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ABSTRACT 
 

STEPHANIE A. MORRIS: Conservation and Function of the Histone Methyltransferase 
Set2 

(Under the direction of Brian D. Strahl) 
 

Histone methylation is an important post-translational modification involved in the 

regulation of eukaryotic gene expression.  While many methylation sites on histone proteins 

have been identified to play roles in both gene activation and repression, the enzymes 

mediating these modifications and their exact functions are just beginning to be discovered.  

In the budding yeast Saccharomyces cerevisiae, methylation of histone H3 at lysine 36 

(H3K36) by the histone methyltransferase Set2 has been linked to the process of transcription 

elongation.  Previous findings indicate that through an interaction with the elongating RNA 

polymerase, Set2 targets H3K36 for methylation in the coding region of genes. However, the 

exact functions for this enzyme and its modification were largely unknown.  In these studies, 

I demonstrate that Set2 methylation of H3K36 is highly conserved and associated with 

elongating RNA polymerase II in organisms distinct from budding yeast.  These results 

reveal that Set2 and H3K36 methylation have a conserved role in the transcription elongation 

process.  Furthermore, I have contributed to the finding that Set2 regulates global histone 

acetylation patterns by recruiting a small Rpd3 deacetylase (Rpd3S) complex to the coding 

region of genes. This is among one of the first studies to identify a functional mechanism for 

Set2-mediated H3K36 methylation in transcription elongation.  Finally, I have identified a 

novel and conserved modification on H3K36.  Independent of being methylated, my studies 
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reveal H3K36 is acetylated by the transcriptional co-activator Gcn5 at promoter regions.  

Collectively, these results suggest that distinct modifications on H3K36 play diverse roles in 

the transcription process.   
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CHAPTER 1 

INTRODUCTION 

 

Organization and Regulation of Chromatin 

In eukaryotes, the regulation of chromatin structure is essential for all DNA-templated 

processes such as DNA replication, repair and transcription.   It is the combination of DNA 

and proteins in the nucleus of the cell that forms chromatin (Kornberg, 1974).  Within this 

structure, access to the underlying DNA is extremely restrictive which serves as a means of 

not only compacting and protecting DNA, but as a method of regulating protein-DNA 

interactions (Kornberg and Lorch, 1999; Zheng and Hayes, 2003).  The basic subunit of 

chromatin, the nucleosome, plays a major role in this compaction.  Each nucleosome consists 

of ~147 bp of DNA wrapped twice around an octamer of histone proteins which contains two 

copies each of the four core histones H2A, H2B, H3 and H4 (Luger et al., 1997).  The core 

histones consist predominantly of a structured globular domain from which extend highly 

charged, unstructured basic amino (N)-terminal domain tails.  These N-terminal tails are vital 

for the condensation of chromatin and mediate interactions between and within nucleosomes 

(Fig. 1.1A).  Besides playing a structural role, the involvement of the N-terminal histone tails 

in the folding of nucleosomes into-higher order structures, such as the 30-nm chromatin fiber 

and higher-order tertiary structures, play essential roles in the regulation of gene activity by 

creating permissive (euchromatin) and repressive (heterochromatin) environments for gene 

expression (Kornberg and Lorch, 1999; Peterson and Laniel, 2004).  In the absence of proper 
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nucleosome assembly, spontaneous DNA damage and loss of cell viability occurs, further 

supporting the importance of histone-DNA interactions and the formation of chromatin 

(Gunjan et al., 2005).   

With chromatin being inhibitory to DNA-templated processes, the cell has devised 

several mechanisms to overcome this inhibition.  Among these mechanisms is the 

remodeling of chromatin, which uses the energy of ATP-hydrolysis to shift the position of 

nucleosomes along genes.  Chromatin-remodeling complexes such as SWI/SNF disrupt 

DNA-histone contacts while ISWI complexes such as NURF and CHRAC use an alternative 

method of chromatin restructuring involving the sliding of intact nucleosomes (Cairns et al., 

1994; Cote et al., 1994; Hamiche et al., 1999; Langst et al., 1999).   In either case, chromatin 

structure is sufficiently altered to allow the binding of factors required for the activation of 

transcription (Imbalzano et al., 1994).   

A second method of regulation, the incorporation of histone variants, has come to light as 

an important mechanism of chromatin regulation in the past few years.  Given their role in 

the packaging of DNA, histones are among the most highly conserved eukaryotic proteins.  

However, despite their high conservation, several organisms produce specialized histone 

variants that can be incorporated into nucleosomes, potentially altering nucleosomal stability.  

Two such variants exist for the histone H2A, H2A.X and H2A.Z, which are highly conserved 

from yeast to humans and are involved in DNA double-strand break repair and transcription, 

respectively (Redon et al., 2002).  Variants also exist for the histone H3 protein including the 

centromeric-specific histone CENP-A/Cse4 that is crucial for kinetochore assembly.  H3.3 in 

mammalian cells is deposited independent of replication at active genes during transcription 
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and is the only H3 variant in yeast (Ahmad and Henikoff, 2002; Smith, 2002).  Interestingly, 

a variant for the most highly conserved histone, H4, has not been reported. 

The third mechanism, the covalent modification of histone proteins, occurs on all four 

core histone proteins and has been shown to control many aspects of chromatin structure and 

function.  A majority of these marks occur on the N-terminal tails of histone proteins.  Given 

the importance of the N-terminal tails in the folding of nucleosomes (Kan et al., 2007), 

histone modifications are likely to play a major role in DNA regulation through control of 

chromatin organization and folding.  In this chapter, I will review what was currently known 

about these modifications at the beginning of my studies with an emphasis on the roles of 

these marks in the process of transcription.  

 

Post-translational Histone Modifications 

With the discovery of DNA and chromatin in the late 19th century (Miescher, 1871; 

Miescher, 1874), it has only been in the past 40 years that modifications on histone proteins 

have been identified (Allfrey et al., 1964; Murray, 1964).  A number of different highly 

conserved post-translational modifications have been found to occur on histone proteins and 

include acetylation of lysine (K) residues, methylation of lysines and arginines (R), 

phosphorylation of serines (S) and threonines (T), as well as ubiquitylation and sumoylation 

of lysines.  Additionally, lysine residues can be mono-, di-, or trimethylated while arginines 

can be mono- or dimethylated (symmetric or asymmetric).  The majority of these post-

translational modifications occur primarily on the basic, highly charged N-terminal tails with 

some recently found in the globular domains (Fig. 1.1B) (Cosgrove et al., 2004; Zhang et al., 

2003).  Several of these modifications play roles in cellular processes such as DNA repair, 
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replication, transcription, and mitosis.  They are thought to function in one of two ways either 

directly by altering chromatin structure by disrupting histone-DNA contacts leading to the 

“unraveling” of chromatin or indirectly by serving as binding platforms for the recruitment of 

protein complexes.  This second mechanism of action has led to the  “histone code 

hypothesis” in which it has been proposed that the  combination of histone modifications act 

as a code to recruit regulatory proteins that elicit distinct biological effects (Jenuwein and 

Allis, 2001; Strahl and Allis, 2000).   

Of all the different types of post-translational modifications that occur on histones, we 

have learned the most about lysine acetylation and methylation with the majority of studies 

focused on acetylation and the dynamics of its regulation.  One way acetylation functions is 

to neutralize the positive charge of lysines, leading to the disruption or loosening of  histone-

histone interactions and DNA-histone interactions that allows regulatory proteins to gain 

access to DNA (Sterner and Berger, 2000).  Acetylation has been linked to several cellular 

processes which include DNA repair, chromatin assembly, cell-cycle progression and 

transcription (Clarke et al., 1999; van Attikum and Gasser, 2005; Wang et al., 1997; Ye et al., 

2005).  This modification also functions to recruit regulatory proteins that modify chromatin 

structure to control gene transcription (Kurdistani et al., 2004).  Generally, histone 

acetyltransferases target several lysines for modification and in some cases, are functionally 

redundant with one another (Howe et al., 2001; Wittschieben et al., 2000).  However, 

acetylation is highly dynamic and can be reversed within minutes by histone deacetylases 

(Sun et al., 2003; Waterborg, 2001).  Similar to acetyltransferases, histone deacetylases target 

several lysines for the removal of acetyl groups and have a small degree of functional overlap 

(Robyr et al., 2002). 



 5

Unlike, acetylation, methylation of lysines is considered a more stable modification that 

does not significantly affect the charge of histone proteins, but may primarily function to 

recruit regulatory proteins.  Evidence gathered clearly shows that histone methylation plays 

roles in the activation and repression of transcription as well as in DNA repair and other 

cellular processes (Iizuka and Smith, 2003; Lee et al., 2005; Sanders et al., 2004).  

Additionally, the ability to mono-, di-, or trimethylate lysine residues expands on the possible 

functions for each methyl state in these different cellular processes.  Yet, the biological roles 

of these modifications, especially methylation, have not been entirely determined.  

 

Gene Transcription 

Interestingly, the majority of what we know about the function of histone modifications is 

in the context of gene transcription.  The organization of DNA into chromatin plays a vital 

role in the regulation of this process.  In eukaryotes, transcription of all protein-coding genes 

is carried out by the 12-subunit RNA polymerase II (RNAPII) complex and is characterized 

by three main phases: initiation, elongation, and termination.  In addition to the requirement 

of transcription factors for the recruitment of RNAPII’s enzymatic activity, regulatory 

proteins are needed to decompact the inhibitory chromatin structure.  Thus, RNAPII serves 

as a platform for several messenger RNA (mRNA) processing factors and chromatin-

modifying enzymes that interact with the polymerase during transcription.  A major 

component of RNAPII responsible for these interactions is the long unstructured C-terminal 

domain (CTD) on its largest subunit, Rpb1 (Buratowski, 2003; Hahn, 2004).  

Of the three RNA polymerases, RNAPII is the only one to contain a CTD, which consists 

of the repeated heptapeptide sequence YSPTSPS (52 repeats in humans and 26 in yeast).  In 
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vivo, the CTD is highly phosphorylated and thought to interact with many proteins.  

However, all of these factors do not bind to the CTD at the same time.  Specifically, 

phosphorylation of the 5th serine (Ser5) in the heptapeptide repeat by the kinase TFIIH 

(Kin28) occurs at the 5’ end of genes during transcription initiation and recruits such proteins 

as the capping enzyme complex (Cho et al., 1997; Komarnitsky et al., 2000).  Conversely, 

phosphorylation of serine 2 (Ser2) by the kinase pTEFb/Ctk1 marks transcription elongation 

and occurs in the coding region and 3’ end of genes.  Phosphorylation at this residue has been 

shown to interact with histone methyltransferases, RNA processing, and termination factors 

(Ahn et al., 2004; Hampsey and Reinberg, 2003; Komarnitsky et al., 2000).  Consequently, 

these different phosphorylation events distinguish between the different phases of 

transcription and regulate protein recruitment. 

 

Histone Modifications in Gene Transcription 

Although the modifications of histones have been linked to the regulation of gene 

expression, it has only been in the past decade that functions for these marks in transcription 

have begun to be revealed.  The identification of the first histone acetyltransferase (HAT), 

Gcn5, which was originally identified as a transcription co-activator, gave the first hint of a 

possible role for histone acetylation in gene activation (Brownell et al., 1996).  Interestingly, 

the majority of these histone-modifying enzymes exist in multiprotein complexes that 

regulate not only their histone and residue specificity, but also their targeting to genes.  In a 

complex with other proteins (i.e. SAGA complex), Gcn5 has been shown to target its histone 

acetyltransferase activity to the promoters of genes through an interaction with gene-specific 

activators such as Gcn4 (Brown et al., 2001; Grant et al., 1999).  Several studies suggest that 
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targeted recruitment of HAT complexes by activators to promoter regions leads to 

hyperacetylation and transcriptional activation while recruitment of histone deacetylase 

(HDAC) complexes to promoters by repressors leads to hypoacetylation and transcriptional 

repression (Fig. 1.2) (Brown et al., 2001; Cosma, 2002; Kurdistani et al., 2002; Robert et al., 

2004).  This  has clearly been demonstrated not only by SAGA, but also the histone 

deacetylase Rpd3 which, in complex with the co-repressor Sin3, is targeted to the promoters 

of genes (Kadosh and Struhl, 1997; Kasten et al., 1997).  In addition to being targeted to 

promoters, HATs and HDACs may modify histones in an untargeted, global manner 

regulating the general levels of acetylation genome-wide (Vogelauer et al., 2000).  

Collectively, these studies highlight the association of histone acetylation and deacetylation 

with the regulation of gene activity.  

While histone acetylation/deacetylation is correlated with the state of gene activity, this 

correlation may not be due to direct effects on chromatin structure.  In many cases, histone 

modifications are involved in the regulation of chromatin structure by acting as binding 

platforms for the recruitment of protein complexes as has been proposed by the “histone code 

hypothesis”.  Specifically, bromodomain-containing proteins can recognize and bind acetyl 

marks (Kasten et al., 2004; Martinez-Campa et al., 2004; Matangkasombut et al., 2000).  

Several such proteins have been found in chromatin-remodeling complexes such as 

SWI/SNF and RSC, thus indicating a strong link between the recruitment of chromatin-

remodeling activities during transcriptional activation and histone acetylation (Agalioti et al., 

2002; Hassan et al., 2002; Kasten et al., 2004).  Additionally, bromodomains have been 

found in acetyltransferases themselves, such as Gcn5 and can function to stabilize the 

binding of other  chromatin-remodeling activities (Syntichaki et al., 2000).   
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Similar to bromodomain-containing proteins, chromodomain-containing proteins have 

been found to bind to histone methyl marks.  The best example of this interaction is that of 

the chromodomain of the heterochromatin protein HP1 which specifically binds to 

methylated H3K9 to regulate transcriptional silencing and the formation of heterochromatin 

(Bannister et al., 2001; Lachner et al., 2001).  Although modifications such as H3K9 

methylation appear to function as repressive marks, not all methylation events are involved in 

transcriptional repression.  Methylation at K4 on histone H3, specifically trimethylation, 

localizes to sites of transcriptional activation (Santos-Rosa et al., 2002; Schneider et al., 

2004).  In mammalian cells, H3K4 methylation prevents the association of the repressive 

NuRD complex, presumably preventing the methylation of H3K9 (Zegerman et al., 2002).  

However, these positive and negative functional mechanisms of methylation are specific to 

multicellular eukaryotes.  In budding yeast, the functions of these modifications are less 

defined.  The chromodomain of the chromatin-remodeler Chd1, as a component of the 

SAGA complex, was found to specifically interact with methylated H3K4 (Pray-Grant et al., 

2005).  However, this finding has proven to be controversial as subsequent research suggests 

it is the human Chd1 and not the yeast protein that may interact with H3K4 methylation 

(Flanagan et al., 2005; Sims et al., 2005).   

Indeed, the other three chromodomain-containing proteins in yeast, New1, Esa1, and 

Eaf3 have the potential to function through the binding of methyl marks.  However, at the 

initiation of the studies carried out in this dissertation, the functional mechanisms of these 

proteins had not been identified.  Furthermore, several other potential chromatin-regulating 

domains were beginning to emerge as potential binders of methylated residues, such as the 

tudor and WD40-repeat domains, suggesting that there may be a wide range of domains and 
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associated complexes that may “read” histone modifications (Huyen et al., 2004; Sanders et 

al., 2004; Wysocka et al., 2005).      

 

Histone Methylation and SET Domain-containing Proteins 

With the discovery of the enzymes responsible for histone methylation, we have begun to 

learn about the functions of these marks in transcription.  In eukaryotes, there are at least five 

lysine residues on the histone H3 and H4 tails that can be methylated (Lachner et al., 2003).  

Of these methyl marks, the methylation of H3K4, H3K36, and H3K79 have been linked to 

the activation of transcription while methylation of H3K9, H3K27, and H4K20 have been 

linked to gene repression (Lachner et al., 2003; Sims et al., 2003).  The first histone lysine 

methyltransferases identified were the mammalian Suv39h1 proteins, which methylate 

histone H3K9 creating a platform for the recruitment of heterochromatin protein (HP1) 

(Bannister et al., 2001; Lachner et al., 2001; Rea et al., 2000).  In the Suv39h1 proteins, it 

was discovered that methyltransferase activity is mediated through the highly conserved SET 

domain, a motif of approximately 130 amino acids initially identified in the three Drosophila 

genes, the suppressor of position effect variegation Su(var)3-9, the Polycomb-group protein 

En(zeste), and the  homeotic gene regulator Trithorax (Jenuwein et al., 1998).  For members 

of the Suv39h family, the SET domain alone is not sufficient for catalytic activity, but 

requires adjacent cysteine-rich domains (pre-SET and post-SET) suggesting that these 

regions may be required for the activity of other SET domain-containing methyltransferases 

(Rea et al., 2000).  Yet, several proteins that are missing one or both of these domains have 

been found to contain histone methyltransferase activity leading to the identification of a 

series of SET domain proteins and methyltransferase families (Kouzarides, 2002).    
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In addition to SUV39H1, there are more than 70 gene sequences containing SET domains 

in mammals (Rea et al., 2000).  In contrast, the budding yeast Saccharomyces cerevisiae 

contains seven SET domain-containing genes (Schultz et al., 1998).  Interestingly, only 

methylation at H3K4, H3K36, and H3K79 are found in yeast (Perrod and Gasser, 2003).  

With the exception of the non-SET domain-containing Dot1 protein which methylates 

H3K79, both H3K4 and H3K36 are methylated by the SET proteins Set1 and Set2, 

respectively (Briggs et al., 2001; Feng et al., 2002; Strahl et al., 2002; van Leeuwen et al., 

2002).  Set1, as part of the COMPASS complex, methylates H3K4 at the 5’ ends of genes 

(Briggs et al., 2001; Krogan et al., 2002; Miller et al., 2001; Nagy et al., 2002; Roguev et al., 

2001). Consistent with the location of this histone mark, Set1 interacts with the Ser5 

phosphorylated form of RNAPII (Krogan et al., 2003a; Ng et al., 2003).  Methylation of 

H3K4, as previously described, prevents the recruitment of a repressive complex in mammals 

and recruits chromatin modifying activities, thereby linking its function to the activation of 

transcription.  In yeast, methylation of this site has been implicated in both transcription 

activation and gene silencing dependent on the genomic location of this modification and 

methyl state (Bernstein et al., 2002; Briggs et al., 2001; Bryk et al., 2002; Kouzarides, 2002; 

Santos-Rosa et al., 2002; Zegerman et al., 2002).  How H3K4 methylation is involved in 

activation and silencing is currently not understood.  

 

Set2 and Histone H3 Lysine 36 Methylation 

As a founding member of the Set2 family of proteins, Set2 is the first methyltransferase 

identified to specifically methylate nucleosomal H3K36 in yeast (Strahl et al., 2002).  

Members of this family are characterized by an AWS domain preceding the SET domain 
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which is followed by a post-SET domain.  Similar to the pre-SET domain in the Suv39h 

family, the AWS domain is a cysteine-rich sequence which may play a role in enzymatic 

activity.  Based on sequence similarity, other members of this family include the mammalian 

proteins NSD1, NSD2, NSD3, and HIF1 (HYPB) as well as the Drosophila protein Ash1.  

Ash1 has been demonstrated to be a multicatalytic methyltransferase that activates 

transcription by methylating H3K4, H3K9, and H4K20 (Beisel et al., 2002).  The NSD 

proteins are highly related to one another and have all been implicated in the development of 

human cancers, suggesting a role for these proteins in cell growth and differentiation 

(Angrand et al., 2001; Jaju et al., 2001; Stec et al., 1998).  Besides Set2, NSD1 can methylate 

H3K36 as well as H4K20, but this activity has only been detected in vitro (Rayasam et al., 

2003).  The methyltransferase activities of NSD2, NSD3, and HIF1 are not known, but based 

on structural similarity they may also modify H3K36.   

