3mL LGW.  The sample was passed at an approximate flow rate of 

1mL/min. Then the cartridges were dried under vacuum and nitrogen for 20 minutes each 

before eluting with 2 mL MtBE containing 50µg/L IS.  The extract was transferred to 2mL 

volumetric flasks, adjusted to volume with MtBE + IS, derivitized with diazomethane as in 

the method by Brophy et al. (2000), and analyzed with GC-ECD.  The overall concentration 

factor was 125, yielding an expected HAA concentration in the final extract of 125µg/L, 

assuming 100% recovery.    

Table 3.22 shows the results of this initial SPE experiment and demonstrates the 

variability.  Expected results were extrapolated from the  absolute area trendline of the 

calibration curve of LGW extracted with smaller volume LLE to calculate estimated area for 

125µg/L in the extract.  Estimating concentration from a different extraction method adds 

uncertainty to the recovery calculations. Additionally, the areas of all analytes are larger than 

the areas in Table 3.20, although assuming 100% recovery, they should all be 125µg/L. 

These increased areas, especially for internal standard, were hypothesized to be coming from 

other compounds co-eluting from the cartridge bed with similar retention times to DCAA and 

the internal standard.   

Table 3.22  DCAA and TCAA analysis and recovery from surface water extracted by C18 SPE, analyzed by 
GC-ECD. 

 IS area 
DCAA 
area 

Expected 
areas* 

% 
recovery 

TCAA 
area 

Expected 
areas* 

% 
recovery 

SPE A 1440925 19962 316698 6.3 85078 918000 9.3 
SPE B 7752675 906178 316698 286 275934 918000 30 

        
Avg 4596800 463070  146 180506  20 
RPD 137 191  191 106  106 

* obtained from calibration curve obtained by LLE using 20mL LGW and 4mL MtBE 
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Of all the concentration methods tested, SPE appears to be the most efficient and was 

further investigated.  However, there were no comparable standards to accurately calculate 

percent recovery and the problems of increased internal standard area and high variability 

among results needed to be corrected. 

 
 

3.3.3.1 Increasing C18 recovery with two cartridges in-series 

In order to enhance SPE recovery, two C18 cartridges were tested in series.  Two 

identical C18 cartridges were individually conditioned as described in section 3.3.3, 

connected in series leaving LGW in the lower cartridge before adding aqueous sample into 

the upper cartridge. In-series cartridges were each separately eluted, as described in sect. 

3.3.3, into one test tube and compared to the elution of a single cartridge using the same 

extraction method.  Samples were analyzed using GC-ion trap-MS, CI mode.  Each method 

was tested on triplicate 100mL LGW aliquots (A-C) spiked with 3µg/L DCAA and TCAA, 

with expected concentration in final extract was 375µg/L.  However, no standard was 

prepared for comparison.  One single cartridge extract was spilled in processing. While 

DCAA was detectable in all five samples, TCAA was only visible in the chromatogram of 

the sample labeled ‘In-series-C’.  Analyte areas are shown in Table 3.23.  There were many 

extra peaks in all chromatograms, which may have prevented the detection of TCAA.  If the 

result of this sample was considered an outlier and removed from consideration, the average 

area increased and the variance decreased.  (Results with outliers removed are bolded).  

Results confirmed tandem C18 cartridges were more effective at analyte recovery than single 

cartridges. 
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Table 3.23  DCAA and TCAA recovery from C18 SPE. Analyzed by GC-ion trap-MS, CI mode. 
 DCAA Area Average RPD/ % CV TCAA Area 

Single- A 46699 43344 16 ND 
Single- C 39989   ND 

In-series - A 82711 67638 31 ND 
In-series - B 76441   ND 
In-series - C 43762 79576 7.9 120862 

ND= not detected 
 

3.3.3.2 Comparison of SAX, C18 and HLB Cartridges  

SAX, C18 and HLB SPE cartridges were tested for analyte recovery.  Triplicate 

100mL LGW aliquots spiked with 3µg/L DCAA and TCAA were tested for each method. 

Sample size was reduced from 250mL, used in previous experiments, based on research by 

Martinez et al. (1998), which suggested that higher recovery could be achieved with smaller 

sample sizes.  The C18 cartridges were conditioned and eluted as described in section 3.3.3.  

One µL MeOH was added to each LGW aliquot, which was then acidified to below pH 1 

with concentrated H2SO4. 

Bond Elute SAX cartridges (Varian, Palo Alto, CA), used as a pre-treatment, were 

conditioned using the method of Martinez et al. (1998) and used in combination with either 

C18 cartridges conditioned as described in section 3.3.3 or Oasis 60mg/3cc HLB (Waters, 

Milford, MA) cartridges conditioned as described below.  The SAX cartridges were 

conditioned with 5mL MeOH and 5mL LGW at pH 0.5 (adjusted with concentrated H2SO4).  

The LGW aliquots were then passed over the SAX cartridges at approximately 15mL/min.  

The SAX cartridges were not allowed to dry after conditioning and were connected in series 

with either HLB or C18 cartridges.  Each SAX cartridge was washed with 2.5mL LGW at pH 

0.5 onto the HLB or C-18 cartridge.  The SAX cartridge was removed and the C18 or HLB 

cartridge was dried before elution. 
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A final method was based on Loos and Barcelo (2001).  LGW aliquots were acidified 

to pH 1.8 with concentrated H2SO4.  The HLB cartridges (60mg/3cc) were conditioned with 

5mL MeOH and 3mL LGW at pH 2.5, adjusted with H2SO4, at a flow rate of approximately 

1mL/min.  After separate conditioning, two HLB cartridges were stacked in series and the 

LGW aliquot was loaded at a rate of 5mL/min.  The cartridges were then separated and each 

cartridge was washed with 1mL LGW at pH 2.5.  The cartridges were dried under both 

vacuum and nitrogen.  Three plastic syringe volumes of air were forced through to ensure 

dryness. Finally, the cartridges were eluted with 4mL of MeOH:acetone (50:50 v:v), which 

was blown to dryness under nitrogen, reconstituted in 2mL MtBE + IS and derivatized.  In 

later experiments, cartridges were eluted with MtBE + IS to avoid blow down and 

reconstitution losses.   

Samples were analyzed using GC-ion trap-MS, CI mode, but a large contamination 

peak interfered with analyte detection.  Figure 3.9 shows the chromatograms extracted for 

ions m/z 143 and 177 for DCAA and TCAA esters, respectively.  The chromatogram for 

analysis of a 1mg/L ester standard is shown for comparison of analyte retention times.  

Qualitative analysis suggested the smallest contamination resulted from SAX-C18 or Loos 

and Barcelo HLB methods. 
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Figure 3.9 Ion chromatographs, extracted for ions m/z 143 (DCAA ester) and 177 (TCAA ester), of the 
following methods: (A) 1mg/L esters, (B)Loos C18,  (C)Loos HLB,  (D)SAX-C18,  (E)SAX -HLB, using GC-
MS CI mode. 

