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ABSTRACT

JIMMY JIN: Inhomogeneous Branching Processes: A Tale of Two Networks
(Under the direction of Shankar Bhamidi and Andrew Nobel)

A basic theme in probability is the use of simple approximations to study complex

systems. In this thesis we leverage the humble branching process to tackle two problems

on random graphs. First, we study a variant of linear preferential attachment graphs which

includes a change point in the parameter set driving the attachment dynamics. Using a

continuous-time branching process embedding, we show how to estimate the change point

and prove its consistency via a functional central limit theorem for the number of leaves.

Additionally, we analyze the long-range dependence in the evolution of the graph, showing in

particular that the exponent of the degree distribution does not feel the effect of any change.

Second, motivated by recent studies showing that the spread of viral content on the internet

takes surprising shapes, we introduce a simple discrete-time model for social media cascades

whereby the transmission probability of the cascade decays with the distance from source.

We argue that such a cascade can be reasonably approximated by a generation-dependent

Galton-Watson process with infinite mean, and, as a first step to understanding its growth

behavior, derive a simple criteria for its extinction.
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CHAPTER 1

Introduction

In the theory of random graphs, most of the answers can be guessed using the

heuristic that the growth of the cluster is like that of a branching process.

-Rick Durrett, Random Graph Dynamics

Graphs and networks are more relevant than ever. Whether in statistics, computer

science, physics, or economics, the random graph has seen its role come front and center

in the past decade as the world has grown more interconnected. For the statistician or

probabilist, this is both the best of times and the worst of times. Best—because of an

explosion of real-world data with which to drive new ideas and models. But also worst—

because real-world phenomena does not always fit into neat, simplified mathematical models.

Increasingly, we are preoccupied with inventing better, more accurate models to fit what we

observe in reality.

However, this thesis is not an effort to do that. The reader will find no pretense in this

thesis of claiming to outperform an existing method for modelling a network or for estimating

some parameter of a stochastic block model. Rather, it is a testament to the power of a

simple tool, the humble branching process, to achieve deep insights. In this thesis, we show

that this simple stochastic process, familiar to any sufficiently advanced undergraduate, can

reveal deep insights when properly employed.

Early on in the author’s graduate career his advisor assigned some reading from [46]. In

Chapter 2 there is the following theorem:
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Theorem (2.4.1). Suppose we have an Erdős-Rényi random graph with λ > 1. If we pick

two points at random from the giant component, then

d(x, y)

log n
→ 1

log λ
in probability.

The explanation for the theorem was the following:

The answer in Theorem 2.4.1 is intuitive. The branching process approximation

grows at rate λt, so the average distance is given by solving λt = n, i.e., t =

(log n)/ log λ.

To someone completely new to random graph theory working through a book clearly written

for other probabilists, seeing a familiar structure like branching processes is like happening

across a road after being lost in the woods for several days. Branching processes became a

path which the author could follow to delve deeper into random graph theory without fear

of losing his way.

And to the author’s surprise, they have never stopped serving that purpose. Indeed, if

one squints hard enough, branching processes can be found in many random graph models.

In this thesis, we explore two important topics in random graph theory through the lens of

branching processes.

1.1 1.1. Summary of thesis

1.1 1.1.1. Preferential attachment with change point

Question: Suppose we have a network growing over time, controlled indirectly

by a parameter governing how new nodes join the network. If that parameter

experiences a sudden change, how can we estimate it?

Preferential attachment is one of the most important models not only in random graph

theory, but also in sociology and economics. It’s one of very few temporal network models
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which is simple, yet capable of producing many characteristics seen in real-world graphs—

namely, a power-law degree distribution. We propose a simple change point variant of this

model, investigate some non-trivial ramifications, and then show how one can estimate the

change point.

The basic preferential attachment graph is grown by the following scheme:

Start with a single vertex ρ at time m = 1 (this vertex will be referred to as the root or

the original progenitor of the process). Fix a parameter α > −1. At each discrete-time point

1 < m 6 n a new vertex enters the system with a single edge1 which it will then connect

to a pre-existing vertex. The vertex connects to a pre-existing vertex v with probability

proportional to the current degree of v +α.

Now consider the same model but with a change point in the attachment parameter

α. Fix two attachment parameters α, β > −1, a change point parameter γ ∈ (0, 1), and a

system size n > 1. The model does preferential attachment as before, but now the attachment

dynamics changes after time bnγc namely

(a) For time 0 < m 6 bnγc, the new vertex entering the system at time m connects to

pre-existing vertices with probability proportional to their current out-degree +1 + α.

(b) For time bnγc < t 6 n, the new vertex connects to pre-existing vertices with probability

proportional to their current out-degree +1 + β.

We immediately have two questions:

1. How does the change point affect the aggregate characteristics of the graph?

2. How can we estimate the change point γ?

Our answer to question (1) is summarized in Theorem 3.2.1, which says that, at least

with respect to the power-law exponent of the degree distribution, the answer is actually

“not that much.”

1Throughout this chapter we will consider the simplest case where the network at each stage is a tree. The
methodology can be generalized.
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Figure 1.1: The evolution of a preferential attachment graph with change point at γ = 0.4.

(a) Evolution from t = 0.0 until t = 0.4 with α = −0.5.

(b) Evolution from t = 0.4 until t = 1.0 with β = 30.
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Theorem 3.2.1. Fix some parameter set for the change point model θ = (α, β, γ) and k > 1.

There exists an integer-valued random variable Dθ such that as n → ∞, the proportion of

vertices in the graph with degree k := Nn(k)/n satisfies

Nn(k)

n

P−→ P(Dθ = k), as n→∞

However, there exist constants 0 < c < c′ such that for all k > 1

c

kα+2
6 P(Dθ > k) 6

c′

kα+2
. (1.1)

Notably, the scaling in equation 1.1 does not involve either β or γ. So no matter how

big the jump between α and β is, and no matter how early the change point γ occurs, the

limiting power-law scaling still only depends on the initial parameter value α. In Chapter

3 we will develop the correct continuous-time branching process framework which will lay

bare why this is.

The second thrust of our analysis focuses on trying to answer question (2). How can we

best estimate the change point γ?

Our proposal is based on counting leaf nodes. We think this approach is not just elegant,

but also potentially extensible to non-preferential-attachment-like networks because it does

not explicitly employ the likelihood function for preferential attachment. The rationale is as

follows: since the attachment parameter directly affects the chance that new vertices attach

to leaves (see Figure 1.1), one ought to be able to feel the effect of the change point through

this statistic.

The basic idea behind our estimator is to scan through all time points t in the history

of the graph and calculate the difference between:

th := the average proportion of leaves in the graph over all times up to t (1.2)

ht := the average proportion of leaves in the graph over all times after t (1.3)
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Then, it makes sense to estimate the change point γ̂ to be the argmax of this function.

Actually, we’ll need to scale the difference first—the precise scaling tells us a lot about the

unique nature of this change point problem—but we defer a deeper discussion about this

point to Subsection 3.3.2 (see Figure 3.2 for an example of Dn(t)).

Dn(t) := (1− t)|th(n) − h(n)

t |, t ∈ [ε, 1] (1.4)

Here’s a walkthrough of how we will prove this estimator is consistent. It turns out that we

can calculate what the limit D(t) of this function should be quite easily: it’s constant up to

time t = γ, and then decreases smoothly towards 0, which it achieves at t = 1. Therefore if

we can just consistently estimate the point at which it starts decreasing, then we are done.

To do this we will need to understand the order of the fluctuations of Dn(t) around D(t).

We accomplish this via a functional central limit theorem for the proportion of leaves. Let

N̂n(1, t) be the number of leaves in the graph of size n at time t ∈ [0, 1]. Then:

Theorem 3.2.3. Let p(∞)

t be a function in t describing the limiting proportion (as n→∞)

of leaves in the with-change point graph. Consider the process of re-centered and normalized

number of leaves

Gn(t) :=
N̂n(1, t)− ntp(∞)

t√
n

, 0 6 t 6 1, (1.5)

with linear interpolation between time points. Then as n→∞, Gn
w−→ G where G is a tight

Gaussian process on [0, 1] and
w−→ denotes weak convergence on D[0, 1] equipped with the

usual Skorohod metric.

It follows therefore:

Lemma 3.4.28. Fix ε > 0. Then

sup
t∈[ε,1]

|Dn(t)−D(t)| = OP

(
1√
n

)

Now we can define our estimator quite naturally by:
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γ̂n := max {t : t ∈Mn} . (1.6)

Where the setMn is the collection of points t for which the corresponding function value

Dn(t) is within log n/
√
n of the maximum of the function:

Mn :=

{
t ∈ [ε, 1] : |Dn(t)− max

t∈[ε,1]
Dn(t)| 6 log n√

n

}
(1.7)

Then it follows finally that

Theorem 3.2.4. Assume that the change point γ > ε. Then γ̂ is consistent and, in fact,

|γ̂n − γ| = OP

(
log n√
n

)
(1.8)

In Chapter 4 we use simulations to examine the performance of this estimator and also

to build some more intuition about how it behaves and how it might be extended to other

settings. In addition we take the philosophy of looking at functions of the graph history and

run with it on two real-world temporal networks to see what lessons we might take from it

for future work.

1.1 1.1.2. Decreasing cascades and thinned branching processes

Question: Is a simple, discrete-time branching process model enough to capture

the real-world behavior of information cascades?

The next object of study in this thesis is the cascade. A cascade can mean a lot of

different things depending on the context. Loosely, a cascade is a process occurring on a

graph which spreads across vertices in a way such that affected vertices trigger neighboring

vertices in some way in either continuous or discrete time.

The real-world phenomenon inspiring our study is the retweet cascade endemic to Twit-

ter. Twitter is a social media platform whereby users can send out (or “tweet”) short

7



messages to other users who follow them (the user’s “followers”). When a follower receives

a tweet, they can either read it passively or choose to pass it on to their followers (“retweet-

ing”). And clearly, if an original tweet is interesting enough, then it can trigger a large

cascade flowing across the entire Twitter social network.

Generally, we refer to these large cascades as viral. And lately, empirical studies have

revealed an interesting of viral cascades: they do not all look the same. Empirical studies

have shown that viral cascades can have different shapes, from a very wide but shallow tree

sometimes called a broadcast, to a very narrow but deep chain of retweets.

As it turns out, conventional branching process theory does not allow for some of the pos-

sibilities. Our goal in this chapter is to take the first step towards achieving these differently-

shaped viral cascades using as parsimonious a branching process model as possible.

The cascade we want to model in this chapter is a simple discrete-time models which we

call the decreasing cascade model, chosen because of how closely it mimics sharing dynamics

on modern social networks:

Definition 1.1.1. The decreasing cascade

Let G be a graph with vertex set V . A decreasing cascade explores G in discrete time

through a set of active nodes, tracing a tree structure in the following way.

Let {pn}n>1 be a decreasing sequence of probabilities.

1. At time 1, start with one infected node.

2. At time n, active nodes infect their unexplored neighbors independently with probability

pn. In other words, vertices adjacent to currently-infected nodes become infected with

probability pn.

3. Once a node is finished infecting its neighbors or has failed to become infected, it cannot

infect any more nodes.

4. The set of nodes which were successfully infected during time n then becomes the set

of active nodes of time n+ 1.
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5. Repeat until the cascade dies out or reaches the entire graph.

As it turns out, if we care only about tracking the number of infected nodes in each

discrete-time step of such a cascade, then we can re-imagine the decreasing cascade as a

sort of two-step branching process. An individual in the process (infected vertex) has a

certain number of offspring (the number of neighbors of the vertex) which are then “thinned”

binomially to produce their final contribution to the next generation (the number of infected

neighbors of the vertex).

Definition 1.1.2. The thinned branching process

Let {pn}n>1 be a decreasing sequence of probabilities and let us start with 1 individual in

the system at time 1.

At time n, each individual X gives birth independently to a random number of offspring

W , which is distributed according to some offspring distribution F (common to all time

steps).

Then, perform Binomial thinning on the offspring by letting only Y ∼ Binomial(W, pn)

survive until the next generation. Repeat indefinitely or until extinction of the process.

Since many real-world networks have power law degree distributions, we will constrict

ourselves to the case where the decreasing cascade is flowing on a scale-free network with

degree distribution tail exponent ∈ (1, 2)2. It turns out that because of size-biasing, this

is equivalent to setting the offspring distribution F to a power-law distribution with tail

exponent ∈ (0, 1), implying that the number of infected individuals in each generation is a

random variable with infinite mean.

This takes us into uncharted territory. There has been plenty of research into infinite

mean Galton-Watson processes and plenty of research into inhomogeneous branching pro-

cesses with finite mean.

We contribute one basic result to the literature, which is:

2We use the term tail exponent to emphasize that it is the exponent α as in P(X > k) ∝ k−α
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Theorem 5.3.3. Suppose that F is a probability distribution satisfying

1− F (x) ∼ C

xα
, α ∈ (0, 1) (1.9)

Then a branching process with binomial thinning of such an offspring distribution extin-

guishes with probability 1 if and only if the thinning probabilities {pn}n>1 satisfy

−
n∑
k=1

(1/α)−k log pk →∞ as n→∞

And we close by discussing some next steps which should allow us to prove a Kesten-

Stigum-type result for these branching processes.
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CHAPTER 2

Background and literature

2.1 2.1. The growth of branching populations

Let us imagine objects that can generate additional objects of the same kind; they

may be men or cats reproducing by familiar biological methods, or neutrons in

a chain reaction. An initial set of objects, which we call the 0-th generation,

have children that are called the first generation; their children are the second

generation, and so on. The process is affected by chance events.

-T.E. Harris, The Theory of Branching Processes

The findings in this thesis are actually just glorified studies of very simple branching pro-

cesses. Therefore, a thorough understanding of our new results requires a familiarity with

some foundational results.

In particular, we will rely heavily on results describing the growth of supercritical pro-

cesses—i.e. processes which have some probability of surviving forever. Let us take a short

refresher course through the literature on this topic.

2.1 2.1.1. The Dummies’ guide to the Kesten-Stigum theorem

The building block of all branching process theory is the Galton-Watson process.

Suppose that in a reproducing process like in the quote above we keep track only of sizes

of the successive generations and not the times of reproduction or their family relationships.

Then we can write down a formal definition of the branching process quite easily. Denote

by Z0, Z1, Z2, . . . the numbers of individuals in the 0-th, first, second, . . . generations of the

process. In what follows, we shall always assume that Z0 = 1 unless otherwise stated.
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Let P denote the probability measure of the process. The probability distribution of

Z1 is prescribed by putting P(Z1 = k) = pk, for k = 0, 1, . . . with
∑

k pk = 1 where pk is

interpreted as the probability that an object existing in the nth generation has k children in

the (n+ 1)th generation.

If the process adheres to the following two assumptions,

1. Homogeneity: pk does not depend on the generation number n

2. Independence: All individuals beget offspring independently of each other

then it is a Galton-Watson branching process (“GWBP”) with offspring distribution P. The

most basic result in GWBP theory tells us that survival of the family line of Z0 depends

critically on µ, the mean of the offspring distribution P.

Theorem 2.1.1. If µ 6 1, then P(∃n : Zn = 0) = 1 except for the degenerate case of p1 = 1.

Otherwise when µ > 1, P(∃n : Zn = 0) < 1.

When the process is guaranteed to die out, we say it is critical or subcritical, depending

on whether µ = 1 or µ < 1 respectively. When the process may survive indefinitely, which

happens when µ > 1, we say it is supercritical. All in all, the extinction result is not very

surprising. It says that if each individual in the system has at most one child on average,

then the family line will eventually die out. Most people can believe this.

Where it starts to get interesting is in the analysis of the growth rate of GWBPs. First

off, branching processes do not stay stable—they either go the way of the Dodo, or they go

the way of Homo sapiens :

Theorem 2.1.2. For any (non-degenerate) regime, P(limZn = 0) + P(limZn =∞) = 1.

But then after that, precise long-run growth analysis depends sensitively on which regime

we are in. So just how does one begin to quantify the growth rate of {Zn}n>0, a sequence of

random variables? By comparing it to a reference sequence. As it turns out, the sequence
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{µn}n>0 works pretty well, because at least when µ <∞, the sequence {Mn}n>0 defined by

Mn :=
Zn
µn
, n > 0 (2.1)

has EMn = 1 for all n, so that, at least in expectation, µn matches Zn.

But this is not the end of the story. {Mn}n>0 is a non-negative martingale adapted to

the filtration generated by {Zn}n>0, so by the martingale convergence theorem it converges

almost surely to an a.s. finite limit M as n → ∞. Surely, if µn truly measures the rate of

increase of the GWBP then we will have EM = 1 as well.

Surprisingly, this is not exactly the case. Indeed, if µ 6 1, then the GWBP is guaranteed

to extinguish and M = 0 a.s. Therefore EMn 6→ EM . But what about the supercritical

regime?

It turns out that whether or not µn describes the growth rate of Zn in the limit depends

on whether the offspring distribution satisfies an X logX integrability condition. This is the

content of the Kesten-Stigum theorem:

Theorem (Kesten-Stigum). Let X stand for a random variable with the offspring distri-

bution P. The following are equivalent:

1. E(M) = 1

2. E(X log+X) <∞

3. P(M > 0) > 0

Additionally, we would like to draw the reader’s attention to condition (3) in the above

theorem. By the martingale convergence theorem we know that M < ∞ a.s., so that the

scaling µn cannot fail by being too slow. What this seems to suggest, then, is that the scaling

µn can sometimes be “too fast” and overwhelm Zn, forcing M = 0. But actually1:

1For an elegant explanation of this, see Remark 1 in chapter 1.8 of [56].
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Corollary 2.1.3.

P(M = 0 |Zn →∞) = 0

So on the set of non-extinction, Zn ∼ Mµn and the different points inside the set

{0 < M <∞} describe multiplicative ”shifts” of the more-or-less parallel growth of Zn and

µn.

To summarize, branching processes are sensitive. They either become so large as to

grow indefinitely, or they die out. And in the case with endless growth, there is a very

precise rate of growth which is “correct,” and even then we require special conditions on

the branching process to achieve it. In the second part of this thesis, we shall try to derive

similar conditions on a similar, but wilder type of branching process.

For a concise summary of the main results in the study of the limiting behavior of

GWBPs, we direct the interested reader to [76].

2.1 2.1.2. Inhomogeneous and infinite-mean processes

We just showed a conventional martingale analysis of the GWBP. But there is another line

of attack to branching process theory using probability generating functions.

Returning to the notation of the previous subsection, the probability generating function

(or pgf ) of a probability distribution P = {pk}k>0 supported on Z+, is

f(s) :=
∞∑
k=0

pks
k

The beauty of pgfs is that there are a couple different ways of looking at them. For one,

pgfs are power series with coefficients in [0, 1], so all the usual theorems apply. Secondly, if

X ∼ P then f(s) = E(sX). Immediate from these observations are results like

1. f(s) is continuous, and specifically continuous from the left at s = 1.

2. f ′(s) =
∑
ksk−1pk = E(XsX−1)
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3. µ = EX = f ′(1)

But also, pgfs are especially relevant with respect to branching processes because we can

compose individual offspring distribution pgfs to get pgfs of total population sizes:

Theorem 2.1.4. Let f denote the pgf of the offspring distribution in a GWBP. Also let

fn := E(sZn) denote the pgf of the distribution of Zn. Then

fn+1(s) = f(fn(s))

This gives us an easy way to analyze distributions of future generations of the process.

And this can be just as useful as the martingale analysis when examining the behavior of

the process in the limit. For example, the extinction theorem 2.1.1 is usually proved using

pgfs and, as a side benefit, often make explicit calculations easy:

Theorem 2.1.5. For a supercritical GWBP, the probability of extinction is a solution to the

fixed point equation f(s) = s.

Proof. Write Q := {∃n : Zn = 0} for the extinction event so that P(Q) is the probability of

extinction. Also let Qn := {Zn = 0}.

Clearly, Qn ⊂ Qn+1 and so P(Qn) ↑ P(Q) as n → ∞. But also, P(Qn) = fn(0).

Therefore by Theorem 2.1.4, fn+1(0) = f(fn(0)) which means that P(Qn+1) = f(P(Qn)).

Then since f is continuous,

f(P(Q)) = f( lim
n→∞

fn(0)) = lim
n→∞

f(fn(0)) = lim
n→∞

fn+1(0) = P(Q)

�

So how does the picture change if we let the offspring distributions depend on the

generation number? In the literature, there are two ways to let this happen.
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1. Varying environment: Let the offspring distributions still be deterministic, but vary

by generation.

That is, let φn denote the pgf of the offspring distribution for individuals in the (n−1)th

generation. If {φn}n>0 is deterministic, then we are in a varying environment.

2. Random environment: Let the offspring distributions be random across generations,

but iid (stationary, ergodic).

That is, let {ζn}n>0 be a sequence of iid (stationary, ergodic) random “environmental

variables” in some space Θ, where we associate with each point ζ ∈ Θ a pgf φζ . If φζn

is the pgf of the offspring distribution for individuals in the (n− 1)th generation, then

we are in a random environment.

The case of varying environment has been considered since the dawn of branching processes,

and a concise summaries of main results can be found in [64] or [51]. In general, because

there is no additional randomness in these processes their behavior can be well-understood

so long as one can deal with the analysis of the generation functions.

First, varying environment processes behave similarly to GWBP in many ways. For

example, a Kesten-Stigum theorem holds for a class of supercritical varying environment

processes. Let µj be the mean of the offspring distribution of the jth generation and call the

process uniformly supercritical if

n+k−1∏
j=k

µj > Bcn for some B > 0, c > 1, and all n, k > 0

Also let Xn represent the random number of offspring of an individual in the nth generation.

Then:
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Theorem 3 from [45]). If the branching process is uniformly supercritical and is dominated

in the sense that there exists a random variable X with EX <∞ such that

P(X > x) > P(Xn/µn > x) for all x,

then there exists a sequence of constants cn such that Zn/cn converges to an a.s. finite

random variable W with {W = 0} = {Zn → 0}.

But there are some surprising differences in contrast to GWBPs. We have seen in the

discussion of the Kesten-Stigum theorem that, on the set of non-extinction, a supercritical

GWBP has essentially only one rate of growth (up to multiplicative shifts ): µn. As shown

in the theorem above, this happens to be true for a large class of branching processes in

varying environment. But it is not always so. For example, the authors of [77] construct

a branching process in varying environment which is supercritical and grows like 2n on one

part of the sample space and mn with m > 4 on another part, both with positive measure.

We shall discuss these points further later on in the thesis.

The case of random environment was first introduced in [100] where the sequence {ζn}n>0

was taken to be iid. Their results were later extended to any stationary, ergodic sequence in

[8] and [7] where extinction criteria and limit theorems for the process Zn were developed.

The main takeaway from these papers is basically that under some reasonable conditions

on {ζn}n>0, we can see the same usual behavior of the ordinary GWBP, with slight obvious

modifications. For the sake of brevity we leave the specifics to the reference.

Theorem 1 from [7]. Under some mild assumptions about the environmental process

{ζn}n>0 including an X logX+ condition, essentially the same results as in the Kesten-

Stigum theorem for Galton-Watson processes apply.

We note at this point that the entire line of work above all share a common assumption:

the mean of the offspring distributions is finite. The other line of the work on branching

processes concerns the Galton-Watson process with infinite mean. In this literature the
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offspring distributions are not taken to be varying, but have infinite mean. While technically

these are just supercritical GWBPs, the conditions of the Kesten-Stigum theorem are not at

all satisfied, so the limiting behavior is markedly different.

In [94], the authors adapt techniques from the study of finite-mean supercritical branch-

ing processes in [95] and [58] to characterize infinite-mean branching processes as either

regular or irregular depending on their limiting growth behavior.

Recall from the Kesten-Stigum theorem that, for finite-mean processes, the probability

that the martingale limit limn→∞ Zn/µ
n = M is not zero is positive if and only if the

X log+X condition is satisfied. Therefore in the infinite-mean realm, we say a process is

regular if for any sequence of positive constants {cn}n>0 for which limZn/cn a.s. exists,

P(limZn/cn = 0 or ∞) = 1.

However, just like how branching processes in varying environment surprisingly can

display growth at two different rates, infinite-mean branching processes display interesting

exceptions to the finite-mean behavior.

Theorem [94]. There exist infinite-mean Galton-Watson processes such that for some

positive deterministic sequence {cn}n>0, the martingale limit M := limn→∞ Zn/cn has

P(M > 0) > 0.

Call these the irregular processes. In [94], it is also shown that for all regular processes

there exists a slowly-varying function U(·) such that U(Zn)/en converges to a non-degenerate

limit. In Chapter 5 we take the first step towards investigating these behaviors for a new,

related type of branching process.

2.1 2.1.3. Continuous time branching processes

Say that in a branching process we now want to keep track of the birth, death, and repro-

duction times of each individual. Enter the continuous time branching process.

We saw that discrete-time branching processes are generally defined by the offspring

distribution(s) of the system. If the distributions are the same for every individual, then
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we have a GWBP. If they vary by generation, then we have a branching process in either a

varying or random environment.

A continuous time branching process requires a bit more definition. In the most general

form, we start by associating with every individual x in the system two processes:

1. λx (the life-length of x): a (possibly infinite) non-negative random variable.

2. ξx: (the reproduction process of x): a point process on N (R+), the space of integer or

infinite-valued positive measures on R+ that are finite on bounded sets.2

It turns out that carefully defining these two processes allows us to subsume almost every

other classical branching process. We will not dive deeper into the probabilistic setup here.

Instead, let us build up some intuition.

One can think of ξx as tracing out the “timeline” of births of the individual x over the

infinite time horizon, starting at the time of x’s own birth3. This also means that in order

to come into agreement with the physical reality that most things in the universe cannot

reproduce after they cease to exist, we will enforce the assumption that the probability that

ξx puts any mass after λx is zero, or:

P(ξx((λx,∞)) = 0) = 1 (2.2)

Unless otherwise specified, all following statements will be conditional on no children after

death. In general, note that,

1. These processes are homogeneous in the sense that we generally assume the pairs

(λx, ξx) to be iid across individuals say with probability distribution Q, a measure on

2We will adhere to the usual point process notation that, for an interval A on the real line, ξ(A) = the
number of points inside A.

3In some places the ξx process is indexed relative to absolute time, so that time 0 represents the start of the
entire branching process. In that case, if σx represents the birth time of x then ξ([0, σx)) = 0. For ease of
exposition here, though, we shall let time 0 represent the time of x’s birth.
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the space (R+ × N (R+)). But they are quite inhomogeneous in the sense that the

reproduction ξx within each individual’s lifetime is generally not uniform.

2. Any general branching process can be easily collapsed into the classic discrete-time

picture by ignoring λx and recording only ξx([0, λx]) instead of all of ξx.

Aside from this basic assumption though, there are a plethora of possible models to investi-

gate.

Example 2.1.6. (Bellman-Harris processes)

A Bellman-Harris process is a continuous-time branching process where an individual’s

lifespan and the number of children they bear over their lifetime are independent.

That is, if for each individual x, λx is independent of ξx, then the branching process is a

Bellman-Harris process.

Example 2.1.7. (Splitting processes)

A process where individuals are replaced by their offspring, in effect “splitting” into a

certain number of other individuals, is called a splitting process. In other words, individuals

cannot give birth more than once.

That is, if ξx gives mass to only one random point ν, then the branching process is a

splitting process.

If further we have P(ξx({λx}) = 2) = 1 then each individual always gives birth to exactly

2 offspring—a binary splitting process.

The most important example for the purposes of this dissertation is the Yule process:

Example 2.1.8. (Yule processes4)

A process starting with one individual where all individuals live forever and give birth at

a unit per-capita rate is a rate-1 Yule process or pure birth process.

4The Yule process dates back to 1925 [114] when it was first used to describe the distribution of the number
of species per genus, which Yule observed followed a power law distribution.
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That is, if for all individuals x, λx = ∞ and ξx is a rate-1 Poisson process, then the

branching process is a rate-1 Yule process. If ξx is a rate-α Poisson process, then the branch-

ing process is a rate-α Yule process.

To describe the extinction and growth rate of such branching processes, it will be useful

to distill the reproduction point process ξx down into a function:

Definition 2.1.9. The reproduction function of a branching process driven by the life-length

and reproduction process (λ, ξ) is

µ(t) = E ξ([0, t]]

so that µ(0) represents the expected number of offspring born instantly, and µ(∞) represents

the expected number of offspring born over an individual’s entire lifetime.

Since µ(∞) in the continuous-time case is the analogue of µ, the expected number of

offspring in the discrete-time case, it’s unsurprising that continuous-time branching processes

follow a similar criticality classification as in the discrete case according to µ(∞).

We say a continuous-time branching process is subcritical, critical, or supercritical ac-

cording to whether µ(∞) < 1,= 1, or > 1 respectively. As it turns out, the growth behavior

of such processes is still roughly the same as in the discrete case. To state the results

rigorously, we need just a bit more notation:

z(t) := the number of individuals alive at time t

za(t) := the number of individuals alive at time t who are younger than a

Obviously, if a > t then za(t) = z(t).

