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ABSTRACT 

 

DANIEL W. BELSKY: Informing Public Health Approaches to Obesity and Smoking  

Using Genome-Wide Association Studies:  

Genetic Epidemiology Affirms the Importance of Early Prevention 

(Under the Direction of Joseph P. Morrissey and Avshalom Caspi) 

 

Rapid advances in technology and scientific methods stimulated by the sequencing of 

the human genome have yielded discoveries that begin to uncover the genetic roots of common 

chronic health conditions.  However, the implications of these discoveries for public health 

research and practice remain unclear. Three questions are central to building a translational 

pipeline that links genetic discovery research with interventions to improve health: First, when 

in the life course do genetic risks become manifest?  Second, what are the magnitudes of risks 

that can be predicted using genetic information? And third, do genetic markers provide new 

information about risk over and above the existing technology of family health history 

assessment?  This dissertation research seeks to address these questions for two prevalent and 

costly sources of morbidity and early mortality, obesity and smoking. Results reveal that (1) 

genetic risks manifest early in the development of obesity and smoking through processes that 

may be amenable to public health intervention; (2) the magnitudes of risk that can be predicted 

using genetic information are small; but (3) the risk information provided by genetic markers is 

independent of information available in a family history. These findings affirm recommendations 

of caution in the application of genetic information to predict health risks in individuals, but 

suggest promise as more powerful but less common genetic risks are discovered in the 

continuing evolution of genomic research. Further, these findings recommend an increased 
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focus on childhood and adolescence in genetic discovery research and add a genetic rationale to 

arguments for early intervention to prevent obesity and smoking.  
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CHAPTER 1.  

INTRODUCTION 

 

Rapid advances in technology and scientific methods driven by the human genome 

project have yielded discoveries about the genetic roots of common chronic health conditions.
1
  

However, the implications of these discoveries for public health research and practice remain 

unclear.
2
 The major engine for genetic discovery in the genomic era has been the genome-wide 

association study (GWAS). GWAS measure millions of common variants, called single-nucleotide 

polymorphisms
a
 (SNPs), to capture the full range of common variation in the genome. The 

GWAS “experiment” uses large samples of individuals, often assembled in a case-control design, 

to test associations between each of these millions of SNPs and a trait or health outcome. The 

GWAS asks, for each SNP, is the distribution of alleles different in affected cases as compared to 

unaffected controls? This theory-free data mining approach to genetic discovery allows GWAS 

to leapfrog current biology.
3
 However, the large number of tests (one for each SNP) requires a 

stringent statistical correction, with the result that GWAS require extremely large samples to 

discover all but the most powerful genetic risk factors.
4
 These large samples are typically 

assembled, at least in part, from clinical populations. Therefore, follow-up of GWAS discoveries 

in epidemiologically-sound cohorts is needed to characterize the public health implications of 

genetic risks.
5
 Such characterization is a critical link in the translational pipeline between genetic 

discovery research and interventions to improve public health.
6
 Three questions are central to 

characterizing GWAS-discovered genetic risks: First, when in the life course do genetic risks 

become manifest? Second, what are the magnitudes of risks that can be predicted using genetic 

                                                           
a
 The genome is composed of nucleotide chains. Each nucleotide is represented with a letter in the human 

genetic code. A single nucleotide polymorphism is a single-letter substitution in this code, e.g. from 

adenine (‘A’) to guanine (‘G’) or from cytosine (‘C’) to tyrosine (‘T’), that occurs in at least 1% of the 

population.  
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information? and Third, do genetic markers provide new information about risk over and above 

the existing technology of family health history assessment?  

The program of research described in the three empirical studies that comprise this 

dissertation seeks to characterize the public health implications of GWAS-discovered genetic 

risks for two prevalent and costly sources of morbidity and early mortality, obesity and smoking. 

I use theory-free GWAS to derive multi-locus profiles of genetic risk for obesity and smoking, 

called “genetic risk scores” (GRSs). I validate these GRSs using data from a large, population-

based cohort of older adults (n=15,792). I then leverage the power of a complete birth cohort 

(n=1,037) followed through their fourth decade of life to investigate how genetic risk indexed in 

the GRSs influences the development of obesity and smoking problems across the first half of 

the life course. Results reveal that (1) GRSs can be used to investigate GWAS-discovered genetic 

risks for obesity and smoking in population-based cohorts much smaller than the original GWAS 

discovery samples; (2) genetic risks identified in GWAS manifest early in the development of 

obesity and smoking through processes that may be amenable to public health intervention; (3) 

the magnitudes of risk that can be predicted using genetic information are small; but (4) the risk 

information provided by genetic markers is independent of information available in a family 

history. These findings affirm recommendations of caution in the application of genetic 

information to predict health risks in individuals,
7-9

 but suggest promise as more powerful but 

less common genetic risks are discovered in the continuing evolution of genomic research. 

Further, findings recommend an increased focus on childhood and adolescence in genetic 

discovery research and add a genetic rationale to arguments for early intervention to prevent 

obesity and smoking.
10, 11

  

The remainder of this introduction presents (I) The logic for investing GWAS discovered 

genetic risks in public health research; (II) The methods to be used in this investigation; and (III) 

The three empirical chapters that follow. 

I. Logic for Investigating GWAS-Discovered Genetic Risks in Public health Research  

(A) Genetic variation is an important determinant of individual differences in morbidity and 

mortality. Studies of twins and families indicate that relatives who share more of their genetic 

code also share liability to many common chronic health conditions.
12

 Family studies estimate 

that as much as 80% of population variation in body mass index and 50% of population variation 
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in smoking behavior may be attributed to genetics.
13, 14

 Recent genetic discoveries appear to 

explain small fractions of population variance in obesity and smoking.
15

 However, these 

discoveries provide a critical window into how genetic risk operates and, through interactions 

with other genetic or environmental factors, may account for a larger share of variation in 

morbidity than initial estimates suggest.
16, 17

 Therefore, this research seeks to understand how 

discovered genetic risks influence the development of obesity and smoking in the population to 

inform the development of hypotheses about how genetic risk factors with apparently small 

effects may give rise to large differences in health outcomes.  

 (B) Genetic information can reveal health risks in time to prevent disease. DNA sequence 

variants remain constant across the life course; sequence variants that predict health risk in 

adulthood can be measured accurately from birth to assess risk in pre-symptomatic 

individuals.
18

 Many complex conditions are sensitive to risk exposures early in life and to 

patterns of health behavior that develop during childhood. This is true of obesity and smoking;
19, 

20
 and, although evidence-based preventative interventions are available to mitigate early-life 

risks, poor uptake and adherence pose enduring challenges.
21-25

 In addition to improving 

identification of persons at risk, there is evidence that genetic risk information, if communicated 

effectively in clinical settings, may help to motivate behavior change.
26, 27

 This research attempts 

to lay a foundation that could ultimately target public health interventions to the most 

vulnerable “windows” in the development of these health problems. 

Genotyping costs are declining rapidly (more than 100,000 fold in the past decade)
28

 and 

personal genomes are making their way to clinicians and, through direct to consumer services, 

to individuals with no formal medical training.
29

 Research is therefore needed to understand the 

effectiveness of genome-based risk assessments for complex health conditions.
30-32

 Ultimately, 

the effectiveness of genetic risk assessments must be evaluated in terms of their clinical utility—

can the results of genetic screens change provider behavior in ways that improve patient 

health?
33

 Before clinical utility can be tested, it is necessary to first generate hypotheses about 

how genetic information can be effectively deployed.
2
 To generate such hypotheses, 

information is needed about when in the development of a health condition genetic risk 

becomes manifest, what the magnitudes of that risk are, and whether risk information furnished 

by genetic markers can also be obtained using the existing technology of family history 

assessment.
32

 The research undertaken in this dissertation seeks to inform the development of 
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hypotheses about how genetic information can be deployed to prevent obesity and nicotine 

dependence.   

II. Methods for Investigating GWAS-Discovered Genetic Risks in Public health Research 

 (A) The first step in translating discoveries from the frontiers of genome science into tools 

that can improve public health is to follow-up discoveries in longitudinal population-based 

cohort studies. GWAS scan the entire genome for correlations between measures of health and 

genetic variants, usually single base-pair changes in the human DNA sequence that occur in >1% 

of the population, called “single nucleotide polymorphisms” (SNPs). GWAS analyses comprise 

large numbers of statistical tests, one for each SNP measured—a few hundred thousand in early 

versions, upwards of 2 million in the most recent studies.
4
 To minimize the risk of detecting false 

positive signals, GWAS apply a stringent statistical correction.
b
 The field standard significance 

threshold is p<1x10E-8. At this threshold, only large effects can be detected in standard 

epidemiological samples.
34

 One of the first discoveries of the genomic age was that few SNPs 

have such large effects.
35

 To address the challenge posed in detecting small effects while 

maintaining the 5% type-1 error rate of conventional epidemiological studies, researchers 

assembled ever-larger samples.
36

 In the case of most complex health conditions, samples of tens 

of thousands of individuals are needed.
37

 These large samples can be effective for discovery 

research, but follow-up in epidemiologically sound population-based cohorts followed over time 

is needed to characterize the implications of genetic discoveries for population health.
38

  

Population-representative samples are necessary to address selection issues inherent in the 

case-control designs of many GWAS samples and the recruitment of subjects from clinical 

populations.
39

 Without resolving such issues, it is unclear how genetic risk effects estimated in 

GWAS translate to the general population.
40

 This is a particular problem for obesity and 

smoking, which are subject to complex environmental influences
41, 42

 and are the target of much 

clinical and public health attention.
43

 This makes the clinical populations that constitute 

significant portions of GWAS samples problematic for interpreting genetic effects. Therefore, 

this dissertation uses the population-based Atherosclerosis Risk in the Communities (ARIC) 

cohort
44

 to validate genetic risk measurements.  

                                                           
b
 The statistical correction applied in GWAS is a modified version of the Bonferroni correction, which takes 

the alpha level (acceptable type-1 error rate) and exponentiates it to the power of the number of tests 

conducted. In GWAS, the Bonferroni correction is adjusted to account for correlation or “linkage” 

between SNPs.  
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Longitudinal data including repeated measurements of health states are necessary to 

address questions of when in the development of a health problem genetic risks become 

manifest. Questions of when genetic risks becomes manifest are of critical importance for public 

health practice as intervention to disrupt genetic risk is likely to be most effective before the 

onset or early in the development of processes that entrain later health problems. Early stages 

in the development of adult obesity and smoking problems are critical to pathogenesis: 

Individual differences in obesity risk emerge during gestation and are further established during 

infancy and childhood through accelerated growth trajectories.
45, 46

 Etiological research on 

smoking highlights the progression from initiation to heavy use during adolescence as a key 

marker of risk for subsequent dependence.
47, 48

 Therefore, this dissertation uses the Dunedin 

Multidisciplinary Health and Development Study (Dunedin Study) cohort, a complete birth 

cohort followed over 4 decades with nearly complete retention, to investigate how GWAS-

discovered genetic risks for obesity and smoking manifest during development.  

(B) Aggregating risk variants discovered in GWAS to create “genetic risk scores” can facilitate 

investigations of genetic risk in databases with rich longitudinal data to describe the 

developmental course of a health condition. Prospective longitudinal cohort studies containing 

repeated measures of health states at multiple points in the life course are necessary to 

elucidate developmental processes leading to complex diseases.
39

 A challenge for research 

following-up GWAS discoveries in such population-based cohorts is that effect sizes for the 

individual alleles that are the units of analysis in GWAS are small. In the case of the two 

conditions examined in this dissertation, obesity and smoking, the most highly penetrant (i.e. 

most pathogenic) alleles predict at most a half a point increase in adult body-mass index (BMI) 

or a single cigarette per day increase in tobacco consumption among smokers.
49, 50

 A related 

challenge is that GWAS-identified SNPs do not measure genetic risks with precision.
51

 GWAS 

measure only 100,000 – 2 million of the ~15 million SNPs in the human genome. GWAS methods 

assume that these SNPs capture the full range of common genomic variation because SNPs that 

are close together on the genome are non-independent, a phenomenon known as linkage 

disequilibrium (LD).
52

 Two SNPs are said to be in LD when they are inherited together (when 

their co-occurrence in a population departs significantly from the expectation given their 

individual frequencies). When LD is strong, SNPs co-occur with sufficient frequency that each 

SNP serves as a proxy for the other SNP.
53

 Proxy SNPs are adequate to test associations in 

samples of tens of thousands. However, in more modest samples, the imprecision or “noise” 
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that results from imperfect correlation between a proxy SNP and the causal variant that 

contributes directly to disease etiology can overwhelm the “signal” and result in failure to detect 

the association.   

Many longitudinal studies with data necessary to investigate the development of complex 

health conditions are underpowered to test the effects of individual SNPs identified in GWAS.
54

 

However, there is evidence that many GWAS-identified SNPs contribute additively to disease 

risk,
55-58

 and this is particularly true in the case of obesity and smoking.
59-62

 If genetic 

contributions to risk are additive, it is possible to sum risk alleles across GWAS-identified SNPs to 

compute a “genetic risk score” (GRS).
63, 64

 The resulting GRS provides a valid index of the 

continuum of genetic risk in the population.
65

 Because GRSs measure the aggregate effect of a 

number of SNPs, they can be used to test associations in the smaller samples that have 

adequate data to investigate genetic influence over developmental processes. Therefore, as an 

initial step, this dissertation research uses GWAS discoveries to derive GRSs for obesity and 

smoking and then uses the GRSs to investigate genetic risk for obesity and smoking.   

III. Three Empirical Chapters 

(A) The first empirical chapter, Development and Evaluation of a Genetic Risk Score for Obesity, 

describes how results from 16 GWAS of obesity and related phenotypes were used to derive the 

obesity GRS. The chapter then presents an analysis of the predictive validity of the GRS for adult 

obesity among European- and African-descent populations in the ARIC cohort.  

(B) The second empirical chapter, Polygenic Risk for Adult Obesity is Mediated by Rapid 

Childhood Growth, uses the GRS derived in the first chapter to investigate when genetic risk for 

obesity manifests in development. This chapter also describes analyses to test whether the 

obesity GRS provides different information about risk from a family history assessment. This 

chapter is currently in-press at the Archives of Pediatrics & Adolescent Medicine. 

(C) The third empirical chapter, Polygenic Risk Accelerates the Developmental Progression of 

Smoking Behavior from Initiation to Heavy, Persistent Use and Nicotine Dependence, uses 3 

meta-analyses of GWAS of smoking quantity (cigarettes smoked per-day by individuals who 

have ever smoked) to derive a GRS for smoking. It then uses this GRS to investigate how genetic 

risk for smoking relates to developmental and clinical phenotypes of smoking behavior. This 
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chapter also describes analyses to test whether the smoking GRS provides additional 

information about risk with that derived simply from a family history assessment. 

 



 

 

 

 

 

CHAPTER 2.  

DEVELOPMENT AND EVALUATION OF A GENETIC RISK SCORE FOR OBESITY 

INTRODUCTION 

Genome-wide associations study (GWAS) results represent a potentially rich source of 

information for etiological and treatment research that builds bridges between genome science 

and clinical and public health practice. 
66, 67

 Given the large number of such studies, sufficient 

GWAS data exist to support such translational research for a number of common chronic health 

conditions, including obesity 
3, 68

. Infrastructure is in place at the start of the translational 

pipeline with GWAS data banked and curated in continuously updated searchable databases. 
3, 69

 

Likewise, at the other end of the pipeline, evidence from translational research is evaluated to 

establish the clinical utility of genomic information and to issue guidelines for clinical practice. 
6
 

However, significant gaps remain in the middle of the translational pipeline and approaches are 

needed to support research at this juncture, where population-based samples with rich 

environmental and phenotypic measurements can be used to follow-up disease markers 

identified in GWAS. Specifically, systematic approaches are needed to sift the results of 

numerous association studies and distill the most promising set of markers for further 

investigation. These approaches must be able to harness the power of existing resources and to 

flexibly accommodate new data produced by the fast pace of discovery in genome science.  

A key hurdle for research using GWAS results is that risk SNPs identified in GWAS may 

not cause adverse health outcomes, but may instead be proxies for (correlated with) 

unmeasured disease-causing variation in the genome.
70, 71

 GWAS methods exploit LD across the 

genome to leverage measurement of 100,000 – 1 million SNPs to capture variation in the 10 

million plus SNPs the genome is estimated to contain. The very large sample sizes in GWAS 

permit detection of risk associations even when proxy SNPs are in imperfect LD with disease-

causing variation (correlation<1). GWAS findings are generally applied to smaller samples 

designed to elucidate etiological and clinical correlates of discovered genes. When GWAS SNPs 
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are translated to research using smaller samples, the measurement error resulting from 

imperfect LD with disease causing variants can attenuate associations below levels these 

samples are powered to detect. Genetic risk scores (GRSs) summarize risk-associated variation 

across the genome
63

 by aggregating information from multiple risk SNPs (the simplest GRSs 

count disease-associated alleles). Because GRSs pool information from multiple SNPs, each 

individual SNP is less important to the summary measurement and the “signal” from the GRS is 

robust to imperfect linkage for any one SNP. For the same reason, GRSs are less sensitive to 

minor allele frequencies for individual SNPs. As the number of SNPs included in a GRS grows, the 

distribution of values approaches normality, even when individual risk alleles are relatively 

uncommon.
72

 Therefore, the GRS can be an efficient and effective means of constructing 

genome-wide risk measurements from GWAS findings. 

Obesity is a public health problem that is well suited to risk assessment using a GRS. It is 

highly prevalent;
73

 it is a significant source of health-care costs, morbidity, and mortality;
74-76

 it is 

under strong genetic influence; 
13

 and GWAS are beginning to elucidate its molecular genetic 

roots.
77

 Therefore, translational research in obesity genomics may ultimately help to address a 

public health priority. A key challenge is that obesity’s genetic roots are diffuse, multifactorial, 

and non-deterministic; many variants scattered across the genome each contribute small risks 

for obesity.
78

 In other words, information from multiple genetic variants is needed to 

characterize genetic susceptibility to obesity. Thus, a GRS may be useful. A further challenge is 

uncertainty about the specific genetic variants to be included in an obesity GRS. Different GWAS 

identify different genomic loci and, when loci are replicated across GWAS, the specific SNPs 

identified may be different.
79

 To address this challenge, we developed a 3-stage approach to 

review GWAS results and select specific SNPs to include in a GRS. We devised our approach to 

be systematic and replicable and to leverage the discovery potential of GWAS while minimizing 

risk for including false-positive markers. In this article, we describe this 3-stage approach, apply 

it to develop a GRS for obesity, and test the GRS as a measure of obesity risk using data from the 

population-based Atherosclerosis Risk in the Communities (ARIC) Study.  

METHODS 

Sample. The ARIC sample is described elsewhere.
44, 80

 Briefly, ARIC is a prospective 

epidemiologic cohort study sponsored by the National Heart, Lung, and Blood Institute to 

investigate the etiology of atherosclerotic disease. The study draws from 4 US communities: 
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Minneapolis MN, Washington County MD, Forsyth County, NC, and Jackson MS. Participants 

were examined first during 1987-1989, and at 3 subsequent occasions (1990-1992, 1993-1995, 

and 1996-1998), with ongoing follow-up conducted annually by telephone. ARIC cohort 

genotype data from the Affymetrix Affy 6.0 Chip and selected phenotypes were obtained for this 

study from the NIH dbGaP.  

The original ARIC sample includes 15,792 participants (27% African American, 55% 

female). The publicly available dataset obtained from dbGaP for this study includes genotype 

and phenotype data for 12,771 individuals. Of this sample, 1,212 participants had a missing call 

rate >2% for SNPs called successfully in ≥95% of the sample and were excluded from subsequent 

analyses per quality control recommendations of the GENEVA ARIC Project.
81

 In addition, 

although the ARIC study design did not aim to include relatives, genomic analysis by the ARIC 

investigators revealed familial relationships at the level of half-siblings or closer among 1,674 

participants. One member was selected at random from each of the 105 “families” to form a 

sample of unrelated persons. After these exclusions, the sample consisted of 10,745 participants 

(23% African American, 55% female, hereafter the “analysis sample”).  

Body Mass Index and Obesity. Body mass index (BMI: kg/m
2
) was calculated from 

measurements of weight to the nearest pound and height to the nearest centimeter. Obesity 

was defined according to U.S. Centers for Disease Control and Prevention Criteria as BMI≥30. 

Anthropometric measurements were collected from participants wearing a scrub suit and no 

shoes at the 4 in-person data collections.  

Genotypes. Details on the genotyping of the ARIC sample are available through dbGaP 

and are described elsewhere.
82

 Briefly, genotyping was conducted by the Broad Institute using 

the Affymetrix Affy 6.0 SNP array and the Birdseed calling algorithm.
83

 Following guidelines for 

the use of genotypic data provided by the ARIC GWAS team, data were extracted for all SNPs 

with a sample-wide call rate ≥95%, fewer than 5 discordant calls across duplicated DNA samples 

in the quality control subsample (n=334), and in Hardy-Weinberg Equilibrium (p>0.001).  

Genetic Risk Scores. Current mid-pipeline translational studies use either a “best guess” 

approach or a “top hits” approach to select genetic markers to include in GRSs. The “best guess” 

approach selects markers identified in association studies that are located in or near genes with 

plausible biological relationships to the pathophysiology of a phenotype or that demonstrate 
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strong and replicable association signals.
84-86

 The “top hits” approach selects markers with the 

strongest association signals in a single GWAS, independent of their biological plausibility.
87, 88

 

Early studies have illustrated the promise of translational research with GWAS markers, but as 

the field moves forward, more systematic approaches are needed that can better integrate new 

information from the latest studies. Neither the top-hits nor the best-guess approach provides a 

systematic and replicable means of integrating results from multiple GWAS. Meta-analysis can 

accomplish this, but comprehensive meta-analyses are not always available. Moreover, the top-

hits and best-guess approaches do not provide a means to select specific SNPs for follow-up, 

and this problem is not solved by meta-analysis. The approach of selecting the “lead” SNP at a 

locus, usually the SNP with the lowest p-value in the largest GWAS, is problematic because 

different GWAS can report different lead SNPs for the same locus because of differences in 

GWAS chips, genotyping quality, and data handling and analysis decisions. Thus, an approach is 

needed that facilitates systematic and replicable SNP selection from results of multiple GWAS.  

Our 3-stage approach integrates public-access resources including continuously updated 

databases of GWAS results, web-based whole-genome analysis tools, and  genome-wide data to 

identify the most promising set of single nucleotide polymorphisms (SNPs) for follow-up. Most 

importantly, the 3-stage approach addresses key limitations of the top-hits and best-guess 

approaches: It provides a systematic and replicable means of integrating findings across multiple 

GWAS and of selecting SNPs for follow-up in new samples.  The 3 stages are:  

Stage 1) Extraction: All SNPs associated with one of the selected phenotypes at a given 

significance threshold are “extracted” from each GWAS and retained for further analysis.  

Stage 2) Clustering: Extracted SNPs are “clustered” according to patterns of linkage 

disquelibrium (LD) determined from a reference population that matches the population in the 

GWAS included in Stage 1. Clustering yields a set of “LD blocks.”  

Stage 3) Selection: Statistical significance and replication are evaluated at the level of 

the LD block. The original GWAS results are used to assign a minimum p-value and a replication 

count for each LD block. The minimum p-value is the lowest p-value reported for any SNP in the 

LD block in any GWAS contributing data in Stage 1. The replication count is the number of GWAS 

that reported an association for any SNP in the LD block at the threshold defined in Stage 1.  
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We applied our 3-stage approach to construct two GRSs for obesity. First, we considered 

only GWAS published in print or online through December 31, 2008. We chose these GWAS 

because they were used in previous research that created “top-hits” and “best-guess” obesity 

GRSs. Thus, we used these GWAS to construct a GRS using our 3-stage approach and compared 

it to two published GRSs.
61, 62

 Second, we considered all GWAS published through December 31, 

2010. We applied our 3-stage approach to results from the full set of GWAS and compared the 

resulting GRS to a top-hits GRS generated from the largest meta-analysis of BMI GWAS 

published to date
89

 and to a best-guess GRS generated from the full set of obesity-associated 

SNPs reported in the National Human Genome Research Institute (NHGRI) GWAS Catalog.
79

 The 

derivation of the GRS using the 3-stage approach is described in detail in the supplemental 

material (Appendix A). Analyses described in the supplemental material revealed that the 3-

stage approach created GRSs that were at least as predictive of BMI and obesity as GRSs created 

with the top-hits and best-guess approaches. Further analyses to refine the 3-stage approach 

GRS yielded a final set of 32 SNPs (see Appendix A). We applied 2 weighting schemes to the 32 

SNPs before summing them to create our obesity GRS: 1) equal weighting, under which the 

score was a simple count of BMI-increasing alleles; and 2) effect-size weighting, under which 

BMI-increasing alleles were weighted by the effect size reported for that locus in the GIANT 

Consortium 
89

 or DeCode 
90

 BMI GWAS. Effect-size weights were adjusted for LD between the 

SNP tested in the GWAS and the SNP genotyped in the ARIC sample. Each of the 32 SNPs in the 

GRS was missing for fewer than 1% of participants in any gender/ethnicity cell. GRSs were 

prorated by dividing the GRS by the number of SNPs contributing data and multiplying by 32. 