Recently, studies have demonstrated that a domain in the C-terminus of budding yeast 

Set2 associates with the Ser2 phosphorylated form of RNAPII during transcription 

elongation suggesting that Set2 may play a role in the transcription elongation process (Kizer 

et al., 2005; Krogan et al., 2003b; Li et al., 2003; Li et al., 2002; Schaft et al., 2003; Xiao et 

al., 2003).  Mutations of the RNAPII CTD at the Ser2 position or deletion of the enzyme, 

Ctk1, responsible for phosphorylating the CTD during elongation abolishes this interaction as 

well as Set2-mediated H3K36 methylation (Li et al., 2003; Xiao et al., 2003).  These results 

indicate that Set2 activity is targeted to the body of genes through an RNAPII interaction 

(Fig. 1.3).  Consistent with this idea, evidence shows that Set2 and H3K36 methylation 

associate with the coding and 3’ ends of genes (Krogan et al., 2003b; Schaft et al., 2003; 

Xiao et al., 2003).  Additionally, Set2 has been found to genetically interact with a number of 
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other elongation factors, thus further supporting a role for its activities in transcription 

elongation (Krogan et al., 2003b).  However, how Set2 functions in the transcription 

elongation process was not known.  One clue comes from findings that Set2 and H3K36 

methylation can repress transcription.  In one case, Set2 was artificially tethered to a test 

promoter and this led to strong transcription repression (Strahl et al., 2002).  In another case, 

deletion of Set2 specifically relieved the basal repression of the GAL4 gene in yeast (Landry 

et al., 2003).  In both cases, the repression by Set2 was at least partially dependent on having 

an active SET domain.    

Although data suggests that Set2 is involved in transcription, the exact roles of Set2 and 

H3K36 methylation in gene expression remain unclear.  In the following chapters, I present 

data describing novel functions for Set2 and H3K36 methylation in transcription.  Chapter 2 

describes my work on the conservation of Set2 and H3K36 methylation.  In this study, I 

show that Set2-mediated methylation of H3K36 during transcription elongation occurs in a 

number of organisms outside of budding yeast.  This work is the first to show a conserved 

interaction between Set2 and the elongating polymerase.  Chapter 3, as part of a much larger 

report, describes my contributions to the first identified role for Set2-mediated H3K36 

methylation.  I will present evidence to show that Set2 regulates global histone acetylation 

patterns in the coding region of genes by recruiting a small Rpd3 deacetylase (Rpd3S) 

complex.  Finally, in chapter 4, I demonstrate that H3K36 is a site of acetylation independent 

of its methylation and suggest that both modifications play distinct roles in the process of 

transcription. 
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Figure 1.1 
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Figure 1.1.  Chromatin and the variety of post-translational histone modifications.  (A) 

Arrangement of nucleosomes into chromatin and folding into higher-order structures.  

Pictured (left) is the nucleosome which consists of ~147 bp of DNA wrapped around a 

histone octamer core from which extend the highly-charged N-terminal domain tails.  To the 

right is an illustration of the compaction of the 11-nm chromatin fiber into a 32-nm fiber 

interspersed with regulatory proteins (reprinted, with modification, from Morales et al., 

2001).  (B) Overview of selected modifications on the N-terminal tails of histones H3 and 

H4.  Post-translational modifications include methylation (Me), acetylation (Ac), and 

phosphorylation (P). Proteins in Saccharomyces cerevisiae that modify the indicated 

modifications are denoted immediately below each residue, while proteins from other 

organisms are below arrows directed towards the appropriate targets.  Alternate protein 

names are indicated in parentheses.   
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Figure 1.2 
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Figure 1.2. Targeting of histone acetyltransferases and deacetylases during 

transcription.  The targeting of histone acetyltransferases (HAT) such as Esa1 and Gcn5 to 

the promoters of genes during transcription by co-activators.  Acetylation of histones by 

HATs results in the disruption of nucleosomes and gene activation.  The recruitment of 

histone deacetylases (HDAC) such as Rpd3 by co-repressors leads to transcription repression 

by removing acetylation marks from histones in the promoters of genes.   
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Figure 1.3 
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Figure 1.3.  Model of Set2 regulation.  Interaction between the Serine 2 phosphorylated C-

terminal domain (CTD) of RNA polymerase II (RNA Pol II) and Set2 targets the 

methyltransferase activity of Set2 to the coding region of genes during transcription 

elongation.  Set2-mediated mono-, di-, or trimethylation of H3K36 may then subsequently 

serve as recognition marks for the recruitment of protein modules.  
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CHAPTER 2 

CONSERVATION OF SET2-MEDIATED HISTONE H3 LYSINE 36 
METHYLATION 

 

Abstract 

Set2 methylation of histone H3 at lysine 36 (H3K36) has recently been shown to be 

associated with RNA polymerase II (RNAPII) elongation in Saccharomyces cerevisiae.  

However, whether this modification is conserved and associated with transcription 

elongation in other organisms is not known.  Here we report the identification and 

characterization of the Set2 ortholog responsible for H3K36 methylation in the fission yeast 

Schizosaccharomyces pombe.  We find that similar to the budding yeast enzyme, S. pombe 

Set2 is also a robust nucleosomal-selective H3 methyltransferase that is specific for K36.  

Deletion of the S. pombe set2+ gene results in a complete abolishment of H3K36 methylation 

as well as a slow-growth phenotype on plates containing synthetic medium.  These results 

indicate that Set2 is the sole enzyme responsible for this modification in fission yeast and is 

important for cell growth under stressed conditions.  Using the chromatin 

immunoprecipitation (ChIP) assay, we demonstrate that H3K36 methylation in S. pombe is 

associated with the transcribed regions of RNAPII-regulated genes and is absent from 

regions that are not transcribed by RNAPII.  Consistent with a role for Set2 in transcription 

elongation, we find that S. pombe Set2 associates with the hyperphosphorylated form of 



               
 

 31

RNAPII and can fully rescue H3K36 methylation and RNAPII interaction in budding yeast 

cells deleted for Set2.   These results, along with our finding that H3K36 methylation is 

highly conserved among eukaryotes, imply a conserved role for this modification in the 

transcription elongation process. 
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Introduction 

Covalent histone modifications represent a major mechanism by which cells regulate the 

structure and function of chromatin.  A number of different post-translational modifications 

are known to occur on histones, including acetylation, methylation, phosphorylation, 

ubiquitylation and more recently, sumoylation (Berger, 2002; Holde, 1988; Peterson and 

Laniel, 2004; Shiio and Eisenman, 2003).   While the majority of these modifications are 

restricted to the flexible N- and C-terminal ‘tail’ domains of these proteins, a significant 

number of these modifications have been identified in their highly structured globular 

domains (Cosgrove et al., 2004; Zhang et al., 2003).  The function of these modifications are 

not well understood, but it is becoming increasingly clear that they coordinate their effects in 

the form of a histone code to regulate the complex and diverse activities associated with 

DNA in chromatin (Jenuwein and Allis, 2001; Strahl and Allis, 2000; Turner, 2000).   

A large body of work now shows that histone methylation plays a key role in the 

regulation of chromatin structure and function.  In particular, studies show that the 

methylation of lysine and/or arginine residues regulates diverse cellular functions such as 

transcriptional repression and activation, heterochromatin formation, X-inactivation and 

polycomb-mediated gene silencing (Cao and Zhang, 2004; Grewal and Rice, 2004; Iizuka 

and Smith, 2003; Kouzarides, 2002; Lee et al., 2004; Zhang and Reinberg, 2001).  More 

recently, studies have revealed an unexpected role for histone methylation in the process of 

transcription elongation by RNA polymerase II (RNAPII).  In the budding yeast 

Saccharomyces cerevisiae, the histone methyltransferases Set1 and Set2, which catalyze H3 

lysine 4 (H3K4) and lysine 36 (H3K36) methylation, respectively, have been found to be 

associated with the elongation competent form of RNAPII (Gerber and Shilatifard, 2003; 
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Hampsey and Reinberg, 2003).  While Set1 association is dependent on the Kin28 kinase, 

which phosphorylates the serine 5 (Ser5) position of the C-terminal domain (CTD) of 

RNAPII (Gerber and Shilatifard, 2003; Hampsey and Reinberg, 2003; Krogan et al., 2003a; 

Ng et al., 2003), Set2 association and methylation is dependent on Ctk1, which 

phosphorylates the serine 2 position of the CTD (Krogan et al., 2003b; Li et al., 2003; Li et 

al., 2002; Schaft et al., 2003; Xiao et al., 2003).  Although the precise function of these 

enzyme associations with RNAPII is still unclear, it is believed that H3K4 and H3K36 

methylation function in the elongation process at different stages of the transcription 

elongation cycle (Shilatifard, 2004; Sims et al., 2004). 

To date, the association of Set2 with elongating RNAPII has only been demonstrated in 

S. cerevisiae.  Whether this enzyme has a conserved role and associates with RNAPII in 

other organisms is not known.  In the fission yeast Schizosaccharomyces pombe, Set1-

mediated H3K4 methylation is preferentially enriched at the euchromatic loci, in particular at 

the regions containing open reading frames (Noma et al., 2001; Noma and Grewal, 2002).  

Moreover, a potential ortholog of the S. cerevisiae Set2 has been previously identified in S. 

pombe (Noma and Grewal, 2002).  In this report, we characterize the fission yeast S. pombe 

Set2 (SpSet2) and find that this enzyme is a robust H3K36 methyltransferase that mediates 

nucleosomal-selective methylation.  Similar to what is found in budding yeast, H3K36 

methylation in S. pombe is restricted to the coding region of active genes, and we show that 

the SpSet2 enzyme interacts with RNAPII and restores H3K36 methylation in S. cerevisiae 

when the endogenous SET2 gene is deleted.  These studies, and the fact that H3K36 

methylation is conserved across eukaryotes, suggest a highly conserved role for H3K36 

methylation in transcription. 
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Material and Methods 

Yeast Strains 

The S. pombe yeast strains used in these studies are SP1173 (wild-type; h- leu1-32 his2 

ura4 ade6-216) and SPK549 (set2∆; h+ leu1-32 ura4 set2::kanMX6 cen1::ura4 ade6-210).  

For the growth assays, S. pombe strains SPK131 (wild type; h- leu1-32 his2 ura4 Rint2::ura4 

ade6-216) and SPK612 (set2∆; h- leul-32 his2 ura4 Rint2::ura4 set2:kanMX6 ade6-210) 

were used.  The set2∆ strain was constructed by a PCR-based method using a kanMX6 

module to replace the S. pombe set2+ gene as described (Bahler et al., 1998).  Deletion was 

confirmed by PCR and Southern blot analysis.  SP1173 was used to genomically 3XFLAG 

epitope tag S. pombe set2+ as described (Bahler et al., 1998) producing the SpSet2-3FLAG 

strain SPK653 (h+ leu1-32 ura4 set2-3XFLAG-kan cen1::ura4 ade6-210).  S. cerevisiae 

wild-type and set2∆ strains in the BY4742 background were obtained from Research 

Genetics.  

Histone Preparation 

Histones were prepared as previously described (Strahl et al., 2001).  Briefly, nuclei were 

isolated by detergent lysis and low-speed centrifugation from 293T cells grown at 37 ºC in 

Dulbeco’s modified Eagle’s medium (DMEM) containing 5% fetal bovine serum (FBS).  

Histones were extracted from nuclei by either DNase I or acid extraction.  Wild-type 

Tetrahymena thermophila was grown in enriched 1% proteose peptone, and macronuclear 

histones were isolated from vegetatively growing cells (Strahl et al., 2001).  Nuclei were 

isolated from wild-type S. cerevisiae cells grown in yeast extract-peptone-dextrose (YPD) 

medium and histones were acid-extracted from isolated nuclei as described (Strahl et al., 

2001).  
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Sequence Analysis (Set2 Homology Searching) 

Database searches and protein sequence identifications were performed with BLAST 

(Altschul et al., 1990) and PSI-BLAST (Altschul et al., 1997).  Sequences were aligned and  

a phylogeny tree was calculated using the neighbor-joining method in the program Clustal X 

(Jeanmougin et al., 1998).  The resulting dendrogram was displayed using the tree drawing 

program NJplot (Perriere and Gouy, 1996).  

Cloning of S. pombe SET2 and Generation of Expression Constructs 

Using primers specific to the ORF of set2+ in S. pombe (S. pombe GeneDB ID: 

SPAC29B12.02c), full-length set2+ with a C-terminal FLAG epitope tag inserted just before 

the stop codon was PCR amplified from genomic DNA. The resulting product was cloned 

into either the pCAL-n (Stratagene) bacterial or the PN823 yeast expression plasmids.  The 

SpSet2 coding region was sequenced for accuracy. The resulting SpSet2-PN823 (SpSet2-

FLAG) plasmid, which is driven by the ADH1 promoter, was transformed into the BY4742 

S. cerevisiae set2∆ strain.  As a control, the PN823 plasmid without the ORF of set2+ (empty 

vector) and ScSet2-FLAG were transformed into wild-type and set2∆ BY4742 strains. Wild-

type full-length ScSet2-FLAG bacterial and yeast expression constructs have been previously 

described (Bryk et al., 2002).  Transformants were selected on synthetic complete (SC)-Ura 

plates.   

Expression of Recombinant SpSet2 

Plasmids expressing either SpSet2-FLAG or empty vector were transformed into BL21 

(DE3) cells.  Five ml cell cultures were grown to an optical density (OD600) of 0.8-1.0 in 

Luria Broth (LB) media supplemented with ampicillin (100 µg/ml), followed by addition of 1 

mM isopropyl-D-thiogalactoside (IPTG) for 3 h at 30 ºC.  Harvested cells were resuspended 
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in 600 µl lysis buffer (50 mM Tri-HCl, pH 8.0, 0.1% TritonX-1000, 350 mM NaCl, 10% 

glycerol, 1 mg/ml lysozyme, 1 mM phenylmethylsulfonyl fluoride [PMSF], and 2 µg/ml 

leupeptin, aprotinin, and pepstatin). Lysates were prepared by sonication as previously 

described (Bryk et al., 2002). 

In Vitro Histone Methyltransferase Assays 

Histone methylation assays were performed as previously described with minor 

modifications (Bryk et al., 2002).  Briefly, 1 µl of bacterial lysate was incubated with either 

1.25 µg recombinant H3 (rH3), 5 µg chicken core histones, 5 µg chicken oligonucleosomes, 

or 5 µg H3 synthetic peptide along with 1 µCi S-Adenosyl-L-[methyl-3H]methionine (3H-

SAM, 69.8 Ci/mmol, Amersham Biosciences) in methyltransferase buffer (final 

concentration 50 mM Tris, pH 9.0, 10% glycerol, 1 mM PMSF, and 2 µg/ml leupeptin, 

pepstatin, and aprotinin)  for 30 min at 30 ºC in a total volume of 10 µL.  2 µl of the reaction 

was spotted on p81 Whatman paper while the remainder was analyzed by SDS-PAGE 

followed by Coomassie staining and fluorography. Identical reactions were performed in 

parallel using non-radiolabeled SAM (40 µM, Sigma) and analyzed by SDS- PAGE followed 

by western blotting with the α-H3K36me2 antibody (Upstate, catalog # 07-274). 

Nuclear and Whole-cell Lysate Extractions 

For nuclei extractions, wild-type and set2∆ S. pombe strains were grown in 1 L yeast 

extract supplemented with adenine (YEA) to a final OD600 between 2.0 and 2.5 prior to 

harvesting.  Transformed S. cerevisiae strains were grown to a final OD600 between 2.0 and 

2.5 in 200 ml SC-Ura prior to harvesting.  Nuclei were extracted by Dounce homogenization 

from these cell pellets as previously described (Edmondson et al., 1996).  Yeast whole-cell 

extracts (WCE) were prepared from 20 ml cultures grown to a final OD600 between 2.5 and 
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3.0 as described (Briggs et al., 2001) and only differed in the breaking buffer used for cell 

disruption (50 mM Tris, pH 8.0, 300 mM NaCl, 1 mM Mg-acetate, 1 mM imidazole, 0.1% 

NP40, 0.5 mM EDTA, 10% glycerol, 2 mM PMSF, phosphatase inhibitor cocktail I (5 µl, 

Sigma), and 2 µg/ml pepstatin, aprotinin, and leupeptin).  

Electrophoresis and Immunoblot Analyses 

Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and 

immunoblot analyses were performed using procedures and reagents from GE Healthcare. 

The anti-H3K36me (α-H3K36me, catalog # ab9048), H3K36me3 (α-K3K36me3, catalog # 

ab9050) and C-terminus of H3 (α-H3, catalog # ab1791) rabbit polyclonal antibodies were 

obtained from Abcam and used at dilutions of 1:1,000, 1:10,000, and 1:20,000, respectively.  

All other histone modification-detecting antibodies (rabbit) were obtained from Upstate 

Biotechnology Inc. and used at the following dilutions: 1:3,500-1:5,000 for H3K36me2 (α-

H3K36me2, catalog # 07-274), 1:20,000 for H3K4me2 (α-H3K4me2, catalog # 07-030), 

1:10,000 for H3K9ac (α-H3K9ac, catalog # 07-352), and 1:40,000 for H3K4me3 (α-

H3K4me3, catalog # 07-413).  Mouse monoclonal anti-FLAG antibody (M2; Sigma, catalog 

# F1804) was used at 1 µg/ml.  Anti-polymerase CTD antibodies 8WG16 (Unmod CTD, 

catalog # MMS-126R) and H14 (Ser5 phosphorylation, catalog # MMS-134R) were from 

Covance Inc. and used at dilutions of 1:500 and 1:10,000-1:30,000, respectively.  The IgM 

H14 antibody was detected using horseradish peroxidase (HRP)-conjugated donkey anti-

mouse IgM at 1:5,000 (Jackson ImmunoResearch Laboratories).  Typically, 20- 50 µg of 

WCE or 20-100 µg nuclei were resolved on SDS-PAGE gels (8% for RNAPII and FLAG 

blots or 13-15% for histone modification blots), followed by transfer to polyvinylidene 

difluoride (PVDF) membranes, and immunoblot analyses.  
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FLAG Immunoprecipitations 

For FLAG immunoprecipitations, 2.0 mg of each WCE was incubated with 12.5 µl of 

pre-equilibrated anti-FLAG affinity beads (Anti-FLAG M2 agarose, Sigma) for 2 hours at 

4°C.  After three washes in extraction buffer, the bead-bound proteins were analyzed by 

immunoblot analysis using the antibodies and dilutions indicated above.  

Growth Assays 

The effects of media on cell growth were tested by growing wild-type and set2∆ strains 

(SPK131 and SPK612) in rich yeast extract supplemented with adenine (YEA) medium to a 

final OD600 of 0.8 and plating 1:10 serial dilutions of cells on either YEA or Edinburgh’s 

minimal medium supplemented with amino acids (EMM).  Plates were incubated at 30 ºC for 

3-5 days.  