Things are a bit more complex in the asymptotic analysis of the continuous-time case,

so for now we shall content ourselves with showing how to understand the mean growth

behavior of these processes in terms of E z(t) and E za(t).
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Recall that in the case of GWBPs (under appropriate moment conditions), the martin-

gale Mn = Zn/µ
n tells us that,

1. When µ < 1, EZn → 0

2. When µ = 1, EZn → 1

3. When µ > 1, EZn = µn

The same trichotomy persists in continuous time. However, the precise rate of growth in the

supercritical, continuous case will depend not only on the total number of offspring µ(∞)

this time, but on the whole timeline of births µ through a special parameter α:

Definition 2.1.10. If it exists5, the Malthusian rate of growth of a continuous-time branch-

ing process with reproduction function µ is the unique solution α to the equation

∫ ∞
0

e−αtµ(dt) =

∫ ∞
0

αe−αtµ(t)dt = 1

Where the first equality follows from Fubini’s theorem. α is positive, zero, or negative de-

pending on whether µ(∞) is < 1,= 1, or > 1.

One can think of the integrand e−αt as the continuous-time analogue of the normalizing

sequence µn from the supercritical GWBP. And we see that it plays a similar role in the

asymptotic analysis.

Theorem 6.3.3 from [65]. Under some reasonable conditions on µ,

1. If µ(∞) < 1, then

E z(t)→ 0 as t→∞

2. If µ(∞) = 1, then for all 0 6 a <∞,

E za(t)→ C1 as t→∞

5In certain edge cases it does not, for example if µ(0) > 1 then we may have P(z(t) =∞) > 0.

22



where C1 depends only on a, λ, and ξ.

3. If µ(∞) > 1, then for all 0 6 a <∞,

E za(t) ∼ eαtC2

where α is the Malthusian rate of growth and C2 depends only on α, a, λ, and ξ.

Let us see by example what this can tell us.

Example 2.1.11. (Growth of a rate-ν Yule process)

The rate-ν Yule process’s reproduction is driven by a rate-ν Poisson point process so the

reproduction function is given by µ(t) = νt. Therefore the Malthusian parameter is solved by

1 =

∫ ∞
0

αe−αtνtdt = να

∫ ∞
0

te−αtdt = να

(
1

α2

)

Yielding α = ν. Therefore since ν > 0, the Yule process is supercritical and the population

size grows roughly at rate eνt as t→∞.

In Chapter 3, we conduct essentially the same analysis, except instead of a Yule process

driven by Poisson point processes, we will study a branching process driven by Yule processes

viewed as a point process. We will also make use of stronger limit theorems giving us a.s.

and L1 convergence of z(t).

2.2 2.2. Networks

2.2 2.2.1. Scale-free networks

Networks with power law degree distributions (scale-free networks) have experienced a surge

of popularity in the past 2 decades. By power law degree distribution, we mean that the

degree distribution of a given graph is roughly

p(k) = Ck−α, some α > 1
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for appropriate values of k. In reality, many real-world networks deviate from this prescrip-

tion due to finite-size effects. For example, it is common for many social networks to exhibit

an exponential cutoff at some large k, see for example [35]. For simplicity in what follows

we ignore these effects.

The timing of the surge coincides with the fact that technological advances have allowed

us to examine the properties of massive networks such as the Internet and citation networks

and discover that many of these have power law degree distributions. Indeed the recent

resurgence in the study of scale-free networks can be traced back to Barabasi’s empirical

discovery that the network of the internet has a power law indegree distribution with α =

2.1± 0.1 [4]. Since then many other networks have been shown to exhibit power law degree

distributions, spanning a range from networks in social science to the humanities. There

are too many examples to name here—see [43] for a more exhaustive discussion—but one

particular class of networks is worth mentioning for later reference.

It is known that the social network Twitter exhibits much stronger scale-free character-

istics than other popular social networks such as Facebook ([71], [105]). On Twitter, the

majority of interactions between users are passive in nature—once a user A “follows” another

user B, user A will see all content that user B posts onto the network. This is similar to

Facebook, except with one crucial difference. On Facebook a user must request a connection

(“send a friend request to”) with another user and wait for that other user to approve the

friendship connection before they are connected. On Twitter, the vast majority of users can

be followed by any user without a need for the request to be approved. This allows for much

higher outdegree distributions which appear closer to a true power law, as shown in [71] and

[102], among others.

What makes scale-free graphs interesting relative to those with an exponential tail? The

main implication of a power law tail in graphs is the prevalence of high-degree hubs. These

hubs effectively reduce the shortest-path distance on the graph. For example, it is known

that the diameter of the giant component of an ER(n, p) graph scale like log n. In [22] it was
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shown that preferential attachment graphs with m > 2 have diameter that instead scale like

log n/ log log n. These results have implications for a wide-range of graph problems, from

routing [19] to epidemics and information diffusion [86] (also discussed later).

The study of scale-free graphs has only accelerated recently, but the notion itself is actu-

ally quite old. The Erdos-Renyi random graph model was introduced in 1959. Just 6 years

later in [88], Price noticed that citation networks exhibit a power law degree distribution. A

decade or so later in [89], Price posited the so-called cumulative advantage mechanism which

generates a network with power law degree distribution according to a simple rich-get-richer

scheme: new vertices attach to an existing vertex with probability proportional to the degree

of the existing vertex. Over a decade later, this was re-discovered by Barabasi in [10] and is

now more commonly known as the preferential attachment (PA) mechanism.

This model has become one of the standard workhorses in the complex networks com-

munity. At this point it is impossible to compile a representative list of references, we will

try to give an overview, restricting ourselves as far as possible to papers close in spirit to this

project; see [103] where it was introduced in the combinatorics community, [10] for bringing

this model to the attention of the networks community, [82],[43] for survey level treatments

of a wide array of models, [23] for the first rigorous results on the asymptotic degree distri-

bution, and [36], [21], [93], and [46] and the references therein for more general models and

results.

2.2 2.2.2. Preferential attachment

The canonical way of growing scale-free networks is preferential attachment, and this is the

model with which we concern ourselves in the first part of this proposal. There are several

variants of the preferential attachment model, but all share the same basic mechanism:

Definition 2.2.1. (Preferential attachment)

25



1. Start with two nodes with m edges between them.6

2. At time n add one vertex with m edges to the existing graph in the following way.

(a) Link the first edge to an existing vertex v with probability proportional to some

function f(Dn−1(v)) where Dn(v) is the degree of v at time n.

(b) Update the degrees of all vertices in the graph

(c) Repeat (a) and (b) until all m edges are connected.

At time n there will be 2 + n vertices and total degree 2mn. For the rest of this section

we will concern ourselves with the case of trees m = 1, both for simplicity of exposition and

because the general case can always be reduced to the case of trees.

The variations in the model concern the function f(·). In the original Barabasi-Albert

formulation, f(Dn−1(v)) = Dn−1(v), i.e. the probability of connecting to an existing vertex

v is proportional to the degree of v. The simplest generalization of this model is sometimes

referred to as linear preferential attachment in which

f(Dn−1(v)) = Dn−1(v) + α, α > −1

Since this model encompasses the original (the special case α = 0), we will sometimes let

preferential attachment mean linear preferential attachment. Note that as α→∞, we have

the so-called uniform attachment scheme in which new edges attach to existing vertices

uniformly at random.

The preferential attachment model has become one of the standard workhorses in the

complex networks community, based in part on the fact that it exhibits the power law/heavy

tailed degree distribution observed in an array of real world systems. As the literature on

preferential attachment is large and very broad, we focus on work that is close in spirit to the

6Some formulations of the model begin with a single node and m self-loops. In both cases the limiting
behavior is the same. The point is to resolve the difficulty that arises when starting with a single node with
no edges, in which case the total degree is 0.
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work in this thesis. The preferential attachment model was introduced in the combinatorics

community in [103] and was brought to the attention of the networks community in [10]. The

papers [82] and [43] give survey-level treatments of a wide array of related models, while [23]

gives the first rigorous results on the asymptotic degree distribution. More general models

and results can be found in [36], [21], [93], [46], and the references therein.

For all its simplicity, the PA mechanism can be viewed in a deeper light through a

continuous-time heuristic which turns out to be very useful. Essentially, the PA process is

a type of Polya urn process, which can be embedded into a natural continuous-time process

related to the Yule process.

A rate-γ Yule process {Yγ(t) : t > 0} is a continuous-time process which starts at time

0 with 1 individual where individuals in the system survive forever and give birth to new

individuals independently of other individuals and at rate γ (i.e. the waiting time between

births is ∼ exp(γ)). When γ = 1 we shall call this point process the standard Yule process.

To foreshadow the connection with our work in the second chapter, let us flesh out this

point process explicitly. Suppose that {e(k)}k>1 is a sequence of independent exponential

random variables with e(k) ∼ exp(k). If we view these as inter-arrival times of a point

process P0 on R+, i.e.

L(m) = e(1) + . . .+ e(m), P0 := (L(1), L(2), . . .)

then P0 is exactly a standard Yule process.

If we initiate two rate-α Yule processes Y 1
α (t), Y 2

α (t) at the same time, then the numbers

of individuals in the processes evolves exactly like a 2-color Polya urn starting with one ball

of each color. More precisely let N i
α(t) denote the number of points in Y i

α(t) at time t and

write Y (t) = (N1
α(t), N2

α(t)). If X(n) = (X1(n), X2(n)) is the Polya urn process at step n

mentioned above, then

Y (τn)
d
= X(n), τn = inf{t > 0 : N1

α(t) +N2
α(t) = n}
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To see this, note that at any fixed time t0 the probability that Y 1
α increases by 1 before

Y 2
α does is the probability that the minimum of Y 1

α (t0) iid exp(α) random variables is less

than the minimum of Y 2
α (t0) iid exp(α) random variables, which by the properties of the

exponential distribution is proportional to Y 1
α (t0)/(Y

1
α (t0) + Y 2

α (t0)). This is exactly the

probability that a ball of the first color is picked next in a 2-color Polya urn with Y 1
α (t0)

balls of the first color and Y 2
α (t0) balls of the second color.

To make the connection to the preferential attachment model, recall that we start with

two vertices (labelled 1 and 2) linked with an edge and suppose we have α = 0. Clearly the

model evolves as the number of balls in a 2-color Polya urn, where the colors correspond to

the family lines of either vertex 1 or vertex 2. This simple model is of limited value, but a

simple modification yields the bedrock of all later analyses.

First, we need to set up a small variation on the standard Yule process. Let

{Eα(k) : k > 1} be a sequence of independent exponential random variables as before ex-

cept now suppose Eα(k) has rate k+α rather than k. Viewing the above as the inter-arrival

times of a point process Pα on R+ and setting Lα(m) = Eα(1) + · · · + Eα(m) for m > 1 as

before, define the point process

Pα := (Lα(1), Lα(2), . . .). (2.3)

Note that P0 is exactly a rate-1 (or standard) Yule process. For fixed t > 0, write Nα(t) for

the number of points in Pα which fall in the interval [0, t]. This process will drive our key

branching process:

Definition 2.2.2 (Continuous time branching process). Fix α > 0. We let {BPα(t) : t > 0}

be a continuous-time branching process driven by the point process Pα in (3.4). More pre-

cisely:

(a) At time t = 0 we start with one individual called the root ρ which has offspring distribu-

tion Pρα
d
= Pα. The times of this point process represent times of birth of new offspring.
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(b) Every new vertex v that is born into the system is given it’s own offspring point process

Pvα
d
= Pα, independent across vertices.

For t > 0, we will view BPα(t) as a (random) tree representing the genealogical relation-

ships between all individuals in the population present at time t. Now set:

τn := inf {t : |BP(t)| = n}

Writing Tn for the preferential attachment tree grown with parameter α until size n, we have

BP(τn)
d
= Tn, viewed as random rooted trees. But more than that, we have that the two

processes of growing random trees have the same distribution namely

{BP(τn) : n > 1} d
= {Tn : n > 1} .

Thus we have extended the simple idea of an urn process embedded in Yule processes to

describe, in continuous time, the evolution of the entire preferential attachment tree. This

is the fundamental idea behind our entire analysis of the changepoint regime. Later on we

shall derive the Malthusian rate of growth for this process on the way to other limit theorems

as well.

2.2 2.2.3. Changepoint detection on networks

The general changepoint detection problem has a vast history owing to its obvious importance

in applications such as quality control and reliability of industrial processes, in particular

quick detection of process failure in production, as well as fields such as signal processing (e.g.

biomedical data including neuronal spike data and seismic data), automatic segmentation

of signals into stationary segments via identification of change points etc. An exhaustive

overview of the classical literature can be found in [11].

By and large, the statistical theory of changepoint detection is extremely well-developed,

see e.g. [39, 24, 27, 28, 97, 98, 99]. On the other hand, the majority of “changepoint
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detection” on networks is actually the study of detecting anomalies from what is predicted

by the model, without a natural temporal aspect. Indeed there has been a significant amount

of work on developing techniques to detect anomalous subgraphs and motifs within networks,

see e.g. [48, 2, 83, 90, 57, 96], for a wide-ranging survey see [29]. This also includes anomalous

edge detection via link prediction algorithms [61].

There has been less work done with temporal (time-varying) networks. Much of the work

in this area is centered along quantifying anomalies in a sequence of deterministic sequence

of graphs, see for example [101], [83], [1]. The changepoint problem on a sequence of a graphs

(e.g. across time) with a probabilistic model underneath is less explored and we discuss it

here.

Classical changepoint detection is essentially focused on detecting changes in parameters

of an independent (or stationary) sequence. This is where network changepoint problems

start to diverge from the classical regime. First of all, network data is often far from inde-

pendent, especially if the network size is growing as in dynamic models mentioned below.

Secondly, the changes we are interested in often go beyond simple shifts in parameters. We

may be interested in more complicated concepts such as changes in community structure or

more complicated quantities such as the clustering coefficient. All of these present difficulties

when appealing to existing theory.

It is convenient to think of generative network models as falling into one of two classes:

static models or dynamic models. In static models the network size is fixed, whereas in

dynamic models the generative mechanism directly models the growth of the network over

time. The ER(n, p) Erdos-Renyi random graph on n vertices is a static model, whereas the

PA(1, α) preferential attachment is a common dynamic model. This distinction carries over

to changepoint problems on networks in a natural way.

First, one can try to detect a change in a static network model across a sequence of

realizations of that static model. Adapting classical changepoint techniques in this case is

often simpler for a variety of reasons, not least of which is that the network size is taken to be
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fixed across time. If the networks in the sequence are taken to be independently generated,

then adapting classical changepoint concepts is even more straightforward. The simplest

way to do this is to convert the graph sequence to a scalar sequence and apply traditional

techniques. In [78] the authors consider a sequence of independent ER(n, p) graphs in which,

after a certain point, a subset of nodes begins to connect to each other with higher probability

than to the other nodes in the graph. The bulk of the paper is devoted to selecting a proper

test statistic, but the stopping rule for actual changepoint estimation still comes back to

Average Run Length (ARL) theory. This also is the approach followed in [79]. Even in cases

when the graph sequence cannot be easily reduced to a scalar sequence, independence across

a static sequence is easy to analyze. For example [87] purport to develop an “entirely general”

changepoint detection method using the generalized hierarchical random graph model, but at

its core their approach is simply maximum likelihood on a sequence of independent graphs.

By and large however, it is unreasonable to assume that from time t to t + 1 that the

entire graph is independently regenerated, especially if the underlying entities represented

by the nodes are fixed. Inspired by voting record graphs from the US Congress (i.e. two

congressmen are joined with an edge if they voted together on a bill), [113] has proposed a

simple ER(n, p) variant with Markov chain dependence for the presence of an edge between

a particular pair of vertices, and analyzed the natural changepoint question arising from that

chain. These methods depart somewhat from classical changepoint formula, but still confront

a relatively simple situation: a sequence of graphs with a fixed number of vertices and

underlying generative model, with a well-understood dependence structure across graphs.

One natural question that has yet to be explored, however, is to investigate changes in

parameters controlling dynamic network evolution within a single growing network, specif-

ically, preferential attachment. This is the regime we concern ourselves with in our first

project below, and in which virtually no work has been done. Adapting classical techniques

is very difficult for the simple reason that dynamic network model evolution is a highly

dependent process. In preferential attachment for example, the placement of a new node
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depends on the entire existing structure of the graph, so individual placements are neither

independent, stationary, nor ergodic. This calls for a completely different approach than in

standard univariate changepoint analysis.

2.3 2.3. Cascades

2.3 2.3.1. What is a cascade?

In general, a cascade is a process occurring on a graph which starts at a single node and

spreads across vertices in a way such that affected vertices trigger neighboring vertices in

some way. In this way, it is distinguished from other interacting models on a graph (Ising

model, voter models) where all particles interact with all other particles simultaneously.

But even then, a cascade can mean a lot of different things depending on the context. In

the economics literature [14], an informational cascade is a process spreading over a group

of individuals in which an individual, having observed the actions of those ahead of him,

follows the behavior of the preceding individual without regard to his own information. In

this sense, a cascade is a sort of herd mentality process. In other contexts, a cascade can

refer to a sort of epidemic model where individuals are carriers for a disease and the disease

propagates to other individuals according to some mechanism.

To narrow down our discussion to those models relevant to our study, let us first propose

a rough classification. Essentially, all cascade models fall into one or more of these three

categories, based on how the mechanism for propagation is defined:

1. Agent-based models:

These models specify the propagation mechanism at the individual level, generally

by explicitly modelling a decision-making process for whether or not to propagate

the cascade. This process can be simple, such as by observing the proportion of

neighbors who are active in the cascade, or can be complex, involving game-theoretic

considerations.
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In most of these cases, the graph is implied or de-emphasized, e.g. [14] or [9], but there

are exceptions. In [37] for example, the authors investigate agent-based diffusions on

the classic Watts-Strogatz small world network.

2. Continuous-time, rate-based models:

These models specify the rate at which a cascade passes from individuals to one an-

other, and encompasses most epidemic models such at the SI/SIR/SIS models. In

these models, the basic dynamic is that uninfected neighbors of infected nodes (sus-

ceptible notes) become infected at a certain rate and then either stay infected forever

or recover at certain other rate. The steady-state is then generally studied using a

mean-field approach—approximating the random process flowing on the graph using a

set of deterministic differential equations.

These types of processes are well studied—variations on the SI/SIR/SIS paradigm are

especially ubiquitous, see [42] or [115] for typical examples. Therefore we will not

go further into it here besides to direct the reader to [46, 85, 63] for comprehensive

analyses and overviews.

3. Discrete-time, probability-based models:

These models directly specify the individual probabilities of transmission between ver-

tices and is the tradition within which we study them here.

It is worth noting that there is some degree of overlap between all three of these categories.

Almost any model in one of these three categories can be reduced to or put in terms of

another, if one tries hard enough.

For example, some models (e.g. [109]) specify the propagation of a cascade using a

threshold-based approach: susceptible vertices on a graph become infected only when some

fixed fraction of their neighbors are infected. This can be viewed as an agent-based model

with vertices choosing their state (infected, not infected) based on some function of how
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popular each state is among their peers. But the model can also be analyzed in a probabilistic

light—by recursively calculating probabilities for whether vertices n steps away from the

source of the cascade become infected. Other models such as [60] explicitly involve a rate of

infection and a threshold model.

However, what does generally remain true to each category are the styles of methods

used in and results obtained from each one. The model most relevant to us is the independent

cascade model first elucidated in [54]. We quote from [70]:

The cascade starts with an initial set of active vertices and then unfolds in discrete

time according to the following rule. When a vertex v becomes active in step t,

then it is given a chance to activate each currently inactive neighbor w; it succeeds

with a probability pv,w—a parameter of the system—independently of the history

thus far. (If w has multiple active neighbors, then their attempts are sequenced in

an arbitrary order.) If v succeeds, then w becomes an active vertex in step n+ 1;

but whether or not v succeeds, it cannot make any further attempts to activate w

in subsequent rounds.

Indeed, this model is so simple that it is sometimes referred to in the literature as the

“cascade” model (as opposed to “threshold” models). Its simplicity makes it amenable to

analysis and, in fact, many studies involving estimation of pairwise transmission probabilities

implicitly study this model. See for example [92, 55]. There is also a long chain of research

involving influence maximization using this model, i.e. discovering which set of vertices

to activate initially in order to achieve the largest resulting cascade, see [70] or [30] for two

representative papers on the general theory—see [110] for an extension targeting the Twitter

network.

However, not many of these analyses are probabilistic. Rather, they are studies in

optimization given a fixed, nonrandom graph. If we move to modelling these cascades on

a random graph however, it is not hard to believe that an independent cascade model with
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constant probabilities (i.e. pv,w = some p for all v, w ∈ V ) can be modelled by some binomial-

based branching process. Indeed if a graph is large enough, one would expect a branching

process approximation to work quite well in modelling the growth of the cascade. In this

thesis our setting will be that of graphs with infinite variance, which, under size-biasing,

takes us into the realm of branching processes with varying environment and infinite mean.

However, the most attractive feature of this model to us is the fact that the probabilities

pv,w can be varied in a simple way. Not only does this reflect one’s intuition about reality,

but it also opens the door to the possibility of producing a wide array of cascade behaviors

through adjustment of only the probabilities. This general scheme is not new. For example,

in [112] the authors propose the closely-related linear influence model which also models

an independent cascade process whereby the transmission probability for a given cascade

is a linear function of the “influence” of the nodes which the cascade has passed through

previously. We find this model both more complicated and less salient for the social networks

we model. The independent cascade paradigm is also tackled in [55], where the inferential

question of learning the transmission probabilities at each node of the network is undertaken.

In neither of these cases is a rigorous probabilistic analysis carried out.

2.3 2.3.2. The shape of viral cascades

So how do cascades look like in reality? Do any of the cascades models mentioned above

actually do a good job of modeling them? Thanks to smartphones and social media, we have

many examples to mine.

On many social networks (not only Twitter, e.g. Facebook), the bulk of interactions are

not person-to-person but rather a broadcast to all of a user’s peers. For example in both

Twitter and Facebook, most of the time a user posts content to the social network, it is

by default seen by all followers of that user. When a follower of the originating user sees

the original content, they then face a decision: if they think it is interesting, they might

re-broadcast it to their followers, or they can ignore it. On Twitter this is called retweeting
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a tweet to a user’s followers, and on Facebook this might be called resharing content to a

user’s friends.

In various studies using real cascade data, the dominant finding is that real-life cascades

don’t match classical theory in a multitude of ways. This isn’t surprising. Studies abound

about how real cascading behavior occurs at different speeds than is predicted by continuous-

time models [62],

However, there is one facet which holds particular interest to us: the shapes of real

cascades don’t match what is predicted by simple models. By shape, we mean the width

and depth of the subgraphs traced out by cascades.

To impart some intuition, let’s use the example of tweets on Twitter. Suppose we

randomly sample tweets from the Twitter social network and look at the resulting subgraph

that is traced out by users’ successive retweets of the original tweet. Modelling this retweeting

process via a branching process means that we are interpreting each retweet as an individual

in a GWBP, and each retweet’s successive retweets as an individual’s offspring in a GWBP.

In light of this, there is only one possible way for a tweet with a high number of retweets

to get that way. If we view the subgraph of the cascade as a tree, then the tree of a popular

tweet necessarily has great depth and a high number of individuals at each level. However,

the main finding of several recent studies is that real cascades are much richer in shape.

There are many tweets with long-lived, yet “skinny” retweet networks. Also common are

“star” networks—retweet networks which are very large yet also very shallow. These shapes

cannot simultaneously be explained away by easy modifications to a GWBP. Indeed, this is

exactly the finding of [52] using data (we shall return to this example again in Chapter 5)

and of [44] using data from Facebook.

But this phenomenon is not limited to Twitter, or even Facebook. In [108] the authors

study the social network Digg and find that, although there exists content informative enough

to potentially reach hundreds of people within one hop of the originator, it rarely if ever

affects more than even 0.1% of the entire network. [73] study the cascade of e-mail chain
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letters and find that many such cascades trace out a very deep but narrow tree pattern,

which as mentioned above is impossible by classical models. See [5] for a study using data

from the LinkedIn network and [72] for a study using data scraped from various blogs.

To the author, the simplest explanation for this disconnect between theory and reality

is that the transmission probability is not constant over the life of the tweet. By-and-large,

most existing models used to explain these phenomena employ the assumption of constant

transmission probability over time—in continuous models, this takes the form of a constant

rate. Almost all epidemic models generally fall in this category and only recently have

exceptions cropped up, see [69].

There have been some attempts to resolve these sorts of contradictions with simple

branching models. By far, the bulk of these efforts have been by physics working on

continuous-time epidemic models, see [38, 68, 75, 63] and also some of the references in

the previous two paragraphs.

The crux of the latter portion of this thesis is an analysis of a simple cascading process

with decreasing probabilities on a scale-free network topology, which is the correct paradigm

for social networks [15].
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CHAPTER 3

Changepoint detection on preferential attachment

3.1 3.1. Introduction

Motivated by the availability of data on many real world systems, the last few years have

witnessed an explosion in both methodological and theoretical development of various com-

plex network models, see e.g. [20, 46, 106, 33, 82, 81, 3, 43]. One sub-field which has been

particularly active is temporal or time varying networks. See the recent surveys [18, 59] and

the references therein for more.

Consider the simplest version of the classical (offline) change point detection in the

context of iid data described as follows. Fix two distribution functions F and G (unknown

but different) and a parameter γ ∈ (0, 1). Consider a stream of data {Xi : 1 6 i 6 n} with

distribution: for i 6 bnγc Xi are iid with distribution F whilst for i > bnγc, Xi are iid

with distribution G (and independent of the initial segment). Based on the observed data,

{Xi : 1 6 i 6 n}, the aim is then to estimate the change point γ using estimators that are

consistent as the sample size n→∞.

Our goal in this chapter is to investigate the analogous problem on temporal networks

whose evolution is driven by a mechanism depending on a parameter affected by the change

point. Because of their heavily dependent nature, this setting presents some interesting

challenges. Our investigation proceeds as follows:

(a) We start by proposing a variant of the standard preferential attachment model which

incorporates a change point. This conceptually simple model allows for an easy interpre-

tation of the effect of the change point on network dynamics. We rigorously study the

effect of this change point on structural properties of the network including the scale-free
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or heavy tailed nature of the limiting degree distribution as well as asymptotics for the

maximal degrees.

(b) We then propose and study consistency properties of offline estimation procedures to

detect the location of this change point from observed data. In particular this allows

one to gain insight into the effect of the non-stationary nature of the evolution of the

network model on various known heuristics for estimation in the iid setting.

3.1 3.1.1. Organization

Both change point detection as well as preferential attachment models have witnessed enor-

mous amount of work over the last few decades. For a fuller discussion of these two fields,

their relevance to this project as well as related work, see Sections 2.2.2 and 2.2.3.

We start in Section 3.1.2 by defining the model. In Section 3.1.3 we setup notation re-

quired for the main results. Section 3.2 contains our main results, starting with Section 3.2.1

that describes asymptotics for functionals of the networks including the degree distribution

as well as maximal degrees as the network size n→∞. Section 3.2.2 formulates estimators

to find the change point and proves their consistency properties. Proofs for asymptotics of

network functionals can be found in Section 3.4. Section 3.4.5 develops a functional central

limit theorem for a specific functional of the network. Section 3.4.6 then uses this CLT to

prove consistency of the proposed estimator.

3.1 3.1.2. Model formulation

Let’s recall the linear preferential attachment model from definition 2.2.1.

Start with a single vertex at time m = 1 (this vertex will be referred to as the root or

the original progenitor of the process and denoted by ρ). Fix a parameter α > 0. At each

discrete-time point 1 < m 6 n a new vertex enters the system with a single edge1 which it

1Throughout this chapter we will consider the simplest case where the network at each stage is a tree. The
methodology can be generalized to the general network setup.
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will then connect to a pre-existing vertex. The vertex connects to a pre-existing vertex v

with probability proportional to the current degree of v plus α. Let Tm denote the graph

at time m and {Tm : 1 6 m 6 n} be the entire graph valued process. Note that since each

new vertex has one edge which it uses to connect to the current graph, Tm for any m is a

tree rooted at ρ. Thus for m > 1, the degree of every vertex is at least 1. If we regard the

existing vertex to which a new vertex attaches at the parent of this vertex, then one can

view this process as generating a directed tree with edges pointed from parents to children.

Our analysis is based on a continuous-time version of this process for which a slight

variant of the above discrete-time process is more natural. For directed rooted trees the

degree of every vertex other than the root is 1+ out-degree of the vertex; for the root, the

degree and the out-degree coincide. Fix a single vertex at time m = 1 and a parameter

α > 0. The preferential attachment variant considered in this thesis is as follows: at each

stage m > 1 a new vertex enters the system and connects to a pre-existing vertex v ∈ Tm−1

with probability proportional to 1 + α+ out-degree of v in Tm−1. This model differs from

the original only in the attachment probability to the root, and has all the same asymptotic

properties as the original model but is slightly easier to deal with rigorously.

