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ABSTRACT 

ASHLEY REBECCA SMYTH: Alterations in Nitrogen Cycling Resulting From Oyster 
Mediated Benthic-Pelagic Coupling 

(Under the direction of Michael F. Piehler) 
 

Human activities have resulted in an array of stressors to coastal ecosystems. In the 

context of ecosystem function, two prominent changes have been nutrient enrichment and 

precipitous declines in the population of the eastern oyster, Crassostrea virginica. Although 

historically valued as a fishery, oysters provide broader ecological functions, which include 

filtering water thereby reducing turbidity as they feed and providing habitat for fish and 

crabs. Despite decades of oyster research, we lack a comprehensive understanding of how 

oysters influence nitrogen biogeochemistry in estuarine ecosystems. My research directly 

assessed the role of oysters in enhancing sediment denitrification and the efficacy of oyster 

reef restoration in alleviating nutrient pollution. I measured net N2 fluxes from five major 

estuarine habitats: salt marshes, seagrass beds, oyster reefs and intertidal and subtidal flats. 

Given the current habitat distribution in this study system, denitrification (N2 production) 

removed approximately 76% of the estimated watershed nitrogen load. Microcosm 

experiments were conducted to examine the direct effects of individual oysters on nitrogen 

dynamics. Results indicated that biodeposit production and excretion shifted sediments from 

a nitrogen source to a nitrogen sink. Experimental plots of live oysters, oyster shells and mud 

flats were used to distinguish between the effects of oyster feeding and reef structure on 

sediment denitrification. The production and accumulation of biotic material accounted for 

60% of denitrification from oyster reef sediments while 40% was attributed to the abiotic 
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effects of the reef structure.  Fluxes measured from restored intertidal oyster reef sediments 

demonstrated that oyster reefs prime sediments for enhanced denitrification in response to 

anthropogenic nitrogen loading; however, the magnitude of this effect is dependent on the 

habitat setting of the oyster reef. This research identified mechanisms by which oysters alter 

sediment nitrogen dynamics and enhanced our understanding of oyster reef impacts on 

ecosystem function. This information is critical for determining where to focus reef 

restoration and preservation efforts to produce the greatest benefit. Results from my research 

will inform management strategies, restoration projects and policies aimed at improving 

water quality and sustaining healthy estuarine ecosystems.
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dissertation is a manuscript published in Estuaries and Coasts with authors A.R. Smyth, S.P. 
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owner (Springer-Verlag) granted permission for including this material in my thesis. 

Additional information regarding the methods used in this thesis can be found in Appendix 
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1. INTRODUCTION 
 
1.1 Importance of Estuarine Ecosystems 

  Estuaries are at the critical transition zone between the terrestrial and coastal 

ecosystems. These areas provide a variety of ecosystem services including protection from 

storm events, storage and cycling of nutrients, and nursery habitat for commercially 

important species, while being heavily used for recreational activities (Costanza et al. 1997). 

With 38% of the world’s population living within 100 km of the coast (Small and Nicholls 

2003), estuarine ecosystems are among the most used and, consequently, the most degraded 

systems in the world (Jackson et al. 2001a, Lotze et al. 2006). Estuaries are experiencing 

multiple human impacts including dredging, pollution, introduction of invasive species, over-

harvesting, watershed development, and anthropogenic climate change (Vitousek et al. 

1997a, Lotze et al. 2006, Worm et al. 2006, Duarte et al. 2009, Beck et al. 2011). The 

interactions between these stressors have resulted in loss of several estuarine habitats, with 

multiple negative consequences for the services provided by these systems (Duarte 2009, 

Barbier et al. 2011, Boström et al. 2011). For example, the combined effects of over-

harvesting and eutrophication have lead to a drastic decline of oyster ecosystems (Lenihan 

and Peterson 1998, Lenihan et al. 1999), while sea-level rise and human induced land-use 

changes have affected salt marsh habitat (Bertness et al. 2002, Mattheus et al. 2010).  

Excessive nutrient loading is a major cause of estuarine ecosystem degradation. Algal 

growth and primary production in estuarine ecosystems is generally limited by light and the 

availability of nutrients, particularly nitrogen (Paerl et al. 2006, Howarth 2008, Nixon 2009). 
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Additional nitrogen inputs from fertilizer use and runoff has lead to eutrophication, the 

formation of dead zones, harmful algal blooms, changes to energy flows and loss of 

biodiversity (Galloway et al. 2003, Paerl et al. 2006, Conley et al. 2009, Sharp et al. 2009). 

The impact of increased nitrogen inputs to the coast is far-reaching, affecting tourism, 

recreational water activities and fisheries. Accordingly, regulatory agencies have put in place 

policies regarding nitrogen inputs. However, the multiple sources and complexity of the 

nitrogen cycle make controlling nitrogen particularly difficult. As such, reduction in nutrient 

inputs alone is not enough to recover the lost services and restore ecosystem functions 

(Duarte et al. 2009). One solution to combat the effects of increased nutrient loading is to 

enhance the system’s overall capacity to remove nitrogen (Brush 2009). Restoring areas that 

have high rates of denitrification, the microbially-mediated reduction of nitrate to N2 gas, is a 

solution that has promise. Denitrification permanently removes nitrogen from the ecosystem, 

thus counteracting eutrophication and reducing the effects of nitrogen pollution.  

1.2 Nitrogen Dynamics in Shallow Coastal Ecosystems  

 Two opposing processes, nitrogen fixation and denitrification help regulate the 

availability of nitrogen in estuarine systems. While nitrogen fixation converts atmospheric 

nitrogen to bioavailable nitrogen, denitrification releases nitrogen back to the atmosphere as 

nitrogen gas (NO, N2O, N2). Denitrification is a dissimilatory nitrate reduction process 

performed by heterotrophic bacteria. Denitrifying bacteria are ubiquitous and denitrification 

can occur under anoxic conditions when there is ample supply of labile organic matter and 

nitrate (Seitzinger et al. 2006). When nitrate for denitrification is supplied through 

nitrification, the oxidation of ammonium to nitrate by chemoautoptrohic bacteria, it is 

considered coupled nitrification-denitrification. Denitrification supported with nitrate from 
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the water column is referred to as direct denitrification. In most coastal systems, where the 

concentration of nitrate dissolved in the water is less than 10 µM, the majority of 

denitrification is coupled to nitrification (Seitzinger et al. 2006).  

1.3 Loss of Suspension Feeding Bivalves 

 Oyster reef ecosystems have been reduced by 85% world-wide (Beck et al. 2011)and 

fisheries landings of the eastern oyster, Crassostrea virginica (Gmelin 1791) in North 

Carolina have declined by 90% in the last century (Lenihan et al. 2003, Beck et al. 2011). 

The dramatic decline in oyster reef ecosystems is the result of interactive effects between 

over-harvesting, destructive harvesting practices, increased spread of diseases and decline in 

water quality (Lenihan and Peterson 1998, Burreson et al. 2000, Beck et al. 2011). Oysters 

exert top down control on cultural eutrophication by removing phytoplankton biomass as 

they feed (Jackson et al. 2001a, Cerco and Noel 2007). This action reduces turbidity and 

allows light to penetrate deeper into the water column, which enhances the production of 

seagrass and benthic algae (Dame et al. 1984, Newell 2004). Oysters can also have bottom-

up effects on eutrophication, where production and accumulation of biodeposits can change 

nutrient processing within the sediment and stimulate denitrification (Newell et al. 2002, 

2005). Consequently, restoration of these filter-feeding bivalves has been suggested as a way 

to reduce phytoplankton biomass and mitigate nutrient loads (Jackson et al. 2001a, Cerco and 

Noel 2007, Coen et al. 2007, Fulford et al. 2010). However, oysters may also recycle 

nitrogen back to the water column, which may fuel primary production (Dame et al. 1984, 

1989, Newell et al. 2002). Before oyster reef restoration can be included in nutrient 

management plans, it is necessary to understand and quantify the effects of oyster reefs on 

sediment nutrient dynamics in shallow water environments.  
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1.4 Linking Oysters to Sediment Nitrogen Dynamics  

 Studies of oysters have focused on the effects of suspension feeding and metabolism 

by oyster reefs. As oysters feed and reduce phytoplankton biomass, water column 

concentration of ammonium increases as a result of excretion (Dame et al. 1989, 1992). This 

ammonium may be recycled back to the water column and used to further support 

phytoplankton production (Dame et al. 1989, Newell 2004). However, the unassimilated 

fraction of the nitrogen and carbon that was originally incorporated in phytoplankton is 

released as biodeposits, a mucus aggregate of feces and pseudo-feces (Newell and Jordan 

1983). Biodeposits accumulate on the sediment as particulate organic matter and serve as a 

nutrient source for microbial metabolism (Newell et al. 2002, Giles and Pilditch 2006, 

Higgins et al. 2013). When biodeposits settle on aerobic sediments, nitrogen removal can be 

stimulated through increased coupled nitrification-denitrification (Newell et al. 2005). While 

increased denitrification from oyster biodeposits has been found in laboratory experiments 

(Newell et al. 2002), the effect of oysters on sediment nitrogen dynamics remains unclear 

because measurements of denitrification have not previously been conducted on sediments 

associated with oyster reefs. Figure 1.1 illustrates the interactions between oysters and the 

sediment nitrogen dynamics. 

1.5 Significance of Research 

 My dissertation research focused on understanding how the eastern oyster, 

Crassostrea virginica, affects biogeochemical processes in shallow water coastal systems. 

Research was conducted to evaluate the effects of the individual organisms and the 

interacting effects between the oyster, the reefs they form and the ecosystem on nitrogen 

exchanges at the sediment-water interface. Rates of N2 production (denitrification) and fluxes 
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of nutrients were measured from natural and restored oyster reefs as well as reference sites 

and other estuarine habitats throughout North Carolina’s estuaries and sounds. This 

information is critical for accurately assessing one of the most important ecosystem services 

provided by oysters and determining where to focus restoration and preservation efforts to 

produce the greatest benefit.  

1.6 Study Objectives 

1. Spatial and Temporal Variability in Sediment Nitrogen Dynamics 

a. Objective: Characterize spatial and temporal patterns of sediment nitrogen 

dynamics in shallow water estuarine habitats. 

b. Hypothesis: Habitat type and temperature will affect rates of denitrification in 

shallow water coastal systems.  

2. Linking Oysters to Biogeochemistry 

a. Objective: Quantify the direct effects of an oyster on nitrogen removal and 

regeneration.  

b. Hypothesis: Particulate organic matter from Crassostrea virginica will 

enhance rates of denitrification by providing a source of high quality organic 

matter and increasing availability of NH4
+ for coupled nitrification-

denitrification.  

3. The Influence of Ecosystem Engineering On Sediment Denitrification  

a. Objective: Elucidate the relative importance of the accumulation of biotic and 

abiotic material to the production of N2 from oyster reef sediments.  

b. Hypothesis: Interactions between the biological function and physical 

engineering of oyster reefs will result in the largest production of N2.  
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4. Importance of Landscape Position 

a. Objective: Determine how the habitat setting of oyster reef restoration affects 

oyster mediated sediment N2 production in response to nutrient pollution.  

b. Hypothesis: Restored oyster reefs will increase N2 production relative to 

reference habitats where oyster reefs have not been restored.  
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Figure 1.1. Conceptual diagram of how filter-feeding by oysters affects sediment nitrogen 
dynamics. Sources of nitrogen include, but are not limited to, the atmosphere (both deposition 
and nitrogen fixation), runoff and fertilizer. While denitrification, transport and burial are 
considered nitrogen sinks. Oysters repack nitrogen in phytoplankton and transfer it to the 
sediment as particulate organic nitrogen. The decomposition of the organic nitrogen produces 
ammonium and, in aerobic sediments, can support nitrate production via nitrification. Nitrate 
can diffuse back to the water column or fuel denitrification in anoxic sediments. This results 
in the release of N2 gas back to the atmosphere.  
  



2. ASSESSING NITROGEN DYNAMICS THROUGHOUT THE ESTUARINE 
LANDSCAPE1 
 

2.1 Abstract 

Assessing nitrogen dynamics in the estuarine landscape is challenging given the 

unique effects of individual habitats on nitrogen dynamics. We measured net N2 fluxes, 

sediment oxygen demand and fluxes of ammonium and nitrate seasonally from five major 

estuarine habitats: salt marshes, seagrass beds (SAV), oyster reefs and intertidal and subtidal 

flats. Net N2 fluxes ranged from 332 ± 116 µmol N-N2 m-2 hr-1 from oyster reef sediments in 

the summer to -67 ± 4 µmol N-N2 m-2 hr-1 from SAV in the winter. Oyster reef sediments 

had the highest rate of N2 production and the highest rates of ammonium release from 

the sediments of all habitats. Potential rates of dissimilatory nitrate reduction to 

ammonium (DNRA) were measured during the summer and winter. DNRA was low during 

the winter and ranged from 4.5 ± 3.0 in subtidal flats to 104 ± 34µmol 15NH4
+ m-2 hr-1 in 

oyster reefs during the summer. Annual denitrification, accounting for seasonal differences in 

inundation and light, ranged from 161.1 ±19.2 mmol N-N2 m-2 yr-1 for marsh sediments to 

509.9 ± 122.7 mmol N-N2 m-2 yr-1 for SAV sediments. Given the current habitat distribution 

in our study system, an estimated 28.3 x 106 mols of N are removed per year or 76% of 

estimated watershed nitrogen load. These results suggest that restoration has the 

                                                
1 Chapter 2 is published as an article in the journal Estuaries and Coasts with authors with 
authors A.R. Smyth, S.P. Thompson, K.N Siporin, W.S. Gardner, M.J. McCarthy, and M.F. 
Piehler and is © by Springer. The text is reproduced here with permission from Springer. 
Substantive modifications to the published manuscript are denoted by a change in font. 
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potential to increase system-wide denitrification through selection of habitats with 

high rates of N2 production per m2 and areas with favorable inundation regimes.  

2.2 Introduction  

Estuaries are complex ecosystems, influenced by marine, terrestrial and atmospheric 

inputs of material and energy. Complex interactions within these ecosystems are important 

determinants of the diversity and composition of the ecological community (Hosack et al. 

2006). Dominant habitats in the temperate estuarine landscape include salt marshes, seagrass 

beds (SAV), oyster reefs and intertidal and subtidal flats. Each habitat has a unique effect on 

ecosystem function, such that the variety and areal extent of habitats influences the type and 

amount of services provided by the estuary (Correll 1978, Jones et al. 1994, Cloern 2007, 

Eyre and Maher 2010, Barbier et al. 2011). 

Estuarine habitats provide many valuable ecosystem services, but these areas are 

often threatened by human activities (Vitousek et al. 1997b, Lotze et al. 2006, Brush 2009, 

Barbier et al. 2011, Beck et al. 2011). Eutrophication, which is accelerated by excessive 

nitrogen loading, has many negative consequences including loss of biodiversity, increased 

algal blooms, degradation of water quality, acceleration of species invasions and shifts in 

dominant biogeochemical pathways (Howarth et al. 1988, Nixon et al. 1995, Jackson et al. 

2001a, Lotze et al. 2006, Paerl et al. 2006, Burgin and Hamilton 2007). Once nitrogen enters 

the estuary, it can be removed through burial, physical transport, or denitrification, the 

microbial conversion of inorganic nitrogen to N2 gas (Vitousek et al. 1997b). N2 production 

can result from the heterotrophic reduction of nitrate (classical denitrification) or through 

anaerobic ammonium oxidation (anammox) by chemolithoautotrophs (Burgin and Hamilton 

2007). Although both pathways produce N2 gas, denitrification is more prevalent than 
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anammox (Dalsgaard et al. 2005, Koop-Jakobsen and Giblin 2009) and accounts for the 

majority of nitrogen loss in estuarine ecosystems (Seitzinger and Nixon 1985, Seitzinger 

1988).  

Unfortunately, anthropogenic activities have disrupted the balance between nitrogen 

inputs and exports, resulting in an increase in instances of eutrophication (Brush 2009). 

Nutrient recycling within estuaries helps to maintain water quality and supplies essential 

nutrients for the base of the food web. These services provide about $21,100 ha-1 (in 1994 US 

dollars) nitrogen removal in estuaries annually (Costanza et al. 1997). However, the overall 

amount of nitrogen removal depends on the distribution of specific habitats with some 

habitats conferring a greater ecosystem service than others (Valiela and Bowen 2002, 

Cardinale 2011). For example, the conversion of SAV to subtidal flat due to increased use of 

shoreline hardening structures could result in a loss of $2,500 per acre per year worth of 

nitrogen removal (Piehler and Smyth 2011).  

To improve water quality, many management and restoration strategies aim to 

enhance nitrogen removal within estuarine ecosystems (Galloway et al. 2003, Cerco and 

Noel 2007, Brush 2009, Barbier et al. 2011). However, landscape-scale assessment of 

nitrogen removal is complicated by the variety of estuarine habitats and temporal variability 

in denitrification rates (Cornwell et al. 1999, Groffman et al. 2006, Seitzinger 2008). While 

habitat type is a factor in determining transformations and exchanges of nitrogen in estuarine 

ecosystems (Gutierrez and Jones 2006, Eyre et al. 2011b, Piehler and Smyth 2011, Eyre et al. 

2011a), the areal extent and location of these habitats relative to tidal regime will also impact 

nitrogen removal, influencing the time that sediments experience reduced conditions when 

denitrification can occur (Ensign et al. 2008, 2012). Thus, identifying and quantifying 
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landscape-scale water quality benefits of estuarine restoration requires knowledge of the 

location and elevation of habitats associated with rates of nitrogen removal.  

2.2.2 Objectives 

This study investigated nitrogen dynamics in the major habitats of a temperate 

estuary. To evaluate the influence of habitat type on nitrogen dynamics, we examined 

multiple nitrogen cycling processes, seasonally, in sediments from intertidal oyster reefs, 

marshes, SAV and intertidal and subtidal flats. A model based on habitat area, elevation, 

water level and irradiance was created to extrapolate denitrification through both space and 

time. Using this approach, we were able to synthesize and adjust rate processes measured 

from individual habitats to the landscape scale.  

 

2.3 Methods  

2.3.1 Site description 

Bogue Sound is a medium sized sound in the southeastern region of North Carolina 

(Figure 2.1). The mean water depth is 3m and semi-diurnal tides are approximately 0.7m. 

The sound has low levels of dissolved inorganic nutrients (0.90 ± 1.32 µM NOx
- + NH4

+, 

n=263) and water-column chlorophyll a (4.5 ± 2.3 µg/l, n=261; Thompson, unpublished). 

Bogue Sound is a diverse ecosystem located at the convergence of the South Atlantic and 

Mid-Atlantic biogeographic regions. A variety of habitats exist within the sound and include 

oyster reefs, SAV (dominated by Halodule wrightii in the spring and Zostera marina in the 

fall), salt marshes and intertidal and subtidal flats (Street et al. 2004). Habitats of each type 

were sampled for this study. Subtidal and intertidal flats sampled were relatively 

homogenous with no observable macrofauna. 
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 Representative habitat sampling sites were located on the southern shoreline of Bogue 

Sound in the Roosevelt Natural Area and were sampled once per season during 2008 

(January, March, July and November). In situ surface water temperature, salinity and 

dissolved oxygen were measured at each sampling (YSI 600 Series Sonde and Model 650 

data logger, Yellow Springs Instruments, Yellow Springs, OH).  

