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ABSTRACT 

R. Todd Jobe: Biodiversity and scale: determinants of species richness in Great 
Smoky Mountains National Park 

(Under the direction of Peter S. White) 

Species richness is the number of species in a given area or sample and is the 

most fundamental measure of biodiversity.  It results from the aggregation of 

individual species whose distributions are influenced by processes operating on a 

wide range of scales.  Estimating and understanding species richness at landscape 

scales (103-106 ha) is not easily achieved from small sample areas that can be 

completely inventoried.  In particular the spatial structure of environments makes the 

richness observations across a landscape non-additive.  This dissertation develops 

the vital links between the spatial structure of ecological factors that are 

hypothesized to control species richness, spatial variation in species composition, 

and the sampling strategies used to measure species richness. 

I present a method for objectively and iteratively assessing patterns of 

biodiversity.  This method builds upon “ecological zipcodes” that classify the 

landscape by energy flux, temperature, and precipitation.  I also present a model of 

human energetic expenditure during walking that can be applied at landscape 

scales.  I use this model to analyze sampling bias associated with accessibility for 

vegetation surveys.  I used both the "ecological zipcodes" and the model of 

accessibility to design efficient and representative biodiversity samples based on 
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clustered-stratified sampling.  Finally, I assess the reliability of richness estimators 

that incorporate turnover in species composition. 

My results illustrate that efficient and representative richness assessment is 

possible, even with little a priori knowledge about the spatial structure of species 

richness.  They also demonstrate that typical biodiversity assessments show a 

strong bias in accessibility that is both a product of the spatial structuring of samples 

as well as environment.  This bias is significant even for small biases in sample 

accessibility.  Also, I show that though clustered sampling designs capture multiple 

scales of aggregation, their representativeness is very sensitive to stratification.  

Finally, my results show that species richness estimates that incorporate turnover 

are confounded by the interaction between sample size and environmental 

heterogeneity.  Only when controlling for these effects, can information about the 

spatial turnover in species composition be effective in estimating species richness.
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Chapter 1 

Introduction: The scale dependence of species richness – 

Fundamental questions and challenges

Introduction 

The most fundamental measure of biodiversity is species richness – the 

number of species in an area or sample.  Understanding what shapes patterns of 

species richness is one of the central problems of ecological science.  Yet, for all 

the importance of richness, there are many seemingly simple questions 

surrounding this fundamental ecological property that remain unanswered.  In 

fact, the total amount of richness on Earth is not known within one order of 

magnitude.  What makes quantifying patterns of species richness so difficult?  

There are three main factors.  First, any pattern in richness is really an aggregate 

pattern of individual species distributions (Gleason 1926).  In order to understand 

the ecological processes that shape patterns of richness, it is necessary first to 

understand the processes that shape the individual species that make up these 

patterns.  The number of species can be very large with a very complex web of 

interactions.  In this dissertation, my analyses assume that two of the most 

important structuring processes are niche-environment interactions (disturbance 

is included here as the main effect is through disturbance effects on 

environment) and vagility-spatial template interactions.  Second, patterns of 
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richness and the processes that shape them happen across many scales 

simultaneously (Rosenzweig 1995).  Ecological processes influencing species 

richness at a particular scale are not necessarily the same ones operating at 

larger or smaller scales.  Third, richness patterns are ever changing as species 

disperse, are disturbed, and adapt to their environments.  Additionally, modern 

anthropogenic effects have caused and continue to cause changes in richness 

patterns (Thomas et al. 2004;Vitousek et al. 1997;Stohlgren et al. 1999).  The 

richness assigned to a spot today is not the richness we will see in future 

decades nor what was present in the past. 

Perhaps these complexities arise because our ecological data are 

inadequate.  If samples were large, continuously resampled, and collected at 

multiple scales, then the abundance of all species could be completely mapped 

and all spatial and temporal scales would be present in the data.  Patterns of 

richness would be boiled down to the intersection of measured species ranges 

whose environmental correlates and response to spatial landscape structure 

were well-described.  However, even if such an effort were practical, it would be 

a waste of sample effort.  The relative abundance distributions of species dictate 

that most of the data collected would be redundant (Preston 1948;Fisher et al. 

1943) since there would be unnecessarily large numbers of observations of the 

most common species.  This built-in redundancy highlights the importance of 

understanding the processes that control the turnover of species across sample 

units of known richness that are by necessity (or by design) spatially disjunct and 

restricted to a subset of the study area in terms of sample area.  Further, the 
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underlying problem that results from the fact that our richness observations are 

based on small and disjunct samples is that species turnover complicates the 

extrapolation of total richness from samples and makes the richness of samples 

non-additive across landscapes.  This dissertation focuses on efficiently 

quantifying, analyzing, and understanding the factors that structure species 

richness and turnover, particularly the physical environment, and their influence 

on species richness across scales. 

Much of the turnover associated with species richness patterns is correlated 

with environmental heterogeneity, especially at a landscape scale (Nekola & 

White 1999;Whittaker 1956).  Understanding how species composition changes 

along a few environmental gradients, also known as gradient analysis, has a long 

history in ecology (Whittaker 1967).  There are a myriad of processes, however, 

that control the turnover of species distributions at many different scales, not just 

environment.  Consequently, one of the key issues for understanding species 

richness across broad scales is learning how to disentangle the effects of 

environmental heterogeneity from these other processes, and how to do that with 

necessarily disjunct observations.  Further, our assessments of these effects are 

sensitive to the grain and extent of observations (Palmer & White 1994).  

Whether it be for the purpose of efficiently capturing as many species as possible 

across a large area (e.g. the All-Taxa Biodiversity Inventory of Great Smoky 

Mountains National Park; White et al. 2000), estimating total species richness of 

a landscape, or estimating the effects of disturbance on species richness, it is the 

establishment of independent correlation between environmental heterogeneity 
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and species turnover, and the relationship of these correlations to grain and 

extent that are the vital links to understanding species richness at a landscape-

scale. 

In this dissertation, I develop the linkage between species richness and 

both environmental gradients and spatial effects related to grain and extent 

through answering four fundamental questions.  1) Given species richness 

assessment as a goal and given that we may not know a priori how richness 

patterns associate with environment, how should we go about capturing many 

species in a wide variety of environments and iteratively improve our 

understanding of what variables shape species richness patterns?  2) Given that 

species distributions and samples rarely exhibit random spatial aggregation at a 

landscape scale, how does the interface between species distributions and 

sample designs influence our interpretation of ecological processes?  3) How do 

we design long-term samples that efficiently maximize species capture, while 

disentangling environmental effects from other spatially autocorrelated 

processes?  And, 4) given that capturing all species is impossible and that most 

richness estimators are meant to estimate local diversity, how can true richness 

be extrapolated from the observed richness of a sample for large, heterogeneous 

landscapes? In this dissertation, I answer these questions in the context of The 

Great Smoky Mountains National Park (GSMNP).  Below, I show how each 

chapter addresses these questions and describe the fundamental ecological 

principles that form the base of each chapter. 

Chapter Summaries 
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In Chapter 2, I present a strategy for accurate assessment and monitoring 

of biodiversity over large, complex landscapes (areas of ~103-106 ha.).  The 

premise of this chapter is that at the start of any biodiversity assessment little a 

priori knowledge of how environment correlates with species distributions is 

available.  Further, the individual species that make up patterns of biodiversity, 

respond to a variety environmental factors, and the correlations between 

environment and species composition are likely to be complex.  In spite of these 

complexities, every biodiversity assessment must begin by answering the 

question “How can sample effort be most efficiently allocated to maximize total 

richness?”  Once data are collected, managers must also be able to incorporate 

lessons learned from prior observations to ask more refined questions about 

particular species or taxonomic groups. 

The general strategy I present in chapter 2 addresses the issues outlined 

above.  This strategy is then applied to the specific case of GSMNP.  Beginning 

from the important ecological factors of energy flux, temperature, and 

precipitation, a landscape classification for stratifying biodiversity assessments is 

presented.  This classification, termed “ecological zipcodes”, efficiently 

represents the combined environmental distribution of these factors.  I also 

introduce a method for clustering samples in a landscape to account for both 

fine-grained and coarse-grained variation in species distributions.  This sample 

design is elaborated and tested in Chapter 4.  Finally, I show how studies can be 

iteratively designed to incorporate additional variables such as soil chemistry and 

disturbance, or improve the original ecological zipcodes. 
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In chapter 3, I move from discussion of the interactions between species 

and environment to the interface between species distributions and the humans 

that survey, conserve, or disturb them.  Landscape structure controls both the 

distribution of species and human interactions with species.  One major way that 

landscape structure influences sampling is through accessibility.  All else being 

equal, the more difficult a place is to walk to, the less intensely people visit, 

disturb, or study it. 

In chapter 3, I develop a cost-benefit approach to determining the impact of 

these human influences on sampling design, patterns of disturbance, the 

distributions of species, and ecosystem function.  I do so through the creation of 

a model that estimates the energetic cost of walking through a landscape.  This 

model considers the ways that distance, slope, stream crossings, and vegetation 

influence the energetic cost of walking.  I apply this model to GSMNP to assess 

the correlations between vegetation communities in the Park and survey data.  I 

discuss the myriad ecological questions to which this accessibility model can be 

applied including the effects of human disturbance as well as conservation 

planning, management, and restoration. 

In chapter 4, I test the effectiveness of using both ecological zipcodes and 

the accessibility model in survey design for long term biodiversity monitoring.  In 

addition I discuss four issues that influence design effectiveness at landscape 

scales.  First, samples must reflect the environmental variability of the landscape 

as variation in environment influences variation in species composition.  Second, 

samples should capture a broad array of communities...  Third, biodiversity 
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surveys must account for the spatial autocorrelation present in species 

distributions.  Finally, because the cost of sampling increases as accessibility 

decreases and because no monitoring program will continue if fieldwork is 

unreasonably difficult, sample sites must be accessible. 

I present a sample design that fulfills these qualifications.  Following a 

stratified-clustered design, I generate a set samples for GMSNP.  Sample 

stratification derives from ecological zipcodes developed in Chapter 2.  The 

clustered design allows testing and controlling for spatial autocorrelation in 

vegetation patterns and in addition improves sampling efficiency.  I analyze the 

effect of weighting sites by the accessibility model developed in Chapter 3 of 

human accessibility.  I show that although stratification by ecological zipcode 

guarantees environmental variety, such samples do not capture a greater variety 

in species composition than a random sample.  I also show that weighting sights 

toward more accessible locations causes significant changes in the 

environmental representativeness. 

In Chapter 5, I draw upon lessons learned in chapters 2-4 about the 

relationship between patterns of species richness, variation in environment, and 

sampling design to better assess species richness at landscape scales.  There is 

a long history in ecology of estimating total species richness from sample data, 

and a wide variety of techniques for doing so.  In spite of this history, these 

estimators typically underestimate species richness.  One hypothesis for why 

estimators tend to underestimate total richness is that they do not explicitly 

account for increases in species richness due to turnover in species composition.  
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There are estimators, however, that attempt to explicitly incorporate variation in 

species composition through space.  I compare these estimators against classic 

richness estimators that do not include turnover through analysis of a dataset of 

native trees in GSMNP, The results of this chapter suggest that separating the 

biases associated with small sample sizes, while controlling for environmental 

heterogeneity, can improve the richness estimates based on the turnover of 

species composition with distance. 

In the Chapter 6, I synthesize the results from each chapter and show how 

this research contributes to closing the gaps in understanding that exist between 

ecological processes and richness patterns, between human influences and 

richness patterns, between sampled and true richness patterns, and between 

local richness patterns and landscape ones.  I also discuss the new research 

questions that emerge from my work.
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Chapter 2 

Ecological zipcodes: a strategy of environmental classification for 

biodiversity assessment 

Abstract 

There is a great need for simple yet flexible and biologically meaningful ways of 

classifying landscapes using readily available data for the purposes of inventorying 

and monitoring biodiversity.  In this paper we describe a strategy developed for the 

All Taxa Biodiversity Inventory (ATBI) in Great Smoky Mountains National Park (NC 

and TN, USA) that establishes an objective and iterative approach to assessing and 

understanding patterns of biological diversity.  Our strategy begins with the selection 

of ecologically important and available environmental factors.  For the ATBI, we 

selected variables based on energy flux, temperature, and moisture.  We show how 

to classify and combine these variables into a single classification scheme of 

“ecological zipcodes” that efficiently represents the combined environmental 

distribution of these factors.  We also present a method for clustering samples of a 

landscape survey to account for both fine-grained and coarse-grained variation in 

species distributions.  Finally, we show how studies can be iteratively designed to 

incorporate additional variables such as soil chemistry and disturbance, either as 

continuous variables or as contrasts for direct hypothesis testing using the ecological 

zipcodes.  By translating a complex landscape into a simple yet biologically relevant 
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distribution of ecological zones, our strategy can contribute a key structural 

component to current efforts of biodiversity management. 

Keywords 

landscape classification, All-Taxa Biodiversity Inventory, spatial autocorrelation, 

Great Smoky Mountains National Park
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Introduction 

Accurate assessment and monitoring of biodiversity across large, 

heterogeneous landscapes is a daunting task.  At these scales (~103-106 ha) 

exhaustive surveys are impractical, and assessments must be based on a limited 

number of well-placed samples.  The question facing land managers is: “How should 

sample effort be distributed across a large landscape in a way that maximizes the 

number of species that are observed?”  A common approach to this question would 

be to consider the variety of environments that are present in the landscape, since 

environmental variation is fundamentally correlated with variation in species 

composition.   

For many taxa we know very little about how species distributions correlate 

with environment, though we do know the major environmental determinants of 

vegetation pattern on the landscape.  Environmental gradients are complex and 

overlain by patterns of human and natural disturbance.  In addition, spatial factors, 

including the size and isolation of habitats (Hanski & Gilpin 1991;Ricketts 2001) as 

well as dispersal history (Skellam 1951;Clark et al. 1998) also influence species 

distributions.  Regardless, the important environmental variables controlling species 

distributions are likely to change between taxa.  The possible number of variables 

that could serve to predict species distributions forms a long list (Table 2.1).  Further, 

the influences of environment as well as patterns of biodiversity vary with scale 

(Rosenzweig 1995).  The result of this complexity is that, even in the most intensely 

researched areas in the world, biodiversity inventories are vastly inadequate.  There 

is a great need for efficient biodiversity surveys that capture the wide array of 
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environments and spatial scales that species are distributed across.  When fieldwork 

starts, we are unlikely to know a priori which variables are the most important 

environmental predictors of species distributions—and, in any case, the most 

important variables are likely to vary from one taxonomic group to another.  

Therefore, we must make some educated decisions at the outset about which 

environmental variables apply to a wide range of taxa, and what spatial scales that 

must be captured by the sample.  Then, we must be able to iteratively improve our 

choices as data are collected and correlations with other variables become apparent 

(Turner 1989;Thompson 1991).  Also, by creating a framework for structured 

observation, we create a scheme for plot sampling that will add a repeatable 

dimension to biological inventory that will support monitoring.  This framework brings 

together two related scientific fields—ecology and taxonomy. 

We advocate a landscape classification approach to biodiversity survey design 

that achieves these goals and is easily implemented by managers.  We describe this 

approach with particular reference to the All-Taxa Biodiversity Inventory (ATBI) 

conducted in Great Smoky Mountains National Park.  The ATBI Science Plan (White 

et al. 2000) divides the overall approach into two components: traditional taxonomic 

inventory (simple exploration without quantitative stratification and without explicit 

quantification of sample grain and extent) and structured observation.  The 

structured observation strategy creates an objective and iterative approach to 

assessing and understanding patterns of biodiversity.  This strategy does not 

address specifically the design of sampling units.  That, of course will vary between 

studies and taxonomic groups (e.g. quadrates for vegetation; trappings or timed 
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searches for animals).  Rather, we describe how a plot-monitoring network should 

be arranged to capture the important environmental variation in the study area. 

This strategy begins with the selection of ecologically important and available 

variables.  We show how to classify and combine these variables into a single 

classification that efficiently represents their states: an ecological “zipcode”, so 

named because it assigns an ecological address, in which values of particular digits 

correspond to states of a particular environmental factor, to all locations in the Park.  

(Unlike postal zipcodes, however, these ecological zipcodes define a unique 

environmental address, but one that repeats in space, so it is an address that is not 

spatially unique)  We also present a method for clustering sampling units to account 

for small-scale variation in species distributions.  We describe how to increase 

sampling efficiency through the inclusion of a measure of site accessibility.  Finally, 

we show how studies can be iteratively designed to incorporate soil variables, 

disturbance, and spatial pattern, either as continuous variables or as contrasts using 

the ecological zipcodes. 

The first decision: which environmental factors are important? 

Researchers usually have reasonable “first guesses” about which ecological 

variables are responsible for the variation in species composition across a 

landscape, at least for more macroscopic and well-studied organisms such as 

vertebrate animals and vascular plants.  Taken from ecological first principles, these 

variables form the base and justification of the ecological zipcodes.  Of course, a 

priori knowledge of which variables predict variation in species composition is limited 

before data are collected.  As data are collected and analyzed, new variables may 
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show correlations with species composition.  Some or all of the initial set of variables 

may be uncorrelated with changes in species composition.  These initial variables 

represent a type of informed null hypothesis to be supported or rejected by the data.  

Iterative improvement in our knowledge of important ecological variables predicting 

variation in species composition is one of the goals of biodiversity assessment, and 

of the ecological zipcodes.  

In our study, we selected temperature, water availability, and insolation as 

three important ecological variables for variation in species composition in GSMNP.  

Each of these variables has been shown to correlate with species composition for a 

wide variety of taxa and across many scales (Hawkins et al. 2003).  Temperature 

controls the metabolic rates of animals (West et al. 2001), and cold temperatures 

limit potential investment in plant growth (Korner 1998).  These physiological 

impacts have consequences for both species abundance and diversity (Allen et al. 

2002).  At a landscape scale, the major variation in temperature of GSMNP comes 

from adiabatic cooling.  Elevations in the Park range from 266m to 2029m.  Given an 

adiabatic lapse rate of ~5°C/1000m, the mean temperature difference for the 

elevation ranges of GSMNP is about 9°C.  The adiabatic cooling associated with 

increased elevation is one of the most significant driving factors of plant community 

composition in park (Whittaker 1956).  Temperature variations can also be seen as 

distance from streams increases within the Park.  Nighttime katabatic winds from 

high elevations tend to follow stream drainages and lower the temperature close to 

streams (Geiger 2003). 
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Water availability, like temperature, is also correlated with variation in species 

composition in a variety of systems.  Water and carbon dioxide provide the chemical 

reactants for photosynthesis in plants.  Plants vary widely in their water use 

efficiency.  Water is required by animals either for respiration or as an environmental 

medium, and correlates strongly with composition of animal communities 

(Andrewartha & Birch 1954;Root 1988).  Energy input from the sun interacts with 

precipitation (Stephenson 1990).  Biomass and evapotranspiration of plants as well 

as soil and bedrock types also influence water availability.  GSMNP receives 150-

200cm of rainfall per year.  Precipitation in the Park increases with elevation 

because the cooler air at high elevations increases condensation resulting in 

orographic rainfall.  Precipitation runoff and the percolation of water through the soil 

tend to concentrate water in coves and stream drainages. 

Closely allied with and strongly influencing temperature, insolation is the 

number of photons reaching the earth’s surface.  Insolation controls the amount of 

energy available for photosynthesis in plants, which forms the base of the carbon 

chain in terrestrial ecosystems.  Insolation also influences phenology directly through 

temperature or photoperiod, and other life-history traits may be sensitive to 

photoperiod or the intensity of solar radiation (Rathcke & Lacey 1985).  Local 

insolation also impacts evaporation and water availability.  At local scales, insolation 

is dependent upon slope, aspect, elevation, and relative exposure.  At a global 

scale, the correlation between aspect and insolation increases toward the poles.  