This model has been studied extensively and in particular it is known [23] that the degree

distribution converges in the large network limit. Precisely, for fixed k > 1, let Nn(k) denote

the number of vertices with degree k in Tn. Then,

Nn(k)

n

a.s.−→ pα(k), where pα(k) := (2 + α)

∏k−1
j=1(j + α)∏k+2
j=3(j + 2α)

. (3.1)

Here for k = 1, we use the notation
∏k−1

j=1 = 1. Write Dα for a random variable with the

above distribution. It is easy to check that there exists a constant c > 0 such that

P(Dα > k) ∼ c

kα+2
, as k →∞. (3.2)
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Further, arranging the degrees in Tn in decreasing order as Mn(1) >Mn(2) > · · ·Mn(n),

it is known [80, 12] that for any fixed k > 1, there exists a non-degenerate probability

distribution ναk on Rk
+ such that

(
Mn(j)

n
(1+α)
(2+α)

: 1 6 j 6 k

)
w−→ νkα. (3.3)

where
w−→ denotes weak convergence.

3.1 3.1.2.1. Model with change point

Now fix two attachment parameters α, β > 0, a change point parameter γ ∈ (0, 1), and a

system size n > 1. The model does preferential attachment as before, but now the attachment

dynamics changes after time bnγc namely

(a) For time 0 < m 6 bnγc, the new vertex entering the system at time m connects to

pre-existing vertices with probability proportional to their current out-degree +1 + α.

(b) For time bnγc < t 6 n, the new vertex connects to pre-existing vertices with probability

proportional to their current out-degree +1 + β.

Let θ = (α, β, γ) be the driving set of parameters of the model. We will let Tθ,m de-

note the rooted tree at time m and {Tθ,m : 1 6 m 6 n} for the entire graph valued process.

When the context is clear, for ease of notation we suppress the dependence on θ and write

{Tm : 1 6 m 6 n}. This model is the main object of interest for the rest of the chapter.

3.1 3.1.3. Preliminary notation

To state our main results we will need to define some additional objects. Recall the param-

eter set θ := (α, β, γ) used to construct the model. Let {Eα(k) : k > 1} be a sequence of

independent exponential random variables such that for each fixed k > 1, Eα(k) has rate

k+α. View the above as the inter-arrival times of a point process Pα on R+. More precisely
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write,

Lα(m) = Eα(1) + · · ·+ Eα(m), m > 1.

Consider the point process

Pα := (Lα(1), Lα(2), . . .). (3.4)

Analogously define {Eβ(k) : k > 1}, {Lβ(k) : k > 1} and the corresponding point process

Pβ. For fixed t > 0, write Nα(t) := Pα[0, t] for the number of points in Pα which fall in the

interval [0, t].

We will need variants of the above point process. Fix j > 1 and α > 0. Let Pjα be the

point process where we use the sequence of points {Eα(m) : m > j} to construct the point

process so that the first point arrives after an exponential rate j + α amount of time, the

second point arrives at rate j + 1 + α after the first point and so forth. As before let N j
α(·)

be the corresponding counting process and note that N1
α(·) = Nα(·).

Define the constant

a =
1

2 + β
log

1

γ
. (3.5)

On the interval [0, a], define the “truncated” exponential distribution described via the cu-

mulative distribution function

Ga(s) =
1− exp(−(2 + β)s)

1− exp(−(2 + β)a)
, s ∈ [0, a]. (3.6)

Write Age for a random variable with distribution Ga (the reason for this terminology will

become clear in the proof). Generate a counting process Nβ(·) as above (independent of

Age) so that Nβ[0,Age] is the number of points that occur before the random time Age.

We are now in a position to define the limiting degree distribution. Consider the following

integer valued random variable Dθ:

(a) With probability 1− γ, Dθ = 1 +Nβ[0,Age]
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(b) With probability γ, Dθ = Dα+NDα
β [0, a] where Dα is a random variable with distribution

as in (3.1), namely the limiting degree distribution without change point. More precisely,

generate Dα with distribution as in (3.1). Conditional on Dα, generate the point process

NDα
β and count the number of points in the interval [0, a] and add this to the original

random variable Dα.

Write pθ = (pθ(k) : k > 1) for the probability mass function of the above random variable

namely

pθ(k) = P(Dθ = k), k > 1. (3.7)

3.2 3.2. Results

Let us now describe our main results. We state results about the asymptotic degree distri-

bution in Section 3.2.1. We formulate statistical procedures to estimate the change point

and the associated consistency results in Section 3.2.2.

3.2 3.2.1. Asymptotics for the degree distribution

Fix θ ∈ R+ × R+ × (0, 1). For fixed k > 1 let Nn(k) denote the number of vertices with

degree k in the random tree Tn constructed in the change point model as in Section 3.1.2.1.

The random variable Dθ in the following result is as defined in (3.7).

Theorem 3.2.1. Fix k > 1. As n→∞ the degree distribution satisfies,

Nn(k)

n

P−→ P(Dθ = k), as n→∞

Further for α 6= β and γ ∈ (0, 1), pθ 6= pα. However there exist constants 0 < c < c′ such

that for all k > 1

c

kα+2
6 P(Dθ > k) 6

c′

kα+2
. (3.8)
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Remark 1. This theorem says that one does feel the effect of the change point in the

empirical degree distribution if α 6= β and γ ∈ (0, 1), however comparing (3.8) with (3.2),

for any fixed γ ∈ (0, 1), this does not change the tail behavior. This is a little surprising

as one might assume, especially for γ close to zero and β < α (where the no change point

dynamics with β instead of α results in a degree distribution with a heavier tail), the tail of

the degree distribution might scale like k−(2+β), namely the dynamics of attachment driven

by β should kick in. However this is not the case.

Remark 2. The techniques developed in this chapter easily extend to the setting of multiple

change points. We describe these extensions in Theorem 3.3.1.

The next result deals with maximal degree asymptotics. As before arrange the degrees

in Tn in decreasing order as Mn(1) >Mn(2) > · · ·Mn(n).

Theorem 3.2.2. Fix k > 1 and consider the k maximal degrees (Mn(j) : 1 6 j 6 k). Then

the sequence of Rk
+ valued random variables defined by setting

Mn(k) :=

(
Mn(j)

n
(1+α)
(2+α)

: 1 6 j 6 k

)
, n > 1,

is tight and bounded away from zero.

Remark 3. Comparing the scaling of the maximal degrees above to the setting of no change

point as described in (3.3), one sees that the maximal degrees do not feel the effect of the

change point, at least in terms of their order of magnitude. We further conjecture that

{Mn(k) : n > 1} converge weakly to a non-degenerate distribution on Rk
+. We have not

pursued this further.

3.2 3.2.2. Change point detection

In this section we formulate a non-parametric estimator for the change point based on ob-

servations of the network and establish its consistency. While one could use the explicit
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Figure 3.1: Log-log plot of the limiting degree distribution (red) and simulated network degree
distribution (blue) with network size n = 500, 000 and a corresponding sample of the same size
from the predicted degree distribution. The model parameters are taken as α = 6, β = 1 and the
change point γ = 0.5.
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linear nature of the attachment scheme to devise parametric or likelihood-based estimators

of the change point, our aim is to develop more flexible methods that may work in settings

where the precise form of the attachment model before and after the change point is not

known. The plan of the rest of this section is as follows. Our estimator tracks the propor-

tion of leaves as the process evolves and uses this functional to formulate a non-parametric

estimator. Thus we start by describing a functional central limit for the proportion of leaves

(Theorem 3.2.3). Then we formulate the actual estimator based on this functional. Theo-

rem 3.2.3 is then used to establish the consistency result (Theorem 3.2.4) for the proposed

estimator.

For fixed k > 1 let Nn(k,m) denote the number of vertices with degree k in the tree

Tn at the time of appearance of the mth vertex. Rescaling time by n, for 0 6 t 6 1, let

N̂n(k, t) = Nn(k, nt) and let

p̂n(k, t) =
N̂n(k, t)

nt
, 0 6 t 6 1, (3.9)

be the proportion of vertices with degree k at time nt. The k = 1 case corresponds to the

number of leaves. To ease notation in the displays below, write p̂n(1, t) = p̂nt . Now define

the continuous function,

p(∞)

t =


2+α
3+2α

if 0 6 t 6 γ

2+β
3+2β

(
1−

(
γ
t

) 3+2β
2+β

)
+ γ

t

(
2+α
3+2α

) (
γ
t

) 1+β
2+β if γ 6 t 6 1.

(3.10)

We will prove in Section 3.4.5.1 that for each fixed 0 < t 6 1, p(∞)

t will represent the

limiting proportion of leaves in Tnt. To simplify notation in the sequel, define the function

δ : R+ → [0, 1] by the prescription

δu :=
1 + u

2 + u
, u > 0. (3.11)
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Note that p(∞)

t = p(∞)
γ for t 6 γ. Now define the positive function {σM(t) : 0 6 t 6 1} via

the formulae

σ2
M(t) :=


t2δα

[
δαp

(∞)
γ (1− δαp(∞)

γ )
]

if 0 6 t 6 γ,

γ2δα
(
t
γ

)2δβ
δβp

(∞)

t (1− δβp(∞)

t ), if γ < t 6 1.

(3.12)

For later use define the functions

σ2(t) :=


[
δαp

(∞)
γ (1− δαp(∞)

γ )
]

if 0 6 t 6 γ,

δβp
(∞)

t (1− δβp(∞)

t ), if γ < t 6 1,

(3.13)

and

µ(t) :=


− δα
tδα+1 0 < t 6 γ

− δβγ
δβ−δα

t
δβ+1 γ < t 6 1

(3.14)

Define the diffusion {M(t) : 0 6 t 6 1} via the prescription

dM(t) = σM(t)dB(t), 0 6 t 6 1. (3.15)

Here {B(u) : u > 0} is standard Brownian motion on R+. Thus M is essentially a determin-

istic time change of B(·) namely

φ(t) =

∫ t

0

σ2
M(s)ds, {M(t) : 0 6 t 6 1} d

= {B(φ(t)) : 0 6 t 6 1} . (3.16)
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In particular M(·) is a Gaussian process on [0, 1]. Finally define the functions

g(t) :=


1
tδα

if 0 < t 6 γ,

γ
δβ−δα

t
δβ

if γ < t 6 1.

(3.17)

Define the process

G(t) = g(t)M(t), 0 < t 6 1. (3.18)

By Ito’s formula G(·) solves the SDE

dG(t) = µ(t)M(t)dt+ σ(t)dB(t), (3.19)

where σ(·) and µ(·) are as in (3.13) and (3.14) respectively. Then we have the following

result.

Theorem 3.2.3. Consider the process of re-centered and normalized number of leaves

Gn(t) :=
N̂n(1, t)− ntp(∞)

t√
n

, 0 6 t 6 1, (3.20)

with linear interpolation between time points. Then as n → ∞, Gn
w−→ G where G is the

diffusion defined in (3.19) and
w−→ denotes weak convergence on D[0, 1] equipped with the

usual Skorohod metric.

For the rest of this section, let pn(m) denote the proportion of leaves (degree one vertices)

in Tm. Fix ε > 0. We will define two functions on the interval [ε, 1]. Let

th
(n) =

1

n(t− ε)

nt∑
m=nε

pn(m), ε 6 t 6 1. (3.21)

Let

h(n)

t =
1

n(1− t)

n∑
m=nt+1

pn(m), ε 6 t 6 1. (3.22)
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In words, th
(n) represents the average proportion of leaves in the process between time nε

and nt while h(n)

t represents the same quantity but after time nt. Define the function

Dn(t) := (1− t)|th(n) − h(n)

t |, t ∈ [ε, 1]. (3.23)

Write Mn for the collection of points t for which the corresponding function value Dn(t) is

within log n/
√
n of the maximum of the function. Precisely, let D∗n = maxt∈[ε,1]Dn(t) and

let

Mn :=

{
t ∈ [ε, 1] : |Dn(t)−D∗n| 6

log n√
n

}
. (3.24)

Finally let

γ̂n := max {t : t ∈Mn} . (3.25)

The functionals D∗n,Mn, and γ̂n all depend on ε but we suppress this dependence to ease

exposition below.

Theorem 3.2.4. Assume that the change point γ > ε. Then the estimator γ̂n
P−→ γ and in

fact

|γ̂n − γ| = OP

(
log n√
n

)
(3.26)

Thus γ̂n is a consistent estimator for the change point γ.

Remark 4. The ε-truncation away from zero is a technical compensation for the factor t in

the denominator in (3.21). Technically one should be able to choose a sequence εn ↓ 0 slowly

enough such that the above result (modified using this sequence εn instead of the fixed ε) is

true. This would make the assumption of γ > ε irrelevant in the statement of the Theorem.

Remark 5. The threshold log n/
√
n in (3.24) was arbitrary in the sense that if we chose the

threshold to be ωn/
√
n where ωn → ∞ arbitrarily slowly then the corresponding estimator

would satisfy (3.26) with bound ωn/
√
n.
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Remark 6. See Figure 3.2 for a figure based on simulations for the function Dn(t) with ε

taken to be 0.025.

Figure 3.2: The functionDn(t) with network size n = 200, 000, and model parameters α = 6, β = 1
and the change point γ = .5 as in Figure 3.1.

3.3 3.3. Discussion

We now discuss the relevance of our results, their connections to existing literature and

possible extensions of our results.

3.3 3.3.1. Change point detection literature

As already mentioned in Chapter ??, this problem has a vast history owing to its obvious

importance in many fields. We refer the reader back to that chapter for more details. Here,

we spend just a little time elucidating the math formulation of the classical change point

problem

In this context, recall the motivating example of an independent stream of data

{Xi : 1 6 i 6 n} with a change point in the distribution from F to G at time nγ described
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in Section 3.1. Let tH
(n)(·) and H (n)

t denote the empirical distribution of the data before and

after t namely

tH
(n) :=

1

nt

nt∑
i=1

δXi , H (n)

t :=
1

n(1− t)

n∑
i=nt+1

δXi , 0 < t < 1.

Now define

Dn(t) := t1/2(1− t)1/2 dist(tH
(n), H (n)

t ), (3.27)

where dist is any standard notion of distance between probability distributions on R e.g.

Kolmogarov-Smirnov supremum norm or total variation distance. Finally define

γ̂n = arg max
t∈[0,1]

Dn(t).

Then in [27] it is shown that γ̂n is a consistent estimator of γ. This was partial motivation

for our estimator. Note the “asymmetry” as a function of t between the “classical” context

and the model with change point highlighting the non-ergodic nature of the evolution of the

model after the change point. We will dive a little deeper into this interesting point shortly.

A second point to note is that we use information on leaf densities in the large network

n → ∞ limit. As in [91], one should be able to build on the functional CLT for leaf

counts to establish a joint functional CLT for
{
N̂n(k, t) : 1 6 k 6 K, 0 6 t 6 1

}
after proper

normalization and re-centering for any fixed K > 1. Modifying the estimator in Section 3.4.6

should enable one to get estimators that perform better for finite n.

3.3 3.3.2. The asymmetry within the scaling (1− t)

As mentioned above, our estimator is heavily inspired by and very reminiscent of the estima-

tor of [27]. So what’s different? Let us investigate the question by making an observation.

In all cases, a change in the attachment parameter manifests in a change in the proportion

of leaves. So why can’t we build a change point estimator based solely on an unscaled version
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Figure 3.3: Histograms of γ̃ vs. γ̂ for a change point of α = 0 to β = 10 at γ = 0.20 (N = 100, 000
vertices).

of Dn? That is, what’s stopping us from defining another estimator γ̃ by:

D̃n(t) := |th(n) − h(n)

t |, t ∈ [ε, 1]. (3.28)

γ̃ = argmaxt∈[ε,1] D̃n(t)

The estimator γ̃ actually performs quite well for γ close to 0, (Figure 3.3).

However, the same is not true for γ close to 1 (Figure 3.4).

Earlier we alluded to the asymmetry in the change point problem on this temporal

network due to strong dependency. This is the crux of the matter—when the attachment

parameter changes, the graph doesn’t feel the full effect immediately. Rather, it slowly

evolves and the effect isn’t felt fully until very far away from the changepoint.

Observe in Figure 3.5 that the proportion of leaves begins to change immediately upon

hitting the change point at t = 0.9, decreasing (almost) linearly. However, because the

change point occurs so late and there is heavy dependence in the graph, the proportion of
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Figure 3.4: γ̃ vs. γ̂ for a change point of α = 0 to β = 10 at various values of γ (N = 100, 000
vertices).

Figure 3.5: The proportion of leaves in a PA graph on N = 100, 000 vertices with change point
at γ = 0.9 from α = 0 to β = 10.
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leaves does not jump to its lower limit proportion immediately—it smoothly decreases and

therefore with the unscaled D̃n(t), the obvious argmax of this function occurs at t = 1. For

smaller γ closer to 0.5, say, the effect is less drastic but still apparent.

In general, the basic idea is this: When γ occurs later, the early part of the path of Dn(t)

needs to be “discounted” at a certain rate so that the change in the proportion of leaves is

felt. For preferential attachment, that rate is (1− t).

To put it another way, this scaling tells us exactly how different our problem is from the

classical one with iid data. One can see this by way of comparison with the setting of [27]

of the previous subsection; the analogous Dn(t) function for the iid setting in equation 3.27

carries a scaling of t1/2(1− t)1/2.

3.3 3.3.3. Multiple change points

The proof techniques carry over in a straightforward fashion to the general setting of multiple

change points. Fix time points 0 < γ1 < γ2 < · · · γk < 1 and parameters α, (βi)16k. As before

write θ = (α, (βi)16i6k, (γi)16i6k) for the parameter set. Consider the random tree Tn = Tθ,n

where

(i) In the interval {1 < t 6 γ1n}, vertices use the attachment scheme driven by α (namely

each new vertex attaches to an existing vertex with probability proportional to out-

degree +1 + α).

(ii) In subsequent intervals {γjn < t 6 γj+1n} where 1 6 j 6 k, vertices perform the

attachment scheme driven by the parameter βj. Here we use the convention γ0 =

0, γk+1 = 1.

As in Section 3.1.3 define the point processes Pα,Pβi and for fixed j > 1, the point processes

Pjα,P
j
βi

. To simplify notation, for any t > 0 and point process P , set P [0, t] for the number
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of points in the interval [0, t]. Define the constants

πj = γj+1 − γj, aj =
1

2 + βj
log

γj+1

γj
. (3.29)

Note that π = (π0, π1, . . . , πk) is a probability mass function. Write Epoch for a random

variable with distribution π (i.e. P(Epoch = i) = πi for 0 6 i 6 k). Using the constants

{ai : 1 6 i 6 k} let Gai denote corresponding truncated exponential distributions as in (3.6)

and let Agei denote a random variable with distribution Gai . Now construct the random

variable TimeAlive as follows:

(a) Generate a collection of independent random variables Epoch and {Agei : 1 6 i 6 k}

with distributions specified as above.

(b) Conditional on Epoch = i, let

TimeAlive = Agei +
k∑

j=i+1

aj,

where again by convention, if Epoch = 0, Age0 = 0 and so TimeAlive =
∑k

j=1 ai.

Construct a positive integer valued random variable Dθ as follows:

(i) Generate Epoch ∼ π as above and the corresponding random variable TimeAlive.

(ii) If Epoch takes a non-zero value 1 6 i 6 k, conditional on Epoch = i, generate the

switching point process P? on the interval [0,TimeAlive] as follows:

(a) Initialization: In the interval [0,Agei], start with P? = Pβi . Suppose by time Agei,

P?[0,Agei] = k. Now generate a point process Pk+1
βi+1

and let P?[0,Agei + ai+1] =

P?[0,Agei] + Pkβi+1
[0, ai+1].
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(b) Recursion: For each subsequent interval [aj, aj+1] with j > i, conditional on

P?[0,Agei + ai+1 + · · · aj] = kj, generate the point process Pkj+1
βj+1

. Define

P?[0,Agei + ai+1 + · · · aj+1] = P?[0,Agei + ai+1 + · · · aj] + Pkj+1
βj+1

[0, aj+1].

Iterate until the last interval resulting in P?[0,TimeAlive].

Now define Dθ = 1 + P?[0,TimeAlive].

(iii) If Epoch = 0, so that TimeAlive = a1 + · · · ak, generate a random variable Dα with

distribution pα as in (3.1). Conditional on Dα, generate P? in the interval [0, a1]

with distribution PDαβ1 and then sequentially proceed as in (ii). In this case, define

Dθ = Dα + P?[0,TimeAlive].

Write pθ(·) for the pmf of Dθ. As before for k > 1, let Nn(k) denote the number of vertices

with degree k in Tn. Then we have the following result.

Theorem 3.3.1. As n→∞ we have

Nn(k)

n

P−→ pθ(k).

Further there exist constants 0 < c < c′ such that for all k > 1

c

kα+2
6 P(Dθ > k) 6

c′

kα+2
. (3.30)

3.3 3.3.4. Existing work regarding preferential attachment

We are not aware of other analysis of the effect of change point in structural properties of

such network models. However there has been some recent interest in understanding and

detecting the “initial seed” [26, 25, 40]. Here one starts with an initial “seed graph” at time

m = 0 and then performs preferential attachment started from that seed. The aim is then to
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estimate this initial seed based on an observation of the network at some large time n. While

different from this thesis, this body of work again emphasizes the sensitive dependence on

initial conditions for such network models.

3.3 3.3.5. Proof techniques

A number of techniques have been developed to rigorously analyze functionals such as asymp-

totic degree distributions (see [46, 106] for nice pedagogical treatment). The standard tech-

nique involves writing down recursions for the expected degree distribution E(Nn(k)) using

the prescribed dynamics of the process, to show that these expectations (normalized by n)

converge in the limit and then showing that the deviations |Nn(k)−E(Nn(k))| are small via

concentration inequalities.

In this project, for understanding structural properties we use a different technique, es-

sentially embedding the discrete-time model in a corresponding “continuous-time” branching

process {BPnθ(t) : t > 0}. This is sometimes known as the Athreya-Karlin embedding of urn

processes (see discussion in Section 2.2.2 or in [6]). This explains the various point processes

that arise in the description of the limiting degree distribution. While mathematically more

involved, this technique gives more insight into the results as it elucidates the natural time

scale of the process. In various other settings this technique has resulted in the study of

much more general functionals of the process such as the spectral distribution of the adja-

cency matrix [12] and has been used to derive asymptotic results in “non-local” preferential

attachment models [13]. In this project the technique also allows one to intuitively under-

stand why the degree exponent does not change. We advise the reader to come back to the

text below after going through the proofs but let us explain the basic intuition here.

In the continuous-time version, the process grows exponentially and in particular takes

time τγn ≈ 1
2+α

log γn+OP (1) to get to size nγ. At this time there is a change in the evolution

where each vertex adopts attachment dynamics driven by the parameter β. However owing

to the exponential growth rate, the time for the process to get to size n is τn ≈ τγn+a where
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a is as in (3.5). It turns out that this is not enough time for the dynamics with attachment

parameter β to change the degree exponent (since we only have to wait an O(1) extra units

of time to get to system size n from γn). These ideas are made mathematically rigorous in

Section 3.4.3. For the interested reader, much of the foundational work on continuous-time

branching processes relevant for this thesis can be found in [66, 67, 65].

3.3 3.3.6. Empirical dependence of the convergence on parameter values

Recall that the Gaussian process defined in (3.19) underlying the main consistency result

Theorem 3.2.4 depends on θ = (α, β, γ). One consequence of this dependence is that when

the parameter values α and β are close, the change point becomes harder to detect in the

sense that larger n is required to get good estimates. This is most easily seen in terms of

the fluctuations of the proportion of leaves in the graph.
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Figure 3.6: Empirical proportion of leaves in a simulation with n = 200, 000, α = 6, β = 1, γ = 0.5.
The red line represents the theoretical predictions in (3.10).

In both Figures 3.6 and 3.7, the preferential attachment process starts with α = 6 and

decreases, to β = 1 in 3.6 and β = 5 in 3.7. Furthermore the predicted behavior (red line)

is almost the same: the proportion of leaves is constant up to the change point γ = 0.5 and

then increases, consistent with a decrease in the attachment parameter.
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Figure 3.7: Empirical proportion of leaves in a simulation with n = 200, 000, α = 6, β = 5, γ = 0.5.
The red line represents the theoretical predictions in (3.10).

Despite the sizes of the final graphs in both simulations being n = 200, 000 vertices, at

first glance the fluctuations appear much greater in the latter case. On closer examination

however, this is simply an illusion of the axes. In essence, when the shift in parameters

is smaller, the change in the proportion of leaves pre- and post-γ is smaller compared to

the natural fluctuations in the proportion of leaves which is of order
√
n (Theorem 3.2.3).

Therefore any difference is more difficult to detect for same n. This is not surprising, but

worth noting in practice.

3.4 3.4. Proofs

As described in Section 3.3.5, the main conceptual idea is a continuous-time embedding of the

discrete-time process. We start in Section 3.4.1 by describing this embedding and deriving

simple properties. Then in Section 3.4.2 we prove Theorem 3.2.1. Section 3.4.3 proves the

assertion that the degree exponent does not change. Section 3.4.4 analyzes asymptotics for

the maximal degrees. Section 3.4.5 contains an in-depth analysis of the density of leaves and
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proves Theorem 3.2.3. Section 3.4.6 then uses this theorem to prove the consistency of the

estimator namely Theorem 3.2.4.

3.4 3.4.1. Preliminaries

We start with the following definition. To ease notation, for the rest of the chapter we use

γn instead of bγnc.

Definition 3.4.1 (Continuous time branching process). Fix α > 0. We let {BPα(t) : t > 0}

be a continuous-time branching process driven by the point process Pα defined in (3.4). Pre-

cisely:

(a) At time t = 0 we start with one individual called the root ρ with an offspring point process

with distribution Pρα
d
= Pα. The times of this point process represent times of birth of

new offspring of ρ.

(b) Every new vertex v that is born into the system is given its own offspring point process

Pvα
d
= Pα, independent across vertices.

Label vertices using integer labels according to the order in which they enter BPα so that

the root is labelled as 1, the next vertex to be born labeled by 2 and so on. For fixed t > 0,

we will view BPα(t) as a (random) labelled tree representing the genealogical relationships

between all individuals in the population present at time t. See Figures 3.8 and 3.9. Write

|BPα(t)| for the number of individuals in the tree by time t. Fix m > 1 and define the

stopping time

τm := inf {t : |BPα(t)| = m} . (3.31)

Since there are no deaths and each individual reproduces at rate at least 1 +α, the stopping

times τm < ∞ a.s. for all m > 1. Now consider the original preferential attachment model

where there is no change point. Using properties of the exponential distribution, the following

lemma is easy to check and is just a special case of the famous Athreya-Karlin embedding

[6].
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Lemma 3.4.2. Viewed as random rooted trees on vertex set [n] one has BPα(τn)
d
= Tn. In

fact the two processes of growing random trees have the same distribution namely

{BPα(τn) : n > 1} d
= {Tn : n > 1} .

ρ 2 3 5 7 12

4

6 8

9

10

11

13

14

15

time
τ1 τ2 τ3 τ15

Figure 3.8: The process BPα(·) in continuous time starting from the root ρ and stopped at τ15.

ρ

2

4

6 8 14

9

11 15

13

3 5 7

10

12

Figure 3.9: The corresponding discrete tree containing only the genealogical information of ver-
tices in BPα(τ15).

To construct the variant Tn where one has a change point, we run BPα(·) until time

τγn (when the original process reaches size γn) and then every vertex changes the way it

reproduces. More precisely, after this stopping time, an individual with k children would

have reproduced at rate k + 1 + α in the original model but in the change point model
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this vertex reproduces at rate k + 1 + β and uses the parameter β instead of α for each

subsequent offspring times. Each new vertex v produced after time τγn reproduces according

to an independent copy of the point process Pβ. Call the resulting process BPnθ(·) and run

the process until time τn when the continuous-time process has n individuals. Analogous to

(3.31), define the collection of stopping times {τm : 1 6 m 6 n} by replacing BPα with BPnθ.

The following is a simple extension of the previous lemma.

Lemma 3.4.3. Recall the family of random trees {Tθ,m : 1 6 m 6 n} generated using the

change point preferential attachment model in Section 3.1.2.1. Then,

{BPnθ(τm) : 1 6 m 6 n} d
= {Tθ,m : 1 6 m 6 n} .

Remark 7. Note that the processes {Tθ,m : 1 6 m 6 n} when one has a change point are not

nested in a nice manner as growing trees for different values of n. Compare this with the

original model (without change point) where we can view the entire sequence {Tn : n > 1} as

an increasing family of random trees. In the above construction it will be convenient to couple

the processes across different n by using a single common branching process BPα to generate

the tree before the change point τγn and then let the process evolve independently after the

change point for different n using the prescribed dynamics modulated by the attachment

parameter β. Further it will be convenient to allow the process BPnθ to continue to grow

after time τn as opposed to stopping it exactly at time τn.