Chromatin Immunoprecipitations Analyses 

Chromatin immunoprecipitation assays were performed as previously described (Xiao et 

al., 2003).  Briefly, WCEs were prepared from formaldehyde-fixed wild-type and set2∆ S. 

pombe strains grown in 100 ml YEA media to a final OD600 between 1.0 and 1.5.  Extracts 

were sonicated to shear chromatin followed by immunoprecipitation (IP) using Protein A 

Sepharose (GE Healthcare) with anti-H3K36me2 (α-H3K36me2) at 3 µl/IP.  Following 

washes and DNA elution, cross-links were reversed and DNA was extracted for 

amplification using standard PCR methods.  Specific regions in the promoter and coding 

regions of the following genes were amplified: ADE6, PMA1, and ACT1.  As a control, we 

used a primer pair to the K-region found in the mating-type loci.  Primer sequences are 

available upon request.  The results represent the ratio of immunoprecipitated (IP) DNA to 
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input DNA (Input) normalized to the IP/Input ratio from the mating-type loci associated 

region (K-region). 
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Results 

Histone H3K36 Methylation is Highly Conserved 

While H3K36 methylation has been demonstrated in budding yeast, its presence and 

relative abundance in other organisms has not been well established.  To determine the 

conservation and relative abundance of H3K36 methylation in several diverse organisms, we 

isolated histones from budding yeast, Tetrahymena, chicken erythrocyte nuclei and human 

293T cells and probed them for H3K36 methylation using an anti-dimethyllysine 36 

antiserum (α-H3K36me2).   For comparison and as a control, we used an antibody specific to 

dimethylation at histone H3 lysine 4 (α-H3K4me2).  As shown in Fig. 2.1, we found that 

H3K36 dimethylation was present in all of the organisms analyzed, although their relative 

abundances varied between species.  It is interesting that in Tetrahymena, H3K36 

dimethylation appears to be less abundant compared to the levels of this modification found 

in yeast, chicken and humans (Fig. 2.1).  However, a possible reason for this observation may 

be an inability of the H3K36 dimethyl antibody to efficiently recognize Tetrahymena H3.  In 

yeast, chicken, and humans, H3K36 is immediately preceded by the amino acid valine while 

the predominant form of H3 in Tetrahymena (H3.1) contains an isoleucine that precedes K36 

(GGVK36KPH vs. GGIK36KPH).  Thus, this amino acid substitution may decrease this 

antibody’s ability to effectively recognize H3K36 methylation in the context of its 

surrounding residues in Tetrahymena.  Nonetheless, mass spectrometry analysis confirms 

that H3K36 is indeed mono-, di-, and trimethylated in this organism (C.D. Allis and D. Hunt, 

personal communication), although the relative amounts of these methyl forms in 

Tetrahymena H3 are not known.  In addition to these results, previous studies have shown the 

existence of H3K36 methylation in humans, chicken and sea urchin by protein sequencing 
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(Holde, 1988).  Furthermore, we and others have determined that H3K36 is also methylated 

in Drosophila, Neurospora, and C. elegans (B.D.S., unpublished results and Han et al., 

2003).  Thus, H3K36 methylation is found in a broad range of distinct eukaryotes. 

With the finding that H3K36 methylation is highly conserved, we next asked whether 

Set2 homologs could be identified in these different organisms.  Using the AWS (Associated 

with SET), SET, and post-SET domains (amino acids 63-260) of the budding yeast Set2 

(ScSet2) protein as bait in a PSI-BLAST search, we found a significant number of proteins 

bearing similar sequence structures to Set2, and assembled them in a hierarchical family tree 

(Fig. 2.2).   As documented in the figure, the ScSet2 protein was most similar to the S. pombe 

and Neurospora crassa (NCU00269.1) Set2 proteins (33% and 43% sequence identity, 

respectively) (also see Noma and Grewal, 2002).  While not as highly conserved, the domain 

structure of ScSet2 is found in a number of other proteins found in a variety of diverse 

organisms.  Strikingly, in addition to the AWS, SET, post-SET, and WW domain, more 

complex eukaryotes have a large number of additional domains and sequences such as PHD 

fingers and HMG domains, indicating that these putative Set2 homologs may carry out 

additional chromatin-related functions.  It is notable that the mouse homolog of human NSD1 

(Nsd1) has been shown to mediate H3K36 methylation in vitro (Rayasam et al., 2003), 

suggesting that the other proteins listed in Fig. 2.2 may be bonafide H3K36-methylating 

homologs.  However, it was not known whether any of these proteins methylate H3K36 and 

associate with RNAPII.  

S. Pombe Set2 is a Robust Methyltransferase Specific for H3K36 

To determine if the link between H3K36 methylation and transcription elongation might 

be conserved, we characterized the Set2 protein thought to be responsible for H3K36 
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methylation in S. pombe.  We chose to focus on S. pombe because many proteins in this 

organism have been found to be more similar to their mammalian counterparts than to their 

complements in S. cerevisiae (Sipiczki, 2000).  In addition, the role of H3K36 methylation in 

this organism has not been investigated. 

We first asked whether this protein is an active histone methyltransferase (HMT) and 

whether it catalyzes H3K36 methylation.  To determine this, we cloned the S. pombe protein 

into a pCAL-n expression construct, expressed it in E. coli, and tested the recombinant 

protein in HMT assays using S-Adenosyl-L-[methyl-3H] methionine (3H-SAM) as a cofactor.  

As shown in Fig. 2.3A, SpSet2 showed a robust HMT activity towards nucleosomal 

substrates, and to a lesser extent, free core histones in filter binding assays.  In contrast, this 

enzyme showed little activity towards free histone H3 (Fig. 2.3A).  To determine the histone 

specificity of this methyltransferase, a portion of the HMT assays involving nucleosomal 

substrates were electrophoresed on a 15% SDS-PAGE gel and examined by fluorography.  

The results revealed that histone H3 was the only histone methylated (Fig. 2.3B).  We next 

performed “cold” HMT assays with SpSet2 using unlabeled cofactor, followed by Western 

blot analysis with an antibody specific for H3K36 dimethylation to determine if SpSet2 was 

specific for H3K36.  Results showed a significant immunoreactivity towards H3K36 di-

methylation in the presence of SpSet2 (Fig. 2.3C).   In contrast, no immunoreactivity was 

witnessed after these HMT assays with antibodies directed against either H3 lysine 79 

dimethylation or H3K4 dimethylation (data not shown).   To further verify the site specificity 

of SpSet2, we examined H3 synthetic peptides that were either unmodified or trimethylated 

at K36 in filter binding assays.  Although the overall level of activity towards H3 peptides 

was low (compare 3H incorporation levels between panels A and D), it was still sufficient to 
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determine whether this activity could be blocked with an H3K36 methylated peptide.  As 

shown in Fig. 2.3D, SpSet2 was able to methylate an H3 peptide of residues 27-46, but not 

that of an H3 N-terminal peptide (residues 1-21).  Importantly, a matched 27-46 peptide that 

was trimethylated at H3K36 was not a substrate (Fig. 2.3D).  These data demonstrate that 

SpSet2 is a robust nucleosomal-selective HMT specific for H3K36 methylation. 

Additionally, we characterized the methyltransferase activity of the N. crassa Set2 

protein, NcSet2, in vitro.  Like SpSet2, this protein has a similar sequence and domain 

organization to budding yeast Set2 suggesting that it may be responsible for methylating 

H3K36.  However, N. crassa is a more developmentally complex multicellular eukaryote 

leading to the possibility that NcSet2 may have additional functions than that of the proteins 

identified in S. pombe and budding yeast.  In collaboration with the Selker laboratory (U. of 

Oregon), we bacterially expressed the N-terminus of NcSet2 (amino acids 1-372) and tested 

the recombinant protein in HMT assays.  Similar to SpSet2, NcSet2 is a nucleosomal histone 

methyltransferase that targets H3K36 for methylation (Appendix).  In a companion report, 

the Selker laboratory goes on to further show that NcSet2-mediated methylation of H3K36 is 

required for proper development in N. crassa (Adhvaryu et al., 2005). 

Set2 and H3K36 Methylation are Associated with Transcription Elongation in S. Pombe 

We next asked whether SpSet2 is responsible for in vivo H3K36 methylation in S. pombe 

and whether it associates with elongating RNAPII.   To address the first point, we deleted the 

set2+ gene from S. pombe and used these cells, along with the wild-type (WT) control, to 

generate purified nuclei for subsequent western blot analyses.  As shown in Fig. 2.4A, 

deletion of set2+ resulted in a complete abolishment of H3K36 methylation (mono-, di-, and 

trimethylation), but not H3K4 methylation or H3K9 acetylation, in bulk histones, indicating 
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that SpSet2 is the sole enzyme in fission yeast responsible for this modification.  We also 

examined the set2+ deletion (set2∆) strain for growth defects and found that while set2∆ cells 

grew normally on rich YEA medium, it showed a strong growth defect in synthetic medium 

(EMM), which is nutrient depleted compared to YEA (Fig. 2.4B).   These data reveal an 

important role for Set2 in cell growth under deprived nutrient or stressed conditions.  Similar 

slow-growth phenotypes on minimal medium have been described for the deletion of other 

factors involved in transcription and translation (Akiyoshi et al., 2001; Smith et al., 1999).   

To determine if the SpSet2 enzyme would be associated with RNAPII, we tagged SpSet2 

at its C-terminus with a triple FLAG epitope (SpSet2-3FLAG) and then used this epitope to 

perform co-immunoprecipitation experiments to monitor the association of unmodified or 

hyperphosphorylated RNAPII.  The different forms of RNAPII were monitored using 

antibodies 8WG16 and H14, which recognize unmodified or Ser5 phosphorylated CTD 

respectively.  As shown in Fig. 2.4C, immunoprecipitation of SpSet2-3FLAG resulted in 

strong immunoreactivity of the Ser5 phosphorylated CTD form of RNAPII.  No unmodified 

RNAPII could be detected in these immunoprecipitates, although unmodified RNAPII could 

be readily detected in the “input” extracts.  These data demonstrate that SpSet2 is associated 

with the elongating form of RNAPII in S. pombe.  This result is also consistent with the 

finding that a region in the C-terminus of the SpSet2 protein contains similarity (17/42% 

identity/similarity) to a region in ScSet2 that was found to mediate association of Set2 with 

the phosphorylated polymerase (Kizer et al., 2005). 

Next, we asked whether H3K36 methylation is associated with the transcribed region of 

active genes in S. pombe.  To address this, we used an H3K36 dimethylation-specific 

antiserum ChIP assays to examine the abundance and distribution of this modification over 
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genes.  Consistent with observations in budding yeast (Krogan et al., 2003b; Schaft et al., 

2003; Xiao et al., 2003), we found that H3K36 methylation was highly enriched over the 

transcribed region of several active genes tested (Fig. 2.5).  In contrast, non-transcribed 

regions of telomeric and mating type loci were found to be devoid of this methyl mark (data 

not shown and Fig. 2.5).  These data strongly suggest that H3K36 methylation, mediated by 

SpSet2, is associated with the elongation process in S. pombe.  

Given the strong similarities found between the budding and fission yeast Set2 proteins, 

we finally asked if the fission yeast H3K36-methylating enzyme could complement for the 

loss of Set2 in budding yeast cells.  To examine this, we cloned the S. pombe set2+ gene, 

containing a C-terminal FLAG tag, into a budding yeast expression construct (under the 

control of the ADH1 promoter) and expressed this protein in set2∆ cells.  As a control, a 

similar expression construct containing the budding yeast SET2 gene was included.  As 

shown in Fig. 2.6, full-length SpSet2 could be readily detected by western blot analysis using 

an anti-FLAG antibody.  The S. pombe protein runs with a slower migration compared to the 

budding yeast Set2, as this protein is slightly larger than its budding yeast counterpart.  We 

then purified nuclei from these strains and examined the levels of H3K36 methylation on 

bulk histones.  Significantly, we found that the S. pombe Set2 protein could restore H3K36 

methylation in set2∆ cells. This result suggests that SpSet2 forms a stable interaction with 

RNAPII in budding yeast.  To examine this idea further, we performed similar co-IP studies 

as described above and found that SpSet2 efficiently associates with the elongating form of 

budding yeast RNAPII, similar to its budding yeast counterpart.  This result shows that these 

enzymes are interchangeable, thereby supporting a notion that Set2 and H3K36 methylation 

is functionally conserved. 
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Discussion 

Similar to the conservation found between histone protein sequences among eukaryotes, 

their covalent modifications are also highly conserved (Holde, 1988).  Yet, a looming 

question has been whether these modifications perform the same functions in all of these 

different organisms, or do they have distinct functions that have arisen through evolutionary 

change?  To date, several sites of histone methylation have been associated with active 

transcription.  These include the methylation of H3 at lysines 4, 36, and 79 (Gerber and 

Shilatifard, 2003; Hampsey and Reinberg, 2003; Krogan et al., 2003b; Litt et al., 2001; Noma 

et al., 2001; Shilatifard, 2004; Strahl et al., 1999).  In S. cerevisiae, the enzymes responsible 

for H3K4 and H3K36 methylation have been found associated with the elongating form of 

RNAPII (Hampsey and Reinberg, 2003; Shilatifard, 2004).  This intriguing observation 

implies a novel role for histone methylation in the elongation phase of transcription.  

However, whether these enzymes are conserved and have similar functions in organisms 

outside of budding yeast has not been fully investigated.    

In this report, we characterize the fission yeast enzyme responsible for H3K36 

methylation and provide evidence that this modification in S. pombe is coupled with the 

transcription elongation process.  Given that budding yeast is evolutionarily distinct from 

fission yeast, this result suggests that Set2 has a conserved function in transcriptional 

regulation.  While our study has focused on H3K36 methylation, several studies have 

characterized Set1 homologs responsible for H3K4 methylation outside of budding yeast 

(Briggs et al., 2001; Byrd and Shearn, 2003; Milne et al., 2002; Nishioka et al., 2002; 

Wysocka et al., 2003).  Although the link between H3K4 methylation and transcription 

elongation in these organisms is not well defined, there are a number of similarities found 
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between Set1/H3K4 methylation among eukaryotes that suggests a conserved role for this 

modification similar to what is found for Set2/H3K36 methylation.  First, Set1-mediated 

H3K4 methylation is associated primarily with euchromatic regions in all organisms, with a 

distribution pattern on genes in metazoans and in S. pombe that is very similar to what is 

observed in budding yeast (Schneider et al., 2004).  Secondly,  comparative studies of 

human, budding and fission yeast Set1 have shown that these proteins have nearly identical 

complex compositions, and in the case of S. pombe, Set1’s methylation is dependent on the 

ubiquitin-conjugating enzyme Rad6 (Roguev et al., 2003).  Additionally, a Set1 homolog in 

humans, MLL2, has been shown to associate with the Ser5 phosphorylated form of RNAPII, 

similar to the budding yeast counterpart (Hughes et al., 2004).  Collectively, these data 

suggest that the functional conservation of H3K4 and H3K36 methylation in RNAPII-

mediated transcription is highly conserved.    

It is significant to mention that while S. pombe has only one Set2-like homolog, our 

BLAST searches revealed that most multicellular organisms have a number of Set2-like 

enzymes (see Fig. 2.2 and data not shown).   Although the function of these other enzymes 

are not known, it is intriguing to speculate whether all of these putative H3K36-methylating 

enzymes could be associated with the elongating polymerase in their respective organisms, or 

if some of these Set2-like proteins are involved in other biological processes outside of 

RNAPII-coupled transcription.  While it will take in-depth characterization of each putative 

Set2 homolog to determine their role(s) in chromatin regulation, one clue to suggest that 

H3K36 methylation in more complex eukaryotes may have distinct functions outside of a 

role with RNAPII is the fact that only one Set2 homolog from any given species appears to 

contain a prototypical SRI domain, which is the domain required for Set2 to mediate its 
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association with the phosphorylated CTD (Kizer et al., 2005).  Given that not all Set2 

homologs contain this domain, we speculate that H3K36 methylation will have a broad range 

of activities in chromatin in addition to a conserved role with the transcribing polymerase.  

In summary, we demonstrate that SpSet2 is a true ortholog of the budding yeast Set2 

enzyme, and that this enzyme and H3K36 methylation is linked to the transcription 

elongation process in S. pombe.  While our characterization studies are limited to S. pombe, 

an accompanying paper shows similar findings for the Neurospora Set2 homolog (Adhvaryu 

et al., 2005).  Furthermore, a link between H3K36 methylation and CTD phosphorylation has 

been suggested in C. elegans (Han et al., 2003), and recent evidence shows a correlation of 

H3K36 methylation with active genes in metazoans (Bannister et al., 2005).  Taken together, 

these results indicate a highly conserved role for H3K36 methylation in transcriptional 

regulation. 

 

 

 
 

 

 

 

 

 
 
 

 

 



 49

Figure 2.1 
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Figure 2.1.  Conservation and abundance of histone H3K36 methylation.  1 µg of 

Xenopus recombinant histone H3 and 5 µg of total core histones from the species indicated 

were resolved on 15% SDS-PAGE gels, transferred to PVDF membrane, and probed with α-

H3K36me2 and α-H3K4me2.  Identical samples were examined in parallel by Coomassie 

staining to show histone loading.  Asterisk indicates H3 breakdown products that are 

typically observed. 
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Figure 2.2 
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Figure 2.2.  Conservation of Set2 proteins among eukaryotes.  (A) Phylogenetic tree of 

Set2 and its putative homologs.  Set2 proteins were identified in different species by using 

PSI-BLAST and then clustered into groups based on amino acid sequences using the 

phylogenetic analysis program Clustal X (ExPASy/SIB accession nos: Sc_SET2, P46995; 

Sp_SET2, O14026; Nc-NCU00269.1, Q7RZU4, Hs_HIF-1, Q9BYW2; Hs_HSPC069, 

Q9NZW9; Dm_CG1716, Q9VYD1; Hs_NSD1, Q96L73; Hs_WHSC1L1, Q9BZ95; 

Hs_WHSC1, O96028; Ce_C43E11.3, Q8I7H3; Ce_K09F5.5, Q21404).  The scale bar equals 

a distance of 0.05 amino acids. Set2 protein abbreviations: S. cerevisiae, Sc; S. pombe, Sp; N. 

crassa, Nc; Homo Sapiens, Hs; Drosophila, Dm; and C. elegans, Ce.  Asterisk indicates that 

this protein is also known as HYPB.  (B) Schematic domain representation of Set2 proteins 

identified from the alignment in (A).  Protein names and lengths in amino acids are noted 

beneath each protein.  
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Figure 2.3 
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Figure 2.3.  Set2 from Schizosaccharomyces pombe is a robust nucleosomal-selective 

H3K36-specific methyltransferase.  (A) Bacterial lysates containing recombinantly 

expressed SpSet2 (or vector only control) were incubated with recombinant H3 (rH3), 

chicken core histones, or oligonucleosomes and 3H-labeled S-adenosyl-methionine (3H-

SAM). 3H incorporation was analyzed by the filter-binding assay and monitored by 

scintillation counting.  (B) Reaction products from HMT assays using oligonucleosomes 

(Nuc.) and SpSet2 were resolved on an SDS-PAGE 15% gel and examined by Coomassie 

staining (lower panel) and fluorography (upper panel).  Asterisk indicates the H3 breakdown 

product that is typically observed.  (C) Oligonucleosomes or rH3 were incubated with SpSet2 

and cold SAM in an HMT assay followed by immunoblotting with the α-H3K36me2 

antibody (upper panel).  Parallel reactions were performed and examined by Coomassie 

staining to monitor loading (lower panel).  (D) Filter-binding assays were performed as in (A) 

using bacterial lysates with or without SpSet2 and H3 peptides either unmodified (H3, 1-21 

or H3, 27-46) or trimethylated at H3K36 (H3, 27-46 K36me3) in the presence of 3H-SAM.  
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Figure 2.4 
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Figure 2.4.  Set2 is responsible for mediating global H3K36 methylation in S. pombe.  

(A) S. pombe nuclear extracts prepared from wild-type and set2∆ strains were probed with 

antibodies against H3K36 mono-, di-, and trimethylation.  An antibody specific for the C-

terminus of H3 was used as a loading control.  Antibodies specific for H3K9 acetylation and 

H3K4 trimethylation were used as additional controls.  Asterisk indicates H3 breakdown 

products that were observed.  (B) A slow-growth phenotype develops in the absence of S. 

pombe set2+ under nutrient deprived conditions.  Wild-type or set2∆ cells were spotted at 

serial dilutions of 1:10 and grown at 30ºC on rich medium (YEA) for 3 days or minimal 

medium (EMM) for 5 days before being photographed.  (C) SpSet2 interacts with the 

hyperphosphorylated form of RNAPII.  Whole-cell extracts (WCEs) prepared from wild-type 

or genomically tagged SpSet2 (SpSet2-3FLAG) were immunoprecipitated with anti-FLAG 

antibody followed by immunoblotting with antibodies directed against unmodified CTD 

(8WG16, α-unmod CTD), Ser5 phosphorylated CTD (H14, α- Ser5P), or FLAG (α-FLAG).  