South-facing slopes have a higher angle of incidence to solar radiation than do 

north-facing or slopes and are more strongly insolated.  Insolation increases with 
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elevation, because the atmospheric scattering of light is reduced at higher 

elevations.  The most notable variations in insolation for GSMNP are seen in areas 

of relative shade versus areas receiving direct sunlight such as north-facing coves 

and south-facing ridges. 

These three ecological variables (temperature, water availability, and 

insolation) served as our first estimation of the most important variables controlling 

variation in species composition across GSMNP.  In the earliest gradient analysis of 

GSMNP, elevation and relative exposure as surrogates of energy input, temperature 

and water availability were strongly correlated with vegetation patterns (Whittaker 

1956).  More generally, some combination of these variables control species 

composition for most terrestrial ecosystems (Holdridge 1947;Stephenson 

1990;Stephenson 1998).  We suggest them as the best starting point for classifying 

landscapes for biodiversity assessment.  As with most ecological variables, 

however, measuring each of these variables at scales appropriate for capturing 

variation in species composition is difficult, if not impossible.  This limitation 

highlights the next step in selecting the appropriate variables to sample across, 

when monitoring biodiversity: selecting appropriate measures for the ecological 

variables of interest.  

In general, the ecologically important variables cannot be measured directly, 

but rather must be viewed through the lens of correlated variables.  The number of 

possible data sources is large (Table 2.1).  The selection of all possible variables is 

constrained because we must be able to represent these variables continuously 

across large areas and at a spatial resolution small enough to capture meaningful 
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patterns of compositional variation.  These chosen measures must be correlated 

with the ecological variables selected earlier.  Further, they must be implemented in 

a GIS, which provides spatially explicit framework for selection of survey sites and 

the analysis of data (Scott et al. 1987).  The set of available data may constrain the 

list of ecological variables that can be used as correlates with changes in species 

composition.  Soil chemistry, for instance, is a major determinant of vegetation 

patterns, which forms the carbon base of the ecosystem, and would be a good 

candidate for inclusion in the landscape classification.  Estimates of soil chemistry 

can be developed from maps of major geologic units.  Soil chemistry can vary at 

relatively small scales (Cain 1931;Bratton 1976), however, and little or no reliable 

data is available at these small scales with comprehensive coverage for GSMNP.  

Temperature, water availability, and insolation, on the other hand, can be modeled 

at a small scale for the entire extent of the Park (Table 2.1).  We chose elevation, 

hillshade and a topographic measure of relative wetness to represent the combined 

influences of our latent environmental variables (Figure 2.1).  All three of these 

variables may be derived from digital elevation models (DEMs), which are readily 

available at a small grain (10m2) for all of the United States (see 

http://seamless.usgs.gov).  Elevation is correlated with temperature (higher 

elevations have lower temperatures due to adiabatic cooling) and water availability 

(higher elevations receive greater precipitation from orographic rainfall).  Hillshade is 

a measure of insolation and is calculated as the proportion of direct sunlight striking 

the landscape for a given solar azimuth and altitude, accounting for topographic 

shading.  We used a solar azimuth and altitude corresponding to a SW exposure to 
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the sun.  Calculated in this way, hillshade is also correlated with both temperature 

(SW-facing slopes have greater insolation than north-facing slopes) and water 

availability (the greater incoming radiation on exposed SW-facing slopes results in 

greater evaporative losses).  As a measure of relative wetness, we used the 

topographic convergence index (TCI) (Moore et al. 1991;Wolock & Mccabe 

1995;Yeakley et al. 1998).  It is calculated as the logarithm of the ratio between 

upslope contributing area and the tangent of local slope.  In general, low-elevation, 

cove-like habitats have high relative wetness and high-elevation ridges have low 

relative wetness. 

This process of selecting ecologically important variables and correlated latent 

variables results in a list of variables to serve as digits in the final ecological zipcode 

classification.  At this point, it is important to minimize the redundancy in the set of 

variables.  For the practical purpose of keeping the classification as simple as 

possible and to maximize the independence of explanatory variables within the 

ecological zipcodes (Mendenhall et al. 1998), we checked to see that each of the 

explanatory variables were uncorrelated.  Verifying independence among 

explanatory variables is especially important when the variables are derived from the 

same data source as in the case of elevation, hillshade, and TCI, which are all 

derived from a single DEM.  Table 2.2 shows the correlation and covariation 

matrices for elevation, TCI, and hillshade for GSMNP.  Since the Pearson’s 

correlation coefficients (r) of paired variables are all relatively close to 0, we have 

qualitative confidence that they are distributed independently in space, even though 

they were derived from the same DEM.  With the correlation analysis serving as the 
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final filter, we are left with a set of variables that are thought to be ecologically 

important for species distributions and are relatively independent of one another. 

The second decision: how should factors be classified? 

The second step in using continuous variables to create ecological zipcodes is 

transforming them into a ranked list of nominal variables, each with a fixed number 

of levels.  This process begins with a determination of the total number of classes 

desired.  The total number of environmental categories in the final classification will 

be the product of the number of levels in each variable.  In our GSMNP 

classification, we selected 5 levels of elevation, 3 levels of relative wetness, and 3 

levels of hillshade for a total of 5 x 3 x 3 = 45 classes.  Choosing the total number of 

classes is partly a function of available sampling effort, and the desired number of 

locations that each class should be sampled.  At least one sample per zipcode 

should be included in the sample for a full representation of environments in the 

biodiversity assessment.  The total number of classes can change as data are 

collected.  As data are collected, variables showing a stronger correlation with 

compositional variation should be more finely divided.  Initially, however, a 

reasonable stating point must be determined.   

This process can be made easier by considering the number of variables in the 

classification, the number of levels in each variable, and the number of sites that 

would be needed if the diversity of each class were sampled at an equal number of 

locations.  In our GSMNP classification, three variables were used.  If three levels 

were assigned to each variable, then there would be 33 = 27 classes.  Assuming 3 

survey locations per class, a balanced sample would require 81 separate survey 
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sites.  If four levels per variable were used, then the total number of classes would 

be 43 = 64.  Surveying 3 sites per sample, this classification would require 192 sites.  

Of course, the total number of sites constituting a reasonable biodiversity 

assessment will depend of on sampling effort and time required to survey each site.  

For a given set of explanatory variables, however, increasing the number of levels 

per variable results in geometric growth of the number of classes in the final 

ecological zipcode classification.  This property should place reasonable limits on 

the total number of classes for any given study. 

Once the approximate number of classes is determined, the number of levels 

for each variable must be determined.  While a balanced design may be appropriate 

when nothing is known about the relationships between species distributions and the 

selected environmental variables, it makes sense to employ the same a priori 

ecological hypotheses we used in selecting the environmental variables to select the 

number of classes for each variables.  The environmental variable with the strongest 

hypothesized correlation with variation in species composition should receive the 

greatest number of levels in the classification.  If species composition varies more 

strongly along these gradients than others, finer divisions of these variables will 

result in more obvious differences in species composition among the categorical 

classification than if the extra levels were evenly distributed among the explanatory 

variables.  Variables hypothesized to have weaker correlations with compositional 

variation should receive fewer classes.  For our implementation of the ecological 

zipcodes, we hypothesized that elevation had the strongest impact on species 
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distributions.  We assigned it five classes.  Hillshade and relative wetness both were 

split into three classes.  The total number of classes was 45. 

Once the number of levels for each variable has been selected, we must 

choose the how to partition these gradients into classes.  For continuous data we 

must consider equal-area versus equal-interval methods.  The former splits the data 

into classes that all occupy the same total area in the landscape.  This results in 

intervals of varying ranges in the classified data.  Equal interval classification on the 

other hand splits the dataset along ranges of equal magnitude regardless of the 

occupancy of those intervals on the landscape.  Figure 2.2 illustrates the difference 

in classification between these two approaches for relative wetness in GSMNP.  It is 

important to note that as the number of categories for a variable increases, equal 

area classifications approach equal interval classifications. 

The choice of which gradient partitioning method to use is largely dependent 

on the purpose of the sample.  If the study requires a relatively balanced population 

of zipcodes within the study area, then equal area classification is most appropriate.  

With variables having a skewed distribution of values, however, equal area 

classifications tend to produce categories that span a very small range of the 

variable (Figure 2.2a).  Equal area classifications also tend to miss rare 

environmental combinations, which are demonstrably important in characterizing the 

environmental heterogeneity of (and therefore the biodiversity component of) a 

landscape, as rare situations often harbor a disproportionate amount of the overall 

richness of the landscape.  Equal interval classifications, on the other hand, produce 

categories of equal range regardless of their abundance on the landscape.  This can 
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result in some classes that cover very little area.  This problem is multiplied in the 

final ecological zipcodes classification where multiple variables, each with very a 

rare category, are intersected.  The abundance of rare zipcodes may be so small 

that sampling them in the field is impossible (Figure 2.2b). 

To balance the objectives of having both realistic variable ranges and a large 

relative abundance of even the rarest zipcodes, we opted for a compromise between 

equal area and equal interval classifications.  We chose a classification scheme that 

was equal interval, but the interval choice was based on a data set for each variable 

in which 2% of the most extreme values were removed.  This classification method 

tended to produce better “high-middle-low” classifications in which the mode of the 

data was captured mainly in the middle category, and the high and low tails were 

captured in the other two categories.  

The above methods assume that little is known about the functional form of the 

relationship between the species distributions and the variable used in the zipcodes.  

As data are collected and the classification is improved, the functional relationships 

between one or more explanatory variables and species composition may become 

apparent (Urban et al. 2002).  In these cases, it makes sense to transform the 

environmental variables into a compositional turnover surface based on a regression 

of species composition on the environmental variable.  Then, equal interval 

classification of the new species surface would be most appropriate for sampling 

regimes, because each interval would represent some linear amount of species 

turnover. 

Creating the ecological zipcodes 
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The result of variable selection and factorization is a list of nominal variables 

ordered by the expected strength of their correlation to species distributions.  From 

this set of variables, the ecological zipcodes can be created (Figure 2.3).  The basic 

form of the ecological zipcodes is an n-digit number where n is the number of 

explanatory variables.  The ecological zipcodes are created through a simple 

algebraic procedure.  For a given location the ecological zipcode (z) is calculated as 

 ∑
−

=

=
1

0
10

n

i

i xz             { }100, <≤Ζ∈ xxx  (1)  

where n is the number of zipcode variables, and x is the vector of variable values.  

Though variable order does not matter for actual creation of the zipcodes, there are 

qualitative reasons to sort the zipcode variables such the variable with the strongest 

hypothesized effect is given the highest place value and the weakest variable is 

given the lowest place value.  When the zipcodes are mapped, this variable of 

greatest value will form the dominate gradient an integral coloring scheme followed 

by the variable of second greatest place value and so on.  The order we chose for 

our classification was elevation, TCI, and hillshade.  For example, zipcode 511 

indicates a high elevation (score of 5 for elevation), dry (1 for TCI) site of low 

insolation (1 for hillshade), while 533 would indicate a high elevation wet site of high 

insolation. 

The ecological zipcodes approach to landscape classification has some distinct 

advantages for interpretation, analysis, and visualization.  First, having a multi-digit 

classification allows users to easily interpret the classification in multivariate space.  

For the ecological zipcodes created for GSMNP, a zipcode 511 is immediately 
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identifiable as a high elevation, dry site, with northern exposure.  From a practical 

standpoint, having the variables ordered into a multi-digit zipcode according to the 

expected strength of their correlation with biodiversity allows more intuitive display of 

the ecological zipcodes.  If the zipcodes are displayed as unique values on an 

interval scale, the left-most digit dominates the visual pattern of the zipcode raster.  

The second digit is the second-most visible, and so on.  Thus, the zipcodes can be 

displayed with the relative importance of each variable visible.   

Using the ecological zipcodes for biodiversity assessment and monitoring 

Once the ecological zipcodes are created, the result is a landscape partitioned 

into discrete environments that vary across a set of gradients hypothesized to 

correlate with variation in species composition.  The next step in developing a 

biodiversity assessment is to select a series of sites among these environments to 

survey.  Depending on the focus of the assessment, all of the environments laid out 

by the ecological zipcodes could be sampled, or a set of environments that are of 

particular interest in the study.  In any case, a scheme must be created for allocating 

sample effort to locations that correspond to these various environments. 

Designing a sample for assessing biodiversity requires balancing two, 

sometimes conflicting goals.  First, the sample must capture a wide variety of 

environments.  That is the primary function of the ecological zipcodes.  The second 

goal is to design a sample that maximizes sampling efficiency.  Space is correlated 

with many factors that control species distributions (Legendre 1993).  Regardless of 

all external environmental factors, samples close together are likely to be more 

similar than samples far apart (Nekola & White 1999).  Dispersal history, in 
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particular, covaries with environmental variables across space, and disentangling 

the effects of dispersal history from environment is particularly important.  With such 

a profound effect on species distributions, it could be suggested that some distance 

component be added to the zipcodes.  Unfortunately, the effect of distance can only 

be measured relative to at least two points.  It is impossible to assign a single 

distance value to an ecological zipcode.  Geospatial location values could be added 

to the ecological zipcodes.  These measures tend to capture spatial trends as 

opposed to the structure imposed by spatial autocorrelation (Urban et al. 2002).  The 

landscape could be divided into a small number of categories that have similar 

geographic locations.  Watersheds would be the logical choice, because they 

represent one of the larger repeated units of landscapes.  This watershed variable 

could be included as a digit in the ecological zipcodes.  However, the spatial 

heterogeneity at smaller scales that is independent of the variation in the other 

variables in the ecological zipcodes is absent.  Only very large-scale trends could be 

seen using watersheds.  A solution to this problem might be to increase the number 

of spatial categories in the ecological zipcodes.  Each additional level in this spatially 

explicit variable greatly increases the total number of zipcodes.  Relatively small 

increases in the number of spatial categories can cause the number of zipcodes to 

grow quickly beyond practicality or usefulness. 

The alternative to incorporating spatial autocorrelation in the ecological 

zipcodes is to include it in the sample design itself.  By designing samples with 

multiple scales of spatial aggregation, we can disentangle the effects of the 

ecological zipcodes variables from other, unmeasured factors that are spatially 
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autocorrelated.  This is accomplished by using a clustered sampling design which 

tends to more faithfully capture the underlying spatial autocorrelation of both 

environment and species (Urban et al. 2002;Tobin 2004).  Creating clusters of sites 

can be done randomly, but also could be done to maximize environmental 

representation by stratifying both within and between clusters by ecological 

zipcodes.  Within-cluster stratification allows the separation of measured effects (the 

ecological zipcodes) from unmeasured, yet spatially autocorrelated effects. 

In addition to designing a survey that represents a variety of environments 

using the ecological zipcodes in a way that controls for spatial autocorrelation, a 

good biodiversity assessment should allow robust statistical testing of collected data.  

Statistical tests will be required to determine if the survey is actually capturing 

biodiversity at a rate faster than random in the Park.  Statistical tests will also be 

used to determine stopping rules for the assessment; to know when an inordinate 

amount of sampling effort will be necessary to observe the next new species.  

Finally, tests will be needed to determine which environmental variables are 

significantly correlated with changes in species composition as well as determine 

what new variables should be added into the ecological zipcodes.  Nested ANOVA is 

the typical parametric framework for hypothesis testing in clustered designs.  Since 

the joint inclusion probability of each pair of zipcodes is not fixed within a cluster, 

parametric methods are not appropriate.  Many randomization methods are 

available, however, since computers can enumerate many if not all of the possible 

outcomes of any given sample design.  This process is made somewhat easier and 

more robust in the case of the ecological zipcodes since the joint inclusion 
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probabilities of zipcodes within samples can be calculated directly.  These inclusion 

probabilities can be used in hypothesis tests of correlations between the variation in 

environment and observed variation in species composition. 

The final consideration for biodiversity survey design using the ecological 

zipcodes is sampling efficiency.  Though this requirement is often overlooked when 

designing samples to fit a certain statistical test, it is of primary importance to 

researchers in the field.  No survey design will be successful if plots are placed at 

random in a large area such as GSMNP.  Even without the added benefit of 

controlling for spatial autocorrelation, clustering of plots is beneficial from a data-

collection perspective.  Having three plots close together allows more efficient data 

collection than three plots randomly spaced in the landscape.  Maximum cluster 

size, therefore, should be controlled not only by the spatial autocorrelation structure 

of the environmental variables of interest, but also by the ability of the researcher to 

sample all plots in a single day.   

The benefit of clustered samples, however, also depends on the accessibility of 

the clusters.  A measure of landscape accessibility to humans, as measured by the 

energetic-cost associated with round-trip hiking to the survey sites, allows the 

majority of survey units to be selected in such a way as to minimize the time and 

money required to collect data.  For instance, using a model of accessibility (Chapter 

3) samples were selected for GSMNP for the purpose of permanently monitoring 

vegetation stratified by the ecological zipcodes; all within the 10% most accessible 

sites (Chapter 4).  Obviously, some bias may be introduced by limiting the possible 

sample locations to only the most accessible sites, so survey designs may 
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incorporate one or more survey units that test for the effect of accessibility on 

species composition.  Accessibility could actually be included in the ecological 

zipcodes as an explanatory variable in cases where human disturbances that are 

correlated with accessibility have a profound effect on species composition  

In addition to the original purpose of biodiversity monitoring, samples 

generated from the ecological zipcodes can be implemented for specific studies 

involving additional variables in which a range of environments need to be sampled 

within each factor.  Having a predefined, multivariate, categorical value assigned to 

each survey unit broadens the possibilities for meta-analysis and future applications 

of the original sample.  For instance, studies contrasting species distributions in 

logged versus un-logged areas may use the original zipcodes sample to capture 

similar environments in logged and un-logged areas.  A subset of the original data, 

with the specific environments of interests would be included.  The great advantage 

of this approach would be that environmental contrasts important for species 

distributions would be already built into the data.  Similarly, direct contrasts 

employing the zipcodes could be designed for additional categories of interest.  For 

instance, we can sample the same zipcodes: in limestone and sandstone areas for a 

direct contrast of bedrock influence; in contrasting geographic areas (in GSMNP, for 

example, this might involve the eastern versus western part of the Park or the 

generally north-facing Tennessee side and the generally south-facing North Carolina 

side; and in small and isolated patches versus large and contiguous patches of the 

same zipcode types. 

Evaluation and Extension 
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After a sample is selected and the initial field work is conducted, the 

relationship between species distributions and the ecological zipcodes should be 

evaluated and improved.  How well did variation in species composition correlate 

with the variables of the ecological zipcodes?  Do environmental data collected on-

site during fieldwork correlate more strongly with species distributions than do the 

ecological zipcodes? The answer to these questions will vary among species, but it 

is important to remember that the ecological zipcodes and their corresponding 

sampling design were meant to capture a wide range of environments, regardless of 

species identity or taxonomic group.  Water, temperature and insolation data could 

also be collected to assess the relationship between the ecological variables 

important for species composition and the surrogate measures used to in the 

ecological zipcodes. 

If a particular collected environmental variable shows stronger correlations with 

richness than the original variables in the ecological zipcodes, then that variable 

could be added to the classification.  The variable selection and categorization 

procedure can be repeated for this variable, and it can be added as a digit in the 

zipcodes.  If the variable is not measured at the grain and extents necessary for 

incorporation into the zipcodes, then a surrogate measure may be necessary.  

Alternatively, the variable may be sampled at its own characteristics scales and 

modeled across the landscape (e.g. fine-scale temperature models; Lookingbill & 

Urban 2003).  Researchers could plan for the addition of variables in the initial 

zipcode creation and stratify across fewer categories in the first sample.  Additional 

plots could be added to the sample the following field season stratified by the newly 
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incorporated variable.  As an example, Urban et al. (2002) outline a multi-stage 

sampling improvement for modeling vegetation patterns that could be applied to 

biodiversity patterns in general. 

While there are many species correlated with the ecological zipcodes, there 

may also be a few interesting habitats or species that are not.  Further, a species of 

ecological or conservation significance may be conspicuously underrepresented in 

the dataset.  In these cases, the original sample should serve as a baseline from 

which to collect species-specific data.  New samples can be selected based upon 

continuous or categorical variables such as soil type or disturbance that are not 

permanently incorporated into the zipcodes. 