 

 3.3.3.3 Comparison of SAX-C18 SPE and Sample Volume 

Martinez et al. (1998) suggested that analyte recovery from tap water samples may be 

affected by pH and sample size.  The effect of sample size was further tested using duplicate 

50 and 100mL aliquots of LGW, which were spiked with 8µg/L and 4µg/L, respectively, of 

DCAA and TCAA.  SPE extraction was performed using the SAX-C18 method described in 

3.3.3.2, derivatized and analyzed by GC-ion trap-MS, CI mode. A dilution containing 

200µg/L DCAA and TCAA, the theoretical 100% recovery concentration, was prepared, 

derivatized and analyzed by GC-ion trap-MS for comparison. Internal standard was not 

detectable with GC-ion trap-MS, CI mode. Table 3.24 shows DCAA and TCAA recovery 

comparing sample extraction size. Comparing average areas, 100mL sample recovered more 

A 

B 

C 

D 

E 

DCAA 
TCAA 
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analytes than 50mL.  This experiment would need to be repeated with surface water to assess 

if NOM from surface or wastewater was retained by the cartridge bed sites, resulting in lower 

recovery as analytes passed un-retained. The extremely high areas and RPDs from LGW 

samples suggested contaminants co-eluted from the C18 cartridges. 

Table 3.24 DCAA and TCAA recovery from SAX-C18 SPE comparing aqueous sample size.  
 DCAA Area Avg RPD TCAA Area Avg RPD 
HAAs 200µg/L 487176   2317869   
SAX-C18-100mL-a 71014 127444 89 32961 18698 153 
SAX-C18-100mL-b 183874   4435   
SAX-C18-50mL-a 8712 12684 63 21213 24157 24 
SAX-C18-50mL-b 16655   27100   

 

 3.3.3.4 Recoveries from WWTP1 US with SAX-C18 and HLB 

SPE methods from 3.3.3.2 for SAX-C18 and HLB, along with the use of the HLB 

conditioning and elution method with C18 cartridges, were used for the extraction of surface 

water using MtBE + IS as the elution solvent. Duplicate 100mL samples of WWTP1 DS 

were spiked with 4µg/L each DCAA and TCAA, extracted, derivatized, and analyzed by GC-

ion trap-MS, CI mode.  A dilution containing 200µg/L DCAA and TCAA, the theoretical 

100% recovery concentration, was prepared, derivatized and analyzed by GC-ion trap-MS 

for comparison. Table 3.25 shows the analyte areas for qualitative comparison between SAX-

C18 and the Loos and Barcelo method using HLB or C18 cartridges, since internal standard 

was not detected by GC-ion trap-MS.  Qualitatively, Loos and Barcelo HLB method had the 

highest recovery and reasonable precision.  
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Table 3.25 DCAA and TCAA recoveries from WWTP1 US using SPE cartridges and methods. Analyzed by 
GC-ion trap-MS, CI mode. 
 DCAA area Avg RPD TCAA area Avg RPD 
HAAs 200µg/L 487176   2317869   
SAX-C18-a 58760 51899 26 650835 391334.5 133 
SAX-C18-b 45038   131834   
Loos-C18-a 20080 20386.5 3  25752 100 
Loos-C18-b 20693   25752   
Loos-HLB-a 264499 245534.5 15 1790553 1726225 7 
Loos-HLB-b 226570   1661896   

 

3.3.3.5 Contaminant Peak Identification 

Each step of the method was separately assessed as a potential source of 

contamination.  Two mL MtBE and 2mL derivatized MtBE were analyzed on the GC-ECD 

and no contamination was visible.  The HLB cartridges were conditioned as described in 

section 3.3.3.2 and C18 cartridges conditioned as described in section 3.3.3.  Two mL MtBE 

was passed over cartridges and captured.  A 200µL aliquot was transferred, using a micro-

pipetter, to an auto-sampler insert, and the remainder was derivatized.  Both were analyzed 

on the GC-ECD and GC-ion trap-MS and no contamination peaks were visible from either 

instrument.   

 

3.3.3.6 Determining Recovery of DCAA-d2 through SPE Method 

Triplicate 100mL aliquots of WWTP1 effluent (WWTP1 eff), along with 100mL of 

LGW, were spiked with 800ng/L DCAA-d2, which was obtained mid-way through the 

project.  The surrogate was assumed to behave similarly to non-deuterated compounds in 

terms of partitioning and sorption and, therefore, could be used to test recovery of non-

deuterated compound.   

Samples were filtered with 1.5µm Whatman filters and acidified with concentrated 

H2SO4 to pH<0.5 before SPE.  The HLB cartridges were individually conditioned using the 
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Loos and Barcelo (2001) method, described in section 3.3.3.2, connected in series and the 

aqueous samples were loaded.  After loading was complete and the cartridges were dried, 

cartridges were separated, washed, dried under vacuum and nitrogen, and eluted using the  

method described in section 3.3.3.2 with MtBE + IS as the elution solvent.  The eluted 

extract of approximately 4mL was split into two aliquots.  Two mL were removed using a 

syringe, derivatized and analyzed by GC-MSD.  These extracts were compared to a standard 

prepared at 20µg/L, the concentration assuming 100% recovery. Standards, LGW and 

WWTP1 effluent extracts at this concentration level were labeled as “a” extracts in Table 

3.26.   Without measuring the volume, the remainder of the extract was left in the centrifuge 

tube and blown down to dryness, reconstituted in 250µL MtBE for an exact volume, 

derivatized as described in section 3.3.1, and analyzed by GC-MSD along with a standard at 

160µg/L, the theoretical 100% concentration.  Standard, LGW and WWTP1 effluent extracts 

at this concentration were labeled “b” extracts in Table 3.26.   

The results of this experiment are shown in Table 3.26.  However, there are several 

problems with these results.  It was expected that the area responses for Standard B ions m/z 

84 and 86 would be eight times larger than Standard A, but this was not seen. The 

concentration factor was based on the assumption that 2mL of remaining extract were blown 

down, but actual volume was not measured and could have been less than 2mL. This possible 

overestimation of the concentration factor yielded uncertainty in the recovery calculations. 

Contamination peaks were visible in extract chromatograms, which may have interfered with 

detection of targeted ions.   An unspiked WWTP effluent sample was not extracted, so results 

could not be corrected for background concentrations of analytes.  Table 3.26 presents 

average results with the outliers removed and percent recovery compared to solvent standard.  
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For ion m/z 86, average recovery from WWTP1 effluent was 95% for “a” extracts and 99% 

for “b” extracts.  However, these recoveries could be over-estimated due to the presence of 

background analytes.  Results from LGW were low and inconsistent.  Higher areas from 

WWTP effluent samples suggested that other compounds may be co-eluting off the cartridge 

bed.  After this experiment, further experiments were conducted on pre-treatment and SPE 

cartridges to increase recovery. 

Table 3.26  DCAA-d2 recovery test from WWTP1 effluent. Analyzed by GC-MSD. 

