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Abstract

QTL mapping is a statistical method for detecting possible gene locations (called Quan-

titative Trait Loci or QTL) and those genes’ effects on the variation in a quantitative

phenotype, such as the height of a corn plant, etc. QTL mapping has become an important

issue in genetic analysis and has made important contributions to the fields of medicine and

agriculture. Traditional QTL mapping methods scan the whole genome and calculate the

profile likelihood ratios test statistic at each putative QTL location. The maxima of the

test statistics for all putative QTL locations are compared with the genome-wide threshold

to identify the QTL.

In this thesis, we propose several fast Bayesian methods for QTL mapping, which not

only provide direct approximate QTL posterior probabilities at all putative gene locations,

but also offer highly interpretable posterior densities for linkage, without the need for Bayes

factors in model selection. The applications to simulated data and real data show these

methods are highly efficient and more rapid than the alternatives, grid search integration,

importance sampling, Markov Chain Monte Carlo (MCMC) sampling or adaptive quadra-

ture. Our results also provide insight into the connection between the profile likelihood

ratios test statistic and the posterior probability for linkage. The results of these methods

are easy to interpret and have the advantage of producing posterior densities for all model

parameters. We infer the presence of QTL at locations with largest posterior probabilities.

Because of the high speed and high accuracy of these methods, they are highly suitable

for studying high-throughput data sets, e.g. eQTL data sets. The eQTL analysis is a

very important application of QTL mapping to a microarray data set, where thousands of

transcripts are treated as the phenotypes and provides us insight into the natural variation

in gene expression levels. The approach offers highly interpretable direct linkage posterior

densities for each transcript, and opens new avenues for research in this area. Biologi-

cally attractive priors involving explicit hyperparameters for probabilities of cis-acting and

trans-acting QTL are easily incorporated.

We also extend the one QTL Bayesian method to multiple QTL. The advantage of this

method is the simultaneous detection of multiple QTL and appropriate modelling of their
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joint effects. Multiple QTL mapping can be computationally intensive, even for our efficient

Bayesian approaches. Thus, a fully Bayesian multiple QTL approach for high-throughput

datasets remains challenging. We investigate a heuristic for conditional search on the two-

location search space that shows promise for identifying the global maximum, and offers

the potential for extended approximate Bayesian approaches.
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CHAPTER 1

Introduction

In this thesis, we are addressing the problem of detecting the locations and effects of

genes which contribute to the variation of some phenotype. This is called QTL mapping.

Moreover, we also expand the idea of QTL mapping to microarray data and gain insight

into the effect of variations in gene expression levels. This is called eQTL mapping. Most

traditional QTL methods use the log10 of profile likelihood ratios test statistic (also called

the LOD score in the genetics field) to detect QTL. With these methods, a LOD score for

every putative location is computed. We infer the presence of QTL at locations where the

LOD scores are above some pre-specified threshold.

In most Bayesian QTL methods, it is customary to draw samples of nuisance parame-

ters from the posterior distributions by applying Monte Carlo sampling methods and then

obtain estimates for the unknown parameters based on averaging the samples drawn from

these posterior distributions. In our Bayesian method for detecting one QTL, we propose to

use the Laplace approximation for the integration of the likelihood function with respect to

the nuisance parameters, assuming that the priors of the nuisance parameters are properly

uniform distributed. This method is very fast and accurate compared to all other existing

Bayesian methods. Thus, our Bayesian method is suitable for high-throughput applications

such as eQTL studies. We expand this Bayesian method to detect multiple QTL simulta-

neously and further propose the iterative Bayesian method via the Laplace approximation

for the multiple QTL model. This iterative method has been shown to be relatively fast

and has very high accuracy for detecting multiple QTL locations.

In Section 1.1, we introduce QTL mapping as well as some commonly used experi-

mental populations (backcross and F2) in QTL mapping. We also review some existing



likelihood-based QTL methods and Bayesian QTL methods in this section. In Section 1.2,

the introduction to microarray data analysis is provided. In Section 1.3, we explain what the

expression Quantitative Trait Loci (eQTL) is, and briefly review some recently developed

eQTL methods.

1.1 QTL Introduction

The history of QTL mapping can be traced back to Gregor Mendel’s study of the shape

of the peas. This classical genetics study involved binary traits, in the sense that the

phenotype has only two outcomes, i.e. the shape of peas is round or not. However, most

natural phenotypes are quantitative, such as heights or yields of crops. This has motivated

the statistical study of the distribution of phenotypes while considering the effects of QTL.

In the 1920s, the development of the chromosome theory and genetic linkage helped us to

understand the effects of genes on phenotypic variation. In the 1990s, biomedical markers

such as Restriction Fragment Length Polymorphisms (RFLPs) and microsatellites were

discovered. Since then, there have been many articles studying traits on different organisms,

such as pigs (Andersson et al. (1994)), maize (Beavis et al. (1991), Stuber et al. (1992)),

mice (Berrettini et al. (1994)) and tomatoes (deVicente and Tanksley (1993)) based on

these linkage maps. By using linkage maps, additional statistical and biological discoveries

have been made.

In the following subsections, we will discuss the experiments that produce backcross and

F2 progeny and the statistical models for QTL mapping, and include literature reviews of

the existing likelihood-based and Bayesian QTL mapping methods.

1.1.1 QTL Experiments

We focus below on the data from experimental crosses: backcross (BC) population and

F2 intercross population. There are also some experimental crosses, such as double haploid

and some types of recombinant inbred strains, but we will not introduce them here. The

breeding process of the experimental crosses usually involves choosing two highly divergent

parental strains, each of which is homozygous, e.g. if the genotype of the parental strain is

AA at some locus, we called it the “high” parental strain; and if the genotype of the parental
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strain is aa at this locus, we called it the “low” parental strain. In the following context,

we will focus on the genotypes of their progeny at the same locus. By crossing those two

parental strains, we can produce F1 progeny. The F1 individuals are heterozygous because

they receive one chromosome from the high parental strain and the other chromosome from

the low parental strain. The chromosome from the high parental strain has genotype A at

the locus and the other chromosome has genotype a at the same locus. Thus all the F1

individuals have the same genotype Aa at this locus. In order to produce the backcross

population, F1 progeny are crossed back to one of their parents, e.g. the high parental

strain with AA. The genotype of the backcross progeny could be AA and Aa with the same

probability 1
2 . Then two F1 strains are intercrossed to produce F2 progeny. The possible

genotypes for the F2 individuals at this locus are AA with probability 1
4 , Aa with probability

1
2 , and aa with probability 1

4 .

When we consider the genotypes at two loci, the chromosomes of the parental strains

during meiosis (the formation of the sex cells) may cross over and recombine. This affects

the joint distribution of the genotypes at two loci. The probability of recombination r (also

called the recombination rate or recombination fraction) is calculated by Haldane’s map

function here.

r =
1
2

(1− e−2x). (1.1)

In this formula, x is the map distance between two loci, the expected number of

crossovers between two loci, and it is described in unit: Morgan (M). The recombina-

tion rate r increases from 0 to 0.5, as the map distance between the loci increases from 0

to ∞.

When using Haldane’s map function, “no crossover interference” is assumed, which

means that for more than two markers, the recombination event between any two of them

is independent of the recombination event between any other non-overlapping two markers.

Many other map functions have been proposed, for example, the Morgan map function and

Kosambi map function (Ott (1991)) are also very popular, and are used under different

assumptions in a more complicated biological process.
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Suppose that the high parental line (P1) has genotypes AA and BB at two loci in which

we are interested. The other low parental line (P2) has genotypes aa and bb at the same

two loci. Figure 1.1 shows the cross process of backcross progeny and F2 progeny. It also

shows the distribution of genotypes at these two loci, assuming that the recombination rate

between the two loci is r. In this Figure, B1 shows the distribution of the genotypes of the

backcross progeny, which are from the crossing of the F1 population and the high parental

strain P1. B2 shows the other distribution of the genotypes of the backcross progeny, which

are from the crossing of the F1 population and the low parental strain P2. The last line

shows the distribution of the genotypes of F2 progeny, which are from the intercross of

the F1 strain. The purpose of the cross process is to increase the genetic variability of the

progeny strains and therefore allows us to detect the possible genes for the variation in the

quantitative phenotype.

Figure 1.1: The breeding process of experimental populations and their recombination rate
information, Zeng (2000).
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1.1.2 QTL Statistical Model

Suppose that yi (i = 1, 2, · · · , n) represents the ith individual’s phenotype and also

assume that the QTL are located somewhere between the markers in our model. We intend

to find the locations and effects of QTL given the markers’ genotypes, the markers’ locations,

and the phenotypes of all individuals.

One QTL model:

First, we consider the most simple model: the one QTL model for backcross progeny. The

following equation represents how one QTL genotype affects the distribution of phenotypes:

yi = µ+ a · gi(x∗) + εi, (1.2)

where µ is the intercept, a is the additive effect of the QTL, x∗ signifies the location of the

unknown QTL, gi(x∗) represents the QTL genotype for the ith individual, gi(x∗) = 1 or -1

if the QTL genotype is Aa (heterozygote) or aa (homozygote), and εi is the environmental

variation with a distribution of N(0, σ2).

Similarly, the one QTL linear model of phenotypes yi for the F2 population is shown

below:

yi = µ+ a · gi(x∗) + d · (1− |gi(x∗)|) + εi, (1.3)

where a and d are the additive and dominance effects for the QTL, gi(x∗) equals 1 if the

QTL genotype of the ith individual is AA, 0 if it is Aa, and -1 if it is aa, and µ and εi are

defined the same usually as before in the backcross model.

In the above two models, the phenotypes of the individuals follow a mixture normal

distribution since gi(x∗) is unobserved if x∗ is not located at one of the marker locations.

The variance σ2 is defined as a constant.

Multiple QTL model

Some phenotypes are affected by more than one QTL, so multiple QTL models are discussed

here. We assume that these QTL act additively, and there may be some interactions between
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them in our model.

The equations below show two QTL models for the backcross and F2 populations, re-

spectively, under the condition that two QTL act additively and independently.

For a backcross population:

yi = µ+ a1 · gi(x∗1) + a2 · gi(x∗2) + εi, (1.4)

where a1 and a2 are the additive effects of two QTL, respectively; x∗1 and x∗2 specify the

locations of two QTL on the chromosome.

For a F2 population:

yi = µ+ a1 · gi(x∗1) + a2 · gi(x∗2) + d1 · (1− |gi(x∗1)|) + d2 · (1− |gi(x∗2)|) + εi, (1.5)

where d1 and d2 are the dominance effects of two QTL, respectively.

If two QTL exhibit deviation from additivity (i.e. there is an interaction effect between

two QTL), called epistasis, the model will become more complicated. The following equation

is the two QTL model with the pairwise interaction for a backcross population:

yi = µ+ a1 · gi(x∗1) + a2 · gi(x∗2) + δ · gi(x∗1) · gi(x∗2) + εi, (1.6)

where δ is the epistasis effect between two QTL.

For the k QTL problem, the model can be generally expressed as:

yi = µgi1,gi2,··· ,gik + εi, (1.7)

where gi1, gi2, · · · , gik are the joint QTL genotypes for the ith individual, µgi1,gi2,··· ,gik rep-

resents the phenotypic mean of yi if the ith individual has QTL genotypes: gi1, gi2, · · · , gik,

εi follows N(0, σ2). For the backcross population, the maximum number of unknown pa-

rameters is 2k + 1 and the maximum number of unknown parameters for F2 population is

3k + 1. Thus the model is quite complicated when we consider k QTL.
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1.1.3 Likelihood-Based One QTL Methods

The quantitative inheritance was discovered in the 19th century and arise via the seg-

regation of multiple genetic factors, modified by environmental effects. In this section, we

will describe some major one QTL likelihood-based methods that have been used since the

early 19th century. For each method, we will discuss the main idea, its advantages and its

possible disadvantages.

Binary traits were first described by Gregor Mendel through extensive experiments with

the breeding of peas; he found that the shape of peas is either round or wrinkled, i.e. it is a

binary trait. However, there are also many other traits which exhibit quantitative variation

and which require further investigation.

Thoday (1961) addressed the idea of using genetic markers for identifying multiple genes

that control the quantitative variation of some phenotypes. This idea are examined exper-

imentally after biochemical markers such as Restriction Fragment Length Polymorphisms

(RFLPs) and microsatellites were discovered. The advantages of using biochemical markers

to characterize QTL are their phenotypic neutrality, highly polymorphic properties, and

their abundance in the genome.

The following methods are based on whole genome analysis:

Analysis of Variance (ANOVA)

Soller et al. (1976) used ANOVA for QTL analysis. The phenotypes of individuals are

grouped by the genotypes of the markers. Instead of testing the significance of QTL at

some putative locus, we compare the group means between two genotypes of the marker.

If the QTL is tightly linked to this marker, then grouping phenotypes according to the

genotypes of this marker is essentially the same as grouping phenotypes according to the

genotypes of the QTL.

Analysis of variance (ANOVA) is a simple and naive method that permits very fast com-

putation. However, there are some drawbacks with this method. First, we can’t estimate

the precise location of the QTL. ANOVA only shows which marker is closest to the QTL.

Second, when the markers are not dense enough, the linkage between a QTL and its closest

marker is weak. The power to detect the presence of a QTL is quite small. Third, if we
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estimated the QTL effect by the effect of its nearest marker, we would underestimate its

effect; see Lander and Bostein (1989).

The Maximum Likelihood Method (MLE)

To avoid the drawbacks of ANOVA, Weller (1986), Weller (1987) and Simpson (1989) con-

sidered the difference between QTL and markers. They include the recombination rate r

between a QTL and its markers in the model and test every marker one after another to

find whether there is a QTL close to any of them. This method works via the following

process: taking the backcross population as an example, it assumes that the individuals

with QTL genotype AA have phenotypes distributed as N(µA, σ2), and the individuals

with QTL genotype Aa have phenotypes distributed as N(µa, σ2).

For those individuals with the genotype AA at the marker which you are testing, the

phenotype has the following distribution:

yi ∼ (1− r)×N(µA, σ2) + r ×N(µa, σ2).

But if the individuals have the genotype Aa at the test marker, the phenotype follows the

distribution below:

yi ∼ r ×N(µA, σ2) + (1− r)×N(µa, σ2).

yi is the phenotype of the ith individual. r is the recombination rate between the

QTL and the marker you are testing. The method uses the EM algorithm to find the

maximum likelihood estimates (MLE) for the unknown parameters. One way we can test

H0 : r = 1
2 vs. HA : r 6= 1

2 with the LOD score:

LOD = −log10
L(µ̂A, µ̂a, σ̂2, r = 1

2)
L(µ̂A, µ̂a, σ̂2, r̂)

.

Alternatively, we calculate the LOD score for each marker locus to test whether there is

a QTL around the marker and for each r, the formula of LOD score for testing H0 : µA =

µa vs. HA : µA 6= µa is:

LOD(r) = −log10
L(µ̂A = µ̂a, σ̂

2)
L(µ̂A, µ̂a, σ̂2)

.
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The second test is a special case of the first one. The LOD scores are then compared to

a genome-wide threshold to infer the presence of a QTL. This method considers the fact

that the LOD score is computed between markers. However, when using this method it is

hard to combine the results for testing each marker and get a single estimation of the QTL

location and effect.

Interval Mapping

Lander and Bostein (1989) introduced a significant improvement on QTL analysis by using

the flanking markers to detect a QTL in experimental populations; this method is called

“interval mapping”. In this paper, they assume that there is no crossover interference

for any pair of markers on the chromosomes under study and the phenotype is normally

distributed. One has the information on the markers’ locations and markers’ genotypes. A

backcross population is used here to explain this method. The phenotype of each individual

follows a normal distribution with the mean equal to µA or µa depending on whether the

QTL genotype is AA or Aa, and the variance σ2 is defined as a common constant.

In a backcross population, there are two kinds of QTL genotypes and four possible

genotypes at two flanking markers. Suppose the map distance between flanking markers is

d. The map distance between the QTL and the left marker is dL. According to Haldane’s

mapping function, the recombination rate between two markers is r = 1
2(1 − e−2d). The

recombination rate between the QTL and the left marker is rL = 1
2(1 − e−2dL). And the

recombination rate between the QTL and the right marker is rR = 1
2(1 − e−2(d−dL)) =

(r − rL)(1 − 2rL). We calculate the conditional probability for two possible genotypes of

the QTL, given the flanking marker genotypes, by using a recombination rate. The results

are shown in Table 1.1.