In addition to rare or unique species not captured by the sample, the ecological 

zipcodes could be also used to find the rarest or most extreme environments in the 

Park, which are likely to be correlated with unique species.  Further, extreme and 

unique environments are also most susceptible to environmental change, because 

their representation in the landscape is so small.  If conditions change to reduce 

these environments, their demise will occur sooner than environments occupying a 

larger portion of the landscape.  Ecological zipcodes generated via equal interval 

data splits provide researchers with categorical representations of such 

environments (Figure 2.2b). 

Finally, if zipcodes and other environmental data are used routinely for the 

labels that accompany specimen collections, we can produce a coarse description of 

the habitat niche for species observed.  The variety of ecological zipcodes for 

recorded observations would describe the breadth of environmental tolerance for a 
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species and to some extent distinguish species occupying specialized habitats from 

those occupying a broad range of habitats.  This could be extended to species 

assemblages or communities as well. 

Conclusion 

The strategy for assessing biodiversity that we have outlined here is applicable 

to many systems beyond the one for which it was originally developed.  Exactly 

which variables are used in any single implementation of this strategy will change 

between regions.  The procedure, however, of hypothesizing the important 

ecological variables, categorizing those variables into class that can be sampled, 

and iteratively evaluating and refining the resulting ecological zipcodes remains the 

same regardless of region.  Given the importance of cataloging biodiversity in the 

face of global change, we see this strategy as a powerful tool for assessing 

biodiversity in a great variety of ecosystems.
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Figures  
Figure 2.1 The relationships between observed environmental variables used in the 
ATBI “ecological zipcodes” and their latent ecological counterparts.  Environmental 
variables that have a more direct relationship with species distributions (the right 
hand side of the figure), are often unavailable at the resolution or extent necessary 
for stratifying samples.  Data that are readily available at the appropriate scale may 
predict the more ecologically meaningful variables, but the exact form and strength 
of the relationship may be unknown. 
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Figure 2.2 Relative abundance of ecological zipcodes using various classification 
algorithms.  a) Histogram of relative wetness in GSMNP (as measured by the 
topographic convergence index) highlighting the vast difference in the categorical 
frequency distribution for different break methods. b) The ranked abundance 
distribution of GSMNP zipcodes created using different break methods.  The equal 
interval method based on data with 2% outliers removed provides a good balance 
between true categorical differences and rare zipcode abundance. 

a)  

b)  
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Figure 2.3 Workflow for creating ecological zipcodes.  For our study, all zipcode 
variables were derived from a single DEM.  They were classified and then combined 
into a single raster in which each variable represented 1 digit in the zipcode.  The 
classifications shown here used area equal intervals based upon the original 
variable with 2% of outliers removed. 
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Tables 

Table 2.1 A list of digitally available variables that influence species distributions in 
GSMNP along with the data form in which they are available.  The strength of 
correlation between these variables and biodiversity is probably unknown prior to 
sampling.  Further, data for many of these variables is unavailable at a small grain 
over the entire park.  In order to select variables for inclusion in the ecological 
zipcodes, they must have a hypothesized correlation with species distributions, and 
must be available at the appropriate resolution over the entire study area. The 
DAYMET data are modelled climatic variables available at a 1km2 resolution for the 
entire US (http://www.daymet.org). 

Resolution Extent Data Source
Direct

Energy Input Temperature 1km2 park modelled DAYMET
Insolation 10m2 park DEM derived

Water Availability PET N/A N/A N/A
Precipitation 1km2 park modelled DAYMET
Soil Moisture points sparse direct sample

Nutrient Availability Soil Texture points sparse direct sample
Soil Depth points sparse direct sample
Cations points sparse direct sample
N-P points sparse direct sample
pH points sparse direct sample

Vegetation Occurrence 1m2-100m2 sparse direct sample
Abundance 1m2-100m2 sparse direct sample

Indirect
Landscape Pattern Human Accessibility 10m2 park modelled (Jobe in prep.)

Dominant Vegetation polygons park modelled from area photos
Topographic Position Elevation 10m2 park digital elevation model (DEM)

Aspect 10m2 park DEM derived
Slope 10m2 park DEM derived
Distance from Stream 10m2 park DEM derived

Disturbance History Fire polygons park historic maps, written records
Logging polygons park historic maps, ownership records
Gaps points sparse direct sample

Climate Change Glaciation N/A N/A N/A
Global Warming 1km2 entire park modelled

Available Data
Variable Type Variable
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Table 2.2 The matrix of correlation coefficients for each pair of zipcode variables.  
The low correlation coefficients suggest a degree of independence among the 
layers, though they are all derived from the same data source (a DEM). 

Layer Elevation TCI Hillshade
Elevation 1.000 -0.058 -0.051

TCI -0.058 1.000 0.083
Hillshade -0.051 0.083 1.000

Correlation Matrix



Chapter 3 

Calculating human accessibility of conservation landscapes

Abstract 

I present a model that estimates the accessibility of a landscape to people 

walking through that landscape.  This model considers the ways that distance, slope, 

stream crossings, and vegetation influence the energetic cost of walking. I outline 

the development of this accessibility model, and then apply it to the question of 

sampling bias in vegetation surveys of Great Smoky Mountains National Park.  I also 

assess the correlations between vegetation communities in the Park, and how 

collected data may be affected by those interactions. Over 1100 vegetation surveys 

were consolidated spanning a 40-year period of research in the Park.  These data 

show a strong positive correlation with accessibility.  Important vegetation 

communities in the Park are under-sampled relative to their abundance because 

they are less accessible.  These less accessible communities may have a distinctive 

species composition because of their distance from sampled sites as well as 

decreased human disturbance.  I discuss the myriad ecological questions this 

accessibility model can be applied to, including the effects of human disturbance as 

well as conservation planning, management, and restoration. 
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Introduction 

Roads, trails, and landscape roughness influence how humans interact with 

landscapes.  At broad scales, this is intuitive.  Many of the remaining undisturbed 

areas of the world are in its most inaccessible locations (Scott et al. 2001).  As more 

roads are built, these areas become more accessible.  The frequency and intensity 

of human disturbance then increases.  This process is evident in regions such as the 

Amazon (Nepstad et al. 2001;Maki et al. 2001;Laurance et al. 2004).  The impacts of 

decreasing friction to human access are evident not only at these regional scales but 

also at landscape and local scales.  In general, human disturbance decreases as 

areas become remote from points of access, although narrow gauge railroads in my 

own study area (Great Smoky Mountains National Park), allowed logging on steep, 

high elevation, and remote sites.  In most national parks, the density of visitors drops 

dramatically at minimal distances from the main roads.  Even biologists rarely stray 

far from roads to conduct surveys and tend to avoid areas that are difficult to get to, 

since survey resources are limited and time used for access directly decreases the 

time available for actual survey. 

Despite the obvious importance of the interaction between landscape structure 

and human accessibility, it has been measured only crudely in science.  Distance 

from road is the typical measure used as a surrogate for human accessibility of a 

landscape.  The influences of topography, vegetation, and water features are 

ignored in this measure.  Yet, even with this crude measure, studies have shown 

that increased distance from road results in increased frequency of native grasses 

(Gelbard & Harrison 2003) and changes in movement behavior for a wide variety of 
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animals (e.g. Brody & Pelton 1989;Mclellan & Shackleton 1988;Grover & Thompson 

1986;Whittington et al. 2005;Rost & Bailey 1979).  Trombulak & Frissell (2000) 

provide a thorough review of the impacts that road building has on natural 

ecosystems. 

The impacts on natural systems are only one of the areas in which the 

interaction between landscape structure and human accessibility are important.  

Since most biological surveys are conducted close to roads, there may be a 

significant sampling bias in much of the data we now use for inquiry.  Also, the 

patterns of human accessibility on a landscape may play an important role in 

deciding how to fight fires or control the spread of exotic species.  Since they are 

less prone to human disturbance, areas that are more inaccessible are also likely 

candidates for the reintroduction of extirpated species.  In short, landscape 

accessibility plays a vital role in our understanding of a wide variety of biological, 

ecological, and conservation topics.  Some of these correlations are strong enough 

to be obvious with even relatively coarse measures, such as distance from road.  

Other correlations may be subtle, but heretofore we have not had measures of 

accessibility sensitive enough to capture them.  As a consequence, there is a need 

for measures of landscape accessibility that are more realistic and accurate than 

coarse distance-from-road measure that has been used in the past. 

Here, I develop such a model of accessibility that estimates the energetic-cost 

associated with hiking along least-cost path from the nearest road to any point on a 

landscape.  This model incorporates not only surface distance, but also the isotropic 

friction associated with landscape features such as trails, vegetation, and streams.  
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Further, I include an anisotropic factor that estimates the energetic cost associated 

with hiking along slopes of different gradients.  This model provides a far more 

realistic and accurate picture of landscape accessibility than mere Euclidean 

distance.  I apply this model to a particular issue that receives little attention: the 

sampling bias of biological surveys for accessibility.  I apply the energetic-cost model 

to the Great Smoky Mountains National Park (GSMNP TN and NC, US), and 

analyze the correlations between accessibility and vegetation surveys that have 

been conducted in the Park over the last 40 years.  I show how particular plant 

communities have been sampled in the Park and how both the relative abundance of 

the communities and the distribution of accessibility among communities have 

interacted to generate a sampling bias in vegetation samples that was previously 

undocumented.  I conclude with an observation that there are many studies where a 

positive correlation between accessibility and sample location is present, and I 

discuss how future studies should use this accessibility model to develop less costly 

and unbiased surveys.  I also discuss the myriad applications of the energetic-cost 

of hiking model. 

Methods 

Study area 

The accessibility model I developed for this study encompasses the area of 

GSMNP.  GSMNP is part of the Southern Appalachian Mountains and comprises 

~2×105 ha.  The Park has a main ridge running ENE to WSW that is followed closely 

by the Appalachian Trail.  Elevation varies from 184m to 2029m within the Park.  
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The average slope in the Park is 25°.  There are 845km of roads within and 

surrounding the Park with a main road (Newfound Gap Road) running N-S through 

the center of the Park (Figure 3.1).  There are 1295km of hiking trails in Park. 

GSMNP is rich in endemic plants and amphibians.  There are at least 129 trees 

native to GSMNP.  The Park contains 56 different vegetation formations following 

the U.S. National Vegetation Classification (NatureServe 2006).  The most abundant 

vegetation communities are part of the broad categories of Quercus rubra-Carya 

glabra forests, cove forests dominated by Acer saccharum and Aesculus flava, 

Tsuga canadensis forest, Northern Hardwood forests dominated by Betula 

alleghaniensis and Fagus grandifolia, and Picea rubens-Abies fraseri forest above 

1400m. 

One of the most significant physiognomic features of GSMNP, even to a casual 

observer, is the distribution of ericaceous shrubs of the genera Rhododendron and 

Kalmia.  Though their abundance varies, approximately 24% of the Park can be 

considered to have moderate or heavy dominance of these taxa.  These thickly 

tangled, evergreen stands sometimes referred to as “hells” are extremely difficult to 

travel through, and represent a significant barrier to the accessibility of interior 

regions of the Park. 

Data 

The data required for the development of the accessibility model were a series 

of GIS layers available for the Park.  These include a digital elevation model (DEM, 

resolution 10m2) and vector data for roads, trails and streams.  I have also used the 

overstory vegetation polygon layer developed by the University of Georgia Center for 
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Mapping and Remote Sensing (Center for Remote Sensing and Mapping Science 

(CRMS) 2004).  This map classifies GSMNP into 172 vegetation types based on the 

interpretation of aerial photographs.  The classification used by CRMS can be 

mapped directly onto the more familiar U.S. National Vegetation Classification 

whose identifiers are known as “CEGL”-codes.  It is this classification that I have 

used in this analysis.  For mapping the distributions of Rhododendron spp. (R. 

maximum, R. catawbiense, R. minus, and R. carolinianum) and Kalmia latifolia, I 

have used an understory map developed by CRMS that records the dominant 

evergreen species present in the understory.  This classification gave a low, 

medium, and high density to the distribution of these two genera based on cover.  

Low densities had <50% cover of these species, medium had 50-80% and heavy 

had more than 80% cover.  For use in the model, I considered low densities to be 

equal in difficulty to the surrounding vegetation, while medium and high densities 

were assigned greater energetic costs. 

The vegetation survey data used in this study were obtained from a recently 

compiled database of the vast majority of vegetation surveys conducted in GSMNP 

beginning in 1972 and continuing until 2004.  The data are composed of 1104 

individual survey units.  The geolocations of each survey unit in these data are 

known within ~100m.  The data are compiled across many studies, whose target 

communities varied widely from rich cove hardwood communities, to grassy balds, to 

spruce-fir forest, to rocky outcrops. 

Making the energetic-cost model 
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The energetic-cost model is based upon an accumulative least-cost path 

algorithm.  The model is computed on a lattice of equal area cells.  Resolution for 

this model was 10m2, and the extent was the entire extent of GSMNP.  This least-

cost path algorithm computes the total cost of travel from a focal area (the Park) to a 

source area: in this case, roads.  The algorithm follows the least cost path by starting 

from the focal cell and successively finding the adjacent cell (in an 8-cell 

neighborhood) that is least costly.  This process continues until a source cell is 

reached.  The energetic-cost assigned to a focal cell is the sum of the individual cell 

costs along the least cost path. 

For a given cell, the energetic cost of traversal is calculated by: 

 AISCost ××=  (1) 

where S is the surface distance, I is the product of the isotropic costs, and A is the 

anisotropic cost.  The energetic cost is calculated in (J/kg).  Surface distance (S) is 

merely the linear distance of travel across the surface of the earth, and is dependant 

on the slope, resolution of the raster and the direction of travel across the grid.  

Isotropic costs (I) are those energetic costs that do not change with direction of 

travel.  These include the friction associated with the trail surface, the vegetation, 

and any water features that are present.  Anisotropic costs (A) are those costs that 

are dependant upon the direction of travel.  For the energetic-cost model, the only 

anisotropic cost was that of slope.  The effect of slope on energetic cost is 

anisotropic because the perceived slope of a surface changes depending on the 

direction from which it is approached.  For instance, the slope of a steep hill is 0 

when traveling perpendicular to the hill face, is positive when traveling up the hill, 
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and negative when traveling down it.  I now explain in detail the calculation of the 

both the isotropic and anisotropic costs. 

Isotropic costs 

Thee landscape classes isotropically influence the energetic cost of hiking: 

trails, vegetation, and streams.  There is some history of calculating the increase in 

energetic costs associated with different terrains, especially in military applications 

(e.g. Soule and Goldman 1972).  Imhof (1950) suggested that the effect of walking 

on- versus off-trail reduces speed by 60%.  In a more detailed study, Soule and 

Goldman (Soule & Goldman 1972) report coefficients for the energetic effects of 

walking on roads and trails, through light and heavy brush, and through swamps.  I 

have used these coefficients to train the isotropic factors in this energetic-cost model 

(Table 3.1).  Unfortunately, Soule and Goldman do not explicitly define what is 

meant by light brush and heavy brush.  It is reasonable to assume, though, that any 

off-trail walking in GSMNP could be considered light brush in the context of Soule 

and Goldman (1972).  I considered the effect of a medium to heavy density of 

Rhododendron and Kalmia to be equivalent to heavy brush in the context of Soule 

and Goldman (1972). 

The impact of streams on accessibility is not as straight-forward to calculate as 

those for vegetation and trail vs. off trail walking.  High elevation, 1st order streams 

are rarely difficult to cross, if they are flowing at all, while lower-elevation streams 

can be virtually impossible.  Taking this into account, I considered the energetic 

expenditure associated with crossing a stream to be a function of stream discharge.  

The more water flowing in a stream, the more difficult it is to cross.  Stream 
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discharge is controlled two factors: the stream area and the stream velocity.  Since 

neither of these factors can be calculated directly for all streams in the Park, I used 

surrogate measures for each.  I assumed stream area to be proportional to the 

logarithm of accumulated flow, which is the merely the upslope area that contributes 

to the stream.  I assumed stream velocity to vary with the tangent of slope.  Steeper 

slopes have faster streams.  Using these surrogates, I calculated the proportional 

increase in energetic cost associated with stream crossing (Cst) to be: 

 bSFaCSt += )tan()ln(  (2) 

where F is the accumulated flow of the stream, S is the slope, b is the baseline 

friction associated with crossing a stream of slope 0 as specified for swamps in 

Soule and Goldman (1972), and a is fitted parameter used to standardize the 

minimum stream crossing friction to be equal to the friction of walking on a trail.  The 

final isotropic cost grid was the intersection of the weights for trails, the weights for 

vegetation and the calculated stream crossing cost. 

Anisotropic cost: Slope 

The only anisotropic energetic cost in the model was that of walking on a slope.  

Within limits it is less energetically costly to walk down slopes than to walk up 

slopes.  The energetic cost associated with traversing a slope is also dependant 

upon the direction from which the slope is approached.  So, a location does not have 

a single energetic cost.  Tobler (1993) was the first to use an anisotropic function for 

calculating the cost of slope walking in a GIS framework.  He employed the “hiking 

function” of Imhof (1950).  A few anthropological studies have used similar functions 

to calculate the probability of interactions between tribes (e.g. Van Leusen 2002; 
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Hare 2004).  The Imhof “hiking function” is calculated in terms of velocity (km/hr).  

There are a few problems associated with the Imhof “hiking-function”.  It is 

symmetric so that walking speeds are identical for gradients of equal deviation from 

the -1° of maximal speed.  It is also unknown how additional factors, such as 

vegetation affect walking speed. 

Instead, of using the Imhof “hiking function” to calculate the cost of walking on 

slopes, I have synthesized recent work in biomechanics to generate a new hiking 

function based on energetic cost rather than velocity.  There have been a variety of 

studies calculating the impact of slope on the energetic expenditure of walking and 

running (see Rose Jessica et al. 1994 for a comprehensive treatment).  Only a few, 

however, focus on the energetic cost of walking on relatively steep terrain (e.g. 

Minetti et al. 1993;Minetti et al. 1994;Minetti 1995;Minetti et al. 2001;Minetti et al. 

2002).  Minetti and other (2002) determined the energetic cost associated with 

walking up and down slopes ranging from -24° to +24°.  They found a slope of -6° to 

have the least energetic cost of walking.  At slopes greater than this, costs rise 

sharply.  Costs rise slowly at slopes less than -6°.  To estimate energetic cost from 

these data, I fit a 2nd order polynomial to data of Minetti et. al. (2002) with slopes 

greater than -6° and a 2nd order polynomial to data with slopes less than -6°: 
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where W is the energetic cost (J/kgm) and S is the local slope in degrees.  Some 

extrapolation from the maximum was necessary since slopes in the Park are often 

greater than 24° and people can traverse steeper slopes than these.  Energetic 
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costs were estimated for a maximum slope of 60°.  Slopes steeper than 60° were 

considered impossible to cross. 

The functions that I derived from Minetti et al. (2002), consider the cost of 

traversing a slope in one direction only.  It is not merely the one-way energetic costs 

that must be considered when modeling accessibility, however.  The energetic cost 

for leaving a trail and walking down the side of a mountain might be low, but the 

return trip back up the mountain would have a great energetic cost.  I wanted to 

estimate the round-trip energetic costs to assess the accessibility of the GSMNP 

landscape.  To incorporate the energetic cost of a round-trip path to a particular 

location, I considered the least cost path to be the one in which energetic cost of 

both the uphill and downhill legs of the trip were minimal.  In other words, the least 

cost path considered not only the energetic cost of going to a location, but also the 

cost associated with going back to the starting point from that location along the 

same path. 