The locations of RNAPII and SpSet2-3Flag are indicated.  The input WCEs were also 

examined by immunoblot analysis to monitor the presence of RNAPII and SpSet2-FLAG. 
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Figure 2.5 
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Figure 2.5.  Set2-mediated H3K36 methylation is preferentially associated with the 

transcribed region of active S. pombe genes.  Left Panels: (A-C) Chromatin 

immunoprecipitation assays were used to monitor the location of H3K36 dimethylation on 

actively transcribed genes (ADE6, ACT1, and PMA1) in wild-type and set2∆ strains using an 

H3K36me2-specific antibody.  DNA from enriched precipitates (IP) were isolated and used 

in PCR reactions with promoter and coding region-specific primer pairs for the indicated 

genes.  A DNA fragment from the silent mating-type loci (K-region) of S. pombe known to 

lack modifications associated with active genes (H3K4 methylation and H3K14 acetylation; 

see 34) was used as a control to normalize and calculate the relative enrichment of gene 

sequences in immunoprecipitated samples.  Right Panels: Quantification of the ChIP results 

shown in (A-C).  Relative enrichment values shown on the y axes were calculated by dividing 

the ratio of band intensities for IP DNA/K-region with the ratio of intensities for the input 

DNA/K-region.  Gels and graphs are representative experiments from three independent 

repeats.  
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Figure 2.6 
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Figure 2.6.  SpSet2 rescues H3K36 methylation in S. cerevisiae.  Whole-cell extracts 

(WCEs) were prepared from S. cerevisiae wild-type and set2∆ strains that were transformed 

with an empty vector or the indicated Set2-FLAG constructs.  These extracts were 

immunoprecipitated with α-FLAG antibody followed by immunoblot analysis using 

antibodies directed against unmodified CTD (8WG16, α-unmod CTD), Ser5 phosphorylated 

CTD (H14, α-Ser5P), or FLAG (α-FLAG).  The locations of RNAPII and Set2-Flag proteins 

are indicated.  All input extracts showed equivalent levels of RNAPII (data not shown).  

Nuclear extracts prepared from these same strains were immunoblotted with an antibody 

directed against H3K36 dimethylation or an antibody specific for H3K4 dimethylation (used 

as a loading control).  Asterisk indicates H3 breakdown products that were observed. 
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CHAPTER 3 

ROLE OF SET2-MEDIATED HISTONE H3 LYSINE 36 METHYLATION IN 
TRANSCRIPTION ELONGATION 

 

Abstract 

Post-translational histone modifications, such as lysine acetylation and methylation, play 

major roles in the regulation of chromatin during eukaryotic gene transcription.  In the 

budding yeast Saccharomyces cerevisiae, the histone methyltransferase Set2 is the sole 

enzyme responsible for methylating lysine 36 of histone H3 (H3K36).  Through an 

interaction with the elongating RNA polymerase II, the activity of Set2 is localized to the 

coding region of genes suggesting that Set2 and H3K36 methylation are involved in 

transcription elongation.  However, the role of Set2 in transcription remains unclear.  Here, 

we report a function for Set2 and H3K36 methylation in the regulation of histone acetylation 

in the coding region of genes.  Using a combination of genetic interaction studies, Set2 was 

found to be genetically similar to the histone deacetylase Rpd3 and the chromodomain 

protein Eaf3, members of the small histone deacetylase complex Rpd3S.  These data suggest 

that these proteins function in the same biological pathway.  Consistent with this idea, we 

find that deletion of SET2, RPD3, and EAF3 result in similar growth defects in the presence 

of the nucleotide-depleting drug 6-azauracil.  Using chromatin immunoprecipitation (ChIP), 

we further demonstrate that similar to a deletion of EAF3, a mutation of SET2 or H3K36 

results in increased acetylation in the coding region of genes and functions upstream of the 

Rpd3S complex.  In agreement with these findings, TAP-purified Rpd3S complex fails to 
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interact with nucleosomes in the absence of SET2 indicating that Set2 and H3K36 

methylation are required for the recruitment of this complex to chromatin.  Collectively, 

these findings identify a function for Set2-mediated H3K36 methylation in the maintenance 

of deacetylated histones in the coding region of genes.   
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Introduction 

The modification of histone proteins is an important mechanism of regulating chromatin 

accessibility during transcription.  There are a number of different post-translational 

modifications known to occur on histones which include phosphorylation, ubiquitylation, 

methylation and acetylation (Berger, 2002; Holde, 1988).  In particular, the dynamic 

regulation of lysine acetylation has been extensively linked to transcriptional activity (Grant, 

2001).  Histone acetyltransferases (HATs) can be recruited to the promoters of genes through 

an interaction with DNA-bound activators in which the acetylation of histones can alter 

chromatin structure or recruit additional factors leading to transcription activation, while the 

removal of acetylation by targeted histone deacetylases (HDACs) has been linked to 

repression (Brown et al., 2001; Cosma, 2002; Kurdistani et al., 2002; Robert et al., 2004).  

Additionally, HATs and HDACs can act in an untargeted, global manner to regulate 

acetylation levels genome-wide (Vogelauer et al., 2000).  Together, these mechanisms of 

recruitment create a general pattern of higher acetylation in the promoter regions of genes in 

comparison to coding regions (Liu et al., 2005; Pokholok et al., 2005).   

Unlike acetylation, histone methylation is not as well studied in the process of 

transcription.  Linked to transcription activation and repression, methylation occurs in the 

promoter and coding regions of genes, with recent studies revealing a role for histone 

methylation in transcription elongation (Cao and Zhang, 2004; Grewal and Rice, 2004; 

Iizuka and Smith, 2003).  In the budding yeast Saccharomyces cerevisiae, the histone 

methyltransferases Set1 and Set2, which catalyze H3 lysine 4 (H3K4) and lysine 36 

(H3K36), respectively, have been found to associate with the elongating form of RNA 

polymerase II (RNAPII) (Gerber and Shilatifard, 2003; Hampsey and Reinberg, 2003).  Set1 
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association and activity is dependent on the serine 5 (Ser5) phosphorylated form of the 

RNAPII C-terminal domain (CTD) at the 5’ end of genes (Krogan et al., 2003a; Ng et al., 

2003), while Set2 associates with the Ser2 phosphorylated CTD and methylates histones in 

the coding region of genes (Krogan et al., 2003b; Li et al., 2003; Li et al., 2002; Schaft et al., 

2003; Xiao et al., 2003).  Given the location of these modifications, it appears that they both 

function at different stages of transcription elongation.  However, the exact functions of these 

enzymes and modifications remain unclear.    

To gain a better understanding of how Set2 functions in transcription, our collaborators 

used a combination of gene expression profiles and synthetic genetic array analyses to 

identify protein-coding genes that may function in the same biological process as Set2 

(Keogh et al., 2005; Krogan et al., 2003b; Tong et al., 2001).  A high degree of similarity was 

found between SET2, RPD3, and EAF3.  Rpd3, a yeast histone deacetylase, targets all 4 

histones for deacetylation and functions as a part of a large multiprotein complex (Kurdistani 

et al., 2002; Suka et al., 2001; Zhang et al., 1998).  As part of this complex, Rpd3 acts as a 

transcriptional repressor when targeted to promoters by the DNA-binding repressor Ume6 

(Rundlett et al., 1998).  Rpd3 also exists in a smaller, uncharacterized deacetylase complex, 

Rpd3S, that contains the unique subunits Rco1 and Eaf3 (Carrozza et al., 2005; Keogh et al., 

2005).   Eaf3, a component of both the NuA4 acetyltransferase and Rpd3 deacetylase 

complexes plays a role in regulating the histone acetylation patterns in the promoter and 

coding regions of genes (Eisen et al., 2001; Reid et al., 2004).  In yeast, Eaf3 is not essential 

for growth and appears to affect the transcription of a subset of genes (Eisen et al., 2001).  

Interestingly, Eaf3 contains a structural motif that can bind methylated lysines in histones, 

the chromodomain (Bottomley, 2004; Brehm et al., 2004).   
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In this report, we demonstrate that Set2 functions in the same pathway as Rpd3 and Eaf3, 

members of the Rpd3S deacetylase complex.  Like the chromodomain protein Eaf3, Set2-

mediated H3K36 methylation regulates histone acetylation patterns in the coding region of 

genes.  In the absence of SET2, Rpd3S does not interact with chromatin suggesting that 

H3K36 methylation by Set2 is required for the recruitment of Rpd3S through the 

chromodomain of Eaf3.  This recruitment, in turn, is required to maintain histones in a 

deacetylated state in the wake of transcribing RNAPII during transcription elongation.  

Collectively, these results identify a functional mechanism for Set2 in the regulation of gene 

expression. 
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Materials and Methods 

Yeast Strains and Plasmids 

All gene deletion (set2∆, eaf3∆, rpd3∆, rco1∆, and dst1∆) and wild-type (WT) strains are 

in the BY4741 background and were obtained from Open Biosystems.  The wild-type histone 

H3 and H3K36-to-alanine point mutation (K36A) strains are in the WZY42 background and 

have been described previously (Kizer et al., 2005).  The H2B-FLAG strain is in the BY4742 

background (Xiao et al., 2005).  For gene disruption of SET2 in the H2B-FLAG strain, SET2 

was deleted by high efficiency transformation using a PCR product amplified from genomic 

DNA of SET2 which had already been replaced by the KanMX gene (Research Genetics).  

The pRS313-Eaf3-3HA-SSN6 (Eaf3-3HA) and pRS313-3HA-SSN6 plasmids were kind gifts 

of Michael Keogh (Albert Einstein College of Medicine).   The TAP-purified Rpd3S 

complex (Rco1-CBP) was kindly provided by Nevan Krogan (UCSF).    

 6-azauracil Growth Assays 

Yeast strains (WT, set2∆, eaf3∆, rpd3∆, and dst1∆) were transformed with the URA3+ 

CEN plasmid pRS316 and grown in synthetic defined medium lacking uracil (SD-URA) to a 

final OD600 between 1.0 and 2.0.  10-fold serial dilutions were plated on SD-URA medium 

with or without 100 µg/ml 6-azauracil (6AU (Aldrich)) and incubated at 30ºC for 2-3 days.  

Cloning of RCO1 and Generation of Expression Construct  

Using primers specific to the ORF of RCO1 and 305 bp upstream of this gene, full-length 

RCO1, including regulatory regions, was PCR amplified from genomic DNA. The resulting 

product was cloned into the pRS313-3HA-SSN6 yeast expression plasmid which adds three 

copies of the HA epitope to the C-terminus of RCO1.  The RCO1 regulatory and coding 

regions were sequenced for accuracy. The resulting pRS313-Rco1-3HA-SSN6 (Rco1-3HA) 
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plasmid, which is driven by the native promoter of RCO1, was transformed into the BY4741 

S. cerevisiae rco1∆ strain.  As a control, the pRS313-3HA-SSN6 plasmid without the ORF of 

RCO1 (empty vector) was transformed into wild-type and rco1∆ BY4741 strains. 

Transformants were selected on synthetic complete (SC)-His plates.   

Whole-cell Lysate Extractions 

S. cerevisiae strains transformed with HA expressing plasmids were grown to a final 

OD600 between 1 and 2 in 50-100 ml SC-His prior to harvesting while deletion strains (set2∆, 

eaf3∆, rpd3∆, and corresponding WT) were grown in 10 ml yeast extract-peptone-dextrose 

(YPD) to a final OD600 of 1.  Yeast whole-cell extracts (WCE) were prepared as described 

(Briggs et al., 2001) and only differed in the breaking buffer used for cell disruption (50 mM 

Tris, pH 8.0, 300 mM NaCl, 1 mM Mg-acetate, 1 mM imidazole, 0.1% NP40, 0.5 mM 

EDTA, 10% glycerol, 2 mM PMSF, phosphatase inhibitor cocktail I (5 µl, Sigma), and 2 

µg/ml pepstatin, aprotinin, and leupeptin).  

Electrophoresis and Immunoblot Analyses 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 

immunoblot analyses were performed using procedures and reagents from GE Healthcare.  

The anti-H3K36me3 (α-K3K36me3, catalog # ab9050), Eaf3 (α-Eaf3, catalog # ab4467), 

and Rpd3 (α-Rpd3, catalog # ab18085) rabbit polyclonal antibodies were obtained from 

Abcam and used at a dilution of 1:2,000.  The following antibodies (rabbit) were obtained 

from Upstate Biotechnology, Inc. and used at the indicated dilutions: 1:500 for calmodulin 

binding protein epitope tag (α-CBP, catalog # 07482), 1:15,000 for the C-terminus of H3 (α-

H3, catalog # 07-690), 1:3,500 for H3K14ac (α-H3K14ac, catalog # 07-353), and 1:2,000 for 

HA (α-HA, catalog # 05-902).  The Set2 antiserum (α-Set2, 1:10,000 dilution) was 
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developed by immunizing a rabbit with a recombinant, bacterially expressed fragment of the 

N-terminus of Set2 (amino acids 1-261).  Anti-polymerase CTD antibody H14 (Ser5 

phosphorylation, catalog # MMS-134R) was from Covance Inc. and used at a dilution of 

1:30,000. The IgM H14 antibody was detected using horseradish peroxidase (HRP)-

conjugated donkey anti-mouse IgM at 1:5,000 (Jackson ImmunoResearch Laboratories).  The 

enhanced chemiluminescence (ECL) streptavidin-HRP conjugate was used to detect 

biotinylated peptides and was used at a dilution of 1:80,000 (GE Healthcare, code RPN1231).  

Typically, 20- 50 µg of WCE were resolved on SDS-PAGE gels (8%-10% for RNAPII, Set2, 

Rco1, Rpd3, and Eaf3 or 13-15% for histone modification blots), followed by transfer to 

polyvinylidene difluoride (PVDF) membranes, and immunoblot analyses.   

Chromatin Immunoprecipitation Analyses 

Chromatin immunoprecipitation assays were performed as previously described (Xiao et 

al., 2003).  Briefly, WCEs were prepared from formaldehyde-fixed WT, set2∆, eaf3∆, and 

K36A strains grown in 100 ml YPD media to a final OD600 between 1.0 and 1.5.  WCEs were 

prepared, as well, from transformed WT, rco1∆, and rco1∆ +Rco1-3HA strains grown under 

similar conditions in SC-His media.  Extracts were sonicated to shear chromatin followed by 

immunoprecipitation (IP) using Protein A Sepharose (GE Healthcare) and the following 

antibodies as indicated: α-H3K14ac (3 µl/IP, Upstate Biotechnology, catalog # 07-353), α-

H4ac (2 µl/IP, Upstate Biotechnology, catalog # 06-598), α-H3K9/14ac (3 µl/IP, Upstate 

Biotechnology, catalog # 06-599), and α-H3K9ac (3 µl/IP, Upstate Biotechnology, catalog # 

07-352).  Following washes and DNA elution, cross-links were reversed and DNA was 

extracted for amplification using standard PCR methods.  Specific regions in the promoter 

and coding regions of the SCC2 gene were amplified.  As an internal control, we used a 
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primer pair specific to a subtelomeric region approximately 500 bp from the end of 

chromosome VI-R (TEL) which is not transcribed and hypomodified at sites associated with 

transcriptional activation (Rundlett et al., 1998; Suka et al., 2001).  Primer sequences are 

available upon request.  The results represent the ratio of immunoprecipitated (IP) DNA to 

input DNA (input) normalized to the IP/input ratio from the TEL subtelomeric region. 

In Vitro Binding Studies 

For each peptide pull-down reaction, 8 µl of pre-equilibrated streptavidin sepharose (GE 

Healthcare, high performance) was incubated for 30 min at room temperature with 3 nM of 

the following biotinylated peptides,: unmodified histone H3 (amino acids 27-46), K36me 

histone H3 (amino acids 27-46), K36me2 histone H3 (amino acids 27-46), and K36me3 

histone H3 (amino acids 27-46).  Peptides were either obtained from Upstate Biotechnology 

or synthesized and verified by mass spectrometry at the University of North Carolina 

Microprotein Sequencing and Peptide Synthesis Facility.  After three washes in IP buffer (50 

mM Tris, pH 8.0, 400 mM NaCl, 5 mM EDTA, 2 mM PMSF, phosphatase inhibitor cocktail 

I (Sigma), and 2 µg/ml pepstatin, aprotinin, and leupeptin), bead-bound peptides were 

resuspended in 225 µl IP buffer to which 75 µl of TAP-purified Rpd3S complex was added.  

Reactions were incubated for 2.5 hr at 4 °C and then washed three times in IP buffer.  Bead-

bound proteins were analyzed by SDS-PAGE (10% gels) followed by immunoblotting with 

the indicated antibodies.  Similar peptide pull-downs were carried out using Eaf3-3HA 

WCEs with slight modifications.  After three washes in 150 mM NaCl IP buffer, bead-bound 

peptides were resuspended in a total volume of 500 µl with 2 mg WCE.  Reactions were 

incubated overnight at 4 °C and then washed three times in IP buffer followed by SDS-

PAGE analysis.   
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For nucleosome pull-downs, yeast WCEs were prepared from 100 ml cultures of wild-

type H2B-FLAG and set2∆ H2B-FLAG strains grown to a final OD600 between 0.8 and 1.0 

in YPD as described above.  For chromatin fragments, WCEs were pulse sonicated 6 times 

for 6 pulses each (30% output and 90% duty cycle) and clarified by centrifugation at 13,000 

rpm for 15 min.  For each pull-down reaction, 2 mg of WCE was mixed with 12.5 µL of pre-

equilibrated anti-Flag beads (M2 agarose, Sigma) for 2 hours at 4 °C.  After three washes in 

IP buffer (50 mM Tris, pH 8.0, 400 mM NaCl, 5 mM EDTA, 2 mM PMSF, phosphatase 

inhibitor cocktail I (Sigma), and 2 µg/ml pepstatin, aprotinin, and leupeptin), bead-bound 

chromatin was resuspended in 300 µl IP buffer to which 200 µL of TAP-purified Rco1 

complex was added.  Reactions were incubated overnight at 4 °C and then washed three 

times in IP buffer.  Bead-bound proteins were analyzed by SDS-PAGE (12% gels) followed 

by immunoblotting with the indicated antibodies.  

