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ABSTRACT

Dongxing Y ang
A Study of Optical and Electronic Properties of Organic Thin Film Transistors Based
on Naphthalenetetracar boxylic Diimide Derivative

(Under the direction of Professor Eugene A. Irene)

The optical properties of spin cast thin films of N,N’-bis(3-phenoxy-3-phenoxy-
phenoxy)-1,4,5,8-naphthal ene-tetracarboxylic diimide (NDA-n2) and N,N’-bis(3-phenoxy-
phenoxy)-1,4,5,8-naphthal ene-tetracarboxylic diimide (NDA-n1) were investigated using
spectroscopic ellipsometry (SE) complimented by optical absorption spectroscopy in the
visible-near UV optical range and atomic force microscopy (AFM) for surface roughness. A
combination of Tauc-Lorentzian and Gaussian oscillators model was used to fit the
measurements obtained from SE. Film roughness results were also evaluated in the optical
model using Bruggman Effective Medium Approximation (BEMA). The effect of different
spin deposit conditions including spin speed, concentration of solution and deposition
ambient on the NDA’s film thickness, surface roughness, optical properties and optical
anisotropy have been investigated. No anisotropy has been found for the spin cast film and

moderate temperature annealing in high vacuum leads to film densification.

Organic thin film transistors (OTFT’s) were fabricated with NDA’s as the active

semiconductor layer, silicon dioxide (SIO,) as the gate dielectric, heavily doped silicon as the



substrate, and vacuum evaporated gold lines as the source and drain contacts. The electronic
properties were characterized using a custom built probe station. The custom probe station

was automated with software program written in LabVIEW™.,

NDA'’s yielded a P-channel device. From transfer characteristic and turn-on plot, the
charge mobility was cal culated which was in the range of about 102 cm? V*s™. Various
post fabrication processes were carried out to optimize the device performance. Bottom
contact configuration has shown higher charge mobility than top contact in this study.

M oderate temperature annealing in high vacuum has improved the device mobility by several
orders, yielding evidence for a hopping mechanism for charge transport in NDA’s. The high
mobility of NDA-n1 compared with NDA-n2 demonstrated that aryl-ether tail group
hindered the charge transport in the film. Two alternate gate dielectric layers for the OTFT
were also considered; while anon-polar low-K dielectric, polyethylene improved mobility;
polar high-K dielectric, copolymer of vinylidene fluoride with trifluoroethylene had an

adverse effect on mobility.
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CHAPTER 1-INTRODUCTION

1.1. Oveview

Since the invention of transistor by Bardeen, Brattain® and Shockley? in 1947, the
electronic industry has advanced into the era of microelectronics. Under the driving pace of
Moore’s Law, integrated circuits progressed from the early 1960°s “Small-Scale-Integration”
to the present “Ultra-Large-Scale-Integration” and inorganic silicon based semiconductors
have become the foundation of the industry due to their superior properties and
compatibility.> However, in recent years there has been growing interest in improving the
semiconducting and light emitting properties of organic materials.* The high level of interest
comes from their potential use for large-area thin-film electronics and low-cost fabrication of
devices with acceptable performance.” In addition the mechanical flexibility of organic
semiconductors makes them more compatible for use with plastic substrates for lightweight
and foldable applications.’

Compared with traditional inorganic semiconductor devices, organic semiconductor
based devices have low charge carrier mobilities. For example, the highest mobility for
organic thin film transistors (OTFT’s) isin the range of several cm?V*s?, which is 3 orders
of magnitude lower than crystal Si.> Low carrier mobility means sluggish response time and

low switching speed, which is not suitable for current high speed logic circuits. However,



OTFT has nichesin novel thin film transistor applications requiring structural flexibility, low
temperature processing, large area coverage, and lower cost e.g. sensors, low-end smart cards,
and radio-frequency identification tags (RFIDs).* Ever since 1990 when researchers at
Cambridge University demonstrated el ectroluminescence in poly(para-phenylene vinylene)
(PPV), organic semiconductors have attracted rapid growth in the application of displays.’
The global market for organic electronicsis set to expand from $650 million in 2005 to $30

billion by 2015, according to arecent report from IDTechEXx.
1.2.  Organic Thin Film Transistors

It is necessary to mention the structure of metal oxide semiconductor field effect
transistors (MOSFET ’s) before the details of OTFT’s are discussed. After the MOSFET’s
initial introduction in 1950’s, research has led to significant decrease in MOSFET size and
increase in its performance and complexity that has made the MOSFET the heart of the
modern microprocessor. A schematic of an N-channel MOSFET isshown in Figure 1.1a. It
isathree-terminal device consisting of source, gate, and drain. In this example, the silicon
substrate is P-type doped and possesses positively charged holes as majority charge carriers
and electrons as minority carriers. The source and drain are heavily N-type doped (N¥) Si for
the high conduction. The voltage applied to the gate controls the charge flows from the
sourceto thedrain. A negative gate bias will result in accumulation of holes in the channel
region (a condition called “accumulation”), and no current will flow between the source and
drain (Figure 1.2a). Upon application of asmall positive bias, holes will be depleted from
the channel (a condition called “depletion”) and electrons will be attracted, however the holes

still dominate the minority carriers and no current flows (Figure 1.2b).



Source Gate Drain

Figure 1.1 Schematic structures of () N-channel MOSFET, and (b) OTFT.
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Figurel.2  N-channel MOSFET in (a) accumulation, (b) depletion, (c) inversion mode,

and (d) drain current (1) vs. gate voltage (V).



Beyond the threshold voltage (Vi), carrier inversion will occur and the electrons outnumber
the holes allowing current to flow between source and drain (Figure 1.2c) (a condition called
“inversion”). Thus, the gate acts as a switch turning the current flow between source and
drain OFF (binary logic “0”) and ON (binary logic “1”), as shown in Figure 1.2d. In practice,
N-channel and P-channel MOSFET’s are fabricated in series to create CM OS devices, which
are wired to storage capacitors to form dynamic random access memory (DRAM) cells.®

The OTFT isaso athree-termina device, composed of gate, source, and drain.
Different from the MOSFET, the OTFT is generally constructed with an inverted-gate
structure, i.e. gate is at the bottom (Figure 1.1b). Here the heavily doped silicon wafer is
used as a convenient conductive substrate and is not part of the active layer. The silicon
substrate also provides convenience for the gate oxide/dielectric formation. Another
difference between the OTFT and the MOSFET is that the charge carriers that movein an
OTFT are mgjority carriersi.e. it operates in the accumulation mode instead, and there is no
inversion mode. Therefore, for a P-channel OTFT, a nhegative voltage biasisrequired at the
gate to accumulate majority carriers at the interface of the SiO, dielectric layer and the
semiconductor layer. Inthis study, OTFT’s were fabricated on heavily doped Si substrate,
which functioned as the gate contact and thermally oxidized to prepare SiO, as gate dielectric
layer. Auisdeposited in either an interdigited Au array or in parallel lines using a shadow
mask. The organic film is then deposited by spin casting from solution.

Semiconducting properties associated with organic materias usually derive from the

so-called conjugation, the presence of extended 7 orbitals formed in carbon containing

compounds that show sz + P, hybridization. The carbon atomsin the backbone bind to

three adjacent atoms, two carbons of the backbone and one side group, e.g. a hydrogen. The



fourth electron finds itself in the perpendicular P, orbital, and the mutual overlap of
neighboring P, electrons causes the formation of z-bands, that consist of the delocalized

electrons. The 7-bands in the organic semiconductor is normally called Molecular Orbitals.
Thefilled z-band is called the Highest Occupied Molecular Orbital (HOMO), and the empty
n-band is called the Lowest Unoccupied Molecular Orbital (LUMO). Some theories that
describe the electronic structure and charge transport of conjugated organic semiconductors

will be discussed in Chapter 3.
1.3. Moaotivation

As discussed above, electronic devices based on organic semiconductors offer an
attractive aternative to conventiona inorganic devices and have already made progressin
commercial market. However, only stable organic P-type semiconductors are readily
available while practically useful N-type semiconductors have been difficult to develop.
Poly(ether-imide)’s (PEI’s) are awell-known class of engineering plastics with outstanding
mechanical properties, high thermal stability and excellent chemical resistance towards a
wide range of solvents. PEI films are used extensively in avariety of electronic applications,
I.e. insulating layers, circuit boards and low dielectric constant coatings. Recently, Katz et al
reported” that low molecular weight naphthal enetetracarboxylic diimide derivatives were
suitable as stable N-type organic semiconductors even in the presence of air. Their
naphthal ene based imides with terminal fluorinated tails (Figure 1.3a) showed high electron
mobilities (> 0.1 cm?V*s™) and excellent on/off current ratios (> 10°). Based on these results
we have selected a compound recently prepared that has the suitable electronic groups
indicated by Katz et al but also has groups that should further enhance the compounds

stability. The molecular structures are shown in Figure 1.3b. If nis2, itiscaled N,N’-



bi s(3-phenoxy-3-phenoxy-phenoxy)-1,4,5,8-naphthal ene-tetracarboxylic diimide, in short
NDA-n2, andif nis 1, it iscalled N,N’-bis(3-phenoxy-phenoxy)-1,4,5,8-naphthal ene-
tetracarboxylic diimide or NDA-n1. The compounds show high solubility in various solvents
and are suitable candidates for the fabrication of OTFT’s.

Interface between the active and the dielectric layers play an important role for device
performance and reliability because the operation is based on the control of the charge
carriers at the interface. Therefore, it is essential to electronically characterize the interface.
To approach this problem, it is also important to understand the optical properties of NDA’s
and NDA’s film-substrate interface. Once the optical properties are determined, film
thickness can be extracted using non-destructive techniques that will also aid fabrication

Process.
14. Research Objectivesand Strategy

The main objective of this research isto determine, establish and understand the
optical and electronic properties of NDA-n1 and NDA-n2 filmsfor their usein OTFT’s.
Also, the effects of the interface on the device performance are investigated.

Thin films of NDA-n1 and NDA-n2 were prepared from solution using the spin cast
technique. The resulting nature of NDA’s films due to various spin speed and substrates was
examined. In order to obtain the optical properties of NDA’s films, UV-Vis spectroscopy
and Spectroscopic Ellipsometry (SE) were applied. Once the optical properties of NDA’s
film were determined, its thickness could be derived and its morphol ogy information could
be obtained with the combination of SE and Atomic Force Microscopy (AFM). Then
OTFT’s based on NDA’s were fabricated to test the electronic properties. The performance

of an OTFT is gauged by severa measures—mainly the el ectronic mobility and turn on/off



ratio. The electronic mobility, u isdefined as the proportionality coefficient in the

dependence of drift velocity on the applied field and describes how easily charge carriers can
move within the active layer under the influence of the electric field, while turn on/off ratio is
indicative of the switching performance of OTFT’s.

Once an understanding between the interface and the opto-electronic propertiesis
devel oped, improvements or modification of OTFT’s devices was investigated in order to
optimize device performance. With spin cast NDA’s films, there might be residual solvents
and disordered molecular arrangements, which would affect the device performance. The
devices were then annealed in a high vacuum system and the effects monitored as well as any
OTFT improvements. Another major effort was focused on the gate dielectric. High
capacitance dielectric is normally desirable as it reduces the operating voltage required to
turn the OTFT device on.® However, Veres et al. have reported improvement in device
performance with the use of non-polar low-K gate dielectric.** In order to resolve this
controversy about the choice of low-K or high-K dielectric for use as gate material in OTFT,
polyethylene (K = 2.3), and a copolymer of polyvinyledene fluoride copolymer P(VDF-
TrFE) (K =7.5) wereinvestigated. These measures will be described in detail in the

following chapters.
15. Overview of the Dissertation

The dissertation is composed of three sections: background information about the
surface analysis techniques, el ectronic device physics and characterization techniques
(Chapters 2 and 3), experimental results and discussions (Chapter 4 and 5), and summary and

directions for future study (Chapter 6).
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Figure 1.3 Molecular structure of (a) Naphthal enetetracarboxylic diimide compounds

(used by Katz group) and (b) NDA where n=1, NDA-n1; n=2, NDA-n2.



Chapter 2 introduces ellipsometry, the technique widely used in this study. We start
with the concept of polarized light, and show how the polarization state of light changes
when passing through a series of optical elements, from which it is demonstrated what
ellipsometry measures and how it makes the measurements. We then explain briefly how
physical information about the system under measurement is extracted from the ellipsometric
measurements with the construction of an optical model and what information we can get
from the ellipsometry measurement, and how physical parameters can be extracted from the
modeling of ellipsometry data.

In Chapter 3 the basic principles of charge transport in organic semiconductor based
OTFT’sare presented. The measurements used to gauge the electrical propertiesof OTFT’s
are also mentioned. The configuration of the custom built probe station is discussed. The
strategy used for electronic measurementsis also briefly introduced in Chapter 2.

Chapters 4 and 5 describe the main results and discussions generated from this
research. In Chapter 4, the process used to extract the optical properties of spin-cast NDA’s
filmsisdiscussed in detail. A model WS-400B-6NPP-LITE instrument from Laurell
Technologies Corporation was used to spin cast various thicknesses of NDA’s filmson Si
and SIO, substrates by varying spin speeds. The custom ellipsometer was the primary
instrument used in this study. Complimentary information necessary to build amore
comprehensive optical model were also obtained from UV-Vis Spectroscopy, and Atomic
Force Microscopy (AFM). In Chapter 5, the electronic characterization and optimization of
NDA-OTFT’swere presented. The electronic properties mainly the transfer and turn on
characteristics were obtained using the custom built probe station. The NDA-OTFT’s

demonstrated characteristics of P-channel devices, and their positive charge carriers (holes)
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mobility was measured to be of the order of 102 cm?V™'s™. The finding of the NDA’s
materials to be P-type is opposite to the Katz group’s result. To optimize the device
performance, annealing and replacement of SIO, gate dielectric are carried out.

Chapter 6 summarizes the results of thiswork and provides some directions for future

research on this subject.
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CHAPTER 2-SPECTROSCOPIC ELLIPSOMETRY

21 I ntroduction

Ellipsometry is a sensitive measurement technique that uses polarized light to
characterize thin films, surfaces, and materials microstructure. It derivesits sensitivity from
the determination of the relative phase change in abeam of reflected polarized light. The
non-invasive, non-destructive nature of ellipsometry allows it to be used as areal-time, in
situ optical analysistechnique. The beginnings of elipsometry should be credited to Paul
Drude (1863-1906) who derived the equations of ellipsometry and made the fist studies on
absorbing solids as well as Brewster, Fresnel, and Lord Rayleigh who contributed to the
development of ellipsometry with their work on transparent materials.?

