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ABSTRACT 
 

JESSE METZGER:  Classes of Physical Activity:  Associations with Sociodemographic 
Characteristics and Risk Factors for the Metabolic Syndrome  

(Under the direction of Anna Maria Siega-Riz) 
 

The last several decades have produced a substantial body of literature indicating the 

health benefits of physical activity, including reduced risk of all-cause mortality, coronary 

heart disease (CHD), and CHD risk factors.  Nevertheless, the prevalence of physical 

activity in the United States (US) continues to be suboptimal for most as work and daily 

activities become more and more sedentary.  Concurrently, in 2004, 32.2% of adults were 

classified as obese as defined by a body mass index ≥ 30 kg/m2. These two factors 

(obesity and physical inactivity) along with genetic factors are the primary root causes of 

the metabolic syndrome. 

 Associations are well established between physical activity and hypertension, diabetes, 

obesity, triglycerides and high-density lipoproteins, all components of the metabolic 

syndrome.  However, many of these associations may be somewhat transient in nature.  

Given this, those who demonstrate regular activity patterns across a seven day week 

would be associated cross-sectionally with fewer diagnoses of the metabolic syndrome 

compared with irregular activity.  Therefore, the purpose of this analysis is to employ 

latent class analysis (LCA) to determine which activity patterns exist in the US, which 

sociodemographic characteristics are associated with these patterns, and finally whether 
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certain patterns are disproportionately associated with any of the risk factors for the 

metabolic syndrome.   

 The results indicate that a very large portion of the US population may be classified 

into patterns of physical activity that represent low levels of physical activity throughout 

the week.  A weekend warrior class emerged for approximately 1% of the population.  

Both gender and age emerged as significant predictors of class membership.  Mexicans, 

other Hispanics, and blacks all had higher odds of being in the most active class.   

 Accumulating the recommended amount of physical activity for a week was 

consistently associated with positive profiles of the risk factors related to the metabolic 

syndrome, and accumulating substantially more physical activity was even better.   

However, the manner in which you accumulate this activity, either spread over many days 

of the week or compressed into just a couple, may have similar associations with the risk 

factors for the metabolic syndrome as well as the syndrome itself. 



v

Acknowledgements 

 I would like to acknowledge all of the hard work and assistance offered by my 

committee.  Their guidance made the development of this research much more pleasant 

than I had initially anticipated and, more importantly, made the dissertation phase of my 

education by far the most educational.



vi

TABLE OF CONTENTS 
 

Page 

LIST OF TABLES...............................................................................................................x 

LIST OF FIGURES ............................................................................................................xi 

ABBREVIATIONS ..........................................................................................................xiii 

1. Background and Significance .........................................................................................1 

1.1.  Rates of Obesity in the United States .....................................................................1 

1.2.  National Guidelines and Recommendations for PA ...............................................2 

1.2.1.  Key Concepts for Defining Physical Activity and the PA 
Recommendations...........................................................................................................3 

1.2.1.1.  Measuring Physical Activity:  FITT .................................................................3 

1.2.1.2.  Definition of the Metabolic Equivalents of Tasks (METs) ..............................3 

1.2.1.3.  Defining Sedentary, Light, Moderate and Vigorous PA based on 
METs...............................................................................................................................4 

1.2.2.  Recommendations in the US................................................................................4 

1.2.2.1.  US population meeting PA recommendations..................................................5 

1.3.  Socio-Demographic correlations with PA: Gender, Race, Age, Income, 
Education. .......................................................................................................................6 

1.4.  Current research methodology for measuring PA ..................................................7 

1.4.1.  Self-Report Questionnaires ..................................................................................8 

1.4.2.  Accelerometers ....................................................................................................8 

1.4.2.1.  Methods for calibrating accelerometer values to levels of PA .........................9 



vii

1.4.2.2.  Correlation with PAEE .....................................................................................9 

1.4.2.3.  Predictions Equations......................................................................................11 

1.4.2.4.  Data reduction using an accelerometer ...........................................................12 

1.4.2.5.  Imputation of missing data..............................................................................14 

1.4.2.6.  Age specific considerations for accelerometry calibrations for 
adolescents and adults...................................................................................................15 

1.5.  Physical Activity (PA) and Health........................................................................17 

1.5.1.  PA’s association with disease specific outcomes related to the 
Metabolic Syndrome.....................................................................................................17 

1.5.1.1.  Physical Activity and Hypertension................................................................19 

1.5.1.1.1.  Biological Plausibility..................................................................................19 

1.5.1.1.2.  Epidemiological Evidence ...........................................................................20 

1.5.1.2.  Physical Activity and Diabetes .......................................................................21 

1.5.1.2.1.  Biological Plausability .................................................................................21 

1.5.1.2.2.  Epidemiological Evidence ...........................................................................23 

1.5.1.3.  Physical Activity and Obesity.........................................................................24 

1.5.1.3.1.  Biological Plausibility..................................................................................24 

1.5.1.3.2.  Epidemiological Evidence ...........................................................................24 

1.5.1.4.  Physical Activity and Cholesterol...................................................................25 

1.5.1.4.1.  Biological Plausability .................................................................................25 

1.5.1.5.  Epidemiological Evidence ..............................................................................26 

1.6.  Conceptualizing Growth Mixture Models ............................................................27 

1.6.1.  Testing the Mixture Model with M-Plus ...........................................................31 

1.7.  Analytical considerations for cross-sectional data................................................34 

1.8.  Conclusion ............................................................................................................35 

2. Statement of the Problem and Specific Aims ...............................................................37 



viii

Aim 1 ............................................................................................................................39 

Aim 2 ............................................................................................................................39 

Aim 3 ............................................................................................................................40 

3. Methods.........................................................................................................................42 

3.1.  Data Source...........................................................................................................42 

3.1.1.  Sampling procedures..........................................................................................43 

3.1.2.  Analytical issues related to sampling.................................................................43 

3.1.3.  Re-weighting sample weights due to missing data ............................................44 

3.1.5.  Data Collection ..................................................................................................46 

3.1.6.  Measuring Physical Activity with Accelerometry.............................................46 

3.2.  Cleaning the data...................................................................................................48 

3.3.  Analysis Strategy ..................................................................................................48 

4. Patterns of Objectively Measured Physical Activity in the United States....................50 

Introduction...................................................................................................................50 

Materials and Methods..................................................................................................52 

Statistical Methods........................................................................................................55 

Results...........................................................................................................................60 

Discussion .....................................................................................................................63 

5. Associations between Adult Patterns of Objectively Measured 
Moderate to Vigorous Physical Activity and Sociodemographic 
Characteristics...............................................................................................................77 

Introduction...................................................................................................................77 

Materials and Methods..................................................................................................80 

Statistical Methods........................................................................................................84 

Results...........................................................................................................................89 

Discussion .....................................................................................................................92 



ix

6. Associations between Patterns of Objectively Measured Physical 
Activity and Risk Factors for the Metabolic Syndrome .............................................103 

Introduction.................................................................................................................103 

Materials and Methods................................................................................................106 

Statistical Methods......................................................................................................110 

Results.........................................................................................................................113 

Discussion ...................................................................................................................116 

7. Conclusions.................................................................................................................127 

Specific Aim 1 ............................................................................................................127 

Specific Aim 2 ............................................................................................................129 

Specific Aim 3 ............................................................................................................130 

Overall conclusions.....................................................................................................132 

Appendix A......................................................................................................................135 

Appendix B......................................................................................................................137 

References........................................................................................................................141 

 



x

LIST OF TABLES 

Table 1. 1. Means for the Two Classes over the four days................................................31 

Table 3. 1.  Sample SAS Survey Procedure Code.............................................................44 

Table 3. 2.  Sum of category weights, sum of weights with no missing 
data, and the weight adjustment factor for sampling categories in the 
NHANES. ..........................................................................................................................47 

Table 4. 1.  N-weighted mean cut-point for moderate-to-vigorous physical 
activity (MVPA) and vigorous physical activity (VPA) based on 
previously publish calibration equations. ..........................................................................69 

Table 4. 2.  Sociodemographic characteristics of the final study sample and 
the population excluded due to missing data, among those 20 years old and 
older. ..................................................................................................................................71 

Table 4. 3.  Sample weighted mean, standard deviation, standard error, 
25th, 50th and 75th percentile for minutes of moderate-to-vigorous physical 
activity (MVPA), bout minutes of MVPA, and vigorous physical activity 
(VPA), by day of the week. ...............................................................................................72 

Table 4. 4.  Likelihood ratio (LRT) and bootstrap LRT statistical criteria as 
well as entropy values for deciding on k versus k-1 number of classes for 
overall MVPA....................................................................................................................73 

Table 4. 5.  Likelihood ratio (LRT) and bootstrap LRT statistical criteria as 
well as entropy values for deciding on k versus k-1 number classes for 
bout minutes of MVPA......................................................................................................75 

Table 5. 1.  Sample weighted frequency distributions of the demographic 
variables for the final study population. ............................................................................99 

Table 5. 2.  Relative proportion of the sociodemographic variables in each 
class compared to the referent population (white, female, high school 
education, aged 30 and with a poverty index ratio of 1), relative to their 
proportions in the least active class.* ..............................................................................101 

Table 6. 1.  Unweighted frequency, sample weighted frequency, sample 
weighted percent, and standard error of percent of the categorized risk 
factors for the final study population...............................................................................123  

 



xi

LIST OF FIGURES 

Figure 1. 1.  Predicted Regression Equations – with and without Static 
Activities............................................................................................................................11 

Figure 1. 2.   Mixture model of crab shell sizes with two underlying 
normal distributions ...........................................................................................................28 

Figure 1. 3.   Hypothetical Distribution of Minutes of MVPA per Day............................30 

Figure 1. 4.  Underlying Normal Distributions - Minutes of MVPA per 
Day with Three Classes .....................................................................................................30 

Figure 1. 5.  Results of the M-Plus analysis with two classes ...........................................32 

Figure 1. 6.  Observed values for each observation in underlying Class 1, 
distributed around the mean for each day..........................................................................33 

Figure 1. 7.  Observed values for each observation in underlying Class 2, 
distributed around the mean for each day..........................................................................33 

Figure 4. 1.  Structural Equation Model for the prediction of the latent 
classes based on the minutes of physical activity across the seven days of 
the week, with socio-demographic characteristics predicting class 
membership........................................................................................................................70 

Figure 4. 2.  Five latent classes - MVPA. ..........................................................................74 

Figure 4. 3.  Five latent classes – bout minutes of MVPA. ...............................................76 

Figure 5. 1.  Structural Equation Model for the prediction of the latent 
classes based on the minutes of physical activity across the seven days of 
the week, with sociodemographic characteristics influencing class 
membership as well as direct effects on each day’s minutes of physical 
activity. ..............................................................................................................................98 

Figure 5. 2.  Five latent class analysis for Moderate-to-Vigorous Physical 
Activity across the seven days of the week. ....................................................................100 

Figure 5. 3.  Probability that a female with the referent category values 
belongs in each of the five activity classes (corresponding to those 
presented in figure 3), according to their age. .................................................................102 

Figure 5. 4.  Probability that a male with the referent category values 
belongs in each of the five activity classes (corresponding to those 
presented in figure 3), according to their age. .................................................................102 



xii

Figure 6. 1.  Structural equation model for the prediction of the latent 
classes of physical activity as well as the associations between the latent 
classes and the risk factors.  Socio-demographics have direct effects on the 
risk factors, the seven days of MVPA and the class memberships 
themselves........................................................................................................................122 

Figure 6. 2.  Five class analysis for entire study population for which BMI, 
HDL and blood pressure was available. ..........................................................................124 

Figure 6. 3.  Five class analysis for the subset of the population for which 
triglycerides and fasting blood glucose levels were recorded during the 
morning interview............................................................................................................124 

Figure 6. 4.  Odds ratios and 95% confidence intervals for each of the risk 
factors comparing the four more active classes with the least active class 
(class 1). ...........................................................................................................................125 

Figure 6. 5.  Odds ratios and 95% confidence intervals for the secondary 
analysis of the risk factors comparing the three higher quartiles of the co-
efficient of variation with the lowest quartile of the co-efficient of 
variation, among those study participants who achieved at least 150 
minutes of MVPA over the seven days. ..........................................................................126 

Figure B. 1.  Latent variable model for predicting the log-odds of 
experiencing one of the risk factors given an individual’s covariates and 
latent variable...................................................................................................................140 

 



xiii

ABBREVIATIONS 
 

ACSM   American College of Sports Medicine 

ADA   American Diabetes Association  

ATP III   Adult Treatment Panel III Report  

BLRT   Bootstrap Likelihood Ratio Test  

BMI   Body Mass Index 

BP   Blood Pressure 

BRFSS   Behavior Risk Factor Surveillance System 

CDC   The Centers for Disease Control and Prevention  

CHD   Coronary Heart Disease 

CI   Confidence Interval 

CV   Co-Efficient of Variation 

CVD   Cardiovascular Disease  

DBP   Diastolic Blood Pressure  

EM   Expectation Maximization Algolrithm 

FITT   Frequency, Intensity, Time and Type 

GMM   Growth Mixture Model 

HDL   High-density Lipoprotein 

IGT   Impaired Glucose Tolerance  

JNC 7   Seventh Report of the Joint National Committee on Prevention, 
Detection, Evaluation, and Treatment of High Blood Pressure  

LCA   Latent Class Analysis 

LCAT   Lecithin-Cholesterol Acyltransferase  

LCGA   Latent Class Growth Analysis 



xiv

LDL   Low-density Lipoprotein 

LMR   Lo-Mendell-Rubin Likelihood Ratio Test 

LPL   Lipoprotein Lipase  

LRT   Likelihood Ratio Test 

MET   Metabolic Equivalents of Task 

MSSE   Medicine and Science in Sports and Exercise  

MVPA   Moderate-to-Vigorous Physical Activity 

NCEP  National Cholesterol Education Program  

NCHS   The National Center for Health Statistics  

NH   Non-Hispanic 

NHANES   The National Health and Nutrition Examination Survey  

NHES   The National Health Examination Survey  

NHIS   National Health Interview Survey  

NHLBI   The National Heart, Blood and Lung Institute  

OR   Odds Ratio 

PA   Physical Activity 

PAEE   Physical Activity Energy Expenditure  

PDF   Probability Density Function 

PIR   Poverty Income Ratio 

RCT   Randomized Controlled Trial  

RMR   Resting Metabolic Rate  

RR   Relative Risk 

SBP  Systolic Blood Pressure  

US   United States 

VPA   Vigorous Physical Activity 



Chapter One 
 

Background and Significance 
 

1.1.  Rates of Obesity in the United States  

 Beginning in the early 1960’s, rates of obesity in the US have been tracked in several 

cross-sectional national surveys, including the earliest survey from 1960-62, referred to 

as the National Health Examination Survey (NHES).  Then, several successive surveys 

entitled the National Health and Nutrition Examination Survey (NHANES) were 

conducted in 1971-74 (referred to as NHANES I), 1976-80 (NHANES II), and 1988-94 

(NHANES III).  Later NHANES are simply referred to by the years in which they were 

conducted.  The surveys are designed to sample around 5,000 adults and children each 

year from throughout the non-institutionalized civilian US population.[1]  A 

questionnaire component of the survey includes information on demographics, socio-

economic status, dietary habits and other health related questions, while an examination 

component includes a medical and dental exam, physiological measurements and 

laboratory tests. 

 Based on data from these surveys, between 1960 and 1994 there was little change in 

the prevalence of pre-obesity (defined by a body mass index (BMI) of 25.0-29.9 

kg/m2),increasing only slightly from an age-adjusted prevalence of 30.5% in 1960-2 to 

32.0% in 1988-1994 for those aged 20-74 years old.[2]  However, the increase in 

obesity, as defined by a BMI ≥ 30 kg/m2, increased markedly from a prevalence of 
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12.8% in 1960-2 to 22.5% in 1988-1994.  Extreme obesity, as defined by a BMI ≥ 40

kg/m2, also increased, from an age-adjusted prevalence of 0.8% in 1960-2 to 2.9% in 

1988-94. 

 In more recent years, the increasing trends have continued.  The Centers for Disease 

Control and Prevention (CDC) reported that in the 2003-2004 NHANES assessment, 

32.2% of US adults (≥20 years old) were obese.[2] This was almost 2% higher than the 

1999-2000 NHANES survey, in which 30.5% of adults were classified as obese.  The 

increase originated primarily from a disproportionate increase in male obesity.  In the 

1999-2000 survey, 27.5% of males and 33.4% of females were obese, whereas in 2003-

2004, 31.1% of males and 33.2% of females were obese.   

 During the same time period, extreme obesity rates (defined by a BMI ≥ 40 kg/m2), 

while higher than the 1988-94 rates, have remained relatively constant.[2]  The earlier 

1999-2000 survey reported 3.1% and 6.3% for men and women, respectively, and 2.8% 

and 6.9% in 2003-2004.   

 Mexican Americans and non-Hispanic blacks have higher overall obesity rates than 

non-Hispanic whites, but this difference is due mostly to high rates found in females.[2]  

While non-Hispanic white females had a 30.2% obesity rate in 2003-2004, 42.3% of 

Mexican-American females were obese and 53.9% of non-Hispanic black females were 

obese.  Clearly, obesity rates are influenced by race. 

1.2.  National Guidelines and Recommendations for PA 

 Due to the unprecedented recent rise in obesity rates and low levels of PA in the 

United States, several government organizations have produced guidelines regarding the 

quality and quantity of PA a person should accumulate during each week.[3]  The 
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urgency of the guidelines is based on the ideas that 1) obesity is an independent risk 

factor for disease, 2) a low-level of PA is an independent risk factor for disease, 3) 

increased PA can help reduce obesity rates, and 4) PA is a modifiable behavior. 

1.2.1.  Key Concepts for Defining Physical Activity and the PA Recommendations 

 The development of PA as a field of epidemiologic research has led to several 

conventions necessary to interpret the current recommendations and guidelines.  These 

conventions will also be adopted in the current research proposal. 

1.2.1.1.  Measuring Physical Activity:  FITT 

 The frequency, intensity, time and type of each activity (or FITT principle) is 

commonly used to categorize PA.  Frequency is used to indicate how often PA is 

performed, Intensity indicates how vigorous it is, Time measures for how long the 

activity is sustained, and Type indicates the mode of activity, such as running, cycling, 

etc..  All of these criteria are used in defining the current PA recommendations. 

1.2.1.2.  Definition of the Metabolic Equivalents of Tasks (METs)  

 Intensity of activity is typically measured in Metabolic Equivalents of Task, or METs.  

One MET is intended to represent the body’s energy requirements while at rest, referred 

to as the Resting Metabolic Rate (RMR).  Typically, this quantity is assumed to be 3.5 

ml O2*kg-1*min-1, or 1 Kcal* kg-1*hr-1. The intensities of various activities are then 

measured as multiples of this reference value.  Even though there is some disagreement 

about the applicability of this reference value to all populations, as it was originally 

obtained from a 70kg, 40-year-old male, and studies have shown that body composition 

and age both affect the RMR, it has typically been used in modern PA research as the 

benchmark average RMR.[4] 
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1.2.1.3.  Defining Sedentary, Light, Moderate and Vigorous PA based on METs 

 Some modern epidemiologic research categorizes PA based on METs, labeling 

sedentary behavior as 1 MET (the RMR), light activity as 1 to 2.9 METs, moderate 

levels of PA range between 3.0 and 6.0 METs, and vigorous activity is 6.1 METs or 

above.[3]  A compendium published by Ainsworth et. al.[5] has classified a large variety 

of physical activities according to previously published MET levels in order to facilitate 

comparability between research studies.  According to the compendium, walking 2.5 

mph on a firm surface requires 3.0 METs of exertion, on average, which provides a 

reference for the lower range of moderate physical activity.   Walking 4.5 mph on a 

level, firm surface “very, very briskly” was classified as 6.3 METs, or in the lower range 

of vigorous.  This compendium allows researchers to identify activities by MET level 

and gives the ability to compare across studies by this MET standard.   

1.2.2.  Recommendations in the US 

 Recommendations encouraging participation in vigorous physical activity have 

existed for decades, but only in 1995 did the government produce official 

recommendations as part of a joint statement from the CDC and the American College of 

Sports Medicine (ACSM).  The recommendation stated that “Every US adult should 

accumulate 30 minutes or more of moderate-intensity physical activity on most, 

preferably all, days of the week.”[3] page 404 The novel part of this recommendation was 

the acceptance of moderate-intensity activity, again defined as PA intensity equivalent to 

3-6 METs, as sufficient for disease prevention and cardiac health.  The type of PA 

classified as moderate-intensity in this recommendation included examples such as brisk 

walks, canoeing, cycling ≥ 10 mph as well as activities around the home such as mowing 
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the lawn and painting.  Another novel part of the recommendation was that the 30 

minutes of PA could be accumulated in short bouts such as “walking up the stairs instead 

of taking the elevator” and “walking instead of driving short distances”.   

 In 1996, the Surgeon General’s report on Physical Activity[6] also called for at least 

30 minutes of moderate-intensity PA on most days, and also supported the accumulation 

of 8-10 minute bouts of PA.[6]   This report, however, while acknowledging the benefits 

of moderate-intensity PA and the plateau effect after 30 minutes per day, still indicated 

that “additional health and functional benefits of physical activity can be achieved by 

adding more time in moderate-intensity activity, or by substituting more vigorous 

activity”.  Many other recommendations have been produced by various organizations, 

often focusing on specific health benefits, such as cancer prevention from the American 

Cancer Society.  This proposal will focus, however, on the previous guidelines, since 

they represent the primary general government recommendations for PA. 

1.2.2.1.  US population meeting PA recommendations 

 Based on a recent report by the CDC using data from the 2001 and 2003 Behavior 

Risk Factor Surveillance System (BRFSS), a population-based, random-digit-dialed 

survey of over 214,000 respondents, the age-adjusted prevalence of adult participation in 

at least the minimum recommended level of PA was 45.9% in 2003, similar to the 45.3% 

reported in 2001.[7]  These results are based on the self-report of whether, during a usual 

week, the respondent participated in any of three varieties of PA:  household work, 

transportation, or discretionary/leisure time PA.  Recommended levels of PA could be 

achieved by either performing moderate-intensity activities, as defined by “brisk 

walking, bicycling, vacuuming, gardening or any activity that causes small increases in 
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breathing and heart rate”, for at least 30 minutes 5 or more days per week, or by 

vigorous-intensity activities, defined by “running, aerobics, heavy yard work, or any 

activity that causes large increases in breathing and heart rate”, for at least 20 minutes 3 

or more days per week.  In 2001, 16.0% of respondents reported no moderate or vigorous 

PA of at least 10 minutes in a usual week, similar to the 15.6% reported in 2003.[7]  

 In another recent CDC report, also using data from the BRFSS, the trends in leisure-

time physical inactivity from 1994 to 2004 showed steady improvement.[8]  Physical 

inactivity was defined as a response of “no” to the following question – “During the past 

month, other than your regular job, did you participate in any physical activities or 

exercise, such as running, calisthenics, golf, gardening, or walking for exercise?"  The 

report indicated that the rates of inactivity declined from 29.8% in 1994, to 23.7% in 

2004.  While women responded “no” more frequently then men, both groups showed 

similar reductions in physical inactivity (men, 27.9% - women, 31.5% in 1994; men, 

21.4% - women, 25.9% in 2004).  

1.3.  Socio-Demographic correlations with PA: Gender, Race, Age, Income, 

Education.  

 The low PA participation rates in the United States have led many researchers to 

investigate what characteristics are associated with higher levels of PA, and, conversely, 

what characteristics are associated with low-levels of PA in order to target interventions.  

