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ABSTRACT 

YU-CHENG TSENG: LCP Nanoparticle for Tumor and Lymph Node Metastasis Imaging 
(Under the direction of Dr. Leaf Huang) 

A lipid/calcium/phosphate (LCP) nanoparticle formulation (particle diameter 

~25 nm) has previously been developed to delivery siRNA with superior efficiency. In 

this work, 111In was formulated into LCP nanoparticles to form 111In-LCP for 

SPECT/CT imaging. With necessary modifications and improvements of the LCP 

core-washing and surface-coating methods, 111In-LCP grafted with polyethylene 

glycol exhibited reduced uptake by the mononuclear phagocytic system. SPECT/CT 

imaging supported performed biodistribution studies, showing clear tumor images 

with accumulation of 8% or higher injected dose per gram tissue (ID/g) in 

subcutaneous, human-H460, lung-cancer xenograft and mouse-4T1, breast cancer 

metastasis models. Both the liver and the spleen accumulated ~20% ID/g. 

Accumulation in the tumor was limited by the enhanced permeation and retention 

effect and was independent of the presence of a targeting ligand. A surprisingly high 

accumulation in the lymph nodes (~70% ID/g) was observed. In the 4T1 lymph node 

metastasis model, the capability of intravenously injected 111In-LCP to visualize the 

size-enlarged and tumor-loaded sentinel lymph node was demonstrated. By 

analyzing the SPECT/CT images taken at different time points, the PK profiles of 

111In-LCP in the blood and major organs were determined. The results indicated that 

the decrement of 111In-LCP blood concentration was not due to excretion, but to 

tissue penetration, leading to lymphatic accumulation.  
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Larger LCP (diameter ~65 nm) nanoparticles were also prepared for the 

purpose of comparison. Results indicated that larger LCP achieved slightly lower 

accumulation in the tumor and lymph nodes, but much higher accumulation in the 

liver and spleen; thus, larger nanoparticles might not be favorable for imaging 

purposes. We also demonstrated that LCP with a diameter of ~25 nm were better 

able to penetrate into tissues, travel in the lymphatic system and preferentially 

accumulate in the lymph nodes due to 1) small size, 2) a well-PEGylated lipid 

surface, and 3) a slightly negative surface charge. The ability of ~25 nm LCP to 

deliver genes to the lymph nodes via IV injection was illustrated by RFP cDNA 

expression. The results promise the potential use of LCP nanoparticles as 

formulations for the multifunctional, systemic delivery of both imaging and 

therapeutic agents to both tumors and lymph nodes. 
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CHAPTER I 

INTRODUCTION1 

1.1 Clinical tumor imaging  

 Accurate and sensitive imaging of tumors and lymph node metastasis is 

important to the early clinical diagnosis and monitoring of therapeutic effects. During the 

past 20 years, advances in many basic sciences including chemistry, biology, physics, 

and engineering have made molecular imaging an autonomous scientific discipline that 

has extensive impact on clinical healthcare practices. Biomedical imaging is actually 

2 playing an ever more important role in almost every phase of clinical cancer 

management [1-3]. These include cancer detection, staging [4], prognosis prediction [5], 

therapy planning [6], imaging-guided surgery [7, 8], therapy response evaluation [9], 

recurrence monitoring [10], etc. Many imaging techniques have the great advantage of 

being non-invasive, thus no surgery is required to obtain invaluable images. Current 

imaging systems frequently used in the clinic include magnetic resonance imaging (MR 

imaging), single-photon emission computed tomography (SPECT), positron emission 

tomography (PET), ultrasound, optical imaging, and X-ray systems, including computed 

tomography (CT).  

                                                
1 Parts of the introduction included in this chapter have been published in: 

Tseng YC, Mozumdar S, and Huang L. (2009). Lipid-based systemic delivery of siRNA.  Adv Drug Deliv Rev. 
Jul 25;61(9):721-31. 

Tseng YC and Huang L. (2009). Self-assembled lipid nanomedicines for siRNA tumor targeting. J Biomed 
Nanotechnol. Aug;5(4):351-63. 
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 These imaging systems vary in several physical properties such as sensitivity, 

temporal, and spatial resolution [11]. Nuclear medicine techniques, in particular, PET 

and SPECT, are the most sensitive achieving sensitivity between nanomole/kg and 

picomole/kg sensitivity and a resolution of ~1 mm. MR imaging has ~10 mmole/kg 

sensitivity and a resolution of up to ~50 micron (with a strong magnet). However, a major 

drawback of MRI is it could take hours of acquisition times to obtain a high resolution 

image. CT has millimole/kg sensitivity with a high resolution of up to several microns.  

 Optical imaging has great resolution but their clinical application have been 

limited to endoscopic, catheter-based devices and superficial imaging due to problems 

with scattering and absorption by the body tissues. However, success of optical imaging 

has been demonstrated in aiding surgical resection of tumor nodules [7, 8]. The tissue 

penetrating depth of fluorescent imaging could be improved to several millimeters by 

using long wavelength fluorophores or nanomaterials with excitation/emission 

wavelengths within the first or second near-infrared regions (0.75-0.9 µm, 1.1-1.4 µm, 

respectively) [12-16]. Two-photon excitation is another available technology that could 

be applied to enhance the penetrating depth of lights [17, 18]. Adopting Raman 

spectroscopy with tumor targeted nanoparticles and other promising strategies are the 

future directions of the field [19-21]. However, in terms of non-invasive deep tissue 

imaging, the capability of optical imaging is still limited. 

 

1.2 SPECT/CT (Single-photon emission computed tomog raphy) 

Non-invasive imaging techniques using nuclear medicine, such as SPECT and 

PET, have the highest sensitivity among other imaging techniques [22, 23]. Among the 

radionuclides used in clinical practice, Indium-111 (111In) is the second most widely used, 
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only surpassed by 99mTc. 111In displays major decay at photon energy levels of 171.3 and 

245.4 keV, within the ideal range of the detector device. The short, but sufficient half-life 

of 111In (2.83 days) is also advantageous because prolonged exposure of normal organs 

to the radionuclide may cause undesired toxicity and should be prevented. Many studies 

have demonstrated in vivo imaging of tumors using SPECT/CT or PET/CT technique 

with various types of NPs [23-26]. 

SPECT has fairly good resolution of ~1 mm. However, SPECT images alone lack 

the anatomical details to provide meaningful surgical guidance. Several publications 

have demonstrated the advantages of fusing SPECT images with separately acquired 

CT images to address this issue [27-33]. Thus SPECT imaging machines have been 

commonly outfitted with a CT scanning component to form SPECT/CT imaging. Hybrid 

imaging systems could provide more detailed anatomical information, making them the 

future of molecular imaging [34].  

 

1.3 Nanoparticles for therapy and imaging 

Nanotechnology is an applied sciences field currently undergoing explosive 

development, especially in regards to medicine. The field, involves the creation, 

utilization, and design of materials and devices in the nanometer scale. There are 

several unique size-dependent physical and chemical properties (e.g. optical, magnetic, 

catalytic, thermodynamic, and electrochemical) of nanoparticles (NPs) [35]. NPs that 

have been developed for biomedical research can be roughly categorized into three 

categories: (1) inorganic NPs including quantum dots, iron oxide NPs, and gold 

nanostructures, (2) polymeric NPs such as dendrimers and amphiphilic NPs, and (3) 

lipid NPs, including liposomes, solid lipid NPs, and core-supported lipid NPs (e.g. LPD 
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(Lipid/Polycation/DNA) [36-39] and LCP (Lipid/Calcium/Phosphate) NPs [40-42] 

developed in our lab). In addition to these, the oncological applications of carbon 

nanotubes and nanodiamonds as novel materials have also been explored [43-45].  

The high payload of the therapeutic agent and favorable pharmacokinetics and 

consequent reduced toxicity of the cargo drug are two advantages of using NPs as a 

delivery system. Furthermore, their multi-functionality [24], preferential accumulation in 

the tumor through the enhanced permeability and retention (EPR) effect [46, 47], and the 

enhanced binding with target cells due to ligand multivalency [48] are also advantages of 

this type of delivery system. Chapter 1.3.2-1.3.4 introduces the EPR effect and targeting 

ligands. With the capability of being multifunctional, NPs could carry therapeutics with 

contrast imaging agents (i.e., theragnostics) [49]. Also, due to their larger-size, NPs can 

often produce high signal:background ratios, which is the key to achieving satisfactory 

imaging results. However, avoiding clearance by the mononuclear phagocyte system 

(MPS), especially in the liver (Kupffer cells) [50] and spleen, is the first requirement for 

efficient delivery with NPs. 

 

1.3.1 MPS clearance and PEGylation 

Nanoparticles need to stay in the blood circulation long enough to overcome the 

kinetic barrier to extravasate from the leaky tumor vasculature [51]. The primary 

elimination mechanism for nanoparticles is clearance via the MPS. The major reason 

why unprotected NPs are prone to clearance by the MPS is because opsonins such as 

IgM, IgG, fibronectins, or complement C3 attached to the surface of NPs can attract 

phagocytic cells. This clearance by the MPS is the major obstacle for almost every 

colloidal NP. One common strategy first demonstrated in stealth liposome technology is 



 5 

to use surface grafted carbohydrate or polyethylene glycol (PEG) to protect the particle 

and shield the particle’s surface charges [52]. Studies have shown that PEGylated 

colloids [53, 54] and stealth liposomes [37] could stay in the blood circulation for up to 6–

10 h in mice and 40 h in humans [55]. 

 

1.3.2 Enhanced permeability and retention (EPR) eff ect 

Tumor cells are those that rapidly differentiate and grow. A large amount of 

nutrients is required for tumor growth. Angiogenesis as induced by growth factors 

including vascular endothelial growth factor (VEGF), is also important for tumor growth 

[56]. Neo-vasculatures in the tumor are usually leaky and not well organized. However, 

the degree of leakiness is highly tumor dependent and could vary significantly between 

tumors. Factors including the site and type of the tumor and the degrees of growth and 

regression lead to different degrees of vascular leakiness. Matsumura and Maeda [57] 

discovered that due to the leakiness of the vasculature in solid tumors, macromolecules 

and colloidal nanoparticles that are too big to penetrate normal blood vessels could 

extravasate from these leaky vasculatures and preferentially accumulate at the tumor 

site; termed the EPR effect. Lacking lymphatic drainage might also contribute to the 

enhanced retention effect [57-60].  

To take advantage of the EPR effect, nanoparticles must be within an optimal 

size range. Although the EPR effect has been demonstrated in humans [61-63], not all 

human tumors are equally leaky. The optimum diameter for liposome-mediated drug 

delivery was determined to be around 100 nm [64]. However, this could be due to the 

fact that this is the pivotal size for long circulating liposomes. Smaller nanoparticles (~25 

nm) have been shown to penetrate tumors better than larger nanoparticles [65]. 
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However, the penetration of smaller nanoparticles is still highly dependent on the 

leakiness of the tumor vasculature.  

 

1.3.3 Targeting ligands 

The EPR effect is important in guiding nanoparticles to the tumor tissues, but is 

not enough to deliver siRNA into the cancer cells. Two physical barriers remain, the 

plasma and endosome membranes, which prohibit siRNA from entering the cytoplasm. 

Drugs or siRNA outside of the cancer cells are not bio-available and show no therapeutic 

effect. Nanoparticles with a structure too stable may stay in the tumor extracellular 

matrix without releasing payload drugs. For example, a stealth liposomal-cisplatin 

formulation (SPI-077) accumulated efficiently at the tumor site, but showed minimal 

therapeutic effect compared to free cisplatin [66]. In order to prompt cancer cells to take 

up nanoparticles, targeting ligands are needed for triggering receptor mediated 

endocytosis. There are various types of targeting ligands being used for tumor targeting, 

including peptides, proteins, antibodies (Fab, scFv, etc.), aptamers, and small molecular 

weight ligands, etc. 

 

1.3.4 Anisamide and folic acid as targeting ligands  

Small molecule ligands that have good binding affinities and specificities are also 

suitable for tumor targeting, although they are relatively rare. Such ligands are easy to 

synthesize, more tolerant to chemical modification/conjugation, have a low 

immunogenicity, and are stable enough for long-term storage, making them preferable 

over small peptides, proteins and antibodies. Folic acid, a vitamin, is the high affinity 

natural ligand for the folate receptor which is over-expressed in a wide range of human 
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cancers, including ovary, lung, breast, endometrium, kidney, and brain cancers. Protein 

toxins, chemotherapeutic agents, oligonucleotides, radioimaging/therapeutic agents, 

MRI contrast agents, and liposomes [67] have all been modified with folic acid to 

enhance their targeting of various tumors [68-70]. Similarly, anisamide [71] and 

haloperidol [72, 73] are small molecule ligands for use in targeting cancer cells that over-

express the sigma receptor. These include melanoma, non-small cell lung carcinoma, 

breast tumors of neural origin, and prostate cancers [72, 74-76]. The LPD tumor 

targeting work done in our lab focused on anisamide as the targeting ligand [36-39]. 

