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ABSTRACT

JING ZHOU: Nonparametric Bayes Methods for High Dimensional Data
AND Group Sequential Design for Longitudinal Trials

(Under the direction of Amy H. Herring)

High-dimensional unordered categorical data appear in a number of areas ranging

from epidemiology, behavioral and social sciences, etc. Such data can be placed into

a large contingency table with cell counts defined as the number of subjects with a

given combination of variables values. The contingency table is often sparse in prac-

tice in the sense that only a few cells have more than a few counts, with most cells

being empty. Traditional approaches for contingency table analysis fail to scale up to

moderate dimensions, and alternative approaches based on tensor decomposition are

promising. This motivates us to develop sparse tensor decompositions for multivariate

categorical variables where the number of variables can be potentially larger than the

sample size. The methods are shown to have excellent performance in simulations, and

results in various data sets are presented.

In paper 2, we consider such high-dimensional data in case-control studies, with the

main goal being detection of the sparse subset of predictors having a significant asso-

ciation with disease. We propose a new approach based on a nonparametric Bayesian

low rank tensor factorization to model the retrospective likelihood. Our model allows

a very flexible structure in characterizing the distribution of multivariate variables as

unknown and without any linearity assumptions as in logistic regression. Predictors are

excluded only if they have no impact on disease risk, either directly or through inter-

actions with other predictors. Hence, we obtain an omnibus approach for screening for

important predictors. Computation relies on an efficient Gibbs sampler. The methods

iii



are shown to have higher power and lower false discovery rates in simulation studies

relative to existing methods, and we consider an application to an epidemiologic study

of birth defects.

In paper 3, our goal is to design a longitudinal trial using group sequential design.

We propose an information-based sample size re-estimation method to update the sam-

ple size at each interim analysis, which maintains the target power while controlling the

type-I error rate. We illustrate our strategy by data analysis examples and simulations

and compare the results with those obtained using fixed design and group-sequential

design without sample size re-estimation.
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CHAPTER 1

Literature Review

1.1 Bayesian Methodologies Introduction(Paper 1 and 2)

The most important aspects of epidemiologic research are uncovering dependencies

among multiple closely-related exposures and health outcomes, discovering risk factors,

and developing accurate predictive models. This is particularly true given that it is

crucial in many settings to account for interactions. Multivariate unordered categorical

data are routinely encountered in such areas. For example, the categorical variables

may correspond to a sequence of A, C, G, T nucleotides in candidate genes or responses

to questionnaire data on race, religion and demographic information for an individual

(Bhattacharya and Dunson 2012).

In particular, consider the National Birth Defects Prevention Study (NBDPS), the

largest population-based study ever conducted in the United States on the etiology of

birth defects. The study was designed to evaluate environmental, behavioral, biomedi-

cal, sociodemographic, and genetic factors associated with the occurrence of congenital

malformations. If one considers placing individual pregnant women in a multi-way ta-

ble defined by levels of these potentially important variables, only a few cells in the

table will have more than a few women, with most cells having no women. Regular

maximum likelihood estimation will result in unstable estimates and inferences due to
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collinearity among variables and sparsity of the cells. Hence, it is not possible simul-

taneously to obtain an estimate (e.g., odds ratio) for each cell of the table without

borrowing information strongly. To address this, one could typically apply dimen-

sionality reduction techniques such as (1) preselect variables that seem likely to be

important and ignore interactions to reduce dimensionality; (2) group exposures into

class-specific summaries; or (3) include variables one at a time as predictors in a low-

dimensional logistic regression model, with interactions only added for predictors with

main effects, and significance thresholds on p-values adjusted for false discovery rate

control. However, such approaches can lead to (1) overlooking important risk factors;

(2) discarding valuable information on variability in the effect within a class; or (3)

producing misleading results by not adjusting for correlated exposures. Furthermore,

it lacks a probabilistic characterization of uncertainty, which is important in making

inferences and representing uncertainty in predictions.

There have been literatures on graphical models (Dawid and Lauritzen 1993) that

can model the complicated dependence structure for categorical data (Whittaker 1990;

Madigan et al. 1995). Although graphical models are popular due to their flexibility

and interpretability, computation is difficult since the size of the model space grows ex-

ponentially with p. In parallel to graphic models, factor models have been advocated by

West (2003) and Carvalho et al. (2008) to model high-dimensional data with emphasis

on dimension reduction. Factor models provide a framework for regularized covariance

matrix estimation for normal data, and have been extended to allow binary and ordered

categorical data through an underlying Gaussian latent factor structure (Muthén 1983).

Multivariate probit models (Ashford and Sowden 1970; Chib and Greenberg 1998; Ochi

and Prentice 1984; Zhang et al. 2008) have been used for analyzing multivariate binary

or nominal variables of interest via thresholding of a vector of latent variables. For

further review of existing graphic and factor models, see Bhattacharya and Dunson
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(2012).

For unordered categorical variables, factor models, however, run into computation

problems due to their complex model and estimation nature. But the data could be

alternatively presented in the form of a high-dimensional contingency table for which

there is a vast literature. Fienberg and Rinaldo (2007) provide an overview of the de-

velopment of log-linear models, maximum likelihood estimation and asymptotic tests

for goodness of fit. While log-linear models provide a framework to model interac-

tions among related categorical variables, the number of model parameters becomes

large even in the case of a two-way interaction model for moderate to large number of

variables. Asymptotic tests based on log-linear models face multiple difficulties in the

case of sparse contingency tables –refer to the discussion in section 3 of Fienberg and

Rinaldo (2007). Although such problems can be alleviated using a Bayesian approach,

posterior model search using traditional Markov chain Monte Carlo (MCMC) methods

tends to slow down quickly as the dimension increases. Moreover, even with highly effi-

cient search algorithms (Jones et al. 2005; Carvalho and Scott 2009; Dobra and Massam

2010), it is only feasible to visit a small subset of the model space even for moderate

p and accurate model selection is a difficult task. This motivates the development of a

new class of models for high-dimensional unordered categorical data in the form of a

contingency table.

Dunson and Xing (2009) employed this idea and developed a nonparametric Bayes

approach using Dirichlet process (Ferguson 1973; 1974) mixtures of product multinomi-

als to directly model the joint distribution of multivariate unordered categorical data.

The modeling of the joint distribution of the category probabilities in a sparse man-

ner enables efficient posterior computation, thereby allowing their method to efficiently

scale up to high dimensions. This approach extends latent structure analysis (Lazars-

feld and Henry 1968; Goodman 1974) to the infinite mixture case and is conceptually
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related to non-negative tensor decompositions (Shashua and Hazan 2005; Kim and Choi

2007).

Likewise, Yang and Dunson (2013) proposed a different nonparametric Bayes model

on the conditional distribution of the category probabilities. By choosing a carefully-

structured Tucker factorization, another popular tensor decomposition method, they

defined a model that can characterize any conditional probability, while facilitating

variable selection and modeling of high-order interactions. They suggested a two-stage

algorithm which first identifies a model with a set of important predictors in the first

stage and then learns the posterior distribution for this model via the Gibbs sampler

for other unknown parameters.

Although both the Dunson and Xing (2009) and Yang and Dunson (2013) can handle

fairly large contingency tables and reduces the number of parameters from exponential

in p to linear in p, the estimation problem is still challenging when p is proportional to

or larger than n in that it is not possible to estimate the joint/conditional distribution

and the corresponding association of interest without further sparsity assumptions. My

dissertation (Paper 1 and 2) will be focusing on building up new methodologies that

can model high-dimensional multivariate unordered data in the case of p ∝ or ≥ n

while maintaining attractive statistical properties. The new approaches will be mainly

based on, and extended from, the models of Dunson and Xing (2009) and Yang and

Dunson (2013). Before discussing our approaches, we first introduce the basics of

Dirichlet process, tensor decomposition methods and Bayes nonparametrics followed

by the detailed specifications of Dunson and Xing (2009) and Yang and Dunson (2013).
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1.1.1 Dirichlet Distribution and Process

Dirichlet Distribution

The basic building tool for Bayesian non-parametric methods is called the Dirichlet

Process (DP). To discuss the Dirichlet process, we first need to discuss the Dirichlet

distribution. The Dirichlet distribution is the multivariate generalization of the beta

distribution. Let z1, . . . , zk be independent random variables with zj ∼ Gamma(aj, 1),

j = 1, . . . , k. Define

u =
k∑
j=1

zj,

and

yj =
zj
u

=
zj∑k
j=1 zj

.

Since
∑k

j=1 yj = 1, we say (y1, . . . , yk) have a k − 1 dimensional Dirichlet distribution

Dk−1(a1, . . . , ak) with density

f(y1, . . . , yk) =

(
Γ(
∑k

j=1 aj)∏k
j=1 Γ(aj)

)( k∏
j=1

y
aj−1
j

)
.

The Dirichlet distribution is a distribution over possible vectors for a multinomial dis-

tribution. It is in fact a ’distribution over distributions’ and hence can be used as a

conjugate prior for the multinomial family. That is, if

(x1, . . . , xk) ∼ Multinomial(p1, . . . , pk), where
k∑
j=1

pj = 1,

then the conjugate prior for (p1, . . . , pk) is Dk−1(a1, . . . , ak). The posterior, as a result,

has the form,

(p1, . . . , pk|x) ∼ Dk−1(a1 + x1, . . . , ak + xk),

5



where x = (x1, . . . , xk).

Dirichlet Process

A Dirichlet process, DP (αG0), expressed as G is with base distribution G0 and

scale parameter α. G is a random probability measure that has the same support

as G0. It is also a distribution over distributions. Ferguson (1973) introduced the

Dirichlet process as a class of prior distributions for which the support is large, and the

posterior distribution is analytically manageable. The idea of using a Dirichlet process

as the prior for the mixing proportions of a simple distribution (e.g., Gaussian) was

first introduced by Antoniak (1974).

Consider a model with a parametric likelihood: yi ∼ N(θi, τ
−1
i ). Instead of assuming

θi ∼ G0, we could specify θi ∼ G, and G ∼ DP (αG0), where G0 is the base distribution

such as a normal distribution and α is a precision parameter determining how closely G

follows G0. The Dirichlet process (DP) model is simplified in practice by the Polya urn

representation (Blackwell and MacQueen 1973). It relies on marginalizing out G to

obtain

(θi|θ1, . . . , θi−1) ∼
( α

α + i− 1
)G0 +

i−1∑
j=1

(
1

α + 1

)
δθj . (1.1)

It can be seen that the θi’s are distributed as the base measure along with the added

property that P (θi = θj) > 0 for i 6= j. The Dirichlet process prior results in what

MacEachern (1994) calls a cluster structure among the θi’s. This cluster structure

partitions the n θi’s into k sets or clusters, 0 < k ≤ n. All of the observations in a

cluster share an identical value of θ and subjects in different clusters have different

values of θ.

The Chinese restaurant representation can be viewed as an analogy. Say, for in-

stance, that we have a restaurant with infinitely many tables with Xn representing the
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patrons of the restaurant. Let

1. 1st customer sits at table with dish ζ1;

2. 2nd customer sits at first table with probability α/(1 + α) or new table with dish

ζ2 with probability 1/(1 + α);

3. process encourages later customers to sit at well occupied tables.

We can see from (1.1) that a customer is more likely to sit at a table if there are already

many people sitting there. However, with probability proportional to α, the customer

will sit at a new table.

Another popular way of presenting DP, introduced by Sethuraman (1994), is called

the stick-breaking process:

θi ∼ G =
∞∑
h=1

νhδθh ,

where

νh = Vh
∏
l<h

(1− Vl), Vh ∼ Beta(1, α), θh ∼ G0,

for h = 1, . . . ,∞, with δθ denoting the degenerate distribution with all its mass at θ.

One can illustrate this by starting from a unit probability stick,

1. Break off a random piece (V1) and allocate this to a random value (θ1);

2. From the remaining 1− V1, break off a proportion V2 and allocate to θ2;

3. Repeat infinitely many times.

Compared with the Polya urn scheme, the stick-breaking process is more attractive in

the sense that it provides the ability to conduct inference on G by avoiding marginal-

ization of G.

Use of Dirichlet process mixture models in Bayesian non-parametrics has become

computationally feasible with the development of Markov chain methods for sampling
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from the posterior distribution of the parameters of the component distributions and/or

of the associations of mixture components with observations. Methods based on Gibbs

sampling can easily be implemented for models based on conjugate prior distributions.

1.1.2 Tensor Decomposition

Let Td1...dp denote the set of all tensors of dimension d1×. . .×dp, and Πd1...dp ⊂ Td1...dp

denote the set of all probability tensors, so that π ∈ Πd1...dp implies

π =

{
πc1...cp ≥ 0, cj = 1, . . . , dj, j = 1, . . . , p :

d1∑
c1=1

· · ·
dp∑
cp=1

πc1...cp = 1

}
.

One way of tensor generalization of the matrix singular value decomposition is

called PARAFAC decomposition (Harshman 1970; Harshman and Lundy 1994; Zhang

and Golub 2001). Kolda (2001) used the notation

D =
k∑

h=1

λhUh, Uh = u
(1)
h ⊗ u

(2)
h ⊗ · · · ⊗ u

(p)
h ,

where λ1 ≥ · · · ≥ λk > 0, Uh is a decomposed tensor with u
(j)
h ∈ <dj , and ⊗ denotes

the outer product, so that

Dc1...cp =
k∑

h=1

λhu
(1)
hc1
. . . u

(p)
hcp
.

One definition of the rank of a tensor is the minimal k such that D can be expressed

as a sum of k decomposed (or rank one) tensors.

Tucker (1966) proposed a different decomposition for three-way data, which was

later extended to arbitrary tensors by De Lathauwer et al. (2000). The Tucker decom-

position, or higher-order singular value decomposition (HOSVD) aims to decompose a
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tensor D ∈ Td1...dp as

Dc1...cp =

d1∑
h1=1

· · ·
dp∑

hp=1

gh1...hpu
(1)
h1c1

. . . u
(p)
hpcp

,

where G = {gh1...hp} ∈ Td1...dp is called a core tensor and its entries control interaction

between the different components. Wang and Ahuja (2005); Kim and Choi (2007)

and Yang and Dunson (2013) empirically noted that the HOSVD achieves better data

compression and requires fewer components compared to the PARAFAC model as it

uses all combinations of the mode vectors u
(j)
hj

’s, h = 1, . . . , k.

With an interest in decomposing a probability matrix/tensor, the non-negative ma-

trix factorization (NMF) (Gregory and Pullman 1983; Cohen and Rothblum 1993)

seeks the best approximation of a non-negative matrix A ∈ <m×n+ as a product of

non-negative matrices W ∈ <m×k+ and V ∈ <k×n+ for some k ≤ min{m,n}, and finds

the so-called non-negative rank as the minimal k such that a non-negative matrix can

be written as a sum of rank one non-negative matrices. The non-negative versions of

the PARAFAC and HOSVD decompositions for tensors are discussed in Kim and Choi

(2007) and Shashua and Hazan (2005).

1.1.3 Bayes Nonparametrics

Before turning to the non-parametric model, first consider the fully parametric

situation. Suppose yi is an ni×1 random vector indexed by the p×1 parameter vector

θi, for each i = 1, . . . , n. Suppose the θi have a prior distribution with hyperparameter

θ0. That is, θi
i.i.d.∼ G(·|θ0). If G(·|θ0) is a specified function, then this corresponds to

the fully parametric situation. The fully parametric situation can be described by two

stages:

• Stage 1: (yi|θi) ∼ (parametric likelihood function) (i = 1, . . . , n),
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• Stage 2: (θi|θ0) = G(·|θ0),

where G(·|θ0) is a specified prior distribution, such as a normal, gamma, exponential,

beta, etc..

In many parametric likelihood models, we often wish to relax the assumption of a

parametric prior on the parameters. A common method is to set the prior distribution

to be random such as a Dirichlet process prior, which leads to mixtures of Dirichlet

processes (MDP). MDP removes the parametric assumption on G(·|θ0), that is G(·|θ0)

is not known and thus no functional form is specified for G. Thus the MDP model has

3 stages

• Stage 1: (yi|θi) ∼ (parametric likelihood),

• Stage 2: θi
i.i.d.∼ G (G unknown),

• Stage 3: G|α0, G0 ∼ DP (α0G0).

Thus the MDP model has 3 stages with the last stage being the DP specification. The

specification given above is semi-parametric in the sense that a parametric likelihood

specification is given in stage 1, and a non-parametric specification is given in stages 2

and 3. Some examples of Bayes semi-parametric methods can be found in MacLehose

et al. (2007); Dunson et al. (2008). If we further relax the stage 1 to model the data using

a probabilistic characterization of uncertainty while accounting for interaction, such

as a tensor factorization, it becomes a Bayes nonparametric model because both the

distribution of the data, yi, and the distribution of the parameter θ are nonparametric.

1.1.4 Joint and Conditional Probabilistic Modeling

Our focus is on sparse non-parametric modeling of the cell probabilities, π =

{πc1...cp} with πc1...cp = Pr(xi1 = c1, . . . , xip = cp). Dunson and Xing (2009) incor-

porated a latent structure model (Lazarsfeld and Henry 1968; Goodman 1974) with a

10



probabilistic version of PARAFAC tensor decomposition by representing π as

πc1...cp = Pr(xi1 = c1, . . . , xip = cp) =
k∑

h=1

νhλ
(1)
hc1
. . . λ

(p)
hcp
, (1.2)

where ν = (ν1, . . . , νk)
′ is a vector of mixture probabilities, zi ∈ {1, . . . , k} is a latent

class index, Pr(xij = cj|zi = h) = λ
(j)
hcj

is the probability of xij = cj given allocation of

individual i to class h. xi = (xi1, . . . , xip)
′ are assumed to be conditionally independent

given zi. Marginalizing over the distribution of zi induces dependence among the p

variables. Note that it is different from a usual PARAFAC decomposition because of

the non-negativity constraints on ν and the λ
(j)
h ’s. In this paper, it is proved that any

multivariate categorical data distribution can be characterized as a finite mixture of

product-multinomial distributions as in (1.2).

However, it is not straightforward to obtain a well-justified approach for estimation

of k. Regular methods like maximum likelihood estimation would fail to converge due

to the sparsity of the data even for a modest k, or otherwise would provide biased

results if small k is chosen. These issues provide motivation for utilizing a Dirichlet

process, which avoids selection of a single finite k, allowing the number of components

that are occupied by individuals in the sample to grow with sample size. One can

specify priors

λ
(j)
h ∼ Dirichelet(aj1, . . . , ajdj),

ν ∼ Dirichlet process, (1.3)
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using stick-breaking representation for ν, (1.2) and (1.3) can be expressed in the fol-

lowing hierarchical form:

xij|zi = h ∼ Multinomial
(
(1, . . . , dj);λ

(j)
h1 , . . . , λ

(j)
hdj

)
,

zi ∼
∞∑
h=1

Vh
∏
l<h

(1− Vl)δh,

Vh ∼ Beta(1, α),

λ
(j)
h ≡ (λ

(j)
h1 , . . . , λ

(j)
hdj

) ∼ Diri(aj1, . . . , ajdj). (1.4)

The Gibbs sampling algorithm can be performed in a straightforward fashion. Bhat-

tacharya and Dunson (2012) instead applied a different decomposition method to model

the joint probability for multivariate categorical data. In comparison, rather than in-

vestigating the dependence structure among variables, Yang and Dunson (2013) estab-

lished a conditional probabilistic Tucker factorization with the goals of classifying the

response of interest as well as identifying a sparse subset of important predictors. That

is,

Pr(yi = c |xi1 = c1, . . . , xip = cp) =

k1∑
h1=1

· · ·
kp∑

hp=1

λh1···hp(c)

p∏
j=1

π
(j)
hj

(cj), (1.5)

with constraints
∑d0

c=1 λh1...hp(c) = 1 and
∑kj

h=1 π
(j)
h (cj) = 1. The value of kj ∈

{1, . . . , dj} controls the number of parameters characterizing the impact of the jth

predictor on the conditional probability, with kj = 1 implying that the jth predictor is

excluded from the model. We can simplify the representation by introducing p latent

class indicators zi1, . . . , zip for xi1, . . . , xip. The model can be rewritten as

yi|zi1, . . . , zip ∼ Multinomial({1, . . . , d0};λzi1,...,zip), (1.6)

zij|xij = cj ∼ Multinomial({1, . . . , kj}; π(j)
1 (cj), . . . , π

(j)
kj

(cj)), (1.7)
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where λzi1,...,zip = {λzi1,...,zip(1), . . . , λzi1,...,zip(d0)}. Integrating out the latent class indi-

cators, the conditional probability of yi given (xi1, . . . , xip) matches the form in (1.5).

The Dirichlet distribution priors are chosen for λh1...hp and π(j)(cj) to maintain conju-

gacy, while some well-specified discrete distribution are specified for kj favoring sparsity.

Refer to Yang and Dunson (2013) for deriving the corresponding posteriors. Although

it seems to have better prediction performance than existing methods and it has the

capability of interpreting the relationship between predictors and the outcome, it is

worth noting that the approximation of marginal likelihood of k = {k1, . . . , kp} was

not justified in the paper and there are some computational issues when the number of

variables with (kj > 1) is bigger than seven.

In summary, both joint and conditional modeling have advantages of (i) allowing

the distribution of multiple categorical variables to be unknown; (ii) a full proba-

bilistic characterization of uncertainty accounting for any possible interaction among

predictors; (iii) favoring a sparse structure that allows efficient computation without

the problem of overfitting. Note that the joint model aims to infer the dependence

structure among variables, while the conditional model focuses on the classification.

1.2 Sample Size Re-estimation Introduction(Paper 3)

Clinical trials with longitudinal endpoints are very common. A key issue in designing

such a trial is to determine how large of a study is necessary to detect a clinically impor-

tant difference with a desired power. A traditional approach of sample size calculation

for fixed design requires the investigator to specify a clinically meaningful difference to

be detected, the significance level, a desired level of power and any additional nuisance

parameters (e.g. the error variance for continuous data, the control group response

rate for binary data). As for repeated measure endpoints, Lu et al. (2008; 2009) gen-

eralized a formula for calculating the sample size with nuisance parameters containing
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(1) correlation among longitudinal visits; (2) standard deviation within longitudinal

measurements for each subject and (3) retention rates in both treatment groups. For

planning purposes, best guesses are made for the value of the nuisance parameters.

However, there is a great concern that these assumptions of nuisance parameters

based on previous studies are often unreliable because of differences in the study pop-

ulation, changes in medical practice, or the measurement techniques. Since incorrect

assumptions can lead to substantial underpowering or overpowering to detect the clini-

cally important difference, it may be prudent to check the validity of those assumptions

using interim data from the study. There is a rich literature Coffey and Kairalla (2008);

Chuang-Stein et al. (2006) discussing the sample size re-estimation methods to rescue

the power. Wittes and Brittain (1990) introduced the concept of an internal pilot de-

sign, which re-estimates the sample size in the mid-course of the study with no interim

testing involved. Internal pilot designs have also been extended to different settings,

besides normally distributed outcomes, such as repeated measures. Shih and Gould

(1995) described a method to re-estimate sample size in the repeated measure frame-

work. However it is only for a simplified setting, where the parameter of interest is

the rate of change (slope) of a continuous measurement. Zucker and Denne (2002)

extended Shih and Gould’s model to a general setting in which missing and dropout

are allowed and a linear combination of treatment effect over time can be set as the

meaningful difference to be detected.