Analysis of Sampling Bias in Vegetation Surveys 

The path distances that are derived from the model are the estimated round-

trip energetic expenditure in J/kg.  To test for a correlation between accessibility and 

sample location in the vegetation data, accessibility estimates at the geographic 

location for each vegetation sample unit were derived from the model.  Since the 

geographic locations of vegetation samples were known to within only 50m, the 

energetic cost estimate I used was the mean of all energetic costs within 50m of the 

sample. 
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I divided the range of round-trip energetic costs into 50 equal interval bins, 

each with a range of 3090 J/kg.  This allowed me to compare the observed 

distribution of both plots and vegetation communities to their expected distributions if 

they were uncorrelated with accessibility.  I calculated the expected and observed 

abundance of plots across accessibility to highlight any correlations between the 

location selected for plots and accessibility.  Second, I calculated the observed and 

expected number of plots in each vegetation community.  This highlighted those 

communities that are chronically under-sampled or over-sampled relative to their 

abundance in the Park.  Third, I calculated the expected and observed area of each 

vegetation community with respect to accessibility to determine those communities 

that were typically very close to the road or far from it.  Finally, I calculated expected 

and observed number of plots for each community individually by accessibility.  This 

analysis highlighted those communities that have been sampled only in their most 

accessible locations, while larger, more inaccessible areas of the same community 

type are under-sampled. 

Results 

Estimated round-trip energy costs for the Park ranged from 0 J/kg to 

1.5x105J/kg (Figure 3.1).  The distribution of energetic cost in the Park was skewed 

toward more accessible sites with a mean of 36755 J/kg and a standard deviation of 

31886 J/kg.  The estimated energetic costs can be measured in kilocalorie (kcal) 

expenditures if the weight of the person is known.  Based on the model, an average 

male weighing 75 kg would expend 650 kcal to travel to and from a random site 

within the Park and would expend 2768 kcal to travel to and from the most 
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inaccessible site in the Park along the least cost path.  As a means of comparison, a 

75 kg male expends about 950 kcal playing a full-court game of basketball. 

Due to the skewed distribution of energetic costs, a very low proportion of the 

Park could be classified as extremely inaccessible.  This suggests that access points 

are over-dispersed and abundant in the Park.  The area north of Fontana Lake in the 

SW part of the Park is the largest contiguous area that is quite inaccessible, followed 

closely by an area in the NE part of the Park.  The area in the NE section of the Park 

is inaccessible because of the steepness of the landscape and the abundance of 

Rhododendron and Kalmia in that area (Figure 3.1).  The area north of Fontana 

Lake is inaccessible because the closest access points are at the east and west 

ends of the lake.  It is possible to access some of the trails that occur north of the 

lake via boat, but such access was not accommodated in this analysis. 

The estimated round-trip energetic expenditure to vegetation plots ranged from 

6 J/kg to 1.2×105 J/kg, with a mean energetic expenditure of 2.7×104 J/kg.  As 

expected, the distribution of sample units in the Park is not a random sample of 

accessibilities in the Park (Figure 3.2).  14% of all vegetation plots fell within the very 

first interval of accessibility, which is twice the expected number of plots for that 

interval.  The vast majority of vegetation samples fell within the top 1/3 of the range 

of accessibility values.  27% of the Park area or > 6.3×105ha is under-sampled 

because of its inaccessibility.  All but 16 of the 1104 vegetation plots occurred in the 

first half of the range of accessibility values.  The top 1.2% or ~3,000ha of most 

inaccessible places in the Park have no vegetation samples at all in them.  The few 

plots that were in relatively inaccessible locations tended to occur in relatively 
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localized areas of inaccessibility, not the larger, more contiguous areas of 

inaccessibility. 

Most vegetation communities that occur in GSMNP are under-sampled relative 

to their abundance in the Park.  Table 3.2 highlights the top 10 over-collected and 

under-collected communities in GSMNP.  The most over-collected community in the 

Park is the rich Northern Hardwood Forest dominated by Aesculus flava, Betula 

alleghaniensis, and Acer saccharum.  It occupies only 3% of the Park area, yet 7% 

of the vegetation samples come from this community.  The most under-sampled 

community in the Park is the Appalachian Montane Oak-Hickory Forest dominated 

by Chestnut oak (Quercus prinus).  It occupies 11% of the Park area, yet only 5% of 

the vegetation samples occur in this community type.  More species-rich 

communities, tended to be over-sampled while more species-poor communities 

were under-sampled.  For example, Southern Appalachian Cove Forests are very 

over-sampled in the species rich areas dominated by Acer saccharum, but the typic 

cove forests dominated by Liriodendron tulipifera are under-sampled relative to their 

abundance in the Park.  Some communities are under-sampled in the Park, but are 

well sampled in the Southern Appalachians as a whole (Newall & Peet 1998). 

Most communities that were over-sampled in the Park were positively 

correlated with accessibility.  This is especially true for mesic Chestnut Oak Forest, 

Xeric Pine Woodlands, and Appalachian Montane Alluvial Forests (Figure 3.3a).  

Appalachian Montane Alluvial Forest dominated by Platanus occidentalis and 

Liriodendron tulipifera occurs at lower elevations along rivers.  The major rivers in 

the Park are followed closely by roads at these lower elevations.  The Red Spruce-
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Fraser Fir Forest was the only over-sampled community that was negatively 

correlated with accessibility.  More area of Red Spruce-Fraser Fir forest occurred in 

inaccessible locations.  Surprisingly, most under-sampled communities were either 

randomly distributed with respect to accessibility, or were positively correlated with 

accessibility (Figure 3.3b).  Notable exceptions were Southern Appalachian Mixed 

Hardwood Forest dominated by Acer rubrum, Nyssa sylvatica, Magnolia fraseri, and 

Oxydendrum arboreum, which showed a negative correlation with accessibility. 

The arrangement of plots within community types with respect to accessibility 

was varied.  Communities that were over-sampled tended to have surveys 

aggregated in accessible areas, even though a range of accessibilities may have 

been sampled.  Plots located in Red Spruce-Fraser Fir forest were strongly 

correlated with accessibility.  There are large, inaccessible tracts of Red Spruce-

Fraser Fir Forest that have no vegetation surveys from our complied data.  The 

same is true of species-rich Northern Hardwood Forests.  Also, pure Fraser Fir 

forest, which is quite rare in the Park now because the Balsam Woolly Adelgid 

(Adelges piceae) has killed most Fraser Fir trees, has an abundance of inaccessible 

tracts.  Though the Fraser Fir forest is over-sampled relative to its abundance in the 

Park, there are no surveys in these more inaccessible tracts, which seem to have 

the highest abundance of Fraser Fir.  For under-sampled communities, the plots that 

did exist were located in accessible areas.  Plots located in Oak-Hickory Forest 

dominated by Chestnut oaks showed the strongest correlation with accessible areas.  

The Southern Appalachian Mixed Hardwood Forest had the greatest area in 

inaccessible locations without a plot.  The plots in the most under-sampled 
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community, Oak-Hickory Forest dominated by Red Oak, were actually among the 

most well dispersed samples with regard to accessibility. 

Discussion 

Assessment of the model 

The model of human accessibility that I have developed estimates the 

energetic expenditure necessary to hike round-trip along the least cost path to any 

location from the nearest road.  It incorporates not only the effect of linear distance, 

but also of walking on slopes and walking across different terrain types including: 

trails, vegetation, and streams.  It also estimates the friction associated with crossing 

the stands of Rhododendron and Kalmia that occur throughout the Park.  This 

round-trip energetic expenditure is the best available estimator of human 

accessibility to date.  The accessibility model, however, likely underestimates the 

true energetic cost associated with reaching interior locations.  There are many 

factors in addition to energetic cost that influence the path that is chosen to reach an 

interior destination.  One of the most important is safety.  Footing is more precarious 

off-trail than on-trail.  Scratches and bruises from vegetation are also more likely 

when walking off-trail.  Finally, since the least-costs paths used in this model can 

have much larger distances than the straight-line distance from the nearest road, 

orienteering is more difficult.  The greater the off-trail distance, the more likely a 

hiker is to become lost. 

The current model does not account for the psychological impact of walking 

through a Rhododendron-Kalmia thicket, nor the fact that some stands are, for all 
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practical purposes, impenetrable.  The psychological impact of vegetation, in 

general, is quite high for most people. Typically, when a person wants to make their 

way to a point off-trail, the easiest way to do so is to walk along the trail to a point 

where off-trail distance will be minimized.  The impact of walking through vegetation 

versus walking on a trail, then, is more than just energetic cost.  Precarious footing 

as well as uncertainty about the path impacts the choice of path once you leave the 

trail.  Part of the uncertainty is that the easiest path may not be apparent, especially 

if the destination is not within sight of the trail.  The least-cost path calculated by the 

model is very useful in such situations.  For any interior point in the Park, the least-

cost path can be re-constructed from the model.  From there, the path may be 

downloaded into a handheld GPS unit and then used to navigate to the location in 

the field. 

There are weaknesses associated with the using the least-cost path, however.  

When calculating the least-cost path, the algorithm looks only in the immediate 

neighborhood (radius 10m) for the next step in the path.  The neighbor with the least 

cost is the one chose for the next step in the least cost path.  The algorithm is not 

aware of the larger scale structure of the landscape as a person would be, at least in 

some circumstances (Figure 3.5).  A person might employ a series of switchbacks to 

get up a steep slope rather than merely find the shallowest gradient to follow along 

the slope.  A person might also know that going over a small, steep knoll would be 

most efficient, while a least-cost algorithm would always go around it (Figure 3.5).  

Nevertheless, the least-cost path typically represents an improvement over the 

typical human algorithm of minimizing the off-trail distance 
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Accessibility in Conservation Areas 

GSMNP is well-divided by roads and trails.  Accessible sites are far more 

abundant than inaccessible sites.  From the standpoint of conservation area 

planning, the balance of accessible and inaccessible sites is important.  Making 

conservation areas accessible is vital for maintaining public interest in conservation 

and increasing awareness of conservation issues.  When people can physically 

interact with the landscape, those personal experiences hopefully result in an 

improved land-ethic and deeper concern for conserving natural areas.  Most people 

are either unwilling or unable to hike to remote locations, and increasing accessibility 

of the conservation landscape increases human interaction with the landscape.  

Conversely, increased accessibility results in increased landscape fragmentation, 

increased disturbance, increased arson fires, and increased spread of exotic 

invasive species.  These particular problems loom large in the minds of 

conservationists and biologists.  Inaccessible areas are less prone to these 

problems. 

In general the area of inaccessible locations required by conservation is much 

larger than the area required to increase awareness.  The goals of increasing 

conservation awareness and deepening appreciation of conservation areas can be 

fulfilled with a few well-placed roads.  Conserving ecosystem processes in habitats 

where human disturbance is minimized requires very large areas, especially where 

large mammals play in important role.  Increasing accessibility degrades these 

ecosystem processes (Nielsen et al. 2004;Mclellan & Shackleton 1988;Woodroffe 

2000;Whittington et al. 2005).  There are only two, relatively inaccessible tracts in 
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GSMNP.  Relative to other National Parks of similar size, GSMNP, is very 

accessible.  Increasing fragmentation through road building in park is ill-advised, 

given that the balance of human use and conservation already leans heavily toward 

human use. 

Sampling Bias and Accessibility 

Vegetation surveys in GSMNP occur more frequently in accessible areas than 

inaccessible areas (Figure 3.1).  The results shown here are likely typical of most 

vegetation surveys.  Survey plots tend to be congregated in the most accessible 

areas of the Park.  This effect is most pronounced in the most accessible locations, 

typically within 100m of a road.  There are almost twice as many plots in GSMNP 

right next to roads than would be expected given a random sample.  Samples of 

intermediate accessibility, on the other hand, have abundances that are typical of a 

random survey.  At a certain threshold, however, this relationship breaks down.  For 

GSMNP, the most inaccessible quarter of the Park has virtually no plots in it.  This 

threshold probably represents an upper limit on time rather than energy expenditure.  

There is a limit to how far one can walk in a single day, survey the vegetation, and 

then return.  Most vegetation surveys (at least in eastern North America) are not 

conducted while staying overnight in the interior of the Park, but rather are 

conducted as day trips. 

What are the implications of an accessibility sampling bias in accessibility for 

data analysis?  Some have suggested that samples correlated with roads have little 

impact on the prediction of species distributions (Reese et al. 2005).  This is strongly 

dependent upon the spatial arrangement of species distributions and environment 
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relative to accessibility.  If all environments are randomly arranged relative to 

accessibility, then a sample weighted toward more accessible areas is unlikely to 

yield different results than an unweighted sample.  I have shown this assumption to 

be false, however, at least in the case of GSMNP, and in general it is clear that in 

most landscapes environments are not randomly arranged relative to accessibility.  

Some vegetation communities show their greatest abundance in the more 

inaccessible areas of the Park.  Some are random, and some are most abundant in 

accessible areas.  Even within broad vegetation groups, such as all spruce-fir or all 

cove forests, the association with accessibility was varied.  So, there is no intuitive 

reason to expect that a sample weighted for accessibility will capture a 

representative sample of all vegetation communities in the Park.  That said, there 

were no communities in this analysis that were so strongly correlated with 

inaccessible areas that accessible tracts of the community were completely absent.  

Every community has some area in the more accessible parts of the Park.  Directed 

samples, then, should be able to capture at least one representative from each 

community even when deliberately weighted for accessibility. 

The community classification I have used here is a very broad-brush approach 

to the patterns of species composition within the Park.  The communities are 

identified by a few of their dominant trees.  As a consequence, the total species 

composition within these communities varies widely.  In some cases, the variation in 

species composition within a community is likely larger than that between 

communities.  It is unknown what correlations exist between accessibility and 

species composition within a community.  Correlations are likely, however, since 
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accessibility exhibits strong spatial autocorrelation as does species composition.  

The question remains, then, “Do samples correlated with accessibility capture the 

full range of variation in species composition within communities?”  The answer to 

this question is dependent upon turnover of species in space and the abundance of 

the community in inaccessible locations.  Larger patches in inaccessible locations 

are likely to have greater richness than smaller communities.  Communities with 

greater spatial turnover are more likely to differ between accessible and inaccessible 

areas. 

Consider, for instance, the distribution of Spruce-Fir forest in the Park.  These 

forests are dominant across the Park above 1500m.  The fir trees (Abies fraseri) in 

these forests were decimated throughout the Park by the Balsam Woolly Adelgid 

beginning in the 1963.  The distribution of these forests is bimodal with respect to 

accessibility within the Park.  There are a few patches that are very accessible 

because they occur near Clingman’s Dome, the highest point in the Park that has a 

road running nearly to the top.  There are also significant areas of Spruce-Fir Forest 

in the more inaccessible northeastern section of the Park, and north of Fontana Lake 

in the southwestern section of the Park.  Virtually all the Spruce-Fir Forest samples 

in the dataset come from the most accessible areas.  If, the impact of the balsam 

woolly adelgid was spatially heterogeneous at scales of greater than ~10km, then 

these spatially disjunct populations are likely to exhibit differences in species 

composition not present in the current data. 

It is the differences between disjunct communities, and communities that are 

under-sampled where our understanding of biodiversity patterns is lacking.  We have 
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a great understanding of how to evaluate communities at a local scale.  Measuring 

species richness and understanding community dynamics is easier at local scales 

because they can be fully censused or nearly so.  More understanding is needed 

about the processes and patterns that shape disjunct communities at scales greater 

than the local scale.  Currently, many of our surveys are missing particular scales of 

community organization because their correlation with accessibility.  This may be 

especially important considering that more inaccessible communities are likely to 

have less human disturbance.  Surveys of any group of organisms should 

incorporate some sites that are in less accessible locations. 

Applications of the Accessibility Model 

The potential applications of the accessibility model I have developed here 

reach far beyond assessing sampling bias in biological surveys.  There is the 

potential for correlations with accessibility between any process that includes 

interactions between humans and landscapes.  Here I discuss the important 

ecological and conservation questions that can be addressed using the accessibility 

model. 

First, accessibility is a vital correlate in understanding the spread of exotic 

invasive species.  The spread of exotic invasive species tends to track corridors of 

access such as trails or roads (Gelbard & Belnap 2003).  The species composition of 

inaccessible areas includes fewer exotic-invasive species than more accessible 

areas.  Most measures of this, however, are concentrated immediately along roads 

where cars are the main dispersal vector.  The typical vector for human dispersal of 

exotic invasive species within the interior of parks, however, is on the clothes and 
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horses.  Most parks keep record of the intensity of use for trails and campsites.  

Combining this information with the model of accessibility allows the creation of a 

measure of the intensity of human use for the entire park.  This composite model will 

give an estimate of the actual number of humans that walk past a spot during a 

given period of time.  This measure will likely be strongly correlated with the 

distribution of exotic invasive species as they move from the edges of a park toward 

more interior locations.  It will also predict the most probable locations for new 

introductions of invasive species. 

The accessibility model can improve understanding not only of species that are 

introduced, but also of species that are being removed.  The harvesting of 

economically important plants is a multi-million dollar industry.  Ginseng (Panax 

quinquefolius) and ramps (Allium tricoccum) are among the two most important 

economically harvested species in the eastern United States, but other species such 

as Black Cohosh (Actaea racemosa) and Bloodroot (Sanguinaria canadensis) are 

also harvested.  The probability of harvesting an individual from any of the species is 

likely a function of accessibility.  In areas where collection is legal, intensity of 

harvest is likely to be negatively correlated with accessibility.  In areas where 

collection is illegal, such as in GSMNP, the relationship between harvesting and 

accessibility is less intuitive.  It may be that harvesters not wanting to be observed 

will travel to more inaccessible locations leaving accessible locations untouched.  In 

either case, the accessibility model can provide a metric for locating areas that are 

likely to be harvested and show those areas where populations are likely to be 

undisturbed.  Also, as a species is depleted more inaccessible areas are searched. 
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Since virtually any human disturbance is likely to be correlated with 

accessibility, the accessibility model provides a unique opportunity to locate 

communities that are relatively undisturbed.  Researchers are always on the lookout 

for the most undisturbed and unique patches in a landscape.  These sites could 

harbor rare species, and at least provide a baseline for comparison against more 

disturbed communities.  The accessibility model can be used in conjunction with 

measures of environmental uniqueness to find these patches on the landscape.  

These inaccessible patches are also good candidates for reintroduction of extirpated 

species since they are less likely to be disturbed.  For these reasons, inaccessible 

patches of communities represent areas of great conservation import. 

The accessibility model outlined here is also a valuable tool for land-use 

planning in conservation areas.  As discussed above, the accessibility model can be 

used to establish a balance between the abundance of areas that are prioritized for 

human use and those prioritized for conservation.  Understanding the accessibility of 

a landscape is vital for deciding where new trails should be built.  A trail that follows 

the least-cost path to a destination is likely to be traveled much more frequently than 

a trail that does not follow that path.  Finally, knowing the least cost path to any 

location in the Park is a valuable tool for fighting forest fires in conservation areas 

where fires are controlled.  Knowing the best point of access and the best path to 

follow to a fire can save valuable time and lives. 

As a final application of the accessibility model, I note that virtually any animal 

obeys movement rules similar to humans.  Animals often choose the least cost path 

to traverse a landscape, having preference for walking on level slopes than uphill or 
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downhill and avoiding large stream crossings while maximizing protective cover.  

The actual energetic costs associated with movement scale with body size (West et 

al. 2003), and the biomechanics of the particular animal, but the rules of movement 

used in the accessibility model remain the constant.  A similar model to the human 

accessibility model I have built could be built for elk, bear, or any of myriads of 

animals.  These models could have important implications for our understanding of 

metapopulation dynamics as well as our understanding of the scales at which 

animals interact with landscapes. 

Conclusion 

Understanding the accessibility of conservation landscapes to humans is vital 

for understanding a variety of important topics for ecology and conservation.  The 

model of human accessibility I have outlined here currently represents the only 

developed measure of accessibility that incorporates the effects of slope walking, as 

well as vegetation and streams.  Further, this model estimates accessibility in terms 

of the round-trip energetic cost of walking (in J/kg), which is a more accurate 

measure of accessibility than any pure distance metric.  Using this model, I have 

shown that the vast majority of vegetation surveys collected in GSMNP (over 1100 

plots) are correlated with accessible areas.  Further, I have shown that this sampling 

bias has caused some important vegetation communities to be under-sampled.  