The SNPs included in the final obesity GRS, their BMI-increasing (“effect”) alleles, nearby genes, 

and weights are reported in Table 2.1.  

Evaluation of the Obesity GRS. Associations between the GRS and obesity-related traits 

(BMI, weight, waist circumference, obesity) were tested with linear and logistic regression 

models. These and subsequent models were adjusted for demographic and geographic control 

variables: age was specified as a linear and a quadratic term; a product term was included for 

the interaction between age and sex to account for sex differences in BMI and obesity 

distributions at different ages; the 4 ARIC Study Centers where participants were enrolled in the 

study were entered as a series of dummy variables (this collection of variables is referred to 

hereafter and elsewhere in the manuscript as demographics and geography). Predictiveness of 

the GRS was evaluated using 3 metrics that are established tools for evaluating risk markers in 
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general 
91

 as well as for the specific case of genetic risk scores:
92

 1) R
2
, the proportion of 

variation explained in BMI.  R
2
 was estimated using demographics and geography-adjusted 

linear regression models. 2) AUC, the area under the receiver operating characteristic curve for 

obesity, also known as the discrimination index. The AUC corresponds to the probability that a 

randomly selected obese case will have a higher GRS as compared to a randomly selected non-

obese control. A marker that discriminates no better than chance has an AUC of 0.50. A marker 

that discriminates perfectly has an AUC of 1. A related metric is the partial AUC (PAUC). The 

PAUC sets a specificity threshold and calculates an AUC-like statistic specific to that specificity. 

Analyses of PAUC for the GRS set specificity at 80% (the bottom 5
th

 of the ROC curve). AUC and 

PAUC analyses were stratified by ARIC Study Center using Pepe’s method.
93

 To determine 

whether the GRS improved discrimination over and above demographic and geographic 

information, we calculated a second set of statistics, delta AUC and delta PAUC. Probit 

regression models were used to generate predicted probabilities of obesity for each ARIC 

participant using a baseline model that included demographic and geographic information and a 

test model that also included the GRS. AUCs and were calculated using these predicted 

probabilities as “risk scores,” 
94

 and estimates of the differences between the baseline and test 

models were bootstrapped to obtain confidence intervals. AUC analyses were conducted using 

the Stata package “comproc. 
95

 3) IDI, the integrated discrimination index for obesity. The IDI 

evaluates the added predictiveness of a marker by comparing predictions made using a baseline 

set of risk markers to predictions that also include information about the new risk marker:  

IDI=(Probtest, obese – Probtest,non-obese)  – (Probbaseline, obese – Probbaseline, non-obese) 

where “Prob” is the average predicted probability for a particular group from a particular model. 

The IDI measures change in model sensitivity net of change in model specificity and is a more 

sensitive measure than delta AUC.
96

 An IDI of zero indicates that the test model performs 

comparably to the baseline model. Positive IDI values index net improvement in model 

sensitivity. Baseline and test models for IDI analyses were identical to those used in delta AUC 

analyses.  

We tested differences between the predictiveness metrics for different risk scores by 

bootstrapping confidence intervals around the R
2
 and AUC metrics (comparing the difference in 

estimated metric values across 1,000 random samples drawn with replacement from the ARIC 

database
95

) and by applying Pencina’s method 
96

 to test change in the IDI metric. Comparisons 
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were as follows: Un-Weighted GRS vs. Weighted GRS; Weighted GRS vs. Simple Genetic Risk 

Assessment (the sum of risk alleles at the two best-replicated obesity loci, in the gene FTO and 

downstream of the gene MC4R, rs9939609 and rs12970134, respectively); Weighted GRS vs. 

Socioeconomic Index (Educational attainment measured in 5 categories: grade-school or less, 

some high school, high school graduate, vocational school, college, graduate/professional 

school, Appendix A, Supplementary Table 2.8). 

RESULTS 

Obesity risk-allele distributions were similar for males and females, but were different 

for whites and African Americans. The variance of the un-weighted GRS was greater for whites 

as compared to African Americans (SD= 3.50 as compared to 3.25, p<0.001 using Brown and 

Forsythe’s method 
97

), as was the mean (M=28.80 as compared to 24.87, p<0.001 using t-test for 

unequal variances; see also Appendix A, Supplementary Figure 2.1). This difference reflected 

lower frequencies of BMI-increasing alleles for several GRS SNPs among African American ARIC 

participants (Table 2.1). Subsequent analyses were stratified by race. 

The obesity GRSs were weakly but consistently associated with BMI and the probability 

of being obese among whites and African Americans, but associations were weaker among 

African Americans (Figure 2.1). Among whites, after adjusting for age, sex, and geography, the 

un-weighted GRS was associated with BMI at r=0.12 and the weighted GRS was associated with 

BMI at r=0.13 (p<1x10
-26 

for both). This effect size corresponded to a 0.60-unit increase in BMI 

per 1-standard-deviation increase in the GRS. For each 1-standard-deviation increase in their un-

weighted and weighted GRSs, a white ARIC participant’s risk for obesity increased by 19.35% 

and 20.51%, respectively (p<1x10
-18

 for both). Among African Americans, the weighted and un-

weighted GRSs were associated with BMI at r=0.05 (p<0.05  for both). For each standard 

deviation increase in their un-weighted and weighted GRSs, an African American ARIC 

participant’s risk for obesity increased by 3.54% (p=0.059) and 4.92% (p=0.017), respectively. 

Results were substantively unchanged when control variables were removed from the models. 

We conducted a series of additional sensitivity analyses to evaluate heterogeneity in GRS 

associations (described in detail in Appendix A). These analyses supported a linear association 

between the GRS and BMI; showed that GRS-BMI associations were similar to GRS-weight and 

GRS-waist circumference associations; and revealed no sex or age differences in GRS-BMI 

associations. 



 

15 

 

The obesity GRSs performed similarly on the 3 predictiveness metrics (Table 2.2). The 

top panel of Table 2 addresses clinical validity. It presents the 3 metrics for the un-weighted and 

weighted GRSs. Among whites, weighted and un-weighted obesity GRSs explained small, but 

statistically significant proportions of the variance in BMI (R
2
), discriminated obese from non-

obese participants modestly better than chance (AUC), and contributed small net improvements 

to the sensitivity of an obesity prediction model over and above demographic and geographic 

information (IDI). Among African Americans, the GRS did not contribute to the explanation of 

variance in BMI over and above demographic and geographic information, to the discrimination 

of obese from non-obese participants, or to the net sensitivity of the obesity prediction model. 

Use of weights derived from BMI GWAS improved the performance of the GRS among whites 

and African Americans, but this improvement was not statistically significant (p>0.10 for all 

comparisons).  

The bottom panel of Table 2 addresses research utility. It presents predictiveness 

metrics for two comparison measures of obesity risk: the simple genetic risk assessment 

(weighted combinations of rs9939609 in FTO and rs12970134 downstream of MC4R) and the 

socioeconomic index (a 5-category measure of educational attainment). The FTO and MC4R loci 

and socioeconomic status are robust correlates of BMI and obesity in adult samples.
98, 99

 

Comparison of the 32-locus GRS to a two-locus risk assessment can illustrate whether the GRS 

offers value added over a simpler genetic risk assessment. Comparison of the GRS to 

socioeconomic status can illustrate how the predictiveness of the GRS compares to the 

predictiveness of a social determinant of obesity that is not easily changed but that is 

understood to be important in etiological research.
100

 Among whites, the genetic risk scores 

performed better than the comparison measures of obesity risk on all 3 metrics (p<0.01 for all 

comparisons). Among African Americans, the GRSs performed no differently from the simple 

genetic risk assessment (p>0.10) and performed less well as compared to the socioeconomic 

index (p=0.021). When combined with the comparison risk measures and with demographic and 

geographic information, the GRS improved predictiveness for whites but not for African 

Americans (Appendix A, Supplementary Table 2.9). 

Figure 2 shows the model-based receiver operating characteristic curves for a baseline 

model that included demographic and geographic information and a test model that also 

included the weighted GRS. The change in AUC from the baseline model to the test model was 
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greater than zero (Delta AUC=0.048, 95% CI 0.313-0.658, p<10
-7

), indicating that the GRS 

improved discrimination of obese cases. This improvement in discrimination was concentrated 

at low specificities, but extended to the portion of the ROC curve of greatest interest to 

clinicians. At a specificity of 0.8, the test model including the GRS was marginally more sensitive 

as compared to the baseline model (Delta Partial AUC=0.007, 95% CI <0.0003-0.010, p=<0.001). 

Results for African Americans are presented in Supplementary Figure 2.2 (Appendix A).    

As a final analysis, we asked whether the obesity GRS was associated with mortality risk. 

The ARIC study conducted follow-up with participants through December 31, 2004 to determine 

whether study members had died. Mortality follow-up data were available for 8,284 of the 

8,286 white participants in our analysis sample. 15% of this sample (n=1,253 individuals) died 

during the 17 years of follow-up from the first study visit. We analyzed mortality risk using Cox 

proportional hazard models to adjust for demographic and geographic factors. Independent of 

demographics and geography, individuals with higher genetic risk scores were more likely to die 

during the follow up period (Hazard Ratio=1.12, 95% CI [1.04-1.15]). Consistent with analyses of 

BMI and obesity, the GRS was not associated with mortality among African Americans. Figure 

2.3 presents cumulative mortality hazards for white ARIC participants in the top, middle, and 

bottom quintiles of the genetic risk distribution. The mortality hazard associated with the GRS 

did not depend on individuals’ BMIs. Adjustment of the mortality hazard model for BMI only 

slightly reduced the mortality hazard associated with genetic risk (Hazard Ratio=1.10 [1.04-

1.17]).  

 

DISCUSSION 

 We used a 3-stage approach to construct an obesity GRS from GWAS results. Our tests 

of this obesity GRS in the population-based ARIC cohort revealed it to be a highly statistically 

significant predictor of BMI measured at 4 time points across 10 years, of weight and waist-

circumference, and of obesity. In terms of value added, the GRS improved prediction of BMI and 

obesity over and above demographic and geographic information, FTO and MC4R genotypes, 

and information about socioeconomic status. Thus, the GRS provides a measure of genetic 

predisposition to obesity that could inform etiological and treatment research. Finally, the GRS 
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was associated with mortality risk. Interestingly, higher mortality risk for individuals with higher 

GRSs did not depend on their BMI.  

The research utility of the GRS is likely limited to samples of European descent. GRS-BMI 

and GRS-obesity associations in African American ARIC participants were much smaller than 

comparable associations in white ARIC participants. Although the sample included fewer African 

Americans than whites, power to detect effects of equal size to those observed in whites was 

well over 80% in the African American sample. Moreover, effect-size measures (r, R
2
, relative 

risk, AUC, IDI) showed little evidence that the GRS predicted BMI or obesity among African 

Americans. These results suggest caution in using GWAS of European-descent populations to 

derive GRSs for African Americans. Our analyses indicated the GRS performed similarly among 

men and women. However, emerging evidence for gene-sex interactions in obesity 
101, 102

 

suggests that future obesity GRSs may require sex-specific construction. 

 Our results have implications for theory, research, and clinical practice. With respect to 

theory, our results are consistent with the hypothesis that genetic risk for obesity is 

quantitatively distributed and can be operationalized in a GRS.
65

 With respect to research 

methods, our findings illustrate one approach to operationalize quantitative genetic risk. A 

systematic and replicable approach to selecting SNPs from association studies to follow-up in 

etiological and treatment research will be especially important with the advent of next-

generation sequencing approaches. Next generation sequencing is likely to uncover many new 

disease-associated loci for obesity and for other phenotypes of interest to clinicians and 

researchers. These variants, though rarer in the population, may have higher penetrance and 

thus greater clinical relevance. Future research can also make use of the GRS derived in this 

study as a measure of inherited obesity risk. With respect to clinical practice, results indicate 

that, for persons in middle age, GWAS SNP-based approaches to obesity risk assessment offer 

little in the absence of more detailed information about lifestyle and environment. Although 

genetic information reliably predicted risk for obesity over and above demographics and 

geography, the magnitude of this additional risk was insufficient to recommend our score for 

use in clinical risk assessments. This result is especially important in the context of questions 

over consumer genomics services.
103

 Our 3-stage approach derived a more comprehensive 

genetic risk assessment for obesity than those currently used by companies marketing genomics 

services directly to consumers. The very modest risk information furnished by our GRS 
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recommends caution on the part of consumers and health professionals in interpreting risk 

information provided by consumer genomics companies. The standard of evidence used here—

multi-method assessment of predictiveness in large, population-based samples--should be 

considered a minimum standard for the validity of such risk information.   

These results should be considered in light of the following limitations: First, some ARIC 

participants were included in the samples of some of the GWAS used to construct the GRS. 

However, these ARIC participants represented a minority of the GWAS samples and results in 

the ARIC sample are similar to results from samples not included in any of the GWAS.
61, 62

 

Second, some risk loci identified by our 3-stage approach could be genotyped in the ARIC 

sample using only relatively weak proxies. Given the small improvement to predictiveness 

associated with each additional SNP included in the GRS, it is unlikely that this limitation 

influenced the substance of our results, but it is possible that our GRS is moderately more 

predictive than analyses in the ARIC cohort suggest. Third, our analyses were limited to African 

American and white Americans. The ARIC cohort does not contain Asian-descent or Hispanic 

individuals. It remains unclear whether the relatively greater similarity between these and 

European populations 
104

 would support the generalization of our GRS. However, GWAS of Asian 

and Hispanic samples 
88, 105

 suggest that a European-descent population-derived GRS may omit 

important risk loci for these populations. As more GWAS of non-European populations become 

available, our 3-stage approach can be used to derive additional population-specific GRSs. 

Fourth, there is mounting evidence that many genetic factors predisposing individuals to obesity 

are sex specific 
106

 and that GWAS that fail to model such sex specificity may not detect 

important risk variants.
107

 Results from GWAS modeling gene-by-sex interaction support this 

hypothesis.
101, 102, 108

 As more such GWAS become available, our 3-stage approach can be used to 

derive sex-specific GRSs for obesity. Finally, the ARIC sample is limited to individuals in middle 

age. There is evidence that genetic risk for obesity has dynamic consequences across 

development.
109, 110

 It will be important in subsequent investigations to evaluate our obesity GRS 

in longitudinal cohorts that capture a broader section of the life course, and particularly in 

young people, as they are a key prevention target.
10

  

 We constructed a GRS for obesity and showed that it predicted BMI and obesity in a 

population-based sample of middle-aged adults. We further showed that this GRS was 

longitudinally associated with mortality risk. These associations suggest that future research into 
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obesity etiology and treatment can make use of genetic information. However, our analyses do 

not support the use of genetic testing for individual-level obesity-risk prediction. Future 

research with this GRS should characterize the expression of genetic risk across the life course 

and particularly during childhood, when intervention to prevent the development of obesity 

may be most effective.    
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Table 2.1. Single nucleotide polymorphisms included in the obesity genetic risk score (GRS). 

Alleles are reported from the forward strand. The GRS was computed by counting the number of 

effect alleles at each SNP, multiplying that number by the SNP’s weight, and then summing the 

results across the set of 32 SNPs. Weights reflect per-allele changes in BMI estimated in the the 

GIANT Consortium GWAS meta-analysis 
89

 except for rs867559, for which the weight was 

estimated in the DeCODE GWAS meta-analysis 
90

. 

 
  

Whites African Americans 

NEGR1 rs2815752 G A 0.13 62% 55%

TNNI3K rs1514175 A G 0.07 43% 68%

PTBP2 rs1555543 A C 0.06 58% 43%

SEC16B rs543874 G A 0.22 20% 25%

FANCL rs759250 A G 0.10 29% 8%

LRP1B rs2121279 T C 0.08 14% 3%

TMEM18 rs2867123 G C 0.30 83% 88%

RBJ rs10182181 G A 0.14 54% 16%

CADM2 rs12714640 A C 0.10 19% 6%

ETV5/DGKG rs1516728 T A 0.11 77% 48%

GNPDA2 rs12641981 T C 0.18 43% 23%

SLC39A8 rs13114738 T C 0.13 8% 1%

POC5 FLJ35779 rs10057967 C T 0.10 63% 51%

ZNF608 rs6864049 A G 0.07 54% 81%

6 TFAP2B rs734597 A G 0.13 17% 9%

LING02 LRRN6C rs1412235 C G 0.11 31% 16%

LMX1B rs867559 G A 0.24 20% 32%

RPL27A rs2028882 C A 0.06 50% 34%

BDNF rs10501087 C T 0.18 79% 93%

MTCH2 rs12419692 A C 0.05 36% 9%

12 BDCDIN3D, FAIM2 rs7138803 A G 0.12 38% 17%

13 MTIF3, GRF3A rs1475219 C T 0.09 21% 22%

PRKD1 rs1440983 A G 0.15 5% 23%

NRXN3 rs7144011 T G 0.13 22% 24%

15 MAP2K5 rs28670272 G A 0.13 77% 59%

GPR5B rs11639988 G A 0.17 85% 76%

ATXN2L, TUFM, SH2B1 rs12443881 T C 0.15 39% 9%

FTO rs9939609 A T 0.38 41% 48%

18 MC4R rs12970134 A G 0.21 26% 13%

KCTD15 rs11084753 A G 0.04 67% 64%

QPCTL rs11083779 C T 0.07 96% 89%

ZC3H4 TMEM160 rs7250850 G C 0.09 71% 20%

16

19

Effect Alle Frequency (ARIC Sample)

Chr Nearby Gene SNP

Effect 

Allele

3

4

5

9

11

14

1

2

Other 

Allele Weight



 

 

 

Table 2.2. Predictiveness Metrics for the 3-Stage Approach Obesity Genetic Risk Score and Comparison Measures of Risk for Obesity. 

The simple genetic risk score is a component of the weighted obesity genetic risk scores. Values of R
2
 were estimated using linear 

regression models and reflect the improvement in the proportion of variance explained by the model beyond the baseline prediction 

derived from demographic and geographic information. Percentile-based confidence intervals (CIs) were generated using the bootstrap 

method. Areas Under the Curve (AUCs) and CIs were estimated from ROC curves constructed for raw values (i.e. actual values of the 

measures tested rather than predicted values generated from a regression model) and were adjusted for the ARIC Study Center where 

data were collected. Integrated Discrimination Indexes (IDIs) and test statistics were estimated for comparisons of a baseline model 

including demographic and geographic information to a test model that included this information and the GRS.  

R
2
 (95% CI) AUC (95% CI) IDI (p-value) R

2
 (95% CI) AUC (95% CI) IDI (p-value)

1.39% 0.565 0.009 %0.11 0.515 0.001

(0.94% - 1.89%) (0.550 - 0.581) (4.65E-18) (-%0.04 - %0.57) (0.491 - 0.540) (0.067)

1.57% 0.570 0.010 %0.14 0.521 0.002

(1.11% - 2.10%) (0.554 - 0.584) (8.25E-20) (-%0.03 - %0.65) (0.497 - 0.544) (0.152)

0.59% 0.543 0.004 -%0.02 0.516 0.001

(0.31% - 0.97%) (0.528 - 0.557) (3.54E-09) (-%0.04 - %0.25) (0.493 - 0.539) (0.149)

0.57% 0.532 0.003 %1.06 0.561 0.016

(0.29% - 0.87%) (0.517 - 0.546) (7.83E-07) (%0.42 - %1.99) (0.538 - 0.584) (2.71E-11)

Simple Genetic Risk Assessment 3.88% 0.550 5.35% 0.607

Weighted GRS 4.88% 0.574 5.52% 0.609

1.00% 0.024 0.006 0.17% 0.002 0.001

(0.58%-1.42%) (0.012-0.036) (7.81E-13) (-%0.15-%0.51) (-0.005-0.009) (0.055)

Socioeconomic Status 4.70% 0.550 7.70% 0.643

Socioeconomic Status + weighted GRS 6.20% 0.586 7.92% 0.645

1.50% 0.036 0.010 0.22% 0.002 0.002

(1.00%-1.99%) (0.023-0.050) (5.46E-19) (-%0.14-%0.55) (-0.003-0.008) (0.012)

Weighted GRS 

Change in predictiveness with addition 

of weighted GRS to model

Panel C. Predictiveness of model-based risk assessments (including demographic and geographic information)

Socioeconomic Index: 5-category measure 

of educational attainment

Change in predictiveness with addition 

of weighted GRS to model

Simple Genetic Risk Assessment:                             

FTO & MC4R-linked SNPs only

White ARIC Participants (n=8,286)

Un-Weighted GRS 

Panel B. Predictiveness of comparison risk measures 

Black ARIC Participants (n=2,442)

Panel A. Predictivness of the un-weighted and weighted obesity GRSs

2
1

 



 

 22   

 

 

Figure 2.1 Panel A. BMI for White and African American ARIC Participants Plotted Against the 

Weighted Obesity Genetic Risk Score. Dashed outlines represent 95% confidence intervals. 

Pearson correlations (r) were adjusted for gender, age and ARIC Study Center where data were 

collected. Removal of outliers (not shown) did not alter correlation estimates at the third 

decimal point. Correlations were statistically significant for white (p<1x10
-30

) and African 

American (p=0.014) ARIC participants. 

 

 

  

0
20

40
60

-4 -2 0 2 4 -4 -2 0 2 4

White ARIC Participants (n=8,286) Black ARIC Participants (n=2,442)

Standard Deviations of Genomic Risk (Weighted Genomic Risk Score)

r=0.13 r=0.05 

B
o

d
y 

M
a

ss
 I

n
d

e
x 

(k
g

/m
2
) 



 

 23   

 

 

 

  
 

 

 

Figure 2.1 Panel B. Percentage White and African American ARIC Participants Who Were 

Obese (BMI≥30kg/m
2
) at the First Study Visit, by Quintile of Genetic Risk Score. Quintiles were 

determined separately for whites and African Americans. Error bars represent 95% confidence 

intervals. Risk ratios are for comparisons of highest to lowest quintiles of genomic risk and were 

estimated with adjustment for gender, age, and ARIC study center where data were collected. 

Dashed lines represent sample means. Among white ARIC participants, all quintile to quintile 

differences are statistically significant (p<0.01), with the exception of the 3
rd

 and 4
th

 quintiles. 

Among African American ARIC participants, the percent obese in the lowest quintile was lower 

than in the third and fourth quintiles (p<0.05).   
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Figure 2.2. Receiver Operating Characteristic Curves for Obesity Among White ARIC 

Participants (n=8,286). Baseline Model = gender, age (quadratic), gender x age interaction, ARIC 

study center; Test Model = baseline model + weighted obesity genetic risk score. ROC curves 

were constructed using predicted values from probit regressions of obesity (BMI≥30) on the 

model terms. Delta AUC (AUCTest-AUCBaseline) = 0.048, 95% CI 0.031-0.066, p<1x10
-7

. Delta Partial 

AUC at 80% specificity=0.007, 95% CI 0.003-0.010, p<0.001. AUCs, partial AUCs, and delta AUCs 

were estimated using Pepe’s method 
93, 95

.   
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Figure 2.3. Cumulative Mortality Hazards for White ARIC Participants in the Highest, Middle, 

and Lowest Genetic Risk Score (GRS) Qunitiles. Hazards were estimated from a Cox 

proportional hazard model adjusted for age, sex, the age-sex interaction, and the ARIC Study 

Center where data were collected. The dashed line represents sample-wide mortality at the end 

of follow-up (15%). By the end of follow-up, unadjusted mortality was 12.17% in the lowest GRS 

quintile, 15.48% in the middle GRS quintile, and 17.32% in the highest GRS quintile.  
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CHAPTER 3. 