2.3.2 Sample collection  

Triplicate sediment cores were collected by hand from each habitat two hours prior to 

low tide in clear polycarbonate core chambers (6.4cm diameter X 30 cm). Core chambers 

were inserted directly into the sediment and pushed down so that each core contained 17 cm 

of sediment with minimal disturbance to the upper layer of sediment. Cores from SAV and 

marshes often contained roots and rhizomes as well as emergent vegetation. Cores were 

collected within each habitat with the exception of the oyster reef, where cores were 

collected immediately adjacent to the reef and did not include live oysters. In addition to 

sediment cores, ~30 l of sound water was collected for continuous flow core incubations. 

2.3.3 Analytical methods  

 Details regarding methods used in this study can be found in the appendix.  

2.3.3.1 Membrane inlet mass spectrometry 

Following collection, sediment cores and water were immediately (<1hr) transported 

to an environmental chamber (Bailey, Inc.) set to in situ water temperature at The University 

of North Carolina Institute of Marine Sciences (IMS) in Morehead City, NC. Dark conditions 

were maintained throughout the course of the incubation to minimize the effects of 

photosynthetic algae (An and Joye 2001, Tobias 2007, Hochard et al. 2010) and to prevent 

the formation of bubbles that would affect gas concentrations in water (Reeburgh 1969). 

Cores were submerged in a water bath and sealed with gas tight lids equipped with an inflow 
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and outflow port with ~400ml of water overlying each core and incubated in a continuous 

flow system (Miller-Way and Twilley 1996, Lavrentyev et al. 2000, Ensign et al. 2008). 

Unfiltered, aerated water from the reservoirs was passed over the cores at a flow rate of 1.0 

ml min-1 (Miller-Way and Twilley 1996, Lavrentyev et al. 2000).  

 Following an 18-hour pre-incubation period (Eyre et al. 2002), samples were 

collected from the outflow port of each core three times over a 48-hour period to ensure 

steady state conditions were established (Miller-Way and Twilley 1996). A bypass line that 

flowed directly into sample vials was used to determine the concentration of dissolved 

constituents entering the cores was also sampled during each of the three times over 

the 48-hour period. This line accounted for changes in water chemistry associated with 

permeability of the tubing in the water entering the cores. Successive measurements from 

each core were averaged to give core specific values and reduce pseudo-replication 

associated with sample replication rather than treatment replication (Hurlbert 1984). 

 Samples were analyzed for N2, O2 and Ar dissolved gases in water using a Balzers 

Prisma QME 200 quadruple mass spectrometer (MIMS; Pfeiffer Vacuum, Nashua, NH, 

USA; (Kana et al. 1994). Concentrations of O2 and N2 were determined using the ratio with 

Ar (Kana et al. 1994, Ensign et al. 2008). MIMS has a rapid analysis time, requires a small 

sample volume and little sample preparation, and has good precision (CV of N2/Ar <0.05%, 

CV of O2/Ar<0.04%). This method determines the net flux (production-demand) across the 

sediment-water interface such that a positive N2 flux is assumed to be denitrification and a 

negative N2 flux is assumed to be nitrogen fixation (An et al. 2001, Fulweiler et al. 2007). 

This method does not discern between N2, production from denitrification, anammox or any 

other N2 producing process. Fluxes of oxygen directed into the sediment were considered to 



 14   

represent rates of sediment oxygen demand (SOD; (Kana et al. 1998, Piehler and Smyth 

2011)).  

2.3.3.2 Dissolved Nutrient Analysis 

Water samples (50ml) were collected for nutrient analysis from the bypass line and 

the outflow port of each core 24-hours after the incubation began. Water was filtered through 

Whatman GF/F filters (25 mm diameter, 0.7 µm nominal pore size), and the filtrate was 

analyzed with a Lachat Quick-Chem 8000 (Lachat Instruments, Milwaukee, WI, USA) 

automated ion analyzer for nitrate (NO3
- and NO2

-) and ammonium (NH4
+) (detection limits: 

0.04 µM, 0.18 µM, respectively).  

2.3.3.3 Dissimilatory Nitrate Reduction to Ammonium 

Isotopic enrichment experiments were conducted to provide potential rates of 

dissimilatory nitrate reduction to ammonium (DNRA). DNRA experiments were preformed 

on cores collected during summer 2007 in conjunction with Piehler and Smyth (2011) and 

during winter 2008 on cores collected as part of this study. In each case, after the initial 48 

hours of sampling, the incubation water was enriched with 15N-NaNO3 to a final 

concentration of about 100µmol l-1. Incubations were continued and samples were collected 

at 24 and 48 hours after the enrichment for analysis. Concentration of 15NH4
+ was measured 

by HPLC (Gardner et al. 1995), and potential DNRA rates were calculated as production of 

15NH4
+ (An and Gardner 2002).  Total ammonium and nitrate concentrations were measured 

after enrichment using Lachat Quick-Chem 8000 (described above).  

2.3.4 Calculations 

2.3.4.1 Flux calculations 
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Flux calculations were based on the assumption of steady-state conditions and a well-

mixed water column (Miller-Way and Twilley 1996). Benthic fluxes, including rates of 

potential DNRA, were calculated using the following equation: 

 

Equation 1: Formula used to calculate a flux from the continuous flow core incubation method. 

where [i outflow] and [i inflow] is the concentration (µM) of any dissolved constituent leaving 

and entering the core, respectively, F is the peristaltic pump flow rate (l hr-1), and A is the 

surface area of the core (m2) (Miller-Way and Twilley 1996). [i outflow] is the average of 

three measurements of samples collected over a 48-hour period; [i inflow] is the 

average of the three measurements from the bypass line collected over a 48-hour 

period. For nitrogen species, a positive flux indicates an exchange from the sediment to the 

water column, and a negative flux indicates an exchange from the water column to the 

sediment. For O2, a positive flux indicates an exchange from the water column and is 

denoted as SOD. Habitat specific fluxes were calculated as the mean of core specific 

values from replicates (n=3). Errors presented here are the standard error of the means (n=3).  

2.3.4.2 Determination of inundation time 

 Average hours inundated per day were modeled based on water level and irradiance 

(adjusted based on the season) for each day of the year. Elevation surveys were conducted at 

three different individual habitats (including habitats where cores were collected) during low 

tide on 16 October 2009, 25 October 2009 and 15 November 2009 to obtain mean elevation 

for each habitat type (n=3). Habitat elevation was determined using an automatic laser level 

(Model SAL24N, CST/Berger, Watseka, IL) with methods adapted from Storesund (2008). 

Water level was logged at 5-minute intervals in an adjacent subtidal creek with a HOBO 

J = i
outflow[ ]- iinflow[ ]( )*

F

A
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water level data logger (Model: U20-001-01, Onset Corporation, Pocasset, MA) from 25 

September 2009 to 23 October 2009, to encompass one spring-neap tidal cycle. Water levels 

were corrected using in situ temperature and barometric pressure. Site-specific water level 

was indexed to water level data obtained from a NOAA monitoring gauge at Beaufort, NC 

collected during the same period. This relationship was then applied to NOAA water level 

data for December 1, 2007 to November 30, 2008 to hind cast levels at the Bogue Sound 

study site for the same period. Inundation was calculated as the duration when water levels 

were greater than sediment surface elevation. Total hours inundated between sunset and 

sunrise were calculated for each day and totaled for each season and each habitat. This value 

was used to scale the average hourly rate of N2 production (positive N2 flux) measured once 

during each season for each habitat under dark inundated conditions to annual rates. Annual 

rates were extrapolated for Bogue Sound using habitat maps from the North Carolina 

Division of Marine Fishers (NCDMF; (Chappell 2006)).  

2.3.5 Data analysis 

 Analysis of variance (ANOVA) and Tukey’s post-hoc test were used to test whether 

net N2 flux, SOD, ammonium flux, nitrate flux, and DNRA varied by site and season. If 

necessary, data were transformed to meet the assumptions of ANOVA. Linear regressions 

were used to assess the relationship between net N2 flux and SOD. Analysis of covariance 

(ANCOVA) was used to determine if the regression lines were different between habitats. 

All analyses were considered significant at the p<0.05 level and were conducted in JMP 7.0.1 

statistical software (SAS 2007). 

2.4 Results  

2.4.1 Water chemistry 
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The lowest water temperature occurred in January 2008 at 3.32 oC, and the highest 

was 30.1 oC in June 2008 (Table 2.1). Salinity ranged from 29.3 in July 2008 to 32.4 in 

January 2008 with a mean salinity of 31.2. Dissolved oxygen ranged from 5 mg/l in the July 

of 2008 to 12.3 mg/l in October 2008. Ambient nitrate concentration was consistently less 

than 0.5 µM. Ammonium ranged from 0.65 µM in October 2008 to 3.56 µM during July 

2008.  

2.4.2 Dissolved Oxygen 

  SOD was lowest in the winter and fall and highest in the summer for all habitats 

(Figure 2.2a). SOD ranged from 33.61 ± 16 µmol O2 m-2 hr-1 during winter in SAV to 2556 

± 11 µmol O2 m-2 hr-1 in the summer at oyster reefs. Significantly higher seasonal rates were 

measured for all habitats during the summer (p<0.05). Oyster reefs had significantly more 

oxygen demand than the other habitats, driven by rates measured during the spring and 

summer.  

2.4.3 Dissolved N2 

 Net N2 fluxes varied by site and season and the interaction was not significant (Figure 

2.2b, p=0.086). N2 fluxes ranged from 332 ± 116 µmol N-N2 m-2 hr-1 for the oyster reef in 

the summer to -67 ± 4 µmol N-N2 m-2 hr-1 for SAV in the winter. All N2 fluxes from the 

oyster reef were positive with high variability during the summer, including a rate of 566.2 

µmol N-N2 m-2 hr-1 in one core. In general there were positive N2 fluxes in the summer and 

negative N2 fluxes during the other seasons. Negative N2 fluxes were observed in sediments 

from the subtidal flat in spring and fall, intertidal flat in winter and spring, marsh and SAV in 

winter, spring and fall. Oyster reefs were the exception with positive N2 fluxes occurring 

during each season, except fall. Overall, oyster reef sediments had significantly higher N2 

fluxes (107 ± 48 µmol N-N2 m-2 hr-1, n=12) compared to the other habitats, driven mainly by 
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high production in the summer and marshes had the lowest flux (-4 ± 18 µmol N-N2 m-2 hr-1, 

n=12). Net N2 fluxes varied significantly with SOD (Figure 2.3, R2=0.63, p<0.001). This 

relationship was observed for all habitats and all seasons, except fall, when variability among 

rates was the highest.  

2.4.4 Dissolved Inorganic Nitrogen 

Nitrate fluxes were not affected by habitat type but did vary by season (Fig 2.2c, 

p=0.0028). There was no uptake or efflux of nitrate during the summer or fall for any habitat 

(i.e. no difference between concentration of nitrate leaving and entering the cores). All 

habitats exhibited an efflux of nitrate during the winter and demand during the spring, except 

SAV sediments, which had an efflux of nitrate during winter and spring. In general nitrate 

fluxes were low and highly variable, consistent with the low ambient nitrate concentration 

found in this study area.  

Ammonium fluxes were also variable and exhibited no seasonal pattern (Figure 2.2d) 

but oyster reef sediments were significantly higher than other habitats (p=0.0002). The 

interaction between season and habitat was also significant (p<0.0001). The single largest 

efflux of ammonium occurred in oyster reef sediments during the summer (198 ± 114 µmol 

NH4
+ m-2 hr-1) when all oyster reef cores showed an efflux of ammonium greater than 100 

µmol NH4
+ m-2 hr-1; the highest efflux was 332.9 µmol NH4

+ m-2 hr-1. Seasonal differences 

were not detected for SAV or marsh habitats, while subtidal and intertidal flats had 

significantly more uptake of ammonium during the summer compared to the other seasons 

(p=0.008 and 0.0004, respectively).  

2.4.5 Dissimilatory Nitrate Reduction to Ammonium (DNRA) 

 Potential DNRA rates were higher in the summer than the winter (Table 2.2, 

p<0.0005). Oyster reef sediments had the highest average potential rate of DNRA (104.4 ± 
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34.3 µmol 15NH4
+ m-2 hr-1). On average, DNRA used 4.2% of the nitrate flux directed into 

the sediment during the summer. Given the small nitrate fluxes prior to the addition for 

DNRA, it was assumed that 15NO3
- comprised the majority of the NO3

- flux was compared to 

the 15NH4
+ fluxes (An and Gardner 2002). The percent of the nitrate flux for DNRA was 

calculated as the proportion of the added nitrate flux that was 15NH4
+. Despite high DNRA 

rates in the oyster reefs, this process only accounted for 11.2% of the nitrate flux during this 

time, however a very large ammonium efflux was detected for each habitat after the addition.  

2.4.6 Extrapolations 

Subtidal habitats (SAV and subtidal flats) were constantly inundated (Table 2.3). For 

habitats with variable inundation, intertidal flats were inundated the longest, followed by 

oyster reefs and marshes. Annual N2 production (adjusted for illumination and inundation) 

ranged from 146.0 ±17.4 mmol N-N2 m-2 yr-1 from the marsh habitat to 509.9 ± 122.7 mmol 

N-N2 m-2 yr-1 from SAV (Figure 2.4). The low rates from the marsh habitat are the result of 

few instances of N2 production coupled with the high elevation relative to water level. 

Annual N2 areal production, adjusted for inundation, from oyster reef sediments was not 

significantly different from SAV sediments.  

The annual rate of nitrogen removal (mol N yr-1) was determined by extrapolating the 

annual N2 production rates to the estuary using total area comprised by each habitat (Table 

2.3). Assumptions of this extrapolation are that similar habitats exhibit similar effects on 

ecological processes and are affected by light and tide the same as the habitats used in this 

study. Results from this extrapolation indicated that subtidal flat habitats remove 

significantly more nitrogen per year than the other habitats because of the large area of these 

habitats in Bogue Sound (Fig 2.4; p<0.0001).  
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2.5 Discussion 

2.5.1 Net N2 Fluxes  

 Negative N2 fluxes, which indicate nitrogen fixation, (Fulweiler et al. 2007) were 

found in sediments from SAV, marsh, subtidal flat and intertidal flat habitats during several 

seasons. Nitrogen fixation rates exceeding denitrification are not uncommon in estuaries 

(Joye and Paerl 1994, Currin et al. 1996, An and Joye 2001, Fulweiler et al. 2007, Fulweiler 

and Nixon 2011). Because incubations were conducted in the dark, heterotrophic bacteria 

were likely responsible for nitrogen fixation in these habitats (Howarth et al. 1988, Currin et 

al. 1996). High rates of nitrogen fixation are likely inversely related to ammonium 

concentrations; fixation is inhibited when sediments have high concentrations of extractable 

and soluble ammonium (Howarth et al. 1988). Although we did not measure porewater 

ammonium concentrations, there was low ammonium in overlying water and ammonium 

uptake by the sediments from these habitats. Therefore, in these N-limited systems, the 

additional nitrogen demand may be met through nitrogen fixation (Howarth and Marino 

2006). In contrast, the high concentration of ammonium associated with oyster biodeposits 

(Newell et al. 2005, Higgins et al. 2011) was reflected in large ammonium fluxes and greater 

N2 production from the oyster reef habitat.  

Oyster reef sediments had the largest flux of ammonium from the sediment to 

the water column. High ammonium production from oyster reef sediments, especially 

during the summer, probably resulted from elevated oyster filtration rates (and thus 

organic matter deposition on the sediments) during this time (Grizzle et al. 2008, 

Pomeroy et al. 2006, Dame et al. 1992, Dame et al. 1985). High ammonium 

production suggests that heterotrophic bacteria were actively using the deposited 

organic matter during aerobic respiration or denitrification. Oyster excretion could 
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contribute to high ammonium production; however, this was not a source in this 

study since oysters were not included in the sediment incubations. 

 The largest positive N2 fluxes, (denitrification) occurred in the summer for all 

habitats. Seasonal differences in denitrification rates are common (Thompson et al. 1995, 

Eyre and Ferguson 2005, Piehler and Smyth 2011, Fulweiler and Nixon 2011), with higher 

rates in warmer months, when metabolism is higher (Brown et al. 2004). While the majority 

of N2 fluxes measured over the course of an annual cycle for SAV, subtidal flat and intertidal 

flat sediments were negative in cooler months; high positive N2 fluxes in the summer made 

average N2 fluxes positive. For the marsh habitat, positive N2 fluxes in the summer and large 

negative N2 fluxes in cooler months resulted in average fluxes that were not significantly 

different from zero, suggesting a balance between denitrification and nitrogen fixation. This 

result agrees with previous studies that have documented higher rates of nitrogen fixation 

relative to denitrification from sandy fringing marshes (Currin et al. 1996, Davis et al. 2004).  

 Nitrate required for denitrification can diffuse from the water column into the 

sediments (direct denitrification) or be produced in sediment through nitrification (coupled 

nitrification-denitrification). The low nitrate concentration in the overlying water (less than 

0.5 µM) and small fluxes of nitrate into the sediment make direct denitrification unlikely in 

our study system (Seitzinger et al. 2006). Nitrate fluxes were low, but within the range of 

values measured from other oligotrophic systems with low ambient nitrate concentrations 

(Weston et al. 1996, Fear et al. 2005, Eyre et al. 2011a). The lack of a seasonal or habitat 

effect on nitrate fluxes suggests that coupled nitrification-denitrification was the dominant N2 

production pathway for all habitats. We found nitrification to support on average about 98% 

of measured denitrification (positive N2 fluxes).  
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 Oyster reefs had the highest rates N2 production per area. Studies of denitrification in 

oyster reef sediments are rare (Piehler and Smyth 2011), particularly when compared to SAV 

and marsh habitats. Current understanding of oyster-mediated denitrification stems from 

laboratory experiments using pelletized phytoplankton to simulate biodeposits, suggesting 

that the presence of oysters increases coupled nitrification-denitrification in the sediment 

(Newell et al. 2002). Our results support this hypothesis and suggest that denitrification was 

limited by the availability of nitrate. However, the elevated ammonium production and high 

SOD suggests that nitrification was limited by oxygen (Cornwell et al. 1999).  

2.5.2 Sediment Oxygen Demand 

SOD was highest for the oyster reef sediments, indicating that the organic matter in 

this habitat is more rapidly metabolized compared to the other habitats. This difference is 

probably the result of the biodeposits associated with the oysters’ feeding process (Newell et 

al. 2005). SOD from the marsh was low compared to other studies (Caffrey et al. 2007). 

Marshes in this study area were fringing marshes with sandy sediments (Mattheus et al. 

2010). Habitats with sandy sediments have been associated with lower quality carbon despite 

large amounts of organic matter (Vance-Harris and Ingall 2005, Morgan et al. 2009), 

resulting in lower SOD.  

We found a strong positive relationship between SOD and N2 fluxes for all habitats. 