 

1.3.5 Radiolabeling of Nanoparticles with 111In 

 Radiolabeling is considered the most quantitative method of labeling in the field 

of drug delivery in cases where appropriate radiolabeling strategies are used. The major 

advantage of radiolabeling is the general lack of background signal in the images 

produced. The in vivo administration of radiolabeled NPs not only provides accurate 

biodistribution profiles and PK studies of the NPs but can also be used for SPECT/CT or 

PET/CT imaging. 111In is convenient for studying NPs because of its half-life (2.83 days), 

which is both long enough for PK evaluations and short enough to reduce safety 

concerns. 

There are several approaches to radiolabeling NPs, including (1) directly labeling 

the NP surface, (2) functionalizing the surface with a chelater for labeling, and (3) 

encapsulating radionuclides in the NPs [22]. Strategy (2) is the most commonly used in 

labeling with 111In. DTPA (diethylene triamine pentaacetic acid) is the chelating agent of 

choice in this case. However, DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-

tetraacetic acid) can form highly stable complexes with various radionuclides (e.g. 111In, 
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177Lu, 86/90Y, 67/68Ga, and 64Cu) and thus has become popular as a universal chelater [77]. 

DTPA or DOTA could be bound to PEG to acheive surface functionalization of NPs [53, 

78]. Unfortunately, this strategy is not compatible with LCP NPs, most likely due to the 

destabilization of the LCP core by the chelation of calcium. Since 111In can easily be 

formulated into the LCP core (demonstrated in Chapter 2), 111In labeling through 

encapsulation was chosen as the method to be used. 

The chelation of 111In on the NP surface has been reported to induce 

accumulation of 111In signal in the bladder [26, 78]. There is a concern regarding loss of 

111In chelating due to the competition or decomposition of NPs leading to the release of 

the 111In-chelator complex. Functionalization may also affect the surface properties of 

NPs that could lead to the alteration of the biodistribution behaviors of NPs. Therefore, 

labeling LCP NPs with 111In via encapsulation should be more reliable.  

 

1.4 LCP (lipid/calcium/phosphate) nanoparticles 

The LCP NP developed in this lab demonstrates superior efficiency in siRNA 

delivery [40-42]. Figure 1.1 illustrates the preparation scheme of LCP NPs. Utilizing 

microemulsion technology, two microemulsions of CaCl2 and Na2HPO4 were formed and 

mixed to create the calcium-phosphate (CaP) nano-precipitate cores. CaP cores were 

coated with a single dioleoylphosphatydic acid (DOPA) layer. The phosphate head-

group of DOPA provides a strong binding interaction with the CaP cores and prevents 

aggregation. The acyl chain of DOPA provides a hydrophobic surface that allows 

extensive wash and storage in CHCl3. Following the washing, the cores could be further 

with the outer-leaflet lipid of choice to form an asymmetric lipid bilayer. For example, 

cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) lipid was often used as 
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outer leaflet for its endosome destabilization activity. Neutral dioleoylphosphatidylcholine 

(DOPC) on the other hand, provided prolonged circulation time thus was used for tumor 

and lymph node imaging purpose after intravenous injection  

 

 

Figure 1.1 Cartoon illustration of LCP NP preparati on.  

Cartoon was modified from previous publication by Li et al., (2012) [40]. Major modifications for 

111In loading were marked in red and will be discussed in detail in Chapter 2. 

 

The lipid bilayer of the LCP NPs is strongly supported by the interaction between 

the phosphate head group of the inner leaflet lipid DOPA and the CaP nano-precipitation 

core. The supported lipid bilayer enables grafting of a high density of DSPE-PEG2000 

(1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-poly(ethylene glycol)2000) that 

cannot be achieved with conventional liposomes, providing superior protection against 

uptake by the MPS [79]. Targeting ligands could be added onto the tip of PEG molecules. 
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Similar to the well-established calcium phosphate-mediated transfection method 

for plasmid DNA delivery [80], the CaP core in our LCP NPs will form precipitates with 

siRNA (or DNA). These CaP-siRNA or CaP-DNA co-precipitates are acid sensitive. After 

cellular internalization, the co-precipitates will dissolve in the acidic endosomal 

environment to induce an osmotic lysis and thus release the trapped siRNA (or DNA). 

This releasing mechanism was designed to improve the release of siRNA into the 

cytoplasm, which was demonstrated by the punctate FITC-siRNA distribution pattern of 

LPD NPs and the homogeneous FITC-siRNA distribution pattern of LCP NP in the 

cytoplasm [40].  

The dissolution of the CaP core increases the osmotic pressure in the endosome, 

aiding the process of escape from the endosome. Figure 1.2 illustrated the proposed 

releasing mechanism. After cellular internalization by receptor mediated endocytosis, the 

DSPE-PEG will shed and LCP core will decompose due to acidic environment in the 

endosome. Two endosome escape mechanisms were shown: (1) cationic lipid will 

interact with anion endosomal membrane to destabilize endosome membrane; (2) the 

increased osmotic pressure caused by dissolved Ca2+ and PO4
3- ions will help to burst 

the endosome. Thus the siRNA, chemical drug, and cDNA will be released in the 

cytoplasm. The cDNA carried by an oligo-arginine peptide into the nucleus for 

transcription (Hu et al., manuscript in submission) was also shown. 

The mechanism of CaP dissolution and endosome escape was demonstrated 

through the use of a calcium sensing dye, fura-2, to visualize the elevated cytoplasmic 

calcium concentrations [81]. However, the elevated calcium concentration is only 

transient and not toxic to cells (Chapter 2.7). 
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Figure 1.2 Cartoon illustration of the drug releasi ng mechanisms of LCP NP.  

Endosome escape mechanism and the releasing of therapeutics including siRNA, chemical drug, 

and cDNA were shown. (Cartoon drawn by Bethany DiPrete) 

 

Based on the mechanism of formation of the CaP core, we hypothesized that any 

drug or radionuclide that can form co-precipitates with CaP has the potential to be 

formulated into LCP NPs. For example, a variety of anti-viral nucleoside analogue drugs 

[82-85] could be entrapped via a similar strategy as gemcitabine mono-phosphate 

(Zhang et al., manuscript in submission). Since indium (In) can form precipitates with 

phosphate efficiently (Ksp of InPO4 = 2.3x10-22) in a manner similar to that of calcium 

(Ksp of Ca3(PO4)2 = 1.0x10-25), we hypothesize that 111In will be a good candidate to add 

to LCP NP formulation to provide in vivo imaging capabilities and could be used for 

biodistribution study. 
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CHAPTER II 

FORMULATING 111IN INTO LCP NANOPARTICLE FORMULATION 

2.1 Introduction 

As mentioned in Chapter 1.4, it was hypothesized that we should be able to 

formulate 111In into LCP to form 111In-LCP by Ca-In-P co-precipitation. However, the 

formulation was designed to encapsulate siRNA. The CaCl2 and Na2HPO4 

concentrations in the original LCP formulation were 2.5 M and 12.5 mM, respectively 

[40].  The high CaCl2 concentration used in this formulation is the commonly used 

concentration in the calcium phospate plasmid transfection method [80]. The high 

calcium concentration guarrentees that the calcium will be in excess and the formed 

calcium-phosphate-plasmid complex will have a positive surface charge. This positive 

surface charge is critical to the transfection due to the facilitation of the interaction 

between the calcium-phosphate-plasmid complex with the cell membrane, which has 

negative surface charge. Excess calcium is also needed for LCP formulation; the 

interaction of DOPA and the CaP cores relies on excess calcium to ensure that the core 

surface is mainly calcium and not phosphate. However, since 111In will compete with 

calcium for phosphate, too much excess calcium will impede the formulation of 111In into 

the core. Other improvements in LCP formulation are still needed to ensure a thourough 

lipid coating and the partocles’ in vivo performance. This chapter will describe the major 

modifications made to LCP formulation that led to the successful imaging results in 

Chapter 3. 
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2.2 Adjusting CaCl 2 and Na 2HPO4 concentrations for 111In loading        

The general procedure for LCP preparation was established by Li et al. [40]. In 

order to efficiently formulate 111In into the CaP core; some major adjustments have been 

made to this procedure for our experiments (Figure 1.4). Since 111In will compete with 

calcium for phosphate, the CaCl2 concentration has been reduced from 2.5 M to 500 mM 

and the Na2HPO4 concentration (pH 9.0) has been increased from 12.5 mM to 100 mM. 

Due to the 8-fold increase in the Na2HPO4 concentration, the total microemulsion 

working volume was able to be reduced to 1/8 accordingly for the same preparation size. 

This reduction in volume would be beneficial for future scale-up. 

 The concentration adjustments did not only enhance the efficiency of 

encapsulating 111In by reducing calcium competition, but also encouraged the formation 

of InPO4 and not In(OH)3. The formation of InPO4 (same as Ca3(PO4)2) was desired 

because for each PO4
3- ion, there are three delocalized negative charges on four 

oxygens that allow interaction with multiple In3+ and Ca2+ ions. These interactions build a 

framework structure for a condensed LCP core. In the case of the OH- ion, the single 

negative charge did not allow the formation of the framework structure and was not ideal 

for creating the core. 

 

 

Table 2.1 Ksp values of Ca(OH) 2, Ca3(PO4)2, In(OH)3, and InPO 4. 

Ca(OH)2 Ca3(PO4)2 In(OH)3 InPO4 

5.5×10-6 1.0×10-25 1.3×10-37 2.3×10-22 
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 Table 2.1 listed the Ksp values of of Ca(OH)2, Ca3(PO4)2, In(OH)3, and InPO4. 

Consider the starting condition upon mixing of calcium and phosphate microemulsions: 

With 50 mM Na2HPO4, pH 9.0: 

    Ca(OH)2:       [Ca2+][10-5]3 = 5.5 x 10-6               [Ca2+] = 5.5 x 109 

    Ca3(PO4)2:      [Ca2+][5 x 10-2]3 = 1.0 x 10-25       [Ca2+] = 4 x 10-23 

    In(OH)3:         [In
3+][10-5]3 = 1.3 x 10-37               [In3+] = 1.3 x 10-22 

    InPO4:            [In
3+][5x10-2] = 2.3 x 10-22            [In3+] = 4.6 x 10-21       

With 6.25 mM Na2HPO4 pH 9.0: 

InPO4:            [In
3+][6.25x10-3] = 2.3 x 10-22      [In3+] = 3.68 x 10-20 

 

This starting condition indicates the formation of Ca3(PO4)2 was favored over the 

formation of Ca(OH)2. There was no concern that calcium would form Ca(OH)2, only 

Ca3(PO4)2. On the other hand, In(OH)3 seemed to be favored slightly over InPO4. 

Increasing the concentration of Na2HPO4 in the microemulsion from 12.5 mM to 100 mM 

encouraged the formation of InPO4; this calculation was based on the starting condition. 

As one would expect, the mixing of the two microemulsions caused a decrease in the 

phosphate concentration as the CaP precipitate formed. However, how the [OH-] 

concentration was altered in the mixed micromulsion is more difficult to examine. To 

determine the change, 500 mM CaCl2 solution was mixed with 100 mM Na2HPO4 

solution in bulk condition. Massive CaP precipitation formed immediately and the pH was 

measured as 4.6. This dramatic decrease in the pH value can be explained by the 



 15

following equation: 

 

 As Ca2+ and In3+ consume PO4
3- to form Ca3(PO4)2 and InPO4, the equilibrium is 

shifted to the right,  generating a significant amount of H+ that neutralizes OH- and 

lowers the pH value. The formation of CaP was the most dominant reaction since Ca2+ 

and PO4
3- were the most abundant ion species in the mixture. The pH value should drop 

immediately and provide for minimal In(OH)3 formation. Based on this Ksp calculation, 

we hypothesized that the 111In should mainly form InPO4 and could be formulated into 

the LCP core efficiently. 

 

2.3 The preparation of 111In-LCP cores 

 111In-LCP cores were prepared using the previously described method by Li et al. 

[40] with some modifications (Figure 1.4). Two water-in-oil microemulsions were 

prepared: 1) a calcium emulsion: 111InCl3 (in 0.05 N HCl, PerkinElmer, Inc.) was 

premixed with CaCl2 to make a final 50 µL of 500 mM CaCl2 in 4 mL of cyclohexane oil 

phase (cyclohexane/Igepal CO-520 = 71/29, v/v), and 2) a phosphate emulsion: a 

sufficient amount of 0.05 N NaOH was added to pH 9.0 Na2HPO4 (to neutralize the extra 

HCl in the calcium emulsion) to make final 50 µL of 100 mM Na2HPO4 also in 4 mL of 

cyclohexane oil phase. DOPA (92.5 µL 34.6 mM in chloroform, Avanti Polar Lipids, Inc.) 

was also added to the phosphate emulsion to form the inner leaflet lipid.  

 After mixing the two microemulsions for 40 min, 8 mL of absolute ethanol was 

added to break the microemulsion system. The mixture was stirred for another 30 min. 
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Then, the mixture was centrifuged at 12,500x g for 15 min to collect the 111In -LCP cores.  