In general, ellipsometry measures the changes in polarization state of light upon its
reflection from the sample. The measured values are expressed aspsi (V) and delta(A),
where ¥ istherelative amplitude change and A isthe relative phase change introduced by
reflection from the surface. When alinearly polarized light of a known orientation is
reflected at oblique incidence from a surface, the reflected light is élliptically polarized. The
shape and orientation of the ellipse depend on the angle of incidence, the direction of the
polarization of the incident light, and the reflection properties of the surface. To obtain the

optical and structural information about the sample from the measured ¥ and A, an optical



model incorporating known and desired physical properties needs to be constructed based on
the previously available knowledge about the sample. The unknown parameters of the model
are then determined by regression analysis.

As ellipsometry measures the changes in light intensity not the absolute intensity asis
common in other optical analytical techniques, the measurement can be highly accurate and
reproducible. A manual, high precision ellipsometer is capable of measuring A and ¥ very
sensitively, to within ~ 0.02° and ~ 0.01°, respectively.® Table 2.1 shows the changesin A
and ¥ asafilmwith an index of refraction equal to 1.5 grows on asilicon substrate. For
these particular conditions, a high precision, manual ellipsometer would be able to detect the

evolution of the film after ~ 0.07 nm by monitoring the changeinA.

Table2.1 Changesin A and ¥ asfilm (n = 1.5, k = 0) thickness changes; silicon

substrate, He-Ne laser (A = 632.8 nm), angle of incidence = 70°

Film Thickness (nm) A (°) Y (°)
0.0 179.257 10.448
0.1 178.957 10.448
0.2 178.657 10.449
0.3 178.356 10.450
0.4 178.056 10.451
0.5 177.756 10.453
10 176.257 10.462

Changein A / changein film thickness = 3.0°/nm

Changein ¥ / changein film thickness = .014°/nm
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The most important application of ellipsometry isto study thin films. In the context
of ellipsometry athin film is one that ranges from essentially zero thickness to severa
hundred nm, athough this range can be extended in some cases. If afilmisthin enough that

it shows an interference color then it will probably be a good ellipsometric sample.

2.2  Polarized Light

2.2.1 TheConcept of Polarization

Light waves are electromagnetic in nature and require four basic field vectors for
their complete description: the electric-field strength E , the el ectric-displacement density D,

the magnetic-field strength H , and the magnetic-flux density B. Of these four vectors, the
electric-field strength is chosen to define the state of polarization of light waves. This choice
is based on the fact that when light interacts with matter, the force exerted on the electrons by
the electric field of the light wave is much greater than the force exerted on these electrons

by the magnetic field of the wave.** Also due to this fact, the interaction of magnetic field

with sampleisignored in ellipsometry. In general, once the polarization of E has been
determined, the polarization of the other three remaining field vectors can be found as the
vectors are interrelated by Maxwell’s field equations and the associated constitutive/material
relations. For time-varying fields, the differential form of Maxwell’s equations for a non-

conducting, non-dispersive medium is given below
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where c is the speed of light, ¢ is the dielectric function, and u is the permeability. These

eguations can be combined and give the solution for the electromagnetic plane wave,

. p('Z”N j -iot) 22

where k isaunit vector along the direction of propagation, N isthe complex index of
refraction n+ik (to be defined later), A isthe wavelength of the light in vacuum, o isthe
angular frequency of the wave, and Eo Isacomplex vector constant specifying the amplitude
and polarization state of the wave. Such awave propagating in a medium with no absorption
(k=0)isshowninFigure2.1. Theelectric field, magnetic field, and the direction of
propagation are al orthogonal with respect to each other. Because of the relationship
between the fields, only the E-field and the direction of propagation are required to

completely define a plane wave. For a monochromatic transverse electric field, the electric

field strength ( E) can be expressed as the vector sum of the components parallel ( Ep) and

perpendicular ( E,) to the plane of incidence, where the plane of incidence is defined for

reflection from a surface, and contains the incident light beam and the normal to the sample
surface (Figure 2.2):

E=TE, ") 1 JE g/ teot+ds) (2.3)
where i and | areunit vectors, and E,, and E,, are the respective magnitudes. Elliptically
polarized light is the most general case and consists of varying amplitudes of thep (E ) and

s (E,, ) components, and encompasses a| ranges of phase differenceé =6, -4,

(-r<8<r,d#nl2,nr)asinEquation 2.3 and Figure 2.3a. Linearly and circularly

polarized light can be obtained from Equation 2.3 with the appropriate magnitudes and phase
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differences. In generad, linearly polarized light can be expressed as Equation 2.4 and shown
in Figure 2.3b.

E=[[E,, + JE,]e" (2.4)
where the phase difference of the p and s components are integral values of =

(6=6,-0,=nr). Circularly polarized light consists of p and s components that are equal
in magnitude (E, = E = E), but out of phaseby 7z / 2. If the p component leads the s

component by 7z / 2 (Equation 2.5), then right-handed circularly polarized light is obtained
(Figure 2.3c). When the s component leads the p component by 77 / 2 (Equation 2.6), left-

handed circularly polarized light is obtained.

- T
E -E [i—~ei(l22—(ut+5p) n ]-e'(kz’wt“sp’z)
0

] (2.5)

- i(kz-ot+8, +%)

E=E[ie®™ ™% +Je ] (2.6)
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Figure2.1  Light wave represented as an electromagnetic transverse plane wave
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2.2.2 Jones-Matrix Representation of Polarized Light

Numerous mathematical formulations such as Stokes parameters, Poincare sphere,
and complex plane notation have been used to describe a transverse-electric wave. The
primary advantage of a mathematical description isthat it allows the use of a compact matrix
formalism to describe the interaction between light waves and optical devices. Here Jones
matrices, avery simplified but adequate for describing polarization states, will be discussed.

As mentioned, the E-field components with space and time dependence can be
written as

E-TE ei(k’z—wt+5p)

- i (Kz—oot+5
% + JE e (ke t+2s) (2.7)

Combining the amplitude and phase information gives
E _ [rEpOeiSP i -JrESOeic?S]ei(IZZ—a)t) _ Eoei(RZ—wt) (28)
where EO isthe complex amplitude. Since the state of polarization of light is completely

determined by the relative amplitude and phase of these components, it is only necessary to

study the complex amplitude EO , which could be written as a two-element matrix or Jones

— io
g _| e || Bt (2.9)
0 - iS5 '
E E.€

S

Vector.

For the special case of p- or s-polarized light, the normalized Jones vectors have the

1 0
simple forms, {O} (p-polarized) and L} (s-polarized), respectively. For the left-circularly
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1
and right-circularly polarized light beam, the normalized Jones vector is i[} and

J2li

1)1 respectively
V2|-i| '

Expressing the action of any component or sample upon the polarization state can be
done by means of a 2x2 Jones matrix. The diagonal elements of the Jones matrix represent
the change of amplitude and phase of the p- and s-components of the beam, while the off-
diagonal elements describe the transfer of energy from the p-component to the s-component
and vice-versa. The Jones matrices for some optical components will be discussed |ater

when discussing ellipsometry instrumentation.

23 Hardwarefor Ellipsometry

2.3.1 Optical Componentsfor an Ellipsometer

An dlipsometer consists of alight source and a detector with polarizer, compensator
and analyzer in between, in a specific arrangement that depends on the kind of measurement

to be performed.
2.3.1.1 Light Sources

The two most popular light sources for ellipsometer are lasers and arc lamps. A laser
typically produces a monochromatic light and is used for a single wavelength ellipsometer.
Lasers have the advantage of high output intensity and good collimation. He-Ne laser with 1
mW-output at 632.8 nm has gained widespread usage. For a spectroscopic ellipsometer, a
light source with broad spectral and very stable output is needed. Ideally the output should

be roughly constant over the necessary spectral range. For this purpose, the Xe or Hg-Xe arc

22



lamp is generally selected. It can be used from 190 nm in the deep ultraviolet to over 2 um
intheinfrared. However, they exhibit low intensity below about 260 nm and have very
strong atomic emission lines from about 880 nm to 1010 nm, which can overload the silicon
detector used in the ellipsometer. High-pressure arc lamp improves the smoothness of the
output spectrum and thus is employed in most current spectroscopic ellipsometry (SE)

systems to achieve stable and continuous output light beam.
23.1.2Linear Polarizers

The most important optical element for making ellipsometric measurements is the
polarizer. Anideal linear polarizer will transmit light polarized in one direction, but will not
transmit any light polarized along the perpendicular direction. When a polarizer is used to
resolve the polarization state of reflected light from a sample before the detector, it is usually
called an analyzer.

Numerous processes can convert an unpolarized light beam into a polarized light
beam. The different physical mechanisms by which one of the two orthogonal resolved
components of light could be rejected by alinear polarizer include (1) reflection, (2)
dichrioism, and (3) birefringence. If an unpolarized light beam is reflected from a surface at
any angles other then 0° or 90°, it will become at least partially polarized since the
perpendicular and parallel components of the electric field vector are reflected differently by
the surface. If the angle of incidence is such that the reflected and refracted beams are
perpendicular to each other, then the reflected beam will be completely polarized (Figure

2.4).° This angle of incidence is defined as Brewster’s angle (0,)- Selective absorptionis

another process that can create polarized light. If unpolarized light travels through a material
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in which electric field vectors vibrating in a given plane are transmitted, while electric field
vectors vibrating in other directions are absorbed, then the transmitted light will be polarized.
Materias of this nature are referred to as dichroic polarizers, an example of which is Polaroid
film. Birefringence, or double refraction can create polarized light by the use of prism
polarizers. When alight beam isincident from air on a planar face of atransparent uniaxially
or biaxially anisotropic crystal, it is, in general, refracted into two beamsin the bulk of the
crystal. These two beams are spatially separated from one another and are orthogonally
linearly polarized. If only one of these two beams s utilized, the double refraction
mechanism can be perfectly polarizing. A large variety of polarizers have been built on this
principle and Glan-Taylor prism (Figure 2.5) is one of the commonly used birefringent
polarizer. It consists of two sections of calcite crystals that are separated by a narrow air gap.
The optical axis of two crystalsis parallel to each other and to the entrance plane and exit end
face of the prism. Light perpendicularly incident on one of the end faces of the prism
propagates without refraction to the interface between the two prisms. Thislight can be

resolved into two components E, (extraordinary) and E, (ordinary), which are parallel and

perpendicular to the optical axis, respectively. Because the two components have different

refraction indexes in calcite, the incident angle ¢ at the calcite/gap interface can be adjusted
by the prism dimension design, so as to satisfy the conditionsthat E, istotally reflected at an
incident angle greater than the critical angle, while E, is highly transmitted by striking the

interface at Brewster’s angle. The internally reflected light can be absorbed by blackening

the interior side of prism, while the other linear polarized light component E, exits the end

face of prism with aslight deviation, but still nearly parallel to the incident beam.
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2.3.1.3 Compensators

A compensator is also called aretarder which is an optical device that introduces a
relative phase shift between two specific orthogonally polarized components into which light
incident on the device can be resolved without affecting their relative amplitude. It can be
constructed from thin plates of birefringent material or from polished crystal rhombs.
Retarders used in ellipsometry are linear retarders that have two optical directions. afast axis
and aslow axis. The component of incident light parallel to the Slow axisisretarded in
phase relative to the component along the fast axis. When the phase retardation isn/2, «.. .,
theretarder is called a quarter-wave, half-wave, ... retarder. However, the exact retardation
of such elementsis a strong function of optical alignment and of the light wavelength being

used.

2.3.1.4 Detectors

Three types of detectors are commonly used for e lipsometry: photomultiplier tubes
(PMTs), semiconductor photodiodes, and charged coupled devices (CCD) arrays. PMT isa
versatile device and has been the primary detector for ellipsometry for many years. A typical
PMT consists of a photoemissive cathode (photocathode) followed by focusing electrodes,
and electron multiplier and an electron collector (anode) in avacuum tube. When light enters
the photocathode, the photocathode emits photoel ectrons into the vacuum. These
photoel ectrons are then directed by the focusing el ectrode voltages towards the electron
multiplier where electrons are multiplied by the process of secondary emission. The
multiplied electrons are collected by the anode as an output signal. Because of secondary-

emission multiplication, PMTs provide extremely high sensitivity and exceptionally low
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noise among the photosensitive devices currently used. The PMT also features fast time
response, low noise and a choice of large photosensitive areas. Semiconductor photodiode
detectors are semiconductor light sensors that generate a current or voltage when P-N
junction in the semiconductor isilluminated by light. These devices feature excellent
linearity with respect to incident light, have low internal noise, wide spectral response, are
mechanically rugged, compact and lightweight with long life. Among semiconductor
photodiode detectors, silicon photodiodes are most commonly used detectorsin the UV-Vis
range, while InGaAs and HgCdTe detectors are often used for NIR and IR applications. The
silicon diode array alows multiple wavel engths to be detected simultaneously rather than
sequentially, which increase the data acquisition speed dramatically. The third type of
detector isthe CCD array, which is an array of light-sensitive elements, or small electronic
capacitors. These capacitors are charged by the electrons generated by the input light. The
output signal is then connected to an analogue to digital converter and to storeinto a

computer memory, so that its processing will be easy to perform.

2.3.2 Ellipsometer Configurations

All ellipsometer arrangements start with a light source and end with a detector. It is
the arrangements of optical components between the source and detector that defines the type

of ellipsometer being used.

2.3.2.1 Null Ellipsometry

The null elipsometer configuration is shown in Figure 2.6” and is referred to as

PCSA, since the light beam traverses the optical elementsin the order: Polarizer,
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Compensator, Sample, and Analyzer. The techniqueisreferred to as null ellipsometry
because the apparatus is adjusted to yield zero intensity after the analyzer. The
configurations of the PCSA arrangement that yield zero intensity after the analyzer are then
interpreted toyield A and ¥ . Sincethe analyzer isjust alinear polarizer, the polarizer and
compensator must be adjusted such that the light that is reflected from the sampleis linearly
polarized, otherwise the reflected light will not be completely extinguished by the anayzer.
Thisis possible since the combination of the polarizer and compensator can yield polarized
light of all polarization states. In practice, the compensator is set to 45°, and the polarizer is

varied to yield linearly polarized light upon reflection from the sample.