For future reference, for each vertex v, we will use Tv for the time of birth of this vertex

into the system. For fixed time t and a vertex v born before time t (namely Tv 6 t), we write

dv(t) for the number of children of this vertex by time t. Note that for all v 6= ρ ∈ BPnθ(t),

the full degree of v by time t is dv(t) + 1.

We will need some simple stochastic calculus calculations below to derive martingales

related to processes of interest. Given a process {Z(t) : t > 0} adapted to a filtration

{F(t) : t > 0}, we write E(dZ(t)|F(t)) = a(t)dt for an adapted process a(·) if Z(t)−
∫ t
0
a(s)ds
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is a (local) martingale. Similarly write Var(dZ(t)|F(t)) = b(t)dt if the process

V (t) :=

(
Z(t)−

∫ t

0

a(s)ds

)2

−
∫ t

0

b(s)ds, t > 0,

is a local martingale.

Now recall that BPα(τγn) is the random tree before the change point. These random

trees are distributed as the original preferential attachment model without change point

using attachment dynamics with parameter α. Using (3.1) and recalling that Nn(k, γn)

denotes the number of vertices with degree k results in the following.

Lemma 3.4.4. For each fixed k > 1 we have Nn(k, γn)/γn
a.s.−→ pα(k), as n → ∞ where

pα(·) is the probability mass function in (3.1).

Recall that the branching process BPα is driven by the offspring point process Pα and

Pα(t) := Pα[0, t] is the number of points in [0, t]. Define the process

Mα(t) := e−tPα(t)− (1 + α)(1− e−t), t > 0 (3.32)

Lemma 3.4.5. The process {Mα(t) : t > 0} is a martingale with respect to the natural fil-

tration of Pα. In particular

E(Pα(t)) = (1 + α)(et − 1) (3.33)

Proof: Write {F(t) : t > 0} for the natural filtration of the process. It is enough to show

for all t > 0, E(dMα(t)|F(t)) = 0. By construction

E(dPα(t)|F(t)) = (1 + α + Pα(t))dt.

Further

E(dMα(t)|F(t)) = e−tE(dPα(t)|F(t))− e−tPα(t)dt+ (1 + α)e−tdt.
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Elementary algebra completes the proof. The final assertion regarding (3.33) follows using

the martingale property of Mα and the initial condition Pα(0) = 0. �

The starting point in the analysis of continuous-time branching processes is the so-called

Malthusian rate of growth parameter λ > 0 which solves the equation

∫ ∞
0

e−λtdE(Pα(t)) =

∫ ∞
0

λe−λtE(Pα(t))dt = 1 (3.34)

Where the first equality follows from writing

∫ ∞
0

e−λtdE(Pα(t)) =

∫ ∞
0

∫ ∞
0

λe−λx1{x > t} dx dE(Pα(t))

and applying Fubini. Using Lemma 3.4.5 now implies

λ = 2 + α. (3.35)

Let Tλ be an exponential random variable with parameter λ independent of Pα and consider

the integer valued random variable Pα(Tλ). Note that (3.34) is equivalent to E(Pα(Tλ)) = 1.

Recall that Dα is a random variable with the (non-change point) degree distribution (3.1).

It is easy to check that Dα − 1
d
= Pα(Tλ). In particular for α > 0,

E(Pα(Tλ) log+Pα(Tλ)) <∞.

Using standard Jagers-Nerman stable age-distribution theory for branching processes [66, 67]

now implies the following.

Proposition 3.4.6. There exists an integrable a.s. positive random variable Wα such that

e−(2+α)t|BPα(t)| a.e.,L
1

−→ Wα.
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In particular

τγn −
1

2 + α
log n

a.s.−→ W ′
α, (3.36)

for a finite random variable W ′
α.

We conclude this section with asymptotics for the amount of “ continuous time” where

the attachment dynamics using β is valid, namely τn− τγn. Recall the constant a from (3.5).

We will also write {Fn(t) : t > 0} for the natural filtration of the process {BPnθ(t) : t > 0}.

Lemma 3.4.7. Let Υn = τn− τγn denote the time after the change point in the continuous-

time embedding. Then
√
n(Υn − a)

w−→ 1

2 + β

√
1− γ
γ

Z,

as n→∞. Here Z is a standard normal random variable.

Proof: Note that BPnθ(·) is a Markov process. Further for t > τγn conditional on BPnθ(t),

the rate at which a new individual is born into the system is given by

λ(t) :=
∑

v∈BPnθ (t)

(dv(t) + 1 + β)

= (2 + β)|BPnθ(t)| − 1, (3.37)

In particular

Υn
d
=

n−1∑
j=bγnc

Ei
(2 + β)j − 1

, (3.38)

where {Ei : i > 1} is a sequence of iid rate one exponential random variables. To finish the

proof it will be enough to derive the limiting variance and check Lyapunov’s condition. To

ease notation we show the equivalent but slightly cleaner formulation:

√
n

n∑
j=bγnc

(
Ej
j
− 1

j

)
w−→
√

1− γ
γ

Z
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We need the following limit results:

lim
n→∞

n∑
j=bγnc

n

j2
=

1− γ
γ

and lim
n→∞

n∑
j=nγ

n2

j4
= 0

The first limit can be shown by making the change x = j/n in the index of the summation,

whereby we obtain
n∑

j=bnγc

n

j2
→

∫ 1

γ

1

x2
dx =

1− γ
γ

To show the second limit write the original sequence as a product of two sequences and show

the convergence of the latter (to a finite limit) by following the same recipe as above:

n∑
j=bnγc

n2

j4
=

1

n
·

n∑
j=bnγc

n3

j4
→ 0

Then the limiting variance is calculated simply as:

ES2
n = n

n∑
j=bnγc

E

(
Ej
j
− 1

j

)2

=
n∑

j=bnγc

n

j2
→ 1− γ

γ

And Lyapunov’s condition is similarly shown:

∑n
j=bnγc n

2 E
(
Ej
j
− 1

j

)4
(ES2

n)2
=

∑n
j=bnγc n

2 E
(
Ej
j
− 1

j

)4
(∑n

j=bnγc
n
j2

)2 =
9
∑n

j=bnγc
n2

j4(∑n
j=bnγc

n
j2

)2 → 0

�

Corollary 3.4.8. Define Mn =
∑n

j=bnγcEj/j. Then Mn = log γ−1 +Op(n
−1/2).

From the above proposition we know that
√
n
(
Mn −

∑n
j=bnγc

1
j

)
converges weakly to a

mean-zero normally distributed random variable X. It is known that

n∑
j=1

1

j
= log n+ c+ εn
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where c is the Euler-Mascheroni constant and εn ∼ 1/2n. Therefore
∑n

j=bnγc = log γ−1 + an

where an ∼ C · n−1 and we may write

√
n(Mn − log γ−1)

d
=⇒ X

The weak limit X is tight so
√
n(Mn − log γ−1) is stochastically bounded. �

Using the distributional characterization in (3.38), one can show the following tail bound

on Υn. The proof is standard, using a Chernoff bound with the fact that the random variable

on the left-hand side is subexponential.

Lemma 3.4.9. For any κ > 0 there exists N = N(κ) <∞ such that for all n > N(κ),

P

(
|Υn − a| >

1

n1/3

)
6

1

nκ
.

In particular by Borel-Cantelli, P
(
|Υn − a| 6 n−1/3 eventually

)
= 1.

Here the bound n−1/3 was arbitrary. An upper bound of n−(1/2−δ) with any δ > 0 would

result in identical result as above. We fix n−1/3 for definiteness.

We end this section by defining the Yule process. Properties of this process will be

needed in the next few sections.

Definition 3.4.10 (Rate ν Yule process). Fix ν > 0. A rate ν Yule process is a pure

birth process {Yν(t) : t > 0} with Yν(0) = 1 and where the rate of birth of new individuals is

proportional to size of the current population. More precisely

P(Yν(t+)− Yν(t)|F(t)) := νYν(t)dt+ o(dt),

where {F(t) : t > 0} is the natural filtration of the process.

The following is a standard property of the Yule process, see e.g. [84, Section 2.5].
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Lemma 3.4.11. Fix time t > 0 and rate ν > 0. Then the random variable Yν(t), namely the

number of individuals in the population by time t has a Geometric distribution with parameter

p = e−νt namely

P(Yν(t) = k) = e−νt(1− e−νt)k−1, k > 1.

Proof: Define Tn = the time at which the population size of the rate-ν Yule process jumps

from n to n+ 1. Then clearly

P(Yν(t) > n) = P(Tn 6 t)

By definition we have Tn
d
= W1 + . . .+Wn where the Wi ∼ exp(iν) are independent. But in

fact, we also have that

Tn
d
= max

16i6n
Yi

where the Yi are independent exp(ν) random variables. The proof is complete if we can show

this, as P(max16i6n Yi 6 t) = (1 − e−tα)n which is the CCDF of a geometric(e−tα) random

variable. To see why the above is true, write {Y(i) : 1 6 i 6 n} for the order statistics of

{Yi : 1 6 i 6 n}, with Y(1) = min16i6n Yi and Y(n) = Tn.

Clearly Y(1) ∼ exp(nν). Now by memorylessness, the additional waiting times for the

n − 1 remaining Yi’s are still exp(ν) and independent. Therefore Y(2) ∼ exp((n − 1)ν).

Iterating n times completes the proof. �

3.4 3.4.2. Convergence of the degree distribution

In this section we will prove Theorem 3.2.1.

3.4 3.4.2.1. Overview of the proof

Recall the random variables Dα and Dθ set out in Section 3.1.3. Dα is a random variable

with the same distribution as that of the limiting degree distribution of the graph without

change point, and Dθ is a random variable with the same distribution as that of the limiting
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degree distribution of the with-changepoint graph driven by parameter set θ. It will be easier

to deal with the random variable Dout
θ := Dθ − 1.

In this proof we will lean on the fact that the limiting degree distribution for the with-

changepoint model can be seen as splitting into two parts:

1. For a vertex born into the system before time γ, its family line evolves according to

parameter α for some portion of its life and then a mix of the influence of parameters

α and β once we pass the change point.

2. For a vertex born into the system after time γ, its family line evolves according to

parameter β only.

The probability that a vertex is born into the system before the change point is γ. The

probability that a vertex is born into the system after the change point is 1−γ. Now letting

BC stand for “before changepoint” and AC stand for “after changepoint” everywhere they

appear, the distribution of Dout
θ can be written succinctly as:

(a) with probability γ, Dout
θ := YBC where YBC = Dα − 1 +NDα

β [0, a];

(b) with probability 1− γ, Dout
θ = YAC where YAC := Nβ[0,Age].

For a vertex born before the changepoint, the decomposition of YBC is explained like

this. Dα represents the cumulative effect of the evolution due to α up until the change

point time τnγ. Now recall that the constant a represents the amount of continuous time it

takes for the network to get from its size at the change point nγ to its final size n. Then

NDα
β [0, a] represents the cumulative effect of the evolution due to β for the rest of the life

of the network. Note that this quantity is NDα
β , not Nβ, so it takes into account the initial

amount of influence left by its time in the pre-changepoint regime. Therefore, the total effect

on the degree distribution due to vertices born before γ is YBC := Dα − 1 +NDα
β [0, a].

For a vertex born after the change point, it evolves solely according to β for the total

amount of time it has been alive by the end of the graph process, which is equal to its age,

hence the notation Age. Therefore YAC := Nβ[0,Age].
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To set up the convergence result we will need to define some empirical degree counts

which will converge to the above limits. Recall that for any time t and vertex v born before

time t, dv(t) denotes the number of children (out-degree) of vertex v at time t. For fixed

k > 0 define

N̄BC
n (k) :=

∑
v∈BPθ(τn)

1 {Tv 6 τγn, dv(τn) > k} , (3.39)

and

N̄AC
n (k) :=

∑
v∈BPθ(τn)

1 {Tv > τγn, dv(τn) > k} . (3.40)

In words, N̄BC
n (k) is the number of vertices that were born before the change point and have

out-degree at least k by time τn (thus in the tree Tθ,n) whilst N̄AC
n (k) is defined similarly

but for vertices born after the change point τγn. The following proposition is equivalent to

Theorem 3.2.1.

Proposition 3.4.12. Fix k > 0. Then we have

N̄BC
n (k)

n

P−→ γ P(YBC > k),
N̄AC
n (k)

n

P−→ (1− γ)P(YAC > k), (3.41)

as n→∞.

The rest of this section deals with proving this proposition.

3.4 3.4.2.2. Analysis of N̄BC
n (·) :

We start with the easier case. We will need some more notation. For fixed j, k > 0, define

N̄BC
n (j : k) for the number of vertices that were born before the change point τγn with

out-degree exactly j at time τγn that end up with at least k children by time τn. Note that

∑
j>k

N̄BC
n (j : k) = Nn(k + 1, γn) = N̄BC

n (k)
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namely the number of vertices with total degree k+ 1 (thus out-degree k) in the tree before

change point Tγn. Recall that the goal of this section is to prove the convergence

N̄BC
n (k)/n

P−→ γ P(YBC > k) (3.42)

This is a statement involving all vertices born before the change point. However, because

a vertex born before the change point is subject to two different growth regimes (pre- and

post-change), it will be easier to condition on the state of the vertex at the exact moment

of the change so we can break the analysis of 3.42 into two parts—the effect due to the

BC regime and the effect due to the AC regime. To do this we will condition on the event

that a vertex has out-degree exactly equal to j at time τnγ. Proving the convergence on the

conditioning sets will then imply the main result.

Conditional on this event, the left-hand side becomes N̄BC
n (j : k)/n. The right-hand side

a bit more complicated. The limit P(YBC > k) represents the limiting probability of the

event that a BC vertex has degree at least k by time τn. The conditioned version of this

event is the probability that a BC vertex with out-degree = j at time τnγ will grow to have

degree at least k by time τn. This probability is the product of

1. P(Dout
α = j), the probability that a BC vertex will have out-degree exactly j at time

τnγ.

2. P(Pj+1
β [0, a] > k−j), the probability that said vertex will acquire at least k−j degrees

in the a duration of time between the time of the change point τnγ and the end of the

process τn, during which it is subject to growth according to parameter β.

Therefore it is enough to show for each fixed 0 6 j 6 k,

N̄BC
n (j : k)

n

a.s.−→ γ P(Dout
α = j)P(Pj+1

β [0, a] > k − j). (3.43)

We start with the following simple lemma.
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Lemma 3.4.13. Fix 0 < p, q < 1, a sequence of non-negative integer valued random vari-

ables {Nn : n > 1} and a sequence {qn : n > 1} ∈ [0, 1]. Conditional on Nn, let Sn be a

Binomial(Nn, qn) random variable. Further suppose that

Nn

n

a.s.−→ p, qn → q.

Then Sn/n
a.s.−→ pq.

Proof: We assume we work on a rich enough probability space where we can cou-

ple {Sn : n > 1} with a sequence
{
S̃n : n > 1

}
where S̃n is Binomial(np, qn) such that

|Sn − S̃n| 6 |Nn − np|. Standard exponential tail bounds for the Binomial distribution

coupled with Borel-Cantelli and the hypothesis of the lemma imply that S̃n/n
a.s.−→ pq. Since

|Sn− S̃n|/n 6 |Nn/n− p|, again using the hypothesis of the lemma completes the proof. �

We proceed with the proof. Recall the definition of the random variable N̄BC
n (j : k) at

the beginning of this section. In the same vein, for each s > 0 define Z̄BC
n ((j : k), s) for the

number of vertices born before the change point τγn such that at τγn they have out-degree

exactly j and further by time τγn+s they have degree at least k. Then note that conditional

on the information at time τγn,

Z̄BC
n ((j : k), s)

d
= Bin(Nn(j + 1, γn),P(Pj+1

β [0, s] > k − j)) (3.44)

Further the random variables of interest N̄BC
n (j : k) = Z̄BC

n ((j : k),Υn) where Υn is as in

Lemma 3.4.7. Thus writing a+n = a+ n−1/3 and a−n = a− n−1/3 and using Lemma 3.4.9,

Z̄BC
n ((j : k), a−n ) 6 N̄BC

n (j : k) 6 Z̄BC
n ((j : k), a+n ) eventually a.s. (3.45)
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Using the Binomial convergence lemma 3.4.13 and noting that by Lemma 3.4.4 and choice

of a+n , a
−
n , the hypothesis of this Lemma are satisfied, implies that

Z̄BC
n ((j : k), an)

n

a.s.−→ γ P(Dout
α = j)P(Pj+1

β [0, a] > k − j),

where take an as either a+n or a−n . Now using (3.45) proves (3.43). This completes the analysis

of N̄BC
n (·).

�

3.4 3.4.2.3. Analysis of N̄AC
n (·) :

Similar to the technique in the previous section, we will begin by simplifying the convergence

we want to show using conditioning. However we still need some notation first. Fix k > 0

and define the function

gk(u) := P(Pβ[0, u] > k), u > 0. (3.46)

Here Pβ is the offspring point process with attachment parameter β. The convergence we

want to show is

N̄AC
n (k)/n

P−→ (1− γ)P(YAC > k) (3.47)

Since YAC = Pβ[0,Age], we can make the picture clearer by conditioning on the possible

ages of each vertex in the AC regime. Actually, it turns out to be easier and equivalent to

condition on the time of birth of each vertex. Write {Born = u} for the event that a vertex

in the AC regime is born exactly u time units after the change point. Then the right-hand

side limiting probability in 3.47 can be written

∫ a

0

(1− γ)P(Nβ[0, a− u] > k |Born = u) P(Born = u) du (3.48)
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The probability that an AC vertex is born exactly u time units into the AC regime is derived

using Proposition 3.4.6. That result implies that the number of individuals in the BC regime

after u time units has passed is proportional to e(2+β)u. Therefore since the total amount of

time available in the AC regime is a,

P(Born = u) =
e(2+β)u∫ a

0
e(2+β)udu

=
(2 + β)e(2+β)u

e(2+β)a − 1
(3.49)

Then using the definition of a from (3.5) and simplifying, we see that to prove the second

assertion of (3.41), it is equivalent to show

N̄AC
n (k)

n

P−→ γ

∫ a

0

(2 + β)e(2+β)ugk(a− u)du. (3.50)

Let us begin. For s > 0, define Z̄AC
n (k, s) for the number of individuals born in the interval

[τγn, τγn + s] such that by time τγn + s, these vertices have at least k children. Then note

that N̄AC
n (k) = Z̄AC

n (k,Υn). Mimicking the proof of NBC
n (k), it is enough to show that

Z̄AC
n (k, an)

n

P−→ γ(2 + β)

∫ a

0

e(2+β)ugk(a− u)du, (3.51)

where an is either the sequence a−n = a− n−1/3 or a+n = a+ n−1/3. To ease notation we will

just work with the sequence an = a. The entire proof goes through by replacing a in the

steps below by an.

We start with a few preliminary results. The first result describes strong concentration

results of the growth of the number of individuals in BPnθ in the interval [τγn, τγn+s]. Define

the process

Zn(u) := |BPnθ(τγn + u)|, 0 6 u 6 a. (3.52)

Proposition 3.4.14. There exists a constant C <∞ such that for all n,

P

(
sup

06u6a
|Zn(u)− nγe(2+β)u| >

√
n log n

)
6

C

log n
.
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Proof: The plan is to use Doob’s L2-maximal inequality for continuous-time martin-

gales (see e.g. [74, Chapter 1.9]). For this we will need to derive martingales re-

lated to the process Zn(·). Throughout we will write {Fnt : 0 6 t 6 a} for the filtration

{BPθ(τγn + t) : 0 6 t 6 a}. Recall from the rate description in (3.37) that Zn(·) is a pure

birth process such for any t > 0, conditional on Fnt , Zn(t) Zn(t)+1 at rate (2+β)Zn(t)−1.

Arguing as in the proof of Lemma 3.4.5 it is easy to check that the process

M1(t) :=
(
e−(2+β)tZn(t)− nγ

)
− e−(2+β)t − 1

2 + β
, 0 6 t 6 a, (3.53)

is a mean-zero martingale. This in particular gives that

e−(2+β)tE(Zn(t)) = nγ +
e−(2+β)t − 1

2 + β
, 0 6 t 6 a. (3.54)

By Doob’s L2-maximal inequality applied to the process M1(·) we have for any λ > 0,

P

(
sup
06t6a

∣∣∣∣(e−(2+β)tZn(t)− nγ
)
− e−(2+β)t − 1

2 + β

∣∣∣∣ > λ

)
6
E(M2

1 (a))

λ2
. (3.55)

If we can show there exists a constant C < ∞ such that E(M2
1 (a)) 6 Cn, using λ =

.5
√
n log n and algebraic manipulation of (3.55) completes the proof. So let us now derive

this bound on E(M2
1 (a)).

First squaring the expression in (3.53), expanding and using (3.54) gives for t > 0,

E(M2
1 (t)) = E

(
e−(2+β)tZn(t)− nγ

)2 − (e−(2+β)t − 1

2 + β

)2

. (3.56)

Thus we need to understand the evolution of the process Z 2
n (·). Again using the rate

description of Zn, this process undergoes a change

∆Z 2
n (t) := Z 2

n (t+)−Z 2
n (t) = (1 + 2Zn(t)),
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at rate (2 + β)Zn(t)− 1. Using this one may check that the following process on [0, a]

M2(t) := e−2(2+β)tZ 2
n (t)−

∫ t

0

e−2(2+β)sβZn(s)ds− e−2(2+β)t

2(2 + β)
, (3.57)

is also a martingale. In particular since first moments are conserved,

E(e−2(2+β)Z 2
n (t)) = n2γ2 +

∫ t

0

βe−2(2+β)sE(Zn(s))ds− e−2(2+β)t − 1

2(2 + β)
. (3.58)

Using (3.54) shows that there exists a constant C such that

∣∣E(e−2(2+β)Z 2
n (t))− n2γ2

∣∣ 6 nγ. (3.59)

Expanding the first bracket in (3.56), using (3.54) and (3.59) shows that E(M2
1 (a)) 6 Cn

for some constant C. This completes the proof.

�

Now divide the interval [τγn, τγn + a] into an1/3 intervals of length [n−1/3]:

{[
τγn, τγn +

1

n1/3

]
,

[
τγn +

1

n1/3
, τγn +

2

n1/3

]
, . . . ,

[
τγn +

an1/3 − 1

n1/3
, τγn +

an1/3

n1/3

]}
,

To ease notation, write the above collection as
{
Ii : 0 6 i 6 an1/3 − 1

}
. Further let τni =

τγn + i/n1/3 with τn0 = τγn so that Ii = [τni , τ
n
i+1].

Now write Birthi for the collection of vertices that were born in interval Ii (i.e. the

collection of vertices v with birth times Tv ∈ Ii) and write

Zn(Ii) := |Birthi| = Zn

(
τni+1

)
−Zn (τni ) ,

for the number of individuals born in this interval. Then the following is an easy corollary

of Proposition 3.4.14.
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Corollary 3.4.15. We have

P

an1/3−1⋂
i=0

{∣∣∣∣Zn(Ii)− (2 + β)γn2/3e
(2+β)i

n1/3

∣∣∣∣ < 2
√
n log n

}→ 1,

as n→∞.

For future reference write Gn for the event above. Namely,

Gn :=
an1/3−1⋂
i=0

{∣∣∣∣Zn(Ii)− (2 + β)γn2/3e
(2+β)i

n1/3

∣∣∣∣ < 2
√
n log n

}
(3.60)

Now for each interval Ii, we will partition the vertices born in this interval into two

classes:

(a) The collection of good vertices Gi: This consists of all v ∈ Birthi such that they produce

no children by the end of the interval i.e. vertices v with Tv ∈ [τγn + i/n1/3, τγn +

(i + 1)/n1/3] such that by time τγn + (i + 1)/n1/3, vertex v still has no children. Write

Z good
n (Ii) = |Gi| for the number of good vertices in Ii.

(b) The collection of bad vertices Bi := Birthi \ Gi: This consists of all vertices born in Ii

which produce at least one child by time τγn + i/n1/3. Write Z bad
n (Ii) = |Bi| for the

number of such bad vertices in Ii. Write

Z bad

n :=
an1/3−1∑
i=0

Z bad

n (Ii)

for the total number of bad vertices.

The general idea is the following. Note that since the intervals are of time length n−1/3

but the average time until first birth for each vertex is constant 1/(1 − β), one expects a

large proportion of vertices born in the interval Ii to be good. At the same time however,

the process |BPθ(t)| is accelerating exponentially fast. Therefore to be completely sure that
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bad vertices are under control, we need to precisely calculate the balance of the two forces

and show that the bad vertices eventually are squashed out.

This is the content of the next result. Fix a constant C and define the event Bn
i ={

Z bad
n (Ii) > Cn1/3 log n

}
. These events depend on C but we suppress this in the notation.

Proposition 3.4.16. The constant C < ∞ can be chosen large enough such that

P(∪an1/3

i=1 Bn
i ) → 0 as n → ∞. In particular for the total number of bad vertices we have

Z bad
n = OP (n2/3 log n).

Proof: Fix an interval Ii. Note that every bad vertex is one of two types:

(a) A vertex that is a direct child of a vertex born before this time interval. Write Dbad
n

for these direct bad vertices and write D bad
n (Ii) = |Dbad

n | for the number of such vertices.

Further write D bad
n,?(Ii) for the total number of descendants of direct bad vertices born in

the interval Ii (including the direct bad vertices).

(b) A vertex that is bad and is a child of a vertex born in Ii. Thus the parent of this vertex

is necessarily bad.

Thus in particular we have that Z bad
n (Ii) 6 D bad

n,?(Ii). Now note that direct bad vertices in

Dbad
n are created via the following steps:

(i) A descendant (maybe good or bad) of a vertex born before Ii is born into the system.

The number of such individuals Rn(Ii) 6 Zn(Ii), the total number of individuals born

in the interval Ii. Using Corollary 3.4.15, there exists a constant C such that whp as

n→∞, for all the intervals 0 6 i 6 an1/3 − 1, Rn(Ii) 6 Cn2/3.

(ii) Conditional on all these descendants of vertices born before Ii, such a descendant has

to give birth to one individual in the interval [i/n1/3, (i+ 1)/n1/3]. Recall that the time

to give birth to the first child is an exponential random variable E1 with rate (2 + β).

Thus the probability of birthing this first child is bounded by

pn = P(E1 6 n−1/3) ∼ 2 + β

n1/3
.
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Further by construction none of these vertices can have a parent child relationship and

thus their offspring lineages evolve independently.

In particular, conditional on all descendants of vertices born before time interval Ii,

D bad

n (Ii) 6st Bin(Rn(Ii), pn) (3.61)

Here st denotes stochastic domination. Thus using Corollary 3.4.15, (3.61) and standard tail

bounds for the Binomial distribution implies that there exists a constant C <∞ such that

P(D bad

n (Ii) 6 Cn1/3 log n ∀0 6 i 6 an1/3 − 1)→ 1, (3.62)

as n→∞.

Let us now complete the analysis of D bad
n,?(Ii). Let us start with the evolution of descen-

dants of a single bad direct vertex after it gives birth to its child. This process then starts

reproducing at rate 2 + β + 1 + β = 3 + 2β. Further whenever a new vertex is added to

the system, the rate of production increases by at most 2 + β. Thus writing K = b3 + 2βc

and ν = 2 + β, the number of descendants of such a bad vertex can be bounded by a rate

ν Yule process (see Definition 3.4.10) that starts with K individuals at time zero. Write{
Y K
ν (t) : t > 0

}
for such a process. Thus the number of descendants of such a bad vertex in

the time interval [τγn+i/n1/3, τγn+(i+1)/n1/3] can be stochastically bounded by Y K
ν (n−1/3).

In particular, conditional on Dbad
n (Ii),

D bad

n,?(Ii) 6st

Dbad
n (Ii)∑
j=1

Y K,(j)
ν (n−1/3). (3.63)

Here
{
Y
K,(j)
ν (·) : j > 1

}
are an iid collection of Yule processes with distribution Y K

ν (·). Using

the explicit distribution of the Yule process at a fixed time (Lemma 3.4.11), it is easy to
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check that given constant C > 0 we can find A > 0 such that

P
(
D bad

n,?(Ii) > 10KCn1/3 log n
∣∣D bad

n (Ii) 6 Cn1/3 log n
)
6 exp(−An1/3). (3.64)

Using this exponential bound with (3.62) completes the proof. �

We now proceed with the proof of (3.51). For 0 6 i 6 an1/3 − 1, let Zgood
n (k, a : Ii) be

the number of good vertices in Birthi which have at least k children by time a. Then note

that conditional on BPnθ(τni+1),

Zgood

n (k, a : Ii)
d
= Bin

(
Z good

n (Ii), gk
(
a− i+ 1

n1/3

))
. (3.65)

Define the events

Gn
i :=

{∣∣∣∣Zgood

n (k, a : Ii)− γ(2 + β)n2/3e
(2+β)i

n1/3 gk

(
a− i+ 1

n1/3

)∣∣∣∣ < Cn1/3 log n

}

Proposition 3.4.17. There exists a constant C < ∞ such that P
(
∩an1/3

i=1 Gn
i

)
→ 1 as

n→∞.