Suppose that for individuals with QTL genotypes AA, their phenotypes are distributed

as N(µA, σ2), and for individuals with QTL genotypes Aa, their phenotypes are distributed

as N(µa, σ2). Then for any given putative QTL location x, we can calculate the conditional

probability assuming that the QTL genotype is AA for the ith individual (i = 1, · · · , n),

given its flanking markers, and we note it as Pi(x). Then the ith individual’s phenotype

follows a mixture normal distribution:
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Table 1.1: The conditional probability of a QTL genotype given two flanking makers’ geno-
types
is

marker genotype QTL Genotypes
left right Aa AA

Aa Aa (1− rL)(1− rR)/(1− r) rLrR/(1− r)
Aa AA (1− rL)rR/r rL(1− rR)/r
AA Aa rL(1− rR)/r (1− rL)rR/(1− r)
AA AA rLrR)/(1− r) (1− rL)(1− rR)/(1− r)

yi ∼ Pi(x)×N(µA, σ2) + (1− Pi(x))×N(µa, σ2)

.

For each fixed location x, we use an EM algorithm to maximize the joint likelihood

function and get the estimation for the unknown parameters (See Dempster et al. (1977)).

Considering the null hypothesis that there is no single QTL on the chromosome, the LOD

scores are calculated and plotted against x. The formula of LOD score for test H0 : µA =

µa vs. HA : µA 6= µa is:

LOD = −log10
L(µ̂A = µ̂a, σ̂

2)
L(µ̂A, µ̂a, σ̂2)

.

We infer the presence of a QTL, if the LOD score at this position exceeds the genome-wide

threshold.

The interval mapping method and the above MLE method are not identical. In the MLE

method, we only consider the recombination rate between the QTL and one marker. But

with interval mapping, we consider the distribution of QTL’s genotype, given two flanking

markers’ information. The interval mapping method can give a precise estimate of the

location and effect of a QTL. Therefore, many QTL statistical methods in the 1990s are

the extensions based on the interval mapping methods. However, it has the drawback: it

requires intensive computation compared to previous methods.
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1.1.4 Likelihood-Based Multiple QTL Methods

Many traits may be influenced by multiple genes, so one QTL model is not sufficient

to deal with this situation. We need to develop more complicated models because using

one QTL model to detect multiple QTL data may fail to identify and estimate the multi-

ple QTL locations. The detection power therefore is compromised and estimations of the

QTL locations and their effects will be biased (Lander and Bostein (1989); Knapp (1991)).

Sometimes “ghost QTL” may appear, in the sense that if there are two QTL on a chromo-

some evaluated with one QTL mapping method, you may detect a QTL located somewhere

between two true QTL locations instead of detecting either one of them (Haley and Knott

(1992); Martinez and Curnow (1992); Yi (2005)).

Multiple QTL can be mapped more accurately and more efficiently with a multiple QTL

model. We will discuss three main likelihood-based methods for multiple QTL mappings:

multiple linear regression, composite interval mapping (CIM) and multiple interval mapping

(MIM).

Multiple Linear Regression Analysis

This multiple QTL method is an extension of the ANOVA method for one QTL model.

In this method, the phenotypes of individuals are regressed on the markers’ genotypes.

The basic idea is that the effects of a QTL will be partially absorbed by linked markers

(Stam (1991)). Cowen (1989) used stepwise selection and backward deletion techniques to

select a class of markers, which are linked to a QTL. More recently, Doerge and Churchill

(1996) described using forward selection and permutation tests to determine the number of

markers in the model. However, when the distances between markers and QTL are large,

only a small part of the QTL effect is absorbed by the markers. The power of detection

thus becomes very small. We cannot estimate the precise locations and effects of a QTL

using this method.

Composite interval mapping

With one QTL interval mapping, the likelihood function for a single QTL is assessed at

each putative location on the chromosome. However, a QTL located somewhere else on

the genome can have an interference effect. Jansen (1993), Zeng (1993) and Zeng (1994)
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independently proposed the idea of combining interval mapping with multiple regression on

markers’ genotypes. Zeng (1994) named this method Composite Interval Mapping (CIM).

The method is achieved by fitting one QTL interval mapping method and using part of the

markers as co-factors to eliminate the effects of additional QTL. By fitting other genetic

markers in the model as a control, it confines the test of one QTL to a region, which changes

the problem from a multi-dimensional search to a one-dimensional search. Compared to

one QTL interval mapping, CIM improves both the sensitivity and accuracy by including

the markers, which may absorb the effects of other QTL. The parameters in the model

are estimated by the expectation/conditional maximization (ECM) algorithm (Meng and

Rubin (1993)).

The main challenge in this model lies in determining which markers to use as regressors.

Jansen and Stam (1994) used backward deletion to pick up the subset of most significant

markers with Akaike’s Information Criterion (AIC). Zeng (1994) recommended that one

include all the markers except those that are within 10 CM of the putative location.

Multiple interval mapping

If there are multiple QTL in the model, Lander and Botstein suggest detecting QTL one

by one, i.e. they fix the position of the first QTL, then look for the next QTL location.

This is a forward selection procedure (Miller (1990)). However, there is the drawback of a

“ghost QTL” effect, in the sense that if there are two or more linked QTL, then interval

mapping often gives a maximum LOD score at a location between the two QTL; see Haley

and Knott (1992).

Kao et al. (1999) extend one QTL interval mapping model to a multiple QTL interval

model. They use multiple marker intervals simultaneously to detect multiple putative QTL

in the model. This method uses the general formulas derived by Kao and Zeng (1997) to

obtain maximum likelihood estimates (MLEs) for the parameters. Compared with the re-

gression method, this method gives accurate and precise locations and the effects of multiple

QTL. However, the selection of the QTL involves multidimensional search, which is very

computationally intensive.
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1.1.5 Bayesian QTL Methods

Likelihood-based QTL methods detect the locations and effects of QTL mainly by max-

imizing the likelihood and evaluating the presence of QTL by using the LOD score. When

computing confidence intervals, likelihood-based methods do not properly account for un-

certainties in the parameters. With Bayesian methods, the prior information is incorporated

into the analysis and the inferences are based on the marginal posterior distributions of the

parameters, which are easy to interpret.

Satagopan et al. (1996) applied the standard Markov chain Monte Carlo (MCMC)

method to map a given number of multiple QTL on the genome. MCMC is a Bayesian

method commonly used to approximate a multi-dimensional integral of the likelihood func-

tion, which has no closed form. We generate a sequence of samples from the joint conditional

probability distribution to get the integral. For the posterior probability of the parameter

we are interested in, we sample each parameter from its conditional distribution given the

rest of the parameters. The samples of the parameters are generated sequentially until the

chains converge. Satagopan et al. (1996) used Gibbs sampling as well as Metropolis-Hastings

algorithms to sample unknown parameters and missing data from their joint posterior dis-

tribution. The parameters were inferred based on their marginal posterior distributions,

which can be obtained from the joint posterior distribution by integrating over the other

unknowns. It is hard to get the exact integrations over multiple parameters, however, a

Monte Carlo approximation is quite feasible for estimating the integrations. In the paper,

the probability intervals for locations of multiple loci and their effects are discussed. This

method accounts for the uncertainties in the parameters by considering the marginal pos-

teriors, which average over such uncertainties in the parameters. The present paper also

discusses the number of loci affecting the trait of interest. We estimate the number of QTL

by fitting various models with different numbers of QTL, then we use a Bayes factor (Kass

and Raftery (1995)) to compare these models.

The above Bayesian inference is complicated when the number of QTL is unknown.

Essentially, the parameter space is the product of the spaces of different numbers of QTL.

Most conventional techniques can’t be applied. Green (1995) proposed using reversible jump
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Markov chain Monte Carlo alogrithms specifically for such problems. This method combines

the traditional MCMC algorithm with Metropolis-Hasting (Hastings (1970), Metropolis

et al. (1953)) for jumping between different number of QTL. Satagopan and Yandell (1996)

used a reversible jump MCMC to fit a multiple QTL model by including the number of

QTL as unknown parameters. The locations, effects, and number of QTL can be estimated

from the samples. Their application to the Brassica flowering data (Satagopan and Yandell

(1996)) shows similar results compared to the results obtained using Bayes factors (Sa-

tagopan et al. (1996)). Because the reversible jump MCMC algorithm is very general and

widely applicable, many effective approaches for detecting multiple (non-)epistatic QTL

are based on it in different experimental populations or in pedigrees (Stephens and Fisch

(1998); Sillanpaa and Arjas (1998); Thomas et al. (1997); Yi and S. (2000); Gaffney (2001);

Yi and Xu (2002); Yi et al. (2003)). However this method also has its drawbacks: it is very

poor to mix the chain for updating QTL locations and it is very slow for chain convergence.

The Bayesian approach above provides a sensible inferential framework for multiple

QTL mapping. But it suffers from an intense computational burden. Berry (1998) has

proposed another Bayesian model, which is also a Markov chain Monte Carlo method, but

one with moderate computational speed. Usually the joint likelihood function is integrated

over all other unknown parameters to get the posterior distributions of the number and

the locations of QTL. When the number of parameters is large, the computation becomes

very intensive. In Berry (1998), the ease of the computational burden was achieved by

several approximations. Berry (1998) uses a first order approximation of the likelihood

function, and the Laplace approximation to estimate the posterior distribution on the whole

genome. The computation is improved through these approximations. Gibbs sampling is

used to generate samples from the approximated posterior distributions. The number and

the locations of QTL are inferred from the samples. The strength of this method is the

moderate computation speed achieved by using fast approximations. However, this method

is applied only in backcross populations and the accuracy of this approximation still requires

further investigation.

Yi (2004) improved the efficiency of the reversible jump Markov chain Monte Carlo

algorithm by using a unified Bayesian model selection framework for detecting multiple
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QTL. This method is based on a composite space representation of the problem, which was

developed by Carlin and Chib (1995). It provides a new viewpoint on the model selection

problem. The advantage of this new method is that it allows Markov chain Monte Carlo

simulation to be performed on a space of fixed dimension, thus avoiding the complexities

of reversible jump technique. The Bayesian approach is finally simplified. The composite

model space approach is extended to include epistatic effects in the model (Yi et al. (2005);Yi

et al. (2007a)). They developed a computationally efficient Markov chain Monte Carlo

algorithm using a Gibbs sampler and Metropolis-Hastings algorithm to study the posterior

distribution of the parameters.

There are also some other Bayesian methods that can be used to calculate the posterior

probabilities: numerical grid search integration, adaptive numerical integration, and impor-

tance sampling. Numerical grid search integration is a method that is used to approximate

the integral function with no closed form by using a set of grid points. We obtain those grid

points in a user-defined size domain for each nuisance parameter. We also know that the

domains of the nuisance parameters for the integral likelihood is on the space Ω, and Ω can

be arbitrarily large. If we truncate Ω to a reasonable rectangle size such that the likelihood

would be very small outside of the rectangle, numerical grid search integration can divide

this rectangle into many small cubes by the grid points we define, and get the integral

value for each small cube. Then we can add up all the integral values on these small cubes

to find the approximate value for the integral likelihood function. If the cubes are small

enough, we should get a good approximation for the integration of the likelihood function.

The disadvantage of this method is that it has a computationally intensive problem, so it

is hard to apply it to high-throughput applications.

Adaptive numerical integration is a method used to approximate the integral over a

multidimensional finite range by a recursive adaptive method, which divides the interval

into two and compares the values given by Simpson’s rule and the trapezium rule (Venables

and Ripley (1994)). In R software, the “adapt” command in the package “adapt” is used

to apply this method. It works well when models have only a few nuisance parameters.

But when we apply this method to a model with many nuisance parameters or to a very

complicated model, the adapt command in R software is very computationally intensive,
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and can crash easily.

Importance sampling is a Monte Carlo method used to approximate an integral function

by the average of ratios of likelihood density to the proposal density. A set of samples are

evaluated to obtain the average ratios. We have to find a good proposal density, which is

easy to simulate and “near” the density we want to integrate.

Sometimes, the traits we are interested in are binary responses. With most existing QTL

mapping methods, the linkages between markers and QTL are tested with a simple chi-

square test because of the binary traits. Xu (1996) proposed a composite interval mapping

method, which treats a binary trait as the outcome from an underlying normally distributed

liability. The quantitative liability is modelled by the usual QTL mapping method, since it

is quantitative and continuous. Huang et al. (2007) have proposed a new Bayesian method

which combines the unified Bayesian method and the liability model for studying binary

traits. This Bayesian method uses all the markers on the entire genome simultaneously.

Huang et al. (2007) developed the method for the case in which the QTL are located at the

observed markers, and for the case in which QTL are located between markers. If the QTL

are located between markers, the first method will lead to biased estimations. However, if

the markers are dense enough, the first method will be quite accurate and could save much

computation.

1.2 Microarrays Introduction

Microarray technology has become very popular in recent years and plays an increasingly

important role in biomedical research. Disruptions or changes in genes can cause disease or

morphological anomalies. By using microarray technology, we can detect changes in gene

expression and prevent the genetic defects in advance. With microarray technology, we can

measure thousands of genes simultaneously for different types of cells or tissues and use

gene expression to describe their DNA information. Many statistical problems have arisen

recently in the use of microarray data. Well-developed statistical methods that can assist

us in locating the genes of interest are urgently needed.

A microarray data structure is shown in Figure 1.2 on the next page. In Figure 1.2,

the top row denotes the names of the samples and the left column shows the names of the
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genes. Each row in the gene expression matrix represents the expression values for each

gene with respect to all samples. Each column in the gene expression matrix represents the

expression values of each sample for all genes.

Spotted cDNA microarrays and oligonucleotide arrays (Affymetrix, Santa Clara CA)

are two of the most commonly used gene expression arrays. In spotted cDNA microarray

experiments, the ratio of red and green fluorescence intensity for each spot (gene) is in-

dicative of the relative abundance of the corresponding DNA probe in the two nucleic acid

target samples. The red (R, Cy5) labeled and green (G, Cy3) labeled mRNAs represent test

and control samples, respectively. Probes are cDNA fragments attached on a solid support

(a nylon or glass slide). The process works like this: first, the red and green labeled RNA

samples are mixed and hybridized to the microarrays, which the supplier has spotted with

cDNA from thousands of genes, each spot representing one gene. After hybridization, the

red or green fluorescent signal from each spot is determined and the ratio of red to green is

the primary measurement considered. If one gene has a signal closer to red, this means that

gene is expressed at a higher level in the test sample than in the control sample. Newton

et al. (2001), Dudoit et al. (2002) and Lee et al. (2000) represent some early representative

papers for two-color microarrays.
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Figure 1.2: Microarray data structure.
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In oligonucleotide arrays, instead of using one probe per gene, 11 to 20 probes are used to

represent each gene (Lockhart et al. (1996)). Each probe represents a unique DNA fragment

of one gene so a group of probes identifying a gene is called a probe set; in principle, one can

obtain a better estimate of the expression level for the gene on probe-set arrays than for the

gene on single-probe arrays. In Affymetrix technology, there is a perfect match (PM) probe

for the target DNA sample, as well as a corresponding paired ”mismatch” probe (MM).

This mismatch probe contains only a single base change in the nucleotide located in the

middle of the 25-base probe sequence; it is designed to measure non-specific hybridization

as well as provide the information on background and cross-hybridization (Lipshutz et al.

(1999)). A perfect match probe and its mismatch probe are called a probe-pair.

There are some differences between these two arrays. For spotted cDNA microarrays,

one probe represents one gene; each array has two target samples or one target sample, and

one reference sample; probe length on spotted cDNA microarrays varies. For oligonucleotide

arrays, there are 11-20 probe-pairs per gene, each array has one target sample, and probe

length is fixed with 25-mers (base pairs).

Statistical problems in this field involve microarray pre-processing like image analysis,

background correction, expression quantification, normalization and quality assessment.

There are also interesting problems when one is comparing two different conditions, like

normal/disease, control/treatment, or when one is comparing more than two different con-

ditions with microarray data. Statistical methods, like estimates and hypothesis testing, are

applied to solve these problems. Exploratory analysis using microarrays is also important.

Let us say we need to find a group of genes for a novel disease by using clustering or pro-

jection methods. There are also many other statistical problems and developed statistical

methods in microarray analysis, which is not the focus in this dissertation and will not be

discussed here.

1.3 eQTL Introudction

Quantitative geneticists are now interested in detecting expression quantitative trait

loci (eQTL) for gene expression abundances because transcript abundances are considered

to correlate with some important phenotypes. Transcript abundances can be treated as
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a surrogate of phenotypes (Schadt et al. (2003)). eQTL methods have been developed

to identify major-effect eQTL for transcripts by combining quantitative trait loci (QTL)

mapping methods with microarray data, and “eQTL” are statistically significant peaks

in a genome-wide scan for linkage analysis. In eQTL analysis, the experimental design

is very similar to traditional quantitative trait loci analysis. The difference is that the

expression values for the gene transcripts are treated as the phenotypes, so one must analyze

thousands of phenotypes in eQTL analysis. Because of this difference, traditional QTL

statistical methods, designed for testing (at most) tens of phenotypes, cannot be easily

applied. Experimental design issues need to be addressed to handle these large data sets

and new statistical methods are still being evaluated.