\\“\ / \
e
A P )&

Light
Source

Detector

Polarizer
Analyzer
Compensator

Figure2.6  PCSA null ellipsometry schematic (from reference 7).

A He-Ne laser (A = 632.8 nm) is used as the light source for the null ellipsometer in
Figure 2.6. The laser beam first passes through the linear polarizer, which only transmits the
electric field component that is of the same azimuth as the transmission axis of the polarizer
(P), asshown in Figure 2.6. The transmission axis azimuth can be rotated from 0° to 360°
relative to the plane of incidence. The resulted linearly polarized light can be represented by

a Jones vector,®
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Er = A{(l)] (2.10)

where A, isthe amplitude attenuation constant that determines the light intensity. The

subscripts index PO refers to the polarizer (P) output (O), and the superscript te refersto the
transmission-extinction principal reference system of the polarizer. The linearly polarized
light then passes through the compensator set to 45° relative to the plane of incidence.
However, the fast-slow (fs) axis of the compensator in general is not aligned with that of the
polarizer. Hence arotation of coordinate system from te of the polarizer to fs of the
compensator is necessary. This can be accomplished by multiplying a coordinate rotation

matrix R(a) where « isthe angle of rotation from the old system to the new one as,

cosa Sha
R(a):( _ j (2.12)
—Siha cosa
The input wave for the compensator after rotation is then,
cos(P-C)
ES =R(P-C)ES, = 2.12
& =R(P-O)E% &(Sm(P_C)) (212)

where P and C are the azimuth angles of the polarizer and compensator, respectively. Then
we can obtain the output of compensator by applying the Jones matrix, T.®, for the
compensator (Equation 2.13) to the input wave (Equation 2.14).

10

T =K
C(O UC

], p, =T.e€% (2.13)

cos(P-C) J (2.14)

EfS :TfSEfS — K
CO C Cl CA:(pcsn(P_C)
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where K. isaconstant that accounts for the common attenuation and phase shift along both
the fast and slow axes of the compensator, p, isthe relative retardation of the compensator,
T, isthe attenuated amplitude along the slow axis, and o, isthe retarded phase. It can be

seen from Equation 2.14 that light exiting the compensator isin general elliptically polarized
as opposed to the linear input before the compensator, and by changing the azimuths angles
of the polarizer and the compensator, all possible polarization states can be obtained. The
output of the compensator then becomes the input to the sample surface, which has an x-y
reference system, so another rotation from the fs system of compensator to the x-y system of
sampleis needed,
EY=EY =R(-C)EE (2.15)
The light will then interact with the sample under measurement, and at least part of

the light will be reflected back from the sample surface. The effect of the reflection from

samples surface can be expressed by a Jones matrix R, as follows:

EY =RYSY, where RY =(§” (;J (2.16)

where R and R, arethereflection coefficients for the p and s components of the light wave,

which are the ratios of overall reflected wave amplitudes to the incident wave amplitudesin
the p and s directions, respectively, and can be derived from the Fresnel equations with
known angle of incidence and refractive indices of the mediainvolved (discussed later). The
fina optical element the light interacts with before reaching the photodetector is the analyzer,
which isalso alinear polarizer and thus has at-e reference frame. The light reflected from
the sample surface therefore needs to be rotated to this t-e reference frame (from the x-y

system of the sample) before considering the effects of the element on the light,
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ES =ES = R(A)EZ, (2.17)
where A is the azimuth angle of the analyzer similarly defined in the same way as P for the

polarizer. The output wave from the analyzer can thus be obtained by applying the Jones

matrix that is characteristic of an analyzer.

10
Exo =TS Ex. Where T, = KA(O oj (2.18)
inwhich K, isthe attenuation constant for analyzer. To Sum it up, the wave vector that

reaches the photodetector can be expressed as follows,
te te fs 1 Et
Ex =TARATSR(C)TPR(P-C) A, 0 =K 0 (2.19

where K=K,\K.K; (2.20)

E, = R, cosAlcosC cos(P - C) - p, sinCsin(P—C)]
and (2.21)

+R_sin Alsin Acos(P - C) + p, cosCsin(P—C)]
Finally, the intensity of the light collected by the photodetector is,

2

| =te
| =|Ef%,

(2.22)
Thisisafunctionof P, C, A, p., R,, and R;. For anull ellipsometry system, usualy a

quarter wave plate is chosen as the compensator, so p, isknown. During measurements, P,

C, and A are arranged so that the light intensity detected by the photodetector becomes zero

(null), which means E, =0. With this condition, we can obtain from Equation 2.21 the

following relationship:

R _
p=—® __tan tanC + p_ tan(P -C) (2.23)
R, 1- p . tanCtan(P-C)
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where p is called the complex reflection coefficient of the sample. The two complex

amplitude reflection coefficients (R,and R;) can be written as:

R, :\Rp\e“p

| (2.24)
RS — |Rs|e|6S

With equation 2.24, the complex reflection coefficient can be written in the following form:

p =tan¥e* (2.25)
in which,
A=5,-5,
. @ (2.26)
R

The complex reflection coefficient, p , and the extraction of materials properties from A and

¥ will be discussed in next section.

2.3.2.2 Rotating Analyzer Ellipsometry

A schematic of the rotating analyzer ellipsometer used in thisresearch is shownin
Figure 2.7.° The set-up is similar to the null ellipsometer, except that there is no
compensator and the analyzer is constantly rotated. In addition, rotating analyzer
ellipsometry (RAE) does not make use of the null condition, rather the periodic intensity at
the detector isused to extract A and¥ . Thelight sourceisaXenon Arc lamp powered at 70
watts, which produces unpolarized, white light over the range of 250-750 nm. Thiswhite
light then passes through a calcite Glan-Taylor polarizing prism, which resultsin linearly
polarized white light. Typically, the polarizer is set to 20° since this setting has proven to be

the most sensitive for our samples.
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Next, the linearly polarized light is reflected from the sample at the chosen angle of incidence
(¢, , typically 70°) and enters the rotating analyzer, which isalinear polarizer. The electric
field vector of the light entering the photodetecting device can be expressed similar to that

for null ellipsometry discussed in the previous section:

Epvt = [Analyzer][ Sample] [ Polarizer][Input Beam]

1 O0)cosA snA)R, 0 YcosP snP}1
Epur = E, _ _ (2.27)
0 OA\-sinA cosA 0 R N\-sinP cosP)\0O

where E, isaconstant. The azimuth of the rotating analyzer rotates at a frequency, «, such
that the analyzer azimuth (A) at a given time (t) is obtained from Equation 2.28.
A(t) = 2nwt + 6 (2.28)

where 6 isaphase constant. Equation 2.27 can be simplified as:

o CosA
Eevr = E,(R, COSACOSP + R sin Asin P)[Si 0 AJ (2.29)

Since the light intensity detected by PMT isl = |Epy; |2 , by applying Equations 2.24 and 2.26,

thisintensity can be expressed as

tan’ ¥ —tan’ P 2tanW cosAtan P

I, =1_[1+ COoS(2A(t)) +
a =Ll (tanz‘P+tan2P) S(2AL) (tanz‘P+tan2P

)sin(2A®L))] (2.30)

or
I, =1,[1+acos(2A(t)) + Bsin(2A(t))] (2.31)
With the analyzer angle, A, being a periodic function of time, Fourier analysis can be
used to determine the Fourier coefficients o and . Solving for tanV and cosA from the

above equation we get
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%
Lt O‘j (2.32)

tan¥ =tan P[—
l1-a

COSA = ﬁ (2.33)
—a 2

Therefore Fourier analysis of the detector signal will yield the Fourier coefficients

aand S which can then be used to calculate W andA. Once ¥ and A are determined an

optical model must be constructed to calcul ate the desired unknown parameters.

24  Optical Modeling

24.1 General Procedurefor Ellipsometry Measurement

As aready discussed, ellipsometry measures Aand ¥ , the respective changesin
phase and amplitude of monochromatic polarized light asit is reflected from the sample. Itis
then necessary to solve the inverse problem of modeling the measured data to estimate the
values of the sample parameters that yield data predicted from the model which best match
the measured data. The procedure can be divided into four steps, asillustrated in Figure 2.8.
After the experimental measurement, we need to construct a model from which we can
accurately predict what we should measure from a sample of known properties. This model
will contain the known parameters, such as the wavelength of the incident light, the incident
beam polarization sate, and the angle of incidence. It will also contain some unknown
physical parameters, such aslayer thickness and optical constants. After amodel is
developed, we can vary the unknown physical parameters and generate data until a set of

optimized parameters that yield calculated data that closely match our measured optical data.
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Having found a set of physical parameters yielding calculated data which closely match the
experimental optical data, we must now establish that the best-fit set of parametersis unique,
physically reasonable, and not strongly correlated. It these criteria are met, we can conclude
that the best-fit model probably represents the physical redlity of the sample. We may aso
calculate a number of statistical quantities that help to evaluate the accuracy and precision of

the fit results.
2.4.2 Optical Propertiesof Solids

When alight beam arrives at a smooth flat interface between two media, part of the
wave will be reflected and part will be transmitted. The angle of reflection from the surface

will be equal to the angle of incidence, while the transmitted light wave obeys the Snell’s law.
nsing, =n,sing, (2.34)
where ¢, isthe angle of incidence and ¢, isthe refracted angle (see Figure 2.9). The velocity

of transmitted light will undergo a change that depends on the change in permittivity (&) and

permeability () of the media. Theratio of the speed of light within the mediato that of it

in free spaceisreferred to as the index of refraction, n.

n=S= | & (2.35)
V gOlL[O

where ¢, and u, arethe permittivity and permeability of free space. The complex index of
refraction can be defined as

N =n-ik (2.36)
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Figure2.9  Geometry of reflection and refraction when light isincident from medium

with refractive index n; into a substrate with refractive index n,.
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If the imaginary part of the complex index is non-zero, the amplitude of the wave will decay
exponentially asit propagates.

Zﬂkzj (2.37)

E « exp(— T

where k is the extinction coefficient. This extinction coefficient expresses the degree of
damping as it propagates in the z-direction. Thiswave will decay to % (36.7%) of its

original amplitude after it propagates adistance D, known as the penetration depth given

.10

by

A

D =2
P 2k

(2.38)

The dielectric function of amaterial is comprised of both the index of refraction and

extinction coefficient by the expression,
£ =N?=(n-ik)’ = n? —i2nk — k2 (2.39)

If the dielectric function is separated into real and complex components then
g =n" -k (2.40)

Though n and k are usually referred to as optical constants, however thisis somewhat

misleading since n and k are dispersive, as well as being temperature dependent.
24.3 Réflection and Refraction at the Interface of Two I sotropic Media

Figure 2.10 depicts the reflection and refraction of a monochromatic polarized light

upon interaction with the bare surface of a homogeneous material.
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Figure2.10 Geometry of reflection and refraction when a monochromatic polarized light

isincident between two isotropic media N, and N, .
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The angle of incidence is represented by ¢, (asisthe angle of reflection), while the angle of
refraction isg,. The behavior of light at the interface of a medium, and within the medium,
is determined by the complex index of refraction ( N ) of the medium. Dielectrics are non-
absorbing and thusk = 0, dielectrics are also referred to as transparent materials for this

reason. Snell’s law relates the angles of reflection and refraction to the complex indices of

refraction as written in Equation 2.41.

N,sing, = N,sing, (2.41)
For dielectrics (k =0), Snell’s law reduces to Equation 2.42.

n,sing, =n,sing, (2.42)
The amplitude of the reflected wave (E, ) in Figure 2.10 isrelated to the incident wave (E;)

viathe Fresnel reflection coefficient. Asshown in Equations 2.43 and 2.44, the Fresnel

reflection coefficient is different for the p and s components as indicated by the superscripts.

c ~ S

rlg —_"P _ '_\!2 COS¢1 ’jl COS¢2 (2'43)
E, N,cos¢, + N, cosg,

rls2 — Ers _ Nl COS¢1 B N2 COS¢2 (244)

E. N, cosg, + N, cosg,
The numbered subscripts denote the medium of origin from Figure 2.10. The complex
reflection coefficient ( p ) isthen calculated from the Fresnel reflection coefficientsasin

Equation 2.45.

N, cosg, — N, cosg,

ST N, cosg, + N, cosg,
r5 [ N,cosg, — N, cosg,

N, cos¢, + N, cosg,

(2.45)
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Asdiscussed in section 2.3.2, p isadsorelatedto AandW , Equation 2.45 can be expanded

as shown in Equation 2.46.

p . ~ ~
p=22 - tanwe" = p(N,,N,,4,, 1) (2.46)

r12

Equation 2.46 is the fundamental equation of ellipsometry, since it relates the two
experimental measurable values (A and¥ ) to the properties of the material ( I\~ll, Nz) being

studied. The complex reflection coefficient isalso related to £ asin Equation 2.47.

2

. . 1-

g=sn’¢, +sn’¢, tanngl(—pj (2.47)
1+p

24.4 Réeflection and Refraction at Multilayer System

It will be more complex when the sample consists of a substrate with one or more
films. This creates multiple interfaces where reflection and refraction take place as depicted
in Figure 2.11. The Fresnel reflection coefficient (r) isreplaced by the total reflection
coefficient (R). Equations 2.48 and 2.49 define the total reflection coefficients for the p and s
components, respectively,

p pa-i2p
RP = f, +15€

= : 2.48
1+rbrpe? (2.48)

rs+rie'?
s _ lip Tl
R S

Sy a— 2.49
1+r5roe? (2:49)

where the exponential term, S, isameasure of the phase shift due to the different path

lengths of the reflected and refracted beams.

B = 27[(%)“2 COS¢, (2.50)
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Figure2.11 Geometry of reflection and refraction when a monochromatic polarized light

isincident on afilm-covered substrate with the complex index of refraction N,, N, and N,.