Proof: Note that Z good
n (Ii) = Zn(Ii)−Z bad

n (Ii). Combining Corollary 3.4.15 with Proposi-

tion 3.4.16 implies that

P

an1/3−1⋂
i=0

{∣∣∣∣Z good

n (Ii)− (2 + β)γn2/3e
(2+β)i

n1/3

∣∣∣∣ < 3
√
n log n

}→ 1,

Now using the distributional identity (3.65) and standard tail bounds for the Binomial

distribution completes the proof.

�

We are finally in a position to complete the proof of (3.51). First note that

an1/3−1∑
i=0

Zgood

n (k, a : Ii) 6 Z̄AC
n (k, a) 6

an1/3−1∑
i=0

Zgood

n (k, a : Ii) + Z bad

n . (3.66)
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Using Proposition 3.4.16 n−1Z bad
n

P−→ 0. Using Proposition 3.4.17

∑an1/3

i=1 Zgood
n (k, a : Ii)
n

∼ γ(2 + β)

n1/3

an1/3−1∑
i=0

e
(2+β)i

n1/3 gk

(
a− i+ 1

n1/3

)
→ γ(2 + β)

∫ a

0

e(2+β)ugk(a− u)du.

This completes the proof of (3.41) and thus the assertion of the convergence of the degree

distribution of the model to the asserted limit in Theorem 3.2.1.

�

We conclude this section with a related result regarding the evolution of the degree

distribution. This follows by directly modifying the proof above. Recall the definitions of

Nn(k,m) and N̂n(k, t) from Section 3.2.2. For future use define for each k > 1 and 0 6 t 6 1

Nn,>(k,m) =
∑
j>k

Nn(j,m), N̂n,>(k, t) =
∑
j>k

N̂n(j, t), (3.67)

namely the number of vertices with degree at least k respectively at discrete time m and at

time t when we rescale time by n. Write q̂(n)> (k, t) = N̂n,>(k, t)/n. Note that since we divide

by n and not nt in this expression we have
∑∞

k=1 q̂
(n)

> (k, t) = t. Now note that by Lemma

3.4.4 we have for each fixed 0 < t 6 γ,

p̂(n)(k, t)
P−→ pα(k) = p(∞)(k, γ), (3.68)

where pα(k) as in (3.1) is the limiting degree distribution with no change point. For γ 6 t 6 1,

analogous to the definition of a in (3.5) define

a(t) :=
1

2 + β
log

t

γ
(3.69)
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Analogous to the definition of Dθ in Section 3.1.3, define Dθ(t) by replacing a by a(t)

throughout the construction. Thus Dθ = Dθ(1). Let

p(∞)(k, t) := P(Dθ(t) = k), k > 1, γ 6 t 6 1. (3.70)

Let p(∞)

> (k, t) = P(Dθ(t) > k). For 0 6 t 6 1, let q(∞)

> (k, t) = tp(∞)

> (k, t).

Proposition 3.4.18. For all k > 1 we have

sup
06t61

|q̂(n)> (k, t)− q(∞)

> (k, t)| P−→ 0,

as n→∞.

Proof: For fixed t > γ, define the stopping time

τtn = inf {s : |BPnθ(s)| = tn} ,

namely the first time that the continuous-time embedding reaches size tn. Note that at this

time, the corresponding tree has distribution Ttn. Write Υn(t) = τtn − τγn for the amount

of (continuous) time it takes for the process to reach this size after the change point. Then

note that by Proposition 3.4.14 we can choose an appropriate constant C <∞ such that

P

(
sup
γ6t61

|Υ(t)− a(t)| 6 C

√
log n

n

)
→ 1, (3.71)

as n→∞, where a(t) is as defined in (3.69). Repeating the above proof for the convergence

of degree distribution and replacing a by a(t) throughout the argument shows that for each

t > γ N̂n,>(k, t)/nt
P−→ P(Dθ(t) > k). Combining this with (3.68) implies that we have

pointwise convergence q̂(n)> (k, t) → q(∞)

> (k, t). Now note that for each fixed n, the function

q̂(n)> (k, ·) is non-decreasing on [0, 1] while the limit function is also monotonically increasing

and continuous (and thus uniformly continuous). Given ε > 0, fix δ > 0 such that for any
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t, s ∈ [0, 1] with |t− s| < δ,

|q(∞)

> (k, t)− q(∞)

> (k, s)| < ε

4
.

Divide [0, 1] into intervals {[iδ, (i+ 1)δ]} for 1 6 i 6 1/δ of length δ. Via the pointwise

convergence above, get n0 <∞ large such that for all n > n0

P

(
sup
16i6 1

δ

∣∣q̂(n)> (k, iδ)− q(∞)

> (k, iδ)
∣∣ < ε

4

)
> 1− ε. (3.72)

Write Gn(ε, δ) for the event in the above equation. Then on this event, by the choice of δ, for

all i we have |q̂(n)> (k, iδ)− q̂(n)> (k, (i+1)δ)| 6 ε/2. Using monotonicity, for any t ∈ [iδ, (i+1)δ],

|q̂(n)> (k, iδ) − q̂(n)> (k, t)| 6 ε/2. By the triangle inequality on Gn(ε, δ), for all t ∈ [0, 1] and

n > n0,

|q̂(n)> (k, t)− q(∞)

> (k, t)| 6 |q̂(n)> (k, t)− q(n)> (k, iδ)|+ |q̂(n)> (k, iδ)− q(∞)

> (k, iδ)|

+ |q(∞)

> (k, iδ)− q(∞)

> (k, t)| 6 ε

2
+
ε

4
+
ε

4
= ε.

Since n0 is independent of t, this completes the proof.

�

3.4 3.4.3. Proof of the tail exponent for the limiting degree distribution

The aim of this section is to prove the tail bound (3.8).

3.4 3.4.3.1. Overview of the proof

First note that the lower tail bound is obvious since with probability γ, Dθ stochastically

dominates Dα and by (3.2), Dα has the asserted tail behavior. The main crux is then proving

the upper bound, namely

P(Dθ > x) 6 c′/x2+α. (3.73)
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Recall that, from the characterization in the previous section 3.4.2.1, Dθ can be separated

into:

(a) with probability γ, Dout
θ = Dα +NDα

β [0, a];

(b) with probability 1− γ, Dout
θ = 1 +Nβ[0,Age].

As just mentioned, Dα already has the asserted tail behavior so we need to show that the

components in this decomposition which are not Dα cannot contribute to the power-law

tail. We will do this by proving that the distributions of NDα
β [0, a] and Nβ[0,Age] both have

exponential tails.

Note that both components NDα
β [0, a] and Nβ[0,Age] correspond to the cumulative effect

of evolution after the changepoint has occurred. Recalling the intuitive argument set out

in Section 3.3.5, these components correspond to the growth occurring in the O(1) amount

of continuous time it takes the system to grow from size nγ to n—proving that they also

have an exponential tail is the final piece in showing that they cannot change the power-law

exponent.

3.4 3.4.3.2. The upper bound

Recall Definition 3.4.10 of the Yule process and in particular Lemma 3.4.11 on the finite-

time marginal distribution of the Yule process. Recall that in the description of the limit

random variable Dθ, with probability 1 − γ, Dθ = Nβ[0,Age] 6st Nβ[0, a] where as before

6st represents stochastic domination. Now define

ν = 2 + β, K = b1 + βc (3.74)

As before, let Y K
ν be a rate ν Yule process started with K individuals at time zero. Com-

paring the rate of production of new individuals in the point process Pβ with Y K
ν , we get

that Nβ[0, a] 6st Y
K
ν (a). By Lemma 3.4.11, Y K

ν (a) is the sum of K independent Geometric
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random variables. Using the fact that a geometric random variable has finite moment gen-

erating function in a neighborhood of zero and an elementary Chernoff bound implies that

there exist constants κ, κ′ > 0 such that for all x > 1, we have an exponential tail bound,

P(Nβ[0,Age] > x) 6 P(Y K
ν (a) > x) 6 κ′ exp(−κx), (3.75)

Thus when with probability 1− γ Dθ = Nβ[0,Age] then the corresponding random variable

has exponential tail. Thus the main contribution to the tail arises when with probability γ,

Dθ = Dα + NDα
β [0, a]. Arguing as above (and assuming β > 1), conditional on Dα = k, we

have

NDα
β [0, a] 6st

k∑
j=1

Y K,(j)
ν (a),

where, as in (3.63),
{
Y
K,(j)
ν (·) : j > 1

}
are a collection of independent rate ν Yule processes

each started at time zero with K individuals and independent of Dα. The following elemen-

tary lemma completes the proof.

Lemma 3.4.19. Let D > 1 be non-negative integer valued random variable with P(D >

x) 6 c/xγ for all x > 1, for two constants c, γ > 0. Let {Yi : i > 1} be a sequence of

independent and identically distributed positive integer valued random variables, independent

of D. Consider the random variable D∗ :=
∑D

j=1 Yi. If Y1 has finite moment generating

function in a neighborhood of zero then there exists a constant c′ > 0 such that for all x > 1,

P(D∗ > x) 6 c′/xγ.
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Proof: For the rest of the proof, write µ = E(Y1) <∞. Then note that

P(D∗ > x) 6

x
2µ∑
j=1

P(D = j)P(

j∑
i=1

Yi > x) + P

(
D >

x

2µ

)
,

6 P(

x
2µ∑
i=1

Yi > x) +
c

xγ
,

where the second equation follows using the fact that Yi > 1 for all i and the tail bound

for D from the hypothesis of the lemma. To complete the proof, note that standard large

deviation bounds imply (since Yi has a finite moment generating function about zero) imply

that there exist constants κ, κ′ such for all large x

P

 x
2µ∑
i=1

Yi > x

 6 κ′ exp(−κx).

This completes the proof. �

The only item left to complete the proof of Theorem 3.2.1 is to show that the change

point does change the degree distribution from the original (no change point) model. In

Section 3.4.5 we will carry out a detailed analysis of the density of leaves which in particular

will show that the asymptotic density of leaves pθ(1) 6= pα(1).

3.4 3.4.4. Analysis of the maximal degree

The aim of this section is to prove Theorem 3.2.2. First note that, for any fixed k > 1,

writing Mγn(k) for the k-th maximal degree of a vertex in Tγn namely in the tree just before

the change point, using (3.3) implies that Mγn(k)/n1/(2+α) converges weakly to a strictly

positive random variable. Since Mn(k) >Mγn(k), this implies that given any ε > 0 and any

fixed k > 1, there exists a constant K ′ε > 0 such that

lim inf
n→∞

P

(
Mn(k)

n1/(2+α)
> K ′ε

)
> 1− ε.
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Thus to complete the proof of Theorem 3.2.2 we need to show, given any ε > 0, there exists

Kε <∞ such that

lim sup
n→∞

P

(
Mn(1)

n1/(2+α)
< Kε

)
> 1− ε. (3.76)

For any vertex v ∈ [n] time point m ∈ [n], write deg(v,m) for the degree of vertex v in

Tm with the obvious convention that deg(v, k) = 0 if k < v. Then note that Mn(1) =

max(Mpre(n),Mpost(n)) where

Mpre(n) := max
v∈[1,nγ]

deg(v, n), Mpost(n) := max
v∈[nγ+1,n]

deg(v, n). (3.77)

Let us first analyze the maximal degree of vertices that appeared after the change point.

Recall the constant a from (3.5) and ν,K from (3.74).

Lemma 3.4.20. We have P(Mpost(n) > 2Keν(a+1) log n)→ 0 as n→∞.

Proof: We will assume β > 1 below. Else replace β with one in the rest of the argument

below. For simplicity write kn = 2Keν(a+1) log n. Recall that in the continuous-time embed-

ding, Tv represents the time of birth of vertex v and further for v ∈ [γn + 1, n], each such

vertex is equipped with a offspring point process Pvβ . As in Section 3.4.3, 1 + Pβ 6st Y
K
ν

where Y K
ν is a rate ν Yule process started with K individuals at time zero. Now note that

via our continuous-time embedding,

Mpost(n) := max
v∈[γn+1,n]

(1 + Pvβ(0, τn − Tv)),

since by time τn, a vertex born after the change time has been alive for τn−Tv 6 τn−τγn := Υn

units of time. Now

P(Mpost(n) > kn) 6 P(Mpost(n) > kn,Υn < a+ 1) + P(Υn > a+ 1),

6 P( max
v∈[γn+1,n]

(1 + Pvβ(0, a+ 1)) > kn) + P(Υn > a+ 1). (3.78)
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Using Lemma 3.4.7 we have lim supn→∞P(Υn > a+ 1) = 0. Let
{
Y K
ν,v : v ∈ [γn+ 1, n]

}
be a

family of independent rate ν Yule processes started with K individuals at time zero. Using

Lemma 3.4.11 a simple union bound and the choice of kn implies P(maxv∈[γn+1,n] Y
v
β (a+1) >

kn)→ 0. �

Thus the above lemma implies that the maximal degree amongst vertices that arrive

after the change point is OP (log n). To complete the proof of (3.76), it is enough to show

that (3.76) holds with Mn(1) replaced by Mpre(1). Thus fix ε ∈ (0, 1). Using Proposition

3.4.6 fix A = Aε such that

lim sup
n→∞

P(τγn −
1

2 + α
log γn > A) 6 ε/2. (3.79)

Now consider the following process BPnθ,?:

(a) Run the process BPα until time tn(A) := 1
2+α

log γn+ A.

(b) At this time: all vertices in BPα(tn) switch to the dynamics with parameter β namely

each vertex now reproduces at rate proportional to its out-degree + 1 + β.

(c) Run this process for an additional a+ 1 units of time where a is as in (3.5).

Abusing notation, let M?
pre,A(1) denote the maximal degree by time tn + a+ 1 of all vertices

born before time tn. We can obviously couple the original process BPnθ and BPnθ,? such that

on the set
{
τγn − 1

2+α
log γn 6 A,Υn 6 a+ 1

}
we have Mpre(1) 6M?

pre,A(1).

Further note that for any fixed K we have

P
(
Mpre(1) > Kn1/(2+α)

)
6P

(
Mpre(1) > Kn1/(2+α),Υn < a+ 1, τγn <

1

2 + α
log γn+ A

)
+ P(Υn > a+ 1) + P(τγn >

1

2 + α
log γn+ A).
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First choosing A appropriately as in (3.79) and using Lemma 3.4.7 we get that for any fixed

K,

lim sup
n→∞

P(Mpre(1) > Kn1/(2+α)) 6 lim sup
n→∞

P(M?
pre,A(1) > Kn1/(2+α)) + ε/2.

The following lemma completes the proof of (3.76).

Lemma 3.4.21. Fix A > 0. Given any ε > 0, we can choose K = K(A, ε) <∞ such that

lim sup
n→∞

P(M?
pre,A(1) > Kn1/(2+α)) 6 ε.

Proof: First note that until time tn(A), the process BPnθ,? is a the continuous-time version

of a (non-change point) preferential attachment model with attachment parameter α. This

continuous-time embedding was used to derive asymptotics for the maximal degree in [12, 13].

In particular the bounds derived in these papers imply the following for a fixed A: Write

M̃n(1) for the maximal degree exactly at time tn(A). Then there exists L = L(A, ε) < ∞

such that

lim sup
n→∞

P(M̃n(1) > Ln1/(2+α)) 6 ε/2. (3.80)

Now note that on the event
{
M̃n(1) 6 Ln1/(2+α)

}
at time tn + a + 1, the degree of every

fixed vertex in the system is stochastically dominated by a rate ν Yule process started with

Ln1/(2+α) vertices at time zero and run for time a + 1 where ν is as in (3.74). Write Dn for

such a random variable and note that by the description of the dynamics of the Yule process

and Lemma 3.4.11, we have that

Dn
d
=

Ln1/(2+α)∑
j=1

Yν,j(a+ 1), (3.81)

where {Yν,j(a+ 1) : j > 1} are iid Geometric random variables with p = e−ν(a+1). Further

note that using Proposition 3.4.6 on the size of the branching process, we can choose C such
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that

lim sup
n→∞

P(|BPnθ,?(tn)| > Cn) 6 ε/2. (3.82)

Thus on the “good” event

Gn :=
{
|BPnθ,?(tn)| 6 Cn, M̃n(1) 6 Ln1/(2+α)

}
,

we have that

M?
pre,A(1) 6st max

16v6Cn
Dv
n :=Mn

where {Dv
n : v > 1} is an iid sequence with distribution (3.81). Note that E(Yν,i(a + 1)) =

eν(a+1). Let K := 10Leν(a+1). Then standard large deviations for the Geometric distribution

implies that there exists a constant C ′ > 0 such that for all n > 1

P(Dn > Kn1/(1+α)) 6 exp(−C ′n1/(1+α)).

Thus by the union bound,

P(Mn > Kn1/(1+α)) 6 Cn exp(−C ′n1/(1+α))→ 0, (3.83)

as n→∞. Finally,

lim sup
n→∞

P(M?
pre,A(1) > Kn1/(2+α)) 6 lim sup

n→∞
P(Gcn) + lim sup

n→∞
P(Mn > Kn1/(2+α)) 6 ε,

using (3.80), (3.82) and (3.83). This completes the proof of the lemma and thus the analysis

of the maximal degree asymptotics. �

3.4 3.4.5. Analysis of the proportion of leaves

The aim of this section is to prove Theorem 3.2.3.
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Theorem 3.2.3 relates the fluctuations of Nn(1,m) (the number of leaves in the graph

of size n at time m) around ntp(∞)

t (the limiting number of leaves in the n → ∞ limit). To

accomplish this we will need two ingredients:

1. A functional central limit theorem for Nn(1,m) around its expectation ENn(1,m).

2. A strong, uniform bound on the error between the expectation ENn(1,m) and the

limit ntp(∞)

t .

We will start by proving the expectation error bounds in Section 3.4.5.1 using a simple

recursion for ENn(1,m). Then, we prove the functional central limit theorem in Section

3.4.5.2 by analyzing the martingale associated with Nn(1,m).

We will need some extra notation for the following subsections. For the rest of the proof,

to ease notation we will write Nn(m) := Nn(1,m) for the number of leaves in Tm and let

N̂n(t) = Nn(nt). Recall the asserted limiting proportion
{
p(∞)

t : 0 6 t 6 1
}

from (3.10). For

each n > 2 define the collection of real numbers wn = {wm : 2 6 m 6 n− 1}

wm =


(

1− 1+α
(2+α)m−1

)
if 2 6 m 6 nγ − 1,(

1− 1+β
(2+β)m−1

)
if nγ 6 m 6 n− 1.

(3.84)

3.4 3.4.5.1. Expectation error bounds

The following proposition is the main result of this section.

Proposition 3.4.22. There exists a constant C <∞ independent of n such that the expec-

tations satisfy

sup
n>1

sup
06t61

∣∣∣E(N̂n(t))− ntp(∞)

t

∣∣∣ 6 C. (3.85)

Remark 8. Note that by Proposition 3.4.18, we know there exists a function p(∞)(0, ·)

such that p̂(n)(0, t) → p(∞)(0, t) for 0 < t 6 1. By the bounded convergence theorem,

E(p̂(n)(0, t)) → p(∞)(0, t). Thus the above proposition implies that p(∞)(0, t) = p(∞)

t . In
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particular it shows that the degree distribution owing to the change point is different from

the degree distribution without change point. This is the final nail in proving Theorem 3.2.1.

Remark 9. A similar result was shown in the context of no change point in [106, Section 8.6]

and [46] (not just for leaves but for all fixed k > 1). Our proof uses slightly different ideas

starting from the same point as in [106]. While we do not consider higher degree vertices,

as in [106], the result above can be used as a building block to show identical error bounds

for expectations of the number of higher degree vertices about limit constants.

Proof: To ease notation write ϑn(m) = E(Nn(m)). The main crux of the proof is studying

a recursion relation for ϑn(m + 1) in terms of ϑn(m). We will give a careful analysis of the

time period before the change point and then describe how the same ideas give the result

for after the change point.

For each 1 < m 6 n write Lm+1 for the event that vertex m+ 1 connects to a leaf vertex

in Tm. Then note that conditioning on Tm, when m < nγ we have

E(Nn(m+ 1)|Tm) = Nn(m) + 1− P(Lm+1|Tm)

= Nn(m) + 1− (1 + α)Nn(m)

(2 + α)m− 1
(3.86)

When m > nγ we have the same recursion as above but with α replaced by β. Taking full

expectations and simplifying gives the following recursion:

Nn(m+ 1) = 1 + wmNn(m), ϑn(m+ 1) = 1 + wmϑn(m), (3.87)

where {wm : 2 6 m 6 n} are as defined in (3.84).

Before the change point: Repeatedly using this recursion and using the boundary con-

dition ϑn(2) = 1 gives for m+ 1 6 nγ,

ϑn(m+ 1) =
m∑
s=2

m∏
k=s

(
1− (1 + α)

(2 + α)k − 1

)
(3.88)
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Now fix s0 > 1 large enough such that the following three conditions hold:

(i) For all k > s0

log k + γ 6
k∑
i=1

1

i
6 (log k + γ) +

1

k
.

Here γ is the Euler-Mascheroni constant. See [17].

(ii) For all k > s0, 1− (1+α)
(2+α)k−1 > 1/2.

(iii) We may choose a constant C <∞ such that for all k > 1,

∞∑
i=k

1

((2 + α)k − 1)2
6
C

k
. (3.89)

Further there exists a constant C ′ such that for all s > s0, | exp(C/s)− 1| 6 C ′/s and

∣∣∣∣(1− (1 + α)

(2 + α)s− 1

)
− e−

(1+α)
(2+α)s−1

∣∣∣∣ 6 C ′

s2
.

To ease notation, for the rest of the proof let δ = (1 +α)/(2 +α). Using the elementary

inequality 1 − x 6 e−x for x ∈ (0, 1) and the choice of s0 above, the following inequalities

with a constant C = C(s0, α) <∞ are readily verified:

(A) For all m > s > s0, ∣∣∣∣e−∑m
i=s

δ
i −

( s
m

)δ∣∣∣∣ 6 C
sδ−1

mδ
. (3.90)

(B) For all m > s > s0,

∣∣∣e−∑m
i=s

(1+α)
(2+α)i − e−

∑m
i=s

(1+α)
(2+α)i−1

∣∣∣ 6 C
sδ−1

mδ
. (3.91)

(C) For all m > s > s0,
m∏
k=s

(
1− (1 + α)

(2 + α)k − 1

)
6 C

( s
m

)δ
. (3.92)
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Now note that by the “Lindeberg” trick, for any s 6 m and two collections of non-negative

numbers {wk : s 6 k 6 m} and {zk : s 6 k 6 m} we have

∣∣∣∣∣
m∏
k=s

wk −
m∏
k=s

zk

∣∣∣∣∣ 6
m∑
k=s

|wk − zk|
∏
s6l<k

zk
∏
l>k

wk (3.93)

Using this with wk = 1 − (1+α)
(2+α)k−1 and zk = e−

(1+α)
(2+α)k−1 and using (3.90), (3.91) and (3.92)

gives the following lemma.

Lemma 3.4.23. Fix s0 as above. Writing δ = (1+α)/(2+α) there exists a constant C <∞

such that for all m > s > s0,∣∣∣∣∣
m∏
k=s

(
1− (1 + α)

(2 + α)k − 1

)
−
( s
m

)δ∣∣∣∣∣ 6 C
sδ−1

mδ
.

Now using the form of the expectation ϑn(m) in (3.88), the error bound in the above

lemma and the integral comparison

1

mδ

∫ m−1

s0

xδdx 6
m∑

s0+1

( s
m

)δ
6

1

mδ

∫ m+1

s0+2

xδdx,

shows that there exists a constant C such that for m 6 nγ

|ϑn(m)− m

δ
| 6 C. (3.94)

This is the assertion for the expected number of leaves before the change point.

After the change point: We now describe the evolution of ϑn(m) for nγ < m 6 n. We

only give the basic idea as the details are the same as before the change point. First note

that by the above analysis, there exists a constant C such that |ϑn(nγ)− nγ/δ| 6 C. Now

the evolution of the process after γn is as in (3.86) with α replaced by β. Thus starting at
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m > nγ and using the argument above we get

ϑn(m+ 1) :=
m∑

s=nγ+1

m∏
j=s

(
1− 1 + β

(2 + β)j − 1

)
+ ϑn(nγ)

m∏
j=nγ

(
1− 1 + β

(2 + β)j − 1

)
(3.95)

Simplifying notation and writing m = nt where γ 6 t 6 1 and repeating the arguments

above it is easy to check that there exists a constant C independent of n such that

|ϑn(nt)− ntp(∞)

t | 6 C, (3.96)

where p(∞)

t is as in (3.10). This completes the proof.

�

3.4 3.4.5.2. Proof of Theorem 3.2.3

A central limit theorem for the number of leaves Nn(n) (in fact all degree counts Nn(k, n))

at time n in the setting of no change point was established in [91]. We will extend this to

a functional central limit theorem in the change point setting. First recall the function δα

from (3.11). Define the stochastic process

M∗
n(t) =


tδα

(Nn(nt)− ϑn(nt))√
n

if t 6 γ

γδα
(
t

γ

)δβ (Nn(nt)− ϑn(nt))√
n

if t > γ

(3.97)

Recall the process M(·) in (3.15) and the relationship between M and G. Using Proposition

3.4.22 and the continuous mapping theorem, it is enough to show the following result.

Proposition 3.4.24. We have M∗
n(·) w−→M(·) on D[0, 1] as n→∞.

Proof: The main idea is to study martingales associated with the {Nn(m) : 2 6 m 6 n} and

then use the martingale functional central limit theorem. There are an enormous number

of variants of such functional limit theorems under a multitude of conditions. We quote the
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specific form relevant to this setting. Recall the function φ(·) and the corresponding diffusion

M(·) defined in (3.16).

Theorem 3.4.25. [[47, 49]] For each n > 1, let {Mn(m) : 1 6 m 6 n} be a mean zero

martingale with finite second moments adapted to a filtration {Fn(m) : 1 6 m 6 n}. Write

{Xn(m) : 1 6 m 6 n} for the associated martingale difference sequence namely Xn(m) =

Mn(m)−Mn(m− 1) with Mn(0) = 0. Assume the following two hypotheses:

(i) For each 0 6 t 6 1

Vn(nt) :=
nt∑
m=1

E
(

[Xn(m)]2
∣∣Fn(m− 1)

) P−→ φ(t), as n→∞. (3.98)

(ii) For each fixed ε > 0

∑
m6n

E
(

[Xn(m)]2 1 {|Xn(m)| > ε}
∣∣Fn(m− 1)

) P−→ 0. (3.99)

Then defining the process M̄n(t) := Mn(nt), one has M̄n
w−→M in D[0, 1].

For our example (following [91]) define the process

N∗n(m) =
Nn(m)− ϑn(m)∏m−1

j=2 wj
, 2 6 m 6 n. (3.100)

Here wj is as in (3.84). Using the recursion (3.87) results in the following lemma.

Lemma 3.4.26. The process N∗n is a martingale with respect to the filtration generated by

{Tm : 2 6 m 6 n}.

Now define the corresponding martingale differences dn(m) = N∗n(m)−N∗n(m−1). Define

∆n(m) = 1 {m+ 1 connects to a non-leaf vertex in Tm−1}. Then simple algebra and (3.87)

implies that for m 6 nγ

dn(m) =
1∏m−1

j=2 wj

[
∆n(m) +Nn(m− 1)

(1 + α)Nn(m− 1)

(2 + α)(m− 1)− 1
− 1

]
, (3.101)
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and

E(∆n(m)|Tm−1) = 1− (1 + α)Nn(m− 1)

(2 + α)(m− 1)− 1
(3.102)

For m > nγ we have identical formulae as (3.101) and (3.102) but now α is replaced by β. For

the rest of the argument we will replace the denominator for the second term (2+α)(m−1)−1

by (2+α)(m−1)−1. It is easy to check that the error is negligible and will ease presentation.

Now use Proposition 3.4.18 which allows us to uniformly approximate Nn(m−1)/(m−1)

by p(∞)

m/n. Further the asymptotics of
∏m

j=2wj derived in the previous section implies that

for m 6 nγ,
∏m

j=2wj ∼ m−δα while for m > nγ,
∏m

j=2wj ∼ (nγ)−δα(m/nγ)−δβ where δα, δβ

as defined in (3.11). Taking conditional expectations in (3.101), using (3.102) and using the

above approximations results in

E([dn(m)]2|Tm−1) ∼


m2δα

[
δαp

(∞)

m/n(1− δαp(∞)

m/n)
]

if m 6 nγ,

(nγ)2δα
(
m
n

)2δβ [δβp(∞)

m/n(1− δβp(∞)

m/n)
]

if m > nγ

(3.103)

Now consider the martingale

Mn(m) :=
1

nδα+1/2

Nn(m)− ϑn(m)∏m−1
j=2 wj

, 2 6 m 6 n. (3.104)

We will apply Theorem 3.4.25 to this martingale. Let {Xn(m) : 2 6 m 6 n} denote the cor-

responding martingale differences. First fix t 6 γ and recall the definition of the cumulative

conditional variance Vn(nt) until time t in (3.98). Using the first expression in (3.103) we

get

Vn(nt) ∼ 1

n2δα+1

nt∑
j=1

j2δα
[
δαp

(∞)

j/n(1− δαp(∞)

j/n)
]

→
∫ t

0

s2δα [δαp
(∞)

s (1− δαp(∞)

s )] ds = φ(t),
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as n → ∞. Thus (3.98) is satisfied for t 6 γ. A similar calculation now incorporating the

second expression in (3.103) implies that (3.98) is satisfied for all t ∈ [0, 1] with φ as in

(3.16).