Several recent review papers, reflecting over 300 articles on the correlates of PA, have 

indicated numerous strong associations.  In the review by Bauman et. al.[9], they 

emphasize, however, that most of the associations do not necessarily reflect causal 

relationships.  Distinguishing between determinants of PA and simple correlations is 
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important both for the interpretation of results as well as for the targeting of 

interventions, particularly in considering how other psycho-social factors may act as 

mediators or moderators of observed associations.[10]   

 Many cognitive or emotional factors have been shown to be associated with PA such 

as social support from family and friends, expectation of benefits, and enjoyment of 

exercise. [9]  Environmental factors have also been identified, such as neighborhood 

safety and the frequency of seeing others exercising. [9]  Behavioral attributes such as 

dietary habits and Type A personality are also highly correlated with PA. [9] 

 Importantly for this proposal, several demographic characteristics have also been 

identified as correlates.  Higher education is consistently associated with higher levels of 

PA, as is male gender.  Increasing age is consistently associated with decreasing levels of 

PA.  Higher income and socioeconomic status correlates with higher PA levels.  Non-

white race/ethnicity is associated with lower levels of PA compared to whites.[9]   

1.4.  Current research methodology for measuring PA 

 In order to assess PA levels, either for large national surveys or for specific research, 

many methods are available.  However, developing valid and reliable measures of PA 

has proved challenging and has become an active area of research in itself.  Numerous 

methods have been utilized in past research, ranging from direct observation of PA, 

biological markers of PA (such as heart rate monitors and cardiorespiratory fitness), 

direct and indirect calorimetry, self-report and motion sensors.  Each of the measures has 

their own strengths and weaknesses, which affects their use in certain types of studies. 

Only self-report and motion sensors will be discussed further as these were the two 

measures implemented in NHANES 2003-2004. 
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1.4.1.  Self-Report Questionnaires  

 Self-report questionnaires have been the primary assessment tool for the research 

upon which the US PA recommendations were based.  The two primary concerns 

regarding self-report that would influence the interpretation of the epidemiological data 

are that 1) correlations between self-report and other objective measures of PA are 

generally low, ranging of r=0.17 to r=0.53,[11] and 2) self-report tends to over-report 

PA, especially in the area of time and intensity.[12, 13]  These two issues together would 

tend to under-estimate the health benefits of PA while over-estimating the amount of PA 

necessary for health benefits.  For these reasons, more objective measures of PA have 

been developed, including accelerometers. 

1.4.2.  Accelerometers  

 Accelerometers are small, electronic devices that record the intensity of the change in 

bodily motion either in one dimension (usually the vertical plane), three dimensions, or 

omni-directional and can be worn on the hip, wrist or ankle.  Measurements can be made 

in time units ranging from one second to many minutes over the course of many days, 

leading to hundreds or thousands of data points per day.  Time units are referred to as 

“epochs” and every epoch is assigned a count value, which is a measure of the changes 

in moment that occur during the epoch period.  The total counts can provide a proxy 

estimate of total activity.  In addition, for research purposes, individual count values can 

be converted into an estimated measure of METs for that epoch.  This can be 

accomplished in various ways, such as using ROC curves to determine a cut-point with 

the most preferable sensitivity and specificity, or by creating specific count value cut-
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points using one of many prediction equations that have been developed by PA 

researchers.   

 In the 2003-2004 NHANES survey, accelerometers were added to the battery of 

questionnaires and physical exams.  The chosen accelerometer for the NHANES survey 

was the MTI Actigraph, a uni-axial monitor that records count values which range from 

0-32767.  Eligibility for this component of the survey consisted of being over 5 years old 

and ambulatory.  Whereas in the past, most estimates of PA in the US population were 

based on self-report, the new inclusion of accelerometers to this large nationally 

representative sample of the US population now provides an objective measure of PA. 

1.4.2.1.  Methods for calibrating accelerometer values to levels of PA 

 Many issues have arisen with the increasing usage of accelerometers in research 

studies.  The important questions that have arisen about accelerometers that relate to the 

current proposal are 1) how well do measurements correlate with actual PA energy 

expenditure (PAEE) and 2) which prediction equation best predicts the actual MET level 

of the measurement period.  Differences in device placement and the choice of a 

comparison measure (such as questionnaire or direct calorimetry, for example) can both 

create discrepant results, but the types of activity selected for assessment, and 

specifically whether the activity is dynamic or static, appears to be the major 

consideration for correlations as well as prediction equations and MET-level cut-points. 

1.4.2.2.  Correlation with PAEE 

 Due to the many methodological issues, the correlations between Actigraph 

measurements and EE have been inconsistent across studies, ranging from r = 0.48 to r = 

0.90.[14]  For example, Leenders et al.[15, 16] compared the uniaxial Actigraph as well 
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as the triaxial Tritrac-R3D to PA assessment using 7-day recall.  Correlations for both 

accelerometer types was r = 0.90.  However, when compared to PAEE measured using 

doubly-labeled water, the correlations dropped to 0.45 and 0.54 for the uniaxial and the 

triaxial, respectively.   

 In a study by Hendelman et al.[17], the validity of the Actigraph was assessed based 

on a variety of activities including overland walking as well as various household and 

recreational activities.  When only the overland walking was included, the correlation 

with EE in METs based on indirect calorimetry was r = 0.77.  However, when additional 

indoor and outdoor activities were included, the correlation dropped to r = 0.59.  This 

was due primarily to the static nature of the non-walking activities.   

 The same effect was also seen in an analysis by Welk et al..[18]  When the Actigraph 

was compared with oxygen uptake (VO2) during laboratory-based treadmill exercise, the 

correlation was fairly strong (r = 0.85), but when lifestyle activities such as sweeping, 

vacuuming and shoveling were added, the correlation dropped to r = 0.48.   

 The impact that different types of activities can have on the estimated correlations is 

demonstrated in figure 1.1.[19]  When only dynamic or sedentary activities are included 

in the model, the resulting predicted MET values for a given Actigraph count are 

indicated by the solid red line.  The associated correlation coefficient is r = 0.92, 

indicating a close correspondence between predicted and actual energy expenditure for 

dynamic activities.  However, when the static lifestyle activities, which require a 

significant amount of energy expenditure but record low Actigraph counts, are added to 

the analysis, the resulting predicted MET values now have a much lower correlation 

coefficient of r = 0.45 (indicated by the dashed black line).  So, depending on which 
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types of activities are intended to be captured by the Actigraph, the correlations with 

their true EE may vary greatly.  This then would influence the ability to estimate the EE 

of individuals or groups using accelerometer data. 

Figure 1. 1. Predicted Regression Equations – with and without Static Activities 
 

1.4.2.3.  Predictions Equations 

 Prediction equations attempt to translate counts from an accelerometer into an 

estimated measure of EE, and then these estimates can be converted into estimates of 

MET levels.  Typically, moderate PA is defined as 3.0-6.0 METs, and vigorous PA is 

greater than 6.0.[19]  Actigraph count thresholds can be determined in order to classify 

activity periods as above or below the moderate or vigorous EE.  Thus far, the equations 
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developed for adults have had widely varying results, especially for the moderate 

activity cut-points. 

 In a review paper concerning the calibration of accelerometers for adults, several 

studies used walking and running as calibration activities. [19]  These provided fairly 

consistent moderate activity cut-points ranging from 1,952 to 2,743 counts.  When two 

other studies[17, 20] used only walking and mixed dynamic-static activities for 

calibration, however, the moderate cut-points fell to 574 and 191.  

The reason for this can again be seen in Figure 1.1.  When static lifestyle activities are 

included in the model (which, again, record very low counts), the intercept for the 

prediction equation is pulled very high.  This would indicate that counts very near zero 

actually reflect moderate levels of EE.  But this is just an averaging effect, between low 

counts that are truly sedentary, and low counts that reflect moderate or vigorous exertion. 

 The final choice of cut-point can be based on considerations of sensitivity and 

specificity.  Using a low cut-point for moderate PA, for example, increases sensitivity, 

ensuring that the majority of moderate PA is classified as such.  However, many periods 

of sedentary activity will be misclassified.  Conversely, a high cut-point will ensure that 

the majority of activity classified as moderately active will truly be so, but will miss 

many periods of moderate activity with low counts.  Thus, the choice of a cut-point can 

influence the interpretation of one’s research findings. 

1.4.2.4.  Data reduction using an accelerometer  

 Due to the vast amount of information collected by an accelerometer over the course 

of a week, it is clearly necessary to summarize the data in some way.  Based on a review 
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by Masse et. al. [21] of previously employed data reduction techniques., there are five 

major considerations for summarizing the data.   

 The first consideration is identifying a wearing period.  This is done by determining if 

the chosen epoch periods contain consecutive zero counts for some specified period of 

time.  Previous research has used time periods ranging from 10 to 60 minutes.  If the 

period is determined to be a non-wearing period, this data is considered missing. 

 The next issue is identifying minimal wearing requirements for a day.  Based on 

whether or not a period is considered a wearing period, previous studies have required 

anywhere from 1 to 16.67 hours of valid wear time in order to count a day as a valid 

wearing day.  If not, the day is discarded. 

 Third is to identify spurious data, which occur when the accelerometers record 

inappropriate values, either due to technical issues or operator error such as dropping the 

device on a hard surface.  Researchers have used maximum cut-points, such as any value 

above 20,000 or any consecutive series of identical count values greater than 0 for 10 

minutes, in order to classify invalid data.  Such data is also considered missing. 

 The final two considerations concern how to compute outcome variables such as 

counts per minute/counts per day, or bouts of activity, such as a bout of MVPA.  Mean 

counts per minute will differ, for example, if the protocol indicates that the monitor 

should be worn for 24 hours/day compared to protocols that only indicate that the 

Actigraph should be worn during waking hours.  Comparisons between studies will need 

to consider how the summary outcome variables were derived. 

 Measuring total minutes of MVPA requires using previously defined calibration cut-

points to determine if an epoch is above the moderate threshold; additionally, since the 
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recommendations call for bouts of MVPA of 8-10 minutes, some studies have chosen to 

only count time in MVPA if it is part a bout of MVPA lasting 10 minutes or more.  

Given that there are likely to be short lapses in the intensity of activity, even in the 

course of an overall highly vigorous period of activity, most studies requiring bouts of 

MVPA have allowed from 1 to 2 minutes of the total 10 minutes to drop below the 

MVPA cut-point to still classify a 10 minute period as bout.   

 Obviously, all of these issues can create differences in the final variables.  Masse et. 

al.[21] tested four different data reduction techniques and found statistically significant 

differences between their total wearing time, average counts per minute and per day, 

average minutes in MVPA, and average bouts of MVPA per day.   

1.4.2.5.  Imputation of missing data 

 The NHANES protocol asked participants in the accelerometry portion of the survey 

to wear the monitor for a seven day period during their normal waking hours, except 

when engaging in water activities.  However, consistently remembering to wear the 

monitor over such an extended period of time may be difficult even for the most diligent.  

When the monitor is not worn, the sensors will continue recording zero counts, 

indicating no activity.  If it could be assumed that there is nothing different between 

those who forget to wear the monitor and those who didn’t, and that at least some 

minutes of MVPA were being accumulated during these non-wearing, active periods, 

then a calculation of their total minutes of MVPA will be lower, on average, than for 

those who wore it during their entire waking hours.   

 Different methods have been suggested for dealing with this issue.  The first is to 

create a minimum time in the course of a day that a participant must wear the monitor 
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(and thus record non-zero counts) in order for the day to be considered a valid day for 

analysis.  As mentioned previously, the required wear time has ranged from 1 to 16.67 

hours.  The problems with excluding the days that do not meet the criteria are that there 

will still likely be a large range of valid wear time above the cut-point and that there may 

be bias due to the differences between wear days and non-wear days.  Additionally, a 

significant amount of information is lost in the analysis if days are simply discarded. 

 In order to better handle missing data, some researchers have suggested imputing the 

minutes of MVPA for invalid days.[22]  This procedure uses information from the 

participant’s other valid days, as well as the correlations between the minutes of MVPA 

between the different days of week from the overall study population, to assign an 

expected value for that day’s MVPA.  In a paper by Catellier et. al.[22], this method, at 

least among middle-school girls, provided estimates that were less biased than using only 

valid days, while at the same time producing more precise estimates. 

1.4.2.6.  Age specific considerations for accelerometry calibrations for adolescents 

and adults 

Research using accelerometry typically separates adults and adolescents.  There are many 

reasons for this, but the most practical consideration is that the calibration of the 

accelerometers simply differs between adults and adolescents.  The prediction equations 

that have been developed thus far for adolescents vary as widely as previously mentioned 

for adults and the cut-points for various activity levels span similar ranges; nevertheless, 

physiological and biomechanical differences in the age groups makes using similar cut-

points inappropriate. 
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A fundamental reason for this is that adults have a lower average resting metabolic 

rate (RMR) of 3.5 ml*Kg-1*min-1, than children.  In contrast, children have a higher 

average resting metabolic rate.  In a review article by Freedson et al.[23], RMRs for 

children were based on 1 MET = 3.8 ml*Kg-1*min-1 in order to determine predicted 

counts.  Using one age group’s RMR to assign MET levels for the other age group would 

lead to a systematic error in the prediction equations.  A similar concern is that energy 

expenditure from activity, measured per kilogram of body mass, decreases as children 

age, leading to an analogous bias.  A final concern is that the sensitivity of the 

accelerometer counts is affected by stride length and frequency leading to lower monitor 

counts at a similar speed when the step frequency is higher.   

 In order to account for these differences, EE prediction equations for adolescents have 

included additional information such as age in years or weight in kilograms.  For 

example, Eston et al.[24] scaled the oxygen uptake per kg0.75 so that the EE among 

children age 8.2-10.8 was measured in mL*Kg-0.75*min-1. Using the mean body weight 

of 29.8 kg, the Actigraph cut-point count for moderate activity (MET = 3) was 500.  Two 

other studies by Treuth et al.[25] and Puyau et al.[26] found very different moderate 

activity cut-points of 3,000 and 3,200, respectively.  These differences may be explained 

by the differences in the age ranges, the types of activities that the participants were 

asked to perform in each study, or the methods for measuring energy expenditure.[23] 

 Due to these concerns of non-comparability, the use of the same calibration equation 

for adults and adolescents has thus far been avoided in modern PA research.   
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1.5.  Physical Activity (PA) and Health 

 The last several decades have produced a substantial body of literature indicating the 

health benefits of PA, including reduced risk of all-cause mortality, CHD and CHD risk 

factors.   Many of the reviews also separate their assessments into primary, secondary 

and tertiary prevention of disease outcomes.  The importance of this distinction lies in 

the fact that PA has been shown to have both a preventive as well as a palliative effect on 

disease and disease progression.  The importance of these findings led the US Surgeon 

General to produce the 1996 report on physical activity, highlighting the benefits along 

with providing recommendations.  Nevertheless, the rates of PA in the US continue to 

decline as work and daily activities become more and more sedentary.[7, 8]   

1.5.1.  PA’s association with disease specific outcomes related to the Metabolic 
Syndrome 
 

The physiological issues surrounding the Metabolic Syndrome were first articulated 

by Reaven in 1988 as a complex set of inter-related factors that typically cluster together 

and significantly increase the risk of CHD, a condition he called Syndrome X.[25]  The 

factors he identified at the time included dyslipidemia, hypertension, hyperglycemia.  He 

and others postulated that the underlying disorder linking the conditions was insulin 

resistance (the condition is sometimes referred to as insulin resistance syndrome). [26]      

 The National Cholesterol Education Program’s (NCEP) Adult Treatment Panel III 

report (ATP III) in 2002 included 6 different components which comprise the metabolic 

syndrome.[27]   The first component is obesity, and particularly abdominal obesity 

which is most closely associated with the metabolic syndrome.  The second component 

is atherogenic dyslipidemia, which the ATP III defines as high triglyceride levels and 

low levels of high-density lipoproteins.  Elevated blood pressure is the third component, 
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commonly associated with insulin resistance.  Insulin resistance itself is considered a 

fourth component of the Metabolic Syndrome.  A proinflammatory state, indicated by 

elevated levels of C-reactive protein, is also common among those with Metabolic 

syndrome, possibly due to the co-occurrence of obesity and  excess adipose tissue which 

releases inflammatory cytokines, thus raising the C-reactive protein levels.  The final 

component of the Metabolic syndrome is a prothrombotic state, due to increased plasma 

plasminogen activator inhibitor-1 and fibrinogen. 

 While the NCEP executive summary in 2001 considered the control of low-density 

lipoproteins (LDL) as the primary goal of clinical treatment for dyslipidemia due to its’ 

strong associations with CHD, they emphasized the importance of a secondary goal of 

treating the Metabolic Syndrome to reduce the risk of CHD.[28]   In this summary, they 

described the clinical assessment of the Metabolic Syndrome as comprising at least three 

of the following: 

 Waist circumference in men of > 102 cm (>40 in), and in women > 88 cm (35 in) 
 Triglycerides of ≥ 150 mg/dl 
 High-density lipoprotein of  < 40 mg/dl in men, and < 50 mg/dl in women 
 Blood pressure of  ≥ 130/ ≥ 85 mm Hg 
 Fasting glucose of ≥ 110 mg/dl 

And importantly for this proposal, the 2002 report by the NCEP indicated that the first 

strategy for the treatment of the Metabolic Syndrome is the modification of its’ root 

causes, those being overweight/obesity and physical inactivity.[27] 

 Congruent with this last statement, the reviews and position papers related to disease 

specific associations with physical activity provide convincing evidence to support the 

position that positive associations exist between a lack of PA and hypertension, diabetes, 
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obesity, triglycerides and high-density lipoproteins, all of which are components of the 

clinical definition of the metabolic syndrome. 

Nevertheless, all of the review papers also indicate caution regarding these findings due 

to the difficultly of drawing summary conclusions given the diversity of study designs, 

study sizes, and definitions of the respective outcomes and of what constitutes PA.   

1.5.1.1.  Physical Activity and Hypertension 

1.5.1.1.1.  Biological Plausibility 

 The mechanisms by which PA affects blood pressure are complicated, but a basic 

description of these factors will be provided here.   

 Blood pressure is directly proportional to total cardiac output and total peripheral 

resistance to this output.[29]  This has an intuitive interpretation, in that blood pressure 

depends on the volume of blood in the circulatory system, the rate at which this blood is 

flowing, and the diameter of the vessels through which it is flowing.  Thus, blood 

pressure may be elevated by either increasing the volume of blood in the system, 

increasing the flow rate or by constricting the blood vessels. 

 The primary way that PA is believed to lower blood pressure is through activity of the 

autonomic nervous system.  When norepinephrine, a neurotransmitter released by 

sympathetic nerves, along with the hormone epinephrine, bind with adrenergic receptors 

of the heart, both the pulse rate and the force of contraction are increased.  In addition, 

when they bind with smooth muscle cells of the blood vessels, the diameter of the 

vessels constrict.[29]  In a study by Cleroux et. al., among mild hypertensives who 

exercised for 30 minutes at an intensity of 50% of VO2max, blood plasma has been 

shown to experience a 20% reduction in norepinephrine, leading to period of 
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hypotension lasting up to 90 minutes post-exercise.[30]  Many other studies have 

indicated a similar reduction in norepinephrine in blood plasma after bouts of exercise.  

Due to the activity of norepinephrine on the circulatory system, this reduction leads to a 

decrease in both flow rate and TPR, which will tend to lower blood pressure all other 

things being equal.   

 Another mechanism by which PA is believed to reduce blood pressure is through 

weight loss and increased insulin sensitivity.  Those who experience weight loss also 

typically experience increased insulin sensitivity along with a corresponding decrease in 

plasma insulin levels.  High levels of plasma insulin has been hypothesized to promote 

sodium reabsorption by the kidneys which leads to increased plasma volume.[6]  

Consistent with this theory, blood pressure and plasma insulin concentrations have been 

shown to be directly proportional.[29]  Thus, this mechanism by which PA lowers blood 

pressure appears to be mediated by the affect of PA on plasma insulin, which then leads 

to changes in blood pressure. 

 Interestingly, changes in cardiac output, and thus blood pressure, do not appear to be 

affected by PA.  While PA does appear to lower the resting heart rate, the stroke volume 

also increases due to increased venous return to the heart, thereby leaving total cardiac 

output unchanged.[29]  

1.5.1.1.2.  Epidemiological Evidence 

 The 1996 NIH consensus statement on PA and cardivascular health states “Most 

studies of endurance exercise training of individuals with normal blood pressure and 

those with hypertension have shown decreases in systolic and diastolic blood 

pressure.”[31]  The Surgeon General’s report also states that prospective observational 
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studies as wells as several randomized controlled trials (RCTs) confirm that both higher 

PA and cardiorespiratory fitness are associated with decreased blood pressure. 

 Two later review articles provided quantitative summaries of the literature.  In a 

review of 44 RCTs, Grundy et. al.[32] reported a 3.4 mm Hg and 2.4 mm Hg reduction 

in systolic and diastolic blood pressure, respectively, from PA.  Among hypertensives, 

this effect was more pronounced (7.4 / 5.8 mm Hg reduction), while normotensives 

showed lesser improvement (2.6 / 1.8 mm Hg reduction).  In a separate meta-analysis by 

Whelton et. al. of 53 RCTs, they indicate slightly larger improvement overall (3.8 / 2.6 

mm Hg reduction).  Among studies that separated results by hypertensive status, 

Whelton also found differences in improvement, with hypertensive blood pressure 

dropping 4.9 / 3.7 mm Hg and normotensive blood pressure only falling 4.0 / 2.3 mm 

Hg.[33] 

1.5.1.2.  Physical Activity and Diabetes  

1.5.1.2.1.  Biological Plausability 

 While diabetes can affect individuals in different ways, the commonality between 

clinical symptoms is an elevated level of blood glucose along with other related 

metabolic disorders.[6]  The two main types of diabetes are Type 1 diabetes, or insulin-

dependent diabetes, and Type 2 diabetes, or non-insulin-dependent diabetes.  Insulin is 

responsible for the regulation of blood glucose levels as well as the transport of glucose 

from the blood into the cells for use as energy.  In Type 1 diabetes, the pancreas 

produces an insufficient amount of insulin, thought to be caused by an auto-immune 

response.  Without a sufficient level of insulin due the insufficient production by the 

pancreas, glucose lingers in the blood leading to hyperglycemia.  Prolonged 
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hyperglycemia eventually leads to ketosis, an acidotic condition that, over time, causes 

damage to the small blood vessels and nerves.  This explains the common clinical 

symptoms of diabetes related to neuropathy, retinopathy, and poor circulation to the 

extremities.  Only about 20% of diabetes cases in the United States are of the Type 1 

form.[29]   

 Type 2 diabetes is caused by two concurrent conditions:  1) a peripheral insulin 

resistance, meaning that the body has developed an insensitivity to circulating insulin, 

primarily in the skeletal muscles, and 2) an insulin-secretory defect, such that the body is 

unable to increase the beta-cell production of insulin.  The two factors together again 

lead to hyperglycemia and ketosis.[34]  Type 2 diabetes is far more common than Type 1 

diabetes and, because many of the causes are related to lifestyle, Type 2 diabetes is more 

likely to be affected by PA levels. 

 PA is hypothesized to reduce the risk of diabetes through several synergistic 

mechanisms.  First, PA increases the blood flow into the skeletal muscles, which 

enhances the transport of glucose into the muscle cells.  This increased glucose transport 

appears to be due to increased insulin sensitivity, and this effect has been shown to 

persist for up to 24 hours or more after a prolonged bout of exercise while glycogen 

levels are being replenished in the cells.  Studies suggest that improvements in glucose 

tolerance due to PA are more effective when the impairment is due to reduced insulin 

sensitivity than when the impairment is due to insufficient amounts of circulating insulin. 

 An additional mechanism through which PA is believed to improve insulin sensitivity 

is through weight loss, and specifically intra-abdominal weight loss.  Excess fat mass, 

and particularly intra-abdominal fat, is a known risk factor for insulin resistance, and 
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roughly 80% of Type 2 diabetes cases occur among the obese.[29]  So, again, this 

mechanism through which PA decreases the risk of diabetes appears to be mediated by 

the effect of PA on reducing total fat mass, and thus increasing insulin sensitivity. 

1.5.1.2.2.  Epidemiological Evidence 

 According to a joint statement by the American Diabetes Association (ADA) and the 

American College of Sports Medicine (ACSM), exercise has been found to be effective 

and appropriate for both pre-diabetics as well as for those with Type I or II diabetes.  