In estuarine sediments, SOD is primarily from organic matter mineralization, nitrification 

and sulfide oxidation. High sediment SOD is often associated with high organic matter and 

decreased sediment oxygen penetration depth (Cornwell et al. 1999). Additionally, the 

positive relationship between SOD and denitrification has been found in coastal ecosystems 

where denitrification is coupled to nitrification and is controlled by the availability of organic 

carbon (Seitzinger 1994, Seitzinger and Giblin 1996, Piehler and Smyth 2011). We found 
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negative N2 fluxes when SOD was lowest, suggesting nitrogen fixation could occur despite 

the increase in sediment oxygen penetration depth (Paerl and CARLTON 1988, Fulweiler 

and Nixon 2011). Nitrogen fixation and denitrification have been found to co-occur in coastal 

systems (Joye and Paerl 1994, Fulweiler et al. 2007), but process-based links between 

oxygen demand and nitrogen cycling are still being developed (Burgin et al. 2010, Burgin 

and Groffman 2012). 

2.5.3 Potential DNRA 

Previous studies that have examined DNRA in coastal ecosystems report that DNRA 

can account for 0% to 75% of the nitrate flux (Tobias et al. 2001, An and Gardner 2002, Ma 

and Aelion 2005, Gardner and McCarthy 2009). We expected that the high amount of 

organic matter and anoxic and sulfidic sediments in a nitrate-limited environment would 

create conditions favorable for DNRA over denitrification (Tiedje 1988, Kelso et al. 1997, 

Silver et al. 2001, Tobias et al. 2001, Gardner et al. 2006, Burgin and Hamilton 2007, Koop-

Jakobsen and Giblin 2010). However, we found DNRA to be negligible during the winter 

and to account for 0.7% to 11.2% of the added nitrate flux in subtidal flats and oyster reefs, 

respectively, during the summer. This low percentage would leave a large portion of nitrate 

available for other processes, including denitrification.  

We found higher rates of potential DNRA in oyster reef sediment compared to the 

other habitats. Oyster reef sediments had high SOD, indicating reduced conditions that may 

favor DNRA over denitrification. In a marine aquaculture system with significant and 

sustained organic matter production DNRA was also found to occur at relatively high rates 

than denitrification (Christensen et al. 2000). Previous studies suggest that denitrification is 

inhibited by sulfide accumulation associated with high rates of organic matter loading from 
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bivalve aquaculture (Carlsson et al. 2012). It is possible that a proportion of the ambient 

ammonium flux from the oyster reef could result from DNRA associated with 14 NO3
-, which 

was unaccounted for in this study. However, the low nitrate in the overlying water (< 

1µM, Table 2.1) suggests that this is minor. To our knowledge, ours is the first study to 

measure potential DNRA in natural oyster reef sediments and more data are necessary to 

fully assess the pathways of nitrate reduction in these systems.  

These values may underestimate actual rates because our method did not measure 

DNRA rates from 14 NO3
- that occurs naturally and did not consider losses of 15NH4

+ due to 

cation exchange reactions in the sediments. It is possible that 15NH4
+ produced through 

DNRA was exchanged in the sediments with 14NH4
+. This exchange would cause an increase 

in 14NH4
+ release and an underestimate of DNRA (Gardner et al. 1991, Seitzinger et al. 1991, 

Gardner et al. 2006). Unfortunately, we have neither measurements of porewater ammonium 

nor ammonium affinity from these sediments. However, we observed an increase in total 

NH4
+ release after the enrichment of 15NO3

-, suggesting a greater potential for DNRA than 

we detected (Gardner et al. 2006). Moreover, these data suggest that nitrogen retention 

through DNRA could increase in response to anthropogenic nutrient loading.  

2.5.5 Extrapolations  

Spatial and temporal variability in denitrification make it difficult to extrapolate rates 

to the landscape scale (Cornwell et al. 1999). In order for denitrification to be assessed at 

such a level, measurements must be made over many seasons, across a range of habitats, and 

account for tidal inundation (Seitzinger 2000). We used a model based on water level, 

elevation and light to scale rates of N2 production. These rates represented a lower limit 

because it was assumed that denitrification is limited to dark inundated sediments. 
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The purpose of our extrapolation was to assess nitrogen removal on the ecosystem scale; 

therefore, only positive fluxes were included. 

Our results suggest that the amount of nitrogen removed by denitrification for an 

estuary depends on the amount and type of habitats located within the estuary, as each habitat 

has a unique effect on sediment nitrogen dynamics (Eyre and Maher 2010, Eyre et al. 2011b, 

Piehler and Smyth 2011, Eyre et al. 2011a). We found that oyster reefs and SAV provided 

disproportionately large amounts of nitrogen removal per unit area, while subtidal flats 

removed the largest amount of nitrogen within the ecosystem due to the area of these habitats 

within the estuary. Recent studies have examined how habitat area in tropical oligotrophic 

ecosystems affects nitrogen budgets and found seagrass beds to have the highest rates of 

nitrogen removal while flats served as important connectors (Eyre et al. 2011a). Results from 

our study also show that intertidal and subtidal flat habitats help to maintain the balance and 

function of estuarine ecosystems; however, these habitats do not provide the same quantity of 

ecosystem services as oyster reefs, SAV or marsh habitats and are generally considered to be 

of less value (Costanza et al. 1997, Barbier et al. 2011, Boström et al. 2011). Commonly, 

restoration strategies convert intertidal and subtidal flats to habitats that provide a greater 

number of services per area.  

2.6 Conclusions 

Given the current habitat distribution of Bogue Sound, an estimated total of 28.3 ± 

4.8 x 106 mols N are removed per year. Based on annual nitrogen load data from coastal 

streams within this area (Schwartz 2010), impervious surface coverage and watershed area 

(11.82%; USGS), we estimate the nitrogen load to Bogue Sound to be about 37.3 x 106 mols 

N yr -1. Given these values, denitrification by the habitats in Bogue Sound removes about 



 26   

76% of the total estimated nitrogen load and does not account for other sources of 

nitrogen (e.g. oceanic and non-point sources). This high nitrogen removal capacity of 

Bogue Sound contributes to maintaining water quality within this system. Although 

analyzing a complex system by adding rates from the individual compartments does not take 

into account the interactions, it is the first step in assessing landscape scale nitrogen removal. 

Rates of denitrification (N2 production only), which have been modified by the 

assumptions of the extrapolation, were not different; however, the mean of the 

measured net N2 fluxes, suggest that hourly areal fluxes are different by habitat type. 

Annual areal denitrification in oyster reefs is less than SAV and comparable to 

intertidal flats (Fig. 2.4); however oyster reefs have the highest areal denitrification in 

the summer (Fig. 2.2). Thus, restoration of habitats with positive mean net N2 fluxes 

and favorable inundation regimes have the potential to increase system-wide 

denitrification. This information will help in our understanding of how changes in the 

amount and types of habitats in the estuarine landscape impact ecosystem functions and 

services. Such knowledge is essential for management strategies aimed at mitigating the 

negative effects of increased nutrient inputs. 
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Table 2.1 Physical and chemical properties of water at the sampling site for all nitrogen flux 
experiments (BD=Below Detection).  

Season Month 
Temp 
(oC) Salinity 

DO 
(mg/l) 

NOx
- 

(µM) 
NH4

+ 
(µM) 

Winter Jan. 3.32 32.4 11.4 0.33 1.28 
Spring March 19.0 31.6 8.84 0.49 0.91 

Summer July 30.1 29.3 5.00 BD 3.56 
Fall Nov. 7.44 31.5 12.3 BD 0.65 
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Table 2.2 Mean rates of potential DNRA in two seasons and five habitats. Values are mean ± 1 SE. Significant differences are 
indicated by *. There were no measures of ammonium and nitrate fluxes during the winter. Percent of nitrate flux was calculated as 
recovery of 15NH4

+ assuming that all of the NOx flux was from the added 15NO3
-. 

Season Habitat 

DNRA 
 (µmol 15NH4

+
 m-2 hr-1) 

Ammonium Flux 
(µmol NH4

+
 m-2 hr-1) 

Nitrate Flux 
(µmol NOx m-2 hr-1) 

% of Nitrate 
Flux that was 

15NH4 
Summer Subtidal Flat 4.5 ± 3.00 46.5 ± 5.5 -688 ± 61.3 0.70 

2007 Intertidal Flat 12.6 ± 5.40 124 ± 37.5 -737 ± 105 1.62 
  SAV 26.3 ± 5.20 275 ± 87.7 -596 ± 81.2 4.54 
  Marsh 11.4 ± 7.00 199 ± 14.0 -560 ± 21.8 2.94 
  Oyster Reef  104* ± 34.3 443 ± 154 -1010 ± 281 11.2 

Winter Subtidal Flat None Detected    
2008 Intertidal Flat None Detected    

  SAV None Detected    
  Marsh 0.40 ± 0.30    
  Oyster Reef 0.80 ± 0.20    
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Table 2.3 Hour inundation during the dark, based on seasonal differences in light and water 
level and total habitat area in the study system.  

 

 
 
 
 
 
 
 
 
 
 
  

Habitat Average Hours 
Submerged per 
day in the Dark 

Total Area (km2) 
in Bogue Sound 

Subtidal Flat 12 ± 0.8 67.9 
Intertidal Flat 8.2 ± 0.8 3.7 

SAV 12 ± 0.8 21.1 
Marsh 6.1 ± 0.8 8.2 

Oyster Reef 7.6 ± 1.0 5.2 
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Figure 2.1 Location and habitat map of the study area where extrapolations were preformed.  
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Figure 2.2 Seasonal averaged (n=3) sediment oxygen demand (a), N2 fluxes (b), Nitrate 
fluxes (c), and Ammonium fluxes (d) across the sediment water interface in different 
estuarine habitats. For figures b,c,d negative flux indicates uptake by the sediment and 
positive flux indicates release. Error bars represent standard error.  
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Figure 2.3 Net N2 flux as a function of sediment oxygen demand (SOD) for habitats in 
Bogue Sound, NC. Relationship of all data is plotted for reference. 
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Figure 2.4 Annual areal rates of denitrification based on hourly rates that were adjusted for 
light and inundation for each habitat and annual rate of removal based on the total amount of 
habitat area in Bogue Sound. 
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3. OYSTER MEDIATED BENTHIC-PELAGIC COUPLING MODIFIES NITROGEN 
POOLS AND PROCESSES2  
 
3.1 Abstract 
 

Anthropogenic nitrogen loading has led to eutrophication of many estuaries. Removal 

of nitrogen through enhanced denitrification has been identified as an ecosystem service 

provided by oysters. In this study, we assessed the effects of an individual oyster on nitrogen 

dynamics. Net fluxes of N2, O2, nitrate (NOx) and ammonium (NH4
+) were measured in 

continuous-flow microcosms that contained a live oyster, sediment, or a live 

oyster+sediment. Net N2 fluxes were indicative of nitrogen fixation in the sediment treatment 

and denitrification in the oyster and oyster+sediment treatments. This difference probably 

resulted from increased organic matter deposition and ammonium production associated with 

excretion and biodeposit production. Our results suggest that oyster-mediated denitrification 

may be most apparent in carbon-limited systems. Despite high rates of ammonium 

production associated with the oysters, oyster-mediated denitrification accounted for 40% of 

the total inorganic nitrogen efflux in the oyster microcosms and 16% in the oyster+sediment 

microcosms. Despite high rates of ammonium production, the inclusion of the eastern oyster 

did not affect the pool of bioavailable nitrogen but shifted the microcosms from a nitrogen 

source to sink. 

 

 

                                                
2 Chapter 3 is under review for the journal Marine Ecology Progress Series with authors A.R. 
Smyth, N.R. Geraldi, and M.F. Piehler.  
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3.2 Introduction  

Human activities have drastically altered the structure and function of estuarine 

ecosystems. Two of the most troubling changes have been nutrient enrichment (Nixon et al. 

1995) and loss of bivalves (Frankenberg 1995, Jackson et al. 2001a). Estuarine ecosystems 

are typically nitrogen limited (Paerl 1997, Howarth and Marino 2006)and phytoplankton 

growth stimulated by increased inputs of reactive nitrogen have led to eutrophication 

(Vitousek et al. 1997b). Nitrogen loss in estuaries occurs primarily through denitrification, 

the microbial conversion of nitrate or nitrite to N2 or N2O (Seitzinger 1988, Nixon et al. 

1995). However, development, deforestation and overharvesting have changed the estuarine 

landscape, reducing areas where conditions are favorable for denitrification (Lotze et al. 

2006, Brush 2009). The loss of natural nitrogen sinks coupled with increased nitrogen inputs 

has exacerbated the imbalance in the estuarine nitrogen cycle further contributing to 

eutrophication. 

Oysters and the reefs they form are ecologically and economically valuable habitats 

(Grabowski et al. 2012). However, 85% of oyster reefs have been lost globally due to over-

harvesting, pollution and disease (Lotze et al. 2006, Beck et al. 2011). Restoration of oysters 

has been suggested as a remedial tool to combat eutrophication and improve water quality 

while providing additional ecosystem services (Officer et al. 1982, Cerco and Noel 2007, 

Beck et al. 2011, Grabowski et al. 2012). Oysters filter large amounts of particulate matter 

from the water column, grazing as much as 12% of phytoplankton biomass (Grizzle et al. 

2008). While a portion of this material is assimilated into oyster biomass (Carmichael et al. 

2012), the undigested (pseudo-feces) and the unassimilated portions (feces) are transferred to 

the sediments as biodeposits (Newell and Jordan 1983). The transformation and transfer of 

material modifies conditions in the surrounding sediments and can affect biogeochemical 
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processes (Newell et al. 2002, Porter et al. 2004, Newell et al. 2005, Piehler and Smyth 2011, 

Smyth et al. 2013).  

Oysters may enhance denitrification by modifying oxygen, carbon and/or nitrate 

availability. Oysters, like other bivalves, contribute to anoxic conditions favorable for 

denitrification through respiration and decomposition of organic material in biodeposits 

(Gelda et al. 2001, Bruesewitz et al. 2008). Biodeposition of carbon rich biodeposits could 

enhance denitrification, particularly in carbon-limited systems (Kimmel and Newell 2007, 

Higgins et al. 2013). When nitrate limits denitrification; increased ammonium associated 

with oyster excretion and remineralization of biodeposits may fuel nitrate production through 

nitrification (Dame et al. 1984, Lavrentyev et al. 2000, Newell et al. 2005). Additionally,  

bivales may stimulate nitrification by filtering out bactivorous protozoa that would otherwise 

consume nitrifying bacteria, leading to increased rates of nitrification because of decreased 

predation (Lavrentyev et al. 2000). However, ammonium produced in excess of nitrification 

probably returns to the water column, and is used to meet nitrogen demands for 

phytoplankton growth (Dame et al. 1984, 1985, Kemp et al. 1990).  

 Previous studies designed to examine oyster effects on nitrogen transformations have 

focused on adjacent sediments (Piehler and Smyth 2011, Smyth et al. 2013) or mimicked 

oyster-mediated biodeposition (Newell et al. 2002). We conducted a microcosm experiment 

to examine the direct effects of an individual oyster on nitrogen dynamics. The inclusion of 

live oysters in continuous-flow microcosms allowed us to quantify the extent to which 

oyster-mediated benthic-pelagic coupling influences the availability and processing of 

nitrogen. Understanding how an individual oyster modifies both nitrogen pools and processes 

is valuable for planning and evaluating restoration strategies to improve water quality.  
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3.3 Methods 

3.3.1 Sample Collection 

The experiment was conducted in microcosms (polycarbonate 6.4 cm diameter X 

30cm) that contained a live oyster, sediment, or a live oyster+sediment and incubated in a 

continuous-flow system. Intertidal oysters (Crassostrea virginica) were collected from 

Calico Creek, NC (34.728, -76.722), at low tide and stored in saltwater flow-through tanks 

for three days. Prior to the start of the incubation, the outside shell of each oyster was 

scrubbed with a brush to remove algae and biofilms and isolate the impacts of the oyster. 

Average oyster shell width in our experiment was 9.34 ± 0.45 cm and the average weight of 

oyster tissue was 1.0 ± 2.5 g. 

Sediments samples (17 cm depth) were collected on 4 August 2009 during low tide 

from a homogenous intertidal flat in Bogue Sound, NC (a site suitable for oyster restoration) 

by pushing a microcosm chamber directly into the sediment. In addition, water (30l) was 

collected for use as reservoir water in the continuous-flow incubation. Surface water 

temperature, salinity and dissolved oxygen were measured prior to sample collection (YSI 

600 Series Sonde and Model 650 data logger, Yellow Springs Instruments, Yellow Springs, 

OH).  

3.3.2 Benthic Flux Incubations 

Immediately after collection of sediment and water, all microcosm chambers were 

submerged in a water bath in an environmental chamber (Bally Inc.) set to in situ temperature 

(24.7 °C). Microcosms were randomly assigned a treatment (oyster, sediment, 

oyster+sediment) and each treatment was replicated 3 times. Microcosms were sealed with a 
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gas tight lid equipped with an inflow and outflow port and incubated in a continuous-flow 

system, where a peristaltic pump connected microcosms to the water reservoir. Aerated, 

unfiltered water was constantly passed through each microcosm at a flow rate of 2ml min-1 

with a turnover time of approximately 3 hours. After an initial 20-hour acclimation period in 

the dark, microcosms were incubated over 24-hrs in a 10:14 hr, dark:light cycle. A light 

intensity of approximately 50 µ einsteins was maintained using dual spectrum compact 

florescent lights. Oxygen in the reservoir water was monitored throughout the incubation and 

remained about 6 mg/l. During the incubation, oysters were actively feeding as indicated by a 

gap between the valves of the oyster shells. All oysters were alive at the conclusion of the 

experiment.  

3.3.3 Analytical Techniques 

N2, O2 and Ar were measured using a Balzers Prisma QME 200 quadruple mass 

spectrometer (MIMS; Pfeiffer Vacuum, Nashua, NH, USA) and concentrations of N2 and O2 

were determined using the ratio with Ar (Kana et al. 1994, Ensign et al. 2008). Samples for 

nutrient analysis were filtered through Whatman GF/F filters (25 mm diameter, 0.7 µm 

nominal pore size), and the filtrate was analyzed for nitrate (nitrate plus nitrite; NOx) and 

ammonium (NH4
+) with a Lachat Quick-Chem 8000 (Lachat Instruments, Milwaukee, WI, 

USA) automated ion analyzer (detection limits: 0.04 µM NOx, 0.18 µM NH4
+).  

Samples for dissolved gas analysis were collected twice during the dark period and 

twice during the light period for each microcosm. Nutrient samples were collected once in 

the dark and once in the light. Flux calculations were based on the assumption of steady-state 

conditions (Miller-Way and Twilley 1996). Fluxes of dissolved nutrients and gasses were 

calculated as the difference between the concentration leaving and entering the microcosm 



 40 

divided by the flow rate, and expressed relative to the area of the microcosm (Lavrentyev et 

al. 2000). A positive flux indicates production in excess of demand and a negative flux is a 

demand in excess of production within the microcosm. Fluxes from each microcosm were 

averaged for each treatment to calculate mean values and standard error (n=3). Daily fluxes 

were calculated as the sum of the light rate multiplied by 14 hours and the dark rate 

multiplied by 10 hours. For consistency, daily fluxes were divided by 24 hours and expressed 

per hour. Net dissolved inorganic nitrogen fluxes (DIN) were calculated as the sum of 

ammonium and nitrate fluxes plus nitrogen fixation minus denitrification.  