The Fresnel reflection coefficients contained in Equations 2.48 and 2.49 are calculated in a

similar manner as Equations 2.43 and 2.44, and are defined below.

rg = 2 €050, — 1, €59, (2.51)
N, cos¢, + N, cosg,
N -N

s == 2059, — N, 0S¢ (2.52)
N, cos¢, + N, cosg,

. N, cos¢, — N, cos

5= = % =2 ?2 (2.53)
N, cos¢, + N, cosg,
N, cos¢, — N, cos

rzs3 — N2 ¢2 3 ¢3 (254)

2

Cos¢, + I\~l3 COS¢,
Now, the total reflection coefficients are used to calculate p , analogous to the bare surface

example, and are once again related to A and W (Equation 2.55).

p

/D=R—S=t<':\n‘1’eiA = p(N;, N,, N;, L, ¢, 2) (2.55)
The fundamental equation of ellipsometry is thus obtained, where p isnow afunction of the

complex index of refraction of the film ( Nz), aswell asthefilm thickness (L), in addition to

the ambient and substrate materials properties ( I\~ll, Ng) and experimental (¢4,,A) parameters.
Furthermore, the dielectric response function is replaced by the pseudo-diel ectric response

function <g> (Equation 2.56), since the probe beam measures the combined effect of the

film-substrate system.

(£) =sin? g, +sin? ¢, tan? ¢1G;—’;j (2.56)
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For each additional film that may be present, additional terms are added in order to calculate
the appropriate p .

The task now becomes extracting the desired materials properties from the measured
A and V¥ values viathe complex reflection coefficient. Since ellipsometry involves the
measurement of two known values, the extraction of two of the unknown propertiesis
straightforward. For example, in the case of a single homogeneous film on a homogeneous
substrate, the complex indices of refraction of the film and substrate are often known, or can

be found in the literature. The ambient istypically air (n=1,k =0), and the angle of

incidence and the wavelength are known. Therefore, the film thicknessis the only unknown
parameter. The extraction of the film thickness is accomplished by the use of an optical

model in a software package such as WVase by J.A. Woollam Co.

245 Heterogeneous Systems and Effective Medium Approximation

Often times, the film and/or substrate are not homogeneous in nature. Consequently,
the indices of refraction are not known, and hence the dielectric response function is
unknown and must be approximated. In this case, effective medium approximations are used
to treat the heterogeneous material as a combination of homogeneous materialsto yield a
pseudo-diel ectric response function. In general, an effective medium approximation (EMA)

has the form given in Equation 2.57,

(2.57)

where <g> is the pseudo-diel ectric response function of the heterogeneous material, &, isthe

dielectric response function of the host material, ¢.

; Isthe dielectric response function of the
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homogeneous components, and f; isthe volume fraction of each component. Each

component is treated as a sphere that is large enough to retain the dielectric response function
of the bulk material, yet is smaller than the wavelength of the probe light beam. Several
EMA'’s are used to model various types of heterogeneous materials as discussed below.
The Lorentz-Lorenz EMA is obtained by treating the host material as vacuum
(¢, =1), asin Equation 2.58.**3
(8)-
&)+

The constituents (1 and 2 above) are considered to be heterogeneously mixed in the host

H
>

-1, &1

- zm; f, = 1, (2.58)

-1
A A 2 A
= €, +2 & +2 g,+2

N

vacuum, with material 1 having avolume fraction equal to f;, and material 2 equal to f».
More commonly, the host material is not vacuum. In this case, the genera form of the

Maxwell-Garnett EMA is obtained (Equation 2.59).

8)=é, 3 ST g b g fmhy (2.59)
Ve 428, Té,+28, Cé,+28,

If one of the components in the Maxwell-Garnett EMA acts as the host (material 1, for

example), then the EMA in Equation 2.60 is generated.

- —f, 2 1 (2.60)

Maxwell-Garnett EMAs are most effective for approximating heterogeneous materialsin
which the host component completely surrounds the remaining components.* The fina
EMA that will be discussed is the Bruggeman EMA (BEMA), in which the host material is
assigned the dielectric response function of the heterogeneous material in question.®> Thisis

referred to as the self-consistent model and has the form of Equation 2.61.
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24.6 Mode Optimization

The parameter used to determine the quality of the match between the cal culated and

the experimental data s the mean-squared error (M SE) and is given in Equation 2.62.%°

1 QR e LA e
MSE = ' ' SR el B e B 2.62
2N-M = GE,XF foip ( )

where N is the number of (W,A) pairs, M isthe number of variable parameters in the model,

and o isthe standard deviation on the experimental data points. Therefore, data points with
large standard deviations are not weighted as heavily as those with atight distribution. Better
fits between modeling and experimental data will have positive values approaching zero.

Once the best-fit parameters have been obtained it is necessary to evaluate the
standard 90% confidence limit (SCL) and correlation matrix values. The value expressed in
the SCL can be understood as how sensitive the parameter isto the fit. Correlation matrix
values tell us how “independent” fit parameters are. Correlation values of unity indicate
strong correlation between fit parameters. Practically this means that the parameters can both
vary and give the same quality fit.

Thus far we have demonstrated what and how ellipsometry measures, and aso the
way to construct optical models and perform theoretical calculations, if we have previous
information about the sample from other sources. Through the comparison of model
calculations with highly accurate ellipsometric measurements, optical or other physical

properties about the system under study can be obtained.
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CHAPTER 3- ORGANIC SEMICONDUCTORSAND
ORGANIC THIN FILM TRANSISTORS

31 Overview

Organic materias are found throughout everyday life in applications ranging from
packaging to videotape, and from furniture to clothing. Thisis because they can be readily
shaped and manufactured, and their properties can be tailored to a particular application.
Conventional plastics are electrical insulators, but the discovery of aremarkable class of
polymers that can conduct e ectricity has opened a new era of plastics science and
technology.! Since then, organic semiconductors have been the subject of intense research
because of their promising applications in electronic and optoelectronic devices.? Although
organic electronics are till far from (and actually not expected to be) replacing the high-end
semiconductor devices, they are very promising in applications where flexibility, reduced
cost, and ease of production are needed which cannot be provided by the current silicon
based devices. Generaly organic semiconducting materials are readily processed from
solution, and have exceptional scope for molecular engineering to enable their propertiesto
betailored. They can be used to make awide range of semiconducting el ectronic devices
such as thin film transistors (TFT’s), light-emitting diodes, solar cells and even lasers.®

Organic electronic devices generally employ thin films of the semiconductor materia asthe



active region (where chargeis carried) shown in Figure 1.2. And the device performance
largely depends on the active film quality. Organic semiconductors can be small monomeric
molecules such as pentacene and anthracene, or large macromol ecul es such as polyacetylene
or poly(p-phenylenevinylene). Likewise, organic semiconductors can be categorized into
classes of amorphous, crystalline, or a combination of both depending on their molecular
structure, el ectronic structure, and the conditions under which the films are prepared. Figure
3.1 shows the schematic diagrams of these different classes of organic semiconductors.

In this Chapter, the molecular structure and formation of electronic states for organic
semiconductors will be discussed. The fabrication and performance comparison of variable
configurations of organic thin film transistors (OTFT’s) are explained. Performance
parameters such as charge mobility, turn on/off ratio, and leakage currents will be presented
along with several theories on charge transport in organic semiconductors. The electronic
measurements will be discussed together with the explanation of the custom built probe

station.
3.2  Organic Semiconducting Materials

Semiconducting properties associated with organic materials usually derive from
conjugated conformation in carbon-containing compounds, i.e. the extended 7-orbitals or
delocalized electrons from sp® + p, hybridization. The delocalized z-electrons will fill up a
whole band. This z-bands in the organic semiconductor are normally called molecular
orbitals. Thefilled z-band is called the Highest Occupied Molecular Orbital (HOMO), and

the empty/anti -band is called the Lowest Unoccupied Molecular Orbital (LUMO). Figure

3.2 illustrates the formation of this molecular orbitals using polyethylene as the example.
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Figure3.1  Schematic diagrams of different classes of organic semiconducting materials.
(a) molecular crystalline e.g. pentacene at low temperature, (b) molecular amorphous e.g.
NDA-N1, (c) conjugated polymer e.g POMA, (d) polymer with pendant active group e.g.
PVK polyvinyl carbazole, and (€) molecularly doped polymer e.g. POMA doped with cresol

of HCI.

52



-

LUMO

-
3 8
—

Figure 3.2 Illustration of bonding and anti-bonding orbital interaction of HOMO and

LUMO orbitals of a segment of polyethylene molecule.
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The electronic transport over macroscopic distances requires mutual overlap of the z-bands
between adjacent molecules. The scope for introducing electronic chargesis restricted by the
high ionization potential and low electron affinity for this high energy gap semiconductor.
Asthe length of the conjugated sequence isincreased, the energy gap between HOMO and
LUMO decreases. Some typical organic semiconductors are pentacene, polyacetylene,
poly(p-phenylene), polyaniline, polypyrrole, and polythiophene, whose molecular structures

areillustrated in Figure 3.3.
3.3 ChargeTransport in Organic Semiconductors

In metals and conventional semiconductors, charge transport occurs in delocalized
states, and is limited by the scattering of the carriers, mainly on phonons, that is, thermally
induced | attice deformations. For example charge carriersin crystal silicon move as Bloch
waves in highly delocalized planes and wide bands and the charge mobility is as high as 10°
cm?V s, At very low temperature the charge mobility for organic semiconductors can also
approach 10 cm?V's! (e.g. pentacene at ~ 17 K). This high mobility suggests that the
charge transport in organic semiconductors at low temperature is similar to that in inorganic
semiconductors.* However, with increased temperature, the effective band widths are
progressively reduced by lattice vibration and strong phonon-charge carrier coupling.>® The
van der Waals force, the most significant intermolecular interaction in organic films, is only
40 KJ/mol whereas the lattice vibration can be higher than 50 KJmol, which prevents
molecular chain alignment and prevent long range lattice formation.” Therefore, the band
like charge transport model is no longer valid and the charge delocalization is often restricted

to single units.
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Figure 3.3 Examples of some well-known organic semiconducting materials.
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Most organics are amorphous and at best polycrystalline. The impurities and disorder
present in amorphous solids effectively reduces the charge mobility to 10 to 102 cm?V's™
range as the charges are trapped and scattered. Alternative charge transport mechanisms are
necessary to explain the phenomena. Hopping transport of charges between localized states
isthus proposed. In this section, several charge transport models are discussed; they are
band transport, hopping transport, field-dependent transport, and multiple trapping and

release transport.
3.3.1 Band Transport

The band transport model is generally applied for charge transport in inorganic crystal
semiconductors, where a regularly spaced tightly bound lattice forms a band structure and the
charge carriers are delocalized over alarge area with little hindrance.?. Some organic
semiconductors can also form orderly molecular arrangement and show comparable charge
transport. For example, mobility of ~ 1 cm?V s has been reported for pentacene at room
temperature, which increases considerably to values as high as 10°cm?V st at 1.7 K. This
power law dependence of mobility on temperature (1 oc T™") and the observation of a
guantum Hall effect presents a good argument that structured organic materials at low
temperature can demonstrate band like conduction.

The schematic diagram for delocalized band transport is shown in Figure 3.4. Charge
carriers will be scattered when they come in contact with defects, or as-shown lattice
vibrations, which will reduce the charges moving in forward direction. At low temperature

there will be less molecular vibrations and low chance of charge scattering. Consequently,

the carrier mobility, u shows dependence on temperature (1 oc T™"). At room temperature,
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band transport is difficult because of increased molecular lattice vibration, which causes the

charge carriers to scatter significantly.
3.3.2 Hopping Transport

In most amorphous organic films, the charge carriers are strongly localized in
potential wells. In these materias, the hopping of localized charges between these potential
wells has been reported as a main mechanism of charge transport.® A main difference
between the delocalized and localized transport is that, in the former, the transport is limited
by phonon scattering, whereas in the latter, it is phonon assisted. Accordingly, the charge
mobility decreases with temperature in conventional semiconductors, while the reverse being
true in most organic materials. The sources of the aforementioned potential wells can be
either extrinsic or intrinsic. The grain boundaries, packing imperfections, impuritiesin
lattice and interfacial states are considered extrinsic causes of localization. Intrinsic cause
arises from polarons, which are formed when a moving charge polarizes the lattice around it.
The resulting lattice polarization acts as alocalization site and hinders the movement of the
charge, thus decreasing the charge mobility.>

Figure 3.5 shows adiagram of various trapping sites in an organic semiconductor.
The molecular vibrations in the solid provide the activation energy for the charge carriers
indicated by the red dots to hop from one shallow trap site to an adjacent trap site in the
direction of the electric field. Temperature affects the mobility positively by severa orders
of magnitude because the charge transport is assisted by the lattice vibrations.” This process
of thermally activated tunneling from an occupied site to an empty was initially described by

Moitt as phonon assisted hopping (Equation 3.1).%°

1= po Xp[~(T, /T)"] (31)

57



where o isaninteger ranging from 1to 4. When a =4, typical Arrhenius behavior is
observed in many thermally activated processes, which suggests that thermal energy assists
the charges to hop between localized sites in the direction of the electric field.

With further increase in temperature, the number of molecules with adequate energy
required for activation of the charge carriers to hop increases (the energy distribution curve in
the Boltzmann’s distribution shifts to the right). Miller and Abraham developed Mott’s ideas
and proposed Equation 3.2 to account the hopping rate between an occupied sitei and an

adjacent unoccupied sitej:**

E-E
a{' Jj E >E,
V; =V, eXp(-2R;) KT E<E (3.2

1 J

where v, isthe frequency of hopping corrected by the tunneling probability and the
probability of absorbing thermal energy, E, —E; isenergy difference between the two sites
and R; isthe physical separation between the two sites. The wave function overlap between

thetwo sitesis y " and, and k; is the Boltzmann’s constant. This model addresses hopping

mechanism of charge transport between three dimensional shallow impurity statesin a
compound with weak lattice coupling such as amorphous semiconductors.*? The density of
these shallow trap sites can be increased by annealing the organic film which improves
molecular alignment and results in improved mobility. This effect will be presented in

Chapter 5 where the optimization of OTFT performance is discussed.
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Figure 3.5 Phonon assisted hopping of charges between localized sites.
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3.3.3 Field-Dependent Transport

A genera feature of charge transport in organic materialsis that the mobility becomes
field dependent at high electric field (in excess of 10° V/cm). This phenomenon occurs
through a Poole-Frenkel mechanism®, in which the coulombic potential near the localized
levelsis modified by the applied field in such away as to increase the tunnel transfer rate

betweens sites. The general dependence of the mobility is given by Equation 3.3:

u(E) = u(O)exp[ qu BVE j (3.3)

Where 1(0) isthe mobility at zero field, S = (e/ weg,)"? isthe Poole-Frenkel factor, and E

is the magnitude of the electric field.