These results highlight the need for studies to include at least a few survey plots in 

more inaccessible areas.  Doing so can increase the numbers of communities that 

are sampled, as well and the variation in species composition that is observed within 

communities. 
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The estimates from this model can be incorporated into any existing data that 

has geolocations information.  It can then be used as a surrogate for the probability 

of human disturbance.  There are myriad of species and ecosystem distributions for 

which this measure will be an important correlate.  Further, the distribution of 

accessibility on a landscape is an important tool for making conservation and 

management decisions.
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Figures 
Figure 3.1 Energetic cost estimates for GSMNP based on a least-cost path model of 
round trip energetic expenditures.  There are two major areas of inaccessibility: one 
located north of Fontana Lake and the other in the high-elevation, eastern portion of 
the Park.  The collection of 1104 vegetation surveys that were used to assess 
sample correlation with accessibility are also shown. 
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Figure 3.2 Expected and observed frequencies of vegetation surveys by 
accessibility.  Expected frequencies are the number of plots that would be observed 
if vegetation surveys were uncorrelated with accessibility.  Plot frequencies are 
binned into 50 equal interval quantiles, each spanning 3090 J/kg of energetic cost.  
The data show a strong correlation with accessible sites, especially in the most 
accessible sites. 
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Figure 3.3 The areal distribution of vegetation communities with respect to 
accessibility. The selections of communities shown are a) over-sampled and b) 
under-sampled relative to their abundance in the Park.  These communities illustrate 
the range of affinities for accessible locations between over-sampled vegetation 
communities. 

 



 

 74

Figure 3.4 The distribution of vegetation surveys with respect to accessibility for 
selected communities in a) over-sampled communities and b) under-sampled 
communities.  More inaccessible areas of communities tend to be under-sampled, 
regardless of the community type.  This may be of great importance for communities 
that have a large proportion of their total area in inaccessible parts of the Park: 
spruce-fir forest, for instance. 
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Figure 3.5 3D rendering of a trail, shortest surface path and the least-cost path 
calculated by the accessibility model to an interior point.  Lower elevations are 
shown in cool colors, while higher elevations are hot colors.  This figure highlights a 
weakness of the least-cost path algorithm used to create the accessibility model.  
The algorithm with calculates the least-cost path looks only in its immediate 
neighborhood for the easiest path.  In this case, the shortest path is probably the 
most energy efficient.  The least-cost path algorithm could not discern that, however, 
because the cells close to the trail have a steep knoll separating the trail and the 
destination. 

 

     Road 
     Shortest Path 
     Least-Cost Path 
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Tables 

Table 3.1 Energetic cost coefficients for different terrains in the least-cost path 
model of human accessibility.  The coefficients used are based on the study of Soule 
and Goldman (Soule & Goldman 1972).  These coefficients determine the relative 
difficulty of different terrains that are encountered while hiking in the GSMNP. The 
swamp coefficient of Soule and Goldman 

Terrain Soule and Goldman 1972 Coefficient
Trail Dirt 1.2
Off-Trail Light Brush 1.31
Rhododendron sp.-Kalmia sp. Heavy Brush 1.59
Stream (Slope → 0) Swamp 1.87

Isotropic Cost Coefficients of GSMNP Energetic-cost Model

 

Table 3.2 The 10 most over-sampled and under-sampled communities in GSMNP 
relative to their proportional area in the Park.  The observed (Obs.) number of plots 
is the number of vegetation samples falling within the community.  The expected 
(Exp.) number of plots is the number of plots that would be expected if communities 
were sampled in proportion to their total area in the Park.  The difference between 
the observed and expected number of plots for each community represents the 
number of plots that the community has been over-sampled or under-sampled. 

Obs. Exp. Obs.-Exp.

4973 Southern Appalachian Northern Hardwood Forest (Rich Type) 3.28 82 37.6 44.4
7695 Southern Appalachian Cove Forest (Rich Montane Type) 2.46 57 28.3 28.7
6000 Fraser Fir Forest 0.20 24 2.3 21.7
7543 Southern Appalachian Acid Cove Forest (Typic Type) 4.18 68 48.0 20.0
6286 Chestnut Oak Forest (Mesic Slope Heath Type) 0.99 29 11.4 17.6
4691 Appalachian Montane Alluvial Forest 1.19 27 13.7 13.3
7285 Southern Appalachian Northern Hardwood Forest (Typic Type) 0.77 22 8.9 13.1
1001 Pine Woodland (Xeric) 6.42 86 73.7 12.3
7299 High-Elevation Red Oak Forest (Evergreen Shrub Type) 2.13 35 24.4 10.6
9000 Red Spruce - Fraser Fir Forest (Shrub Type) NA 32 21.6 10.4

6192 Appalachian Montane Oak - Hickory Forest (Red Oak Type) 11.16 58 128.2 -70.2
7710 Southern Appalachian Cove Forest (Typic Montane Type) 8.76 63 100.7 -37.7
8558 Southern Appalachian Mixed Hardwood Forest 0.06 28 51.9 -23.9
7230 Appalachian Montane Oak Hickory Forest (Typic Acidic Type) 7.98 69 91.6 -22.6
7267 Appalachian Montane Oak Hickory Forest (Chestnut Oak Type) 5.37 43 61.6 -18.6
7300 High-Elevation Red Oak Forest (Deciduous Shrub Type) 1.39 1 15.9 -14.9
7692 Appalachian Montane Oak - Hickory Forest (Rich Type) 1.17 2 13.5 -11.5
7219 Early Successional Appalachian Hardwood Forest 3.59 34 41.3 -7.3
7130 Red Spruce - Fraser Fir Forest (Evergreen Shrub Type) 0.43 0 5.0 -5.0
7097 Blue Ridge Table Mountain Pine - Pitch Pine Woodland (Typic Type) 0.43 0 5.0 -5.0

Over Collected

Under Collected

% Area of 
GSMNP

Top 10 under-collected and over-collected communities in GSMNP
Number of Vegetation Plots

Community DescriptionCode



Chapter 4 

Sampling biodiversity at landscape scales: four major obstacles 

and solutions

Abstract 

Four issues of sampling design influence the effectiveness of biodiversity 

surveys at landscape scales.  First, samples must reflect the environmental 

variability of the landscape since variation in environment influences variation in 

species composition.  Second, samples should capture dominant species 

compositional patterns.  Third, biodiversity surveys must account the spatial 

autocorrelation present in species distributions.  Finally, the costs of sampling 

increase as the cost of logistics increases and no monitoring program will continue if 

fieldwork is unreasonably difficult.  Sample sites must be accessible though they 

must also consider the possible biases introduced by accessibility.  I describe a 

sampling protocol designed for the Great Smoky Mountains National Park 

vegetation-monitoring program that satisfies these design issues.  The protocol 

follows a stratified-clustered design.  My results suggest that the environmental 

variation the spatial scaling of stratification variables must mesh with those of the 

sampling design to avoid spurious environmental distinctions.  Weighting samples 

toward more accessible locations significantly altered the join-inclusion probabilities 

and frequencies of environments in samples.  The spatial clustering of sample sites 
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tended to reduce the variety of vegetation communities captured by the samples 

from the random expectation.  My stratification scheme tended to capture 

environmental variety within broad vegetation communities, rather maximizing the 

total number of communities sampled. 

Keywords 

sample design, clustered sampling, stratification, spatial autocorrelation, Tsuga 

canadensis, Great Smoky Mountains National Park
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Introduction 

Biodiversity monitoring programs are vital tools for conservation and ecological 

research (Noss 1990;Janzen & Hallwachs W. 1994;Savage 1995).  As spatial 

patterns of biodiversity change through time due to climate change (Thomas et al. 

2004), landscape fragmentation (Vitousek et al. 1997), and exotic species invasion 

(Stohlgren et al. 1999), the cataloging and monitoring of species becomes ever more 

important.  This is not an easy task.  There are many, sometimes conflicting goals 

that must be considered when selecting a sampling design for a biodiversity survey.  

First, pattern and process within a landscape occur across a wide range of scales.  

Thus, effective sampling must also address pattern and process at multiple scales 

(Pettitt & Mcbratney 1993;Tobin 2004;Lookingbill & Urban 2005).  Further, species 

distributions are influenced by both endogenous (e.g. reproduction, dispersal) and 

exogenous factors (e.g. physical environment, disturbance).  Separating 

endogenous effects from exogenous effects predicates the explanatory power of any 

sample design (Wagner & Fortin 2005). 

In this chapter, I present the four main challenges in the design of biodiversity 

surveys.  I then present a sampling protocol that addresses these design issues.  

This protocol utilizes ecological zipcodes (Chapter 2) to capture a broad spectrum of 

environments.  It aggregates sites at multiple scales, which allows distinguishing 

between environmental and dispersal processes.  The protocol also weights sites by 

accessibility in a way that maximizes data collection efficiency while sampling a 

broad spectrum of environments.  Using Great Smoky Mountains National Park as 

an example, I discuss how to implement and analyze data collected using the 
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protocol.  I analyze the effect of incorporating accessibility bias into samples 

changes their representation of the landscape.  Since one of the important functions 

of a biodiversity survey is to provide a baseline for additional studies, I analyze the 

effectiveness of this protocol at capturing the variety of environments in which 

eastern hemlock (Tsuga canadensis (L.) Carr.) occurs.  Finally, I discuss a balance 

of sampling efficiency and representation. 

Background 

The role of sample design in ecological inference 

The ability of ecologists to understand pattern and process in nature is tightly 

bound to issues of sampling design.  The conclusions of any ecological study rest on 

how faithfully data reflect the pattern or process of interest.  When data do not 

conform to natural patterns, research conclusions range from tenuous at best to 

entirely false. 

At scales where complete or nearly complete surveys are possible, debate 

about the accuracy of samples becomes moot.  Instead, distinguishing between 

possible explanatory variables (Condit et al. 1996) and interpreting patterns in the 

midst of stochasticity (Levin 1992) become more important.  At scales greater than 

this, researchers must rely upon incomplete samples to understand pattern and 

process.  Landscapes on which biodiversity monitoring takes place (typically 103-

106ha) fit the latter scale. 

Landscape sampling designs 
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There are myriad sampling designs for landscape-scale ecological studies.  

The spatial arrangement of sampling units (e.g. quadrats, plots, traps) in these 

designs vary along a gradient from clustered to random to regular.  Most surveys lie 

somewhere between clustered and random.  The benefit of random sampling is 

independence among sampling units.  As a result, there is no bias added to the 

survey due to sampling design, though bias due to spatial autocorrelation in species 

and environments is present in any sample (Legendre 1993).  Conversely, regular 

and clustered sampling designs show strong dependence among sampling units and 

strong spatial bias.  In regular designs, each site is spatially dependant upon the 

location of every other site. 

Given a large area, both random and regular sampling designs have very low 

efficiency, which is the energetic or monetary cost associated with completing the 

survey.  In these designs, the probability of many sample units occurring in 

inaccessible locations is high.  Further, the distance between sequentially surveyed 

sample units is great.  Random and regular sample designs also tend to miss 

ecologically important scales in a landscape (Fortin et al. 1989).  Sample intensity is 

not high enough to capture both small- and large-scale processes (Urban et al. 

2002;Tobin 2004).  These weaknesses highlight the strengths of clustered sampling:  

efficiency and broadly ranging scales of spatial aggregation.  Clustered designs 

allow the surveying of many sampling units in a few areas.  Further, clustered 

designs allow short distances between sampling units (10s to 100s of meters) to be 

well represented in addition to larger, landscape-scale distances (Urban et al. 

2002;Urban 2000;Fortin et al. 1989;Legendre & Fortin 1989). 
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The four challenges of sampling design for biodiversity monitoring 

Regardless of the design, whether clustered, regular or random, there are four 

main challenges facing landscape-scale biodiversity surveys.  First, any survey must 

faithfully represent landscape biodiversity patterns and must capture the range of 

variation present in the environment (temperature, moisture, disturbance history).  

Increasing the environmental variety of samples increases the complementarity in 

species composition between sites (Faith et al. 2004;Faith & Walker 1996;1995).  

This yields greater species richness for a given sample effort: an important 

component of biodiversity.  Environmental variety in a sample is also important for 

monitoring changes in species distributions through time.  Habitats that initially seem 

unimportant in terms of diversity may become more important as climate changes or 

as disturbance increases. 

Second, biodiversity surveys must be sensitive to the relative abundance 

distribution of species.  The distribution of species abundances on a landscape 

controls the observation rate of species in a survey (Fisher et al. 1943;Preston 

1948).  Surveys tend to record many individuals of common species, for any single 

individual of a rare species.  It is these rare species, however, that are often of 

greatest conservation and monitoring import.  Biodiversity monitoring programs must 

capture a better than random set of these rare species. 

Third, biodiversity surveys must account for the spatial aggregation and 

covariation of environments and species (Legendre 1993).  Rarely, do species 

exhibit random distributions in space.  Most of the time species exhibit some degree 

of spatial contagion, and in rare cases over-dispersion.  These patterns may be due 
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to dispersal history, disturbance, or spatial covariation of the environment.  

Disentangling these effects from each other is not a trivial matter (Koenig 1999).  

Without accounting for these processes in sample design, it is difficult to separate 

endogenous effects from exogenous ones. 

Finally, biodiversity surveys should maximize efficiency.  Even a well-designed 

biodiversity survey from the standpoint of ecological inference will fail if it is cost-

prohibitive.  Thus, making data easy to collect is vital.  This goal can conflict, 

however, with other goals such as environmental representation.  This chapter 

discusses how best to balance efficiency and representation. 

Methods 

Study Area 

I generated a series of biodiversity samples for Great Smoky Mountains 

National Park (GSMNP).  The Park area is ~200,000 ha.  It is part of the Southern 

Appalachian Mountains, which are significantly enriched in endemic plants.  To date, 

129 native tree species have been documented within the Park (taxonomic 

reference: Weakley 2006, species list for the Park updated from: White 1982 and 

White & Wafford 1984).  The major environmental gradients that influence species 

composition in the Park are elevation, exposure and relative wetness (Whittaker 

1956).  Geology and soil chemistry are also important factors (Cain 1931).  The Park 

is over 95% closed canopy forest.  At low elevations, cove hardwood forests 

dominated by Acer saccharum, Liriodendron tulipifera and Aesculus flava occur in 

moist, protected areas.  These coves are the most species rich areas in the Park in 
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terms of vascular plant diversity.  On drier sites at lower elevations, Quercus 

coccinea and Carya spp. dominate with Pinus spp. forests dominating on the most 

xeric sites.  Northern Hardwood forest dominated by Quercus rubra, Betula 

alleghaniensis, and Fagus grandifolia occur at mid to high elevations.  At elevations 

greater than 1500m, Picea rubens-Abies fraserii forest dominates, along with 

Northern Hardwood Forests in sheltered areas. 

Data 

Generating samples following the protocol required two GIS data layers.  The 

first was a classification of the Park’s important environmental gradients.  I used this 

classification to stratify samples.  In doing so sampling units were located in a great 

variety of the Park’s environments.  The classification that I used, known as 

“ecological zipcodes” (Chapter 2), assigns a single number to each location in the 

Park.  This number succinctly represents the states of temperature, insolation, and 

water availability: gradients that are strongly correlated with species distributions 

(Hawkins et al. 2003;Whittaker 1956).  The ecological zipcodes use surrogate 

variables instead of measuring temperature, insolation, and water availability 

directly.  All of these variables were derived from a single digital elevation model 

(DEM):  1) Elevation, 2) relative wetness in the form of the topographic convergence 

index (TCI;Moore et al. 1991;Wolock & Mccabe 1995;Yeakley et al. 1998), and 3) 

hillshade (a metric of transformed aspect: azimuth 135 altitude 45).  The Park 

contains 45 different ecological zipcodes comprising five elevation levels, three 

levels of relative wetness, and three levels of hillshade. 
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The second GIS data layer needed was an estimate of the energetic 

expenditure necessary to reach any location in the Park.  While a random sample of 

locations might be easiest to analyze, statistically, the energetic expenditure 

necessary for a random sample is prohibitive.  In a 200,000 ha park with few roads 

and great topographic complexity a random sample is impractical.  A measure of 

park accessibility, however, allows selection of sample units in such a way as to 

maximize the efficiency with which data are collected.  I have developed such a 

model for GSMNP (Chapter 3).  It estimates round-trip energetic cast associated 

with surface distance, terrain type, and slope.  It also includes frictions associated 

with the most important features in the Park from an accessibility perspective: the 

distributions of Rhododendron spp. and Kalmia latifolia.  Their abundance within the 

Park and their very dense growth habit play an important role in overall accessibility.  

Limiting the population of possible sampling units to those of low energetic-cost 

maximizes the efficiency of data collection.  To make analysis easier, I transformed 

the accessibility model from pure energetic costs in J/kg to relative energetic cost.  

The transformed measured assigns a percentile of accessibility for each location in 

the Park, based on the number of locations that are more accessible and less 

accessible.  For a given location, a value of 45% indicates that 45% of the Park is 

more accessible than that site. 

The ecological zipcodes and human accessibility data layers provide the 

necessary information to ensure that samples are both representative and easy to 

collect.  To assess the representativeness of samples, I used an additional data 

source: an overstory vegetation map of the Park developed by the University of 
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Georgia Center for Remote Sensing and Mapping (Center for Remote Sensing and 

Mapping Science (CRMS) 2004).  This data layer divides the Park into 171 different 

vegetation communities.  They assigned community classification based on the 

interpretation of aerial photos.  I used this classification to assess how well the 

samples stratified by environment (i.e. the ecological zipcodes) captured vegetation 

patterns.  I also used the classification to determine the distribution of forests 

dominated by eastern hemlock. 

Sample Design 

The sample design I selected is a two-stage stratified-clustered design (Figure 

4.1).  Stratification occurs in both the inter- and intra-cluster selection of sites based 

upon the ecological zipcodes.  Each zipcode represents a distinct environment 

varying along elevation, wetness, and insolation gradients.  Capturing a wide range 

of environments should result in a greater than random representation of 

communities in the sample.  Stratification forces some sampling units to be located 

in rare environments.  A random sample of the Park would not capture such 

environments.   

In the first stage of sampling, I selected random points within each ecological 

zipcode (Figure 4.2).  Each point serves as the center of a cluster, and is the 

location of the first sampling unit within a cluster.  Optionally, I added weightings for 

accessibility at this stage.  I used the simplest possible weighting model.  The 

selection probability of a point is proportional to the accessibility percentile raised to 

an exponent: 

 zaw =  (1) 
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where w is the relative weight, a is the accessibility percentile, and z is the weighting 

parameter.  I generated samples with weighting exponents (z) varying from zero 

(unweighted) to 16. 

At the second stage of sampling, I selected points clustered around each of the 

stage-one points.  Before this step, I determined a maximum radius for including 

points in a cluster.  Stratification by ecological zipcodes occurred at this stage, as 

well (Figure 4.2).  The resulting sample contains central sites stratified by ecological 

zipcode between clusters, and sites within each cluster stratified by ecological 

zipcode. 

Sample Generation and Analysis 

I generated a series of samples using the above design for GSMNP.  I 

analyzed the spatial structure of the ecological zipcodes using mantel correlograms 

(Legendre & Fortin 1989; Legendre and Legendre1998), and measured the 

environmental variety present at different scales within the Park.  I used these data 

to select variables to include in the stratification of the sample, as well as the 

maximum cluster radius.  I assessed representativeness of samples using the joint 

probability distribution of ecological zipcodes for the selected maximum cluster 

radius. 