HA Immunoprecipitations 

For HA immunoprecipitations, 2.0 mg of each WCE was incubated with 12.5 µl of pre-

equilibrated monoclonal anti-HA agarose (Sigma) for 2 hours at 4°C.  After three washes in 

IP buffer (50 mM Tris, pH 8.0, 150 mM NaCl, 10% glycerol, 0.1% NP-40, 2 mM PMSF, 

phosphatase inhibitor cocktail I (Sigma), and 2 µg/ml pepstatin, aprotinin, and leupeptin), the 

bead-bound proteins were analyzed by immunoblot using the antibodies and dilutions 

indicated above.  
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Results 

Members of the Rpd3S Complex and Set2 have Similar Growth Phenotypes 

Given that previous studies have implicated Set2 in having a role in transcription 

elongation, and that Rpd3 and Eaf3 are genetically similar to Set2, we wanted to determine if 

Rpd3 and Eaf3 of the Rpd3S complex would also be involved in this process.  To test for the 

involvement of these proteins in transcription elongation, we assayed deletion strains for 

growth defects in the presence of the nucleotide-depleting drug 6-azauracil (6AU).  Growth 

phenotypes observed in the presence of this drug are frequently used as indicators of defects 

in transcription elongation (Exinger and Lacroute, 1992).  Wild-type and matched rpd3∆, 

eaf3∆, and set2∆ strains transformed with the URA3 expressing yeast plasmid pRS316 (a 

requirement for the 6AU assay) were grown on medium with or without 6AU (Smith et al., 

2000).  The colony growth of each strain was monitored over several days and compared to 

those of the control plate lacking 6AU.  As previously reported, deletion of SET2 confers 

resistance to the drug 6AU (Fig. 3.1A) (Kizer et al., 2005; Xiao et al., 2005).  Similarly, 

eaf3∆ and rpd3∆ were both resistant to this drug in comparison to wild-type cells, while a 

control lacking the yeast homolog of TFIIS, dst1∆, displayed sensitivity to 6AU as 

previously observed (Archambault et al., 1992).  Interestingly, the deletion of RPD3 was not 

as resistant to 6AU as either the eaf3∆ or set2∆.  This may be due in part to the involvement 

of Rpd3 in the large Rpd3 complex which has been linked to the regulation of transcription 

activation and not elongation.  Nonetheless, these results indicate that Rpd3 and Eaf3 are 

involved in the transcription elongation process.  Furthermore, the resistance phenotype 

observed in the absence of Rpd3 and Eaf3 suggest that these proteins may play a similar role 

in this process to that of Set2.  
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Set2 Regulates Histone Acetylation Patterns on Genes 

With the finding that SET2, RPD3, and EAF3 deletions exhibit similar growth 

phenotypes and genetically interact, we next wanted to investigate how these gene products 

may function in the same biological pathway.  Previous studies of Eaf3 have shown that this 

protein is responsible for regulating global histone acetylation patterns on histones H3 and 

H4 (Reid et al., 2004).  Generally, acetylation of H3 and H4 are higher in the promoters of 

genes in comparison to the coding regions.  In the absence of Eaf3, this pattern is reversed 

such that H3 and H4 acetylation are dramatically increased in the coding region of genes and 

decreased at promoters without affecting global levels of acetylation (Reid et al., 2004).  As a 

member of the Rpd3S complex, the loss of Eaf3 may interfere with the targeting of this 

deacetylase complex to the coding region of genes.  This may be due, in part, to the 

chromodomain of Eaf3 which has been described as a motif that can specifically interact with 

methylated histones (Bannister et al., 2001; Lachner et al., 2001).  Furthermore, Set2 

methylates H3K36 in the coding region of genes, suggesting that Set2, through recruitment 

of the Rpd3S complex, may regulate acetylation levels in this region of genes as well.   

To initially address this possibility, whole-cell extracts prepared from wild-type and 

matched set2∆, eaf3∆, and rpd3∆ strains were analyzed by immunoblot to examine the 

effects of these deletions on global levels of H3 acetylation and methylation of H3K36.  As 

shown in Fig. 3.1B, similar to eaf3∆, set2∆ does not affect global levels of H3K14 

acetylation, while rpd3∆ leads to a subtle increase in this modification.  This is not surprising 

as Rpd3 is a major global deacetylase that targets H3K14 among other sites on H3 and H4 

(Vogelauer et al., 2000).  As expected, H3K36me3 was lost in the set2∆.  Interestingly, 

methylation of H3K36 occurs independently of Eaf3 or Rpd3 (Fig. 3.1B) suggesting that, if 
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they do function in the same pathway, the Rpd3S complex functions downstream of H3K36 

methylation.   

To look at the effects of set2∆ on the histone acetylation patterns of individual genes, we 

used chromatin immunoprecipitation (ChIP) to examine the distribution and levels of  

H3K14 acetylation on SCC2, a constitutively active gene modified by Set2 (Kizer et al., 

2005).  In the case of wild-type cells, H3K14ac was enriched in just the promoter and 5’ 

region of SCC2 in comparison to a subtelomeric control region (Figure 3.2).  Upon deletion 

of SET2, H3K14 acetylation dramatically increased in the coding region.  Significantly, this 

increase mirrored that of eaf3∆ supporting the hypothesis that Set2-mediated H3K36 

methylation recruits the Rpd3S complex to genes.  We further analyzed SCC2 for acetylation 

on H4 and H3K9 using antibodies specific to tetra-acetylated H4 (H4K5, K8, K12, and K16) 

and H3 diacetylated at H3K9 and 14.  As reported for the deletion of EAF3, the deletion of 

SET2 lead to a major increase in H4 acetylation and a less pronounced, but significant, 

increase in H3 acetylation (Reid et al., 2004) (Fig. 3.3A-B).  Others have shown that 

acetylation at H3K9 is the predominant epitope recognized by the H3K9/14 antibody (Zhang 

et al., 1998).  When we used an antibody specific for H3K9 (Fig. 3.3C), the levels of H3K9 

acetylation seemed to be unaffected by the deletion of SET2 or EAF3 suggesting that Rpd3 

regulates acetylation of specific H3 sites in the coding region of genes.    

Since the loss of Set2 resulted in increased acetylation in the coding region of SCC2, we 

wanted to determine if this increase was due specifically to methylation at H3K36.  To look 

at the possibility that H3K36 methylation regulates acetylation in the coding region of genes, 

we performed H4 acetylation and H3K9/14 acetylation ChIPs in extracts from an H3K36 

point mutant (K36A) strain.  As shown in Fig. 3.3D, mutation of H3K36 resulted in 
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increased acetylation of H3 and H4 comparable to the set2∆ strain.  Similar effects were 

observed on STE11, FLO8, and PMA1 indicating that this regulation is not specific to one 

gene (Carrozza et al., 2005; Joshi and Struhl, 2005; Keogh et al., 2005).  Collectively, these 

results indicate that Set2-mediated methylation of H3K36 is important for the regulation of 

acetylation levels in the coding region of genes.  

Set2-mediated H3K36 Methylation Recruits the Rpd3S Deacetylase Complex to Nucleosomes 

To determine if the increased acetylation in the absence of SET2 and EAF3 is due to the 

recruitment of the Rpd3S complex by methylated H3K36, we initially analyzed the 

interaction of the Rpd3S complex with H3K36me peptides.  TAP-purified Rpd3S complex 

was incubated with different H3 peptides in which H3K36 was either unmodified or 

methylated.  We further used peptides that were either mono-, di-, or trimethylated at H3K36 

to identify which form specifically interacted with the Rpd3S complex.  As shown in Fig. 

3.4A, the Rpd3S complex interacted with all of the H3 peptides without specificity even 

under the most stringent salt conditions.  This result may have been due to a missing 

accessory factor required for the specificity of this interaction lost during purification of the 

Rpd3S complex.   To investigate this possibility, whole cell extracts expressing an HA-

tagged form of Eaf3 were incubated with bead-bound-H3K36 peptides followed by 

immunoblot analysis.  Similar to the binding studies using the purified Rpd3S complex, we 

could not detect a specific interaction (Fig. 3.4B).  This led us to believe that the binding of 

Eaf3 to H3K36me requires additional histone H3 sequence and/or perhaps other histones in 

the context of a nucleosome.  To test this hypothesis, we isolated nucleosomes from H2B-

FLAG wild-type and set2∆ strains and incubated them with the purified Rpd3S complex.  As 

shown in Figure 3.4C, the Rpd3S complex interacted strongly with nucleosomes from wild-
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type and not set2∆ cells indicating that the recruitment of the Rpd3S complex to chromatin is 

dependent on Set2 activity.   

Although the Rpd3S complex requires H3K36me to interact with chromatin, we also 

considered that it may not be directly binding this modification, but may be recruited to the 

coding region of genes through an interaction with the elongating polymerase or a direct 

interaction with Set2.  To explore this possibility, we immunoprecipitated an HA-tagged 

form of Rco1, a unique member of the Rpd3S complex, and analyzed associated proteins by 

immunoblot.  As shown in Fig. 3.5A, we did not detect an interaction between Rco1 and Set2 

or the elongating polymerase.  However, we did co-purify members of the Rpd3S complex, 

Eaf3 and Rpd3 (Fig. 3.5C).  These results support the idea that it is the chromodomain of 

Eaf3 that links this complex to H3K36-methylated chromatin.  Significantly, other studies 

have gone on to demonstrate that the chromodomain of Eaf3 can bind specifically to di- and 

trimethylated H3K36 (Carrozza et al., 2005; Shi et al., 2006).   

 

 

 

 

 

 

 

 

 

 



 83

Discussion 

Histone-modifying enzymes such as acetyltransferases and methyltransferases have long 

been linked to the regulation of transcriptional activation and repression.  However, little is 

know about how these enzymes function in this process, and even less is know about the role 

of histone modifications in the process of transcription elongation.  In this report, we identify 

a function for the yeast histone methyltransferse Set2, which methylates H3K36 in the coding 

region of genes.  Previous studies of Set2 and H3K36 methylation have implied a role for 

this modification in transcription elongation (Krogan et al., 2003b; Li et al., 2003; Li et al., 

2002; Schaft et al., 2003; Xiao et al., 2003).  Here, we identify a specific role for Set2-

mediated H3K36 methylation in the recruitment of the Rpd3S deacetylase complex to the 

coding region of genes.  The activities of the Rpd3 complex, in turn, are required to maintain 

histones in the coding region in a deacetylated state.   

While our studies have focused on the identification of a function for Set2, several 

studies have examined the role of Rpd3 in transcription.  Through targeted recruitment to 

promoters by the DNA-binding protein Ume6, Rpd3 has been shown to exert gene-specific 

repression of transcription (Kadosh and Struhl, 1998; Rundlett et al., 1998).  Furthermore, 

this enzyme has been linked to a more global, untargeted role in deacetylating histones 

genome-wide not only in the promoters of genes, but in coding regions as well (Kurdistani et 

al., 2002; Vogelauer et al., 2000).  These previous results suggest that Rpd3 can be recruited 

by additional, unknown factors or may bind directly to histones.  Our results present such an 

alternative mechanism of recruitment in which Set2-mediated H3K36 methylation serves as a 

binding platform for the Rpd3S complex.  Also, these findings are consistent with previous 

reports of Set2 repressing transcription when artificially tethered to a promoter (Strahl et al., 
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2002).  Given the observations here, this repression might be explained, at least in part, by 

the recruitment of the Rpd3S complex by the activity of Set2. 

Interestingly, Rpd3 is not the only histone deacetylase linked to the deacetylation of 

coding regions.  Hos2, a class I histone deacetylase like Rpd3, has been found to deacetylate 

histones in the coding region of genes and has been implicated in the activation of 

transcription (Rundlett et al., 1996; Wang et al., 2002).  As a predominant member of the 

Set3 complex, Hos2 is one of two histone deacetylases in this complex (Hst1 is the other) 

and is required for the complex’s integrity along with Set3 (Pijnappel et al., 2001).  

Consistent with the importance of Hos2 in the Set3 complex, Set3 is also important in the 

activation of transcription suggesting that Hos2 may function to deacetylate histones in the 

coding region of genes as part of the Set3 complex (Wang et al., 2002).  Significantly, Set2 

has been shown to genetically interact with all members of the Set3 complex indicating that 

Set2 functions in some way similar to the Set3 complex. (Krogan et al., 2003b).  Taken 

together, these data support a role for multiple HDACs in the regulation of histone 

acetylation in the coding region of genes.  It remains to be determined exactly how each 

HDAC contributes to this regulation, but definitely supports an important role for histone 

acetylation during transcription elongation.  

With these findings, the question then becomes why is it important to maintain low 

acetylation levels in the coding region of genes?  We know from previous studies that 

histones act as a barrier to effective transcription elongation (Bondarenko et al., 2006; 

Kireeva et al., 2002).  In order for RNAPII to transcribe through the coding region of genes, 

chromatin undergoes significant rearrangements by chromatin-modifying enzymes involving 

the disassembly of histones in front of the polymerase and reassembly of histones behind the 
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passing polymerase (Lee et al., 2004; Schwabish and Struhl, 2004).  In the absence of 

appropriate reassembly by such factors as the histone chaperones, FACT (facilitates 

chromatin transcription) and Spt6, DNA sequences recognized as cryptic promoters are 

exposed leading to inappropriate transcription initiation in the coding region of genes 

(Belotserkovskaya and Reinberg, 2004; Kaplan et al., 2003; Svejstrup, 2003).  Similarly, 

acetylation plays a role in the disruption of chromatin and is required in the coding region of 

genes for effective transcription (Kristjuhan et al., 2002; Walia et al., 1998).  In a recent 

report, the absence of Set2 and members of the Rpd3S complex have also been shown to 

result in cryptic initiation highlighting the importance of the removal of acetylation in the 

wake of the transcribing polymerase (Carrozza et al., 2005).  If acetylation levels remain 

elevated, chromatin remains in a state permissive for transcription initiation.  These findings 

are consistent with a previous report of RNAPII accumulation in the coding region of genes 

in the absence of Set2 (Kizer et al., 2005).  Thus, Set2-mediated methylation of H3K36 is 

required to maintain the coding region of genes in a state repressive to transcription initiation 

by recruiting the Rpd3S deacetylase complex.   

Although a role for Set2 in the recruitment of the Rpd3S complex has been identified, 

several questions remain unanswered.  There is still a question of how Eaf3 functions in the 

NuA4 histone acetyltransferase complex.  Does Eaf3 target NuA4 to promoters by binding a 

specific methylation mark such as H3K4 methylation which is found at the 5’ end of genes?  

If so, how does Eaf3, in its respective complexes, target specific gene regions?  Answers to 

these questions may reside in associated protein members unique to each complex such as 

Rco1 in the Rpd3S complex.  The absence of Rco1 results in the same increased acetylation 

and cryptic initiation in the coding region of genes as the absence of Eaf3 suggesting that it 
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plays some role in stabilizing the complex or targeting (Carrozza et al., 2005; Keogh et al., 

2005).  There is also the question of how other histone deacetylases contribute to the 

regulation of histone acetylation in the coding region of genes. Do members of the Set3 

deacetylase complex play a role in the suppression of cryptic initiation?  Furthermore, since 

Set2 and H3K36 methylation are highly conserved, how well conserved is this mechanism of 

cryptic initiation suppression in higher eukaryotes?  With all of these unanswered questions, 

there is much to learn from future investigations about the regulation of histone acetylation 

and transcription elongation.   
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Figure 3.1 
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Figure 3.1.  Deletion of RPD3, EAF3, and SET2 result in similar resistance to the 

transcription elongation drug 6-azauracil.  (A) Wild-type, set2∆, eaf3∆, rpd3∆, or dst1∆ 

strains were transformed with the Ura3+ plasmid pRS316 and spotted at a serial dilution of 

1:10 on synthetic defined-uracil medium with or without 6-azauracil (6AU, 100 µg/ml).  

Strains were grown at 30 ºC for 2-3 days before being photographed.  (B) The Rpd3S 

complex is not responsible for the stability or activity of Set2. Whole-cell extracts (WCEs) 

prepared from wild-type (WT), set2∆, eaf3∆, and rpd3∆ strains were probed with antibodies 

against Set2, H3K36me3, and H3K14ac.  An antibody specific for the C-terminus of H3 (α-

H3) was used as a loading control.  The location of Set2 and histone H3 are indicated. 
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Figure 3.2 
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Figure 3.2.  Similar to Eaf3, Set2 regulates histone acetylation patterns on genes.  (A) 

Chromatin immunoprecipitations (ChIP) assays were used to monitor the location of H3K14 

acetylation on the actively transcribed gene SCC2 in wild-type, set2∆, or eaf3∆ strains using 

an H3K14ac-specific antibody.  DNA from enriched precipitates (IP) were isolated and used 

in PCR reactions with promoter and coding region-specific primer pairs for the SCC2 gene 

(middle).  A DNA fragment from an untranscribed subtelomeric region on chromosome VI-R 

(TEL) was used as a loading control to normalize and calculate the relative enrichment of 

gene sequences in immunoprecipitated samples.  A schematic of the SCC2 gene and primer 

pairs are indicated (top).  (B) Relative enrichment values shown on the y axes were 

calculated by dividing the ratio of band intensities for IP DNA/TEL with the ratio of 

intensities for the input DNA/TEL.  The gel and graph are representative of two independent 

repeats.  
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Figure 3.3 
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Figure 3.3.  Set2 regulates H3 and H4 acetylation in the transcribed region of genes via 

H3K36 methylation.  (A-C) Wild-type, set2∆, or eaf3∆ strains were analyzed by ChIP for 

levels of the indicated histone modifications on the SCC2 gene as in Fig. 3.2.  The data 

shown represents the average of two independent experiments.  (D) Wild-type or H3K36 

mutant (K36A) strains were analyzed by ChIP for H4ac.  The date shown represents the 

average of three independent experiments.  The standard error of the mean is indicated.   
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Figure 3.4 
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Figure 3.4.  Set2-mediated H3K36 methylation is required for the Rpd3S deacetylase 

complex interaction with chromatin.  (A) Biotinylated peptides were bound to streptavidin 

sepharose followed by incubation with TAP-purified Rpd3S complex (Rco1-CBP).  Bead-

bound proteins were analyzed by immunoblot for associated Rpd3S complex (α-CBP).   

Biotinylated peptide loading was monitored by cutting the bottom portion of the protein gel 

in (A) and transferring to PVDF followed by immunobloting using HRP-conjugated 

streptavidin.   (B) Experiments were carried out as in (A) except bound peptides were 

incubated with extracts from cells containing HA-tagged Eaf3. (C) Nucleosomes purified 

from FLAG-tagged H2B wild-type and set2∆ strains were incubated with TAP-purified 

Rpd3S complex (Rco1-CBP).  Bead-bound proteins were analyzed by immunoblot for bound 

nucleosomes (α-H3) and associated Rpd3S complex (α-CBP).  The location of Rco1 and H3 

are indicated.  The input WCEs and Rpd3S complex were also examined by immunoblot to 

monitor the presence of nucleosomes and Rco1.   
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Figure 3.5 
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Figure 3.5.  The Rpd3S complex does not interact with Set2 or elongating RNAPII.  (A) 

Whole-cell extracts prepared from WT and rco1∆ strains that were transformed with an 

empty vector or the Rco1-3HA construct were immunoprecipitated with α-HA agarose 

followed by immunoblot analysis using antibodies directed against Rco1 (α-HA), Ser5 

phosphorylated CTD (H14, α- Ser5P), and Set2 (α-Set2).  The locations of Rco1, RNAPII, 

and Set2 are indicated.  The input WCEs were also examined by immunoblot to monitor the 

presence of Rco1, RNAPII and Set2.  (B) Tagged Rco1 functionally restores acetylation 

patterns on genes.  Wild-type and rco1∆ strains that were transformed with an empty vector 

or the Rco1-3HA construct were analyzed by ChIP for H3K14ac levels on the SCC2 gene.  

The data shown represents the average of two independent experiments.  The standard error 

of the mean is indicated.  (C)  Rco1 associates with members of the Rpd3S complex.  α-HA 

immunoprecipitations were performed as in (A) followed by immunoblot analysis using 

antibodies against Rco1 (α-HA), Eaf3 (α-Eaf3), and Rpd3 (α-Rpd3).  The locations of Rco1, 

Eaf3, and Rpd3 are indicated.  The input WCEs were also examined by immunoblot to 

monitor the presence of Rco1, Eaf3, and Rpd3. 
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CHAPTER 4 

MODIFICATIONS ON HISTONE H3 LYSINE 36: IDENTIFICATION OF HISTONE 
H3 LYSINE 36 ACETYLATION AS A HIGHLY CONSERVED HISTONE 

MODIFICATION 
 

Abstract 

 Histone lysine (K) acetylation is a major mechanism by which cells regulate the structure 

and function of chromatin, and new sites of acetylation continue to be discovered.  Here we 

identify and characterize histone H3K36 acetylation (H3K36ac).  By mass spectrometric 

analyses of H3 purified from Tetrahymena thermophila and Saccharomyces cerevisiae 

(yeast), we find that H3K36 can be acetylated or methylated.  Using an antibody specific to 

H3K36ac, we show that this modification is conserved in mammals.  In yeast, genome-wide 

ChIP-chip experiments show that H3K36ac is localized predominantly to the promoters of 

RNA polymerase II-transcribed genes, a pattern inversely related to that of H3K36 

methylation.  The pattern of H3K36ac localization is similar to that of other sites of H3 

acetylation, including H3K9ac and H3K14ac.  Using histone acetyltransferase complexes 

purified from yeast, we show that the Gcn5-containing SAGA complex that regulates 

transcription specifically acetylates H3K36 in vitro.  Deletion of GCN5 completely abolishes 

H3K36ac in vivo. These data expand our knowledge of the genomic targets of Gcn5, show 

H3K36ac is highly conserved, and raise the intriguing possibility that the transition between 

H3K36ac and H3K36me acts as an “acetyl/methyl switch” governing chromatin function 

along transcription units. 
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Introduction 

In eukaryotes, the regulation of chromatin structure modulates all DNA-templated 

processes such as DNA replication and transcription.  One major mechanism that regulates 

the structure and function of chromatin is the covalent modification of histones. A number of 

different post-translational modifications are known to occur on histones, including 

acetylation, methylation, phosphorylation, ubiquitylation, and sumoylation (Berger, 2002; 

Holde, 1988; Nathan et al., 2006; Peterson and Laniel, 2004; Shiio and Eisenman, 2003).  