3.34 Multiple Trapping and Release

Multiple Trapping and Release (MTR) model was first described in 1970 by Comber
et at.”* MTR waswidely used to account for charge transport in amorphous silicon. It
combines the band transport and hopping transport, where a narrow delocalized band is
associated with a high concentration of localized levels that act as traps as shown in Figure
3.6. Thedelocaized bands are formed by the 7 —z band overlap in the semiconductor.™
Likewise, the grain boundaries, impurities, and interface states form the traps. Asacharge
carrier travels, it continuously interacts with these trap sites, and is released to the delocalized
band through thermal activation. In thismodel, two assumptions are usually made: the
carriers arriving at atrap are instantaneously trapped with a probability close to one and the

release of trapped carriersis controlled by athermally activated process. The resulting
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effective drift mobility u inthe delocalized band by an expression of the form in Equation

3.4:%

-E
Hegs = Hox eXp( kTaj (34)

where E, isthe energy difference between the trap level and the delocalized band edge and

o istheratio of the density of charge carriers at the delocalized band to density charge
carriersin the trapped states.

The schematic diagram in Figure 3.6aillustrates asimple MTR transport. In this
model, when the gate voltage is applied to the OTFT, the charge carriers are accumulated at
the interface of the gate dielectric and the semiconductor. Asthe energy level of the charge
carriers are raised, which raises the Fermi level ( E; ), the lower energy trap sites of the
semiconductor are filled, thereby initially reducing the number of charge carriers. When
multiple trapping sites are available as shown in Figure 3.6b, the charge carriers can interact
with awide range of trapping sites. Therefore, the free carrier available then becomes a

direct function of gate voltageV, , which can aso provide the activation energy for the
carriers to be released and transported to the delocalized band. With theincreaseinV, as

more and more charges start accumulating in the interface, they start occupying trap sites at
relatively high energies. These additional charges at higher energy levels will require less
activation energy to hop to a neighboring trap sites and into the delocalized area. This

mechanism results in a higher mobility with increasing gate voltage and higher temperature.
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Figure 3.6 Schematic illustration of (@) single trap, and (b) multiple trapsin organic

semiconducting materials.
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34  OTFT Operation and Modeling
34.1 OTFT Design and Geometry

The common device configurations used in OTFT s will be discussed in this section.
The working technology of atraditional MOSFET and OTFT has been discussed in Chapter
1. Typicaly, an OTFT is constructed using an inverted gate stack, and the two design
structures of OTFT are shown in Figure 3.7. The bottom-contact architectureis shownin
Figure 3.7a and the top-contact structure is shown in Figure 3.7b. The bottom contact is
fabricated by first depositing the source and drain lines on an oxide substrate, and the
semiconductor film is then deposited on this structure. Thisdesign is easy to fabricate and
the resistance for charge transport between source and the drain is minimized. However, it is
difficult to measure the film thickness on the source and drain structures. In the top contact
structure, the substrate oxide is coated with film, and then the metal lines for the source and
drain contacts are deposited by vacuum evaporation as quickly as possible to prevent the
semiconductors from decomposing at high temperatures. The deposited film thicknessis
easy to be measured. In this design, the shortest distance for charge transport between the
source and drain will be obtained if the charge carriers move at the air-semiconductor
interface in Figure 3.7b. However, the charge carrierstravel from source to drain by forming
achannel at the semiconductor-dielectric interface where the electric field is the greatest.
The charges thus have to travel an added distance as indicated by the trgjectory of the blue
dots shown in Figure 3.7b. This added distance increases the resistance for charge transport.
The details of device performance for bottom-contact and top-contact will be discussed in

Chapter 5.
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Figure 3.7 Common configurations of OTFT designs with (a) bottom-contact and (b) top-

contact designs.



The deposition of the semiconductor is the determining step of the OTFT fabrication,
especially when using athermally oxidized silicon wafer as substrate, where the rest of the
process is controlled by conventional techniques. Severa deposition methods such as
€l ectropol ymerization, spin-casting, vacuum evaporation, and Langmuir-Blodgett techniques
have been used to make organic semiconductor films. In this study, spin-casting was chosen

with its convenience and resulting smooth films.
3.4.2 Principlesof Operation

An overadl view relative to the operation of both MOSFET and OTFT has been
discussed in Chapter 1. Here details of observations during the OTFT operation and the
molecular contribution in the active layer will be presented. In order to better understanding
the charge transport processin OTFT’s, we start the discussion with organic films aligned
well with one another. The electric field from applied gate potential will alter the Fermi level,

E. of HOMO, which changes the energy of the charge carriers, and thus affects the inter-

chain charge transport. Figure 3.8 shows a schematic diagram of how the gate potential
affects the concentration of charge carriersin the semiconductor (an example of P-channel
organic material isused). When no gate voltage is applied, asin Figure 3.8a, aflat band

situation is observed where no charges flow between the source and the drain. E isaigned

with the source and the drain, but the conducting states between HOMO and LUMO are
energetically far from the Fermi level. When negative gate voltage applied, the HOMO level
isincreased and closer to the Fermi level, which forms a channel and permits charge to flow
from source to drain as shown in Figure 3.8b. In addition to the gate voltage, theincreasein
drain voltage, as shown in Figure 3.8c, acts as adriving force for the charges to flow between

drain and the source.
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Figure 3.8 Schematic illustration of OTFT operation when applying (a) zero gate voltage,

(b) negative gate voltage, and (c) drain voltage together with negative gate voltage.
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A typical I-V plot obtained during the electronic measurement of a P-channel OTFT
isshown in Figure 3.9. It consists of linear regime and saturation regime. When negative
gate voltage is applied, the electric field across the dielectric draws the majority carriersto
the interface of semiconductor and the gate dielectric layer. When the gate voltageis
increased, more charges accumulate at the interface of the dielectric and the semiconductor,
increasing the width of the channel. These charges form a P-channél illustrated by awhite
band in Figure 3.10a, which permits charge flow between source and the drain. The current
follows Ohm’s law and is proportional toV, . Asthe gate voltage increases further, a pinch-
off region is observed followed by a saturation level. At pinch-off voltage, a depletion
region starts to form around the electrode as the charges density approaches zero (Figure
3.10b), and reaches zero at saturation (Figure 3.10c). Once the saturation region is reached,
the increase in drain voltage does not cause increase in current.

The | -V characteristics can be calculated in the gradual channel (or Shockley)
approximation, based on the assumption that the electric charge density related to a variation

of the electric field along the channel is much smaller than that related to a variation across

the channel, namely|oE, / 9x| << ‘aEy lay‘ , Where E is the electric field, and x and y the

directions parallel and perpendicular to the dielectric-semiconductor interface, respectively.
This condition is generaly fulfilled when the channel length L is much larger than the

dielectric thickness. A typical linear region is experienced in the region where Vg, <V, and

the drain-source current |, can be calculated through Equation 3.5: o

w V.
lo :TCDie:u(VG Vi _% ) (3.9)
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Figure 3.9 Typica drain-current-voltage characteristic of OTFT’s
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(&) Linear Region V, <V

(b) Pinch-off Region V, ~V,

(c) Saturation Region V, >V

Figure3.10 lllustration of different regimes during an OTFT operation. (a) linear

region, (b) pinch-off region, and (c) saturation.
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where C,,, isthedielectric capacitance (per unit area), W and L are the width and

length of the channel, u isthe charge mobility in the semiconductor, and V; isthe
threshold voltage which accounts for the voltage dropped across the dielectric layer due
to interface states and impurities and is a so the point turn on point of the device. A

pinch off is observed when Vg, approaches V, and a saturation occurs when Vg, >V .

In the saturation region of the plot, Vg, isreplaced by V; —V, which resultsin Equation

3.6:

w
lo = ZCDie.u(VG Vi )2 (3.6)

where there is amost no voltage dependence on current in this region.
3.4.3 Performance

Since the first report in 1987, the performance of OTFT’s has continuously
improved. There are several parameters that are used to gauge the performance. The charge

mobility, 1 describes how charge carriers move within the active layer under the influence

of the electric field. The switching speed of an OTFT is dependent on mobility and therefore
high mobility is desired. Because charges transport by hopping between localized sites, the
mobility is typically in the range of 10°t0 10" cm?V™*s™ for OTFT’s. For comparison,
amorphous silicon has a mobility of 0.1-1 cm?V*s?, and single crystalline silicon has a
mobility of 1400 cm?*V™s®. Thefield effect mobility in an OTFT is caculated from

Equation 3.7:

L (o
= = (3.7)
WC,, Vg, | 8V
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where w1 isthefield effect mobility, Wis the channel width, L isthe channel length, ZIVSD IS

G

the slopein theturn-on curve, and C,,, is dielectric capacitance per unit area.

Many factors affect the mobility of charge carriers and performance of OTFT’s. It
has been reported that increasing the substrate temperature during organic film deposition,
doping and post-annealing are helpful for higher charge mobility.* In this study, we have
considered alternate gate dielectric layers for the OTFT’s, and post fabrication treatments
such as annealing to improve the mobility of the OTFT. The gate material which
capacitively couples the active semiconductor layer and the contact metal €l ectrodes play a
vital role in the performance of OTFT. A dependable gate material should have low defect
densities, a smooth surface with very little roughness and form sharp interfaces that
facilitates good morphology of the subsequent active layer deposition. Annealing also
improves mohility by bringing the hopping sites closer together by densification.** The
details of this study will be presented in Chapter 5.

The turn on/off ratio is indicative of the switching performance of an OTFT, and is
defined as the ratio of current flowing between the source and the drain in the “on” and the
“off” states. A low current is desired in the off state to minimize or eliminate leakage current
in theinactive state. An on/off ratio as high as 10° have been reported for some OTFT’s, but

amuch lower valueis usually observed.*?
3.4.4 Electrical Measurements

The electrical measurements were carried out using a Keithley 236 Source Measure
Unit and an additional power supply was used to supply the gate voltage. The custom probe

station was facilitated with two probe manipulators from Signa Corporation connected to the
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source and drain electrodes. Software to automate the data collection process was
LabVIEW™,

The vacuum enabled chuck was used to hold the sample firmly on the station, and to
act as the gate electrode during the measurement. Figure 3.11 shows the schematic diagram
of the vacuum chuck. The reverse side of silicon substrate was sanded with a diamond
scriber to remove SiO; layer and Galn eutectic coating was applied with a Q-Tip™ to make
an ohmic contact between the device and the gate electrode.

The voltages reported here are source-drain voltage and source-gate voltages, with the

source electrode grounded. Software assisted averaging of multiple data sets was carried out.
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Figure3.11  Schematic diagram of avacuum enabled chuck (a) top view of brass plate
with 0.5 mm holes drilled, (b) cross-section view of the brass chuck showing 0.5 mm hole
and a cavity, and (c) Teflon base bored in the center, an outlet drilled to for vacuum tubing,

and an o-ring ensuring the tight fit between the brass top and Teflon base.
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CHAPTER 4- OPTICAL CHARACTERIZATION

4.1 Introduction

In Chapter 1 of this dissertation the relation of optical properties of organic

semiconductors to the device properties was mentioned. In practice, a knowledge of the
complex refractive index ( N = n+ik wherenisthe refractive index and k the absorption

index) for an organic thin film, and the relationship of N to aromatic  — 7 band transitions
are crucial for understanding and optimizing the performance of these devices.> For instance,
the el ectroluminescence quantum efficiency of an organic LED isrelated to the refractive
index n.? Oftentimes organic thin films are optically anisotropic, particularly polymer thin
films, and the optical anisotropy can impact the optical and electronic properties.®*

Katz et al reported” that low molecular weight naphthal enetetracarboxylic diimide
derivatives were suitable as stable N-type organic semiconductors even in the presence of air,
while previous N-type organic semiconductor devices failed because oxygen reactions
limited the lifetime of these devices. Their naphthalene based imides with terminal
fluorinated tails showed high electron mobilities (> 0.1 cm?V*s™) and excellent turn on/off
current ratios (> 10°). Based on these results we have selected a compound recently prepared

that has the suitable electronic groups indicated by Katz et a but also has groups that should



further enhance the compounds stability. This compound is a new naphthalene derivative
and is called asNDA-n1 or NDA-n2 (see Chapter 1).

In this chapter, the optical properties of NDA-n2 and NDA-n1 thin films were
investigated using variable angle SE over the photon energy range 1.5-4.5eV. UV-Vis
spectroscopy was used as complementary technique for SE. From the optical
characterization the complex dielectric function and an assessment of the arrangement of
moleculesin the thin films were obtained. The morphology and roughness of film surface
were measured by AFM and simulated by Bruggeman EMA layer. A detailed procedure for

the detection of optical anisotropy in thin filmsis presented.

4.2  Experimental Details

The experimental procedure for optical characterization isillustrated in achart as
shown in Figure 4.1. The silicon wafers used in the study were commercially available P-
type single crystalline silicon of (100) orientation with aresistivity of ~2 Q-cm (Virginia
Semiconductor, Inc.). The Corning fused silicawas bought from Corning Company. The
starting NDA solid was synthesized in a one-step procedure. The appropriate dianhydride
and aryl-amine were stirred in glacia acetic acid for 2 h at room temperature, followed by
refluxing for 12 h. Thefinal products were crystallized from the reaction mixture and were
further recrystallized from either dichloromethane or 1,2-dichlorobenzene. Details with
respect to synthetic procedures and product work-up have been previously reported.®

NDA'’s thin films were deposited on substrates by spin coating from solutions using
dichloromethane as the solvent. The spin speeds ranged from 1000 to 5000 rpm and the

weight concentration was around 0.15%.
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Figure4.1

P-type Si (100)

|

RCA Clean
HF Dip Corning 2947
Th_erm_al Bare Si Acetone Clean
Oxidation
AFM ; ; | UV-Visable
Roughness Spin Casting > Y —
Optical
Characterization

Flow chart of experimental procedures.
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The substrates included Corning 2947 fused silica, single crystal silicon and SiO, coated
silicon substrates. All substrates were cleaned prior the deposition. The single crystal silicon
substrate was cleaned using the standard RCA procedure followed by a10 sdip in HF' and
blown dry in pure nitrogen obtained from boil-off of liquid nitrogen. The SiO, substrates
were obtained by dry oxidation of the aforementioned cleaned silicon wafers at 1000 °Cin a
high purity oxygen flow. The Corning 2947 fused silica substrates were cleaned using
acetone.