Brem et al. (2002) used the Wilcoxon-Mann-Whitney method for testing the significance

of the linkage between each marker and transcript. This test has shown some promise in

important biological situations and the resulting p-values for some transcripts are sufficiently

small. Schadt et al. (2003) have used a traditional QTL interval mapping method for

analyzing maize, mouse and human data sets. This likelihood-based approach can be used

to obtain transcript-specific significance profile likelihood curves. However, those methods

are still not well refined for problems like the potential increase in type I error by testing

multiple markers, or power loss. Kendziorski et al. (2006) have proposed a Mixture-over-

Markers (MOM) model to localize eQTL and have controlled the false discovery rate without

sacrificing power. This method is a marker-based model. If the marker density is not

sufficiently dense, the results for loci between markers may have some bias. New statistical

methods are still needed to evaluate the eQTL data and optimize the test results.

Many eQTL studies based on the statistical methods mentioned above or some other

very simple statistical methods have been published for many creatures, e.g. yeast (Brem

et al. (2002); Yvert et al. (2003)), eucalyptus (Kirst et al. (2004)), mice (Schadt et al. (2003);

Bystrykh et al. (2005); Chesler et al. (2005)), rats (Hubner et al. (2005)), maize (Schadt

et al. (2003)) and humans (Morley et al. (2004); Monks et al. (2004); Hubner et al. (2005)).

For those main regulated transcripts, results reported in several papers show that up to one-

third of the significant genes are cis-acting, which means the gene expression values can be

explained by the physical locations themselves. The rest of the significant genes are trans-
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acting, which means that the gene expression values are regulated by other physical gene

locations. Most of the cis-acting genes explain a greater proportion of expression variation

than trans-acting genes. Trans-acting genes usually explain little variation individually, but

we have more of them. This is similar to our expectation that DNA variation can affect a

large portion of gene expression for that gene.

In summary, eQTL analysis has the potential to impact biological endeavors in a wide

range of biomedical and agricultural fields. Applying traditional QTL methods to microar-

ray data also gives us insight into gene networks, as well as their evolution. Because of

the computational demands in eQTL analysis, the current statistical methods are not suit-

able for this high-through application. Well-developed and fast statistical methods are still

needed to handle thousands of phenotypes efficiently.

1.4 Thesis Summary

In Chapter 1, we introduced QTL mapping and summarized some existing methods

for detecting QTL. We also provided a brief introduction to microarray data and eQTL

analysis.

In Chapter 2, Bayesian methods via the Laplace approximation for detecting single

QTL are proposed. They can be easily applied to a backcross (BC) population and an F2

intercross population. They can also be trivially extended to double haploid and other types

of recombinant inbred strains. The applications to simulated data and real data demonstrate

the high speed and high efficiency of these methods compared to alternative grid search

integration, importance sampling, MCMC and adaptive quadrature methods. Our results

also provide insight into the connection between the LOD curve and the posterior probability

for linkage. In the application of our Bayesian method, we extend our approximate Bayesian

linkage analysis approach to the expression quantitative trait loci (eQTL) model, in which

microarray measurements of thousands of transcripts are examined for linkage to genomic

regions. This approach uses the Laplace approximation to integrate over genetic model

parameters (not including genomic position), and has been fully developed for different

types of recombinant inbred crosses. The method is much faster than the more commonly-

used Monte Carlo approaches, and thus is suitable for the extreme computational demands
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of eQTL analysis. The approach offers highly interpretable direct posterior densities for

linkage for each transcript at each genomic position. Biologically attractive priors involving

explicit hyperparameters for probabilities of cis-acting and trans-acting QTL are easily

incorporated.

In Chapter 3, we extend the one QTL Bayesian method via Laplace approximation

method to the Bayesian method of detecting multiple QTL simultaneously. This joint

multiple QTL Bayesian method has the advantage of providing the posterior probability

at putative QTL locations and can detect QTL with interaction effects. The computation

is intensive when you detect multiple QTL at the same time even using our efficient joint

multiple QTL Bayesian method. Therefore, we also propose an iterative multiple QTL

Bayesian method based on the Laplace approximation for detecting multiple QTL locations

without the posterior probability calculation. The speed of this method is much faster than

that of the joint multiple QTL Bayesian method. In this Chapter, we use the two QTL

model as an example to demonstrate both our methods. We also apply our methods to

simulation studies and real data analysis.
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CHAPTER 2

One QTL Model

For the problem of mapping quantitative trait loci in experimental crosses, the interval

mapping maximum likelihood approach of Lander and Bostein (1989) inspired a number

of extensions, including regression approximations (Haley and Knott (1992)), composite

interval mapping (CIM), multiple-QTL mapping (MQM)( Jansen (1993); Jansen and Stam

(1994); Zeng (1993), Zeng (1994)) and multiple interval mapping (MIM) (Kao et al. (1999)).

The asymptotic results in Kong and Wright (1994) detailed non-standard behavior of

maximum likelihood estimates for QTL positions. Moreoever, model selection remains

a challenging and important aspect of linkage mapping, for which standard asymptotic

approximations in traditional likelihood ratio testing may not work well. These are among

the reasons for the popularity of Bayesian QTL mapping methods, which have an advantage

in producing posterior densities for all model parameters.

However, most published Bayesian QTL approaches use Monte Carlo sampling of the pa-

rameter space (Satagopan et al. (1996); Berry (1998); Sillanpaa and Arjas (1998); Stephens

and Fisch (1998); Yi and S. (2000), Yi and Xu (2001), Yi (2004), Huang et al. (2007)),

which is too slow for high-throughput applications in which the analysis must be repeated

thousands of times. The model introduced here formally applies to the single-QTL setting

(per phenotype), and extensions to the multiple QTL setting are underway. Nonetheless,

our model has an immediate application to the analysis of expression quantitative trait loci

(eQTL), in which tens of thousands of transcripts are analyzed as phenotypes for linkage

(Schadt et al. (2003)). Previous eQTL methods are based on likelihood (Kendziorski et al.

(2006)), or are computationally intensive Bayesian approaches for which posteriors are eval-

uated at only a few hundred marker positions (Gelfond et al. (2007)). A computationally



efficient Bayesian eQTL approach would open up new avenues for research, enabling flexible

incorporation of prior biological information.

The present chapter describes the mechanics of our approach in detail, which incorpo-

rates important simplifications in the model and in integration over nuisance parameters.

Our method has utility beyond eQTL anaysis. For example, a fast Bayesian method can

be used in sensitivity testing to various parameter settings. Other uses include empiri-

cal Bayesian methods in which the posterior linkage probabilities are used to evaluate the

likelihood for population hyperparameters, for example in meta-analyses of multiple exper-

imental crosses.

The major problem in linkage analysis concerns inference on the existence and position

of a QTL. Accordingly, Bayesian QTL analysis fundamentally involves integration over

nuisance parameters, i.e., any parameters other than the QTL position itself. As a Monte

Carlo alternative to MCMC, we may consider importance sampling of the posterior of the

likelihood in the vicinity of the maximum likelihood estimate (m.l.e.). Noting that there are

relatively few nuisance parameters in experimental cross models, it also may be reasonable

to consider direct numerical integration, including grid search integration (Thisted (Mar.

1998)) and adaptive quadrature (Venables and Ripley (1994)). However, as we demonstrate

in Results below, none of these approaches is practical for high-throughput applications.

As a fundamentally different approach, we consider the shape of the likelihood in order to

obtain insight into the problem. We note that the non-standard asymptotic behavior of the

likelihood is confined to the QTL position estimate (Kong and Wright (1994)). At a fixed

putative position, the likelihood for the nuisance parameters typically follows regularity

conditions for standard inference (Azevedo-Filho and Shachter (1994)). As a consequence,

integration over the nuisance parameters may employ the Laplace approximation, which

essentially involves approximating the likelihood by an unscaled multivariate normal density

(Crawford (1994)). Integration then becomes equivalent to determining the scaling factor,

for which we will use the m.l.e. and analytic derivations of the Fisher information. Thus

the necessary computation is of the same order as standard LOD approaches. The Laplace

approximation has been used to speed up an evaluation step in the MCMC method of Berry

(1998), but otherwise has been largely overlooked in this setting.
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Here we employ the Laplace approximation to obtain the linkage posterior for backcross

(BC) and F2 intercross data. The backcross approach also applies to double haploid popula-

tions, and essentially applies to recombinant inbred data sets, albeit with a higher effective

recombination rate (Haldane and Waddington (1931)). For completeness, we provide com-

parisons MCMC and alternative integration approaches as described above, demonstrating

that the Laplace approximation is highly accurate and, due to its speed, uniquely suitable

for high-throughput applications. Simulations indicate that the advantages hold over a wide

range of sample sizes, heritability, and other conditions. We further illustrate our approach

by analyzing a real F2 mouse data set for plasma HDL cholesterol concentration (HDL)

(Ishimori et al. (2004)) and use the budding yeast data from Brem et al. (2002) to illustrate

the eQTL analysis.

2.1 Methods

Throughout this dissertation we use the normal linear phenotype model commonly ap-

plied to quantitative trait data (Lander and Bostein (1989)). However, the general approach

is applicable to a wide variety of parametric phenotype models, and the vast majority of

QTL models fall within the exponential family (Wright and Kong (1997)).

Let yi denote the phenotype for the ith individual. For a BC individual, we have the

model

yi = µ+ a · gi(x∗) + εi, (2.1)

where a is the additive effect of the QTL; gi(x) is a numerical representation of the genotype

for the ith individual at position x, x∗ is the true QTL location, and εi is residual error,

distributed N(0, σ2). We code gi(x) as 1 or -1 according to whether the genotype at x is

AA (homozygote) or Aa (heterozygote). We use β = {µ, a, σ2} to represent the nuisance

parameters, occupying a possibly finite region Ω for which the prior p(β) > 0. We wish to

obtain the posterior probability of the QTL at any gene location x, given phenotypes and

marker genotype data,
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p(x|data) =
p(x)p(data|x)

p(data)
=
p(x)

∫
Ω p(data,β|x)dβ
p(data)

=
p(x)

∫
Ω p(β)p(data|x,β)dβ

p(data)
. (2.2)

Here x denotes the true QTL position, so for example the location prior p(x) will be under-

stood to mean p(x∗ = x). This prior is intentionally flexible, as for future applications it

might be sensible to consider prior information from previous studies, or to place mass only

on the genomic positions of genes, implicitly favoring gene-rich genomic regions. Our goal

is to enable direct probability statements for the posterior of x at each position, so that the

posterior for entire regions/chromosomes may be obtained via summation or integration. In

contrast, numerous Bayesian QTL methods are inherently dependent on Bayes Factors for

inference (Satagopan et al. (1996); Berry (1998) etc.), for which evaluation of the evidence

is less formal (Kass and Raftery (1995)). Nonetheless, Bayes Factors may also be easily

obtained from our approach (see Discussion).

The right-hand side of (2.2) follows from the assumption of independence of QTL posi-

tion and effect size, p(x,β) = p(x) p(β). We will denote the marker positions by the vector

xm, and the markers flanking x by {xleft, xright}. The quantity p(data|x,β) is the ordinary

interval mapping likelihood for n individuals:

p(data|x,β) = p(g(xm))
n∏
i=1

[ ∑
k=−1,1

p
(
yi|gi(x) = k, x,β, gi(xleft), gi(xright)

)
× p

(
gi(x) = k|β, gi(xleft), gi(xright)

)]
, (2.3)

for which we use model (2.2) and Haldane’s map function for genotype probabilities.

Thus far, our presentation is simply a standard Bayesian outline of the problem. In

contrast to other Bayesian QTL approaches (e.g. Satagopan et al. (1996); Berry (1998);

Sillanpaa and Arjas (1998); Stephens and Fisch (1998); Yi and S. (2000), Yi and Xu (2001),

Yi (2004), Huang et al. (2007)), however, we state the null hypothesis in terms of the QTL

position x∗. If x∗ is on the chromosome or chromosomes under study, the alternative

hypothesis holds. Otherwise, the null hypothesis holds, which we denote H0: x∗ = ∞

(Doerge et al. (1997)). The more commonly-used form of null hypothesis, dating at least to
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Lander and Bostein (1989), is a no-gene null specified in terms of the nuisance parameters as

β ∈ Ω0 ⊂ Ω. The latter approach enables pointwise significance testing to follow standard

likelihood ratio approximations in nested models (Lander and Bostein (1989)). However,

in a Bayesian setting there is no inherent reason to favor this specification. Note that our

null hypothesis can accommodate the situation where no gene exists - as the sample size

increases, evidence will accrue that the effect size is negligibly small. In practical terms,

for likelihood ratio testing the two forms of null hypotheses may be very similar, as the

maximum null likelihood typically represents a similar fit to the data using either form.

An exception occurs when a QTL with large effect is present on a chromosome other than

the one under study, causing a bimodal phenotype distribution. Indeed, this situation is

examined in Lander and Bostein (1989) as an example where no-gene specification produces

poor inference. However, this situation presents no conceptual difficulty for our approach,

because the possibility is explicitly considered that an unobserved QTL may produce such

a phenotype mixture distribution.

A second and important advantage to our null hypothesis specification is that inference

for x will be relatively insensitive to the prior for β, because p(β) appears in both null

and alternative terms in p(data). In contrast, when using the no-gene null hypothesis,

inference can be highly sensitive to the prior for β, where the subspace Ω0 is typically of

lower dimension than Ω. We use a flat (proper) prior in our illustrations of the Bayesian

approach, p(β) = 1
|Ω| . Thus Ω must technically be finite. However, for realistic sample

sizes, we can let Ω get arbitrarily large, with essentially no change in our inference. This

phenomenon is illustrated in the Simulations section.

Using the assumed prior for β, the integral in the numerator of (2.2) becomes

∫
Ω
p(β)p(data|x,β)dβ =

1
|Ω|

∫
Ω
p(data|x,β)dβ =

1
|Ω|

C(x), (2.4)

where C(x) is the integrated likelihood for a fixed x. The denominator of (2.2) is

p(data) =
∫
x′
p(x′){

∫
Ω
p(β)p(data|x,β)dβ}dx′ = 1

|Ω|

∫
x′
p(x′)C(x′)dx′, (2.5)
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so the 1
|Ω| term cancels out in numerator and denominator. We obtain

p(x|data) =
p(x)C(x)∫

x′ p(x′)C(x′)dx′
=

p(x)C(x)∫
x′<∞ p(x

′)C(x′)dx′ + p(∞)C(∞)
, (2.6)

where the denominator is partitioned into HA and H0 portions, and p(∞) is the prior for

H0 : x∗ =∞.

For notational simplicity, we use integral notation for summing over x positions. In

practice, the prior on x may be either continuous or discrete. Note that (2.6) neatly decom-

poses the posterior into p(x) and C(x) terms. Thus if the prior p(x) is changed or updated

from external sources, the posterior may be easily computed with no need to recompute

C(x). In this dissertation, we will use a discrete uniform p(x) over a grid with respect to

genetic map position. However, this choice of prior entails no loss of generality.

Finally, it simply remains to obtain C(x) for each x, including the null value C(∞).

No analytic solution is available, and we will use the results of a numerical grid search as

the gold standard, to which we compare our proposed Laplace approximation, as well as

a crude version of the Laplace approximation that is even more computationally efficient.

For completeness, we also examine alternate methods for evaluating the integral, includ-

ing adaptive numerical quadrature, importance sampling, and Markov chain Monte Carlo

(MCMC) sampling.

2.1.1 The Laplace Approximation

We focus on a single chromosome, with H0 : x∗ = ∞ corresponding to the hypothesis

that the QTL is unlinked to the chromosome (although the approach is just as easily applied

to an entire genome scan). For fixed x, we define f(β) = p(data|x,β). The applicability

of the Laplace approximation relies on standard behavior for the log-likelihood for large

sample sizes: the function is continuous, unimodal, twice differentiable, with a maximum

in the interior of Ω (Azevedo-Filho and Shachter (1994)). The Laplace approximation may

be motivated by a Taylor expansion at β̂ for a fixed x:

log(f(β)) = log(f(β̂))− 1
2

(β − β̂)T Σ̂−1(β − β̂) +O(||β − β̂||3). (2.7)
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The m.l.e. β̂ may be obtained using a standard maximization routine such as E-M, as is

routinely performed in standard interval mapping. Σ̂ = I−1(β̂) is obtained by inverting the

analytically-derived information matrix at β̂.

After exponentiating both sides and integrating over β, we obtain

C(x) =
∫
β∈Ω

f(β)dβ ≈
∫
f(β)dβ ≈ f(β̂)(2π)dim(β)/2|Σ̂|1/2 ≡ Ĉ(x), (2.8)

where the indefinite integral assumes the space Ω is “large,” and the (2π)dim(β)/2|Σ̂|1/2

term arises from integration over a multivariate normal density with mean β̂ and covariance

matrix Σ̂. Finally, we substitute Ĉ(x) for C(x) in equation (2.6) for x <∞.