POLYGENIC RISK FOR ADULT OBESITY IS MEDIATED BY  

RAPID CHILDHOOD GROWTH: 

EVIDENCE FROM A 4-DECADE LONGITUDINAL STUDY
3
 

 

INTRODUCTION 

 

Obesity is known to be heritable and genome-wide association studies (GWAS) have begun 

to uncover the molecular roots of this “heritability” by identifying multiple single-nucleotide 

polymorphisms (SNPs) associated with higher adult body mass index (BMI).
78

 The next step is to 

understand how these SNPs influence the development of obesity. Individual differences in 

obesity risk emerge during gestation and are further established during infancy and childhood 

through accelerated growth trajectories.
46, 132

 Therefore, examination of developmental 

phenotypes in relation to genetic risk represents a promising approach to understand the 

pathogenesis of obesity.
109, 110, 133

 In this study, we asked how SNPs with replicated GWAS 

evidence for association with adult BMI relate to growth across the first four decades of life and 

to adult obesity in a birth cohort followed prospectively from birth through age 38 years.  

SNPs identified in GWAS contribute small increments to obesity risk.
49

 Aggregating GWAS-

identified SNPs to produce a genome-wide index (a “genetic risk score”) yields a quantitative 

measure of inherited predisposition towards a trait, such as BMI.
65

 This approach has shown 

promise in the study of complex diseases such as diabetes and heart disease.
55, 56

 In this study, 

we used a multi-locus genetic-risk score to test how a genetic predisposition to higher adult BMI 

might also relate to developmental phenotypes of growth during proposed critical periods in the 

development of obesity. Three developmental phenotypes are of interest: Growth during 

gestation, postnatal growth, and the adiposity rebound. All correlate with adult BMI and are 

thought to program risk for adult obesity.
10, 134, 135

 Therefore, we tested the hypothesis that 

polygenic risk for adult obesity is mediated by these developmental phenotypes of rapid early 

                                                           
3
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growth (Figure 1). Understanding when in development genetic risk for obesity is expressed can 

help to refine research and intervention targets.  

If genetic risk is mediated through early growth, it would be important to know how 

measured genetic risk compares to parental BMI in predicting children’s growth and obesity risk. 

We thus tested whether obesity risk information contained in the genetic risk score was 

independent of obesity risk information contained in the BMIs of children’s parents. That is, 

does the genetic risk score contain novel information about children’s risk for obesity over and 

above their family history? 

METHODS 

 

PARTICIPANTS 

Participants are members of the Dunedin Multidisciplinary Health and Development 

Study, a longitudinal investigation of health and behavior in a complete birth cohort. Study 

members (N=1,037; 91% of eligible births; 52% male) were all individuals born between April 

1972 and March 1973 in Dunedin, New Zealand, who were eligible for the longitudinal study 

based on residence in the province and who participated in the first follow-up assessment at age 

3. The cohort represents the full range of socioeconomic status in the general population of 

New Zealand’s South Island and is primarily white. Assessments were carried out at birth and at 

ages 3, 5, 7, 9, 11, 13, 15, 18, 21, 26, 32, and, most recently, 38 years, with over 90% retention.  

At each assessment, study members are brought to the Dunedin research unit for a full day of 

interviews and examinations. The Otago Ethics Committee approved each phase of the study. 

Informed consent was obtained from all study members. 

 

MAIN EXPOSURES 

Obesity Genetic Risk Score. We derived a 32-SNP genetic risk score (GRS) from 

published genome-wide association studies (GWAS) of body mass index (BMI), obesity, weight, 

and waist circumference in European-descent populations. The construction of the GRS is 

described in the Appendix B. We validated our GRS as a measure of obesity risk in data from the 

Atherosclerosis Risk in the Communities (ARIC) sample.
81

 European-descent individuals in the 

ARIC sample with higher GRSs were larger as measured by BMI, weight, and waist circumference 
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(r>0.10, p<1x10
-20

), and were more likely to be obese (Relative Risk (RR)=1.73, 95% CI 1.51-1.97 

for individuals in the highest vs. the lowest quintile of the GRS distribution).  

We genotyped the 32 GRS SNPs in the Dunedin Study cohort with the Illumina BeadPlex 

Array using DNA extracted from whole blood (93% of the sample) or buccal swabs (7% of the 

sample). Of the 32 GRS SNPs, 29 were called successfully in >95% of the cohort and we 

constructed the final score from these SNPs (Appendix B, Supplemental Table 3.1). Comparison 

of the 29-SNP GRS to the original 32-SNP GRS in the ARIC sample revealed no differences in 

score distribution or effect sizes. Dunedin Study members carried between 15 and 36 risk alleles 

(Mean (M)=26.04, Standard Deviation (SD)=3.32). After weighting, GRS values ranged from 

13.71-35.04, M=24.71, SD=3.59 (Appendix B, Supplemental Figure 3.1). The GRS was 

standardized to have a mean of 0 and a standard deviation of 1 for analyses.  

Family History of Obesity. Parent BMI was available for 98% of the cohort. Parents’ 

BMIs were computed from self-reports of height and weight when children were aged 11 years. 

To measure familial predisposition to obesity, BMIs of parents were standardized within sex and 

the standardized scores were averaged to create a single family-history score.  

 

OUTCOME MEASURES 

BMI. Individuals’ height and weight were measured at ages 3, 5, 7, 9, 11, 13, 15, 18, 21, 26, 

32, and 38 years. Height was measured to the nearest millimeter using a portable Harpenden 

Stadiometer (Holtain, Crymych, UK). Weight was recorded to the nearest 0.1kg using a Lindell 

Beam Balance at ages 3, 5, 7, 9, 11, 13, 15, and 21 years and calibrated scales at ages 26, 32, and 

38 years. Individuals were weighed in light clothing. BMI was computed as weight (kg)/height 

(m
2
). Obesity was  defined at age 15 using U.S. Centers for Disease Control and Prevention cut 

points (BMI≥24.64 for boys, BMI≥25.46 for girls), which show similar predictive validity for 

obesity and coronary heart disease in young adulthood to International Obesity Task Force cut 

points.
136

 Obesity was defined at ages 18-38 years as BMI≥30. Individuals who met obesity 

criteria at ≥50% of 6 measurements between 15 and 38 years were classified as chronically 

obese.
137

 

Additional Measures of Adiposity. At ages 7 and 9 years, tricep and subscapular skinfold 

thicknesses were measured by trained anthropometrists. At ages 26, 32, and 38 years, waist 
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girth was measured by averaging two measurements of the perimeter at the level of the 

noticeable waist narrowing. At ages 32 and 38 years, fat mass was measured using the Tanita 

Body Composition Analyzer BC1418 to assess bioelectrical impedence.
138

  

Developmental Phenotypes of Early Growth. Rate of early-childhood weight gain was 

assessed as the difference between weight at birth (from hospital records) and weight at age 3 

years. Adiposity rebound was calculated as the nadir of each individual’s childhood BMI curve 

fitted over ages 3-13 years. We used multilevel longitudinal modeling to fit individual growth 

curves.
139

 Models included linear and quadratic slope terms and were adjusted for sex.  Children 

in our sample experienced adiposity rebound around age 6 years (M=6.11 years, SD=1.10 years) 

at a BMI around 16 (M=15.57, SD=1.00).  

 

ANALYSES 

We analyzed life-course growth using a multilevel longitudinal growth model
139

 fitted to BMI 

measurements at ages 3, 5, 7, 9, 11, 13, 15, 18, 32, and 38 years. We set the intercept at age 13 

years. We modeled separate linear and quadratic slopes for growth during childhood (ages 3-13 

years) and adulthood (ages 13-38 years). The intercept captured the sample mean BMI at age 13 

years (β=19.97). Slope coefficients captured annual change/acceleration in BMI. Linear slope 

terms captured change in BMI across childhood (β=1.19) and adulthood (β=0.51). Quadratic 

slope terms captured acceleration of change--the concavity of the trajectory in childhood 

(β=0.08) and the convexity of the trajectory in adulthood (β=-0.01). All model parameters were 

statistically significant (p<0.001).   

We tested genetic influence on growth by modeling the intercept and linear slope 

parameters of the life-course growth curve as functions of the GRS and covariates. GRS 

coefficients measured the effect of a one standard deviation increase in genetic risk on BMI at 

age 13 years (intercept) and on the linear change per-year in BMI between ages 3 and 13 years 

(childhood slope) and ages 13 and 38 years (adulthood slope).  

We tested genetic associations with cross-sectional measurements of BMI and with other 

quantitative traits using linear regression models. GRS coefficients were standardized to effect-

size correlations (Pearson’s r) for ease of interpretation. We tested genetic associations with 

obesity risk using Poisson regression models. GRS coefficients were exponentiated to compute 



 

30 

 

relative risks (RR). We tested mediation of genetic risk for obesity through developmental 

phenotypes of early growth  using the structural equation described by MacKinnon & Dwyer.
140

 

Mediation analyses decomposed GRS-obesity associations into direct (un-mediated) and indirect 

(mediated through a developmental phenotype) components. Statistical tests of mediation were 

conducted using methods described by Preacher and colleagues.
141-143

 

All models were adjusted for sex and comprised the 98% (n=856) of European-descent 

Dunedin Study members with available body mass index, family history, and genotype data.  We 

used SAS 9.2
144

 for growth modeling and mediation analyses and Stata 11.0
145

 for other 

analyses. 

 

 

RESULTS 

 

Children with higher genetic risk scores (GRSs) were larger and grew faster during 

childhood and during adulthood. Children with higher GRSs had higher BMIs at every age 

assessed, from age 3 to 38 years (Table 3.1). In the life-course growth model, higher GRSs 

predicted higher mean levels of BMI (intercept β=0.38, p<0.001), faster growth in childhood 

(β=0.03, p<0.001) and faster growth in adulthood (β=0.02, p=0.017). Figure 3.2 shows life-

course growth curves for children with high, low, and average GRSs.  

To rule out the possibility that variation at the FTO locus accounted for our observed GRS-

growth associations, we repeated the analysis, adjusting slope and intercept estimates for the 

FTO SNP rs9939609, which is the best replicated GWAS result for BMI,
79

 has been shown to 

influence growth,
98, 109

 and carried the largest weight of any SNP in our GRS. GRS-growth 

associations were unchanged by adjustment for rs9939609. Independent of their rs9939609 

genotype, children with higher GRSs were larger across four decades of follow-up (intercept 

β=0.40, p<0.001) and grew faster during childhood and during adulthood (childhood linear slope 

β=0.03, p=0.003; adult linear slope β=0.02, p=0.013).  

To rule out the possibility that GRS-growth associations reflected associations with height or 

with muscle mass and not with adiposity, we tested associations between the GRS and 

childhood skinfold thicknesses and adult waist-girth and fat-mass measurements. These 
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measurements are less susceptible to inflation as a result of body-size and are considered to be 

more direct measures of body fat.
138

 GRS correlations with these alternative measures of 

adiposity were statistically significant and were similar to GRS correlations with BMI (Table 1). 

Children with higher genetic risk scores were at greater risk for obesity across two 

decades of adult follow-up. As teenagers (ages 15-18 years), 6% of Dunedin Study children had 

BMIs in the obese range; in their 20s, 11% met criteria for obesity; by age 38 years, 23% met 

criteria for obesity, consistent with nationwide prevalence among European-descent New 

Zealanders (http://socialreport.msd.govt.nz/health/obesity.html). 9% of the sample were 

classified as chronically obese. Figure 3.3 shows obesity prevalences for children at low (below 

average) and high (above average) genetic risk. Children at high genetic risk were between 1.61- 

and 2.41-times more likely to be obese in their teens, 20s, and 30s, and were 1.90-times likely to 

be chronically obese across 3+ assessments as compared to children at low genetic risk.  

Polygenic risk for adult obesity is mediated by developmental phenotypes of rapid 

childhood growth. To determine whether genetic risk for obesity was mediated through rapid 

early growth, we investigated relationships among children’s GRSs, their growth during 

gestation and childhood, and their obesity outcomes across two decades of adult follow-up.   

The first developmental period theorized to entrain adult obesity risk is gestation. However, 

the GRS was not associated with fetal growth as indexed by birthweight (r=0.00, p>0.90, Table 

1).  Nevertheless, by age 3 years, children at higher genetic risk had higher BMIs relative to their 

peers (r=0.08, p=0.043), raising the question of whether growth between birth and age 3 years 

mediated genetic risk for obesity. Children at higher genetic risk did gain more weight between 

birth and age 3 years (r=0.09, p=0.014, Table 3.1). Consistent with previous research,
146, 147

 

children with more rapid birth-3 weight gain were more likely to become obese (Table 3.2). 

Decomposition of GRS-obesity associations into direct effects and indirect effects indicated that 

birth-3 weight-gain mediated statistically significant portions of genetic risk for obesity in the 

teens and for chronic obesity, but not for obesity in the 20s or 30s individually (Table 3.2).  

Adiposity rebound, when children begin to gain body fat after losing it during early 

childhood, is a third period in development theorized to entrain adult obesity. For children at 

higher genetic risk, adiposity rebound occurred earlier in development and at higher BMI (r=-

0.13 for age and r=0.17 for BMI, p<0.001 for both, Table 3.1). Consistent with previous 

research,
134, 148

 children with earlier adiposity rebound and higher BMI at adiposity rebound 
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were more likely to become obese (Table 3.2). Decomposition of GRS-obesity associations into 

direct effects and indirect effects revealed that adiposity rebound mediated large and 

statistically significant portions of genetic risk for obesity in the teens, 20s, and 30s and for 

chronic obesity (Table 3.2). 

The genetic risk score contained information about children’s growth and their risk for 

obesity in adulthood that was not available in their family histories. Higher genetic risk 

predicted faster growth and increased risk for obesity in children with normal-weight parents 

and in children with overweight parents (Figure 3.4 Panels A and B). That is, the GRS 

contributed independent and additive information to the prediction of children’s growth and 

their risk for obesity in adulthood over and above family history information (Appendix B, 

Supplementary Table 3.2).  

 

DISCUSSION 

 

We conducted a developmental genetic investigation into the etiology of obesity in a four-

decade long prospective birth-cohort study. We measured polygenic risk for obesity using a 

multi-locus genetic risk score derived from GWAS of obesity-related phenotypes. Our analyses 

revealed that polygenic risk for obesity was partly mediated by rapid growth in the early 

childhood years following birth. This finding supported our hypothesis that developmental 

phenotypes were critical in linking a genetic predisposition to adult obesity. Furthermore, risk 

for obesity measured by the genetic risk score was independent of risk information available in 

parental BMI.  

These findings have implications for clinical practice and for developmental and 

epidemiologic research. First, the results suggest promise for utilizing genetic information in 

obesity risk assessments. Parent BMI has been proposed as a screening measure to target 

obesity prevention in children on the basis of effect-size correlations only slightly larger than 

those we report for our genetic risk score.
149

 New developments in genome science, including 

next-generation sequencing, may uncover new variants that further improve the performance 

of a SNP-based risk assessment.
150-152

 Moreover, the genetic risk score contained information 

about children’s future obesity risk that could not be derived from measurements of parents, 

suggesting that positive family history may not always be an appropriate prerequisite for genetic 
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testing. Second, our findings illustrate how polygenic influences on development can be 

investigated using genetic risk scores. Prospective-cohort studies containing repeated measures 

are necessary to elucidate developmental processes leading to complex diseases.
39

 But to date, 

small single-locus effect sizes have made it challenging to incorporate genetic information into 

ongoing cohort studies. To address the challenge of small effects, we used a multi-locus profile.  

The resulting genetic risk score enables measurement of a larger, genome-wide effect size and 

reduces the number of hypothesis tests to one, making follow-up of GWAS findings tractable in 

cohort studies that are needed to study development. Third, the longitudinal results illustrate 

that investigations of obesity as an outcome to developmental processes can inform public 

health initiatives and research priorities by identifying specific phases in development when 

genetic risk becomes manifest and thus might be amenable to intervention. Childhood growth in 

general, and in particular growth during the period between birth and the adiposity rebound, 

should be a focus for future research to understand genetic contributions to the development of 

obesity.  

We acknowledge three limitations. First, we derived our genetic risk score from GWAS of 

Europeans and conducted our study in European-descent individuals; these results may not 

generalize to other populations.
5
 Second, our family histories included only parents. It is 

possible more complete family histories have greater overlap with the genetic risk score. Third, 

we were unable to characterize growth trajectories during the earliest stages of life; regular 

follow-up of the cohort did not begin until age 3 years. However, results from our analyses of 

birthweight and of birth-3 weight gain were consistent with previous genetic investigations of 

this interval that did include repeated measurements.
109, 110, 153, 154

 Moreover, we were able to 

capture growth from age 3 years onwards with a high degree of resolution; our study included 

12 measurements taken over the subsequent 35 years. In addition to repeated measures of 

height and weight, our study included more direct measures of adiposity, including childhood 

measurements of skinfold thicknesses and adult measurements of waist circumference and fat 

mass, all of which were associated with our genetic risk score in parallel to BMI. Thus, the results 

present compelling evidence that SNPs identified in GWAS of adult BMI and other obesity-

related phenotypes predispose to more rapid growth in childhood, leading to increased risk for 

obesity in adulthood, and provide information not forthcoming from a simple analysis of family 

history. 
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Table 3.1. Descriptive Statistics and Correlations with Genetic Risk Score and Family History 

Score for Anthropometric Assessments Among Individuals of European Descent (n=856). All 

correlations were adjusted for sex. Tests of statistical significance were conducted using 

heteroskedasticity robust standard errors. *** p<0.001, **p<0.01, *p<0.05. 

Measure / Age at Measurement Mean SD

Body Mass Index (kg/m
2
)

3 16.33 (1.28) 0.08 * 0.11 **

5 15.88 (1.18) 0.13 *** 0.19 ***

7 15.82 (1.29) 0.17 *** 0.24 ***

9 16.33 (1.62) 0.18 *** 0.21 ***

11 17.49 (2.09) 0.16 *** 0.22 ***

13 19.59 (2.47) 0.18 *** 0.23 ***

15 20.37 (2.60) 0.17 *** 0.30 ***

18 22.73 (3.02) 0.15 *** 0.31 ***

21 23.74 (3.41) 0.18 *** 0.31 ***

26 24.89 (4.27) 0.16 *** 0.29 ***

32 26.03 (4.80) 0.13 *** 0.31 ***

38 26.92 (5.13) 0.14 *** 0.34 ***

Alternative Measures of Adiposity

Subcapular Skinfold Thickness (mm)

7 5.87 (1.92) 0.07 ** 0.12 **

9 6.67 (2.80) 0.11 *** 0.10 **

Tricep Skinfold Thickness (mm)

7 8.46 (2.46) 0.07 * 0.10 **

9 11.06 (4.12) 0.09 ** 0.10 **

Waist Circumference (mm)

26 798.68 (96.40) 0.14 *** 0.24 ***

32 841.81 (110.95) 0.11 *** 0.25 ***

38 858.39 (122.84) 0.12 *** 0.26 ***

Fat Mass (kg)

32 21.41 (10.54) 0.10 ** 0.23 ***

38 23.59 (10.96) 0.11 ** 0.27 ***

Gestational and Childhood Growth

Birthweight (kg) 3.38 (0.52) 0.00 0.07 *

Weight Gain Birth - 3 years (kg) 11.31 (1.52) 0.09 * 0.02

Adiposity Rebound

Age (years) 6.11 (1.10) -0.13 *** -0.21 ***

Body Mass Index (kg/m
2
) 15.57 (1.00) 0.17 *** 0.23 ***

Correlation ( r ) with 

Genetic Risk Score

Correlation ( r ) with 

Family History Score



 

    

 

Table 3.2. Polygenic Risk for Adult Obesity is Mediated by Developmental Phenotypes of Rapid Early Growth. Panel A presents the 

analysis of mediation of genetic risk for obesity by birth-3 weight gain. Panel B presents the analysis of mediation of genetic risk for 

obesity by age and BMI at adiposity rebound.  The columns labeled  “Bivariate Models” present bivariate effects (relative risks and 95% 

confidence intervals) for the genetic risk score and the developmental phenotypes from Poisson regression models. The columns labeled 

“Multivariate Model” present the independent effects of the genetic risk score and the developmental phenotypes from multivariate 

Poisson regression models. Mediation analyses are reported in the final row of each panel. Mediation Ratios were calculated from the 

indirect and direct effects estimated from structural equations (Appendix B, Supplemental Table 3). The mediation ratio describes how 

much of the effect of genetic risk is mediated by the developmental phenotype. All analyses were adjusted for sex and included the 

n=856 European-descent individuals in the analysis sample. Birth-3 weight gain and adiposity rebound measures were standardized to 

have means of 0 and standard deviations of 1 for analyses.  

 

Panel A. Polygenic Risk for Obesity is Partly Mediated by Weight Gain Between Birth and Age 3 Years

Bivariate                                

Models

Multivariate           

Model

Bivariate                                

Models

Multivariate           

Model

Bivariate                                

Models

Multivariate           

Model

Bivariate                                

Models

Multivariate           

Model

Genetic Risk Score 1.39 1.30 1.37 1.34 1.23 1.21 1.37 1.32
(1.08, 1.81) (1.00, 1.69) (1.13, 1.68) (1.10, 1.63) (1.08, 1.39) (1.07, 1.37) (1.09, 1.74) (1.05, 1.67)

Birth-3 Weight Gain 1.78 1.72 1.32 1.28 1.15 1.13 1.44 1.39

(1.38, 2.30) (1.33, 2.22) (1.10, 1.59) (1.06, 1.54) (1.02, 1.31) (1.00, 1.28) (1.15, 1.80) (1.12, 1.73)

Mediation Ratio                                 0.16 0.07 0.06 0.10

Sobel Test of Mediation p=0.021 p=0.057 p=0.118 p=0.037

Panel B. Polygenic Risk for Obesity is Partly Mediated by Age and Body Mass Index at Adiposity Rebound

Bivariate                                

Models

Multivariate           

Model

Bivariate                                

Models

Multivariate           

Model

Bivariate                                

Models

Multivariate           

Model

Bivariate                                

Models

Multivariate           

Model

Genetic Risk Score 1.39 1.18 1.37 1.20 1.23 1.14 1.37 1.20
(1.08, 1.81) (0.93, 1.49) (1.13, 1.68) (1.00, 1.45) (1.08, 1.39) (1.01, 1.29) (1.09, 1.74) (0.96, 1.50)

Age (years) at Adiposity Rebound 0.57 0.57 0.66 0.66 0.77 0.78 0.66 0.66
(0.48, 0.68) (0.48, 0.68) (0.58, 0.75) (0.58, 0.75) (0.70, 0.85) (0.70, 0.85) (0.57, 0.76) (0.57, 0.76)

2.13 2.09 1.61 1.56 1.35 1.33 1.72 1.68
(1.70, 2.66) (1.66, 2.64) (1.36, 1.89) (1.32, 1.85) (1.20, 1.51) (1.19, 1.49) (1.44, 2.05) (1.39, 2.02)

Mediation Ratio                                 0.58 0.44 0.41 0.45

Sobel Test of Mediation p<0.001 p<0.001 p<0.001 p<0.001

Body Mass Index at Adiposity 

Rebound

Chronic Obesity (ages 15-38 years)

8% (n=72)

Age Range / % Ever Obese (n)

Obesity in the Thirties

22% (n=191)

Obesity in the Teenage Years

5% (n=47)

Obesity in the Twenties 

11% (n=96)

3
5
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Figure 3.1. Developmental phenotypes of rapid early growth hypothesized to mediate 

polygenic risk for obesity. The genetic epidemiology of obesity indicates that a large number of 

common polymorphisms each contribute small, additive increments to risk for obesity.
13, 89

 The 

combined influence of these polymorphisms can be summarized in a polygenic risk profile.
65

  

The developmental epidemiology of obesity highlights three developmental phenotypes of rapid 

early growth that predispose children to become obese in later life: (1) growth during gestation, 

(2) postnatal growth, and (3) adiposity rebound.
134

 
10

 We tested the hypothesis that these 

developmental phenotypes would mediate polygenic risk for adult obesity.    
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Figure 3.2. Individuals with higher obesity genetic risk scores (GRSs) were larger and grew 

more rapidly as children and as adults. The solid line represents the population mean trajectory 

(average genetic risk). Dashed lines are for subgroups +/- 1 standard deviation of the GRS (high 

and low genetic risk). Trajectories were derived from the life-course growth model (intercept 

fitted at age 13 years; linear and quadratic slopes fitted over ages 3-13 years and 13-38 years) 

including intercept and linear slope effects for the genetic risk score. Analyses included n=856 

European-descent individuals.  
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Figure 3.3. Individuals with higher genetic risk scores were more likely to be obese across two 

decades of adult follow-up. Error bars reflect 95% confidence intervals (CIs). The genetic risk 

score was dichotomized at the sample mean to create low and high genetic risk categories. 