Variable angle spectroscopic elipsometry over the photon energy range 1.5-4.5€V in
steps of 20 meV was performed in air using a custom made rotating anayzer ellipsometer
(RAE). Also used in thisstudy was aJ.A. Woollam M 88 spectroscopic ellipsometer, and a
Gartner single wavelength (A = 632.8 nm, 1.96 eV) nulling ellipsometer. All ellipsometers
have a beam size of several mm in diameter.

As discussed in Chapter 2, Ellipsometry measures the change of the polarization state

of the polarized light upon reflection from a surface. The measurables, ¥ and A are related

to the complex reflection coefficient p and Fresnel coefficients ﬁp and F~%S by Equation 4.1:®

= tan(\P)e" (4.1)

Likewise, the dielectric response function &, and pseudo dielectric function <& >, a
composite dielectric function of a multi-film stack upon a substrate are both obtained from

Equation 4.2:

gor(e)=¢ +ig, :Sinzqﬁtanzqﬁ(i—pj (4.2
p
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The parameterization of the optical functionsis based on the fact that the dielectric

function ¢(E) isrelated to band-to-band transitions that could be expressed by different

oscillators, athough it should be pointed out that there is no simple correlation between the
energies of optical transitions and oscillator resonance energies in the oscillator model.°
Because the Visible-Ultraviolet absorption spectra of the films showed multiple adjacent and
broad absorption bands, the optical functions for NDA’s thin films are simulated by an
oscillator model using the combination of Tauc-Lorentzian and Gaussian oscillators. Details
of the model will be discussed in the next section and the oscillator model for NDA’s thin
films uses one Tauc-Lorentzian oscillator and three Gaussian oscillators to yield good fits
that are physically consistent with experimental optical absorption results presented bel ow.
The quality of thefit of the datato the model is expressed by the mean square error (MSE) as

follows:*°

2 2

1 (Y™ - AT A
SE= | — |+~ | 4.3
2N—lel( o5 ] [ o H 9

Ai

A MSE value of 0 indicates a perfect correspondence of measured and model cal culated
results. Another important factor that impacts the fit is the correlation among the parameters.
Thisis particularly problematic when using purely mathematical models. Multiple samples
are used to minimize the correlation influence and several other techniques such as manual
null ellipsometry and UV-Vis spectra are used to give complementary support to the models
used.

A manual nulling ellipsometer equipped with He-Ne laser source is used to determine
the film thickness and refractive index at 1.96 eV. The W — A trgjectory at thisenergy is

calculated and compared with the RAE results. Ultraviolet and Visible (UV-Vis) absorption
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spectra of NDA-n2 thin film in the photon energy range 1.5 — 5.0 eV are obtained from thin
film deposited on fused silica slides (Corning 2947) using a Perkin Elmer Lambda 40 UV -
Vis spectrometer. The film morphology and surface roughness are determined using atomic
force microscopy (AFM). The Bruggeman EMA (BEMA), in which the host material is
assigned the dielectric response function of the heterogeneous materia in question, is
referred to as the self-consistent model and was used to simulate the surface roughness.

The optical properties of NDA-n1 were determined using the same procedure as the
aforementioned method. With identical conjugated core group and similar molecular
structure, a model with the combination of one Tauc-Lorentzian oscillator and three
Gausssian oscillators was proposed to simulate the refractive index of NDA-n1. The optical
properties of other two organic dielectrics Polyethylene PE and polyvinylidene fluoride
P(VDF-TrFE) are also presented, which would be used for film thickness determination in

Chapter 5.

4.3 Results and Discussion

4.3.1 Film Preparation

The NDA’s thin films were deposited by solution spin casting using dichloromethane
as solvent. The parameters that will affect the film properties include the choice of solvent,
the concentration of solution, the spin speed (RPM) as well as the interaction among the
polymer, solvent and the substrates. Asshownin Table 4.1, asignificant differencein the
NDA-n2 film thickness was found depending on the substrate being either bare silicon or
SiO, where the spin casting conditions were otherwise the same (RPM and concentration).

The possible reason for thicker films on SiO, substrate comes from its higher surface energy
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compared with HF-dip Si surface. The surface energy for freshly HF dipped silicon
(hydrogen terminated) is significantly smaller than that of SiO, as shown in Table 4.2.™
Therefore the NDA-n2 solution wets the H-terminated Si surface far less than the S IO,
surface. Considering that for spin casting, only small amount (20 uL) of of NDA-n2 solution
was dispensed at the center of the spinning wafer (2 cm? area), the NDA-n2-substrate
interaction dictates the amount of solution that adheres to the substrate surface and therefore
determines the film thickness. The thickness value of SIO, does not have to be large, even a
thin native oxide (~1 nm), that growsin air after the HF dip increases the NDA-n2-surface
energy (hydrophilicity) and permits wetting and thicker polymer films. Another factor that
affects the film thickness and uniformity is spin speed, which isalso shownin Table 1. In
this experiment, spin speed between 3000 and 5000 RPM will get uniform film with
appropriate thickness. With spin speed lower than 3000, the film was too rough, while it was

too thin if spin speed was higher than 5000 RPM.
4.3.2 Optical Modeling

A representative UV-Vis absorption spectrum of an NDA-n2 thin film deposited on
fused silicais shown in Figure 4.2. The solution spectrum obtained in this study is
essentially the same as in previous published results® and shows substantially the same
absorption bands albeit shifted, sharper and more Lorentzian in shape than for the solid film.
The absorption at 4.51 eV is attributed to the 7 — 7 band transition associated with the aryl-
ether flexible tail, while the absorptions of 3.30, 3.48 and 3.64 eV arefromthe 7 — =

transition in the naphthal ene-tetracarboxylic diimide conjugated core.
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Table4.1. Concentration, spin speed, and POMA film thickness for silicon and SiO,

substrates
Spin Speed (RPM) Substrate NDA-n2 Thickness (nm)
4000 SO, 27.3t1.7
4000 Si 16.2+1.5
3000 SO 36.8+2.2
3000 S 19.5+1.4
2000 SO 41.5+1.6
2000 Si 22.7+2.1
1000 SO, 44.3+1.8
1000 Si 27.9+5.2
Table 4.2. Comparison of surface energiesfor silicon, SiO,, and H-terminated silicon
substrate SurfeccEnagy | SurfaceBnargy
S 1100 110
SO, 2000 200
Si H-terminated 27 2.7
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Figure 4.2 UV-Vis Absorption Spectrum of NDA-n2 thin film.
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Rather than attempting to obtain n, k and film thickness L directly from a single optical

model that includes the above determined optical absorption, our modeling strategy first uses
the low optical energy range below 3 eV where k ~ 0 to determine the film thickness and
refractive index n, and then using the L determined as input a more general optical model is
developed. This strategy reduces the number of unknowns that are to be fitted across the
photon energy range studied. For finding L asingle film model is used with data below 3 eV
where the transparent film is approximated using the Cauchy formula of the form:*2

B C
n(l) = A+ ? + ? (44)

where A, B, and C arefitting parameters. In thislow photon energy regime the only
unknown parameters are the film thickness L and the dispersion of the refractive index, n(E)
or n(1) . The SE data are then sufficient to accurately extract the thickness and refractive
index nin this transparent region using a nonlinear regression analysis. The values of n(E)
from this Cauchy model in the transparent range are shown as the solid line in Figure 4.3.

In order to confirm the results above from the Cauchy model, an accurate single
wavelength manual nulling ellipsometer equipped with a quarter wave plate was used to
obtain ¥ — A datafrom multiple NDA-n2 samples. The data are compared with a cal culated
Y — A trgjectory shown in Figure 4.4 with the step thickness of 2 nm with n at 1.96 eV
(632.8 nm) as obtained from the Cauchy model. It is seen that the agreement is visually good,
and a quantitative comparison of the thicknessesis given in Table 4.3 which shows better

than 10% agreement over the thickness range.
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Figure 4.3 Optical properties (n and k) of NDA-n2 thin film obtained from the Cauchy
model in the transparent region aong with results from the oscillator model over the entire

range.
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The UV-visible spectrum in Figure 4.2 displays one broad band and severa adjacent
absorbances. Thereforeit is reasonable to use Tauc-L orentzian and Gaussian oscillator model

to simulate the optical properties. Tauc-Lorentzian and Gaussian oscillators describe ¢, with

the form given by equations (1) and (2), respectively:*

AE-E,)? s
E, = N
* E’-E/+C?
N N e
g,=Ae B —Ae & (4.6)

where A is the oscillator amplitude, E, is the resonance energy of the oscillator in €V, Br isa
broadening termin eV, E, isthe band gap of thefilmin eV, and Cisafittingtermin eV.

Thereal part of the dielectric function &, isobtained from &, using the Kramers-Kronig
integrals. The use of the Tauc-Lorentzian oscillator was proposed by Jellison et al*® and is
suitable for the interpretation of interband absorption of amorphous thin films. Gaussian
oscillators are used for the ssmulation of broad band absorptions. In order to cover the entire
photon energy range investigated using SE and to be consistent with the measured absorption
spectrum, an oscillator model with a Tauc-Lorentzian oscillator and three Gaussian
oscillators was chosen. With the thickness determined using the Cauchy model, approximate
optical constants are obtained over the entire energy range including both the transparent and
absorption regions using a point by point fit from the lowest photon energy to the highest
photon energy. Then the oscillator model mentioned above is used to refine the optical
constants and insure Kramers-Kronig consistence in the refined optical constants. The
parameters for the four oscillators for the oscillator model are given in Table 4.4, where the

each fitting parameter has been defined above using Equations 4.5 and 4.6.
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Table4.3 Y — A from Cauchy model and thickness from Cauchy model and ¥ — A

tragjectory
Thickness (nm)

Y () A(°) .

Cauchy Mode Traectory
39.58 78.91 25.1 258
50.98 76.13 314 34.5
58.38 76.10 39.2 40.1
68.81 71.06 45.8 47.2
69.45 64.03 54.0 50.3

Table4.4 Parameters of Tauc-Lorentzian oscillator and Gaussian oscillators used for the

oscillator model

A E. (eV) | Br(eV) | C(eV) | E, (eV)

Tauc-Lorentz Oscillator | 4.0691 | 3.2179 0.2964 | 2.716
Gaussian Oscillator 1 | 0.15028 | 3.4306 | 0.3311
Gaussian Oscillator 2 | 0.15695 | 3.5273 | 0.62352
Gaussian Oscillator 3 | 0.69332 | 4.6735 | 0.57374

88



The optical properties (n and k) are shown in Figure 4.3. An example of the use of this
oscillator model with an independent NDA-n2 sampleis shown in Figure 4.5 with data well
fit by the model and alow MSE value of 5. The resonance energies of the Tauc-Lorentzian
oscillator and three Gaussian oscillators are at 3.21, 3.43, 3.52, and 4.67 eV, respectively
with the lower energy oscillator most likely corresponding to the 7 — 7 band transition in the
naphthal ene-tetracarboxylic diimide conjugated core, and the band transition associated with
the aryl-ether flexibletail. The higher energy oscillators may include characteristic
functional group transitions and also the high energy continuum associated with the
conduction band of solids. Thus the high energy oscillators are not directly related to
specific molecular structural characteristics. The refractive index n obtained from Cauchy
model and Oscillator model are compared in the transparent region in Figure 4.3 with the
largest difference of about 0.017, indicating that the Cauchy and Oscillator model agrees well

in their overlap spectral regions.

4.3.3 Film Roughness

The film surface morphology was examined using AFM. Figure4.6aand bisan
AFM image of SiO, substrate prior film deposition and the NDA-n2 thin film with the 1x1
um? scan size and 10 nm/div in z direction. It shows that the spin coated NDA-n2 films
displays RM S surface roughness of about 0.25 nm, which is less than 1% of the tota
thickness of the thin film, and indicates that surface roughness will exert little influence on
the film optical properties. Thisconclusion isaso verified by the use of a Bruggeman

effective medium approximation (BEMA) layer that accounts for the surface roughness.
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Figure 4.5 Fit of NDA-n2 thin film on single crystal silicon substrate data to the
oscillator model for NDA-n2. The inset displays the film structure and thickness obtained
from thefit.
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Figure 4.6 AFM image of (a) SIO, substrate prior deposition, RM S roughness = 0.14 nm,
and (b) NDA-n2 thin film, RM S roughness = 0.25 nm.
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The AFM roughness data was incorporated into our optical model asa BEMA layer,
which is shown in Figure 4.7a. With the added BEMA layer, the new optical systemis used
to see whether the fit accuracy can be improved, where Fig. 4.7b is the obtained Tauc-
Lorzentizan and Gaussian oscillator model without the BEMA layer. With the respective
M SE values of 5 and 4 being almost the same, it is concluded that the roughness layer does
not need to be included in the optical properties determination. Here a short summary is that
very smooth films can be prepared by solution spin casting, which will be crucial for the

OTFT devicefabrication.

4.3.4 Optical Anisotropy

It has been reported for a number of spin cast polymer films that the polymer chains
liein the plane of the film and lead to optical anisotropy***° as depicted in Fig. 4.8. Whilein
the present study we are not dealing with polymer filmsit is possible that the NDA-n2
molecules are oriented and |ead to optical anisotropy.

Possible NDA-n2 film in-plane anisotropy was investigated using SE by rotating the
samplein the plane of the film and the SE data was obtained at the same angle of incidence

and on the same spot on the film. The result is shown in Fig. 4.9, where the sample was
rotated to three angles (0°/60°/150°) at the incidence angle ¢ = 70°. The three sets of nearly

identical data indicate that thereis no significant in-plane anisotropy. The moleculesin the

plane of the film are essentially randomly arranged.
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Figure 4.7 NDA-n2 thin film on SIO, substrate using oscillator model (a) with and (b)
without BEMA layer. The insets display the film structure and thickness obtained from the fit.
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Figure 4.8 Schematic of uniaxial anisotropic polymer film: OA isthe optic axis, n; and

n, are the out of plane and in plane refractive indices, respectively.
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Figure 4.9 Results of in plane sample rotation at 0°, 60°, 150°.
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To resolve any out of plane anisotropy, the ¥ and A datawere obtained using SE at
¢ of 65°, 70° and 75°. In order to determine whether the sensitivity of SE was suitablein the
¢ rangeused, ¥ — A trgjectories at these three angles were calculated using the oscillator
model described above at the mid range photon energy of 1.96 eV and is shown in Fig. 4.10.
The trgjectories show good sensitivity over the three ¢ used in this study. The SE data
obtained at each ¢ werefit to the single film model discussed above and shown in the inset
in Fig. 4.11, and also shown in the Figure are the resulting n’s and K’s at each ¢ . The small

and non-systematic differences in n and k indicate that there is no significant out of plane
optical anisotropy in the spin cast NDA-n2 film.