3.3.4 Statistical Analysis 

The effect of treatment and illumination (dark or light) on fluxes of N2, O2, NOx, 

NH4
+ and net DIN was tested separately using a mixed effect analysis of variance (ANOVA). 

Treatment was a fixed factor and illumination was nested within microcosm. Within factor 

significance was tested using Tukey’s HSD. All analyses were considered significant at the 

p<0.05 level and were conducted using JMP 7.0.1 statistical software (SAS 2007).  

 

3.4 Results    

 Oxygen demand was lower in the sediment microcosms compared to the other 

treatments (F2,2=23.11, p<0.001; Figure 3.1). We found no significant effect of light on 

oxygen demand (F3,3= 0.8380, p=0.4987). Oxygen demand was higher in the light compared 

to the dark for the oyster and oyster+sediment treatments. Oxygen demand ranged from 150 

± 48 µmol O2 m-2 hr-1 for the sediment in the light to 7270 ± 352 µmol O2 m-2 hr-1 for the 

oyster in the light. Oxygen demand was significantly higher in treatments that contained an 

oyster compared to the sediment, probably attributable to oyster respiration.  
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N2 fluxes were significantly different between each treatment (F2,2=40.88, p<0.0001; 

Fig 3.1) and ranged from 426 ± 55 µmol N-N2 m-2 hr-1 for the oyster treatment in the light to 

-294 ± 35 µmol N-N2 m-2 hr-1 for the sediment treatment in the light. The effect of light was 

not significant (F3,3=0.1093, p=0.8523). Daily N2 fluxes from the sediment treatment were 

negative, indicating net nitrogen fixation while fluxes from the oyster and oyster+sediment 

treatments were positive, indicating net denitrification.  

NOx fluxes were highly variable and mostly negative (Fig 3.2). Fluxes ranged from -

23 ± 5.2 µmol NOx m-2 hr-1 in the oyster treatment in the light to 2.3 ± 9.1 µmol NOx m-2 hr-1 

in the oyster+sediment treatment in the light. NOx fluxes were not affected by oyster 

presence (F2,2=2.191, p=0.154) or light (F3,3=0.3243, p=0.808).  

 The oyster and oyster+sediment treatments had positive fluxes of NH4
+ while fluxes 

in the sediment treatment were negative (Figure 3.2). NH4
+ fluxes ranged from -51 ± 57 µmol 

NH4
+ m-2 hr-1 in the light for the sediment treatment to 588 ± 83 µmol NH4

+ m-2 hr-1 in the 

light for the oyster treatment. Light did not affect NH4
+ fluxes for either treatment 

(F3,3=0.1840, p=0.9052). NH4
+ fluxes were higher in the oyster and oyster+sediment 

treatments than the sediment treatment (F2,2=19.634, p=0.0002).  

 Oyster mediated denitrification accounted for an average of 18% of the total 

dissolved inorganic nitrogen efflux, ranging from 16% from the oyster+sediment microcosm 

to 40% from the oyster only microcosm. Net DIN fluxes were not different between 

treatments (F2,2=0.3272, p=0.7272, Figure 3.2) or illumination (F3,3=1.622, p=0.2362). 

 

3.5 Discussion 

 A holistic understanding of oyster-mediated alteration to estuarine nitrogen dynamics 
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requires knowledge of the individual oyster’s impact on nitrogen processing. Oyster presence 

caused a shift in the dominant nitrogen cycling pathway from nitrogen fixation to 

denitrification. Oyster mediated denitrification accounted for 40% of the total DIN efflux in 

the oyster microcosms and 16% in the oyster+sediment microcosms. Although the oyster 

treatments increased denitrification, these treatments also had significantly higher rates of 

ammonium production compared to the sediment microcosms. However, the net DIN flux 

was not different among treatments because of the magnitude of nitrogen fixation in the 

sediment only treatment.  

 Oyster biodeposits contain significant amounts of organic carbon, nitrogen and 

extractable ammonium that can supply fuel to the microbial community (Haven and Morales-

Alamo 1966, Grenz et al. 1990, Giles and Pilditch 2006, Higgins et al. 2013). Oysters 

produce about 1.33 mg C to 16.8 mg C per gram oyster tissue per day as biodeposits (Haven 

and Morales-Alamo 1966, Higgins et al. 2013). Given the turn over time in our incubation 

and the clearance rates of an oyster, we estimate that oysters added 2.66 ± 6.65 to 33.6 ± 84 

mg of particulate C to the microcosm. While we did not measure carbon quality or quantity, 

biodeposits were observed in the bottom of the microcosms. Oyster and oyster+sediment 

treatments also had high rates of ammonium production likely from direct excretion by the 

oyster and remineralization of organic matter in the biodeposits.  

 The oyster treatment had the highest rate of denitrification. It is probably that 

denitrifying bacteria found in the gut of oysters (Pujalte et al. 1999) were present in 

biodeposits, (Grenz et al. 1990, Azandégbé et al. 2012). Without competition from native 

benthic organisms, the majority of the carbon and nitrogen in the biodeposits could be used 

for heterotrophic metabolism leading to anoxic micro-zones and conditions favorable for 
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denitrification. Additionally, inputs of labile organic matter stimulate denitrification, whereas 

nitrogen fixation tends to dominate when organic matter is refractory (Fulweiler et al. 2013). 

It is probably that the combination of an added ammonium supply with a source of high 

quality organic matter lead to the shift from nitrogen fixation in the sediment microcosm to 

denitrification in oyster microcosms.  

 Quantifying the effects of oysters on ecosystem function is challenging, given 

methodological difficulty and the complexity of the reef ecosystems. Our results align with 

previous studies which concluded that oyster mediated denitrification occurs through 

coupling with nitrification stimulated by biodepostion and ammonium production from the 

oysters (Boucher and Boucher-Rodoni 1988, Newell et al. 2002, Piehler and Smyth 2011, 

Smyth et al. 2013). We found denitrification rates within the range of those reported for 

intertidal oyster reef sediments (Piehler and Smyth 2011, Smyth et al. 2013). However, 

oyster denitrification rates were higher than rates associated with the biodeposits alone 

(Higgins et al. 2013), probably attributable to oyster respiration altering O2 dynamics. 

Oyster-mediated denitrification removed a similar percentage of nitrogen as when pelletized 

phytoplankton were used to mimic biodeposits (Newell et al. 2002). 

 The inclusion of the oyster in the microcosm acted as an organic matter addition, 

which caused a shift from nitrogen fixation to denitrification. In systems with low levels of 

carbon loading, nitrogen fixation occurs at greater rates than denitrification (Fulweiler et al. 

2008, 2011). Nitrogen and carbon inputs from oysters likely suppress nitrogen fixation and 

enhance denitrification. However, in carbon rich systems additional organic matter from the 

oysters may exacerbate reduced conditions, resulting in sulfide accumulation(Tenore and 

Dunstan 1973, Azandégbé et al. 2012) and increased anoxic microzones (Kemp et al. 1990) 
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that can inhibit nitrification(Joye and Hollibaugh 1995) and subsequently reduce rates of 

denitrification. At intermediate levels of carbon loading steep biogeochemical gradients 

persist, putting the zones for nitrification and denitrification in close proximity, which 

enhances coupling between these processes (Eyre and Ferguson 2009). Because oyster 

biodeposition adds organic matter, oyster mediated denitrification is more likely to occur 

when denitrification is limited by carbon availability.  

 This study contributes to the growing body of evidence showing that oysters enhance 

denitrification (Newell et al. 2002, Piehler and Smyth 2011, Smyth et al. 2013). We found 

that although oyster presence increased the system’s capacity to denitrify the net DIN flux 

was not different between treatments. In the absence of oysters sediments are a net source of 

reactive nitrogen whereas the addition of oysters increase organic matter deposition, 

alleviating carbon limitation and increasing denitrification. Thus, oyster restoration will not 

add additional nitrogen to carbon-limited systems but will provide valuable ecosystem 

services, including enhanced denitrification.  
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Figure 3.1. Mean dark (n=3), light (n=3) and Daily O2 demand, N2 gas flux from each 
treatment. Different letters indicate significant differences between the treatments. Error bars 
represent one standard error.  
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Figure 3.2. Mean dark (n=3), light (n=3) and Daily NOx flux, NH4

+ flux and Net DIN flux 
from each treatment. Different letters indicate significant differences between the treatments. 
Error bars represent one standard error.  
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4. ENHANCED DENITRIFICATION IN OYSTER REEF SEDIMENTS IS A 
FUNCTION OF BOTH REEF STRUCTURE AND BIODEPOSIT PRODUCTION  
 

4.1 Abstract 

Anthropogenic activities have altered the structure and function of coastal 

ecosystems. Increased nutrient inputs have lead to eutrophication and reduction in water 

quality. In addition, overharvesting and disease have reduced populations of suspension 

feeding bivalves that exert top down control on phytoplankton biomass. Oyster reef 

restoration has been proposed as a way to improve water quality and remove excess nitrogen. 

Biodeposits can fuel microbially mediated denitrification. However, the reef structure 

probably contributes to the accumulation of biodeposits and other organic matter on the 

sediments. We conducted a field experiment to distinguish between the effects of oyster 

feeding and reef structure on sediment denitrification. Experimental plots with live oysters, 

oyster shells and mud flats (control) were sampled for sediment organic matter, sediment C 

and N content, and fluxes of nitrogen (NH4
+, NOX and N2) two weeks and four weeks after 

construction. Compared to the control, reefs with live oysters increased N2 production 

(denitrification) by 61% and reefs with shell only showed a 24% increase. These results 

indicate that biotic and abiotic interactions lead to enhanced biogeochemical activity in 

oyster reef sediments. Denitrification from experimental plots was equal to natural reefs after 

two weeks. Results from this experiment demonstrate the potential for restored reefs to 

improve water quality via nitrogen removal through a combination of physical and biological 

mechanisms soon after establishment. A mechanistic understanding of the influence of oyster 
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reefs on nitrogen biogeochemistry will improve management plans aimed at improving water 

quality.  

 
4.2 Introduction 
 
 Key processes in ecosystems are driven by interactions between organisms and their 

environment. Certain organisms act as engineers; modifying the supply of resources to other 

organisms though biotic or abiotic interactions (Jones et al. 1994, 2006). Ecosystem 

engineers change the environment through their own physical structure or by transforming 

material from one physical state to another. These organisms influence species richness, 

community composition and primary production (Wright and Jones 2004). Additionally, 

ecosystem engineers can contribute to the creation of biogeochemical hot spots, by changing 

the availability of resource to microbes or altering the environmental conditions in the 

sediment (McClain et al. 2003, Gutierrez and Jones 2006, Jones et al. 2006).  

Changes in the physical and chemical environment are of particular importance for 

the nitrogen cycle, where slight alterations in conditions can change processing from nitrogen 

recycling to removal (Kemp et al. 1990, Fulweiler et al. 2013). Nitrogen is an important 

resource at the base of the food web and the limiting nutrient in coastal ecosystems (Nixon et 

al. 1996, Paerl 1997). Additional inputs of nitrogen from anthropogenic activities have led to 

increased instances of eutrophication and overall degradation of water quality (Vitousek et al. 

1997b, Paerl et al. 1998, Galloway et al. 2003). While there are a variety of sources, nitrogen 

is removed through physical transport, burial, or denitrification (Vitousek et al. 1997b). 

Denitrification is a microbially-mediated reaction where carbon serves as the electron donor 

in the reduction of nitrate (NO3
-) to inert N2 gas. This reaction is an important nitrogen-sink 

in coastal systems but is restricted to anoxic sediments (Seitzinger 1988, Nixon et al. 1996, 
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Cornwell et al. 1999). Nitrate may come directly from the water column or through 

nitrification—the conversion of ammonium to nitrate (McClain et al. 2003, Seitzinger et al. 

2006). However, nitrification is limited by ammonium availability, which is linked to organic 

matter deposition and is constrained to oxygenated sediments (Henriksen 1980, Kemp et al. 

1990).  

Coastal ecosystems are associated with high rates of denitrification, removing 

nitrogen before it is transferred to the continental shelf (Seitzinger 1988, Nixon et al. 1996, 

Paerl 1997, Galloway et al. 2003). The quantity of nitrogen that is processed and removed is 

dependent on the amount and type of habitats in the landscape mosaic (Eyre et al. 2011a, 

Smyth et al. 2013). Unfortunately, destructive harvesting practices and degradation of water 

quality have led to biogenic habitat loss (oyster reefs, seagrass beds, marshes) and altered the 

structure and function of estuarine ecosystems (Lotze et al. 2006). Restoration of ecosystem 

engineers has been proposed as a way to recover ecosystem functions including 

denitrification (Byers et al. 2006, Brush 2009). However, incorporating ecosystem engineers 

into nutrient management plans requires an understanding of how abiotic structure and biotic 

processes change the availability of resources and conditions in the sediment (Jones et al. 

2006).  

The eastern oyster, Crassostrea virginica, is an ecologically and economically 

important ecosystem engineer (Lenihan and Peterson 1998, Lotze et al. 2006, Coen et al. 

2007, Beck et al. 2011, Grabowski et al. 2012). The oyster fishery comprises a multi-million 

dollar industry, but over-harvesting and disease have lead to an 85% reduction in reef 

ecosystems (Beck et al. 2011). Oyster mediated benthic-pelagic coupling shifts production 

from the water column to the sediment (Dame et al. 1984). Oysters feed on seston and 
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transfer the undigested and unassimilated fraction to the sediment surface as feces and 

pseudofeces, collectively biodeposits (Haven and Morales-Alamo 1966, Dame et al. 1984, 

Newell 2004).  

In aerobic environments the deposition of organic matter as biodeposits stimulates 

coupled nitrification-denitrification by altering the redox environment of the surrounding 

sediments (Newell et al. 2002). Studies have shown intertidal oyster reef sediments to have 

high rates of denitrification relative to sediments without reefs (Piehler and Smyth 2011, 

Smyth et al. 2013). The primary explanation for these high rates is the accumulation of 

biodeposits on the sediment, absent from sediments from other habitats. However, the 

physical habitat structure may also be contributing to organic matter accumulation (Lenihan 

1999, Lenihan et al. 2001, Gutierrez and Jones 2006, Falcao et al. 2009). Given the link 

between denitrification and carbon availability (Eyre and Ferguson 2009, Fulweiler et al. 

2013), it possible that a portion of the enhanced denitrification may result from allochthonous 

carbon loading attributable to the reef structure.  

The goal of this study was distinguish the relative importance of the physical 

structure of the oyster reef and biodeposit production of the oyster to sediment nitrogen 

dynamics. Based on our understanding of the factors that affect denitrification, we speculated 

that interactions between the biological function and physical engineering of oyster reefs 

would result in enhanced denitrification. To test the hypothesis, experimental plots were 

constructed containing either live oysters, oyster shell or sediment controls and nitrogen 

fluxes were monitored.  

 
 
4.3 Methods 
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4.3.1 Site Description 

The experiment was conducted at Hoop Pole Creek, in Bogue Sound, NC, USA 

(34.422, 76.455). Hoop Pole Creek is part of a wildlife refuge, located on the sound side of a 

barrier island. The area is closed to oyster harvest and contains natural and restored oyster 

reefs (O'Connor et al. 2008). Our experiment was conducted on intertidal mudflats located 

approximately 25m away from the edge of a fringing salt marsh.  

4.3.2 Oyster Collection 

Clumps of intertidal oysters (Crassostrea virginica) were collected from Calico 

Creek, NC (34°728’N, 76°722’W), at low tide on 28 June 2010. Oyster clumps were 

transported back to The University of North Carolina- Institute of Marine Sciences (UNC-

IMS) and stored in tanks with continuously flowing water from Bogue Sound. Oyster clumps 

were haphazardly placed in eight 5-galon opaque buckets (42L of clumped shell) and each 

bucket was assigned to two groups. Oysters in four of the buckets were kept alive in 

experimental ponds exposed to natural light irradiation at UNC-IMS. The remaining four 

buckets of oysters were left outside in the sun for >2 weeks. This resulted in the removal of 

the oyster meat and the majority of all organic material while maintaining the structure of the 

oyster clumps. Prior to setting up the field experiment all oyster (>10mm) were counted and 

divided into four groups of each treatment.  

 

4.3.3 Field Experiment 

To test the effects of reef structure on sediment nitrogen dynamics, we constructed 

replicate plots of 0.75 m2 oyster reefs of live oysters or oyster shells on intertidal sediment 

flats. Each experimental plot had an oyster density of 123 ± 11 individuals per plot (0.75m2). 
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The experiment was conducted from 16 July 2010 through 15 August 2010. On 16 

July 2010 at low tide the intertidal mudflat was divided into 12-0.75m2 plots (2 rows of 6 

plots), each three meters apart. Plots were haphazardly assigned a treatment within each of 

the 2 rows: live oysters, oyster shell, or control (mud flat). Clumps of live oysters or oyster 

shell were positioned in an upright orientation in the water column to mimic a natural or fully 

restored and functioning oyster reef within their respective plots. A 10cm by 10cm area was 

left open in the center of each plot for sediment samplings. Plots were checked every three 

days to ensure oysters maintained an upright orientation and repositioned if necessary. 

4.3.4 Field Sampling 

Sediment samples were collected two weeks after construction of experimental plot. 

This allowed time for the sediments to establish equilibrium before sampling for 

biogeochemical analysis were collected (Porter et al. 2006).  

Porewater was collected using “sippers” (McGlathery et al. 2001). Sippers were 

positioned to collect water in the pore space from 1cm-6cm depth. Water samples were 

filtered through Whatman GF/F glass fiber filters (25mm diameter, 0.7 µm nominal pore 

size) and frozen until dissolved inorganic nitrogen analysis. Sediment samples were collected 

for total carbon (C) and nitrogen (N) analysis from each plot. Sediment cores for C and N 

analysis were 3 cm in diameter and 5 cm in depth. Sediments in the upper 0.5 cm were 

assayed for chlorophyll a (Chl. a) as an estimate of benthic algal biomass with a 1.1 cm 

diameter-coring device. The upper 2 cm of sediment (2.5 cm diameter) from each plot was 

sampled for sediment organic matter (SOM) content. Upon collection, samples were kept in 

the dark on ice in a cooler and immediately (<1hr) transported back to UNC-IMS. All 

samples were stored frozen until analysis. Sediment cores (6.4cm diameter by 17 cm depth) 
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and sound water (~30l) were collected for use in continuous flow core incubations designed 

to measure exchanges across the sediment-water interface (Lavrentyev et al. 2000, McCarthy 

and Gardner 2003). Sediment samples for the flux experiment, SOM, and C and N analysis 

were collected again 4 weeks after construction. In situ surface water temperature and 

salinity were measured at each sampling (YSI 600 Series Sonde and Model 650 data logger, 

Yellow Springs Instruments, Yellow Springs, OH, USA). In response to the development of 

and oysters settlement (personal observation), the measurements were not continued beyond 

4 weeks.  