To analyze the effect that sample bias has on accessibility, I generated 1000 

samples for each of seven different weightings ranging from unweighted to a 

weighting exponent (z in Eq. 1) of 16.  Each sample consisted of 45 clusters (1 

cluster per zipcode) with three sites in each cluster.  I tested the null hypothesis that 

weighted samples derived from populations are identical to that of an unweighted 
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sample using a χ2 goodness-of-fit (GOF) test.  To assess how well the sampling 

protocol captured vegetation communities, I intersected these samples with the 

vegetation community classification.  I performed a χ2 GOF test on the variety and 

frequency of vegetation communities captured by the samples against the null 

hypothesis that samples reflected the actual variety and frequency of communities in 

the Park.  Finally, I tested variety and abundance of hemlock communities in the 

sample against the distribution of those same communities within the Park to assess 

the representativeness of the sample for not only the Park as a whole but also 

individual taxa. 

Results 

Spatial structure of the environment 

The spatial structure of each variable in the ecological zipcodes has a profound 

impact on the spatial structure of the sample.  I found that if the variables used for 

stratification are spatially autocorrelated at scales greater than the size of a cluster, 

then stratification within a cluster will results in "false" environmental distinctions.  If 

the average patch size of a particular digit of the zipcode is greater than that of a 

cluster, then stratifying by ecological zipcode will tend to place sites at the border of 

patches.  The differences suggested by the ecological zipcode, then, really 

illustrates the weakness of categorical variables rather an actual environmental 

distinction.  These environmental variables would be gradients with respect to a 

cluster as opposed to spatial structures (sensu Legendre 1993). 
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To address this issue, I sampled the values of each variable making up the 

ecological zipcodes at 2000 locations within the Park and generated spatial 

autocorrelation functions based on these samples (Figure 4.3).  The distances at 

which hillshade and TCI are not spatially autocorrelated were quite small relative to 

the spacing of the 2000 random points throughout the Park.  The spatial 

autocorrelation function did not provide a fine resolution at these scales.  So, I 

randomly sampled 2000 points from a randomly selected circle of radius 2000m.  

Both hillshade and TCI become uncorrelated at scales between 200m-400m (Figure 

4.3b, c).  This evidence suggested stratifying samples by TCI and hillshade at the 

scale of a cluster (<1km) was appropriate.  Elevation, on the other hand, showed 

significant positive autocorrelation at distances out to about 30km and was 

negatively autocorrelated at distances greater than this.  This suggests that 

stratification within clusters by the elevation variable in the ecological zipcodes is 

inappropriate.  Within-cluster stratification by elevation would merely place sample 

unit on the border between two larger patches of different elevation.  Therefore, 

when selecting the population of possible cluster locations, I considered only 

locations showed variety in the hillshade and TCI digits of the ecological zipcodes.  

Stratification by elevation still occurred in the first stage selection of sites. 

The maximum cluster radius (r) of the sample is the maximum distance 

between the central point of a cluster and the additional cluster points.  This distance 

sets both the maximum distance between points in cluster and the minimum 

distance between clusters at 2r.  The range of values that r can take is bounded on 

both ends.  The spatial scaling of the stratification variable and the size of sampling 
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units set the minimum value of r.  Accessibility and efficiency determine the 

maximum value of r.  If r is large, the efficiency gained by clustering samples is lost.  

Given these boundaries, the ideal cluster size can be determined by analyzing the 

variation in environment with maximum cluster size (Table 4.1). 

Since stratification occurs in both intra-cluster plot selection and infra-cluster 

selection, there must be reasonable assurance that a randomly selected site has at 

least as many environments as the number of intra-cluster samples.  I calculated the 

probability of any single site having at least a given number of ecological zipcodes 

(only considering the hillshade and TCI digits) within circular windows of increasing 

radii (Table 4.2).  For this study, the number of plots within a cluster was 3.  The 

radius at which 95% of sites in park contained at least 3 different ecological zipcodes 

was 400m.  This distance is similar to the lag distances at which TCI and hillshade 

show little or not spatial autocorrelation (Figure 4.3) and supports the idea that 

stratification by these variables within clusters results in "true" environmental 

differences.  These results suggested that I select 400m as the maximum cluster 

radius (r). 

Implementation of the Sampling Design 

Once I determined the maximum cluster radius for the sample design, I could 

generate the population of sites from which to select the cluster centers.  Sites 

selected from this population are stratified by the full ecological zipcodes.  This is the 

stage 1 population.  The stage 1 population is not a random subset of all locations in 

the Park.  Instead, it is limited to those areas that have at least three ecological 

zipcodes (differences in TCI and hillshade only) in a circle with radius equal to the 
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maximum cluster radius (400m).  Though it is not a random subset, it is a 

representative subset, containing 95% of the total park area (Table 4.2).  I randomly 

selected one point from this population for each ecological zipcode.  This set of 

points served as the cluster centers.  I then selected two additional points randomly 

around each cluster center within the maximum cluster radius.  These points were 

stratified by ecological zipcode so that all three sites within a cluster (the center and 

the 2 outlying sites) were of different environments (Figure 4.2). 

Accessibility Bias 

I generated such samples 1000 times for each of six different accessibility 

weightings (Figure 4.4).  Mean accessibility percentile in the samples ranged from 

50% for unweighted to 8% for a weighting factor of 16 (z in Eq. 1; Figure 4.5).  This 

means that when z=16, samples were, on average, located within the 8% most 

accessible locations in the Park.  Weighting samples toward more accessible 

locations resulted in a strong bias in the joint-inclusion probabilities of ecological 

zipcodes as well as the frequency distribution of ecological zipcodes (Table 4.2).  

For joint probabilities of ecological zipcodes, only samples of minimal weighting 

(z=3) did not reject the null hypothesis that the weighted sample population is 

indistinguishable from the unweighted sample population.  Zipcode frequency 

distributions between weighted and unweighted samples were significantly different 

for all weightings.  This suggests that the topographic environment of GSMNP from 

which the zipcodes derive correlates strongly with accessibility.  This is not 

unexpected given that one parameter of the accessibility model is the same DEM as 
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that for the ecological zipcodes.  Roads and trail tend within the Park tend to follow 

drainages and to be located landscape positions that are less steep. 

Vegetation community representation 

The spatial clustering of sample sites tended to reduce the variety of vegetation 

communities captured by the samples from the random expectation (Figure 4.6).  

This seems intuitive given the spatial autocorrelation of vegetation communities 

(Koenig 1999;Legendre 1993).  Sites in close proximity should have a greater 

probability of being from the same vegetation community.  Though clustering tended 

to reduce representativeness of vegetation communities, stratification by ecological 

zipcode increased the average number of communities captured in a sample (Figure 

4.6).  This increase in the variety of vegetation communities through stratification 

was not strong enough, however, to overcome the reduction in variety due to sample 

clustering. 

Forests dominated by Eastern Hemlock 

Forests dominated by eastern hemlock occupy about 10% (~20000 ha) of the 

Park area.  Samples generated using the protocol reflected this proportion.  

Approximately 10% of the samples sites fell in hemlock forest.  The proportion of 

hemlock in a sample did not increase significantly with increasing sample weighting 

for accessibility.  Though the proportion of hemlock forest captured by the sample 

was typical of a random sample of the Park as a whole, the diversity of ecological 

zipcodes for sites containing hemlock was greater than the random expectation 

(Figure 4.7).  Hemlock abundance in the sample matched that of the Park, but in a 

greater variety of environments. 
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Discussion 

I now assess these results by turning back to the four design challenges facing 

landscape-scale biodiversity surveys.  I comment on how this protocol addresses 

those challenges, and what conceptual basis these results provide for overcoming 

them. 

Environmental variety 

Environmental variety in samples is a desirable trait of biodiversity surveys.  

Samples that maximize environmental diversity tend to capture more species than 

random samples (Faith et al. 2004).  Further, environmental diversity is at least as 

important as species diversity for detecting change in species distributions through 

time, since species tend to respond to processes like climate change in the context 

of an environmental template.  Sample stratification ensures a wide variety of 

environments regardless of their abundance.  The ecological zipcodes are one 

approach to environmental stratification and have some distinct advantages.  First, 

they link directly to important ecological processes.  Second, they derive from readily 

available remotely sensed data.  Finally, they efficiently classify a multivariate, 

continuous environment in a univariate, nominal measure. 

In order for a sample to represent faithfully environmental variation, however, 

the spatial scaling of stratification variables must mesh with those of the sampling 

design (Urban et al. 2002;Tobin 2004).  If the distance between sites is less than the 

mean distance between unique patches of the environmental variable, then any 

stratification across the gradient will result in a false environmental distinction.  For 

this study, the distances between unique patches of elevation were much larger than 
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the distance between sites within a cluster.  Stratification within a cluster could not 

include this variable.  Relative wetness (TCI) and insolation (Hillshade) on the other 

hand, become spatially uncorrelated at distances of hundreds of meters.  These 

variables were good candidates for within-cluster stratification of sample sites.  The 

important message from these results is this.  When sampling for environmental 

diversity, ecological importance may not be the only criteria for variables.  Special 

care must be given to the variety of spatial autocorrelation structures in the set of 

environmental variables.  Given two variables of equal explanatory power, the 

variable that maximizes the variety of spatial scaling should be chosen. 

Relative Abundance Distribution of Species 

Though clustered sampling tends to improve efficiency, it also tends to miss 

rare environments (Figure 4.6).  To capture rare species, clustered sampling designs 

need stratification along a gradient important for species composition.  Even with 

stratification by the ecological zipcodes, stratified-clustered samples tend not to 

capture rare vegetation communities more frequently than their abundance on the 

landscape suggests.  This result implies that the ecological zipcode classification is 

coarse relative to the subtle environmental variations that may predict rare 

vegetation communities.  This is not surprising, given the fact that the ecological 

zipcodes do no include an edaphic component: an important predictor of vegetation 

communities in the GSMNP (Cain 1931;Bratton 1976). 

Hemlock representation in the samples followed much the same pattern as that 

for all vegetation communities.  In general, hemlock occurred in the samples in 

proportion to its abundance in the Park.  The variety of environments, however, in 
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which hemlock was present was greater than would be expected by random.  Rare 

environments such as high-elevation hemlock stands (>1400m) were present in 

samples.  The variety of environments captured in the sample important for 

threatened species such as hemlock.  These extreme environments represent 

possible escapes or storehouses of genetic variability, which can facilitate species 

persistence. 

Overall, stratified-clustered sampling may not be the most appropriate for 

capturing the rarest species at a landscape scale.  These results suggest that 

capturing rare environments does not guarantee the presence of rare communities 

or species.  Instead, the protocol I have outlined here captures a wider variety of 

environments within the broader context of vegetation patterns.  If the goal of a 

survey is just to capture rare species, an adaptive-clustered design may be more 

appropriate.  The basic protocol is the same, except that encounters with rare 

species require more attention.  Rare species necessitate additional samples.  

Statistical estimators, such as the Horvitz-Thompson estimator, address changes in 

second-order inclusion probabilities that result from such adaptive sampling (Philippi 

2005;Thompson 1991). 

Spatial covariation of environment and species distributions 

From exogenous factors, such as topography, soil chemistry, and competition 

to endogenous factors such as reproduction and dispersal, the variables controlling 

species distributions exhibit spatial structuring.  Prioritizing these factors for by their 

importance to species is fundamental to understanding why species distributions 

exhibit their own spatial structure.  Unfortunately, it is impossible to stratify samples 
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by every variable that influences species distributions.  The result is that, even after 

removing variation from measured variables, geographically distant sites show 

greater dissimilarity in both environment and species composition than neighboring 

sites (Nekola & White 1999).  At a landscape scale, then, how does one distinguish 

between the influences of measured variables from unmeasured variables?  The 

answer lies in the spatial structuring of the sample.  The protocol has two properties 

that help to distinguish between measured environmental variables and other 

unmeasured, yet spatially autocorrelated variables: clustering of sample sites and 

two-stage stratification. 

Clustering sites in a sample imparts two explicitly defined spatial scales: within-

cluster and between-cluster.  This has some advantage over both random and 

regular sampling schemes.  While random samples possess multiple scales of 

spatial aggregation, at a landscape scale there will be few sites that are close 

together (on the order of tens of meters).  The same is true of regular sampling.  

Distances among sample units are not small, unless the landscape is limited in 

extent and sample size is high.  Yet, it is at these distances that many important 

ecological processes occur.  I have shown that for GSMNP both wetness and 

insolation vary on the order of tens to hundreds of meters.  Dispersal processes 

(Clark et al. 1998) and soil gradients (Palmer & Dixon 1990;Bratton 1976) vary at 

these scales.  Clustering of sample units allows for many replicates at small scales 

to be present in the sample, while retaining the larger scale inter-plot distances. 

Stratification of the samples by environment both between clusters and within 

clusters allows the separation of measured environmental effects from unmeasured 
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effects.  There is no stratification within clusters in typical stratified-clustered or 

randomized-block design.  Instead, these designs assume homogeneity with 

clusters.  The problem with this approach is that it is difficult to distinguish between 

effects due purely to the stratification variables and those due to unmeasured effects 

that happen to be spatially autocorrelated at the same scale.  Having environmental 

variables stratified at two explicit scales, separates the effects of the stratification 

variables from those that contribute to larger scale distance decay of similarity.  

Consider, for example, a sample of relatively wet versus relatively dry sites.  If 

contrasting sites are only present between clusters separated by thousands of 

meters on average, it is difficult to know whether differences in species composition 

are due to wetness or to some other unmeasured environmental variable.  If, 

however, contrasting sites are present both between clusters and within clusters, 

and differences in species composition remain, these differences are likely due to 

wetness as opposed to some unmeasured variable that just happens to be 

uncorrelated at large spatial scales.  This also highlights the importance of knowing 

the scales at which stratified variables are spatially autocorrelated.  Matching the 

size of the cluster to the scales at which important variables change is vital to 

separating the pure effects of these variables from other unmeasured effects. 

Sampling Efficiency vs. Environmental Representativeness 

Two design components affect the efficiency of a sample: the absolute 

accessibility of sites, and the relative distance between consecutively surveyed sites.  

Cluster of samples sites controls the latter.  Weighting sites by accessibility controls 

the former.  Increasing sample efficiency comes at the cost decreases the degree to 
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which the sample reflects the landscape.  My results suggest that bias in 

representation is significant for even small weightings in accessibility.  This result is 

profound and disturbing considering that the vast majority of landscape-scale 

ecological datasets exhibit some bias for accessibility (Chapter 3).  The χ2-GOF test 

used in this analysis, however, is conservative.  In some studies, bias away from a 

random population may acceptable.  In those cases, χ2 statistics estimate the 

relative bias that introduced by weighting for accessibility. 

An alternative for increased efficiency is increasing the number of sites per 

cluster.  As number of sites per cluster increases, the maximum cluster radius must 

also increase in order to capture a representative set of environments in the 

landscape.  The relative increase in the maximum cluster radius is dependent upon 

the spatial heterogeneity of the environment.  For GSMNP, doubling the number of 

sites per cluster increased minimum cluster radius from 200m to 500m in order for 

95% of the Park to be included in the population (Table 4.1).  Given this radius, plots 

could potentially be 1km apart.  At greater radii, decreases in efficiency outweigh the 

other benefits of clustered sampling. 

Conclusion 

I have shown that two-stage stratified clustered sampling using ecological 

zipcodes is an effective method for capturing a wide variety of environments within 

the broad patterns of vegetation.  The two-stage stratification allows effective 

assessment of spatial covariation of environment and species distributions as well 

as separation of environmental effects from other spatially structured processes 
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such as dispersal.  I found that while clustered designs improve efficiency and 

incorporate fine and broad scale pattern, they tend to reduce the number of different 

communities captured by a sample.  This highlighted the need for choosing 

appropriate stratification variables in any clustered design.  The choice of 

stratification variables must also maximize variety in spatial scaling.  Finally, I found 

that by weighting the sample using a model of accessibility sampling efficiency is 

increased, though, sampling more frequently in a more broadly dispersed area may 

offer the best balance between sampling efficiency and environmental 

representativeness.
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Figures 

Figure 4.1 A guide for generating samples using the two-stage stratified clustered 
protocol. 

 

1 - Generate the ecological zipcodes for the study 
area (Chapter 2) 
2 - Select the ecological zipcode digits to be used 
in 1st and 2nd stage stratification using mantel 
correlograms. 
3 - Assign the number of plots per cluster and the 
maximum cluster radius based on the output of an 
ecological zipcode focal variety analysis for 
increasing radii. (Table 4.1)  
4 - Calculate the adjacency matrix of zipcode co-
occurrence probabilities for the selected maximum 
cluster radius (Arc AML code available on request) 
5 - Generate an accessibility model for the study 
area (Chapter 3)  
6 - Test the bias introduced by accessibility 
weighting against the unweighted case 
7 - Generate the final sample using the determined 
weighting. 
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Figure 4.2 Diagram of the two-stage stratified clustered sampling process using the 
ecological zipcodes.  Cluster centers (left, small circles) are randomly selected for 
each ecological zipcode (left, shades of gray).  Additional sites within the cluster are 
randomly selected from all sites within the maximum cluster radius (right, selected 
sites in gray), with the limitation the each site within a cluster be of a unique zipcode. 
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Figure 4.3 Spatial autocorrelation functions for the three variables used to stratify 
samples in the protocol: a) elevation, b) hillshade, and c) relative wetness (TCI).  
Observed autocorrelation (solid lines), lower confidence limits (dotted lines), and 
upper confidence limits (dashed lines) (α=0.95) for each variable are shown. Since 
variations in the elevation gradient occur at such large scales (>10km), this variable 
is not appropriate for stratification within clusters of sample sites.  Relative wetness 
and hillshade, on the other hand, exhibit variation in spatial structure at scales 
appropriate for stratification within clustered sample sites (~200-400km). 
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Figure 4.4 Two samples that use the two-stage stratified-clustered protocol for 
GSMNP.  The first sample is unweighted for accessibility (open circles with dot).  
The second is weighted with z=16 in Eq. 1.  (open circles with X).  Though the joint 
inclusion probabilities of ecological zipcodes for the second sample differ 
significantly from the Park as a whole, its accessibility makes it more appealing. 
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Figure 4.5 Selection probability for sites according to their accessibility via a simple 
accessibility weighting function (Eq. 1).  Probabilities for different weighting 
exponents (z in Eq. 1) are shown.  Mean accessibility for samples using different 
weighting exponent are given in Table 4.2. 
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Figure 4.6 Distributions of the number of vegetation communities captured using 
different sample designs.  Each distribution is based on 1000 random samples of 
135 sites.  The low number of vegetation communities captured using for random 
clustered sampling illustrate the weakness of clustered sampling designs.  
Stratification is a necessity for clustered sampling design.  Further, selecting the 
appropriate stratification variables is also vital.  Variety in vegetation communities is 
limited in the stratified samples, because the ecological zipcodes do not necessarily 
reflect subtle changes in vegetation communities. 

 
stratified clustered 
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Figure 4.7 Observed and expected abundance of hemlock for each ecological 
zipcode.  Expected values are for a random sample of hemlock.  Observed values 
are the mean abundance from 1000 samples using the protocol (unweighted for 
accessibility).  Rare hemlock environments are more frequently observed than would 
be expected by random, because of the stratification in the protocol.  Since 
stratification occurs across ecologically important variables rather than just broad 
vegetation patterns, the protocol captures a greater diversity of environments for any 
given species. 
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Tables 

Table 4.1 The proportion of sites within GSMNP having a variety of unique 
ecological zipcodes greater than or equal to a given number within circles of 
increasing radius.  Variations in elevation within the zipcodes are not considered in 
these calculations because of the large distances over which elevation gradient is 
spatially autocorrelated.  Window radius and zipcode variety pairs that encompass at 
least 95% of the Park (gray shading) are candidates for the cluster size and 
maximum cluster radius of the sampling protocol.  Based on these results, I selected 
three sites per cluster and with a 200 m maximum cluster radius (shown in bold) for 
generating samples. 