Our Laplace approximation is already very fast, but can be made even faster with a

slight decrease in accuracy if the posterior tends to concentrate in a small genomic region.

Under this scenario, we may replace |Σ̂(x)|1/2 by the single estimate |Σ̂|1/2 evaluated at the

maximum posterior x location, because the uncertainty in β does not vary much in that

region. We refer to this approach as our Laplace fixed approximation

2.1.2 Approximating the null integrated likelihood

For the null value C(∞), the Laplace method may technically be applied, and will be

asymptotically accurate. However, we have performed simulations demonstrating that the

full Laplace approximation does not perform well under the null hypothesis for realistic

sample sizes when a true gene exists, but outside of the genomic region under study. Note

that this is not a problem for the Bayesian approach, but affects the accuracy of the Laplace

approximation. The difficulty is illustrated in Figure 2.1, which shows likelihood contours

for {a, σ2} for two choices of µ when n=100. The null likelihood is a mixture of two normal

densities, with each of the two genotype probabilities in equation (2.3) replaced by 1/2. In

addition to the curvature in the likelihood contours, the likelihood can remain relatively high

and flat spanning a = 0, and it is difficult to prescribe a parameter transformation that will

make the likelihood approximately normal in shape. Furthermore, if such a transformation

was available, it would be non-linear, and difficult to transform back to integration over the

original Ω.
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Figure 2.1: Contour plot of Laplace approximation for BC data under the null hypothesis:
(a) n (sample size)=100, µ = 1 (b) n (sample size)=100, µ = 0.
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One approach to this problem would be to apply numerical integration over Ω. However,

we have devised the following approximation requiring integration over only one parameter,

using the fact that the Laplace approximation for {µ, σ2} works well for a fixed a (see Figure

2.2 (b) for an illustration). Define f(a, µ, σ2) = p(data|x =∞, a, µ, σ2), and µ̂a, σ̂2
a (obtained

numerically) as the conditional m.l.e.s for fixed a, with corresponding covariance matrix

estimate Σ̂a on the restricted space. We then have the improved null Laplace approximation

Ĉ(∞) =
∫
a
[
∫ ∫

µ,σ2

f(a;µ, σ2)dµdσ2]da (2.9)

=
∫
a
f(a, µ̂a, σ̂2

a)2π|Σ̂a|1/2da. (2.10)

This improved null can be sped up with a further approximation. For fixed a, model (2.1)

implies E(Y |a) = µ and σ2 = var(Y |a) − a2. For small to moderate a, the values y are

approximately normal, with approximate conditional m.l.e.s µ̂a = ȳ, σ̂2
a = s2

y(n−1)/n−a2/4.

The variance matrix terms are v̂ar(µ̂a) = s2
y/n, v̂ar(σ̂2

a) = 2s4
y/(n − 1) and covariances=0.

For larger a, we find empirically that the m.l.e. approximations continue to work well, and

the covariance of the sample mean and variance remains zero (because the distribution of

y is symmetric). These further approximations are used in equation (2.9) and termed the

fast null Laplace approximation.

The accuracy of the all three Laplace null approximations is compared to that of a

numerical grid search in Figure 2.2 for 20 simulations under the model {µ, a, σ2} = {0, 0, 1}

for n = 100. The naive null Laplace performs poorly (in Figure 2.2 (a)), and in fact

will often not compute at all due to numerical instability arising from flat regions in the

likelihood. In contrast, the improved null and fast null approximations are quite accurate

(in Figure 2.2 (b) and (c)). The simulated results of all three Laplace approximations under

other nuisance parameter values, such as {µ, a, σ2} = {0, 0.5, 1} for n = 100, are similar

and shown in Figure 2.3.
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Figure 2.2: BC data simulation results for {µ, a, σ2} = {0, 0, 1} and n = 100 under the null
hypothesis: (a) naive null Laplace approximation (b) improved null Laplace approximation
(c) fast null Laplace approximation.
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Figure 2.3: BC data simulation results for {µ, a, σ2} = {0, 0.5, 1} and n = 100 under the null
hypothesis: (a) naive null Laplace approximation (b) improved null Laplace approximation
(c) fast null Laplace approximation.
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2.1.3 Extension to F2 populations

The Laplace approximation for F2 populations is somewhat more complicated, but

straightforward. The corresponding phenotype model is:

yi = µ+ a · gi(x∗) + d · (1− |gi(x∗)|) + εi, (2.11)

where a and d are the additive and dominance effects for the QTL; gi(x) = 1 for genotype

AA at x, 0 for genotype Aa, and -1 for genotype aa; and x∗ is the true QTL position. The

likelihood follows the same form as (2.3), except that the summation is now over genotypes

-1, 0, and 1.

We use the Laplace approximation to estimate C(x) under the alternative hypothesis

and C(∞) under the null hypothesis. Because the alternative likelihood function for F2 is

unimodal, we can obtain the accurate estimation for C(x), which is similar to the estimation

of C(x) for BC population below:

C(x) =
∫
β∈Ω

f(β)dβ ≈
∫
f(β)dβ ≈ f(β̂)(2π)dim(β)/2|Σ̂|1/2 ≡ Ĉ(x), (2.12)

For estimation of C(∞), the accuracy of the naive null Laplace and fast null Laplace

approximations is compared to that of a numerical grid search in Figure 2.4 for 20 sim-

ulations. Under the model {µ, a, d, σ2} = {0, 0, 0, 1} for n = 100, the naive null Laplace

again performs poorly and will not compute approximately 40% of the time due to nu-

merical instability (in Figure 2.4 (a)). In contrast, the fast null Laplace approximation

is quite accurate (in Figure 2.4 (b)). We also simulate 20 data sets under the model

{µ, a, d, σ2} = {0, 0.5, 0.5, 1} when n = 100 for the accuracy of the naive null Laplace and

fast null Laplace approximations respectively and obtain similar results in Figure 2.4 (c),

(d).
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Figure 2.4: F2 data simulation results for n = 100 under the null hypothesis: (a)
naive null Laplace approximation (b)fast null Laplace approximation under {µ, a, d, σ2} =
{0, 0, 0, 1}; (c) naive null Laplace approximation (d)fast null Laplace approximation under
{µ, a, d, σ2} = {0, 0.5, 0.5, 1}.
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2.2 Relationship between Linkage Posterior Probability and

LOD Score

In traditional QTL mapping, LOD score is usually the test statistic used to detect QTL

locations. Posterior probability has an advantage when interpreting results for estimat-

ing QTL positions, as well as the advantages mentioned in the Introduction, so Bayesian

methods are enjoying greater popularity in current QTL mapping. We are interested in

the relationship between LOD scores and linkage posterior probability. Once we know the

relationship between these two statistics, we can easily get the linkage posterior probability

for studies which use LOD scores to detect QTL locations. Our proposed Bayesian method

via the Laplace approximation can be easily applied and affords insight into the relationship

using the same hypothesis as the usual QTL mapping methods use (Lander and Bostein

(1989)).

By using our Bayesian method and the “no-gene” null hypotheses that H0 : a = 0 for

BC and H0 : a = d = 0 for F2, we want to find the relationship between the LOD score

and our linkage posterior probability. The priors of the nuisance parameters β are assumed

to be improperly uniform distributed, that is, their domains are from −∞ to ∞, so we

know that p(β) = 1 (β = {µ, a, σ2} for BC; β = {µ, a, d, σ2} for F2). The following is the

derivation to find the relationship:

p(x|data) =
p(x)p(data|x)

p(data)
=
p(x)

∫∞
−∞ p(data,β|x)dβ
p(data)

=
p(x)

∫∞
−∞ p(β)p(data|x,β)dβ

p(data)
.

The integration part in the numerator is

∫ ∞
−∞

p(β)p(data|x,β)dβ =
∫ ∞
−∞

p(data|x,β)dβ = C(x). (2.13)
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And its denominator is

p(data) =
∫
x′
p(x′){

∫ ∞
−∞

p(β)p(data|x′,β)dβ}dx′ =
∫
x′
p(x′)C(x′)dx′. (2.14)

Finally we have

p(x|data) =
p(x)C(x)∫

x′ p(x′)C(x′)dx′
=

p(x)C(x)∫
x′<∞ p(x

′)C(x′)dx′ + p(H0)C(H0)
. (2.15)

For fixed x, we define f(β) = p(data|x,β). By using the Laplace approximation at the

MLE of the nuisance parameters, we get

C(x) =
∫
β∈(−∞,∞)

f(β)dβ ≈ f(β̂)(2π)dim(β)/2|Σ̂|1/2. ≡ Ĉ(x). (2.16)

.

Similarly, we can obtain the estimate of C(H0). Then the posterior probability of the

putative QTL location given data in this method is:

p(x|data) ≈ p(x)f(β̂)(2π)dim(β)/2|Σ̂|1/2∑
x′<∞ p(x′)f(β̂)(2π)dim(β)/2|Σ̂)|1/2 + p(H0)f(β̂0|H0)(2π)dim(β0)/2|Σ̂(H0)|1/2

,

where β0 = {µ, σ2}; β̂0 is the MLE of β0.

Because LOD(x) = log10
f(β̂)

f(β̂0|H0)
, the above equation can be rewritten as:

p(x|data) ≈ p(x)f(β̂)(2π)dim(β)/2|Σ̂|1/2∑
x′<∞ p(x′)f(β̂)(2π)dim(β)/2|Σ̂)|1/2 + p(H0)f(β̂0|H0)(2π)dim(β0)/2|Σ̂(H0)|1/2

=
p(x)10LOD(x)(2π)dim(β)/2|Σ̂|1/2∑

x′<∞ p(x′)10LOD(x′)(2π)dim(β)/2|Σ̂)|1/2 + p(H0)(2π)dim(β0)/2|Σ̂(H0)|1/2
.

We know the linkage posterior probability p(HA|data) =
∑

x<∞ p(x|data). By using our

method, we can easily get the posterior probability for any putative QTL location given
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data and also provide insight into the connection between the LOD curve and the posterior

probability for linkage.

2.3 Simulation Studies

We conducted the simulation studies for BC and F2 intercross populations, respectively,

to evaluate the performance of our proposed methods and other existing methods. For the

numerical grid search method, the domains we chose for nuisance parameters µ, a, d are

from −20/7 to 20/7 with grid size 1/7. As for σ2, the domain is from 0 to 20/7 with grid

size 1/7. For the importance sampling method, the proposal densities we chose for µ, a

and d are normal distributions using the MLEs of the parameters and standard errors. The

proposal density of σ2 is inverse gamma. We then use the expected ratios of likelihood to

the proposal densities to obtain the numerical integral estimate. For the sampling process

in the MCMC method, we burn in the first 10,000 sweeps of the chain and then we perform

an additional 100,000 MCMC sweeps. The final samples were selected every 100 sweeps

to reduce the correlation, resulting in 1000 samples from the posterior distribution. The

approximated posterior distribution is calculated based on these samples. In R software, the

“adapt” command in the package “adapt” is used for computing the adaptive quadrature

method. All the simulation results below except the adapt quadrature method result are

running in a Linux PC with cpu: Xeon 2.8 GHz by using a C program.

2.3.1 BC QTL Data

Our simulation study for BC is based on a 100 cM chromosome, with only one QTL

for each individual. For data generation, we simulate marker genotypes and QTL genotype

given the QTL location of all individuals by using the first order Markov chain (a standard

assumption of genetics analysis), and the transition probabilities are the recombination rates

between two markers or between one marker and the QTL. The phenotype of each individual

was generated from a normal distribution. The mean value of the normal distribution

depends only on the QTL genotype of that individual and the standard deviation is a fixed

number we specify. After we have the simulated data, we evaluate the posterior probabilities

at 100 possible QTL locations x, which are generated uniformly on the chromosome under
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study. Six methods are used (see Statistical Methods) to get the posterior probabilities

for those possible positions. Since the numerical grid search method is treated as the gold

standard, we compare its result to the results of the remaining five methods and calculate

the errors of those five methods respectively by using the following error formula:

∑
allxi
|p̂(xi|data)− p(xi|data)|+ |p̂(∞|data)− p(∞|data)|

2
, (2.17)

where p̂(.) means the posterior probabilities from the method we intend to evaluate and

p(.) means the posterior probabilities of the gold standard numerical grid search integration

method. We simulate 100 different data sets to get the average error. We also record the

average speed of each method by running 100 different simulated data sets.

In order to test the speed and the error under a wider variety of conditions including:

the true location of the QTL, the number of individuals, the number of markers on the

chromosome, and the heritability effect. We evaluate speed and error under 64 conditions

of the following combinations: QTL location = 10.1cM, 45.1cM; the number of individuals

equals to 100 or 200; the number of equally dense markers is 5, 10, 20, or 100; the heritability

effect is 0, 0.05, 0.1 or 0.15 (therefore, β = {0, a, 1}, where a = 0, 0.2294, 0.3333 or 0.4201,

which accords with heridity effect 0, 0.05, 0.1 or 0.15 respectively.). We generate 100

different simulated data sets for each of 64 conditions to get more accurate average error

and speed. We choose 0.9 as the prior for H0 (no QTL on the chromosome under study).

The prior for the QTL at each location is specified as 0.1
100 .

2.3.2 F2 QTL Data

Our simulation study for F2 is similar to the simulation process for BC. To study the

effect of our proposed methods, we test the accuracy and the speed for these methods under

64 different conditions, which are the same as the conditions in BC simulation. Therefore,

β = {0, a, 0, 1}, where a = 0, 0.3244, 0.4714 or 0.5941, which accords with heritability effect

0, 0.05, 0.1 or 0.15, respectively. The priors for H0 and possible QTL locations are defined

as the same as the priors in the BC data simulation.

Because the speed of the grid search method in F2 is very slow, we only simulate 10
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different data sets to get the average errors for those five methods under each condition. We

also record the average speed of the grid search method by running 10 different simulated

data sets for each condition. For the remaining five methods, we run 100 simulated data

sets to get the average speeds and errors under each condition.

2.3.3 Simulation Results

Speed

We have mentioned that multiple data sets are simulated to get the average speed for

each method under each condition. The results are displayed in Table 1 to Table 4 for BC

data sets and in Table 5 to Table 8 for F2 data sets. Table 1 shows the average speeds

for simulated BC data sets with sample size 100 and QTL location 10.1 cM. We found

that the grid search method with average speed around 60 seconds is much slower than all

other methods. Laplace fixed approximation is the method with the highest speed. The

speed of the Laplace approximation method is very close to the speed of Laplace fixed

approximation method. Both are less than 0.1 seconds, and are much faster than the speed

of the grid search method. The importance sampling and MCMC methods have moderate

speeds compared with the others. We also conclude that the speed is not affected by the

heritability or the inter-marker distance (or the number of markers) on the chromosome.

Tables 2, 3, and 4 display the speed results for different choices of the sample size and the

QTL location. We compared Tables 1, 2 with Tables 3, 4 and found that the sample size

greatly affects the speed and sample size is linearly proportional to the time each method

takes (speed). As the results shown in Tables 3 and 4 with 200 sample size condition, the

average speed of the grid search is around 120 seconds, which is almost twice the time spent

for grid search with 100 samples shown in Tables 1 and 2. For the condition of the QTL

location, it has no effect on the speed at all, as can be seen by comparing Tables 1, 3 and

Tables 2, 4.