 The cores were then washed once with 10 mL absolute ethanol to remove 

residual surfactants. Washing with 1.2 mL cyclohexane and an addition of 1.4 mL 

absolute ethanol removed residual DOPA. Finally, the cores were washed with 2 mL of 

absolute ethanol to ensure the removal of cyclohexane. After all washes, the pellets 

were dispersed in 250 µL of chloroform. The product was centrifuged at 10,000x g for 

5 min. Precipitates containing excess salts and aggregates were discarded and the 

supernatant containing LCP cores was collected and stored in a glass vial at -20 °C. 

 In the original method described by Li et al. [40], the LCP cores are to be washed 

extensively only with a large volume of ethanol (EtOH). The use of cyclohexane in our 

method was inspired by the observation that after chloroform dispersion of the core, if 

one evaporated the chloroform the LCP core pellets were no longer suspendable or able 

to be separated in EtOH. The LCP cores bound tightly to each other and the walls of the 

eppendorf tube. We postulated that since chloroform was a stronger hydrophobic 

organic solvent than EtOH, it may more efficiently separate and remove excess DOPA 

and surfactants on the core. Furthermore, chloroform may also make the core surface 

truly hydrophobic, creating tight binding between the cores that EtOH could not break. 

However, chloroform has a higher density (1.483 g/mL) than cyclohexane (0.779 g/mL), 

Making cyclohexane more desirable for use in washing processes involving 

centrifugation as the collection method. The ability of cyclohexane to remove excess 

DOPA is demonstrated in Table 2.2. As indicated, EtOH has little power to wash away 

excess DOPA (a small amount of NBD-PA fluorescent was used as marker). However, 

cyclohexane was able to further wash away excess DOPA. Note that some 111In was 

also lost during the cyclohexane washing. 
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Table 2.2 Washing power of cyclohexane.  

 First 

supernatant 

EtOH Cyclohexane/

EtOH 

EtOH In NPs 

NBD-PA 66.5% 0.4% 12.9% 0.3% -- 

111In 20.6% 0.7% 17.7% 0 30.7% 

 

 This additional cyclohexane washing also resulted in significant improvement in 

the quality of coating of the LCP surface (indicated by a clearer final LCP suspension) 

and the in vivo biodistribution profiles. Before using the cyclohexane washing, the spleen 

accumulation was high probably due to agglomerated LCP (Figure 2.1A). The 

cyclohexane washing significantly reduced spleen accumulation and enhanced lymph 

node accumulation (Figure 2.1B). The improved biodistribution pattern is similar to those 

of several of the best performing SPECT/CT or PET/CT imaging NPs, including gold 

NPs [53, 78] and polymeric micelles [86]. These results indicated that the coating of LCP 

surface might not be ideal with the original ethanol washing and outer-leaflet coating 

method. We observed turbidity in the suspension before implementing the cyclohexane 

wash, which was resolved following the use of this improved technique. 
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Figure 2.1 Improved biodistribution pattern of S-LC P after cyclohexane wash. 

A) LCP biodistribution pattern before the cyclohexane washing improvement. B) LCP 

biodistribution pattern after the cyclohexane washing improvement. The result of B) is actually the 

biodistribution data after the SPECT/CT imaging which will be described in Chapter 3.1. 

 

2.4 Coating with an outer leaflet 

 To form the coating of the outer leaflet, 100 µL of 20 mM cholesterol, 100 µL of 

20 mM DOPC (Avanti Polar Lipids, Inc.) or DOTAP (Avanti Polar Lipids, Inc.), and 50 µL 

of 20 mM of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-poly(ethylene 

glycol)2000 (DSPE-PEG2000, Avanti Polar Lipids, Inc.) were mixed with the LCP cores in 

a glass vial. After the complete removal of the CHCl3 using a stream of nitrogen and 

vacuum desiccation for 1 h, the cores were suspended in 100 µL of pre-warmed 

absolute alcohol (55 °C) and dispersed in a 1 mL pr e-warmed aqueous solution 

containing 5% dextrose. 

 The amount of lipid required for coating with an outer leaflet was experimentally 

determined using sucrose gradient centrifugation. A PC labeled with green flourescence, 

NBD-PC (1-oleoyl-2-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-sn-

Glycero-3-Phosphocholine), was mixed with DOPC to label the outer leaflet. The 

fluorescent labeled LCP NPs were loaded in the middle of an ultra-centrifugation tube 

containing a sucrose density gradient ranging from 0% to 60% (w/w) to allow flotation of 

the excess lipid and the sedimentation of dense LCP NPs. After ultra-centrifugation at 

337,000x g for 4 h, excess lipids that were not associated with LCP NPs floated to the 

upper part of the gradient and could be separated from the dense LCP NPs which 

formed a sharp band right above the 60% gradient layer (Figure 2.2). By analyzing the 

NBD intensities of the floated excess lipids and that of the LCP, the optimum amount of 
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outer leaflet lipids to be used for coating was determined to be 1.56 folds of the inputted 

inner leaflet, DOPA. 

 

Figure 2.2 Purify LCP NPs using sucrose gradient ce ntrifugation.  

A 4 mL Beckman polyallomer ultra-centrifugation tube was used for the 60% to 0% sucrose 

gradient. The NBD fluorescent was excited with a hand-held UV lamp for observation. 

 

2.5 Tuning LCP nanoparticle size 

The LCP NP made with the modified CaCl2 and Na2HPO4 concentrations and the 

original Igepal surfactant system (cyclohexane/Igepal CO-520 = 71/29, v/v) was small in 

size. The CaP core was ~10 nm in diameter and the final LCP NP coated with the outer 

leaflet lipids was ~25 nm (Figure 2.3A), which is consistent with previous observations 

[40, 41]. These small NPs have been termed S-LCP. The invention of the LCP NPs 

illustrated for the first time that a small NP with a lipid bilayer coating could be created 

while also maintaining a well-PEGylated surface. For example, the LPD NPs previously 

developed in this lab, which also had a supported lipid-bilayer coating, had an average 

size of around 100 nm [38]. Although there are extensive studies regarding the subject 

of NP biodistribution within this small size range, the studies mainly focus on iron oxide 
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NPs, gold NPs, polymeric micelles, and quantum dots with different surface protection 

coatings [53, 87]. There is no literature that characterizes the in vivo biodistribution 

behavior of well-PEGylated, lipid-bilayer-coated NPs in such a small size range. In order 

to study this concept, an enlarged version of LCP (L-LCP) was developed and the in vivo 

performance of NPs of both sizes was also evaluated for comparison. 

As shown in Figure 2.3, by adjusting the microemulsion surfactant system, LCP 

core size could be tuned from ~10 nm and ~50 nm in diameter. When mixing the Igepal 

system (cyclohexane/Igepal CO-520 = 71/29, v/v) with the Triton system 

(cyclohexane/hexanol/Triton X-100 = 75/10/15, v/v/v) at a 1:1 or 1:3 ratio, particles had 

become progressively larger (Figure 2.3A). When using an Igepal:Triton ratio at 1:7, the 

111In-LCP core was significantly enlarged to ~50 nm. This larger LCP with a final outer-

leaflet coated size of ~65 nm have been termed L-LCP in this thesis. Both S- and L-LCP 

were outer leaflet coated with DOPC/Cholesterol/DSPE-PEG2000 (2/2/1 molar ratio) for 

most of the experiments done in this thesis unless otherwise specified. 
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Figure 2.3 TEM images of LCP NPs 

A) TEM images of 111In -LCP core made with different Igepal system to Triton system mixing 

ratio. S- and L-LCP were made by Igepal system to Triton system ratio 1:0 and 1:7, respectively. 

B) TEM images of S- and L-LCP after outer leaflet coating. C) Negative staining of S- and L-LCP 

to show the lipid coating. (Scale bars = 50 nm) 

 

 TEM images of the final S- and L-LCP after outer leaflet coating showed that 

both S- and L-LCP were well separated individual particles (Figure 2.3B). The lipid 

membrane coating of S- and L-LCP was further visualized by negative staining using 

uranyl acetate (Figure 2.3C). 

Other strategies were implemented to try to enlarge LCP size, but they failed. 

These strategies included adjusting w:o ratio, modifying concentrations of CaCl2 and 

Na2HPO4, prolonged incubation, and stepwise adding CaCl2. Heating the microemulsion 

system of L-LCP with water bath to 65°C could furth er increase the particle size to 

around 100 nm. However, the cores made using this method were less homogeneous as 
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indicated by the presence of a number of smaller LCP cores observed in the TEM 

images. (Figure 2.4). 

 

Figure 2.4 TEM images of LCP core made with Igepal system/Triton system = 1/7 in 

water bath at 65°C.  

 

2.6 Characterizing LCP nanoparticles 

2.6.1 Size and zeta-potential measurement by dynami c light scattering 

 After coating with the outer leaflet, the final LCP was purified using the 

aforementioned sucrose-gradient, centrifugation method (described in Chapter 2.4) in 

order to prepare them for analysis with dynamic light scattering (DLS) using a Malvern 

ZetaSizer Nano series instrument (Westborough, MA). Since excess lipids may form 

liposomes or micelles that could interfere with DLS analysis, purification was necessary 

to ensure correct measurements. The DLS analysis results revealed a NP population 

with a fairly uniform S-LCP size (~25 nm) with a polydispersity index (PDI) below 0.3 and 

a zeta potential of approximately -20 mV. L-LCP, on the other hand, was around 67 nm 

in size with a PDI of ~0.4 and a zeta potential around -18 mV (Table 2.3). 



 23

 

Table 2.3 Characterization of S-LCP and L-LCP 

 DNA oligo 
entrapment [a] 

111In 
entrapment [b] 

Size/PDI 
[c] 

Zeta potential [c] Calcium/Phosphate 
ratio of the LCP 
core [d] 

S-LCP 64.4 ± 4.4% 30.7 ± 4.1 % 25.3 ± 1.9 
nm/0.3 

-19.9 ± 4.1 mV 1.01 ± 0.04 

L-LCP 29.2 ± 0.5% 32.3 ± 2.2 % 67.2 ± 2.0 
nm/0.4 

-18.0 ± 2.0 mV 0.89  ± 0.03 

[a] determined by tritium labeled DNA oligo and liquid scintillation counting (N=3) 

[b] determined by 111In gamma counting (N=4) 

[c] measured by dynamic light scattering (N=3) 

[d] analyzed by ICP-MS. (N=3) 

 

2.6.2 Determine oligo entrapping efficiency with 3H-labeled DNA oligo 

 Due to issues with stability and in order to reduce costs, DNA oligo was used as 

a surrogate for siRNA. 3H labeling of oligonucleotides was prepared using a method of 

hydrogen exchange, with 3H2O at the C8 positions of the adenine and guanine groups of 

the oligonucleotides (described by Graham et al.) [88]. One-hundred nmol (1.224 mg) of 

DNA oligo was lyophilized and put in PBS combined with 0.1 mM EDTA. Two hundred 

µL of 3H2O containing 8.3 uL β-mecaptoethanol was added and allowed to incubate at 

90°C for 6 h. Then the unexchanged 3H2O was removed via lyophilization. The product 

was resuspended in 1 mL of regular water and incubated for 1 h at room temerature to 

allow the rapidly exchangeable protons to dissociate. This lyophilization/resuspension 

process was repeated for three cycles. The final product was passed through a Centri-

Spin oligo purification column (Prince Separation) to remove the PBS salt and EDTA. 

 To determine oligo entrapment efficiency, a trace amount of 3H-labeled DNA 



 24

oligo was mixed with non-labeled DNA oligo to make the LCP cores. Using scintillation 

counting, it was determined that S-LCP could entrap DNA oligo at an efficiency of ~60%, 

which was not affected by the presence of 111In. DNA entrapment of L-LCP was also 

unaffected by the presence of 111In, but could only entrap ~30% of the DNA oligo (Table 

2.3). The reason for this difference in entrapment is not fully understood.  

 

2.6.3 Determine 111In entrapping efficiency 

 The 111In entrapment efficiencies of both S- and L-LCP were around 30%, 

determined by gamma counting (Table 2.3).  

 

2.6.4 Determine calcium/phosphate ratio in the LCP core 

Inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze 

the LCP core compositions. For both S- and L-LCP, the Ca/P ratio were about 1, which 

was different from that of the naturally occurring hydroxyapatite (Ca10(PO4)6(OH)2, 

Ca/P = 1.67), suggesting an amorphous CaP precipitation in the LCP (Table 2.3).  

 

2.6.5 Conclusions 

These characterization results of LCP indicated that the modifications made for 

efficient 111In encapsulation did not significantly change the properties of the original LCP.  
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2.7 How does the cell manage calcium toxicity? 

The dissolution of LCP core in the endosome is designed to release the drug 

(siRNA, plasmid, chemical drug, etc.) and increase the osmotic pressure to promote the 

bursting of the endosome and the consequential escape. The elevated cytoplasmic Ca2+ 

concentration has been demonstrated through a Fura-2 experiment [40]. Fura-2 is a 

ratiometric fluorescent Ca2+ sensitive dye. It was the first widely-used calcium indicator 

and remains very popular, especially in the field of neuroscience. The Ca2+ free Fura-2 

excitation wavelength profile peaked at 380 nm. Upon Ca2+ binding, there is a blue-shift 

in the excitation peak to 340 nm. The emission wavelength remains unchanged at 510 

nm.   