 84 area 
% CV/ 
RPD % recovery  86 area 

% CV/ 
RPD % recovery 

Std a 491   13019   
LGW a 634  129 639  5 

Avg WWTP1 eff a 24979 29 3879 15222 27 95 
Std b 19882   23932   

LGW b 2165  11 1831  8 
Avg WWTP1 eff b 1749 60 9 23713 90 99 

 
 

3.3.3.7 Comparing SPE Cartridges for Analyte Recovery 

For each cartridge type tested, triplicate 100mL LGW aliquots were spiked with 

800ng/L DCAA-d2, DCAA, and TCAA.  A standard at 40µg/L, the theoretical 100% 

recovery concentration, was simultaneously prepared for comparison. The Loos and Barcelo 

(2001) method, described in section 3.3.3.2, was tested using MtBE + IS as elution solvent 

on both HLB and Phenomenex SDBL cartridges.  Triplicate SAX cartridges were evaluated 

comparing sample pH adjustment and elution solvents of pH adjusted LGW or 1:9 

MeOH:MtBE.  Sample pH was adjusted in an effort to remove humic material from the 

surface and wastewaters and to test the effectiveness of recovery of HAAs in protonated or 

deprotonated form.   

Two SAX methods were evaluated.  For SAX method 1, the cartridges were 

conditioned with 5mL MeOH and 5mL LGW.  These samples are labeled SAX1 in Table 
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3.28.  Samples labeled SAX 1a-c were eluted with 2mL 1:9 MeOH:MtBE, extracts were 

blown to dryness, reconstituted with 250µL MtBE, added internal standard, and derivatized 

with 25µL of diazomethane.  Samples labled SAX 1d-f were conditioned as above but were 

eluted with 2mL LGW at pH 0.5.  For all extracts from SAX method 1, LLE was used to 

extract HAAs.  Three mL of MtBE was added to extract analytes, which were vortexed for 

one minute.   The MtBE layer was transferred to 10mL centrifuge vial, blown to dryness 

under nitrogen, reconstituted with 250µL MtBE and derivatized with 25µL diazomethane.  

For the second SAX method, sample pH was adjusted to 2.5 with concentrated H2SO4 

and the cartridges were conditioned with 5mL MeOH and 5mL LGW at pH 2.5.  Samples 

labeld SAX 2a-c were eluted as SAX 1a-c, which was described above.  Samples labeled 

SAX 2d-f were eluted and extracted as SAX 1d-f, as described above.  Derivatized extracts 

were analyzed in GC-ion trap-MS, CI mode.  After analysis, samples were recapped, stored 

and reanalyzed using GC-MSD SIM. 

HLB and SAX 1a-c did not yield detectable results, as shown in Table 3.27. Sample 

SAX 1f was considered an outlier and removed from analysis. Percent recovery was 

compared to the area of the solvent standard.  Internal standard was not detectable with GC-

MS, CI mode. In most samples, there were many background noise peaks around the time of 

DCAA and DCAA-d2, with 127 as the main ion, that interfered with analyte area integration.  

This background noise was also visible in SAX 1d/e, however, analyte peaks are separate 

from background contamination, as shown in Figure 3.10.   
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Figure 3.10 SAX 1D chromatograph, targeted ions: DCAA-d2: 144, DCAA: 143 and TCAA: 177, GC-MS CI 
mode. 
 
Table 3.27 DCAA (ion m/z 143), TCAA (ion m/z 177) and DCAA-d2 (ion m/z 144) recovery from HLB, 
SDBL and SAX with pH adjustment SPE extraction, GC-MS CI mode. 

 
Avg DCAA-
% recovery 

RPD/ 
% CV 

Avg TCAA- 
% recovery 

RPD/ 
% CV 

Avg DCAA-d2- 
% recovery 

RPD/ 
% CV 

HLB       
SDBL 5 84 6 166 7 61 
SAX 1a-c       
SAX 1d/e 20 34 26 95 43 32 
SAX 2a-c 3 69 6 92 7 85 
SAX 2d-f 2 0 2 90 3 57 

 
Duplicates of each method type were re-analyzed with GC-MSD, as shown in Table 

3.28. TCAA was not detected in the solvent standard due to high background noise, and 

therefore, percent recovery cannot be calculated.  For DCAA, highest recovery results from 

SAX 1d/e, as shown in GC-ion trap-MS results in Table 3.27. 

Table 3.28 Results from re-analysis with GC-MSD. 83 and 85 are DCAA and 84 and 86 are DCAA-d2.  
  83- recov 85- recov 84- recov 86-  recov 
HLB 9 12 8 1 
SDBL  17 8 8 26 
SAX 1a/b     1 
SAX 1d/e 51 59 60  
SAX 2a/b 3 3 7 1 
SAX 2e/f 54   20 

 

DCAA-D2 

DCAA 

TCAA 
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3.3.3.8 SAX and HLB SPE Comparison Without Blow-down 

Analytes were spiked at a higher concentration and were extracted by SPE without 

subsequent blow down of the extract, so that SPE extraction efficiencies could be compared 

between SAX and HLB cartridges.  Triplicate 100mL aliquots of LGW and WWTP2 US 

surface water were spiked with 4µg/L DCAA, TCAA and DCAA-D2.  These aliquots and  

one unspiked WWTP2 US aliquot were tested without sample pH adjustment, since the 

results described in section 3.3.3.7 suggest that no pH adjustment yields the highest recovery.  

SAX cartridges were conditioned and eluted as for samples SAX 1d-f, described in section 

3.3.3.4 and results are shown in Table 3.29, labeled SAX LGW and SAX US.   

Two HLB methods, labeled HLB A and B, were each tested with triplicate 100mL 

LGW aliquots spiked with 4 µg/L DCAA, TCAA and DCAA-D2, and pH adjusted to 0.5 

with concentrated H2SO4.  For method HLB A, 60mg/3cc HLB cartridges were separately 

conditioned with 5mL MeOH and 5mL LGW at pH 0.5.  The two cartridges were connected 

in series, aqueous samples were loaded, the cartridges were separated and washed with 1mL 

LGW at pH 0.5.  For method HLB B, 60mg/3cc HLB cartridges were conditioned with 5mL 

MeOH, 3mL LGW at pH 2.5, two cartridges were connected in series, aqueous samples 

loaded, cartridges were then separated and washed with 1mL LGW at pH 2.5. All cartridges 

were dried under vacuum and nitrogen for half an hour.  Cartridges that had been connected 

in series from both HLB A and B were each eluted with 2mL 50:50 MeOH: LGW into one 

test tube.  LLE was used to extract HAAs using 2mL MtBE, and extracts were vortexed for 

one minute.   After layers separated, the MtBE extract was transferred to a 2mL volumetric 

flask, derivatized and analyzed by GC-MSD.  
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Simultaneously, an experiment was conducted to assess DCAA, TCAA and DCAA-

d2 recovery by LLE after SPE.  Two hundred µg/L DCAA, TCAA and DCAA-d2 were 

spiked into 2mL LGW adjusted to pH 0.5 with concentrated H2SO4. LLE was conducted with 

2mL MtBE, as described above.  Final extracts were analyzed on GC-MSD and compared to 

standards of 100 and 200µg/L of DCAA, TCAA and DCAA-d2 prepared in MtBE + IS and 

derivatized. 