“Several long term studies have demonstrated a consistent beneficial effect of regular 

exercise training on carbohydrate metabolism and insulin sensitivity which can be 

maintained for at least five years.”[35]  A later consensus paper in 2006 by the ADA 

which focused only on type 2 diabetes, stated “there is firm and consistent evidence that 

programs of increased physical activity and modest weight loss reduce the incidence of 

type 2 diabetes in individuals with Impaired Glucose Tolerance (IGT).”[36] 

 A representative example of the longitudinal studies comes from the Finnish Diabetes 

Prevention Study.  Five hundred and twenty-two overweight subjects, aged 40-65, with 

impaired glucose tolerance (IGT) were randomized to a control or intervention group, the 

latter of which consisted of moderate exercise for at least 30 minutes per day, along with 

losing at least 5 percent of body weight, limiting saturated and total fat to 10 and 30 

percent of total energy consumed, respectively, and increasing fiber intake to at least 15g 

per 1000 kcals.  The follow-up time period averaged 3.2 years.  Cumulative incidence of 

type 2 diabetes was 11% in the intervention group, while 23% in the control group, or a 

58% reduction in the risk of diabetes.[40]    
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1.5.1.3.  Physical Activity and Obesity  

1.5.1.3.1.  Biological Plausibility 

 Obesity occurs when energy intake exceeds energy expenditure over a prolonged 

period of time.  Three sources account for total energy expenditure:  1) the resting 

metabolic rate, 2) the thermic effect of food, and 3) non-resting energy expenditure such 

as PA.  Among those who are at risk for or who are already obese, increasing the non-

resting energy expenditure can favorably shift the balance of energy toward weight 

maintenance or weight loss.  It also does not appear that increasing PA leads to a 

compensatory increase in energy intake.[6]   

 Several additional factors aid in weight loss beyond just the additional energy 

expended during a bout of PA.  After a bout, the resting metabolic rate may remain 

elevated for up to 24 hours, depending on the intensity and duration of the bout.[29]  

Also, increasing PA appears to reduce the decline in the resting energy expenditure that 

accompanies weight loss by preserving lean muscle mass.  This is in contrast to the 

effects of caloric restriction through dieting.[6]  Finally, because resistance training 

produces larger increases in fat-free mass than aerobic exercise, resistance training has 

been shown to be more effective in raising the resting metabolic rate, which may provide 

additional benefits in terms of weight loss or weight maintenance.   

1.5.1.3.2.  Epidemiological Evidence 

 Two lines of argument are often provided for why the current obesity epidemic is 

likely due to an insufficient amount of energy expenditure, and specifically physical 

activity. First, several national surveys indicate that total energy intake has only very 

modestly increased or decreased in the last decades during a time when obesity 
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increased.  The other argument is that, while twin and family studies have indicated that 

the inheritability of body fatness accounts for between 25%-70% of the overall variation 

in body fatness, and even though there is a significant amount of variation in individual 

resting metabolic rate (RMR), it is unlikely that there has been such a dramatic change in 

the genetic profile of western populations which could account for the steep rise in 

obesity during the last 50 years.[37]   

 Given this, a significant amount of research has focused on how a sedentary lifestyle 

contributes to obesity and whether moderate physical activity can prevent or reduce 

obesity.  In a review in a 1999 supplement of Medicine and Science in Sports and 

Exercise (MSSE) dedicated entirely to issues of obesity, Dipietro et al. [38] concluded 

that PA can positively affect body composition by promoting fat loss while maintaining 

lean mass; in addition, the frequency and duration of PA is directly associated with 

weight loss, even if the rate of weight loss is relatively slow.  Another review article in 

the same supplement summarized the results of eight prospective studies of the effects of 

sedentary behavior on obesity and, although the analyses were highly variable, most 

studies showed a link between sedentary behavior and the risk of obesity.[39] 

1.5.1.4.  Physical Activity and Cholesterol 

1.5.1.4.1.  Biological Plausability 

 Only the mechanisms involved in the decrease of triglycerides and the increase in 

high-density lipoproteins (HDL) will be discussed here as only these two types of 

cholesterol have been consistently shown to be affected by PA. 

 Triglycerides are the primary form of fat in the body.  During exercise, triglycerides 

are hydrolyzed by lipoprotein lipase (LPL) into glycerol and fatty acids which are used 
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as energy for muscle contractions.  LPL activity has been shown to increase during 

bouts of PA, and increased activity may last for up to 48 hours after acute endurance 

exercise.[29]  This is the primary mechanism by which PA is believed to reduce levels of 

triglycerides. 

 Several mechanisms are believed to be involved in the increase of HDL due to PA.  

First, PA has been shown to increase the activity of an enzyme called lecithin-cholesterol 

acyltransferase (LCAT).  This enzyme is responsible for transporting free fatty-acids as 

well as the esterification of cholesterol to produce HDL2, a form of HDL.[29]  Because 

only the activity, and not the levels, of LCAT have been demonstrated following bouts of 

PA, it is not known whether the increase in LCAT activity is due to PA itself, or whether 

the increased activity is simply due to increased LPL activity which provides additional 

fatty acids upon which the LCAT can act. 

 Another mechanism thought to increase the levels of HDL is the decrease in the 

activity of hepatic lipase following PA.  Hepatic lipase is an enzyme found in the liver 

responsible for HDL2 catabolism.  By reducing the activity of this enzyme through bouts 

of PA, less HDL2 is catabolized, thus leaving more HDL in the blood.[29] 

 Other mechanisms are believed to be involved in the increase of HDL after PA, but a 

complete understanding of the biological mechanism are as yet not fully understood. 

1.5.1.5.  Epidemiological Evidence 

 The epidemiological evidence that physical activity can lead to pronounced 

improvements in CHD risk has become quite clear; however, the study of dyslipidemia 

as a risk factor for CHD and its’ association with PA has been less frequent and has lead 
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to less consistent results.  The literature, though, does support that PA can improve 

certain aspects of lipoprotein profiles, specifically HDL and triglycerides. 

 A dose-response relationship has been shown between an increasing intensity and 

frequency of PA and an increasing level of HDL as well as a decreasing level of 

triglycerides.[40]  However, in a review by an independent panel for the ACSM of 11 

randomized controlled trials, this effect may occur only with the concurrent weight loss 

of at least 2.5 kg among overweight men and women, and with a weight loss of 4.5 kg 

among normal weight men and post-menopausal women.  PA has not been shown to 

affect low-density lipoprotein (LDL) levels, high levels of which, at least in overweight 

individuals, appear to be more associated with dietary intake of cholesterol and 

saturated/trans fatty acids.[32] 

1.6.  Conceptualizing Growth Mixture Models 

 The first use of a simple mixture model dates back to 1894 when Pearson was 

approached with a mathematical challenge that had thus far proved too difficult to 

answer.[41]  The question revolved around the nature of the distribution of crab shell 

sizes, which was bell shaped but skewed to the left.  The theory to be tested was whether 

this long tail was actually the result of the mixing of two separating species of crabs, one 

growing larger and the other smaller, each with a different mean size and variance.  If it 

were assumed that there were actually two groups, then the question was what two 

underlying normal distributions best fit the observed distribution.   

 The theoretical mixture distribution is demonstrated in Figure 1. 2.  Pearson was able 

to fit the non-normality of the overall distribution very closely with two normal 
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distributions, each with a different mixture of population percent, variance, and mean – 

hence the name.   

 Later, a debate arose in the 1950’s about the nature of the distribution of blood 

pressure, which is skewed to the right with a very long tail.[41]  Some believed that there 

was a recessive gene for high blood pressure, leading to a mixture of people, one group 

in the lower, normal range with a high degree of variation, and another, smaller group of 

genetically predisposed individuals who make up a significant portion of those in the 

higher levels.    

Figure 1. 2.   Mixture model of crab shell sizes with two underlying normal 
distributions 
 

More recently, the social sciences have explored the uses of mixture models with an 

interest in following groups of individuals’ changes over time or developmental periods.  



29

This has led to a rapid increase in statistical tools for this purpose, one of which is the 

intended analytical tool for the current project – Growth Mixture Modeling. 

 This technique extends the mixture model concept, but adds the possibility of finding 

underlying normal distributions from continuous data collected at several different points 

in time.   This theoretical model is demonstrated in Figure 1. 3 and Figure 1. 4.  These 

graphs represent the hypothetical distributions of accumulated minutes of moderate to 

vigorous PA for, in this case, three distinct groups (or classes) with measurements 

recorded over a three day period (Monday through Wednesday).  In Figure 1. 3, only the 

overall, observed distribution of values are presented.  Notice that the distributions are 

irregular and non-normally distributed.  Figure 1. 4 presents the same distribution, but 

overlaid in the graph are the three underlying distributions in each of the three days.  

Membership is consistent over the three days in each of the red, green and blue groups.  

The task of Growth Mixture Modeling is to find these three groups when they are 

unknown to us.  By using iterative techniques, a maximum-likelihood estimate is used in 

order to classify participants into the underlying distributions. 

 Previous studies have used a wide variety of other outcomes to develop their classes.  

One study looked at the average number of beers drunk per week by college freshman 

over the course of an academic year.  Students were then placed into several classes, 

such as early academic year drinkers, late academic year drinkers, light drinkers but 

heavy on holidays, non-drinkers, and continuous binge drinkers.[42]  Another study 

looked at the frequency of bed wetting during the developmental years from age 4 to 15.  

The classes reported included transient, relapsing, persistent, chronic and normal bed-

wetters over the 12 year period.[43] 
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Figure 1. 3.   Hypothetical Distribution of Minutes of MVPA per Day 
 

Figure 1. 4.  Underlying Normal Distributions - Minutes of MVPA per Day with 
Three Classes 



31

Using the NHANES data, we intend to classify each person according to their total 

minutes of moderate-to-vigorous physical activity (MVPA) on each of the seven days in 

a week.  Growth Mixture Modeling will then attempt to determine if there exist groups, 

or classes, of people who tend to accumulate their minutes in a similar pattern over the 

seven days.  For example, one group may have a very low mean number of minutes from 

Monday to Friday, with a high average number of minutes on Saturday, and then a 

slightly lower, but still high, average minutes of MVPA on Sunday.  Another group, 

possibly active workers, will have a large mean number of minutes during the work week 

but very low mean minutes on the weekend.   

1.6.1.  Testing the Mixture Model with M-Plus 

 In order to test whether unique underlying classes can be discovered with the mixture 

model analytical technique, a hypothetical dataset was created with longitudinal data 

collected over, in this hypothetical case, a four day period.  For simplicity, only two 

classes were created with 100 observations in each class for each day.  The two classes 

were created with very different mean minutes of MVPA, hopefully allowing M-plus to 

successfully classify all 100 observations of each group into its’ correct class.  The 

means for each day in each class are shown in Table 1. 1. 

Table 1. 1. Means for the Two Classes over the four days 
 

Mean Minutes of 
MVPA for Class 1 

(N = 100) 

Mean Minutes of 
MVPA for Class 2 

(N = 100) 

Day 1 2.34 10.47 

Day 2 5.12 18.95 

Day 3 1.96 12.83 

Day 4 9.88 24.77 
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When M-plus analyzes the data, no indication of the classes is provided, only the 

minutes of MVPA per person per day.   A priori, the number of desired classes is 

provided to M-plus, in this case two.  Mixture modeling then finds the best fit to this 

number of classes, and performs a statistical test of whether one less class would have 

been sufficient.  Results of the M-plus analysis for two classes are presented in Figure 1. 

5.  The estimated means match the true means presented in Table 1. 1.  The percentages 

listed in the graph represent the proportion of the total population in the given class.  The 

statistical test for whether one fewer classes would have been sufficient was significant 

at the <0.001 level, indicating that two classes helps explain a significant portion of the 

variation compared to only one class. 

Figure 1. 5.  Results of the M-Plus analysis with two classes 
 

Additional results from M-Plus are presented in Figure 1. 6 and Figure 1. 7 below, 

each representing a separate plot for each class.  In Figure 1.6, the plot of the class with 

the higher mean number of minutes of MVPA is shown with each individual’s minutes 

of MVPA over-layed.  Figure 1. 7 represents the same information for the class with the 
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lower mean minutes of MVPA.  These plots help visualize how much variation exists 

around each specified class. 

Figure 1. 6.  Observed values for each observation in underlying Class 1, distributed 
around the mean for each day  

Figure 1. 7.  Observed values for each observation in underlying Class 2, distributed 
around the mean for each day  
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1.7.  Analytical considerations for cross-sectional data 

 The NHANES data represent a cross-sectional sample of over 10,000 participants.  

The primary concern with this type of analysis is that, without knowing the temporal 

sequence of the exposures and outcomes, it is possible to make inaccurate inferences and 

misconstrue the meaning of significant associations.  This, however, should not limit the 

importance of the proposed work. 

 First, we do not intend to infer causation with this analysis.  Associations between 

classes of PA and health outcomes will be investigated without drawing any conclusions 

with regards to their temporal sequence.  Given this caveat, cross-sectional studies are 

considered a valid tool for developing hypotheses, even if inappropriate for testing 

hypotheses.  Since growth mixture modeling has never been used before with physical 

activity data, our analysis is, by nature, exploratory.  Therefore, the NHANES data 

represent the ideal dataset with which to conduct this analysis.  It is a very large dataset 

which has already been collected, the sampling methodology is sound and will provide 

national estimates, and there is a fair amount of covariate information collected as part of 

the primary NHANES survey.  If findings from this study generate enough interest, 

future studies with longitudinal designs may build on this research to help clarify any of 

the observed associations. 

 Secondly, NHANES has a long history of influencing additional research leading to 

significant public health findings.  For example, results from the first NHANES survey 

in the 1960’s alerted researchers to the possible connection between high levels of 

cholesterol and risk of heart disease.[44]  Later longitudinal research, such as the very 
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influential Lipids Research Clinics (LRC) series of studies begun in 1971, confirmed 

this association.   

 Given the previous considerations, the NHANES data should provide an excellent 

resource to achieve the stated research goals. 

1.8.  Conclusion 

 The health surveillance mechanisms that have been in place over the last several 

decades, including the NHANES and the BRFSS surveillance systems, helped detect and 

characterize the growing obesity epidemic as well as the extent to which inactivity has 

become commonplace.  These findings led to a significant amount of research into how 

much PA is necessary to achieve positive health benefits, and ultimately to the issuing of 

numerous PA recommendations.  Concurrently, a large body or research investigated 

what characteristics are associated with PA.   

 However, the majority of the studies of the health benefits of PA were based on self-

report and tended to aggregate PA into average kilocalories per day or per week.  In 

terms of the FITT model for PA assessment, the sub-components of Frequency and Time 

were combined in this overall summary of total kilocalories.  This was an effective 

strategy for determining how much PA, on average, was necessary for health benefits.  

However, determining the effects of different patterns of Frequency of PA and Time 

engaged in PA might also be important in establishing appropriate PA recommendations. 

 To our knowledge, only one recent study has so far attempted to distinguish whether 

different patterns of PA accumulation affect mortality risk.[45]  In this study, four groups 

were compared:  those who accumulated less than 500 kcal/week (“sedentary”), those 

with 500-99 kcal/week (“insufficiently active”), those who accumulated ≥1000 
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kcal/week in 1 or 2 days (“weekend warrior”), and those who accumulated ≥1000 

kcal/week in any other way (“regularly active”).  This study found that, among low risk 

men, the risk of mortality for the “weekend warriors” was even lower than for those who 

were “regularly active” (Relative Risk of 0.41 for “weekend warriors” and 0.58 for 

“regularly active”, compared to “sedentary”).  Among high risk men, the “weekend 

warrior” group showed no improvement over the “sedentary” group, whereas the 

“regularly active” still showed a lowered relative risk of mortality (RR of 1.02 for 

“weekend warriors” and 0.61 for “regularly active”, compared to “sedentary”). 

 By establishing activity classes in the NHANES sample using the Growth Mixture 

Model, the question of whether different classes lead to better health profiles can be 

similarly addressed.  While the recommendations call for 30 minutes of MVPA on most, 

and preferably, all days of the week, it may be that accumulating all of these minutes 

during shorter periods of time, for example on only non-work days, lead to similar 

benefits as more regular PA.  A finding such as this may then encourage those who can’t 

find time for PA otherwise to find time on free days.  It is this issue that will be explored 

in the current proposal, as well as what characteristics are associated with the given 

classes. 



Chapter Two 
 

Statement of the Problem and Specific Aims 
 

Physical activity (PA) has been recognized throughout history as an important part of 

a healthy lifestyle[46], and recent research has shown that adequate PA can help reduce 

the risk of cardiovascular disease[6], osteoporosis[51], high blood pressure[33], as well 

as diabetes[49].  Nevertheless, modern society and technology have made it possible for 

a large portion of the population, at least in the developed world, to greatly reduce their 

physical activity to minimal levels.  As the Centers for Disease Control and Prevention 

reported, “in 2003, the majority (54.1%) of US adults did not engage in physical activity 

at the minimum recommended level.”[7] 

Concurrently, during the last several decades we have witnessed a large increase in 

obesity in the United States (US).  In 2004, The National Center for Health Statistics 

(NCHS) reported that 17.1% of adolescents were overweight (as defined by ≥ 95th 

percentile of the sex-specific body mass index or BMI for age growth charts) and 32.2% 

of adults were obese (as defined by a BMI ≥ 30 kg/m2).  Extreme obesity (BMI ≥ 40

kg/m2), which in 1990 only affected 0.5% of men and 1.2% of women, presently affects 

2.8% of men and 6.9% of women.[2, 47]  Several recent studies have shown that weight 

gain leading to obesity is strongly associated with sedentary behavior, and weight loss or 

weight maintenance is associated with being physically active and fit.[48, 49] 
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Participation rates in PA vary greatly across different socio-demographic groups.  

Females, African-Americans, Hispanics, older adults, as well as those with less 

education and income have been shown to engage in less leisure time PA.[10, 53]  

Several questions still remain about these socio-demographic correlates of PA.  First, 

most studies use self-report which has been shown to over-report PA[12, 13]; in addition, 

inaccurate reporting may vary by demographic characteristics.  Secondly, these cross-

sectional associations do not indicate in what way PA is accumulated.  Additionally, 

little research using objective measures of PA has been done to determine how the 

quantity and intensity of physical activity over time is distributed in the general 

population or in selected sub-populations.  Finally, the associations between different 

patterns of PA and health outcomes are also not known.  Determining how PA is 

accumulated during the course of a week and its association with health outcomes would 

help target interventions for those who do not achieve an adequate level of PA.  For 

example, while the current recommendations are to be active at least 30 minutes on most, 

and preferably all days of the week[3], a large portion of the population has employment 

which requires them to be sedentary for the majority of the day throughout the week.  

This would potentially allow for greater time for activity during the weekend.  If this 

pattern of physically activity is insufficient, then interventions incorporating activity 

during the typical work-week would be important.  Conversely, it may be that a 

significant amount of vigorous PA only on the weekend is sufficient for desired health 

benefits.  At present, this is not known. 

 Accelerometry has become an increasingly popular method to measure PA, primarily 

because these devices have been shown to be valid and reliable, acceptable for large 
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studies and for all ages while providing specific information about activity over the 

entire course of a day for many days[50].  Because of these positive features, 

accelerometry was added to the 2003-2004 National Health and Nutrition Examination 

Survey’s (NHANES) battery of assessments.  These data now provide the first US 

sample of participants’ physical activity with which to estimate the distribution of PA 

over time.  The purpose of this study is to determine the level and patterns of PA in the 

US population, examine the socio-demographic characteristics associated with these 

patterns, and finally establish which combination of activity patterns are associated with 

positive profiles of biological markers of health.   

The specific aims include: 

Aim 1  

Model patterns of PA and develop a set of descriptive classes, or activity groups, into 

which study participants fall based on their daily minutes of moderate-to-vigorous PA 

(MVPA) and vigorous PA (VPA) across a seven day week.   

Hypothesis 1 

Activity classes will consist of:   
 Class 1) Little MVPA/VPA during the week with more activity on the weekend, 
 Class 2) MVPA/VPA during the weekdays with additional PA on the weekends,  
 Class 3) MVPA/VPA during the weekdays with little activity on the weekends,  
 Class 4) Those with little MVPA/VPA on all days. 
 
Aim 2 

Determine the distribution of socio-demographic characteristics in each of the 

established activity classes, including race, gender, age, household income and 

education.   

Hypothesis 2a 
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Women, African-Americans and those with less education are more highly associated 
with activity class 4 than males, non-African-Americans and those with more education, 
respectively.   
 
Hypothesis 2b 

Hispanics are more consistently associated with activity classes 2 and 3 due to the nature 
of work such as construction and agriculture.   
 
Hypothesis 2c 

Older age is associated with less active classes (classes 1 and 4).   
 
Hypothesis 2d 

Higher household income is more highly associated with classes 1 and 2 than lower 
household income.   
 
Aim 3  

Determine which classes and relevant socio-demographic characteristics are associated 

with positive health outcomes.  Fasting glucose, blood pressure, high-density lipoprotien 

(HDL), triglycerides and BMI (all clinical components of the metabolic syndrome), as 

well as the metabolic syndrome itself, will be used as the relevant biological markers of 

health.   

Hypothesis 3a 

Higher overall activity is positively associated with all of the previously mentioned 
biological markers of health, i.e. lower blood pressure, fasting glucose, BMI, 
triglycerides, higher HDL, and a lower occurrence of the metabolic syndrome. 
 
Hypothesis 3b 

Certain patterns of PA are associated with positive profiles, regardless of overall activity. 
 

These aims will be accomplished by using the accelerometry data from the 2003-2004 

NHANES.  This data source includes 10,122 participants, 7,176 of which wore an 

accelerometer over a seven day period.  Activity classes will be established by using the 
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recent advances in Latent Growth Curve Analysis (LGCA).  To our knowledge this will 

be the first time that LGCA will be applied to this type of PA data.  Such a large study 

size, randomly sampled from the entire non-institutionalized US population, provides an 

excellent data source with which to determine the classes of PA in the general US 

population.   

 



Chapter Three 
 

Methods 
 

3.1.  Data Source 

 The three aims of this proposal will be accomplished by analyzing data from the 2003-

2004 data release from the National Health and Nutrition Examination Survey 

(NHANES).  The survey consists of two principle components.  The first is an interview, 

which includes a wide array of topics ranging from tobacco use, sexual behavior, weight 

history, health insurance and hospital utilization in addition to basic demographics.  The 

second component is a physical examination, which also collects a wealth of information 

such as anthropometric measurements, blood pressure, audiometry, as well as various 

laboratory analyses ranging from measles, sexually transmitted diseases, blood lipids and 

glucose.  In addition, in the most recent release of NHANES, seven consecutive days of 

accelerometry measurements were collected for participatants.  Interviews are usually 

conducted in the participant’s home while the physical examinations take place in mobile 

examination centers (MECs), which travel to the regions of the country where the 

interviews will take place.  The target population is civilian, non-institutionalized US 

citizens randomly sampled from 15 US counties.  NHANES 2003-2004 over-sampled 

certain populations, including low-income persons, Mexican-Americans, African-

Americans, and those age 12-19 and 60 or over, in order to have a sufficient amount of 

data on these special populations.  Each year, roughly 7,000 participants complete the 
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interview portion of the survey, while only approximately 5,000 complete the physical 

examination.   

3.1.1.  Sampling procedures 

 NHANES is a multistage, stratified random sample of the civilian, 

noninstitutionalized U.S. population.  Fifteen Primary Sampling Units (PSUs) are 

initially selected for visitation in the 12 month data collection period.  The PSUs are 

either single counties or a small group of contiguous counties.  Segments of the PSUs are 

then selected, which can be blocks or groups of blocks with clusters of households.  

Households within segments are selected for randomization, at which time a sample is 

randomly drawn.  As mentioned previously, low-income persons, Mexican-Americans, 

African-Americans, and those age 12-19 and 60 or over were assigned a higher 

probability of selection.  Finally, one or more participants within a household are 

selected based on an age, sex, and race/ethnicity screening criteria.  On average, 1.6 

participants are selected per household. 