Tables 5-8 show the average speeds for F2 simulated data sets. We have almost the

same conclusions for the F2 data sets as well as the BC data sets. The average speeds for

F2 data sets are slower than the average speeds for the BC data sets, due to the fact that

F2 has one more parameter to consider than BC. For example, the time required for the
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grid search method of the F2 data sets with 100 samples is around 1000 seconds, which is

almost 15 times slower compared to that of the BC data sets with 100 samples.
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Table 1. Speed(unit:second) for BC when sample size = 100, QTL location = 10.1 cM

Methods Grid Search Laplace Laplace fixed IMS MCMC

Heritability=0

Marker Distance = 1 cM 60.3417 0.0232 0.0198 1.8375 3.6603

Marker Distance = 5 cM 59.6452 0.0274 0.0242 1.8207 3.6720

Marker Distance = 10 cM 59.3523 0.0308 0.0273 1.8110 3.8403

Marker Distance = 20 cM 59.2833 0.0362 0.0330 1.8194 3.6414

Heritability=0.05

Marker Distance = 1 cM 60.3529 0.0238 0.0206 1.8315 3.6687

Marker Distance = 5 cM 59.6538 0.0274 0.0244 1.8218 3.6741

Marker Distance = 10 cM 59.3460 0.0313 0.0280 1.8120 3.8407

Marker Distance = 20 cM 59.3247 0.0371 0.0337 1.8245 3.6467

Heritability=0.1

Marker Distance = 1 cM 60.1745 0.0241 0.0208 1.8344 3.6750

Marker Distance = 5 cM 59.7302 0.0280 0.0249 1.8283 3.6924

Marker Distance = 10 cM 59.3748 0.0316 0.0283 1.8136 3.8343

Marker Distance = 20 cM 59.4455 0.0377 0.0343 1.8267 3.6489

Heritability=0.15

Marker Distance = 1 cM 60.2730 0.0243 0.0210 1.8323 3.6640

Marker Distance = 5 cM 59.7302 0.0280 0.0249 1.8283 3.6924

Marker Distance = 10 cM 59.3421 0.0322 0.0288 1.8131 3.8441

Marker Distance = 20 cM 61.0812 0.0393 0.0361 1.8220 3.6454
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Table 2. Speed(unit:second) for BC when sample size = 100, QTL location = 45.1 cM

Methods Grid Search Laplace Laplace fixed IMS MCMC

Heritability=0

Marker Distance = 1 cM 60.3161 0.0237 0.0203 1.8347 3.6807

Marker Distance = 5 cM 59.6456 0.0274 0.0240 1.8184 3.6730

Marker Distance = 10 cM 59.3548 0.0435 0.0399 1.8242 3.8415

Marker Distance = 20 cM 59.4024 0.0365 0.0330 1.8267 3.6506

Heritability=0.05

Marker Distance = 1 cM 60.3256 0.0239 0.0206 1.8335 3.6849

Marker Distance = 5 cM 59.6415 0.0277 0.0245 1.8212 3.6674

Marker Distance = 10 cM 59.5176 0.0313 0.0283 1.8189 3.8592

Marker Distance = 20 cM 59.3697 0.0374 0.0335 1.8202 3.6429

Heritability=0.1

Marker Distance = 1 cM 60.3382 0.0242 0.0211 1.8346 3.6807

Marker Distance = 5 cM 59.6106 0.0280 0.0249 1.8228 3.6666

Marker Distance = 10 cM 59.3786 0.0317 0.0287 1.8149 3.8415

Marker Distance = 20 cM 59.6236 0.0381 0.0344 1.8213 3.6390

Heritability=0.15

Marker Distance = 1 cM 60.3232 0.0244 0.0213 1.8307 3.6693

Marker Distance = 5 cM 59.7045 0.0284 0.0251 1.8211 3.6724

Marker Distance = 10 cM 59.3497 0.0323 0.0290 1.8153 3.8400

Marker Distance = 20 cM 59.5195 0.0387 0.0348 1.8300 3.6457
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Table 3. Speed(unit:second) for BC when sample size = 200, QTL location = 10.1 cM

Methods Grid Search Laplace Laplace fixed IMS MCMC

Heritability=0

Marker Distance = 1 cM 118.6885 0.0474 0.0401 3.5897 7.8309

Marker Distance = 5 cM 117.8674 0.0536 0.0471 3.5720 7.1941

Marker Distance = 10 cM 117.6913 0.0597 0.0532 3.5754 7.2309

Marker Distance = 20 cM 117.3822 0.0715 0.0633 3.5798 9.4635

Heritability=0.05

Marker Distance = 1 cM 118.5779 0.0481 0.0409 3.5946 7.8334

Marker Distance = 5 cM 117.9607 0.0547 0.0479 3.5815 7.2451

Marker Distance = 10 cM 117.6413 0.0611 0.0552 3.5714 7.2113

Marker Distance = 20 cM 117.4904 0.0730 0.0650 3.5820 7.1206

Heritability=0.1

Marker Distance = 1 cM 118.5709 0.0505 0.0435 3.5910 7.8366

Marker Distance = 5 cM 117.8735 0.0551 0.0486 3.5756 7.2244

Marker Distance = 10 cM 117.6828 0.0620 0.0559 3.5721 7.2063

Marker Distance = 20 cM 117.9002 0.0740 0.0665 3.5832 7.1193

Heritability=0.15

Marker Distance = 1 cM 118.6737 0.0490 0.0418 3.5993 7.8093

Marker Distance = 5 cM 117.9274 0.0560 0.0490 3.5750 7.3206

Marker Distance = 10 cM 117.6479 0.0632 0.0569 3.5785 7.2275

Marker Distance = 20 cM 117.5612 0.0751 0.0678 3.5910 7.1274
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Table 4. Speed(unit:second) for BC when sample size = 200, QTL location = 45.1 cM

Methods Grid Search Laplace Laplace fixed IMS MCMC

Heritability=0

Marker Distance = 1 cM 118.5856 0.0469 0.0401 3.5870 7.8091

Marker Distance = 5 cM 118.1441 0.0536 0.0472 3.5785 7.2589

Marker Distance = 10 cM 117.8861 0.0602 0.0538 3.9692 7.2077

Marker Distance = 20 cM 117.4769 0.0707 0.0638 3.5848 7.1262

Heritability=0.05

Marker Distance = 1 cM 118.5606 0.0480 0.0410 3.5844 7.8202

Marker Distance = 5 cM 123.3231 0.0560 0.0488 3.5774 7.2321

Marker Distance = 10 cM 117.5228 0.0618 0.0555 3.5676 7.2088

Marker Distance = 20 cM 117.7131 0.0728 0.0659 3.5864 7.4814

Heritability=0.1

Marker Distance = 1 cM 118.8081 0.0488 0.0417 3.5936 7.8286

Marker Distance = 5 cM 117.8866 0.0563 0.0492 3.5757 7.2340

Marker Distance = 10 cM 117.6759 0.0631 0.0569 3.5788 7.2318

Marker Distance = 20 cM 117.4915 0.0753 0.0676 3.6003 7.1099

Heritability=0.15

Marker Distance = 1 cM 118.7471 0.0492 0.0422 3.5920 7.8104

Marker Distance = 5 cM 117.8359 0.0569 0.0501 3.5786 7.2387

Marker Distance = 10 cM 117.5787 0.0643 0.0576 3.5740 7.2197

Marker Distance = 20 cM 117.3414 0.0768 0.0696 3.5782 7.1158

45



Table 5. Speed(unit:second) for F2 when sample size = 100, QTL location = 10.1 cM

Methods Grid Search Laplace Laplace fixed IMS MCMC

Heritability=0

Marker Distance = 1 cM 971.9750 0.2587 0.2531 6.7817 13.2640

Marker Distance = 5 cM 1015.0600 0.2363 0.2289 7.1350 13.3484

Marker Distance = 10 cM 977.1410 0.2471 0.2366 6.8407 13.4009

Marker Distance = 20 cM 932.5660 0.2341 0.2240 6.5401 13.9282

Heritability=0.05

Marker Distance = 1 cM 1029.4230 0.2645 0.2587 6.8049 13.2723

Marker Distance = 5 cM 1006.6130 0.2412 0.2348 6.9888 13.3487

Marker Distance = 10 cM 977.6420 0.2529 0.2426 6.8480 13.4549

Marker Distance = 20 cM 930.1950 0.2379 0.2284 6.5140 13.9179

Heritability=0.1

Marker Distance = 1 cM 972.0000 0.2711 0.2637 6.7859 13.2433

Marker Distance = 5 cM 1018.2260 0.2462 0.2404 7.0592 13.4161

Marker Distance = 10 cM 922.8560 0.2220 0.2129 6.4417 12.5376

Marker Distance = 20 cM 1093.1570 0.2426 0.2330 6.5158 13.9138

Heritability=0.15

Marker Distance = 1 cM 972.0700 0.2786 0.2720 6.7808 13.2604

Marker Distance = 5 cM 1016.081 0.2518 0.2470 7.3087 13.3617

Marker Distance = 10 cM 922.2060 0.2249 0.2156 6.4384 12.5425

Marker Distance = 20 cM 929.6060 0.2488 0.2388 6.5159 13.9302
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Table 6. Speed(unit:second) for F2 when sample size = 100, QTL location = 45.1 cM

Methods Grid Search Laplace Laplace fixed IMS MCMC

Heritability=0

Marker Distance = 1 cM 912.9090 0.2265 0.2209 6.3483 12.3652

Marker Distance = 5 cM 1016.2470 0.2359 0.2287 7.0842 13.3894

Marker Distance = 10 cM 976.5730 0.2475 0.2366 6.8418 13.4108

Marker Distance = 20 cM 930.4980 0.2338 0.2247 6.5226 13.9340

Heritability=0.05

Marker Distance = 1 cM 971.1540 0.2653 0.2585 6.7783 13.2509

Marker Distance = 5 cM 1017.830 0.2409 0.2325 7.1235 13.3516

Marker Distance = 10 cM 977.0230 0.2538 0.2426 6.8401 13.3934

Marker Distance = 20 cM 930.0270 0.2376 0.2281 6.5242 13.9411

Heritability=0.1

Marker Distance = 1 cM 914.5430 0.2388 0.2319 6.3728 12.3892

Marker Distance = 5 cM 1017.9810 0.2484 0.2391 7.0910 13.3989

Marker Distance = 10 cM 924.9740 0.2239 0.2129 6.4564 12.5682

Marker Distance = 20 cM 931.1610 0.2441 0.2358 6.5286 13.9523

Heritability=0.15

Marker Distance = 1 cM 916.2490 0.2462 0.2384 6.3865 12.4278

Marker Distance = 5 cM 915.9400 0.2201 0.2111 6.3987 12.4448

Marker Distance = 10 cM 977.3440 0.2667 0.2550 6.8417 13.4236

Marker Distance = 20 cM 929.4420 0.2476 0.2409 6.5161 13.9590
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Table 7. Speed(unit:second) for F2 when sample size = 200, QTL location = 10.1 cM

Methods Grid Search Laplace Laplace fixed IMS MCMC

Heritability=0

Marker Distance = 1 cM 1940.6900 0.4568 0.4381 13.5069 26.3629

Marker Distance = 5 cM 1830.2590 0.4716 0.4508 12.7354 24.8208

Marker Distance = 10 cM 2390.6850 0.4235 0.4074 14.4055 25.5853

Marker Distance = 20 cM 1871.2710 0.4500 0.4383 13.1206 25.2714

Heritability=0.05

Marker Distance = 1 cM 1825.0680 0.3997 0.3849 12.6992 24.6970

Marker Distance = 5 cM 1999.1440 0.5531 0.5326 13.9325 26.5388

Marker Distance = 10 cM 2070.1010 0.4057 0.4153 14.4163 27.8382

Marker Distance = 20 cM 1866.4240 0.4567 0.4440 13.0913 25.2700

Heritability=0.1

Marker Distance = 1 cM 1821.3510 0.4109 0.3962 12.6566 24.6470

Marker Distance = 5 cM 1830.3650 0.4925 0.4745 12.7854 24.8306

Marker Distance = 10 cM 2066.2860 0.4438 0.4273 14.3597 27.8501

Marker Distance = 20 cM 1864.7980 0.4672 0.4525 13.0736 25.2015

Heritability=0.15

Marker Distance = 1 cM 1906.7430 0.4213 0.4077 12.6516 24.6735

Marker Distance = 5 cM 1830.2520 0.5060 0.4880 12.7377 24.7797

Marker Distance = 10 cM 2072.337 0.4566 0.4389 14.4215 27.9032

Marker Distance = 20 cM 1866.8880 0.4792 0.4643 13.1269 25.2514
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Table 8. Speed(unit:second) for F2 when sample size = 200, QTL location = 45.1 cM

Methods Grid Search Laplace Laplace fixed IMS MCMC

Heritability=0

Marker Distance = 1 cM 1822.2490 0.3932 0.3762 12.6713 24.6592

Marker Distance = 5 cM 1832.0760 0.4725 0.4506 12.7386 24.7834

Marker Distance = 10 cM 2071.3200 0.4229 0.4074 14.4116 27.8797

Marker Distance = 20 cM 1873.647 0.4503 0.4369 13.1088 25.3048

Heritability=0.05

Marker Distance = 1 cM 1904.4020 0.4029 0.3853 12.6806 24.7061

Marker Distance = 5 cM 1830.9660 0.4837 0.4602 12.7473 24.7868

Marker Distance = 10 cM 2069.1290 0.4347 0.4180 19.0286 27.8639

Marker Distance = 20 cM 1968.4140 0.5359 0.5236 13.8024 26.9577

Heritability=0.1

Marker Distance = 1 cM 1827.2800 0.4131 0.3955 12.7035 24.7298

Marker Distance = 5 cM 1831.5750 0.4963 0.4747 12.7495 24.8071

Marker Distance = 10 cM 2070.4250 0.4444 0.4268 14.4784 27.9172

Marker Distance = 20 cM 1875.3520 0.4708 0.4552 13.1258 25.2686

Heritability=0.15

Marker Distance = 1 cM 1820.4060 0.4235 0.4047 12.6720 24.6588

Marker Distance = 5 cM 1830.4810 0.5103 0.4887 12.8126 24.7868

Marker Distance = 10 cM 2165.3740 0.5259 0.5105 15.1095 29.1259

Marker Distance = 20 cM 1970.5640 0.5661 0.5485 13.8192 26.9454
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Accuracy

As we have described, the numerical grid search integration is used here as the gold

standard method. We compute average errors for all other methods using the formula

(2.17) and the error potentially ranges from 0 to 1. If the error we obtain for one method is

near 0, it means that the method we compared is almost as accurate as the gold standard

grid search. But if the error for one method is near 1, this means that the posterior curve

for the method we compared does not overlay at all with the gold standard posterior curve.

We propose using the Laplace approximation method for detecting the location of the QTL

so the error of the Laplace approximation method is used to evaluate how good this method

compared to the gold standard method. In order to evaluate whether all other methods are

more accurate than the Laplace approximation method, we report the ratios of the average

errors for those methods to the average error for the Laplace approximation method. Any

method with an error ratio less than 1 is considered to be more accurate than the Laplace

approximation method.

Tables 9-16 display the average errors for the Laplace approximation method and the

error ratios for the other methods. Tables 9-12 are the results for the simulated BC data

sets and Tables 13-16 are the results for the simulated F2 data sets. For BC and F2, we

generate data sets under 64 combinations of conditions, including choices of sample size,

the QTL location, inter-marker distance (number of markers), and heritability effect, the

same as those for the average speed evaluation.

Table 9 shows the results for a BC population with sample size equal to 100 and the QTL

location is at 10.1 under different heritabilities and inter-marker distances. The Laplace ap-

proximation method has a very small average error (less than 1%) under all conditions,

which indicates that the Laplace approximation method performs as well as the grid search

method. All the other methods have error ratios greater than 1, which means that they are

worse than the Laplace approximation method. Among them, the Laplace fixed approxi-

mation method is closest to the Laplace approximation method because the only difference

between them is that the Laplace fixed approximation method uses the same information

matrix for all possible QTL locations. The importance sampling and MCMC methods
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perform much worse than the Laplace approximation method and the Laplace fixed approx-

imation method. The inter-marker distance, i.e. the number of markers, doesn’t have any

significant effect on the accuracy. However, the heritability of the data sets has some ef-

fect. When sample size equals 200, we can see that larger heritability corresponds to higher

accuracy, e.g. in Table 11, the average errors for the Laplace approximation method with

the inter-marker distance 1 cM are 0.00057, 0.00199, 0.0017, 0.00047 for heritabilities 0,

0.05, 0.1, 0.15, respectively. These errors decrease as the heritability of the data sets in-

creases. By comparing Table 9 and Table 10, we found that the location of the QTL doesn’t

have any significant influence on the accuracy. However, the number of the samples has

a very significant effect on the accuracy (compare tables 9,10 with 11, 12). More samples

correspond to higher accuracy.

Because the adaptive quadrature method takes a lot of time to run for the error cal-

culation and does not show high accuracy, just one simulated result is listed for BC as an

example: the error is 0.01192 when the inter-marker distance equals 10 cM, QTL position

is at 45.1 cM, sample size is 200 and heritability is 0.15. This error is quite high compared

to 0.00045, the error of the Laplace approximation method, so this method will no longer

be considered here.

Table 13 to Table 16 report the average errors and error ratios for the F2 simulated

data sets. The average errors in the F2 population are generally smaller than the average

errors in the BC population. From the tables shown, the Laplace approximation method

is always the best method among all the methods. (i.e. the error is always the smallest.)

The Laplace fixed approximation method is the second best method. Its average error is

just two to four times higher than the average error of the Laplace approximation method

and its accuracy is much better than either the importance sampling or MCMC methods.