Group sequential design Jennison and Turnbull (2000) promises to be more efficient

because we are given an opportunity to terminate the study before the planned com-

pletion if there is strong evidence that the treatment effect is meaningfully large or the

treatment is unlikely to be better than the control group. This design can benefit plenty

of longitudinal trials. For instance, suppose we are doing a trial of weight loss, and the

primary endpoint is weight loss at one year, with other measures at 3, 6 and 9 months.
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At the time of an interim analysis, some patients will have less than full follow-up,

but will have some follow-up measurements indicating a trend in their weight. If no

weight loss is seen early in follow-up, it may be reasonable to stop a trial for futility.

On the other hand, if substantial weight loss is observed and maintained, a convincing

efficacy finding may be resulted prior to the final planned analysis. Another example

could be a trial of Alzheimers disease in which an endpoint indicating cognitive decline

such as Alzheimers Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) may be

used. While the primary timepoint of interest may be after 18 months of treatment,

intermediate measures may be taken at 6 and 12 months of follow-up. At the time

of an interim analysis, some patients will have less than full follow-up, but will have

some follow-up measures indicating a trend in cognitive function that may be useful.

An interim analysis may be able to stop a trial for futility or, if done later in the trial,

may provide convincing results prior to the planned final analysis. While bounds may

be set to be broad in order to avoid a premature stop, having bounds may provide

useful guidance to a Data Monitoring Committee to help them avoid an early stop that

may be due to a spurious finding. Both Galbraith and Marschner (2003) and Kittelson

et al. (2005) discussed sequential methods when monitoring trials with longitudinal

endpoints as well as making use of people who have not completed the study. Kittel-

son et al. (2005) also provided a nice discussion when the outcomes are not measured

according to the pre-trial schedule. However, to adjust for the sequential monitoring

stopping rules, both of them used the estimated information at the end of the study

in computing the information-timing rather than the fixed maximal information from

the pre-trial design. Moreover, the two papers did not address the potential problem of

insufficient power due to the incorrect initial sample size calculation if the variance as-

sumption is incorrect. Burington and Emerson (2003) focused on making flexible group

sequential stopping rules when the actual interim analyses deviate from the design with
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respect to the number and timing. One can either choose to maintain the power or

maintain the maximal sample size. But it did not cover the case where the primary

endpoint of interest is longitudinal. Thus, with the goal of designing and analyzing a

longitudinal trial using group sequential design along with the concern of insufficient

power, it is natural to combine internal pilot designs into group sequential design in

the longitudinal framework. Mehta and Tsiatis (2001) and Tsiatis (2006) initiated the

use of information-based monitoring for implementing internal pilot designs in conjunc-

tion with group sequential methods, but only for normal and binary endpoints. The

counterpart for the longitudinal setting is missing, yet not trivial. A new design for

longitudinal trials, namely the information-based sample size re-estimation method,

will be developed in paper 3 of my dissertation with a thorough discussion through

simulations and application.
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CHAPTER 2

Sparse Tensor Factorizations for Big Contingency Tables

2.1 Introduction

Sparsely observed big tabular data sets are commonly collected in many applied

domains. One example corresponds to recommender systems in which the dimensions

of the table correspond to users, items and different contexts (Karatzoglou et al. (2010)),

with a tiny proportion of the cells filled in for users providing rankings. The task is to fill

in the rest of the huge table in order to make recommendations to users of which items

they may prefer in each context. This extends the widely studied matrix completion

problem (Candès and Recht (2009)) of which the Netflix challenge was one example.

Another setting corresponds to contingency tables in which multivariate categorical

data are collected for each individual, and the cells of the table contain counts of the

number of individuals having a particular combination of values. In contingency table

analyses, the focus is typically on inferring associations among the different variables,

but challenges arise when there are many variables, so that the number of cells in the

table is vastly bigger than the sample size.

Suppose that the tensor of interest is π ∈ Πd1×···×dp , with Πd1×···×dp a space of p-

way tensors having dj rows in the jth direction. Often there are constraints on the

elements of the tensor. For recommender systems, ratings are non-negative so that one

is faced with a non-negative tensor factorization problem (Paatero and Tapper (1994);
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Lee and Seung (1999); Friedlander and Hatz (2005); Lim and Comon (2009); Liu et al.

(2012)). For contingency tables, the tensor corresponds to the joint probability mass

function for multivariate categorical data, so that the elements are non-negative and

add to one across all the cells (Dunson et al. (2008); Bhattacharya and Dunson (2012)).

Let Y denote the data collected on tensor π. For recommender systems, Y consists

of ratings for a small subset of the
∏p

j=1 dj cells in the tensor, while for contingency

tables Y includes response vectors yi = (yi1, . . . , yip)
T for subjects i = 1, . . . , n, with

yij ∈ {1, . . . , dj} for j = 1, . . . , p. In both cases, data are extremely sparse, with no

observations in the overwhelming majority of cells.

To combat this data sparsity, it is necessary to substantially reduce dimensionality

in estimating π. The usual way to accomplish this is through a low rank assumption.

Unlike for matrices, there is no unique definition of rank but the most common con-

vention is to define the rank k of a tensor π as the smallest value of k such that π can

be expressed as

π =
k∑

h=1

ψ
(1)
h ⊗ · · · ⊗ ψ

(p)
h , (2.1)

which is sum of k rank one tensors, each an outer product of vectors1 for each dimension

(Kolda and Bader 2009). Expression (1) is commonly referred to as parallel factor

analysis (PARAFAC) (Harshman (1970); Bro (1997)). For k small, the number of

parameters is massively reduced from
∏p

j=1 dj to k
∑p

j=1 dj; as the low rank assumption

often holds approximately, this leads to an effective approach in many applications, and

a rich variety of algorithms are available for estimation.

However, the decrease in degrees of freedom from exponential in p to linear in p is not

sufficient when p is big. Large p small n problems arise routinely, and a usual solution

1For p = 2, ψ(1) ⊗ ψ(2) = ψ(1)ψ(2)T. In general, (ψ(1) ⊗ · · · ⊗ ψ(p))c1...cp = ψ
(1)
c1 . . . ψ

(p)
cp
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outside of tensor settings is to incorporate sparsity. For example, in linear regression,

many of the coefficients are set to zero (Tibshirani 1996; Scott and Berger 2010), while

in estimation of large covariance matrices, sparse factor models are used that assume

few factors and many zeros in the factor loadings matrices (West (2003); Carvalho et al.

(2008)). In the matrix factorization literature, there has been consideration of low rank

plus sparse decompositions (Chartrand (2012)), but this approach does not solve our

problem of too many parameters. Including zeros in the component vectors {ψ(j)
h } is

not a viable solution, particularly as we do not want to enforce exact zeros in blocks of

the tensor π but require an alternative notion of sparsity.

Our notion is as follows. For component h (h = 1, . . . , k), we partition the dimen-

sions into two mutually exclusive subsets Sh ∪ Sch = {1, . . . , p}. The proposed sparse

PARAFAC (sp-PARAFAC) factorization is then

π =
k∑

h=1

ψ
(1)
h ⊗ · · · ⊗ ψ

(p)
h , ψ

(j)
h = ψ

(j)
0 for j ∈ Sch. (2.2)

Hence, instead of having to introduce a separate vector ψ
(j)
h for every h and j, we allow

there to be more degrees of freedom used to characterize the tensor structure in certain

directions than in others. Consider the recommender systems application and suppose

we have three dimensions, including users (j = 1), items (j = 2) and context (j = 3).

If we let ψ
(3)
h = ψ

(3)
0 for h = 1, . . . , k,

πc1c2c3 = ψ
(3)
0c3

k∑
h=1

ψ
(1)
hc1
ψ

(2)
hc2
, (2.3)

so that we factorize the user-item matrix as being of rank k, and then include a multi-

plier specific to each level of the context factor. This assumes that users rank system-

atically higher or lower depending on context but there is no interaction. In the contin-

gency table application, Pr(yi1 = c1, . . . , yip = cp) = πc1···cp . If j ∈ Sch for h = 1, . . . , k,
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then the jth variable is independent of the other variables with Pr(yij = cj) = ψ
(j)
0cj

.

By including j ∈ Sch for some but not all h ∈ {1, . . . , k} one can use fewer degrees of

freedom in characterizing the interaction between the jth factor and the other factors.

In practice, we will learn {Sh} using a Bayesian approach, as the appropriate lower

dimensional structure is typically not known in advance.

We conjecture that many tensor data sets can be concisely represented via (2.2),

with results substantially improved over usual PARAFAC factorizations due to the

second layer of dimension reduction. For concreteness and brevity, we focus on con-

tingency tables, but the methods are easily modified to other settings. Contingency

table analysis is routine in practice; refer to Agresti (2002); Fienberg and Rinaldo

(2007). However, in stark contrast to the well developed literature on linear regression

and covariance matrix estimation in big data settings, very few flexible methods are

scalable beyond small tables. Throughout the rest of the paper, we assume that the ob-

served data yi = (yi1, . . . , yip)
T, i = 1, . . . , n, is multivariate unordered categorical, with

yij ∈ {1, . . . , dj}. Our interest is in situations where the dimensionality p is comparable

or even larger than the number of samples n.

2.2 Sparse Factor Models for Tables

2.2.1 Model and prior

We focus on a Bayesian implementation of sp-PARAFAC in (2.2). Let Sr−1 = {x ∈

<r : xj ≥ 0,
∑r

j=1 xj = 1} denote the (r − 1)-dimensional probability simplex. In

the contingency table case, Dunson et al. (2008) proposed the following probabilistic

PARAFAC factorization.

Pr(yi1 = c1, . . . , yip = cp) = πc1···cp =
k∑

h=1

νh

p∏
j=1

λ
(j)
hcj
, (2.4)
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where ν = {νh} ∈ Sk−1 and λ
(j)
h = (λ

(j)
h1 , . . . , λ

(j)
hdj

) ∈ Sdj−1 is a vector of probabilities

of yij = 1, . . . , dj in component h. Introducing a latent sub-population index zi ∈

{1, . . . , k} for subject i, the elements of yi are conditionally independent given zi with

Pr(yij = cj | zi = h) = λ
(j)
hcj

, and marginalizing out the latent index zi leads to a mixture

of product multinomial distribution for yi. Placing Dirichlet priors on the component

vectors leads to a simple and efficient Gibbs sampler for posterior computation. We

will refer to this model (2.4) as standard PARAFAC.

This approach has excellent performance in small to moderate p problems, but as p

increases there is an inevitable breakdown point. The number of parameters increases

linearly in p, as for other PARAFAC factorizations, so problems arise as p approaches

the order of n or p � n. For example, we are particularly motivated by epidemiology

studies collecting many categorical predictors, such as occupation type, demographic

variables, and single nucleotide polymorphisms. For continuous response vectors yi ∈

<p, there is a well developed literature on Gaussian sparse factor models that are

adept at accommodating p� n data (West (2003); Lucas et al. (2006); Carvalho et al.

(2008); Bhattacharya and Dunson (2011)). These models include many zeros in the

loadings matrices to induce additional dimension reduction on top of the low rank

assumption. Pati et al. (2013) provided theoretical support through characterizing

posterior concentration.

Our sp-PARAFAC factorization provides an analog of sparse factor models in the

tensor setting. Modifying for the categorical data case, we let

πc1...cp =
k∑

h=1

νh
∏
j∈Sh

λ
(j)
hcj

∏
j∈Sc

h

λ
(j)
0cj
, (2.5)

where |Sh| � p (|S| denotes the cardinality of a set S) and the λ
(j)
0 vectors are fixed in
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advance; we consider two cases:

(i) λ
(j)
0 =

(
1

dj
, . . . ,

1

dj

)T

and (ii) λ
(j)
0 =

(
1

n

n∑
i=1

1(yij = 1), . . . ,
1

n

n∑
i=1

1(yij = dj)

)T

,

corresponding to a discrete uniform and empirical estimates of the marginal category

probabilities. By fixing the baseline dictionary vectors {λ(j)
0 } in advance, and allocating

a large subset of the variables within each cluster h to the baseline component, we

dramatically reduce the size of the model space. In particular, the probability tensor

π in (2.5) can be parameterized as θπ = l(ν, {Sh}1≤h≤k, {λ(j)
h }1≤h≤k,j∈Sh

)̊, where ν ∈

Sk−1, Sh ⊂ {1, . . . , p}, λ(j)
h ∈ Sdj−1. Thus, the effective number of model parameters is

now reduced to (k−1)+
∑k

h=1 |Sh|+
∑k

h=1

∑
j∈Sh

(dj−1), which is substantially smaller

than the (k − 1) +
∑p

j=1 k(dj − 1) parameters in the original specification, provided

|Sh| � p for all h = 1, . . . k. The size of Sh is penalized via a sparsity favoring prior on

|Sh| in (2.6) below. We will illustrate that this can lead to huge differences in practical

performance.

Completing a Bayesian specification with priors for the unknown parameter vectors

and expressing the model in hierarchical form, we have2

yij ∼ Mult
(
{1, . . . , dj};λ(j)

zi1
, . . . , λ

(j)
zidj

)
,

λ
(j)
h ∼ (1− τh)δλ(j)0

+ τhDiri(aj1, . . . , ajdj),

Pr(zi = h) = νh = Vh
∏

l<h(1− Vl),

Vh ∼ Beta(1, α), α ∼ Gamma(aα, bα), τh ∼ Beta(1, γ). (2.6)

It is evident that the hierarchical prior in (2.6) is supported on the space of probabil-

ity tensors with a sp-PARAFAC decomposition as in (2.5), since (2.6) is equivalent to

2Mult
(
{1, . . . , d};λ1, . . . , λd

)
denotes a discrete distribution on {1, . . . , d} with probabilities

λ1, . . . , λd associated to each atom.
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letting the subset-size |Sh| ∼ Binom(p, τh) and drawing a random subset Sh uniformly

from all subsets of {1, . . . , p} of size |Sh| in (2.5). A stick-breaking prior (Sethuraman

1994) is chosen for the component weights {νh}, taking a nonparametric Bayes ap-

proach that allows k =∞, with a hyperprior placed on the concentration parameter α

in the stick-breaking process to allow the data to inform more strongly about the com-

ponent weights. The probability of allocation τh to the active (non-baseline) category

in component h is chosen as beta(1, γ), with γ > 1 favoring allocation of many of the

λ
(j)
h s to the baseline category λ

(j)
0 . In the limiting case as γ →∞, the joint probability

tensor π becomes an outer product of the baseline probabilities for the individual vari-

ables, π = λ
(1)
0 ⊗ · · · ⊗λ

(p)
0 . On the other hand, as γ → 0, one reduces back to standard

PARAFAC (2.4).

Line 2 of expression (2.6) is key in inducing the second level of dimensionality

reduction in our Bayesian sparse PARAFAC factorization. The inclusion of the baseline

component that does not vary with h massively reduces the number of parameters, and

can additionally be argued to have minimal impact on the flexibility of the specification.

The λ
(j)
h s are incorporated within

∏p
j=1 λ

(j)
hcj

, which for large p is highly concentrated

around its mean since the λ
(j)
h ’s are independent across j. This is a manifestation of

the concentration of measure phenomenon (Talagrand 1996), which roughly states that

a random variable that depends in a smooth way on the influence of many independent

variables, but not too much on any one of them, is essentially constant. For example, if

θj
iid∼ U(0, 1) and Θ =

∏p
j=1 θj, then E(Θ) = (1/2)p and var(Θ) = (1/3)p, which rapidly

converges to zero. This implies that replacing a large randomly chosen subset of the

λ
(j)
h s by λ

(j)
0 should have minimal impact on modeling flexibility.
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2.2.2 Induced prior in log-linear parameterization

An important challenge is accommodating higher order interactions, which play

an important role in many applications (e.g., genetics), but are typically assumed to

equal zero for tractability. As p grows, it is challenging to even accommodate two-way

interactions in traditional categorical data models (log-linear, logistic regression) due

to an explosion in the number of terms. In contrast, the tensor factorization does not

explicitly parameterize interactions, but indirectly induces a shrinkage prior on the

terms in a saturated log-linear model. One can then reparameterize in terms of the

log-linear model in conducting inferences in a post model-fitting step. We illustrate the

induced priors on the main effects and interactions below.

For ease of exposition, we first focus on a case where p = 3 and dj = d = 2

for j = 1, . . . , 3. We generate 10, 000 random probability tensors π(t) = (π
(t)
c1c2c3), t =

1, . . . , 10000, distributed according to (2.6), where we fix the baseline λ
(j)
0 = (1/2, 1/2)

for all j. Given a 2× 2× 2 tensor π, we can equivalently characterize π in terms of its

log-linear parameterization

β = (β1, β2, β3, β12, β13, β23, β123)T,

consisting of 3 main effect terms β1, β2, β3, three second-order interaction terms β12, β13, β23

and one third order interaction term β123; refer to §5.3.5 of Agresti (2002). Given each

prior sample π(t), we equivalently obtain a sample β(t) from the induced prior on β,

which allows us to estimate the marginal densities of the main effects and interactions

and also their joint distributions. In particular, since γ plays an important role in

placing weights on the baseline component, we would like to see how our induced priors

differ with different γ values.

In our simulation exercise, we fix three values of γ, namely, γ = 1, 5, 20. Note that
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γ = 1 corresponds to a U(0, 1) prior on τh. For different values of γ, we show the

histograms of one main effect term β1, one two-way interaction β12 and the three-way

interaction β123 in Figure 2.1. Table 2.1 additionally reports summary statistics.

In high-dimensional regression, yi = xT
i β + εi, there has been substantial interest

in shrinkage priors, which draw βj a priori from a density concentrated at zero with

heavy tails. Such priors strongly shrink the small coefficients to zero, while limiting

shrinkage of the larger signals (Park and Casella 2008; Carvalho et al. 2010; Polson

and Scott 2010; Hans 2011; Armagan et al. 2013). In Figure 2.1, the induced prior on

any of the log-linear model parameters is symmetric about zero, with a large spike very

close to zero, and heavy tails. Thus, we have indirectly induced a continuous shrinkage

prior on the main effects and interactions through our tensor decomposition approach.

In addition, the prior automatically shrinks more aggressively as the interaction order

increases. Such greater shrinkage of interactions is commonly recommended (Gelman

et al. 2008). Importantly, we do not zero out small interactions but allow many small

coefficients, which is an important distinction in applications, such as genomics, having

many small signals.

2.3 Posterior Computation

Under model (2.6), we can easily proceed to draw posterior samples from a Gibbs

sampler since all the full conditionals have recognizable forms. The algorithm iterates

through the following steps:

1. For variable j = 1, . . . , p and latent class h = 1, . . . , k∗, where k∗ = max{z1, . . . , zn},

update λ
(j)
h ≡ (λ

(j)
h1 , . . . , λ

(j)
hdj

) from a two component mixture distribution, having
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a point mass at the baseline probability:

(λ
(j)
h |−) = w

(j)
0h δλ(j)0

+ w
(j)
1hDiri

(
aj1 +

n∑
i=1

1(yij = 1, zi = h),

. . . , ajdj +
n∑
i=1

1(yij = dj, zi = h)

)
, (2.7)

where w
(j)
0h and w

(j)
1h are the mixture weights:

w
(j)
0h =

(1− τh)
∏dj

c=1 λ
(j)

∑n
i=1 1(zi=h,yij=c)

0c

(1− τh)
∏dj

c=1 λ
(j)

∑n
i=1 1(zi=h,yij=c)

0c + τh
Γ(

∑dj
c=1 ajc)∏dj

c=1 Γ(ajc)
·
∏dj

c=1 Γ
(
ajc+

∑n
i=1 1(zi=h,yij=c)

)
Γ
(∑dj

c=1 ajc+
∑n

i=1 1(zi=h)
) ,

w
(j)
1h = 1− w(j)

0h .

2. Let ηhj ∈ {0, 1} be a binary allocation variable indicating the component λ
(j)
h is

drawn from in (2.7), with ηhj = 0 if λ
(j)
h is updated from the baseline component.

Update τh, h = 1, . . . , k∗ from a Beta full conditional:

τh|− ∼ Beta

(
1 +

p∑
j=1

1(ηhj = 1), γ +

p∑
j=1

1(ηhj = 0)

)
. (2.8)

3. The full conditional of Vh, h = 1, . . . , k∗ only requires the updated information

on latent class allocation for all subjects:

Vh|− ∼ Beta

(
1 +

n∑
i=1

1(zi = h), α +
n∑
i=1

1(zi > h)

)
. (2.9)

4. Sample zi, i = 1, . . . , n from the multinomial full conditional with:

Pr(zi = h|−) =
νh
∏p

j=1 λ
(j)
hyij∑k∗

l=1 νl
∏p

j=1 λ
(j)
lyij

, (2.10)

where νh = Vh
∏

l<h(1− Vl).
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5. Update α from the Gamma full conditional:

α|− ∼ Gamma

(
aα + k∗, bα −

k∗∑
h=1

log(1− Vh)
)
. (2.11)

These steps are simple to implement and we gain efficiency by updating the parameters

in blocks. For example, instead of updating λ
(j)
h one at a time, we sample λ ≡ {λ(j)

h , h =

1, . . . , k∗, j = 1, . . . , p} jointly with corresponding parameters in matrix form. In all our

examples, we ran the chain for 25, 000 iterations, discarding the first 10, 000 iterations

as burn-in and collecting every fifth sample post burn-in to thin the chain. Mixing and

convergence were satisfactory based on the examination of trace plots and the run time

scaled linearly with n and p. We also carried out sensitivity analysis by multiplying and

dividing the hyperparamaters aα, bα and γ in (2.6) by a factor of 2, with the conclusions

remained unchanged from the default setting aα = bα = 1 and γ = 0.2 p.

2.4 Simulation Studies

2.4.1 Estimating sparse interactions

We first conduct a replicated simulation study to assess the estimation of sparse

interactions using the proposed sp-PARAFAC model. We simulated 100 dependent

binary variables yij ∈ {0, 1}, j = 1, . . . , p = 100 (dj = d = 2) for i = 1, . . . , n = 100

subjects from a log-linear model having up to three-way interactions:

log

(
πc1...cp
π0...0

)
=

3∑
s=1

∑
S⊂{1,...,p}:|S|=s

βS1(cS=1). (2.12)

For example, if S = {1, 2, 4}, then βS = β1,2,4 and 1(cS=1) = 1(c1=1,c2=1,c4=1) with 1(·)

denoting the indicator function. To mimic the situation where only a few interactions
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are present, we restrict to S ⊂ S∗ = {2, 4, 12, 14} and set all interactions except

β = (β2, β4, β12, β14, β2,4, β2,12, β4,12, β4,14, β12,14, β2,4,12, β4,12,14)T

to zero. This data generating mechanism induces dependence among the variables in S∗,

while rendering the other variables to be marginally independent. Figure 2.2 reports

the posterior means and 95% credible intervals for all main effects and interactions

for the variables in S∗ averaged across 100 simulation replicates along with the true

coefficients. As illustrated in Figure 2.2, averaging across the simulation replicates and

different parameters, the 95% credible intervals cover the true parameter values 80%

of the time.