Table 3.29 presents average recovery compared to appropriate standard average for 

each method.  GC-MSD SIM targeted ions m/z 83 and 85 for DCAA, 117 and 119 for TCAA 

and 84 and 86 for DCAA-d2.  Recoveries from LLE were over 100%, which may be affected 

by the lack of linearity of the half and full standards.  Outliers were removed from average 

recoveries.  Recoveries of SAX upstream were corrected for analytes detected in the 

upstream blank.  SAX upstream show higher recoveries than SAX LGW, which could be due 

to matrix effects, such as high levels of salts and other anionic compounds that might co-

elute with analytes.   

Table 3.29  DCAA  (ions m/z 83 and 85), TCAA (ions m/z 117 and 119), and DCAA-d2 (ions m/z 84 and 86) 
recovery from HLB, SAX and LLE, GC-MSD. 

 
83- avg 

recovery 
85- avg 

recovery 
117- avg 
recovery 

119- avg 
recovery 

84- avg 
recovery 

86- avg 
recovery 

HLB A 87 86 374 24 36 9 
HLB B 115 69 112 411 83 72 
SAX LGW 85 76 57 74 83 72 
SAX US 99 72 98 80 102 95 
LLE LGW 131 109 120 107 154 92 

  

Extracts were reanalyzed for comparison on GC-ion trap-MS, CI mode, as shown in 

Table 3.30.  Average recovery was calculated by comparing analyte areas to a solvent 

standard at concentration of 100% recovery.  Even though results from each instrument were 
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normalized to the solvent standard analyzed by the same instrument, there was discrepancy 

between recoveries from GC-ion trap-MS and GC-MSD.   

Table 3.30 DCAA, TCAA and DCAA-d2 recovery from HLB, SAX and LLE, GC-MS, CI mode. 
Sample DCAA recovery TCAA recovery DCAA-D2 recovery 
HLB A 43 24 38 
HLB B 91 84 98 
SAX LGW 75 67 79 
SAX US 77 74 88 
LLE LGW 96 85 104 

 

From both GC-MSD and GC-MS results, HLB B has the highest recovery overall, 

compared to HLB A and SAX LGW.  However, prior experiments show contamination 

peaks in the chromatograms and difficulty detecting DCAA and TCAA, even in standards. 

Although HLB B method appears to be the most effective for analyte recovery from LGW, 

more experiments need to be conducted to improve recovery efficiency of analytes from 

more complex matrices.   

 
  3.3.3.9 DCAA and TCAA Method Concentration Summary 
 

Detection of HAAs from complex matrices, such as surface and wastewaters, is 

complicated because the concentrations of HAAs were low and many interfering compounds 

must be removed.  Three general concentration methods were tested: blowing- down acid and 

ester forms of HAAs, using larger volume LLE and several SPE extraction cartridges and 

methods. Due to time constraints, method development work on HAA concentration method 

was discontinued.  HAA results presented in Section 3.4 were extracted with LLE using the 

Brophy et al. (2000) method and larger volume LLE. 
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3.4 DCAA and TCAA Occurrence in Environmental Samples 

 HAAs were hypothesized to form during the chlorination of wastewater before 

discharge, were proposed as indicators of WWTP pollution into receiving waters.  To 

validate this hypothesis, samples around WWTPs were tested for HAA occurrence within 

WWTP effluent and their persistence downstream.  It was assumed that concentrations of 

chlorine within septic tanks would  not be high enough to cause HAA formation and analyzed 

septic tank samples were used to test this assumption.   Samples were processed using 

the Brophy et al. (2000) LLE and larger volume LLE methods. 

 
3.4.1 DCAA and TCAA Occurrence from Surface Waters Surrounding WWTPs 

 
 Two WWTPs that chlorinate and dechlorinate wastewater before discharge were 

sampled for HAA formation in WWTP effluent and persistence in downstream surface water.  

WWTP2 was sampled five times over the summer and fall and WWTP2 was sampled twice 

in the fall, with duplicate samples processed.  HAAs were extracted using the Brophy et al. 

(2000) LLE extraction method.  The PQL for this method was 1µg/L, however, many of the 

environmental sample concentrations were below this PQL.  The trendline equation from the 

calibration curve was used to extrapolate areas below this PQL, if the RPD between duplicate 

calibration points was below 10%.  Negative concentration estimations were considered to be 

zero. An example calibration curve is shown in Appendix 2. 

Figures 3.11 and 3.12 present the occurrence of DCAA and TCAA from WWTP1 and 

surrounding surface water.  Because nitrification occurs in WWTP1 effluent, low HAA 

concentrations were expected from WWTP1.  Chlorine is likely to react first with ammonia, 

to form chloramines, before interacting with NOM to form HAAs.  The widest concentration 

range for both analytes occurs from the effluent, which may reflect variance in wastewater 
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ammonia present at the time of chlorination and, therefore, varied DCAA and TCAA 

formation.  DCAA and TCAA appear to persist downstream, at concentration ranges similar 

to WWTP effluent.  Low DCAA concentrations upstream implied that downstream 

concentrations resulted from WWTP effluent. 
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Figure 3.11 DCAA occurrence in samples from WWTP 1 and surrounding surface water. 
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Figure 3.12 TCAA occurrence in samples from WWTPs 1 and 2 and surrounding surface water. 
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 WWTP2 nitrified the wastewater effluent, so higher HAA concentrations were 

expected from WWTP2 effluent than from WWTP1, as seen in Figures 3.13 and 3.14.  

Because TCAA was not detected upstream, HAA occurrence downstream from WWTP2 can 

be correlated to WWTP effluent discharge.  DCAA appears to have degradaed downstream 

more than TCAA, although both analytes were detectable downstream.   TCAA had a higher 

range from effluent, which could be due to sampling variability.  However, persistence of 

TCAA downstream added strength to usage of HAAs as proposed indicator. 
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Figure 3.13 DCAA in samples from WWTP 2 and surrounding surface waters. 
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Figure 3.14 DCAA in samples from WWTP 2 and surrounding surface waters. 
 
 Occurrence data from both treatment plants were compiled to represent possible 

DCAA and TCAA ranges from chlorinating WWTPs as shown in Figures 3.15 and 3.16.  

Variability in effluent HAA concentrations could be due to daily fluctuations in factors that 

influence HAA formation, such as DOC in wastewater, chlorine dose, amount of nitrification 

and chlorine contact time.  DCAA showed a wide range of sample concentrations, although 

the majority of the concentrations were between 1-3µg/L.  DCAA concentrations 

downstream are significantly higher than upstream levels.  Although not conclusive, these 

results show that HAAs formed as effluent was chlorinated, persisted after dechlorination 

and were detectable downstream.  Although HAAs were only detected at low concentrations 

in effluents, these compounds persisted downstream of WWTPs.  However, the low 

downstream concentrations show the need to develop a method with a lower PQL in complex 

matrices.   

n=2      n=4                n=4  
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Figure 3.15 DCAA occurrence compiled from WWTP 1 and 2 samples and surrounding surface waters. 
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Figure 3.16 TCAA occurrence compiled from WWTP 1 and 2 samples and surrounding surface waters . 
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3.4.1.2 DCAA and TCAA Extracted with Larger Volume LLE 
 

In an attempt to detect HAAs at lower levels, 100mL samples from WWTPs 2 and 3, 

collected on two sampling dates in May, were extracted using larger volume LLE with 20mL 

MtBE.  The MtBE organic layer was blown to dryness and reconstituted in 2mL MtBE + IS, 

for a concentration factor of 50.  Concentrations were calculated from the trendline of a 

solvent calibration curve.  The combined occurrence data from WWTPs 2 and 3 are 

presented in Figures 3.17 and 3.18.  The results are not directly comparable to Figures 3.15 

and 3.16 because different samples were processed from different dates, different WWTPs 

were sampled and the difference in concentration calculations.  Despite these differences, 

concentration ranges are similar, which indicates the precision of LLE method.  Larger 

volume LLE extraction in combination with solvent concentration appears to enable 

detection of HAAs at lower levels. 
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Figure 3.17 DCAA and TCAA occurrence from WWTP samples extracted using larger volume LLE. 
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Figure 3.18 DCAA and TCAA occurrence from WWTP samples extracted using larger volume LLE. 