3.1.2.  Analytical issues related to sampling  

In order to achieve national estimates with appropriate variance estimation, it is 

necessary to use analytical techniques that incorporate multistage sampling.  For analytic 

purposes, each of the previously mentioned 15 PSUs are grouped into strata, and each 

strata contains two PSUs.  In addition, each participant is assigned a weight reflecting the 

number of people from the nation as a whole that this sampled person represents. The 

weight is based on the unequal probability of selection as well as non-response 

adjustment.   
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Software such as SUDAAN and SAS are both equipped to analyze sampled data.  

The stratas and PSUs represent the needed variance units, and along with the weights, 

either software package will arrive at national estimates with appropriate variances.  

Analysis for this proposal will use the SAS survey procedures.   Below is a sample of the 

code for assessing the mean age (RIDAGEYR) of the NHANES population.  The 

STRATUM line incorporates the strata variable, while the CLUSTER line uses the 

information for the PSUs.  The WEIGHT line uses the weight for the entire 2 year 

interview.  There is a separate weight for analyzing the examination data 

(WTMEC2YR), which had a smaller sample size.  Additional weights are also provided 

for items that were only collected on a subset of the sampled population, such as for 

blood glucose levels. 

Table 3. 1.  Sample SAS Survey Procedure Code 
 

3.1.3.  Re-weighting sample weights due to missing data 

 Using individual sample weights generates results that are generalizable to the entire 

US population as well as adjusts for any over- or under-sampling that may have occurred 

during the data collection phase.  If, however, respondents did not answer certain 

questions or did not take part in the accelerometer portion of the examination, then these 

missing data will lead to estimates that no longer reflect a proper sample of the entire 

United States.   

PROC SURVEYMEANS DATA= DEMO_C; 
STRATUM SDMVSTRA; 
CLUSTER SDMVPSU; 
WEIGHT WTINT2YR; 
VAR RIDAGEYR; 
RUN; 
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This problem can be dealt with by re-weighting the data to reflect non-response.  

When the original sample is drawn based on unequal probabilities of selection, then the 

weight for an individual is based on the inverse of the sampling probability, or wi = 1/pi,

where wi is the individual weight and pi is the sampling probability.  If ri is the 

probability the subject I responded to a particular question, then the probability that a 

subject will be sampled and provide a response to a particular question is thus pi*ri, and 

thus the weight for this individual is  wi = 1/( pi*ri). 

 This process can also be performed based on a class adjustment basis, so that the 

weights of all members of a class will be increased based on an overall probability of 

non-response within a class.  The estimate of the non-response probability for a given 

class is: 

pi = sum of weights for all members in the given class
sum of weights for actual respondents in the given class 

Then the sampling weight for each member of the given class is multiplied by 1/pi. In 

this way, the sum of all of the weights among respondents will still equal the weights of 

the unadjusted original population.[51] 

 Within the NHANES data, different sampling weights were assigned based on race, 

age, and gender.  Using the sampling categories, weights will be adjusted based on a race 

of black, Mexican-American, or others, by gender, and by age categories of 20-34, 35-

49, 50-65, and 65+.  Starting with the total population 20 years of age and older, we will 

apply sampling weight adjustment factors based on the pattern of missing data and the 

sum of weights in each category.  Missing data was generated by not providing valid 

accelerometer data, not reporting family income, and not reporting educational 
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attainment.  See Table 3. 2 for the sampling weight adjustments that will be applied to 

the appropriate strata. 

3.1.5.  Data Collection 

 Once individuals have been selected, an advance letter is sent to each household 

indicating that the interviewers will visit their home.  The interview portion of the survey 

is usually conducted at individuals’ homes, at which time household members are asked 

to sign an Interview Consent form and respond to an initial Screener questionnaire, used 

to determine eligibility for the study.  If selected for the survey, the participants are 

interviewed by the NHANES representative. 

 At the end of the Interview portion of the survey, participants are provided with an 

informed consent brochure regarding the Health Examination.  All participants are asked 

to participate in the Health Examination portion of the survey and, if they agree, will sign 

additional informed consent forms.  At the MECs, a battery of physical examinations are 

administered.  Participants provide blood samples and those over 5 years old are asked to 

provide a urine sample.   At the end of the exam, participants are given remuneration for 

their time. 

3.1.6.  Measuring Physical Activity with Accelerometry 

 NHANES 2003-2004 used the ActiGraph Model 7164 accelerometer manufactured 

by Actigraph (formely MTI/CSA) of Ft. Walton Beach, FL to collect information on 

participant’s physical activity.   Those who took part in the physical exam were asked to 

wear a monitor if they meet the eligibility criteria, which consisted of being over 5 years 

old and ambulatory.  Because not all participants opt to wear the monitor, the total 

number of subjects who took part in the examination and wore a monitor was 7,176. 
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Table 3. 2.  Sum of category weights, sum of weights with no missing data, and the 
weight adjustment factor for sampling categories in the NHANES. 
 

Race 

Age 
Categor

y Gender 
Sum of all 

weights 

Sum of 
weights 

with data 
Weight 

Adjustment

Mexican American 20-34 Female 3456684.8 3054331.9 1.13 

Male 4167809.5 3340888.9 1.25 

 35-49 Female 2504901.6 2303235.5 1.09 

 Male 2719173.6 2525081.6 1.08 

 50-64 Female 978709.12 915572.33 1.07 

 Male 992140.6 940472.59 1.05 

 65+ Female 608449.45 502884.35 1.21 

 Male 512367.87 457372.21 1.12 

Non-Hispanic Black 20-34 Female 4319197.8 3460070.6 1.25 

 Male 3634014.6 2960404.6 1.23 

 35-49 Female 4422020.2 3906823.1 1.13 

 Male 3185212 2609530.2 1.22 

 50-64 Female 2420091.6 2109787.5 1.15 

 Male 2184334.6 1878088.3 1.16 

 65+ Female 1746295.6 1209267.1 1.44 

 Male 1123562.7 947499.61 1.19 

All others 20-34 Female 22163032 19162842 1.16 

 Male 22202779 18447233 1.20 

 35-49 Female 26249155 22816651 1.15 

 Male 25234924 22177739 1.14 

 50-64 Female 20544160 17962925 1.14 

 Male 18720711 16630790 1.13 

 65+ Female 17442472 14082066 1.24 

 Male 13752468 11589155 1.19 
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The protocol asked the participants to wear the monitor for 7 days during normal 

waking hours.  Because the monitors are not water proof, participants were to remove 

them during swimming or bathing.  A flexible, easily removable, waist belt was provided 

to which the monitor could be attached.  After 7 days, the participant’s mailed the 

monitor back, at which time they were issued a $40 payment for returning the monitors. 

3.2.  Cleaning the data 

 The NHANES accelerometry data is very complete in terms of the total number of 

participant’s with all seven days of collected data.  However, within each day, there may 

be extended periods of zeros, which indicate a non-wearing period.  Researchers 

currently analyzing the NHANES data have indicated that using a period of one hour for 

consecutive zeros is necessary to capture true wearing periods for certain populations, 

such as the elderly who may remain very sedentary for extended periods of time 

(personal communication - Troiano).  For this reason, data will be treated as missing if at 

least one hour of consecutive zeros have been recorded.    

3.3.  Analysis Strategy 

 The details of the statistical models will be explored in the following chapters.  In 

general, the modeling will be conducted using latent class analysis (LCA) in which 

unobserved, or “latent”, classes of activity patterns are ascertained from the observed 

levels of physical activity across the seven days of accelerometer data.  Once the classes 

are established and members are assigned to these classes, the associations between the 

sociodemographic characteristics and class membership may be assessed.  New 

developments in LCA methods then allow for the simultaneous assessment of the 
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associations between these derived patterns of physical activity and the risk factors for 

the metabolic syndrome.



Chapter Four 
 

Patterns of Objectively Measured Physical Activity in the United States 

 
Introduction 

 Due to the increased concern about the lack of physical activity in the United States 

(US), many annual national health surveys such as the Behavioral Risk Factor 

Surveillance System (BRFSS) and the National Health Interview Survey (NHIS) collect 

information on physical activity levels.  Reports and research from these surveys cover 

various aspects of the nation’s levels of physical activity (or inactivity), such as general 

physical activity trends,[52] trends among certain subpopulations such as Hispanics,[58] 

percent of the US population meeting the Healthy People 2010 leisure-time physical 

activity goals,[53] or associations between physical activity and healthcare 

expenditures.[63]  These reports, however, have in the past relied on self-report, which, 

when compared to objectively measured physical activity, have been shown to have low 

correlations in the range of 0.14 to 0.53.[11]  In addition, participants are generally 

categorized into activity levels based on overall descriptions of activity frequency and 

intensity, without attempting to categorize the potential differences in the pattern of 

accumulated physical activity over time.  

 In the 2003-2004 National Health and Nutrition Examination Survey (NHANES), 

physical activity as measured by accelerometry was added to the battery of assessments 

among those participants 6 years old and older who were ambulatory, providing the first 
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nationally representative sample of objectively measured physical activity in the United 

States (US).  In addition, the accelerometry was collected over a seven day period, 

allowing for an assessment of the number of minutes of physical activity accumulated by 

each participant on each day of a seven day week.   

 Using latent class analysis (LCA), we assessed whether patterns, or classes, of 

physical activity exist among adults in this sample over the seven day period.  In this 

type of analysis, a specified number of classes are requested a priori.  Then, LCA finds 

the requested number of best fitting underlying normal distributions for the indicators of 

these classes (in this case, the daily minutes of physical activity across the seven days of 

a week). For example, one class may have a very low mean number of minutes of 

physical activity from Monday to Friday, with a high average number of minutes of 

physical activity on Saturday and Sunday (i.e., a “weekend warrior”).  Another group, 

possibly active workers, may have a large mean number of minutes of physical activity 

during the work week but low mean minutes of physical activity on the weekend.   

 A recent study attempted to assess the effect of the weekend warrior activity pattern 

on the risk of mortality.[45]  In this study, the mortality outcomes of the weekend 

warrior, defined as those who accumulate a large quantity of physical activity (≥1000

kcal/week) over a short period of time (1-2 days/week), were compared to those who 

accumulate a similar amount of activity (≥1000 kcal/week) over a longer period of time 

(3+ days/week), along with those who are insufficiently active (500-999 kcal/week) or 

sedentary (<500 kcal/week).  Among low risk men, weekend warriors demonstrated the 

lowest relative risk of mortality, indicating that as long as the accumulated physical 

activity is sufficient then the benefits will be accrued.  Among high risk men, however, 
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only the regularly active showed improved mortality risks as compared to the most 

sedentary group.  

 Much is now known about the overall levels of activity in the US, but few studies have 

attempted to define patterns of physical activity.  Using LCA may help clarify strategies 

for how inactive people may accumulate additional physical activity, as well as allow 

future analysis to assess whether different patterns of physical activity are associated 

with improved health outcomes. 

Materials and Methods     

 We analyzed the 2003-2004 NHANES, an ongoing health survey with a target 

population of civilian, non-institutionalized citizens from throughout the entire US.  

Certain populations were over-sampled, including low-income persons, Mexican-

Americans, African-Americans, and those age 12-19 and 60 years or older.  The survey 

consists of an interview, from which sociodemographic information is collected, and a 

physical examination, from which various biological markers of health are ascertained.  

In addition, the 2003-2004 NHANES collected seven consecutive days of accelerometry 

measurements among all ambulatory participants 6 years old and older who agreed to 

wear the monitor for a week.  Written informed consent was obtained from all 

participants. 

Measuring physical activity with accelerometry 

Accelerometers are small, electronic devices that record the acceleration of change in 

bodily motion either in one plane or multi-dimensions.  They are particularly useful in 

measuring physical activity because they eliminate the potential for recall bias, social 

desirability bias, and are not dependent on literacy.  NHANES 2003-2004 used the 
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ActiGraph Model 7164 accelerometer manufactured by Actigraph (formerly MTI/CSA) 

to collect information on participant’s physical activity.  This lightweight uniaxial 

monitor is a technically reliable instrument, both within and across monitors.[54]  Most 

participants (98.2%) wore the monitor for 7 days during normal waking hours.  

NHANES used one minute epochs to assign a “count’ value, which is a relative measure 

of the changes in momentum that occurred during these periods, which may then be 

translated into an estimate of physical activity intensity.   

Moderate and vigorous physical activity cut-points based on calibration studies 

 The accelerometer cut-point used by this study to translate the count value into an 

estimate of moderate-to-vigorous physical activity (MVPA) was based on a weighted 

average of published cut-points for adults.[65-68] following the recommendation of 

NHANES researchers.  Each study listed in Table 1 reported a cut-point for MVPA, 

which were then weighted by their sample size to arrive at an n-weighted average cut-

point of 2,020 counts/min for MVPA.  Cut-points for vigorous physical activity (VPA) 

were also reported in these calibration studies and, using the same n-weighted average as 

used with the MVPA, the VPA cut-point was 5,999 counts/min.  

Accumulating minutes of MVPA and/or VPA 

 Physical activity accumulated in a given a day was quantified as (1) minutes per day 

in which the count was higher than the given MVPA cut-point, (2) minutes per day in 

which the count was higher than the given VPA cut-point, and (3) minutes per day of 

MVPA accumulated in bouts of 10 minutes or more.  The latter classification was 

motivated by the physical activity recommendations published by the Centers for 

Disease Control and Prevention (CDC) and the American College of Sports Medicine 
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(ACSM),[3] which call for activity to be accumulated in bouts of 10 minutes or more to 

achieve health benefits.  To allow for brief periods of rest common during activities, for 

example to pause for a water break while playing basketball, the criteria used to define a 

bout required a running average of 70% of the counts to be above the cut-point.  Once 

the series of accelerometer minutes fell below 70% of minutes in MVPA, the bout was 

considered over.  Thus, bout minutes of MVPA was a sum of all minutes of MVPA 

accumulated in these bouts.  Those who never achieved a 10 minute bout were assigned 

their longest bout shorter than 10 minutes in length.  Bout minutes of VPA were not 

assessed because too few participants achieved the required 10 consecutive minutes of 

VPA. 

Imputation of missing daily minutes of MVPA 

 The NHANES accelerometry data was quite complete in terms of the total number of 

participants providing all seven days of data (over 99.8%).  However, within each day 

there may be extended periods of zero counts, indicating either a non-wearing period or a 

period with no detectable movement.  Periods consisting of one hour or more of 

consecutive zeros were treated as missing data.  In addition, periods of monitor 

malfunctioning were also considered missing (e.g., 10 minutes of identical consecutive 

non-zero count values).  Occasional missing accelerometry data within a participant’s 7-

day record was then imputed using the expectation maximization (EM) algorithm, an 

iterative imputation technique which uses the values of an individual’s other, non-

missing data as predictors to estimate the expected value of the total minutes of MVPA 

for each missing segment of time.[22]   

Self-reported variables 
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Age was recorded at the time of the interview and those over 85 years of age were 

assigned a truncated value of 85.  For descriptive purposes, age was categorized into 

decades but was left continuous in the final LCA.  Gender was recorded at the time of 

interview.  Race, ethnicity and country of origin questions were recoded into the 

following categories:  1) Mexican-American, 2) other Hispanic, 3) Non-Hispanic (NH) 

Black, 4) NH-White and 5) Other Race – including Multi-Racial.  Education was 

categorized as less than high school, high school or GED, and more than high school.  

The poverty income ratio (PIR) was recorded as a ratio of the self-reported family 

income to the poverty threshold based on family size.  The smallest value of 0 indicated 

no family income while the highest value is truncated at 5, indicating a family income at 

least 5 times the poverty threshold for family size.  For descriptive purposes, the poverty 

ratio was categorized into integer values but was left continuous in the final class 

analysis. 

Statistical Methods 

Descriptive Statistics 

 To determine if the analysis sample differed from the subgroup excluded due to 

missing data, we used chi-square tests to compare categorical variables, and t-tests to 

compare the mean of continuous variables.  Using SAS (Cary, NC) survey procedures, 

sample weighted means, standard deviations, standard errors as well as 25th, 50th and 75th 

percentiles were computed for overall MVPA, bout minutes of MVPA, and VPA for 

each day of the week.  

Latent Class Analysis 
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Employing LCA, we used each participant’s seven days of total MVPA/VPA to 

determine whether natural groupings, or classes, of people exist who tend to accumulate 

their minutes of physical activity in a similar pattern over the seven days.  Classes can be 

thought of as groups of people who share similar means for the various indicators of 

class, in this case the seven days of accumulated MVPA/VPA.  The most general 

probability density function used to define the LCA model is as follows: 

 f [ y | Σ(θ), µ(θ)] =∑
=

G

g 1
pg f[ y | Σg(θ), µg(θ)] 

 
On the left side of this equation, the probability distribution function defines a 

distribution for y, the vector of minutes of MVPA/VPA across the seven days, 

conditioned on µ(θ), the vector of mean MVPA across the seven days, and Σ(θ), the 

covariance matrix for the multivariate normal distribution of the seven days.  On the 

right side, for each underlying class (indexed by G), the probability function for the 

vector y is weighted by probability of being in the each of these specific classes.  µg(θ) is 

the vector of predicted means for the gth group, and Σg(θ) is the covariance matrix for the 

gth group.  The overall probability distribution for y is thus a probability weighted sum 

of each class’s probability density for the given values of y.[55] 

 If the distribution f is assumed to be a multivariate normal distribution with G 

components, then the probability density function of an individual in the Gth class is:  

f (y | Σg(θ), µg(θ)) = (2π)-(p)/2 | Σg(θ)|-1/2 *  

 exp(-1/2‹[ yi - µg(θ)]’ [Σg(θ)]-1[yi - µg(θ)]›) 

where yi is the vector of minutes of MVPA/VPA across the seven times for the ith 

subject, µg(θ) is the vector of predicted means across the seven times t for the ith subject, 
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Σg(θ) is the covariance matrix for the multivariate normal distribution of the seven days 

of MVPA/VPA, and |Σg(θ)| is the determinant of the covariance matrix.[55]   

 Thus the likelihood function used to maximize this model for all participants across 

all class possibilities is: 

 

where N indexes the subjects and G indexes the classes, and again the pi weights the 

probability function for the gth class.  This likelihood function is identical to the 

multivariate normal distribution with the addition of the probability weighted class 

memberships.[56]  

 The probability of being a member of a particular class is assigned to an individual 

based on Bayesian posterior probabilities, using a prior probability proportional to the 

size of the particular class relative to the entire population.  Thus, the probability of an 

individual being a member of class g is: 

Pg|yi = Pg|zi * f[yi | Σg(θ), µg(θ)] / ∑
=

G

g 1
Pg|zi * f[yi | Σg(θ), µg(θ)] 

where Pg is the prior probability of being in class g, conditioned on the covariates.  The 

numerator in this case is the prior probability that subject i belongs to class g, multiplied 

by the probability density for the observed seven days of MVPA for yi, given the 

predicted means and covariance of the seven days of MVPA in class g.  The denominator 

is the sum of the probability densities for all possible class memberships given the 

individual’s set of indicator values yi, weighted by each class’s specific prior 

L = ∏∑
= =

N

n

G

g1 1
pig (2π)-(p)/2 | Σg(θ)|-1/2 

* exp(-1/2‹[yi - µg(θ)]’ [Σg(θ)]-1[yi - µg(θ)]›) 
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probability.[57]  Individuals were assigned to the class with their highest posterior 

probability of class membership, referred to as modal allocation. 

Selecting the Number of Classes 

 One of the most difficult tasks of LCA is determining the proper number of classes 

which adequately describe the population without over-specifying the number of class 

groupings, thereby losing the interpretative value of the classes.  Several criteria were 

used to select the appropriate number of classes.   We first used the bootstrap likelihood 

ratio test (BLRT), which compares the fit of k classes to k-1 classes, as it outperformed 

the Lo-Mendell-Rubin likelihood ratio [58] in controlling both type I and type II 

error.[59]   Second, we considered a measure referred to as “entropy” that is the average 

highest predicted probability of class membership.[60]  This measure ranges from 0 to 1, 

lower entropy indicating little confidence that individuals belong in to the class with their 

highest assigned probability, while an entropy of 1 would indicate certainty that 

individuals belong in their assigned class.  Third, if one or more class sizes were too 

small to be of any public health relevance, the number of classes was reduced.  Finally, 

substantive knowledge was used to establish the appropriate number of classes.[61]  

There should be a correspondence between the established classes and some practical 

interpretation of what the classes indicate. As Muthen (the author of the MPLUS 

statistical software) concluded, “Substantive theory, auxiliary information, and practical 

usefulness will continue to have to guide the statistical analysis.”[61]    

Specifying Variance Estimates 

 In a completely unrestricted model, LCA will estimate a separate variance-covariance 

matrix for each class.  If the number of latent classes or the number of variables is large, 
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so too are the parameters to be estimated.  Thus, a typical strategy is to impose 

restrictions, such as constraining covariances to be zero or constraining classes to have 

the same variance-covariance matrix (i.e., Σg(θ) = Σ(θ)).  Constrained models allow for 

more parsimonious and stable results.[57] 

 Because the mean minutes of physical activity for the lowest activity class had 

significantly lower variances than the more active classes, a model which allowed this 

lowest activity class to have variances that differed from all of the other activity classes 

was selected.  For all but the lowest activity class, we allowed weekend and weekday 

variances to differ, but constrained them to be equal across classes.  In this way, we tried 

to create a parsimonious and stable model that still captured some of the complexity of 

the substantive issues of the analysis. 

 The LCA was performed using MPLUS.  The modeling was conducted by requesting 

a range from 1 to 6 classes a priori as the number of group memberships to predict.  

Beyond six classes, the sample size of the more active classes became very small and the 

activity patterns over the seven days become highly unstable.  While MPLUS allows for 

complex survey sampling in conjunction with LCA modeling, the software does not 

currently account for survey sampling when computing the BLRT statistic.  As such, this 

analysis, designed to establish an appropriate number of activity classes, was performed 

without sample weights and cluster sampling.   

Structural equation modeling perspective 

 Figure 1 provides a visual representation of the LCA model using the graphical 

presentation typical of structural equation modeling.  In this perspective, the latent 

classes are derived from the patterns of physical activity across the seven days of the 
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week.  Simultaneously, the socio-demographic characteristics are used to predict who 

falls in to each of the derived activity classes.  These socio-demographic variables 

provide the prior distributions upon which the Bayesian posterior class membership 

probabilities are based. 

 This research was approved by the Public Health Institutional Review Board of the 

University of North Carolina at Chapel Hill. 

Results 

 A total of 10,122 participants completed the 2003-2004 NHANES physical 

examination.  We excluded those under age 20 to more clearly focus this research on an 

adult population.  Of the remaining 5,041 participants, 4,252 provided data for the 

accelerometer portion of the survey.  Finally, an additional 450 participants were 

excluded because of missing covariate data (e.g., education, household income) or 

because they had no days of valid accelerometer data with which to impute the other, 

missing days, leaving a final population of 3,802 participants.  Because imputation was 

not performed on the assessment of bout minutes of MVPA, only the 3,462 participants 

who provided at least 3 valid days of data were included in the analysis of bout minutes. 

 The sociodemographic characteristics of the final sample and those excluded due to 

missing data are presented in Table 2.  Statistically significant (p < 0.05) differences 

were found between the categorical distributions of age, education, the poverty index, 

and race/ethnicity.  While the chi-square tests for the categorized age and poverty index 

ratio were significant, the t-tests for the continuous age (p-value = 0.82) and poverty 

index ratio (p-value = 0.21) were not.  For age, this appears to be due to the missing data 

being over-represented by the younger and older participants in the various age 
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categories, leading to a similar mean age (50.8 years old for those in the final sample vs. 

51.0 years old for those not included in the final sample).  Similarly, for the poverty 

index, the poorest and richest were least likely to provide complete data, again leading to 

a similar mean (2.6 for those in the final sample vs. 2.5 for those not included in the final 

sample). 