Now let us check the second condition namely (3.99). Note that for m 6 nγ, Xn(m) > ε

implies that 3mδα > εnδα+1/2. For large n this is impossible for all m 6 nγ. A similar

calculation for m > nγ completes the proof of (3.99). Using Theorem 3.4.25 we get that

Mn(n·) w−→ M(·) in D[0, 1]. Using the asymptotics for
∏m

j=2wj derived in Section 3.4.5.1,

Lemma 3.4.23 now completes the proof of Proposition 3.4.24 and thus Theorem 3.2.3. �

3.4 3.4.6. Consistency of the estimator

The aim of this section is to prove Theorem 3.2.4. Fix a truncation level ε > 0 from zero

as in the theorem. Recall the time-averaged proportion of leaves before and after each time

t namely (3.22) and (3.21). Also recall the expression for the limiting proportion of leaves

from (3.10). For any fixed interval [s, t] ⊆ [0, 1], define H[s, t] by

H[s, t] :=
1

t− s

∫ t

s

p(∞)

u du. (3.105)

The interpretation is as follows: the above gives the expected proportion of leaves in the

large network limit if one were to sample a time point U ∈ [s, t] uniformly at random. Now

define the two functions th
(∞) and h(∞)

t via:

(a) Case 1: For ε 6 t 6 γ

th
(∞) := p(∞)

γ , h(∞)

t :=
γ − t
1− t

p(∞)

γ +
1− γ
1− t

H[γ, 1]

(b) Case 2: For t > γ

th :=
γ − ε
t− ε

pγ +
t− γ
t− ε

H([γ, t]), ht := H([t, 1]).
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In a similar vein to (4.2), define the function

D(t) := (1− t)|th(∞) − h(∞)

t |, t ∈ [ε, 1]. (3.106)

Routine algebra shows that

D(t) :=


(1− γ)

∣∣p(∞)
γ −H[γ, 1]

∣∣ for ε 6 t 6 γ.

(1− ε)
∣∣H[ε, t]−H[ε, 1]

∣∣ for t > γ.

(3.107)

Using the form of the limit proportion p(∞)

t from (3.10) the following result is easy to check.

Lemma 3.4.27. Fix ε < γ and assume α 6= β. Then D(·) is a continuous function on [ε, 1]

such that D(·) is constant on the interval [ε, γ] and then is strictly monotonically decreasing

on the interval [γ, 1] with D(t) → 0 as t → 1. Further the function has a strictly negative

right derivative at γ namely

∂+D(γ) := lim
t↓γ

D(t)−D(γ)

t− γ
< 0. (3.108)

Now Theorem 3.2.3 immediately results in the following result.

Lemma 3.4.28. Fix ε > 0. Then

sup
t∈[ε,1]

|Dn(t)−D(t)| = OP

(
1√
n

)
.

Combining Lemmas 3.4.27 and 3.4.28 completes the proof. �
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CHAPTER 4

Changepoint: simulations and analysis of real data

4.1 4.1. Introduction

New random graph models are proposed almost every day, but in the world of time-evolving,

growing networks, preferential attachment still is king. The mechanism of preferential at-

tachment is simple, mathematically rich, and also generates graphs with some real-world

characteristics. However, the preferential attachment paradigm still falls short of being able

to stand as a convincing model for many real-world, temporal networks.

To be more specific, many real-world networks resemble preferential attachment graphs

at time t = 1 (i.e. in the aggregate view), but their evolution from t = 0 until t = 1 doesn’t

resemble preferential attachment at all. Therefore, we see that in order to build upon and

extend the preferential attachment model to real-world analysis, it is not only helpful but

necessary to start looking at the entire history of the graph.

The goal of this chapter is to further evaluate our approach to change point detection on

simulated preferential attachment data, but also to examine to what extent two real-world

temporal networks resemble preferential attachment graphs and how we can apply some of

our change point insights to them.

In Section 4.2 we discuss some finer, practical points relating to the change point estima-

tor proposed in Chapter 3 and evaluate its performance on simulated preferential attachment

graphs. In Section 4.3 we investigate these Chapter 3-inspired graph functions on some real,

temporal network data built from arXiv and CourtListener citation data to see what we can

uncover.
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4.2 4.2. Change point: further notes and simulations

4.2 4.2.1. Preferential attachment: the role of functions

We begin with the case that our change point estimator was designed for: linear preferential

attachment trees. As these graphs have already been discussed at length in Chapter 3, let

us dive straight into the details.

Linear preferential trees have been studied exhaustively. The interesting bits for us lie in

comparing the trees with vs. without change point. In light of our findings from Chapter 3,

the main takeaway from these simulations is that the effect of a change point cannot really

be felt in the aggregate statistics calculated from the graph. We’ve already seen that the

degree exponent does not respond to change point.

And for many other statistics that do respond measurably to the addition of a change

point, there is no way to tell from the statistic whether the value of the statistic is due to

a graph with change point or whether it is due to a graph without changepoint, but with a

slightly different attachment parameter value. For example, the proportion of leaves from

a non-change point model with attachment parameter α0 can be easily generated from a

change point model with different α1 and β by solving equation 3.10.

The key function for the change point analysis is the leaf count over the history of the

graph. Our estimator is a simple argmax of a function of the leaf count, so in theory we

ought to be able to visually detect a change point from the path of this function alone.

However, it is difficult to see the break in the raw count since the graph is continually

growing. Normalizing by the size of the graph and plotting the leaf proportion gives the

clearer picture seen in Figure 4.1.

Obviously, whether or not α > β holds determines the exact directionality of the kink.

But that aside, the big picture is that we want to identify the time corresponding to the

kink. Our strategy is to use Dn(t):
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Figure 4.1: The proportion of leaves in a preferential attachment tree with γ = 0.5, α = 0 and
β = 10.

Dn(t) := (1− t)|th(n) − h(n)

t |, t ∈ [ε, 1]. (4.1)

Where th
(n) is the average proportion of leaves at each time point up until time t and

h(n)

t is the average proportion of leaves at each time point after time t. Also recall that our

estimator is essentially defined as:

γ̂ = the last time that Dn(t) was within
ω(n)√
n

of max
t∈[ε,1]

Dn(t)

For a typical preferential tree with and without change point, the path of this function

is straightforward to interpret: it’s the scaled difference between the average proportion of

leaves before and after each time t. Without a change point, this function is roughly constant

at zero, since without a change point the proportion of leaves converges to a constant. With

change point, the function is constant up until the change point and then decreases to 0 (see

Figure 4.3).
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Figure 4.2: Plot of Dn(t) for the with-changepoint model (blue) versus the no-changepoint model
(black)

4.2 4.2.2. The behavior of γ̂ in simulations

At this point, let’s examine the behavior of γ̂ in a little more detail.

4.2 4.2.2.1. The bias-variance tradeoff in ε

In the big scheme, our estimator has two main tuning parameters. It turns out that the

most important is the ε truncation of the sequence Dn(t) near zero. This truncation was

introduced as a technical compensation for a divide-by-zero problem in the definition of the

average proportion of leaves. If all we are interested in is consistency, then strictly speaking

this is the only reason for this truncation.

However, for fixed sample sizes ε plays another role. Obviously, as the graph size n→∞

the proportion of leaves converges to a constant. But when the graph is small, the variance

is extremely high. This translates to large fluctuations in Dn(t) for t close to 0.

Even for graphs of, say, n = 500, 000 vertices, there is some positive probability that

the fluctuation is so large that even maxt∈[ε,1]Dn(t) ± C · ω(n)/ log(n) fails to capture the
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Figure 4.3: Illustration of when the log(n)/
√
n threshold (indicated by pink box) fails to include

the true changepoint γ = 0.5.

main part of the Dn(t) sequence, biasing the estimator earlier in time1. Furthermore, this

is possible regardless of the values of the other parameters in the model since the small-t

volatility is always present.

Therefore the practical effect of increasing ε is to reduce the variance in the estimator,

especially when γ is close to 1. The downside is that automatically biases the estimator for

any γ < ε, but for many real use cases the possibility of γ < ε can be reasonably excluded.

As the reader will soon note, this ε-truncation plays an indirect role in much of the

following discussion.

For all the later simulations unless otherwise specified, we will set ε = 0.05.

4.2 4.2.2.2. The bias-variance tradeoff in ω

The second important parameter in our setup is the choice of ω as defined in:

Mn :=

{
t ∈ [ε, 1] : |Dn(t)− max

t∈[ε,1]
Dn(t)| 6 ω(n)√

n

}
1The scaling C is a small technical compensation which will be explained in the next subsection.
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Figure 4.4: The effect of increasing ε from 0.01 to 0.10 for γ ∈ {0.25, 0.50, 0.75}. ω = log in both
cases.

γ̂ is defined as the latest time t ∈ Mn. In plain English, ω(n)/
√
n sets the fatness of

the “tube” around Dn(t) which defines the amount of fluctuations of Dn(t) we can tolerate

before declaring a change.

In the previous chapter we presented ω = log, but also remarked that this choice is

arbitrary; essentially, consistency is still guaranteed so long as ω = o(
√
n). To break down

why this is, let D(t) be the limit of Dn(t) as n → ∞. The functional central limit theorem

3.2.3 tells us that, for fixed ε > 0,

sup
t∈[ε,1]

|Dn(t)−D(t)| = OP

(
1√
n

)
One way of looking at it is that ω is necessary to overcome the constant factor in the

OP (·) statement. Regardless of the interpretation, the main takeaway is that the threshold

ω/
√
n was formulated as such purely to guarantee consistency. It makes no promises about

105



Figure 4.5: Effect of not normalizing Dn(t) by maxtDn(t) on a graph with γ = 0.5, α = 0,
β = 10, and N = 500, 000. The red tube is the unnormalized threshold with vertical line at the
estimate γ̂.

small- or finite-sample performance. Indeed, if we inspect the threshold with ω(n) = log(n)

(Figure 4.5), then we can clearly see why the estimator can perform poorly.

The bias is very high for this estimator, simply because the threshold ω/
√
n is very

large compared with the natural scale of Dn. This forces the set Mn to always include

a significant portion of time after the break in the path of Dn. This bias is borne out in

repeated simulation. In Figure 4.5, the threshold log(n)/
√
n ≈ 0.019 but the scale of the

function Dn(t) hovers around 0.035. Although as n → ∞ this gap will close, the resulting

bias even for 500,000 vertices is quite high.

This suggests an easy fix: simply scale the ω(n)/
√
n threshold by the natural scale of

Dn(t). Namely, adjust the definition of Mn like so:

M̃n :=

{
t ∈ [ε, 1] : |Dn(t)− max

t∈[ε,1]
Dn(t)| 6

(
ω(n)√
n
· max
t∈[ε,1]

Dn(t)

)}
In much the same way as decreasing ε may cause variance to increase because the setMn

generally misses a larger portion of the constant phase of Dn(t), scaling by maxt∈[ε,1]Dn(t)
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Figure 4.6: Normalized vs. unnormalized estimates for a change point of α = 0 to β = 10 at
various values of γ.

also injects more variance into our estimator. However, the reduction in bias is significant,

see e.g. Figure 4.6. Note the somewhat similar end effect of removing the (1 − t) scaling

illustrated in Figure 3.4.

From this we can always see that the question of choice of ω boils down to essentially

the same dynamic. For any fixed n, an ω going to ∞ relatively slowly will exhibit more

variance but less bias compared to an ω going to ∞ relatively quickly.

It’s worth noting though that the nature of the bias is slightly different than the bias

resulting from a small ε. With bias due to small ε, the width of the tube threshold remains

the same but the reference point maxtDn(t) catches a point much earlier in the history of

the graph, generally resulting in a backwards (towards earlier times) shift in γ̂s. With bias

due to large or unscaled ω(n)/ log(n) however, γ̂ is clearly shifted forwards in time. Another

look back at 4.4 versus 4.6 reveals this clearly.

From now on, unless otherwise specified the estimates shown and discussed will always

be this scaled version of γ̂, calculated using M̃n shown above.
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Figure 4.7: γ vs. γ̂ for various γ ∈ [0.05, 1.00]. Changepoint is α = 0 to β = 10 on N = 100, 000
vertices with ε = 0.05 and ω = log.

4.2 4.2.3. Performance of the estimator on trees

As mentioned above, from now on we have ε = 0.05 and ω(n) = log(n), scaling the Mn

threshold by maxt∈[ε,1]Dn(t) in all cases. The salient features of the estimator are the fol-

lowing.

4.2 4.2.3.1. Performance vs. the true change point γ

The estimator displays a strong asymmetry with regards to the location of γ, assuming a

fixed ε. As evidenced in Figure 4.7, γ close to 0 is easy, and γ close to 1 is hard.

When γ is close to 0, the estimator γ̂ actually performs quite well. As γ gets closer to

1 however, the estimator is prone to identifying the noise near t = 0 as signal of a change

point. In other words, as γ → 1, γ̂ displays heavier and heavier bias towards 0. This

isn’t too surprising. From a mathematical standpoint, the scaling (1 − t) heavily depresses

the difference which appears after t = 0.9, so it appears small relative to the noise near
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Figure 4.8: Plots of Dn(t) with (blue) and without (black) the scaling (1 − t), for N = 100, 000
vertices and γ = 0.9, α = 0, and β = 10.

t = 0. From an intuitive standpoint, one would expect that a very late change in network

attachment would be very difficult to detect simply because the dynamics are so dependent.

One way to see this is to compare the behavior with that of the unscaled argmax estima-

tor γ̃ discussed in subsection 3.3.2, which displays the opposite effect: as γ → 1 the estimator

biases forwards in time. Without the scaling, Dn(t) overreacts to small changes late in the

history of the graph. The situation is made plain by examining scaled vs. unscaled Dn(t)

plots for a typical preferential attachment tree with a late change, say at γ = 0.9, see e.g.

Figure 4.8. Despite the deficiency of both approaches, it’s still strictly preferable to stick

with the scaled estimator. If we knew a priori that the change point occurs late, then using

the scaled version with large ε, say 0.50, would smooth out the noise appropriately and let

γ̂ pick up the true signal late, see Figure 4.9. This would not be the case with the unscaled

estimate—it would still be heavily biased forward, yielding an estimate of very close to 1.0.
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Figure 4.9: Histograms of γ̂ for γ = 0.9 with ε = 0.05 (top) and ε = 0.50 (bottom).

4.2 4.2.3.2. Sensitivity of γ̂ with regards to |α− β|

The next natural question with regards to change point detection is how its performance

depends on the gap between the pre- and post-change point parameter values. It’s not

unreasonable to expect that when the change is small, detecting the change is more difficult.

Unsurprisingly, this is in fact the case as illustrated in Figure 4.10.

One way to put the relatively difficulty of estimating the time of a small change is to

look at the standard deviations for fixed parameter sets. At 100,000 vertices, the sample

standard deviation of a sample of 50 estimates of the changepoint from α = 0 to β = 10 is .

To achieve the same standard deviation for a change from α = 4 to β = 6, we need roughly

vertices.

Of course, this discussion is all modulo other considerations such as the position of γ.

Per our discussion in the previous section, it’s natural to expect relatively higher precision

when γ is small. This is borne out in simulations as well.
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Figure 4.10: Histogram of estimates γ̂ of γ = 0.5 with various separations |α−β| with (α+β)/2 = 5
and N = 100, 000 in all cases. Blue line indicates the mean estimate.
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4.2 4.2.4. Extension of γ̂ to graphs with m > 1

A natural extension of our method is to try an adapt it to preferential attachment graphs

with multiple edge attachments per vertex, which from now on we shall refer to as preferential

attachment graphs.

The end goal of this chapter is to see how our ideas extend to real networks, and real

networks are rarely trees. Therefore it makes sense to try and establish a baseline for how

our model should behave on not-trees by using preferential attachment graphs. A complete

analysis of such an extension an entire paper in itself, but let us at least briefly investigate

the issue empirically.

There are really two versions of such graphs, distinguished by whether or not they allow

for multiple edges. In the large graph limit they are essentially the same (as the probability

of a multiple edge → 0 as n → ∞). For our purposes and to match the existing method in

the simulation software, we shall assume multiple edges are not allowed. To be precise,

Fix two attachment parameters α, β > 0, a change point parameter γ ∈ (0, 1), and a

system size n > 1.

(a) For time 0 < j 6 bnγc, a new vertex entering the system at time j connects to m pre-

existing vertices sequentially chosen without replacement with probability proportional

to their current out-degree +1 + α.

(b) For time bnγc < j 6 n, the new vertex connects to m pre-existing vertices sequentially

chosen without replacement with probability proportional to their current out-degree

+1 + β.

4.2 4.2.4.1. The function D
(k)
n (t)

Obviously, if we are to extract any information from graphs with m > 1 then we can no

longer rely on counting vertices of degree 1. So let us introduce the notation

112



Figure 4.11: The proportion of degree-4 vertices in a preferential attachment graph with m = 4
with changepoint at γ = 0.5 (blue) and without changepoint (black).

D(k)
n (t) := |th(n),k − h(n),k

t |, t ∈ [ε, 1]. (4.2)

where th
(n),k and h(n),k

t are the pre- and post-changepoint average proportion of vertices of

degree k. It is critical to note that in our definition of D
(k)
n , we have not scaled the absolute

difference by (1− t). This is for a variety of reasons.

First of all, it isn’t obvious that (1 − t) is the right scaling for degree-k vertices. The

proportion of higher-degree vertices behaves similarly, but slightly differently than in the

case of leaves and trees. In graphs with m > 1, the proportion of degree-m vertices responds

faster to a changepoint, see e.g. Figure 4.11. The exact scaling factor can be calculated by

solving a recursion analogous to 3.87, but is annoying. More to the point, even if (1 − t)

turns out to be the correct recursion, it would take more work to establish whether or not

it’s the same for every k > 1. Since we will investigate graphs over a wide range of m > 1,

it’s more convenient to omit the scaling.

Secondly, the out-degree of incoming vertices in the real networks we examine in the

next section is clearly not constant within a single graph. So for the purposes of establishing
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Figure 4.12: Plot of D
(1)
n for a preferential attachment tree with m = 1 vs. D

(4)
n for a graph with

m = 4 on N = 100, 000 vertices with change point at γ = 0.5 from α = 0 to β = 10. Dashed lines
indicate argmaxes.

a baseline for real data analysis, it makes sense not to incorporate any scaling even if we had

solved for it.

In general though, we would expect D
(k)
n on preferential attachment graphs to react to

change points much in the same way as Dn(t), the leaf count, does on trees. In fact, it turns

out that for a preferential attachment graph with m new edges per incoming vertex, if we

set k = m then the function D
(k)
n is even better in some ways, e.g. in Figure 4.12.

We saw that with trees the effect of a parameter change is not felt until much later with

regards to Dn(t). However, when m > 1, each incoming vertex can affect the k-degree vertex

count multiple times. Therefore it makes sense that when m is greater, the D
(m)
n function

not only has a sharper kink where the change occurs, but also that it occurs closer to the

true change point rather than after a lag.

Finally, there is the question about what D
(k)
n (t) looks like when k > m. Essentially,

this is the same dynamic as counting degree-k vertices in the preferential attachment tree,

where k > 1.
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The technically-correct answer is that “it depends on the exact parameter values.” But

in general, we can expect that D
(k)
n will have more noise and lag farther behind the true

change point. Higher-degree vertices should not feel the effect of a change in the attachment

parameter as strongly, simply by virtue of there being fewer high-degree vertices. In addi-

tion, the limiting degree distribution arising from linear preferential attachment has finite

expectation, so even when weighted by the higher degree, the contribution to the attachment

selections by high-degree vertices is necessarily less than the contribution to the attachment

selections by low-degree vertices as a whole.

Later when we evaluate real data, we will briefly revisit the hairy problem of figuring

out the best k for data which does not have constant attachment out-degree m.

4.3 4.3. Real data

As network analysis becomes more and more popular, the amount of network data available

grows exponentially. However, up until now, the common thread running through most

network analyses is that they are static. Tasks like community detection, clustering, or

estimation of various vertex properties generally are performed on snapshots of a graph,

instead of over the whole history of the graph.

One side effect of this narrow view is that most available network data either lack time

information entirely or contain only coarse records, making it impossible to study the exact

attachment dynamics of the model.

We have scraped two citation networks which, to our knowledge, are some of the first

large, publicly available temporal networks with fine enough resolution to study on the scale

of individual connections. These data are:

1. The arXiv graph:

A citation network of all papers uploaded to arXiv since the first preprint appearing

on April 25, 1986. Vertices are papers and two papers have an edge if one of them
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cites the other. Citations are linked to arXiv preprints using a proprietary algorithm

from Paperscape2.

2. The CourtListener graph:

A citation network of court opinions from the federal appellate circuit and the Supreme

Court. This network was scraped from CourtListener3 and generously provided to us

via Iain Carmichael4.

Initially, our goal with these data was to directly apply our change point estimator and

see what resulted. However, the evolution of these networks is so different from the ideal of

preferential attachment that the resulting analysis is mostly pointless. Instead, we aim to

conduct an exploratory data analysis of the networks inspired by the approach of our change

point estimator.

As a final note, we will generally look at subgraphs of the real networks below, corre-

sponding to certain obvious communities. For arXiv, this means looking at citation networks

for papers in the same subject matter category. For the CourtListener data, this means look-

ing at citations of cases within the same court.

Different categories have very different characteristics (e.g. citation conventions amongst

biologists might be very different from citation conventions amongst mathematicians).

Broadly speaking, we want to isolate changes in a single network’s evolution over time due

to some structural shift, as opposed to changes due to combining or mixing of phenomena

across several different networks. Therefore, in what follows we will generally avoid analysis

of the entire network as a whole.

2http://paperscape.org

3https://www.courtlistener.com/

4http://github.com/idc9/law-net
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4.3 4.3.1. The raw data

4.3 4.3.1.1. The arXiv graph

This dataset is a citation network from the preprint archive arXiv 5. As mentioned above,

vertices are papers and two vertices are connected if at least one of the corresponding papers

cites the other. We analyze the graph as undirected but, intrinsically, it is directed—a

paper’s outdegree is the number of citations it has to other papers, and a paper’s indegree

is the number of citations other papers have to it. We will sometimes use this terminology.

The vertices, edges, and basic vertex metadata (arXiv ID, arXiv categories) were pro-

vided by the Paperscape data repository6. The time data was not included, but was instead

scraped additionally using the arXiv API. All code for obtaining the data can be found on

the author’s Github page7.

Before we proceed to the exploratory analysis, there is one important note regarding the

citation metadata: papers prepared for journal publication generally do not list the arXiv

preprint IDs for their references. Instead, they list the citation for the published article.

Therefore if one were to try to connect arXiv papers based on their references, one would

need to cross-link the journal citation with the arXiv preprint somehow.

Papers on arXiv are grouped into categories which convey which subject matter area

the papers concern. The success rate for cross-linking journal citations with arXiv preprints

varies widely depending on the category, due mostly to the differing popularity of arXiv

across disciplines, and the relative proportion of all published papers which have arXiv

preprints.

For example, the field of high-energy physics became active relatively recently, due to

technological constraints. Therefore, most papers in that area were published while arXiv

5https://arxiv.org

6https://github.com/paperscape/paperscape-data

7https://github.com/yichijin
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Category Papers ArXiv refs Total refs Ratio

hep-lat 13,243 281,915 344,181 81.91%
hep-ph 91,417 3,099,726 3,836,462 80.80%
hep-th 73,199 2,121,979 2,644,210 80.25%
nucl-th 22,878 528,484 834,066 63.36%
astro-ph 179,168 3,205,223 8,286,626 38.68%
cond-mat 181,732 1,530,928 5,620,147 27.24%
physics 68,050 237,050 1,641,857 14.44%
math 213,993 356,700 4,388,131 8.13%

cs 83,712 50,714 1,568,814 3.23%

Table 4.1: Paperscape scraping success rates for selected categories.

was online and consequently most high-energy physics papers have arXiv preprints8. Math-

ematics, on the other hand, has a large corpus of still-influential papers from the early

20th century for which no preprints exist. Therefore, for a typical math paper, a smaller

proportion of references can be successfully linked to an arXiv preprint.

We refer the reader to the Paperscape and Github links above for more details regarding

the data scraping methodology.

4.3 4.3.1.2. The CourtListener graph

CourtListener is an online, open-source project which archives and organizes court opinions

from various courts around the country. Our data set covers the federal appellate circuit

and the supreme court only. As in the arXiv data, we will analyze the graph as undirected

but it is intrinsically directed.

The vertices in the CourtListener graph are court opinions running all the way back to

February 14, 1792. Two vertices have an edge between them if one of the court opinions

cites the other. We treat the graph as undirected. Vertices also come with a couple points of

metadata, most importantly the (unique) CourtListener ID, the publication time, and the

court ID where the opinion was written.

8Also, arXiv was developed at Los Alamos National Laboratory by physicists.
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Similar to the case of arXiv, CourtListener has a custom codebase for automatically de-

tecting citations to court opinions and linking them to documents in their database. However

the CourtListener data is slightly messier than the arXiv data, for two reasons:

1. CourtListener does not detect citations to or archive statutes, law review articles, or

other resources.

2. CourtListener does not currently publish (or possibly know) the percent coverage (in

their database) of all opinions ever written. This is partially due to the fact that

CourtListener does not scrape all of the citation data themselves—rather, they rely

somewhat on donations from partner sites. Therefore the scraping success rate is

subject to inconsistencies due to the different algorithms employed across the partner

sites.

For our purposes, we will generally treat the data sets as complete, 100% samples of

court opinions written in each court. However, in later analysis we are careful to keep the

fact that we don’t know the exact recovery rate in the back of our minds.

We refer the reader to the CourtListener website9 for more details about the raw data.

4.3 4.3.2. Does it look like preferential attachment?

As alluded to in the introduction, the main takeaway from this section is that these real

networks look close enough to preferential attachment in the t = 1, aggregate view. But

when we inspect their history, they clearly don’t. Let us dive straight into it.

4.3 4.3.2.1. The arXiv graph

One of the motivations for development of preferential attachment is that it was one of the

first temporal models capable of producing a power-law degree distribution.

9https://www.courtlistener.com/about/
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Figure 4.13: Log-log degree distribution for selected arXiv categories.

The degree distribution on the arXiv graph really depends on what category we are

looking at. No, the distribution is not strictly a power law for the entire range of degrees.

However, in most cases we see a strong linear trend on the right side of the log-log plot

indicating a power law tail. A lot of this can be explained by the fact that in these real

networks, there is additional randomness arising from the random number of initial out-

degree of vertices corresponding to how many citations to existing preprints a new arXiv

preprint has. Because this initial out-degree rarely exceeds say, 200, this randomness only

affects the lower portion of the degree distribution so its effect is not felt in the tail. This is

consistent with what we see in most citation networks.

Also, the aggregate statistics are generally in line with a comparable simulated prefer-

ential attachment graph, see Table 4.2.

In particular, the order of magnitude of the maximum degree and the clustering coef-

ficient are roughly similar. If these were the only features we looked at, we could say with

reasonable confidence that these graphs arose out of a preferential attachment-type of dy-

namic. Another takeaway from this table is that there are clear dominating categories on

the arXiv graph. Having been created by physicists, arXiv sees the heaviest use from that
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Category Average degree CC Edges Maximum degree N

astro-ph 32.17 0.01 2,972,371 8,060 184,815
cond-mat 15.54 0.01 1,298,041 3,185 167,042
hep-ph 39.58 0.02 2,315,801 3,005 117,028
hep-th 37.05 0.02 1,917,902 9,192 103,542
math 5.93 0.02 421,043 684 142,117

PA, m = 8 16.0 0.00 799,964 1,332 100,000
PA, m = 1 2 0 99,999 180 100,000

Table 4.2: Aggregate statistics for the arXiv graph (selected categories).

field. Indeed, we will focus on a select few from now on, since those are the ones most likely

to adhere to a uniform attachment dynamic over all of its vertices.

The most defining characteristic of pure preferential attachment is that incoming vertices

attach to existing ones with probability proportional to the degree of the existing vertex.

But before discussing even that, the most obvious way in which the these arXiv communi-

ties diverge from theory has to do with the initial out-degree—which in citation networks

corresponds to the number of references to other (existing) papers within each paper. The

fact is that not all vertices join the graph with the same out-degree. And not only that, but

the average initial out-degree increases with time, see e.g. Figure 4.14.