Relative risks (RR) and 95% CIs are reported from Poisson regression models adjusted for sex 

including the n=856 European-descent individuals in the analysis sample.  
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Figure 3.4. The genetic risk score contained information about children’s growth and their obesity risk that was not available in their 

family histories. Genetic risk and family history made independent and additive contributions to life-course growth predictions and to 

adult obesity risk in n=856 European-descent individuals. Panel A shows that genetic risk and family history made additive contributions 

to growth predictions. Panel B shows that genetic risk and family history made additive contributions to children’s risk of becoming 

obese. Error bars reflect 95% confidence intervals.  Statistical analyses illustrating the independence of the genetic risk score and family 

history in predicting growth and obesity risk are presented in Supplementary Table 2 (Appendix B). 
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CHAPTER 4. 

POLYGENIC RISK ACCELERATES THE DEVELOPMENTAL PROGRESSION TO 

HEAVY, PERSISTENT SMOKING AND NICOTINE DEPENDENCE: 

EVIDENCE FROM A 4-DECADE LONGITUDINAL STUDY 

 
INTRODUCTION 

Cigarette smoking is a costly, prevalent public health problem. The US Centers for Disease 

Control and Prevention attribute 400,000+ deaths and $95 million in lost productivity to smoking during 

2000-2004.156 About 20% of adults still smoke daily despite widespread knowledge of smoking’s health 

effects and increasing economic costs to smokers due to rising taxes.157 Thus, more effective 

interventions to prevent smoking, motivate smoking cessation, and prevent relapse back to smoking are 

needed.158-160 

  Studies of twins suggest that genetic differences between individuals play an important role in 

smoking behavior, cessation, and in response to anti-smoking interventions.161 Recent genome-wide 

association studies (GWAS) in adult smokers and former smokers revealed genes that relate with 

genome-wide significance to smoking quantity (number of cigarettes smoked per day).162-164 These 

genes are already being used in clinical applications; e.g., to predict smoking cessation likelihood and in 

pharmacogenetic analyses.165-169  An important additional step in the translation of these GWAS findings 

is to test if genetic markers that predicted smoking quantity in GWAS also predict the development of 

smoking behavior in adolescence.170, 171 This question is of critical importance for public health practice 

as intervention to disrupt genetic risk is likely to be most effective early in the development of 

dependence. Important developmental phenotypes in the pathogenesis of adult dependence include 

smoking initiation, conversion to daily smoking during adolescence, and rapid progression to heavy 

smoking.172 Early, rapid progression from smoking initiation to heavy use is a signal risk for adult nicotine 

dependence.173-176 Therefore, this research tested relations of GWAS-identified genetic risk with both 

adolescent and adult smoking phenotypes and then determined the extent to which genetic effects on 

the former affected the adult phenotype outcomes. 
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In this study, we tested prospective associations between genetic risks and adolescent 

developmental and mature adult phenotypes of smoking behavior (Figure 4.1). We examined genetic 

risks in the Dunedin Study, a birth cohort (n=1,037) followed to age 38 years with >90% retention. We 

collected smoking behavior data at 8 assessments spanning ages 11-38 years. This allowed us to study 

the effects of genetic risk in the cohort as members initiated smoking during adolescence, converted to 

daily smoking and progressed to heavy smoking during the teenage and young adult years, and as they 

developed nicotine dependence and struggled with cessation in their 20s and 30s. We tested whether 

individuals at higher genetic risk progressed more rapidly from smoking initiation to heavy smoking, if 

they smoked more heavily as adults, if they were more nicotine dependent, and if they were more likely 

to fail in their cessation attempts. Finally, we tested the hypothesis that genetic risk accelerates the 

developmental progression from smoking initiation to heavy smoking, and this, in turn, increases the 

severity of adult smoking problems such as heavy, intractable smoking and nicotine dependence.  This 

model has relevance to public health interventions that might delay the developmental progression to 

heavy smoking.  

METHODS 

Sample 

Participants are members of the Dunedin Multidisciplinary Health and Development Study, a 

longitudinal investigation of health and behavior in a complete birth cohort. Study members (N=1,037; 

91% of eligible births; 52% male) were all individuals born between April 1972 and March 1973 in 

Dunedin, New Zealand, who were eligible for the longitudinal study based on residence in the province 

at age 3 and who participated in the first follow-up assessment at age 3. The cohort represents the full 

range of socioeconomic status in the general population of New Zealand’s South Island and is primarily 

white. Assessments were carried out at birth and at ages 3, 5, 7, 9, 11, 13, 15, 18, 21, 26, 32, and, most 

recently, 38 years, when 1,007 Study members were still alive, with over 90% retention.  At each 

assessment wave, study members are brought to the Dunedin research unit for a full day of interviews 

and examinations. The Otago Ethics Committee approved each phase of the study and informed consent 

was obtained from all study members. 
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Measures  

Genetic Risk Score 

A challenge for developmental research following-up GWAS discoveries is that effect sizes for 

individual single-nucleotide polymorphisms (SNPs) are small; the largest effects for smoking quantity 

approach a change of 1 cigarette per day per risk allele. Moreover, many of the longitudinal studies with 

data necessary to investigate developmental phenotypes are underpowered to test single-SNP effects.54 

However, there is evidence that smoking-associated loci make additive contributions to risk, 

recommending aggregating risk alleles.59, 60, 177 Summing risk alleles across GWAS-identified SNPs to 

compute a “genetic risk score” (GRS) yields a quantitative index of genetic risk with a normal 

distribution65 and a potentially larger effect size. 

We derived the genetic risk score (GRS) from 3 recent meta-analyses of GWAS that used as their 

phenotype cigarettes smoked per day.162-164  To construct the genetic risk score (GRS), we considered 

single-nucleotide polymorphisms (SNPs) from regions with genome-wide significant associations in at 

least two meta-analyses: All 3 meta-analyses identified SNPs in the q25.1 region of chromosome 15 

containing the CHRNA5-CHRNA3-CHRNB4 gene cluster. Two meta-analyses identified SNPs in the q13.2 

region of chromosome 19 containing the gene CYP2A6. These genes influence nicotine response and 

nicotine metabolism, have been linked with nicotine dependence, and are candidate genes in research 

into the development of smoking behavior.60, 178-185 Therefore, we focused our inquiry on GWAS-

identified SNPs in these two regions. In 15q25.1, we selected the SNPs rs16969968, rs6495308, 

rs8032771, and rs12595538. The SNPs rs16969968 and rs6495308, which fall within the CHRNA5-

CHRNA3-CHRNB4 gene cluster, were shown previously to have independent associations with smoking 

quantity163 (see also186). The SNPs rs8032771 and rs12595538, which are located downstream of the 

CHRNA5-CHRNA3-CHRNB4 gene cluster, were in weak linkage-disequilibrium (LD) with rs16969968 and 

rs6495308 (R2≤0.10), and were genome-wide significant in the largest meta-analysis162 (p<1x10-16 for 

both; p-values for these SNPs were not published in the other two meta-analyses). In 19q13.2, we 

selected the SNPs rs7937 and rs4105144. We summed alleles associated with higher smoking quantity 

to calculate the GRS. 

To validate this GRS, we used independent data from the Atherosclerosis Risk in the 

Communities (ARIC) sample, accessed through the NIH database of Genotypes and Phenotypes 

(dbGaP).81 When a GRS SNP was not available in ARIC, we selected the closest LD proxy for that SNP to 

include in the GRS. Among European-descent ARIC participants, each standard deviation (SD) increase in 
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the GRS predicted a 0.99 pack-year increase in lifetime cigarette consumption among individuals who 

had ever smoked (p=0.001) and a 0.65 cigarette increase in daily consumption among these ever 

smokers (p=0.001).  

Dunedin cohort genotyping was conducted with an Illumina BeadPlex Array using DNA extracted 

from whole blood (93% of the sample) or buccal swabs (7% of the sample). GRS SNPs or proxies (linkage 

R2≥0.85) were called successfully in >95% of European-descent study members (Appendix C, 

Supplemental Table 4.1). These n=880 individuals formed the analysis sample. Cohort members carried 

an average of 7.06 of 12 possible risk alleles (SD=2.27). The GRS was standardized to have mean=0 and 

standard deviation=1 for analyses (genetic risk Z-score).  

Family History of Smoking  

Family histories of smoking were available for 99% of the cohort. The family history consisted of 

reports of smoking history provided by study members and both parents for study members’ siblings, 

parents, and grandparents. The family history was summarized as the proportion of family members in 

the pedigree who were ever regular smokers, adjusted to account for differences in genetic relatedness 

to the proband of first- and second-degree relatives.187  

Smoking Behavior  

The developmental progression of smoking behavior in the Dunedin cohort is described in 

Figure 2 Panel A. Measurement of adolescent developmental phenotypes and mature phenotypes of 

smoking behavior are described in Figure 4.2 Panel B.  

Analyses 

Data analysis was divided into three parts: First, we analyzed associations between the GRS and 

developmental phenotypes of smoking behavior. Second, we analyzed associations between the GRS 

and mature phenotypes. Third, we tested whether developmental phenotypes mediated associations 

between the GRS and mature phenotypes. We analyzed continuous data using ordinary least squares, 

count data using negative binomial, and categorical data using Poisson regression models. We used 

longitudinal data analysis techniques to account for differences in exposure time: We analyzed hazards 

of smoking initiation, progression to heavy smoking, becoming nicotine dependent, and relapsing from a 

quit attempt using Cox proportional hazard models. To account for differences in the frequency with 

which study members attempted cessation, we constructed panel datasets that included one 

observation per study member per assessment (for the age 18-32 data) and one observation per study 
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member per quit attempt (for the life-history calendar data). We used these panel datasets to analyze 

the genetic effect on smokers’ risks of cessation failure during ages 18-32 years and on their hazards of 

relapse during ages 32-38 years. We accounted for non-independence of repeated observations of 

individuals using generalized estimating equation models of risks and conditional risk-set models of 

hazards.188, 189 Analyses were adjusted for sex and conducted using Stata 11.0.145 Panel-data models 

were fitted to longitudinal repeated-measures data using “XT” and “ST” commands in Stata 11.0. We 

evaluated mediation using structural equation modeling.140, 142, 143 Unless otherwise noted, effect-sizes 

are presented for one-unit increases in the genetic-risk Z-score (GRS). 

 

RESULTS 

Genetic risk was not related to smoking initiation. The GRS was not associated with whether 

individuals initiated smoking or with the timing of initiation (relative risk (RR) for smoking 

initiation=0.98, 95% CI [0.95-1.02], cumulative hazard ratio (HR) for initiation=1.01, [0.94-1.09] based on 

a one-unit increase in GRS z-score). Subsequent analyses focused on the 627 Dunedin cohort members 

who initiated smoking at some point during follow-up (Figure 4.2).  

Genetic risk was related to the progression of smoking behavior. Individuals at higher genetic 

risk were more likely to progress to smoking ≥20 cigarettes/day and did so more rapidly (HR=1.35 [1.14-

1.58]). Figure 3 Panel A shows the cumulative hazards for smoking ≥20 cigarettes/day for individuals at 

low, average, and high genetic risk. An unexpected finding was that individuals who initiated smoking 

but who did not progress to daily smoking or to heavy smoking, so-called “chippers”, were at the lowest 

genetic risk of any group in the cohort (Figure 4.3 Panel B).  

Adolescents at higher genetic risk were more likely to convert to daily smoking early and to 

progress rapidly from initiation to smoking ≥20 cigarettes/day. Among ever-smokers, 19% converted to 

daily smoking by age 15 years (early conversion) and 10% progressed to smoking ≥20 cigarettes/day by 

age 18 years (rapid progression to heavy smoking). Each unit increase in the GRS predicted a 24% 

increase in the relative risk of early conversion (RR=1.24 [1.06-1.45]) and a 43% increase in the relative 

risk of rapid progression (RR=1.43 [1.10-1.86]).  

 Individuals at higher genetic risk smoked more heavily across the lifespan. Individuals at higher 

genetic risk accumulated more pack-years across 38 years of follow-up. Each one-unit increase in the 

GRS predicted an additional pack-year in lifetime cigarette consumption among ever-smokers (B=1.05 
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[0.36-1.73]) (Figure 4.4 Panel A). We also analyzed the persistence of heavy smoking as the number of 

assessments at which individuals smoked ≥20 cigarettes per day. Individuals at higher genetic risk 

smoked heavily at more assessments (incidence rate ratio (IRR) for number of assessments as a heavy 

smoker=1.26 [1.07-1.49]).  

Smokers at higher genetic risk were more likely to develop nicotine dependence. Through age 

38 years, 27% of ever-smokers developed nicotine dependence. Individuals at higher genetic risk were 

more likely to become nicotine dependent compared to individuals at lower genetic risk and were 

nicotine dependent at more assessments (HR for nicotine dependence =1.27 [1.09-1.47]; IRR for 

assessments with nicotine dependence=1.22 [1.06-1.41]) (Figure 4.4 Panel B). 

 Smokers at higher genetic risk were more reliant on smoking as a coping strategy. In addition 

to testing genetic associations with nicotine dependence, we also asked whether cohort members at 

higher genetic risk were more reliant on smoking to cope with stress. Among study members who 

smoked daily during ages 32-38 years (n=261), those at higher genetic risk relied more heavily on 

smoking as a coping strategy (B=0.22 [0.10-0.33]).  

Smokers at higher genetic risk were more likely to experience cessation failure. Assessment of 

cessation failure is challenging.190 Therefore, we looked for convergent evidence across two approaches 

to testing genetic associations with cessation failure. We first analyzed study members’ reports of 

cessation failure between ages 18-32 years. Across 14 years of follow-up, n=405 cohort members 

smoked daily. 90% of this group made at least one quit attempt and 51% reported a cessation failure at 

one or more assessments. Cohort members at higher genetic risk were more likely to experience 

cessation failure in their quit attempts (RR=1.11 [1.01-1.22]). 

We next used the month-to-month life history calendars to look closely at cohort members’ 

smoking behavior during their 30s, when cessation was most common. Across 96 months of follow-up, 

n=261 cohort members smoked daily.  52% of these smokers made a quit attempt lasting one month or 

more. Relapse was common (occurring in 61% of quitters). Quitters at higher genetic risk were more 

likely to relapse and did so sooner after quitting (HR=1.22 [1.02-1.45]). Only 19% of daily smokers 

achieved successful cessation (abstinent for ≥1 year through age 38).  Smokers at higher genetic risk 

were less likely to have achieved successful cessation at the end of follow-up (RR=0.73 [0.57-0.93]) 

(Figure 4.4 Panel C).   
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Early conversion to daily smoking and rapid progression to heavy smoking mediated genetic 

associations with adult smoking problems. We derived an index of adult smoking problems from a 

principal components analysis of 3 indicators: a) pack-years smoked by age 38 years; b) total number of 

Fagerstrom symptoms across assessments; and c) the number of assessments at which study members 

reported cessation failure. The adult smoking problems factor explained 78% of the variance in the 3 

indicators (factor loading for heavy smoking=0.61; for nicotine dependence=0.60; for cessation 

failure=0.52). Individuals at higher genetic risk developed more smoking problems in adulthood (r=0.10, 

p=0.012). We next tested whether this association was accounted for by the more rapid developmental 

progression of smoking behavior among individuals at higher genetic risk. 81% of this association was 

accounted for by the two adolescent developmental phenotypes of early conversion to daily smoking 

and rapid progression to smoking≥20 cigarettes/day (Appendix C, Supplemental Table 4.2). Among 

individuals who did not exhibit these adolescent developmental phenotypes of rapid smoking 

progression, genetic risk was uncoupled from the development of smoking problems in adulthood 

(r=0.05, p=0.176).     

The genetic risk score captured information that could not be ascertained from a family 

history of smoking behavior. The family history score and the GRS were uncorrelated (r=0.011).  Both 

family history and the GRS predicted study members’ smoking phenotypes (Table 4.1). When family 

history and the GRS were both standardized and included in regression models simultaneously, GRS 

coefficients were unchanged and remained statistically significant. Thus, the GRS contained different 

information about risk for developmental and mature phenotypes of smoking behavior compared to 

family history.  

COMMENT 

Etiological research on substance abuse highlights the importance of progression from initiation 

to heavy use during adolescence in the development of dependence in adulthood.47, 48  In this study, we 

linked the developmental progression of smoking behavior to genetic risk. We derived a genetic risk 

score (GRS) from GWAS of smoking quantity. This GRS was not related to smoking initiation. However, 

individuals at higher genetic risk did progress more rapidly from smoking initiation to heavy smoking. In 

fact, daily smokers who did not progress to heavy use were at lower genetic risk than individuals who 

never smoked. Critically, high genetic risk led individuals to become persistent heavy smokers, develop 

nicotine dependence, and struggle with cessation failure only to the extent that they progressed rapidly 

from smoking initiation to heavy smoking during adolescence. 
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Previous research has related polymorphisms in the genes included in our genetic risk score to 

developmental phenotypes of smoking behavior60, 177, 181-184 and to mature phenotypes of adult smoking 

problems.178-180, 191, 192 To our knowledge, ours is the first study to track the relations of particular genetic 

risk variants with the development of smoking behavior from initiation through conversion to daily 

smoking and progression to heavy smoking, and on to the mature phenotypes of persistent of heavy 

smoking, nicotine dependence, and struggles with cessation through mid-life. Moreover, this extended 

follow-up allowed us to show, for the first time, that GWAS-identified variation in 15q25.1 and 19q13.2 

influences adult smoking problems through a pathway mediated by adolescent progression from 

smoking initiation to heavy smoking. Our study is also the first to show that GWAS-identified SNPs 

provide information about smoking risks that cannot be ascertained from a family history, including 

information about risk for cessation failure.  

These findings should be considered in light of three limitations. First, the Dunedin Study sample 

consisted of European-descent individuals, as did the samples analyzed in the GWAS used to develop 

the GRS. Replication in other populations is needed.193 Second, our analyses of cessation were subject to 

censored data. The life history calendars ended at the age 38 follow-up and thus the data do not reflect 

relations with phenotypic events occurring after this age.  Also, self-reports of temporally remote events 

could be inaccurate due to forgetting or other biases.  Third, the four-decades of follow-up in the 

Dunedin Study coincided with major secular events such as bans against smoking in the workplace. 

Comparisons of cohorts born at different times might elucidate gene-policy interactions in smoking 

behavior and reflect the generalizability of the current findings.194  

Despite these limitations, this study has implications for etiological research and public health. 

With respect to etiology, our study makes 3 contributions: First, Next Gen sequencing studies and other 

efforts to ascertain causal variants responsible for GWAS signals may maximize their discovery potential 

by focusing on samples of young people strategically selected to reflect important developmental 

transitions. Such work could use experimental designs to test hypotheses about mechanisms of genetic 

risk on post-initiation phenotypes. Second, we demonstrated that a genetic risk score based on the 

assumption of additive risks can be used to follow-up GWAS results in a birth cohort far smaller than the 

original discovery samples. Future etiological research can use genetic risk scores to apply GWAS results 

to longitudinal studies. Third, results are consistent with the hypothesis in pediatric medicine that some 

adolescents, after only experimental use, are prone to quickly become heavy users and dependent.11  
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Turning to public health, our research adds a genetic dimension to long-standing arguments that 

early prevention could be a critical strategy in reducing cigarette consumption.42 Specifically, our 

findings and others’181 suggest that initiatives that disrupt the developmental progression of smoking 

behavior, such as surtaxes and age restrictions on tobacco purchases, may ameliorate some genetic 

risks.195 Moving beyond population-level prevention, we showed that information about smoking risk 

captured in a score composed of GWAS-identified variants was independent of information that could 

be derived from a family history of smoking behavior. This novel finding suggests that genetic 

information could be used to identify “high-risk” youngsters for targeted prevention.11, 196 However, the 

associations we detected between the genetic risk score and smoking phenotypes were small in 

magnitude. Small effect sizes do not preclude public health relevance,197 but they do caution against the 

use of genetic information to evaluate risk in individuals;7  children that our study would classify at high 

genetic risk are not guaranteed to become addicted if they try smoking and, even more importantly, 

children we would classify at low genetic risk are not immune to addiction. The public health use of the 

current findings must be tempered with recognition that most “risk-associated” genetic variation does 

not determine poor health outcomes and, correspondingly, its absence does not guarantee 

protection.103, 198  
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Table 4.1. Effect sizes for genetic and family history associations with developmental and clinical 

phenotypes of smoking behavior.  Effect sizes are for a one standard deviation increase in the predictor 

variable (the genetic risk score or the family history score). Effect size measures are Pearson 

correlations, ‘r’; relative risks ‘RR’ from Poisson regression models; incident rate ratios ‘IRR’ from 

negative binomial regression models; hazard ratios ‘HR’ from Cox proportional hazard models; and beta 

coefficients ‘B’, from linear regression models. All models were adjusted for sex. Effect-size measures 

with a star ‘*’ were estimated from longitudinal datasets including repeated observations of individuals 

over time. Effect sizes in gray text were not statistically significant at the α=0.05 level. 

  

Developmental Phenotypes

Smoking Initiation (among n=880 Individuals; n=627 Who Ever Initiated Smoking)

0.98 1.12

[0.95-1.02] [1.07-1.17]

1.01 1.06

[0.94-1.09] [0.98-1.15]

Progression from Initiation to Heavy Smoking (among n=627 Ever-Smokers)

1.24 1.52

[1.06-1.45] [1.27-1.83]

1.43 1.68

[1.10-1.86] [1.26-2.24]

1.35 1.47

[1.14-1.58] [1.23-1.76]

Mature Phenotypes

Heavy Smoking Persistence (among n=627 Ever Smokers)

1.05 2.49

[0.36-1.73] [1.80-3.19]

1.26 1.49

[1.07-1.49] [1.24-1.80]

Nicotine Dependence (among n=627 Ever Smokers)

1.27 1.53

[1.09-1.47] [1.29-1.80]

1.22 1.50

[1.06-1.41] [1.28-1.75]

Smoking to Cope with Stress (Ages 32-38 Years, Among n=261 Daily Smokers)

0.22 0.09

[0.11-0.32] [-0.05-0.23]

Cessation Failure

Ages 18-32 years (n=405 Daily Smokers; among n=364 who Attempted Cessation)

1.11 1.11

[1.01-1.22] [1.00-1.23]

Ages 32-38 Years (n=261 Daily Smokers; n=136 Who Quit for ≥1 Month)

1.22 0.96

[1.02-1.45] [0.79-1.17]

0.73 0.94

[0.57-0.93] [0.73-1.20]

 

Likelihood of Successful Cessation (among 

daily smokers)

Risk of Cessation Failure

BSmoking to Cope Score

RR

HR*

RR*

Family History ScoreGenetic Risk Score

p=0.758

Correlation between the Genetic Risk Score and 

the Family History Score

0.011

Effect Size 

Measure

r

Count of Assessments with Nicotine 

Dependence
IRR

HR*

HR*

RR

HR*

RR

RR

IRR

Ever-Smoker Status

Lifetime Cigarette Consumption (Pack Years)

Hazard of Relapse Following Quit Attempts 

Lasting ≥1 Month

B

Early Conversion to Daily Smoking (by Age 

15 Years)

Lifetime Hazard to Becoming Nicotine 

Dependent (≥4 Fagerstrom Symptoms)

Count of Assessments Smoking ≥20 

Cigarettes/Day

Lifetime Hazard for Smoking ≥20 

Cigarettes/Day

Rapid Progression to  Smoking ≥20 

Cigarettes/Day  (by Age 18 Years)

Lifetime Hazard for Smoking Initiation
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Figure 4.1. Genetic risk and the developmental progression of smoking behavior. In the hypothesized 

model, genetic risk influences the mature phenotypes of heavy smoking persistence, nicotine 

dependence, and cessation failure through a pathway mediated by three developmental phenotypes: 

smoking initiation, conversion to daily smoking; and progression to heavy smoking.  
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Figure 4.2. Smoking behavior in the Dunedin cohort. 