Under physiological conditions, the Ca2+ concentration is ~1.2 mM extracellularly 

and ~0.1µM in the cytosol. The cytosolic Ca2+ concentration is associated with several 

cellular signaling events. Low to moderate Ca2+ concentrations (0.2-0.4 µM) triggers 

apoptosis, higher concentrations of Ca2+ (>1 µM) are associated with necrosis [89-93]. 

For this reason, it is necessary to address whether the Ca2+ delivered by LCP would be 

toxic to the cells. 

The low cytosolic Ca2+ concentration was carefully regulated by several Ca2+ 

pumps on the plasma membrane, mitochondria, and endoplasmic reticulum (ER). 

Plasma membrane Ca2+ pumps (PMCA) consume ATP to extrude cellular Ca2+ with a 

high affinity, playing a major role in Ca2+ homeostasis and signaling. Inside of the cell, 

the mitochondria and ER are the two organelles where cells store Ca2+. When there is 

any inward flux of Ca2+, both the plasma membrane and the mitochondria will remove 

Ca2+ from the cytoplasm immediately. The endoplasmic reticulum, however, does not 

take up any more Ca2+ due to being already replete with Ca2+
. [94]. 
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Based on the calcium homeostasis mechanism, we hypothesized that when cells 

take up LCP and release Ca2+ into the cytoplasm, the two major Ca2+ pumps on the 

plasma membrane and the mitochondria will rapidly respond to the elevated cytosolic 

Ca2+ concentration and prevent the cells from Ca2+ induced apoptosis or necrosis. 

 

2.7.1 Design of in vitro Fura-2 experiment 

Two specific Ca2+ pump inhibitors were selected to exam the hypothesis. The 

plasma membrane Ca2+ pump (PMCA) inhibitor, Caloxin 2A1, is a peptide (Val-Ser-Asn-

Ser-Asn-Trp-Pro-Ser-Phe-Pro-Ser-Ser-Gly-Gly-Gly-NH2, purchased from American 

Peptide Company) developed by using the phage display technology [95-97]. The 

mitochondrial calcium uniporter (MCU) specific inhibitor, Ru360 (EMD Millipore), is a 

cell-permeable, oxygen-bridged dinuclear ruthenium amine complex that binds to 

mitochondria with high affinity (Kd = 340 pM) and blocks Ca2+ uptake into mitochondria at 

IC50 = 184 pM in vitro [98, 99].   

H460 human lung cancer cells were pre-loaded with Fura-2 AM (Molecular 

Probes) following manufacturer’s protocol. After Fura-2 loading, H460 cells were treated 

with Ru360 at ~500 pM starting 30 min before adding S-LCP coated with DOTAP and 

was present throughout the entire ratio imaging experiment. The culture medium was 

switched to divalent cation-free PBS to avoid the interference of Ca2+ in the culture 

medium. Caloxin 2A1 at 1 mM was added 10 min before the addition of S-LCP and was 

presented throughout the entire ratio imaging experiment. The live cell ratio images were 

taken using an inverted Nikon ECLIPSE TE2000 microscope. This microscope was 

designed with a rapid-switch excitation shutter and multifunctional time lapse capability 

with dual cameras, ideal for Fura-2 experiments. A cell culture chamber with 
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temperature, humidity control, and 5% CO2 supply was used for cell viability control. We 

recorded the ratio imaging video for 10 sec, paused for LCP addition, then recording was 

resumed for additional 8 min.  

 

2.7.2 Results and discussion 

During the ratio imaging, red pseudo color was applied to fluorescent signal 

detected with 380 nm excitation. Green pseudo color was applied when using 340 nm as 

excitation. Red and green channels were superimposed and adjusted to be in red color 

before adding LCP (Figure 2.5). It is important to add the LCP only when the cells are on 

the verge of transitioning from red to green. In the group without inhibitors, after adding 

LCP some cells turned green occasionally, indicating elevated Ca2+ concentration in the 

cytosol. Note that the cells were incubated with LCP throughout the imaging experiments. 

The uptake of LCP and the pumping of Ca2+ were both continuous processes. As a 

result, some cells actually switched color several times during the observation period.   

As we hypothesized, when the Ca2+ pumps were inhibited by the two inhibitors, 

the cells lost their ability to cope with the elevated cytosolic Ca2+ concentration. The cells 

turned green immediately and rarely turned back to red. Even more, most cells started to 

lose their fluorescence indicating the loss of the Fura-2 dye. After imaging, we observed 

the morphology of the cells. Most of the cells were swollen, which is a typical sign of 

necrosis. Loss of cell membrane integrity is also a typical sign of necrosis. As indicated 

in Figure 2.5, only one inhibitor showed partial effect. PMCA was more important in 

managing the Ca2+ toxicity caused by LCP as Caloxin 2A1 alone seemed to have more 

effect than Ru360 alone. A control group using empty DOTAP liposome at the same 

DOTAP concentration as in LCP did not cause any color change (data not shown), 
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indicating that the observed Ca2+ concentration change was not due to the cationic lipid. 

 

 

Figure 2.5 Calcium pumps are important for Ca 2+ toxicity management 

Shown here are stills taken from the recorded video at the indicated time points for four different 

treatment groups. Red color indicates low intracellular Ca2+ concentration under physiological 

conditions. Green color indicates elevated intracellular Ca2+ concentration. Phase contrast 

images taken at 8 min are included to show round, swollen cells. 

 

 The LCP concentration used in this ratio-imaging experiment was calculated as 

~50% injected dose per gram tissue (ID/g) in the tumor for intravenous dosing. This 

accumulation level is rarely achievable in vivo. The H460 cells were exposed to LCP as 

a single layer cell culture, which is also a condition not achievable in the tumor. Thus, we 
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conclude that the Ca2+ delivered by LCP is unlikely to cause Ca2+ induced apoptosis or 

necrosis in vivo. Several in vivo studies delivering siRNA with the LCP formulation also 

reported minimum toxicities in the animal models [41, 42]. Nevertheless, we had 

proceeded to test the hypothesis in vivo. 

 

2.7.3 Evaluating LCP induced Ca 2+ toxicity in vivo with Ca 2+ pump inhibitors 

Next, we tested the Ca2+ induced toxicity in in vivo conditions. Nude mice bearing 

H460 xenografts on the right hind leg were used. The two Ca2+ pump inhibitors together 

were given by intratumoral (IT) injection. The mice were given injected with LCP coated 

20% PEG and DOTAP either by intravenous (IV) or IT injection. At 2 h post injection, the 

mice were sacrificed and the tumors were fixed with formalin and sectioned for H&E 

staining. As Figure 2.6 indicates, there was no significant sign of necrosis in blank tumor, 

inhibitors only tumor, or tumor with IV injected 20% PEG and DOTAP coated LCP. 

Obvious cell necrosis was observed in the tumor received IT injection of inhibitors with 

either IV or IT injection of LCP coated with 20% PEG and DOTAP. An additional mouse 

received IT injection of both inhibitors and LCP coated with DOTAP but without 

PEGylation showed the most severe necrosis (Figure 2.6F). PEGylation of LCP was 

necessary for IV injection; un-PEGylated LCP did not accumulate in the tumor (data not 

shown). For IT injection, un-PEGylated LCP should interact more strongly with the tumor 

cells than the PEGylated LCP. Thus, the result of the in vivo experiment confirmed our 

hypothesis that no significant tumor cell necrosis could be induced by LCP unless the 

Ca2+ pumps of the tumor cells were blocked by inhibitors. 
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Figure 2.6 In vivo necrosis induced by LCP with Ca 2+ pump inhibitors 

H460 subcutaneous tumor sections with H&E staining showing that LCP toxicity was only 

observed in the presence of Ca2+ pump inhibitors. (A) Control H460 tumor without any treatment. 

(B) Tumor that has received an IT injection of two Ca2+ pump inhibitors. (C) Tumor that has 

received an IV injection of LCP. (D1, D2) Tumors that have received an IT injection of two Ca2+ 

pump inhibitors and an IV injection of LCP. (E1, E2) Tumors that have received an IT injection of 

two Ca2+ pump inhibitors and an IT injection of LCP. (F1, F2) Tumors that have received an IT 

injection of two Ca2+ pump inhibitors and an IT injection of LCP without PEGylation. Blue and 

black arrows indicate necrotic and severely necrotic regions, respectively. 
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2.7.4 Conclusion 

This experiment concludes that in the normal condition, cells were able to 

manage the elevated cytosolic Ca2+ delivered by LCP by removing the Ca2+ with two 

major Ca2+ pumps on the plasma membrane and mitochondria (Figure 2.7). The 

elevated Ca2+ concentration was only a transient event and was not toxic to the cells. 

Previous tumor siRNA delivery and liver hepatocyte gene delivery projects done in this 

lab also demonstrated that there was minimal signs of in vivo toxicities as shown by 

multiple toxicity indicators [41, 42]. This study has provided the mechanistic insight of the 

previous observations. 
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Figure 2.7 Cartoon illustration of the Ca 2+ removing mechanism after LCP dosing 

The elevated cytosolic Ca2+ delivered by LCP was quickly managed by PMCA on the 

plasma membrane and the mitochondrial calcium uniporter (MCU). Mitochondrial 

calcium-uptake 1 (MICU1) is a calcium sensor, regulates the Ca2+-influx capacity of 

MCU. 
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CHAPTER III 

SPECT/CT IMAGING AND LCP PHARMACOKINETICS STUDY 
 

3.1 In vivo H460 xenograft tumor imaging 

 Employing all the adjustments made to the procedure to load 111In and improve 

the washing and coating of the cores, S-LCP NPs coated with DOPC/cholesterol/DSPE-

PEG2000 at a ratio of 2/211 were prepared for in vivo SPECT/CT imaging of H460 

xenograft tumors. S-LCP containing ~0.5 mCi of 111In was injected into the tail vein of 

mice bearing H460 tumors.   

 

3.1.1 SPECT/CT imaging protocol 

 All animal work was approved by and performed in accordance with the 

guidelines of the University of North Carolina Institutional Animal Care and Use 

Committee. Athymic nude (nu/nu) mice bearing H460 human lung cancer tumors 

were used. SPECT/CT experiments were performed using a GE eXplore speCZT 

system. A 7-pin-hole collimator for mice was used to achieve high resolution SPECT 

imaging. In order to include both the tumor and heart in the same field of view (FOV), 5 

x 106 or 2 x 107 (for the younger tumor model) H460 tumor cells were inoculated 

subcutaneously on either side of the rib cage. 

 Each mouse was injected through the tail vein with 200 µL of the final 111In-LCP. 



 34

Mice were anesthetized with isoflurane and their body temperature was controlled 

using a water circuit and warm air. Following injection, the mice were continuously 

scanned for 2 h to ensure capture of early distribution in blood circulation. Imaging was 

facilitated through the inoculation of the tumor close to the chest and the reduction of the 

axial FOV to cover only the chest region. Twelve time points of imaging were acquired 

during the first 2 h. The mice were scanned at 4, 6, 8, 24, and 26 h post injection. 

 

3.1.2 Results and discussion 

 After 1.5 h, 111In signals were predominately originated in the blood circulation 

with some present in the liver and the spleen. Although a clear pattern of accumulation 

in the tumor was observed before this early time point (Figure 3.1A), the blood content of 

this organ may contribute significantly to these signals. The blood content of the liver 

and spleen may have the same effect on the signals in those organs. Both patterns are 

explained by the fact that the blood was shown to have the highest concentration of 111In. 

At 4 h, about half of the injected dose was still circulating in the blood (determined by 

blood samples). Continuous accumulation in the tumor, liver, and spleen was observed 

as the S-LCP blood concentration decreased (Figure 3.1B). About 27 h after injection, 

the signal intensity in the blood fell below the average tumor intensity and, consequently, 

S-LCP tumor accumulation became more apparent (Figure 3.1C). 
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Figure 3.1 SPECT/CT images at three time points pos t IV injection.  

CT images and SPECT/CT overlay images were presented side by side to show anatomical 

details. Nude mice bearing H460 tumors of two different ages were injected through the tail vein 

with S-LCP containing ~0.5 mCi 111In. Different horizontal sections and vertical sections were 

included to show organ images on different section planes. 

 

 Unexpectedly, lymph nodes showed the highest accumulation of 111In signal in 

the SPECT/CT images. Systemic accumulation of NPs in the lymph nodes after IV 

administration has rarely been reported in previously published literature. Only dextran-

coated, ultrasmall super-paramagnetic iron oxide (USPIO) NPs at a size comparable to 

that of S-LCP had shown similar lymphotropism. These have been evaluated for clinical 

imaging of lymph node metastasis using MRI after their IV administration [87, 100-104]. 
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However, larger iron oxide NPs coated with dextran similar to or larger than our L-LCP 

preferentially accumulated in the liver and spleen [87]. Other NPs with similar sizes and 

PEG grafting exhibited, like our S-LCP, prolonged time in circulation in the blood. 