 
 

3.4.2 DCAA and TCAA Occurrence in On-Site Wastewater Treatment Systems 
 
 It was hypothesized that DCAA and TCAA would not be detected in household septic 

tanks, either because most households do not disinfect the septic system or use enough 

chlorine cleaning products for HAA formation. To test this assumption, advanced treatment 

and household septic tank samples were analyzed for an indication of HAA concentrations in 

septic tanks.  Septic tank samples were processed using the Brophy et al. (2000) method of 

LLE with 20mL sample and 4mL MtBE.   

The majority of DCAA and TCAA concentrations from septic tanks were lower than 

from WWTP effluent, as shown in Figure 3.19. The high school advanced treatment system 

and approximately half the houses sampled were on city water and HAAs detected in septic 

tanks were likely due to HAA occurrence in tap water.  The  concentration ranges from 

WWTPs and septic tanks overlapped and were not distinguishable with the current method.    

n=14             n=33          n=14      n=28 
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 Figure 3.19 DCAA and TCAA occurrence in septic tanks and WWTP effluent. 

 
 A precise and accurate method for HAA detection at low levels needs to be perfected 

for clearer distinctions between septic and WWTP effluent concentrations.  Although DCAA 

and TCAA concentrations in WWTP and septic tank effluent have similar ranges, the 

occurrence data confirm detectable levels of DCAA and TCAA in WWTP effluent which 

persist downstream. 

 

3.5 Fluorescence Results 

 By comparing the regions and intensity of fluorescence from water samples, 

fluorescence spectrophotometry has the ability to provide on- line and real- time analysis of 

water samples.  There are five main fluorescence regions: regions I and II represent aromatic 

proteins, region III encapsulates fulvic acids, region IV represents soluble microbial by-

products and region V humic acids.  Region IV, which indicates the presence of tryptophan, 

n=18             n=20          n=24      n=29 
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has been linked to the presence of wastes (Baker 2001). In this study, the usefulness of 

fluorescence as a tool to distinguish WWTP and failed septic system pollution was tested 

with effluent samples.  

Environmental samples were filtered with a 0.2µm filter and stored at 4°C for up to a 

week before measuring fluorescence.  Fluorescence data were acquired by FL Solutions 

software and intensity data were transferred to Microsoft Excel, which sorted the data.  The 

Ramen/ Rayleigh scattering, which naturally occurs in the fluorescence image of all water 

samples, was manually removed using Excel.  For sample comparison, intensities from the 

highest points within each fluorescence region were selected.  After cleaning the data in 

Excel, intensity data were transferred to SigmaPlot, which was used to produce EEM 

contours and box and whisker plots. 

 

 3.5.1 Use of EEM (Fluorescence) as an Indicator  

Samples from all three WWTPs and surrounding surface waters were analyzed using 

fluorescence spectrophotometry.  WWTP2 was sampled on two dates, but WWTPs 1 and 3 

were sampled once.  An example of the series of samples analyzed is shown in Figure 3.20.  

Although these EEMs show one sample, they represent a trend that was repeated from all the 

samples at each location. The scale was not normalized, and up- and downstream contours 

represent 250 intervals to allow greater comparison in regions I and II, while effluent and 

discharge have 500 intensity intervals.  Section 1.6 describes the fluorescence regions in 

more detail, but the general regions are highlighted on the effluent EEM.  A drawback to 

fluorescence is the need to compare downstream samples to upstream samples in order to 

assess pollution, since each natural water has a unique fluorescence. 
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Figure 3.20 EEM images of fluorescence intensities in sampling locations around WWTP2.  Note differences 
in legend scale. Region I: Aromatic Protein. Region II: Aromatic Protein II. Region III: Fulvic acid-like. Region 
IV: Soluble microbial by-product-like. Region V: Humic acid-like. 
  

The effluent sample had higher intensities than the natural water samples in all 

regions, especially in the microbial by-product region (IV), which characterizes waste-

impaired waters.  The intensity of every spectral region degraded with dilution in surface 

water until the intensities downstream were indistinguishable from upstream in all regions, 

I II III 

IV 

V 



 137 

even though the region II in downstream EEM has a wider range of intensities than the 

upstream EEM. The similarity in intensity ranges through all fluorescence regions between 

up and downstream samples and the lack of tryptophan detection downstream indicate that 

wastewater discharge was not identifiable downstream 0.4 miles below the effluent 

discharge.  

The intensity ranges for all three WWTPs and two septic tank samples were compiled 

by fluorescence region and compared in a box and whisker plot, shown in Figure 3.21. Only 

minimum and maximum values are presented in regions with less than three values.  The 

higher intensities and wider intensity ranges found in wastewaters, both septic and WWTP 

effluents, distinguish these samples from natural surface water. The wide range of intensities 

from WWTPs may reflect daily differences in the amount of wastewater treatment on each 

sampling date, based on treatment plant factors such as flow, retention time and chlorine 

dose.  However, more samples are necessary, especially from septic tank samples, to 

accurately portray the range of intensities.    
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Figure 3.21 Fluorescence intensity ranges compiled for WWTPs, surrounding surface waters and septic tanks. 
Region 4 is soluble microbial by-products and region 5 is humic acid.  US n= 4, EFF n= 4, DS n=7, 
septic n=2. 
 

Side-by-side comparison of EEM images from septic (high school tank) and WWTP 

effluents visually highlight the differences in fluorescence regions and intensities, as shown 

in Figure 3.22. Septic effluent shows higher intensities in the tryptophan/tyrosine (Region II- 

soluble microbial by-product- like) and in Region V (humic acid- like).  The difference in the 

amount of treatment and treatment processes within the septic tank and WWTP are shown in 

the EEM images.  However, the overlapping intensity ranges indicated that their effluents 

may not be distinguishable in the environment.   
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Figure 3.22 EEM images for WWTP and septic effluent.  Note difference in scale between the two images. 
   