 

Panel A. Developmental Progression of Smoking Behavior in the Dunedin cohort. Study 

members reported their smoking status during in-person assessments at ages 11 (percent ever-

smokers=7%), 13 (13%), 15 (62%), 18 (66%), 21 (70%), 26 (70%), 32 (71%), and 38 years (71%) 

and their daily cigarette consumption at ages 13 (percent daily smokers=1%), 15 (14%), 18 

(31%), 21 (34%), 26 (35%), 32 (30%), and 38 years (20%). We assessed nicotine dependence 

using the Fagerstrom Test of Nicotine Dependence (FTND),
199

 completed by study members at 

the age-21, -26, and -38 assessments. We assessed cessation failure using study members’ 

reports of quit attempts and outcomes at the ages 18, 21, 26, 32, and 38 assessments. 
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Panel B. Measurements of Developmental and Mature Smoking Phenotypes 

Developmental Phenotypes N % 

Initiation. Age at which study members reported first smoking at least 

occasionally.  Survival time to initiation was calculated as the age at which a 

study member first began smoking at least occasionally. The 627 cohort 

members who initiated smoking represent 71% of the n=880 European-

descent cohort members with available genetic data.  

627   

Conversion Daily Smoking. The first assessment at which a study member 

smoked ≥1 cigarette per day. 
418 67% 

Early Conversion to Daily Smoking. Daily smoker at the age 15 assessment. 

Most study members who ever converted to daily smoking did so by the age-

18 assessment (74%). Therefore, we defined “early conversion” to daily 

smoking as having converted by the previous assessment at age 15 years.  

121 19% 

Progression to Smoking ≥20 Cigarettes/Day. Ever a smoker of ≥20 cigarettes 

per day, ages 13-38 years. "Survival time" to heavy smoking was calculated as 

the number of years between initiation and the first assessment at which a 

study member smoked ≥20 cigarettes per day. 

155 25% 

Rapid Progression to Heavy Smoking. Smoker of ≥20 cigarettes per day by age 

18 years. Most study members who ever became heavy smokers progressed to 

smoking ≥20 cigarettes/day by the age-21 assessment (63%). Therefore, we 

defined “rapid progression” as progression to smoking ≥20 cigarettes/day by 

the previous assessment at age 18 years.  

61 10% 

Mature Phenotypes M SD / N % 

Lifetime Cigarette Consumption (Pack Years). Pack-years = the number of 

cigarettes smoked per day, divided by 20 and multiplied by the number of 

years smoked at that rate.38 The mean and standard deviation of pack-years 

was calculated for ever-smokers. 

8.39 8.95 

Nicotine Dependence.  Study members completed the Fagerstrom Test of 

Nicotine Dependence (FTND)199 at the age-21, -26, and -38 assessments. The 

FTND was developed to measure the construct of physical dependence and 

includes the facets of needing to smoke in the morning to alleviate overnight 

withdrawal, needing to smoke many cigarettes per day, and invariance in 

smoking behavior, e.g. in the face of illness.200 The FTND produces a 

“Fagerstrom score” score ranging from 0-10. Nicotine dependence is defined 

as a Fagerstrom score ≥4.201, 202 We calculated survival time as years between 

smoking initiation and the first assessment at which a study member was 

nicotine dependent. Percent reflects ever-smokers who became nicotine 

dependent. 

169 27% 
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Smoking to Cope with Stress. Study members were interviewed about how 

they coped with stress associated with their relationships, work, and finances 

at ages 32 and 38 years. Study members rated the extent to which they used 

different coping strategies. One of these strategies was smoking more. Ratings 

of smoking as a coping strategy were averaged and the average was 

standardized to produce a score with mean=0 and standard deviation=1.  

0 1 

Cessation Ages 18-32 years. To assess cessation failure prior to the period 

covered by the life history calendar, we used study member’s reports collected 

at ages 18, 21, 26, and 32 years of whether they had made a quit attempt in 

the past year and whether they had failed in their quit attempt within one 

month. N reflects study members who attempted cessation at least once. 

Percent is calculated from study members who were ever daily smokers 

between ages 18 and 32 years (n=405). 

364 90% 

Cessation Ages 32-38 years. At the age-38 assessment, study members 

completed life history calendars203 detailing their smoking behavior during 

each month from age 32 to age 38 years. Embedding recall of smoking 

behavior in a life-history calendar improves accuracy.204 We used these data to 

identify 2 phenotypes: Relapses were ≥1 months of abstinence followed by ≥1 

months of daily smoking; Successful Smoking Cessation was abstinence for ≥1 

year through the time of the age-38 interview. N reflects study members who 

quit for ≥1 month between ages 32 and 38 years. Percent is calculated from 

study members who became daily smokers by age 32 and were daily smokers 

for ≥1 month during ages 32-38 years (n=261). 

136 52% 



 

 

 

    

Figure 4.3. A genetic risk score derived from GWAS of smoking quantity is associated with the developmental progression of smoking 

behavior in a birth cohort of European-descent individuals. Panel A shows that individuals at higher genetic risk progressed more rapidly from 

smoking initiation to heavy smoking. Panel A graphs hazard functions for onset of heavy smoking among individuals at low genetic risk (genetic 

risk Z-score=-1, green line), average genetic risk (genetic risk Z-score=0, black line), and high genetic risk (genetic risk Z-score=1, red line). The 

dashed gray line marks the cumulative hazard for individuals at average genetic risk. The hazard function was estimated from a Cox proportional 

hazard model with time since onset of ever-smoking as the exposure time and the first assessment a study member reported smoking ≥20 

cigarettes/day as the failure event. The hazard model included all individuals who ever initiated smoking (N=627). Individuals at higher genetic 

risk progressed more rapidly from smoking initiation to smoking ≥20 cigarettes/day (Hazard Ratio=1.35 [1.15-1.59]). Panel B shows that genetic 

risk was highest among individuals who progressed to heavy smoking and lowest among individuals who initiated smoking but who did not 

progress to heavy smoking. The figure shows the genetic risk Z-sores (+/- 1 standard error) for each group.  “CPD” is “cigarettes per day.” A 

genetic risk Z-score of 0 corresponds to the average genetic risk in the cohort. Error bars reflect standard errors of the sub-group means. 
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Figure 4.4. Genetic risk predicts mature phenotypes of smoking behavior. Panel A shows that 

among individuals who initiated smoking, those at higher genetic risk smoked more cigarettes 

by age 38 years. Ever-smokers were all individuals who initiated smoking by age 38 years 

(N=627). The bars of the histogram graph the percentages of the sample carrying 1-12 risk 

alleles. The dots and standard-error bars reflect average lifetime cigarette consumption (in pack-

years) for ever-smokers carrying 1-3, 4, 5, 6, 7, 8, 9, 10, and 11-12 risk alleles. The regression line 

shows the association between the genetic risk score and pack-years smoked by age 38 years 

(Pearson Correlation r=0.12, p=0.003). Panel B shows that ever-smokers at higher genetic risk 

were more likely to be nicotine dependent. The bars of the chart graph the proportion of ever-

smokers (n=627) at low, average, and high genetic risk (left side) who became nicotine 

dependent (≥4 Fagerstrom symptoms) by age 38 years; and (right side) who were nicotine 

dependent at two or more assessments.  Panel C shows that smokers at higher genetic risk were 

more likely to experience cessation failure during their 30s. The bars of the chart graph the 

proportions of daily smokers at low, average, and high genetic risk (left side) who experienced 

relapse following a quit attempt lasting ≥1 month; and (right side) who achieved successful 

cessation (abstinence ≥1 year) through age 38 years. Percent with relapse was calculated from 

cohort members who quit smoking for ≥1 month during ages 32-38 years (n=136). Percent with 

successful cessation was calculated for cohort members who smoked daily during their 30s 

(n=261). In panels B and C, low genetic risk individuals had GRSs more than 1 standard deviation 

below the cohort mean; average genetic risk individuals had GRSs within 1 standard deviation of 

the cohort mean; and high genetic risk individuals had GRSs more than 1 standard deviation 

above the cohort mean. Error bars reflect standard errors.  

Panel A. 

                                                                                                                                          

r=0.12, p=0.003

5
10

15
P

ac
k-

Y
ea

rs
 S

m
ok

ed
 b

y 
A

ge
 3

8

0
5

10
15

20
%

 o
f S

am
pl

e

0 2 4 6 8 10 12
Risk Allele Count



 

56 

 

Panel B.  
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CHAPTER 5. 

SUMMARY & CONCLUSIONS 

 

 

The research described in the three preceding empirical chapters characterizes the public 

health implications of GWAS-discovered genetic risks for two prevalent and costly sources of 

morbidity and early mortality, obesity and smoking. I used theory-free genetic discovery 

research (genome-wide association studies, “GWAS”) to derive multi-locus profiles of genetic 

risk. I next validated these “genetic risk scores” (GRSs) using data from a large, population-based 

cohort of older adults, the Atherosclerosis Risk in the Communities Study (n=15,792). I then 

used these GRSs to investigate how genetic risk influenced the development of obesity and 

smoking problems in a representative birth cohort (n=1,037) followed through their fourth 

decade of life. Results revealed that (1) GRSs can be used to investigate GWAS-discovered 

genetic risks for obesity and smoking in population-based cohorts much smaller than the 

original GWAS discovery samples; (2) genetic risks identified in GWAS manifest early in the 

development of obesity and smoking through processes that may be amenable to public health 

intervention; (3) the magnitudes of risk that can be predicted using genetic information are 

small; but (4) the risk information provided by genetic markers is independent of information 

available in a family history. These findings have three primary implications: First, they 

recommend of caution in the application of genetic information to predict health risks in 

individuals,
7-9

 but suggest promise as more powerful but less common genetic risks are 

discovered in the continuing evolution of genomic research. Second, findings suggest that 

developing samples of children and adolescents should be a focus in genetic discovery research. 

Third, findings and add a genetic dimension to arguments for early intervention and may inform 

the best strategies likely to prevent obesity and smoking.
10, 11

 



 

58 

 

 

I. Implications for Research and Public Health 

A. Genetic risk scores composed of genome-wide association study discoveries can provide 

valid measures of inherited risk for obesity and smoking. GRSs for obesity and smoking derived 

by summing risk-associated alleles across panels of GWAS-discovered SNPs are associated with 

quantitative traits (e.g. body mass index, smoking quantity) and clinical endpoints (e.g. obesity, 

nicotine dependence). These associations can be reliably detected in samples far smaller than 

those used for discovery research. In Chapter 3, for example, associations between the smoking 

GRS and cessation outcomes were detected in samples of only a few hundred smokers making 

quit attempts. Thus, GRSs provide a means to follow-up GWAS results in samples that are far 

smaller than those used for discovery research. 

 The validity of a genetic risk score may be specific to the population investigated in the 

GWAS used to construct the score. GWAS rely on “linkage”, the correlation of spatially 

proximate nucleotides in the genome, to leverage measurements of one or two million SNPs to 

infer variation in the entire 15 million plus SNPs in the human genome.
205

 The theory behind 

GWAS is that linkage between measured SNPs and unmeasured SNPs is strong enough that the 

“signal” from an un-measured SNP that is a causal factor in disease etiology can be detected 

through a “proxy” SNP that is measured.
206

 Thus, GWAS-identified SNPs may be proxies in 

linkage with causal variants.
70

 Patterns of linkage vary across population bottlenecks in human 

evolution, e.g. the migration out of Africa.
207

 Therefore, GWAS results may not be consistent 

across ethnic groups defined by these population bottlenecks.
208

 In Chapter 1, the obesity GRS 

was a robust predictor of body mass index and obesity in European-descent cohort members, 

but not in African-descent cohort members. Public health research using GRSs must be careful 

to match the population used for discovery with the population of interest or must validate the 

GRS in a new population before undertaking further etiological research.  

B. The magnitudes of risks measured by GWAS-derived genetic risk scores for obesity and 

smoking are small at the level of the individual, but have implications for public health. Many 

ARIC and Dunedin cohort members at low genetic risk became obese or developed smoking 

problems. Similarly, many members of these cohorts at high genetic risk remained thin or never 

developed smoking problems. In the population based cohorts examined in Chapters 1-3, the 



 

59 

 

GRSs explained roughly 1% of population variance in the relevant outcomes. Consistent with 

prior research,
209

 analyses in Chapter 1 show that a GRS explaining such a small fraction of 

variance in a health trait or behavior is not useful for individual prediction. Yet, the risks 

predicted by the GRSs were far from trivial. In analyses presented in Chapter 2 each 1-unit 

increase in the obesity GRS predicted a 40% increase in risk for chronic adult obesity. In analyses 

presented in Chapter 3, each 1-unit increase in the smoking GRS predicted a 30% increase in the 

hazards for becoming a heavy smoker and for developing nicotine dependence. Thus, these 

GRSs predict risks that are comparable to or in excess of risks that can be predicted by many 

other biomarkers considered of interest in the context of public health research.
210

 

Interventions that effectively ameliorated substantive portions of the genetic risks measured by 

these GRSs could reduce population rates of obesity and smoking and generate substantial 

improvements in health and substantial reductions in healthcare spending.
197

   

C. Information captured in genetic risk scores for obesity and smoking is different from 

information that can be obtained from a family history.  To have public health utility, measured 

genetic variation must provide new information over and above that already available in family 

history.
67

 Therefore, this dissertation research tested the independence of risk scores derived 

from GWAS discoveries and from family histories. Chapters 2 and 3 report tests of the 

independence of the GRSs from risk scores derived from the body mass indexes of children’s 

parents (for obesity) and the smoking behavior of their parents, siblings, and grandparents (for 

smoking). Correlations between GRSs and family-history scores were near zero and were not 

statistically significant. Regression analyses showed that the smoking and obesity GRSs provided 

information about risk that was independent of and additive to information that could be 

obtained from a family history. Thus, in the case of the smoking and obesity phenotypes, the 

genetic variants discovered in GWAS provide new information about risk over and above family 

history.  

Risk effects estimated for family history were consistently larger than risk effects estimated 

for the GRSs, but the differences were small. Therefore, as new genetic discoveries are made, it 

may be useful to revisit the application of genetic information in the context of prospective risk 

assessment, particularly as a means to augment family history-based risk assessments.  

A further note on the unexpected finding that genetic risks discovered in GWAS are un-

related to family histories of obesity and smoking. The GRSs used in this dissertation research, 
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like family-history scores, explain only small fractions of the estimated genetic variance in the 

traits studied (1-4%). Family studies suggest that 50% or more of population variation in body 

mass index and smoking may be attributed to genetic factors.
13, 14

 Therefore, the lack of overlap 

in the few percent of variance explained by each of the genetic risk and family history scores is 

not impossible. Nevertheless, it is somewhat unexpected that GWAS-discoveries should be 

completely unrelated to family histories.  

There are three reasons that GWAS-derived GRSs and family-history scores might show so 

little overlap and these reasons relate to ongoing debate about the genetic architecture of 

common health problems. The debate concerns the importance of common genetic variation 

(like the SNPs measured in GWAS) as compared to rare mutations (variants that occur in <1% of 

the population) in causing common health problems.
35

 GRSs derived from GWAS capture risk 

arising only from common variation. (There is some debate about the role of rare variants 

generating synthetic associations in GWAS, but the balance of evidence suggests that most 

GWAS hits are not artifacts of rare variants.
211-213

) In contrast, family histories comprise all 

genetic variation, both rare and common, in addition to environmental factors shared by family 

members. Therefore, one reason that the GRSs and family history scores might not overlap is 

that the GRSs reflect common genetic variants and family-history scores reflect primarily rare 

genetic variants and environmental risks shared by family members. A second reason that the 

GRSs and family-history scores might not overlap is that family history scores reflect so-called 

“epistatic” interactions among large numbers of common and/or rare variants and interactions 

between genetic variation and environments shared by family members.
214

 A third reason that 

the GRSs and family-history scores might not overlap is that family history scores do reflect 

common variation, but common variation with effects too small to be detected in GWAS. The 

“infinitesimal model”
35

 of trait heritability posits that very large numbers of common genetic 

variants, each with very small effects, contribute to common diseases.
215

 Under this infinitesimal 

model, many causal common variants will escape detection in GWAS unless discovery samples 

grow into the millions and beyond. To the extent that family history scores reflect the combined 

influence of many thousands of common variants with infinitesimal effect sizes, they may not 

overlap with GRSs composed of a handful of common variants with larger effect sizes. Which of 

these explanations is correct has implications for public health.  Family history is established as a 

clinically valid measure of genetic risk.
216-218

 If common SNPs contain entirely different 

information from family history, they may be particularly valuable in the context of risk 
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assessment. However, methods that are better able to address the influence of large numbers 

of SNPs with “infinitesimal” effects, e.g. whole-genome scores,
68

 are needed to resolve this 

question.  

One way researchers have tried to address the problem of measuring genetic risks arising 

from individual variants with “infinitesimal” effects is to derive whole genetic risk prediction 

scores.
68, 219-221

 Whole genetic risk prediction scores (whole genome scores) are derived by using 

large “training” datasets conduct GWAS and assign each SNP in a panel of 500,000-1 million a 

weight reflecting its individual contribution to a given health condition. The whole genome score 

is then calculated by generating a prediction based on the full panel of SNPs or an especially 

promising subset, e.g. the top 1,000 SNPs.
222, 223

 These scores explain more of the variance 

common traits than GRSs composed of genome-wide significant SNPs.
58

  E.g., for body mass 

index, a whole genome score based on 500,000 SNPs may explain as much as 15% of the 

population variance. As compared to the obesity GRS used in this dissertation, the whole 

genome score leverages a 15,000 fold increase in the number of genetic markers used to 

achieve between a 4- and 15-fold increase in predictive power. Thus, until genotyping costs 

decline further, this approach is unlikely to be cost-effective. Moreover, whole genome scores 

perform well in the samples from which they are derived, but much less well in independent 

replication samples.
223, 224

 Therefore, their translational potential remains uncertain. 

Nevertheless, the whole genome approach is a promising direction for genetic risk prediction 

research. Investigating overlap in the risks predicted by whole genome scores and by family 

histories may provide preliminary guidance as to the value of whole-genome scores for clinical 

risk assessment.   

D. Genetic risks for obesity and smoking discovered in genome-wide association studies 

manifest early in development. A critical question for understanding how genetic risk 

contributes to the etiology of obesity and smoking is to identify when in development genetic 

risk manifests.
171

 This question is also central to translational science as intervention to 

ameliorate genetic risk may be most effective if deployed before health problems develop.
31

 

Research presented in chapters 2 and 3 shows that genetic risks identified in GWAS of adult 

samples first manifest earlier in life. Developmental phenotypes of obesity and smoking function 

as critical mediators of genetic risk. In the case of obesity, genetic risk manifests following birth 

and acts to influence childhood growth rates. The adiposity rebound, which is defined as the 
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nadir of the childhood body mass index growth curve, mediates roughly half the genetic effect 

on adult obesity. Children at higher genetic risk reached this nadir of adiposity earlier in life and 

at higher body mass index, and were subsequently more likely to become obese. Independent 

of their age and body mass index at adiposity rebound, children at high genetic risk were no 

more likely to become obese than their low genetic risk peers. In the case of smoking, genetic 

risk manifests following smoking initiation and acts to accelerate the developmental progression 

from experimentation to regular and heavy use during adolescence. Rapid developmental 

progression, defined as conversion to daily smoking by age 15 years or progression to 

smoking≥20 cigarettes/day by age 18 years, mediates the majority of the genetic effect on 

heavy smoking, nicotine dependence, and cessation failure. Individuals at higher genetic risk 

were more likely to progress rapidly in their smoking behavior and, in turn to become persistent 

heavy smokers, nicotine dependent, and unable to quit. Individuals at high genetic risk who did 

not progress rapidly from initiation to regular and heavy use during adolescence were no more 

likely to develop smoking problems in adulthood than their low genetic risk peers.  

Results in Chapters 2 and 3 point to childhood and adolescence as critical stages in the 

manifestation of genetic risk and suggest new phenotypic targets for genetic research as well as 

highlighting possible windows that might be effectively targeted by public health interventions. 

Samples of children and adolescents, particularly those that include repeated measures of 

health outcomes and behaviors collected over time, will be critical to advancing understanding 

of the genetics of smoking and obesity.  

Mediation analyses reported in Chapters 2 and 3 also highlight the importance of early 

intervention. Results presented in Chapter 2 suggest that genetic risks for obesity depend in part 

on rapid childhood growth. In parallel, results presented in Chapter 3 suggest that genetic risks 

for smoking problems depend on a rapid developmental progression from initiation to heavy 

use during adolescence. For individuals who did not exhibit these developmental phenotypes, 

genetic risks were uncoupled from adult health problems. Therefore, public health initiatives 

that encourage more healthy trajectories of growth in early childhood and that prevent or 

reduce smoking among adolescents may help to ameliorate some genetic risks.  
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II. Directions for Future Research 

The research described in the three empirical chapters of this dissertation provides a 

foundation for a program of research to further the translation of genetic discoveries related to 

obesity and smoking risks to improve public health. This program of research includes three 

independent but related research objectives. The first objective is to understand the role of 

genetic risks in the etiology of socioeconomic disparities in health. Social gradients in health 

area major challenge for the healthcare system.
225, 226

 Obesity and smoking are key mediators of 

these health disparities.
227

 Therefore, to the extent that genetic discoveries can inform 

interventions to ameliorate social gradients in obesity and smoking, this would be an area of 

high translational impact. The second objective is to understand mechanisms in brain and in 

behavior that link genetic risk with health outcomes. Identifying mechanisms is a critical step in 

developing effective treatments, and therefore critical to the translation of genetic 

discoveries.
50, 77

 The third objective is to extend the developmental research begun in this 

dissertation into the second half of the life course. Obesity and smoking are major contributors 

to morbidity and premature mortality in older adults.
228

 This dissertation research establishes 

that GWAS discovered genetic risks influence how obesity and smoking develop in early life. The 

next step is to understand how genetic risks relate to changes in body mass index and smoking 

behavior in the second half of the life course.  

Objective 1. To understand the role of genetic risks in the etiology of socioeconomic 

disparities in obesity and smoking. In developed countries, better educated and wealthier 

populations are less likely to become obese or to develop nicotine dependence relative to 

poorer and more poorly educated populations.
229, 230

 This social gradient arises partly from a 

higher burden of environmental risks in lower socioeconomic strata, e.g. less access to health 

behavior promoting resources, targeted advertising of unhealthy foods and cigarettes. But a 

higher burden of discrete environmental risks does not fully account for observed social 

gradients in health.
231

 Therefore, genetics constitute an important and as of yet unstudied 

potential source of these gradients. There are three possible roles that genetics could play in 

contributing to social gradients in health.
232

 First, it is possible that genetic risks are more 

prevalent in lower socioeconomic strata. This is termed “gene-environment correlation” (rGE). 

Second, genetic risks may interact with environmental risks in a synergistic fashion. This is 



 

64 

 

termed “gene-environment interaction” (GxE). Third, genetic risks could be unrelated to social 

gradients in health.     

Preliminary analyses of the Dunedin and ARIC cohorts confirm prior reports of strong social 

gradients in obesity and smoking.
100, 230

 These analyses also reveal that genetic risks for obesity 

and smoking are similarly distributed across socioeconomic strata, i.e. there is no rGE between 

genetic risk and social class. Therefore, to the extent that genetic risks identified in GWAS 

contribute to socioeconomic disparities in obesity and smoking, they must do so in interaction 

with environmental exposures that do show a social gradient.  

Recently, transdisciplinary research at the intersection of medicine, neuroscience, 

endocrinology, and immunology has begun to elucidate a model that describes how 

environmental stressors become biologically “embedded” in ways that contribute to the 

pathogenesis of chronic behavioral and physical health problems.
233

 Such biological embedding 

of stress is likely to be critical to the etiology of health disparities: Disadvantaged populations 

face a higher burden of both severe acute stressors, e.g. violent victimization, and chronic 

stressors, e.g. food insecurity.
234

 Thus, cumulative stress exposures may contribute indirectly to 

socioeconomic disparities in obesity and nicotine dependence through dysregulation of 

processes in body and brain that in turn influence patterns of activity, diet, and smoking 

behavior.
235

  The gene-environment interaction hypothesis augments this biological embedding 

model by positing that certain individuals are more susceptible to the dysregulating effects of 

stress due to differences in their genes.
236

 

One aim of my postdoctoral research will be to identify environmental stress exposures that 

may interact with polygenic risk in the etiology of health disparities. Criteria for candidate 

environmental moderators of genetic risk will (1) exhibit a social gradient; and (2) exert effects 

that coincide with the developmental stages identified in this dissertation as critical in linking 

genetic risks with adult obesity and smoking problems. In addition to these two scientific 

criteria, we will impose a third criterion: that the environmental exposure be amenable to public 

health intervention. The goal of this research is to devise means by which to disrupt the etiology 

of health disparities. Therefore, focusing on environments that can be modified through 

intervention is important to maximizing the translational potential of the research.   
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A second aim will be to test whether the stress exposures identified in the earlier aim alter 

the ways in which genetic risk manifests, either in terms of timing or in terms of magnitude. 