However, no preferential accumulation in the lymph nodes was reported [53, 78, 86]. For 

example, one recent publication reported that PET imaging demonstrated a long-

circulating, 15 nm, micellar NP (circulation time longer than S-LCP) that had minimal 

accumulation in the liver and spleen, with ~6% injected dose per gram tissue (ID/g) 

tumor accumulation. However, this micellar NP did not exhibit lymphotropism [86]. The 

authors hypothesized that monomer desorption and cellular internalization and digestion 

were responsible for the NP clearance. The PET images also indicated that a portion of 

the 64Cu signal was excreted into the intestine. Another recent publication reported 30 

nm Au nanocages for use in PET imaging of tumors also exhibit minimal accumulation in 

the liver and spleen and no lymphotropism [78]. In this case, rapid and significant 

clearance of 64Cu signal was observed in the bladder. Therefore, NP lymphotropism may 

be correlated with NP size and dependent on their surface properties. Coating of the NP 

surface with a lipid bilayer or dextran may contribute to the unusual lymphotropism. 

Further studies on LCP lymphotropic behavior will be discussed in Chapter 4. 

 

3.2 LCP pharmacokinetics profile study from both SP ECT/CT and organ 

dissections 

3.2.1 PK study from organ dissections 

After SPECT/CT imaging, mice were sacrificed and their major organs were 

collected to determine the biodistribution through gamma counting. Improved S-LCP 

core washing and outer-leaflet coating methods contributed to the reduction of uptake by 
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the MPS of ~20% ID/g in the liver and ~13% ID/g in the spleen (Figure 3.2A). This 

reduced accumulation in the liver and spleen is comparable with many other NPs with 

similar particle size. For instance, the aforementioned 30 nm Au nanocage showed 

~40% ID/g accumulation in the liver and ~30% ID/g in the spleen in a mouse model 

bearing EMT-6 tumors [78]. A PEGylated, 20 nm gold NP had been reported to achieve 

~30% ID/g in the liver and ~15% ID/g in the spleen, which is very close to the levels of 

S-LCP [53]. The long-circulating, 15 nm micellar NP exhibited the lowest accumulation in 

the liver and spleen (~4.5% and ~4.6% ID/g, respectively) [86]. However, since the 

micellar NP was biodegradable and there were 64Cu signals excreted into the intestine, 

shown in the PET images, it is difficult to ascertain the true levels of accumulation in the 

liver and spleen in this case. 

 Organ gamma counting results agreed well with SPECT/CT images indicating 

around 8% and 13% ID/g tumor accumulation of S-LCP (N=3, p<0.02) for two different 

aged H460 tumors (tumor weight ~0.25 g and ~0.1 g, respectively). Lymph nodes (2 

axillary, 2 brachial, 2 inguinal, and 2 popliteal) had the highest accumulations, ~70% 

ID/g. For the 8 lymph nodes collected, there was ~2.7% ID. This low accumulation in the 

liver and spleen and high accumulation in the tumor indicates that the performance of 

this NP is among the best observed to date using radiolabeling quantification methods 

[53, 78, 86]. After 24 h, over 80% of the total injected 111In dose was retained in the 

mouse, suggesting elimination of S-LCP from the mouse body was very slow. Thus, the 

elimination of S-LCP from the blood could be caused by redistribution throughout the 

body, mainly to the lymphatic system (as shown by the high accumulation in the lymph 

nodes), and not by excretion from the liver or the kidneys. This hypothesis will be further 

examined in Chapter 4. 
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Figure 3.2 LCP biodistribution results from organ d issention 

A) S-LCP biodistribution after SPECT/CT imaging. (N=3) B) Biodistribution of S-LCP and L-LCP 

at 4 h post injection. (N=3) 

 

3.2.2 Compare S-LCP and L-LCP NPs for tumor imaging  

 To compare whether S- or L-LCP is better for the purpose of tumor imaging, 

trace amounts of 111In were loaded into both S- and L-LCP and the particles were coated 

with DOPC/cholesterol/DSPE-PEG2000 at a ratio of 2:2:1. A biodistribution study of 

these particles was then performed. Figure 3.2B showed the results collected 4 h post IV 

injection. Tumor accumulation level of L-LCP was slightly lower than S-LCP. However, 

S-LCP showed better MPS evasion and a higher concentration in the blood. 

 L-LCP showed slightly lower levels of accumulation in the tumor, but had 

significantly higher accumulations in the liver and spleen (Figure 3.2B). These results 



 39

are consistent with reports on SPIO or gold NPs [53, 87]. Twenty-four hours after 

administration via tail vein injection, L-LCP also showed lower accumulation in the lymph 

nodes at 15.6 ± 3.1% (N=3). This pattern could be due to the population of smaller 

particles generated during the formulation of the L-LCP cores (Figure 2.3A). Because a 

small amount of uptake by the MPS is preferred in order to avoid toxicity in the liver and 

spleen and because accumulation of S-LCP was higher than L-LCP in both the tumor 

and lymph nodes, we conclude that S-LCP is better than L-LCP for the purpose of 

imaging tumors and lymph nodes. 

 

3.2.3 Validate 111In labeling of LCP NPs with 3H-labeled oligo 

 To rule out the possibility that 111In encapsulation is not an accurate label for LCP 

NPs, another biodistribution experiment was completed using S-LCP containing 3H-

labeled DNA oligo. The results from the experiment using 111In agreed with those of the 

study using 3H-labeled oligo, suggesting that labeling LCP cores with either 111In or 3H-

labeled oligo accurately represents the biodistribution of S-LCP [105]. However, unlike 

3H, which has a low energy beta particle emission, 111In is advantageous for its in vivo 

imaging and real-time NP tracking capabilities. 

 

3.2.4 Pharmacokinetics study from SPECT/CT image an alysis 

 SPECT/CT imaging not only provides in vivo biodistribution images of NPs 

without sacrificing the animal, but also allows the study of pharmacokinetics (PK) of the 

NPs in multiple organs at various time points in a single animal. Since SPECT/CT 

imaging has excellent signal linearity (data not shown), quantification analysis could be 
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performed after the images have been taken. Using AMIDE software, PK profiles of S-

LCP NPs loaded with 111In were studied in the blood (using heart as sampling region), 

tumor, kidneys, and liver (Figure 3.3). 

 

Figure 3.3 PK analysis from the SPECT/CT images usi ng Amide software.  

The radioactivity in mCi/g was determined from the SPECT images using Amide software with a 

standard curve. A) PK trends in the blood indicated a rapid distribution phase in the first 1.5 h 

(half-life 4.4 h), followed by a slow blood-elimination phase (half-life 18.4 h). B) Tumor had an 

instant S-LCP accumulation partially explained by the blood content. C) Kidney accumulation 

could be a combination of rich blood content and a slow accumulation curve which is probably 

very similar to tumor. D) Liver slowly accumulated S-LCP throughout the scanning period. The 

instant accumulation had a high contribution by the blood since the liver is a blood-rich organ. 

 

 The regions of interests (ROIs) were drawn around the whole heart and the 
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tumor. Precise contouring along the ventricles was not possible due to imaging 

resolution and manual drawing limitations. Thus, the method might result in the under-

estimation of blood and tumor curves. However, the PK trend in the blood clearly 

suggested a two-compartment model with a rapid distribution phase within the first 2 h, 

followed by a slow blood-elimination phase (Figure 3.3). The half-lives of the rapid 

distribution and slow blood-elimination phases were ~4.4 h and ~18.4 h, respectively. 

The tumor on the other hand, displayed an initial accumulation of NPs, partially due to 

blood perfusion and vascular fraction, continued to accumulate. Although there was a 

significant amount of S-LCP in the blood, the rate of tumor accumulation was determined 

by the degree of EPR effect in the individual tumors. Prolonged blood circulation of NPs 

is believed to be the key to enhancing NP tumor accumulation. In our study, however, 

PK data demonstrated that after a decently long circulation profile was achieved, NP 

accumulation in the tumor was actually restricted by the tumor-dependent EPR effect. 

Therefore, reduced MPS uptake and enhanced NP blood circulation are not sufficient for 

high levels of NP accumulation in the tumor. Additional improvements must be 

considered. 

 

3.3 Can ligands improve  the accumulation level of NP in the tumor? 

 To determine if the addition of a targeting ligand to S-LCP could enhance the 

accumulation level of S-LCP in the tumor, the original 20% DSPE-PEG2000 was 

replaced by 2% DSPE-PEG2000-anisamide (or DSPE-PEG2000-folic acid) mixed with 

18% DSPE-PEG2000 in the coating of the S-LCP. Although the biodistribution patterns 

were altered, the results showed that neither anisamide nor folic acid could improve the 

accumulation level of S-LCP in the tumor (Figure 3.4A). A recent publication 



 42

demonstrated that PEG density above 10% on a nanoemulsion NP may inhibit the 

function of targeting ligands [106]. When the ligands were conjugated on the distal ends 

of PEG chains, the increased interactions between the chains, due to the high density of 

chains, could reduce the ligand’s ability to interact with its receptor. To study whether 

this was the reason why targeting ligands could not improve S-LCP tumor accumulation, 

the total percentage of DSPE-PEG2000 was decreased from 20% to 10%. The results 

still indicated that neither ligand could enhance levels of accumulation in the tumor 

(Figure 3.4B). 

 

Figure 3.4 Ligand effects on LCP NP biodistribution  and tumor accumulation 

A) Tumor accumulation and blood retention of S-LCP coated with cholesterol/DOPC and grafted 

with indicated PEG (and PEG-ligand) contents at 24 h post injection. B) Decrease the total PEG 

content still cannot enhance accumulation of S-LCP NPs in the tumor. (N=3) 

 

 These results support previous reports stating that targeting ligands can improve 

tumor cell uptake but not total accumulation within the tumor [107, 108], which further 

suggests that the EPR effect is the rate limiting step in accumulation of NPs. This step in 

the process occurs before the ligand can enhance uptake of NPs by the tumor cells. On 

the other hand, strategies such as using metronomic chemotherapy to disrupt tumor 
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neo-vasculature [109] or vasodilatants [110] to fundamentally enhance the EPR effect 

have been shown to successfully improve NP accumulation in the tumor 

 

3.4 Tumor age (size) effect on NP accumulation 

3.4.1 Tumor blood vessel staining with CD31  

 In the in vivo SPECT/CT and biodistribution experiments we observed that 

younger tumors tend to accumulate more S-LCP than older ones. We hypothesize that 

younger tumors might have more disorganized blood vessels, leading to a higher EPR 

effect. To test the hypothesis, frozen sections for tumors of different ages were prepared 

and immuno-stained for CD31 (an endothelial cell marker). Fluorescent microscopy 

images showed that younger tumors exhibited a more disorganized pattern of CD31 

staining, suggesting more leaky neo-vasculature (Figure 3.5A). Older tumors had fewer 

blood vessels that were more organized. Furthermore, tumor cells were more compact in 

older tumors. Quantification analysis using ImageJ software showed that the number of 

positively-stained pixels in the younger tumor sections was three-fold higher than that in 

the older tumor sections (Figure 3.5B).  
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Figure 3.5 Younger tumor had more disorganized bloo d vessels. 

A) Tumor blood vessel stained with CD31-PE. Younger tumor sections (upper two) have more 

disorganized pattern of staining in the blood vessels compared to the older ones (lower two). B) 

Quantification analysis using ImageJ software and Student’s t-test. (N=7, P<0.0001) 

 

3.4.2 Demonstration of EPR effect with Evans Blue 

 Next, Evans Blue (purchased from Sigma) was used to demonstrate the EPR 

effects in both younger and older tumors. Evans Blue binds to serum albumin with high 

affinity, and has been widely used to quantitatively access the degree of EPR effect in 

tumor [60], permeability of blood-brain-barrier [111], and peripheral inflammation [112].  

 Evans Blue was dissolved in PBS at a concentration of 1 mg/mL. Before injection 

into nude mice bearing two differently aged H460 tumors (younger tumor: 5 days; older 

tumor: 10 days), the Evans Blue solution was passed through a 0.22 µm filter. Each 

mouse received 200 µL of Evans Blue through tail vein injection. After 24 h, the mice 

were sacrificed, and were perfused with 10 mL PBS slowly into the left side of the heart 



 45

to remove the blood component of any organ. The tumors were collected and the Evans 

Blue color in the tumor was visually documented (Figure 3.6A). 

 The tumors were then weighted and added with 2 mL formamide. The mixture 

was then incubated at 60°C and shaken for 48 h to e xtract the Evans Blue. Absorbance 

at 575 nm was determined using a plate reader (PlateCHAMELEON), and the readings 

were converted to % ID/g using the standard curve of Evans Blue (Figure 3.6B). As 

visually demonstrated in Figure 3.6A, younger tumors exhibited a higher degree of 

Evans Blue accumulation. After quantification, younger tumors had a higher level of 

accumulation than older tumors (~57% ID/g and ~16% ID/g, respectively). This result 

supported our hypothesis that younger tumors have more disorganized blood vessels 

and thus a more pronounced EPR effect. The data support the notion that the EPR 

effect is the major obstacle to accumulation of particles in the tumor and the degree of 

the EPR effect is dependent on the age of the tumor being inoculated.   
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Figure 3.6 Younger tumor had higher EPR effect. 