Next, we study performance in estimating the dependence structure. Cramer’s V

is a popular statistic measuring the strength of association or dependence between two

(nominal) categorical variables in a contingency table, ranging from 0 (no association)

to 1 (perfect association). Let ρjj′ denote the Cramer’s V statistics for variables j and

j′, so that

ρ2
jj′ =

1

min{dj, dj′} − 1

dj∑
cj=1

dj′∑
cj′=1

(π
(jj′)
cjcj′ − π

(j)
cj π

(j′)
cj′ )2

π
(j)
cj π

(j′)
c(j′)

, (2.13)

where π
(jj′)
ll′ = Pr(yij = l, yij′ = l′) and π

(j)
l = Pr(yij = l). Under the log-linear model

(2.12), ρ = (ρjj′) is a sparse matrix with the Cramer’s V for all pairs except those in

S∗×S∗ being zero. This is an immediate consequence of the fact that if (j, j′) /∈ S∗×S∗,

then yij and yij′ are independent.

We compare estimation of the off-diagonal entries of ρ under the sp-PARAFAC
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model with the empirical Cramer’s V matrix ρ̂. We can clearly convert posterior sam-

ples for the model parameters to posterior samples for ρjj′ through (2.13). The em-

pirical estimator is obtained by replacing π
(jj′)
cjcj′ and π

(j)
cj by their empirical estimators.

The left panel in Figure 2.3 shows the posterior summaries (averaged across simulation

replicates) of the Cramer’s V values for all possible dependent pairs along with the

true Cramer’s V values (which can be calculated from (2.12)). In the right panel of

Figure 2.3, we overlay kernel density estimators of posterior samples (in grey) and the

empirical estimators (in red) of the Cramer’s V values for all null pairs across all simu-

lation replicates. Note the axes are also marked in grey and red for the respective cases.

The sp-PARAFAC method clearly outperforms the empirical estimator convincingly,

with the posterior density for the null pairs highly concentrated near zero while the

empirical estimator has a mean Cramer’s V value of 0.08 across the null pairs.

Furthermore, we can obtain power and type I error rates for the non-null and null

variables respectively by computing the percentage of detected significance over the

simulation replicates, with a coefficient declared significant if the 95% credible interval

doesn’t contain zero. Focusing on the power and type I error of the main effects and

interactions in S∗, most of the error rates are appealing barring a few cases (see Table 2.2

and Table 2.3). It is not surprising that the approach may face difficulty assessing the

exact interaction structure among a set of associated variables based on limited data.

Further, given the Cramer’s V results in the right panel of Figure 2.3, the type I error

for any variable not in S∗ should be very small or zero. As an example, we tested the

main effects and all possible interactions for positions 20, 30, 40 and 50. The type I

error rates are zero for all of them.
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2.4.2 Comparison with standard PARAFAC

We now conduct a simulation study to compare estimation of the Cramer’s V ma-

trix ρ under the proposed approach to the standard PARAFAC model in (2.4). We

considered 100 simulation replicates, with data in each replicate consisting of p = 100

categorical variables for n = 100 subjects, with each variable having 4 possible lev-

els (dj = d = 4). Two simulation settings were considered to induce dependence

between the variables in S∗ = {2, 4, 12, 14}: (i) via multiple subpopulations as in

the simulation study in Dunson et al. (2008), and (ii) via a nominal GLM model

Pr(yij = c) =
exp(yi(j)βc)

1+
∑4

c=2 exp(yi(j)βc)
for j ∈ S∗, where yi(j)βc is a linear combination of

all variables that are associated with the jth variable excluding the jth variable. The

remaining variables were independently generated from a discrete uniform distribution.

The color plot on the left in Figure 2.4 shows the true pairwise Cramer’s V values

under simulation setting (i) (only the top-left 20 × 20 sub matrix of ρ is shown for

clarity). Figure 2.4 (right) and Figure 2.5 represent one of the replicates, in which the

right plot in Figure 2.4 shows the Cramer’s V under the standard non-sparse PARAFAC

method, while Figure 2.5 shows the Cramer’s V using our method with the two different

choices (i) and (ii) of the baseline components. It is obvious that our approach has much

better estimates for not only the true dependent pairs but also the true nulls. Results

for simulation (ii) shown in Figure 2.6 again show superiority of our sparse improvement

to PARAFAC.

2.5 Application

2.5.1 Splice-junction Gene Sequences

We applied the method to the Splice-junction Gene Sequences, abbreviated as splice

data below. The dataset is publicly available at the UCI machine learning repository.
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Splice junctions are points on a DNA sequence at which ‘superfluous’ DNA is removed

during the process of protein creation in higher organisms. These data consist of A,

C, G, T nucleotides at p = 60 positions for N = 3, 175 sequences. Since the sample

size is much larger than the number of variables, we compared our approach with

the standard PARAFAC in two scenarios, first a small randomly selected subset (of

size n = 2p = 120) of the full data set, and second, the full data set itself. Using

two different sample sizes in this manner allows for a study of the new and existing

methods and a comparison to a gold standard (a sufficiently large data set). We

ran the analysis to estimate the pairwise positional dependence structure under the

standard PARAFAC method and the proposed approach with discrete uniform baseline

component. As is apparent in Figure 2.8, both methods have similar performance when

n � p. However, when the sample size is modest compared to the dimensionality,

Figure 2.7 clearly demonstrates the advantage of our proposed method in identifying

the dependence structure and pushing the independent pairs to zero, thereby obtaining

a closer approximation to the gold standard (Figure 2.8).

2.5.2 The Public Use Microdata Sample (PUMS)

The PUMS data contains a sample of actual responses to the American Community

Survey. The dataset includes behavioral, sociodemographic and sociological variables

in which 44 categorical variables are derived from the original survey data. There

are 38,549 valid subjects without missing values. We used a similar strategy to that

used for the splice data to compare the performance with the standard PARAFAC

method under a small sample case and a full sample case. 100 subjects were first

randomly selected to determine the association among the 44 social variables. Empirical

marginal probabilities with a Dirichlet(1,...,1) prior were used in our model, because

we believe that the underlying independent variables are not following the discrete
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uniform distribution and we need to avoid the zero count problem in some categories.

Comparing Figure 2.10 with Figure 2.9, the sp-FARAFAC again proves its advantage

in detecting more true signals and shrinking the noise.

2.5.3 National Birth Defects Prevention Study

The National Birth Defects Prevention Study is a national case-control study with

over 35,000 participants to date, making it the largest study of its kind ever conducted.

There are 9 states currently participating in this study: Arkansas, California, Georgia,

Iowa, Massachusetts, New York, North Carolina, Texas, and Utah. The study pop-

ulation area covers roughly 10% of all births in the United States. The subjects are

comparable to that of the general U.S. population with respect to maternal age, race,

ethnicity, and education level. We employ our SP Bayesian methods to investigate (1)

the association between 37 different types of heart defects and 80 potentially important

covariates, and (2) the association between cleft lip/palate defects and the same factors.

Before conducting association analysis, examining the correlations within the 80

predictors is useful. We use Cramer’s V statistic to quantify the associations. The

significant pairs are selected if Pr(Cramer’s V > 0.05|−) > 0.95. The upper panel of

Figure 2.11 identifies the strong associations among all solvents, the significant rela-

tionships between fertility procedures/medications, and tendency for partners to be of

the same race/ethnicity.

We then determine the associations within defects outcomes and outcome-predictor

associations using odds ratios (OR) as the reported measure of association. Our

Bayesian procedure selects significant dependent pairs by choosing the ones with the

2.5% percentile of the Gibbs samples greater than 1 or the 97.5% percentile smaller

than 1. The significantly associated pairs within 37 heart defects shown in the bottom

panel of Figure 2.11 suggest that several heart defects were strongly related to each
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other; specifically, left ventricular outflow tract obstruction has strong positive asso-

ciations with isolated coarctation of the aorta, aortic stenosis, hypoplastic left heart

syndrome, and coarctation with ventricular septal defects.

The upper panel of Figure 2.12 shows relationships between heart defects and covari-

ates. Double outlet right ventricle and pulmonary atresia are both affected by solvents

of all types (benzene, toluene, and xylene, carbon tetrachloride, chloroform, methylene

chloride, perchloroethylene, trichloroethane, trichloroethylene, and stoddard) with odds

ratios all around 3, while double outlet right ventricle is also associated with gestational

diabetes (OR: around 2). However, only two solvents (benzene and carbon tetrachlo-

ride) have an impact on conoventricular ventricular septal defects with odds ratios

around 2.2. Moreover, left ventricular outflow defects, hypoplastic left heart syndrome,

coarctation of the aorta, and aortic stenosis are associated with the pharmaceuticals

sulfamethoxazole, trimethoprim, and thyroid/antithyroid drugs with moderate odds

ratios around 1.8. Cleft palate is positively related to the use of fertility medica-

tions/procedures and whether the mother had surgery to restore fertility (Figure 2.12

bottom plot). The corresponding odds ratios are around 1.5.

2.6 Discussion

We have proposed a sparse modification to the widely-used PARAFAC tensor fac-

torization, and have applied this in a Bayesian context to improve analyses of ultra

sparse huge contingency tables. Given the compelling success in this application area,

we hope that the proposed notion of sparsity will have a major impact in other ar-

eas, including tensor completion problems in machine learning. There is an enormous

literature on low rank and sparse matrix factorizations, and the sp-PARAFAC should

facilitate scaling of such approaches to many-way tables while dealing with the in-

evitable curse of dimensionality. Although we take a Bayesian approach, we suspect
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that frequentist penalized optimization methods can also exploit our same concept of

sparsity in learning a compressed characterization of a huge array based on limited

data.
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Figure 2.1: Histograms of induced priors for one main effect β1, one two-way interaction
β12, and the three-way interaction β123 - Top Row: γ = 1; Middle Row: γ = 5; Bottom
Row: γ = 20.
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Figure 2.2: Posterior means and 95% credible intervals for all main effects and interac-
tions in S∗ compared with the true coefficients.
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Figure 2.3: Left: Posterior summaries of the Cramer’s V values for all dependent pairs
vs. the true Cramer’s V values; Right: Estimated density of Cramer’s V combining all
null pairs under sp-PARAFAC vs. empirical estimation.
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Figure 2.4: Simulation setting (i) – Left: True Cramer’s V matrix; Right: Posterior
means of Cramer’s V using standard PARAFAC. Top 20× 20 sub-matrix shown.
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Figure 2.5: Posterior means of Cramer’s V under simulation setting (i) using proposed

method – Left: with λ
(j)
0 being discrete uniform; Right: with λ

(j)
0 being empirical

estimates of the marginal category probabilities. Top 20× 20 sub-matrix shown.
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Figure 2.6: Posterior means of Cramer’s V under simulation setting (ii) – Left: using
standard PARAFAC; Middle: under proposed method using empirical marginal with
Diri(1,...,1) prior for λ0; Right: using proposed method with discrete uniform λ0. Top
20× 20 sub-matrix shown.
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Figure 2.7: Posterior quantiles of Cramer’s V with 120 sequences of splice data – Upper
panel: under standard PARAFAC; Bottom panel:under proposed method.
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Figure 2.8: Posterior quantiles of Cramer’s V with 3,175 sequences of splice data –
Upper panel: under standard PARAFAC; Bottom panel:under proposed method.
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Figure 2.9: Posterior quantiles of Cramer’s V with 100 subjects of PUMS – Upper
panel: under standard PARAFAC; Bottom panel: under proposed method.
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Figure 2.10: Posterior quantiles of Cramer’s V with 38,549 subjects of PUMS – Upper
panel: under standard PARAFAC; Bottom panel:under proposed method.
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Figure 2.11: Upper panel:Posterior mean of Cramer’s V for 80 potential factors; Bottom
panel: Posterior mean of significant odds ratios within 37 heart related birth defects.
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Figure 2.12: Upper panel: Posterior mean of odds ratios between 37 heart related birth
defects and 80 potential factors; Bottom panel: Posterior mean of odds ratios between
2 cleft defects and 80 potential factors.
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Table 2.1: Summary statistics of induced priors on coefficients in log-linear model
parameterization.

γ Coefficient Mean Std.dev Min Max Skewness Kurtosis

1 β1 0.014 0.831 -6.765 6.389 0.210 9.109
1 β12 -0.002 0.340 -2.895 3.105 -0.025 16.583
1 β123 0.002 0.196 -2.223 2.632 0.525 24.686
5 β1 -0.002 0.485 -5.648 5.433 0.031 27.980
5 β12 0.000 0.124 -2.085 2.244 0.495 93.438
5 β123 0.000 0.051 -1.214 0.745 -3.701 159.360

20 β1 0.002 0.246 -3.109 5.669 2.474 99.554
20 β12 0.000 0.042 -1.126 1.819 9.488 632.790
20 β123 0.000 0.009 -0.664 0.214 -44.051 3014.000
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Table 2.2: Power for Non-null Variables Based on 100 Simulations

β2 β4 β12 β14 β2,4 β2,12 β4,12 β4,14 β12,14 β2,4,12 β4,12,14

Power 0.97 0.9 1 1 0.95 0.99 0.98 0.97 0.99 0 0
True coefficient 1 -1.5 2 1.5 -0.5 0.5 -0.5 -0.5 0.5 0.25 0.5
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Table 2.3: Type I Error for Null Variables Based on 100 Simulations

β2,14 β2,4,14 β2,12,14 β2,4,12,14

Type I error 0.97 0 0.68 0
True coefficient 0 0 0 0
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CHAPTER 3

Nonparametric Bayes Modeling for Case Control Studies

3.1 Introduction

Retrospective case-control studies are common in epidemiologic research because

they are much more cost effective than prospective studies, particularly for rare diseases.

However, retrospective studies only model exposure given disease, presenting some

challenges in analysis and interpretation of the results. In prospective studies, logistic

models are widely used to estimate adjusted odds ratios for each of multiple risk factors.

A primary concern when analyzing case-control data is whether prospective inferences

can be made. In the frequentist framework, there is a rich literature (Anderson 1972;

Prentice and Pyke 1979) demonstrating that one can ignore the study design and use

estimation and inference based on a logistic regression. That is, it has been shown that

odds ratios for prospective and case control data are equivalent.

Consider the National Birth Defects Prevention Study (NBDPS), the largest case-

control study ever conducted in the United States on the etiology of birth defects

(Yoon et al. 2001). Data are collected on many different defects along with hundreds

of potentially associated factors, including environmental, behavioral, biomedical and

occupational variables. Typically these variables are categorized, leading to a huge

sparse contingency table having mostly zero counts. There is strong prior reason to

suspect interactions, and logistic regression is clearly not appropriate. Although there is
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a recent Bayesian literature on analysis of high-dimensional contingency tables (Dunson

and Xing (2009), Bhattacharya and Dunson (2011), Zhou et al. (2013)), these methods

view the data as multivariate categorical arising from a prospective design. Our focus

is on addressing the question of whether we can adapt these approaches to case control

settings.

There is a rich literature on Bayesian analysis of case-control data in low-dimensional

settings. Zelen and Parker (1986); Nurminen and Mutanen (1987); Marshall (1988) and

Ashby et al. (1993) all consider identical Bayesian formulations of a case-control model

with a binary exposure X. Let φ and γ be the probabilities of exposure in control and

case populations respectively. The retrospective likelihood is

l(φ, γ) ∝ φn01(1− φ)n00γn11(1− γ)n10 , (3.1)

where n01 and n00 are the number of exposed and unexposed observations in the control

population, whereas n11 and n10 denote the same for the case population. Independent

conjugate prior distributions for φ and γ are chosen as Beta(u1, u2) and Beta(ν1, ν2)

respectively. After reparametrization one obtains the posterior distribution of the log

odds ratio parameter, β = log{γ(1− φ)/φ(1− γ)} as

l(β|n11, n10, n01, n00) ∝ exp{(n11 + ν1)β}
∫ 1

0

φn11+n01+ν1+u2−1(1− φ)n10+n00+ν2+u1−1

{1− φ+ φ exp(β)}n11+n10+ν1+ν2
dφ.(3.2)

The above references used different methods to approximate the posterior distribution

of β shown in (3.2) as well as discussing different prior elicitations based on historical

studies.

An alternative is to induce a retrospective likelihood by starting with a model

for the prospective likelihood and using Bayes rule. For each subject i, let di be a

binary response observed together with covariatesXi. Assume a binary response logistic

51



regression for the conditional likelihood of di given covariates, with β the coefficients,

and let θ denote parameters in a model for the marginal distribution of Xi. Assuming

Xi is continuous, Müller and Roeder (1997) proposed a semiparametric Bayes approach.

They factorize the joint posterior as

Pr
(
β, θ|X,D

)
∝ Pr(β, θ)

n∏
i=1

Pr(Xi|di, β, θ), (3.3)

where under conditional independence assumptions they let,

Pr(Xi|di, β, θ) =
Pr(di|Xi, β) Pr(Xi|θ)

Pr(di|β, θ)
. (3.4)

Problems arise in approximating the denominator in (3.4), as this involves an analyti-

cally intractable high-dimensional integral.

Seaman and Richardson (2001) extended these two types of models by allowing

more than one categorical exposure variable and employing Markov chain Monte Carlo

methods to sample the posterior of β. Müller et al. (1999) modeled the retrospective

likelihood directly for continuous exposures, also allowing binary covariates via a probit

model. Ghosh and Chen (2002); Sinha et al. (2004; 2005) developed general Bayesian

methods for matched case-control studies in the presence of one or more exposure

variables, missing exposures, and multiple disease states. None of the above approaches

can accommodate more than a modest number of categorical predictors. As the number

of covariates increases, the algorithms either fail to implement or have highly biased

estimates.

There has also been research establishing the equivalence of prospective and retro-

spective Bayesian models. Seaman and Richardson (2004) obtained equivalence through

carefully chosen priors. Staicu (2010) extended the class of priors, while still relying

on logistic regression. As motivated above, logistic models are too inflexible for our

52



motivating application. Byrne and Dawid (2013) established an equivalence of learning

odds ratios whether using retrospective or prospective likelihood and Bayesian ap-

proach. However this equivalence only holds with particular conditions satisfied for

the models and priors. Unfortunately their method is impractical for large number of

covariates in Bayes analysis.

With this motivation, we develop a nonparametric Bayes method based on directly

modeling the retrospective likelihood building on existing methods for high-dimensional

categorical data. The basic framework is proposed in Section 3.2. Section 3.3 outlines

a Gibbs sampler for posterior computation. Section 3.4 compares performance with

competitors in a simulation study. Section 3.5 analyzes data from the motivating birth

defect study, and Section 3.6 contains a discussion.

3.2 Conditional Sparse Parallel Factor Analysis Model

3.2.1 Model and prior

The general form of the retrospective likelihood is:

l(θ1, θ0) =
∏
i:di=1

Pr(xi|di = 1, θ1)
∏
i:di=0

Pr(xi|di = 0, θ0), (3.5)

where Pr(xi|di = d, θd) is the conditional likelihood of the high-dimensional categorical

predictors xi = (xi1, . . . , xip)
′, with xij ∈ {1, . . . , dj} for j = 1, . . . , p, given disease sta-

tus d (0 = control, 1=case). When p is moderate to large (say in the dozens to 100s or

more), problems arise in defining a flexible model for these high-dimensional categorical

predictors. Potentially log-linear models can be used, but unless the vast majority of the

interactions are discarded a priori, one obtains an unmanageably enormous number of

terms to estimate, store and process. These bottlenecks are freed by the use of Bayesian
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low rank tensor factorizations, which have had promising performance in practice (Dun-

son and Xing (2009); Bhattacharya and Dunson (2011); Kunihama and Dunson (2013);

Zhou et al. (2013)). Johndrow, Bhattacharya and Dunson (2014) recently showed that

sparse log-linear models have low rank tensor factorizations, providing support for the

use of tensor factorizations as a computationally convenient alternative.

We build upon the sparse parallel factor analysis (SPFA) method of Zhou et al.

(2013), motivated by their strong theory and exceptional practical performance. Con-

ditional on disease status, the SPFA factorization of the joint p.m.f. of xi can be

expressed as

Pr(xi1 = c1, . . . , xip = cp|di = d) =
k∑

h=1

νdh

p∏
j=1

λ
(j)
dhcj

, (3.6)

with sparsity assumptions:

λ
(j)
dhcj

=

 λ
(j)
dhcj

= Pr(xij = cj|di = d, zi = h), if j ∈ Sdh

λ
(j)
0cj

= Pr(xij = cj), if j ∈ Scdh
, (3.7)

where in (3.6), νdh = Pr(zi = h|di = d) is a mixture probability for latent class

variable zi ∈ {1, . . . , k} under disease d, and
∑k

h=1 νdh = 1. λ
(j)
dh = (λ

(j)
dh1, . . . , λ

(j)
dhdj

) is

a vector of the multinomial probabilities of xij = 1, . . . , dj given disease d and latent

class component h. This model, ignoring the sparsity assumptions for the moment,

is motivated by latent structure analysis (Lazarsfeld and Henry 1968) which provides

meaningful interpretation. Suppose we have two categorical covariates for example,
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given disease outcome d, model (3.6) becomes

Pr(xi1 = c1, xi2 = c2|di = d) =
k∑

h=1

νdhλ
(1)
dhc1

λ
(2)
dhc2

(3.8)

=
k∑

h=1

Pr(zi = h|di = d)
2∏
j=1

Pr(xij = cj|zi = h, di = d).

With the introduction of the latent class zi for all subjects in outcome group d, any

covariates xi1 and xi2 that are possibly dependent can be assumed conditionally in-

dependent. But marginalizing out the latent index zi produces a mixture of product

multinomial distributions for xi and hence leads to a possible dependence structure

within xi in outcome group d. Any joint probability of xi = (xi1, xi2)′ for all subjects in

each group d can always be decomposed as in (3.8) for some sufficiently big k (Dunson

and Xing 2009). The extension to the multivariate covariates case is straightforward.

A nonparametric Bayes approach can be used to deal with uncertainty in k.

The effective number of parameters can be massively reduced by choosing a prior

that favors independence between many of the predictors. This can be instantiated via

the sparsity assumption in (3.7).In particular, in each disease group d and component

h, we partition the p dimensions of covariates into two mutually exclusive subsets

Sdh ∪ Scdh = {1, . . . , p}, and for the variables within subset Scdh, we allocate λ
(j)
dhcj

to its

baseline category λ
(j)
0cj

, which is not dependent on the latent class or the outcome group.

A Bayes approach is used to learn the allocation of the subsets for each variable. This

dramatically reduces the number of parameters needed to learn the distribution of xi

by sharing parameters between disease group and latent class levels for a large number

of variables.

Consider a simple case of three covariates. If we let λ
(3)
dhc3

= λ
(3)
0c3

for h = 1, . . . , k
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and d = 0, 1, we have

Pr(xi1 = c1, xi2 = c2, xi3 = c3|di = d) = λ
(3)
0c3

k∑
h=1

νdhλ
(1)
dhc1

λ
(2)
dhc2

= Pr(xi3 = c3) · Pr(xi1 = c1, xi2 = c2|di = d),

implying the third covariate is independent of the outcome and does not have any

interaction with the other two variables. However, the sparsity assumption has the

flexibility in allowing j ∈ Scdh for some but not all h ∈ {1, . . . , k}, which leads to some

interactions/collinearity between the jth factor and the other factors. This implicitly

indicates the jth covariate can be associated with the disease through the other factors

correlated with the disease. Moreover, if a variable j is independent of the other

covariates, a marginal association between the jth variable and the outcome can be

introduced by having j ∈ Scdh for all h but not for all d . In practice, the cardinality of

Sdh (denoted as |Sdh|) is unknown but can be estimated by a Bayesian approach which

will be discussed later. λ
(j)
0 = {λ(j)

01 , . . . , λ
(j)
0dj
} vectors are fixed in advance; one natural

choice is: λ
(j)
0 =

(
1
dj
, . . . , 1

dj

)′
corresponding to a discrete uniform. Furthermore, our

model also allows subjects in different outcome groups to have a different mixture

probability to a specific class h (i.e. νdh), which results in a more flexible distribution

structure for xi for each outcome group.