 The weighted mean minutes of MVPA/VPA and bout minutes of MVPA for all 

participants are presented in Table 3 by day of the week.  The median number of bout 

minutes of MVPA was 2.0 for all days, indicating that in half of all days participants 

accumulated no more than two bout minutes of MVPA.  The weighted mean minutes of 

VPA did not exceed 0.8 minutes for any day.  The median values were substantially 

lower than the mean for all types of physical activity and for all days of the week 

suggesting non-normally distributed data.  Weekends had the lowest mean minutes of 

MVPA, VPA as well as bout minutes of MVPA. 

 Table 4 shows the Log-likelihood values for the analyses of the class memberships 

for the overall minutes of MVPA, ranging from 1 to 6 classes.  The BLRT test statistic 

detected a statistically significant improvement in fit at the <0.0001 level for all number 

of classes, indicating that separating the population into six classes was justified based 

on this criteria.  While entropy decreased as the number of classes increased, it was still 

high (0.94) for five and six classes.  Because the six class analysis resulted in very small 

active classes, we settled on a more parsimonious five class model for presentation. 

 Figure 2 shows the plot of the mean minutes of total accumulated MVPA for five 

classes.  The largest percentage of the population fell in the lowest two classes – roughly 

81% of the total population.  These two lowest classes encompassed activity averaging 



62

less than 25 minutes/day of MVPA.  The highest activity class, with a mean of 134 

minutes of MVPA per day, only comprised 0.8% of the population.  This class also 

demonstrated a high level of activity Monday through Friday with less activity on the 

weekend, with a particularly pronounced decrease on Sunday.  All classes demonstrated 

this dip on weekends compared to weekends, to varying degrees.   

 Table 5 shows the Log-likelihood for the analyses of the MVPA when participants are 

required to accumulate their minutes in bouts.  Even though the BLRT test justified as 

many as 6 classes at the <0.0001 level, the two most active classes in the 6 class analysis 

were very sparsely populated (0.1% and 0.5% of the population).  Given this, we settled 

on 5 classes for the bout minutes of MVPA, which also allowed for a direct comparison 

with the overall minutes of MVPA. 

 Figure 3 show the class means for the 5 class results for the bout minutes of MVPA.  

The two most active classes represented 0.5% and 3.9% of the population, just slightly 

less than the two most active overall MVPA classes which had 0.8% and 4.2% of the 

population, respectively.  Roughly 94.4% of the entire population is now classified into 

the lowest two groups.  In addition, for the bout analysis, the second least active group 

now has a mean of 10.3 bout minutes of MVPA per day, while the second least active 

group in the overall MVPA analysis had a mean of 21.0 minutes across all seven days.  

Thus, when only bout minutes are counted, a much larger percentage of the population 

was classified into the lowest groups, and these groups are less active. 

 Even though the number of minutes accumulated in bouts tends to shift the classes 

into lower levels of mean activity level, the general patterns are very similar to the 

overall MVPA analysis with one exception.  A class emerged with moderate levels of 
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physical activity Monday through Friday but with a much higher level of activity on the 

weekend, particularly on Sunday.  This class, representing 1.2% of the population, will 

be referred to as the “weekend warrior” class.  The six class analysis of the overall 

minutes of MVPA (data not shown) also demonstrated this weekend warrior class, 

although with a smaller percentage of the population (0.8%).   

 The VPA analysis did not produce stable results (very large and very small class 

sizes) due to the very low number of participants accumulating any vigorous activity.  

For example, both the 3 and 4 class VPA analyses produced a most active class with only 

2 and 1 participants, respectively – a trivial class assignment from both a substantive and 

analytical perspective. 

Discussion 

 This modeling represents the first time that objectively measured physical activity 

data have been analyzed using LCA.  While a large portion of the population presented 

little activity, a weekend warrior class did emerge, as well as a highly active class with 

less activity on the weekend.  We are unsure whether these activity patterns were driven 

by specific types of activity, such as work related activities. 

 In the analysis of the overall minutes of MVPA, the statistical significance of the 

BLRT statistic indicated that 6 classes were justified based on the data.  However, class 

size for the more active groups displayed a small sample size and, as such, the reduced 

model with only 5 classes provided a more parsimonious model.   

 An inactive class emerged in the overall MVPA which represented nearly 41% of the 

entire population.  This class averaged 5.3 minutes of MVPA per day.  The second least 

active class with a mean of 21.0 minutes of MVPA per day also represents a class of 
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which many, if not most, would not have accumulated 30 minutes of MPVA on most 

days of the week.  Together, these two groups represent a very large proportion of the 

population with PA levels significantly below the recommended levels.[3]  Determining 

the sociodemographic and behavioral characteristics of these groups in order to target 

appropriate physical activity interventions could lead to significant improvements in the 

activity levels in the US, and thus in the overall health of the nation. 

 The analysis of the bout minutes of MVPA produced patterns similar to those found 

in the analysis of the overall minutes of MVPA, with the important exception of the 

weekend warrior class.  From Monday through Friday, this class had significantly less 

activity than the class above it (e.g., the class representing 3.9% of the population), but 

due to the significant increase in the physical activity of the weekend warrior on 

Saturday and Sunday and the decrease in the other group during this period, their means 

were relatively similar.  The weekend warrior accumulated a daily mean of 31.5 minutes 

of MVPA, while the more active group was only slightly more active averaging 37.0 

minutes.  The health outcomes of these two groups would be interesting to compare as 

they represent two populations which meet the physical activity recommendations, 

accumulated their minutes in bouts, and have similar mean minutes of MVPA, while 

accumulating it in very different manners. 

 A recent article using self-report data from NHANES and the BRFSS reported a 

prevalence of the weekend warrior pattern in the US population, defined as accumulating 

≥ 150 minutes of MVPA during 1 or 2 days in a week, of approximately 3% and 1%, 

respectively.[62]  Our results, while based on objectively measured accelerometer data, 
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found that a similar proportion of the population (1.2%) could be classified as a 

weekend warrior based on bout minutes of MVPA. 

 Another important difference between the bout minutes of MVPA and the analysis of 

the overall MVPA minutes is that the more active groups in the bout minutes analysis 

had significantly fewer participants than in the overall MVPA analysis.  In fact, the two 

most active classes in the six class analysis of bout minutes of MVPA (data not shown) 

only contained 0.3% and 0.4% of the population.  The utility of class assignments with 

such small populations is an important consideration in mixture modeling, especially if 

the analyses include associations between the class assignment and any outcomes.  If the 

six class levels of bout minutes of MVPA were used to simultaneously model health 

outcomes, the two most active classes would likely not be large enough to generate 

proper associations with the health outcomes, particularly if the outcomes were rare.   

 This challenge was made most explicit in the analysis of the VPA.  Only 1.4% of all 

days achieved 10 minutes or more of VPA, and in 91.1% of all days participants 

accumulated less than one minute of VPA (data not shown).  Due to the highly skewed 

data, the model assumptions generally failed to produce results.  When classes were 

successfully modeled, their sizes were too small to serve any useful analytic purposes.   

 These low levels of VPA are troubling when considered in light of the Healthy People 

2010 goals of increasing to 30 percent “the proportion of the adults who engage in 

vigorous physical activity that promotes the development and maintenance of 

cardiorespiratory fitness 3 or more days per week for 20 or more minutes per 

occasion.”[63]  Not only does this analysis reflect a much lower percent of the adult 

population achieving this goal than desired, it also reflects a much lower percentage than 
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the 27.4% of adults reported to have met this goal in 2005 by the BRFSS.[64]  In fact, 

only 23 participants registered 20 minutes of VPA on at least three days of the week, 

representing only 0.6% of the total population.  Because the BRFSS assessment was 

based on self-report, this discrepancy could reflect a large amount of over-reporting 

present in the BRFSS levels.  It could also reflect that the cut-point for VPA was too 

high, thereby missing many minutes of activity in our population that should have been 

classified as VPA. 

 Although we chose LCA as our modeling strategy, other possibilities were also 

considered for the method of modeling classes.  Latent class growth analysis (LCGA) 

and growth mixture modeling (GMM) have recently found wide application in the social 

sciences as an effective method for modeling growth trajectories with longitudinal 

data.[44, 45]  It was determined, however, that the seven days of PA, while contiguous in 

time, did not constitute a longitudinal analysis analogous to, for example, the 

development of childhood obesity according to age in adolescence.  This decision was 

based, in part, on the desire to impose no restrictions on the shape of the classes over 

seven days.  In other words, we did not want to force the physical activity classes to 

follow a “growth” pattern.  With this conceptualization, physical activity is more 

analogous to multiple continuous measurements of academic ability such as math, 

verbal, spatial, etc., and as such should be modeled with LCA. 

 Several limitations of this work are worth noting.  The analysis population had a 

socio-demographic distribution that differed from those who were excluded due to non-

response or inappropriate data, which in turn could have affected the overall patterns 

found.  Another weakness was that, due to the small number of participants registering 
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sufficient levels of VPA, this part of the analysis was unsuccessful.  This would have 

been an interesting group to assess and possibly with different analytical techniques or a 

larger study population, this analysis will be possible in the future.  Accelerometers do 

not capture all types of physical activity, particular static activities such as raking leaves 

or riding a bike.[19]  Therefore, while the current analyses do not rely on self-report, 

they may still not reflect the true activity levels of the US population.   Similarly, the cut-

points for what constitutes MVPA and VPA are also sensitive to the types of activities 

being done.  Changing these cut-points would affect the amount of physical activity that 

participants were credited for, which in turn could have affected the outcomes of the 

latent class analysis.  An analytical weakness worth noting was that the BLRT test 

statistic was not available with the simultaneous use of the NHANES sample weights 

and, therefore, the sample weights were not used for this analysis.  Adding the sample 

weights could have affected the final decision for the number of classes as well as the 

pattern that these classes assumed.   

 These data represent objectively measured physical activity from a large, nationally 

representative sample of the US population.  Physical activity was assessed in several 

ways in order to analyze the class membership patterns for different patterns of physical 

activity.  Our results indicated that a very large portion of the US population may be 

classified into patterns of physical activity that represent low levels of MVPA throughout 

the week.  The levels of VPA were most surprising, indicating that fewer than 1% of the 

population engaged in VPA for at least 20 minutes on 3 or more days per week.  In 

addition, a weekend warrior class emerged for approximately 1% of the population.  The 
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LCA analysis provides a novel approach for assessing patterns of objectively measured 

physical activity in epidemiologic studies.  



69

Table 4. 1.  N-weighted mean cut-point for moderate-to-vigorous physical activity 
(MVPA) and vigorous physical activity (VPA) based on previously publish 
calibration equations. 
 

Author 

MVPA 
 Cut-point 

(counts/min) 

VPA  
Cut-point 

(counts/min) N 

N-weighted 
MVPA 
Value* 

N-weighted 
VPA   

Value* 
Freedson [65] ≥ 1,952 ≥ 5,725 50 97,600 286,250
Yngve [67] ≥ 2,743 ≥ 6,403 28 76,804 179,284

≥ 2,260 ≥ 5,896 28 63,280 165,088
Brage [66] ≥ 1,810 ≥ 5,850 12 21,720 70,200
Leenders [67] ≥ 1,267 ≥ 6,252 28 35,476 175,056

146 294,880 875,878

Moderate weighted mean cut-point: 294,880/146 = 2,020 
Vigorous weighted mean cut-point: 875,878/146 = 5,999 

* N-weighted values were based on the MVPA or VPA cut-point value multiplied by the sample size of 
the particular study. 
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Figure 4. 1.  Structural Equation Model for the prediction of the latent classes 
based on the minutes of physical activity across the seven days of the week, with 
socio-demographic characteristics predicting class membership. 
 

WED THR FRI SAT SUN TUE MON 

Class 
Membership 

Gender Race / 
Ethnicity 

Age 
Poverty 
Index 
Ratio 

Education 
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Table 4. 2.  Sociodemographic characteristics of the final study sample and the 
population excluded due to missing data, among those 20 years old and older. 
 

In Final Sample 
Not Included in 

Sample  

N % N % P-value* 
Age 20 to <30 645 17.0 265 21.4  

30 to <40 618 16.3 214 17.3  

 40 to <50 637 16.8 152 12.3  

 50 to <60 487 12.8 122 9.8  

 60 to <70 614 16.1 159 12.8  

 70 to <80 484 12.7 127 10.3  

 80+ 317 8.3 200 16.1 <.0001 

Education Less than High School 1077 28.3 410 33.5  

 High School 940 24.7 329 26.9  

 More than High School 1785 46.9 486 39.7 <.0001 

Gender Female 1956 51.4 667 53.8  

 Male 1846 48.6 572 46.2 0.14 

Poverty Index 0 to <1 678 17.8 180 19.5  

 1 to <2 1032 27.1 257 27.9  

 2 to <3 640 16.8 164 17.8  

 3 to <4 456 12.0 80 8.7  

 4 to <5 368 9.7 73 7.9  

 5+ 628 16.5 168 18.2 0.03 

Race/Ethnicity Mexican 792 20.8 193 15.6  

 Other Hispanic 106 2.8 46 3.7  

 NH-White 2037 53.6 652 52.6  

 NH-Black 714 18.8 280 22.6  

 Other/Multi-Racial 153 4.0 68 5.5 <.0001 

NH = Non-Hispanic 
* P-values are based on a chi-square probability distribution. 



Table 4. 3. Sample weighted mean, standard deviation, standard error, 25th, 50th and 75th percentile for minutes of
moderate-to-vigorous physical activity (MVPA), bout minutes of MVPA, and vigorous physical activity (VPA), by day of the
week.

MVPA Minutes
N=3,802

MVPA Bout Minutes*
N=3,462

VPA Minutes
N=3,802

Day of
week Mean Std.

Dev.
Std.

Error
25 th

%ile
50th

%ile
75 th

%ile Mean Std.
Dev.

Std.
Error

25 th

%ile
50th

%ile
75 th

%ile Mean Std.
Dev.

Std.
Error

25 th

%ile
50th

%ile
75 th

%ile

Monday 25.6 27.3 0.99 7 17.0 36.0 8.2 16.7 0.59 1.0 2.0 5.0 0.8 3.81 0.10 0.0 0.0 0.2

Tuesday 25.4 27.9 0.95 6.5 17.0 34.1 7.9 16.0 0.50 1.0 2.0 6.0 0.8 3.62 0.10 0.0 0.1 0.3

Wednesday 25.1 28.1 1.20 6 16.0 34.0 7.9 17.4 0.57 1.0 2.0 5.0 0.8 5.48 0.15 0.0 0.0 0.2

Thursday 25.5 28.0 1.10 6.7 16.2 35.0 8.0 16.5 0.53 1.0 2.0 6.0 0.8 3.21 0.08 0.0 0.1 0.3

Friday 24.6 26.5 0.94 6.6 16.4 33.5 6.9 14.4 0.52 1.0 2.0 5.0 0.7 3.51 0.09 0.0 0.0 0.2

Saturday 21.4 25.0 0.73 6 13.5 28.0 6.9 16.4 0.41 1.0 2.0 4.0 0.7 4.51 0.12 0.0 0.0 0.2

Sunday 19.4 23.5 0.87 5 12.0 24.0 6.9 16.6 0.58 1.0 2.0 4.0 0.7 4.22 0.08 0.0 0.0 0.2
* A participant was only credited for physical activity that occurred in bouts of 10 minutes or more in length. Bouts were based on a running average of 70%
of the counts above the MVPA cut-point of 2,020 counts/min. If no bouts of at least 10 minutes in length were accumulated in a particular day, the participant
was credit with their longest bout shorter than 10 minutes in that day.

●
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Table 4. 4.  Likelihood ratio (LRT) and bootstrap LRT statistical criteria as well as 
entropy values for deciding on k versus k-1 number of classes for overall MVPA. 

Number of classes 1 2 3 4 5 6 

Log Likelihood -124,179 -107,756 -105,424 -104,380 -103,919 -103,675 

Number of Parameters 9 28 45 62 79 96 
Bayesian Information 
Criteria (BIC) 248,433 215,742 211,219 209,271 208,490 208,142 

Adjusted BIC 248,404 215,653 211,076 209,074 208,238 207,837 
Akaike Information Criteria 
(AIC) 248,377 215,567 210,938 208,884 207,996 207,543 

Bootstrap LRT p-value for 
k-1 vs. k* N/A <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Entropy N/A 0.961 0.956 0.953 0.943 0.947 
N/A = not applicable 
* P-value is comparing whether the addition of one extra class provides statistically significant 
improvement in the fit of the class assignments. 
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Figure 4. 2.  Five latent classes - MVPA. 
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Table 4. 5.  Likelihood ratio (LRT) and bootstrap LRT statistical criteria as well as 
entropy values for deciding on k versus k-1 number classes for bout minutes of 
MVPA. 
 

Number of classes 1 2 3 4 5 6 

Log Likelihood -102,639 -72,771 -71,830 -71,524 -71,292 -71,119 

Number of Parameters 9 28 45 62 79 96 
Bayesian Information 
Criteria (BIC) 205,695 145,771 144,026 143,553 143,229 143,021 

Adjusted BIC 205,533 145,682 143,883 143,356 142,978 142,716 
Akaike Information Criteria 
(AIC) 205,381 145,599 143,750 143,172 142,743 142,431 

Bootstrap LRT p-value for 
k-1 vs. k* N/A <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

Entropy N/A 0.984 0.985 0.976 0.978 0.979 
N/A = not applicable 
* P-value is comparing whether the addition of one extra class provides statistically significant 
improvement in the fit of the class assignments. 
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Figure 4. 3.  Five latent classes – bout minutes of MVPA. 
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Chapter Five 
 

Associations between Adult Patterns of Objectively Measured Moderate to 
Vigorous Physical Activity and Sociodemographic Characteristics 

 

Introduction 

 Based on information provided by the Centers for Disease Control and Prevention 

(CDC) using data from the Behavior Risk Factor Surveillance System (BRFSS), the 

prevalence of adult participation in at least the minimum recommended level of 30 

minutes of at least moderate intensity activity on most, if not all, days of the week was 

48.7% in  2005.[4, 7, 78]  Reports of such low prevalences have led many researchers in 

the United States (US) to investigate what sociodemographic and psychosocial 

characteristics are associated with physical activity.   This has become important, not 

just for delineating the nature and extent of the problem, but also in order to better target 

interventions.[68] 

 According to the socioecologic model, health behaviors such as physical activity are 

influenced through multiple levels, including intrapersonal, interpersonal, and 

community level (i.e., neighborhood or environmental, organizational, and policy 

factors).[69-71] Several review papers, covering over 300 articles, indicated numerous 

strong correlates of physical activity among adults reflecting these socioecologic 

levels.[9, 10, 70]  Cognitive or emotional factors such as perceived barriers to physical 

activity have been shown to be correlated with leisure time physical activity.[10]  
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Behavior attributes such as a healthy diet were positively associated with current 

activity status. [10]  Among social and cultural factors, women with high levels of social 

support were reported to be twice as likely to achieve the recommended levels of 

physical activity as women with low levels of social support.[83]  Environmental factors 

such as frequency of seeing others exercising were positively associated with physical 

activity participation.[10]  

 Several demographic characteristics have also been identified as correlates.  Higher 

age is consistently associated with lower levels of physical activity participation, as is 

female gender.[10]  Non-white race/ethnicity has been associated with lower levels of 

physical activity compared to whites, although this may only reflect associations with 

leisure-time physical activity as research has also reported that Hispanics and blacks 

participate in significantly more occupational physical activity than whites.[10, 78]  

Socioeconomic status and education are consistent correlates of physical activity 

behavior, although these associations may also depend on whether occupational, leisure-

time or household activity is being measured.[10, 72]  For example, one study reported 

that males in professional occupations self-report significantly more vigorous leisure-

time physical activity but significantly less vigorous occupational activity compared to 

skilled and less-skilled occupations.[79]  When assessing whether these occupational 

groups met the recommendations of 20 minutes of vigorous activity at least three times 

per week,[73] no difference was found when all three types of activity were considered 

together.  For females, significant differences in meeting the recommendations remained 

even after all occupational, leisure-time or household activity was considered, 

comparing those in professional and non-professional occupations.  
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Several questions remain about the previous physical activity research, however.  

First, physical activity has typically been measured by self-report, which has been shown 

to have a low correlation with objectively measured physical activity, with correlations 

ranging from 0.14-0.53.[11]  In addition, reporting bias may have been an issue and this 

bias may vary by sociodemographic characteristics, leading to associations that are 

inaccurate or at least present an incomplete understanding of the true associations.  

Using self-report data also makes it difficult to assess the pattern in which the physical 

activity was accumulated over time. 

 In the 2003-2004 National Health and Nutrition Examination Survey (NHANES), 

accelerometer data was collected on a majority of the ambulatory participants 6 years 

old and older.  This data represents the first national sample of objectively measured 

physical activity in the US.  The accelerometer data was also collected over a seven day 

period, allowing for an assessment of the number of minutes of physical activity 

accumulated by each participant on each day of the week.   

 Using latent class mixture models, the purpose of our study was to determine whether 

patterns of moderate to vigorous physical activity (MVPA) exist among adults in this 

sample and whether certain sociodemographic characteristics were associated with these 

patterns.  Specifically, the modeling is conducting using latent class analysis (LCA) for 

continuous variables in which unobserved (referred to as “latent”) classes of activity 

patterns are ascertained from the observed levels of physical activity across the seven 

days of accelerometer data.  In this type of analysis, a specified number of classes are 

requested a priori.  Then, LCA finds the requested number of best fitting underlying 

normal distributions for the indicators of these classes (in this case, the daily minutes of 
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physical activity across the seven days of a week). Once classes are established and 

members are assigned to these classes, the influence of the sociodemographic 

characteristics on class membership may be assessed.  Cross-sectional associations 

between sociodemographic characteristics and physical activity have not been explored 

with objectively measured national data in the US.  The analysis of the patterns of 

physical activity may give insight into which sociodemographic groups are insufficiently 

active. 

Materials and Methods     

Study population 

 We analyzed data from the 2003-2004 NHANES, an ongoing health survey with a 

target population of civilian, non-institutionalized citizens from throughout the entire 

US.  The survey consists of two principle components.  The first is an interview, which 

includes a wide array of topics ranging from tobacco use, sexual behavior, weight 

history, health insurance and hospital utilization. In addition, basic demographic 

information for our analysis, including race/ethnicity, gender, education, income and 

age, was drawn from the interview portion of the survey. The 2003-2004 survey over-

sampled low-income persons, Mexican-Americans, African-Americans, and those age 

12-19 and 60 years and older.  

 The second component of the survey is a physical examination, which collects a 

wealth of information such as anthropometric measurements, audiometry, as well as 

various laboratory analyses ranging from measles to sexually transmitted diseases.  Most 

participants agreed to the physical examination, during which various health measures 

were assessed such as blood pressure, blood lipids, glucose and height and weight for the 

calculation of body mass index (BMI).  In addition, the 2003-2004 NHANES collected 
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seven consecutive days of accelerometry measurements among all ambulatory 

participants 6 years old and older who agreed to wear the activity monitor for a week. 

Measuring Physical Activity with Accelerometry 

Accelerometers are small, electronic devices that record the acceleration of change 

in bodily motion either in one dimension (usually the vertical plane), three dimensions, 

or omni-directional.  They are particularly useful in measuring physical activity because 

they eliminate the potential for recall bias, social desirability bias, and are not dependent 

on literacy.  NHANES 2003-2004 used the ActiGraph Model 7164 accelerometer to 

collect information on participant’s physical activity.  This lightweight uniaxial monitor 

is a technically reliable instrument, both within and across monitors.[54]  Most 

participants (98.2%) wore the monitor for 7 days during normal waking hours.  

NHANES used one minute epochs to assign a “count’ value, which is a relative measure 

of the changes in momentum that occurred during these periods, which may then be 

translated into an estimate of physical activity intensity.   

Moderate physical activity cut-points based on calibration studies 

 The accelerometer cut-point used by this study to translate the count value into an 

estimate of moderate-to-vigorous physical activity (MVPA) was based on a strategy that 

has been adopted by NHANES researchers.[74]   This strategy used a weighted average 

of several cut-points that have been published from previous prediction equations for 

adults. [65-68]  Each study reported a cut-point for MVPA, which were then weighted 

by their sample size to arrive at an n-weighted average cut-point of 2,020 counts/min for 

MVPA.   