These analyses will utilize data from the Dunedin Study as well as from a new data source: the 

Environmental Risk in Development (E-Risk) Longitudinal Study, a birth cohort of 1,000 pairs of 

same-sex twins and their mothers followed prospectively through the twins’ 18th year.  

Objective 2. Elucidate mechanisms in brain and behavior that link polygenic risks with health 

problems. A key strength of the GWAS approach is that it can leapfrog current biological 

knowledge to make new discoveries. However, this necessitates follow-up research to uncover 

the mechanism through which genetic risk becomes manifest. In my postdoctoral research, I will 

pursue two collaborations to investigate candidate mechanisms through which genetic risk 

influences obesity and smoking.   

(i) Taking polygenic risk inside the brain through imaging genetics research. One 

collaboration will be with brain researchers integrating genetics and neuroscience. Imaging 

genetics research seeks to understand the specific neural processes that connect genetic 

variation with differences in behavior.
237

  Recent research in neuroscience links individual 

differences in neural phenotypes related to reward response, stress response, and attention and 

memory with obesity and with nicotine dependence and smoking cessation difficulties.
238-242

 The 

collaboration with imaging genetics researchers will (1) identify specific neural phenotypes 

implicated in the pathogenesis of obesity and nicotine dependence; and (2) test associations 

between these phenotypes and the genetic risk scores. The goal of this collaboration will be to 

enhance understanding of the neurobiology linking genetic risk with health problems, with the 

aim of identifying specific treatment targets. 

(ii) Taking polygenic risk into the field through genetically informed analysis of 

intervention trials. A second collaboration will be with investigators running intervention trials 

to address risk factors for smoking and obesity. Observational studies implicate behavioral and 

environmental pathways in the manifestation of genetic risk, e.g. sedentary lifestyle seem to be 

important in linking genetic risk with adult obesity and exposure to smoking cues seems to be 

important in linking genetic risks with smoking behavior.
185, 243

 By utilizing intervention designs 

that explicitly manipulate behaviors and environmental triggers, we can better isolate the causal 

role of behaviors and environments in linking genetic risks with health problems. Depending on 

the size of the trials, it may also be possible to test whether individuals at higher genetic risk are 
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more or less susceptible to intervention effects. Collaboration with intervention researchers will 

(1) investigate whether the effects of genetic risk on obesity and smoking are altered by 

experimental manipulations of risk behaviors and environmental cues; and (2) depending on the 

size of the intervention cohorts, investigate whether genetic risks moderate treatment 

response. 

Objective 3. Expand the developmental investigation of polygenic risk for obesity and smoking 

into the second half of the life course. My doctoral research characterized the relationship 

between genetic risks identified in GWAS and the development of obesity and nicotine 

dependence from childhood through mid-life. A next step in this research is to test how genetic 

risk relates to developmental phenotypes of obesity and nicotine dependence in the second half 

of the life course. My preliminary analyses using the ARIC cohort indicate that individuals at 

higher genetic risk lose weight more slowly and reduce their cigarette consumption more 

gradually in older age. Further, my preliminary analyses show that genetic risk for obesity 

predicts increased mortality risk.  

Future research will first attempt to replicate the longitudinal associations between genetic 

risk and slower decline in body mass index and cigarette consumption in the second half of the 

life course. I will then move to address three new questions: (1) how do genetic risks for obesity 

and nicotine dependence relate to more general patterns of morbidity and to mortality risk in 

later life? (2) do health behavior changes following health shocks vary  according to genetic risk? 

and (3) do genetic predispositions to obesity and nicotine dependence relate to health 

outcomes in different ways for individuals with different socioeconomic attainments. 
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APPENDIX A 

Supplementary Materials to Chapter 2 

This supplement describes the application of the 3-stage approach to create a genetic risk score 

(GRS) for obesity. The supplement is organized into 3 sections: The first section describes the 

creation of the obesity GRS: Stage 1. Extraction; Stage 2. Clustering; and Stage 3. Selection.  The 

second section describes analyses comparing the resulting GRS to GRSs created with the best-

guess and top-hits approaches. The final section describes sensitivity analyses to test 

heterogeneity in GRS associations.  

PART 1. CREATING THE OBESITY GRS 

Stage 1. Extraction 

For our 3-stage approach analyses, we considered GWAS of European-descent samples that 

targeted 4 phenotypes: obesity, weight, waist circumference, and body mass index (BMI) 

(hereafter “obesity-related phenotypes”). A search of the NGHRI GWAS Catalog using the HuGE 

Navigator (http://www.hugenavigator.org) identified 16 GWAS that met these inclusion criteria, 

9 of which were published by December 31, 2008 (Supplementary Table 2.1).  

In Stage 1 (Extraction), we compiled association results reported in the manuscripts and 

supplementary materials of the GWAS and extracted rs-numbers and p-values for SNPs 

associated with any of the 4 phenotypes in the discovery or combined discovery and replication 

samples at an alpha level of 1x10
-5

 (n=103 SNPs in the subset of 9 GWAS, n=519 SNPs in the full 

set of 16 GWAS, Supplementary Table 2.2). The significance level of p<1x10
-5

 was the most 

generous threshold at which most GWAS published results and is the threshold used in the 

NHGRI GWAS Catalog 
3
. Associations were not extracted from replication samples because few 

GWAS reported novel associations identified in replication samples and some GWAS did not 

include replication samples or included replication samples of different ethnicity. Discovery 

sample risk SNPs that failed to replicate within an individual GWAS were included because 

replication was evaluated at the level of the GWAS publication rather than the specific test 

sample.  
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Stage 2. Clustering 

In Stage 2 (Clustering), we grouped the extracted SNPs into “LD blocks.” We defined LD blocks 

using data from the HapMap CEU sample (Phase 3), queried using Seattle SNPs’ web-based 

Genome Variation Server (http://gvs.gs.washington.edu/GVS). For each SNP extracted in Stage 1 

(“seeds”), we defined an LD block as the region containing all SNPs in LD with that seed at a 

threshold of R
2
≥0.95. Then, beginning with the block closest to the start of each chromosome, 

we pruned blocks that did not contain a unique seed. This process yielded n=66 LD blocks from 

the subset of 9 GWAS published by December 31, 2008 and n=158 LD blocks from the full set of 

16 GWAS.  

Stage 3. Selection 

In Stage 3 (Selection), we retained LD blocks that we classified as genome-wide significant or as 

replicated. Genome-wide significant LD blocks were those that contained ≥1 SNP associated 

with an obesity-related phenotype at p<1x10
-8

. Replicated blocks were those that contained 

SNPs extracted from ≥2 GWAS. This process yielded n=37 LD blocks clustered around 11 loci on 

chromosomes 1-4,9,11,12,16,18, and 19 from the subset of 9 GWAS and n=69 LD blocks 

clustered around 32 loci on chromosomes 1-6,9,11-14,16,18, and 19 from the full set of 16 

GWAS (Supplementary Tables 2.3, 2.4). Sensitivity analyses relaxing the LD threshold used to 

define LD blocks yielded fewer LD blocks (e.g., for the full set of 16 GWAS, n=58 at an R
2
 

threshold of 0.70), but did not alter the loci identified as genome-wide significant or replicated 

in the original analyses. 

 

PART 2. COMPARING THE 3-STAGE APPROACH GRSs TO THE TOP-HITS AND BEST-GUESS GRSs  

To construct and test our GRSs, we followed-up the LD blocks identified in our 3-stage 

approach analyses in the GWAS dataset from the Atherosclerosis Risk in Communities (ARIC) 

Study. This dataset is publicly available through the National Institutes of Health Database of 

Genotypes and Phenotypes (dbGaP) (http://www.ncbi.nlm.nih.gov/gap, phs000090.v1.p1) and 

is described in the Data section of the main text.  



 

 

 

 

69 

 

We selected SNPs in the ARIC database to include in our two GRSs as follows: We 

defined tag SNPs for each of the LD blocks as SNPs that were in LD with every seed contained in 

the block at R
2
≥0.95. We then matched 1 tag SNP per LD block with a SNP in the ARIC study 

genotype database that met the GENEVA ARIC Project Team’s  quality control criteria 
81

. If no 

tag SNPs in an LD block could be matched in the ARIC database, we relaxed the LD threshold 

used to define a tag SNP until either a) the resulting set of tag SNPs overlapped with tag SNPs 

that we had already matched in the ARIC database, or b) a match with a new SNP in the ARIC 

database was achieved. These analyses yielded a set of n=28 SNPs from the subset of 9 GWAS 

and a set of n=57 SNPs from the full set of 16 GWAS.  

To compute the 3-stage approach GRSs for each ARIC participant, we (1) identified the 

obesity-associated allele for each SNP from the GWAS where that SNP was reported; (2) 

calculated the mean number of risk alleles at each locus; and (3) summed these means across 

loci to produce the 3-stage approach genome-wide scores.  

To compute the top-hits and best-guess approach GRSs, we selected SNPs from the ARIC 

database to match SNPs from 3 published GRSs 
61, 62, 89

 and the full set of obesity-associated 

SNPs listed in the NHGRI GWAS catalog for GWAS of European-descent samples. In cases where 

a specific SNP was not available in the ARIC database, we selected its closest LD proxy. We then 

summed obesity-associated alleles across each set of selected SNPs to create the comparison 

genome-wide scores.  

 To test if the 3-stage approach could construct a GRS that was at least as predictive of 

BMI and obesity as GRSs created with the top-hits and best-guess approaches, we compared 

effect sizes for different GRSs using the ARIC data. All GRSs were standardized to have mean=0 

and standard deviation=1. To measure GRS effect sizes for BMI, we estimated Pearson 

correlations (r) from separate linear regressions of BMI on each of the GRSs. To measure GRS 

effect sizes for obesity, we estimated odds ratios (OR) from separate logistic regressions of 

obesity on each of the GRSs. Regression models were adjusted for age (linear and quadratic 

terms), gender, the age-gender interaction, and the ARIC Study Centers where data were 

collected (hereafter these statistical adjustments are described as “demographics and 

geography”). To test differences between GRS effect sizes, we conducted F-tests (for effect sizes 

estimated from linear regressions) and Wald tests (for effect sizes estimated from logistic 
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regressions). For these tests, models including each of the GRSs being compared were jointly 

estimated using the seemingly unrelated regression method. Seemingly unrelated regression is 

a statistical approach for comparing coefficients from non-nested regression models 
111, 112

. 

Effect sizes were similar for all GRSs. Statistical tests indicated that our 3-stage approach GRSs 

performed as well as or better than GRSs created using top-hits and best-guess approaches 

(Supplementary Table 2.5). Thus, the 3-stage approach produced a GRS that was at least as 

predictive as top-hits and best guess approach GRSs. We used the 3-stage approach GRS created 

from the full set of 16 GWAS (hereafter the “Obesity GRS”) in subsequent analyses. 

Refining the 3-Stage Approach GRS for Obesity. At 7 of the 32 loci identified in the 3-

stage approach analyses of GWAS results (in or near the genes TMEM18, ETV5, BDNF, MTCH2, 

FTO, MC4R, and KCTD15), multiple LD blocks met selection criteria (genome-wide significance or 

replication). To refine the 3-stage approach GRS, we asked whether the genotype for a single 

SNP could be used instead of the mean number of risk alleles at a locus.  First, we identified the 

BMI-increasing allele for each SNP and calculated the linear association between the number of 

BMI-increasing alleles for that SNP and BMI measured at the first ARIC study visit. We next 

compared test statistics and effect sizes between SNPs at each locus to identify the “lead-SNP”, 

the SNP with the strongest association, and the worst-associated SNP. We then compared the 

effect size for the lead-SNP to the effect sizes for the worst-associated SNP and for the mean 

number of risk alleles across SNPs at the locus. These analyses asked 1) whether there was any 

difference in the signal from the different SNPs in a correlated set; and 2) whether a single SNP 

could provide an adequate summary of obesity-associated variation at the locus. Models were 

fitted using linear regression with statistical adjustment for demographics and geography. We 

compared effect sizes using the seemingly unrelated regression method 
111, 112

.  Supplementary 

Table 2.6 shows results from this analysis. At all loci, the lead SNP, worst-associated SNP, and 

mean number of risk alleles performed similarly, with the exception of the FTO locus, at which 

the lead SNP rs9939609 performed slightly better than the worst-associated SNP rs1477196. 

Finally, we tested whether including multiple SNPs at a locus improved the prediction of BMI in 

a regression model. Analyses were conducted using the variable selection algorithm in the Stata 

program mfp 
113

. Details of this method are reported elsewhere 
114

. Briefly, SNPs were added to 

a baseline model predicting BMI as a function of age, sex, and geography in order of decreasing 

statistical significance of the SNPs’ bivariate association with BMI. SNPs were retained in the 
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model if their inclusion resulted in a statistically significant (p<0.05) decrease in model deviance. 

Results showed that model fit was not improved by the inclusion of multiple SNPs at any locus. 

Therefore, we retained only the best-associated SNPs from each of the 7 loci, resulting in a 32-

SNP GRS (Supplementary Table 2.7). 

PART 3. SENSITIVITY ANALYSES TO TEST HETEROGENEITY IN GRS ASSOCIATIONS 

 We tested the linearity of GRS-BMI associations using quadratic and cubic specifications 

of the GRS in linear regression models. Coefficients for the higher order (i.e. squared and cubic) 

GRS terms were not statistically significant (p>0.10 for all), indicating that the GRS-BMI 

association was approximately linear. We tested the measurement specificity of GRS-BMI 

associations by comparing GRS effect sizes for BMI to GRS effect sizes for weight and for waist 

circumference using the seemingly unrelated regression method 
112

. GRS coefficients were 

similar across all three models (p>0.10 for tests of differences), indicating that the GRS predicted 

not just BMI, but related measures of body size and adiposity. We tested the whether GRS-BMI 

associations were different for men and women or for older as compared to younger individuals 

using product terms in linear regression models. Coefficients for product terms were not 

statistically significant (p>0.10 for all), indicating that GRS-BMI associations were similar for men 

and women and for older and younger individuals. Finally, we tested whether GRS-BMI 

associations differed across the 4 in-person assessments in the ARIC Study using the seemingly 

unrelated regression method. GRS effect sizes were similar across all 4 assessments (p>0.10 for 

all comparisons), indicating that GRS-BMI associations were consistent across measurement 

intervals.   
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Supplementary Table 2.1. Genome Wide Association Studies Included In 3-Stage Approach 

Analyses. GWAS information comes from the NHGRI GWAS Catalog (www.genome.gov). Risk 

SNPs were defined as any SNP associated with an obesity-related phenotype (BMI, weight, waist 

circumference, categorical obesity) at p<10
-5

 in the discovery or combined discovery and 

replication samples of the GWAS. *Italicized counts include imputed genotypes; **Lindgren et 

al. also investigated associations with waist circumference, and these are the association tests 

included in the SNP selection analysis; ***Scherag et al. also investigated associations with BMI 

and both phenotypes were included in the SNP selection analysis. Citations for the GWAS are 

included as 
89, 90, 115-129

. 

  

SNPs Phenotypes

Herbert et al. 2006 Affymetrix 86,604 0 Obesity 0

Frayling et al. 2007 Affymetrix 490,032 1 BMI 1

Scuteri et al. 2007 Affymetrix 362,129 1 BMI, Weight 12

Fox et al. 2007 Affymetrix 70,897 5
BMI, Waist 

Circumference
12

Hinney et al. 2007 Affymetrix 440,794 1
Obesity (early onset 

extreme)
15

Liu et al. 2008 Affymetrix 379,319 0 Obesity  3

Loos et al. 2008 Affymetrix 344,883 2 BMI 10

Thorleifsson et al. 2009 Illumina 305,846 18 BMI, Weight 47

Willer et al. 2009
Affymetrix & 

Illumina 
2,399,588 11 BMI 24

Meyre et al. 2009 Illumina 308,846 5 Obesity 32

Cotsapas et al. 2009 Illumina 457,251 13 Obesity (extreme) 15

Lindgren et al. 2009
Affymetrix & 

Illumina 
2,573,738 NA Adiposity** 10

Heard-Costa et al. 2009
Affymetrix & 

Illumina 
512,349 7 Waist Circumference 320

Johansson et al. 2009 Illumina 318,237 17 BMI, Weight 26

Liu et al. 2010 Illumina 559,712 2 BMI 3

Scherag et al. 2010
Affymetrix & 

Illumina 
1,596,878 2

Obesity 

(extreme)***
13

Speliotes et al. 2010

Affymetrix, 

Illumina, 

Perlegen 

~2.8 million 38 BMI 42

SNPs in GWAS CatalogGWAS Chip 

Manufacturer

SNPs 

Genotyped*
Risk SNPs Included in  

Analyses
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Supplementary Table 2.2. Risk SNPs and Source Publications: All SNPs reported as associated 

with Obesity, BMI, Weight, or Waist Circumference at p<1x10
-5

 in Discovery or Combined 

Discovery and Replication Samples 

 

Risk SNP Trait Publication

rs9939609 BMI

Frayling et al. 2007 

Science

rs1121980 BMI

rs6602024 BMI

rs7193144 BMI

rs8050136 BMI

rs9926289 BMI

rs9930506 BMI

rs9939609 BMI

rs9939973 BMI

rs9940128 BMI

rs4512445* Waist Circumference

rs7193144 Waist Circumference

rs8050136 Waist Circumference

rs1106683 BMI

rs1106684 BMI

rs1333026 BMI

rs10488165 Waist Circumference

rs10504576 Waist Circumference

rs1875517 Waist Circumference

rs2206682 Waist Circumference

rs2223662 Waist Circumference

rs4469448 Waist Circumference

rs4471028 Waist Circumference

rs6996971 Waist Circumference

rs953536 Waist Circumference

rs10008032 Extreme Obesity

rs1121980 Extreme Obesity

rs16998603 Extreme Obesity

rs2172478 Extreme Obesity

rs2969001 Extreme Obesity

rs3783950 Extreme Obesity

rs41492957 Extreme Obesity

rs6076920 Extreme Obesity

rs619819 Extreme Obesity

rs7193144 Extreme Obesity

rs8050136 Extreme Obesity

rs9276431 Extreme Obesity

rs9939609 Extreme Obesity

rs9939973 Extreme Obesity

rs9940128 Extreme Obesity

Hinney et al. 2007

Scuteri et al. 2007

Fox et al. 2007
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Supplementary Table 2 Continued

Risk SNP Trait Publication

rs16986921 BMI

rs6013029 BMI

rs6020712 BMI

rs10498767 BMI

rs1121980 BMI

rs17700633 BMI

rs17782313 BMI

rs2572106 BMI

rs2679120 BMI

rs4623795 BMI

rs7212681 BMI

rs7336049 BMI

rs748192 BMI

rs10501087 BMI

rs10783050 BMI

rs10913469 BMI

rs12970134 BMI

rs1776012 BMI

rs2568958 BMI

rs2867125 BMI

rs29941 BMI

rs3101336 BMI

rs3751812 BMI

rs4074134 BMI

rs467650 BMI

rs4788102 BMI

rs4854344 BMI

rs4923461 BMI

rs6265 BMI

rs6499640 BMI

rs7138803 BMI

rs7190492 BMI

rs7336332 BMI

rs7481311 BMI

rs7498665 BMI

rs7561317 BMI

rs7647305 BMI

rs7647305 BMI

rs8044769 BMI

rs8049439 BMI

rs8050136 BMI

rs836964 BMI

rs867559 BMI

rs925946 BMI

rs9424977 BMI

rs1047440 Weight

rs1077393 Weight

rs10835211 Weight

rs1350341 Weight

rs1350341 Weight

rs17069257 Weight

rs1973993 Weight

rs2115172 Weight

rs2260000 Weight

rs2260000 Weight

rs2844479 Weight

rs2844479 Weight

rs3766431 Weight

rs633265 Weight

rs6477693 Weight

Thorleifsson et al. 

2009

Liu et al. 2008

Loos et al. 2008



 

 

 

 

75 

 

 

Supplementary Table 2 Continued

Risk SNP Trait Publication

rs10769908 BMI

rs10769908 BMI

rs10838738 BMI

rs10838738 BMI

rs10938397 BMI

rs10938397 BMI

rs11084753 BMI

rs11084753 BMI

rs11084753 BMI

rs11773921 BMI

rs12324805 BMI

rs1421085 BMI

rs1439845 BMI

rs17700144 BMI

rs17782313 BMI

rs17782313 BMI

rs2145270 BMI

rs2145270 BMI

rs2245715 BMI

rs2815752 BMI

rs2815752 BMI

rs2815752 BMI

rs4752856 BMI

rs6548238 BMI

rs6548238 BMI

rs6548238 BMI

rs6907460 BMI

rs7181095 BMI

rs7498665 BMI

rs7498665 BMI

rs752238 BMI

rs9931989 BMI

rs9939609 BMI

rs9939609 BMI

rs10508503 Obesity

rs11071927 Obesity

rs11956401 Obesity

rs12588659 Obesity

rs12633433 Obesity

rs1326986 Obesity

rs1343772 Obesity

rs1380100 Obesity

rs1396618 Obesity

rs1421085 Obesity

rs1424233 Obesity

rs16829231 Obesity

rs17782313 Obesity

rs1805081 Obesity

rs1858367 Obesity

rs2011946 Obesity

rs2158044 Obesity

rs2908338 Obesity

rs3026762 Obesity

rs3102841 Obesity

rs413693 Obesity

rs4712652 Obesity

rs4786847 Obesity

rs6463923 Obesity

rs646839 Obesity

rs6580742 Obesity

rs6796959 Obesity

rs7506051 Obesity

rs7717673 Obesity

rs908078 Obesity

rs9275582 Obesity

rs987052 Obesity

Willer et al. 2009 

Meyere et al. 2009 
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Supplementary Table 2 Continued

Risk SNP Trait Publication

rs10433903 Extreme Obesity

rs10999409 Extreme Obesity

rs12295638 Extreme Obesity

rs12492816 Extreme Obesity

rs12635698 Extreme Obesity

rs1435703 Extreme Obesity

rs2274459 Extreme Obesity

rs374748 Extreme Obesity

rs6110577 Extreme Obesity

rs6726292 Extreme Obesity

rs7474896 Extreme Obesity

rs7603514 Extreme Obesity

rs9366829 Extreme Obesity

rs9941349 Extreme Obesity

rs999943 Extreme Obesity

rs10085177 Waist Circumference

rs11970116 Waist Circumference

rs13116494 Waist Circumference

rs2245667 Waist Circumference

rs4737325 Waist Circumference

rs6429082 Waist Circumference

rs7194591 Waist Circumference

rs7826222 Waist Circumference

rs7970350 Waist Circumference

rs987237 Waist Circumference

rs10096750 BMI

rs10145154 BMI

rs10146997 BMI

rs10150332 BMI

rs10173167 BMI

rs10188334 BMI

rs10189761 BMI

rs10190052 BMI

rs10193244 BMI

rs10511835 BMI

rs10813208 BMI

rs10852521 BMI

rs10871777 BMI

rs10875982 BMI

rs10969478 BMI

rs11075985 BMI

rs11075987 BMI

rs11075989 BMI

rs11075990 BMI

rs11127483 BMI

rs11127484 BMI

rs11127485 BMI

rs11127491 BMI

rs11152213 BMI

rs11169176 BMI

rs1121980 BMI

rs11520442 BMI

rs11642841 BMI

rs11660783 BMI

rs11662368 BMI

rs11663816 BMI

rs11664883 BMI

rs11665563 BMI

rs12002080 BMI

rs12149832 BMI

rs12446228 BMI

rs12623218 BMI

rs12714414 BMI

rs12714415 BMI

rs12954782 BMI

rs12955983 BMI

rs12957347 BMI

rs12960928 BMI

rs12964203 BMI

Heard-Costa et al. 