Compared with Zhou et al. (2013) whose aim is to model the joint distribution of

outcomes and predictors, we are now modeling the retrospective likelihood by condi-

tioning on disease and having two different groups. In order to study the dependence

between outcomes and covariates, it would be extremely inefficient to estimate the

high-dimensional distribution of the covariates completely separately in the two groups,

which would be effectively acting as if all the predictors are important. It would also

be inappropriate to pool the two groups, as that would assume there was no impact of
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the covariates on disease implicitly. Hence, our primary modeling contribution is in al-

lowing uncertainty in what attributes are similar between the groups; in particular, we

would like to adaptively learn which parameters are common and which are different.

This adaptive learning is key to inferring the prospective impact of the predictors on

disease risk.

Our proposed model (3.6) with assumptions (3.7) can be expressed in a hierarchical

form with priors specified for the unknown parameter vectors: for d = 0 or 1,

xij|di = d, zi = h ∼ Mult
(
{1, . . . , dj};λ(j)

dh1, . . . , λ
(j)
dhdj

)
,

λ
(j)
dh ≡

(
λ

(j)
dh1, . . . , λ

(j)
dhdj

)
∼ (1− τdh)δλ(j)

0
+ τdhDiri(aj1, . . . , ajdj), (3.9)

Pr(zi = h|di = d) = νdh = Vdh
∏

l<h(1− Vdl),

Vdh ∼ Beta(1, α), α ∼ Gamma(aα, bα), τdh ∼ Beta(1, γ).

Expression (3.9) is equivalent to letting the subset-size |Sdh| ∼ Binom(p, τdh) and draw-

ing a random subset Sdh uniformly from all subsets of {1, . . . , p} of size |Sdh| in (3.7). A

stick-breaking representation of the Dirichlet process prior (Sethuraman 1994) is cho-

sen for the component weights {νdh, h = 1, . . . , k} allowing k = ∞, with a hyperprior

placed on the concentration parameter α in the stick-breaking process to allow the data

to inform more strongly about the component weights. The probability of allocation

τdh to the active (non-baseline) category is chosen as beta(1, γ), with γ > 1 favoring

allocation of many of the λ
(j)
dh s to the baseline category λ

(j)
0 in both outcome groups.
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3.2.2 Inference

It is common in practice to learn the prospective odds ratio in case-control studies.

To proceed, the odds for any XA versus XB given the disease is:

odds(XA vs. XB|d) =
Pr(XA|d)

Pr(XB|d)
. (3.10)

The corresponding retrospective odds ratio can be computed in a straightforward fash-

ion by our proposed model:

ORretro =
odds(XA vs. XB|d = 1)

odds(XA vs. XB|d = 0)
. (3.11)

It is well known that prospective odds ratio is equivalent to retrospective odds ratio

which is obvious from Bayes’ theorem. That is,

ORprosp =
odds(d = 1|XA)

odds(d = 1|XB)
=
odds(XA vs. XB|d = 1)

odds(XA vs. XB|d = 0)
= ORretro. (3.12)

As a consequence, it is valid and without difficulty to report prospective odds ratios

from case-control studies. The marginal odds ratio for the jth predictor can be easily

computed by setting XA = {xij = 1} and XB = {xij = 0}.

3.3 Posterior Computation

Under model (3.9), we can easily proceed to draw posterior samples from a Gibbs

sampler since all the full conditionals have recognizable forms. The algorithm iterates

through the following steps:

1. In each disease group d, for variable j = 1, . . . , p and latent class h = 1, . . . , k∗d,
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where k∗d = max{z1, . . . , znd
}, update λ

(j)
dh ≡ (λ

(j)
dh1, . . . , λ

(j)
dhdj

) from a two compo-

nent mixture distribution, having a point mass at the baseline probability vector:

(λ
(j)
dh |−) =

w
(j)
0h

w
(j)
0h + w

(j)
1h

δ
λ
(j)
0

+
w

(j)
1h

w
(j)
0h + w

(j)
1h

Diri

(
aj1 +

n∑
i=1

1(xij = 1, zi = h, di = d),

. . . , ajdj +
n∑
i=1

1(xij = dj, zi = h, di = d)

)
, (3.13)

where w
(j)
0h and w

(j)
1h are proportional to the mixture weights:

w
(j)
0h = (1− τdh)

dj∏
c=1

λ
(j)

∑n
i=1 1(zi=h,di=d,xij=c)

0c ,

w
(j)
1h = τdh

Γ(
∑dj

c=1 ajc)∏dj
c=1 Γ(ajc)

·
∏dj

c=1 Γ
(
ajc +

∑n
i=1 1(zi = h, di = d, xij = c)

)
Γ
(∑dj

c=1 ajc +
∑n

i=1 1(zi = h, di = d)
) .

2. Let Sjdh ∈ {0, 1} be a binary allocation variable indicating the component λ
(j)
dh is

drawn from in (3.13), with Sjdh = 0 if λ
(j)
dh is updated from the baseline component.

Update τdh, h = 1, . . . , k∗ from a Beta full conditional:

τdh|− ∼ Beta

(
1 +

p∑
j=1

1(Sjdh = 1), γ +

p∑
j=1

1(Sjdh = 0)

)
. (3.14)

3. The full conditional of Vdh, h = 1, . . . , k∗d only requires the updated information

on latent class allocation for the subjects within the disease group d:

Vdh|− ∼ Beta

(
1 +

nd∑
i=1

1(zi = h), α +

nd∑
i=1

1(zi > h)

)
. (3.15)

4. Sample zi, for {i = 1, . . . , n s.t. di = d} and d = 0, 1 from the multinomial full
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conditional with:

Pr(zi = h|di = d,−) =
νdh
∏p

j=1 λ
(j)
dhxij∑k∗

l=1 νdl
∏p

j=1 λ
(j)
dlxij

, (3.16)

where νdh = Vdh
∏

l<h(1− Vdl). Note that z = {zi, i = 1, . . . , n0; zl, l = 1, . . . , n1}.

5. Update α from the Gamma full conditional:

α|− ∼ Gamma

(
aα + k∗0 + k∗1, bα −

1∑
d=0

k∗d∑
h=1

log(1− Vdh)
)
. (3.17)

The default setting is aα = bα = 1.

3.4 Simulation Studies

3.4.1 Simulation from log-linear models

We first conduct a replicated simulation study mimicking a case-control design to

assess the performance using the proposed model compared with logistic regression with

and without the Benjamini and Hochberg correction, CART, random forest, and Lasso.

For 50 case and 50 control subjects, we simulated p binary covariates xij ∈ {0, 1},

j = 1, . . . , p, under two scenarios: (i) p = 20, and (ii) p = 100, among which four

variables (j = 2, 4, 12, 14) were assumed dependent and generated from a saturated

log-linear model with coefficients varying by outcome d:

log

(
πdc2,c4,c12,c14
πd0,0,0,0

)
=

4∑
s=1

∑
S∗⊂{2,4,12,14}:|S∗|=s

βdS∗1(cS∗=1), (3.18)

where πdc2,c4,c12,c14 = Pr(xi2 = c2, xi4 = c4, xi,12 = c12, xi,14 = c14 | di = d). If S∗ = {2, 4},

for example, then βdS∗ = βd2,4 and 1(cS∗=1) = 1(c2=1,c4=1) with 1(·) denoting the indicator

function. Different values of cj, j = 2, 4, 12, 14, will lead to different coefficients in the
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model. One illustration is if c2 = 1, c4 = 1, c14 = 1, model (3.18) becomes

log

(
πd1,1,0,1
πd0,0,0,0

)
= βd2 + βd4 + βd14 + βd2,4 + βd2,14 + βd4,14 + βd2,4,14. (3.19)

All the true coefficients are set as in Table 3.1 and 3.2. Having different main

effects given disease outcome in the log-linear model results in association between the

outcome and those four variables. All the remaining null variables j ∈ {1, . . . , p}, j 6=

{2, 4, 12, 14} were independently generated from a discrete uniform distribution. This

data generating mechanism induces dependence among the variables in S∗ and their

impact on outcome, while rendering the other variables marginally independent.

Simulations were conducted based on 1,000 data replicates for each scenario. In

each replicate, the posterior marginal odds ratio for each variable j using (3.10)- (3.12)

was computed according to:

OR(j) =
P (xij = 1|di = 1)

P (xij = 0|di = 1)

/
P (xij = 1|di = 0)

P (xij = 0|di = 0)
, (3.20)

where

Pr(xij = cj|di = d) =


∑k

h=1 νdhλ
(j)
dhcj

, if j ∈ Sdh∑k
h=1 νdhλ

(j)
0cj

= λ
(j)
0cj
, if j ∈ Scdh

. (3.21)

The corresponding credible interval of the odds ratio was used to identify whether

the variable j was significant. For each data replicate, we ran the chain for 25, 000

iterations, discarding the first 10, 000 iterations as burn-in and collecting every fifth

sample post burn-in to thin the chain. Mixing and convergence were satisfactory based

on the examination of trace plots.

Receiver Operating Characteristic (ROC) curves were plotted to compare the per-

formance among methods under the two p scenarios respectively. ROC is a plot of the
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true positive rate (Sensitivity) against the false positive rate (100-Specificity) for dif-

ferent possible cut-off points. In our case, we define sensitivity as the combined power

for four true variables, while 100-specificity is the combined type I error rate for all the

null variables. Each point on the ROC curve represents a sensitivity/specificity pair

corresponding to a particular decision threshold.

As illustrated in Figure 3.1, the proposed Bayes case control method is obviously

the best among the 6 approaches for both p cases. Our method tends to have much

smaller combined type I error and provide better power at all times. Note that the x

axis scale is only shown within [0,0.5] for display purposes and because a type I error

being too large is usually not acceptable. Some ROC curves are cut off due to the scale

limit.

Another case is considered for data that contains covariates which are correlated, but

not associated with outcome, in addition to the outcome-dependent variables mentioned

above. We added another four variables using a saturated log-linear model similar to

(3.18) but having the same coefficients in both disease groups instead. The coefficients

are set in Table 3.3. The new mechanism results in the extra four covariates correlated

to each other but not impacting disease. All the other p − 8 variables are generated

independently from a discrete uniform distribution. We then created two new ROC

curves for both p cases shown in Figure 3.2. Compared with Figure 3.1, we obtained

a slightly inflated false positive rate. However, it still performs much better than the

other methods.

3.4.2 Simulation from latent class models

We now perform another simulation study with data generated from a latent class

model rather than a log-linear model. We again had 50 case and 50 control subjects

having p binary predictors with (i) p = 20 and (ii) p = 100 for each data replicate.
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We assume four predictors are associated with the outcome in the true model, whereas

those four variables (j = 2, 4, 12, 14) are correlated by introducing the multiple latent

classes z = 1, . . . , k, with each latent class having different marginal probabilities for

those four variables. We assumed 80% of individuals fell into the first latent class, with

the remaining individuals in a second latent class (k = 2). Furthermore, the variable

dependence on disease outcome can be induced by letting the marginal probabilities

under each latent class vary by disease outcome. In particular,

Pr(xij = cj | di = d, zi = h) = λ
(j)
dhcj

, h = 1, 2; d = 0, 1 (3.22)

where vector λ
(j)
dh only varies by d and h for j = 2, 4, 12, 14. All the remaining predictors

were generated from a discrete uniform distribution with λ
(j)
dh = λ

(j)
0 ≡ (1

2
, 1

2
)′. Within

a latent class and the disease group, all the variables are conditionally independent.

However, marginalizing out the latent class indicator, one obtains dependence in those

variables that have different marginal probabilities across the latent classes, conditional

on the disease outcome. Additionally, it becomes clear that having the probability of

those correlated covariates differing by the disease group implies the association between

the outcome and those four variables.

We generated 1000 simulated datasets, then ran the Gibbs sampler of Section 3.3

with satisfactory mixing and convergence rates. We also computed the posterior sam-

ples of the odds ratios to assess the ROC performance. As in Figure 3.3, our approach

outperforms the other methods for both p = 20 and 100 with much better combined

power and lower type-I error.

To examine the performance of all methods when including correlated covariates

not associated with outcome, we generated another 4 correlated variables for both p

cases with different marginal probabilities in each latent class but do not vary by the

disease group (i.e. Pr(xij = cj |zi = h) = λ
(j)
hcj
, h = 1, 2). The corresponding ROC
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curves, based on a new 1,000 simulated data, are provided in Figure 3.4. It shows

that the performance is similar to Figure 3.3, but more complex data adding correlated

covariates not related to outcome would slightly affect the false positive rate.

The power and type I error rates for screening based on 95% credible intervals

for odds ratios not including 1 are provided in Table 3.4 and Table 3.5. In both

simulation scenarios, the power does not appear to be affected with respect to adding

more correlated covariates. The type I error, as we observed in the ROC curves, is

slightly inflated but remains well below 0.05 in a more correlated covariate structure.

3.5 Application to the National Birth Defects Prevention Study

The new method is motivated by the National Birth Defects Prevention Study,

which is a U.S. nation-wide case-control study with approximately 26,000 cases and

10,000 controls that was started in 1997. The study was designed to evaluate environ-

mental, behavioral, biomedical, sociodemographic, genetic, and occupational factors

associated with the occurrence of congenital malformations. There are 9 states cur-

rently participating in this study: Arkansas, California, Georgia, Iowa, Massachusetts,

New York, North Carolina, Texas, and Utah. The study population area covers roughly

10% of all births in the United States. The subjects are comparable to that of the gen-

eral U.S. population with respect to maternal age, race, ethnicity, and education level.

There are 54 birth defects and 177 potentially important risk factors of interest.

We employ our case control Bayesian methods to investigate the associations per

defect using odds ratios (OR) as the measure of association. 19 defects (any heart de-

fect, conotruncal, left ventricular outflow tract obstruction (LVOTO), right ventricular

outflow tract obstruction (RVOTO), ventricular septal defect perimembranous (VS-

DPM), atrial septal defect not otherwise specified (ASD2NOS), ventricular and atrial

septal defect (VSD ASD), neural tube defects (NTD), ear, cleft palate, cleft lip with
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cleft palate, cleft lip without cleft palate, esophageal, anorectal, hypospadias, limb,

craniosyn, diaphragm, gastroschisis) are analyzed due to the insufficient cases for other

specific defects.

Our Bayesian procedure estimates a 95% credible interval for the marginal odds ratio

for each factor and selects those factors as significant having 95% interval not including

one. We ran 20, 000 iterations with first 5, 000 iterations as burn-in and collecting every

fifth sample post burn-in to thin the chain. The effective sample sizes for marginal odds

ratios are ranging from 2,783 to 3,000 which suggests the thinned samples are close to

independent. We output the results for each defect with 177 predictors as one row,

and combine all 19 analyses for different outcomes into a 19×177 matrix which is then

separated into three heat maps displayed in the top figures in Figures 3.5 - 3.7.

In the upper panel of Figure 3.5, gastroschisis is positively associated with a parental

age less than 24 years old (OR ≈ 5) relative to age 25-30, and mother’s low education

(OR = 3.6). Hispanic parents (OR= 3.5), molar pregnancy (OR=3.9), and type 1

diabetes (OR=5.1) are risk factors for ear defect. Esophageal atresia is affected by

mothers’ fertility procedure with OR 3.8, sulfamethoxazole and trimethoprim exposure

with both ORs 3.2. Molar pregnancy is also associated with ventricular and atrial

septal defect (OR:4.3) and cleft lip without cleft palate (OR:3.6). Pelvic inflamatory

disease (PID) is a risk effect for ventricular septal defect perimembranous, cleft palate,

craniosyn, and ventricular and atrial septal defect with ORs around 3.5 for the first

three defects and 5.3 for the last one. Meclizine exposure has an impact on multiple

defects including left ventricular outflow tract obstruction (OR:4.3), ventricular and

atrial septal defect (OR:7.0), neural tube defects (OR:4.2), ear (OR:8.0), cleft palate

(OR:9.2), craniosyn (OR:6.7), and diaphragm (OR:7.2).

In Figure 3.6 top figure, human immunodeficiency virus (HIV) exposure is strongly
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associated with most defects with ORs larger than 8 except conotruncal, atrial sep-

tal defect, neural tube defects, cleft lip with cleft palate, and esophageal. Human

papillomavirus (HPV) exposure plays a role in right ventricular outflow tract obstruc-

tion (OR:4.2), ventricular septal defect perimembranous (OR:4.4), atrial septal defect

(OR:3.3), and ear (OR: 5.7). Pelvic inflamatory disease medication affects ventricular

septal defect perimembranous (OR: 3.8), ventricular and atrial septal defect (OR:5.2),

cleft palate (OR:3.4), anorectal and craniosyn with OR 3.6 for the last two. Pregnancy

outcome (stillbirth) is related to neural tube defects (OR:15.0), anorectal (OR:3.3), and

gastroschisis (OR:5.5). Induced abortion is instead related to craniosyn with OR 4.5,

ventricular and atrial septal defect, neural tube defects, and ear all with ORs greater

than 8. Gestational age of 32-36 weeks or birth weight more than 4,000 grams are

more likely to have esophageal(OR≈ 3.5) and gastroschisis(OR≈ 9). Gastroschisis is

additionally associated with parental substance abuse with ORs 3-4.

In Figure 3.7 top panel, in terms of mother’s occupation, protective service occu-

pations have a risk in developing ventricular and atrial septal defect, cleft lip without

cleft palate, diaphragm with ORs between 3 and 4 in the baby. Construction work can

lead to ventricular and atrial septal defect (OR:10.2) and cleft lip without cleft palate

(OR:5.4), while installation, maintenance, and repair occupations are associated with

right ventricular outflow tract obstruction, atrial septal defect, ventricular and atrial

septal defect, cleft palate, cleft lip without cleft palate, and esophageal with large ORs.

Furthermore, military occupations have a dramatically high risk (all ORs > 5) in de-

veloping defects such as right ventricular outflow tract obstruction, ventricular septal

defect perimembranous, ventricular and atrial septal defect, neural tube defects, ear,

cleft palate, esophageal, limb, craniosyn, and diaphragm defect. Among all the solvents,

benzene is associated with left ventricular outflow tract obstruction, ventricular septal

defect perimembranous, ventricular and atrial septal defect, and diaphragm with ORs
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between 3.5 and 5.7. Carbon tetrachloride, on the hand, has an impact on right ventric-

ular outflow tract obstruction (OR:4.7), ventricular and atrial septal defect (OR:12.3),

cleft palate (OR:5.0), and craniosyn (OR:5.1). We also found that right ventricular

outflow tract obstruction and limb defect are affected by most solvents with moderate

ORs.

From simulations we learned that our approach has better power and lower type-

I error when compared with other existing methods. To compare with the proposed

approach in application, we chose logistic regression without multiple testing as it

performs relatively better than the other existing methods (LASSO, CART, and logistic

regression with multiple testing correction) in simulations. The results are shown in

the bottom panels of Figures 3.5 - 3.7. We detected more significant associations than

logistic regression. The following are some interesting examples of associations selected

as significant in the proposed method but not in logistic regression.

Interestingly, in Figure 3.5, our model identified meclizine exposure as a risk factor

for left ventricular outflow tract obstruction (OR=4.3), ventricular and atrial septal

defect (OR=7.0), neural tube defects (OR=8.0), craniosyn (OR=6.7), and diaphragm

(OR=7.2), while logistic regression using p-value < 0.5 did not. Likewise, in Fig-

ure 3.6, HIV was discovered to have an association with left ventricular outflow tract

obstruction, right ventricular outflow tract obstruction, ventricular septal defect per-

imembranous, ventricular and atrial septal defect, cleft palate, cleft lip without cleft

palate, ear, anorectal, hypospadias, limb, craniosyn, diaphragm with ORs around 10.

Some of the occupations in Figure 3.7 drew our attention: mothers who have mainte-

nance/repair jobs are more likely to develop atrial septal defect, ventricular and atrial

septal defect, cleft palate (OR≈5). Women who serve in the military have a higher

risk in developing right ventricular outflow tract obstruction, ventricular septal defect

perimembranous, ventricular and atrial septal defect, neural tube defects, cleft palate,
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limb, craniosyn, and diaphragm defects with all ORs larger than 5. For a father on

the other hand, the risk is higher for heart defect (OR=1.6), ventricular and atrial sep-

tal defect (OR=3.4), and craniosyn (OR=2.7). Moreover, logistic regression was not

able to detect chemical solvents that could affect the new born babies. We found out

that carbon tetrachloride is associated with right ventricular outflow tract obstruction

(OR=4.7), cleft palate (OR=5.0), hypospadias (OR=3.5), and craniosyn (OR=5.1).

Benzene also has a harmful effect on conotruncal defect (OR=2.9), left ventricular out-

flow tract obstruction (OR=3.2), ventricular septal defect perimembranous (OR=4.2),

and ventricular and atrial septal defect (OR=5.7). More details are in Appendix II.

3.6 Discussion

In this paper, a new method utilizing a sparse parallel factor analysis model has

been proposed for case control designs. It has been shown through simulation that

it has exceptional performance in identifying true predictors while keeping the type I

error rate very small. The outstanding performance, compared to existing methods,

is due to flexible distribution modeling for the retrospective likelihood and borrowing

information among variables in our model. This method can be applied to any case

control study that has many categorical covariates with an interest in investigating the

association.

Our paper is focused on building a flexible nonparametric model for the data to

improve inferences on marginal associations, but an important next step is to develop

approaches for inferences on conditional associations.