For an indication of the fluorescence spectrum of effluent from a functioning septic 

system, one sample from each location through the high school advanced treatment system 

was analyzed to provide a snapshot of fluorescence intensities.  Tryptophan, which often 

indicates waste, is seen in the septic effluent and after one pass through the sand filter, as 

shown in Figure 3.23.  There are little differences in humic- like and fulvic- like intensities 

between different surface and wastewater samples. 
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Figure 3.23  Fluorescence intensities across the advanced treatment high school system. 
 
  

 3.5.2 Fluorescence Intensity in Septic Tank Effluent Dilution Experiments 

 As an indication for the distance downstream that the fluorescence spectra would be 

impacted by a failed on-site system, high school advanced treatment septic tank samples 

were diluted with surface water collected upstream of the system.  Dilutions were prepared at 

1:2, 1:5, 1:10 and 1:20. Average septic tank flow rates of 69.3 gallons/person/day, estimated 

by Mayer et al. (1999), were used assuming a four person household for an average of 277.2 

gallons /day.  Assuming that 100% of effluent from a failed tank reached surface water, 

dilution calculations at this range represent small streams, shown in Table 3.32.  Results of 

the dilution experiment are shown in Figures 3.24 and 3.25. The high intensity in septic 

effluent became diluted by upstream waters.  The spectral region representing the presence of 

tryptophan was absent from upstream, but remained detectable in all dilutions, implying the 

presence of waste in the water.   

 



 141 

Table 3.32 Equivalence of dilution factor to stream flow. 
Dilution Factor Effluent(g/d) Calculated streamflow (ft3/s) 

2 277.2 0.000858 
5 277.2 0.002144 

10 277.2 0.004289 
20 277.2 0.008578 
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Figure 3.24 Fluorescence intensities of septic tank effluent diluted with upstream surface water. 
 
 The EEM contours from the dilution experiment are shown in Figure 3.25.  The 

legend shows the intensities, the scale of which is different for each plot.  Visually, by the 

1:10 dilution, the EEM more closely resembles the upstream than the septic effluent sample.
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Figure 3.25 EEM contours showing fluorescence intensity for high school septic tank diluted samples.  Note 
septic tank effluent scale only reaches 5000 for comparability, but intensities are much higher.   



CHAPTER 4: CONCLUSIONS AND RECOMMENDATIONS 
 
4.1 Summary and Conclusions  
 

The objective of this research was to identify chemical indicators that could be sampled 

from surface waters to distinguish between point and non-point sources of pollution, specifically 

municipal WWTPs and failed on-site septic systems.  Potential indicators were chosen based on 

prevalence, chemical properties and previous occurrence data indicating likelihood of detection. 

Caffeine and triclosan were proposed as indicators of failed septic systems and HAAs, 

specifically DCAA and TCAA, as indicators of the presence of effluent from conventional 

WWTPs.  Fluorescence spectrophotometry was investigated as an additional tool to differentiate 

pollution sources in the aquatic environment. 

An SPE method was perfected for simultaneous analysis of caffeine and triclosan in 

different wastewater samples.  Deuterated standards were spiked into sample aliquots at the start 

of processing for determination of analyte loss through the method and concentration 

determination.  Strata X cartridges were washed with hexane, MtBE, MeOH and a phosphate 

buffer.  These cartridges were eluted with 3:7 MtBE:ACN solvent mixture onto conditioned 

silica gel cartridges, which were eluted with the same solvent mixture.  Extracts were blown 

down to dryness, reconstituted in ACN, and derivatized with BSTFA and pyridine containing 

HCB, as internal standard.  Extracts were analyzed by GC-MSD. 

The effluents from three WWTPs in North Carolina, of varied size disinfecting with 

either chlorine or UV, were sampled in cold and warm water seasons and analyzed for a sense of 
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target analyte concentration ranges.  Caffeine and triclosan were detected in both WWTP and 

septic tank effluent samples.  Caffeine in WWTP effluents (n=29) ranged from below detection 

(BD) to 1.2µg/L (average = 0.23µg/L) and triclosan (n=30) from BD to 1.63µg/L (average = 

0.3µg/L).  These analytes were detected downstream (0.27-3.6 miles) of effluent discharges from 

WWTP, but at lower concentrations (from BD to 0.8µg/L caffeine and from BD to 0.7µg/L 

triclosan).  Septic tank samples were collected from households and two advanced treatment 

systems, an office and a high school.  Caffeine (n=15) from septic tank effluents ranged from 5.4 

to 88.3µg/L and triclosan (n=20) from 110ng/L to 16.2µg/L.  

The high school advanced treatment septic system was sampled throughout the entire 

treatment process for an indication of the effect of a functioning system on caffeine and triclosan 

degradation.  Through the combination of aerobic and anaerobic degradation processes, both 

analytes were degraded from high concentrations in the septic tank (average caffeine (n=7): 

26µg/L and triclosan (n=7): 1.5µg/L) to an average of 70ng/L for both compounds after 

treatment, which can be extrapolated to concentrations after drainfield treatment.  These high 

rates of degradation suggest that a functioning septic system, which employs settling, aerobic 

and anaerobic treatment processes through the combination septic tank and drain field, would 

effectively remove compounds and not be a source of surface water pollution. 

On the other hand, high concentrations of caffeine and triclosan are expected to persist in 

the septic effluent as it flows from a failed system into nearby surface waters and then be 

detectable downstream.  For this project, septic system failure was defined as a problem between 

the tank and the drainfield, so that effluent still undergoes settling and anaerobic degradation in 

the septic tank.  Failed septic systems were located with the help of the Orange County Health 

Department.  Samples were collected from within septic tanks, pooled surface sewage and from a 
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nearby stream during a rain event.  Both indicator analytes were detected in the pooled sewage 

(n=3) at average concentrations of 2.3µg/L caffeine and 1.6µg/L triclosan.  From a different 

failed system, caffeine was detected in samples collected downstream of a failed septic system 

during a rain event at an average of 270ng/L, which is a higher concentration than the average 

value of WWTP effluents sampled.  These occurrence data show that triclosan and caffeine 

remain in high concentrations in surfacing effluent from failed septic systems and that if the 

septage were to travel overland to surface waters, their presence in surface waters far removed 

from WWTP discharges would be an indication of non-point pollution.   

DCAA and TCAA were extracted from environmental samples using the Brophy et al. 

(2000) method of LLE using 20mL sample aliquots and 4mL MtBE. Initial extractions of 

wastewaters revealed low concentrations of DCAA and TCAA around or below the PQL of 1 

µg/L, so several methods were tested to lower the detection limit of the analytical methods.  

Solvent extraction concentration was tested using blow down for HAA acids and methyl esters.  

Larger volume LLE was utilized with 100mL of sample and 20mL of MtBE.  The MtBE extract 

was blown to dryness and reconstituted in 2mL MtBE for derivatization and analysis.  HLB 

cartridges were tested in series conditioned with MeOH and LGW at pH 0.5.  Sample pH was 

adjusted to pH 0.5, passed over two cartridges in series, which were eluted with MtBE or 50:50 

MeOH:LGW.  Initial results of concentration methods were inconclusive but larger volume LLE 

was used to extract environmental samples and yielded lower detection.   