It’s clear why this is. Even though there is no reason to expect the average number

of total references in each paper to be increasing over time, recall that the arXiv citation

network tracks citations from arXiv papers to other arXiv papers.

What we have is sample selection bias in the early days of arXiv. arXiv was officially

launched in the summer of 1991. Initially, there were only a very small corpus of papers

on arXiv. This steadily grew as time went on. As arXiv matures further and collects more

preprints of cutting-edge research, more and more arXiv preprints will contain citations to

those papers already on arXiv. This narrative is borne out simply by looking at the density

of papers over time. See for example Figure 4.17.
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Figure 4.14: Time series of initial out-degree of per paper for selected arXiv categories, smoothed
by moving average over 2000 papers.

One can imagine that there will come a day when all relevant past research have arXiv

preprints so the trend in this series will flatten out, but the continuing upward trend at this

point in time tells us that this process is still under way.

4.3 4.3.2.2. The CourtListener graph

The CourtListener graph shares many of the same similarities and departures from preferen-

tial attachment as the arXiv data. And similar to as in the arXiv analysis, we will generally

look at subgraphs corresponding to natural communities in the data, which are the appellate

courts.

First off, most of the appellate court graphs have an approximate power law degree

distribution. It’s not as strong as the same effect in arXiv citations, but one can imagine

several explanations for why court citations may have a lower ceiling with respect to very-

high-citation-count court opinions.

Furthermore, in this picture we can see some evidence of a slight kink in the degree

distribution—this is a common feature of many power law graphs including social networks.
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Figure 4.15: Log-log degree distribution for selected courts.

In words, the degree distribution scales a certain way from 0 up to a certain degree k, and

then abruptly switches over to a different scaling for degrees k + 1 and beyond.

There are a couple ways to explain this. A kinked distribution is especially common

when viewing directed networks as undirected, where the out-degree has one scale and the

in-degree has another. For example, in scientific preprints a paper will rarely ever cite more

than 200 papers, but it is relatively common for a paper to have over 200 citations to it.

When these degree counts are combined and plotted, this manifests as a kink where one

scale stops and the other begins to dominate.

We also saw in the previous section that the features of the arXiv network depended

heavily on the subject category in question, but also that a lot of the arXiv network evolution

was driven by arXiv’s relative newness. There’s reason to suspect that things might be

different in the CourtListener data.

For one, there is not as much of a reason to suspect that different appellate courts have

widely-differing citation habits. After all, all courts handle all sorts of cases, so there isn’t a

differentiation of training across courts like there is across physics versus computer science,

for example. This is evident in the aggregate statistics across districts, see Table 4.3
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Court Average degree CC Edges Maximum degree N

ca1 13.09 0.02 158,911 1,086 24,279
ca2 11.06 0.01 219,269 1,078 39,651
ca3 10.05 0.01 187,838 677 37,373
ca4 6.23 0.00 188,951 5164 60,637
ca5 9.21 0.00 442,008 3197 95,975
ca6 10.29 0.01 267,130 661 51,905
ca7 13.89 0.01 330,778 837 47,638
ca8 10.08 0.01 286,890 725 56,898
ca9 10.66 0.01 480,777 1131 90,211
ca10 10.50 0.01 242,325 1209 46,141
ca11 10.92 0.00 207,832 3976 38,074

scotus 18.89 0.02 234,155 322 24,795
PA, m = 5 10 0.00 249,985 891 50,000
PA, m = 1 2 0.00 49,999 451 50,000

Table 4.3: Aggregate statistics for the CourtListener graph.

Secondly, CourtListener has worked diligently to digitize as many court opinions as

possible, even those going back close to the inception of the circuit court system. Plus, most

of the circuit courts have been around for close to 150 years—an eternity when compared

to arXiv. Therefore we would expect to see less of an artifact stemming from early sample

selection bias, which should translate to a more stable picture with regards to new-vertex

out-degree.

The evidence in Figure 4.16 may or may not support this hypothesis. On one hand, there

do appear to some circuits which have relatively constant initial out-degrees. For example,

the 7th Circuit Court of Appeals displays a lot of variation over the past century but doesn’t

display a clear upward trend. On the other hand, some of the courts have very different

patterns.

The Supreme Court has a very strong upward trend to its initial citation counts, and

the 9th Circuit Court of Appeals has a disconcerting jump in average citation count roughly

between the years of 2000 and 2010 which is not shared by any other court system.

It’s not clear if these counts are due to a real structural change within the court system,

or whether they are artifacts of how the data were collected. At any rate, it’s safe to say
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Figure 4.16: Time series of initial out-degree of per paper for selected appellate courts, smoothed
by moving average over 1000 cases.

that even though these court opinion graphs may be the closest real data we have to pure

preferential attachment, they remain a far cry from it.

4.3 4.3.3. Analysis of the network history

Let’s take a look at some of our graphs and see what we can discover from their histories.

Technically, we can run the γ̂ change point estimator on these data. But it’s clear that

doing this makes little sense. As noted above the evolution of these networks does not look

like preferential attachment, and furthermore there are various other issues with trying to

adapt Dn(t) to these graphs.

Taking a step back though, we should be able to apply our general strategy to other

functionals of the graph history. The general approach is simple:

1. We identify a function of the graph history which in theory :

(a) is constant in the absence of a change point

(b) is not constant in the presence of a change point
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2. We calculate the empirical version of that function and see whether it agrees with (a)

or (b) and conclude.

So essentially, as long as we can imagine a function of the graph history which ought

to be roughly constant over the history of the graph in the absence of a major structural

change, we should be able to perform some type of change point detection using the empirical

version of that function.

Of course, this is all in theory. The reality is that real world graphs can break from

this ideal in many ways. For example, external shocks to a network may only affect a small

fraction of the vertices. Or probably even more likely, real structural changes to a network

might occur slowly, even incrementally over a non-trivial span of the network’s lifetime.

What we will see in the analysis of the arXiv and CourtListener data is that all of these

are possibilities, and abrupt changes are hard to come by. We’ll focus on three functions of

the graph history:

1. The k-degree vertex proportion

2. The initial out-degree sequence

3. The average degree of the initial neighbors of incoming vertices

There are many possible extensions of these statistics. A discussion of those is out of

the scope of this thesis. However, we hope that this will stand as a proof-of-concept for the

potential of this way of observing network change.

4.3 4.3.3.1. The time scale of real life

In all the plots that have been presented thus far, the time scale on the x-axis is not the time

scale of real life. Why? Because the time index t ∈ [0, 1] is based on vertices’ relative order

of appearance in the graph. Whether or not the second paper in arXiv appear 1 month or 1

year after the first paper makes no difference to the fact that it was the second paper.
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Figure 4.17: Distribution of paper appearance times in arXiv categories hep-ph versus math.

Therefore for the purposes of identifying structural breaks in the graph with real life

events, we must re-scale all our plots to take the time of appearance into account. This time

scale is different for each subgraph we have investigated, reflecting the relative “popularity”

of each arXiv category or appellate court over the years.

We will essentially stretch each series we’ve presented thus far by this time scale. For the

sake of readability, we’ll also normalize time to days since the appearance of the first vertex

in the overall graph. The difference is generally not too large in most graphs, but will allow

us to easily interpret features in the series. See Figure 4.18 for a case where the distortion

is relatively high—in the math arXiv category as shown in Figure 4.17.

4.3 4.3.3.2. The large hadron collider?

The arXiv category hep-ph stands for “High-energy physics - Phenomenology.” This is the

application of theoretical physics to high-energy experiments. This is contrasted with the

hep-th category which deals mostly with the development of high-energy physics theory.

The initial out-degree plot for hep-ph is quite plain at first glance, see Figure 4.19
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Figure 4.18: comparison of the initial out-degree series for arXiv category math plotted on the
order-based time scale (top) versus the real-life time scale (bottom).
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Figure 4.19: Initial out-degree for the hep-ph category, moving average over 3000 pages. Red line
indicating March 30, 2010.

But, referring back to the histogram Figure 4.17, we see an uptick in papers starting

around 9000 days, or roughly Winter 2010.

It turns out that this coincides with the first operational run of the Large Hadron Collider

(LHC), the world’s largest and most powerful particle collider, which had its first research

run from March 30, 2010 through February 13, 2013. After February of 2013 the collider shut

down for a period of roughly 2 years to undergo planned upgrades, after which it restarted

for a second run.

A priori, we can imagine that this would have a significant effect on the hep-ph citation

network. After all, the main source of data for this field comes from particle colliders like

the LHC.

However, this isn’t really the case in our data. If we squint, we might be able to see some

slight evidence of this in the initial out-degree plot Figure 4.19, manifesting in a small drop

in the average initial out-degree. This would imply that as the LHC came online, papers

began citing fewer sources on average. This might be the case if the LHC became the sole
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Figure 4.20: Proportion of degree-15 vertices in the hep-ph category. Red line indicating March
30, 2010.

focus on research for a couple years and a few landmark papers drove all new research. This

may or may not be the case.

This narrative is however also (weakly) suggested by the plot of proportion of degree-

15 vertices in the graph, Figure 4.20. The downward trend in the majority of the plot is

consistent with a growing graph and steadily increasing average degree over time, as just

discussed. However we do notice a temporary pause in the downward trend around the time

of the LHC’s construction. One possible explanation for this is that new research around

this time was concentrated on citing a few high-impact research papers, or simply citing

fewer due to availability of results purely from analysis of novel data from the LHC.

Finally, one would hope that this narrative would be backed up by evidence from ex-

amining the degree of the attached-to vertices for each new arXiv preprint. For instance,

if all research is concentrated in a couple high-impact papers, then those papers should be

oft-cited and also sport a very high degree. So if we plotted the average degree of the 3

highest-degree papers cited by every paper, we would hope to see an uptick during periods

of intensive research on a single topic.
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Figure 4.21: Average degree of top-3 out-neighbors, moving average over 1000 vertices. Red line
indicating March 30, 2010.

From Figure 4.21 though, this isn’t obvious at all.

The main takeaway from this analysis is that these graph series are suggestive and do tell

us a good amount of information about the overall evolution of the graphs, but pinpointing

abrupt change points is difficult. A change point like the LHC coming online is about as

abrupt of an organic change as one can expect, yet even that may affect only a small fraction

of papers and occur more gradually than we would like for change point detection.

Other arXiv categories show relatively normal and stable evolution, so let us move on

to a brief discussion about the CourtListener data.

4.3 4.3.3.3. The 4th and 9th circuit courts

As mentioned earlier, the CourtListener data is messy. There are bound to be some artifacts

due to data collection which nevertheless present as structural breaks. And we see those

right off the bat. For these court data, we’ve normalized time zero to be August 4, 1924,

which is the date of appearance of the first case in either the 4th or 9th Circuit Courts
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Figure 4.22: Initial out-degree of court case citations from the 4th and 9th Circuit Court of
Appeals, smoothed over 1000 cases. Red line at January 1, 2000 for reference.

(including the Supreme Court cases would shift time zero to February 14, 1792, which would

make it difficult to see the action in modern times).

Since this plot are smoothed over 1000 cases, the abrupt jumps occurring near 2000 are

very surprising. Politically and legally, there are no obvious reasons why we should expect

such shocks. In addition, these dramatic changes do not occur in the other Circuit courts.

No matter what the reason for these shocks though, let us take a look and see if they

are reflected in our other statistics.

In the citation appearance histograms (Figure 4.23), we see some curious patterns which

aren’t fully consistent with our change point from the previous chart. What’s clear is that

there is very wide variation in the number of citations appearing in the data set from year

to year. Again, there is not obvious political or legal reason to expect these jumps.

We see that in these breaks are strongly reflected in the proportion of degree-6 vertices

in the graph. In the 9th Circuit for example, we see a drop in the proportion of degree-6

vertices just as the average initial out-degree increases.
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Figure 4.23: Distribution of citation appearance times. Red lines at January 1, 2000 for reference.

Figure 4.24: Proportion of degree-6 vertices. Red lines at January 1, 2000 for reference.

133



All in all, this suggests that these simple graph functions move in concert to convey

roughly the same story about the graph. Unfortunately, we don’t have enough background

detail about the CourtListener data to inform the reader about the root causes of this

4.4 4.4. A note about code

It goes without saying that there was an extensive amount of code written to perform these

analyses. The interested reader can find all relevant code on the author’s github page10.

Python was used to perform all the heavy lifting in this section, leaning especially on

the NumPy and graph-tool packages. BeautifulSoup and requests were used to scrape

data from arXiv and CourtListener.

All graph calculations were performed using the graph-tool11 suite of graph analysis

tools alongside the numerical Python library NumPy. For temporal networks, graph-tool is

especially useful due to its ability to “view” subgraphs in a O(1) operation without occu-

pying extra memory. We refer the reader to the documentation in the site above for more

information.

4.5 4.5. Summary

The main takeaway from these analyses is that looking at functions of the graph history is

a must when setting out to explore temporal graph data.

In the case of plain vanilla preferential attachment, we show that the estimator works

well and has simple and promising extensions to preferential attachment with multiple edges.

It’s not a stretch then to believe that it would extend naturally to multiple change points as

well.

Unfortunately, real world data is not generally so well-behaved. Nevertheless, we showed

that looking at very simple graph functions can reveal a great deal of understanding about

10http://www.github.com/yichijin/pa-changepoint

11https://graph-tool.skewed.de/
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what’s going on structurally behind the scenes. At this point the approach raises more

questions than answers, but we feel that it will be possible in the near future to extend our

change point methodology to adapt to these messier situations.
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CHAPTER 5

Decreasing cascades on scale-free graphs

5.1 5.1. Introduction

This chapter seeks a simple answer to a complicated question: how does information spread

on a social network?

The dynamic we would like to study in this chapter is the propagation of information

through a scale-free network—specifically, a very specific type of propagation inspired by

“retweet” dynamics on the social networking platform Twitter. In contrast to our change

point work, we are less interested in the growth dynamic of the underlying network and more

interested in the cascade on top of the network.

Almost all person-to-person interaction on the internet is, by definition, carried through

on social networks. One way that interactions on the internet differ from interactions in

reality is that the internet facilitates large-scale, instantaneous propagation. In essence,

social networks make each user their own personal media outlet.

On most social networks such as Facebook or Twitter, interactions broadly fall into

one of two classes which we will call engagements or broadcasts. Engagements are selective

interactions between two users, such as private messages on Facebook or direct messages

on Twitter. Broadcasts are exactly what the name implies–indiscriminate blasts to all of a

user’s contacts on the network.

We are interested in studying the dynamics of how information disseminates on a social

network through broadcasts. When a single user authors content on a social network and

broadcasts it to a neighbor, that neighbor can either choose to ignore it or to re-broadcast
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it to their neighbors. This propagation history traces a subgraph on the originating user’s

social network.

Cascades have been extensively studied, and researchers have proposed countless plau-

sible mechanisms for generating them, see Chapter 2. However, in light of new results by

[52] on the shape of viral cascades, we believe a new, simple model of information cascades

is of relevance.

In thinking about models for cascades on social networks, a few empirical observations

must be taken into account. The first is the intuitively obvious fact that the vast majority

of them are tiny. In layman’s terms, most content on the internet is not extensively shared.

However, a very small fraction of cascades break the mold and propagate explosively across

the internet, or go viral. Any cascade model must be flexible enough to generate cascades

at either extreme.

The second observation is that is that in very large (viral) cascades, the shape of cascades

does not match what is predicted by simple epidemic models (see Section 2.3.2). To recap,

classical models for cascades all predict that large cascades will generally fall into one of two

extremes: those that are truly viral, reaching a long distance away from its source and many

users at each distance; and those that are simply broadcasts, reaching only users within one

or two hops from the source. In [52] this is summarized using the following concept.

For each cascade T we can associate a measure of its “viralness” by the average shortest

path distance between nodes:

ν(T ) =
1

n(n− 1)

n∑
i=1

n∑
j=1

dij

where i, j index the nodes of T and dij is the distance from node i to node j.

Most simple cascade models predict that either ν(T ) is close to 2 or very large (de-

pending on the size of the graph). In terms of familiar constructs, if a branching process

is supercritical, then if it survives past the first generation it will tend to survive for many
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generations and have large ν(T ). If on the other hand a branching process is subcritical or

supercritical conditioned on extinction, it is unlikely to survive past a handful of generations

and thus have ν(T ) close to the minimum value, 2.

In practice, [52] notes that actual social network cascades exhibit a wide range of viralities

rather than being bimodally distributed at the extremes, and this is backed up by many other

studies. Therefore our challenge is twofold. First of all, how can we capture this range of

behaviors? Second of all, given the simple way retweeting works in reality, how can we

accomplish our first goal using the simplest possible model?

A complete answer to this question is out of the scope of this thesis, but we endeavor

to take the first step by proposing a simple branching process model which, we argue, is a

reasonable candidate for generating these types of flows.

5.2 5.2. A cascade by a branching process

Our proposed model is an easy modification of conventional Galton-Watson processes which

nevertheless produces fairly realistic cascades.

Recall that in Section 2.3.2 we explained how modelling a retweet cascade using a GWBP

can only produce large cascades of a very specific size because the offspring distribution must

be constant across all individuals and generations. But there’s a simple observation which

suggests an easy fix.

From a tweet’s perspective, each tweet actually faces a different graph upon which to

propagate when it comes time to be retweeted. Each tweet author has a different follower

graph which might even change over time. Some authors have millions of followers, while

some may only have thousands or hundreds. It makes no sense to enforce a constant offspring

distribution across individuals. But more than that, there is an implicit decaying of relevance

(and therefore probability of retweeting) as the cascade gets farther from the root. Thus

suggests even more reason to relax the constant offspring distribution assumption and take

us into the world of inhomogeneous branching process.
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To be fair there are a lot of fancier branching process models out there with countless

parameters and rules designed to replicate real-world phenomena. But as mentioned above,

one of our goals is to show that, when correctly tuned, a plain vanilla branching process

works surprisingly well in generating these cascades. First we describe the process on a graph

and then discuss the implicit assumptions. It will turn out that this process is essentially

equivalent to a simple variant of a supercritical Galton-Watson process.

5.2 5.2.1. Decreasing cascades

Suppose we have an arbitrary scale-free graph G with vertex set V . This cascade explores G

in discrete time through a set of active nodes, tracing a tree structure in the following way.

At time n, active nodes infect their unexplored neighbors independently with probability

pn. Once a node is finished infecting its neighbors or has failed to become infected, it cannot

infect any more nodes. The set of nodes which were successfully infected during time n then

becomes the set of active nodes of time n+ 1. In other words, if a person is susceptible but

fails to become infected, then we consider them immune from all further infection attempts.

Thus the infection path is always a tree.

More formally, at each time n, V will be partitioned into sets An, En, Un where An is the

set of active vertices in the graph, En is the set of explored vertices, and Un = V − (An∪En)

is the set of unexplored vertices.

1. To initiate the cascade at node v0, set A0 = v0, E0 = ∅ and U0 = G − {v0} and let

{pn}n>0 be a sequence of probabilities with pn ↓ 0.

2. For each n, initiate An+1 = En+1 = ∅ and iterate over v ∈ An to populate An+1

sequentially as follows.

(a) Try to infect each w ∈ N(v)− En independently with probability pn.1

(b) If w is successfully infected, then An+1 → An+1 ∪ {w}

1Throughout, we use the notation N(v) = the neighbors of vertex v and N(A) = {∪wN(w) : w ∈ A}.
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(c) If w fails to become infected, do nothing.

3. After all v ∈ An have been explored, then move all w ∈ N(An)− En − An+1 to En+1.

4. Move En+1 → En ∪ An

Note that if an unexplored node v ∈ En has k active neighbors, then it becomes infected

with probability 1− (1− pn)k.

To translate into Twitter terms,

1. An is the set of users who have seen the retweeted content and are currently deciding

whether or not to retweet it.

2. En is the set of users who have seen the retweeted content and decided not to pass it

on.

3. Un is the set of users who have not yet seen the retweeted content.

4. pn is the transmission probability—the probability that, at distance n away from the

source (or, equivalent, after n time units have passed), an user will retweet to his/her

followers.

The implicit assumptions in this model are the following:

1. Transmission probability decreases with the distance from the root:

This belief actually reflects another implicit assumption on the underlying graph on

which the cascade spreads: users closest to the source node have the highest interest

in the content produced by the source, and therefore the highest probability of passing

it on.

2. Transmission probability is constant over all individuals at a given distance

from the root:

In reality, this assumption is almost certainly false. However, it isn’t unreasonable to

imagine that this is a good approximation.
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3. The discrete-time view is enough:

The motivation for devising continuous-time cascade models is the belief that viral

cascades’ transmission dynamics depend on the time elapsed since the content was

produced. Although our model has no time component, the decreasing probability

scheme captures to some degree the belief that the greater the age of a tweet (and

therefore the farther it spreads), the more its attractiveness decays.

Empirical verification is difficult for some of these assumptions due to technical reasons

(see [104] for an example), but nevertheless we believe that the model simplification it allows

is significant enough that it is warranted. Coupling to a branching process framework will

allow us to show that this cascade has several nice properties.

5.2 5.2.2. The branching processes approximation on a graph

Due to the tree structure of the cascade, it isn’t hard to see that the cascade resembles a

sort of branching process with a special sequence of offspring distributions. The gist of the

resemblance is as follows: starting with such a graph G, an arbitrary source vertex v0 on

that graph, and a decreasing probability sequence {pn}n>0, we infect a Binomial(N(v0), p0)

number of neighbors, where N(v0) is the total number of neighbors of v0. Then, a newly-

infected vertex vi in turn independently infects a Binomial(N(vi), p1) number of its neighbors

and so on. Once a neighbor is infected or is attempted to be infected, then it cannot be

re-infected. In essence, we produce a random number of offspring at each step to emulate

the power-law degree distribution of the graph, and then we thin the offspring to emulate

the selective retweeting process.

We mentioned before that the motivation for this cascade model is the shape of cascades

on Twitter. Let us digress a moment to explain this in more detail.

Ordinary branching processes cannot generate the type of the cascades we observe in

real life. We mentioned before that a prominent feature of cascades on social networks such

as Twitter is that many of them look like giant star graphs—i.e. at distance 1 from the
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source, the number of individuals is huge, but there are 0 or very few individuals past that.

However, it is well known that:

Theorem 5.2.1. Let T be the hitting time to 0 of a branching random walk associated with

a branching process with offspring X having mean µ = EX > 1. Then:

P(k 6 T <∞) 6
e−Ik

1− e−I

where the exponential rate I = supt>0(t− logE(etX)) > 0.

This suggests that when the branching process is huge, then it survives with high prob-

ability. In other words, we should not be able to observe many star graphs in social network

cascades if they behave like ordinary branching processes, because any branching process

which starts out as a huge star graph tends to survive long past the 1st generation. Our

thinning setup is a natural way to reconcile this.

As opposed to the study of preferential attachment, we are not so much interested in

how the underlying graph came to have a power law distribution as we are in the cascade

dynamic that happens upon such a graph. Therefore we simply suppose G has a power-

law degree distribution in the sense that G follows a configuration model where the degree

sequence are iid random variables following a power-law distribution.

Our first goal is to show that the exploration of the neighborhood of a fixed node can

be well-approximated by a branching process, and if the power law exponent is ∈ (2, 3),

then the approximating branching process has infinite mean. To do this we follow [107] and

use a variant of the classic configuration model with fixed degrees. Fix an integer n and let

D1, . . . , Dn be iid copies of a generic random variable D with pmf obeying a power law

P(D = k) := f(k) ∝ k−α, α ∈ (2, 3), k ∈ Z+
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We construct a graph on n vertices where vertex i has degree Di (i = 1, . . . , n) in the way of

the classic configuration model. Start with n vertices where each vertex i has Di half-stubs.

For each half-stub of which there are
∑n

i=1Di = Ln, we pair the stubs randomly to form

edges between vertices. More specifically, for the first stub, pick one of the Ln− 1 remaining

stubs uniformly at random and pair the two. Then pick a remaining unpaired stub and

continue the process until all stubs are connected. Henceforth we shall refer to do this model

as the G(n, f) model.

Despite the degree distribution random variable D having α ∈ (2, 3), the number of

neighbors N(vi) in a local exploration around an arbitrary node v0 has infinite mean due

to size-biasing. Suppose we begin with a node v0 and want to investigate the number of

neighbors of v1, a neighbor of v0. That is, we would like to know how many stubs are

attached to v1 not counting the one attached to v0. Conditional on knowing D1, . . . , Dn, the

probability that the number of other stubs = k is approximately equal to the probability

that a randomly chosen stub from all Ln stubs (i.e. the one attached to v0) is attached to a

node with k + 1 stubs. This is easily seen to be

f̂ (n)(k) =
k + 1

Ln

n∑
j=1

1(Dj = k + 1)

If α ∈ (2, 3) then the mean ED exists so that by the law of large numbers,

f̂ (n)(k)→ (k + 1)f(k + 1)

ED
:= f̂(k)

This is a size-biased version of the initial degree distribution which now has infinite mean.

If the graph is “large enough” so that we may ignore dependence from cycles and finite

graph size, then we can continue this argument assuming independent stub choices each

time so that the growth of the explored cluster is given by a branching process with offspring

distribution {f̂(k)}k>0. Note carefully that the size-biasing argument begins from the second
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generation of the branching process onwards. The degree of an vertex chosen uniformly at

random follows the distribution f as designed, and the root is chosen in such a way.

All in all we see that a key tool we will need are branching processes with infinite

mean. But more than that, to run the cascade process on the graph we will need to thin the

infinite-mean size-biased distribution f̂ according to a Binomial distribution with probability

decreasing with the distance from the root. Crucially, this resulting offspring distribution of

the cascade will still have infinite mean:

Lemma 5.2.2. Let Y be a discrete power-law random variable with exponent α ∈ (1, 2):

P(Y = k) = k−α
1

ζ(α)
, α ∈ (1, 2), k > 1

And let X = Binomial(Y, p) for p ∈ (0, 1). Then EX =∞.

Proof:

Set pk = P(X = k). By the law of total probability, we need to check that:

∑
k>0

kpk =
∑
k>0

[
k
∑
n>k

(
n

k

)
pk(1− p)n−k 1

nαζ(α)

]
=∞

It will be sufficient to show the bound kpk > C/(k − 1) for k > 2:

kpk ∝
∑
n>k

k

(
n

k

)
pk(1− p)n−k 1

nα

= p
∑
n>k−1

(
n

k − 1

)
pk−1(1− p)n−(k−1) n

nα

=
p2

k − 1

∑
n>k−2

(
n

k − 2

)
pk−2(1− p)n−(k−2)n(n− 1)

nα

>
p2

k − 1

∑
n>k−2

(
n

k − 2

)
pk−2(1− p)n−(k−2)︸ ︷︷ ︸
1/p
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This fact combined with the decreasing probabilities of the thinning mechanism brings

us into the new territory of infinite-mean varying-environment branching processes.

5.2 5.2.3. Coupling to a graph: a sketch

The motivation of our study is a graph cascade, but the focus of our study will be a branching

process. Before we jump off into branching process land, let us make a quick note about

how one might couple the two processes to translate results between the two domains.

As alluded to before, given a G(n, f) configuration model graph and an arbitrary starting

node v0, the decreasing cascade model with probability sequence p = {pn} will trace out a

tree starting from that node. As argued before, locally to v0 the growth of the tree should

be well-approximated by an infinite-mean, decreasing BP.

More specifically a first step is to show the following. Given a G(n, f) graph and a root

node v0 picked uniformly at random let the decreasing cascade tree at time N starting from

v0 be denoted T fp (N).

As argued above, local to a randomly chosen node the exploration of G(n, f) is roughly

approximated by a branching process with the size-biased offspring distribution f̂ . In fact as

argued above, we actually need a delayed branching process where the offspring distribution

for the first generation is f , then switching to f̂ for all future generations.

To emulate the cascade, let Df and Df̂ be generic independent random variables with

distributions f and f̂ , respectively. Then let the sequence of distributions h = {hn : n > 1}

be defined by

h1 ∼ Binomial(Df , p1), and hk ∼ Binomial(Df̂ , pk), k > 2
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Let Zh = {Zh(N), N > 1} denote a branching process with varying environment at time

N with offspring distributions given by h, viewed as a tree. Except for the first generation,

Zh is an infinite-mean branching process with varying environment

This branching process is easier to deal with than the general cascade process on the

graph G(n, f). To couple the branching process to the graph cascade, one simply needs to

show that:

Proposition 5.2.3. For fixed time N , as the size of the graph G(n, f)→∞ then:

lim
n→∞

P(Zh(N) = T fp (N)) = 1

Once this is established, then the problem reduces essentially to a study of branching

processes. For brevity, we will not carry out the rest here (see [107] for the proof which

inspired this).

5.3 5.3. Analysis of the branching process

5.3 5.3.1. The thinned branching process

To study the behavior of these branching processes, we follow the approach of [94] and [58].

To distinguish between the general branching process setting and the binomial setting, we

shall refer to the binomially-pruned branching process as an thinned branching process from

now on, which will be totally determined in our case by the exponent of the power law

distribution α ∈ (1, 2) and the thinning probabilities {pk}k>1.