As for analyses containing multiple outcomes such as the National Birth Defects

Prevention Study, there is clear evidence of dependence over the rows of the figures

showing results (e.g. Figure 3.6). This suggests that certain factors are risk factors

for multiple different birth defects. It would be interesting to develop a new method
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to group similar factors effects on multiple outcomes. If we had alternatively used a

prospective logistic regression, then it would be very natural to build a hierarchical

regression model (Coull et al. 2001). Our nonparametric Bayes extension would be a

competitor especially in a high-dimensional case.
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Figure 3.1: ROC curves under loglinear true models – Left: p=20; Right: p=100.
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Figure 3.2: ROC curves under loglinear true models with more correlated covariates –
Left: p=20; Right: p=100.
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Figure 3.3: ROC curves under latent class true models – Left: p=20; Right: p=100.
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Figure 3.4: ROC curves under latent class true models with more correlated covariates
– Left: p=20; Right: p=100.
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Figure 3.5: Part 1 – significant odds ratios between 19 birth defects and 64 potential
factors. Top: using proposed method; Bottom: using 1-to-1 logistic regression.
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Figure 3.6: Part 2 – significant odds ratios between 19 birth defects and 64 potential
factors. Top: using proposed method; Bottom: using 1-to-1 logistic regression.
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Figure 3.7: Part 3 – significant odds ratios between 19 birth defects and 64 potential
factors. Top: using proposed method; Bottom: using 1-to-1 logistic regression.
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Table 3.1: True Coefficients

βd2 βd4 βd12 βd14 βd2,4 βd2,12 βd2,14 βd4,12 βd4,14 βd12,14

d=0 0.5 -1.5 -2 1 -0.5 0.5 0 0.5 -0.5 -0.5
d=1 3 -3 -0.5 4 -0.5 0.5 0 0.5 -0.5 -0.5
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Table 3.2: True Coefficients (continued)

βd2,4,12 βd2,4,14 βd2,12,14 βd4,12,14 βd2,4,12,14

d=0 0.25 0 0 0.5 0
d=1 0.25 0 0 0.5 0
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Table 3.3: True Coefficients for Another Four Dependent Variables

β1 β3 β11 β13 β1,3 β1,11 β1,13 β3,11

1.5 -0.5 2 -1 -0.5 0.25 0 -0.5

β3,13 β11,13 β1,3,11 β1,3,13 β1,11,13 β3,11,13 β1,3,11,13

0.5 -0.5 -0.25 0.25 -0.25 0 0
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Table 3.4: Power Using 95% Credible Intervals

Power
Log-Linear Model Latent Class Model
p=20 p=100 p=20 p=100

4 correlated covariates 0.791 0.801 0.697 0.664
8 correlated covariates 0.792 0.801 0.701 0.673
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Table 3.5: Type I Error Using 95% Credible Intervals

Type I Error
Log-Linear Model Latent Class Model
p=20 p=100 p=20 p=100

4 correlated covariates 0.002 3.75E-04 0.003 0.003
8 correlated covariates 0.016 0.004 0.022 0.008
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CHAPTER 4

Sample Size Re-estimation in Longitudinal Group Sequential Design

4.1 Outline

With the goal of designing and analyzing a longitudinal trial using group sequential

design along with the concern of insufficient power, the background information on how

to determine the sample size for fixed design and group sequential design is provided in

section 4.2. In Section 4.3, we introduce the information-based sample size re-estimation

method in group sequential design to be utilized in longitudinal trials. Adaptation rules

for updating sample size have been developed which will be described and illustrated

by examples. Section 4.4 provides the simulation results for our method compared with

fixed design and group sequential design without sample size re-estimation. A simple

data analysis is presented in section 4.5. Finally, section 4.6 contains a discussion and

summary of the results.

4.2 Sample Size Determination for Longitudinal Analysis

4.2.1 Model Notation

We model the longitudinal data as in Liang and Zeger (2000) which includes the

baseline value as part of the response vector. The marginal mean model is given as

E(Yijt) = µ0 + γjtI(treatment = j)I(time = t; t > 0), t = 0, 1, . . . , T, (4.1)

82



where i indexes the subject, j indexes the treatment group (j = 1 for the control

group, j = 2 for the active treatment group), and t indexes the time point (t = 0 for

the baseline and t = 1, . . . , T for the post baseline time points). In addition, µ0 is the

mean response at t = 0, which is constrained to be the same for both treatment groups

due to randomization. As a result, the baseline measurement is not considered as an

’outcome’ to treatment although it is included in the response vector together with

the post baseline measurements. Hereafter, we will refer to (4.1) as the constrained

longitudinal data analysis (cLDA) model (Lu et al. 2009). The parameter γjt is the

effect of change from baseline at time t for treatment j ; hence, µjt = µ0 + γjt is the

mean at time t for treatment j. Let θj = (µj1, . . . , µjT )′ denote the mean vector for

post baseline measurements for treatment j. The mean parameters for model (4.1) can

be written as ψ = (µ0, θ
′
1, θ
′
2)′.

The cLDA model assumes that baseline and post baseline values are jointly multi-

variate normal with Σ = {σst : s, t = 0, 1, . . . , T}. This matrix can be represented as a

correlation matrix sandwiched by the diagonal matrix of standard deviations where the

correlation matrix is given by R = {ρst : s, t = 0, 1, . . . , T} and the standard deviations

are with respect to the pure error within each longitudinal measurement. Let us denote

njt as the subjects retained at time t in treatment j with the assumption of a monotone

missing data pattern, and nj = nj0 as the total number of subjects in treatment j at

baseline. Define rjt = njt/nj as the proportion of enrolled subjects retained at time

t in treatment j. Note that the retained people include those that are are still under

active follow-up but exclude those who drop out. The drop-out rate, the proportion of

enrolled subjects dropped out between time t and t + 1, is pjt = (njt − nj,t+1)/nj. It

follows immediately that pjt = rjt − rj,t+1.
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4.2.2 Fixed Design

Suppose we are interested in a linear contrast of the treatment means across time,

δ = c′(θ2 − θ1), (4.2)

where c is a contrast vector of length T corresponding to the T post baseline assessment

time points. For instance, c = (0, . . . , 0, 1) is for treatment comparison at the last time

point. If we want to detect the treatment effect δa, the Fisher information, I, to be

needed based on a two-sided Z-test for H0 : δ = 0 versus Ha : δ = δa with power 1− β

at significant level α can be derived as

I = (
Zα/2 + Zβ

δa
)2, (4.3)

Now we can determine the sample size with the knowledge that

I = V ar−1(δ̂), (4.4)

where V ar(δ̂) is a function of sample size with some nuisance parameters. δ̂ denotes

the estimate of δ to be calculated from data. This variance varies among different types

of trials. For longitudinal trials, in particular, based on the cLDA model we defined

earlier in (4.1), the variance inverse of δ̂ incorporating missingness is given by

V ar−1(δ̂) = (
c′SΛ−1

1 Sc

n1

+
c′SΛ−1

2 Sc

n2

)−1, (4.5)

where nj is sample size for treatment j, j = 1, 2. For simplicity, we assume the

randomization ratio is 1, so n1 = n2 = N
2

though extensions are trivial. The parameter

c is denoted as above, S = diag(
√
σ11, . . . ,

√
σTT ) denotes the standard deviations at
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post baseline time points. Λj is given by

Λj =
T∑
t=1

pjt

 R−1
tt·0 0

0 0

 , (4.6)

where R−1
tt·0 = Rtt − R′0tR0t, Rtt = {ρij : i, j = 1, . . . , t}, and R0t = (ρ01, . . . , ρ0t).

The proof of the derivation of V ar(δ̂) for cLDA is in Lu et al. Lu et al. (2009). We

note that the nuisance parameters in (4.5) are essentially R, S, and rj, where R, S are

the correlation matrix and standard deviations respectively, and rj = (rj1, . . . , rjT ) is

the retention rate across time for treatment j. Without loss of generality, we assume

r1 = r2 hereafter. Therefore, connecting (4.3), (4.4), and (4.5) while assuming the

nuisance parameters (R, S, and r1), the calculation of sample size is straightforward.

4.2.3 Group Sequential Design

Group sequential design has the advantage to stop early for efficacy or futility.

Rather than performing only one analysis at the end of the study, we perform up to

K analyses at interim monitoring times τ1, τ2, . . . τK , respectively, and terminate the

study at the first interim look that rejects the null hypothesis. However this flexibility

to possibly terminate early comes at a cost. In particular, the type-I error is inflated due

to the multiple interim hypothesis tests if we keep the stopping boundaries unchanged.

We thus need to adjust the stopping criteria appropriately such that the type-I error is

controlled. Moreover, in order to achieve a power of 1− β while controlling the type-I

error rate, the information has to be inflated by

Imax = (
Zα/2 + Zβ

δa
)2 × IF (∆, α, β,K), (4.7)
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where Imax is denoted as the information at the final look, which is a counterpart of

the I in (4.3) under the framework of group sequential design. The function IF(·) is

an inflation factor that depends on α, β,K and ∆. The parameter ∆ is defined with

respect to the shape of the stopping boundaries over the K repeated tests. Mehta

and Tsiatis Mehta and Tsiatis (2001), relying on theoretical results by Scharfstein et

al. Scharfstein et al. (1997), has the detailed derivation and examples of the inflation

factor. Keep in mind that this maximum information does not require any knowledge

of unknown nuisance parameters.

In practice, however, an estimated number of patients is required at the time of

study design. The corresponding sample size determination follows the same strategy

as that used in fixed design. One can similarly connect equations (4.7), (4.4), and (4.5)

to solve the maximum sample size (Nmax). In short, the required maximum sample size

can be computed in the following two steps:

(1) Utilize the ’gsDesign’ R package developed by Anderson (Anderson (2014),Zhu

et al. (2011)) to calculate Imax once we define the necessary parameters in (4.7),

(2) Convert Imax to Nmax by using (4.5) which is essentially a function of Nmax with

some nuisance parameters R, S and r1.

These calculations are possible in many other group sequential design packages

(e.g., RCTdesign in R, PEST, EaSt) as long as the correct variance and information

timing are used. Given accurate assumptions of nuisance parameters, collecting Nmax

subjects will, in the end, result in obtaining Imax while achieving the desired power and

maintaining the type-I error. For example, if we plan for 4 looks with an equal-spaced

information-based design, 25% of Imax is expected at each iterim analysis. But in

real world studies, the sample size may be incorrect since the nuisance parameters are

unknown and it often happens that we do not have good estimates for these parameters

at hand. The power will be affected as a consequence. Thus, our method with the aim
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of tackling this problem is introduced in the next section. It is noted that the inflation

factor only allows us to maintain the power and control the type-I error provided that

the assumptions of R, S and r1 are correct. Instead of maintaining power by adjusting

the sample size, it is also possible to fix the total sample size at Nfix (sample size for a

fixed-sample trial) and then evaluate the effect of the monitoring plan on trial power,

which is however not a focus of this paper. A design with analyses spaced by equal

amounts of information is assumed from now just for simplicity in illustration; it is easy

to extend to an unequally-spaced information.

4.3 Information-Based Sample Size Re-Estimation

4.3.1 Sample Size Re-estimation

Define I(τk) as the information at the kth interim analysis. Assuming complete

follow-up for observations, it can be easily shown by (4.5) that,

I(τk)

Imax
=
N(τk)

Nmax

. (4.8)

Thus, one can re-estimate Nmax at each interim using:

N∗max = N(τk)/
I(τk)

Imax
, (4.9)

where N(τk) is the sample size of subjects with completed longitudinal visits at the

kth look, I(τk) = V ar−1(δ̂(τk)) is estimated from the data, and Imax is fixed under

the design by (4.7). Note the denominator on the right hand side is an evaluated

information fraction that is to be compared with the anticipated information fraction

(e.g. 25% if currently at 1st interim with 4 looks in total planned). If it is larger

than planned, N∗max will be smaller than original Nmax, and vice versa. Updating the
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maximum sample size at each look can correct inaccurate assumptions for nuisance

parameters and maintain the power while controlling the type-I error rate.

This approach is fairly easy to understand and implement without unblinding the

treatment effect, however, it has the drawback that only completed and drop-out sub-

jects are contributing to the interim analysis. An alternative way to re-estimate the

maximum sample size is to first estimate the nuisance parameters using all available

data at the current interim, and then use them as input in the calculation of Nmax as

discussed in section 2.3. It can make use of all data including ongoing patients but it

loses the simplicity of the previous method as we need to estimate the many nuisance

parameters at each interim and have to use a statistical package to obtain the updated

sample size. It may also unblind the trial in that all the nuisance parameters need to

be updated at each interim. When the enrollment is slow, the method in (4.9) is more

attractive in practice since the additional information provided by the ongoing patients

may be neglectable. Otherwise, the latter method is recommended if unblinding is not

concerned. The power analysis results based on the second approach are provided later

in Section 4.

4.3.2 Adaptation

We develop a sample size adaptation rule in the following based on the practical

characteristics of clinical trials. Note that the ’overrun of patients’ below in (b) stands

for all the subjects enrolled so far including not only the completed/discontinued ones

but also those still continuing, while the current sample size is only with regard to

completed/discontinued patients.

(a) If current sample size is enough: meaning Imax is reached, stop the trial regardless

of whether efficacy or futility is detected.

(b) If overrun of patients is enough to provide sufficient information: stop enrolling
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more patients but keep collecting data for enrolled patients.

(c) If next planned sample size is enough: stop the enrollment when the updated

maximum sample size is reached.

(d) If next planned sample size is not enough but original maximum sample size is:

continue enrollment to the next planned interim.

(e) If original maximum sample size is not enough: use the updated maximum sample

size but with a upper limit depending on practical aspects of certain trials (e.g. two

times the previous maximum sample size) and continue enrollment to the interim

analysis.

For illustration purposes, the following is an example of adaptation. Suppose the

longitudinal study is to be designed for up to four interim monitoring looks including

a final analysis; each subject is expected to have four longitudinal visits to the clinic

after the baseline measurement and the corresponding Nmax is 800 with all the necessary

parameters assigned. Hence K = 4, T = 4, and Nmax = 800. Let k = 2, N(τ2) = 400,

480 patients have been enrolled and the current plan for N(τ3) = 600, the consequent

adaptation rule at 2nd interim can be represented as:

• If N∗max ≤ 400: Stop the trial regardless.

• If 400 < N∗max ≤ 480: Stop enrolling more patients but keep collecting data for

enrolled patients, and do one final analysis.

• If 480 < N∗max ≤ 600: Stop the enrollment when N∗max is reached and perform

one final analysis.

• If 600 < N∗max ≤ 800: Continue the next planned interim.
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• If N∗max > 800: Use min(2×800, N∗max) as our new maximum sample size and

continue the interim analysis with three-fourths of the new maximum sample

size.

In actuality, the total sample size only needs to be increased when either the planned

sample size has been reached (with incomplete follow-up), when the last interim analysis

is performed, or when planning for increased patient enrollment and clinical supplies is

needed.

Next, we use Figure 1 to illustrate the sample size adaptation for an entire trial if we

use the method in (4.9). Once again, we plan 4 looks at the design stage, and analyze

200, 400, 600 and 800 patients at a time. Different colors correspond to each interim

look. At the 1st interim, we see that instead of anticipated 25% of Imax, 30% of Imax has

been observed. The following re-estimation of Nmax tells us 667 patients are required

to obtain the maximum information in the end rather than the original 800 patients.

Because 667 falls into the fourth bullet of the above adaptation rule, we need to collect

200 more patients as planned and perform the 2nd analysis. At that time, another

50% of Imax has been gathered. A total of 80% is considerablely larger than what we

anticipated (50%), which suggests that the assumption of nuisance parameters is very

conservative. Therefore, the next analysis is planned as the final analysis at N∗max = 500

and enrollment stops at that point. The final analysis was conducted with 1.03 times

the Imax observed, that is also evidence that our approach is useful to save time and

resources while maintaining all of the good statistical characteristics. In addition to

the above sample size planning rules, the trial may stop if an efficacy or futility bound

is crossed.
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4.3.3 Interim Analysis Procedure

Using what we supposed in the previous subsection (K = 4, Nmax = 800), we

plan to enroll subjects continuously and conduct each interim analysis cumulatively

for every 200 subjects with complete visits that have been gathered. Our interest is

to test whether the treatment difference at the final look (δa) is 0.25. Using all the

completed/drop-out data (for method 1) or the available data (for method 2) to fit

the constrained longitudinal model (4.1) assuming unstructured covariance structure

Diggle (2002), the testing procedure at interim k is given in the following: k = 1 . . . K,

1. Estimate I(τk) = V ar−1(δ̂(τk)) = s.e.−2(δ̂(τk)).

2. Estimate T (τk) = δ̂(τk)

s.e.(δ̂(τk))
.

3. Update the actual information fraction vector up to current kth interim:

(
I(τ1)

Imax
,
I(τ2)

Imax
, . . . ,

I(τk)

Imax
,
k + 1

K
, . . . , 1), (4.10)

where I(τ1)
Imax

, I(τ2)
Imax

, . . . , I(τk)
Imax

are observed information fraction up to kth interim look,

and k+1
K
, . . . , 1 are planned information fraction after kth interim. Then one can

calculate the corresponding stopping upper and lower boundaries by updating

bounds using the methods of Lan and DeMets Lan and DeMets (1983); this can

be done, for example using the ’gsDesign’ R package.

4.


stop for efficacy, if T (τj) ≥ upper bound

continue, if lower bound < T (τj) < upper bound

stop for futility, if T (τj) ≤ lower bound.

One extra step is required here if we do not stop at the current analysis. That is to re-

estimate Nmax as in section 4.3.1 and to adapt the new maximum sample size discussed
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in section 4.3.2. It is noted that besides futility or efficacy, the study is terminated

when Imax is reached, or at the Kth final analysis.

4.4 Simulation Study

As discussed earlier, incorrect assumptions of nuisance parameters will lead to an

incorrect sample size which will affect the power. In this section, we verify through

simulations that our method works as planned in the sense that the power is maintained

while preserving the type-I error rate. The expected sample size (E(n)) is another

characteristic of interest. We define n, for group sequential design, as the number of

enrolled when stopping early, but as the number of analyzed when stopping at the final

look. For the fixed design, however, n is always Nfix. In the meantime, we compare

performance of our approach with that of fixed design and that of group sequential

design without the sample size re-calculation.

The procedure is composed of four parts: design, data generation, testing and

results comparison. All the trials are designed for 90% power to detect a treatment

difference at the last (4th post baseline) measurement of 0.25 using 4-look one-sided

O’Brien-Fleming stopping boundaries with a type-I error 0.025. The assumptions for

nuisance parameters (R, S, r1) are that R0 = compound symmetry with correlation

coefficient 0.579, S0 = 0.8, and r10 = (0.91, 0.84, 0.77, 0.70). It is then straightforward

to obtain the sample size for a fixed design (Nfix) and a group sequential design (Nmax).

Since the sample size only depends on R, S, and r1 through information, and the true

values of these nuisance parameters (R, S, r1) could be different from what we planned

(R0, S0, r10). Thus, we generate 1000 datasets under each of 18 different combinations

of (R, S, r1) to see how the power and type-I error behave; we expect that the one

scenario with the assumed values will result in good power with type-I error controlled.

True R is chosen to be among compound symmetry (cs), toplitz, and AR(1); S is either
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0.8 or 0.925, whereas the three options of r1 are (0.84, 0.71, 0.60, 0.5), (0.91, 0.84, 0.77,

0.7), and (0.97, 0.95, 0.92, 0.9). We simulate data by considering the mean in the

control group as (3.0, 2.8, 2.6, 2.4, 2.0). The true treatment effect is (0, 0.13, 0.17,

0.19, 0.25) if under the alternative, or (0, 0, 0, 0, 0) if under the null. A number of

patients drop-out at each longitudinal visit and the corresponding measurements are

set to be missing given the true retention rate. Because the treatment difference at

the last measurement is of interest in the simulation, the contrast vector is (0,0,0,1)

excluding baseline. Cases with greater treatment effects would tend to stop early due

to crossing the efficacy bound.

Figure 4.2 and Figure 4.3 (left) show the power curves under 18 different combina-

tions of true nuisance parameters. Each circle corresponds to one of the 18 scenarios

while x axis is for the 3 different retention rates, different line color stands for the 3

correlation structures, and the line type denotes different standard deviations. The as-

sumed nuisance parameters in both figures are the same. The dot with a cross symbol

denotes that the nuisance parameters share the same values in design and in true data,

whereas other 17 circles employed various true values of R, S and r1. As is visible in

Figure 4.2, the power using our approach is well maintained around 90%, while the

power under fixed design is not satisfactory under some scenarios where the nuisance

parameters assumption deviates much from the true values. This is also seen in left

plot in Figure 4.3 for group sequential design without sample size re-estimation. When

checking the expected sample size in the right plot of Figure 4.3, we noticed that for

about half of the cases for which we did not assume nuisance parameters accurately

enough, it requires more patients for our method in group sequential design than that

in fixed design.

On the other hand, under the null, Figure 4.4 and Figure 4.5 (left) show that all

three methods can control the type-I error. Furthermore, the expected sample size in
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Figure 4.5 (right) is similar to what we have under the alternative. Table 4.1 provides

the standard error for the power and type I error based on 1,000 simulations. Symmetric

and asymmetric two-sided tests were both examined as well to assess the performance,

and they turn out to have very similar results to that for one-sided test, hence they

are omitted here. All the simulations are based on the second method in section 4.3.1,

although it is noticed that all the results look very similar to when we instead use the

first method (i.e. information fraction method as in (4.9)) with completed and drop-

out data only (results are omitted). The reason is that there is not much information

gained by having around 10 more ongoing patients at each interim given the assumed

slow enrollment.

The correlation coefficient in the above simulaitons was set as 0.579. To check

performance when varying the correlation coefficient, we keep the design parameters

(R0, S0 and r10) the same as above, let the true nuisance parameters S = S0 and

r1 = r10, but vary the true correlation structure using a correlation coefficient 0.3 or

0.8 under compound symmetry, Toplitz and AR(1). In Table 4.2, targeted power is

observed under our re-estimation approach with various correlation coefficients 0.3 and

0.8. In contrast, the fixed design and the group sequential design without sample size

re-estimation laed to power ranging from 0.77 to 1, and from 0.81 to 0.98 respectively.

As indicated in Table 4.3, there is no significant problem of controlling type I error due

to the simulation error for the three methods. The corresponding expected sample size

are (422, 201, 459, 275, 468, 373) for the 6 scenarios given Nfix = 392 and the original

Nmax = 398.

Lastly, since the simulation is designed to detect a treatment difference at the last

(4th post baseline) measurement, it would be interesting to implement the fixed design

and the group sequential design with and without sample size re-determination to

analyze only the last time point as normal data using method by Mehta and Tsiatis
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Mehta and Tsiatis (2001). Keeping the correlation coefficient at 0.579 and following the

same simulation setup, as expected, in Figure 4.6- and 4.7(left), different correlation

structures do not make a difference for all three designs since we only use the last

measurement for all patients. It also makes sense that the information-based method

by Mehta and Tsiatis Mehta and Tsiatis (2001) is able to maintain the power when the

retention rate is not too low. Similar feature is observed for the expected sample size

as shown in Figure 4.7(right). Figure 4.8 and 4.9 are the corresponding type I error

and expected sample size under the null.

4.5 Example

We build functions in R to formalize our method and to perform a data analysis.

Our data is motivated by clinical trials studying change in tumor size over time. Be-

fore analyzing data, we need to know the sample size assignment for each interim by

designing α, β, δ, one-sided test or two-sided test, number of planned looks, planned

information fraction at each look, and nuisance parameters assumption(R0, S0, r10). We

wish to detect 0.25 treatment difference for the last repeated measurements between

two groups of patients by designing a study planning one interim look and one final

analysis using a one-sided test with type-I error 0.025, power 90%, and with a planned

information fraction of (0.5, 1) for clarity and simplicity. Each patient is expected to

have 4 visits to the clinic to get the tumor measured. A monotone missing pattern is

assumed for this study. The nuisance parameters assumed here are
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R0 =



1.000 0.579 0.579 0.579 0.579

0.579 1.000 0.579 0.579 0.579

0.579 0.579 1.000 0.579 0.579

0.579 0.579 0.579 1.000 0.579

0.579 0.579 0.579 0.579 1.000


,

S0 = (0.925, 0.925, 0.925, 0.925, 0.925), r10 = (0.950.90, 0.85, 0.80),

The design and analysis are presented using our proposed information fraction ap-

proach in (4.9) due to the ease of implementation and illustration. The R program for

the other re-estimation method is also available upon request. The corresponding Nmax

is then 466. The fixed design sample size for this longitudinal study calculated using

the strategy in section 4.3.1 is also 466 because in this case the inflation factor in (4.7)

is nearly 1. Hence, 233 patients (= 466/2) including completed and dropout shall be

collected before analyzing the first interim analysis under group sequential design. A

sample of typical clinical data is shown in Table 4.4.