2009 

Lindgren et al. 2009 

Cotsapas et al. 2009 
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Supplementary Table 2 Continued

Risk SNP Trait Publication

rs12966550 BMI

rs12967135 BMI

rs12969709 BMI

rs12970134 BMI

rs12992154 BMI

rs12995480 BMI

rs13007080 BMI

rs13007086 BMI

rs13012571 BMI

rs13021737 BMI

rs1320330 BMI

rs1320331 BMI

rs1320336 BMI

rs1320337 BMI

rs1320338 BMI

rs13386517 BMI

rs13386627 BMI

rs13386964 BMI

rs13388043 BMI

rs13393304 BMI

rs13396935 BMI

rs13397165 BMI

rs13401686 BMI

rs13415094 BMI

rs1350341 BMI

rs1421085 BMI

rs1456404 BMI

rs1457489 BMI

rs1477196 BMI

rs1539952 BMI

rs1553754 BMI

rs1555967 BMI

rs1558902 BMI

rs1619975 BMI

rs1673518 BMI

rs17109256 BMI

rs17175643 BMI

rs17201502 BMI

rs17299673 BMI

rs17700144 BMI

rs17782313 BMI

rs17817288 BMI

rs17817449 BMI

rs17817964 BMI

rs1861866 BMI

rs1861867 BMI

rs1942860 BMI

rs1942863 BMI

rs1942866 BMI

rs2051311 BMI

rs2051312 BMI

rs2058908 BMI

rs2168708 BMI

rs2168711 BMI

rs2206277 BMI

rs2288278 BMI

rs2331841 BMI

rs2397026 BMI

rs2860323 BMI

rs2867108 BMI

rs2867109 BMI

rs2867110 BMI

rs2867112 BMI

rs2867113 BMI

rs2867122 BMI

rs2867123 BMI

rs2867125 BMI

rs2867131 BMI

rs2903492 BMI

Heard-Costa et al. 

2009 
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Supplementary Table 2 Continued

Risk SNP Trait Publication

rs2947411 BMI

rs297924 BMI

rs34341 BMI

rs3751812 BMI

rs3751813 BMI

rs3928247 BMI

rs4045166 BMI

rs4299252 BMI

rs4423631 BMI

rs4438957 BMI

rs4452188 BMI

rs4613321 BMI

rs4615388 BMI

rs4620360 BMI

rs474112 BMI

rs475134 BMI

rs476828 BMI

rs4783819 BMI

rs4784323 BMI

rs4793927 BMI

rs4854344 BMI

rs4854348 BMI

rs4854349 BMI

rs487720 BMI

rs489693 BMI

rs492443 BMI

rs497353 BMI

rs5017300 BMI

rs5017303 BMI

rs521663 BMI

rs523288 BMI

rs536783 BMI

rs538656 BMI

rs545708 BMI

rs559623 BMI

rs562622 BMI

rs563726 BMI

rs565239 BMI

rs565970 BMI

rs571312 BMI

rs574988 BMI

rs589850 BMI

rs590215 BMI

rs591166 BMI

rs611428 BMI

rs633265 BMI

rs649721 BMI

rs6499640 BMI

rs6548237 BMI

rs6567155 BMI

rs6567160 BMI

rs6567161 BMI

rs663129 BMI

rs666181 BMI

rs6711012 BMI

rs6719518 BMI

rs6719980 BMI

rs6725549 BMI

rs6728726 BMI

rs6731348 BMI

rs6731688 BMI

rs6732471 BMI

rs6734363 BMI

rs6742576 BMI

rs6743060 BMI

rs6744646 BMI

rs6744653 BMI

rs6745266 BMI

rs6752470 BMI

Heard-Costa et al. 

2009 
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Supplementary Table 2 Continued

Risk SNP Trait Publication

rs6755502 BMI

rs681630 BMI

rs682614 BMI

rs683430 BMI

rs7022642 BMI

rs7132908 BMI

rs7138803 BMI

rs7144011 BMI

rs7185735 BMI

rs7190492 BMI

rs7193144 BMI

rs7201850 BMI

rs7202116 BMI

rs7203521 BMI

rs7205986 BMI

rs7206010 BMI

rs7206790 BMI

rs7240566 BMI

rs7338657 BMI

rs7561317 BMI

rs7567570 BMI

rs7570198 BMI

rs7571957 BMI

rs7574359 BMI

rs7576624 BMI

rs7576635 BMI

rs7585056 BMI

rs7587786 BMI

rs7604609 BMI

rs7608050 BMI

rs7715806 BMI

rs7831920 BMI

rs8043757 BMI

rs8044769 BMI

rs8047395 BMI

rs8050136 BMI

rs8051591 BMI

rs8055197 BMI

rs8057044 BMI

rs8083289 BMI

rs8086627 BMI

rs8089364 BMI

rs8091524 BMI

rs8095404 BMI

rs921971 BMI

rs939582 BMI

rs939583 BMI

rs953442 BMI

rs975918 BMI

rs981106 BMI

rs981113 BMI

rs987237 BMI

rs9922047 BMI

rs9922619 BMI

rs9922708 BMI

rs9923147 BMI

rs9923233 BMI

rs9923544 BMI

rs9928094 BMI

rs9930333 BMI

rs9930501 BMI

rs9930506 BMI

rs9931494 BMI

rs9932754 BMI

rs9935401 BMI

rs9936385 BMI

rs9937053 BMI

Heard-Costa et al. 

2009 
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Supplementary Table 2 Continued

Risk SNP Trait Publication

rs993887 BMI

rs9939609 BMI

rs9939973 BMI

rs9940128 BMI

rs9940646 BMI

rs9941349 BMI

rs10059683 Waist Circumference

rs10066756 Waist Circumference

rs10068332 Waist Circumference

rs10146690 Waist Circumference

rs10150482 Waist Circumference

rs10869557 Waist Circumference

rs10869558 Waist Circumference

rs10869559 Waist Circumference

rs11778132 Waist Circumference

rs11780082 Waist Circumference

rs11857639 Waist Circumference

rs11990688 Waist Circumference

rs12271537 Waist Circumference

rs12274672 Waist Circumference

rs12475139 Waist Circumference

rs12792768 Waist Circumference

rs13404551 Waist Circumference

rs1447905 Waist Circumference

rs1521252 Waist Circumference

rs16930931 Waist Circumference

rs17008958 Waist Circumference

rs17061143 Waist Circumference

rs17109221 Waist Circumference

rs17476669 Waist Circumference

rs17537900 Waist Circumference

rs17836088 Waist Circumference

rs2164210 Waist Circumference

rs2236783 Waist Circumference

rs2322659 Waist Circumference

rs2322660 Waist Circumference

rs2365642 Waist Circumference

rs2370982 Waist Circumference

rs303211 Waist Circumference

rs309134 Waist Circumference

rs309137 Waist Circumference

rs309160 Waist Circumference

rs309168 Waist Circumference

rs4098360 Waist Circumference

rs4420638 Waist Circumference

rs4701252 Waist Circumference

rs4758213 Waist Circumference

rs4758215 Waist Circumference

rs507824 Waist Circumference

rs569406 Waist Circumference

rs6499641 Waist Circumference

rs6714750 Waist Circumference

rs6716536 Waist Circumference

rs6754311 Waist Circumference

rs6817633 Waist Circumference

rs6837818 Waist Circumference

rs6870971 Waist Circumference

rs687670 Waist Circumference

rs693895 Waist Circumference

rs6998794 Waist Circumference

rs7110070 Waist Circumference

rs7156625 Waist Circumference

rs745500 Waist Circumference

rs748841 Waist Circumference

rs7579771 Waist Circumference

rs7824886 Waist Circumference

rs7932813 Waist Circumference

rs8059991 Waist Circumference

rs892715 Waist Circumference

rs9598518 Waist Circumference

rs9790104 Waist Circumference

Heard-Costa et al. 

2009 
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Supplementary Table 2 Continued

Risk SNP Trait Publication

rs1024889 BMI

rs1152846 BMI

rs12517906 BMI

rs1458095 BMI

rs1878047 BMI

rs1927702 BMI

rs2383393 BMI

rs3803915 BMI

rs3803915 BMI

rs3934834 BMI

rs4085400 BMI

rs824931 BMI

rs875283 BMI

rs10844154 Weight

rs10972341 Weight

rs10972350 Weight

rs1152846 Weight

rs12517906 Weight

rs1570885 Weight

rs1816002 Weight

rs1840440 Weight

rs2765086 Weight

rs4879869 Weight

rs7209395 Weight

rs7919006 Weight

rs965178 Weight

rs2275215 BMI

rs10458787 BMI

rs11127485 BMI

rs1558902 BMI

rs9935401 BMI

rs10926984 Obesity

rs12145833 Obesity

rs2783963 Obesity

rs11127485 Obesity

rs17150703 Obesity

rs13278851 Obesity

rs516175 Obesity

rs1558902 Obesity

rs9935401 Obesity

rs17700144** Obesity

Liu et al. 2010 

Scherag et al. 2010 

Johansson et al. 2009



 

 

 

 

82 

 

 

 

Supplementary Table 2.2 Footnote: *Reported as "SNP_A-2284869" and crosswalked to rs ID 

using the Affy 6.0 SNP name to rs ID crosswalk file "GenomeWideSNP_6.na30.annot.csv"; **The 

GWAS catalog reports rs10871777 (in LD with rs17700144 at R
2
=0.85) as the obesity-associated 

SNP near the gene MC4R in Scherag et al. SNPs are reported only once per GWAS. Associations 

are reported for BMI where present and for other phenotypes where BMI was not investigated 

or the SNP was not associated with BMI at p<1 x10
-5

 

  

Supplementary Table 2 Continued

Risk SNP Trait Publication

rs1558902 BMI

rs2860323 BMI

rs6567160 BMI

rs10938397 BMI

rs10767664 BMI

rs543874 BMI

rs2815752 BMI

rs10182181 BMI

rs12444979 BMI

rs7498665 BMI

rs987237 BMI

rs2241423 BMI

rs9816226 BMI

rs7138803 BMI

rs2287019 BMI

rs1514177 BMI

rs13107325 BMI

rs2112347 BMI

rs10968576 BMI

rs3817334 BMI

rs3810291 BMI

rs887912 BMI

rs10150332 BMI

rs7640855 BMI

rs11847697 BMI

rs2890652 BMI

rs11165643 BMI

rs4771122 BMI

rs4836133 BMI

rs4929949 BMI

rs29938 BMI

rs9296115 BMI

rs2922763 BMI

rs2444217 BMI

rs867559 BMI

rs3764400 BMI

rs255414 BMI

rs6955651 BMI

rs17016663 BMI

rs6477694 BMI

rs2652594 BMI

rs2035935 BMI

Speliotes et al. 2010 
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Supplementary Table 2.3. Replicated and/or Genome-Wide Significant LD Blocks Identified in 

3-Stage Approach Analyses. LD blocks were defined from LD analyses of risk SNPs (genotype-

phenotype association at p<1x10
-5

) using data from the HapMap version 3 CEU sample accessed 

via Seattle SNPs's Genome Variation Server and an LD threshold of R
2
≥0.95. Replication was 

evaluated as the number of GWAS reporting any SNP in the block as a risk SNP. Genes were 

evaluated within 100kb in either direction from an LD block's outermost SNPs. 

 

Chromsome

Identified 

LD Blocks

Replicated 

LD Blocks

Mean 

Number of 

Replications 

(All Blocks) Genes

1 4 3 2.0 NEGR1, TNNI3K, PTB2, SEC16B

2 6 2 2.0 LRP1B, TMEM18

3 3 0 1.0 CADM2, ETV5/DGKG

4 2 1 1.5 GNPDA2, SLC39A8

5 2 0 1.0 POC5, ZNF608

6 1 1 3.0 TFAP2B

9 2 1 1.5 LING02/LRRN6C, LMX1B

11 7 0 1.0 RPL27A, BDNF, MTCH2

12 1 1 3.0 BDCDIN3D/FAIM2/NCKAP5L

13 1 0 3.0 MTIF3, GRF3A

14 2 1 1.5 PRKD1, NRXN3

15 1 0 1.0 MAP2K5

16 26 14 3.0 GRP5B, ATXN2L/TUFM/SH2B1, FTO

18 7 7 2.6 MC4R

19 4 1 1.3 KCTD15, ZC3H4, QPCTL, TMEM160
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Supplementary Table 2.4. Characteristics of Replicated and/or Genome-Wide Significant LD 

Blocks

Chrom-

osome

Chromosomal Space Covered 

by All Risk SNPs in the LD 

Block (NCBI Build 36) Nearby Genes

Seed SNPs (risk SNPs in LD with all risk SNPs in 

block at R
2
≥0.95) // Proxy SNPs (risk SNPs in LD 

with any seed SNP at R2≥0.95)

Any SNP in 

Block Genome-

Wide 

Significant [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

72,523,773 - 72,585,028 NEGR1 rs2568958, rs2815752, rs3101336 Yes X X X

74,763,990 TNNI3K rs1514177 Yes X

96,696,685 - 96,716,582 PTBP2 rs11165643 // rs1973993 Yes X X

176,156,103 - 176,180,142 SEC16B rs10913469, rs543874 Yes X X

604,168 - 643,874 TMEM18 Yes X X X X

604,210 - 643,874 TMEM18 Yes X X X X

624,905 TMEM18 rs6548238 Yes X

25,003,800 rs10182181 Yes X

59,156,381 rs887912 Yes X

142,676,401 LRP1B rs2890652 Yes X

85,956,854 CADM2 rs7640855 Yes X

187,316,984 ETV5/DGKG rs7647305 Yes X

187,317,193 ETV5/DGKG rs9816226 Yes X

44,877,284 rs10938397 Yes X X

103,407,732 SLC39A8 rs13107325 Yes X

75,050,998 POC5 rs2112347 Yes X

124,360,002 rs4836133 Yes X

6 50,906,485 - 50,911,009 TFAP2B rs2206277, rs987237 Yes X X X

28,404,339 LING02 rs10968576 Yes X

128,505,146 LMX1B rs867559 p<1x10
-6

X X

8,561,169 STK33 rs4929949 Yes X

27,603,861 - 27,626,684 BDNF rs10501087, rs4074134, rs4923461 Yes X

27,636,492 BDNF rs6265 Yes X

27,682,562 BDNF rs10767664 Yes X

27,623,778 - 27,623,778 BDNF rs925946 Yes X

47,604,618 - 47,619,625 MTCH2 rs10838738, rs4752856 Yes X

47,607,569 MTCH2 rs3817334 Yes X

12
48,533,735

BDCDIN3D, FAIM2, 

NCKAP5L rs7138803 Yes X X X

13 26,918,180 MTIF3, GRF3A rs4771122 Yes X

29,584,863 rs11847697 Yes  X

78,961,635 - 79,014,915 NRXN3
rs10145154, rs10150332, rs17109256, 

rs7144011 // rs10146997, rs10150482, 

rs17109221,  rs17836088, rs7156625 Yes X X

15 65,873,892 MAP2K5 rs2241423 Yes X

GWAS Publication

5

9

11

14

1

2

See footnote

3

4

LD Block
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Supplementary Table 4 Continued

Chrom-

osome

Chromosomal Space Covered 

by All Risk SNPs in the LD 

Block (NCBI Build 36)

Genes Overlapping LD 

Block/ 10kb of SNP*

Seed SNPs (risk SNPs in LD with all risk SNPs in 

block at R
2
≥0.95) // Proxy SNPs (risk SNPs in LD 

with any seed SNP at R2≥0.95)

Any SNP in 

Block Genome-

Wide 

Significant [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

19,841,101 GPRC5B rs12444979 Yes X

28,745,016 - 28,790,742 ATXN2L, TUFM, SH2B1 rs4788102, rs7498665, rs8049439 Yes X X X

52,312,678 - 52,327,178 FTO rs6499640, rs7203521, rs7206010 Yes X X

52,355,409 FTO rs7206790 Yes X

52,356,024 - 52,361,841 FTO rs8047395 //rs1861866, rs8055197 Yes X

52,356,024 - 52,363,781 FTO

rs1861866, rs8055197 // rs10852521, 

rs8047395, rs9922047 Yes X

52,360,657 - 52,372,662 FTO

rs10852521, rs9922047 // rs11075987, 

rs1861866, rs8055197 Yes X

52,362,466 - 52,372,662 FTO rs11075987 // rs10852521, rs9922047 Yes X

52,365,265 FTO rs17817288 Yes X

52,370,115 FTO rs8057044 Yes X

52,396,636 FTO rs8044769 Yes X X

52,357,008 - 52,366,748 FTO
rs11075985, rs9940646 // rs1121980, 

rs9923147, rs9923544, rs9928094, rs9930333, 

rs9937053, rs9939973, rs9940128 Yes X X X X

52,357,008 - 52,384,680 FTO

rs1121980, rs9923147, rs9923544, rs9928094, 

rs9930333, rs9937053, rs9939973, rs9940128 

// 

rs11075985, rs1421085, rs1558902, 

rs7201850,  rs9931494, rs9940646, rs9941349 Yes X X X X X X X X X

52,357,008 - 52,385,567 FTO rs1421085, rs1558902 // rs17817964, 

rs7185735, rs7193144, rs7202116, rs9937053 Yes X X X X X X X

52,357,008 - 52,389,272 FTO

rs7201850, rs9931494, rs9941349 // 

rs1121980, rs9922619, rs9922708, rs9923147, 

rs9923544, rs9928094, rs9930333, rs9930501, 

rs9930506, rs9932754, rs9937053, rs9939973, 

rs9940128 Yes X X X X X

52,358,455 - 52,400,409 FTO

rs17817964, rs7185735 // rs11075989, 

rs11075990, rs12149832, rs1421085, 

rs1558902, rs17817449,  rs3751812, 

rs7193144, rs7202116, rs8043757, rs8050136, 

rs8051591, rs9923233, rs9935401, rs9939609 Yes X X X X X X X X X

52,361,075 - 52,400,409 FTO

rs7193144, rs7202116 // rs11075989, 

rs11075990, rs12149832, rs1558902, 

rs17817449, rs17817964, rs3751812, 

rs7185735, rs8043757, rs8050136, rs8051591, 

rs9923233, rs9935401, rs9939609 Yes X X X X X X X X

52,368,187 - 52,385,567 FTO

rs11075989, rs11075990, rs17817449, 

rs3751812, rs8043757, rs8050136, rs8051591, 

rs9923233, rs9935401, rs9939609 // 

rs17817964, rs7185735, rs7193144, 

rs7202116, rs9936385 Yes X X X X X X X

52,368,187 - 52,400,409 FTO rs12149832 // rs17817964, rs7185735, 

rs7193144, rs7202116 Yes X X X

52,376,670 - 52,377,378 FTO rs9936385 // rs11075989, rs9923233 Yes X

52,379,363 - 52,389,272 FTO
rs9922619, rs9922708, rs9930501, rs9932754 

// rs7201850,  rs9930506, rs9931494, 

rs9941349 Yes X X X

52,382,989 - 52,389,272 FTO rs9930506 // rs9922619, rs9922708, 

rs9930501, rs9931494, rs9932754, rs9941349 Yes X X X

52,406,062 FTO rs1861867 Yes X

52,357,888 - 52,386,253 FTO
rs12446228, rs1477196, rs4783819, rs7190492 Yes X X

52,376,209 FTO rs3751813 Yes X

52,402,988 FTO rs11642841 Yes X

GWAS Publication

16

LD Block
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Supplementary Table 2.4 Footnote: GWAS are numbered as follows: [1] Frayling et al. 2007, 

Science; [2] Scuteri et al. 2007, PLoS Genetics; [3] Fox et al. 2007, BMC Medical Genetics; [4] 

Hinney et al. 2007, PLoS One; [5] Liu et al. 2008, Human Molecular Genetics; [6] Loos et al. 2008, 

Nature Genetics; [7] Thorleifsson et al. 2009, Nature Genetics; [8] Willer et al. 2009, Nature 

Genetics; [9] Meyere et al. 2009 Nature Genetics; [10] Cotsapas et al. 2009, Human Molecular 

Genetics; [11] Lindgren et al. 2009 PLoS Genetics; [12] Heard-Costa et al. 2009, PLoS Genetics; 

[13] Johansson et al. 2009, Obesity; [14] Liu et al. 2010, Twin Research and Human Genetics; [15] 

Shcerag et al. 2010, PLoS Genetics; Speliotes et al. 2010, Nature Genetics. LD Blocks were 

defined using an R
2
 threshold of 0.95. Genes are reported within 100 kb of any seed SNP. 

Italicized genes fall outside the 100kb range, but contain SNPs in LD with a block seed. GWAS are 

indicated as replicating a block if they reported a SNP in LD at R
2
≥0.95 with a block seed or proxy 

as associated with an obesity-related phenotype at p<1x10
-5

 in either their discovery or 

combined discovery and replication samples. 

Block 2.2: (seeds) rs10173167, rs10188334, rs10189761, rs10190052, rs10193244, rs11127484, 

rs11127485, rs11127491, rs12714414, rs12714415, rs12992154, rs12995480, rs13007080, 

Supplementary Table 4 Continued

Chrom-

osome

Chromosomal Space Covered 

by All Risk SNPs in the LD 

Block (NCBI Build 36)

Genes Overlapping LD 

Block/ 10kb of SNP*

Seed SNPs (risk SNPs in LD with all risk SNPs in 

block at R
2
≥0.95) // Proxy SNPs (risk SNPs in LD 

with any seed SNP at R2≥0.95)

Any SNP in 

Block Genome-

Wide 

Significant [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

55,962,962 MC4R rs17700144 p<1x10
-6

X X X

55,980,115 - 56,003,928 MC4R

rs10871777, rs11152213, rs12967135, 

rs17782313, rs2168711, rs476828, rs523288, 

rs538656, rs571312, rs6567160, rs663129 Yes X X X X X

55,964,628 - 56,003,732 MC4R

rs1350341, rs1619975, rs1673518, rs2051311, 

rs2051312, rs2331841, rs474112, rs475134, 

rs487720, rs536783, rs545708, rs559623, 

rs562622, rs565239, rs565970, rs574988, 

rs589850, rs591166, rs611428, rs649721, 

rs6567161, rs666181, rs681630, rs682614, 

rs683430, rs975918, rs993887 // rs521663,  

rs633265 p<1x10
-6

X X

56,009,782 - 56,048,783 MC4R

rs12960928 // rs11663816, rs11664883, 

rs11665563, rs12954782, rs12969709, 

rs12970134, rs1457489, rs17175643, 

rs492443, rs8083289, rs8089364, rs921971 Yes X X

56,009,782 - 56,062,310 MC4R

rs921971 // rs11663816, rs11664883, 

rs11665563, rs12954782, rs12955983, 

rs12960928, rs12964203, rs12966550, 

rs12969709, rs12970134, rs1457489, 

rs17175643, rs2168708, rs492443, rs8083289, 

rs8089364 Yes X X

56,009,809 - 56,047,722 MC4R

rs12955983 // rs11663816, rs11664883, 

rs11665563, rs12954782,  rs12969709, 

rs12970134, rs1457489, rs17175643, 

rs8083289, rs8089364, rs921971 Yes X X

56,009,809 - 56,062,310 MC4R

rs11663816, rs11664883, rs11665563, 

rs12954782, rs12964203, rs12966550, 

rs12969709, rs12970134, rs1457489, 

rs17175643, rs2168708, rs8083289, rs8089364 

// rs12955983, rs12960928,  rs921971 Yes X X

39,001,372 - 39,003,321 KCTD15 rs29938, rs29941 Yes X X

39,013,977 KCTD15 rs11084753 Yes X

52,260,843 ZC3H4, TMEM160 rs3810291 Yes X

50,894,012 QPCTL rs2287019 Yes X

LD Block GWAS Publication

19

18
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rs13007086, rs13012571, rs13021737, rs1320331, rs1320336, rs1320337, rs1320338, 

rs13386517, rs13386627, rs13386964, rs13388043, rs13393304, rs13396935, rs13397165, 

rs13401686, rs13415094, rs2860323, rs2867108, rs2867109, rs2867110, rs2867112, rs2867113, 

rs2867122, rs2867125, rs2903492, rs2947411, rs4423631, rs4452188, rs4613321, rs4854344, 

rs4854348, rs4854349, rs5017300, rs5017303, rs6711012, rs6719518, rs6719980, rs6725549, 

rs6728726, rs6731348, rs6731688, rs6732471, rs6734363, rs6743060, rs6744646, rs6744653, 

rs6752470, rs6755502, rs7561317, rs7567570, rs7570198, rs7571957, rs7574359, rs7576624, 

rs7576635, rs7585056, rs7604609, rs7608050, rs939582, rs939583 

 

Block 2.3: (seeds) rs2867123, (proxies) rs10173167, rs10188334, rs10189761, rs10190052, 

rs10193244, rs11127484, rs11127485, rs11127491, rs12714414, rs12714415, rs12992154, 

rs12995480, rs13007080, rs13007086, rs13012571, rs13021737, rs1320331, rs1320336, 

rs1320337, rs1320338, rs13386517, rs13386627, rs13386964, rs13388043, rs13393304, 

rs13396935, rs13397165, rs13401686, rs13415094, rs2860323, rs2867108, rs2867109, 

rs2867110, rs2867112, rs2867113, rs2867122, rs2867123, rs2867125, rs2903492, rs4423631, 

rs4452188, rs4613321, rs4854344, rs4854348, rs4854349, rs5017300, rs5017303, rs6711012, 

rs6719518, rs6719980, rs6725549, rs6728726, rs6731348, rs6731688, rs6732471, rs6734363, 

rs6743060, rs6744646, rs6744653, rs6752470, rs6755502, rs7561317, rs7567570, rs7570198, 

rs7571957, rs7574359, rs7576624, rs7576635, rs7585056, rs7604609, rs7608050, rs939582, 

rs939583 
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Supplementary Table 2.5. Effect Sizes for Genetic Risk Scores Created Using the 3-Stage 

Approach and the Best-Guess and Top-Hits Approaches. To measure BMI effect sizes for the 

GRSs, we estimated Pearson correlations ( r ) from separate linear regressions of BMI on each of 

the GRSs. To measure obesity effect sizes for the GRSs, we estimated odds ratios (OR) from 

separate logistic regressions of obesity on each of the GRSs. Regression models were adjusted 

for age (linear and quadratic terms), gender, the age-gender interaction, and the ARIC Study 

Centers where data were collected. In Panel A, the Best-Guess GRS was based on the GRS 

published by Li and colleagues 
62

 and the Top-Hits GRS was based on the GRS published by 

Peterson and colleagues 
61

. In Panel B, the Best Guess GRS was based on the full set of obesity- 

and BMI-associated SNPs listed in the NHGRI GWAS Catalog and the Top-Hits GRS was based on 

the GRS published by Speliotes and colleagues 
89

. ***p<0.001. Comparison of effect sizes using 

the seemingly unrelated regression method 
112

 indicated that effect sizes for the 3 GRSs in Panel 

A were not statistically different from one another (p-value for difference >0.10 for all), but that 

among the GRSs in Panel B, the 3-stage approach performed better than the Best-Guess and 

Top-Hits GRSs (p<0.05 for all).  However, our sample had only 40% power to detect effect size 

differences of r=0.01 / OR=1.01, so this result should be interpreted with caution. 