4.3.5 Core Incubation 

  Sediment cores and water for the flux incubation were immediately (<1hr) 

transported to an environmental chamber (Bailey, Inc.) set to in situ (30°C) temperature at 

UNC-IMS. Dark conditions were maintained throughout the course of the incubation to 

reduce the effects of photosynthetic algae (An and Joye 2001, Hochard et al. 2010) and to 

prevent the formation of bubbles that would affect gas concentrations (Reeburgh 1969). 

Sediment cores were submerged in a water bath and sealed with gas tight lids equipped with 

an inflow and outflow port and connected to a peristaltic pump (Miller-Way and Twilley 

1996, Lavrentyev et al. 2000, McCarthy and Gardner 2003, Ensign et al. 2008). Unfiltered, 

aerated water collected from the site (37ppt) was continuously passed over the cores at a flow 

rate of 1ml per minute (Miller-Way and Twilley 1996, Lavrentyev et al. 2000).  

 Following a pre-incubation period of 24 hours, water samples were collected for 

dissolved gas and nutrient analysis from the outflow port of each chamber and a bypass that 

flowed directly into a sample vial, which represented the inflow concentrations (Miller-Way 

and Twilley 1996, Eyre and Ferguson 2002, McCarthy and Gardner 2003). Dissolved gases 
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were sampled and analyzed immediately after collection three times over a 48-hour period 

(24, 30, 48 hours) to ensure that steady state conditions were established, with respect to 

dissolved gasses, for each chamber. Samples for nutrient analysis were collected once after 

steady state had been established with respect to dissolved gas concentrations (~30 hours 

after the incubation began), filtered through Whatman GF/F glass fiber filters (25mm 

diameter, 0.7 µm nominal pore size) and frozen until analysis. A bypass line that flowed 

directly into the sample vials was used to determine the concentration of dissolved 

constituents entering the cores and account for changes in the water column. 

4.3.6 Dissolved Gas Analysis 

Concentrations of dissolved gases in water were measured using a Balzers Prisma 

QME 200 quadruple mass spectrometer (MIMS; Pfeiffer Vacuum, Nashua, NH, USA). 

Concentrations of O2 and N2 were determined using the ratio with Ar (Kana et al. 1994, 

Ensign et al. 2008). This results in a net flux across the sediment-water interface and does not 

discern between the sources of N2: therefore, denitrification refers to the net production of 

N2. Fluxes of oxygen directed into the sediment were considered rates of sediment oxygen 

demand (SOD).  

4.3.7 Water Chemistry 

Nutrient samples from the porewater and the flux experiment were analyzed with a 

Lachat Quick-Chem 8000 automated ion analyzer for NOx (NO3
-+NO2

-) and NH4
+ 

concentrations using standard protocols (Lachat Instruments, Milwaukee, WI, USA: NO3
-

/NO2
- (collectively NOx

- ) Method 31-107-04-1-A; NH4
+ Method 31-107-06-1-A: detection 

limits: 0.04 µM NOx, 0.18 µM NH4
+).  

4.3.8 Sediment Samples 
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Sediments for C and N measurement were dried at 70°C, ground with a mortar and 

pestle, fumed for 48 hours with 1N HCl to remove inorganic C, and dried again. Fumed 

sediment samples were analyzed for organic C and N content with a Perkin Elmer CHN 

analyzer (Model 2400 Series II) standardized with acetanilide. Analysis for Chl a was 

performed according to Lorenzen (1967), modified to include the extraction of the sediment 

with 10ml of solvent (Pinckney et al. 1994). Cores for Chl a were placed in polypropylene 

centrifuge tubes with 10 ml of solvent, sonicated over ice for 30 seconds and extracted at 0°C 

for 18 hours. Chl a concentrations were determined using spectrophotometry (Lorenzen 

1967). SOM content was assessed by loss on combustion. Sediment samples were dried, 

weighed, combusted at 525°C for 4 hours and weighed again. The difference between dried 

and combusted samples constituted the organic matter, which was expressed as a percentage 

of the total. 

4.3.9 Calculations 

Fluxes across the sediment-water interface were calculated as (Co − Ci) × f/a, where 

Co is the outflow concentration, (µmol L−1), Ci is the inflow concentration (measured from 

the bypass line), f is the flow rate (0.06 L h−1), and a is the sediment surface area (0.0032 

m2). Successive measurements from each core were averaged to give core specific values to 

prevent pseudo-replication. Denitrification efficiency was calculated as the percent of the 

dissolved inorganic nitrogen efflux that was N2 (Eyre and Ferguson 2009). 

4.3.10 Data Analysis 

 A one-way repeated measures analysis of variance (ANOVA) was used to determine 

differences between treatments of fluxes, SOM and C:N that were measured from the same 

plots two weeks and four weeks after construction. A one-way ANOVA was used for Chl a 
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and porewater nutrients, which were only sampled once during the experiment. When effects 

were significant, Tukey’s post-hoc test was used to determine differences between the 

treatments. The relationships between net N2 fluxes and NH4
+ fluxes, SOD, and SOM were 

analyzed using a linear regression. Results were considered statistically significant at an 

alpha level of 0.05. Statistical analyses were performed using R 2.13.1 (The R Foundation for 

Statistical Computing 2011). 

 
4.4 Results 

4.4.1 Flux Experiment 

 Water temperature (30°C) and salinity (37 ppt) were the same for both sampling 

events. The concentration of nitrate in water used for the flux incubations was 0.05 µM for 

the two week and 1.16 µM four week samplings. Ammonium concentration increased from 

0.79 µM at the 2-week sampling to 1.10 µM after the 4-week sampling. 

 Net N2 fluxes were not significantly different between sampling events (Table 4.1), 

but were between live oysters and other treatments (Fig 4.1). Fluxes of N2 were lowest for 

the control treatment (166.72 ± 17.48 µmol N-N2 m-2 hr-1) and highest for the live oyster 

treatment (269.06 ± 29.43 µmol N-N2 m-2 hr-1). Overall, N2 production from the live oyster 

treatment was greater than the control by 61%. The shell treatment had a 24% increase in N2 

production compared to the control, but this increase was not significant (p=0.19). SOD was 

significantly different across all treatments (Table 4.1). SOD ranged from 1240 ± 271.9 µmol 

O2 m-2 hr-1 for the control to 2403 ± 85.93 µmol O2 m-2 hr-1 in the live oyster treatment.  

Nitrate fluxes were directed from the water column to the sediment for all treatments 

and sampling periods (Table 4.2). The effect of time and treatment were significant for 

nitrate fluxes (Table 4.1). Nitrate fluxes from the live oyster treatment were significantly 
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different from the control (p=0.03), while the shell treatment was not different from either the 

control (p=0.16) or the live treatment (p=0.60). Nitrate demand was greater at the four-week 

sampling compared to the two-week sampling period (Table 4.1). 

Ammonium fluxes were significantly different among treatments and between 

sampling periods. The interaction between these terms was also significant (Table 4.1). 

Ammonium fluxes were directed from the sediment to the water column for all treatments 

(Table 4.2). Overall, ammonium production decreased between the two sampling events. 

Ammonium production from the sediment to the water column was significantly higher for 

the live oyster treatment compared to the control (p=0.02) but the shell treatment was not 

different the control (p=0.76) or the live treatment (p=0.06) after two weeks. There were no 

significant differences between the treatments during at the four-week sampling. Although 

highly variable, the live oyster treatment had more ammonium flux from the sediment to the 

water column relative to other treatments.  

Denitrification efficiency was significantly different between treatments and sampling 

events but the interaction was not significant (Table 4.1). Denitrification efficiency was 

lower at the two-week sampling compared to the four-week sampling (p=0.012). 

Denitrification efficiency was lower in the live oyster treatment compared to the control 

(p<0.05). The shell treatment was not different from the control (p=0.41) or the other live 

treatment (p=0.10).  

4.4.2 Sediment Properties 

 C:N was not different among treatments or sampling events (Table 4.1). C:N ranged 

from 9.58 ± 0.26 in the live oyster treatment to 10.9 ±0.36 in the shell treatment (Figure 4.2). 

SOM ranged from 3.89 ± 0.66% in the live oyster treatment to 1.19 ± 0.19 % in the control. 
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The live oyster treatment had more SOM compared to the control (p<0.05) and shell 

treatment (p<0.05; Table 4.1, Figure 4.2).  

 Benthic algal biomass (Chl. a) and porewater nutrients were only collected after two 

weeks (Fig 4.3). Concentration of dissolved inorganic nitrogen in the porewater ranged from 

46.19 ± 15.28 µM in the control to 103.2 ± 43.60 µM in the live oyster treatment. 

Ammonium constituted the majority of the DIN pool for all treatments. A difference could 

not be detected between treatments for porewater DIN (p=0.15); however, there was a trend, 

where concentration increased with the degree of reef complexity (e.g: control, abiotic, biotic 

and abiotic effects) associated with the treatment. Benthic algal biomass ranged from 

51.17±17.13 mg m-2 in the shell treatment to 88.96±17.14 mg m-2 in the live treatment but 

differences were not significant (p=0.23).  

4.4.3 Correlations 

Net N2 fluxes had strong, and significant positive correlations with SOD, ammonium 

and SOM (Fig 4.3). These relationships were significant when all the data was included in 

the analysis. The observed positive relationship between net N2 fluxes and ammonium flux 

and SOM were driven by two samples from the live oyster treatments.  

 

4.5 Discussion 

4.5.1 Summary of Results 

 This field experiment was designed to determine the effects of oyster reef structure 

and of oyster processes on sediment nitrogen dynamics. We found the net N2 flux to be 

dominated by denitrification for all treatments. The significantly higher rate of N2 production 

and SOM content at the live oyster treatment compared to the control and the shell treatment 
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suggest that oysters have the greatest effect on denitrification when the biological and 

physical attributes of the reef are coupled. Oysters remove particulate organic matter from 

the water column as they feed and produce biodeposits, which increases the organic and fine-

particle content of the sediment surface (Thrush et al. 2006, O'Connor et al. 2008). Oyster 

reefs, as a physical structure in the water column, reduce water velocity and increase 

sedimentation (Lenihan 1999, Widdows and Brinsley 2002, Pietros and Rice 2003). Organic 

matter that accumulates adjacent to oyster reefs can be used for heterotrophic metabolism 

leading to increased denitrification. Our results indicate that the abiotic structure and biotic 

processes alter the physical and chemical environment of the sediment, resulting in the 

formation of biogeochemical hot spots. Understanding the relationships between reef habitats 

and biogeochemical cycling will aid in determining the functional value of these organisms 

in estuarine ecosystems. 

4.5.2 Treatment Effects 

 The live oyster treatment had significantly more SOD and N2 production compared to 

the shell treatment and the control, these differences lead to the conclusion that the quantity 

and/or quality of organic matter delivered to the sediment contributed to differences in rates 

of denitrification. Autochthonous carbon is more labile, contains more energy and is more 

easily assimilated than allochthonous organic matter (Christensen et al. 1990, McClain et al. 

2003). The live oyster treatment, with feeding oysters caused the accumulation of both 

autochthonous and allochthonous sources of organic matter, while the shell treatment had no 

internal source of organic matter. We found that the live oyster treatment increased 

denitrification over the control by 61%. Of this increase, 40% was due to allochthonous 

inputs from the reef structure and 60% was attributable to production and accumulation of 



 60 

oyster derived autochthonous material. Results from our experiment support the hypothesis 

that areas where organic matter accumulates are primed for enhanced biogeochemical 

activity (Guenet et al. 2010). 

Denitrification was linked to organic matter remineralization and nitrification, as 

indicated by the positive relationship found between denitrification and SOM, as well as 

SOD and ammonium production (Seitzinger 1994). Organic matter content of oyster reef 

sediments is positively correlated to oyster density and production of biodeposits (Haven and 

Morales-Alamo 1966, O'Connor et al. 2008). Biodeposits are highly concentrated, labile 

organic matter with low C:N ratios that have a high sinking velocity and are easily retained 

on the sediments (Widdows et al. 1998, Newell et al. 2002). While wave action and tidal 

currents may distribute biodeposits, the reef structure enhances sedimentation of these 

particles on and adjacent to the oyster reef (Widdows et al. 1998, Widdows and Brinsley 

2002). Biodeposits are therefore incorporated into the sediments within a very small region 

around the bivalve population, increasing dissolved nutrient concentrations within that zone 

(Newell et al. 2005, Giles and Pilditch 2006, Giles et al. 2009, Borsje et al. 2011). 

Consequently, differences detected in our study are most likely attributable to the production 

and accumulation of biodeposits. Thus, the effects of the oyster are the result of the 

combination of structure and vital processes of living oysters. However, further studies will 

need to be conducted to quantify the rate of biodeposit accumulation on sediments from 

oyster reefs. 

 The differences in SOD between the treatments is attributable to variations in the 

labile carbon pool (Ferguson et al. 2003). Higher SOD is indicative of more organic matter 

loading and higher rates of carbon mineralization (Ferguson et al. 2003, Ferguson and Eyre 
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2012). Thus, the live oyster treatment, which had the highest SOD, probably had more a 

higher quantity and quality of organic matter than the other treatments. The significantly 

lower rate of SOD from the control suggests that more recalcitrant organic matter 

accumulated here relative to the shell and reef treatments. Although, SOM content was not 

different between the control and shell, the organic matter that accumulated at the shell 

treatment was more labile, as suggested by the higher SOD. These results indicate that 

carbon loading and mineralization rates were enhanced by the reef structure. 

Many studies have found a strong positive relationship between SOD and 

denitrification (Seitzinger and Giblin 1996, Fennel et al. 2009, Piehler and Smyth 2011). For 

that reason, the significant difference in SOD among treatments suggests denitrification rates 

would also be affected by treatment. While the shell treatment added some labile carbon to 

the sediment relative to the control, the lack of differences in denitrification suggests that 

denitrification was limited by nitrate. This limitation was alleviated in the live oyster 

treatment through the biotic production and abiotic accumulation of biodeposits. The 

accumulation of organic matter on the sediment surface and typically does in quiescent 

conditions decrease the oxygen penetration depth, putting the oxygenated zone for 

nitrification closer to the anoxic zone for denitrification (Kemp et al. 1990, Caffrey et al. 

1993, Cornwell et al. 1999). Additionally, the nitrogen fraction in biodeposits fuels 

denitrification (Newell et al. 2002). An effect of increased denitrification has been 

demonstrated in laboratory experiments with induced accumulation of biodeposits on the 

surface of sediment cores (Newell et al. 2002, Higgins et al. 2013). The reef structure appears 

to enhance the accumulation of biodeposits which otherwise would be diffusely distributed 
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with less effect on nitrogen removal. Thus, the reef structure and production of biodeposits 

by the oysters act synergistically to enhance denitrification. 

4.5.3 Efficiency 

Sediments from bivalve reefs are often associated with high concentrations of 

ammonium that can be recycled back to the water column and used for primary production 

(Dame et al. 1984, 1989, Lavrentyev et al. 2000, Pietros and Rice 2003, Bruesewitz et al. 

2008). Despite this, oyster mediated denitrification can reduce the amount of nitrogen 

available for recycling by 16- 40% (Smyth et al. 2013). Since oysters can affect nitrogen 

retention and removal, we compared denitrification efficiency (the percent benthic efflux of 

inorganic nitrogen that is N2) among treatments (Eyre and Ferguson 2009). The highest 

efficiency was associated with the control because remineralization of the refractory organic 

matter produces less ammonium. The decrease in resources to the microbial community 

results in low fluxes but high efficiency. While high rates of carbon loading in the live oyster 

reef treatment enhanced microbial activity it also may inhibit nitrification resulting in a 

higher release of ammonium (Kemp et al. 1990). Denitrification efficiency associated with 

these newly restored reefs was lower than efficiencies from sediments associated with natural 

reefs (Piehler and Smyth 2011). Denitrification efficiency from restored oyster reefs less than 

four weeks old in the Cheesepeake Bay were lower than control sites without reefs (Kellogg 

et al. 2013). Given the high denitrification efficiencies associated natural reefs, restored reefs 

greater than 10 years old (Chapter 5) as well as the increase between the two week and four 

week sampling events, efficiency likely increases as the reef matures and a fully functioning 

reef community which consumes nutrients and carbon and reduces the efflux of ammonium 

back to the water column is established (Peterson et al. 2003).  
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4.5.4 Benthic Algal Biomass 

The colonization of benthic algae on sediments can affect rates of denitrification (An 

and Joye 2001). Benthic algae can provide a source of nitrogen and labile C to denitrifiers 

and lead to an increase in coupled nitrification-denitrification (Risgaard-Petersen 2003). 

While our experiments were conducted in the dark to reduce these effects, the impact of the 

algae may have persisted and affected denitrification rates in our treatments (Sundbäck and 

Miles 2000, Ferguson et al. 2007). Benthic algae can contribute to the SOM content, which 

may have lead to the lack of differences in SOM detected between the control and the shell 

treatment. The high benthic algal biomass from the live oyster reef may have been associated 

with phytoplankton pigments in biodeposits (Haven and Morales-Alamo 1966). However, the 

lack of a difference in benthic algae biomass between treatments suggests that a relatively 

minor contribution to enhanced denitrification in the live oyster reefs.  

4.5.5 Limitations and Assumptions 

We recognize that the patchiness of our experimental setup may have lead to edge 

effects. The small plot size likely had exaggerated reef-sediment boundaries relative to 

nature, where reefs exist in long continuous patches (Micheli and Peterson 1999), resulting in 

greater interactions between the reef, material in the water, and the sediment. In mussel 

patches the growth of individuals near the edge is greater than those in the middle due to 

increased food availability (Svane and Ompi 1993). Thus, the increase in edges per reef area 

might have resulted in optimal feeding by the oysters and increased biodeposit production. 

However, oyster reef patches are a common configuration of oyster reefs in this area 

(Macreadie et al. 2012). Patchiness of reefs can affect the amount of sediment that is retained 

within the reef (van Leeuwen et al. 2010). Larger continuous reefs have many more 
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individual oysters leading to increased organic matter loading and more retention of sediment 

(Lenihan 1999, Borsje et al. 2011). Additionally the size and patchiness of the reef affects 

bed roughness and friction velocity which in turn affects the transport of biodeposits to and 

retention on the sediments (Newell et al. 2005). Nevertheless, we maintained a density 

similar to natural reefs in the area (Lenihan and Peterson 1998, O'Connor et al. 2008). In 

addition, sediment characteristics including ambient organic matter, sediment porosity and 

grain size probably affected our results (Jones et al. 2011). Understanding how the physical 

attributes of the reef ecosystem including environmental variables, spatial arrangement, 

patchiness and size of the reef affect sediment biogeochemistry requires further investigation.  

4.5.6 Functional Equivalency Trajectories 

The loss of suspension feeding bivalves can affect nutrient fluxes, sediment 

characteristics and community composition, although oyster reef restoration may recover 

these lost functions (Thrush et al. 2006, Coen et al. 2007). However, it can take many years 

for restored systems to achieve the functional value of natural systems (Simenstad and Thom 

1996). For example, restored salt marshes require 15-25 years to be functionally equivalent 

to a natural marsh (Craft et al. 2003). Biogeochemical cycles can take even longer to 

establish since newly restored salt marshes sequester nitrogen but lack a stored pool of 

internally recycled nitrogen (Craft et al. 1989, 1999).  