The HAAs were harder to distinguish between WWTP and septic systems.  It was 

hypothesized that HAAs would be formed as WWTP effluent is chlorinated, dependent on the 

amount of in plant nitrification.  It was also assumed, by contrast, that insufficient chlorine 

would be present in septic tanks to form HAAs.  Samples were collected from three chlorinating 
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WWTPs over the course of a year.  DCAA (n=18) ranged from BD to 8.4µg/L and TCAA 

(n=20) from BD to 3.1µg/L in these effluents.  The range in septic tank effluent samples for 

DCAA (n=22) was BD-2.6µg/L and TCAA (n=29) was BD-1.8µg/L.  Despite difficulty 

detecting HAAs at low environmental concentrations, DCAA and TCAA were detected in 

WWTP effluents and in surface waters downstream of the point of discharge.  Their observance 

upstream of the point of discharge indicates the WWTP effluent as the source of these 

compounds.   These results suggest that HAAs are formed during chlorination of WWTP effluent 

at a slightly higher level than from septic systems.  However, detection of HAAs in surface water 

does not conclusively indicate WWTP pollution. 

Fluorescence spectrometry is a useful tool due to ease of sample preparation, quick 

analysis and ability for on- line sampling.  Detection of tryptophan fluorescence indicates 

influence of waste.  Hand-held fluorescence detectors can be taken into the field for real-time 

detection of pollution. 

EEM fluorescent spectra were collected for WWTP and septic tank effluents,  as well as 

surface waters surrounding WWTP discharges and throughout the advanced septic treatment 

system.  Fluorescence regions and their intensity levels can be used to characterize pollution in 

surface waters, especially in Region IV (soluble microbial by-product- like) and Region V (humic 

like).  When septic tank effluent samples are diluted with surface water, the EEM spectra 

becomes indistinguishable from upstream but tryptophan intensities are still detectable.  Presence 

of tryptophan in the fluorescence spectra of downstream water samples would be a good 

indication of wastes, even if the EEM spectra are indistinguishable.  The usefulness of 

fluorescence may be limited to close distances from discharge sources. 
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The proposed indicators can be used in combination with other monitoring tools to help 

identify a surface water pollution source.  For example, fluorescence spectrometry is a useful 

initial tool.  High intensities in fluorescence regions and presence of tryptophan provide an 

indication of influence of waste.  The next step could be to test these fluorescence samples for 

caffeine and HAAs and use the relative results to suggest the pollution source as WWTP or 

failed septic systems.  When used in combination with maps identifying other potential pollution 

sources, these tools have the ability to verify a surface water pollution source.   

An indicator tool with the ability to distinguish between point and non-point sources of 

surface water pollution is an invaluable benefit to both public health and environmental 

management.  Source identification enables more directed, efficient remediation and reduces 

further water quality degradation.  Protection of surface water quality is especially important in 

North Carolina, where these waterways are often the primary sources of drinking water.   

   

4.2 Recommendations  

 Developing one indicator to specifically identify pollution sources is a very complex 

issue.  This research is part of a larger project identifying indicators of other types of non-point 

source pollution.  Research into analyte concentrations and runoff from other non-point sources 

will enable further distinction between sources. 

 Additional sampling sites and increased number of samples are necessary for a more 

precise quantification of analyte concentrations from both WWTPs and septic systems.  

Sampling from more failed septic systems, especially pooled sewage and downstream of such 

systems would substantiate the concentration ranges in these sources and the effectiveness of 

these compounds as indicators.  If a failed system was identified near a stream, sampling during 
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both rain events and dry periods would provide information to better quantify effluent overland 

flow as compared to transport during runoff, which could be tested by installing auto-samplers.  

Additional sampling sites at further distances downstream of WWTPs would provide field 

estimations to test the die-off calculations. Further research into compound sorption and 

microbial degradation would enable a more precise determination of degradation and persistence 

downstream.  Analysis of compounds from suspended solids would provide a more accurate 

understanding of compound transport and degradation downstream of pollution sources. 

 Additionally, studies of personal care product use and their degradation/ removal during 

wastewater treatment would provide insight into other potential indicator compounds that are in 

high prevalence.  This information would be useful for determining influent concentrations and 

estimating elimination rates from septic systems. 

  Since DCAA and TCAA were detected at low concentrations  in WWTP effluents, 

further method development for their analysis in complex matrices is necessary to determine 

whether they persist downstream of conventional WWTP discharge and could be proposed as 

indicators of surface water pollution from such sources. 
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APPENDIX 1. 

Table A1. Selected properties of chemicals.  

 Caffeine  Triclosan Dichloroacetic 
Acid 

Trichloroacetic 
acid 

Molecular 
Formula 

 

C8H10N4O2 C12H7Cl3O2 C2H2Cl2O2 C2HCl3O2 

Kow units 
 

0.01 - 0.071 4.2-4.82 1.33 0.92 

Water 
solubility 

10-15mg/mL 
at 23°C 

 

10mg/L at 20°C3 10g/100mL at 
15° C4 

10g/100mL at 
22° C5 

pKa 10.4 
 

8.1 0.51 1.26 

Molecular 
weight 

 

194 289.5 129 163 

Melting 
point °C 

 

238 54-57.3 9.7 57 

Boiling 
point °C 

 

  194 196 

CAS # 
 

58-08-2 003380-34-5 79-43-6 76-03-9 

Est Koc 
units 

10 1.8 x 104 1.895 2.738 

Notes  Chlorinated 
phenoxyphenol, highly 

stable, lipophilic 
compound2 

  

CAS = Chemical Abstract Service 
Estimated Koc = soil organic partition coefficient 

                                                 
1 Thomas and Foster (2005)  
2Lindstrom et al. (2002) 
3 Morrall et al. (2004) 
4NIST 2005a.Acetic Acid, Dichloro -,National Institute of Standards and 
Technology.http://webbook.nist.gov/cgi/cbook.cgi?Units=SI&cTG=on&cIR=on&cTC=on&cMS=on&cTP=on&cE
S=on&cTR=on&cPI=on&cDI=on&ID=C79436.2006. 
5 NIST 2005b.Acetic Acid, Trichloro -,National Institute of Standards and 
Technology.http://webbook.nist.gov/cgi/cbook.cgi?Units=SI&cTG=on&cIR=on&cTC=on&cMS=on&cTP=on&cE
S=on&cTR=on&cPI=on&cDI=on&ID=C76039.2006.(2005b) 
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APPENDIX 2. Sample Calibration Curves 
Table A2.1 Example Caffeine and Triclosan Calibration Curve, with Deuterated standard RR Calculations.  284: HCB, 194: Caffeine, 197: Deuterated 
Caffeine.  