  

  

BMI Obesity

Approach to GRS 

Construction SNPs

Pearson Correlation 

( r )

Odds Ratio                

[95% CI]

3-Stage 28 0.08*** 1.08 [1.06-1.10]

Best-Guess 12 0.08*** 1.08 [1.06-1.11]

Top-Hits 59 0.06*** 1.07 [1.04-1.09]

3-Stage 57 0.11*** 1.12 [1.10-1.15]

Best-Guess 97 0.10*** 1.11 [1.09-1.13]

Top-Hits 32 0.10*** 1.10 [1.08-1.12]

Panel A. GRSs Constructed from Results of 9 GWAS Published by 

December 31, 2008

Panel B. GRSs Constructed from Results of the Full Set of 16 GWAS

Effect Sizes
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Supplementary Table 2.6. Analysis of Loci with Multiple Tag SNPs. * "Lead SNP" is underlined; 

"Worst-associated SNP" is italicized; Test statistics and effect sizes were estimated in linear 

regression models of BMI adjusted for demographics and geography. "Lead SNPs" and "Worst-

associated SNPs" were determined from the test statistics for the individual SNPs. Effect sizes 

were compared using the seemingly unrelated regressions method 
112

.   

 

Lead SNP

Worst-Associated 

SNP

Mean Number of 

BMI-Increasing 

Alleles

0.027 0.023 0.025

p=0.276 p=0.371

0.007 <0.001 0.018

p=0.721 p=0.427

0.027 0.022 0.026

p=0.124 p=0.485

0.020 0.019 0.020

p=0.871 p=0.878

0.072 0.034 0.068

p<0.001 p=0.104

0.026 0.019 0.025

p=0.158 p=0.062

0.010 0.009 0.009

p=0.879 p=0.913

Effect Size (Pearson's r)                                                                         

p-value for comparison with lead SNP

Locus

Chr 2 TMEM18

ARIC SNPs Tagging LD 

Blocks in Genic Region

Chr 11 MTCH

Chr 11 BDNF

Chr 16 FTO

rs1477196 , rs17817288, 

rs1121980, rs9922047, 

rs9939973, rs9940128, 

rs9941349, rs7193144, 

rs7203521, rs9939609, 

rs8050136, rs9930506

Minimum R
2  

Among Tag 

SNPs

0.86

0.77

0.40

rs10189761 , rs2867123,  

rs4854345
0.94

rs12419692, rs3817334

rs10501087, rs7103411 , 

rs6265, rs11030108

0.85
rs12516728, rs9863591

Chr 3 ETV5/DGKG

rs476828 , rs1673518, 

rs17782313, rs11663816, 

rs11665563, rs12969709, 

rs12970134

rs29942 , rs11084753 0.58Chr 19 KCDT15

Chr 18 MC4R 0.25



 

 

 

 

 

  

 

 

 

Supplementary Table 2.7. SNPs Included in the Obesity Genetic Risk Score.   

 

 

Chr Nearby Gene Tag SNP

GWAS 

Replications

BMI-Increasing 

Allele in GWAS 

Test 

Alelle 

Other 

Allele

Effect-

Size 

Weight

Test Allele 

Frequency

Per Allele 

Change in BMI p-value

Direction of 

Association 

Inconsistent 

with GWAS

Test Allele 

Frequency

Per Allele 

Change in BMI p-value

Direction of 

Association 

Inconsistent 

with GWAS

NEGR1 rs2815752 3 Major G A 0.13 38% -0.259 0.001 45% -0.071 0.673

TNNI3K rs1514175 1 Minor A G 0.07 43% -0.001 0.985 68% -0.091 0.608 X

PTBP2 rs1555543 2 Major A C 0.06 42% -0.128 0.086 57% -0.031 0.855

SEC16B rs543874 2 Minor G A 0.22 20% 0.341 0.000 25% 0.335 0.095

FANCL rs759250 1 Minor A G 0.10 29% 0.036 0.656 8% -0.242 0.475 X

LRP1B rs2121279 1 Minor T C 0.08 14% 0.234 0.032 3% -0.253 0.651 X

TMEM18 rs2867123 5 Major G C 0.30 17% -0.237 0.018 12% 0.022 0.935 X

RBJ rs10182181 1 Minor G A 0.14 46% 0.117 0.117 84% 0.758 0.001

CADM2 rs12714640 1 Minor A C 0.10 19% 0.278 0.003 6% 0.006 0.987

ETV5/DGKG rs1516728 2 Major T A 0.11 23% -0.060 0.489 52% -0.098 0.565

GNPDA2 rs12641981 2 Minor T C 0.18 43% 0.088 0.238 23% 0.103 0.602

SLC39A8 rs13114738 1 Minor T C 0.13 8% 0.506 4.15E-04 1% -1.583 0.008 X

POC5 FLJ35779 rs10057967 1 Major C T 0.10 37% -0.227 0.003 49% 0.128 0.435 X

ZNF608 rs6864049 1 Minor G A 0.07 46% -0.189 0.012 X 19% -0.463 0.033 X

6 TFAP2B rs734597 3 Minor A G 0.13 17% 0.382 1.21E-04 9% 0.030 0.920

LING02 LRRN6C rs1412235 1 Minor C G 0.11 31% 0.003 0.970 16% 0.365 0.111

LMX1B rs867559 2 Minor G A 0.24 20% 0.088 0.339 32% 0.025 0.889

RPL27A rs2028882 1 Major C A 0.06 50% -0.065 0.375 66% 0.116 0.515 X

BDNF rs10501087 2 Major C T 0.18 21% -0.223 0.013 7% -0.521 0.181

MTCH2 rs12419692 2 Minor A C 0.05 36% 0.146 0.059 9% 0.012 0.968

12 BDCDIN3D, FAIM2 rs7138803 3 Minor A G 0.12 38% 0.164 0.033 17% 0.100 0.650

13 MTIF3, GRF3A rs1475219 1 Minor C T 0.09 21% 0.262 0.004 22% -0.099 0.632 X

PRKD1 rs1440983 1 Minor A G 0.15 5% 0.266 0.129 23% 0.156 0.449

NRXN3 rs7144011 2 Minor T G 0.13 22% 0.165 0.064 24% 0.164 0.428

15 MAP2K5 rs28670272 1 Major G A 0.13 23% -0.212 0.014 41% 0.005 0.977 X

GPR5B rs11639988 1 Major G A 0.17 15% 0.006 0.952 X 24% -0.262 0.194

ATXN2L, TUFM, SH2B1 rs12443881 3 Minor T C 0.15 39% -0.005 0.948 X 9% -0.607 0.030 X

FTO rs9939609 11 Minor A T 0.38 41% 0.496 8.19E-11 48% 0.129 0.443

18 MC4R rs12970134 6 Minor A G 0.21 26% 0.209 0.012 13% 0.057 0.822

KCTD15 rs11084753 3 Major A G 0.04 33% -0.071 0.371 36% 0.197 0.270 X

QPCTL rs11083779 1 Major C T 0.07 4% -0.227 0.196 11% -0.267 0.294

ZC3H4 TMEM160 rs7250850 1 Major G C 0.09 29% -0.174 0.032 80% -0.343 0.124

9

5

4

3

2

1

White Participants, n=8,210-8,8,286 Black Participants, n=2,402-2,442

14

11

19

16

9
0

 



 

 

 

 

 

  

 

Supplementary Table 2.7 Footnote: GWAS replications include GWAS reporting any SNP in any LD block tagged by the SNP as obesity-

associated at p<1x10
-5

 in the discovery or combined discovery and replication samples. Test allele and other allele are reported from the 

positive strand. Effect-size weights were obtained from 
89

 for all SNPs with the exception of rs867559, for which the effect size weight 

was obtained from 
90

. Allele frequencies and per-allele effects are reported based on all participants in the analysis sample. Per-allele 

effects were estimated from linear regressions of BMI on SNP genotype (number of minor alleles), adjusted for demographics and 

geography. P-values are reported based on heteroskedasticity robust standard errors. 

9
1
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Supplementary Table 2.8. Educational Attainment of White and African American ARIC 

Participants. Educational attainment was ascertained via self-report at the first ARIC visit. 

Distributions of BMI-increasing alleles for the 32 obesity GRS SNPs were comparable across 

educational strata in African Americans and whites (p>0.10 for all comparisons).   

 

 

 

 

 

 

Highest Level of Schooling

None/ Grade School 5% 19%

Some High School 11% 21%

High School Graduate 36% 22%

Vocational School 9% 7%

College 30% 18%

Graduate/ Professional School 9% 14%

Percent of  Visit 1 Sample



 

 

 

 

 

 

 

Supplementary Table 2.9. Predictiveness of Model-Based Risk Scores With and Without The Obesity Genetic Risk Score. (m1-5) denote 

separate models used to estimate risk scores for BMI and obesity. Risk scores were predicted values from linear regression of BMI and 

predicted probabilities from probit regressions of obesity. The first model, m1, includes measures of  age, sex, and ARIC Study Center 

where data were collected. The regression model was specified to include linear and quadratic terms for age and a product term 

modeling interaction between age and sex. The simple genetic risk assessment (SNPs in FTO and downstream of MC4R) is a component 

of the weighted obesity genomic risk score. Thus, model m3 contains all of the information in model m2 as well as information from the 

remaining 30 SNPs included in the GRS. The 5 categories of socioeconomic status were modeled as dichotomous variables and were 

allowed to vary by sex in their relationship with obesity and BMI. Values of R
2
 were estimated using linear regression models adjusted 

for demographic and geographic information. Percentile-based confidence intervals were generated using the bootstrap method. AUCs 

and percentile-based confidence intervals were estimated from ROC curves constructed for predicted values generated using a probit 

regression model and were adjusted for the ARIC Study Center where data were collected using Pepe’s method 
93, 95

. IDIs and test 

statistics were estimated only for comparisons of models m3 and m2 and models m5 and m4 using Pencina's Method 
130

. IDIs for 

comparisons of models m2 and m3 with model m1 are identical to those reported for the respective obesity risk measures in Table 4 of 

the article. 

 

R
2
 (95% CI) AUC (95% CI) IDI (p-value) R

2
 (95% CI) AUC (95% CI) IDI (p-value)

(m1)
Demographic & Geographic 

Information 3.20% 0.526 5.17% 0.604

(m2)
m1 + Simple Genetic Risk 

Assessment 3.88% 0.550 5.35% 0.607

(m3) m1 + Weighted GRS 4.88% 0.574 5.52% 0.609

1.00% 0.024 0.006 0.17% 0.002 0.001

(0.006-0.014) (0.012-0.036) (7.81E-13) (-0.001-0.005) (-0.005-0.009) (0.055)

(m4) m1 + Socioeconomic Status 4.70% 0.550 7.70% 0.643

(m5) m4 + Weighted GRS 6.20% 0.586 7.92% 0.645

1.50% 0.036 0.010 0.22% 0.002 0.002

(0.010-0.020) (0.023-0.050) (5.46E-19) (-0.001-0.006) (-0.003-0.008) (0.012)

Model

Change in predictiveness with 

addition of the weighted GRS

Change in predictiveness with 

addition of the weighted GRS

Model Components

White ARIC Participants (n=8,286) Black ARIC Participants (n=2,442)

9
3
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Supplementary Figure 2.1. Distributions of BMI Increasing Alleles for the 32 GRS SNPs and the 

Weighted Obesity Genomic Risk Score Among White and African American ARIC Participants. 

Variance of the obesity genomic risk scores (GRS) was similar among women and men within 

ethnicity (p>0.15  for both samples), but was greater among whites as compared to African 

Americans (p<0.001) according to Brown and Forsythe’s 
131

 test for equality of variances.  
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Supplementary Figure 2.2. Receiver Operating Characteristic Curves for Obesity Among 

African American ARIC Participants (n=2,442). Baseline Model = gender, age (quadratic), gender 

x age interaction, ARIC study center; Test Model = baseline model + weighted obesity genomic 

risk score. ROC Curves were constructed using predicted values from probit regressions of 

obesity (BMI≥30) on the model terms. Delta AUC (AUCTest-AUCBaseline) = 0.005, 95% CI -0.005-

0.015, p=0.30. Delta Partial AUC at 80% specificity=0, 95% CI -0.004-0.004, p=0.97. AUCs, partial 

AUCs, and delta AUCs were estimated using Pepe’s method 
93, 95
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APPENDIX B 

Supplementary Materials to Chapter 3 

Supplementary Methods 

Construction of the Obesity Genetic Risk Score. We selected single nucleotide polymorphisms 

(SNPs) for investigation that were associated with an obesity-related phenotype at a threshold 

of p<1x10
-5

 in GWAS of European-descent individuals. We grouped the selected SNPs into 

“linkage disequilibrium (LD) blocks” using a linkage threshold of R
2
≥0.95 and data from the 

International HapMap Consortium’s CEU sample.
155

 We retained LD blocks that included a SNP 

associated with an obesity-related phenotype at p<1x10
-8

 in ≥1 GWAS or that included SNPs 

associated with an obesity-related phenotype at p<1x10
-5

 in ≥2 GWAS. This analysis yielded 32 

LD blocks. We selected one tag SNP from each LD block to include in the GRS. To construct the 

GRS, we weighted the obesity-associated alleles for each GRS SNP by the effect size reported for 

the SNP or its closest LD proxy in meta-analyses of BMI GWAS.
89, 90

 We then summed the 

weighted counts of obesity-associated alleles for each SNP to compute the GRS. An additive 

model was assumed on the basis of prior research documenting additive contributions to BMI 

for many of the GRS SNPs.
61, 62
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Supplemental Table 3.1. Single Nucleotide Polymorphisms Included in the Genetic Risk Score. 

Alleles are reported from the forward strand. *Nearest gene is reported for the locus identified 

in the meta-analysis of body mass index (BMI) GWAS by the GIANT Consortium.
89

 GWAS effect 

sizes are the per-allele change in BMI estimated in meta-analyses of BMI GWAS by the GIANT 

Consortium and Thorleifsson and colleagues.
90

 The following 3 SNPs failed quality controls in the 

Dunedin sample and were not included in the genetic risk score: rs11083779 near QPCTL; 

rs12641981 near GNPDA2; rs2121279 near LRP1B. 

 

Chr Nearest Gene* rs Alleles

BMI-

Increasing 

Allele

Frequency of BMI-

Increasing Allele

GWAS Effect-

Size for BMI 

NEGR1 rs2568958 A/G A 60% 0.13

TNNI3K rs1514177 C/G G 43% 0.07

PTBP2 rs11165643 C/T T 63% 0.06

SEC16B rs10913469 C/T C 21% 0.21

TMEM18 rs7567570 C/T C 82% 0.31

ADCY3, RBJ rs10182181 A/G G 51% 0.14

FANCL rs887912 A/G A 29% 0.10

CADM2 rs7640855 A/G A 20% 0.10

ETV5 rs7647305 C/T C 79% 0.12

4 SLC39A8 rs13107325 C/T T 8% 0.19

FLJ35779 rs2112347 G/T T 65% 0.10

ZNF608 rs6864049 A/G G 55% 0.07

6 TFAP2B rs2206277 A/G A 18% 0.13

LRRN6C rs1412235 C/G C 31% 0.11

LMX1B rs867559 A/G G 21% 0.24

STK33, RPL27A rs4929949 C/T C 52% 0.06

BDNF rs6265 A/G G 52% 0.18

MTCH2 rs10838738 A/G G 34% 0.05

12 BCDIN3, FAIM2 rs7138803 A/G A 36% 0.12

13 MTIF3 rs1475219 C/T C 20% 0.09

PRKD1 rs11847697 C/T T 3% 0.17

NRXN3 rs10150332 C/T C 23% 0.13

15 MAP2K5 rs2241423 A/G G 78% 0.13

GPRC5B rs12446554 G/T G 87% 0.17

SH2B1 rs4788102 A/G A 39% 0.15

FTO rs9939609 A/T A 36% 0.38

18 MC4R rs921971 C/T C 28% 0.21

KCTD15 rs29941 C/T C 67% 0.06

ZC3H4, TMEM160 rs3810291 A/G A 68% 0.09

3

2

1

19

16

14

11

9

5
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Supplemental Table 3.2. The Genetic Risk Score and the Family History Score have 

Independent Effects on Growth and Obesity Risk. Panel A presents bivariate effect sizes for the 

genetic risk score and the family history score from the life course growth model and obesity 

prediction models. Panel B presents the independent effects of the genetic risk score and the 

family history score on life course growth and obesity risk. Independent effects were estimated 

from multivariate growth models (life course growth) and multivariate Poisson regression 

models (obesity). The genetic risk score and the family history score were standardized to have 

means of 0 and standard deviations of 1 for analyses. All analyses were adjusted for sex. 

 

Model 

Intercept

Childhood 

Slope

Adulthood 

Slope Teens 20s 30s Chronic

Panel A. Bivariate Associations

Genome Risk Score 0.38 0.03 0.02 1.42 1.37 1.23 1.37

p<0.001 p<0.001 p=0.014 (1.10, 1.83) (1.13, 1.67) (1.08, 1.39) (1.09, 1.73)

Family History Score 0.63 0.05 0.04 1.63 1.72 1.49 1.83

p<0.001 p<0.001 p<0.001 (1.36, 1.95) (1.51, 1.97) (1.35, 1.63) (1.58, 2.13)

Panel B. Independent Associations

Genome Risk Score 0.31 0.02 0.01 1.31 1.27 1.17 1.26

p<0.001 p=0.004 p=0.065 (1.01, 1.70) (1.04, 1.55) (1.03, 1.32) (1.00, 1.59)

Family History Score 0.60 0.05 0.04 1.58 1.67 1.46 1.78

p<0.001 p<0.001 p<0.001 (1.31, 1.90) (1.46, 1.92) (1.32, 1.61) (1.52, 2.09)

Beta/ p-value Relative Risk (95% Confidence Interval)

ObesityLife Course Growth

Beta/ p-value Relative Risk (95% Confidence Interval)



 

 

 

 

 

 

99 

 

 

 

Supplemental Table 3.3. Indirect effects of the genetic risk score on adult obesity outcomes 

mediated through birth-3 weight gain and the adiposity rebound. Indirect effects were 

estimated using the structural equation described by MacKinnon & Dwyer
140

 implemented with 

Poisson regression models. Indirect effect estimates were exponentiated to compute risk ratios. 

Indirect effect estimates for the adiposity rebound reflect the combined indirect effects of age 

and BMI at adiposity rebound. Analyses were adjusted for sex. Confidence intervals were 

estimated from 5000 bootstrap repetitions.  

 

 

  

Developmental Phenotype

Birth-3 Weight Gain 1.06 (1.01, 1.12) 1.03 (1.00, 1.06) 1.01 (0.99, 1.04) 1.04 (1.01, 1.08)

Adiposity Rebound 1.32 (1.17, 1.52) 1.19 (1.11, 1.31) 1.12 (1.06, 1.19) 1.20 (1.11, 1.32)

Indirect Effect Expressed as a Relative Risk  (95% Confidence Intervals)

Chronic30s20sTeens

Obesity Outcome
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Supplemental Figure 3.1. Distribution of the Genetic Risk Score. The transparent bars show the 

distribution of the count of risk alleles across the 29 SNPs included in the genetic risk score (i.e. 

before weights were applied). The kernel density plot shows the distribution of the weighted 

genetic risk score.  
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APPENDIX C 

Supplementary Materials to Chapter 4 

Supplemental Table 4.1. Single nucleotide polymorphisms (SNPs) included in the genetic risk score. 

Effect allele frequencies for the GWAS SNPs are based on the HapMap CEU sample (release 22 for SNPs 

rs12595538, rs8032771, and rs4105144; version 3 release 2 for SNPs rs16969968 and rs6495308). 

Linkage disequilibrium (LD) was obtained from 1000 Genomes project data for all SNPs except 

rs4105144. LD between this SNP and rs8102683 was obtained using HapMap Release 22 data. All allele 

frequency and linkage queries were run through the Broad Institute’s SNAP tool 

(http://www.broadinstitute.org/mpg/snap/ldsearch.php). Effect allele frequencies for the SNPs 

genotyped in the Dunedin sample are based on n=880 European-descent study members.  

 

 

 

Chr Genes GWAS SNP Alleles

Effect 

Allele

Freq. 

(HapMap)

Dunedin 

SNP

LD with 

GWAS SNP Alleles

Effect 

Allele

Freq. 

(Dunedin)

rs16969968 A/G A 39% rs10519203 0.93 A/G G 34%

rs6495308 C/T T 80% rs4887069 1.00 A/G A 79%

rs12595538 A/T A 62% rs7164529 0.90 A/G G 61%

rs8032771 A/G A 52% rs11072810 0.97 C/T T 50%

EGLN2 rs7937 C/T T 55% rs7937 1.00 C/T T 57%

CYP2A6 rs4105144 A/G G 74% rs8102683 0.87 C/T C 73%

15

19

CHRNA5, CHRNA3, 

CHRNB4

ADAMTS7, 

MORF4L1
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Supplemental Table 4.2. Associations between genetic risk and clinical phenotypes of smoking 

behavior are mediated by developmental phenotypes of rapid progression from smoking initiation to 

heavy smoking. Indirect, direct, and total effects were estimated from the structural equation described 

by MacKinnon and Dwyer implemented using the methods described by Preacher and colleagues.
140, 142, 

143
 Percentile-based 95% confidence intervals were estimated from 1,000 bootstrap repetitions. 

Developmental phenotypes were early conversion to daily smoking (by age 15 years) and rapid 

progression to heavy smoking (by age 18 years). Both developmental phenotypes were associated with 

the latent adult smoking problems factor and with the individual clinical phenotypes (p<0.001 for all). 

Collectively, early conversion to daily smoking and rapid progression to heavy smoking explained 23% of 

the variance in the latent smoking problems factor.   

Total Effect of                             

Genetic Risk

Direct (un-mediated)                 

Effect of Genetic Risk

Indirect Effect of Genetic Risk 

Mediated Through 

Developmental Phenotypes

Proportion of Total Effect 

Accounted for by the Indirect 

Effect

B /[95% CI] / p-value B /[95% CI] / p-value B /[95% CI] / p-value %

Latent Adult Smoking Problems Factor

0.15 0.03 0.12 81%

[0.05-0.26] [-0.04-0.10] [0.05-0.20]

p=4.33E-03 p=4.02E-01 p=1.79E-03
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