With non-varying offspring distributions, infinite-mean processes are just supercritical

Galton-Watson processes which have positive probability of survival. But it is not clear

what happens when the offspring distribution is progressively thinned. We might suspect

that thinned branching processes separate into subcritical and supercritical regimes similar

to classical branching processes, depending on how quickly the attenuation probabilities {pk}
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go to 0. Therefore our first task is to determine whether a guaranteed-extinction regime even

exists for this thinned process.

In the rest of the section we will use the following notation:

Definition 5.3.1. Let {Zn}n>0 denote a thinned branching process driven by offspring distri-

bution {g} and thinning probabilities {pn}n>−0 and let Xn
i denote individual i in generation

n for 1 6 i 6 Zn−1. The process evolves as follows:

1. Each ith individual in the nth generation Xn
i has a random number of children W n

i

according to a distribution with p.g.f. g.

2. W n
i is thinned so that only Y n

i ∼ Binomial(W n
i , pn) children survive to the (n + 1)th

generation.

We start the process at Z0 = 1 so that the number of individuals at generation n = 1 is given

by X0
1 .

We will make extensive use of generating functions, but we will need to distinguish

between the pre- and post-thinning distributions.

Definition 5.3.2. We define three sets of pgfs relating to an individual Xn
i in the nth gen-

eration of the branching process:

1. Let fn(s) be the pgf for the post-thinning, final number of offspring Y n
i of Xn

i .

2. Let g(s) be the pgf for the pre-thinning, initial number of children W n
i of Xn

i .

3. Let Fn(s) be the pgf for Zn, the total number of individuals in generation n.

Throughout, we will use the phrase “offspring distribution” to refer to the offspring distribu-

tion’s pgf g and “thinned distributions” to refer to the distributions corresponding to the pgfs

{fn}n>0.

Note that F0(s) = s and that f0 is not identity as it is the generating function of the

number of offspring of X0
1 .

147



Assumption. We assume throughout that f ′n(1) =∞ for all n so that the mean number of

offspring in each generation is infinite.

Note that Fn = f0 ◦ f1 ◦ · · · ◦ fn−1, and fn(s) is infinitely differentiable on (0, 1) and

left-continuous at s = 1.

As it turns out, calculating the extinction probability by evaluating the n-fold com-

position is difficult given the types of offspring distributions in our situation. Consider

our previous example of offspring distributions with form Binomial(X, p) where X is an

infinite-mean, Z+-valued power-law random variable with tail exponent α. That is, X obeys

P(X > k) ∝ k−α for k ∈ Z+ where α ∈ (0, 1). Then the generating function of the distribu-

tion after Binomial thinning f(s, p, α) is

f(s, p, α) = E
[
E(tBin(x,p)|X = x)

]
= ζ(α + 1)−1 ·

∞∑
k=1

k−α+1(1− p+ ps)k

=
Liα+1(1− p+ ps)

ζ(α + 1)
(5.1)

Where Liα(s) is the polylogarithm of order α ∈ (0, 1) and ζ(·) is the Riemann zeta function.

These are not nice functions to deal with. Our proof of the extinction criteria will therefore

lean on an approximation for f(s, p, α) for s close to 1.

5.3 5.3.2. The extinction criteria

As alluded to above, the intuition is that if the offspring distributions are thinned “fast

enough,” then it should be possible to force the process to extinguish. Let q := P(∃n : Zn =

0). So what is “fast enough?” The main result of this section is

Theorem 5.3.3. Suppose that G is a probability distribution satisfying

1−G(x) ∼ C

xα
, α ∈ (0, 1) (5.2)
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Then a branching process with binomial thinning of such an offspring distribution extin-

guishes with probability 1 if and only if the thinning probabilities {pn}n>1 satisfy

−
n∑
k=1

(1/α)−k log pk →∞ as n→∞

Clearly sequences which satisfy pα
n

n → 0 satisfy this criterion, examples of which include:

1. pn = exp(−nα−n)

2. pn = n−α
−n

To see right off the bat why 5.3.3 might hold, note that in [41] it is shown that for certain well-

behaved infinite-mean branching processes without thinning there exists a constant β ∈ (0, 1)

such that βn(logZn + 1) converges a.s. to a random variable which is finite with positive

probability. Essentially this says that the unthinned process Zn grows at rate eβ
−n

, so the

critical threshold for the rate of thinning should be roughly the same.

To be slightly more precise, we might try the classical way to study extinction probabil-

ities by way of the recursion

Fn(0) = f0(f1(· · · fn−1(0)))

where the limit limn→∞ Fn(0) = P(∃n : Zn = 0). Therefore the question of guaranteed

extinction boils down to the question of the limit of successive compositions of pgf’s. For-

tunately this has been investigated in the general case in [34] who showed the following key

result:

Theorem 5.3.4. The sequence {Fn}n>0 converges to a limit F defined by F (1) = 1 and

F (s) =
∑∞

k=0 bks
k for 0 6 s < 1, where each bk > 0 and

∑∞
k=0 bk 6 1.

Proof: Theorem 2, [34] or [8].
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Note that the limit F satisfies F (0) = b0 for some b0 ∈ [0, 1] and also F (1−) =
∑∞

k=0 bk.

In other words, while each fk is left-continuous at 1, this may not be the case for the limit of

the compositions. We have 0 6 F (0) 6 F (1−) 6 1, so to settle whether F (0) = 1 we have

to check when F (0) = F (1−) and F (1−) = 1. Unfortunately easy conditions for checking

these in general don’t exist. Instead, we rely on clever vectorized approach from [50].

First we need some vector notation. Let I∞ be the space of infinite sequences with

values in [0, 1]. Let “<” denote the usual coordinate-wise operation on sequences, and for

real sequences ā := {ak}k>0 and b̄ := {bk}k>0 with bk 6= 0, let ā/b̄ = {ak/bk}k>0, ā − b̄ =

{ak − bk}k>0 and c · ā = {c · ak}k>0 for c ∈ R. Furthermore let 1 = {1, 1, . . .}.

Denote by Z(k, k+j) the number of individuals in the (k+j)th generation of the branch-

ing process conditional on there being exactly one individual in the system at generation k.

Write

ek = P(Z(k, k + j) = 0 for some j > 0

and let ē = {ek}k>0. Note that either ē = 1 or ē < 1. Now define the function f̄ : I∞ → I∞

by

f̄(s̄) = {fk(sk+1)}k>0, s̄ = {s1, s2, . . .} ∈ I∞

Then we have the main result of [50]:

Theorem 5.3.5. For any inhomogeneous branching processes defined by the sequence of

offspring distributions {fk}k>0, ē < 1 if and only if there exists s̄ ∈ I∞,0 6 s̄ < 1 such that,

f̄(s̄) 6 s̄ (5.3)

This theorem will be the basis for our proof.
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5.3 5.3.3. Proof of Theorem 5.3.3

We can make the condition of Theorem 5.3.5 a little easier to check for our case by observing

that our thinning process narrows down the types of sequences s̄ we need to consider.

In the context of our thinned branching process, the requirement that pn ↓ 0 implies that

the sequence s̄ must satisfy sn → 1. It also should not be surprising that any finite number

of leading terms of the sequence (sn) don’t matter so that it is enough for us to check this

condition as n→∞. Let us summarize these arguments in a lemma:

Lemma 5.3.6. For a thinned branching process driven by thinned distributions with pgfs

{fn}n>0, e < 1 if and only if there exists a sequence {sn}n>0, sn ∈ [0, 1) and sn → 1 such

that for some N

fn(sn+1) 6 sn, ∀n > N (5.4)

Proof:

We begin by arguing that there is no loss of generality in considering only {sn} with

sn → 1. If there does in fact exist s̄ such that f̄(s̄) 6 s̄, then it is necessary that sn → 1. To

see why, note that fn(s) > fn(0) for all s ∈ [0, 1]. Therefore if fn(sn+1) 6 sn for all n, then

sn > fn(0) for all n. Since pn → 0, then fn(0)→ 1 so sn → 1 also.

The fact that s → 1 is necessary also implies that if there does not exist s̄ satisfying

f̄(s̄) 6 s̄ with sn → 1, then there cannot exist any other such sequence s̃ ∈ I∞ satisfying

f̄(s̃) 6 s̃.

To see how the tail condition 5.4 implies the full condition on s̄ in Theorem 5.3.5,

note that we can start from sN and then construct the initial elements of the sequence

s1, . . . , sN−1 satisfying condition 5.3 by setting sN−1 = fN−1(sN) ∈ (0, 1). �

Now letting g(s, α) be the pgf of the offspring distribution, the thinned distribution

f(s, p, α) for a fixed thinning probability p may be written g(1 − p + ps, α) so that the

survival criteria in Lemma 5.3.6 is that there exists {sn}n>1, sn ∈ [0, 1) for all n with sn → 1
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such that

g(1− pn + pnsn+1, α) 6 sn, for all n

It will be convenient to work on a simpler approximating function for g(·). For future

reference we introduce the notation

h(s) := (− log(s))α (5.5)

The approximation we will work with is

g(1− p+ ps) ∼ 1− C · h(1− p+ ps) = 1− C(− log(1− p+ ps))α

holding for all C > 0 as s→ 1. Clearly, any function converging to 0 can be used in place of

h for this approximation, but the reason for our particular choice will become clear shortly.

The survival criteria is now

1− Ch(1− pn(1− sn+1)) 6 sn, some sequence sn → 1

To establish the possibility of (sn)n>0 satisfying this criteria, we will make use of the following

deterministic lemma:

Lemma 5.3.7. For brevity, say that (pn)n>0 satisfies (?) if there exists b ∈ (0, 1) such that:

−
n∑
k=1

γ−k log pk → − log b

Fix some γ > 1 and suppose that (pn)n>0 is a sequence ∈ (0, 1) which converges to 0. Note: in

what follows below the sequences (an) depend on the constant C but we suppress this notation

for simplicity.

1. If (pn)n>1 satisfies (?), then for every C > 0 there exists a sequence (an)n>0 ∈ (0, 1]

also converging to 0 such that pn > C aγn
an+1

for all n > 1.

152



2. If for some C > 0 there exists a sequence (an)n>0 ∈ (0, 1] also converging to 0 such

that pn > C aγn
an+1

for all n > 1, then (pn)n>1 satisfies (?).

Proof: For the direct portion we show that a sequence (an)n>1 satisfying the theorem can

be constructed. Observe that for the (n+ 1)th term an+1 to satisfy the stated condition, we

must have:

an+1 > C
aγn
pn

Iterating this n times we see that

an+1 > Cγ+γ2+...+γn aγ
n

1∏n
k=1 p

γ(n−k)

k

Now assume without loss of generality that C < 1 so that the term involving C is bounded

above by 1 (if C > 1 then it can be absorbed into the pk’s by pk 7→ pk/C and the rest of the

argument goes through). If we show that aγ
n

1 /
∏n

k=1 p
γ(n−k)

k → 0, then this guarantees that

we will be able to pick (an) satisfying the stated inequality with an ∈ (0, 1) for all n and

an → 0.

Take logs and set the initial value a1 = b− ε where ε ∈ (0, b). Then

log
aγ

n

1∏n
k=1 p

γ(n−k)

k

= γn log b−
n∑
k=1

γ(n−k) log pk

= γn

(
log b−

n∑
k=1

γ−k log pk

)

Since
∑n

k=1 γ
−k log pk → log b then the quantity inside the parenthesis eventually stays neg-

ative and the entire RHS → −∞, which implies that the original ratio → 0.

For the converse portion, suppose that the contrapositive is not true. That is, suppose

−
∑n

k=1 γ
−k log pk →∞ but that there exists (an)n>0 such that

pk > C · a
γ
k

ak+1

for all k > 1
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Rearranging this we have the relation

ak 6
(pkak+1

C

)1/γ
Now starting at a1 and expanding the right-hand side recursively n times we obtain

a1 6
(pγ

−1

1 pγ
−2

2 · · · pγ−nn )aγ
−n

n+1

Cγ−1+γ−2+···+γ−n

Since C < 1 then γ−1 + · · ·+ γ−n 6 γ/(γ− 1) for all n so the denominator is bounded above

by C0 = Cγ/(γ−1). If C > 1 then this quantity is bounded by C0 = C1/γ. Combining this

with the fact that an < 1 for all n, the inequality simplifies to

a1 6

∏n
k=1 p

γ−k

k

C0

However, −
∑n

k=1 γ
−k log pk → ∞ implies

∏n
k=1 p

γ−k

k → 0, thus sending n → ∞ above

implies a1 = 0 and we have a contradiction. �

From there it is only a short hop to the result for our approximation sequence:

Lemma 5.3.8. Again for brevity, say that (pn)n>0 satisfies (?) if there exists b ∈ (0, 1) such

that:

−
n∑
k=1

γ−k log pk → − log b

1. If (pn)n>1 satisfies (?), then for every C > 0 there exists a sequence (sn)n>0 ∈ [0, 1)

converging to 1 such that 1− C · h(1− pn(1− sn+1)) 6 sn for all n > 1.

2. If for some C > 0 there exists a sequence (sn)n>0 ∈ [0, 1) converging to 1 such that

1− C · h(1− pn(1− sn+1)) 6 sn for all n > 1, then (pn)n>1 satisfies (?).

Proof:
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It is sufficient to show the relevant properties for sequences (sn)n>0 satisfying the easier

inequality

1− C ·
[
pn(1− sn+1)

]α
6 sn for all n > 1 (5.6)

since, by the identity 1− x 6 − log(x), x > 0 and the facts that pn, sn ∈ [0, 1) the following

inequality holds for all n:

1− C · h(1− pn(1− sn+1)) 6 1− C ·
[
pn(1− sn+1)

]α
Inequality (5.6) implies that we want to study sequences (sn)n>0, sn ∈ [0, 1) for all n such

that:

pn > C · (1− sn)1/α

1− sn+1

, for all n > 1 (5.7)

Now applying the previous lemma with the map 1− sn = an gives the result. �

Finally we need to tighten the result above concerning the approximating function h(·) to

the pgf g(·). The key tool is a Tauberian theorem giving the behavior of the Laplace-Stieltjes

transform of a heavy-tailed random variable.

Theorem 5.3.9. ([16], Theorem 8.1.6) Let F (·) be the CDF of some probability distribution

and φ(·) its Laplace-Stieltjes transform. Then for 0 6 α < 1 and a slowly-varying function

`, the following are equivalent

(1) 1− φ(s) ∼ sα`(1/s), s ↓ 0

(2) 1− F (x) ∼ `(x)

xαΓ(1− α)
, x→∞

The relationship between the Laplace-Stieltjes transform φ(·) and the probability gen-

erating function g(·) is φ(− log s) = f(s). Also, for our offspring distributions the function

`(x) is a constant Cα > 0 for all α ∈ (0, 1). So making the map s 7→ −(log s), we can rewrite

φ(− log s) as our pgf g(s) and we have the result (now for s→ 1):
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Corollary 5.3.10. Let g(·) be the pgf of an offspring distribution satisfying 5.2 from Theorem

5.3.3. Then there exists C > 0 such that

1− g(s) ∼ C · h(s), s→ 1

Where h(·) is defined in 5.5.

This implies the following simple Lemma:

Lemma 5.3.11. Given an offspring distribution satisfying 5.2, then there exist constants

C0, C1 > 0 such that

1. There exists s0 such that 1− g(s) 6 C0 · h(s) for all s > s0

2. There exists s1 such that 1− g(s) > C1 · h(s) for all s > s1

Proof: Solving (1) for C0 gives

1− g(s)

h(s)
6 C0 for all s > s0

Now by Corollary 5.3.10, there exists C > 0 such that (1 − g(s))/h(s) → C. Thus setting

C0 > C implies the result. The proof for (2) is exactly analogous. �

Combining Lemma 5.3.11 and Lemma 5.3.8, extracting the {pn}n>0 criterion from the

proof and making the change γ = 1/α > 1 completes the proof of Theorem 5.3.3.
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CHAPTER 6

Future directions

We discuss some potential extensions of the two works presented above, and some ideas

for new work in unrelated areas.

6.1 6.1. Changepoint

The methodology developed in Chapter 1 is sufficiently general to apply to several extensions

of the preferential attachment model studied there.

6.1 6.1.1. Timing

A straightforward question arising from the current work is the question of the timing of

the changepoint. Recall that in our current setup the changepoint occurs at a time γn,

γ ∈ (0, 1), in other words a fixed fraction of the time. In this case we have shown that

the changepoint does not occur early enough in the process to pick up any effect from the

post-change attachment regime (switching from +α to +β in the attachment probabilities).

It stands to reason then that if we push the changepoint earlier in the process to a time nγ,

γ ∈ (0, 1) then the process will feel the effect of the change.

6.1 6.1.2. Non-linear attachment

Yet another potentially more interesting direction for investigation involves variations of the

generative process itself. Recall that the essence of the model is attachment of new vertices

to existing ones with probability proportional to the existing degree of the vertex.
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Mathematically, if v is an existing vertex in the graph at time n and D(v, n) is the

degree of v at time n, then the probability that a new vertex connects to v at time n is some

function f of D(v, n):

P(connect to v) ∝ f(D(v, n)) (6.1)

In the model of chapter 1 (linear preferential attachment) this function has the form f(v, n) =

D(v, n) + α, α > −1. There are a couple possible ways to generalize this model.

The most straightforward extension is to generalize the function f to, for example, an

arbitrary positive increasing function or some distribution function on the positive integers.

This has echoes of the classical problem of [27] but retains the strong dependence structure

of preferential attachment.

Another natural extensions involves introducing some extra randomness to the model

in a way called preferential attachment with fitness. In this case we suppose there is a

fixed probability distribution λ on R+ and each node added to the graph is born with

random fitness gv independently drawn from λ and new vertices connect to v with probability

depending on this fitness:

1. Preferential attachment with additive fitness: f(D(v, n)) = D(v, n) + gv

2. Preferential attachment with multiplicative fitness: f(D(v, n)) = gv ·D(v, n)

The case of additive fitness is essentially linear preferential attachment with random

additive constant. Extending the changepoint estimation problem to these setups is a natural

next step: suppose that up to time γ the graph has fitness drawn from distribution λ0 and

after time γ the graph has fitness drawn from some other distribution λ1. Detecting the

changepoint in this case combines the theory developed in our project with the classical

theory of univariate changepoint detection in an independent sample.
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6.1 6.1.3. Preferential attachment with types

Suppose we have a preferential attachment-type dynamic network model with the following

wrinkle. Suppose that new nodes entering the network are of one of two types. If a node

is of type 0, it attaches to existing nodes with probability proportional to some function f

of the node degree. If a node is of type 1, it attaches to existing nodes with probability

proportional to a possibly different function g of the node degree.

More precisely, let Gn be a graph on n vertices grown according to preferential attach-

ment and let Gn(t) denote the view of the graph at time t, corresponding to the instant

when the graph had tn vertices.

Definition 6.1.1. On a preferential attachment graph Gn, let a(i) ∈ {0, 1} be the type of

the ith vertex in the graph.

The basic question: Given a graph grown by this scheme of size n, when can we

successfully test

H0 : f = g vs. HA : f 6= g

This has, as a special case, our ordinary changepoint problem. Just define the types as

a(i) =


0, i 6 γn

1, i > γn

(6.2)

In light of this, there are two first steps to investigate.

1. Stay in the changepoint regime of (1) and study the effect of general f and g. One can

think of this as an even further, nonparametric extension of the non-linear attachment

case set out in Section 6.1.2.
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2. Keep f = d(v) + α and g = d(v) + β, but study the effect of a(i). For example, how

does the following scheme differ from ordinary linear preferential attachment at all?

a(i) =


0, i odd

1, i even

Or, letting {Xi}i=1,...,n be an iid sequence of Bernoulli(p) random variables,

a(i) = Xi

In the simplest cases of linear or non-linear preferential attachment, the notion of types

is deliberately meant to invoke the theory of continuous general branching processes with

types set out in [65]. Indeed, the theory for the asymptotic growth behavior of such processes

mirror the theory in Chapter 3 quite closely. As a first step, such an extension should not

be difficult.

From here, there are many different follow-up questions we can ask. Can we extend

this to multiple “types” e.g. f1, f2, . . . fk. What if we do not know k? How would we

get an estimate of this k? Further how would we cluster nodes into different types based

on data? Now run our algorithm on citation networks (e.g. physics). Do the types that

we get correlate with known communities or known clusters found by community detection

algorithms? If not what new features do these produce?

6.2 6.2. Cascades

There are three natural directions in which the decreasing cascade research can be taken in.
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6.2 6.2.1. The growth of the supercritical thinned branching process

The first is go down the road of Kesten-Stigum and try to study the growth of the thinned

branching process. Let us flesh this out somewhat in detail.

It is possible to analyze the supercritical case of the infinite-mean branching process by

using a martingale technique from [58]. Recall that if the mean (µ) is finite, then the growth

rate for the branching process is essentially given by µn in the sense that Zn/µ
n converges

to an a.s. finite limit. In the infinite-mean supercritical case, it is known that no such

normalizing sequence exists for Zn unless Zn is suitably normalized by some slowly-varying

function `(Zn), e.g. log(Zn + 1). The main thrust of this section is to investigate whether

thinned branching processes behave more like the former or the latter.

To set this up we need to define some relatives of the generating functions.

Definition 6.2.1. 1. The cumulant generating function for the offspring of an individual

from generation n (e.g. Xn
i ) is:

kn(s) := − log fn(e−s) = − logE(e−sXn)

2. Also define the functional iterates of the cumulant generating functions as:

k(n) = k0 ◦ k1 ◦ · · · ◦ kn−1, where k(0)(s) = s

As with the pgf’s, the iterated cumulant generating functions also turn out to be the

cumulant generating functions for the number of individuals in generation n:

k(n)(s) = − logFn(e−s) = − logE[exp(−sZn)]

The following properties about kn will be important:
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Lemma 6.2.2. kn is continuous, strictly increasing, and concave for s > 0. Furthermore

kn(0) = 0, k′n(0+) = EXn and kn(s) > s for s ∈ (0,− log q).

It follows that these properties also hold for the iterates k(n). It follows that the inverses

of kn and k(n) are defined and have analogous properties:

Definition 6.2.3. (The inverses of the cumulants)

1. Let the functional inverse of kn be denoted

hn(s) = k−1n (s)

2. Let the functional inverse of k(n), the iterate of kn, be

h(n) = (k(n))−1, where h(0)(s) = s

And as expected, h(n) also satisfies h(n) = k−1n−1 ◦ k−1n−2 ◦ · · · ◦ k−10

These inverses are well-defined for all n in the interval [0,− log q), which exists only if

the branching process has some probability of surviving indefinitely since lims→∞ k
(n)(s) =

− logFn(0) and Fn(0) ↑ q. But as argued in the previous section, this is always the case.

The martingale we need is from [58]:

Lemma 6.2.4. Let {Fn}n>0 be the filtration generated by {Zn}n>0. By Theorem 5.3.3,

P(∃n : Zn = 0) = q < 1 so let s ∈ (0,− log q) and define the process

Mn(s) := exp
(
− h(n)(s)Zn

)
(6.3)

Then {Mn(s)}n>0 is an Fn-martingale.
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Proof:

E[Mn(s)|Fn−1] = E
[

exp(−h(n)(s)Zn)|Fn−1
]

= E
[

exp(−h(n)(s)Xn−1
1 )

]Zn−1

= exp
(
− kn−1(h(n)(s))Zn−1

)
= exp

(
− h(n−1)(s)Zn−1

)

�Again, this martingale depends on the existence of inverses of the cumulant generating

functions in a right neighborhood of zero, which is guaranteed in the supercritical case.

Straight away by the martingale convergence theorem and by boundedness of Mn,

Mn(s)
a.s.−→M(s) or equivalently,

Zn/(h
(n)(s))−1

a.s.−→ W (s) := − logM(s)

The formulation W (s) of the martingale limit is of interest because, if W (s) has positive

probability in (0, 1), then the sequence {h(n)(s))−1}n>0 describes the growth of Zn. Let us

investigate this.

As a starting point, EM(s) = M0(s) = e−s < 1. Next, we need to check whether or not

P(0 < W (s) < ∞) = 0. If it does, then P(W (s) ∈ {0,∞}) = 1 and the limit is not proper

and non-degenerate. So we aim to show the proposition

Proposition 6.2.5. With the notation above, P(M(s) = 0) = P(W (s) =∞) < 1.

Now if P(W (s) ∈ {0,∞}) = 1, then a normalizing sequence does not exist. Therefore

following [94] we analyze whether P(0 < W (s) <∞) > 0.

As it turns out, whether or not this is the case will depend on the specific points s0

at which the cgfs in the normalizing sequence (h(n)(s0))
−1 are evaluated. Borrowing the

terminology of [94], suppose we say:
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Definition 6.2.6. A point s ∈ (0,− log q) is regular if P(W (s) ∈ {0,∞}) = 1 and irregular

otherwise.

Then a natural next step in deriving a Kesten-Stigum type result for the growth of these

processes is to determine whether or not irregular points exist for thinned processes. This

work is ongoing.

6.2 6.2.2. Shape

A second area of future research on cascades is to focus again on the shape of these cascades.

Recall that our initial motivation for developing the theory of thinned branching processes

was to understand the shape of real-life cascades. Ultimately, we would like to know whether

the thinned process can be flexibly tuned to generate trees shaped like real cascades on

Twitter or similar social media platforms. This ultimately will involve both empirical and

theoretical work.

First, we need an understanding of the shape of real-world networks (this has already

been done for structural virality in [53]). Secondly, we need to develop a strategy for studying

the shape of branching process; not only do we need to understand the shape of the branching

process probabilistically (e.g. the nth generation size conditioned on survival, the structural

virality of the cascade by the nth generation), we also need to relate those behaviors to our

specific choice of offspring distribution and the thinning sequence.

6.2 6.2.3. Inference for the virality of a cascade

The third direction is inferential. Assuming that our model is a reasonable approximation

for the behavior of retweet cascades in reality, can we harness it to make predictions about,

say, the final size of the cascade or the virality of the resulting cascade? There have been

only a couple works to this regard, and all under the guide of predicting virality [111, 31].

The general idea as applied to our case is as follows: we might suppose that every tweet

posted on Twitter has a “intrinsic” virality which is manifested in a thinning sequence on
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the underlying follower graph. This is unobserved, but it is trivial to estimate it empirically:

we simply calculate the empirical proportion of total outdegree at distance n from the source

which retweeted the source. The general idea is to distinguish between content which is viral

because it happens to go through a string of users with huge amounts of followers (thinning

probabilities decay rapidly), and content which is viral because it is exceptionally interesting

(thinning probabilities decay slowly).

Combining this empirical thinning sequence with our probabilistic knowledge of how

a true thinning sequence impacts the final characteristics of a retweet cascade, we ought

to be able to develop a simple inferential framework for predicting the virality of a tweet

based on observing just the first few levels of the thinning sequence. To our knowledge,

only [32] has attempted this in published research, and the author do not attempt to model

the cascade itself. A framework incorporating an accurate model of such cascades would be

promising. This work is closely tied up with the work of estimating influence probabilities

in the independent cascade model, see Subsection 2.3.1 for references.
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[103] Szymański, J. (1987). On a nonuniform random recursive tree. North-Holland Mathe-
matics Studies, 144:297–306.

[104] Ten Thij, M., Ouboter, T., Worm, D., Litvak, N., van den Berg, H., and Bhulai, S.
(2014). Modelling of trends in twitter using retweet graph dynamics. In International
Workshop on Algorithms and Models for the Web-Graph, pages 132–147. Springer.

[105] Ugander, J., Karrer, B., Backstrom, L., and Marlow, C. (2011). The anatomy of the
facebook social graph. arXiv preprint arXiv:1111.4503.

[106] Van Der Hofstad, R. (2009). Random graphs and complex networks. Available on
http://www.win.tue.nl/rhofstad/NotesRGCN.pdf.

[107] van der Hofstad, R., Hooghiemstra, G., and Znamenski, D. (2007). Distances in random
graphs with finite mean and infinite variance degrees. Electronic Journal of Probability,
12:703–766.

[108] Ver Steeg, G., Ghosh, R., and Lerman, K. (2011). What stops social epidemics? In
AAAI ’11.

172



[109] Watts, D. (2002). A simple model of global cascades on random networks. Proceedings
of the National Academy of Sciences, 99(9):5766–5771.

[110] Weng, J., Lim, E.-P., Jiang, J., and He, Q. (2010). Twitterrank: finding topic-sensitive
influential twitterers. In Proceedings of the third ACM international conference on Web
search and data mining, pages 261–270. ACM.

[111] Weng, L., Menczer, F., and Ahn, Y.-Y. (2013). Virality prediction and community
structure in social networks. Scientific reports, 3.

[112] Yang, J. and Leskovec, J. (2010). Modeling information diffusion in implicit networks.
In ICDM ’10, pages 599–608.

[113] Yudovina, E., Banerjee, M., and Michailidis, G. (2015). Changepoint inference for
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