Accumulating Minutes of MVPA 
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There are many potential strategies for assigning to an individual a level of physical 

activity based on their accelerometer data.  The present study credited an individual for 

every minute that their accelerometer registered a count higher than the given 2,020 

counts/min MVPA cut-point mentioned above.  Then, for each of the seven days, a 

person is assigned a total number of minutes of MVPA.   

Imputation of missing daily minutes of MVPA 

 The NHANES accelerometry data was very complete in terms of the total number of 

participant’s providing all seven days of data (over 99.8%).  However, within each day, 

there may be extended periods of zero counts, indicating either a non-wearing period or 

a period with no detectable movement.  In order to capture true wearing periods for 

certain populations, such as the elderly who may remain very sedentary for extended 

periods of time, only periods consisting of more than one hour of consecutive zeros were 

treated as missing data.   

 Monitor malfunctions can also cause periods during which identical, consecutive 

non-zero values are recorded.  For example, the accelerometers will sometimes 

malfunction and record the maximum value of 32,767 for hours or even days, indicating 

invalid data. For this reason, data was considered missing if more than 10 minutes of 

identical consecutive non-zero values were recorded. 

In order to assess whether a participant contributed a sufficient amount of non-

missing data, each day was divided into the following segments corresponding roughly 

to nighttime, daytime, early evening, and late evening:  midnight to 6:00, 6:00 to 17:00, 

17:00 to 21:00, and 21:00 to midnight.  Then, within each time segment, a referent 

wearing period was determined based on how long at least 80% of participants were 



83

wearing their monitor during this period, an amount of time ranging from 0 to 100 

percent of the time in that segment.  If a participant provided an amount of non-missing 

data that was less than 70% of the length of this referent wearing period, then their data 

for this time segment was considered insufficient and set to missing.  For periods of time 

in which the accelerometer recorded an insufficient amount of valid data, imputation 

was used to better estimate the participant’s daily minutes of MVPA.  This imputation 

strategy was similar to strategies that have been reported previously.[22]  Missing data 

was then imputed using the Expectation Maximization (EM) algorithm, an iterative 

imputation technique which uses the values of an individual’s other, non-missing data as 

predictors to estimate the expected value of the total minutes of MVPA for each missing 

segment of time.[22]  

Self-reported measures 

 Age was recorded at the time of the interview and those over 85 years of age were 

assigned a truncated value of 85.  For descriptive purposes, age was categorized into 

decades but was left continuous in the final LCA.  Race, ethnicity and country of origin 

questions were recoded into the following categories:  1) Mexican-American, 2) other 

Hispanic, 3) Non-Hispanic (NH) Black, 4) NH-White and 5) Other Race – including 

Multi-Racial.  Education was categorized as less than high school, high school or GED, 

and more than high school.  The poverty income ratio (PIR) was recorded as a ratio of 

the self-reported family income to the poverty threshold based on family size.  The 

smallest value of 0 indicated no family income while the highest value is truncated at 5, 

indicating a family income at least 5 times the poverty threshold for family size.  For 
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descriptive purposes, the poverty ratio was categorized into integer values but was left 

continuous in the final class analysis. 

Statistical Methods 

 Of the 10,122 participants who completed the physical examination during 2003-

2004, we excluded those under age 20 based on the fact that previous accelerometer 

calibration studies generally assessed adults at least 20 years old or older,[20] leaving 

5,041 participants.  Not all participants in the physical examination completed the 

accelerometer portion, leaving 4,252 participants.  An additional 450 participants were 

excluded because they did not provide responses to their education level or household 

income or because they had invalid accelerometer data.  Invalid accelerometer data was 

caused by either not wearing the accelerometer (indicated by consecutive minutes of 

zero counts) or because the accelerometer malfunctioned.  This exclusion left a final 

population of 3,802 participants. 

Descriptive statistics 

 Using SAS’s survey procedures, frequency distributions, weighted distributions and 

sample weighted percents were computed for the sociodemographic distributions.  

Weighted means and medians of the average minutes of MVPA across all seven days 

were also computed according to levels of the sociodemographic variables.  

Latent Class Analysis 

 Employing LCA, we used each participant’s seven days of total MVPA to determine 

whether classes of people exist who tend to accumulate their minutes of physical activity 

in a similar pattern over the seven days.  Classes can be thought of as groups of people 

who share similar means for the various indicators of class, in this case the seven days of 

accumulated MVPA.  Covariates were added to the model, influencing both the 
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probability density function (pdf) for y, as well as the probability of being in the 

specific classes.  The general pdf for this type of model is defined as follows: 

 f [ y | Σ(θ), µ(θ), zi] =∑
=

G

g 1
Pg|zi * f[ y | Σg(θ), µg(θ), zi]

where y is  the vector of minutes of MVPA across the seven days, conditioned on µ(θ), 

the vector of mean MVPA across the seven days, and Σ(θ), the covariance matrix for the 

multivariate normal distribution of the seven days.  zi is the vector of sociodemographic 

covariates for subject i, and Pg|zi is the probability of subject i being in each class g, 

conditioned on zi. It is common to assume that the function f is a multivariate normal 

distribution.[60]  

 The probability of being a member of a particular class is assigned to an individual 

based on Bayesian posterior probabilities.  Prior probabilities are based on the size of the 

individual’s particular class relative to the entire population.  Thus, the posterior 

probability of an individual being a member of class g is: 

Pg|yi, zi = Pg|zi * f[yi | Σg(θ), µg(θ), zi] /

∑
=

G

g 1
Pg|zi * f[yi | Σg(θ), µg(θ), zi]

where Pg|zi is the prior probability of being in class g, conditioned on the covariates zi.

The numerator in this case is the prior probability that subject i belongs to class g, 

multiplied by the probability for the observed seven days of MVPA for yi, given the 

participants covariates and the predicted means and covariance of the seven days of 

MVPA in class g.  The denominator is the sum of the probability densities for all 
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possible class memberships given the individuals set of indicator values yi, weighted by 

each class’s specific prior probability.   

 After the posterior probabilities have been determined, individuals are assigned to the 

class with their highest posterior probability of class membership.  This type of 

assignment is referred to as Modal Allocation. [57] 

Structural Equation Modeling Perspective 

 Figure 1 provides a structural equation modeling representation of the LCA model.  

In this depiction, the latent classes are defined based on the patterns of physical activity 

across the seven days of the week.  The sociodemographic characteristics are used to 

predict the derived activity classes, and, at the same time, the sociodemographic 

characteristics have also been allowed to have a direct influence on the indicators of 

class.  

 Given this model, the resulting parameters for the influence of the sociodemographic 

characteristics on class membership can be interpreted as a type of “relative risk ratio” 

for an individual with covariates xi being in class k compared to an individual with 

covariates xi being in the referent class, relative to someone with the referent category of 

the xi covariates being in the two classes.  See Appendix A for a derivation of this 

interpretation. 

Selecting the Number of Classes 

 Many criteria were used to select the appropriate number of classes.  One of the most 

difficult tasks of latent class analysis is determining the proper number of classes which 

adequately describe the population without over-specifying the number of class 

groupings, thereby losing the interpretative value of the classes.[57]    A priori, we 
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suspected a large group of inactive participants and a small group of highly active 

participants, as well as varying class variances.  Given this, the bootstrap likelihood ratio 

test (BLRT), which compares the fit of k classes to k-1 classes, was selected over other 

statistical tests based on its’ superior performance in accurately determining classes with 

varying class sizes and variance structures.[59]  Entropy was also used to assess proper 

class membership.  This measure is based on the mean of the entire study population’s 

predicted probabilities of being in their assigned class, based on modal allocation.[60]  It 

was also necessary to select a number of classes which would allow for the proper 

assessment of the effect of the sociodemographic variables on class membership, 

regardless of statistical significance.  If too many classes are specified, the associations 

between class membership and the sociodemographic characteristics may become 

impossible to calculate due to groups with very small n.  As a final criterion, substantive 

knowledge for establishing the appropriate number of classes is recommended.[61]   

Specifying Variance Estimates 

 Various variance configurations were explored.  Completely free estimates, zero 

covariance estimates with fixed variances across classes, as well as class varying 

variances with zero covariances were all assessed.  However, due to the behavior of the 

various models, as well as the fact that the estimates of the mean minutes of physical 

activity for the lowest activity class should have a significantly lower variance than the 

more active classes, we ultimately settled on a model which allowed the lowest activity 

class to have variances that differed from all of the other activity classes.  In addition, we 

also allowed the weekend (Saturday and Sunday) to have variances that differed from 

the Monday to Friday variances, while we set the Monday to Friday variances to be 
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equal across classes.  By constraining the model in this way, we tried to create a 

parsimonious and stable model that still captured some of the complexity of the 

substantive issues of the analysis. [57]  

Direct effects of the sociodemographic characteristics 

 Lastly, the statistical significance of the direct effects on the 7 days of physical 

activity was tested by initially adding all of the sociodemographic variables with direct 

effects on the physical activity variables.  The effect estimate divided by its’ standard 

error was compared against a chi-square distribution.  Backwards elimination was used 

until only those variables significant at the 0.10 level remained.  This reduction is 

important due to the substantial number of parameter estimates that would be required if 

all of the variables’ direct effects remained in the final model. 

 The LCA was performed using MPLUS. [75]  The modeling was conducted by 

requesting a range from 1 to 6 classes a priori as the number of group memberships to 

predict.  Beyond six classes, the sample size of the more active classes became very 

small and the activity patterns over the seven days became highly unstable.  The model 

was then fit to these increasing numbers of groups, after which the BLRT statistics were 

analyzed as well as the entropy.  While MPLUS allows for complex survey sampling in 

conjunction with LCA modeling, the software does not currently account for survey 

sampling when computing the BLRT statistic.  As such, the initial analysis was 

performed without sample weights and cluster sampling.  After the number of classes 

was determined, the analysis was re-run with the cluster and sample weights added back 

into the model, keeping the number of classes and variance structures constant.  In this 
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way, the variances of the effect estimates for the sociodemographic characters were 

properly inflated to account for the sampling procedures. 

Results 

 The distributions of the sociodemographic characteristics from our study population 

are presented in Table 1, along with the weighted distributions and the weighted 

percents.  Nearly 23% of the population was 60 years old or older.  Over half of the 

study population had more than a high school education.  Income, as measured by a ratio 

of the poverty index for family composition, was fairly evenly distributed from 0 to 

greater than 5, and nearly three-quarters of the final population was Non-Hispanic (NH) 

white. 

 Table 1 also presents the sample-weighted mean and median minutes of MVPA for 

each sociodemographic characteristic across all seven days of the week.  Higher age was 

associated with a pronounced lower mean for minutes of MVPA, dropping from an 

average of 31.2 minutes of MVPA for those between 20 and 30 years old to only 5.2 

minutes of MVPA for those 80 years old and older.  Higher education was associated 

with a slightly higher level of physical activity.  Males engaged in nearly twice as much 

physical activity as females.  Higher levels of the poverty index were associated with 

increased physical activity, except for the lowest category (those below the federal 

poverty level) which was active at nearly the level of those between 3 and 4 times the 

federal poverty level.  Mexicans and other Hispanics were more active on average than 

NH-whites, NH-blacks and other race/ethnicities.  In all cases, the median minutes of 

MVPA was less than the mean, indicating the skewed distributions. 

 A five class model was ultimately selected to best represent the statistical and 

substantive content of this analysis.  As represented in Figure 2, most of the participants 
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fell in the two least active classes, representing over 87.5% of the population.  The most 

active class, averaging around 130 minutes of MVPA per day, represented only 1.2% of 

the population (only 43 participants).  Class three represented a class with a lower level 

of physical activity Monday through Friday but with a substantial increase in physical 

activity on the weekend, particularly on Sunday.  This class, representing 2.1% of the 

population (76 participants), will be referred to as the “weekend warrior”.  With the 

exception of this class, the other four classes all demonstrated a reduction in physical 

activity on the weekends, particularly on Sunday. 

 The unweighted five-class model had a highly significant BLRT statistic of <0.0001, 

indicating that the addition of the fifth class explained a significant amount of the 

variation based on class membership as compared to a 4 class analysis.  The entropy for 

this five class model was 0.943, indicating that the mean probability that an individual 

belonged in the class into which they were assigned was ~ 94%.  In addition, these class 

assignments provided large enough groups to assess associations with the 

sociodemographic characteristics without generating singular covariance matrices. 

 Table 2 presents the relative proportion of the sociodemographic variables in each 

class compared to the referent population.  Males were significantly (p<0.05) more 

likely to be classified into all of the more active classes compared to the least active 

referent class.  In particular, males were substantially more likely to belong in class 3 

(the weekend warrior, RR=7.3) and class 5 (the most active class, RR=8.5).  For 

example, the predicted percentage of all males in class 1 (the referent class) was 32.4% 

versus 56.3% of all females.  For class 3, the predicted percentage of all males is 2.5%, 

whereas class 3 only represents 0.59% of females.   
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The class by race/ethnicity analysis generated few statistically significant findings.  

Other Hispanics were statistically significantly more likely to be in class 5 compared to 

NH-whites (RR=4.8).  Mexicans were 2.9 times more likely to be in class 5 compared to 

NH-whites, although this latter finding was possibly due to chance based on a 95% CI 

that included the null association. 

 Those with less than high school education were statistically more likely to be in 

class 5, compared to those with high school education.  Those with more than high 

school education were more likely to be in classes 3 and 5, compared to those with a 

high school education, but these associations were also possibly due to chance based on 

a 95% CI that included the null association. 

 A 10 year increase in age was associated with a significantly lower probability that a 

participant was in any of the more active classes, and this relationship demonstrated a 

type of dose response by increasing activity level.  Thus, for each 10 year increase in 

age, participants were half as likely, for example, to be in the highest activity class 

compared to referent class.    

 A one unit increase in the poverty index demonstrated an opposite relationship.  Each 

one unit increase in the poverty index was associated with a 20% greater relative 

probability of being in the more active classes 2 and 4, and these associations were not 

likely due to chance based an a 95% CI that did not include the null association.  A one 

unit increase in the poverty index was associated with a 40% greater relative probability 

of being in class 5, although this association was not statistically significant.   

 Figures 3 and 4 show the predicted probability of being in each of the five classes as 

age increases, stratified by gender.  Similar graphs could have been produced for any 
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combination of sociodemographic characteristics, but these two were selected for 

presentation because both were significantly associated with every class assignment.  

For females with the referent category values, Figure 4 shows that the largest proportion 

of the population (47%) at age 20 is in the least active class, and this proportion 

increases to 85% by age 80.  The probability of being in the weekend warrior class is 

~0.9% for 20 year old women, but this diminishes to 0.06% by age 80.  For the most 

active class, 0.3% of 20 year old women belong to this group, while 0.01% of 80 year 

old women do. 

 For males at age 20 with the other referent category values, Figure 5 shows that the 

largest percentage of men are in classes 2 and 4; however, by age 30, more men are in 

the least active class than class 4, and by age 40, the largest single proportion of men are 

in the least active class.  By age 80, 75% of men are in the least active class.  3.2% of 20 

year old men are weekend warriors, while 1.2% of 20 year old men are in the most 

active class.  By age 80, these proportions have dropped to 0.4% and 0.09%, 

respectively. 

Discussion 

 This paper presents, for the first time, a latent class analysis of objectively measured 

physical activity that simultaneously describes the patterns of physical activity across the 

course of a week while also assessing the associations between these classes and the 

participants’ sociodemographic characteristics.  The class analysis generated a weekend 

warrior class as well as a highly active class, while all classes except the weekend 

warrior showed a reduction of activity on the weekend.   

 The weekend warrior reflected only 2.1% of the population, so nearly 98% of the 

population engaged in less physical activity during the weekend, a time when many 
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Americans who work Monday through Friday might actually have more time to engage 

in leisure time physical activity.  This indicates that developing cultural norms that 

emphasize the importance of leisure time physical activity could lead to substantial 

increases in the average physical activity levels in the US. 

 A recent article used self-report data from NHANES and the BRFSS to describe the 

prevalence of the weekend warrior pattern in the US adult population based on 

participants accumulating ≥ 150 minutes of MVPA during 1 or 2 days in a week.[62]   

Because the two surveys asked a different set of questions, approximately 3% of the 

NHANES population demonstrated a weekend warrior pattern, while only 

approximately 1% of the BRFSS population fell into this pattern.  Our results, while 

based on objectively measured accelerometer data, found that a similar proportion of the 

population (2.1%) could be classified as a weekend warrior based on minutes of MVPA. 

 An inactive class emerged which represented nearly 50% of the entire population.  

This class was disproportionately populated by women, older participants, and those in 

the lower income range.  In fact, by age 60 less than 1 in 1,500 women living at the 

poverty level were predicted to be in the most active class and 78.2% of these women 

were predicted to be in this activity class.  Similarly, by age 80 less than 1 in 1,000 

males living at the poverty level were predicted to be in the most active class and 75% of 

these males were predicted to be in the least active class, averaging 12.8 minutes of 

MVPA per day.  This reflects an amount of physical activity significantly below the 

recommended levels,[4, 7] which indicates that successful interventions are needed for 

this large inactive segment of the US population.   
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While the least active class only averaged 12.8 minutes of MVPA per day, the class 

with the next higher level of activity averaged 28.8 minutes of physical activity per day 

and thus represents a group of which many, if not most, would meet the physical activity 

recommendations.  Considering classes 2 through 5 together, therefore, close to 52% of 

the US population met the physical activity recommendations for moderate activity.[3, 

6]      

 Both gender (male) and age (younger populations) were found to be strongly 

associated with membership in the more active classes.  The associations also presented 

a type of dose-response relationship indicated by males having higher odds of being in 

each of the successively more active classes.  Conversely, higher age had lower odds of 

being in each of the successively more active classes.  Higher socioeconomic status, as 

measured by the poverty income ratio, was associated with higher levels of MVPA, 

although for the classes with smaller population sizes the statistical significance was 

tenuous.  These findings were consistent with much of the previous physical activity 

research.[10]  

 Although higher levels of educational attainment have generally been found to be 

associated with higher physical activity levels, this analysis showed a strong association 

between less than high school education and membership in the most active class.  These 

results are consistent with a report from the National Health Interview Survey in which 

participants with less than a high school education were nearly 4 times as likely to report 

engaging in ≥ 5 hours / day of hard occupational activity compared to those with more 

than a high school education.[76]   Although occupational information was collected 

during the NHANES interview, these data had not been made publicly available at the 
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time of writing.   Therefore, while the association between education and membership 

in the most active class could be related to occupational PA, future analysis would be 

needed to determine the source of this association.  Similarly, those classified as non-

Mexican Hispanics presented a strong association with being in the most active class, 

which could also be driven by occupational physical activity.[76]   

 The present work represents the first LCA analysis which uses objectively measured, 

nationally representative physical activity data sampled from across the US to assess the 

associations between patterns of physical activity and the sociodemographic 

characteristics of the study population.  The results of this type of LCA analysis also 

provide a clear and intuitive visual representation for how certain variables, such as age 

and income level, affect activity class membership over the range of the respective 

variables.  The high probability that older, lower-income women were members of the 

least active class was an important finding.  While many of the results of this novel use 

of LCA correspond with previous research, a few findings need further exploration.  For 

example, the increased probability that non-Mexican Hispanics, Mexican’s and blacks 

belong in the most active class, while not all statistically significant, reflect an import 

divergence from previous results using self-reported physical activity data.[10]  

Determining the source of this physical activity could be an important step toward 

developing appropriate interventions, which in the past may not have accounted for 

work related activity among these sociodemographic sub-populations and could thus 

help address racial disparities.  This analysis highlights the importance of collecting 

information on all modes of activity and not just leisure-time physical activity.   
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The primary weakness of this paper, a weakness shared with most of the other 

sociodemographic analyses of PA, is that the data were collected cross-sectionally and 

thus the results may only be viewed as correlates of physical activity.  In the review by 

Bauman et. al.[9], they emphasize that most of the associations reported in the current 

literature do not necessarily reflect causal relationships.  Distinguishing between 

determinants of physical activity and simple correlations is important both for the 

interpretation of results as well as for the targeting of interventions.[10]  Future research 

is needed to separate the causal associations from mere correlates. 

 In addition, many of the other associations did not achieve statistical significance.  

This was particularly true for the “weekend warrior” class and the most active class, 

both of which were substantively important groups but had too few participants to 

adequately assess the parameter estimates, even though some of the associations were 

fairly large in magnitude.  Future analysis of NHANES, after additional accelerometer 

data has been made public, may help resolve this problem since accelerometry continued 

to be collected in a similar manner in 2005-06. 

 Uniaxial accelerometers do not capture all types of physical activity, particular static 

activities such as raking leaves or riding a bike.[77]  Therefore, while the current 

analyses do not rely on self-report, they may still not reflect the true activity levels of the 

US population.   Similarly, the cut-point for what constitutes MVPA is also sensitive to 

the types of activities being done.  Changing the cut-point would affect the amount of 

physical activity that participants were credited for, which in turn could have affected 

the outcomes of the latent class analysis.   
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Also, we did not explore the differences below the moderate level of physical 

activity and, therefore, we don't know how inactivity and light activity compare to 

moderate activity.  We previously reported efforts to assess the patterns of vigorous 

physical activity in the same NHANES population, but the very low participation in this 

type of physical activity made the analysis of class membership impossible. 

One analytical weakness is worth noting.  The use of the BLRT test statistic was not 

available with the simultaneous use of the sample weights, which could have affected 

the final decision for the number of classes.  However, because the BLRT only assesses 

the statistical benefit of adding an additional class, which in this case was highly 

significant, we felt that by re-running the analysis with the sample weights added back 

in, we were capturing a meaningfully relevant number of classes while at the same time 

producing effect estimates with appropriate variances and activity classes with proper 

patterns. 

In conclusion, both gender and age emerged as significant predictors of membership 

in the different patterns of physical activity.  A combination of certain sociodemographic 

characteristics such as older females with lower family income was associated with a 

high probability of being in the least active class, which averaged only 12 minutes of 

MVPA per day.  The higher odds of Mexicans, other Hispanics, and NH-blacks being in 

the most active class, although not all statistically significant, was novel and needs 

future research to determine the source of the high level of activity.   
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Figure 5. 1.  Structural Equation Model for the prediction of the latent classes 
based on the minutes of physical activity across the seven days of the week, with 
sociodemographic characteristics influencing class membership as well as direct 
effects on each day’s minutes of physical activity. 
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Table 5. 1.  Sample weighted frequency distributions of the demographic variables 
for the final study population. 