The third column is the time at which each patient is enrolled. The column ‘week’

is recording the number of the longitudinal visits per person with ‘0′ denoting baseline

and 1− 4 denoting post baseline visits. The column ‘y’ is the response of interest and

‘flag’ distinguishes patients who are still continuing (1) or not (0). It is noticed that

the second patient does not have all four post baseline measurements but he/she is not

continuing, implying that this person dropped out at the last visit.

Once the 1st interim data has been collected (Nmax×1/2), plugging in all the design

parameters including α, β, δ, one-sided test or two-sided test, number of planned looks,

planned information fraction at each look, and nuisance parameters assumption(R0, S0, r10)

as well as available data, the R function employing the strategy introduced earlier gen-

erates the result in Table 4.5 (second section):
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The first section of the table displays the parameters we defined at the design stage.

The rows ’Planned.timing1’ and ’Planned.timing2’ are the planned information fraction

at first and final interim. The number of planned looks is clearly the number of rows for

these variables (2 in this case). The second section of the table suggests that we should

continue to do a 2nd analysis since neither efficacy nor futility has been detected and

that next analysis should be our final analysis according to the adaptation rule. The

rows ’update.act.t1’ and ’update.act.t2’ are the actual information fraction as updated

in (4.10), ’orig.Nmax’ and ’new.Nmax’ are Nmax calculated from the design and re-

estimated at the first interim respectively. The decrease of maximum sample size is

because the anticipated information fraction (0.5) is smaller than the actual 0.514 which

is produced in the bottom of the section. The underlying reason is that the nuisance

parameter assumptions deviate from the truth, and as a result, the estimated covariance

or information estimated by the real data does not agree with that using originally

assumed nuisance parameters. Next, we collect another 178 (= 411− 466× 1
2
) patients

and analyze the final look. At the 2nd look, we need to add the actual information

fraction vector (0.514, 1) and the new Nmax (411) into our function. The result in

the bottom section of Table 4.5 shows that the study can be stopped for efficacy and

current information fraction is 1.01. The function and its help files are available upon

request.

4.6 Discussion

We presented two information-based group sequential sample size re-estimation

methods that can be for longitudinal trials which adapts appropriately depending on

the true value of unknown nuisance parameters. Whereas previous work by Shih and

Gould (1995) andZucker and Denne (2002) only evaluate a single interim and no hy-

pothesis testing is performed until the final analysis; our approach has advantages
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of early termination and multiple interim looks. The simulation results confirm the

method maintains power while controlling the type-I error, while a fixed design or a

group sequential design without adjusting for nuisance parameters cannot. The reason

is that in some cases where we do not have good historical evidence of the nuisance

parameters, we have the ability of correcting it during the interim. In addition, a

smaller sample is expected when the assumption is reasonably accurate, however, poor

assumption requires more patients to maintain the statistical power. In conclusion, our

method will help to both limit investment in treatments that do not work and ensure

an appropriate investment to power trials for drugs that do work. For drugs that pro-

vide more than a minimally interesting treatment effect, the group sequential efficacy

bounds provide a method to bring very effective drugs to market quickly.

We assume equally-spaced information-based design and equal retention rate for

control and active treatment group just for simplicity in explanation. It is, however,

fairly easy to extend it to a general case. To perform a real data analysis by our

methods, we have built functions to calculate the necessary sample size before starting

the trial enrollment and to re-estimate the sample size with testing if stopping early at

the same time. Although this is being done in an unblinded fashion, our method can

certainly be used to re-calculate the sample size and testing as long as the estimated

parameter of interest and its variance are provided from the third party. Moreover,

our methods work well for a small sample size as long as there are sufficient data to

be analyzed in the random effect model at each interim look. However, given the

complexity of the problem, it would be difficult to back-calculate the interim treatment

effect based on the sample size adaptation as can be done in cases that are simpler

than longitudinal data analysis.

Our methods presume that all subjects have measurement at their pre-defined mea-

surement times. It is possible to introduce bias at the interim analyses if measurements
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occur at times other than the pre-defined follow-up times. Methods such as using a

piece-wise linear approximation proposed by Kittelson et al. (2005) may be incorpo-

rated for the future work to handle departure from the protocol-defined measurement

times. Another extension of our work could be to loosen the assumption of monotone

missingness to missing at random. Moreover, subjects who are still under active follow-

up may be different from those who drop out. Methods for evaluation of sensitivity

to informative dropouts is another potential topic. Gao et al. (2013), Emerson and

Fleming (1990), Kim (1989) introduced methods for unbiased estimation following se-

quential testing, and these methods could be incorporated when reporting results from

any group sequential trial.
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Figure 4.1: Adaptation Example
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Power Curves for Group Sequential Designs
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Power Curves for Fixed Designs
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Figure 4.2: Power Curves Using Our Re-estimation Method (Left) v.s. Fixed Design
(Right)
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Power for gsDesign without Adapting Sample Size

Retention rate at �nal analysis

Po
w

er

0.5 0.7 0.9

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

x

Same as Design
S:0.8, R:cs
S:0.925, R:cs
S:0.8, R:toplitz
S:0.925, R:toplitz
S:0.8, R:ar1
S:0.925, R:ar1

Expected Sample Size, Fixed vs. Group Sequential Design

Retention rate at �nal analysis

E(
N

)

0.5 0.7 0.9

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

x

Same as Design
S:0.8, R:cs
S:0.925, R:cs
S:0.8, R:toplitz
S:0.925, R:toplitz
S:0.8, R:ar1
S:0.925, R:ar1
N.�x
Original N.max

Figure 4.3: Left: Power Curves Using Group-sequential Design without Re-estimation;
Right: Expected Sample Size Using Group Sequential Design with Sample Size Re-
estimation v.s. Fixed Design
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Type−I error for Information−based Group Sequential Designs
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Type−I error for Fixed Designs
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Figure 4.4: Type-I Error Using Our Re-estimation Method (Left) v.s. Fixed Design
(Right)
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Type−I Error for gsDesign without Adapting Sample Size
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Figure 4.5: Left: Type-I Error Using Group-sequential Design without Re-estimation;
Right: Expected Sample Size Using Group Sequential Design with Sample Size Re-
estimation v.s. Fixed Design
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Power Curves for Group Sequential Designs

Retention rate at �nal analysis

Po
w

er

0.5 0.7 0.9

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

x

Same as Design
S:0.8, R:cs
S:0.925, R:cs
S:0.8, R:toplitz
S:0.925, R:toplitz
S:0.8, R:ar1
S:0.925, R:ar1

Power Curves for Fixed Designs
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Figure 4.6: Simulations Results Based on the Last Time Point Only Using the Method
by Mehta and Tsiatis (2001)
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Power for gsDesign without Adapting Sample Size

Retention rate at �nal analysis

Po
w

er

0.5 0.7 0.9

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

x

Same as Design
S:0.8, R:cs
S:0.925, R:cs
S:0.8, R:toplitz
S:0.925, R:toplitz
S:0.8, R:ar1
S:0.925, R:ar1

Expected Sample Size, Fixed vs. Group Sequential Design

Retention rate at �nal analysis

E(
N

)

0.5 0.7 0.9

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

x

Same as Design
S:0.8, R:cs
S:0.925, R:cs
S:0.8, R:toplitz
S:0.925, R:toplitz
S:0.8, R:ar1
S:0.925, R:ar1
N.�x
Original N.max

Figure 4.7: Simulation Results Based on the Last Time Point Only Using the Method
by Mehta and Tsiatis (2001) (continued)
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Type−I error for Information−based Group Sequential Designs
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Figure 4.8: Simulation Results Based on the Last Time Point Only Using the Method
by Mehta and Tsiatis (2001) (continued)
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Type−I Error for gsDesign without Adapting Sample Size
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Figure 4.9: Simulation Results Based on the Last Time Point Only Using the Method
by Mehta and Tsiatis (2001) (continued)
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Table 4.1: Simulation Error

S.E. of Power S.E. of Type-I Error

Retention Rate at Final Interim Retention Rate at Final Interim

0.5 0.7 0.9 0.5 0.7 0.9

R=cs, S=0.8 0.010 0.009 0.009 0.005 0.005 0.004
R=cs, S=0.925 0.009 0.009 0.009 0.005 0.005 0.005
R= toplitz, S=0.8 0.009 0.009 0.009 0.006 0.006 0.005
R=toplitz, S=0.925 0.009 0.008 0.009 0.005 0.006 0.005
R=ar1, S=0.8 0.010 0.009 0.009 0.005 0.005 0.005
R=ar1, S=0.925 0.011 0.009 0.009 0.005 0.004 0.005

109



Table 4.2: Power Based on Varying Correlation Coefficients

Compound Symmetry Toplitz AR(1)

0.3 0.8 0.3 0.8 0.3 0.8

Group Sequential Design 0.9 0.93 0.92 0.91 0.91 0.9
Fixed Design 0.8 1 0.8 0.94 0.77 0.84
gsDesign without Adapting Sample Size 0.82 0.98 0.83 0.95 0.81 0.87
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Table 4.3: Type I Error Based on Varying Correlation Coefficients

Compound Symmetry Toplitz AR(1)

0.3 0.8 0.3 0.8 0.3 0.8

Group Sequential Design 0.025 0.039 0.023 0.029 0.028 0.017
Fixed Design 0.021 0.033 0.023 0.027 0.02 0.02
gsDesign without Adapting Sample Size 0.025 0.024 0.026 0.041 0.02 0.03
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Table 4.4: Longitudinal Data with Four visits

subject treatment enrollment time week y flag

1 1 0.0045 0 3.93 0
1 1 0.0045 1 2.95 0
1 1 0.0045 2 3.60 0
1 1 0.0045 3 2.24 0
1 1 0.0045 4 2.17 0
2 2 0.0079 0 3.53 0
2 2 0.0079 1 3.83 0
2 2 0.0079 2 2.63 0
2 2 0.0079 3 1.76 0
3 1 0.0927 0 2.01 1
3 1 0.0927 1 3.22 1
...

...
...

...
...

...
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Table 4.5: Interim Analysis Results

alpha 0.025
power 0.9

Planned.timing1 0.5
Planned.timing2 1

delta 0.25

First Interim Analysis

ifStopTrial Continue to the next interim
ifNextFinal TRUE

update.act.t1 0.514
update.act.t2 1

orig.Nmax 466
new.Nmax 411

current.info 0.514

Final Interim Analysis

ifStopTrial Stop with sig. Efficacy
ifNextFinal FALSE

update.act.t1 0.514
update.act.t2 1

orig.Nmax 466
new.Nmax 411

current.info 1.01
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APPENDIX I

List of Significant Associations - Birth Defects Study

1. Any heart defects

Risk effects: BMI 30+, mother black, father black, Small for gestational age, par-

ity, Type 1 diabetes - diagnosis at any time, Type 2 diabetes - diagnosis at any

time, high blood pressure, Antihypertensive Exposure b1-p3, Anti-infective Expo-

sure b1-p3, SSRI Exposure b1-p3, Sulfamethoxazole Exposure b1-p3, Trimetho-

prim Exposure b1-p3, Mother Birth In USA, Father Birth In USA, Pregnant

High Blood Pressure, Had Epilepsy, Prenatal Vitamins-3toDOIB, HPV B1-P3,

Mother Health Problem Or Birth Defects, Father Health Problem Or Birth De-

fects, Health Problems To Related Family Members, Arkansas center, Texas cen-

ter, gestational age<32 weeks, gestational age 32-36 weeks, Birth Weight < 1500

grams, Birth Weight 1500-2500 grams, mother Office and Administrative Support

Occupations, father Installation, Maintenance, and Repair Occupations, father

Military Specific Occupations, xylene B1-P3, stoddard B1-P3, any aromatic class

B1-P3, any solvent B1-P3

Protective effects: mother’s age < 18, mother’s age 18-24, father’s age 18-24,

baby’s gender, father other race, mother income <10,000, California center, New

Jersey center, New York Center, North Carolina center, Fetal Death >= 20 Wks

(Stillbirth), Language of interview Spanish, Interpregnancy Interval 18-23, (father

Life, Physical, and Social Science Occupations)

2. Conotruncal defects

Risk effects: mother’s age 30-34, baby’s gender, mother other race, father other
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race, mother income 50,000+, Small for gestational age, abortion, Health Prob-

lems To Related Family Members, California center, Massachusetts center, mother

Architecture and Engineering Occupations, (mother Life, Physical, and Social

Science Occupations), mother Building and Grounds Cleaning and Maintenance

Occupations, father Management Occupations, benzene B1-P3

Protective effects: mother’s age 18-24, father’s age 18-24, mother smoking, mother

income <10,000, Mother Birth In USA, Arkansas center, Utah center, gestational

age 32-36 weeks, father Sales and Related Occupations, father Production Occu-

pations

3. Left ventricular outflow tract obstruction

Risk effects: mother’s age 30-34, baby’s gender, parity, preganancy nausea, Doxy-

lamine Exposure b1-p3, Meclizine Exposure b1-p3, Opoids Exposure b1-p3, Sul-

famethoxazole Exposure b1-p3, Trimethoprim Exposure b1-p3, Thyroid/Antithyroid

Exposure b1-p3, Antipyretic Exposure b1-p3, Mother Birth In USA, Father Birth

In USA, Thyroid Disease B1-P3, HIV/AIDS, Mother Health Problem Or Birth

Defects, Health Problems To Related Family Members, Iowa center, Utah center,

Total Caffeine<10, mother Legal Occupations, father Management Occupations,

father Business and Financial Operations Occupations, father Sales and Related

Occupations, father Installation, Maintenance, and Repair Occupations, benzene

B1-P3

Protective effects: mother’s age < 18, mother’s age 18-24, father’s age 18-24,

mother black, mother hispanic, father black, father hispanic, mother income

<10,000, Household Smoking - B1P3, New Jersey center, gestational age<32

weeks, Birth Weight < 1500 grams, Total Caffeine 200-300, Interpregnancy In-

terval NA
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4. Right ventricular outflow tract obstruction

Risk effects: BMI 25-30, BMI 30+, mother black, father black, parity, still-

births, DrinkSoftDrinks, Antihypertensive Exposure b1-p3, Opoids Exposure b1-

p3, Paxil Exposure b1-p3, Promethazine Exposure b1-p3 , SSRI Exposure b1-p3,

Mother Birth In USA, Household Smoking - B1P3, Pregnant High Blood Pres-

sure, HIV/AIDS, HPV B1-P3, Mother Health Problem Or Birth Defects, Father

Health Problem Or Birth Defects, Health Problems To Related Family Mem-

bers, Arkansas center, Iowa center, Calculated birth date in summer, gestational

age<32 weeks, Birth Weight < 1500 grams, mother Office and Administrative

Support Occupations, (mother Installation, Maintenance, and Repair Occupa-

tions), mother Military Specific Occupations, father Architecture and Engineer-

ing Occupations, xylene B1-P3, carbon tetrachloride B1-P3, perchloroethylene

B1-P3, trichloroethane B1-P3, trichloroethylene B1-P3, stoddard B1-P3, any aro-

matic class B1-P3

Protective effects: baby’s gender, mother hispanic, father hispanic , California

center, North Carolina center, Language of interview Spanish

5. Ventricular septal defect perimembranous

Risk effects: mother’s age 35+, father’s age 35+, mother black, father black,

tubal pregnancy, Pelvic inflamatory disease B1P3, Type 2 diabetes - diagnosis

at any time, Mother Fertility procedures, used mother fertility procedure, An-

tihypertensive Exposure b1-p3, (Sexually Transmitted Disease B1-P3 - Includes

pelvic inflamatory disease, but not HIV/AIDS or HPV HIV/AIDS HPV B1-

P3), pelvic inflamatory disease B1P3, Father Health Problem Or Birth Defects,

Arkansas center, Birth Weight 1500-2500 grams, mother Management Occupa-

tions, mother Computer and Mathematical Occupations, (mother Life, Physi-

cal, and Social Science Occupations), mother Legal Occupations, mother Sales
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and Related Occupations, mother Production Occupations, mother Military Spe-

cific Occupations, (father Life, Physical, and Social Science Occupations), father

Healthcare Practitioners and Technical Occupations, father Sales and Related

Occupations, benzene B1-P3, chloroform B1-P3, any aromatic class B1-P3

Protective effects: baby’s gender, father hispanic, California center , North Car-

olina center

6. Atrial septal defect (ASD) secundum or ASD not otherwise specified

Risk effects: mother’s age 18-24, BMI 30+, mother low education, father low ed-

ucation, mother smoking, mother hispanic, father black, father hispanic, mother

income <10,000, stillbirths, molar pregnancy, Kidney/Bladder/UTI B1P3, Type

1 diabetes - diagnosis at any time, Type 2 diabetes - diagnosis at any time, Ges-

tational diabetes - diagnosis before or during index pregnancy or unknown date,

Gestational diabetes - diagnosis during index pregnancy, high blood pressure, An-

tihypertensive Exposure b1-p3, Anti-infective Exposure b1-p3, Promethazine Ex-

posure b1-p3, Sulfamethoxazole Exposure b1-p3, Trimethoprim Exposure b1-p3,

Mother Birth In USA, Father Birth In USA, Household Smoking - B1P3, Pregnant

High Blood Pressure, HPV B1-P3, Kidney/Bladder/UTI B1P3, Mother Health

Problem Or Birth Defects, Arkansas center, Texas center, gestational age<32

weeks, gestational age 32-36 weeks, Birth Weight < 1500 grams, Birth Weight

1500-2500 grams, (mother Installation, Maintenance, and Repair Occupations),

father Production Occupations,father Military Specific Occupations

Protective effects: mother’s age 30-34, father’s age 35+ , baby’s gender, drinking,

drinking but not binge, mother income 50,000+, abortion, California center, Iowa

center, Massachusetts center, New Jersey center, New York Center, mother Food

Preparation and Serving Related Occupations, father Management Occupations,

father Education, Training, and Library Occupations, father Sales and Related
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Occupations

7. Entricular and atrial septal defect

Risk effects: mother’s age 30-34, father’s age 35+, BMI 30+, binge drinking, Small

for gestational age, molar pregnancy, Pelvic inflamatory disease B1P3, Type 1 dia-

betes - diagnosis at any time, Type 2 diabetes - diagnosis at any time, high blood

pressure, Mother Fertility procedures, used mother fertility procedure, Antihy-

pertensive Exposure b1-p3, Meclizine Exposure b1-p3, Trimethoprim Exposure

b1-p3, HIV/AIDS, pelvic inflamatory disease B1P3, Fever B1P3, Massachusetts

center, Texas center, Induced Abortion, Language of interview Spanish, gesta-

tional age 32-36 weeks, Birth Weight 1500-2500 grams, Total Caffeine 10-100,

(mother Life, Physical, and Social Science Occupations), mother Community

and Social Services Occupations, mother Healthcare Practitioners and Techni-

cal Occupations, mother Protective Service Occupations , mother Construction

and Extraction Occupations, (mother Installation, Maintenance, and Repair Oc-

cupations), mother Military Specific Occupations , (father Education, Training,

and Library Occupations), (father Installation, Maintenance, and Repair Occupa-

tions), father Military Specific Occupations, benzene B1-P3, carbon tetrachloride

B1-P3, perchloroethylene B1-P3, trichloroethylene B1-P3

Protective effects: baby’s gender , New Jersey center New York Center

8. Neural tube defects

Risk effects: BMI 30+, mother hispanic, father hispanic, mother income <10,000,

Small for gestational age, parity, Anticonvulsants Exposure b1-p3, Doxylamine

Exposure b1-p3, Meclizine Exposure b1-p3, Fever B1P3, Health Problems To Re-

lated Family Members, California center, Iowa center, Fetal Death >= 20 Wks

(Stillbirth), Induced Abortion, Language of interview Spanish, gestational age<32
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weeks, gestational age 32-36 weeks, Birth Weight < 1500 grams, Birth Weight

1500-2500 grams, mother Military Specific Occupations, father Computer and

Mathematical Occupations, father Community and Social Services Occupations,

father Healthcare Support Occupations, father Personal Care and Service Occu-

pations, (father Farming, Fishing, and Forestry Occupations), methylene chloride

B1-P3, trichloroethylene B1-P3

Protective effects: BMI < 18.5, mother smoking, baby’s gender, drinking, drink-

ing but not binge, mother income 50,000+, Mother Birth In USA, Father Birth In

USA, Pregnant High Blood Pressure, Massachusetts center, New Jersey center,

Birth Weight>4000 grams, Interpregnancy Interval NA, mother Management Oc-

cupations, mother Education, Training, and Library Occupations, father Manage-

ment Occupations, father Business and Financial Operations Occupations, father

Protective Service Occupations

9. Anotia/microtia

Risk effects: mother’s age 18-24, father low education, mother hispanic, mother

other race, father hispanic, mother income <10,000, molar pregnancy, miscar-

riage, Type 1 diabetes - diagnosis at any time, Meclizine Exposure b1-p3, HIV/AIDS,

HPV B1-P3, California center, New Jersey center, Texas center, Induced Abor-

tion, Language of interview Spanish, mother Building and Grounds Cleaning and

Maintenance Occupations, (mother Farming, Fishing, and Forestry Occupations),

mother Military Specific Occupations, father Building and Grounds Cleaning and

Maintenance Occupations, (father Farming, Fishing, and Forestry Occupations)

Protective effects: mother black, father black, mother income 50,000+, An-

tipyretic Exposure b1-p3, Mother Birth In USA, Father Birth In USA, Arkansas

center,Iowa center, Massachusetts center, mother Business and Financial Opera-

tions Occupations
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10. Cleft palate

Risk effects: father’s age 35+, mother smoking, drinking, drinking but not binge,

mother other race, Pelvic inflamatory disease B1P3, Gestational diabetes - di-

agnosis before or during index pregnancy or unknown date, Gestational dia-

betes - diagnosis during index pregnancy, used fertility Meds Procedure, use

fertility meds, used mother fertility procedure, Acetaminophen Exposure b1-p3,

Anticonvulsants Exposure b1-p3, Meclizine Exposure b1-p3, NSAIDS Exposure

b1-p3, Antipyretic Exposure b1-p3, Household Smoking - B1P3, Had Epilepsy,

HIV/AIDS, pelvic inflamatory disease B1P3, Mother Health Problem Or Birth

Defects, Health Problems To Related Family Members, Massachusetts center,

Calculated date of conception in winter, mother Community and Social Services

Occupations, mother Legal Occupations, (mother Arts, Design, Entertainment,

Sports, and Media Occupations), mother Building and Grounds Cleaning and

Maintenance Occupations, (mother Installation, Maintenance, and Repair Oc-

cupations), mother Military Specific Occupations, carbon tetrachloride B1-P3,

stoddard B1-P3

Protective effects: mother’s age < 18, baby’s gender, mother black, mother

hispanic, father black, father hispanic, mother income <10,000, Folate, DFE

>=683.316

11. Cleft lip with cleft palate

Risk effects: mother’s age 18-24, father’s age 18-24, BMI < 18.5, mother low ed-

ucation, father low education, mother smoking, baby’s gender, mother hispanic,

father hispanic, mother income <10,000, DrinkSoftDrinks, Cold Meds Exposure

b1-p3, NSAIDS Exposure b1-p3, (Sexually Transmitted Disease B1-P3 - Includes

pelvic inflamatory disease, but not HIV/AIDS or HPV), Health Problems To Re-

lated Family Members, California center, Calculated birth date in spring, Fetal
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Death >= 20 Wks (Stillbirth), Language of interview Spanish, mother Personal