While the majority of these modifications are restricted to the flexible N- and C-terminal 

‘tail’ domains of these proteins, a significant number of these marks have been identified in 

their highly structured globular domains (Cosgrove et al., 2004; Zhang et al., 2003).  The 

function of many of these modifications is not well understood, but several of them have 

been linked to transcriptional activation and repression, DNA repair, and cell-cycle 

regulation (Davie and Spencer, 1999; Lachner and Jenuwein, 2002; van Attikum and Gasser, 

2005; Wei et al., 1999).   

Acetylation and methylation of histone lysine residues, in particular, have been shown to 

play key roles in the regulation of chromatin structure and function, with the majority of 

these modifications occurring on histone H3 (Felsenfeld and Groudine, 2003).  Acetylation is 

highly dynamic and has been linked to cellular processes such as transcriptional activation, 

DNA repair, as well as chromatin assembly (Masumoto et al., 2005; Wang et al., 1997; Ye et 

al., 2005).  Methylation, in contrast, has been considered a stable modification that regulates 

transcriptional repression and activation, transcriptional elongation, heterochromatin 

formation, X-inactivation and polycomb-mediated gene silencing (Cao and Zhang, 2004; 

Grewal and Rice, 2004; Iizuka and Smith, 2003; Kouzarides, 2002; Lee et al., 2005; 
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Shilatifard, 2004; Sims et al., 2004; Zhang and Reinberg, 2001).  However, recent studies 

have revealed that histone lysine methylation can also be enzymatically reversed (Klose et 

al., 2006; Shi et al., 2004; Tsukada et al., 2006; Whetstine et al., 2006).    

An additional layer of functional complexity in the acetylation or methylation of lysine 

residues arises from the finding that lysine residues can be targeted for both acetylation and 

methylation, but not simultaneously.  Specifically, it has been shown in mammals and fission 

yeast that methylation at lysine 9 on H3 (H3K9) serves as a binding site for the recruitment 

of the chromodomain protein HP1, initiating the formation of heterochromatin (Bannister et 

al., 2001; Nakayama et al., 2001).  However, acetylation on H3K9 prevents this site from 

being methylated, thus requiring deacetylation prior to methylation for proper 

heterochromatin formation (Nicolas et al., 2003).  This interplay between acetylation, 

deacetylation and methylation at the same site demonstrates a dynamic relationship between 

gene activation and repression that has the potential to occur at other histone lysine residues.  

However, the possibility of “dual” modifications (here “dual” denoting the choice of being 

either one modification or another) occurring on lysine residues outside of H3K9 has not 

been widely explored (Zhang et al., 2002). 

Previous studies have characterized lysine 36 of histone H3 (H3K36) as a site of 

methylation mediated by the methyltransferase Set2 in the budding yeast Saccharomyces 

cerevisiae (Strahl et al., 2002).  In its methylated form, H3K36 functions in the process of 

transcriptional elongation and occurs predominantly in the coding region of genes 

(Shilatifard, 2004; Sims et al., 2004; Xiao et al., 2003).  Here, we show that in addition to 

being a site of methylation, H3K36 can also be a target for acetylation.  We find that 

acetylation at H3K36 is conserved in mammals and, in yeast, is localized predominantly to 
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the promoters of RNA polymerase II-transcribed genes.  We also find that the Gcn5-

containing SAGA complex specifically acetylates H3K36 in vitro and is required for 

H3K36ac in vivo.  Collectively, these results identify H3K36 acetylation as a conserved 

modification that likely functions in transcription.  Because H3K36 is also a site of 

methylation, these data raise the intriguing possibility that the transition between H3K36ac 

and H3K36me represents a novel “chromatin switch” involved in the regulation of gene 

transcription.  
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Materials and Methods 

Yeast Strains 

The wild-type histone H3 and H3K36-to-alanine point mutation (K36A) strains are in the 

WZY42 background and have been described previously (Kizer et al., 2005).  The TAP-

tagged GCN5 and SAS3 strains are in the BY4741 background and were obtained from Open 

Biosystems.  The wild-type (DY150), gcn5∆ (DY5925) (Yu et al., 2003), and sas3∆ 

(DY8179) strains are in the W303 background and were kindly provided by David Stillman 

(University of Utah).    

Histone Preparation 

Yeast, Tetrahymena and mammalian histones were acid-extracted from purified nuclei as 

previously described (Hake et al., 2006; Strahl and Allis, 2000).  For mass spectrometric 

analyses, Tetrahymena and yeast histone H3 were purified by reverse phase (RP)-HPLC as 

previously described (Medzihradszky et al., 2004; Recht et al., 2006).  Typically, acid-

extracted core histones were separated on a C8 column (220 X 4.6 mm, Aquapore RP-300; 

PerkinElmer) using a linear ascending solvent B gradient of 35–60% over 75 min at 1.0 

ml/min on a Beckman Coulter System Gold 126 Pump Module and 166 Detector (solvent A 

was 5% acetonitrile/0.1% TFA in water, and solvent B was 90% acetonitrile/0.1% TFA in 

water).  Peak fractions corresponding to H3 were collected, dried and resuspended in water. 

A portion of each fraction was used to confirm the presence of purified histones by gel 

electrophoresis followed by Coomassie blue staining. The remainder of the fraction was used 

for mass spectrometric (MS) analyses. 
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Mass Spectrometric Analyses 

Mass spectrometric analyses of Tetrahymena and yeast H3 were performed as previously 

described with slight modifications (Hake et al., 2006).  Briefly, Tetrahymena H3 was 

digested with trypsin prior to propionylation while yeast H3 lysines were blocked by 

propionylation followed by digestion with either trypsin or chymotrypsin.  Derivatization of 

H3 with propionylation reagent converts internal lysine residues (monomethylated and 

endogenously unmodified residues) and the amino terminus to propionyl amides causing the 

blockage of trypsin cleavage on the C-terminal side of lysines allowing cleavage to occur 

only C-terminal to arginine (Clayton et al., 2000).  Digestion of Tetrahymena H3 prior to 

propionylation allowed for the generation of peptides distinct from that of yeast H3 

improving the chances of detecting post-translational modifications. Following digestion and 

propionylation reactions, samples were gradient eluted (Agilent 1100 Series) directly into a 

Finnigan linear quadrupole ion trap-Fourier transform (LTQ-FT) mass spectrometer (Thermo 

Electron) at a flow rate of 100 nl/min operated in the MS/MS data-dependent mode.  All 

MS/MS data were manually validated by inspection of b- and y- type ions.  

Electrophoresis and Immunoblot Analyses 

Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) and 

immunoblot analyses were performed using procedures and reagents from GE Healthcare.  

The anti-H3K36me3 (α-H3K36me3) rabbit polyclonal antibody was obtained from Abcam 

(catalog # ab9050) and used at a dilution of 1:2,000-1:5,000.  All other rabbit histone 

modification-specific antibodies were obtained from Upstate Biotechnology and used at the 

following dilutions: 1:10,000 for H3K18ac (α-H3K18ac, catalog # 07-354), 1:5,000 for 

H3K14ac (α-H3K14ac, catalog #07-353), and 1:15,000- 1:30,000 for the C-terminus of H3 
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(α-H3, catalog # 07-690).  The H3K36ac antiserum (α-H3K36ac, 1:1,000-1:10,000 dilution) 

was developed by immunizing a rabbit with a synthetic KLH-conjugated peptide specific for 

acetylation at H3K36 (C-APATGGVKacKPH).  Typically, histones or synthetic histone H3 

peptides were resolved on SDS-PAGE gels (15% for histones and 10% for peptides), 

followed by transfer onto polyvinylidene difluoride (PVDF) membranes (Millipore).  In 

some cases, membranes were stained with Ponceau S (Sigma-Aldrich) to ensure proper 

protein transfer.  After incubation with primary antibody and addition of a horseradish 

peroxidase (HRP)-conjugated secondary antibody (GE Healthcare), membranes were 

incubated with enhanced chemiluminescence (ECL)-Plus substrate (GE Healthcare), and 

proteins were detected by exposure to X-ray films.  

For peptide competition experiments, the H3K36ac antibody was incubated overnight at 

4 ºC with 5 µg/ml of the following peptides: unmodified histone H3 (amino acids 1-21), 

K9/14ac histone H3 (amino acids 1-21), K14ac histone H3 (amino acids 1-21), unmodified 

histone H3 (amino acids 27-46), and K36ac histone H3 (amino acids 27-46).  Peptides were 

either obtained from Upstate Biotechnology or synthesized and verified by mass 

spectrometry at the University of North Carolina Microprotein Sequencing and Peptide 

Synthesis Facility.  

Chromatin Immunoprecipitation (ChIP) and DNA Microarray (ChIP-chip) Analyses  

ChIP assays were performed as previously described (Xiao et al., 2003).  Antibodies and 

amounts used in the immunoprecipitations (IPs) are as follows: α-H3K36ac (2 µl/IP, Upstate 

Biotechnology, catalog # 07-540), α-H3K36me2 (3 µl/IP, Upstate Biotechnology, catalog # 

07-274), and α-H3K9/14ac (3 µl/IP, Upstate Biotechnology, catalog # 06-599).  Following 

DNA recovery, the ChIP-enriched DNAs were amplified as described (Bohlander et al., 
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1992).  Briefly, two initial rounds of DNA synthesis with T7 DNA polymerase using primer 

1 (5'-GTTTCCCAGTCACGATCNNNNNNNNN-3') was followed by 25 cycles of PCR with 

primer 2 (5'-GTTTCCCAGTCACGATC-3').  Cy3-dUTP or Cy5-dUTP were then 

incorporated directly with an additional 25 cycles of PCR using primer 2.  Direct microarray 

hybridizations of H3K36ac ChIP vs. H3K36me2 ChIP or H3K9/K14ac ChIP vs. H3K36me2 

ChIP were performed using standard procedures (Iyer et al., 2001).  This method allowed for 

the direct comparison between the histone modification patterns, which showed that 

H3K36ac enrichment was preferentially in the promoter region of genes while H3K36me2 

enrichment was preferentially in the transcribed regions.  Additional control experiments in 

which the reference DNA were from H3 ChIPs (for standard nucleosome occupancy 

normalization), H3K36ac ChIPs from a H3K36 point mutation strain (K36A), or genomic 

DNA also demonstrated the H3K36ac enrichment to be promoter specific (data not shown).  

Following hybridizations, the arrays were scanned with a GenePix 4000B scanner and data 

was extracted with Genepix 5.0 software.  Data were normalized such that the median log2 

ratio value for all quality elements on each array equaled zero, and the median of pixel ratio 

values was retrieved for each spot.  Only spots of high quality by visual inspection, with at 

least 50 pixels of quality data (regression R2 > 0.5) were used for analysis. All data was log-

transformed before further analysis.  For ChIP-chip data analyses, the log2 ratio of each spot 

was transformed to a z-score using the formula zx = (X-µ)/σ, where X is a retrieved spot 

value, µ is the mean of all retrieved spots from one array, and σ is the standard deviation of 

all retrieved spots from that same array.  Z-scores from three biological replicates were 

averaged.  Raw data can be obtained from the University of North Carolina Microarray 
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Database at https://genome.unc.edu.  Data are also available through GEO (accession number 

GSE5544).  

Purification of Native Yeast Histone Acetyltransferase (HAT) Complexes  

For purification of SAGA and NuA3, 4 L of yeast cells containing Gcn5-TAP or Sas3-

TAP were grown to an OD600 between 1.0 and 2.0.  Cells were disrupted by glass bead-

beating in a breaking buffer consisting of 50 mM Tris-HCl (pH 8.0), 350 mM NaCl, 10% 

glycerol, 0.1% triton-X-100 and protease inhibitors (PMSF, aprotinin, leupeptin, and 

pepstatin) followed by clarification of the extract by ultracentrifugation at 25,000 rpm for 1 h 

at 4 ºC as described (Grant et al., 1999).  TAP-tagged proteins were purified in a one-step 

procedure from the extracts by directly binding the calmodulin binding protein (CBP) 

component of the TAP tag to calmodulin resin (Stratagene; 200 µl beads) in the presence of 

CaCl2 (1 mM final concentration) at 4 ºC for 4 hours.  All wash and elution steps were 

performed in 0.8 X 4 cm Polyprep chromatography columns (BioRad).  Protein-bound resin 

was washed two times with breaking buffer containing CaCl2 at a final concentration of 1 

mM.  Following washes, bound proteins were eluted in twelve 250 µl fractions with elution 

buffer (50 mM Tris-HCl (pH 8.0), 350 mM NaCl, 10% glycerol, 2 mM EGTA, and protease 

inhibitors).  Generally, the peak of complex elution was found in fractions 2 and 3.  Purified 

complexes were analyzed by Coomassie blue staining, immunoblot analysis with an anti-

Protein A antibody (Sigma-Aldrich) and in vitro HAT assays (see below).  Additionally, an 

untagged wild-type strain was included in the purification procedure as a control to confirm 

that there were no contaminating activities due to nonspecific protein interactions with the 

calmodulin resin.  
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In Vitro Histone Acetyltransferase Assays 

Acetyltransferase assays were performed as described previously with some 

modifications (Grant et al., 1999; Mizzen et al., 1999).  Briefly, 3 µl of TAP-purified SAGA 

or NuA3 complex (fraction 2) was incubated with either 2 µg chicken core histones, 2 µg 

recombinant mononucleosomes, or 2 µg synthetic H3 peptides along with 30 µM unlabeled 

acetyl coenzyme A (acetyl-CoA, Sigma-Aldrich) in acetyltransferase buffer (50 mM Tris (pH 

7.4), 10% glycerol, and protease inhibitors).  Reactions were allowed to proceed for 30 min 

at 30ºC in a total volume of 12 µl and analyzed by SDS-PAGE followed by Coomassie blue 

staining or immunoblotting.  For radiolabeled HAT assays, 3 µl of TAP-purified SAGA or 

NuA3 complex was incubated with 2 µg synthetic H3 peptides along with 0.125 µCi [3H] 

acetyl coenzyme A (2-10 Ci/mmol, GE Healthcare) in acetyltransferase buffer.  Reactions 

were allowed to proceed as described above followed by spotting of reaction products onto 

p81 Whatman paper (Fisher Scientific) and monitoring 3H incorporation by scintillation 

counting (filter-binding assay).   Recombinant mononucleosomes were a gift from Song Tan 

(Pennslyvania State University) and consisted of Xenopus core histones that were bacterially 

expressed, purified, and reconstituted with the NucB region of the MMTV promoter. 
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Results 

Histone H3 is Acetylated at Lysine 36 in Tetrahymena and Yeast 

Methylation at H3K36 is a highly conserved modification found in eukaryotes ranging 

from Tetrahymena to humans, but whether other types of modifications occur at this residue 

was unknown.  To determine if novel modifications occur at H3K36, we analyzed H3 from 

Tetrahymena by tandem mass spectrometry.  This organism, a ciliated protozoan, has proven 

useful in the discovery of other “ON” histone covalent modifications, notably H3K4me 

(Strahl et al., 1999).  Tetrahymena H3 was purified by RP-HPLC from acid-extracted bulk 

histones and digested with both trypsin and chymotrypsin followed by chemical 

derivatization using propionic anhydride reagent (Syka et al., 2004).  Digests were analyzed 

by on-line nanoflowLC-MS/MS on a linear quadrupole ion trap-Fourier transform (LTQ-FT) 

mass spectrometer.  Using this platform, we determined that H3K36 is acetylated.   

Shown in Fig. 4.1A is the MS/MS spectrum of a peptide produced from the propionylated 

tryptic digest of Tetrahymena histone H3.  The [M+2H]2+ of the parent ion is shown at m/z 

542.3062.   The high mass accuracy of the LTQ-FT mass spectrometer can easily distinguish 

between trimethylation and acetylation on peptides (∆m = 0.0364 Da).  The accurate mass of 

the parent ion recorded was found to be consistent with acetylation on this peptide (+0.18 

ppm) and not trimethylation.  Importantly, we were able to also detect H3K36 mono-, di-, 

and trimethylation on other H3 peptides (data not shown), confirming that this residue can be 

methylated or acetylated. 

We additionally surveyed histone H3 purified from budding yeast to determine if H3K36 

acetylation might be present in this distinct unicellular organism.  Using the approach 

mentioned above for Tetrahymena H3, we identified that yeast H3K36 was also acetylated 
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(Fig. 4.1B).  H3K36 acetylation was observed on a number of different peptides.  Fig. 4.1B 

displays the tandem mass spectrum of the [M+2H]2+ ion at m/z 823.4552 from a 

propionylated digest of one such identified H3 peptide.  This peptide was identified to be the 

27-40 amino acid H3 fragment and it was found to contain acetylation at both H3K27 and 

H3K36.  These results identify a novel acetylation event at H3K36 that is conserved between 

Tetrahymena and yeast.          

To further investigate the occurrence of this modification, we raised an antibody against a 

synthetic peptide acetylated at H3K36 and analyzed Tetrahymena and yeast histones by 

immunoblot analysis.  As shown in Fig. 4.2A, the α-H3K36ac antibody efficiently 

recognized the RP-HPLC purified Tetrahymena H3, originally analyzed by mass 

spectrometry.  We determined the antibody to be specific for H3K36ac, as only a synthetic 

H3 peptide acetylated at H3K36 could selectively compete away the signal detected by the 

α-H3K36ac antibody (Fig. 4.2A).  Other unmodified or acetylated H3 peptides did not 

compete for this antibody’s detection of H3.   

Next, we determined if this antibody could specifically recognize acetylation at H3K36 in 

yeast.  Yeast histones isolated by acid-extraction from a wild-type or H3K36 point mutant 

(K36A) strain were analyzed by immunoblot analysis using the H3K36ac-specific antibody.  

Similar to Tetrahymena, the α-H3K36ac antibody detected H3 in a wild-type yeast strain but 

much less so in a strain where H3K36 was mutated to alanine (Fig. 4.2B). However, we note 

that high concentrations of histones loaded in these assays results in the ability of the α-

H3K36 antibody to weakly recognize the backbone of H3 (Fig. 4.2B, K36A lane).  