Minutes of Daily 
MVPA N Weighted 

N
Weighted

% Mean Median
Age 20 to <30 645 38,382,093 18.7 31.2 25.3 

30 to <40 618 41,376,198 20.2 30.3 24.4 

 40 to <50 637 44,500,615 21.7 26.2 20.5 

 50 to <60 487 34,470,493 16.8 21.4 16.2 

 60 to <70 614 22,448,718 10.9 14.2 8.7 

 70 to <80 484 16,538,140 8.1 8.5 4.2 

 80+ 317 7,568,412 3.7 5.2 2.8 

Education Less than High 
School 

1,077 35,395,144 17.2 22.5 13.4 

 High School 940 53,985,575 26.3 23.1 17.8 

 More than High 
School 

1,785 115,903,950 56.5 24.7 18.7 

Gender Female 1,956 106,855,170 52.1 17.7 12.8 

 Male 1,846 98,429,499 47.9 30.5 24.3 

Poverty Index Ratio 0 to <1 678 25,432,107 12.4 23.9 16.7 

 1 to <2 1,032 43,570,060 21.2 22.3 14.2 

 2 to <3 640 35,028,892 17.1 22.0 16.0 

 3 to <4 456 30,364,379 14.8 23.5 16.9 

 4 to <5 368 26,126,000 12.7 22.8 18.5 

 5+ 628 44,763,232 21.8 27.6 22.6 

Race/Ethnicity Mexican 792 15,940,237 7.8 30.8 23.4 

 Other Hispanic 106 726,1321 3.5 32.6 25.7 

 NH-White 2,037 148,475,909 72.3 22.8 17.1 

 NH-Black 714 23,034,729 11.2 23.6 17.0 

 Other 153 10,572,473 5.2 23.5 16.2 
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Figure 5. 2.  Five latent class analysis for Moderate-to-Vigorous Physical Activity 
across the seven days of the week. 
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Table 5. 2.  Relative proportion of the sociodemographic variables in each class 
compared to the referent population (white, female, high school education, aged 30 
and with a poverty index ratio of 1), relative to their proportions in the least active 
class.* 

Gender – Relative proportion (and 95% confidence internal) of males in each class compared to 
the least active class (Class 1) 

Males  
Class 5 8.5 (3.6, 20.2)  
Class 4 5.1 (3.5, 7.6)  
Class 3 7.3 (1.8, 28.6)  
Class 2 2.1 (1.7, 2.4)  
Class 1 - Referent 1.0  
Race/Ethnicity – Relative proportion (and 95% confidence internal) of each race/ethnicity 
category in each class compared to the least active class (Class 1) 

Blacks Mexicans Other Hispanic Other 
Race/Ethnicity 

Class 5 1.6 ( 0.5, 4.4) 2.9 ( 0.8, 10.0) 4.8 ( 1.7, 13.3) 0.3 ( 0.1, 1.8) 
Class 4 0.9 ( 0.5, 1.7) 1.6 ( 0.8, 3.0) 2.3 ( 0.9, 6.2) 0.5 ( 0.1, 2.2) 
Class 3 0.5 ( 0.2, 1.1) 1.0 ( 0.4, 2.2) 0.4 ( 0.0, 5.0) 1.9 ( 0.7, 5.3) 
Class 2 0.8 ( 0.6, 1.1) 1.3 ( 1.0, 1.7) 1.3 ( 0.6, 2.8) 0.7 ( 0.5, 1.1) 
Class 1 - Referent 1.0 1.0 1.0 1.0 
Education– Relative proportion (and 95% confidence internal) of less than high school and more 
than high school education in each class, compared to the least active class (Class 1) 

Less than 
High School 

More than 
High School 

 

Class 5 2.8 ( 1.0,  7.4) 1.9 ( 0.6,  6.5)  
Class 4 1.1 ( 0.7,  1.7) 0.7 ( 0.5,  1.1)  
Class 3 1.1 ( 0.2,  5.1) 2.3 ( 0.6,  8.4)  
Class 2 0.9 ( 0.6,  1.2) 1.1 ( 0.8,  1.4)  
Class 1 - Referent 1.0 1.0  
Age – Relative proportion (and 95% confidence internal) of a 10 year increase in age in each 
class, relative to the least active class (Class 1) 

10 year 
increase in Age 

 

Class 5 0.5 ( 0.4,  0.7)  
Class 4 0.6 ( 0.5,  0.6)  
Class 3 0.6 ( 0.4,  0.8)  
Class 2 0.7 ( 0.7,  0.8)  
Class 1 - Referent  1.0  
Poverty Index – Relative proportion (and 95% confidence internal) of a 1 unit increase in the 
poverty index in each class, relative to the least active class (Class 1) 

1 unit increase 
in Poverty Index 

 

Class 5 1.4 ( 0.9,  2.0)  
Class 4 1.2 ( 1.0,  1.4)  
Class 3 1.2 ( 0.9,  1.7)  
Class 2 1.2 ( 1.2,  1.3)  
Class 1 - Referent  1.0  

*All associations are adjusted for the other sociodemographic characteristics.  
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Figure 5. 3.  Probability that a female with the referent category values belongs in 
each of the five activity classes (corresponding to those presented in figure 3), 
according to their age. 
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Figure 5. 4.  Probability that a male with the referent category values belongs in 
each of the five activity classes (corresponding to those presented in figure 3), 
according to their age. 
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Chapter Six 
 

Associations between Patterns of Objectively Measured Physical Activity and Risk 
Factors for the Metabolic Syndrome 

 

Introduction 

 The last several decades have produced a substantial body of literature indicating the 

health benefits of physical activity, including reduced risk of all-cause mortality, 

coronary heart disease (CHD), and CHD risk factors.[31]   Many recent review articles 

also separate the benefits of physical activity into both preventive as well as palliative 

effects on disease and disease progression.[32, 38]  Nevertheless, the prevalence of 

physical activity in the US continues to be suboptimal for most as work and daily 

activities become more and more sedentary.[8, 9]  In 2004, the National Center for 

Health Statistics (NCHS) reported that 32.2% of adults were obese (as defined by a body 

mass index (BMI) ≥ 30 kg/m2).  Extreme obesity (BMI ≥ 40 kg/m2), which in 1990 only 

affected 0.5% of men and 1.2% of women, presently affects 2.8% of men and 6.9% of 

women.[2, 47]   

According to the National Cholesterol Education Program’s (NCEP) Adult Treatment 

Panel III report (ATP III), these two factors (overweight/obesity and physical inactivity) 

along with genetic factors are the primary root causes of the metabolic syndrome, 

described as a constellation of CHD risk factors of metabolic origin.[27]  This syndrome 

and its’ risk factors have become “a coequal partner to cigarette smoking as contributors 



104

to premature coronary heart disease”.[27]  As such, the ATP III report indicated that 

treating the metabolic syndrome is one of the most important clinical goals for reducing 

the risk of CHD, second in importance only to the primary goal of controlling high 

levels of low-density lipoproteins (LDL).[27]  

 From a clinical perspective, the diagnosis of the metabolic syndrome requires at least 

three of the following:  high waist circumference, low levels of high-density lipoprotein 

(HDL), and elevated levels of triglycerides, blood pressure (BP) and fasting glucose.[27]   

Congruent with this diagnosis and the importance that physical activity is believed to 

play in the development of the syndrome, numerous research papers report negative 

associations between physical activity and hypertension, diabetes, obesity, triglycerides 

and low levels of HDL, the components of the clinical definition of the metabolic 

syndrome.[31, 32, 35, 40]  

 Many of these associations, however, may be somewhat transient in nature.  For 

example, higher levels of insulin mediated glucose uptake have been demonstrated for 

up to 48 hours after exercise, but the levels return to normal after 5 days.[78] Similarly, 

during bouts of physical activity triglycerides are hydrolyzed by lipoprotein lipase (LPL) 

into glycerol and fatty acids which are used as energy for muscle contractions.  LPL 

activity has been shown to increase during bouts of PA, but this increased activity only 

lasts up to 48 hours after acute endurance exercise.[29] Studies have also shown that 

immediately following bouts of exercise there is a reduction in systemic vascular 

resistance while cardiac output returns to lower levels, leading to periods of 

hypotension.[79]  These periods can last for 2 hours among healthy individuals but up to 

12 hours among hypertensives.[80]   
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Given the relatively short term effects of physical activity on some of the risk 

factors for the metabolic syndrome, those who demonstrate regular activity patterns 

across a seven days week would be associated cross-sectionally with fewer diagnoses of 

the metabolic syndrome compared to those with irregular activity.  Therefore, using the 

seven days of accelerometer data from the 2003-2004 National Health and Nutrition 

Examination Survey (NHANES), the purpose of this analysis is to employ latent class 

analysis (LCA) to determine the whether certain patterns of objectively measured 

physical activity among adults in this sample are disproportionately associated any of the 

risk factors for or the diagnosis of the metabolic syndrome.   

 In LCA analysis, a specified number of classes are requested a priori.  Then, LCA 

finds the requested number of best fitting underlying activity patterns using the 

indicators of these classes (in this case, the daily minutes of moderate-to-vigorous 

physical activity (MVPA) across the seven days of a week).  New developments in LCA 

methods then allow for the simultaneous assessment of the associations between these 

derived patterns of physical activity and the risk factors for the metabolic syndrome. 

 Determining whether certain patterns of physical activity are associated with the 

metabolic syndrome could help target interventions for those who do not accumulate 

physical activity in an optimal way.  For example, while the current recommendations 

are to be moderately active at least 30 minutes on most, and preferably all days of the 

week,[3, 6] a large portion of the population has employment which requires them to be 

sedentary for the majority of the day throughout the work week.  This would potentially 

allow for greater time during the weekend for activity.  If this pattern of physical activity 

is insufficient, then interventions incorporating activity during the typical work-week 
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would be important.  Conversely, it may be that a significant amount of physical 

activity only on the weekend (a “weekend warrior”) is sufficient for desired health 

benefits.  This analysis was thus performed to help fill in these very important gaps in 

our understanding of the importance of PA. 

 Because it was not known a priori what patterns would be found, a secondary 

analysis was also performed in order to directly assess the associations between regular 

physical activity and the clinical diagnosis of and the risk factors for the metabolic 

syndrome.  Participants were classified into quartiles of the co-efficient of variation 

(CV) based on their minutes of MVPA across the seven days.  A low CV would indicate 

that an individual accumulated their minutes of MVPA consistently over the course of 

the week, while a high CV would indicate days of high and days of low MVPA 

accumulation, similar to a weekend warrior.  The quartiles of CV were then used to 

assess whether the variation in the accumulated MVPA was associated with the 

metabolic syndrome.   

Materials and Methods 

Study population 

 We analyzed data from the 2003-2004 NHANES, an ongoing health survey with a 

target population of civilian, non-institutionalized citizens from throughout the entire 

United States.  The survey consists of two principle components.  The first is an 

interview, from which the basic demographic information for our current analysis was 

obtained, including race, gender, education, income and age.  In the 2003-2004 

NHANES, low-income persons, Mexican-Americans, African-Americans, and those age 

12-19 and 60 years old or older were over-sampled.  
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The second component of the survey is a physical examination.  Most participants 

agreed to the physical examination, during which the various health measures for our 

analysis were assessed, including blood pressure, blood lipids, fasting blood glucose and 

height and weight for the calculation of body mass index (BMI).  In addition, the 2003-

2004 NHANES collected seven consecutive days of accelerometry measurements 

among all ambulatory participants 6 years old and older who agreed to wear the monitor 

for a week. 

Risk Factors for the Metabolic Syndrome 

 For analysis purposes, all of the variables were categorized according to their relevant 

clinical cut-points.  Hypertensive status was classified based on the Seventh Report of 

the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of 

High Blood Pressure (JNC 7).[81]  Thus, normotensive was based on a systolic blood 

pressure (SBP) of <120 mm Hg and a diastolic blood pressure (DBP) of <80 mm Hg.  

Pre-hypertensive was based on a SBP of 120-139 mm Hg or a DBP of 80-89 mm Hg.  

And Hypertensive was based on a SBP of 140+ mm Hg or a DBP of 90+ mm Hg or if 

the participant was taking medication for hypertension.  A fasting blood glucose of 126 

mg/dL or greater was considered the clinical cut-point for the diagnosis of diabetes,[82] 

as well as whether the participant was taking insulin or pills for high blood glucose 

levels.  Clinical categories used to classify triglycerides and HDL were based on the 

NCEP cut-points.[27]  Thus, normal triglycerides levels were considered <150 mg/dL, 

borderline-high triglycerides were considered 150 to 199 mg/dL, and high triglycerides 

were considered ≥ 200 mg/dL or taking medication for high cholesterol.  HDL levels 

were categorized as low (high risk) if below 40 mg/dL or taking medication for 
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cholesterol.  BMI was based on the standard calculation of weight in kilograms divided 

by standing height in meters squared.  According to the cut-points published by the 

National Heart, Blood and Lung Institute (NHLBI)[83], BMI was categorized into four 

categories:  <18.5 kg/m2 = Underweight, 18.5-24.9 kg/m2 = Normal, 25-29.9 kg/m2=

Overweight, and 30+ kg/m2 = Obese.  Finally, for the purposes of this analysis, 

participants were classified as having the metabolic syndrome if they fell into the highest 

risk category of at least 3 of these risk factors.  

 The analysis software treats the risk factor variables as ordinal, not simply categorical, 

which we did not feel reflected the true relationship for the associations with the four 

BMI categories, specifically comparing the odds for the lowest BMI category to the next 

three higher BMI categories.  In addition, because only 42 participants fell into the 

lightest BMI category, they were excluded leading to a modeling strategy that we 

believe was more appropriate given the model assumptions and the sample size 

requirements needed for the associations between the activity classes and the risk 

factors. 

Measuring physical activity with accelerometry 

Accelerometers are small, electronic devices that record the acceleration of change 

in bodily motion either in one dimension (usually the vertical plane), three dimensions, 

or omni-directional.  They are particularly useful in measuring physical activity because 

they eliminate the potential for recall bias, social desirability bias, and are not dependent 

on literacy.  NHANES 2003-2004 used the ActiGraph Model 7164 accelerometer to 

collect information on participant’s physical activity.  This lightweight uniaxial monitor 

is a technically reliable instrument, both within and across monitors.[54]  NHANES used 
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one minute epochs to assign a “count’ value, which is a relative measure of the changes 

in momentum that occurred during these periods, which may then be translated into an 

estimate of physical activity intensity.   

Moderate physical activity cut-points based on calibration studies 

 The accelerometer cut-point used by this study to translate the count value into an 

estimate of moderate-to-vigorous physical activity (MVPA) was based on a strategy that 

has been adopted by NHANES researchers.[74]  This strategy used a weighted average 

of several cut-points that have been published from previous prediction equations for 

adults.22-25 Each study reported a cut-point for MVPA, which were then weighted by 

their sample size to arrive at an n-weighted average cut-point of 2,020 counts/min for 

MVPA.   

Accumulating minutes of MVPA 

 There are many potential strategies for assigning to an individual a level of physical 

activity based on their accelerometer data.  The present study credited an individual for 

every minute that their accelerometer registered a count higher than the given 2,020 

MVPA cut-point.  Then, for each of the seven days, a person was assigned a total 

number of minutes of MVPA.   

Imputation of missing daily minutes of MVPA 

 The NHANES accelerometry data was quite complete in terms of the total number of 

participants providing all seven days of data (over 99.8%).  However, within each day 

there may be extended periods of zero counts, indicating either a non-wearing period or 

a period with no detectable movement.  Periods consisting of one hour or more of 

consecutive zeros were treated as missing data.  In addition, periods of monitor 
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malfunctioning were also considered missing (e.g., 10 minutes of identical consecutive 

non-zero count values).  Occasional missing accelerometry data within a participant’s 7-

day record was then imputed using the expectation maximization (EM) algorithm, an 

iterative imputation technique which uses the values of an individual’s other, non-

missing data as predictors to estimate the expected value of the total minutes of MVPA 

for each missing segment of time.[22]   

Self-reported variables 

 Gender was recorded at the time of interview as was age, which, for those over 85 

years of age, was assigned a truncated value of 85.  Race, ethnicity and country of origin 

questions were recoded into the following categories:  1) Mexican-American, 2) other 

Hispanic, 3) Non-Hispanic (NH) Black, 4) NH-White and 5) Other Race – including 

Multi-Racial.  Education was categorized as less than high school, high school or GED, 

and more than high school.  The poverty income ratio (PIR) was recorded as a ratio of 

the self-reported family income to the poverty threshold based on family size.  The 

smallest value of 0 indicated no family income while the highest value is truncated at 5, 

indicating a family income at least 5 times the poverty threshold for family size.   

Statistical Methods 

 Of the 10,122 participants who completed the physical examination during 2003-

2004, we excluded those under age 20 based on the previous accelerometer calibration 

studies for adults which generally assessed those at least 20 years old or older.[19]  This 

left 5,041 participants.  Not all participants in the physical examination agreed to 

complete the accelerometer portion, leaving 4,252 participants.  An additional 450 

participants were excluded because they did not provide responses to their education 
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level or household income or because they had no days of valid accelerometer data with 

which to impute the other, missing days.  A lack of valid accelerometer data was caused 

by either not wearing the accelerometer (indicated by consecutive zeros) or because the 

accelerometer malfunctioned.  This left 3,802 participants.  In the end, 344 were 

removed for missing height, weight, HDL levels or blood pressure, leaving a final 

population of 3,458.  For the analysis of triglycerides and fasting blood glucose, which 

were only collected on members of the morning examination, only 1,620 were available 

for analysis.  There were no differences in the distributions of either the 

sociodemographic characteristics or the relevant risk factors (BP, blood glucose, and 

BMI) comparing those who sat for the morning examination and those who sat for the 

afternoon examination (chi-square and t-test p-values > 0.15 for all comparisons). 

 Using SAS’s survey procedures, the distribution of each of the risk factors were 

produced, along with their sample-weighted n, sample weighted percent and standard 

error. 

Interested readers may refer to our earlier papers for an in depth description of the 

statistical foundations of the LCA modeling as well as an overall description of the LCA 

modeling strategy employed.[84, 85] Figure 2 provides a structural equation 

representation of the model.  In this depiction, the latent classes are defined based on the 

patterns of physical activity across the seven days of the week.  The socio-demographic 

characteristics are used to help predict membership in the derived activity classes, and, 

at the same time, the socio-demographic characteristics have been allowed to have a 

direct influence on the indicators of class as well as the six biological markers of health.  
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Finally, the classes derived from the levels of physical activity across the seven days 

are used as a categorical indicator for predicting the risk factors.  

 Given this strategy (classes predicting the multiple risk factors), the ordinal variables 

representing the risk factors are assumed to follow an ordered polytomous logistic 

regression.[60]  Thresholds, analogous to intercept parameters, are established above 

which a subject is assumed to fall into the next higher category of the ordinal 

variable.[86]  With this model structure, the exponentiated difference between the 

thresholds of any two classes may be interpreted as the odds ratio that a member of one 

class falls above the ordinal category, compared to the odds that a member of the other 

class falls above the ordinal category.  See the appendix for a derivation of this 

interpretation.   

 The least active class was used as the referent class.  Odds ratios for each of the risk 

factors in each class were calculated with respect to this lowest activity class.  The odds 

ratios were based on comparing the thresholds of the highest level of each ordinal 

variable. 

Secondary analysis  

The current physical activity recommendations call for 30 minutes of physical 

activity on most days of the week.[3]  Because for the secondary analysis we were 

primarily interested in whether the regularity of physical activity is associated with the 

metabolic syndrome, we only included those participants meeting the current physical 

activity recommendations in order to remove the possibility that any associations found 

would be driven by the underlying level of activity.  By defining “most days of the 

week” as 5 days, then only participants who accumulated at least 150 minutes of MVPA 
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over the seven days were selected.  Critical for this analysis, however, was that we 

allowed these 150 minutes to be accumulated in any way, for example, two days of 75 

minutes of MVPA, and not just on days of 30 minutes or more.  1,392 participants from 

the final study population accumulated 150 minutes of physical activity in this way, 

while 710 were available for analysis of the triglycerides and 692 for blood glucose due 

to the reduced population who participated in the morning exam.  Finally, 643 were 

available for the analysis of the metabolic syndrome.  

Among this population, participants were classified into quartiles of the co-efficient 

of variation (CV) based on the minutes of MVPA across the seven days.  The CV 

quartiles were then regressed on the each of the risk factors, adjusting for the socio-

demographic variables, in order to assess whether “how” the participants accumulated 

their MVPA was associated with the metabolic syndrome or its’ risk factors.   

Results 

 The frequency distributions of the five risk factors and the metabolic syndrome are 

presented in Table 1.  33.7 percent of the population was classified as having 

hypertension or taking medicine for hypertension.  Only 6.4 percent of the population 

was classified as having high blood glucose or taking medication for blood glucose 

levels.  Roughly a third of the population fell into each of the three BMI categories, 

while 26.9% had low HDL levels and 28.3% had high triglycerides levels.  Overall, 

nearly 20% of the population was classified as having the metabolic syndrome. 

 A five class model was ultimately selected to best represent the statistical and 

substantive content of this analysis.  Figure 2 represents the five class LCA analysis for 

the larger population with non-missing BMI, HDL and blood pressure.  Most of the 
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participants were classified into the two least active classes, representing 87.3% of the 

population.  The most active class averaged 122.6 minutes of MVPA per day and 

represented only 1.3% of the population.  Class three represents a class with a lower 

level of physical activity Monday through Friday but with a substantial increase in 

physical activity on the weekend, particularly on Sunday.  This class, representing 1.9% 

of the population, will be referred to as the “weekend warrior”.  With the exception of 

this class, the other four classes all demonstrated a reduction in physical activity on the 

weekends, particularly on Sunday. 

 Figure 3 represents the LCA results for the subset of the population for which 

triglycerides and fasting blood glucose levels were recorded during the morning 

interview.  The patterns for this reduced population were similar in appearance to those 

in Figure 2, with the exception of class 3, which resembles that of the “weekend 

warrior” but with substantially more accumulated minutes of MVPA from Monday 

through Thursday.  For purposes of comparison, however, this class, too, will be referred 

to as the “weekend warrior”, representing 1.1% of the population.  Most of the 

participants were classified into the two least active classes, representing 89.1% of the 

population.  The most active class again represented 1.3% of the population, and all but 

the weekend warrior demonstrated a reduction in physical activity on the weekends. 

 Figure 4 presents the results of the odds-ratio (OR) associations between the class 

assignments and the risk factors for the metabolic syndrome comparing the four more 

active classes with class 1, the most sedentary class.   The results for the ordinal 

variables with more than two levels (BMI, BP, and triglycerides) reflect the comparison 

of the highest level of the risk factor to the lower levels.   
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Membership in all of the more active classes led to statistically significantly lower 

odds of obesity compared to the least active class, based on a 95% confidence interval 

(CI) that did not include the null association.   

 Classes 2 through 4 had significantly lower odds of high blood pressure, with the 

weekend warrior having nearly one-fifth of the odds compared to the least active class.  

While the most active class had slightly lower odds of high blood pressure than the least 

active class, this result was not significant. 

 Classes 2 and 4 had significantly lower odds of having low levels of HDL, with class 

4 experiencing 26% of the odds of low HDL levels compared to the least active class.  

The weekend warrior and the most active class both demonstrated lower HDL levels, but 

neither result was significant based on CIs that included the null. 

 The blood glucose, triglyceride and metabolic syndrome analyses represented 

roughly half of the overall study population, causing less stability in the results.  No 

participants in classes 3 and 5 experienced high blood glucose, leading to an OR of zero 

with no variance estimates.  Class 4 experienced significantly lower odds of high 

glucose levels, odds that were nearly 10% of the odds of the least active class.  

 Both classes 2 and 4 indicated statistically significant lower odds of high triglyceride 

levels compared to the least active class.  The associations between classes 3 and 5 and 

high triglyceride levels were close to the null but had CIs that were very wide, indicating 

unstable results or imprecise estimates.   

 Similarly, classes 2 and 4 indicated statistically significant reductions in the odds of 

being classified as having the metabolic syndrome, while class 3 presented no 
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participants with the metabolic syndrome.  The odds ratio for class 5 was very close to 

the null association with wide CIs. 

 Figure 5 presents the odds ratios and 95% CIs from the secondary analysis of the risk 

factors comparing the three higher quartiles of CV with the lowest quartile of CV, 

among those study participants who achieved at least 150 minutes of MVPA over the 

seven days.  BMI, high BP, and low HDL all demonstrated associations that, for all three 

quartiles of CV, were very near the null association compared to the lowest quartile of 

CV.  For high blood glucose, only the 3rd quartile of CV demonstrated lower odds 

compared to the 1st quartile, while the 2nd and 4th quartiles of CV had ORs very near the 

null with wide CIs, compared to the lowest quartile of CV.  The ORs for high 

triglycerides were farther from the null, but all three quartiles included the null 

association compared to the lowest quartile of CV.  Finally, the odds ratios for the 

metabolic syndrome demonstrated the 3rd quartile of CV with lower odds compared to 

the 1st quartile, while the 2nd and 4th quartiles had ORs somewhat above the null but with 

wide CIs. 

Discussion 

 For the first time, objectively measured physical activity data sampled from 

throughout the US has been analyzed to determine the patterns of physical activity 

across a seven day week while simultaneously examining the associations between these 

patterns and several biological markers of health.  The primary observation from the 

analysis of the five physical activity classes is that, in nearly all cases, the four more 

active classes were associated with lower odds of the five risk factors and the metabolic 

syndrome itself compared to the most sedentary class.  The one exception was the 
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association between class 5 and triglyceride levels, although even this result was close 

to the null and had a very wide CI.   The consistency of these results across the various 

risk factors provides encouraging evidence of the potential benefits of physical activity. 