Restoration of oyster reefs can begin to recover lost oyster populations but the 

recovery of associated services may take 2-14 years depending on environmental factors 

(Schulte et al. 2009, Grabowski et al. 2012). We found denitrification from our restored 

oyster reefs to be equivalent to rates from natural oyster reef sediments within a month of 

construction (Piehler and Smyth 2011, Smyth et al. 2013). While restoration of reefs with 
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live oysters is sometimes feasible (Geraldi et al. 2009), it is more common to use oyster shell 

for restoration (Coen and Luckenbach 2000). We found that the addition of oyster shell alone 

can increase denitrification and carbon mineralization but that the nitrogen removal benefit of 

oyster reef restoration occurs once a community of actively filtering bivalves is established.  

 

4.6 Conclusions 

The two-part influence of oyster engineering on nitrogen dynamics results from a 

combination of abiotic structure and accumulation of biotic material. Oyster reefs provide 

many ecosystem services, including enhancement of fisheries and maintenance of 

biodiversity (Lenihan 1999, Grabowski et al. 2005, 2012). Increased nitrogen removal is 

often considered a benefit of oyster reef restoration; however, difficulty associated with 

measuring denitrification and complexity of the reef ecosystem have made it challenging to 

incorporate this benefit into restoration and management plans (Grabowski 2004, Groffman 

et al. 2006, North et al. 2010, Jones et al. 2010). We found that while physical engineering is 

important, production and accumulation of biodeposits drives the greater portion of 

denitrification in oyster reef ecosystems. The impact of oysters and their reefs on sediment 

biogeochemistry and benthic community structure underscores their importance as both 

organisms and structure within the large ecosystem. 
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Table 4.1 Results from one-way repeated measures ANOVA used to test for differences in fluxes across the sediment-water interface, 
denitrification efficiency and sediment properties for each treatment over the four-week sampling period. Significant p values (p<0.05) 
are indicated in bold.  
 

Effect Tests   Net N2 Flux SOD NOx Flux NH4
+ Flux  Efficiency  SOM  C:N 

Source N DF F p F p F p F p F p F p F p 
Treatment 2 2 11.1 0.00 19.1 0.00 4.58 <0.05 6.38 0.02 6.42 0.02 13.5 0.00 2.26 0.16 
Time 1 1 1.16 0.31 4.98 0.05 15.6 0.00 8.81 0.02 8.55 0.02 2.18 0.17 0.24 0.63 
Treatment*Time 2 2 0.01 0.99 0.94 0.43 2.33 0.16 5.84 0.03 3.16 0.10 0.42 0.67 0.41 0.68 
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Table 4.2 Fluxes of nitrate and ammonium across the sediment-water interface and 
denitrification efficiency for each treatment from the sampling periods 2 weeks and 4 weeks 
after construction and the experimental mean. A positive value indicates a flux from the 
sediment to the water column and a negative value indicates a flux from the water column to 
the sediment. Values are mean ± 1 standard error (n=4).  
 

    Two Weeks Four Weeks Mean 
NOx Flux           

  Control -0.01 ± 0.57 -3.32 ± 5.60 -1.67 ± 3.79 
  Shell -0.39 ± 0.17 -14.61 ± 4.29 -7.50 ± 4.73 
  Live -0.33 ± 0.14 -18.18 ± 1.40 -10.53 ± 4.87 
NH4

+ Flux           

  Control 20.24 ± 22.75 24.03 ± 15.65 22.13 ± 18.11 
  Shell 197.47 ± 73.73 5.34 ± 9.64 101.40 ± 70.76 
  Live 956.08 ± 342.37 157.70 ± 66.72 499.86 ± 294.67 
Denitrification 
Efficiency 

          

 Control 91.40 ± 8.44 88.19 ± 5.86 89.79 ± 6.78 
 Shell 57.72 ± 14.46 95.72 ± 3.06 76.72 ± 14.03 
 Live 32.65 ± 12.94 69.84 ± 11.02 53.90 ± 14.67 
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Figure 4.1 Net N2 flux (a) and SOD (b) for each treatment. Significant treatment differences 
are denoted with different letters (p<0.05). Error bars represented one standard error of the 
mean (n=4).  
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Figure 4.2 Sediment carbon: nitrogen ratios and SOM for each treatment. Treatments with 
different letters are significantly different (p<0.05). Error bars represent one standard error 
(n=4). 
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Figure 4.3 Mean porewater DIN (NOx+NH4
+) concentration from the upper 7cm of sediment 

(a) and benthic chlorophyll biomass (b) for each plot. Errors bars are one standard error 
(n=4). 
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Figure 4.4 Sediment net N2 flux as a function of SOD (a), Ammonium Flux (b), and SOM 
(c) for each treatment during each sampling period. Different treatments are indicated by 
symbols.
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5. HABITAT SETTING INFLUENCES NITROGEN REMOVAL BY RESTORED 
OYSTERS REEFS 

 

5.1 Abstract 

Coastal ecosystems have a complex mosaic of habitats, and the arrangement of these 

habitats influences ecosystem processes. However, little is known about the influence of 

habitat configuration on nitrogen biogeochemistry. We investigated how the habitat setting of 

restored intertidal oyster reefs affects fluxes of nitrate plus nitrite (NOx
-), ammonium (NH4

+) 

and N2. Fluxes were measured from oyster reef sediments adjacent to salt marshes, seagrass 

beds, and mudflats, as well as analogous control habitats without reefs under both ambient 

and experimental nitrate levels. All reef and control habitats were net denitrifying. Reefs 

enhanced sediment denitrification by 18-275% over the controls, with the largest increase 

occurring in the mudflat habitat. Denitrification significantly increased in the marsh-reef and 

mudflat-reef under experimental nitrate levels. These results suggest that oysters prime the 

sediment for enhanced denitrification in response to nutrient pollution. Oyster reef sediments 

also had higher rates of NH4
+ production compared to control habitats, but denitrification 

efficiency was not different between the reef and control habitats. Under elevated nitrate 

levels, oyster density at first increased and then slightly decreased denitrification rates. 

Nitrogen dynamics in the mudflat habitat were most affected by reef presence due to relative 

isolation from other biogenic habitats and highest densities of oysters. Our results indicate 

that oyster-mediated denitrification is dependent on the habitat setting and that oyster density 

is a likely a driver for this pattern. These results suggest that the landscape setting of a 
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restored oyster reef can largely impact the delivery of services it provides, and thus should be 

considered carefully in restoration and management plans. 

5.2 Introduction 

Ecosystems are often comprised of complex habitat landscapes, where interactions 

among patches influence function of the system as a whole. Models of heterogeneity classify 

systems as “homogeneous”, consisting of one patch; “mosaic”, with no interaction between 

distinct patches; and “interactive”, where exchanges occur between patches (Lovett et al. 

2005). While knowledge of the individual components provides valuable information, the 

connection between habitats sustains complex biological communities (Noss 1983). Thus, 

understanding the causes and consequences of habitat configuration on ecosystem processes 

is becoming increasingly important for developing species-recovery plans (Bond et al. 2005, 

Kouki et al. 2011), constructing protected areas (Leathwick et al. 2008) and for designing 

conservation strategies (Pastor et al. 1999, Grabowski 2002, Lovett et al. 2005, Turner and 

Chapin 2005). 

Coastal ecosystems are among the most degraded ecosystems in the world (Noss 

1983, Lotze et al. 2006, Beck et al. 2011). Biogenic habitats are being lost at rates of 1-9% 

per year (Bond et al. 2005, Duarte et al. 2008, Kouki et al. 2011). Deterioration of these 

habitats, resulting from nearby fish trawling, destructive harvesting practices, dredging and 

eutrophication, has led to significant changes in the structure and function of coastal 

ecosystems (Lenihan and Peterson 1998, Jackson et al. 2001b, Lotze et al. 2006, Leathwick 

et al. 2008, Duarte 2009, Deegan et al. 2012). The traditional approach for designing 

management and restoration strategies has been to focus on single habitats (Thayer 1992). 

However, the composition and configuration of the habitats can influence animal movement, 
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population dynamics, species interactions, and ecosystem functions (Micheli and Peterson 

1999, Cardinale et al. 2002, Lovett et al. 2005, Grabowski et al. 2005, Lopez et al. 2006).  

The ability to cycle, process and remove nutrients is among the most valuable benefit 

humans receive from the environment (Costanza et al. 1997). Nutrient cycling controls the 

availability of essential elements at the base of the food webs. However, excessive nutrient 

inputs from fertilizer use and runoff have led to eutrophication of coastal systems (Nixon 

1995, Carpenter et al. 1998, Galloway et al. 2003). As anthropogenic nutrient loading has 

accelerated, the balance between nutrient inputs and exports has shifted, affecting growth, 

composition and biomass of primary producers (Smith et al. 1999, Conley 2000). Once 

nitrogen enters the system it can be removed through physical transport, burial or 

denitrification (Vitousek et al. 1997b). Denitrification, the microbially-mediated conversion 

of bioavailable nitrogen to N2 gas, accounts for the largest nitrogen sink in estuarine 

ecosystems (Seitzinger and Nixon 1985, Seitzinger 1988). Unfortunately, habitat 

modification and loss have reduced the denitrification capacity of these ecosystems (Brush 

2009). In order to recover this lost service and help reverse eutrophication, it is necessary to 

restore and enhance habitats with high rates of denitrification. While knowledge of the 

effects of habitat interaction on trophic dynamics (Grabowski et al. 2005) and ecosystem 

stability (Callaway et al. 2003) is mounting, little is known about how the design of 

restoration projects affects ecosystem processes such as organic matter transformations and 

nutrient cycling (Franklin and Forman 1987, Irlandi 1994, Lovett et al. 2005, Turner and 

Chapin 2005, Dobson et al. 2006).  

Oyster reefs were once a prominent habitat within the estuarine ecosystem. However, 

oyster reefs have declined by about 85% worldwide in the last century (Beck et al. 2011). 
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Oysters have been exploited as a fishery and neglected as a biogenic habitat (Lenihan and 

Peterson 1998). The importance of oyster reefs can be assessed on the ecosystem services 

they perform including mitigating erosion, providing habitat and nursery grounds for fish, 

enhancing biodiversity associated with hard substrate and improving water quality through 

filtration and enhanced denitrification (Grabowski and Peterson 2007). One of the most 

valuable of these services is the benefit to water quality through nitrogen removal via 

denitrification (Grabowski et al. 2012). Because of these economic and ecological values, 

significant efforts are currently underway to restore and enhance oysters in estuarine 

ecosystems.  

Intertidal oyster reefs occur in three distinct habitat settings: 1) between salt marshes 

and seagrass beds, 2) adjacent to fringing salt marshes lacking seagrass beds, or 3) in 

isolation on mudflats (Lanier 1981). The position of oyster reefs affects predator-prey 

dynamics (Micheli and Peterson 1999) and community structure (Grabowski et al. 2005). 

However, the effect of habitat setting on the ability for oyster reef restoration to improve 

water quality remains unknown. This information is critical to maximize services as oyster 

reef restoration research and practice moves forward. We tested whether oyster-mediated 

denitrification was affected by proximity to other habitats. In addition we asked whether 

habitat setting of restored reefs influenced the ability of the sediment microbial community to 

remove nitrogen in response to anthropogenic nutrient loading. To address these questions 

we conducted experiments on sediments from restored oyster reefs in each of the three 

habitat settings.  

 

5.3 Methods  
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5.3.1 Study Site 

Oyster reefs selected for this study were located in the sound between Beaufort and 

Shackleford Banks on the central North Carolina coast. This area contains seagrass beds, salt 

marshes, oyster reefs and intertidal mudflats, and is located within the Rachel Carson 

National Estuarine Research Reserve. Intertidal oyster reefs restored, some in 1997 and some 

in 2000 by Grabowski and colleagues (2002, 2005) were used in this study. Reefs were either 

isolated on mudflats or adjacent to salt marshes alone or both salt marsh and seagrass beds 

(hereafter: mudflat-reefs, marsh-reefs, and seagrass-reefs). Salt marshes, seagrass beds or 

mudflats without reefs present were used as controls (Figure 5.1). Three reefs and three 

controls from each habitat were sampled. Reefs were compared to controls to determine how 

habitat setting of restored oyster reefs affects sediment nitrogen dynamics.  

5.3.2 Sample Collection 

 Continuous-flow core incubations were used to determine rates of nitrogen exchanges 

at the sediment-water interface. Sediment cores (contained in 6.4cm diameter by 17 cm long 

polycarbonate tubes) were collected by hand from reefs and controls at low tide on June 28, 

2010. For reef samples, cores were collected at the edge of the reef and did not contain live 

oysters. In addition to sediment cores, ~ 100 L of water from the study location were 

collected for use in core incubations. Surface water measurements of dissolved O2, salinity 

and water temperature (YSI 600 Series Sonde and Model 650 data logger, Yellow Springs 

Instruments, Yellow Springs, OH, USA) were also collected.  

5.3.3 Core Incubations 

Following collection, sediment cores and water were immediately (<1hr) transported 

to an environmental chamber (Bailey, Inc.) at The University of North Carolina’s Institute of 
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Marine Sciences (IMS) in Morehead City, NC. Sediment cores were submerged in a water 

bath and sealed with gas tight lids equipped with an inflow and outflow port and connected to 

a peristaltic pump (Lavrentyev et al. 2000). Unfiltered, aerated water collected from the site 

was continuously passed over the cores at a flow rate of 1-2 ml per minute (Miller-Way and 

Twilley 1996, Lavrentyev et al. 2000). All incubations took place in the dark and at 30°C. 

 Following an 18-hour pre-incubation period, samples were collected from the inflow 

and outflow port of each core for dissolved gas and nutrient analysis. Dissolved gases were 

sampled and analyzed several times over a 48-hour period to ensure steady state conditions 

were established (Miller-Way and Twilley 1996). Steady state was established when the 

slope of concentration vs. time for each microcosm was not different from zero. Samples for 

nutrient analysis were collected once during this period after steady state was established 

with respect to the dissolved gas samples. A bypass line that flowed directly into the sample 

vials was used to determine the concentration of dissolved constituents entering the cores.  

 To experimentally examine the importance of habitat setting for oyster reef 

restoration in response to nutrient pollution, water was enriched with NaNO3 (~800 µM) after 

48 hours of sampling. Dissolved gas and nutrient samples were then collected for an 

additional 48 hours as described above.  

5.3.4 Sediment Organic Matter 

Upon completion of the core incubations (and associated dissolved gas and nutrient 

sampling), the upper 2 cm of sediment in each core was sampled for organic matter content. 

Sediment organic matter (SOM) was calculated by mass difference from dried sediments 

(125 oC for 6h) before and after ignition at 525 oC for three hours.  

5.3.5 Density Measurements 
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All oyster reefs were sampled on 17 October 2012 for oyster density. Oyster density 

was determined by placing a 0.25 m2 quadrat on each reef (one quadrat per reef) and all 

oysters with a shell length greater than 25 mm were counted (Powers et al. 2009). Additional 

samples were not collected for oyster density due to the long term monitoring that occurs at 

this site and small size of the reefs.  

5.3.6 Membrane Inlet Mass Spectrometry 

Dissolved gas samples were analyzed for concentrations of N2, O2 and Ar using a 

Balzers Prisma QME 200 quadruple mass spectrometer (Kana et al. 1998). Concentrations of 

N2 were determined using the ratio with Ar for each salinity and temperature (Kana et al. 

1994, Ensign et al. 2008). This technique results in a net N2 flux (gross denitrification-gross 

nitrogen fixation) across the sediment-water interface and does not distinguish between the 

sources of N2. Consequently, “denitrification” refers to N2 production from heterotrophic 

denitrification, anammox and any other N2 producing process. Previous studies in shallow 

water coastal ecosystems have shown that anammox contributes only a small portion to the 

total N2 flux, and it is assumed that denitrification comprises the major production pathway 

of N2 in this study (Koop-Jakobsen and Giblin 2009).  

5.3.7 Water Chemistry 

Water samples were filtered through Whatman GF/F glass fiber filters (25mm 

diameter, 0.7 µm nominal pore size) and frozen until analysis. Filtrate was analyzed with a 

Lachat Quick-Chem 8000 automated ion analyzer for NOx (NO3
-+NO2

-) and 

NH4
+concentrations using standard protocols (Lachat Instruments, Milwaukee, WI, USA: 

NO3
-/NO2

- Method 31-107-04-1-A, NH4
+ Method 31-107-06-1-A; detection limits: 0.04 µM 

NOx, 0.18 µM NH4
+).  
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5.3.8 Calculations 

Fluxes across the sediment-water interface were calculated as (Co − Ci) × f/a, where 

Co is the outflow concentration (µmol L−1), Ci is the inflow concentration, f is the flow rate 

(0.06 L h−1), and a is the sediment surface area (0.0032 m2). Successive measurements from 

each core were averaged to give core-specific values and prevent pseudo-replication. 

Denitrification efficiency was calculated as the percent of the dissolved inorganic nitrogen 

efflux that was N2 (Eyre and Ferguson 2009).  

5.3.9 Statistical Analyses 

The effects of habitat (mudflat, marsh or seagrass), reef presence (reef or control), 

and nutrients on fluxes, and denitrification efficiency were tested using a three-way analysis 

of variance model (ANOVA). A two-way ANOVA, testing the effects of habitat and reef 

presence was used for SOM content. A one-way ANOVA was used to determine significant 

differences in oyster density across habitat setting. An alpha level of 0.05 was used for all 

analyses. Student-Newman-Keuls (SNK) post-hoc test was chosen for multiple comparisons 

after the ANOVA. SNK adjusts the Type I error to increase the power of individual 

comparisons (Day and Quinn 1989), and offers a compromise between Type I error and per 

comparison power (Underwood 1997). In addition, regression analyses were performed to 

investigate the effect of oyster density on denitrification. Models with the lowest Akaike’s 

Information Criterion (AIC) were chosen. Statistical analyses were performed using R 2.13.1 

(The R Foundation for Statistical Computing 2011).  

A power analysis was employed for N2 fluxes, the main variable of interest, 

comparing the four groups and three samples per group with a significance level of 0.05. 

Unfortunately, the small sample size (n=3) caused our experiment to have very low power 
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(power of 0.26, β=0.74). In order to increase our power to 0.80 (β=0.20), we would have to 

increase our sample size to about 8 reefs or controls per habitat. However, we were unable to 

process more samples because of methodological limitations. While retrospective power 

analysis has little benefit for the current experiment it does provide insight into the design of 

future experiments.  

 

5.4 Results 

5.4.1 Flux Experiment 

 ANOVA results on the effects of habitat, reef presence and nutrients and their 

interactions on N2, NOX, NH4
+ and denitrification efficiency are presented in Table 5.1. Post 

hoc analysis was used to explore the interactions among habitats within each level of reef 

presence and nutrients (Table 5.2), among nutrients within each level of reef presence and 

habitat (Table 5.3), and among reef presence within each level of habitat and nutrients 

(Figure 5.2).  