Sample 
Conc 
(µg/L) 

284 
time 

284 
area 

194 
time 

194 
area RR 

197 
time 

197 
area 

345 
time 

345 
area RR 

352 
time 

352 
area 

ACN blank              
cal 2 0.06 25.525 157324    29.094 3851    33.873 5785 
cal 3 0.12 25.525 167182 29.257 616 2825 29.129 2725 33.918 405 1263 33.888 4007 
cal 4 0.30 25.524 152412 29.324 1091 3797 29.362 1436 33.91 2638 2640 33.872 4995 
cal 5 0.60 25.526 143885 29.272 2410 3082 29.123 1954 33.894 7557 2967 33.866 6365 
cal 6 1.20 25.531 142238 29.277 1901 1205 29.105 1972 33.897 15679 3310 33.868 5919 
cal 6 1.20 25.529 142221 29.191 3435 3613 29.177 1188 33.897 16625 3260 33.867 6372 
ACN blank              
              
Avg   150877   3329     3044  5574 
Stdev   10082   453     309  918 
% CV   6.7   14     10  17 
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Figure A2.1 Calibration curve from 5/16/06 
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Table A2.2 Example calibration curve for HAAs, analyzed July 8 by GC-ECD. 

Sample 
Conc 
(µg/L) IS Area 

DCAA 
Area 

Rel 
Area Avg RPD 

TCAA 
Area Rel Area Avg RPD 

Cal 1A 0 146583         
Cal 1B 0 149164         
Cal 2A 2 162745 50252 0.309 49334 4 86476 0.531 85109 3 
Cal 2B 2 152388 48415 0.318   83741 0.550   
Cal 3A 5 155224 91747 0.591 83135 21 217764 1.403 207721 10 
Cal 3B 5 155099 74523 0.480   197678 1.275   
Cal 4A 10 161923 151380 0.935 135637 23 445413 2.751 471335 -11 
Cal 4B 10 162138 119893 0.739   497257 3.067   
Cal 5A 25 166597 270773 1.625 256831 11 1070083 6.423 972415 20 
Cal 5B 25 160314 242888 1.515   874747 5.456   
Cal 6A 50 165456 466659 2.820 457713 4 1747008 10.6 1759800 -1 
Cal 6B 50 167666 448766 2.677   1772591 10.6   
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Figure A2.2 DCAA and TCAA calibration curve analyzed 7/8/06 by GC-ECD.  
 
 
 



APPENDIX 3. Sample chromatograms 
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Figure A3.1 Sample total ion chromatogram from a high school septic tank effluent, analyzed by GC-MSD, 
5/16/06. 
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Figure A3.2 Example of extracted ion chromatograms from the high school septic tank effluent Extracted ions 
are m/z 284 for HCB, 194 for caffeine, 197 for deuterated caffeine, 345 for triclosan and 352 for deuterated 
triclosan. 
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Figure A3.3 Total ion chromatogram from WWTP2 effluent processed 5/31/06 using larger LLE extraction, 
analyzed by GC-MSD. 
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Figure A3.4 Extracted ion chromatogram from WWTP2 effluent processed 5/31/06 using larger LLE 
extraction, analyzed by GC-MSD.  Extracted ions are m/z 83: DCAA, 117: TCAA and 119: TCAA. 
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Chromatogram Plots
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Figure A3.5 GC-ion trap-MS, CI mode, chromatogram from WWTP2 effluent processed 3/10/06.  (A) Total 
ion chromatogram,  (B) DCAA extracted with ions m/z 143 and 145, (C) TCAA extracted with ions m/z 177 
and 179.  
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APPENDIX 4.  

Table A4.1 Fluorescence Intensities. 

  
Tryptophan (275, 

305) 
Tyrosine 

(280, 360)  
Fulvic-like (230-
260, 380-500) 

Humic-like (260-
400, 380-500) 

Soluble microbial 
products (260-400, 

300-380) 
Date Sample Ex Em Inten. Ex Em Inten. Ex Em Inten. Ex Em Inten. Ex Em Inten. 

11/23/2005 WWTP1 DS 280 310 1584    250 420 3455 320 400 2979    
11/23/2005 WWTP1 DS         290 417 2837    
11/23/2005 Septic 277 305 4210 290 361 7117 240 400 7542 310 390 7579    
11/23/2005 WWTP1 us      240 420 2534       
11/23/2005 WWTP1 we 279 310 1535    250 430 3812 320 400 3362    
8/18/2005 WWTP1 ds 280 310 125       286 415 244    
8/18/2005 WWTP1 we 280 310 100       320 400 153    
8/18/2005 septic 6-09 275 305 328    261 420 683 320 400 813    
8/18/2005 WWTP1       250 430 261 320 400 235    
5/3/2006 WWTP2 ds   280 350 1301 252 430 1653 320 410 1302    
5/3/2006 HS 1x    280 360 838 250 430 1635 330 413 1262 317 349 593 
5/3/2006 HS D1    280 360 697 250 423 1560 320 420 1007    
5/3/2006 HS d2    280 360 676 240 408 1553 320 411 916 300 350 500 
5/3/2006 HS d3    280 360 609 250 413 1509 320 413 876    
5/3/2006 HS d4    280 360 614 250 420 1551 320 410 857    
5/3/2006 WWTP1 us      240 410 1596 310 410 764    
5/3/2006 WWTP2 eff 280 300 6133 280 360 10000 250 450 5551 350 430 8101    
5/3/2006 WWTP2 D1   290 340 8770 250 440 3649 340 430 5166    
5/3/2006 WWTP2 D2   285 340 6846 260 440 3219 340 430 4269    
5/3/2006 WWTP2 D3   282 340 5378 250 440 2686 340 430 3421    
5/3/2006 WWTP2 D4   280 340 4779 260 440 2589 340 430 2911    

5/22/2006 HS ds       240 430 2807 330 430 2531    
5/22/2006 HS pu    280 360 816 250 430 1988 330 420 1472    
5/22/2006 HS 1x 275 305 803 280 360 969 250 430 1944 330 420 1550    
5/22/2006 HS pt 275 305 2857 280 343 4693    330 430 2286    
5/22/2006 HS pt d1 275 305 1035 280 360 1613 240 420 2814 330 430 2499    

  
Tryptophan (275, 

305) 
Tyrosine 

(280, 360)  
Fulvic-like (230-
260, 380-500) 

Humic-like (260-
400, 380-500) 

Soluble microbial 
products (260-400, 
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300-380) 
Date Sample Ex Em Inten. Ex Em Inten. Ex Em Inten. Ex Em Inten. Ex Em Inten. 

5/22/2006 HS pt d2 275 305 817 280 360 1200 240 430 2553 330 430 2495    
5/22/2006 HS pt d3 275 305 648 280 360 1035 250 440 2620 330 430 2615    
5/22/2006 HS pt d4 275 305 569 280 360 979 250 440 2570 330 430 2568    
5/22/2006       HS us       240 430 2715 330 430 2516    
5/22/2006   WWTP3 us   280 360 624 240 415 1878 310 410 1079    
5/22/2006 WWTP3 eff 275 305 1257 280 360 1705 240 410 2888 330 410 2411    
5/22/2006  WWTP3 ds 1   280 360 1093 240 410 2550 320 410 1646    
5/22/2006 WWTP3 ds 2 275 305 457 280 360 581 240 428 1754 310 408 1088    
5/22/2006  WWTP2 us   280 360 667 240 410 1806 310 410 1007    
5/22/2006 WWTP2 eff    280 360 2900 250 440 4068 340 422 4286    
5/22/2006   WWTP2 dis   280 360 1816 240 430 2723 340 430 2607    
5/22/2006   WWTP2 ds   280 360 755    310 410 1083    
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