Care and Service Occupations, (father Farming, Fishing, and Forestry Occupa-

tions), father Construction and Extraction Occupations

Protective effects: mother’s age 30-34, father’s age 30-34, mother black, father

black, mother income 50,000+, Acetaminophen Exposure b1-p3, Thyroid/Antithyroid

Exposure b1-p3, Mother Birth In USA, Prenatal Vitamins-3toDOIB, Massachusetts

center, New Jersey center, Calculated birth date in winter, gestational age 32-36

weeks, Birth Weight 1500-2500 grams, father Personal Care and Service Occupa-

tions

12. Cleft lip without cleft palate

Risk effects: mother smoking, baby’s gender, molar pregnancy, NSAIDS Exposure

b1-p3, Mother Birth In USA, Father Birth In USA, Pregnant High Blood Pres-

sure, Mom Substance Abuse B3-DOIB, HIV/AIDS, Father Health Problem Or

Birth Defects, Health Problems To Related Family Members, California center,

Iowa center, mother Computer and Mathematical Occupations, mother Protective

Service Occupations, mother Construction and Extraction Occupations, (mother

Installation, Maintenance, and Repair Occupations), father Personal Care and

Service Occupations, chloroform B1-P3

Protective effects: mother black, mother hispanic, father black, father hispanic,

Prenatal Vitamins-3toDOIB, Language of interview Spanish, gestational age<32

weeks, gestational age 32-36 weeks, Birth Weight < 1500 grams, Birth Weight

1500-2500 grams, (father Farming, Fishing, and Forestry Occupations)

13. Esophageal atresia

Risk effects: mother’s age 35+, father’s age 35+, drinking, drinking but not

binge, mother income 50,000+, Small for gestational age, used fertility Meds
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Procedure, Mother Fertility procedures, use fertility meds, used mother fertility

procedure, Antihypertensive Exposure b1-p3, Sulfamethoxazole Exposure b1-p3,

Trimethoprim Exposure b1-p3, gestational age<32 weeks, gestational age 32-36

weeks, Birth Weight 1500-2500 grams, Interpregnancy Interval NA, mother Man-

agement Occupations, mother Business and Financial Operations Occupations,

(mother Education, Training, and Library Occupations), (mother Installation,

Maintenance, and Repair Occupations ), mother Military Specific Occupations,

father Legal Occupations, father Healthcare Practitioners and Technical Occupa-

tions

Protective effects: mother’s age 18-24, mother low education, father low edu-

cation, baby’s gender, mother black, father black, father hispanic, parity, pre-

ganancy nausea, Mother Health Problem Or Birth Defects, Birth Weight >4000

grams, Interpregnancy Interval 12-17, father Transportation and Material Moving

Occupations

14. Anorectal atresia/stenosis

Risk effects: mother hispanic, father hispanic, Small for gestational age, Type 1

diabetes - diagnosis at any time, Type 2 diabetes - diagnosis at any time, used

fertility Meds Procedure, use fertility meds, used mother fertility procedure, (Sex-

ually Transmitted Disease B1-P3 - Includes pelvic inflamatory disease, but not

HIV/AIDS or HPV), HIV/AIDS, pelvic inflamatory disease B1P3, New Jersey

center, Fetal Death >= 20 Wks (Stillbirth) , Birth Weight 1500-2500 grams, Total

Caffeine 300+, 320.264<= Folate, DFE <472.63, mother Architecture and Engi-

neering Occupations, father Healthcare Practitioners and Technical Occupations

Protective effects: Cold Meds Exposure b1-p3, Prenatal Vitamins-3toDOIB, Mom

Substance Abuse B3-DOIB, Iowa center, mother Personal Care and Service Oc-

cupations
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15. Hypospadias second/third degree

Risk effects: mother’s age 30-34, mother’s age 35+, father’s age 30-34, father’s age

35+, baby’s gender, drinking, drinking but not binge, mother income 50,000+,

Small for gestational age, miscarriage, high blood pressure, used fertility Meds

Procedure, Mother Fertility procedures, use fertility meds, used mother fertility

procedure, Mother Birth In USA, Father Birth In USA, Pregnant High Blood

Pressure, HIV/AIDS, Father Health Problem Or Birth Defects, Massachusetts

center, New Jersey center, gestational age<32 weeks, gestational age 32-36 weeks,

Birth Weight < 1500 grams, Birth Weight 1500-2500 grams, Birth Weight >4000

grams, Interpregnancy Interval NA, mother Management Occupations, mother

Business and Financial Operations Occupations, mother Computer and Mathe-

matical Occupations, mother Architecture and Engineering Occupations, (mother

Life, Physical, and Social Science Occupations), (mother Arts, Design, Enter-

tainment, Sports, and Media Occupations), mother Healthcare Practitioners and

Technical Occupations, mother Protective Service Occupations, father Business

and Financial Operations Occupations , father Computer and Mathematical Oc-

cupations, father Architecture and Engineering Occupations, (father Arts, Design,

Entertainment, Sports, and Media Occupations), father Healthcare Practitioners

and Technical Occupations, father Office and Administrative Support Occupa-

tions, carbon tetrachloride B1-P3

Protective effects: mother’s age < 18, mother’s age 18-24, father’s age 18-24,

mother low education, father low education, mother smoking, binge drinking,

mother hispanic, father hispanic, mother income <10,000, parity , preganancy
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nausea, DrinkSoftDrinks, Household Smoking - B1P3, Dad Substance Abuse B3-

DOIB, Fever B1P3, California center, Iowa center, Texas center, Language of in-

terview Spanish, Total Caffeine 10-100, (Folate, DFE )>=683.316, (mother Farm-

ing, Fishing, and Forestry Occupations), (father Farming, Fishing, and Forestry

Occupations), father Construction and Extraction Occupations, father Produc-

tion Occupations

16. Limb deficiency

Risk effects: mother hispanic, father hispanic, Small for gestational age, Type

2 diabetes - diagnosis at any time, DrinkSoftDrinks, Anticonvulsants Exposure

b1-p3, Anti-infective Exposure b1-p3, Opoids Exposure b1-p3, Sulfamethoxazole

Exposure b1-p3, Trimethoprim Exposure b1-p3, HIV/AIDS, Fever B1P3, Califor-

nia center, gestational age<32 weeks, Birth Weight < 1500 grams, Birth Weight

1500-2500 grams, mother Healthcare Support Occupations, (mother Farming,

Fishing, and Forestry Occupations), mother Military Specific Occupations, father

Protective Service Occupations, father Personal Care and Service Occupations,

chloroform B1-P3, methylene chloride B1-P3, trichloroethane B1-P3, stoddard

B1-P3, chlorinated class B1-P3, any solvent B1-P3

Protective effects: Arkansas center, Birth Weight >4000 grams

17. Craniosynostosis

Risk effects: mother’s age 35+, father’s age 35+, baby’s gender, mother income

50,000+, parity, miscarriage, Pelvic inflamatory disease B1P3, Meclizine Expo-

sure b1-p3, Paxil Exposure b1-p3, SSRI Exposure b1-p3, Thyroid/Antithyroid

Exposure b1-p3, Mother Birth In USA, Father Birth In USA, Thyroid Disease B1-

P3, HIV/AIDS, pelvic inflamatory disease B1P3, Arkansas center, Massachusetts
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center, North Carolina center, Utah center, Calculated birth date in spring, In-

duced Abortion, Birth Weight >4000 grams, Interpregnancy Interval <12, In-

terpregnancy Interval 18-23, mother Military Specific Occupations, father Man-

agement Occupations, father Healthcare Support Occupations, father Protective

Service Occupations, father Military Specific Occupations, carbon tetrachloride

B1-P3

Protective effects: mother’s age 18-24, father’s age 18-24, mother low education,

father low education, mother black, mother hispanic, father black, father other

race, mother income <10,000, Small for gestational age, FA Supplement Use Flag

(B3-P1), Dad Substance Abuse B3-DOIB, California center, New Jersey center,

gestational age 32-36 weeks, Birth Weight 1500-2500 grams, Interpregnancy In-

terval NA, father Production Occupations

18. Diaphragmatic hernia

Risk effects: Small for gestational age, abortion, Kidney/Bladder/UTI B1P3,

Meclizine Exposure b1-p3, Sulfamethoxazole Exposure b1-p3, Trimethoprim Ex-

posure b1-p3, HIV/AIDS, Kidney/Bladder/UTI B1P3, Language of interview

Spanish, mother Business and Financial Operations Occupations, mother Com-

munity and Social Services Occupations, mother Healthcare Practitioners and

Technical Occupations, mother Protective Service Occupations, mother Military

Specific Occupations, father Computer and Mathematical Occupations , father

Community and Social Services Occupations, (father Installation, Maintenance,

and Repair Occupations), benzene B1-P3 Protective effects: Mother Birth In

USA, Mother Birth In USA, Father Health Problem Or Birth Defects

19. Gastroschisis

Risk effects: mother’s age < 18, mother’s age 18-24, father’s age <18, father’s
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age 18-24, BMI < 18.5, mother low education, father low education, mother

smoking, binge drinking, mother hispanic, mother other race, father hispanic,

mother income <10,000, Small for gestational age, oral contraceptive use B1P3,

Kidney/Bladder/UTI B1P3, DrinkSoftDrinks, NSAIDS Exposure b1-p3, House-

hold Smoking - B1P3, Mom Substance Abuse B3-DOIB, Dad Substance Abuse

B3-DOIB, Mom Substance Abuse B1-P3, (Sexually Transmitted Disease B1-P3

- Includes pelvic inflamatory disease, but not HIV/AIDS or HPV), HIV/AIDS,

Kidney/Bladder/UTI B1P3, California center, Fetal Death >= 20 Wks (Still-

birth) , gestational age<32 weeks, gestational age 32-36 weeks, Birth Weight

1500-2500 grams, Interpregnancy Interval NA, (Folate, DFE) >=683.316, mother

Food Preparation and Serving Related Occupations, mother Personal Care and

Service Occupations, mother Sales and Related Occupations, father Food Prepa-

ration and Serving Related Occupations, father Building and Grounds Cleaning

and Maintenance Occupations, father Construction and Extraction Occupations

Protective effects: mother’s age 30-34, mother’s age 35+, father’s age 30-34,

father’s age 35+, BMI 25-30, BMI 30+, drinking but not binge, mother income

50,000+, parity, miscarriage, Type 2 diabetes - diagnosis at any time, Gestational

diabetes - diagnosis before or during index pregnancy or unknown date, Gesta-

tional diabetes - diagnosis during index pregnancy, high blood pressure, used

fertility Meds Procedure, use fertility meds, used mother fertility procedure, Ac-

etaminophen Exposure b1-p3, Antipyretic Exposure b1-p3, Pregnant High Blood

Pressure, Massachusetts center, Birth Weight >4000 grams, Interpregnancy Inter-

val 18-23, 320.264<= (Folate, DFE) <472.63, mother Management Occupations,

mother Business and Financial Operations Occupations , (mother Education,

Training, and Library Occupations), mother Healthcare Practitioners and Techni-

cal Occupations, father Management Occupations, father Business and Financial
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Operations Occupations, father Computer and Mathematical Occupations, father

Architecture and Engineering Occupations, (father Arts, Design, Entertainment,

Sports, and Media Occupations), father Protective Service Occupations, any sol-

vent B1-P3
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APPENDIX II

Computation Code for Chapter 2

% -- to find dependence in splice-junction data -- %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Goal: Sparse PARAFAC Tensor factorization model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%N= 3175; p= 60; n = 2*p; indn = randsample(N,n);

%save(’D:\Dissertation Research\30-Dunson&Xing Extension\DataApplication\

splice1_indn_2p’,’indn’);

clear;clc;close all;

tic;

% -- define global parameters -- %

d = 4; k = 10; % d = # categories, k = # factors

nrun = 25000; burn = 10000; thin = 5;

eff_samp1 = (nrun - burn)/thin;

prop_vars = 1; prop_obs = 1; % prop. of vars/obs to use for fitting

% -- load data -- %

%load(’D:\Dissertation Research\30-Dunson&Xing Extension\

DataApplication\splicedata.mat’);

load(’/home/users/jingzhou/Dissertation/30-DunsonXing_Extension/
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DataApplication/splicedata.mat’);

[N,p] = size(x); n = 2*p;

%load(’D:\Dissertation Research\30-Dunson&Xing Extension\

DataApplication\splice1_indn.mat’);

load(’/home/users/jingzhou/Dissertation/30-DunsonXing_Extension/

DataApplication/splice1_indn_2p.mat’);

Yn = x(indn,:);

rows = repmat(1:p,n,1); rows = rows(:); cols = Yn(:);

lin_idx = sub2ind([p,d],rows,cols);

% -- empirical marginal probabilities -- %

lam0 = repmat([1/d 1/d 1/d 1/d],p,1); %p*d

% -- initialize parameters -- %

alpha = 1; % dp hyperparameters for stick breaking weights

aal = 1; bal = 1; % gamma hyperparameters for alpha

a = ones(d,1); % dirichlet hyperparameter for \lambda_h^{(j)}

Lambda = zeros(k,p,d);

% loadings for preds-- initialize with sample cell frequencies

for h = 1:k

for j = 1:p

Lambda(h,j,:) = [sum(Yn(:,j)==1)/n sum(Yn(:,j)==2)/n ...

sum(Yn(:,j)==3)/n sum(Yn(:,j)==4)/n];

end

end
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mat = zeros(p,d); % for updating Lambda

mat0 = zeros(p,d); %for updating from the null group

gamm=20; %prior pi_h~Beta(1,gamm)

pi=betarnd(1,gamm,[k,1]);

indw0=zeros(k,p); % for prob of degerating distribution

nus = betarnd(1,alpha,[k-1,1]); nu = zeros(k,1);

nu(1:k-1) = nus.*cumprod([1;1-nus(1:k-2)]); nu(k) = 1 - sum(nu(1:k-1));

z = zeros(n,1); zupdateprob = zeros(n,k); zcts = zeros(k,1);

% -- define output files -- %

alphaout = zeros(nrun,1); nuout = zeros(nrun,k);

nu_max = zeros(nrun,1); piout= zeros(nrun,k);

nu_comps_95 = zeros(nrun,1); %nu_comps_99 = zeros(nrun,1);

NMIout = zeros(eff_samp1,p*(p-1)/2); crvout = zeros(eff_samp1,p*(p-1)/2);

MI_postmean = zeros(p,p); NMI_postmean = zeros(p,p); crv_postmean = zeros(p,p);

NMI_post_lq = zeros(p,p); NMI_post_uq = zeros(p,p);

crv_post_lq = zeros(p,p); crv_post_uq = zeros(p,p);

% -- start Gibbs sampler -- %

for i = 1:nrun
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% -- update z -- %

for h = 1:k

Lambdah = reshape(Lambda(h,:,:),p,d);

tmpmatL = reshape(Lambdah(lin_idx),[n,p]);

zupdateprob(:,h) = nu(h) * prod(tmpmatL,2);

end

zupdateprob1 = bsxfun(@times,zupdateprob,1./(sum(zupdateprob,2)));

mat1 = [zeros(n,1) cumsum(zupdateprob1,2)];

rr = unifrnd(0,1,[n,1]);

for l = 1:k

ind = rr > mat1(:,l) & rr <= mat1(:,l+1); z(ind) = l;

end

% -- update lambda -- %

for h = 1:k

zh = (z==h); zcts(h) = sum(zh);

for c = 1:d

mat(:,c) = (a(c) + sum(bsxfun(@times,(Yn==c),zh)))’;

mat0(:,c) = (sum(bsxfun(@times,(Yn==c),zh)))’;

end

Lamh1 = gamrnd(mat,1); Lamh = bsxfun(@times,Lamh1,1./sum(Lamh1,2));

Lambda(h,:,:) = Lamh;

tmpw0h=(1-pi(h))*prod(lam0.^mat0,2); %p*1
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tmpw1h=pi(h)*gamma(sum(a))/prod(gamma(a))*prod(gamma(mat),2)./

gamma(sum(a)+zcts(h)); %p*1

w0h=tmpw0h./(tmpw0h+tmpw1h);

indw0(h,:)=(rand(1,p)<w0h’);

w0row =find(indw0(h,:));

if length(w0row)>0

Lambda(h,w0row,:)=lam0(w0row,:); %d=4

end

end

% -- update pi -- %

pi = betarnd(1 + p- sum(indw0,2),gamm + sum(indw0,2));

% -- update nu -- %

for h = 1:k-1

nus(h) = betarnd(1 + zcts(h),alpha + sum(zcts(h+1:k)));

nu(1:k-1) = nus.*cumprod([1;1-nus(1:k-2)]);

nu(k) = 1-sum(nu(1:k-1));

end

% -- update alpha-- %

nuss = 1 - nus(1:k-1); nuss(nuss < 1e-6) = 1e-6;

alpha = gamrnd(aal + k - 1, 1/(bal - sum(log(nuss))));
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% -- first write files to be stored across each iteration -- %

nuout(i,:) = nu’;nu_ord = sort(nu,’descend’); nu_max(i) = nu_ord(1);

nu_comps_95(i,:) = sum((cumsum(nu_ord) >=0.95) == 0) + 1;

%nu_comps_99(i,:) = sum((cumsum(nu_ord) >=0.99) == 0) + 1;

alphaout(i) = alpha;

piout(i,:)=pi’;

% -- positional dependence -- %

if (mod(i,thin) == 0 && i > burn)

% -- between variables (all with same d_j)-- %

ct_loop = 0;

for j1 = 1:p-1

Lamj1 = reshape(Lambda(:,j1,:),k,d);

pj1 = sum(bsxfun(@times,Lamj1,nu))’; Ij1 = - sum(pj1.*log(pj1));

for j2 = j1+1:p

ct_loop = ct_loop + 1;

Lamj2 = reshape(Lambda(:,j2,:),k,d);

pj2 = sum(bsxfun(@times,Lamj2,nu))’;

Ij2 = - sum(pj2.*log(pj2));

pj1j2 = bsxfun(@times,Lamj1,sqrt(nu))’*

bsxfun(@times,Lamj2,sqrt(nu));

tmp_MI = sum(sum(pj1j2.*log(pj1j2./(pj1*pj2’))));

tmp_NMI = tmp_MI/sqrt(Ij1*Ij2);

crv = ((pj1j2 - pj1*pj2’).^2)./(pj1*pj2’);
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tmp_crv = sqrt(sum(sum(crv/(d-1))));

if mod(i-burn,thin) == 0

NMIout((i-burn)/thin,ct_loop) = tmp_NMI;

crvout((i-burn)/thin,ct_loop) = tmp_crv;

end

end

end

end

%if mod(i,100) == 0, disp(i); end

end

% -- post processing -- %

nu_comps_md_95 = mode(nu_comps_95(burn+1:end));

nu_comps_lq_95 = quantile(nu_comps_95(burn+1:end),0.025);

nu_comps_uq_95 = quantile(nu_comps_95(burn+1:end),0.975);

% -- for positional dependence -- %

nmi_lq = quantile(NMIout,0.025); nmi_uq = quantile(NMIout,0.975);

nmi_postmean = mean(NMIout);

crv_lq = quantile(crvout,0.025); crv_uq = quantile(crvout,0.975);

crv_postmean1 = mean(crvout);

ct_loop = 0;

for j1 = 1:p-1

for j2 = j1+1:p
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ct_loop = ct_loop + 1;

NMI_post_lq(j1,j2) = nmi_lq(ct_loop);

NMI_post_lq(j2,j1) = NMI_post_lq(j1,j2);

NMI_post_uq(j1,j2) = nmi_uq(ct_loop);

NMI_post_uq(j2,j1) = NMI_post_uq(j1,j2);

NMI_postmean(j1,j2) = nmi_postmean(ct_loop);

NMI_postmean(j2,j1) = NMI_postmean(j1,j2);

crv_post_lq(j1,j2) = crv_lq(ct_loop);

crv_post_lq(j2,j1) = crv_post_lq(j1,j2);

crv_post_uq(j1,j2) = crv_uq(ct_loop);

crv_post_uq(j2,j1) = crv_post_uq(j1,j2);

crv_postmean(j1,j2) = crv_postmean1(ct_loop);

crv_postmean(j2,j1) = crv_postmean(j1,j2);

end

end

toc;

save(’/home/users/jingzhou/Dissertation/30-DunsonXing_Extension/DataApplication/

Results&plots/splice4c_K25000_dxAnir’,’crv_post_lq’,’crv_post_uq’,...

’crv_postmean’,’alphaout’,’nuout’,’piout’,’nu_max’, ’NMI_postmean’,...

’NMI_post_lq’,’NMI_post_uq’,’nu_comps_95’,’nu_comps_lq_95’,...