5.4.2 Net N2 Flux 

 Net N2 fluxes were positive for all habitats, indicating denitrification in excess of 

nitrogen fixation. Denitrification (N2 production) rates were not significantly different 

between habitats, but were affected by reef presence and nutrients (Table 5.1). The 

interactions between habitat and reef presence as well as reef presence and nutrients were 

also significant (Table 5.1). Differences in N2 flux among habitats for the controls or reefs 

were not detected prior to the addition of nitrate (Table 5.2). After the nitrate addition, there 

were no differences in denitrification between the control habitats, while denitrification rates 

in mudflat-reefs were significantly higher than for the seagrass-reefs and marsh-reefs (Table 



 82 

5.2). Denitrification rates tended to increase in response to the addition of nitrate; however, 

this increase was only significant for mudflat-reefs and marsh-reefs (Table 5.3). Reefs 

increased denitrification over the controls by 18% in the marsh, 71% in the seagrass and 

275% in the mudflat. Pairwise comparisons indicated that this increase was only significant 

in the mudflat setting (Fig 5.2a). After the nitrogen addition, denitrification rates were 

significantly higher for the reef compared to the control for the marsh and mudflat habitats 

(Fig 5.2b).  

5.4.3 Nitrate Flux 

 The effects of habitat, nutrients, and reef presence, habitat and nutrients, and the 

interaction between habitat, reef presence and nutrients were significant for fluxes of nitrate 

(Table 5.1). Dissimilarities among habitats were not detected prior to the addition of nitrate 

for controls or reefs (Table 5.2). After the nitrate addition, nitrate fluxes in the mudflat-

control were distinctively higher from the seagrass-control and marsh-control. The nitrate 

flux in seagrass-reef was different from the marsh-reef (Table 5.2). Nitrate fluxes changed 

before and after the addition of nitrate for the marsh-control, seagrass-control and marsh-reef 

(Table 5.3). Nitrate fluxes did not vary between the controls and reefs for any habitat before 

the nitrate addition (Figure 5.2c). Nitrate fluxes were significantly different between the reef 

and control for mudflat and seagrass habitat after the addition of nitrate (Figure 5.2d). The 

mudflat-control had a positive nitrate flux while the mudflat-reef had a negative flux. The 

seagrass-control had more nitrate demand than the seagrass-reef.  

5.4.4 Ammonium Flux 

 There was a significant effect of nutrients on ammonium fluxes (Table 5.1). 

Ammonium fluxes were not different among habitats for the controls or reefs prior to the 
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nitrate addition (Table 5.2). Ammonium fluxes in reefs were not dissimilar among habitats 

after the addition of nitrate, while the flux in the marsh-control was higher compared to the 

mudflat-control (Table 5.2). Ammonium fluxes were significantly different before and after 

the addition of nitrate except for the mudflat-control (Table 5.3). Ammonium fluxes were not 

distinguishable between the control and reef for any habitat before the nitrate addition 

(Figure 5.2e). After the nitrate addition, the ammonium flux from the mudflat-reef was 

significantly higher than the mudflat-control (Figure 5.2f). 

5.4.5 Denitrification Efficiency  

 The effect of nutrients was significant on denitrification efficiency (Table 5.1). 

Denitrification efficiency decreased after the nutrient addition for the control and reef in each 

habitat (Figure 5.3). However, denitrification efficiency was not different among habitats for 

the controls or reefs before or after the addition of nitrate (Table 5.2).  

5.4.6 Sediment Organic Matter 

 The effects of habitat, reef presence, and the interaction between habitat and reef 

presence were significant for SOM content (Figure 5.4). Overall, the seagrass-reef had the 

highest SOM content. SOM content in the mudflat habitat and marsh habitat was not affected 

by reef presence. The seagrass-reef increased SOM content relative to the seagrass-control. 

The marsh-control and seagrass-control had significantly higher SOM compared to the 

mudflat-control.  

5.4.7 Density 

Oyster density was significantly higher on mudflat-reefs than on marsh-reefs and 

seagrass-reefs. Oyster density was lowest on marsh-reefs, averaging 157 ±�79 ind. m-2. 

Density on seagrass-reefs was 204 ± 90 ind. m-2, while mudflat-reefs had densities of 673 ± 
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81 ind. m-2. There was no pattern between density and spatial location of the reefs in the 

study system. Before the nitrate addition, a linear regression model best explained the 

relationship between density and denitrification; however, this relationship was not 

significant (Figure 5.5a, R2= 0.23, p=0.11). The relationship between denitrification and 

density after the experimental nitrate addition was best explained by a second-order 

polynomial relationship (Figure 5.5b, R2= 0.65, p=0.009).  

 

5.5 Discussion 

5.5.1 Oyster Reef Habitat Setting and Denitrification  

Our experiment investigated the effects of habitat setting of restored oyster reefs on 

sediment nitrogen dynamics, including denitrification. We examined nitrogen dynamics in 

sediments from nine restored reefs (each > 10 years old) in three different habitats settings 

and analogous habitats without reefs. Determining the benefits of restored areas relative to 

reference areas lacking restoration aids in identifying restoration sites for maximal benefit 

(Vitousek et al. 1997b, Palik et al. 2000). We found positive net N2 fluxes from the controls 

and reefs in each habitat, indicating that denitrification dominates the N2 flux. Denitrification 

(net N2 production) tended to be higher in reefs compared to controls without reefs in all 

habitats, though the difference was only detectable statistically in the mudflat habitat at 

ambient nutrient levels. Evidence of higher SOM and an increase in N2 production after 

nitrate limitation was alleviated by the addition of nutrients leads to the conclusion that 

benthic-pelagic coupling facilitated by the oyster increases the supply and quality of 

sediment organic matter, which enhances denitrification in response to anthropogenic 

nitrogen loading.  
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5.5.2 Mechanisms for Denitrification 

Oyster-mediated increases in denitrification probably results from the production and 

accumulation of biodeposits, which supply organic nitrogen and carbon to the sediment 

microbial community (Newell et al. 2005, Higgins et al. 2013). The effect of the reef may be 

functionally redundant when there are other biogenic habitats present (Heck et al. 2003, 

Grabowski et al. 2005, Geraldi et al. 2009). The lack of difference in denitrification between 

the reef and control in the marsh and seagrass habitats suggests that neither resources nor 

substrate limited the microbial community in these habitats. However, differences in 

denitrification rates between the marsh-control and marsh-reef after addition of nitrate 

indicate redundancy only in the seagrass habitat.  

Bacteria capable of denitrification are ubiquitous and denitrification can occur when 

three conditions are met: low oxygen concentration, and sufficient nitrate and organic matter 

(Seitzinger et al. 2006). In most estuarine and coastal environments nitrate availability 

generally limits denitrification. Nitrate used for denitrification is produced by nitrification or 

supported directly by nitrate in the water column. Oyster biodeposits can increase coupled 

nitrification-denitrification in sediments with an oxic surface layer (Newell et al. 2002). 

However, organic matter deposition can change the oxygen penetration depth and minimize 

the zone where nitrification can occur. Consequentially, organic matter loading can hinder 

coupled nitrification-denitrification, but enhance direct denitrification when nitrate is 

available in the overlying water (Caffrey et al. 1993, Cornwell et al. 1999). The increase in 

denitrification detected after the addition of nitrate suggests that the increase in organic 

matter from the oysters primed the sediments for denitrification.  
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The effect of priming, when the addition of nitrate increased processing of organic 

matter through enhanced denitrification, was not evident in the seagrass habitat, possibly due 

to the high SOM content. Remineralization of the organic matter may have caused the 

sediments to become reduced, resulting in sulfide accumulation that could inhibit nitrification 

and denitrification (Joye and Hollibaugh 1995). In addition, nitrate reduction may have 

occurred via dissimilatory nitrate reduction to ammonium (DNRA) instead of denitrification 

in the seagrass-reef. DNRA is favored over denitrification in systems with high carbon 

availability and becomes increasingly important with elevated nitrate loading (Tiedje 1988, 

Tobias et al. 2001, Koop-Jakobsen and Giblin 2010). These results suggest that oyster reef 

restoration may be a tool for water quality management in reducing the amount of nitrogen 

that is received by the coastal zone; however, denitrification appears to be affected by the 

habitat setting of the reef. 

5.5.3 Denitrification Efficiency 

In shallow coastal systems denitrification efficiency (the proportion of the total 

inorganic nitrogen efflux that is N2) may be more important for eutrophication management 

than the actual rate of denitrification (Eyre and Ferguson 2009). Denitrification efficiency 

indicates the likelihood of the nitrogen in organic matter being converted to N2 gas. 

Denitrification efficiency decreases as carbon loading accelerates because of increased 

ammonium recycling to the water column and inhibition to nitrification/denitrification 

(Caffrey et al. 1993, Joye and Hollibaugh 1995, Eyre and Ferguson 2009). We found that 

denitrification efficiency was not different among habitats though the reefs had slightly 

higher efficiencies compared to the controls. Efficiencies from restored reefs in this study 

were similar to those of natural oyster reefs (Piehler and Smyth 2011). There was a decrease 
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in denitrification efficiency after the nitrogen addition. Under this scenario, DNRA may have 

become more important than denitrification, resulting in additional ammonium production 

(An and Gardner 2002, Gardner et al. 2006, Burgin and Hamilton 2007, Fulweiler et al. 

2008). In order for oyster restoration to be effective at managing nutrient pollution in coastal 

systems, efficiency must be maintained or enhanced. We found that oyster reefs did not 

increase efficiency over the controls. However, the higher rate of denitrification from the 

reefs suggests that reefs process more organic matter than the controls, reducing the amount 

of organic matter within the system and preventing eutrophication in the coastal zone.  

5.5.4 Oyster Density and Nitrogen Removal 

Oyster density can be used as a measure of ecosystem services (Peterson and Lipcius 

2003, Luckenbach et al. 2005). As oyster density increases water filtration, habitat 

complexity, fish production, nutrient bioassimilaiton and invertebrate refuge also increase 

(Peterson and Lipcius 2003, Soniat et al. 2004, Luckenbach et al. 2005, Rodney and Paynter 

2006, Higgins et al. 2011, Ermgassen et al. 2013). However, relationships between oyster 

density and ecosystem processes are not always linear (Dame et al. 2002). Our model 

indicates that the relationship between denitrification and oyster density before the addition 

of nitrate (ambient conditions) is not significant. Under experimental nitrate levels, oyster 

density at first increased and then slightly decreased denitrification rates. The lack of 

relationship under ambient conditions suggests that denitrification was limited by 

nitrification, which was alleviated when nitrate was available directly from the water column. 

The significant relationship between denitrification and oyster density after the 

nitrogen addition supports our hypothesis that oyster reefs prime sediment for enhanced 

denitrification. However, the relationship suggests the possibility of a threshold, where at 
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high oyster densities the large volume of biodeposits may cause sediments to become anoxic 

resulting in nutrient regeneration rather than removal (Tenore and Dunstan 1973, Kemp et al. 

1990, Newell et al. 2005). Studies from bivalve aquaculture sites have found increasing 

biodeposition with density and reduced conditions in sediments (Christensen et al. 2000, 

2003, Nizzoli et al. 2005, Minjeaud et al. 2009, Higgins et al. 2013). Under this scenario, 

nitrate is reduced through DNRA rather than denitrification (Tiedje 1988, An and Gardner 

2002). Although the high oyster density at the mudflat-reefs is driving our relationships, our 

data indicate that maximum denitrification is reached with a density of about 600 ind/m2. 

While our model suggests the possibility of a threshold, it is feasible that the characteristics 

of the mudflat habitat, rather than density, are driving this relationship. Understanding the 

interaction between oyster density and ecosystem services requires further investigation, but 

will help inform restoration and conservations efforts such that the maximum benefits are 

achieved.  

5.5.6 Implications for Restoration and Conservation 

Improved water quality through enhanced denitrification is often cited as a benefit of 

oyster reef restoration. However, managers and scientists lack comprehensive measurements 

regarding the effect of restoration on recovering this service. Results from our study suggest 

that oyster restoration will enhance denitrification; however, the amount of nitrogen that can 

be removed appears to depend on the habitat setting of the restored reef. Our study indicates 

that oyster reef restoration sited on mudflats will yield the greatest nitrogen removal. The 

mudflat-reef had the highest rates of denitrification of all the habitats, demonstrated 

increased denitrification with nutrient pollution and maintained denitrification efficiency 

under ambient and elevated levels of nitrogen. In addition, oyster reefs restored in mudflat 
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habitats provide additional ecosystem services. Mudflat-reefs are associated with an increase 

in juvenile fish abundance, macoinvertebrates and provide refuge from predation, which 

contributes to the higher density of bivalves (Micheli and Peterson 1999, Grabowski et al. 

2005). Thus, restoring reefs in the mudflat habitat likely has many advantages.  

5.5.7 The Estuarine Ecosystem 

Estuarine ecosystems are among the most used and degraded systems in the world 

(Jackson et al. 2001a, Lotze et al. 2006). As these ecosystems are impacted by humans, 

ecosystem services, such as fisheries, maintenance of water quality and resistance to 

disturbance, are also lost (Worm et al. 2006). Excessive nutrient loading contributes to the 

decline in water quality and is linked to eutrophication, dead zones, harmful algal blooms and 

loss of biodiversity (Galloway et al. 2003, Paerl et al. 2006, Conley et al. 2009, Sharp et al. 

2009). Reduction in nutrient inputs alone is not enough to recover the lost services (Duarte et 

al. 2009). Restoration of oyster reefs has been proposed as a solution to reduce phytoplankton 

biomass and to improve water quality (Dame et al. 1984, Newell 1988, Jackson et al. 2001a, 

Dame et al. 2002, Cerco and Noel 2007). However, restoring reefs on mudflats may increase 

the denitrification capacity of the estuary more than reef restoration near salt marshes or 

seagrass beds. Effective management of estuarine and coastal ecosystems requires 

consideration of how interactions between habitats impacts ecosystem function and services. 

Many restoration projects are often designed to enhance one service, but when consideration 

for the habitat setting is integrated into the design, these projects will probably provide many 

benefits.  
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Table 5.1 Results of a 3-way ANOVA testing the effects of oyster reef presence, habitat setting, nutrient load, and their interactions 
on dissolved gasses and nutrients. “Efficiency” denotes denitrification efficiency. 

 
! ! ! ! !
Effect Tests 

  
N2 Flux NOX Flux NH4

+ Flux Efficiency 
Source Nparm DF F Ratio Prob > F F Ratio Prob > F F Ratio Prob > F F Ratio Prob>F 
Habitat 2 2 1.38 0.27 6.25 0.01 1.22 0.31 1.34 0.28 

Reef Presence 1 1 42.18 <0.001 0.39 0.54 2.42 0.13 0.99 0.33 

Nutrients 1 1 38.41 <0.001 39.85 <0.001 35.99 <0.001 72.54 0.00 

Habitat*Reef Presence 2 2 7.57 <0.001 4.74 0.02 0.62 0.55 0.419 0.66 

Habitat*Nutrients 2 2 1.48 0.25 6.28 0.01 0.75 0.48 0.272 0.76 

Reef Presence*Nutrients 1 1 9.69 <0.001 0.38 0.54 1.92 0.18 0.022 0.88 

Habitat*Reef 
Presence*Nutrients 

2 2 2.57 0.10 4.73 0.02 0.76 0.48 0.216 0.81 
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Table 5.2 Results from post hoc comparison among levels of Habitat within each level of 
Reef Presence*Nutrients conducted after three-way ANOVA for nutrient and dissolved gas 
fluxes as well as denitrification efficiency (denoted here as “Eff.”). Significance was assessed 
at p=0.05.  
 

Reef$
Presence$ Nutrients$ N2$Flux$ NOX$Flux$ NH4+$Flux$ Eff.$
Control' Ambient' NS' NS' NS' NS'

Control' Experiment' NS' Mudflat>Seagrass'
Seagrass=Marsh'

Marsh>Mudflat'
Seagrass=Marsh'
Mudflat=Seagrass'

NS'

Reef' Ambient' NS' NS' NS' NS'

Reef' Experiment' Mudflat>Seagrass'
Mudflat>Marsh'
Marsh=Seagrass'

Seagrass>Marsh'
Mudflat=Marsh'
Mudflat=Seagrass'

NS' NS'
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Table 5.3 Results from post hoc comparison among levels of Nutrients within each level of 
Reef Presence*Habitat conducted after three-way ANOVA for nutrient and dissolved gas 
fluxes as well as denitrification efficiency (denoted here as “efficiency”). Significant 
pairwise contrasts before and after the addition of nitrate are distinguished (NS=p>0.05, 
*p<0.05, **p<0.01, ***p<0.001).  
 

Reef Presence Nutrients N2$Flux' NOX$Flux' NH4+$Flux' Efficiency'
Control Mudflat NS NS NS ** 

Control Marsh NS *** * *** 

Control Seagrass NS *** * *** 

Reef Mudflat *** NS ** ** 

Reef Marsh ** *** ** ** 

Reef Seagrass NS NS ** ** 
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Figure 5.1 The experimental setup of this study. Each control and reef was replicated three 
times for each habitat. The marsh+seagrass habitat is termed seagrass in the text.  
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Figure 5.2 Mean net fluxes of N2, NOx, and NH4
+ before ((a) (c) (e)) and after ((b) (d) (f) 

experimental nitrogen additions for reef and control areas in each habitat (n=3). A positive 
value indicates flux out of the sediment and negative value indicates flux from the water 
column to the sediment. Significant differences between control and reefs for each habitat are 
indicated with asterisks. NS indicates no significant difference. Error bars present one 
standard error of the mean.  
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Figure 5.3 Mean denitrification efficiency (percent of the total dissolved inorganic nitrogen 
efflux that is N2) for the control and reef in each habitat before and after the addition of 
nutrients. Errors are one standard deviation. Histograms not sharing letters are significantly 
different from each other (p < 0.05).  
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Figure 5.4: Mean sediment organic matter from the upper 2cm of each sample during both 
sampling events. Errors are one standard error of the mean. Histograms not sharing letters are 
significantly different from each other (p < 0.05).  
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Figure 5.5 Relationship between denitrification and oyster density under before (a) and after 
(b) nitrogen addition. Solid line is the model, dashed lines are 95% prediction intervals. 
Regression includes the mean value of the control habitats in each habitat (open) and all reefs 
(solid).  
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6. CONCLUSION 

The nitrogen cycle is a complex and challenging biogeochemical cycle to study as a 

consequence of the various forms for nitrogen. Nitrogen can be found in particulate, 

dissolved and gaseous phases and nitrogen compounds can occur in oxidation states from -3 

to +5. Nitrogen is integral to nucleic and amino acid synthesis, making it essential for life. 

However, the majority of nitrogen on Earth is found in the atmosphere as N2 gas.  