 Classes 2 and 4 comprised roughly 40 and 9 percent of the population, respectively, 

and thus produced point estimates which were much more stable than those produced for 

classes 3 and 5 which composed 1.9 and 1.3 percent of the larger population, 

respectively.  Comparing, then, only these two larger classes, class 4 had notably lower 

odds of all of the risk factors compared to class 2, and class 2 had significantly lower 

odds of all of the risk factors compared to the least active class, indicating a consistent 

dose response relationship.  This is important because class 2 represents a class of which 

most participants would meet the physical activity recommendations of 30 minutes of 

physical activity on most days of the week.  Nevertheless, these results indicate that 

participating in physical activity at roughly twice this recommended amount may be 

associated with lower odds of being classified with any of the risk factors used in this 

study. 

 One recent article has attempted to assess the effect of the “weekend warrior” activity 

pattern on the risk of mortality.[45]  In this study, the mortality outcomes of the 

weekend warrior, defined as those who accumulate a large quantity of physical activity 

(≥1000 kcal/week) over a short period of time (1-2 days/week), were compared to those 

who accumulate a similar amount of activity (≥1000 kcal/week) over a longer period of 

time (3+ days/week), along with those who are insufficiently active (500-999 kcal/week) 

or sedentary (<500 kcal/week).  Among low risk men, weekend warriors demonstrated 
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the lowest relative risk of mortality, while among high risk men only the regularly 

active showed improved mortality risks as compared to the most sedentary group.   

 In the current study, comparing classes 3 and 4 represents a similar assessment.  Class 

3, the weekend warrior, accumulated a large portion of their minutes on the weekend, 

while class 4 accumulated a consistently larger amount of activity Monday through 

Friday, with a reduction on the weekend.  For obesity, low HDL, and high triglycerides, 

the weekend warrior had higher odds compared to class 4, while the weekend warrior 

had lower odds of high blood pressure, blood glucose and the metabolic syndrome.  

However, the small sample size for the weekend warrior makes these comparisons 

tenuous.  Thus, it is unclear from this analysis whether an individual benefits to a greater 

degree from a consistently active daily lifestyle or from a highly active weekend 

lifestyle. 

 The secondary analysis resolved some of the problems related to small class sizes.  In 

this analysis, no association was observed between the amount of variation in the 

accumulation of physical activity over a seven day week and the respective risk factors, 

with the exception of the 3rd quartile’s association with significantly lower blood glucose 

levels and the metabolic syndrome.  These results in combination with the previous 

results present a relatively consistent picture that meeting the recommendations for 

physical activity is indeed associated with lower odds of all of the biological markers 

related to the metabolic syndrome, i.e. BP, triglycerides, blood glucose, HDL, BMI as 

well as the syndrome itself.  It may also be that more physical activity may be better.  

However, among those participants who met the minimum requirement for total physical 

activity in a week, acquiring that physical activity consistently over the week had 
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associations with all of the risk factors that were similar to acquiring physical activity 

erratically.  For example, two days in which 75 minutes of MVPA are accumulated may 

lead to similar benefits as 30 minutes of MVPA spread over 5 days.   

 The lack of association between the quartiles of CV and any of the risk factors for the 

metabolic syndrome was interesting given our initial hypothesis.  Among those who are 

regularly active, the cross-sectional assessment should have had a higher probability of 

sampling during a post-activity period compared to those who were irregularly active.  

As such, the post-exercise reductions in certain measures including blood glucose, 

triglycerides and blood pressure might have been apparent in the odd ratio analyses, but 

in this case were not.  One possible explanation is that, while physical activity is known 

to affect all of the relevant risk factors, it may not affect classification according to the 

clinical cut-points used in this study.  Another possibility is that there was some non-

random selection for when participants were assessed, i.e. those who were irregularly 

active chose to be assessed on the day that they also set aside for physical activity.  

Another possibility is that the sample size was insufficient to adequately assess 

associations which were only small in magnitude. 

 This paper has many strengths worth noting.  The present work represents the first 

LCA analysis which uses objectively measured, nationally representative physical 

activity data sampled from across the United States to assess the associations between 

patterns of physical activity and several biological markers of health.  Structuring the 

analysis around those factors believed to be associated with the metabolic syndrome 

helped present a clearer view of how physical activity may influence the risk factors for 

cardiovascular disease.  The five classes provided a potent indicator of overall activity 
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level by capturing many important aspects of physical activity including frequency, 

intensity and time at or above the moderate-to-vigorous intensity level.  For analysis 

purposes, therefore, this data reduction very concisely captures many of the important 

aspects needed to adequately assess the associations between physical activity and health 

status.  A large study population led to many statistically significant and clinically 

meaningful results.  The secondary analysis provided an important contribution to the 

understanding of whether the overall health benefits received from physical activity are 

altered by “how” it is accumulated. 

 The primary weakness of this paper is that the data were collected cross-sectionally.  

As such, the results, while compelling, may only be viewed as associations between 

physical activity and the various risk factors.  While effort was made to control for 

potential socio-demographic confounders, residual confounding may still be the source 

of the observed associations.  Similar analysis of prospectively measured physical 

activity and health status may help separate the causal relationships from mere 

associations. 

 Accelerometers do not capture all types of physical activity, particular static activities 

such as raking leaves or riding a bike.[19]  Therefore, while the current analyses do not 

rely on self-report, they may still not reflect a complete picture of the activity levels of 

the US population.   Similarly, the cut-points for what constitutes MVPA are also 

sensitive to the types of activities being done.  Changing these cut-points would affect 

the amount of physical activity that participants were credited for, which in turn could 

have affected the outcome of the latent class analysis.  It also might have been 

informative to examine the potential effects of lighter intensity activity. 
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In conclusion, these results indicate that accumulating the total amount of physical 

activity recommended for a week is consistently associated with positive profiles of the 

biological risk factors related to the metabolic syndrome, and that accumulating 

substantially more physical activity than what the recommendations suggest may be 

even better.   However, the manner in which you accumulate this activity, either spread 

over many days of the week or compressed into just a couple, may have similar 

associations with the risk factors for the metabolic syndrome as well as the syndrome 

itself. 
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Figure 6. 1.  Structural equation model for the prediction of the latent classes of 
physical activity as well as the associations between the latent classes and the risk 
factors.  Socio-demographics have direct effects on the risk factors, the seven days 
of MVPA and the class memberships themselves. 
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Table 6. 1.  Unweighted frequency, sample weighted frequency, sample weighted 
percent, and standard error of percent of the categorized risk factors for the final 
study population. 
Risk Factors / Metabolic Syndrome N Weighted 

N
Weighted 

%
SE of 

%

JNC 7 Classification of BP with Meds  
Normal 1,197 81,306,738 39.6 1.5 

 Pre-Hypertension 817 54,802,015 26.7 1.2 
 Hypertension or medication 1,444 69,175,916 33.7 1.3 
 
Blood Glucose (mg/dL)  

< 126 1,481 192,160,947 93.6 0.8 
 >= 126 or insulin or pills 139 13,106,621 6.4 0.8 
 
BMI (kg/m2)

18.5-24.9 1,029 65,678,847 32.0 1.3 
 25.0-29.9 1,264 72,172,568 35.2 1.4 
 30+ 1,165 67,433,254 32.8 1.4 
 
HDL (mg/dL)  
≥ 40 2,452 150,049,559 73.1 1.3 

 < 40 or medication  1,006 55,235,110 26.9 1.3 
 
Triglycerides (mg/dL)  

Normal (<150) 910 124,488,133 60.6 1.8 
 Borderline High (150-199) 207 22,642,237 11.0 1.0 
 High (≥ 200 or medication) 503 58,137,198 28.3 1.2 
 
Metabolic Syndrome  

No 1,250 164,408,975 80.1 1.5 
 Yes 370 40,858,592 19.9 1.5 
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Figure 6. 2.  Five class analysis for entire study population for which BMI, HDL 
and blood pressure was available. 
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Figure 6. 3.  Five class analysis for the subset of the population for which 
triglycerides and fasting blood glucose levels were recorded during the morning 
interview. 
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Figure 6. 4.  Odds ratios and 95% confidence intervals for each of the risk factors 
comparing the four more active classes with the least active class (class 1). 
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* Blood glucose and triglycerides were only collected during the morning session of the physical exam, so 
these analyses represent a subset of the final study population. 
 
+ For fasting blood glucose, no participants were classified with elevated levels in classes 3 and 5, and 
thus the odds ratios were zero.  No participants were classified as having the metabolic syndrome in  
class 3.  
 
^ Analysis represents a subset of the final study population among those with all non-missing risk factors.
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Figure 6. 5.  Odds ratios and 95% confidence intervals for the secondary analysis 
of the risk factors comparing the three higher quartiles of the co-efficient of 
variation with the lowest quartile of the co-efficient of variation, among those study 
participants who achieved at least 150 minutes of MVPA over the seven days. 
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* Blood Glucose and Triglycerides were only collected during the morning session of the physical exam, 
so these analyses represent a subset of the final study population. 
 
+ Analysis represents a subset of the final study population among those with all non-missing risk factors. 



Chapter Seven 
 

Conclusions 
 

The findings from this research support many of the initial hypotheses from the 

specific aims.  In addition, when taken as a whole, the findings could provide new 

avenues for behavioral interventions which have potentially realistic and achievable 

goals while still providing important personal and public health benefits. 

Specific Aim 1 

 The first aim of the research was to develop a set of descriptive physical activity 

classes.  Even though software was developed to generate LCA results, the process still 

requires a great deal of statistical sophistication in order to ensure that the generated 

results were those that were actually desired.  The MPLUS software allows the 

researcher to select nearly all aspects of the variance/covariance structures for the latent 

class modeling.  In addition, there are the inherent complexities of selecting the 

appropriate direct effects of covariates on the indicators of class and the risk factors, as 

well as the prediction of class membership based on covariates.  Simultaneous with this 

is the primary task of selecting the appropriate number of classes.  These analytical 

challenges mean that there still remains a significant amount for user input which could 

affect the end results.  The numerous decisions made by the researcher ensure that LCA 

is not entirely a purely data driven statistical technique. 
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While the lack of one single empirical path to a final model may be concerning, 

much of the process toward developing the final 5 class model provided confidence in 

the final results.  Due to the large sample size, the bootstrap statistical tests were 

uniformly significant and thus provided less guidance than other consideration for the 

final model.  After all of the various arrangements were explored with regards to the 

variance structures and the influence of the covariates on both the risk factors and the 

indicators of class, the patterns presented in our final 5 class model emerged and re-

emerged in nearly all model configurations (with the important exception of the final 

model presented in chapter 4).  At the same time, the 6 class model produced a large 

amount of variation in the underlying patterns as different model arrangements were 

explored, indicating a possible over-specification of the number of classes which led to 

the unstable results.  The 4 class model, while generally stable, failed to delineate the 

weekend warrior pattern nor the highly active class, thus missing important sub-

populations.  The stability of the 5 class model along with the regularity of the 

appearance of those sub-groups of public health interest led to a great deal of confidence 

that the 5 class model was the most appropriate.  

 The first hypothesis of Aim 1 was that a weekend warrior class would emerge.  The 

five class analysis presented in chapter 4 did not include direct effects on the indicators 

of class.   With this model structure, the presence of the weekend warrior for the overall 

MVPA was not indicated.  This group was clearly present, however, for the bout 

minutes of MVPA.  The analyses which followed in chapters 5 and 6 only included 

overall MVPA and not VPA, but added direct effects on the indicators of class.  In these 
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analyses, the weekend warrior consistently emerged.   Unfortunately, the VPA analysis 

failed in nearly all cases due to the low number of participants accumulating any VPA. 

 The last three hypotheses were also supported by our results.  A consistently active 

class, a highly active class with less activity on the weekend, and a class that was 

inactive on all days emerged for overall MVPA and bout minutes of MVPA. 

Specific Aim 2 

 The second aim was to determine whether sociodemographic characteristics were 

associated with the established activity classes identified through Aim 1.  Even though 

males were consistently associated with higher activity classes as hypothesized, African-

Americans and those with less education were not associated with membership in the 

least active class as hypothesized.  In fact, those with less education were significantly 

associated with membership in the most active class, as were African-Americans, even 

though this latter association was not significant.  An interesting area of future research 

would be to determine whether the source of the high levels of activity among these 

important sub-populations originate from leisure-time, occupational, or some other type 

of activities.   

 Hispanics were hypothesized to be in the more active classes, which was found to be 

true based on these results, particularly for non-Mexican Hispanics.  Acquiring 

additional information on occupational activities, time spent in these activities, and 

intensity of these activities would be an interesting area of future research.  Higher age 

was consistently associated with membership in the less active classes, as hypothesized.  

Finally, higher household income was associated with all of the more active classes.  An 

interesting area of future research would be to determine if family income simply serves 
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as a proxy for occupational activities.  Therefore, future analysis could include the 

association of family income among those with similar occupational activities. 

Specific Aim 3 

 The goal of Aim 3 was to determine which, if any, of the physical activity classes 

were associated with the risk factors related to the metabolic syndrome.  The two 

hypotheses were that 1) higher overall physical activity would be positively associated 

with the biological markers of health and that 2) certain patterns of physical activity are 

associated with positive profiles, regardless of overall activity.  With the exception of 

the weekend warrior class, the final patterns reflected groups which had increasing mean 

levels of physical activity on all days.  Thus, the risk factor analysis using these activity 

patterns was not able to fully assess the associations of the patterns of activity 

independent of overall activity level because the classes only represented increasing 

mean activity. 

 This challenge led to the secondary analysis.  By using the coefficient of variation 

(CV) as a tool for categorizing the participants, the associations between the risk factors 

and the regularity of physical activity over a seven day period could be assessed.  

Although the CV does not provide information on the exact pattern of physical activity, 

the essential goal of determining whether intermittent activity leads to health benefits 

that are similar to regular physical activity was still possible. 

 The final analysis of the risk factors provided the most compelling results.  In all 

cases, class 2, the class of which most would have met the physical activity 

recommendations of 30 minutes of MVPA on most days, was consistently less 

associated with the health risk factors compared to class 1, the least active class, as 
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hypothesized.  Most members of class 2 would have met the US physical activity 

recommendations, thus supporting the previous research on the beneficial effects of 

achieving the recommendations.  In addition, class 4, the second most active class, 

consistently showed lower associations with all of the risk factors compared to class 2.   

 Assessing the risk factor associations of the weekend warrior were less informative 

for several reasons.  While the weekend warrior had a lower odds of all of the risk 

factors compared to the least active class, the magnitude of the odds ratios ranged from 

only slightly lower (OR=0.9 for triglycerides) to much lower  (OR = undefined for blood 

glucose).   This variability in the magnitude of the associations was possibly due to the 

small sample size resulting in the large confidence intervals around the estimates.   In 

addition, the weekend warrior’s level of physical activity Monday through Friday far 

exceeded the US physical activity recommendations, even though their level of activity 

on the weekend was even higher.  Thus, any association seen for the weekend warrior 

class could simply have reflected a generally high level of physical activity, and was not 

necessarily related to the increased level of activity on the weekend. 

 The secondary analysis provided a key piece of additional information which helped 

clarify some of the questions that remained from the class analysis.   By categorizing 

people into quartiles of the CV, the question could then be asked whether consistent 

daily activity was associated with better health profiles.  Even though the CV attempts to 

remove the effects of heteroscedasticity on the variance estimates, restricting this 

analysis to just those participants who achieved 150 minutes of MVPA over the seven 

days reduced the possibility that any associations found were only residual associations 

with the underlying levels of physical activity.   In addition, the restriction attempted to 
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remove the possible threshold effect among those who accumulated at least the 

recommended levels of physical activity.    

 These results also have the additional advantage of assessing the associations with 

physical activity only among those who are active.  This reduced the possibility of 

confounding caused by inactive participants being inactive for reasons associated with 

the health risk factors.  For example, those who have a high BMI and are diabetic might 

be less likely to be employed in occupations which require physical activity or 

participate in leisure-time physical activity due to the discomfort that physical activity 

causes them.  It might not have been their physical activity levels, however, but rather 

their eating habits, that led to their high BMI and diabetes.   

 The final results from the secondary analysis indicated with a high level of 

consistency that, among those who achieved the recommended levels of physical 

activity, the regularity of how one accumulated their MVPA was not associated with the 

risk factors related to the metabolic syndrome.   

Overall conclusions 

 These results indicate that a very large portion of the US population may be classified 

into patterns of physical activity that represent low levels of MVPA throughout the 

week.  Fewer than 1% of the population met the VPA recommendations least 20 minutes 

on 3 or more days per week.  In addition, a weekend warrior class emerged for 

approximately 1% of the population.  Both gender and age emerged as significant 

predictors of membership in the different patterns of physical activity.  The higher odds 

of Mexicans, other Hispanics, and NH-blacks being in the most active class was novel 

and needs future research to determine the source of the high level of activity.   
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Taken together, these results indicate that physical activity accumulated at the level 

of the current recommendations of 30 minutes of moderate physical activity on most 

days of the week is beneficial for all of the risk factors associated with the metabolic 

syndrome.  Additional activity appears to offer additional benefits.  Finally, 

accumulating physical activity regularly over many days or in long periods on fewer 

days may offer similar benefits.  However, these conclusions are tempered by the fact 

that this is cross-sectional data. 

 Thus, in order to target appropriate physical activity interventions, it may be 

important to assess whether a strategy of regular or concentrated physical activity is 

most appropriate.  For those groups who appear to accumulate physical activity at lower 

levels, such as females, older people or those with lower income, different approaches 

more be necessary.  For example, females and those with lower levels of family income 

may, due to work obligations, be more capable of finding a day or two per week in 

which to engage in extended periods of exercise than dedicate a small part of each day 

toward physical activity.  Conversely, older populations may need to limit the length of 

their periods of physical activity due to physical limitations.  In addition, dedicating a 

small part of each day to physical activity may be more realistic for older populations, 

many of whom may not be working. 

 The primary weakness of this work, which has also been previously explored, is the 

cross-sectional nature of the NHANES survey.  Because of this, the results have to be 

viewed with caution.  The primary concern is that the health status of an NHANES 

participant may affect the participant’s level of physical activity, or that some other 

unmeasured confounding factor is associated with both the risk factors and the 
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participant’s level of physical activity.  If this were true, and it is entirely possible, then 

the associations found between physical activity and the biological markers of health 

would be spurious.  In fact, quite to the opposite, they could represent the affect of poor 

health status.  This issue can not be resolved with the current NHANES data.   
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Appendix A 

The probability that an individual i belongs in class k is modeled based on the following 

equation: 
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Where cik = 1 if subject i belongs to class k and 0 otherwise,
kca is the logit intercept for 

class k, 
kc'γ is the set of sociodemographic parameter estimates for class k, and ix is the 
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Similarly, the ratio of the probability that subject i with the referent sociodemographic 

characteristics xi is in class k compared to the probability that someone with the referent 

sociodemographic characteristics belongs to the referent class is: 
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And thus the beta co-efficients kc'γ can be seen as the log transformation of a type of 

“relative risk ratio”.  For a practical interpretation, the exponentiated beta co-efficients 

represent the “relative risk” that a participant with covariates xi is in class k, relative to 

their proportion in the referent class, as compared to the ratio of a subject with the 

referent sociodemographics being in the same two classes. 
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Appendix B 

The modeling of the ordinal health risk factors is conceptualized as the modeling of 

continuous variable representing a probability continuum.  Thresholds, indicated by the 

symbol τs, are established along this continuum above which the ordinal variable is 

assumed to be in the next higher level of the risk factor.  Thresholds can be thought of as 

a type of intercept parameter.  As such, different thresholds are established for each 

activity class based on the likelihood that the individuals in that class will take on each 

of the ordinal values, while covariates may affect where an individual falls along this 

continuum.   

 Muthen, the author of our statistical software, has established what he refers to as a 

Framework B, a generalized modeling scheme in which the risk factors may be predicted 

by latent class levels, while latent variables, typically conceptualized as an intercept and 

slope parameters, may also simultaneous predict class membership as well as the risk 

factors.  In this regression framework, an individual’s value along the continuum, 

indicated by 
*

iµ and conditioned on class k, is defined by: 

iµµµ
*

i kik
xKηΛµ += (1) 

iµµµ kki
xΓαη += (2) 

Where 
kµK is the logit parameter matrix for the covariates and ix is the matrix of 

covariates for subject i.
kµΛ represents the factor loadings for each of the latent variable 

values and iµη represents the vector of latent variables.   

 This modeling can be conceptualized by referencing Figure B.1.  This graph 

represents an risk factor variable with 3 ordinal levels.  The thresholds for transitioning 
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between these levels are indicated by τ1 and τ2. An individual with covariates x1 has a 

predicted 
*

iµ that makes it most likely they will have the lowest ordinal value, 

somewhat likely that they will have the next higher value, and unlikely that they will 

take on the highest level of the risk factor.  Similarly, an individual with covariates x2

has a predicted 
*

iµ that makes it most likely they will be in the highest (3rd) level of the 

ordinal risk factor. 

 In Latent Class Growth Analysis (LCGA) or Growth Mixture Modeling (GMM), in 

which latent growth factor variables are added to the structural equation 

model,
ik µµ ηΛ in equation 1 represents the random effects (typically the intercept and 

slope terms) of the latent variables on the predicted risk factor, 
*

iµ , conditioned on 

class K.  Because we did not model with growth factors, and opted instead for LCA, this 

part of the equation drops out.  In addition, in our analysis the parameter estimates for K 

were not allowed to vary across classes, leaving simply: 

iµ
*

i xKµ = (3) 

 Thus, when all of the risk factor variables are modeled simultaneously (and indexed 

by j), then the categorical vector representing these values, µij ( j = 1, 2,…., r), with Sj

ordered categories, is assumed to follow an ordered polytomous logistic regression, 

where r is the total number of risk factor variables and s = 0, 1, …, Sj -1, and 

∞=−∞=
jS,,o,, , kjkj ττ .

sij =µ if 1,,
*

,, +≤< skjijskj τµτ (4) 

)()()|( **
1 ijsijsiiij FFxcsP µµµ −== + (5) 
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))(exp(1
1)( *

*

ijs
ijsF

µτ
µ

+−+
= (6) 

)( *
ijsF µ is thus the probability that subject i falls below the threshold τs of ordinal 

variable j.  Clearly, then, the probability of being above the threshold is 1 - )( *
ijsF µ .

And thus the odds of being above vs. below the threshold is: 

))(exp(

))(exp(1
1

))(exp(1
))(exp(

))(exp(1
1

))(exp(1
11

)(
)(1 *

*

*

*

*

*

*

*

ijs

ijs

ijs

ijs

ijs

ijs

ijs

ijs

F
F

µτ

µτ

µτ
µτ

µτ

µτ
µ
µ

+−=

+−+

+−+

+−

=

+−+

+−+
−

=
−

(7) 

Because the predicted threshold values (analogous to intercept parameters) vary between 

activity classes, then the odds ratio of hypothetical class 2 being above the threshold of 

level s of ordinal variable j compared to class 1 is: 

))(exp(
))(exp(
))(exp(

12*
1

*
2

classsclasss
ijclasss

ijclasssOR −−
−

− −−=
+−

+−
= ττ

µτ
µτ

(8) 

And thus, the inverse of the exponentiated difference between the threshold levels of 

class two versus class one can be interpreted as the odds ratio of being in level s or 

higher of health variable j comparing class 2 to class 1. 
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Figure B. 1.  Latent variable model for predicting the log-odds of experiencing one 
of the risk factors given an individual’s covariates and latent variable. 

τ1

τ2

x1 x2

i*u

x
Modified from Agresti[86] and Muthen[60] 
τ 1 and τ 2 represent thresholds for a 3 level ordinal risk factor. 

Pr(y=2 | X1)

Pr(y=3 | X2)

iµµµ
*

i kik
xKηΛµ +=
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