’nu_comps_uq_95’,’n’,’p’,’N’);
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APPENDIX III

Computation Code for Chapter 3

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Goal: NBDPS analysis using Case-control sp-PARAFAC model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear;clc;close all;

g = dlmread(’gg.txt’); %index for birth defects outcome

%g = 4;

tic;

% -- define global parameters -- %

d = 2; k = 10; % d = # categories, k = # factors

nrun = 20000; burn = 5000; thin = 5;

%nrun = 4; burn = 1; thin =1;

eff_samp1 = (nrun - burn)/thin;

% -- load data -- %

%data1 = dlmread(’/Users/Amani/Dropbox/Dissertation Research/

30-Dunson&XingExtension/NBDPS2013/dataOct22/dataPart1.txt’);

%data2 = dlmread(’/Users/Amani/Dropbox/Dissertation Research/

30-Dunson&XingExtension/NBDPS2013/dataOct22/dataPart2.txt’);

data1 = dlmread(’/netscr/jingzhou/NBDPS2013/dataPart1.txt’);
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data2 = dlmread(’/netscr/jingzhou/NBDPS2013/dataPart2.txt’);

data = [data1 data2];

[n,q] = size(data); p = q-54;

Xn = data(:,55:end)+1; Yn = data(:,g);

n0 = sum(Yn==0); n1 = sum(Yn==1);

rowsn0 = repmat(1:p,n0,1); rowsn0 = rowsn0(:);

rowsn1 = repmat(1:p,n1,1); rowsn1 = rowsn1(:);

Xn0 = Xn(Yn==0,:); colsn0 = Xn0(:); lin_idx0 = sub2ind([p,d],rowsn0,colsn0);

Xn1 = Xn(Yn==1,:); colsn1 = Xn1(:); lin_idx1 = sub2ind([p,d],rowsn1,colsn1);

% -- discrete uniform probabilities -- %

lam0 = repmat([1/d 1/d],p,1); %p*d, d=2

% -- initialize parameters -- %

alpha = 1; % dp hyperparameters for stick breaking weights

aal = 1; bal = 1; % gamma hyperparameters for alpha

a = ones(d,1); % dirichlet hyperparameter for \lambda_h^{(j)}

Lambda0 = zeros(k,p,d);

% loadings for preds--initialize with sample cell frequencies

Lambda1 = zeros(k,p,d);

% loadings for preds--initialize with sample cell frequencies

for h = 1:k

for j = 1:p

Lambda0(h,j,:) = [sum(Xn(:,j)==1)/n sum(Xn(:,j)==2)/n]; %d=2
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Lambda1(h,j,:) = [sum(Xn(:,j)==1)/n sum(Xn(:,j)==2)/n];

end

end

gamm=20; %prior pi_h~Beta(1,gamm)

pi0=betarnd(1,gamm,[k,1]); pi1=betarnd(1,gamm,[k,1]);

nus0 = betarnd(1,alpha,[k-1,1]); nu0 = zeros(k,1);

nu0(1:k-1) = nus0.*cumprod([1;1-nus0(1:k-2)]); nu0(k) = 1 - sum(nu0(1:k-1));

nus1 = betarnd(1,alpha,[k-1,1]); nu1 = zeros(k,1);

nu1(1:k-1) = nus1.*cumprod([1;1-nus1(1:k-2)]); nu1(k) = 1 - sum(nu1(1:k-1));

z0 = zeros(n0,1); zupdateprob0 = zeros(n0,k); zcts0 = zeros(k,1);

z1 = zeros(n1,1); zupdateprob1 = zeros(n1,k); zcts1 = zeros(k,1);

%matrix to be used in posterior

mat0a = zeros(p,d); %for updating from Dirichlet for Lambda0

mat0null = zeros(p,d); %for updating from the null group for Lambda0

indu0d0= zeros(k,p); %indicator for Lambda0 being assigned to baseline

mat1a = zeros(p,d); %for updating from non-null group for Lambda1

mat1null = zeros(p,d); %for updating from the null group for Lambda1

indu0d1= zeros(k,p); %indicator for Lambda1 being assigned to baseline

% -- define output files -- %

alphaout = zeros(nrun,1); nu0out = zeros(nrun,k);

nu1out = zeros(nrun,k); nu0_max = zeros(nrun,1);
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pi0out= zeros(nrun,k); pi1out= zeros(nrun,k);

nu_comps_95 = zeros(nrun,1); %nu_comps_99 = zeros(nrun,1);

OR = zeros(eff_samp1,p); mainEff = zeros(eff_samp1,p);

% -- start Gibbs sampler -- %

for i = 1:nrun

% -- update z0 and z1: done -- %

for h = 1:k

Lambda0h = reshape(Lambda0(h,:,:),p,d);

Lambda1h = reshape(Lambda1(h,:,:),p,d);

tmpmat0Ld0 = reshape(Lambda0h(lin_idx0),[n0,p]);

tmpmat1Ld1 = reshape(Lambda1h(lin_idx1),[n1,p]);

zupdateprob0(:,h) = nu0(h) * prod(tmpmat0Ld0,2);

zupdateprob1(:,h) = nu1(h) * prod(tmpmat1Ld1,2);

end

zupdateprob0a = bsxfun(@times,zupdateprob0,1./(sum(zupdateprob0,2)));

zupdateprob1a = bsxfun(@times,zupdateprob1,1./(sum(zupdateprob1,2)));

matz0 = [zeros(n0,1) cumsum(zupdateprob0a,2)];

matz1 = [zeros(n1,1) cumsum(zupdateprob1a,2)];

rr0 = unifrnd(0,1,[n0,1]); rr1 = unifrnd(0,1,[n1,1]);

for l = 1:k

ind0 = rr0 > matz0(:,l) & rr0 <= matz0(:,l+1);

z0(ind0) = l; %size: n0*1

ind1 = rr1 > matz1(:,l) & rr1 <= matz1(:,l+1);
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z1(ind1) = l; %size: n1*1

end

% -- update lambda0 and lambda1: done -- %

for h = 1:k

zh0 = (z0==h); zcts0(h) = sum(zh0);

zh1 = (z1==h); zcts1(h) = sum(zh1);

for c = 1:d

term0 = sum(bsxfun(@times,(Xn0==c),zh0));

term1 = sum(bsxfun(@times,(Xn1==c),zh1));

mat0a(:,c) = (a(c) + term0)’; mat0null(:,c) = (term0)’; %p*d

mat1a(:,c) = (a(c) + term1)’; mat1null(:,c) = (term1)’; %p*d

end

tmpLam0h = gamrnd(mat0a,1);

Lam0h = bsxfun(@times,tmpLam0h,1./sum(tmpLam0h,2));

Lambda0(h,:,:) = Lam0h;

tmpLam1h = gamrnd(mat1a,1);

Lam1h = bsxfun(@times,tmpLam1h,1./sum(tmpLam1h,2));

Lambda1(h,:,:) = Lam1h;

tmpu0hd0=(1-pi0(h))*prod(lam0.^mat0null,2); %p*1

tmpu1hd0=pi0(h)*gamma(sum(a))/prod(gamma(a))*prod(gamma(mat0a),2)./

gamma(sum(mat0a,2)); %p*1

u0hd0=tmpu0hd0./(tmpu0hd0+tmpu1hd0);

indu0d0(h,:)=(rand(1,p)<u0hd0’);
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u0d0row =find(indu0d0(h,:));

if length(u0d0row)>0

Lambda0(h,u0d0row,:)=lam0(u0d0row,:);

end

tmpu0hd1=(1-pi1(h))*prod(lam0.^mat1null,2); %p*1

tmpu1hd1=pi1(h)*gamma(sum(a))/prod(gamma(a))*prod(gamma(mat1a),2)./

gamma(sum(mat1a,2)); %p*1

u0hd1=tmpu0hd1./(tmpu0hd1+tmpu1hd1);

indu0d1(h,:)=(rand(1,p)<u0hd1’);

u0d1row =find(indu0d1(h,:));

if length(u0d1row)>0

Lambda1(h,u0d1row,:)=lam0(u0d1row,:);

end

end

% -- update pi: done -- %

pi0 = betarnd(1 + p- sum(indu0d0,2),gamm + sum(indu0d0,2));

pi1 = betarnd(1 + p- sum(indu0d1,2),gamm + sum(indu0d1,2));

% -- update nu0 and nu1: done -- %

for h = 1:k-1

nus0(h) = betarnd(1 + zcts0(h),alpha + sum(zcts0(h+1:k)));

nu0(1:k-1) = nus0.*cumprod([1;1-nus0(1:k-2)]);

nu0(k) = 1-sum(nu0(1:k-1));
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nus1(h) = betarnd(1 + zcts1(h),alpha + sum(zcts1(h+1:k)));

nu1(1:k-1) = nus1.*cumprod([1;1-nus1(1:k-2)]);

nu1(k) = 1-sum(nu1(1:k-1));

end

% -- update alpha: done-- %

nuss = 1 - nus0(1:k-1); nuss(nuss < 1e-6) = 1e-6;

nuss2 = 1 - nus1(1:k-1); nuss2(nuss2 < 1e-6) = 1e-6;

alpha = gamrnd( aal + 2*k - 1, 1/(bal - sum(log(nuss))-sum(log(nuss2))) );

% -- first write files to be stored across each iteration -- %

nu0out(i,:) = nu0’;nu0_ord = sort(nu0,’descend’); nu0_max(i) = nu0_ord(1);

nu1out(i,:) = nu1’;

nu_comps_95(i,:) = sum((cumsum(nu0_ord) >=0.95) == 0) + 1;

%nu_comps_99(i,:) = sum((cumsum(nu_ord) >=0.99) == 0) + 1;

alphaout(i) = alpha;

pi0out(i,:)=pi0’; pi1out(i,:)=pi1’;

% -- marginal dependence -- %

if (mod(i,thin) == 0 && i > burn)

pr1=sum( bsxfun(@times,nu1,Lambda1(:,:,2)),1 );

%check dimension compatable %size: 1*p
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pr2=sum( bsxfun(@times,nu1,Lambda1(:,:,1)),1 );

pr3=sum( bsxfun(@times,nu0,Lambda0(:,:,2)),1 );

pr4=sum( bsxfun(@times,nu0,Lambda0(:,:,1)),1 );

OR((i-burn)/thin,:)= pr1.*pr4./pr2./pr3;

mainEff((i-burn)/thin,:)= log(pr1.*pr4./pr2./pr3);

end

%if mod(i,100) == 0, disp(i); end

end

OR_lq = quantile(OR,0.025); OR_uq = quantile(OR,0.975); OR_postmean = mean(OR);

mainEff_lq = quantile(mainEff,0.025); mainEff_uq = quantile(mainEff,0.975);

mainEff_postmean = mean(mainEff);

OR_postmean_sig = OR_postmean;

OR_postmean_sig(OR_lq<1 & OR_uq>1)=1; %size: 1*p

mainEff_postmean_sig = mainEff_postmean;

mainEff_postmean_sig(mainEff_lq<0 & mainEff_uq>0)=0; %size: 1*p

toc;

dlmwrite(’/netscr/jingzhou/SPDmodel/NBDPS2013/Results/sigBeta.txt’,...

[g’,mainEff_postmean_sig],’-append’,’coffset’, 1,’delimiter’, ’\t’);
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dlmwrite(’/netscr/jingzhou/SPDmodel/NBDPS2013/Results/sigOR.txt’,...

[g’,OR_postmean_sig],’-append’,’coffset’, 1,’delimiter’, ’\t’);

dlmwrite(’/netscr/jingzhou/SPDmodel/NBDPS2013/Results/Beta_mean.txt’,...

[g’,mainEff_postmean],’-append’,’coffset’, 1,’delimiter’, ’\t’);

dlmwrite(’/netscr/jingzhou/SPDmodel/NBDPS2013/Results/Beta_lq.txt’,...

[g’, mainEff_lq],’-append’,’coffset’, 1,’delimiter’, ’\t’);

dlmwrite(’/netscr/jingzhou/SPDmodel/NBDPS2013/Results/Beta_uq.txt’,...

[g’,mainEff_uq],’-append’,’coffset’, 1,’delimiter’, ’\t’);

dlmwrite(’/netscr/jingzhou/SPDmodel/NBDPS2013/Results/OR_mean.txt’,...

[g’,OR_postmean],’-append’,’coffset’, 1,’delimiter’, ’\t’);

dlmwrite(’/netscr/jingzhou/SPDmodel/NBDPS2013/Results/OR_lq.txt’,...

[g’,OR_lq],’-append’,’coffset’, 1,’delimiter’, ’\t’);

dlmwrite(’/netscr/jingzhou/SPDmodel/NBDPS2013/Results/OR_uq.txt’,...

[g’,OR_uq],’-append’,’coffset’, 1,’delimiter’, ’\t’);
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APPENDIX IV

Computation Code for Chapter 4

#############################################################################

# Data analysis example for SSR-cLDA

#############################################################################

library(MASS)

library(gsDesign)

library(nlme)

#Modified spending function for sfLDOF after info.frac 0.85

sfLDOFtrunc <-

function (alpha, t, param, limit=0.85)

{

checkScalar(alpha, "numeric", c(0, Inf), c(FALSE, FALSE))

checkVector(t, "numeric", c(0, Inf), c(TRUE, FALSE))

t[t > limit] <- 1

z <- -qnorm(alpha/2)

x <- list(name = "Lan-DeMets O’brien-Fleming approximation",

param = NULL, parname = "none", sf = sfLDOF, spend = 2 *

(1 - pnorm(z/sqrt(t))), bound = NULL, prob = NULL)

class(x) <- "spendfn"

x

}
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#This function generates Toeplitz correlation structure

toepmat <- function(T=4,rho=rho){ #rho is a vector of length T-1

sigma <- matrix(0,nrow=T,ncol=T)

for (i in 1:(T-1)) {

for (j in 1:(T-i)) {

sigma[i,i+j] <- rho[j]; sigma[i+j,i] <- rho[j]

}

}

diag(sigma) = rep(1,T)

sigma <- sigma

return(sigma)

}

#This function generates compound symmetry correlation structure

csmat <- function(T=4,rho=rho){ #rho is a numeric constant

sigma <- matrix(0,nrow=T,ncol=T)

for (i in 1:(T-1)) {

for (j in 1:(T-i)) {

sigma[i,i+j] <- rho; sigma[i+j,i] <- rho

}

}

diag(sigma) = rep(1,T)

return(sigma)

}
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#This function generates AR1 correlation structure

ar1mat <- function(T=4,rho=rho){ #rho is a numeric constant

sigma <- matrix(0,nrow=T,ncol=T)

for (i in 1:(T-1)) {

for (j in 1:(T-i)) {

sigma[i,i+j] <- rho^j; sigma[i+j,i] <- rho^j

}

}

diag(sigma) = rep(1,T)

sigma <- sigma

return(sigma)

}

#This function is required by the function Lambda which is

# in turn required by function ss.LDA

Rtt.0.inv <- function(t,T=T,cormat,rbase){

Rtt.0.inv <- matrix(0,nrow=T,ncol=T)

R0t <- rbase[1:t]

Rtt.0 <- cormat[1:t,1:t] - R0t%*%t(R0t)

Rtt.0.inv[1:t,1:t] <- solve(Rtt.0)

Rtt.0.inv <- (Rtt.0.inv+t(Rtt.0.inv))/2

return(Rtt.0.inv)

}

#This function is required by the function ss.LDA
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Lambda <- function(cormat,rbase,pt,T=T) {

L = 0

for (t in 1:T) {L <- L + pt[t]*Rtt.0.inv(t,T=T,cormat,rbase)}

return(L)

}

ss.LDA <- function(

I.max,#Required maximum information

S, #vector of standard deviations of the repeated measures (including baseline)

R, #Correlation matrix of the repeated measures (including baseline)

r1,#Group 1 - Retention rate at each postbaseline timepoint

r2=NULL, #Group 2 - Retention rate at each postbaseline timepoint

cvec=NULL,#Contrast vector for the hypothesis based on postbaseline means

lambda=1 #Randomization ratio: lambda = n2/n1

)

{

if (is.null(r2)) r2 <- r1

p1 <- r1 - c(r1[-1],0) #Group 1 - Proportion of enrolled subject who

# dropped out between consecutive postbaseline time points

# starting from first postbaseline and second

p2 <- r2 - c(r2[-1],0) #Similarly for Group 2

J <- dim(R)[1] - 1 #Number of postbaseline measurements
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post.sig <- S[-1]

if (is.null(cvec)) cvec <- c(rep(0,J-1),1)

#This is the contrast vector for the hypothesis of interest, the default is

#the difference between mu.c and mu.t at the last postbaseline time point

cormat <- R[2:(J+1),2:(J+1)]

#Sub-matrix of correlation for postbaseline measures

rbase <- R[1,2:(J+1)]

#Correlation of each postbaseline measures with baseline

Lambda.inv1 <- solve(Lambda(cormat,rbase,pt=p1,T=J))

Lambda.inv2 <- solve(Lambda(cormat,rbase,pt=p2,T=J))

n1 <- ceiling(I.max*(t(cvec)%*%diag(post.sig)%*%Lambda.inv1%*%

diag(post.sig)%*%cvec + (1/lambda)*t(cvec)%*%diag(post.sig)%*%

Lambda.inv2%*%diag(post.sig)%*%cvec))

n2 <- ceiling(lambda*n1)

n.max <- as.numeric(n1+n2) #n.max is the calculated total sample size

return(n.max)

}

#The following function simulate information-based group

# sequential design for continuous longitudinal measurements.

MaxInfoDesign.LDA <- function(

## para for gsDesign for calculating Imax and boundaries##
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alpha=.025, #Target type 1 error (1-sided alpha expected)

beta=.1, #Power = 1 - beta

delta=0.25, #Treatment difference at last time point

test.side=1, #Test sides (1-sided is default)

timing=c(0.5,1),#Analysis times

## para for ss.LDA + Imax calc. from gsDesign ##

R =csmat(T=5,rho=0.579),#Correlation matrix of the

#repeated measures (including baseline)

S =rep(.925,5),#vector of standard deviations of the

#repeated measures (including baseline)

r1 =0.9^((1:4)/4),#Group 1 - Retention rate at each postbaseline timepoint;

#the default is exponential retention rate

r2 =0.9^((1:4)/4),#Group 2 - Retention rate at each postbaseline timepoint

## real data input & results from previous interim looks ##

longdat, # data with long and slim format

update.act.t, # I(t)/Imax from all previous interim looks with

# future timing as original plan (length same as timing vector)

interim.no, # the current interim look number

new.Nmax=NULL, # new Nmax calculated from last previous interim if any

ifFinal #if current analysis is final(T or F)

){

#Calculation maximum information

K <- length(timing)
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I.fix <- ((qnorm(1-alpha)+qnorm(1-beta))/delta)^2

#Calculates maximum information for a fixed design

I.max <- gsDesign(k=K,sfu=sfLDOF,sfl=sfLDOF,timing=timing,

n.fix=I.fix,beta=beta,alpha=alpha,test.type=test.side)$n.I[K]

#Calculates maximum information for group sequential design using gsDesign

#Converting maximum information to sample size

J <- dim(R)[1] - 1 #Number of postbaseline measurements

n.max <- ss.LDA(I.max,S,R,r1)

#Initialize monitoring parameters

rej.ub<- 0

rej.lb <- 0

int.info <- NA

inf.frac <- NA

if (interim.no+1 == K) {ifNextFinal <- ’TRUE’} else {ifNextFinal <- ’FALSE’}

if (is.null(new.Nmax)) {n <- n.max} else {n <- new.Nmax}

no.enrolled <- length(unique(longdat$alloc))

comp.cases.dat <- longdat[which(longdat$flag==0),]

#flag is 1 if the patient is still continuing

#only subjects that have completed the last measurement or

#dropped out of study will be used at any analysis.

n.int <- length(unique(comp.cases.dat$alloc))

#only completed or discontinued patients are included
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#Ensure the model fitted in the next line is the same as

#the analysis model above.

#The first model fits constrained LDA with unstructured var-cov matrix;

#second fit compound symmetry;

#a <- try(fit.gls <- gls(y~factor(week)+trt2wk1+trt2wk2+trt2wk3+trt2wk4,

data=comp.cases.dat,corr=corSymm(form = ~ 1 |alloc),weights =

varIdent(form = ~ 1 | week)),TRUE)

a <- try(fit.lme <- lme(y ~ as.factor(week) + trt2wk1 + trt2wk2 + trt2wk3 +

trt2wk4,data=comp.cases.dat,random=~1|alloc),TRUE)

if (length(a)==1) { #This catches error from the model fitting

rej.ub <- NA; rej.lb <- NA

break

}

#est.effect <- coef(fit.gls)[9]

#Use this set if gls function is used for model fitting

#se <- sqrt(diag(fit.gls$varBeta)[9])

est.effect <- fixed.effects(fit.lme)[9]

#Use this set if lme function is used for model fitting

se <- sqrt(fit.lme$varFix[9,9])

#Calculate new n_max to see whether sample size needs to be changed

r.n <- ceiling(n.int/min(se^(-2)/I.max,1))

if (interim.no < K) { # 2nd & 3rd bullet of adaptation from the slide
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if (r.n<=no.enrolled || r.n <= ceiling(n*timing[interim.no+1])) {

n <- max(r.n,no.enrolled)

ifNextFinal = ’TRUE’

}}

if (interim.no<K && r.n>n) { #5th bullet of adaptation from the slide

n <- min(r.n,2*n.max)

#The re-estimated sample size has been capped at 2 times original.

}

if (interim.no==K) { #last interim

#n <- min(r.n,2*n.max) #although won’t collect more data

n <- no.enrolled

}

#Test whether we can stop early

test.stat <- est.effect/se

p.value <- test.side*(1 - pnorm(test.stat))

#test.side*(1-pt(test.stat,df=df)) #

inf.frac <- min(se^(-2)/I.max,1)

int.info <- se^(-2)/I.max

update.act.t[interim.no] <- inf.frac

if (interim.no<K && ifFinal==F) {

if (update.act.t[interim.no] == 1) {

update.act.t <- update.act.t[1:interim.no]}

#change from last version to make sure gsDesign can work
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else if (update.act.t[interim.no]>=update.act.t[interim.no+1])

{update.act.t=update.act.t[-(interim.no+1)]}

b <- try(bdd <- gsDesign(k=length(update.act.t),sfu=sfLDOF,

sfl=sfLDOF,timing=update.act.t,

n.fix=I.fix,beta=beta,alpha=alpha,test.type=test.side),TRUE)

}

if (interim.no==K) {

b0 <- try(bdd0 <- gsDesign(k=K,sfu=sfLDOFtrunc,sfl=sfLDOF,

timing=update.act.t[-K],n.fix=I.fix,beta=beta,alpha=alpha,

test.type=test.side),TRUE)

b <- try(bdd <- gsDesign(k=K,sfu=sfLDOFtrunc,sfl=sfLDOF,n.fix=I.fix,

n.I=c(b0$n.I[1:(K-1)],update.act.t[interim.no]*b0$n.I[K]),

beta=beta,alpha=alpha, test.type=test.side),TRUE)

}

else if (ifFinal==T) {

b0 <- try(bdd0 <- gsDesign(k=interim.no,sfu=sfLDOFtrunc,sfl=sfLDOF,

timing=update.act.t[1:(interim.no-1)],n.fix=I.fix,beta=beta,

alpha=alpha,test.type=test.side),TRUE)

b <- try(bdd <- gsDesign(k=interim.no,sfu=sfLDOFtrunc,sfl=sfLDOF,

n.fix=I.fix,n.I=c(b0$n.I[1:(interim.no-1)],update.act.t[interim.no]*

b0$n.I[interim.no]),beta=beta,alpha=alpha,test.type=test.side),TRUE)

}

if (length(b)==1) {
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rej.ub <- NA

rej.lb <- NA

break

}

if (!(is.null(bdd$upper$bound))) {

if (-test.stat>=bdd$upper$bound[interim.no]) {

rej.ub <- 1

}

}

if (!(is.null(bdd$lower$bound))) {

if (-test.stat<=bdd$lower$bound[interim.no]) {

rej.lb <- 1

}

}

input.parameters = c(

alpha=alpha,

power=1-beta,

Planned.timing=timing,

delta=delta

)

if (rej.ub==1) {ifSTOPtrial = "Stop with sig. Efficacy"} else

if (rej.lb==1) {ifSTOPtrial = "Stop with sig. Futility"} else

if (inf.frac>=1) {ifSTOPtrial =
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"Max Information reached but no sig. detected"} else

if (interim.no==K) {ifSTOPtrial =

"Stop for planned K but information not reached"} else

{ifSTOPtrial = "Continue to the next interim"}

# ifSTOPtrial = rej.ub==1||rej.lb==1||inf.frac>=1

# Efficacy = (rej.ub==1)

# Futility = (rej.lb==1)

# MaxInfoReached = (inf.frac>=1)

return(c(input.parameters, ifSTOPtrial=ifSTOPtrial,

ifNextFinal=ifNextFinal, update.act.t=round(update.act.t,3),

orig.Nmax=n.max, New.Nmax=n, current.inf.frac=round(int.info,3)))

}

###### First interim analysis ###

setwd(’/Users/Amani/Dropbox/Dissertation Research/

26-SSR-LDA writeup/StatInMed Revision/Code/dataExample’)

results = MaxInfoDesign.LDA(

alpha =.025,

beta =.1,

delta =0.25,

test.side =1,

timing =c(0.5,1),

R =csmat(T=5,rho=0.579),

S =rep(.925,5),

r1 =0.8^((1:4)/4),
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r2 =0.8^((1:4)/4),

longdat = adeff,

update.act.t = timing,

interim.no =1,

ifFinal=F,

new.Nmax =NULL)

as.data.frame(results)

###### Final analysis ###

results2 = MaxInfoDesign.LDA(

alpha =.025,

beta =.1,

delta =0.25,

test.side =1,

timing =c(0.5,1),

R =csmat(T=5,rho=0.579),

S =rep(.925,5),

r1 =0.8^((1:4)/4),

r2 =0.8^((1:4)/4),

longdat = adeff2,

update.act.t = c(0.514,1),

interim.no =2,

ifFinal=T,
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new.Nmax =411)

as.data.frame(results2)
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