Nonetheless, these results confirm our mass spectrometry findings that H3K36ac exists in 

both Tetrahymena and yeast.  
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H3K36 Acetylation is Preferentially Enriched in the Promoters of RNA Polymerase II-
transcribed Genes Genome-wide 

Next, we used a ChIP-chip approach to determine the genomic distribution of H3K36ac 

and how it compared to the distribution of methylation found at H3K36 (Pokholok et al., 

2005; Rao et al., 2005).  The α-H3K36ac-specific antibody was used in ChIP reactions from 

yeast whole cell extracts.  Enriched genomic DNA fragments were treated with RNase, 

amplified, and labeled fluorescently.  DNA enriched from H3K36me2 ChIPs were prepared 

in a similar manner, and both samples were hybridized on the same array.  Three independent 

sets of ChIPs were performed.  Using this method, we directly compared the patterns of 

H3K36ac and H3K36me2 using arrays that tiled continuously over the entire genome at a 

resolution of ~1 kb.  We observed a preferential enrichment of H3K36ac at 5′ regulatory 

regions (bidirectional and unidirectional promoters) relative to coding regions (ORFs) and 3′ 

UTRs (non-coding region downstream of two convergently transcribed genes) (Fig. 4.3A).  

Significantly, the H3K36ac pattern was found to be inversely related to that of H3K36me2, 

which occurs preferentially in the coding region and 3′ UTR of genes (Krogan et al., 2003; 

Rao et al., 2005; Xiao et al., 2003). 

We then compared the location of the H3K36ac modification to that of other well-

characterized acetylation sites on H3; namely H3K9 and H3K14 acetylation (H3K9/14ac).  

Using the same extracts, ChIPs were performed with an antibody that recognizes diacetylated 

H3K9/14, and the enriched DNA was amplified, labeled, and hybridized to DNA microarrays 

as described above.  These experiments revealed that H3K9/K14ac was localized to 

promoters in a pattern strikingly similar to the pattern we observed for H3K36ac genome-

wide (data not shown and see Fig. 4.3B).  These data were also consistent with the H3K9/14 

acetylation results obtained by others (Liu et al., 2005; Pokholok et al., 2005).  We further 
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examined the distribution of H3K36ac, H3K9/K14ac, and H3K36me2 using a high-

resolution microarray containing probes that covered all of chromosome III at a resolution of 

200 bp (and at 100 bp resolution for 1/3 of the chromosome).  For both H3K36ac and 

H3K9/K14ac, the level of acetylation enrichment drops sharply as a function of distance 

from translational initiation site while H3K36me2 increases (Fig. 4.3B).  These data are fully 

consistent with our analysis using lower-resolution arrays and confirm that these acetyl 

marks occur preferentially upstream of coding regions while H3K36me2 occurs primarily in 

the coding region of genes.  

We next asked whether H3K36ac associates with genomic regions other than those 

characteristic of RNA polymerase II (RNAPII) promoters.  We found that genomic regions 

which were transcriptionally silent under our growth conditions, or regions not transcribed by 

RNAPII including centromeres, telomeres, and silent mating type loci, contained low levels 

of H3K36ac and H3K9/K14ac (Fig. 4.3C).  These results indicate that H3K36ac is associated 

strictly with active RNAPII regulatory sequences, and suggest that like H3K36me, H3K36ac 

may function in RNAPII-mediated gene transcription.  

The Gcn5-containing SAGA Histone Acetyltransferase Complex Mediates H3K36 Acetylation 

We next sought to identify the responsible histone acetyltransferase(s) (HATs) that 

deposits this mark.  Given H3K36 acetylation is enriched in the promoter regions of 

RNAPII-transcribed genes, and has a pattern of acetylation similar to that of H3K9/14 

acetylation, we initially focused on the Gcn5-containing SAGA histone acetyltransferase 

(HAT) complex that mediates acetylation to the N-terminus of H3 (Grant et al., 1999).  

Furthermore, we noticed that the amino acid sequence surrounding H3K36 is very 

homologous to a preferred Gcn5 consensus site of acetylation found at H3K14 (Kuo et al., 
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1996) (compare STGGK14AP vs. STGGVK36KP; underlined residues indicate homology and 

bold “K” indicates the residue targeted for acetylation). 

To test if SAGA would mediate H3K36ac, we TAP-purified SAGA from yeast whole 

extracts using a tagged form of Gcn5 and then incubated the complex with either unmodified 

or modified H3 synthetic peptides along with unlabeled acetyl-CoA (acetyl donor) in a HAT 

assay.  Following the HAT reactions, the products were electrophoresed on 10% SDS-PAGE 

gels and analyzed by immunoblot with the α-H3K36ac antibody.  After incubation with 

purified SAGA, a previously unmodified H3 27-46 amino acid peptide was recognized by the 

H3K36ac-specific antibody (Fig. 4.4A).  Importantly, when these same assays were 

performed using a radiolabeled form of acetyl-CoA, SAGA was readily able to acetylate an 

N-terminal H3 peptide (residues 1-21 containing H3K9 and H3K14) as well as the 

unmodified 27-46 peptide, but showed no activity toward a matched 27-46 peptide acetylated 

at H3K36 (Fig. 4.4B).     

To learn more about the physiological relevance of SAGA-mediated H3K36 acetylation, 

we next asked if SAGA could acetylate H3K36 in the context of other histone proteins and 

DNA.  Again HAT assays were performed using TAP-purified SAGA in which the complex 

was incubated with either free chicken core histones or recombinant mononucleosomes.  As 

shown in Fig. 4.4C, SAGA was capable of acetylating both substrates at H3K36.   

We also tested the NuA3 HAT complex for an activity that specifically acetylates 

H3K36.  Like SAGA, NuA3 has been identified as a HAT complex that specifically targets 

H3 for acetylation (Grant et al., 1997).  Previous work shows that the catalytic subunit of 

NuA3, Sas3, has overlapping activities with Gcn5 and can target H3K14 for acetylation in 

vivo (Howe et al., 2001).  Unlike SAGA, however, we found that TAP-purified NuA3 was 
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unable to acetylate H3K36 in the context of H3 synthetic peptides.  However, NuA3 could 

acetylate H3K36 in the context of core histones and nucleosomes (data not shown).   

Given the ability of SAGA and NuA3 to catalyze H3K36ac, we next asked whether either 

one of these HATs was required for H3K36ac in vivo. We therefore purified bulk core 

histones from GCN5 and SAS3 deletion strains and analyzed them for H3K36ac by 

immunoblot analysis.  As shown in Fig. 4.4D, acetylation at H3K36 was abolished in the 

GCN5 deletion, but not in the SAS3 deletion. These results reveal that Gcn5 is the major 

HAT responsible for H3K36ac in vivo.  

H3K36 Acetylation is Conserved in Mammalian Cells 

Although our studies showed that several unicellular organisms contained H3K36ac, we 

wanted to determine how conserved this modification would be among several diverse 

multicellular organisms.  We therefore isolated histones by acid-extraction from 

Tetrahymena, yeast, mouse, and human cells and probed them for the presence of H3K36ac.   

As shown in Fig. 4.5A, we found H3K36ac in all of the organisms analyzed, although the 

relative abundance varied between species.  H3K36ac appeared to be most abundant in 

Tetrahymena and yeast, followed by human and mouse. The mouse embryonic fibroblasts 

used for this study apparently harbor a very low level of H3K36ac, which is consistent with 

our mass spectrometry experiments that did not detect H3K36ac in histones isolated from 

these cells (Garcia et al., 2007).  In agreement with our human results, a recent mass 

spectrometry proteomics survey reported the existence of H3K36ac in human HeLa cells 

(Kim et al., 2006).  Although differences exist in the relative abundance of H3K36ac found 

in these organisms, and perhaps within different cell types, these results reveal that H3K36ac 

occurs in organisms as diverse as yeast and humans.  Our results also underscore differences 
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in the employment of histone marks in different organisms and in the importance of applying 

independent assays to assess them. 
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Discussion 

In this report, we identify and characterize a novel site of acetylation on histone H3 at 

lysine 36.  This site was previously determined to be mono-, di-, and trimethylated in a broad 

range of eukaryotic organisms, and we find that acetylation at this residue is also highly 

conserved.  Furthermore, we have determined that H3K36ac is mediated by the Gcn5-

containing SAGA complex in yeast, and is preferentially enriched in the promoter regions of 

RNAPII-transcribed genes genome-wide.   Although the exact function of this modification 

remains to be elucidated, our data suggests that it is involved in the transcription process. 

We and others have found several clues as to how Gcn5 can target H3K36 to acetylate 

this site.  First, previous studies have shown that Gcn5 in isolation can only target H3K14 

(Grant et al., 1999; Kuo et al., 1996).  However, in its native SAGA complex, this enzyme 

has an expanded substrate range on H3 that includes H3K9, K18 and K23 (Grant et al., 

1999).  H3K36ac was not detected in this previous study as only H3 synthetic peptides 

containing amino acid residues from 5 to 28 were investigated. Our data, therefore, reveal an 

expanded site utilization pattern by SAGA.  Second, the amino acid sequence immediately 

surrounding H3K36 is very similar to that of H3K14, which is a preferred site of Gcn5 

acetylation (compare STGGK14AP vs. STGGVK36KP; underlined sequences show identity 

while bold lysines are the acetyl accepting residues).  Structural studies of Gcn5 in complex 

with an H3 peptide containing H3K14 have identified several critical residues immediately 

surrounding H3K14 (glycine 13 and proline 16) that are important for substrate recognition 

and high affinity binding (Clements et al., 2003; Poux and Marmorstein, 2003; Rojas et al., 

1999).  Importantly, these key residues (G-K14-X-P) are conserved in the sequence 

surrounding H3K36.  Thus, the high similarity between residues surrounding H3K14 and 
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H3K36 may explain how Gcn5 is capable of acetylating H3K36 in vitro and in vivo.  Given 

H3K9/14 acetylation patterns overlap with H3K36ac, it is likely that SAGA mediates a broad 

H3 acetylation pattern when recruited to gene promoters. 

Interestingly, while we found that H3K36ac was present in Tetrahymena, yeast, and 

mammalian cells, the general abundance of this modification varied greatly among the 

organisms we analyzed (Fig. 4.5A).  While many possible reasons could account for these 

differences, one plausible explanation may be due to the fact that budding yeast contains only 

a single H3 isoform (H3.3), whereas Tetrahymena and mammalian cells contain multiple H3 

variants (H3.1, H3.2 and H3.3; see Fig. 4.5B).  Since H3.1 and H3.2 in flies and mammals 

are generally associated with silenced chromatin (which make up a large proportion of their 

genomes), these histone variants are not likely to be H3K36 acetylated and/or associated with 

active transcription. Thus, much of the bulk-isolated histones from these more complex 

organisms contain H3 isoforms that harbor “OFF” marks.  This idea, along with our 

H3K36ac observations, is consistent with earlier studies that show that these same 

multicellular organisms have much lower levels of H3K4 methylation (a modification 

associated with transcriptionally competent chromatin) compared to those observed in yeast 

(Briggs et al., 2001).  Given the sequence surrounding H3K36 is highly conserved between 

these organisms (Fig. 4.5B), the differences observed between species is not likely due to the 

inability of our antibody to efficiently recognize the site of H3K36. 

That H3K36ac is mediated by Gcn5 and is found in the promoters of RNAPII-regulated 

genes suggests that acetylation at H3K36 may play a role in gene transcription.  Previous 

studies of SAGA and Gcn5 indicate that this enzyme complex is activator recruited and 

targets acetylation at specific promoters during transcriptional activation (Gregory et al., 
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1998; Kuo et al., 1998; Sterner et al., 1999; Wang et al., 1997).   While the exact function of 

H3K36ac is unknown, we speculate that H3K36ac acts in concert with other Gcn5-mediated 

sites of acetylation to properly regulate transcriptional induction.  Such cooperativity would 

be in agreement with prior studies that have shown the importance of Gcn5-mediated 

acetylation of multiple sites on H3 for normal cell growth and transcriptional activation 

(Zhang et al., 1998).  Additionally, the acetylation of H3K36 by SAGA, as part of this 

complex’s expanded targeting, is consistent with studies on H4 that show that a cumulative 

effect of acetylation is associated with the promoters of active genes (Dion et al., 2005). 

In contrast to H3K36ac, methylation at H3K36 is found in the coding region of genes and 

is involved in transcriptional elongation.  Recent reports have identified a function for this 

modification in maintaining an environment within coding regions that is repressive to the 

activation of intragenic transcription by recruiting the deacetylase complex Rpd3S (Carrozza 

et al., 2005; Joshi and Struhl, 2005; Keogh et al., 2005).  An important question, therefore, is 

whether acetylation and methylation activities compete for the same target sites, such as 

H3K36.  Well documented is the finding that H3K9 is subject to either methylation or 

acetylation (see below), and a report co-published with this one reveals that a significant 

number of lysines targeted for acetylation are also targeted for methylation, and vise versa 

(Garcia et al., 2007).  These results raise the intriguing possibility that functional interplay 

between two or more posttranslational modifications at a single lysine residue is a general 

phenomenon that drives distinct biological effects within chromatin.  To date, the best 

example of functional interplay between methylation and acetylation is with H3K9, at which 

acetylation is removed prior to methylation by Su(var)3-9 in the promoters of genes (Schotta 

et al., 2002).  This activity is required for the recruitment of HP1/Swi6 that leads to the 
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formation of heterochromatin in both fission yeast and multicellular eukaryotes.  Although 

our analyses do not reveal if functional interplay occurs at this site, future investigations will 

aim to determine whether SAGA and Set2 regulate transcription initiation events through 

competition for H3K36. 
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Figure 4.1 
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Figure 4.1.  Identification of H3K36 acetylation in Tetrahymena and yeast by mass 

spectrometry.  (A) Displayed is the MS/MS fragmentation spectrum of the [M+2H]2+ parent 

ion from an H3 peptide (histone H3, amino acids 29-37) derived from a propionylated digest 

of Tetrahymena H3.  Inset shows full MS of parent ion (whole peptide), from which the 

fragmentation spectrum was taken, at 542.3062 m/z.  Scale for the y-axis of inset represents 

relative abundance of the parent ion and is identical to the fragmentation spectrum y-axis.  

Accurate mass (inset) indicates acetylation and not trimethylation on this peptide (+0.18 ppm 

error), while fragment ions (full spectrum) show H3K36 as the acetylation site.  

Experimentally observed (MH2+
exp.) and calculated masses (MH2+

calc.) for this acetylated 

peptide are indicated.  Above the spectrum is the peptide sequence in which predicted b-type 

ions, which contain the amino terminus of the peptide, are immediately above the sequence.  

Predicted y-type ions, which contain the carboxyl terminus, are immediately below the 

sequence.  Ions observed in the spectrum are underlined and represent masses associated with 

the fragmented peptides from the MS/MS analyses.  Note the addition of propionyl groups 

(Pr) which add 56 Da on amino terminus residues and unmodified lysine residues due to 

chemical derivatization with propionic anyhydride reagent (see experimental procedures for 

explanation).  (B) Same as in (A) except peptides were derived from digested RP-HPLC 

purified yeast H3.  Displayed is the MS/MS fragmentation spectrum of the [M+2H]2+ parent 

ion at m/z 823.4552.  This peptide was identified as the 27-40 fragment from yeast histone 

H3.  Inset shows full MS of parent ion at m/z 823.4552.  Accurate mass indicates the addition 

of two acetylation modifications and not trimethylation on this peptide (+0.73 ppm error), 

while fragment ions show H3K27 and H3K36 as the acetylation sites.  Experimentally 

observed (MH2+
exp.) and calculated masses (MH2+

calc.) for this acetylated peptide are 
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indicated.  As in (A), b- and y-type ions observed in the spectrum are underlined and the 

peptide contains the addition of propionyl groups (Pr) on unmodified lysine and amino 

terminus residues.   
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Figure 4.2 
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Figure 4.2.  Detection of H3K36 acetylation in Tetrahymena and yeast using a specific 

antiserum.   (A) An antibody specific to H3K36 acetylation recognizes Tetrahymena H3.  

RP-HPLC Tetrahymena H3 (same as used in Fig. 4.1A) was loaded onto adjacent lanes and 

resolved on a 15% SDS-PAGE gel.  Following transfer to a polyvinylidene difluoride 

(PVDF) membrane, each lane was separated and probed with an α-H3K36 acetyl antiserum 

(α-H3K36ac) that was preincubated with different unmodified or modified H3 synthetic 

peptides as indicated.  The same blots were stripped and reprobed with an antibody specific 

for Tetrahymena H3 (α-Tetrahymena H3) as a loading control.  (B) The α-H3K36ac 

antibody specifically recognizes H3K36 acetylation in yeast.  Acid-extracted histones 

prepared from a wild-type or H3K36 point mutant yeast strain (K36A) were resolved on a 

15% SDS-PAGE gel, transferred to a PVDF membrane, and probed for H3K36ac.  An 

antibody specific for the C-terminus of H3 (α-H3) was used as a loading control.  Antibodies 

specific for H3K18 acetylation (α-H3K18ac) and H3K36 trimethylation (α-H3K36me3) 

were used as additional controls.  
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Figure 4.3 
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Figure 4.3.  H3K36 acetylation is localized predominantly to the promoters of RNA 

polymerase II-transcribed genes genome-wide.  (A) The distribution of average z-scores 

(units are standard deviation from the mean) for 5′ regulatory regions (black), ORFs (red), 

and 3' UTRs (blue) derived from ChIP-chip experiments in which H3K36ac ChIPs were 

compared directly to H3K36me2 ChIPs.  Thus, the H3K36ac and H3K36me2 ratios shown 

here are inversely related.  Similar promoter enrichment results for H3K36ac were obtained 

when the H3K36ac ChIPs were compared to a genomic DNA reference, or references 

composed of histone H3 ChIPs (experimental procedures).  (B) A moving-average plot 

(window size=40, step size=1) of average z-scores from three independent experiments 

comparing H3K36ac ChIPs (red) , H3K9/14ac ChIPs (black) and H3K36me2 ChIPs (blue) 

on a high resolution DNA microarray covering all of chromosome III.  ChIP enrichment is 

plotted as a function of the distance from the translational start site among genes greater than 

1 kb in length.  (C) H3K36ac distribution genome-wide.  Colors (scale at bottom) represent 

the median of all z-scores recorded from all arrayed elements in the indicated functional class 

(labeled on right, number of elements indicated in parentheses).  Data were derived from 

three independent replicates. 
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Figure 4.4 
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Figure 4.4.  The Gcn5-containing SAGA complex acetylates H3K36.  (A) Shown are the 

results of a HAT assay in which TAP-purified SAGA complex was incubated with either 

unmodified or modified H3 synthetic peptides along with unlabeled acetyl coenzyme A 

(acetyl-CoA).  Reaction products were resolved on a 10% SDS-PAGE gel, transferred to a 

PVDF membrane, and analyzed by immunoblot for H3K36ac.  An H3 synthetic peptide 

acetylated at H3K36 was used as a control for antibody detection.  Parallel reactions were 

performed and examined by Coomassie staining to monitor loading (lower panel).  (B) 

Displayed is a graph representing the results of a HAT assay in which TAP-purified SAGA 

complex was incubated with either unmodified or modified H3 synthetic peptides along with 

[3H] labeled acetyl-CoA.  3H incorporation was analyzed by filter-binding assay and 

monitored by scintillation counting.  (C) Shown are the results of a HAT assay in which 

TAP-purified SAGA complex was incubated with either chicken core histones or 

recombinant mononucleosomes along with unlabeled acetyl-CoA as in (A).  Reaction 

products were resolved on a 15% SDS-PAGE gel, transferred to PVDF membrane, and 

analyzed by immunoblot for H3K36ac.  Parallel reactions were performed and analyzed by 

immunoblot for H3K14ac as a control.  The same blot was stripped and reprobed with an 

antibody specific for the C-terminus of H3 (α-H3) to monitor loading.  Note slight antibody 

detection of histone H3 backbone in the absence of TAP-purified SAGA in the recombinant 

(unmodified) mononucleosomes reactions.  (D) Gcn5 is responsible for mediating H3K36ac 

in yeast.  Acid-extracted histones prepared from wild-type, gcn5∆ or sas3∆ strains were 

resolved on a 15% SDS-PAGE gel, followed by transfer to a PVDF membrane, and analyzed 

by immunoblot for the presence of H3K36ac.  An antibody specific for the C-terminus of H3 



               
 

 134

(α-H3) was used as a loading control.  Antibodies specific for H3K18ac and H3K36me3 

were used as additional controls.  
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Figure 4.5 
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Figure 4.5.  Histone H3K36 acetylation is conserved in mammals.  (A) Acid-extracted 

histones from Tetrahymena, yeast (S. cerevisiae), mouse (mouse embryonic fibroblasts) and 

human (HEK293) cells, along with recombinant H3 from Xenopus, were resolved on a 15% 

SDS-PAGE gel, transferred to a PVDF membrane and probed for H3K36ac (upper panel).  