An explanation for the lack of significant differencein n and k at lower energies and
within 10° changein ¢ could be due to small molecular weight and the film thickness. As
NDA-n2 isasmall molecular organics, its short chain isless likely to be influenced by the
forces exerted on them during spinning. In the literature, only polymers with very high

molecular weight exhibit prominent anisotropy.®
4.3.5 Optical Propertiesof NDA-n1

We dready discussed the optical characterization of NDA-n2 thin filmsin details. In
this section the optical properties of NDA-n1 filmswill be summed in comparison with
NDA-n2. Figure4.12 is UV-Vis spectrum for NDA-n1 and NDA-n2 films, where the films
were spin cast on fused quartz substrate at 3000 rpm and the solutions were 0.15% in

dichloromethane.
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Figure4.11  Optical properties (n and k) for NDA-n2 at multiple incident angles. The inset

displays the film structure and thickness obtained from the fit.
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Figure4.13 Refractiveindex (n & k) of NDA-n1 and NDA-n2 extracted from SE
measurement.
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The absorbance for NDA-n1 at high energy (4.56 eV) was much weaker than that of NDA-n2
while the difference of absorbances at low energy was not so obvious. Asdiscussed in
Section 4.3.1 for NDA-n2 film, the absorbance at 4.56 eV was from aryl-ether flexible tail.
NDA-n2 has alonger aryl-ether chain and correspondingly there has stronger absorbance.
Because of theidentical conjugated core group and similar molecular structure, the
absorbances around 3.5 eV isamost the same. The optical properties of NDA-n1 films were
then extracted from SE measurement. The same Tauc-Lorentzian oscillator and Gaussian
oscillator model was proposed to fit SE result. The obtained refractiveindex (n & K) is
shown in Figure 4.13 together with that of NDA-n2. Only some small shiftsin absorbance
and film densification are found. As good fit was made for this model and agreed well with
the structure information, this model is believed to reflect the physical truth and will be used

for NDA-n1 film thickness determination.

4.3.6 Optical Propertiesof PE and P(VDF-TrFE)

In the next Chapter, two polymeric gate dielectrics polyethylene PE and
polyvinylidene fluoride P(VDF-TrFE) will be used for device studies. Here we briefly
introduced the optical properties of these two spin-cast films, which would be used for film
thickness determination. The optical properties of PE and P(VDF-TrFE) were characterized
and modeled using Cauchy model (Equation 4.4) as no apparent absorbance was observed
during transmission UV-Vis spectroscopy of the film on fused quartz substrate. The
extracted optical properties (refractive index) are given in Figure 4.14 aand b for PE and

P(VDF-TrFE), respectively.
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Figure4.14  Extracted optical properties (here refractive index n) of (a) PE where

extinction coefficient k =0, and (b) P(VDF-TrFE) where k =0.
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4.4 Conclusions

The optical functions of NDA’s thin films were determined using variable angle
spectrocopic ellipsometry. A Tauc-Lorentzian and Gaussian oscillator model was used to
yield agood regression analysis fit and the optical properties obtained from the model are
consistent with independent optical absorption measurements and are Kramers-Kronig
consistent. Spin casting the NDA’s films resulted in smooth optically isotropic films, which

would be crucid for the fabrication of OTFT devices.
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CHAPTER 5- CHARACTERIZATION AND OPTIMIZATION
OF NDA’S BASED THIN FILM TRANSISTORS

51 I ntroduction

In Chapter 3 many details about organic thin film transistors (OTFT’s) were
discussed. The inherent advantages of the organic devices are their ease and low cost of
fabrication, and the possibility for use with flexible and large area substrates. The OTFT is
therefore an important device for organic e ectronics, and the device performance primarily
depends on the charge carrier mobility. At present, the main limitations for widespread
application of OTFT technology are their low charge carrier mobility and the difficulty in
developing stable N-channel devices. Recorded OTFT mobilities are generally several
orders of magnitude lower than that for single crystalline Si, Ge, and GaAs.' For example
the highest reported mobility for organic semiconductorsis 10 cm?V™s™ for pentacene at 17
K while 1400 cm?V*s™ for electronsiin crystal silicon at room temperature. The charge
transport in OTFTs depends on the degree of ordering of the molecules and/or polymer
chainsin the solid state, the grain boundaries, and the density of defects that are present in
the system. The structural or energetic disorder in amorphous organic films severely restricts

the charge movement in OTFT as charges are not delocalized.? In thisway, charge transport



is governed by “hopping” of charge carriers between localized potential wells in response to
an electric field.®> A variety of factors and preparation conditions will affect the mobility of
charge carriers and performance. On the other hand, the use of complementary logic
elements (requiring both N and P-channel devices) is expected to be crucial to achieving low-
power, high-speed performance. Stable organic P-channel semiconductors are easily
available, but practically organic semiconductor materials that yield useful N-channel
OTFT’s have proved difficult to develop, reflecting the unfavorable electrochemical
properties of known, electron-demanding organics. Low molecular weight naphthal enetetra-
carboxylic diimide derivatives have been reported as stable N-type organic semiconductors.*
The solubility of the derivatives enables spin casting film preparation and simplifies the
fabrication of OTFT’s.

The overall device performance of an OTFT critically depends on the properties of
the gate dielectric.> The polar Si-OH bonds typically found on the surface of SiO, quench
electrons in the conduction channels.® Polymeric insulators have been used as gate
dielectricsin OTFT’s. These polymeric materials can be solution processed and make
smooth films on slica substrates. Detailed studies have shown that the first few monolayers
of organic semiconductors on polymeric dielectrics are highly ordered and therefore can
allow high field effect mobility.”® Therefore the choice of the gate insulators has become a
crucia step in OTFT device fabrication.

In this Chapter, the fabrication of NDA’s based OTFT is described and the device
performance was characterized and optimized. The optical properties of NDA’s films were
investigated in Chapter 4. The reasons for choosing NDA’s were their high chemical

stability, easy solution processability and possible N-channel operation. We have selected

103



three gate dielectrics with different dielectric constants for OTFT’s, and also considered post

fabrication treatments such as annealing to improve the mobility of OTFT’s.

5.2  Experimental Procedures

Device fabrication began with heavily doped silicon wafers that serve to support the
device and to act as the gate electrode for the OTFT’s. After the standard RCA clean
procedure’ followed by a 10-s dip in HF in water solution (47% HF) the silicon substrates
were blown dry in pure nitrogen obtained from boil-off of liquid nitrogen. After cleaning the
silicon wafers to be used for OFET’s with SiO; as the gate dielectric were oxidized at 1000
°C in ahigh-purity oxygen flow. The source and drain electrodes were deposited by Au
evaporation using aline pattern mask. The channel length L is75 um and the channel width
W is5mm, givinga W/L ratio of 67. The thickness of gold lines was around 200 nm. The
NDA films were spin cast from solutions that were 0.15% by weight using dichloromethane
as the solvent and at spin speeds of about 3000 rpm for all NDA films. Two polymeric
insulators, polyethylene (PE) with static dielectric constant K = 2.3 and polyvinylidene
fluoride (P(VDF-TrFE)) with K = 7.5, were selected to replace SO, as the gate dielectric
layers. The molecular structure of PE and P(VDF-TrFE) are shown in Figure 5.1b and c,
respectively. Both PE and P(VDF-TrFE) are insoluble in dichloromethane, the solvent used
for NDA spin casting. The solvent used for PE was decahydronaphthal ene (98%, mixture of
cis and trans) and the solution weight concentration was 2% that was made by heating to 110
°C and spin cast at room temperature at 3000 rpm. Because no smooth film could be made
for PE on bare silicon, the film was prepared on a 0.7 nm SiO, substrate. P(VDF-TrFE)

films were spin cast using methylethylketone (MEK) as solvent. The weight concentration
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was 2% and the film was spin cast in a N, hood in 20% humidity. The fabricated OTFT
structures are shown in Figure 5.2, where it is seen that the inverted gate structure was used
and (@) has bottom source and drain contacts and (b) displays top source and drain contacts.
Figure 5.2c isatop view of top-contact OTFT and show the indication of W and L. A
custom-built probe station using HP 4284A and Keithley 236 was employed for the steady-
state el ectronics measurements. The devices were annealed in atemperature controllable
high vacuum system Figure 5.3 to study the temperature effects. Together with the system is
a self-assembled rotation analyzer ellipsometer for in-situ measurement to obtain the change
information of film thickness and optical properties. The thickness of the gate dielectrics and
the NDA’s films on top of the dielectric layers were measured by spectroscopic ellipsometry
(SE). In Chapter 4 and in a published study™° the spin cast process and the optical properties
for NDA’s films were reported.

The thermogravimetric analysis (TGA) of NDA-n1 was carried out using TA
instruments high resolution thermogravimetric analyzer model 6220. TGA measures
changes in weight of a sample with increasing temperature. Moisture content and presence
of volatile species can be determined. Once the temperature range of thermal stability of the
NDA-n1 was determined, the annealing of NDA-n1 films was carried out in the vacuum
chamber with in-situ ellipsometry capabilities shown in Figure 5.3. During annealing, the
NDA'’s films were exposed to various temperature settings and for various durations at 10°
Torr. The SE measurements were carried out during the annealing process to obtain change

in film thickness and optical properties of NDA’s films.
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Figure5.1 Molecular structures of (a) NDA, where n=1, called NDA-n1, n=2, called

NDA-n2, (b) polyethylene (PE), and (c) P(VDF-TrFE).
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Figure 5.2 (a) Cross section view of the bottom-contact OTFT, (b) cross section view of
top-contact OTFT, and (c) top view of gold line patterns used in this study where L isthe

channel Length 75 um and Wis the channel width 5 mm.
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Figure 5.3 Custom built vacuum chamber with in-situ ellipsometer for annealing

experiments.
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53  Resultsand Discussions
531 OTFT with SIO, Gate Dielectric L ayer

The channel type of NDA’s films was first determined using the bottom contact
inverted gate OTFT shown in Figure 5.2a. The transfer characteristic plots for NDA-n2 and
NDA-n1 with a110 nm SiO, are shown in Figure 5.4a and b, respectively. The

measurements were carried out in laboratory ambient in ascending V, mode with an

integration time of 1 s by averaging 5 data points. Though still in the linear region, both

devices increased source to drain current |, when gate potential V, was negative and
became larger as V,; increased. It can be concluded that both NDA-n1 and NDA-n2 exhibit

P-channel semiconducting properties. This is opposite to the report by Katz et. a.,* where
their organic material in asimilar device with the same functional group was N-channel.
Specificaly the NDA compounds used in the present study have the same naphthal ene based
conjugated functional group and the aryl-ether group was used to replace those fluorinated

terminal groups used by Katz et al. It can aso be seen that significantly different 1, values
are obtained for the two devices: | ¢ for NDA-n1in therange of 10° A and NDA-n2isin

the range of 10° A, i.e. with shorter side chains NDA-n1 based OTFT exhibits two orders of
magnitude higher current than NDA-n2 while the device dimensions are almost the same.

The carrier mobility in the linear region can be calculated by Equation 5.1:*

#(Vs) = \A,CDFVSD (?VSDJ (5.1)

where C,,, isthe capacitance of gate dielectric and all other terms are already discussed

previously. The calculated mobilities for NDA-n1 and NDA-n2 are 10 and 10”7 cm?V's?,

respectively, which are given in Table 5.1 and thus there is afour-order of magnitude
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difference. It meant that charge carriers moved much faster in NDA-n1 film. Assaid NDA-
n1 has shorter flexibletail group compared with NDA-n2, so it should be the aryl-ether group
that makes charge carrier movement more difficult.

The devices were then annealed in a 10 Torr vacuum system at 60 °C for 3 h.
Improved performance was obtained for both devices. Figure 5.5a and b show the transfer

characteristics for both devices after annealing. Higher currents and larger slopesfor 1o, -V,

were obtained. The mobility in the linear region was calculated using Equation 5.1 again and
was 102 cm?V s for NDA-n1 and 10° cm?V s for NDA-n2 (Table 5.1). Annealing
improved the charge carrier mobility by 3 orders for NDA-n2 and 1 order for NDA-n1,
respectively. However, the mobility for NDA-n1 based OTFT is still two orders of
magnitude higher than that for NDA-n2 based OTFT. Asdiscussed above, the shorter aryl-
ether tail group of NDA-n1 helped the charge movement in the conducting channel formed
along the interface. Details of the annealing effects will be discussed in next section. As
NDA-n1 based OTFT showed better device performance compared with NDA-n2 based

OTFT, the later experiments were primarily based on NDA-n1.

Table5.1 Mobilitiesfor NDA’s based OTFT with SIO, gate dielectric.

Organics Mobility (cm*V's™)

Semiconductor | As-deposited Annealed

NDA-n1 10° 10°°

NDA-n2 107 10
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5.3.2 Top-Contact Versus Bottom-Contact OTFT’s

In chapter 3, we have discussed details of common configurations of OTFT’s: top-
contact and bottom-contact. Their structures are shown in Figure 5.2aand b, respectively.
The difference in configuration is whether the drain and source electrodes are on the top or
bottom of the organic seimiconductor film layer. And akey difference during operationis
that thereis a greater distance for charge carrier transport and thus alarger resistance for top-
contact structure. There are also some literature reports on thisissue. For example, Katz*
report that top-contact would be superior to bottom-contact design. Thereforeit isimportant
to determine which configuration should be used for our NDA’s films. The transfer
characteristics for bottom-contact OTFT based on NDA-n1 has been shown in Figure 5.4b
(as-deposited) and Figure 5.5b (after annealing at 10 Torr 80 °C for 3 hr). The
corresponding results for top-contact OTFT are shown in Figure 5.6a and b, respectively.
Since there were different SiO, gate dielectric film thichknesses (110 nm for bottom contact

and 30 nm for top contact), the current |, cannot be directly used to compare the device

performance. The carrier mobilities were calculated using Equation 5.1 and compared in

Table5.2.