A) Photo of younger and older tumors showing that the younger tumor has higher EPR effect and 

accumulated Evans Blue at higher level. B) Quantification after extracting Evans Blue from tumor 

tissue. Absorbance at 575 nm was converted into % ID/g with a standard curve. (N=3, P= 0.017 

by Student’s t-test) 

 

3.4.3 Discussion 

 Often times, there is no standard tumor inoculation protocol. The amount of cells 

required for inoculation varies between cell-lines, and is usually dependent on the 

growth rate of individual cell-lines. H460 tumors represent a fast growing, xenograft 

model and usually exhibit significant EPR effects. In this study, the young and old tumors 

were inoculated with 2 x 107 and 5 x 106 H460 cells, respectively. We observed that by 
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inoculating more cells, the younger tumor grew at an increased rate, subsequently 

causing an increased EPR effect and accumulation of NPs.  Manipulating the inoculation 

protocol to work on younger or smaller tumors could potentially result in better imaging 

or therapeutic outcomes. However, naturally occurring tumor malignancies are usually 

slow growing and start with a small number of tumor cells. Hence, the question of 

whether xenografts are valid pre-clinical models for naturally occurring tumors has been 

raised during the past decade. Genetically engineered mouse models [113, 114] or 

patient-derived tumor xenografts [115] have provided better, more clinically relevant 

tumor models and show promise for the future of the field. However, these models still 

suffer from poor consistency and limited availability [113-115]. 

 

3.5 In vivo lymph node metastasis imaging with 4T1 model 

 A variety of human cancers disseminate via regional lymph node metastasis 

[116]. The ability to image sentinel lymph nodes and evaluate the stage of the 

metastasis is highly desirable. To demonstrate whether S-LCP can be used to detect 

lymph node metastasis, a 4T1 murine, breast cancer cell line that expresses both 

luciferase and green fluorescent protein (4T1-luc2-GFP) was used to establish a lymph 

node metastasis model [117, 118]. 

 

3.5.1 Establishing 4T1 metastasis model 

 The luciferase and GFP double-expressed 4T1 murine breast cancer cell line 

(4T1-luc2-GFP Bioware® Ultra Green) was purchased from Caliper. The tumor model 

was established by hock injection of 2x105 4T1-Luc2-GFP cells in the right hind leg of 6-
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8 weeks old female BALB/c mice [117, 118].  

 

3.5.2 Monitoring 4T1 lymph node metastasis 

 The luciferase expression allowed tumor and metastasis progress monitoring 

starting around 10 d after hock inoculation. Bioluminescence imaging was taken using a 

Kodak In-Vivo FX PRO system within 15 min after intraperitoneal (IP) injection of 

luciferin at 150 mg luciferin/kg body weight (Caliper).  

 

3.5.3 Imaging lymph node metastasis 

After confirming the lymph node metastasis with luciferase imaging (Figure 3.6A), 

the mice were injected through the tail vein with 111In-S-LCP. SPECT/CT imaging taken 

at 24 h after injection clearly illustrated the enlarged, tumor-loaded, metastatic lymph 

node (Figure 3.6B) 
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Figure 3.7 Imaging 4T1 lymph node metastasis.  

A) Bioluminescence image of two BALB/c mice with strong luciferase activity in their sentinel 

popliteal lymph nodes. Image was taken 10 d after hock inoculation. B) SPECT/CT images taken 

24h post IV injection of 111In loaded S-LCP. Two horizontal and two vertical sections were shown. 

The size enlarged and tumor loaded sentinel popliteal lymph node was clearly visualized and 

could be directly compared with the counter side popliteal lymph node. C) GFP fluorescent 

images of the metastatic 4T1-luc2-GFP cancer cells in the lymph nodes. Eight lymph nodes (from 

top to bottom: 2 axillary, 2 brachial, 2 inguinal, and 2 popliteal) from both side of one mouse were 

shown. Sentinel popliteal and inguinal lymph nodes at the bottom left showed the strongest GFP 
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signals, indicating tumor metastasis. D) S-LCP biodistribution 28h post injection at liver, spleen, 

4T1 tumor, and various lymph nodes by gamma counting. (N=3) 

 An uneven pattern of 111In signal distribution in the metastatic lymph node was 

probably due to the presence of the tumor mass, an observation that was also reported 

in other studies [100, 119]. After SPECT/CT imaging, the mouse was sacrificed for GFP 

imaging of the metastatic cancer in the lymph nodes (Figure 6C) using an IVIS Kinetic 

imaging system. Organ biodistribution analysis by gamma counting was also conducted 

to confirm the SPECT/CT imaging results (Figure 6D).  

 

3.5.4 Discussion 

The total accumulated dose in the metastatic lymph nodes was ~1.5 times higher 

than that in the counter-side, popliteal lymph nodes. Due to enlargement of the 

metastatic lymph nodes caused by tumor growth and inflammation, the accumulation 

level was reduced to ~9.1% ID/g as a result of increased organ weight of the metastatic 

lymph nodes, whereas the counter-side, popliteal lymph node achieved 35.4% ID/g.  

However, the accumulated 111In signal was sufficient for imaging, leading to the 

observation of the uneven distribution pattern [119]. The overall lymph node 

accumulation level in this BALB/c, 4T1 model was lower than what was observed in the 

C57BL/6 and nude mice. The decrease could be attributed to higher MPS function 

induced by the 4T1 tumor, as indicated by a significantly larger spleen in this model 

(data not shown). However, the 4T1 tumor achieved high accumulation in the tumor 

(19.1% ID/g), which might also contribute to the overall lower accumulation in the lymph 

nodes of this model. This work demonstrates the feasibility of using 111In loaded S-LCP 

to image metastatic lymph nodes via intravenous injection. 
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CHAPTER IV 

LCP LYMPHOTROPISM STUDY 
 

4.1 Introduction 

 The lymphatic system is a central component of the immune system and serves 

as the secondary circulation system responsible for the drainage of fluid from the 

extracellular space, proteins, and waste products into the blood. Lymph nodes also play 

an important role in diseases such as infection, inflammation, and cancer [120]. Primary 

tumors usually begin metastasis by invading the sentinel lymph nodes, which then serve 

as a reservoir for further spread of cancer cells [121-123]. 

The delivery of genes and drugs to both the local, draining lymph nodes and the 

lymphatic system as a whole is a challenging task. Certain lipophilic compounds such as 

long-chain fatty acids, cholesterol esters, triglycerides, and lipid-soluble vitamins can be 

transported through the lymphatic channels [120, 124]. However, most chemotherapy 

agents cannot gain access to the lymphatic system after conventional IV infusion, 

including the lymph node metastasis [120, 124]. Consequently, the development of 

clinical treatments of lymph node metastasis and other cancers has remained elusive. 

Many different types of NP, including liposomes, silica NPs, and other polymer-

based drug delivery systems, have exhibited improved efficiency in regionally delivering 

drugs to the lymphatic system [125-129]. For example, IP injected liposomes containing 

doxorubicin result in an 8- to 14-fold (4 h post injection) and a 3- to 6-fold (24 h post 
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injection) increase in doxorubicin concentration in the draining lymph nodes in rats 

compared to the increase caused by free doxorubicin [125].  However, no significant 

difference was observed after IV administration. Thus, effective delivery by IV 

administration to the lymphatic system allowing the detection of lymph node metastasis 

is still in demand.   

 LCP NPs were first developed for siRNA delivery [40-42] and have recently been 

successful in delivering gemcitabine mono-phosphate (Zheng et al, manuscript in 

submission). Successful loading of 111In into LCP NPs has also been demonstrated in 

Chapter 3 for SPECT/CT imaging and PK/biodistribution studies. In the SPECT/CT 

imaging study, an accumulation level as high as ~70% ID/g in lymph nodes throughout 

the body was observed following IV injection. That 111In can form precipitate with 

phosphate in a manner very similar to calcium is the principle behind 111In loading and 

entrapment in the LCP core. Taking advantage of the Ca-P core formation principle, a 

variety of anti-viral nucleoside analogue drugs [82-85] could be entrapped via a similar 

strategy as gemcitabine mono-phosphate. This property of the LCP, along with its 

lymphotropism, allows the use of the NP formulation for the delivery of nucleoside-

analog drugs for the treatment of diseases such as metastasis and HIV infection in the 

lymph nodes.  

The uniquely strong lymphotrophism of the LCP after intravenous administration 

could present great potential for the development of lymphatic metastasis and viral 

infection therapies. Thus, the studies on the lymphotropism of LCPs of different sizes 

using several administration techniques may provide further insight into future designs of 

systems for the delivery of drugs to the lymphatic system. 

 



 53

4.2 Accumulation of S-LCP in the lymph nodes 

 As was demonstrated in Chapter 3, S-LCP with an outer-leaflet coating of 

DOPC/Cholesterol/DSPE-PEG2000 (2:2:1) had little accumulation via MPS in both the 

liver and spleen. The particle did, however, accumulate at a level of 8% ID/g or higher in 

H460, subcutaneous tumor and 4T1 metastasis models (Chapter 3.2 & 3.5). 

Furthermore, lymph node accumulation as high as ~70% ID/g was observed (Figure 

4.1). 

 

Figure 4.1 Accumulation of S-LCP-DOPC with 20% PEGy lation in the lymph nodes of 

nude mice. 

Yellow arrows indicated high accumulation level at ~70% ID/g in the symmetrical lymph nodes. 

Four different SPECT/CT sections were presented. SPECT/CT images were taken at 27 h post IV 

injection. 

 

 In order to make sure this lymph node accumulation is not unique to tumor-

bearing nude mice, a similar SPECT/CT imaging experiment was performed on wild type 

C57BL/6 mice. As shown in Figure 4.2, symmetrical lymph nodes throughout the animal 
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were observed to accumulate significant amounts of In-111 loaded S-LCP-DOPC with 

20% PEGylation. This confirmed that the lymphotropism of S-LCP NPs also existed in 

normal and healthy mice. 

 

Figure 4.2 Accumulation of S-LCP-DOPC with 20% PEGy lation in the lymph nodes of 

C57BL/6 mice. 

Six different SPECT/CT images taken at 24 h post IV injection were included to show that 
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symmetrical lymph nodes (yellow arrows) throughout the body accumulated significant amount of 

S-LCP. 

 

4.3 Hypothesis for LCP NP lymphotropism 

 When coating S-LCP NP with DOTAP/Cholesterol/DSPE-PEG2000 (2:2:1), 

accumulation of the particles in the hepatocytes of the liver was high and uptake by the 

Kupffer cells was low (Liu et al, manuscript in submission). This efficient delivery to the 

hepatocytes could be partly attributed to the small particle size of S-LCP NPs, which 

allows them access to the fenestrated endothelial cells of the liver and encourages 

hepatocyte targeting mediated by apolipoprotein-E [130]. 

 111In gamma counting indicated that 24 h after injection, the mice retained ~85% 

of the injected dose. However, when all major organs (heart, liver, spleen, lung, kidney, 

and 8 lymph nodes) were collected and measured, only ~45% of the injected dose was 

recovered (Figure 3.2A). Furthermore, SPECT/CT imaging confirmed that there was no 

significant excretion of the particles from the bodies of the mice during the experiment 

(Figure 3.1 & 4.1). 

 Our findings led to the hypothesis that S-LCP-DOPC with 20% PEGylation could 

penetrate tissues, enter the lymphatic system, and accumulate in the lymph nodes 

efficiently due to (1) small size (~25 nm), (2) a well-PEGylated, lipid surface, and (3) a 

slightly negative surface charge. The accumulation of the nanoparticles in the lymphatic 

system can also explain the reduction in blood concentration while maintaining minimal 

excretion and organ accumulation (liver, spleen, etc., Figure 3.3). 
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4.4 S-LCP NPs was more tissue penetrating 

4.4.1 Experimental design 

 Due to the difficulty of directly observing particles penetrating into tissues from 

circulation, we designed an intramuscular (IM) injection experiment comparing S- (~25 

nm in diameter) and L-LCP (~67 nm in diameter) NPs with or without a coating of 20% 

PEG in the outer leaflet to test our hypothesis. The NPs were IM injected to the right 

hind leg of C57BL/6 mice. The volume of the injection was limited to 10µL to reduce 

tissue damage. After 3 or 24 h, the mice were sacrificed and major organs, including 

lymph nodes and the injected leg, were collected for gamma counting. Draining popliteal 

lymph nodes were collected and 4 counter-side, distal lymph nodes (1 axillary, 1 brachial, 

1 inguinal, and 1 popliteal from the counter side of the IM injection) were also collected 

for comparison. The gamma reading was corrected for the 111In decay factor during 

analysis. Statistical analysis was performed using a Student’s t-test.  Our hypothesis 

was that if S-LCP NPs have the ability to achieve high tissue penetration following local 

intramuscular injection, they can move more freely in the tissue, enter into circulation in 

the blood, and accumulate in the distal lymph nodes.   