In summary, the Laplace approximation method and the Laplace fixed approximation

method that we propose have very small errors and they are more than 1000 times faster

than the grid search method. The Laplace fixed approximation method is a little faster than

the Laplace approximation method, and has a moderate error compared to the Laplace

approximation method so both of them can be considered in the eQTL analysis. All the

other methods are slower and less accurate than the Laplace-related methods. Therefore,
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the Laplace approximation method and the Laplace fixed approximation method are good

replacements for the grid search method and the standard Bayesian QTL methods, given

their accuracy and much faster speed.
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Table 9. Error for BC when sample size = 100, QTL location = 10.1 cM

Methods LaplaceError Laplacefixed
Laplace

IMS
Laplace

MCMC
Laplace

Heritability=0

Marker Distance = 1 cM 0.00107 2.67 3.03 12.52

Marker Distance = 5 cM 0.00092 2.49 3.11 7.63

Marker Distance = 10 cM 0.00102 2.70 3.57 6.60

Marker Distance = 20 cM 0.00166 2.56 2.75 3.54

Heritability=0.05

Marker Distance = 1 cM 0.00345 2.78 3.34 18.88

Marker Distance = 5 cM 0.00272 3.05 3.38 11.17

Marker Distance = 10 cM 0.00309 3.00 4.01 8.98

Marker Distance = 20 cM 0.00296 2.45 3.40 5.65

Heritability=0.1

Marker Distance = 1 cM 0.00504 3.02 3.54 21.84

Marker Distance = 5 cM 0.00391 3.36 3.60 15.29

Marker Distance = 10 cM 0.00392 3.35 4.24 13.29

Marker Distance = 20 cM 0.00451 2.37 3.41 7.62

Heritability=0.15

Marker Distance = 1 cM 0.00399 4.33 4.14 36.49

Marker Distance = 5 cM 0.00519 3.26 3.34 15.65

Marker Distance = 10 cM 0.00379 3.96 3.75 12.36

Marker Distance = 20 cM 0.00537 2.56 3.58 6.92
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Table 10. Error for BC when sample size = 100, QTL location = 45.1 cM

Methods LaplaceError Laplacefixed
Laplace

IMS
Laplace

MCMC
Laplace

Heritability=0

Marker Distance = 1 cM 0.00106 2.61 2.97 11.90

Marker Distance = 5 cM 0.00083 2.47 3.22 7.13

Marker Distance = 10 cM 0.00109 2.82 3.55 6.43

Marker Distance = 20 cM 0.00123 2.93 3.39 4.21

Heritability=0.05

Marker Distance = 1 cM 0.00373 2.90 3.05 15.37

Marker Distance = 5 cM 0.00313 2.74 3.44 9.99

Marker Distance = 10 cM 0.00341 2.85 3.82 8.42

Marker Distance = 20 cM 0.00314 2.60 3.06 4.72

Heritability=0.1

Marker Distance = 1 cM 0.00451 3.53 3.72 24.56

Marker Distance = 5 cM 0.00450 3.29 3.76 12.28

Marker Distance = 10 cM 0.00452 3.11 3.55 9.77

Marker Distance = 20 cM 0.00477 2.74 3.50 5.07

Heritability=0.15

Marker Distance = 1 cM 0.00413 4.34 3.56 31.87

Marker Distance = 5 cM 0.00352 4.69 4.37 17.89

Marker Distance = 10 cM 0.00305 4.74 3.96 17.57

Marker Distance = 20 cM 0.00494 3.20 3.58 6.92
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Table 11. Error for BC when sample size = 200, QTL location = 10.1 cM

Methods LaplaceError Laplacefixed
Laplace

IMS
Laplace

MCMC
Laplace

Heritability=0

Marker Distance = 1 cM 0.00057 2.06 6.50 19.77

Marker Distance = 5 cM 0.00074 2.07 6.13 20.85

Marker Distance = 10 cM 0.00057 2.93 9.32 14.03

Marker Distance = 20 cM 0.00064 3.47 7.39 13.13

Heritability=0.05

Marker Distance = 1 cM 0.00199 3.18 9.88 66.69

Marker Distance = 5 cM 0.00277 2.58 7.61 29.99

Marker Distance = 10 cM 0.00323 2.74 6.70 29.89

Marker Distance = 20 cM 0.00269 2.96 6.77 15.19

Heritability=0.1

Marker Distance = 1 cM 0.00170 5.09 9.62 127.50

Marker Distance = 5 cM 0.00199 4.29 9.27 78.82

Marker Distance = 10 cM 0.00200 4.53 7.88 54.06

Marker Distance = 20 cM 0.00301 3.28 7.94 24.96

Heritability=0.15

Marker Distance = 1 cM 0.00047 17.38 22.75 510.04

Marker Distance = 5 cM 0.00096 8.51 10.99 156.46

Marker Distance = 10 cM 0.00036 21.26 24.01 312.58

Marker Distance = 20 cM 0.00091 8.33 14.37 61.55
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Table 12. Error for BC when sample size = 200, QTL location = 45.1 cM

Methods LaplaceError Laplacefixed
Laplace

IMS
Laplace

MCMC
Laplace

Heritability=0

Marker Distance = 1 cM 0.00055 2.04 6.65 22.15

Marker Distance = 5 cM 0.00074 2.07 6.11 14.48

Marker Distance = 10 cM 0.00053 2.79 9.83 13.78

Marker Distance = 20 cM 0.00058 3.87 7.63 11.35

Heritability=0.05

Marker Distance = 1 cM 0.00223 3.24 8.76 42.74

Marker Distance = 5 cM 0.00282 2.64 7.58 19.78

Marker Distance = 10 cM 0.00390 2.25 5.59 13.99

Marker Distance = 20 cM 0.00286 3.23 8.05 13.77

Heritability=0.1

Marker Distance = 1 cM 0.00214 4.61 9.28 57.95

Marker Distance = 5 cM 0.00208 4.71 8.97 39.82

Marker Distance = 10 cM 0.00188 4.56 9.63 35.83

Marker Distance = 20 cM 0.00179 6.20 10.45 28.19

Heritability=0.15

Marker Distance = 1 cM 0.00027 29.16 35.21 435.80

Marker Distance = 5 cM 0.00100 9.04 13.48 66.38

Marker Distance = 10 cM 0.00045 15.46 28.08 140.65

Marker Distance = 20 cM 0.00102 9.25 13.34 49.51

56



Table 13. Error for F2 when sample size = 100, QTL location = 10.1 cM

Methods LaplaceError Laplacefixed
Laplace

IMS
Laplace

MCMC
Laplace

Heritability=0

Marker Distance = 1 cM 0.00044 2.09 6.33 11.57

Marker Distance = 5 cM 0.00090 2.90 5.21 7.72

Marker Distance = 10 cM 0.00033 6.08 6.15 16.13

Marker Distance = 20 cM 0.00085 4.10 8.86 5.34

Heritability=0.05

Marker Distance = 1 cM 0.00541 2.12 4.56 12.53

Marker Distance = 5 cM 0.00124 4.15 7.25 29.42

Marker Distance = 10 cM 0.00142 4.73 6.17 13.90

Marker Distance = 20 cM 0.00332 2.71 4.89 6.76

Heritability=0.1

Marker Distance = 1 cM 0.00515 3.51 5.69 31.08

Marker Distance = 5 cM 0.00317 3.28 6.80 13.85

Marker Distance = 10 cM 0.00433 4.09 5.80 8.67

Marker Distance = 20 cM 0.00400 4.04 6.12 8.43

Heritability=0.15

Marker Distance = 1 cM 0.00131 12.34 22.14 184.80

Marker Distance = 5 cM 0.00360 4.37 8.80 20.97

Marker Distance = 10 cM 0.00558 4.43 6.64 17.98

Marker Distance = 20 cM 0.01248 2.63 4.84 5.41
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Table 14. Error for F2 when sample size = 100, QTL location = 45.1 cM

Methods LaplaceError Laplacefixed
Laplace

IMS
Laplace

MCMC
Laplace

Heritability=0

Marker Distance = 1 cM 0.00046 2.32 6.21 10.14

Marker Distance = 5 cM 0.00218 2.23 3.39 7.48

Marker Distance = 10 cM 0.00040 3.70 5.50 9.60

Marker Distance = 20 cM 0.00128 2.44 2.67 2.07

Heritability=0.05

Marker Distance = 1 cM 0.00581 1.87 3.92 7.72

Marker Distance = 5 cM 0.00147 4.96 5.19 51.02

Marker Distance = 10 cM 0.00074 5.63 5.58 10.66

Marker Distance = 20 cM 0.00167 4.56 4.86 7.98

Heritability=0.1

Marker Distance = 1 cM 0.00439 3.75 11.09 28.94

Marker Distance = 5 cM 0.00250 4.22 5.86 47.85

Marker Distance = 10 cM 0.00273 3.85 6.68 5.55

Marker Distance = 20 cM 0.00272 5.77 10.90 9.78

Heritability=0.15

Marker Distance = 1 cM 0.00191 11.96 25.29 96.54

Marker Distance = 5 cM 0.00291 5.17 9.62 36.35

Marker Distance = 10 cM 0.00808 2.37 4.83 4.11

Marker Distance = 20 cM 0.00386 5.72 10.15 12.70
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Table 15. Error for F2 when sample size = 200, QTL location = 10.1 cM

Methods LaplaceError Laplacefixed
Laplace

IMS
Laplace

MCMC
Laplace

Heritability=0

Marker Distance = 1 cM 0.00011 4.14 19.01 33.35

Marker Distance = 5 cM 0.00022 2.88 21.92 25.15

Marker Distance = 10 cM 0.00046 3.37 19.52 20.20

Marker Distance = 20 cM 0.00058 4.84 31.34 9.33

Heritability=0.05

Marker Distance = 1 cM 0.00456 2.52 13.16 30.80

Marker Distance = 5 cM 0.01019 1.73 7.42 6.09

Marker Distance = 10 cM 0.00088 9.05 34.86 62.73

Marker Distance = 20 cM 0.00128 8.82 31.47 52.08

Heritability=0.1

Marker Distance = 1 cM 0.00166 8.26 36.29 211.54

Marker Distance = 5 cM 0.00174 8.45 32.17 120.41

Marker Distance = 10 cM 0.00181 9.78 32.48 195.34

Marker Distance = 20 cM 0.00247 7.28 20.20 47.71

Heritability=0.15

Marker Distance = 1 cM 0.00024 49.41 198.13 1137.33

Marker Distance = 5 cM 0.00073 24.38 54.07 374.78

Marker Distance = 10 cM 0.00187 11.70 27.83 183.72

Marker Distance = 20 cM 0.00382 5.15 16.25 45.41
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Table 16. Error for F2 when sample size = 200, QTL location = 45.1 cM

Methods LaplaceError Laplacefixed
Laplace

IMS
Laplace

MCMC
Laplace

Heritability=0

Marker Distance = 1 cM 0.00010 3.92 23.96 37.95

Marker Distance = 5 cM 0.00021 2.75 25.19 24.75

Marker Distance = 10 cM 0.00051 2.30 17.97 17.15

Marker Distance = 20 cM 0.00028 7.19 21.11 21.56

Heritability=0.05

Marker Distance = 1 cM 0.00122 5.93 51.94 63.30

Marker Distance = 5 cM 0.00323 3.67 16.74 29.25

Marker Distance = 10 cM 0.00174 5.95 41.29 25.17

Marker Distance = 20 cM 0.00229 7.29 21.18 35.41

Heritability=0.1

Marker Distance = 1 cM 0.00337 3.95 14.64 65.00

Marker Distance = 5 cM 0.00213 6.71 28.31 71.53

Marker Distance = 10 cM 0.00127 8.85 48.58 37.30

Marker Distance = 20 cM 0.00468 6.17 19.55 24.81

Heritability=0.15

Marker Distance = 1 cM 0.00112 9.80 44.69 170.67

Marker Distance = 5 cM 0.00031 42.34 133.89 236.63

Marker Distance = 10 cM 0.00154 11.02 49.42 52.22

Marker Distance = 20 cM 0.00085 33.33 77.65 132.86
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2.4 Real Data Analysis

We apply the proposed Bayesian approaches and all other existing methods to F2 real

data from Ishimori et al. (2004). This F2 real data set was obtained from a cross of two

highly divergent mouse strains: C57BL/6J (B6) mice (with low plasma HDL levels, and a

susceptibility to atherosclerosis) and 129S1/SvImJ (129) mice (with high plasma HDL levels

and some resistance to atherosclerosis). B6 males were mated to 129 females and their F1

progeny were intercrossed to produce 294 female F2 progeny. The results of Ishimori et al.

(2004) suggest that there are some significant QTL linked to the phenotype plasma HDL

cholesterol concentration. On chromosome 12, there is only one QTL linked to the HDL

phenotype and this significant QTL has no interaction effect. We conducted the real data

analysis on chromosome 12, because the assumption of the proposed one QTL model is that

there is at most one QTL on the chromosome or chromosomes under study.

Chromosome 12 has 9 markers and is 66 cM long. 294 F2 mice were genotyped. If the

genotype information for any markers is missing, the nearest non-missing genotype marker

can be used as an alternative flanking marker. The phenotypic value HDL is log-transformed

to follow the approximate Gaussian distribution. We generated 100 equally-spaced putative

QTL locations across chromosome 12 to evaluate the posterior probabilities of the QTL at

each location. We choose 0.5 as the prior for H0 (no QTL is on this chromosome). The

prior for the QTL at each location is specified as 0.5
100 .

Figure 2.5 shows the posterior probabilities of being a QTL for all putative QTL loca-

tions on chromosome 12. It also shows the posterior curve comparisons between the gold

standard grid search method and all other methods. The top row and the first column plot

illustrates the good fit of the Laplace approximation method and the grid search method.

The posterior distribution from the Laplace fixed approximation method is also very close

to that of the grid search method, shown on the top row, second column plot. For the

second row, first column plot, the posterior points show the posterior distribution produced

by the importance sampling method. Its posterior probability points show some variation

compared with the posterior curve of the grid search method, but the peak locations of

the posterior curves for the two methods are both detected at 20 cM. The second row,
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second column plot shows the posterior probability points produced by the MCMC method

compared to the posterior curve of the gold standard grid search method. The posterior

probability points of the MCMC method shift its peak a little bit to the left compared

to the posterior curve of the grid search method, but the peak locations of both methods

detect still can be seen at around the same position, 20 cM.

In Figure 2.6, we take the difference for posterior probabilities between the method

we evaluate and the gold standard method at each putative QTL location and draw this

difference curve at all putative locations for the methods we evaluate. We found that the

difference curve of the Laplace approximation is the smallest of all the methods. This result

is consistent with the simulated result.

From the results of all the methods, we can say that the estimated QTL locations for all

methods are all around 20 cM, which is the peak location of the posterior curves. Ishimori

et al. (2004) also has reported exactly the same estimated QTL location - 20 cM. But for the

posterior curves from the importance sampling and MCMC methods respectively, they have

some variations compared to the posterior curve of the gold standard grid search method,

and the speeds of the Laplace and Laplace fixed approximation methods are much faster than

the speeds of the importance sampling and MCMC methods. Therefore, we can conclude

again that the Laplace approximation and Laplace fixed approximation methods are the

most accurate and have the highest speeds of all the methods in our real data analysis.

The linkage posterior probability p(HA|data) is nearly 1 for the grid search method, and

it is also nearly 1 for the Laplace approximation method. Because the linkage posterior

probability is greater than 0.5, this supports the existence of the QTL on chromosome 12.
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Figure 2.5: Posterior distributions of QTL locations for the chromosome 12 of the F2 data
in Naoki et al. 2004. Several methods are applied and compared with the grid search
method. The solid curves are for the grid search method, and the red scatter points are for
the other methods.
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Figure 2.6: The difference of posterior probabilities from each method, compared with the
grid search method along chromosome 12.
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2.5 Application to eQTL analysis

We use the budding yeast data from Brem et al. (2002) to do the eQTL analysis. There

are 112 yeast segregants from a cross of the two strains BY and RM, one haploid derivative.

The operating characteristics of these data are essentially like that of a backcross, but

with a higher effective recombination rate. The parent BY is a laboratory strain and the

parent RM is a wild strain isolated from a California vineyard. Each segregant has 6229

gene expression traits with 2956 SNP markers. We treat each gene expression value on the

Microarray data as a phenotype value. For each segregant, there are 6229 phenotypes we

have to analyze, which is very computationally intensive. Because the data structure is

high dimensional, our fast Bayesian QTL method via the Laplace approximation is applied

in the eQTL analysis to save computation time.

We do the data management before analyzing the data. We delete the gene when over

20% of gene expression values are missing for all subjects, or when the information of gene

location is missing, or when the information of which chromosome the gene belongs to is

missing. Finally, 6139 genes are selected for eQTL analysis. If there are some missing gene

expression values for the genes we select, we impute the missing gene expression values from

the average of the existing gene expression values for all other subjects of that gene. For

marker data, we delete the marker when there are over 20% missing genotype values for all

subjects of that marker, or when the marker location information is missing, or when the

information of which chromosome the marker belongs to is missing. We then still have 2956

markers in our eQTL analysis. When calculating the genotype probability of the likelihood

function for all putative eQTL locations under the situation that the flanking markers are

missing, we use the nearest existing marker genotype as the alternative flanking marker

genotype.