100 150 200 250 300 350 400 450 500
2 0.936 0.984 0.993 0.995 0.995 0.995 0.996 0.996 0.996
3 0.737 0.919 0.968 0.984 0.987 0.988 0.989 0.990 0.990
4 0.453 0.766 0.896 0.956 0.972 0.979 0.982 0.984 0.985
5 0.200 0.526 0.738 0.878 0.928 0.951 0.964 0.970 0.974
6 0.058 0.281 0.510 0.726 0.832 0.892 0.928 0.947 0.957
7 0.009 0.094 0.253 0.483 0.642 0.755 0.839 0.889 0.918
8 0.001 0.017 0.071 0.196 0.327 0.457 0.591 0.698 0.776
9 0.000 0.001 0.004 0.019 0.041 0.074 0.124 0.184 0.248

N
 Z

ip
co

de
s

P(Z>=N Zipcodes)
Circular window radius (m)

 

Table 4.2  χ2 goodness-of-fit (GOF) test results for the joint probability distributions 
of ecological zipcodes and the distributions of zipcodes frequencies for samples with 
different accessibility weightings.  The GOF test tests the null hypothesis that 
weighted samples derive from a population indistinguishable from that of unweighted 
samples.  For even relatively small weighting (mean accessibility < 30%), this null 
hypothesis is rejected, illustrating the fact that biasing for accessibility introduces 
strong bias in environmental representativeness. 

X-sq
(df = 989)

X-sq
(df = 44)

0 49.70 ---- ---- ---- ----
0.25 45.06 869 0.997 68 0.011 ***
0.5 41.56 958 0.758 64 0.026 ***
1 35.99 1032 0.166 89 0.001 ***
2 28.57 1260 0.000 *** 250 0.000 ***
8 13.04 3033 0.000 *** 728 0.000 ***
16 8.47 4653 0.000 *** 806 0.000 ***

z Mean
Access % p

(*** < 0.01)
p

(*** < 0.01)

GOF Joint Prob. Dist. GOF Zipcode Freq.



Chapter 5 

Estimating Landscape-scale Species Richness: Reconciling 

Frequency- and Turnover-based Approaches

Abstract 

One hypothesis for why estimators of species richness tend to underestimate 

total richness is that they do not explicitly account for increases in species richness 

due to spatial or environmental turnover in species composition.  I analyze the 

similarity of a dataset of native trees in Great Smoky Mountains National Park, and 

assess the robustness of these estimators against recently developed ones that 

incorporate turnover explicitly: the total species accumulation method (T-S) and a 

method based on the distance decay of similarity.  I show that the T-S estimator can 

give reliable estimates of species richness, given an appropriate grouping of sites.  

The estimator based on distance decay of similarity performed poorly.  The results 

suggest that separating the biases associated with small sample sizes, while 

controlling for environmental heterogeneity can improve the richness estimates 

based on the turnover of species composition with distance. 

Keywords 

Beta-diversity, species richness estimation, distance-decay of similarity
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Introduction 

The assessment of species richness over landscapes requires ever-increasing 

sample effort to capture the ever rarer species (Fisher et al. 1943;Fisher et al. 

1943;Preston 1948).  Unless a landscape is completely surveyed, all samples are 

likely to fail to record a certain proportion of rare species.  Consequently, in order to 

estimate total species richness (Strue) at a landscape-scale (103-106 ha), we are 

forced to extrapolate from incomplete surveys of total richness.  There is a long 

history in ecology of estimating total species richness (Sest) from sample data, and a 

wide variety of techniques for doing so (Chao 2004).  Numerous papers have 

assessed the bias and precision of any of a number of estimators for a given 

taxonomic group and location (for reviews see Cao et al. 2004;Walther & Moore 

2005). 

Species richness estimators rely upon the relationship between species 

richness and the accumulation of sample effort or area to estimate the total number 

of species for some unmeasured amount of sample effort either as time, area, or 

number of individuals sampled.  The relationship between species richness and 

sample effort is summarized as a species accumulation curve where the x-axis is 

increasing sample effort or number of individuals, and the y-axis is increasing 

species richness.  The order in which sample effort is accumulated profoundly 

affects the shape of the species accumulation curve.  As a consequence, richness 

estimators rely upon a rarefied species accumulation curve which describes 

increases in species richness when sample effort is randomly accumulated (Gotelli & 

Colwell 2001) 
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Species richness estimators fall into two-broad categories: parametric and non-

parametric.  The former fit a function (typically a Michaelis-Menten) to the species 

accumulation curve (e.g. Jimenez-Valverde et al. 2006;Plotkin et al. 2000).  The 

latter estimate species richness based on the frequency distribution of either species 

among sites (incidence-based) or the number of individuals of each species 

(abundance-based).  These non-parametric estimators have more accurate 

estimates at small sample sizes than parametric ones and are typically preferred 

(Colwell & Coddington 1994). 

An implicit assumption of non-parametric estimators is that sites are spatially 

homogeneous (Chazdon et al. 1998) and that the population from which individuals 

or species are drawn is stationary.  As such, these estimators are typically used to 

estimate alpha-diversity (Whittaker 1972),which is local species richness where 

environment and other factors that control the species distributions are relatively 

constant.  Recent evidence suggests, however, that these estimators are robust to 

spatial heterogeneity as long as sample coverage, the proportion of species 

observed relative to total species, is high (Brose et al. 2003;O'dea et al. 2006).  In 

fact, many studies that assess the performance (as measured by bias, precision, 

and/or accuracy) of these richness estimators were based on samples that could be 

considered heterogeneous (e.g. Palmer 1990;Chiarucci et al. 2001). 

In spite of their popularity, available non-parametric estimators typically 

underestimate species richness (Colwell & Coddington 1994;Chao 1984).  One 

hypothesis for why non-parametric estimators tend to underestimate total richness is 

that they do not explicitly account for increases in species richness due to turnover 
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in species composition across gradients.  Such turnover of species composition 

across gradients, or beta-diversity (Whittaker 1972), is responsible for greater 

species richness of large areas than would be suggested by extrapolating from small 

areas and is the driving force behind changes of richness with scale (Rosenzweig 

1995).  Beta-diversity holds the key to understanding how richness scales from small 

areas that can be completely surveyed to large areas that cannot.  Two recently 

published richness estimators (Harte et al. 1999;Ugland et al. 2003) explicitly use 

beta-diversity in calculating Sest.  The T-S estimator of (Ugland et al. 2003) relies on 

grouping sites into ecologically meaningful subsets and integrating species richness 

estimates across different combination of these groupings.  The estimator developed 

by Harte et al. (1999) builds upon the log-log relationship between richness and area 

(Arrhenius 1921) to calculate Sest based on the distance decay of compositional 

similarity (Nekola & White 1999).  This method has received attention in the 

literature for estimating the richness of micro-organisms (Green et al. 2004;Horner-

Devine et al. 2004) and landscape-scale vegetation (Krishnamani et al. 2004) 

Here, I assess the robustness of these species richness estimators that 

explicitly incorporate species turnover relative to other, more popular estimators that 

do not.  I demonstrate the sensitivity of turnover-based estimators to sample size, 

and sample coverage.  I analyze the relationships between the similarity of 

environments, geographic locations, and species composition.  Finally, I show how 

estimators based explicitly on turnover and those based on the frequency 

distribution of richness among sites actually estimate different processes on the 

same ecological template.  I offer an alternative approach to species richness 
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estimation that combines the benefits of frequency-based and turnover-based 

estimators. 

Methods 

Study Site 

The study site uses the Great Smoky Mountains National Park (GSMNP, TN-

NC, US) (Table 5.1) to illustrate and evaluate methods for estimating total species 

richness.  The Park area is a little over 2000 km2.  95% of the Park is forested.  The 

Park runs E-W along a main ridgeline of the Southern Appalachian Mountains.  

Forests range from high-elevation Red Spruce-Frasier Fir (Picea rubens-Abies 

fraseri) and Northern Hardwood forest dominated by red maple, American beech, 

and yellow birch (Acer saccharum, Fagus grandifolia, and Betula alleghaniensis), to 

eastern hemlock (Tsuga canadensis) and pine-oak (Pinus spp.-Quercus spp.) 

forests on mesic and dry sites, respectively.  At lower elevations, rich cove forests 

dominated by tulip poplar, American basswood and red maple (Liriodendron 

tulipifera, Tilia americana var heterophylla, and Acer rubrum var rubrum) are 

present.  129 native tree species (Strue) have been documented within the Park (165 

including exotic species).  The tree list on which these numbers are based is taken 

from a database on the vascular plants of GSMNP (Peter White, unpublished which 

was originally based on White (1982), and updated by Peter White and Jason 

Fridley (unpublished) with the help of GSMNP botanist Janet Rock).  Nomenclature 

follows Weakley (2006)). 

Data 
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The dataset used for this analysis is a compilation of vegetation studies 

conducted in GSMNP spanning roughly 30 years (Table 5.1).  Though each study in 

the compilation had its own research questions, they all record the presence or 

absence of every vascular plant in an area of 1000m2.  I have limited this analysis to 

trees, because the actual number of species in the Park (Strue=129) is known to 

within a few species.  I have further limited the species list to only native trees 

because of the rapidly changing richness of exotic species in the flora.  103 native 

tree species had recorded observations in the dataset.  The final dataset consisted 

of 805 plots after removing those lacking native trees. 

Analysis 

I generated incidence-based species accumulation curves (Sobs) (Colwell et al. 

2004) for the Park and parametric and non-parametric species richness estimates 

using the software package EstimateS (Colwell 2005).  There are a large number of 

incidence-based richness estimators, so I limited this analysis to those that have 

been reported in the literature to perform best.  Among the parametric equations, I 

used a fitted Michaelis-Menten (M-M)(Raaijmakers 1987;Colwell et al. 2004).  The 

non-parametric estimators were the incidence coverage estimator (ICE) (Chao et al. 

2000;Chazdon et al. 1998), Chao's incidence-based estimator (Chao2) (Chao 

1984;Chao 1987), and the second-order jack-knife estimator (Jack2) (Burnham & 

Overton 1979;Burnham & Overton 1978;Smith & Vanbelle 1984;Palmer 1991).  All 

these estimators were calculated based on rarefied species accumulation curves 

(Sobs) (Colwell et al. 2004). 
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Four different measures of site similarity were generated for the set of plots.  

For all pairs of sites, I calculated the Jaccard and Sorenson similarity of species 

composition, and the Euclidean distance and Euclidean distance of normalized 

environment.  The environmental variables included in the similarity analysis were 

elevation, hillshade (azimuth 135, altitude 45), and relative wetness (as measured by 

the topographic convergence index (Moore et al. 1991;Wolock & Mccabe 

1995;Yeakley et al. 1998).  These variables taken together correspond to the 

important ecological gradients of energy flux, temperature, and radiation (Chapter 2).  

Since Bray-Curtis similarity is a rank-order measure, each environmental variable 

had equal weighting. 

To analyze the effect that various gradients had on species richness 

accumulation, I generated species accumulation curves assembled by maximum 

dissimilarity.  I used the three similarity measures outlined above for composition, 

geographic and environmental distance.  The species accumulation curves were 

based on the mean of 100 randomizations.  An initial site was selected randomly.  

Then, the site with the greatest dissimilarity was added sequentially to create a 

single randomization.  For comparison, I also assembled sites based on maximum 

complementarity.  Beginning with the richest site, I sequentially added the site with 

the most new species.  Finally, I created the actual species accumulation curve.  

Sites were ordered by the date they were surveyed. 

The two turnover-based estimators used in this analysis are the T-S estimator 

(Ugland et al. 2003) and the method of Harte et al. (1999).  The T-S estimator relies 

upon groupings of similar sites.  Given n groups, mean species accumulation curves 
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are generated for all combinations of 1, 2...n groups.  Each combination has a mean 

maximum richness.  These maximum values are then fit to a log-linear species-area 

model.  From this equation the total richness for a given area is calculated.  I 

generated 10 groups three different ways: by species composition, environment, and 

by geographic distance.  I used the method of partitioning around medoids (pam) 

(Kaufman & Rousseeuw 1990), a more robust version of k-means clustering, to 

assign group membership for each grouping variable. 

The method of Harte et al. (1999) relies on the distance-decay of compositional 

similarity (Nekola & White 1999) to estimate species richness.  In the absence of a 

predefined abbreviation, hereafter I refer to this method as DDS.  The theory behind 

DDS builds upon Harte and Kinzig (1997).  Beginning with the Arrhenius (1921), 

power-law species-area relationship (S=cAz) where S is the number of species a is 

area and z is the slope of the log-log relationship, they derive the hypothesis that z is 

related to the slope of a log-log distance decay of similarity (Sorenson similarity) by 

the function z=-2d, where d is the slope of the log-log distance-decay.  The slope of 

the log-log species-area relationship (z) is scale-dependent (Rosenzweig 1995), so 

the method of Harte et al. (1999) is only applicable across scales in which z is 

constant. 

Analyzing the effect of sample size on the bias of the DDS estimator is not as 

straight-forward as that for other richness estimators.  Any random subset of sites 

can have a unique geographic extent.  The DDS estimator relies on samples whose 

extent is at least as great as the square root of the area to which the extrapolation is 

made.  To correct for this I generated smaller samples by first selecting a pair of 
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plots randomly whose distance were at least 40 km (roughly the square root of the 

Park area).  Additional sites were added randomly up to the desired sample size.  

This gave a random subset whose extent was fixed.  The DDS estimator for the Park 

area could be calculated on these subsets. 

Results 

Similarity in species composition decreased with increasing distance between 

sites.  Since distance measures are strongly influenced by edge effects, the smallest 

linear extent of the Park (the N-S extent) set the maximum distance for comparison 

among sites (40km; Figure 5.1a).  Similarity in species composition shows a more 

direct correlation with environmental similarity than distance (Figure 5.1b).  The 

relationship between environment and compositional similarity seems to be 

explained well by a log compositional similarity and linear environmental similarity.  

Distance and environment show a log-linear relationship out to distances of about 

20km, at which point environment and distance seem uncorrelated (Figure 5.1c). 

Accumulating sites by maximal dissimilarity revealed some interesting trends 

(Figure 5.2).  First, the actual accumulation order was more species-poor initially 

than a random curve would be.  This is not particularly surprising considering that 

each project used in assembling the dataset had its own, typically community-

specific, research question.  The curve assembled by maximal compositional 

dissimilarity was also more species-poor, initially, than a random curve.  After 

accumulating 10 sites, however, assembly by maximum compositional dissimilarity 

added species very quickly, and became the richest accumulation curve by 50 sites.  

For the first few sites, accumulating species by distance yielded the greatest species 
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accumulation.  From 5 sites to 50 sites, accumulation by maximum environmental 

distance produced the highest richness.  After adding 100 sites by maximum 

Euclidean distance, additional sites followed the random curve. 

Since the correlation between environmental distance and geographic distance 

begins to increase at distances greater than 40km, the DDS estimator can only be 

applied to those distance less than 40km (Figure 5.1d).  The Park area is roughly 

(45km)2, so the DDS method can still be applied to estimate richness for the entire 

park.  Harte et al. (1999) suggest a correction for rectangular areas that involves 

increasing the value of z.  Since Sest from the DDS method were actually much 

larger than Strue, this correction was not applied. 

The residuals of regressing log Sorenson similarity against log geographic 

distance out to 40km suggest that errors are not independent, and thus violate one 

of the important assumptions of linear regression (Figure 5.1d).  This also 

corroborates other evidence suggesting that the distance decay of compositional 

similarity is log-linear as opposed to log-log (Nekola & White 1999). 

The classic parametric and non-parametric estimators of species richness 

underestimated native tree species richness in GSMNP by about 20 percent on 

average (Table 5.2).  The similarity-based estimators performed better or 

overestimated species richness.  Contrary to other results in the literature (Ugland et 

al. 2003;O'dea et al. 2006) the T-S estimators performed the best out of all the 

estimators.  The DDS estimator was actually the poorest performer of all the 

estimators, over estimating species richness by 35%.  The overestimation of species 
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richness was actually worse at small sample sizes, the complete opposite of all other 

estimators (Figure 5.3). 

Discussion 

Similarity in species composition, environment, and location 

Given the strong relationship between compositional similarity and 

environmental similarity, it would seem that the distances at which they diverge from 

a strong relationship with distance would match.  The fact that species composition 

remains correlated with distance beyond that which environment explains, suggests 

that either there exists important, yet unmeasured environmental variables that are 

spatially autocorrelated at distances greater than 20km or the signal of dispersal 

limitation in trees is present beyond 20km.  More likely, there is a significant 

interaction between the two in the form of disturbance history causing this pattern. 

This breakdown of the environmental gradient relationship with distance also 

illustrates the scale dependence of the species-area relationship at large scales as 

well as small scale (Rosenzweig1995).  That is, that range of areas over which the 

slope of the log-log species area relationship (z) is constant has an upper bound as 

well as a lower bound.  If the derivation of Harte et al. (1999) is correct, z is not 

constant from 1x103m2 to 2x105m2.  This makes the method of Harte et al. (1999) 

even more restricted.  This limitation is overcome in practice by successively 

integrating over small changes in area, where changes in z are small (Hortal et al. 

2006).  Species estimates derived from extrapolation between the plot and some 

larger area (smaller than the landscape) are used in the calculation of Strue.  This 
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procedure has two shortcomings.  First, since the parameter being estimated (z) is 

exponentially related to species number, small errors in estimating z yield drastic 

errors in estimating species number.  Second, these errors in the estimation of z are 

multiplicative when applied sequentially from small areas to large areas so that the 

cumulative error in Sest is much larger than that for any single extrapolation of Sobs.  

Accumulation order matters 

Richness estimators usually take into consideration only the randomized 

species accumulation curve.  Site order does not matter in calculation.  In practice, 

however, the randomized species accumulation curve can change drastically 

depending on the sample size and the accumulation order (Figure 5.2).  For 

instance, if 100 sites of the original 805 were chosen based on environmental 

dissimilarity in the Park, richness would accumulate much faster than if sites were 

chosen randomly.  The species accumulation curve for this subset would be steep 

compared to the random case, even after rarefaction.  The species richness 

estimators would be higher (Gotelli & Colwell 2001).  This occurs mainly because 

more environments would have been sampled, and the effective Strue would be much 

larger.  Thus, sampling design matters hugely for species richness estimation so that 

even though site order is randomized for the richness estimators, the variety of sites 

in the sample still has a major impact on richness estimates. 

For maximizing the gain in species richness in a sample, environmental 

dissimilarity among sites rather than distance among sites should be maximized 

(Figure 5.2).  Though environment and distance covary, changes in environmental 

similarity become uncorrelated with distance at distances greater than 20km for 
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GSMNP (Figure 5.1b).  This roughly corresponds to the extent of a single watershed 

within GSMNP.  For GSMNP accumulating sites of maximally different environments 

within a watershed is the best course of action. 

It is interesting that assembling sites by maximal compositional dissimilarity 

does not result in a steeper species accumulation curve, initially, than assembly by 

maximal environmental or Euclidean distance (Figure 5.2).  This illustrates the 

weakness of compositional similarity measures and their application to beta-

diversity.  Sites with maximal dissimilarity are likely to be species poor.  Stated 

another way, the probability of have no species in common is greater for sites with 

only 2 species than sites with 30 species.  This bias has a profound impact on 

measures of similarity and the species richness estimators based on them.  I 

address these impacts below. 

Turnover-based estimators 

The classic estimators of species richness (M-M, ICE, Chao2, Jack2, and their 

abundance-based counterparts) have their origin in methods for extrapolating true 

population size from mark-recapture sampling (Chao 1984).  These estimators 

attempt to estimate the number of unobserved species in an unknown stationary 

population (of species).  As sample coverage (the proportion of the entire pool of 

species observed in the sample) increases, the accuracy of the richness estimator 

increases.  Brose et al (2003) have shown that these metrics are relatively 

insensitive to environmental heterogeneity and spatial autocorrelation, so should 

perform well with samples that include a lot of heterogeneity and spatial 

autocorrelation, but they are relatively sensitive to sample coverage.  In practice, 
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though, increasing sample heterogeneity by adding new sites increases the species 

pool.  Sample coverage is also decreased because the species pool grows faster 

than the proportion of species captured in the sample.  So, while gradients may not 

affect estimator performance directly, they affect their performance indirectly by 

making the universe of species bigger as dissimilar sites are added. 