 

4.4.2 Results and discussions 

 When the NPs were PEGylated, both S-and L-LCP NPs had an early blood 

distribution (observed at 3 h) that could be explained by the mechanical force created by 

the injection (Figure 4.3). In support of our hypothesis, S-LCP NPs exhibited much 

higher tissue penetration between 3 and 24 h than L-LCP NPs, as illustrated by 

decreased retention at the injection site (P< 0.01, N=3) and a sustained concentration in 
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the circulation. Although there was some accumulation of S-LCP NPs in the liver, the S-

LCP NP depot at the IM injection site served as a reservoir to provide a continuous 

supply of NPs to the blood. Distal lymph nodes were able to accumulate ~41% ID/g of IM 

injected S-LCP NPs. 

 

Figure 4.3 IM injection experiments showing that S- LCP NPs is more tissue penetrating 

than L-LCP NPs 

Biodistribution comparison after IM injection of 111In loaded S- and L-LCP coated with or 

without 20% DSPE-PEG2000. Mice were sacrificed at 3 h or 24 h post IM injection.  

 

 As the initial blood distribution of PEGylated, L-LCP was cleared by the liver, the 

L-LCP depot at the IM injection site could not penetrate into the blood to maintain the NP 

concentration. The L-LCP depot was limited to the injection site and did not decrease 

significantly between 3 and 24 h post-injection (Figure 4.3). The larger NPs were favored 
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by the MPS uptake processes; PEGylation in a manner similar to that of the smaller NPs 

did not alter this pattern [53, 78]. This phenomenon may explain why PEGylated, L-LCP 

NPs accumulate in the draining lymph node more than S-LCP NPs. In either case, 

however, the effects of PEG protection in reducing their uptake by the MPS (i.e., local 

macrophages and dendritic cells) were clear. 

 Without PEGylation, both S- and L-LCP NPs had limited mobility (though S-LCP 

NPs were still more mobile), trapping more than 80% of the injected dose at the site of 

injection after 3 h. Since there was no PEG protection against MPS, rapid and efficient 

phagocytic uptake lead to high accumulation in the draining lymph nodes at both 3 and 

24 h post-injection. Larger particles without PEGylation were preferentially taken up by 

the MPS, as demonstrated by their accumulation levels of ~3000% ID/g in the draining 

lymph nodes after 3 h. 

 

4.5 Different distribution pattern of S-LCP and L-L CP in the draining lymph node 

 Since S-LCP was more active to penetrate tissues and was only minimally taken 

up by the MPS due to their smaller size, one reasonable prediction is that the majority of 

S-LCP was drained into the lymph nodes as individual particles. On the other hand, the 

majority of efficient accumulation of L-LCP in the lymph nodes after IM injection is most 

likely MPS mediated [131]. To confirm this prediction, S- and L-LCP, both with 20% 

PEGylation and loaded with Texas-Red labeled DNA oligo, were used to repeat the IM 

injection experiment.  
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4.5.1 Experimental design 

Double-stranded oligo DNA (synthesized by Sigma, Texas-Red was labeled on 

the sense strand, sequence: 5’-TxRd-CAAGGGACTGGAAGGCTGGG-3’) was added to 

the calcium emulsion during the preparation of the LCP cores. Followed by the same 

core preparation and outer leaflet coating methods with or without 20% DSPE-PEG2000, 

10 µL IM injection of this Texas-Red oligo loaded LCP NPs were used for the experiment 

examining the distribution in the draining lymph nodes. 

 After 24 h, the draining lymph nodes were collected and fixed with formalin for 

frozen section and observation under confocal microscopy. The lymph nodes were fixed 

in formalin overnight then put in 30% sucrose solution for another overnight to help 

preserve the morphology of the tissue. The lymph nodes were then mounted in OCT 

(optimum cutting temperature) compound and snap-frozen using liquid nitrogen. Frozen 

sections were cryosectioned at a thickness of 20 µm. FITC labeled antibodies against 

CD11c or CD11b were diluted to a concentration of 1:500 for immunostaining. After 

wash with phosphate-buffered saline, the slides were mounted with DAPI containing 

mounting medium for confocal microscopy observation using a Leica SP2 confocal 

microscope. 

 

4.5.2 Results and discussions 

 As shown in Figure 4.4, labeled S-LCP was rarely overlapped with CD11c 

(dendritic cell marker) or CD11b (macrophage marker) staining. Since dendritic cells and 

macrophages were the two major phagocytic cells in the lymph nodes, our results 

suggested that S-LCP remained as individual particles in the lymph nodes. In the case of 
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L-LCP, Texas-Red fluorescence was mostly overlapped with CD11c and partially 

overlapped with CD11b. Combined with the observation that IV injected L-LCP had low 

accumulation in the lymph nodes, this result suggested that after IM injection, L-LCP 

accumulation in the draining lymph nodes was mainly mediated by uptake by MPS at the 

injection site, after which the MPS cells migrated to the draining lymph nodes. 

 

Figure 4.4 Different biodistribution patterns of S-  and L-LCP NPs in the lymph nodes 

Co-localization of LCP with phagocytic cells in the draining lymph node observed with confocal 

microscopy. LCP was labeled with Texas-red-labeled oligo and phagocytic cells (CD11c for 
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dendritic cells and CD11b for macrophages) were labeled with green. Left panels are for S- and 

right panels are for L-LCP, respectively. 

 

4.6 PEG coating for S- and L-LCP 

 To demonstrate the importance of PEGylation to the lymphotropism of S-LCP, an 

experiment varying the amount of PEG coating on the S- and L-LCP was conducted. 

Geometrically, NPs will have increased curvature as the NPs become smaller. In order 

to provide a comparable degree of surface protection, a higher degree of PEGylation 

would be required by an S-LCP (~25 nm) than an L-LCP (~67 nm). However, smaller 

NPs might inherently possess a stealth property that allows them to avoid uptake by the 

MPS and thus require less PEGylation. In order to address this apparently contradictory 

question, the in vivo biodistribution of S- and L-LCP-DOPC loaded with 111In and coated 

with either 0%, 5%, 10%, or 20% DSPE-PEG2000 was studied following IV injection. 

 S-LCP-DOPC NPs without PEGylation exhibited high accumulation in the liver 

and spleen, as predicted. However, there was no difference observed among groups 

modified with 5, 10, and 20% PEG, indicating that S-LCP-DOPC do not require a high 

degree of PEGylation (Figure 4.5A). As little as 5% PEG reduced MPS accumulation 

and increased lymphotropism at levels comparable to NPs with 20% PEGylation. On the 

other hand, increased PEGylation on L-LCP-DOPC was beneficial, as liver accumulation 

of the NPs decreased with increasing amounts of PEGylation (Figure 4.5B). When 

coated with 5% PEG, the accumulation of L-LCP became higher in the spleen compared 

to NPs without PEG. Increasing the amount of PEG to 10 or 20% can further reduce 

accumulation of the particles in the liver, but accumulation in the spleen remains 

unchanged. This observation suggested that PEGylation could significantly reduce 
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uptake by the MPS in the liver, while the spleen seemed to be very sensitive to the size 

of NPs. Only when the NP size was reduced, could we achieve significant reduction in 

the amount of accumulation of the NPs in the spleen. This accumulation pattern holds 

true for many other types of NPs in addition to the one described here [53, 78]. 

 

 

Figure 4.5 Evaluation of the effect of PEGylation o n S- and L-LCP-DOPC NPs.  

Effect of PEGylation on the biodistribution of S-LCP (A) and L-LCP (B) with different degree of 

PEGylation at 0%, 5%, 10%, and 20% were shown. 
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 Even when PEGylated at 20% PEG, L-LCP exhibited much lower accumulation 

in the lymph nodes compared to S-LCP NPs (~21% vs 70% ID/g, respectively). The 

lower degree of accumulation in the lymph nodes could be explained by the population 

of smaller particles that was generated as a by-product during the process to create the 

L-LCP cores (Figure 2.3A). Alternatively, NPs could be carried by MPS cells in the 

periphery and migrated into the lymph nodes [131]. 

 

4.7 Intraperitoneal injection of LCP NPs 

 Whether LCP NPs could be administered via IP injection was also evaluated. As 

shown in Figure 4.6A, IP injection of S- or L-LCP-DOPC with 20% PEGylation resulted in 

biodistribution profiles similar to those observed after IV injection. The IP injected LCP 

NPs were also able to gain access to blood circulation efficiently. The accumulation of 

the particles in the liver, spleen, and lymph nodes was only slightly lower when 

administering particles via IP injection compared to administration via IV injections. 
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Figure 4.6 Administering LCP NPs by IP injection 

A) IP injection of both S- and L-LCP-DOPC with 20% PEGylation led to very similar biodistribution 

result as IV injection. B) SPECT/CT images showing that the IP injected S-LCP-DOPC with 20% 

PEGylation could be fully absorbed into circulation in the blood and result in similar accumulation 

in the lymph nodes at 24 h (yellow arrows). C) Blood PK profile analyzed from SPECT/CT images 

by AMIDE software using heart as reference.  

 

To further confirm this result, a SPECT/CT imaging experiment with IP injected 

111In loaded, S-LCP-DOPC with 20% PEGylation was conducted (Figure 4.6B). As the 

SPECT/CT images indicated, S-LCP was located in the peritoneal cavity directly 

following IP injection. In the image taken at 2 h, it was clear that a portion of S-LCP gain 

access into the blood circulation, as illustrated by the 111In signals in the heart. Note that, 

due to the mice being anesthetized during the first 2 h, the absorption of S-LCP into the 

blood stream might be delayed. From images taken at 4 and 6 h, we determined that the 

absorption of S-LCP into the blood was almost complete at that time point. The 
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SPECT/CT images were almost identical to those taken after IV injection. At 24 h post IP 

injection, accumulation of S-LCP in the lymph nodes was also similar to that seen in 

mice treated with IV injections (Figure 4.1).  

 Figure 4.6C showed the blood PK curve acquired from SPECT/CT image 

analysis. The blood concentration trends after 4 h in mice treated with IP injections were 

almost identical to those in mice treated with IV injections (Figure 3.3). The PK 

properties of S-LCP after peritoneal absorption are essentially the same as those of IV 

injected NPs, suggesting S-LCP NPs gain access to the blood stream as un-modified, 

individual NPs.  

 

4.7.1 Discussions 

 The exact mechanism of S- and L-LCP absorption in the peritoneal cavity to the 

blood circulation is not fully known. The surface charge of NPs has great impact on the 

peritoneal absorption ability of NPs [132, 133]. Neutral or zwitterionic gold NPs have 

been shown to enter circulation rapidly after IP injection. However, gold NPs with both a 

strongly positive or strongly negative charge exhibit a limited ability to enter the blood 

stream [132]. The S-LCP-DOPC with 20% PEGylation possessed a slight negative 

charge (~-20mV, Table 2.3). This result suggests an alternative route for LCP NP 

administration. 

 

4.8 In vivo lymph node gene delivery with LCP NPs 

The ability of S-LCP to deliver genes to the lymph nodes was demonstrated 

using a plasmid containing RFP cDNA. An oligo-arginine peptide flanked by two 
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cysteines (sequence: CR8C) that significantly enhances the gene-expression level in a 

study of LCP mediated delivery of genes to hepatocytes was also used (Hu et al., 

manuscript in submission). S-LCP loaded with the RFP plasmid, CR8C peptide, and 

111In were prepared for this study. The cationic lipid, DOTAP, was included in this study 

for outer leaflet coating to compare with DOPC since DOTAP was known for its higher 

transfection activity. PEGylation at 20% was still used for both DOTAP and DOPC 

coated S-LCP NPs. 

 

4.8.1 Experimental design 

 S-LCP cores were loaded with RFP plasmid and CR8C peptide (synthesized by 

Peptide 2.0 Inc.) by mixing 50 µg RFP plasmid and 50 µg CR8C peptide sequentially 

with 50 µL of 500 mM CaCl2 solution with some 111InCl3 for biodistribution evaluation. The 

core preparation and coating with an outer leaflet were completed following the same 

procedure described in Chapter 2. Outer leaflet lipids of 40% DOPC (or DOTAP) plus 

40% cholesterol and 20% DSPE-PEG2000 were used for coating. Each C57BL/6 mouse 

received 200 µL of the final S-LCP with 20% PEGylation containing 10 µg of RFP 

plasmid and 10 µg of CR8C peptide by IV injection. After 24 h, the mice were sacrificed 

and major organs, including 8 lymph nodes, were collected for RFP fluorescence 

imaging using a Carestream In-Vivo Imaging System FX Pro and gamma counting. 