Prior to immunoblot analysis, the membrane was Ponceau S stained to confirm equal loading 

of protein (lower panel).  (B) Alignment of histone H3 protein sequences (amino acids 30-45) 

from different eukaryotic species.  Divergent residues are highlighted in gray boxes.  

Asterisk indicates the position of lysine 36 in the H3 sequence. 
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CHAPTER 5 

DISCUSSION 

 

Histone methylation is a highly conserved modification occurring in organisms ranging 

from yeast to humans.  Although it has been implicated in the regulation of chromatin in 

processes such as DNA repair and transcription, the exact functions of this modification are 

just beginning to be discovered.  In the preceding chapters, I have focused my research on the 

histone methyltransferase Set2 and the methylation of its target site, H3K36, in the process of 

transcription elongation.  Through my studies, I have demonstrated that not only is Set2-

mediated methylation of H3K36 conserved, but also contributed to the identification of a role 

for Set2 and H3K36 in the regulation of histone acetylation patterns in the coding region of 

genes.  Furthermore, I have identified a novel and conserved modification on H3K36. 

Independent of methylation, H3K36 is acetylated at the promoters of genes by the 

transcriptional co-activator Gcn5.  In this chapter, I will address some of the unanswered 

questions that remain following the completion of my work.  Additionally, I will discuss the 

findings published subsequent to my own studies in an attempt to gain a better understanding 

of how Set2 and histone methylation are involved in the regulation of gene expression.  
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Conserved Role for Set2 and H3K36 Methylation in Transcription Elongation 

While I have demonstrated in chapter 2 that Set2 methylation of H3K36 is conserved in 

organisms such as the fission yeast S. pombe and the multicellular eukaryote N. crassa, there 

is still the question of whether Set2 methylates H3K36 in higher eukaryotes and, if so, 

whether this methylation is mediated through an interaction with the transcribing polymerase.  

Initial studies identified NSD1, a mammalian member of the Set2 family, as an H3K36 

methyltransferase in vitro, but whether it functions as such in vivo has yet to be determined 

(Rayasam et al., 2003).  In my studies, we identified several potential Set2 homologs by 

sequence analyses.  Significantly, a report found di- and trimethylation of H3K36 in the 

coding region of active metazoan genes supporting the hypothesis that one or more of the 

Set2 homologs identified may be functioning as H3K36-specific methyltransferases in higher 

eukaryotes (Bannister et al., 2005).  In line with these findings, a report following my study 

identified another mammalian Set2 homolog, HYPB, as an active H3K36 methyltransferase 

that interacts with elongating RNAPII (Sun et al., 2005).  Interestingly, the interaction 

between HYPB and RNAPII is mediated through a domain at its C-terminus similar to the 

RNAPII interaction domain identified in Set2 (SRI) (Li et al., 2005b; Sun et al., 2005).  Of 

the mammalian Set2 homologs, HYPB is the only protein to contain the SRI domain 

implying that it may be the lone H3K36 methyltransferase in mammals coupled to RNAPII 

transcription.  It is an attractive possibility that in higher eukaryotes, the other Set2 homologs 

may have unique biological functions.  Yet, it remains to be determined what the roles of the 

other mammalian Set2 homologs are in the regulation of chromatin and gene expression.    

In addition to identifying a conserved role for Set2 in H3K36 methylation, I have also 

identified in budding yeast a role for Set2 in recruiting the Rpd3S complex via the 
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chromodomain protein Eaf3 to the coding region of genes.  This complex maintains 

nucleosomes in a hypoacetylated state and suppresses cryptic initiation of transcription.   

Thus, the obvious question becomes whether or not this role for Set2 and H3K36 methylation 

is conserved in higher eukaryotes.  To date, there are very few studies that have investigated 

the conservation of this function.  However, like Set2, Eaf3 is conserved from yeast to 

humans and studies of its homologs provide clues about the function of Eaf3 in other 

organisms.  For example, in S. pombe, the Eaf3 homolog Alp13 is required for chromosome 

segregation and genomic integrity (Nakayama et al., 2003), while the closest mammalian 

homolog, MRG15, regulates embryonic development and cell proliferation (Tominaga et al., 

2005).  Importantly, studies of both Eaf3 homologs have identified them as members of 

histone deacetylase complexes  (Gavin et al., 2002; Nakayama et al., 2003).  Studies of 

MRG15, in particular, have shown that this protein is a stable component of both the hNuA4 

acetyltransferase and Sin3/HDAC deacetylase complexes, which are both homologous to the 

yeast NuA4 and Rpd3 complexes, respectively (Doyon et al., 2004).  In complex with Sin3, 

MRG15 has been shown to repress transcription (Yochum and Ayer, 2002).  Interestingly, 

the chromodomain of MRG15 was recently shown to interact specifically with H3K36 di- 

and trimethylation (Zhang et al., 2006).  Taken together, these data strongly support a 

conserved role for H3K36 methylation in the recruitment of a histone deacetylase complex in 

higher eukaryotes.  Future investigations will provide more clues as to whether or not either 

Alp13 or MRG15 are involved in transcription elongation.  However, a recent report, 

unexpectedly, offers an alternative view of H3K36 methylation and deacetylation in 

mammals, in which an H3K36 methyltransferase interacts directly with a repressive 

Sin3/HDAC deacetylase complex (Brown et al., 2006).  Unlike members of the Set2 family, 
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this methyltransferase, Smyd2, contains a SET domain split into two parts by a MYND 

domain, a zinc-finger motif that mediates protein-protein interactions (Brown et al., 2006).  

These results open up the intriguing possibility that, in higher eukaryotes, proteins, 

potentially outside of Set2, may function in a similar manner with a repressive deacetylase 

complex independent of an interaction with elongating RNAPII.     

 

Histone Acetylation and the Process of Transcription Elongation: Consequences of 
Misregulation 

 Although histone acetylation is well studied, the majority of research has focused on the 

link between this modification and transcriptional activity at the promoters of genes.  As we 

gain a better understanding of transcription elongation, a few studies have highlighted a role 

for histone acetylation during this process.  For example, studies have demonstrated the 

association of the Elongator HAT complex with transcribing RNAPII (Wittschieben et al., 

1999) and a requirement for acetylation in the coding region of genes for transcriptional 

activity (Kristjuhan et al., 2002; Wang et al., 2002).  With the finding that Set2 couples 

histone deacetylation and transcription elongation, the role of histone acetylation in 

transcription has been shown to be more complex in which a certain level must be 

maintained to allow passage of the polymerase without inappropriate initiation of 

transcription.   

 Exactly how histone acetylation is involved in the alteration of chromatin in the coding 

region of genes in not well known, but it is presumed to involve the disruption of histone-

DNA and histone-histone contacts increasing the accessibility of DNA to polymerase.  In 

fact, a recent study has shown that histone acetylation in the coding regions may serve as a 

binding platform for the recruitment of chromatin remodeling complexes which, in turn, alter 
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the positions of nucleosomes allowing the passage of RNAPII (Carey et al., 2006).  There are 

also questions of which HATs are responsible for the acetylation in the coding region of 

genes.  Genome-wide studies have shown that HATs such as Gcn5 and Esa1 are found 

predominantly at the promoters of genes suggesting that perhaps the Elongator complex is 

the only active acetyltransferase in the coding regions (Robert et al., 2004).  However,    a 

recent study has shown that Gcn5-mediated acetylation, as a member of the SAGA complex, 

in the coding region of the GAL1 gene is involved in the eviction of nucleosomes (Govind et 

al., 2007).  As to why Gcn5 has not been detected before in the coding region of genes is not 

known.  It may have to do with the activity of the gene analyzed (GAL1 is a highly 

transcribed gene) in combination with how Gcn5 is targeted to coding regions which may 

make detection difficult.  Nonetheless, these findings add support to the role of histone 

acetylation in the process of transcription elongation.  They also bring several questions to 

the forefront concerning the HATs responsible for acetylation in the coding region of genes 

and the potential mechanisms utilized to regulate the rearrangement of chromatin.  

 As much as we are interested in which HATs function in the coding region of genes, 

there is also a great deal of interest in the downstream consequences of unchecked 

acetylation in the absence of Set2, specifically the initiation of cryptic transcription.  Unlike 

the FACT complex, the loss of Set2 or Eaf3 does not affect cell viability or growth 

suggesting that it may play a minor role in the suppression of cryptic transcription  

(Belotserkovskaya and Reinberg, 2004; Eisen et al., 2001; Strahl et al., 2002).  A recent 

report would suggest that this lack of phenotype has something to do with the types and 

number of genes affected by the loss of Set2.  Li et al. (2007b) have shown that although 

Set2 and the Rpd3 complex regulate coding region acetylation genome-wide, longer genes 
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with a low transcription frequency are the most dependent on the Set-Rpd3S pathway to 

prevent cryptic initiation (Li et al., 2007b).  These investigations further propose that highly 

transcribed genes would have a high density of elongating RNAPII which would sterically 

hinder the binding of transcription factors required for the initiation of cryptic transcription.  

Thus, the effect of increased histone acetylation in the absence of Set2, cryptic initiation, is 

not genome-wide which may explain why Set2 does not have any obvious effects on cell 

viability.   

Alternatively, there may be more than one mechanism of controlling cryptic 

transcription.  The main concern being that the cryptic transcripts produced could be 

translated into aberrant proteins.  As has been shown previously, many of these transcripts 

are polyadenylated, a requirement for protein translation (Carrozza et al., 2005).  Yet, it 

seems that in addition to the repression of transcription from cryptic promoters, yeast cells 

have evolved a backup, quality control mechanism involving post-transcriptional degradation 

of these transcripts (Wyers et al., 2005).  Interestingly, it seems that even under wild-type 

conditions cryptic transcription is widely occurring in the yeast genome (Wyers et al., 2005).  

Indeed, this occurrence seems to be conserved as many cryptic transcripts from mammalian 

chromosomes were found using microarray tiling experiments (Johnson et al., 2005).  It 

remains to be seen if any of these cryptic transcripts escape degradation and serve some 

functional purpose.  Nevertheless, mutations of proteins such as Set2 leading to abnormal 

levels of cryptic transcription will most likely have a more pronounced effect in higher 

eukaryotes which have longer genes.  It will be interesting to see what future investigations 

of Set2 and cryptic transcription in higher eukaryotes will reveal.   
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Histone Methylation Binding Motifs 

While a portion of my studies have focused on the recruitment of the chromodomain 

protein Eaf3, several novel domains within chromatin-regulating complexes have emerged as 

binders of methylated histones (Kim et al., 2006; Shi et al., 2007).  For example, the tudor 

domain of the 53BP1 protein binds to methylation of H3K79 at double-strand DNA breaks 

(Huyen et al., 2004) while, the WD40-repeat domain of the WDR5 protein in hSet1 

complexes associates with H3K4 methylation and is essential for H3K4 trimethylation in 

vertebrae development (Wysocka et al., 2005).  Interestingly, in the past year, the PHD 

domain has surfaced as a major motif that recognizes and binds methylated histone residues.  

Initially identified in two plant homeodomain proteins, the PHD domain has been found in 

many transcriptional regulators (Aasland et al., 1995; Bienz, 2006).  Specifically, members 

of the S. cerevisiae and human ING (for inhibitor of growth) family of tumour suppressor 

proteins which contain PHD domains have been shown to bind to H3K4 di- and 

trimethylation (Shi et al., 2006).  In the case of ING2, a member of the human 

mSin3A/HDAC1 histone deacetylase complex, the PHD domain of this protein stabilizes the 

deacetylase complex at the promoters of genes linking H3K4me3 to gene repression (Shi et 

al., 2006).  Additionally, PHD proteins have been implicated in the recruitment of chromatin 

remodeling activity through an association with methylated H3K4 (Wysocka et al., 2006).  

Thus, histone methylation serves as a modification capable of recruiting diverse chromatin 

activities including histone-modifying complexes to genes. 

As it turns out, Rco1, the only unique member of Rpd3S complex, is a PHD domain 

protein.  At the conclusion of my studies related to the Rpd3S complex, the only thing known 

about this protein was that it and Eaf3 require each other for stable association with the 
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Rpd3S complex suggesting that it may play some role in stabilizing the complex (Carrozza et 

al., 2005).  With the finding that PHD domain proteins can interact with methylated histones, 

a recent report has shown that Rco1 plays a much bigger role within the Rpd3S complex.  

Specifically, Li et al. (2007a) have shown that it is the combination of the Eaf3 

chromodomain and the PHD domain of Rco1 that determines the specificity and affinity of 

the Rpd3S complex for nucleosomes in the coding region of genes (Li et al., 2007a). 

Significantly, this report indicates that the NuA4 acetyltransferase complex, of which Eaf3 is 

also a member, does not recognize H3K36me3 presumably because it lacks Rco1.  

Additional proteome-wide analyses have identified other PHD domains capable of 

interacting with H3K36 methylation such as the PHD domain in the Nto1 protein, a member 

of the NuA3 acetyltransferase complex (Shi et al., 2007).  These findings demonstrate that 

methylation of H3K36 may recruit multiple effector complexes.   

 

Regulation of the Distribution of H3K36 Methylation and Acetylation on Genes 

 Until recently, histone methylation was considered a stable, irreversible modification, 

but, with the discovery of histone demethylases, has been revealed to be dynamically 

regulated (Klose et al., 2006; Shi et al., 2004; Tsukada et al., 2006; Whetstine et al., 2006).   

It has only been this past year that histone demethylases specific for H3K36 methylation in 

budding yeast have been identified (Fang et al., 2007; Klose et al., 2007; Tu et al., 2007).  

Specifically, the histone demethylase Rph1 targets H3K36 di- and trimethylation while the 

histone demethylase Jhd1 targets H3K36 mono- and dimethylation indicating that all three 

methyl states can be reversed on H3K36 (Fang et al., 2007; Klose et al., 2007; Tu et al., 

2007).  With the finding that H3K36 can be acetylated or methylated in the promoter and 
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coding region of genes, respectively, the identification of histone demethylases may be vital 

to the distribution of these modifications on genes.   

 As is, studies have previously shown a link between Set2 and the inhibition of 

transcription initiation at the GAL1 gene (Biswas et al., 2006).  Moreover, transient 

trimethylation of H3K36 at the promoter of the MET16 gene coincides with the recruitment 

of the NuA4 histone acetyltransferase complex and, with the onset of transcription, the 

distribution of H3K36 di- and trimethylation changes with methylation accumulating in the 

coding region of this gene (Morillon et al., 2005).  These results suggest methylation of 

H3K36 at promoters may be gene-specific as H3K36 methylation has been found genome-

wide to occur primarily in the coding regions (Pokholok et al., 2005; Rao et al., 2005).  Yet, 

it is possible that there may be some transient H3K36 methylation at promoters that is 

regulated by histone demethylases.  It remains to be determined what effect histone 

demethylation has on the acetylation of H3K36.  It would be interesting to see what happens 

to the distribution of this modification in the absence of functional histone demethylases.   

 Additionally, there may be other mechanisms involved in the prevention of H3K36 

methylation in the promoters of genes such as the requirement for an interaction between 

Set2 and elongating RNAPII for H3K36 methyltransferase activity (Krogan et al., 2003; Li et 

al., 2003; Schaft et al., 2003; Xiao et al., 2003).  Another mechanism may be the 

incorporation of the H2A variant Htz1 into the promoter nucleosomes of inactive genes 

which inhibits Set2-mediated methylation (Li et al., 2005a).  In turn, methylation of H3K36 

may maintain a boundary between the promoter and coding region of genes by preventing the 

spreading of H3K36 acetylation, similar to the RNAPII CTD kinase Ctk1 which prevents the 

spreading of H3K4 methylation into the coding region of genes from the promoter (Xiao et 
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al., 2007).  Questions still remain about the role of H3K36 acetylation in transcription.  Data 

presented in chapter 4 support a role for this modification in the activation of transcription.  It 

remains to be seen if SAGA and Set2 compete for H3K36 and how disruption of either 

complex affects the modification of H3K36 and the process of transcription. 

 

Concluding Remarks 

 Transcription has proven to be a well-orchestrated process with several key and minor 

players each playing a role in the ordered production of functional RNA.  With each new 

study, the modification of histone proteins, especially histone methylation, has been shown to 

be an important mechanism of chromatin regulation in the process of transcription.  In my 

study of the histone methyltransferase Set2, I have found that the methylation of H3K36 is 

not simply a modification associated with transcription elongation.  The modification of 

H3K36, not unlike the process of transcription itself, is carefully regulated leading to distinct 

biological effects involved in the regulation of transcription (Fig. 5.1).  Although questions 

still remain regarding the acetylation of H3K36 and its role in transcription, my work has 

contributed to the identification of a role for Set2-mediated H3K36 methylation in 

transcription elongation.  Through recruitment of the Rpd3S deacetylase complex, Set2 and 

H3K36 methylation serve as one mechanism of suppressing cryptic initiation in the coding 

region of genes.  Interestingly, there are multiple mechanisms in place to maintain 

appropriate transcription elongation highlighting the interplay between histone modifiers, 

histone chaperones, and chromatin remodelers.   However, future investigations will be 

required to determine the exact role of H3K36 acetylation, and several other histone 

modifications, in the process of transcription.  With the identification of new binding motifs, 
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the possible roles for histone modifications in the regulation of chromatin continue to 

expand.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 156

Figure 5.1 
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Figure 5.1.  Model of H3K36 modifications and transcription elongation.  At the 

promoters of genes, the Gcn5-containing SAGA complex targets H3K36 for acetylation.  

Interaction between Serine 2 phosphorylated C-terminal domain (CTD) of RNA polymerase 

II (RNA Pol II) and Set2 targets the methyltransferase activity of Set2 to the coding region of 

genes during transcription elongation.  Set2-mediated H3K36 di- or trimethylation 

(trimethylation is pictured here) then serve as recognition marks for the recruitment of the 

Rpd3S deacetylase complex which, in turn, removes acetyl marks behind the transcribing 

polymerase maintaining the coding region of genes in a hypoacetylated state.  
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Appendix: Set2 from Neurospora crassa is a robust nucleosomal-
selective H3K36-specific methyltransferase 
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Appendix.  Set2 from Neurospora crassa is a robust nucleosomal-selective H3K36-

specific methyltransferase.  (A) Lysates containing recombinant NcSet2 (amino acids 1-

372) from uninduced (U-NcSet2) or IPTG-induced (I-NcSet2) bacterial expression strains 

were incubated with chicken core histones or oligonucleosomes and 3H-labeled S-adenosyl-

methionine (3H-SAM).  3H incorporation was analyzed by the filter-binding assay and 

monitored by scintillation counting.  (B) Oligonucleosomes (Nuc.) were incubated with 

NcSet2 and cold SAM in an HMT assay followed by immunoblotting with the α-H3K36me2 

antibody (upper panel).  Parallel reactions were performed and examined by Coomassie 

staining to monitor loading (lower panel).   

 The above figure has been reprinted, with modification, from a collaborative paper from 

Eukaryotic Cell, vol. 4, “Methylation of histone H3 lysine 36 is required for normal 

development in Neurospora crassa”, pp 1455-1464 with permission from the American 

Society for Microbiology.  The authors of this work included Keyur Adhvaryu, Brian Strahl, 

Eric Selker and myself.  

Copyright © 2005, the American Society for Microbiology. All rights reserved. 
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