Table5.2 Mobilities for NDA-n1 based OTFT with bottom and top contact structure

Mobility (cm”V's™)

As-deposited Annealed

Bottom contact 2x10°% 1x102

Top Contact 8x10™ 2x10°
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For the as-deposited NDA-n1 OTFT, the mobility was 10 cm?V*s™ for bottom-
contact and 8x10™ cm?V!s™ for top-contact. After annealing the mobility improved to 107
cm?V st and 2x10° cm?v*s?, for bottom and top contact devices, respectively. Before
annealing, there was no significant difference between the two configurations, which because
of the path differences for carriersis not easily explained. However after annealing a
significant mobility improvement was found for bottom-contact while top-contact remained
amost unchanged. One possible explanation can be attributed to the gold evaporation that
causes heating of the sample as the heat of condensation is released. For the top-contact
sampl es the heating due to Au deposition occurs on top of the NDA film while for the
bottom-contact structure the Au is deposited before spin casting the NDA film. Thusthe
NDA-n1 film might already be annealed during the gold deposition. This annealing
enhancement can compensate for the longer charge transport distance for top-contact OTFTs
and re-annealing does not further improve the performance. In our study the mobility for
bottom-contact after annealing was one order of magnitude higher compared with the top-

contact.
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5.3.3 Effect of Thermal Annealing

As aready discussed, annealing significantly improved OTFT’s performance.
Thermal annealing at moderately high temperature and vacuum helps remove moisture,
solvent, and other smaller molecules trapped in the film during the spin casting process, and
also prevent oxidation of the film during the process. Moderate heating also provides energy
for molecular relaxation and reorganization to a thermodynamically stable state thus
improving molecular alignment and ordering.* This process could reduce the density of trap
sites and eliminate deep traps from the system resulting in improved mobility of the OTFT.
In order to further understand this phenomenon and thermal stability of the NDA’s film,
thermo-gravimetric analysis (TGA) was carried out. A typical TGA thermograph of weight
loss versus time for the NDA-n1 film obtained in our investigation is shown in Figure 5.7. In
the TGA curve, an initial gradual weight loss of 4-5 % observed at 70 - 150 °C can be
explained by the loss of moisture and solvents (dichloromethane) present in the film. A
sharper decline in weight is observed at temperatures above 250 °C indicating deterioration
of the sample. Compared with the origina compounds, the meta-substituted aryl-ether
flexible tails are likely disrupting the intra-molecular packing order as was previously
reported™?, while the relatively high temperature hel ped the molecules pack more efficiently.
The vacuum chamber with in-situ rotating analyzer ellipsometer (Figure 5.3) as described in
Chapter 2 was used to observe a gradual change in optical properties and film thickness of
NDA-n1 on native SIO, substrates. Figure 5.9a shows the decreasing film thickness of NDA
at various annealing temperature settings. During spin casting of NDA film, shearing forces
can disentangle the molecular chains and orient them in patterns that may not be the most

efficient for charge transport.*® These twisting in the n-bonded phenyl rings is decreased
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when the film is anneal ed at temperatures around 60-80 °C. The consequent alignment of the
molecules results into afavorable thermodynamic equilibrium results in reduced thickness.
This decrease in thickness is accompanied by the increase in refractive index of NDA-nl as
shown in Figure 5.8b, which confirms densification of the NDA-n1 films during annealing at
moderate temperatures. The improvement in mobility after annealing is consistent with
improvements expected from a hopping mechanism of charge transport in NDA-n1 films.
The deep trapping sites are reduced and both deep and shallow traps sites are brought closer
together by densification. In addition, the formation of “crystallites” or metallic islands of up
to afew microns in size during annealing of organic semiconductors, which improves charge
mobility, have also been reported by Dodabal apur et al.**

The moderate temperature annealing also improved device performance. However, if
the temperature is too high, the organics might degrade. For example, NDA-n1 will
decompose when temperature is higher than 250 °C. Even the temperature is not
approaching the degradation temperature, there is still some unfavorable phenomena
happening. The improved alignment of NDA-n1 films during the initial stages of annealing
which improves the inter-chain hopping parameters is seen to reverse and is even detrimental
to the field effect mobility at higher annealing temperatures. For example, annealing NDA -

nl film at temperature higher than 150 °C caused some small cracksin the film.
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Figure 5.7 TGA Thermograph of NDA-n1 from 30-300 °C at 10 °C/minute.
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Figure5.9 (@) Transfer and (b) turn on characteristics for NDA-n1 based OTFT using
Polyethylene as gate dielectric. All measurements were carried out at ambient condition.
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5.3.4 Effect of Gate Dielectric Layer

The gate material which capacitively couples the active layer and the contact metal
electrodes play avita role in the performance of OTFT’s. A dependable gate material
should have low defect densities, a smooth surface and form sharp interfaces that facilitates
good morphology of the subsequent active layer deposition. SiO; is frequently used as the
gatedielectricin OTFT’s. It isconvenient to fabricate and is insoluble in organic solvents
used for the deposition of organic semiconductor films. However, the silanol groups Si-OH
present at the SIO, dielectric interface can quench electrons and formed a layer of immobile
negative ions that compensates for the gate field.® It has been reported that surface treatment

>18 or octadecyltrichloro-silane®” improved

of gate dielectric with hexamethyldisilazene*
carrier mobility for polymers with aliphatic side chains due to aignment of these chains on
the non-polar substrate. It has also been reported that the polarity of dielectric interfacesis
undesirable for OTFTs.' For all these reasons we chose aternate organic gate dielectrics to
replace SiO, as the gate dielectric. The two dielectric candidates chosen for potential
replacements for SiIO, in OTFT’s have dielectric constant, K on both sides of SO, (K =3.9)
used in OTFT thusfar. Medium density polyethylene (PE) with K = 2.3 wasalow- K, non-
polar candidate, and a copolymer of vinylidene fluoride with trifluoroethylene (PVDF-TrFE),
apolar organic copolymer with K =7.5, wasahigh- K candidate for the OTFT fabrication.
Smooth interfaces were achieved that was favorable for the formation of highly conductive
layers at the interface between dielectric and NDA-nl. The transfer and turn on
characteristics for OTFT's fabricated with PE gate dielectric are given in Figures 5.10aand b,

while those for P(VDF-TrFE) are given in Figure 5.10aand b, respectively. The carrier

mobilities in the linear region were calculated and compared in Table 5.3.
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Table5.3 Mobilities of NDA-n1 based OTFT with different dielectrics

Dielectrics PE SO, P(VDF-TIFE)
Dielectric Constant K 2.3 39 7.5
Mobility (cm?V*s?h) 5x1072 2x10°° 10"

The highest mobility was 7x10% cm?V*s™ for NDA-n1/PE OTFT, while for NDA-
nl/P(VDF-TrFE) OTFT, the mobility was an order of magnitude lower than the mobility for
the OTFT with SIO, in between, which is in agreement with the findings of Veres et al. who
have also reported improvement in charge carrier mobility when anon-polar, low- K gate
insulator (K < 3) was used instead of SIO,. Thus the choice of gate dielectric is amajor
factor in OTFT performance with two factors to consider, the K value or polarity and the
surface states attributed to the gate dielectric.

When exploring an organic substitute for SiO, gate dielectric, a high capacitance
dielectric isnormally desirable, asit reduces the operating voltage required to turn the device
on. P(VDF-TrFE) with K value of 7.5 was chosen for this reason. It has been reported™®
that the polarity of the dielectric interface can affect the local morphology and the
distribution of electronic statesin the active layer. The hopping sitesin organic
semiconductors can be considered localized in an amorphous solid. Therefore, the local
variation in dipole orientation due to polar high- K dielectric layer can cause energetic
disorder and create localized sites making charge transport difficult as demonstrated in
Figure 5.11.*° This presence of increased trapping sites at the interface has been investigated
by many workers, who have reported higher temperature activation requirement for charges

to hop between the trap sites when polar high-K dielectric layers were used.'®*°
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Figure5.10 (@) Transfer and (b) turn on characteristics for NDA-n1 based OTFT using
P(VDF-TrFE) as gate dielectric. All measurements were carried out at ambient condition.
The data shown are taken in ascending Vs mode with an integration time of 1 s by averaging

5 points.
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Organic Semiconductor

Figure5.11 Theenergy disorder at the interface that may lead to an increase of local

polarization.
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Even though PE dielectric layer hasalower K, the decrease in gate capacitance from
low- K dielectric is offset by the increase in mobility. It must be noted that not all low- K
insulators (with K = 2.1-2.3) provide the advantages seen for PE and few other insulating
materials. Some porous low-K insulating materials containing hydroxyl, acrylate, or ester
functional groups are found to be not as effective.'®

In order to assess the implementation of the best processes on the overall mobility, a
combination of the PE gate dielectric and post annealing was used. The aforementioned
OTFT based on PE was annealed in 10° Torr at 80 °C for 3 hr. Thetransfer characteristicis
shown in Figure 5.12. The calculated mobility is 9x10? cm?V*s™. Thereis about 2-fold of
magnitudes improvement that indicates the enhancement effects of the best processes are not

cumulative.
54 Conclusions

A detailed study of new P-channel organic semiconductors, NDA-n1 and NDA-n2 is
presented. The P-channel conduction comes from the flexible ether-aryl tail group.
Temperature dependent studies show that a small densification and molecular re-ordering
happened during annealing. The device performance strongly depends on the choice of gate
dielectric. Low dielectric constant and the roughness of the interface between the dielectric
and organic semiconductor deeply affect the charge carrier mobility. The mutual effects of
gate dielectric and post annealing is helpful though it’s not linearly combination of separate

facts.
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CHAPTER 6 - CONCLUSIONSAND FUTURE DIRECTIONS

6.1 Summary of Results

In this study, the optical and electronic properties of new organic semiconductors,
NDA’s were characterized and their use to fabricate OTFT’s has been investigated. A high
vacuum system equipped with a heater and an in-situ RAE was built to monitor the annealing
processin real-time. The RAE was assembled at our lab and was automated for data
collection with the written software in LabVIEW™. The electronic performance of
fabricated OTFT’s was measured by a custom-built probe station using assembly of HP
4284A and Keithley 236.

The ellipsometric techniques were discussed in Chapter 2. We began with the nature
of polarized light and its matrix representation, then discussed the interaction of polarized
light with optical components used for ellipsometer, and finally we talked about details of
data collection and extraction of materials propertiesin ellipsometry. Chapter 3 described
the configurations of OTFT’s and the charge transport in organic semiconducting films and
devices. The organic semiconductors can be small monomeric molecules such as pentacene
and anthracene, or large macromolecules such as polyacetylene or poly(o-methoxyanline).
The current used charge transport mechanisms were discussed in detail. With exceptions to

few organic semiconductors such as pentacene at very low temperatures, the band-like



transport of charges which resultsin high mobility israrely seen in amorphous organic
semiconductors. More commonly charge transport in organic semiconductorsis the hopping
and multiple trapping and release. Generic transfer and turn-on characteristic plots obtained
during the electrical measurement of an OTFT were presented where the slope of the turn-on
characteristics was used to calculate the field effect mobility of OTFT’s.

The optical properties of NDA’s films on silicon and thermally oxidized SiO;
substrates were investigated in Chapter 4. An optical model for both NDA-n2 and NDA-n1
was devel oped respectively that was necessary interpret the ellipsometric measurementsin
terms of film optical properties and thickness. Furthermore, the optical properties helped
gain preliminary insight into the electronic properties of NDA’s. In addition to the
ellipsometry, various complimentary techniques such as UV-Vis spectroscopy and AFM
were used to improve the ellipsometric model and reduce correlation between the parameters
being varied during the regression analysis.

Starting from a simple assumption of a Cauchy model, the optical model was
developed in complexity to a combination of Tauc-Lorentzizan and Gaussian oscillators to
incorporate the absorption peaks observed in the UV-Vis spectra. The film optical
anisotropy was detected by rotating the sample around optical axis and variable incidence
angle SE. No optical anisotropy was found, indicating no molecular arrange pattern for the
spin-cast NDA'’s film. The roughness information obtained from AFM was incorporated into
aBEMA model and obtained insignificant improvement to the model, which indicated
surface roughness was very minor to affect the film properties. Thiswill be crucial for the

subsequent OTFT fabrication.
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With an understanding of the optical properties, NDA’s based OTFT’s were prepared
using different gate dielectrics—SiO,, PE, and P(VDF-TrFE)—each having a different static
dielectric constant—K = 3.9, 2.3, and 7.5, respectively. It was found that the dominant
carrier transport was via holes, which resulted in P-Channel OTFT’s and was opposite to the
previously reported organics with similar conjugated functional group. This deviation was
thought to be from the additional aryl-ether groups. The bottom-contact design was proved
to help the charge transport in organic films. The post-fabrication annealing studies revealed
rapid degradation of NDA’s above 150 °C and was confirmed by TGA thermograph. The
annealing at lower temperatures increased the film density and improved the mobility by one
order of magnitude, while high temperature annealing was harmful. Low dielectric constant
non-polar dielectrics also improved the NDA’s based OTFT’s mobility by one order of
magnitude, though the performance improvement of the combination of annealing and non-

polar dielectric was not linearly proportional. These findings are described in Chapter 5.
6.2  FutureDirections

OTFT has shown promise in the filed of electronics where light weight, large area
and flexible electronics are desirable. In this study, a gradual shift from SIO, dielectric to an
organic dielectric has been made and heavily doped silicon was primarily used as a
substrate/gate conductor. NDA'’s was initially thought as N-channel semiconductor though
results showed the opposite that the NDA’s yield P-channel OTFT’s.

The optical properties of the spin cast films on NDA’s showed dlight variation with
the change in preparation condition and the underlying substrate. Therefore, a detailed study
on optical properties is required when changing preparation conditions as well as the

substrates.
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Detailed studies of the effect of the morphology of the dielectric and the
semiconductor layer on mobility needs further research. The interface between the gold
electrode contacts and NDA’s, charge injection into the semiconductor from the electrodes
are essential in gaining a better understanding of OTFT performance. These details along
with study in OTFT’s fabricated with piezoelectric and ferroelectric P(VDF-TrFE) dielectric

layer will be the future steps of this study.
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