Turnover-based estimators are plagued by the same problems, but in a 

different way.  The T-S estimator performed better than expected based on the 

results of other studies.  In previous studies, the estimator always overestimated 

Strue by a substantial amount.  The errors in species estimation are mainly due to 

that fact that choosing the number of groups and the membership in each group is 

somewhat arbitrary.  Group membership, in particular is important because all of the 

members are assumed to have the same species pool.  In previous studies, group 

membership was decided based on either making equal-interval divisions across an 

ordination axis, or an environmental gradient, or across categorical habitat types.  

None of these methods ask the data which groupings are appropriate.  Assigning 

group membership by non-hierarchical clustering (such as pam) allows natural 

groupings of similar sites based on the dataset.  This is probably the reason for the 

better performance of this estimator.  O'Dae and others (2006) suggest that T-S 

estimator is unnecessary because the species-area relationship is implicit in 

estimators of species richness.  Nevertheless, richness estimators not based on 

turnover always underestimate richness due to turnover between sites.  The key to 

incorporating compositional turnover explicitly in species richness estimation lies in 

separating the difference in species composition between sites that are due to 
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environmental or ecological turnover, from those that are influences because sample 

coverage is too small. 

The impact of sampling constraints on similarity 

The increase of species with area beginning from the smallest scales and 

moving upward is a function of two processes.  The first is ecology, that is the sum 

total of dispersal limitation, environmental heterogeneity, and competition.  The 

second is sampling constraints.  That is, richness at small scale is constrained by 

the number of individuals that can fit in a given area (Fisher et al. 1943).  As area 

increases, the dominance of sampling constraints becomes less and the ecological 

forces become greater.  Since both ecological and sampling processes covary with 

grain, increasing sample grain is not equivalent to increasing sample size, especially 

for plants.  The more individuals that are sampled, the more environmental 

heterogeneity is present and the greater the species pool.  The solution proposed by 

Harte et al. (1999) is to increase the sample grain until the log-log relationship of 

species and area is constant.  This area is likely to be quite large for trees (much 

greater than 1ha), though for smaller organisms sample area is not as constraining 

(e.g. Green et al. 2004;Horner-Devine et al. 2004). 

Similarity measures are also sensitive to sample coverage.  Sample coverage 

is itself constrained by sample size.  Smaller samples will systematically exhibit 

lower similarities than populations that have large sample sizes.  Thus similarity 

measured in small samples is a biased estimator of the true similarity of two sites.  

More importantly, this bias is more pronounced for sites whose true similarity is high 

(Figure 5.1a).  As an example, consider two sites of 10 species each.  Each site 
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displays complete evenness, so the selection probability of species is equal.  They 

have all species in common, so their actual Sorenson similarity is 1.  The mean 

Sorenson similarity of many random draws of one individual from each site would be 

0.1 because the probability of drawing two individuals of the same species is 1/10.  

This occurs purely because sample size is too low.  Now consider the opposite case 

in which no species overlap between the two sites.  The mean Sorenson similarity 

for many random draws of a single individual will be the true similarity between sites 

– 0.  Sites with high similarity and low sample size exhibit greater bias toward low 

similarities than sites whose similarity is actually low (Figure 5.4a). 

The fact that estimates of similarity based on small samples show greater bias 

for sites of high similarity than low similarity has an important implication for the 

distance-decay of similarity relationship (Figure 5.4b).  Since sites that are similar 

are more likely to be underestimated than sites that are very dissimilar, the effect of 

increasing the numbers of individuals per site would be to actually increase the rate 

of distance decay.  As numbers of individuals per site increased, bias would 

decrease and similarity would increase.  This increase would be greater for 

neighboring sites whose similarities are high, than for distant sites, whose similarities 

are low. 

If the area of sites were increased, the slope of distance-decay of similarity 

would also increase.  Thus, if sample size increases, then the DDS estimator should 

actually become worse.  This is not necessarily the case, however, because 

increases in sample size at a particular location necessitate an increase in the 

environmental heterogeneity of the site, especially for plants.  As discussed above, 
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increasing sample size can actually decrease sample coverage because the number 

of species that could occupy a site, all else being equal, increases faster than the 

rate at which species are captured by the sample.  As sample coverage decreases 

with increasing area, the similarity bias associated with small sample sizes returns.  

One solution to this problem might be to sum species numbers for a site through 

time (Fridley et al. In Press) but sites through time are subject to the same 

assumption of stationarity as sites through space.  Namely, disturbance or the 

shifting mosaic of landscape patches can cause the species pools for any given site 

to change through time.  Below, I describe an alternative to understanding the 

distance decay of similarity relationship and similarity-based richness estimators that 

accounts for the small sample effect without increasing the species pool? 

Incorporating turnover in species richness estimators 

The alternative to incorporating turnover into richness estimators involves 

combining the approaches of the point-estimators with turnover-based estimators.  

Point-estimators of stationary populations need to be used at scales and locations 

where they are appropriate (i.e. within relatively homogeneous sites).  Employed in 

this way with abundance data, the true or asymptotic similarity between two sites 

can be estimated.  Chao and others (2005) have developed just such a series of 

asymptotic similarity estimators that are analogous to the ones currently used in 

distance-decay of similarity analysis.  This removes, or at least removes the 

estimated effect, of low sample size.  Then, using these similarity estimates for each 

site, one could apply the approach of Harte et al. (1999), which relates the distance-

decay of similarity to the accumulation of species with area.  Unfortunately, that 
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would only increase overestimation of Strue because the distance-decay of similarity 

relationships would become steeper.  The Harte et al. (1999) model is based on a 

fundamentally-flawed power-law relationship between species, area and distance 

decay of similarity.  Log-linear approaches relating species accumulation and 

distance-decay of similarity are likely alternatives, but derivations from first principles 

are not yet available. 

Conclusion 

Even in a world where species were all ecologically equivalent, their spatial 

distributions would form a complex mosaic on the landscape (Hubbell 2001).  

Understanding how patterns such as distance decay of similarity influence species 

richness patterns, can only serve to improve our understanding and estimates of 

richness at scales too large to be exhaustively sampled.  My results suggest that 

estimators that incorporate compositional turnover can provide reasonable estimates 

of species richness.  Estimators that separate sampling processes from ecological 

ones offer the most potential for advances in estimating species richness, since 

estimators that do not explicitly include ecological processes tend consistently 

underestimate species number.  Further empirical and theoretical studies are 

needed to shed light on the interactions between similarity, richness, and sampling 

processes.
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Figures 
Figure 5.1 Distance decay of similarity for species composition and environment for 
1000m2 vegetation plots in GSMNP.  Circles are the mean value for each of 10 
equal-sized groups of distances along the abscissa.  Bars show the 1 standard 
deviation above and below the mean for each group. Comparisons shown are: a) log 
of compositional similarity (Jaccard’s) by linear distance.  This is the standard 
distance decay of similarity plot (sensu (Nekola & White 1999)); b) log of 
compositional similarity by the log of environmental similarity (Bray distance); c) 
linear environmental similarity versus linear distance; And d) log of Sorenson 
similarity versus the log of linear distance, whose linearly regressed slope is equal to 
-2z where z is the exponent of the Arrhenius (1921) species-area function (sensu 
(Harte et al. 1999)). 
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Figure 5.2 Species accumulation curves for sites accumulated by maximum 
dissimilarity in species composition (Jaccard’s), Euclidean distance, and 
environment (Bray-Curtis).  For comparison, the random case (standard species 
accumulation curve), the maximum case in which sites are accumulated by number 
of species they add to the total richness, and the actual accumulation order of plots 
through time are shown. 
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Figure 5.3 Estimated species richness of trees in GSMNP with increasing sample 
size for a) parametric and non-parametric estimators and b) the turnover-based 
estimator of Harte et al. (1999).  All estimators decrease bias with sample size, but 
the turnover based estimator tends to overestimate richness at small sample sizes, 
while other estimators underestimate richness. 
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Figure 5.4 A hypothetical example showing how bias in similarity measures at small 
sample sizes influences the distance decay of similarity.  a) Two sites are shown: 
one with high actual similarity and one with low actual similarity (dashed lines).  
Estimated similarities based on samples of individuals from each species pool (dark 
lines) are biased toward lower similarities with lower sample size.  This bias at small 
sample sizes is greater for sites with high similarity than low similarity.  b) The 
implication for distance-decay relationship is that as number of individuals per 
sample increases similarity increases faster for similar sites than dissimilar ones.  
This results in a steeper distance-decay relationship (dashed lines) than observed 
for samples with fewer numbers of individuals per site (dark lines). 
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Tables 

Table 5.1 Description of the study area and dataset used to generate species 
richness estimates. 

Location 35°35' N Extent
83°33' W N-S 39 km 

Area 2062 km2 E-W 87 km

1976-2004
805 Mean 23.9 km
1000m2 Median 17.4 km

Richness Per Plot Maximum 86 km
Mean 14.7 Species
Maximum 34 Species

Great Smoky Mountains National Park
Study Area

Native Tree Richness (Strue) 129 Species
Sample

Area Per Plot

Inter-plot distances

Observed Native Tree Richness (Sobs) 103 Species

Time Period
Number of Plots

 

Table 5.2 Richness estimates and performance for a variety of estimators. Strue is 
129 species.  Contrary to previous studies, T-S estimators out-performed any other 
estimator.  The method of Harte et al. (Harte et al. 1999) was the poorest performer. 

Sest Sest/Strue Model
103 0.80

97 0.75

105 0.81
104 0.81

T-S 1) Environmental Distance 121 0.94 14.3ln(a)+15.7
2) Geographic Distance 125 0.97 12.8ln(a)+24.2
3) Compositional Similarity 122 0.95 13.7ln(a)+16.5

174 1.35 (14.7)(a/0.001)0.17Harte et al. 1999

Estimator

Similarity-based

Non-parametric

Parametric
Sobs

Chao2

ICE

Michaelis-Menten

Jack2



Chapter 6 

Conclusion: Bridging the gap between pattern, process, and 

sampling 

Fundamental contributions 

From fundamental property to unknown quantity, the concept of species 

richness is a treasure trove for ecological inquiry.  The complexities arising from 

species responding individualistically to ecological gradients and the multiple spatial 

and temporal scales at which pattern is exhibited result in an ecological concept that 

will provide research potential for years to come.  Beyond my study of species 

richness patterns, basic questions remain, such as "How many species are there?", 

or "What is the relative importance of environment, history, and species interactions 

in creating and maintaining patterns of species richness?”  While we are unlikely to 

find precise answers to these questions, my work has provided methodology and 

important insights towards a more complete understanding of species richness 

patterns.  My work helps close the gaps between ecological processes and richness 

patterns, between human influences and richness patterns, between sampled and 

true richness patterns, and between local richness patterns and landscape ones. 

First, my work offers a framework for with respect to assess the relationship 

between species richness and environment.  Many different environmental variables 

can impact species distributions.  Distilling this multivariate environmental space into 
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units that are both ecologically important and coarse enough to stratify samples 

provides a vital and parsimonious link between the spatial distributions of species 

and the ecological processes that create them.  I have presented an objective and 

(perhaps most importantly) iterative strategy for classifying environment, and I have 

shown how this classification can be used to develop a sampling design to assess 

and monitor species richness patterns.  This strategy begins from ecological first 

principles and can be iteratively improved as our knowledge of how species relate to 

environment increases.  This strategy lends an ecological rigor to biodiversity 

assessment.  It also lends flexibility to assessments; allowing broader scope and 

application of collected data. 

Second, my results have shown that landscape structure controls not only 

patterns of richness, but also patterns of human interaction with that richness.  This 

has consequences for ecological inference, since all inferences about species 

richness are based on sample data.  I developed a model of human accessibility that 

estimates the energetic cost of walking through a landscape.  I have shown a strong 

bias for accessibility to be present in vegetation survey data spanning 40-years in 

Great Smoky Mountains National Park.  While this, in and of itself, is no cause for 

alarm, I have also shown the more disturbing result that important communities in 

the Park are under-sampled relative to their abundance because they are 

inaccessible.  These inaccessible communities may have a distinctive species 

composition because of their distance from sampled sites as well as decreased 

human disturbance. 
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Third, I have shown that sample data with even small biases, such as those for 

accessibility, can suggest patterns of richness that are markedly different from the 

true landscape patterns of richness.  The poor representation that comes from 

biased samples can be alleviated, however, if samples are stratified by important 

ecological variables.  Of course, choosing the appropriate variable for stratification is 

paramount to capturing variation in species composition.  I have shown that 

stratification of samples using ecological zipcodes is effective in capturing a wide 

variety of environments within broad community patterns.  I have re-emphasized the 

importance of clustered sampling for the assessment of spatial covariation of 

environment and species distributions as well as separation of environmental effects 

from other spatially structured processes such as dispersal.  My results, however, 

show that clustered samples must be paired with an appropriate stratification 

scheme in order to capture the equivalent breadth of representation that random 

samples offer.  Finally, I show that while efficiency is increased by weighting 

samples toward more accessible locations, sampling more frequently in fewer areas 

may offer the best balance between sampling efficiency and environmental 

representativeness. 

Finally, I have established an important link between estimates of species 

richness that focus on stationary, local populations and those that incorporate 

information about species turnover for landscape-scale estimates.  My results 

conflict with those of other studies.  An estimator based on grouping sites of high 

similarity outperformed classic estimators relying upon stationarity assumptions and 

based on distance decay of compositional similarity.  I showed that, while 
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theoretically distance decay of similarity measures should provide reasonable 

estimates, compositional similarity is strongly biased by sample size.  This bias is 

more pronounced with increasing similarity and decreasing distance.  Further, this 

bias is not removed by just increasing sample size, mainly because environmental 

heterogeneity and sample size covary.  I suggest alternatives that incorporate 

asymptotic compositional similarity estimates at local scales. 

Future Directions 

In addition to contributing to our understanding of species richness, the results 

I present also create an opportunity to address new research questions.  This 

dissertation has the potential to stimulate new directions for researching the 

interactions between species richness patterns, the ecological processes that create 

and maintain these patterns, and the samples that help us connect pattern to 

process.  Here, I outline some of these possibilities focusing on 5 major questions 

stemming from my research.  1) Given their restricted abundance, how can rare 

species be efficiently included in biodiversity monitoring programs?  2) Given the 

iterative nature of the biodiversity assessment strategy I have presented, what is the 

best way to incorporate lessons learned from previous studies into current 

sampling?  3) Is the model of human accessibility I have developed an accurate 

portrayal of how people move on landscapes?  4) Can we use information gained 

from models of accessibility to separate effects of human disturbance on species 

richness patterns from other spatially autocorrelated effects? And, 5) what are the 

theoretical and empirical connections between the species area relationship and 

distance decay of compositional similarity. 
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First, the results from my study suggest that while samples stratified by 

environment capture broad patterns of vegetation, they may not capture rare species 

and communities more effectively than random samples.  If the habitat for a rare 

species is also rare on the landscape then stratification by environment would tend 

to capture these species.  However many species are rare in spite of the area of 

associated habitat on the landscape.  These would not be captured effectively by 

environmental stratification.  This is an obvious problem for both biodiversity 

monitoring and species richness estimation.  The difficulty in capturing rare species 

arises from the fact that they are often absent from seemingly suitable habitats.  

Thus, rare species cannot be efficiently observed merely through stratification by 

important ecological variables.  Whether it is dispersal limitation, life history, or range 

reduction from human disturbance, the causes of rarity often lie in processes not 

easily assessed with available data.  Given these limitation, researchers are left with 

two choices for capturing rare species in biodiversity assessments: build upon 

historical observations of rare species, or make samples adaptable so that when 

rare species are encountered more samples can be taken at those locations.  In 

Chapter 3, I suggested that incorporating adaptive clustering into stratified-clustered 

designs is a good solution to capturing rare species.  The more we understand about 

both the factors that predict rarity and sampling designs that maximize both 

abundant and rare species, the more effective biodiversity monitoring programs will 

be. 

Second, I presented in chapter 2 a protocol for assessing biodiversity that can 

be iteratively improved through time.  Deciding the location and frequency of 
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additional samples, however, is not simple.  One approach is to use classification 

and regression trees (CART) to determine which portions of an environmental 

gradient exhibit the greatest changes in species composition.  It is unclear, however, 

how to proceed when the set of important variables change through time as our 

understanding of what controls patterns of species richness improves.  Further, 

when sample sites are added, the balance between representation and sampling 

efficiency must be re-evaluated.  With the progression of mobile technology, it is 

possible that soon these re-evaluations and iterative sample improvement can take 

place “on-the-fly” and in the field.  Decisions about efficiency and representation 

then become even more pronounced.  Finally, improving samples through time 

reveals a tradeoff that exists between biodiversity assessment and biodiversity 

monitoring.  That is, with given a constrained amount of sample effort, one can 

allocate that effort between resurvey of established sites and the addition of sites.  

An appropriate balance between these two options must be explored through 

simulation and experimentation. 

Third, I have not yet validated the accuracy of the accessibility model 

presented in Chapter 3 using field tests.  Currently, the only estimates of the 

energetic costs associated with crossing vegetation come from a 30 year-old study 

that poorly defines many aspects of landscape structure.  By selecting locations of 

varying accessibilities, traveling to those sites, and recording oxygen consumption, I 

could improve the reliability of the model.  While general estimates of accessibility 

offered by the model are applicable for illuminating stark contrasts, such as the 

accessibility bias present in samples, improved accuracy as a result of field 
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validation would be helpful in more subtle contrasts such as the presence or 

absence of rare species. 

Though I have here applied the model of human accessibility to the distribution 

of samples, and vegetation communities, the applications of this model stretch far 

beyond those I have addressed.  This model can be used to measure the intensity of 

human disturbances that are correlated with accessibility.  Of particular importance 

is the harvesting of rare species.  From butterfly collectors to ginseng hunters, 

anthropogenic harvesting can have a drastic impact on population viability and 

species distributions.  This complicates the prediction of species distributions, 

species richness estimates, and understanding compositional turnover.  By 

correlating harvest species distributions with an accurate model of accessibility, I 

can estimate the strength of human harvesting on these species.  By incorporating 

those effects with other important environmental variables, I can also make accurate 

distribution predictions for them that include historic effects of harvesting. 

Finally, in Chapter 5 I have outlined a new strategy for incorporating beta-

diversity into landscape-scale estimates of species richness.  This estimate relies 

upon the asymptotic similarity of species composition between sites and the log-

linear relationships between composition, area, and distance.  This estimate was not 

implemented here for two reasons.  The first lies in limitation of animal and plant 

surveys.  It is difficult to distinguish individuals in plant surveys, so the relative 

abundance distributions of plants are non-intuitive.  For animals, species-area 

relationships are non-intuitive because of their vagility.  I plan to address this 

problem for plants by using cover estimates and for animals by using species whose 
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home range can be captured with a single sample.  The second reason the estimate 

was not implemented here is that theoretical connections between log-linear species 

area relationships and log-linear distance decay of similarity do not exist yet.  My 

results suggest that power-law relationships between species, area, and distance, 

do not explain natural patterns jointly as log-linear relationships could.  Thus, new 

theory is needed that connects local scale species-area relationships with turnover 

in an exponential framework.  This is an area for future research that offers 

significant potential for advances in ecological theory. 

Conclusion 

There is perhaps no more compelling reason to study patterns of species 

richness than the fact that, on a global scale, richness is decreasing at a 

phenomenal rate.  Global climate change, exotic species invasions, and landscape 

fragmentation are just a few of the anthropogenic changes to our planet that are 

impacting species richness.  This dissertation adds a body of theoretical and 

empirical tools to our search for understanding of the ecological processes that 

cause species richness patterns and the methods we use to uncover these 

relationships.  It is my hope that these advances will move ecologists and 

conservationists closer to an understanding of species richness that spans from 

theory into practice.  Only when we understand these connections between 

biodiversity patterns and ecological processes will we be able to effectively conserve 

them.

 