 

4.8.2 Results and discussions 

 As demonstrated in Figure 4.7A, S-LCP-DOTAP with 20% PEGylation had high 

accumulation in the liver (explained mainly by uptake by hepatocytes but not Kupffer 

cells; Liu et al, manuscript in submission), but 111In gamma counting indicated much 
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lower accumulation in the lymph nodes. On the other hand, S-LCP-DOPC with 20% 

PEGylation showed accumulation that was low in the liver and spleen, but high in the 

lymph nodes. The RFP liver gene expression level was also high in the mice injected 

with S-LCP-DOTAP with 20% PEGylation, which correlated well with the accumulation 

level (Figure 4.7B).  

 

 

Figure 4.7 Gene delivery to the lymph node by IV in jection 

A) Biodistributions of S-LCP-DOPC and S-LCP-DOTAP with 20% PEGylation at 24 h post IV 

injection determined by gamma counting. RFP gene expression at the major organs (B) and the 

eight lymph nodes (C) were shown by RFP fluorescent imaging. 
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 For RFP gene expression in the lymph nodes, although S-LCP-DOPC had higher 

accumulation in the lymph nodes, the RFP expression level was lower than that 

produced by injection with S-LCP-DOTAP (Figure 4.7C). There are two possibilities to 

explain the observation.  The first is dependent on the fact that positively charged 

DOTAP is known for its high transfection activity, due to its ability to facilitate the 

endosome escape. The higher expression of RFP despite the lower delivered dose 

suggested that S-LCP-DOTAP probably exhibited a higher gene expression activity than 

S-LCP-DOPC. Alternatively, positively charged DOTAP could also aid in the cellular 

uptake process after PEG shedding [134, 135]. Bioavailability of  S-LCP-DOPC might be 

limited by cellular uptake in the lymph nodes; if cellular uptake is low, bioavailability of 

the particles is likely to be low as well (Figure 4.4). 

However, a DOPC coating still provides specific accumulation to the lymph nodes 

that could be advantageous, especially when delivering drugs that do not require 

transfection activity. Suggestions for future improvement to our delivery method include 

1) adding an endosome escape enhancer to the S-LCP-DOPC with 20% PEGylation to 

boost gene expression activity, and 2) adding targeting ligands to enhance (cell-type 

specific) cellular uptake in the lymph nodes. If successful, S-LCP NPs could serve as a 

drug delivery formulation that is highly specific to the lymph nodes. 

 

4.9 Conclusions and discussions 

Based on our results, we suggest that S-LCP-DOPC with 20% PEGylation would 

be the most effective in achieving whole body, lymphatic drug delivery, due to highly 

specific accumulation in the lymph nodes after IV injection. This characteristic would be 

desirable in the treatment of diseases such as HIV infection. The HIV virus in the lymph 
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nodes is difficult to treat due to the limited ability of anti-HIV drugs to access the lymph 

nodes [136]. Strategies such as formulating anti-HIV drugs into lipid NPs to enhance the 

lymph-node-specific accumulation of anti-HIV drugs have been reported [137-140]. For 

instance, two CD4 targeting peptides can be used to enhance cell-type specific 

accumulation, by increasing the uptake of Indinavir-loaded, lipid NPs by CD4-HIV host 

cells [141]. However, these formulations were administered using subcutaneous 

injection and can only enhance the concentration of the drug in regional lymph nodes.  

With the lymphotropism of S-LCP-DOPC, systemic eradication of HIV infection in the 

lymph nodes could be possible. 

If delivery to the local draining lymph nodes is all that is required, the local 

injection of larger particles, such as L-LCP, is sufficient. However, a majority of the NPs 

would most likely accumulate in the dendritic cells. This phenomenon could be 

advantageous for DNA vaccination since dendritic cells are one of the major antigen-

presenting cells. Coating the nanoparticles with DOTAP might be preferred for the 

systemic, lymphatic gene delivery because it provides higher gene expression activity. 

Unfortunately, DOTAP has the potential to cause high gene expression in the 

hepatocytes, as well. As previously mentioned, S-LCP-DOPC NPs with 20% PEGylation 

should be able to improve the gene expression activity while preserving the high 

specificity to the lymph nodes by adding an endosome escape enhancer and targeting 

ligands. 
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CHAPTER V 

DISCUSSIONS AND FUTURE PERSPECTIVES 
 

5.1 Potential of S-LCP as a theranostic formulation  for delivery to the lymphatic 

system 

 Efficient systemic drug delivery to the entire lymphatic organs is currently 

missing. As discussed in Chapter 4.1, only local drug delivery to the regional lymph 

nodes has been enhanced by several lipid-based NP formulations. S-LCP coated with 

an outer leaflet of DOPC and PEGylation showed high lymphotropsim, with more than 3 

times the accumulation level (~70% ID/g) in those organs than in the liver and spleen. A 

comparable level of lymphotropsim has only been reported for one other particle, 

dextrose-coated USPIO. No other NPs have ever achieved lymph node accumulation 

levels similar to those of S-LCP NPs or USPIO administered by IV injection. 

 Several clinical studies have validated USPIO as a clinical MR imaging tool for 

detecting occult lymph node metastasis [100, 119, 142]. However, the ability of USPIO 

as a drug delivery system is very limited. No literature has reported the use of USPIO as 

a drug delivery system. One strategy that loaded curcumin or doxorubicin into hollow 

SPIO nanoshells as a theranostic delivery system has been proposed. However, this 

SPIO has a large particle size (hydrodynamic diameter: 191.9 ± 2.6 nm) and does not 

exhibit lymphotrophism [143]. Other strategies such as co-formulating USPIO with drugs 

using polymers [144] or block copolymers [145] also increases the size of the whole NP 

to above 100 nm and negates the lymphotropism of USPIO NPs.  
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 S-LCP has been designed with drug releasing mechanisms for siRNA, chemical 

drugs, and cDNA (Figure 1.2). The delivery of siRNA, phosphorylated drugs (such as 

gemcitabine mono-phosphate), and cDNA with S-LCP has been demonstrated. This 

creates an opportunity for systemic lymphatic delivery of a great variety of drugs.   

 However, what USPIO and S-LCP-DOPC have achieved was only passive 

accumulation in the lymph nodes. The lymph node metastasis MR imaging of USPIO 

relied on passive accumulation of USPIO in the tumor-free lymph node space but not the 

metastatic tumor. However, because USPIO is a T2 MR imaging contrast agent that 

provided a dark negative signal, by comparing the MR imaging before and after 

administration of USPIO, the lymph node metastasis showed as a bright (positive) image. 

The 111In loaded S-LCP-DOPC also provided a “negative imaging” of the metastasis in 

the lymph nodse. In order to acheive drug delivery to the metastatic tumors in the lymph 

nodes, the formulation might have to go one step further to reach the tumor cells. 

 It is possible to enhance the tumor cell-specific uptake by incorporating a tumor 

specific targeting ligand on S-LCP to achieve a positive delivery and imaging. If 

successful, this would be the first theranostic delivery system for lymph node metastasis 

detection and therapy. 

 

5.2 LCP as a drug delivery system for water-insolub le drugs 

 

 In the recent past, medicinal chemists have been attempting to synthesize new 

chemical entities with good therapeutic effects and also acceptable water solubility. 

Many potent water-insoluble compounds were discarded due to lack of suitable delivery 

systems. Several hydrophobic drugs could be formulated in the traditional liposomal or 
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polymeric NPs such as the FDA approved PLGA NP formulations [146, 147]. However, 

the encapsulation relied on the hydrophobic interactions between the drug and the 

hydrophobic part of the NPs and the loading capacity was usually limited by stability 

issues. 

 The success of LCP actually provided another novel strategy to formulate water-

insoluble drugs. It is possible to intentionally make water-insoluble drugs into nano-

precipitates (similar to CaP) and coat them with lipid surface similar to S-LCP. If the 

nano-precipitates are similar in size to S-LCP NPs and the coating was successful, the 

new NP formulation should possess a biodistribution profile similar to that of S-LCP; the 

outer surface properties determine biodistribution patterns. The NPs with the drug 

precipitates trapped inside may exhibit a slow release that could be advantageous for 

cancer therapy. 

 

5.3 LMnP as MR imaging contrast agents 

 

 The loading of 111In is the first attempt to provide SPECT imaging modality to 

LCP NPs. Other imaging modalities such as Manganese (Mn) for MR imaging [148, 149] 

or Copper-64 (64Cu) for PET imaging may also be formulated into LCP formulation. The 

feasibility of making LMnP NPs has been tested. 

 

5.3.1 Making LMnP cores 

 

 Following the same core preparation procedure as was used for LCP, LMnP 

cores could be made by substituting 500 mM CaCl2 with 500 mM MnCl2. Using the same 
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Igepal surfactant system, the S-LMnP core was made to have a size  comparable to S-

LCP (Figure 5.1A). L-LMnP core could be made with pure Triton system. The resulting 

L-LMnP cores are slightly larger than L-LCP cores (Figure 5.1B). The LMnP NPs could 

be coated with an outer leaflet in the same manner that LCP was coated. 

 

 

Figure 5.1 TEM images of LMnP cores 

A) S-LMnP core made with the same Igepal system used for S-LCP preparation. B) L-LMnP core 

made with a pure Triton system. (scale bar = 50 nm) 

 

 The Mn/P ratio of the S-LMnP core has been determined to be 1.03, which is 

very similar to that of S-LCP (1.01 ± 0.04, Table 2.3). This suggested that MnP formed 

an amorphous precipitation, similar to that of CaP. 

 

5.3.2 Preliminary demonstration of S-LMnP as MR ima ging contrast agent 

 To test whether S-LMnP could be used as an MR imaging contrast agent, S-

LMnP were coated with DOPC/cholesterol/DSPE-PEG2000 at 2/2/1 in a manner similar to 
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that of S-LCP preparation. The S-LMnP was suspended in water, put in small PCR tubes, 

and placed under a Bruker 9.4T horizontal bore scanner. Both T1 and T2 relaxation 

times were determined and compared with that of water (Figure 5.2). The effect of S-

LMnP dissolution in acidic environment on its MR signal was also evaluated by adding 

S-LMnP in pH 4.5 and pH 2.0 buffers. The results indicated that upon dissolution, both 

T1 and T2 signals were enhanced. This is a preliminary experiment demonstrating the 

feasibility of making LMnP for MR imaging purpose. 

 

Figure 5.2 S-LMnP showed both T1 and T2 imaging cap abilities 

A) Sample arrangements for MR imaging. Two different concentrations of LMnP were included to 

show dose-dependency of T1 and T2 relaxation time-shortage. Buffers with pH 4.5 and pH 2.0 

were used to mimic LMnP dissolution in acidic conditions. B) T1 imaging results. C) T2 imaging 

results. The T1 and T2 relaxation times of each sample were labeled accordingly.  
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APPENDIX 

 

Yu-Cheng Tseng’s Publication 

 

Peer-reviewed Papers 
 

• Yu-Cheng Tseng  and Leaf Huang. How Does the Cell Overcome LCP Nanoparticle 
Induced Calcium Toxicity? (in submission) 

• Yu-Cheng Tseng , Kevin Guley, Srinivas Ramishetti, Hong Yuan, and Leaf Huang. 
SPECT/CT Imaging of Tumor and Lymph Node with 111In Loaded LCP Nanoparticles. 
(in preparation) 

• Yu-Cheng Tseng , Zhenghong Xu, Kevin Guley, Hong Yuan, and Leaf Huang. 
Systemic Delivery to the Lymphatic System and SPECT/CT Imaging of Lymph 
Node Metastasis with LCP Nanoparticles via IV Injection. (in submission) 

• Yang Liu, Yu-Cheng Tseng , and Leaf Huang. Biodistribution Studies of 
Nanoparticles Using Fluorescence Imaging: A Qualitative or Quantitative Method? 
Pharm Res. July, 2012 

• Jun Li, Yung-Ching Chen, Yu-Cheng Tseng , Subho Mozumdar, and Leaf Huang. 
Biodegradable Calcium Phosphate Nanoparticle with Lipid Coating for Systemic 
siRNA Delivery. J Controlled Release 142: 416-421, 2010 

 

 

Review Papers  
 
 

• Yu-Cheng Tseng  and Leaf Huang. Self-assembled Lipid Nanomedicines for siRNA 
Tumor Targeting. J Biomed Nanotechnol. 2009 Aug;5(4):351-63. 

• Yu-Cheng Tseng , Subho Mozumdar, and Leaf Huang. Lipid-based Systemic 
Delivery of siRNA. Adv Drug Deliv Rev. 2009 Jul 25;61(9):721-31. 

 

 
Conference Abstracts 
 
 

• Yu-Cheng Tseng , Kevin Guley, Hong Yuan, and Leaf Huang. Tumor and Lymph 
Node SPECT/CT Imaging with In-111 Loaded LCP Nanoparticles. Gordon Research 
Conference on Drug Carriers in Medicine & Biology, 2012 

• Yu-Cheng Tseng , Hong Yuan, and Leaf Huang PK Profile and Tumor Imaging with 
In-111 Loaded LCP Nanoparticles. Annual NCI Site Visit – Carolina CCNE, 2012 

• Yu-Cheng Tseng  and Leaf Huang. Nanoparticles Imaging Early Cellular Apoptosis. 
Four Annual Chapel Hill Drug Conference, Chapel Hill, NC, USA, 2009 
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