Two opposing processes help control the availability of nitrogen: nitrogen fixation 

and denitrification. Nitrogen fixation converts atmospheric nitrogen to biologically available 

forms of nitrogen, conversely denitrification returns nitrogen to the atmosphere by 

transforming nitrate to N2. Variation between these processes has resulted in nitrogen 

limitation to primary production in marine ecosystems (Vitousek and Howarth 1991). When 

supplied in excess, nitrogen can have deleterious effects (Conley et al. 2009). Anthropogenic 

activities have at least doubled the amount of bioavailable nitrogen in the environment 

(Vitousek et al. 1997b). Because denitrification removes dissolved nitrogen, this process has 

received much attention in recent years as a way to remediate cultural eutrophication 

(Galloway et al. 2003, Brush 2009). However, our understanding of denitrification is far 

from complete, in part because of the difficulty associated with measuring this 

biogeochemical process and the variety of factors that control it (Cornwell et al. 1999, 

Groffman et al. 2006, 2009). Though the goal of this dissertation was to examine nitrogen 

dynamics in estuarine systems, it was not my initial intent to study the nitrogen dynamics of 

oyster reefs. Rather that focus grew out of my desire to gain a better understanding of what 
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contributes to the creation of oyster reefs as hot spots for denitrification activity that my early 

research highlighted. 

 

6.1 Summary of Results     

Research for this dissertation started with the objective of characterizing the spatial 

and temporal patterns of sediment nitrogen dynamics in shallow water coastal systems. 

Previous studies in estuarine systems have focused on one habitat and have used a variety of 

different methods. As a consequence, it is challenging to integrate measurements of 

denitrification over larger scales (Cornwell et al. 1999). Ecosystem assessments of 

denitrification are further complicated in tidal systems where biotic and abiotic conditions are 

in constant flux. In Chapter 2, I examined nitrogen dynamics in a variety of different 

estuarine habitats over an annual cycle. Daily rates accounting for light and water level were 

extrapolated to the estuary based on habitat area. I found that given the current spatial 

arrangement, denitrification removed 76% of the estimated watershed nitrogen load (Smyth 

et al. 2013). These results suggest that changes in the area and distribution of habitats in the 

estuarine landscape will impact ecosystem functions and services. For example, restoration 

of oyster reefs on intertidal flats would increase the denitrification capacity of the system and 

increase nitrogen removal benefits by $1,400 per acre per year (Piehler and Smyth 2011). 

This finding led me to further investigate nitrogen dynamics in oyster reefs. I realized 

that although enhanced denitrification is often cited as a benefit of oyster reef restoration 

(Grabowski and Peterson 2007), this claim was based on measurements from a laboratory 

experiments using phytoplankton pellets (Newell et al. 2002). To better understand the direct 

and indirect effects of oysters on nitrogen dynamics, I conducted a microcosm experiment 
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using live oysters (Chapter 3). Results from this experiment found that oyster-mediated 

denitrification accounted for 16-40% of the inorganic nitrogen flux. The accumulation and 

remineralization of oyster-produced organic matter, coupled with the oxygen consumption by 

the oyster created conditions favorable for denitrification. Furthermore, the addition of an 

oyster to sediment helped to shift the primary nitrogen cycle process from nitrogen fixation 

to denitrification, probably due to the increase in organic matter from biodeposits and 

ammonium production from excretion.  

Results from the microcosm experiment provided a mechanistic understanding of 

how oysters affect nitrogen availability. However, oysters do not exist alone but rather build 

reefs that consist of many oysters. In Chapter 4, I examined the role that the reef has in the 

formation of a biogeochemical hot spot. I conducted a field experiment to distinguish 

between the effects of biotic deposition and abiotic accumulation associated with the oyster 

reef on sediment denitrification. Experimental oyster reefs were constructed with live oysters 

to represent fully functioning oyster reefs, oyster shells to represent reef structure and mud 

flats without reefs served as controls. Results indicated that the reef helps to concentrate 

organic matter, but that collection of biologically derived material had the greatest effect on 

sediment denitrification. This experiment demonstrated the potential for restored reefs to 

remove nitrogen and that these effects are achieved quickly--just two weeks after 

construction.  

Results from previous chapters lead me to investigate whether the location of the reef 

impacted nitrogen removal benefits of restoration. In Chapter 5, I examined denitrification 

from oyster reefs restored in three different habitat settings under ambient and elevated levels 

of nutrient loading. I found that oyster reefs restored in a mudflat setting had the greatest 
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effect on sediment denitrification, likely due to the relative isolation of the mudflat reef. 

Additionally, the accumulation of high quality organic matter due oyster biodeposits helped 

to prime the sediments for enhanced denitrification in response to anthropogenic nutrient 

loading.  

Coastal ecosystems are experiencing an array of stressors resulting from human 

activities. Two of the most concerning alterations have been nutrient enrichment and 

decrease in the oyster population. My research is among the first to quantify rates of 

sediment nitrogen removal attributable to oyster reefs and to assess the efficacy of oyster reef 

restoration in alleviating nutrient pollution. As more resources are devoted to restoring oyster 

reefs to enhance the fishery, scientists and managers need to ensure that ecological services 

are also restored, all in the most economically efficient manner.  

 

6.2 A Conceptual Model of Oyster Reef Nitrogen Removal 

From the results of this dissertation and information in the literature, I developed a 

conceptual model examining how oyster mediated benthic-pelagic coupling modifies 

sediment nitrogen dynamics (Fig 6.1). I hope that this model will provide a framework for 

determining how to design oyster reef restoration projects to enhance nitrogen removal. If 

oyster reefs are restored in areas with high sediment organic matter content the capacity for 

oysters to enhance nitrogen removal will be influenced by the availability of nutrients and the 

concentration of oxygen in the water column. If the O2 concentration is low, remineralization 

of additional organic matter from the oysters will increase ammonium production. If the O2 

concentration is above hypoxic/anoxic levels, the effect will be dependent on the nutrient 

concentration, where high levels of nitrate (>10µM) will increase direct denitrification, but 
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dissimilatory nitrate reduction to ammonium (DNRA) will probably be the dominate process 

and result in production of ammonium. However, low levels of nutrients (<10µM) will lead 

to increased coupled nitrification-denitrification and nitrogen removal. In systems where 

sediment organic matter content is low, oyster mediated biodeposition can help to shift the 

system from net nitrogen fixation to net denitrifying, under both high and low levels of 

nutrients. When the location is in the photic zone, the habitat setting will determine the 

success of oyster reef restoration at removing nitrogen. If the location for restoration is not 

adjacent to other biogenic habitats (i.e. on a mudflat), oyster reefs will enhance 

denitrification under both high and low levels of water column nutrients. If the adjacent 

habitat is a salt marsh, oyster reefs will be most effective under high levels of nitrogen 

loading, because of priming associated with organic matter deposition from the oysters. If 

oyster restoration occurs adjacent to seagrass beds, the oyster reef will have be functionally 

redundant and have no effect on the amount of nitrogen that is removed.  

  

6.3 Importance of Scale 

This dissertation has investigated oyster-mediated changes in nitrogen dynamics over 

at the scale of the individual organism, the oyster reef, the habitat setting and the ecosystem. 

This holistic approach allowed for me to better understand the complex interactions between 

oysters and the nitrogen cycle. For example, if I only examined the individual oyster I would 

grossly over-estimate the amount of denitrification associated with the reef ecosystem. 

Similarly, examining the interactions between the reef and other habitats in a given area 

provided insight into how material and energy flow throughout the ecosystem. Enhanced 

denitrification is often considered a benefit of oyster reef restoration; however, until now, we 
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have lacked the information necessary to include oysters in nutrient management plans. As 

interest in oyster restoration, oyster aquaculture and nutrient trading programs increases, such 

measurements will be necessary to ensure high levels of water quality are maintained. This 

dissertation can serve to help shift the view of oysters as an exploitable commodity to a 

valued habitat.  
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Figure 6.1 Conceptual model showing how the locations of oyster reef restoration projects 
can affect the removal and regeneration of nitrogen. This model is designed to provide a 
framework for managers in designing oyster reef restoration plans in intertidal systems. 
Dotted lines indicate processes that were not directly measured in this study.  

Restored(Oyster(
Reef((

High(Sediment(
Organic(Ma6er(

Low(Sediment(
Organic(Ma6er(

O2(
Concentra;on(

Oxic( Anoxic(

Nutrients(

NH4
+(

Produc;on(

Low( High(

DNRA(Coupled(
Denitrifica;on(

Nitrogen(Removal(

Sediment(
Irradiance(

NonI
pho;c(

Pho;c(

Nutrients(

Low( High(

Coupled(
Denitrifica;on(

Direct(
Denitrifica;on(

Adjacent(
Biogenic(
Habitat(

No(

Yes(

Marsh( Seagrass(

No(Effect(

Nutrients(

High( Low(

Nutrients(

High(
(

Low(



 106 

APPENDIX A: Methods for Measuring Sediment Denitrification  
 
A.1 Measuring Denitrification 

Denitrification is an important ecological process, which permanently removes fixed 

nitrogen from ecosystems. Direct measurements of rate of denitrification are challenging due 

to the high concentrations of N2 in the atmosphere and the relatively small changes in 

concentration resulting from denitrification (Cornwell et al. 1999, Groffman et al. 2006). 

Numerous methods have been used to measure denitrification including acetylene block 

technique, stoichiometric and mass balance approaches, isotope pairing techniques and the 

N2:Ar method using membrane inlet mass spectrometry (MIMS).  Each method has its own 

limitations and assumptions (Cornwell et al. 1999, Groffman et al. 2006). The difficulty 

associated with measuring denitrification and complexities of coastal ecosystems have made 

it challenging to evaluate denitrification on larger spatial scales. Therefore, rates of 

denitrification determined from two independent methods were compared.   

A.2 Flux Calculations and Analytical Methods 
 

Flux calculations were based on the assumption of steady-state conditions and a well-

mixed water column in each microcosm (Miller-Way and Twilley 1996). The system was 

assumed to be at steady state when the slope of concentration vs. time for each microcosm 

was not different from zero. Benthic fluxes were calculated using the following equation: 

  

where J is the flux in µmol m-2 hr-1, [i outflow] and [i inflow] is the concentration (mmol m-3) of 

any dissolved constituent leaving and entering the core, respectively, F is the peristaltic pump 

flow rate (m3 hr-1), and A is the surface area of the core (m2). [i outflow] is the average of three 

measurements of concentrations leaving each the microcosm collected over a 48 hour period; 

J = i
outflow[ ]- iinflow[ ]( )*

F

A
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[i inflow] is the average of three measurements of concentrations entering the microcosm 

measured from a bypass, that flowed directly into the sample vial and was collected at the 

same time as the outflow sample. For nitrogen species, a positive flux indicates an exchange 

from the sediment to the water column, and a negative flux indicates an exchange from the 

water column to the sediment. For O2, a positive flux indicates an exchange from the water 

column to the sediment and is denoted as sediment oxygen demand (SOD). Treatment 

specific fluxes were calculated as the mean of microcosm specific values from replicates 

(n=3). Errors presented here are the standard error of the means (n=3).  

Samples were analyzed for concentrations of N2, O2 and Ar gases dissolved in water 

using a Balzers Prisma QME 200 quadruple mass spectrometer (MIMS; Pfeiffer Vacuum, 

Nashua, NH, USA; Kana et al. 1994). Concentrations of O2 and N2 were determined using 

the ratio with Ar (Kana et al. 1994; Ensign et al. 2008). MIMS has a rapid analysis time, 

requires a small sample volume, little sample preparation and has good precision (Kana et al. 

1994). Coefficients of variation (CV) for N2/Ar and O2/Ar were calculated from 25 replicate 

samples of deionized water maintained at 16°C and at 0 salinity. The maximum observed CV 

for N2/Ar was 0.05% and was 0.04% for O2/Ar.  The MIMS method determines the net flux 

(production-demand) across the sediment-water interface such that a positive N2 flux 

indicates denitrification dominates the net N2 flux and a negative N2 flux indicates nitrogen 

fixation dominates the net N2 flux (An et al. 2001, Fulweiler et al. 2007). The MIMS method 

does not discern between N2 production from denitrification, anammox or any other N2 

producing process.  

Water samples (50ml) were collected for nutrient analysis from the bypass line and 

the outflow port of each microcosm after steady state had been established with respect to 
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dissolved gasses (typically 24-hours after the incubation began). Water was filtered through 

Whatman GF/F filters (25 mm diameter, 0.7 µm nominal pore size), and the filtrate was 

analyzed with a Lachat Quick-Chem 8000 (Lachat Instruments, Milwaukee, WI, USA) 

automated ion analyzer for nitrate plus nitrate (reported as NOx
-) and ammonium (NH4

+) 

(detection limits: 0.04 µM and 0.18 µM, respectively). The precision of NOx
- and NH4

+ were 

calculated from five replicated samples. The maximum observed CV was 0.9% for NOx
- and 

2.6% for NH4
+. 

 The standard deviation of the flux measurement (σJ) is calculated by error 

propagation as: 

σJ = ([σi outflow]2 + [σi inflow]2)0.5 * F/A 

where σi is the standard deviation of ioutflow and iinflow, F is the peristaltic pump flow rate (0.60 

l hr-1), A is the surface area of the microcosm (3.22 x 10-3 m2). The limit of detection (LD) of 

an experimental measurement is often defined as two standard deviations (Miller and Miller 

1993). Assuming σi outflow ≈ σi inflow, F = 6.0 x 10-5 m3 hr-1, A = 3.22 x 10-3 m2, 

LD = 2 * √2 * 0.0186 (m hr-1) * σi (mmol m-3). 

Given CV = 0.05% for N2 and CV=0.04% O2, [N-N2] ≈ 580 mmol m-3, [O2] ≈ 170 mmol m-3, 

the detection limit for the N-N2 and O2 fluxes are 30.5 and 38.8 µmol m-2 hr-1, respectively. 

For dissolved nitrogen fluxes, given [NOx
- ] ≈ 2 mmol m-3 and CV=0.9% for NOx

-, [NH4
+]≈ 

25 mmol m-3 and CV=2.6% for NH4
+, the detection limit for nitrate and ammonium fluxes 

are: 0.95 µmol m-2 hr-1 and 34 µmol m-2 hr-1, respectively.  

A.3 Mass Balance Approach For Denitrification 
 
 The use of MIMS with continuous flow benthic microcosms reduces environmental 

dependency of the sample and achieves steady state fluxes (Miller-Way and Twilley 1996). 
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Steady state fluxes, where concentrations did not change overtime, were measured for N2, 

O2, NH4
+, NOx

-. The assumption of steady state conditions and types of fluxes that were 

measured allowed denitrification to be calculated using mass balance equations, in addition 

to direct measurements with MIMS (Miller-Way and Twilley 1996, Groffman et al. 2006, 

Fennel et al. 2009). The mass balance approach assumes that organic matter with Redfield 

ratios of C:N is decomposed with O2, and the end products are defined by stoichiometry 

(Groffman et al. 2006). Additional assumptions include: denitrification is the major nitrogen 

removal pathway and dominant source of N2, there is minimal nitrogen fixation and 

assimilation, minimal DNRA and remineralization and nitrification are dominant O2 

consuming processes. An ammonium absorption coefficient of 1 (Rosenfeld 1979, Klump 

and Martens 1989) and respiratory coefficient of 1 (Hopkinson 1985, Giblin et al. 1997) were 

used for calculations.  

 The relationship between N2 flux and sediment oxygen demand (SOD) contains 

information about the source of nitrate used for denitrification. Previous studies suggest that 

a strong positive correlation between N2 flux and SOD results from a coupling between 

nitrification and denitrification (Seitzinger and Giblin 1996, Piehler and Smyth 2011). SOD 

is primarily a function of mineralization and nitrification and any other O2 consuming 

process. Thus, a relationship between N2 flux and SOD, especially when ambient nitrate 

concnetraion is less than 10 µM suggests nitrate used for denitrification is generated through 

nitrification (Seitzinger 1994, Piehler and Smyth 2011, Fennel et al. 2009). 

A.4 Comparison of Mass Balance Rates to MIMS Measured Rates 

We measured denitrification for each individual cores measured from Piehler and 

Smyth 2011 and Chapter 2 using two independent methods: mass balance and MIMS (N2:Ar) 

technique. After removing outliers from the mass balance model and excluding MIMS 
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measurements that were negative, 67 of the 120 microcosms were used in the analysis. A 

paired t-test was used to determine if denitrification rates measured by the two methods were 

different. Results were considered statistically significant at an alpha level of 0.05. Statistical 

analyses were performed using R 2.13.1 (The R Foundation for Statistical Computing 2011). 

Rates of denitrification determined by the MIMS method (N2:Ar) were compared to rates 

modeled using a mass balance approach (Figure A.1). Error bars represent the random error 

associated with each measurement. Error for the mass balance approach was calculated by 

error propagation for each flux measurement.  

Comparisons between the two methods indicated that rates were not statistically 

different (t55=-0.96, p=0.34, r2 =0.46). Predicted mass balance rates were generally higher 

than MIMS measured rates. The MIMS method results in a net N2 flux (N2 production-N2 

consumption); thus, if nitrogen fixation was high, the method may underestimate 

denitrification. Recent studies have indicated that denitrification and nitrogen fixation can co-

occur in estuarine sediment (Fulweiler et al. 2013); thus, the positive N2 flux measured from 

MIMS methods may be less than the actual rate of denitrification. Under such a scenario 

mass balance may be a better predictor of the actual rate of denitrification. Results did not 

indicate a clear pattern between seasons or habitats. There is a cluster of measured rates 

around 200 µmol m-2 hr-1, that are higher than values predicted by mass balance. Measured 

rates may be higher than mass balance rates because the mass balance model assumes a 

minimal contribution of N2 production from anammox. If anammox is contributing to the N2 

production mass balance rates will underestimate denitrification. These data points were from 

oyster reef sediments in the summer and SAV sediments in the spring. It is likely that the 

organic matter at these sites during these seasons deviating from Redfield ratio organic 
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matter. A closer relationship between the measured and modeled values for these samples 

was achieved by adjusting the C:N lower. This suggests that the quality of organic matter 

was higher (more nitrogen rich) than Redfield for these sites. Oyster reef sediments were 

likely more nitrogen rich during the summer because of the production and accumulation of 

biodeposits is higher as oysters feed more during this time and there is more particulate 

organic nitrogen (phytoplankton) in the water column. The spring is the growing seasons for 

Halodule wrightii in this system, which has high nitrogen content.  

Mass balance rates relay on the assumption of Redfield organic matter (i.e. 

C:N=6.625) and that nitrification and remineralization are the dominant oxygen consuming 

processes. If sediment samples have organic matter with elemental ratios different from 

Redfield ratios or processes other than nitrification and remineralization consumes large 

amounts of oxygen (i.e. iron oxidation, sulfate oxidation), mass balance calculations may not 

be as accurate (Jørgensen 1977, Groffman et al. 2006). Unfortunately, we do not have 

measures of C:N from these site; however, C:N may be estimated by assuming the MIMS N2 

flux is accurate and adjusting the C:N ratio as well as the oxidation state of the carbon until 

rates calculated from the two different approaches agree. However, measurements of net N2 

fluxes may underestimate denitrification if nitrogen fixation rates are high. Each technique 

has assumptions and limitations and the researcher should select a method that is most 

appropriate for the research question. The MIMS method will be most valuable when 

determining net sources and sinks, while other methods are beneficial for quantifying rates of 

specific reactions.  
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Figure A.1 Comparison of denitrification determined by mass balance and the N2:Ar 
techniques (n=67). Error bars represented the propagated error for each method. Dotted line 
is best fit (p=0.34, R2=0.46), solid if a 1:1 line is plotted for reference. 
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