In our data analysis, we use the equal prior probabilities of cis-acting, trans-acting,

and unlinked for each transcript so the prior probability for each of them is 1/3. For each

transcript (gene expression value), we use our Bayesian method to calculate the posterior

probabilities for all putative eQTL locations and then subsequently summarized them into

cis-acting posterior probability, trans-acting posterior probability, and unlinked posterior
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probability. The cis-acting posterior probability is the posterior probability where the tran-

script whose gene expression is mapped to the gene location itself. The summation of

the posterior probabilities for all other gene locations except the gene location itself is the

trans-acting posterior probability. The unlinked posterior probability is calculated by using

1 - cis-acting posterior probability - trans-acting posterior probability. The maximum of

these three posterior probabilities will be used to judge the linkage for that transcript. In

Figure 2.7, we provide the eQTL analysis results for budding yeast. In this figure, the x

axis represents the transcripts and the y axis is the gene locations. For one transcript, if

the gene expression value is regulated by the gene location itself (cis-linked), we place a red

dot at its gene location on the diagonal line of the plot; but if the gene expression value

is regulated by other gene instead of the gene itself (trans-linked), there is a red dot at

the gene location with the highest posterior probability which is at off diagonal line part.

Among 6139 transcripts, we found that 23% are cis-linked genes and 31% are trans-linked

genes. In our analysis, we also provide the information of the average posterior probability

for all cis-acting genes, and for all trans-acting genes: the average posterior probability of

all cis-acting genes is 0.2671, the average posterior probability of all trans-acting genes is

0.3773 and the average posterior probability of all unlinked genes is 0.3556.

We choose the gene with the highest cis-acting posterior, which is on chromosome 2, and

the gene with the highest trans-acting posterior, which is also on chromosome 2, to draw

the plot of its posterior probability against all gene locations (see Figure 2.8 and Figure 2.9,

respectively). From these two figures, we can see the difference in the posterior probabilities

between the cis-acting gene and trans-acting gene. In Figure 2.8, the posterior curve of the

cis-acting gene has only one spike on the gene location itself, and the posterior probability

is nearly 1 at that location. The posterior probabilities at other gene locations are very low

compared to that at its gene location. In Figure 2.9, the posterior curve of the trans-acting

gene has multiple peaks on several gene locations on chromosome 3, instead of having one

peak posterior at its gene location on chromosome 2 compared to the posterior curve of the

cis-acting gene. The posterior probability for gene location with the highest peak is 0.24

on chromosome 3. It is clear from these two figures that if the gene is cis-linked, then its

gene expression value is regulated by the gene itself, but if the gene is trans-linked, then
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the gene expression value is regulated by other gene instead of itself in the genome.

In Figure 2.7, we can see there are some apparent master control genes, which regulate

many gene expression values. We find the top 12 master control genes using the somewhat

criterion that if the gene regulates more than 30 gene expression values, then it is a master

control gene. We list the top 12 master control genes in Table 17. We rank those genes from

the most number of gene expressions controlled to the least number of gene expressions

controlled. The first row shows the information for master control gene YOL082W on

chromosome 15. It regulates 133 gene expression values and its gene location is from

168727 bp to 169974 bp. We also can see the information on other master control genes

in this table. In Figure 2.7, several master control genes are very close to each other,

e.g., gene YBR153W, gene YBR154C and, gene YBR156C are all on chromosome 2; gene

YNL087W, gene YNL086W, gene YNL088W, gene YNL085W, and, gene YNL083W are all

on chromosome 14. Therefore, we suspect those genes on the same chromosome are highly

correlated and further statistical analysis is needed.

Our results for an eQTL analysis dataset serve as proof of principle that our Baesian

approach is applicable to high throughput mapping problems. The high resolution and

interpretability of our approach will enable straightforward refinement to (i) estimate cis

vs. trans prior probability from the data. (ii) provide gene by gene analysis of linkage

(because of our interval mapping), rather than marker by marker.

67



Figure 2.7: The eQTL plot for budding yeast data.
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Figure 2.8: Posterior probability against all genome plot for transcript with the highest
cis-acting posterior probability.
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Figure 2.9: Posterior probability against all genome plot for transcript with the highest
trans-acting posterior probability.
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Table 17. Twelve putative master control genes in eQTL analysis

eQTL eQTL Location(b.p.) chromosome Number of gene eQTL controls

YOL082W 168727, 169974 15 133

YBR153W 547454, 548188 2 99

YLR258W 660718, 662835 12 63

YNL087W 462413, 465949 14 54

YNL086W 466336, 466644 14 45

YNL088W 457706, 461992 14 40

YBR154C 549003, 548356 2 36

YCL025C 77919, 76018 3 35

YHR004C 113089, 111749 8 35

YBR156C 553194, 551098 2 32

YNL085W 467133, 469625 14 32

YNL083W 471379, 473016 14 30
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2.6 Discussions

The Bayesian approaches we proposed—the Laplace approximation method and the

Laplace fixed approximation method—are very fast compared to the competing methods.

The average errors for both Laplace methods are also very small compared with the other

methods examined here. As expected, the average error of the Laplace fixed approximation

method is somewhat larger than the average error of the Laplace approximation method.

However, while the increased error is modest, there is a several-fold speed improvement

in QTL estimation. Therefore, our proposed approaches are good methods for detecting

at most one QTL on the chromosomes under study and are suitable for high-throughput

applications such as eQTL analyses, in which the location priors p(x) are not necessarily

uniform, because our method is allowed to specify the putative QTL location.

For the Bayesian approach we propose, we can directly get the linkage posterior proba-

bility p(HA|data) instead of using the Bayes factor to detect if there is a significant QTL.

But we can still use the Bayes factor to judge the evidence for linkage. The following is the

Bayes Factor formula for detecting linkage:

Bayes Factor =
p(HA|data)/p(HA)
p(H0|data)/p(H0)

.

The current Bayesian approaches we propose can only detect at most one QTL based on

the chromosomes or all the genome under study, and the extension of the methods to enable

detection of multiple QTL on the all genome is developed in the next Chapter. By using

the proposed method, we also can provide insight into the connection between the LOD

curve and the posterior probability for linkage. The applications of our method to eQTL

analysis is a big step in this field because we have overcome the computation problem, and

using this method, we can calculate the posterior probability directly, which is easy for us

to interpret.
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2.7 Appendix A: E-M algorithm for BC population in one

QTL model

Suppose that we have n individuals in the BC population. For the ith individual, the

complete data set is (yi, k), where yi is the phenotype for the ith individual. k is the ’missing’

QTL genotype, equal to −1 if QTL genotype is Aa or 1 if QTL genotype is AA. We denote

the flanking marker positions of QTL location x are {xleft, xright}. The left flanking marker

genotype of QTL is specified as g(xleft) and the right flanking marker genotype of QTL is

specified as g(xright) both equal to 1 or −1 depending on flanking marker genotypes. We are

interested in the estimation of β = {µ0, µ1, σ
2}, where µ0 = µ−a and µ1 = µ+a in Chapter

2. Therefore, E-M algorithm is applied to obtain β. Let α = (g(xleft), g(xright),β).

f(yi, k|α, x) =
1∑
j=0

f(yi|k = 2j − 1,α, x)p(k = 2j − 1|α, x)I(k = 2j − 1)

=
1√

2πσ2
{exp(−(yi − µ+ a)2

2σ2
)g0(x)I(k = −1) + exp(−(yi − µ− a)2

2σ2
)g1(x)I(k = 1)}

, where g0(x) = p(k = −1|α, x), g1(x) = p(k = 1|α, x), and I(.) is the index function

for QTL genotype.

Therefore,

f(y|α, x) =
n∏
i=1

f(yi, k|α, x)

We take log on both side of the equation and get

l = ln(f(y|α, x))

=
n∑
i=1

{ln[
1∑
j=0

f(yi|k = 2j − 1,α, x)p(k = 2j − 1|α, x)I(k = 2j − 1)]}

In the E-step, we take the expectation for l given y,αm:
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E[l|y,αm] =
n∑
i=1

{
1∑
j=0

ln[f(yi|k = 2j − 1,α, x)p(k = 2j − 1|α, x)p(k = 2j − 1|yi, αm)]}

, where we denote Wm(i, j) = p(k = j|yi, αm) = f(yi|k=2j−1,αm,x)p(k=2j−1|αm,x)∑1
j=0 f(yi|k=2j−1,αm,x)p(k=2j−1|αm,x)

In M step, we take the derivative of E[l|y, αm] with respective to µ0, µ1, σ2,

∂E[l|y, αm]
∂µp

=
∑n

i=1(yi − µp)Wm(i, p)
σ2

= 0

=⇒ µ̂p =
∑n

i=1 yi Wm(i, p)∑n
i=1Wm(i, p)

, where p = 0, 1.

∂E[l|y, αm]
∂σ2

=
n∑
i=1

1∑
p=0

(
−1
2σ2

+
(yi − µp)2

2(σ2)2
)Wm(i, j) = 0

=⇒ σ̂2 =

∑n
i=1

∑1
p=0(yi − µp)2 Wm(i, j)∑n
i=1

∑1
p=0Wm(i, j)

=

∑n
i=1

∑1
p=0(yi − µp)2 Wm(i, j)

n

After we obtain the estimates of µ0, µ1, σ
2, we can easily obtain the estimates of µ, a, σ2

by linear transformation. Also, the E-M algorithm of F2 population in one QTL model, E-M

algorithm of BC population in two QTL model as well as E-M algorithm of BC population

in eQTL analysis can be easily extended by using similar steps above.
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2.8 Appendix B: Fisher Information Matrix Derivation un-

der HA for Backcross in One QTL Model

The alternative hypothesis in this section is that the location of QTL is on the chromo-

some under study and nuisance parameters are β = {µ, a}. Likelihood function for the ith

individual under the alternative hypothesis can be expressed as:

f(yi|β, x) =
1∑
j=0

f(yi|k = 2j − 1,β, x)p(k = 2j − 1|β, x)

=
1√

2πσ2
{exp(−(yi − µ+ a)2

2σ2
)g0(x) + exp(−(yi − µ− a)2

2σ2
)g1(x)}

=
1√

2πσ2
Ai,

where

g0(x) = p(k = −1|β, x), g1(x) = p(k = 1|β, x),

Ai = exp(−(yi − µ+ a)2

2σ2
)g0(x) + exp(−(yi − µ− a)2

2σ2
)g1(x), i = 1, · · · , n.

The likelihood for all the individuals are :

f(y|β, x) =
n∏
i=1

f(yi|β, x) = (2πσ2)−
n
2

n∏
i=1

Ai

After taking log for the likelihood above:

` = ln f(y|β, x) ∝ −n
2

lnσ2 +
n∑
i=1

ln Ai

2.8.1 The First Derivatives of the Loglikelihood Function

We define

B0i
.=
∂Ai

∂µ
= g0(x)exp(−(yi − µ+ a)2

2σ2
)
(yi − µ+ a)

σ2
+g1(x)exp(−(yi − µ− a)2

2σ2
)
(yi − µ− a)

σ2
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B1i
.=
∂Ai

∂a
= −g0(x)exp(−(yi − µ+ a)2

2σ2
)
(yi − µ+ a)

σ2
+g1(x)exp(−(yi − µ− a)2

2σ2
)
(yi − µ− a)

σ2

and

B2i
.=

∂Ai

∂σ2

= g0(x)exp(−(yi − µ+ a)2

2σ2
)
(yi − µ+ a)2

2(σ2)2
+ g1(x)exp(−(yi − µ− a)2

2σ2
)
(yi − µ− a)2

2(σ2)2

Then,
∂`

∂µ
=

n∑
i=1

B0i
Ai

∂`

∂a
=

n∑
i=1

B1i
Ai

∂`

∂σ2
= − n

2σ2
+

n∑
i=1

B2i
Ai

2.8.2 The Second Derivatives of the Loglikelihood Function

We define the following notations:

B00i
.=

∂2Ai

∂µ2
=
∂B0i
∂µ

= exp(−(yi − µ+ a)2

2σ2
)
g0(x)
σ2

[
(yi − µ+ a)2

σ2
− 1]

+ exp(−(yi − µ− a)2

2σ2
)
g1(x)
σ2

[
(yi − µ− a)2

σ2
− 1]

B01i
.=

∂2Ai

∂µ∂a
=
∂B0i
∂a

= −exp(−(yi − µ+ a)2

2σ2
)
g0(x)
σ2

[
(yi − µ+ a)2

σ2
− 1]

+ exp(−(yi − µ− a)2

2σ2
)
g1(x)
σ2

[
(yi − µ− a)2

σ2
− 1]
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B02i
.=

∂2Ai

∂µ∂σ2
=
∂B2i
∂µ

= g0(x)exp(−(yi − µ+ a)2

2σ2
)
(yi − µ+ a)

(σ2)2
[
(yi − µ+ a)2

2σ2
− 1]

+ g1(x)exp(−(yi − µ− a)2

2σ2
)
(yi − µ− a)

σ2
[
(yi − µ− a)2

2σ2
− 1]

B11i
.=

∂2Ai

∂a2
=
∂B1i
∂a

= exp(−(yi − µ+ a)2

2σ2
)
g0(x)
σ2

[
(yi − µ+ a)2

σ2
− 1]

+ exp(−(yi − µ− a)2

2σ2
)
g1(x)
σ2

[
(yi − µ− a)2

σ2
− 1]

B12i
.=

∂2Ai

∂a∂σ2
=
∂B2i
∂a

= −exp(−(yi − µ+ a)2

2σ2
)
g0(x)
(σ2)2

(yi − µ+ a)[
(yi − µ+ a)2

2σ2
− 1]

+ exp(−(yi − µ− a)2

2σ2
)
g1(x)
(σ2)2

(yi − µ− a)[
(yi − µ− a)2

2σ2
− 1]

B22i
.=

∂2Ai

∂(σ2)2
=
∂B2i
∂σ2

= g0(x)exp(−(yi − µ+ a)2

2σ2
)
(yi − µ+ a)2

(σ2)3
[
(yi − µ+ a)2

4σ2
− 1]

+ g1(x)exp(−(yi − µ− a)2

2σ2
)
(yi − µ− a)2

σ3
[
(yi − µ− a)2

4σ2
− 1]

Then, the second derivatives are

∂2`

∂µ2
=

n∑
i=1

(
B00i
Ai

− B02
i

A2
i

)

∂2`

∂a2
=

n∑
i=1

(
B11i
Ai

− B12
i

A2
i

)

77



∂2`

∂µ∂a
=

n∑
i=1

(
B01i
Ai

− B0iB1i
A2
i

)

∂2`

∂µ∂σ2
=

n∑
i=1

(
B02i
Ai

− B2iB0i
A2
i

)

∂2`

∂a∂σ2
=

n∑
i=1

(
B12i
Ai

− B2iB1i
A2
i

)

∂2`

∂(σ2)2
=

n

2(σ2)2
+

n∑
i=1

(
B22i
Ai

− B22
i

A2
i

)
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2.9 Appendix C: Fisher Information Matrix Derivation un-

der HA for F2 in One QTL Model

The alternative hypothesis in this section is that the location of QTL is on the chromo-

some under study and and nuisance parameters are β = {µ, a, d}. Likelihood function for

the ith individual under the alternative hypothesis can be expressed as:

f(yi|β, x) =
2∑
j=0

f(yi|k = j,β, x)p(k = j|β, x)

=
1√

2πσ2
{exp(−(yi − µ+ a)2

2σ2
)g0(x) + exp(−(yi − µ− d)2

2σ2
)g1(x)

+exp(−(yi − µ− a)2

2σ2
)g2(x)}

=
1√

2πσ2
Ai,

where

g0(x) = p(k = 0|β, x), g1(x) = p(k = 1|β, x), g2(x) = p(k = 2|β, x),

Ai = exp(−(yi − µ+ a)2

2σ2
)g0(x) + exp(−(yi − µ− d)2

2σ2
)g1(x) + exp(−(yi − µ− a)2

2σ2
)g2(x),

and i = 1, · · · , n.

The likelihood for all the individuals are :

f(y|β, x) =
n∏
i=1

f(yi|β, x) = (2πσ2)−
n
2

n∏
i=1

Ai

After taking log for the likelihood above:

` = ln f(y|β, x) ∝ −n
2

lnσ2 +
n∑
i=1

ln Ai
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2.9.1 The First Derivatives of the Loglikelihood Function

We define

F0i
.=

∂Ai

∂µ
= g0(x)exp(−(yi − µ+ a)2

2σ2
)
(yi − µ+ a)

σ2
+ g1(x)exp(−(yi − µ− d)2

2σ2
)
(yi − µ− d)

σ2

+ g2(x)exp(−(yi − µ− a)2

2σ2
)
(yi − µ− a)

σ2

F1i
.=
∂Ai

∂a
= −g0(x)exp(−(yi − µ+ a)2

2σ2
)
(yi − µ+ a)

σ2
+g2(x)exp(−(yi − µ− a)2

2σ2
)
(yi − µ− a)

σ2

F2i
.=
∂Ai

∂d
= g1(x)exp(−(yi − µ− d)2

2σ2
)
(yi − µ− d)

σ2

and

F3i
.=

∂Ai

∂σ2
= g0(x)exp(−(yi − µ+ a)2

2σ2
)
(yi − µ+ a)2

2(σ2)2
+ g1(x)exp(−(yi − µ− d)2

2σ2
)
(yi − µ− d)2

2(σ2)2

+ g2(x)exp(−(yi − µ− a)2

2σ2
)
(yi − µ− a)2

2(σ2)2

Then,
∂`

∂µ
=

n∑
i=1

F0i
Ai

∂`

∂a
=

n∑
i=1

F1i
Ai

∂`

∂d
=

n∑
i=1

F2i
Ai

∂`

∂σ2
= − n

2σ2
+

n∑
i=1

F3i
Ai

2.9.2 The Second Derivatives of the Loglikelihood Function

We define the following notations:

F00i
.=

∂2Ai

∂µ2
=
∂F0i
∂µ
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= exp(−(yi − µ+ a)2

2σ2
)
g0(x)
σ2

[
(yi − µ+ a)2

σ2
− 1] + exp(−(yi − µ− d)2

2σ2
)
g1(x)
σ2

[
(yi − µ− d)2

σ2
− 1]

+ exp(−(yi − µ− a)2

2σ2
)
g2(x)
σ2

[
(yi − µ− a)2

σ2
− 1]

F01i
.=

∂2Ai

∂µ∂a
=
∂F0i
∂a

= exp(−(yi − µ+ a)2

2σ2
)
g0(x)
σ2

[−(yi − µ+ a)2

σ2
+ 1] + exp(−(yi − µ− a)2

2σ2
)
g2(x)
σ2

[
(yi − µ− a)2

σ2
− 1]

F02i
.=

∂2Ai

∂µ∂d
=
∂F0i
∂d

= exp(−(yi − µ− d)2

2σ2
)
g1(x)
σ2

[
(yi − µ− d)2

σ2
− 1]

F03i
.=

∂2Ai

∂µ∂σ2
=
∂F0i
∂σ2

= exp(−(yi − µ+ a)2

2σ2
)
g0(x)(yi − µ+ a)

(σ2)2
[
(yi − µ+ a)2

2σ2
− 1]

+ exp(−(yi − µ− d)2

2σ2
)
g1(x)(yi − µ− d)

(σ2)2
[
(yi − µ− d)2

2σ2
− 1]

+ exp(−(yi − µ− a)2

2σ2
)
g2(x)(yi − µ− a)

(σ2)2
[
(yi − µ− a)2

2σ2
− 1]

F11i
.=

∂2Ai

∂a2
=
∂F1i
∂a

= exp(−(yi − µ+ a)2

2σ2
)
g0(x)
σ2

[
(yi − µ+ a)2

σ2
− 1] + exp(−(yi − µ− a)2

2σ2
)
g2(x)
σ2

[
(yi − µ− a)2

σ2
− 1]

F12i
.=

∂2Ai

∂a∂d
=
∂F1i
∂d

= 0
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F13i
.=

∂2Ai

∂a∂σ2
=
∂F3i
∂a

= exp(−(yi − µ+ a)2

2σ2
)
g0(x)(yi − µ+ a)

(σ2)2
[−(yi − µ+ a)2

2σ2
+ 1]

+ exp(−(yi − µ− a)2

2σ2
)
g2(x)(yi − µ− a)

(σ2)2
[
(yi − µ− a)2

2σ2
− 1]

F22i
.=

∂2Ai

∂d2
=
∂F2i
∂d

= exp(−(yi − µ− d)2

2σ2
)
g1(x)
σ2

[
(yi − µ− d)2

σ2
− 1]

F23i
.=

∂2Ai

∂d∂σ2
=
∂F2i
∂σ2

= exp(−(yi − µ− d)2

2σ2
)
g1(x)
σ2

[
(yi − µ− d)2

2(σ2)2
− 1](yi − µ− d)

F33i
.=

∂2Ai

∂(σ2)2
=
∂F3i
∂σ2

= exp(−(yi − µ+ a)2

2σ2
)
g0(x)(yi − µ+ a)2

(σ2)3
[
(yi − µ+ a)2

4σ2
− 1]

+ exp(−(yi − µ− d)2

2σ2
)
g1(x)(yi − µ− d)2

(σ2)3
[
(yi − µ− d)2

4σ2
− 1]

+ exp(−(yi − µ− a)2

2σ2
)
g2(x)(yi − µ− a)2

(σ2)3
[
(yi − µ− a)2

4σ2
− 1]

Then, the second derivatives are

∂2`

∂µ2
=

n∑
i=1

(
F00i
Ai

− F02
i

A2
i

)

∂2`

∂a2
=

n∑
i=1

(
F11i
Ai

− F12
i

A2
i

)

∂2`

∂d2
=

n∑
i=1

(
F22i
Ai

− F22
i

A2
i

)
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∂2`

∂µ∂a
=

n∑
i=1

(
F01i
Ai

− F0iF1i
A2
i

)

∂2`

∂µ∂d
=

n∑
i=1

(
F02i
Ai

− F0iF2i
A2
i

)

∂2`

∂a∂d
=

n∑
i=1

(−F1iF2i
A2
i

)

∂2`

∂µ∂σ2
=

n∑
i=1

(
F03i
Ai

− F0iF3i
A2
i

)

∂2`

∂a∂σ2
=

n∑
i=1

(
F13i
Ai

− F3iF1i
A2
i

)

∂2`

∂d∂σ2
=

n∑
i=1

(
F23i
Ai

− F2iF3i
A2
i

)

∂2`

∂(σ2)2
=

n

2(σ2)2
+

n∑
i=1

(
F33i
Ai

− F32
i

A2
i

)
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2.10 Appendix D: Derivation of MCMC Method for Back-

cross in One QTL Model

Suppose that we have n individuals in the Backcross population. Denote that Y =

(y1, · · · , yn), where yi is the phenotype of the ith individual. The genotype of the QTL for

the ith individual is denoted as gi, where gi = −1 if the QTL genotype is Aa or gi = 1 if

the QTL genotype is AA. We use G = (g1, · · · , gn) to represent the QTL genotypes of all

individuals. The objective is to find the location of QTL as well as the effect of QTL on the

phenotype, which is measured by µ0, µ1, where µ0 = µ− a and µ1 = µ+ a in Chapter 2.

For the ith individual, the distribution of yi is assumed to follow normal distribution

with variance σ2. The mean value is µ0 if the QTL genotype is Aa, or µ1 if the QTL

genotype is AA. To find the QTL, markers are measured across the the chromosome. The

locations and the genotypes of the markers are presented byM . Among all these parameters,

{µ0, µ1, σ
2, G, x} are unknown, and the phenotypes Y and the marker information M are

known.

Here assuming the unknown parameters have the following prior distributions:

µ0 ∼ Unif(−s, s),

µ1 ∼ Unif(−s, s),

σ2 ∼ Unif(0, c), (2.18)

where s and c are given constants.

Now we derive the conditional distributions for the nuisance parameters µ0, µ1, σ
2, x, gi

sequatially.

Step 1: Sampling µ0, µ1

p(µ0|µ1, σ
2, x,G, Y,M) ∝ p(Y |µ0, µ1, σ

2, x,G,M)p(µ0, µ1, σ
2, x,G|M)

∝ p(Y |µ0, µ1, σ
2, G)p(µ0)

∝ exp{−
∑

i:gi(x)=−1(yi − µ0)2

2σ2
} ∗ I{−s<µ0<s} (2.19)
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Define n0 and n1 are the numbers of individuals whose QTL genotype is -1 or 1 respec-

tively. And define ȳ0 = 1
n0

∑
i:gi=−1 yi and ȳ0 = 1

n1

∑
i:gi=1 yi. The conditional distribution

in Equation (2.19) is

p(µ0|µ1, σ
2, x,G, Y,M) ∝ exp{−n0(µ0 − ȳ0)2

2σ2
} ∗ I−s<µ0<s

∝ N(ȳ0, σ
2/n0) ∗ I−s<µ0<s (2.20)

Thus the conditional distribution of µ0 given other parameters, follows truncated Gaussian

distribution. Similar result holds for µ1:

p(µ1|µ0, σ
2, x,G, Y,M) ∝ N(ȳ1, σ

2/n1) ∗ I−s<µ1<s

Step 2: Sampling σ2

p(σ2|µ0, µ1, x,G, Y,M) ∝ p(Y |µ0, µ1, σ
2, x,G,M)p(µ0, µ1, σ

2, x,G|M)

∝ p(Y |µ0, µ1, σ
2, G)p(σ2)

∝ (
1√
σ2

)nexp{−
∑n

i=1(yi − µgi)
2

2σ2
} ∗ I0<σ2<c,

which is truncated inverse Gamma(n2 ,
∑n

i=1(yi−µgi )2

2 ). Hence σ2∑n
i=1(yi−µgi )2

∼ truncated in-

verse chisq(n).

Step 3: To Sample G, we sample each gi separately.

p(gi|µ0, µ1, σ
2, x, Y,M) ∝ f(yi|µ0, µ1, σ

2, x,M)p(µ0, µ1, σ
2, x, gi|M)

∝ exp{−(yi − µgi)
2

2σ2
}p(gi|x,M)
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Thus the condition distribution of gi = 0 is

p(gi = 0|µ0, µ1, σ
2, x, Y,M) ∝

exp{− (yi−µ0)2

2σ2 }p(gi = 0|x,M)∑
gi=0,1 exp{−

(yi−µgi )2

2σ2 }p(gi|x,M)

For gi = 1, we have p(gi = 1|µ0, µ1, σ
2, x, Y,M) = 1− p(gi = 0|µ0, µ1, σ

2, x, Y,M).

Step 4: update x

The QTL location x should be sampled from p(x|µ0, µ1, σ
2, G, Y,M). We use Metropolis-

Hasting (M-H) method to do the sampling. Suppose the current location is xk. Instead

of sampling directly from the posterior distribution, M-H samples a new location x′ from

some other density function Q(x′|xk), and the next sample xk+1 = x′, if

p(x′|µ0, µ1, σ
2, G, Y,M))Q(x|x′)

p(x|µ0, µ1, σ2, G, Y,M))Q(x′|x)
=
p(x′|µ0, µ1, σ

2, G, Y,M))
p(x|µ0, µ1, σ2, G, Y,M))

× Q(x|x′)
Q(x′|x)

> r, (2.21)

where r follows uniform distribution on [0 1], otherwise xk+1 = xk.

In our method, we choose Q(x′|x) as the uniform distribution on an interval of length

2δ around x, if it can be achieved. Thus Q(x′|x) is the density function for the uniform

distribution on [max(0, x − δ),min(x + δ, L)], where L is the length of the chromosome.

In the same way, Thus Q(x|x′) is the density function for the uniform distribution on

[max(0, x′ − δ),min(x′ + δ, L)]. Hence,

Q(x′|x) =
1

min(x+ δ, L)−max(0, x− δ)

Q(x|x′) =
1

min(x′ + δ, L)−max(0, x′ − δ)
(2.22)
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Now, we look at the ratio of conditional probabilities:

p(x′|µ0, µ1, σ
2, G, Y,M)

p(x|µ0, µ1, σ2, G, Y,M)

=
p(µ0, µ1, σ

2, x′, G, Y |M)
p(µ0, µ1, σ2, x,G, Y |M)

=
p(Y |µ0, µ1, σ

2, x′, G,M)p(µ0, µ1, σ
2, x′, G,M)

p(Y |µ0, µ1, σ2, x,G,M)p(µ0, µ1, σ2, x,G,M)

=
p(Y |µ0, µ1, σ

2, G)p(G|x′,M)p(x′)
p(Y |µ0, µ1, σ2, G)p(G|x,M)p(x)

(2.23)

=
p(G|x′,M)
p(G|x′,M)

(2.24)

=
∏n
i=1 p(gi|x′,M)∏n
i=1 p(gi|x′,M)

(2.25)

Equation (2.23) is because given the location x and marker information M , the dis-

tribution of G do not depend on other parameters. We obtain Equation (2.24) because

the prior distribution of x ad x′ is the same. Again p(gi|x′,M) presents the distribution

of the ith individual’s genotype, given the the location as x and the marker information.

Thus, given current location xk, we get the sample x′ from the uniform distribution on

[max(0, x− δ),min(x+ δ, L)]. Using M-H algorithm, if

∏n
i=1 p(gi|x′,M)∏n
i=1 p(gi|x′,M)

× min(x+ δ, L)−max(0, x− δ)
min(x′ + δ, L)−max(0, x′ − δ)

> r, (2.26)

we set xk+1 = x′, otherwise xk+1 = xk.

We use the sequential sampling method and get 110,000 samples for x. The first 10,000

samples are dropped (burn-in). We pick one in every 100 samples and finally get 1000

samples for x. The distribution of x is estimated using the empirical distribution of these

1000 samples.

Use a very similar way as above, we can develop similar Gibbs sampling method for

mapping Single QTL of F2 population.
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CHAPTER 3

Multiple QTL Model

In Chapter 3, we develop the joint multiple QTL Bayesian method based on the extension

of the one QTL Bayesian method via the Laplace approximation in Chapter 2. In practice,

phenotypes may be affected by several QTL not just one QTL, such as hypertension, which

is a polygenic and highly variable phenotype. Thus, it is important to develop a statistical

method for detecting multiple QTL. In this chapter, we will describe our joint multiple

QTL Bayesian method by using the joint two QTL Bayesian model as an example. We can

easily obtain the multiple QTL Model following the same idea.

There are several advantages to use the proposed Bayesian method. The first advantage

of the proposed method is that we can obtain the linkage posterior probability directly,

which is easy to interpret. Second, it is easy to obtain the posterior probability for all

parameters using our method and get the highest posterior density (HPD) region for each

parameter in the model. The HPD region is the Bayesian “confidence interval” and using

HPD region, we can evaluate if the parameter is significant or not. The third advantage is

that our method has the higher speed compared to the standard MCMC Method (Satagopan

et al. (1996); Berry (1998); Sillanpaa and Arjas (1998); Stephens and Fisch (1998); Yi and S.

(2000), Yi and Xu (2001), Yi (2004), Huang et al. (2007)) for detecting QTL. Furthermore,

we develop the sequential multiple QTL Bayesian model via the Laplace approximation

for quickly detecting multiple QTL locations without calculating the posterior probability.

After we detect the QTL locations using this method, we can use the profile likelihood ratio

test statistic to evaluate if there are multiple QTL locations or not. We use the simulation

studies and real data analysis to demonstrate the proposed joint multiple QTL Bayesian

method. For the sequential multiple QTL Bayesian method, a simulation study is used to



show the consistent results for detecting QTL locations for both the joint model and the

sequential method.

3.1 Methods

In this section, the two QTL model is used as an example to explain our multiple

QTL method. The normal linear phenotype model from Lander and Bostein (1989) is used

here. Those two QTL are assumed to locate between marker intervals. Let yi denote the

phenotype value for the ith individual. The linear model of the phenotype value yi for the

backcross (BC) data is described as:

yi = µ+ a1 · gi(x∗1) + a2 · gi(x∗2) + δ · gi(x∗1) · gi(x∗2) + εi, (3.1)

where a1 is the additive effect of the first QTL, a2 is the additive effect of the second QTL,

δ is the pairwise interaction effect for both QTL. All the parameters above are unknown

and will be estimated using the E-M algorithm. gi(x1) is a numerical representation of

the first QTL genotype for the ith individual at position x1 and x∗1 signifies the location of

the first QTL; gi(x2) is a numerical representation of the second QTL genotype for the ith

individual at position x2 and x∗2 signifies the location of the second QTL; εi is the residual

error, distributed N(0, σ2). We code gi(x1) as -1 or 1 according to whether the genotype at

x1 is Aa (heterozygotic) or AA (homozygotic) and gi(x2) as -1 or 1 according to whether

the genotype at x2 is Aa (heterozygotic) or AA (homozygotic). We use β = {µ, a1, a2, δ, σ
2}

to represent the nuisance parameters, occupying a possibly finite region Ω for which the

prior p(β) > 0. We wish to obtain the posterior probability of the two QTL at any gene

locations x1 and x2, given the phenotypes and the marker genotype data,

p(x1, x2|data) =
p(x1, x2)p(data|x1, x2)

p(data)
=
p(x1)p(x2)

∫
Ω p(data,β|x1, x2)dβ
p(data)

=
p(x1)p(x2)

∫
Ω p(β)p(data|x1, x2,β)dβ

p(data)
. (3.2)

Here x1, x2 denote the true QTL positions. So, for example, the location priors p(x1)p(x2),
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will be understood to mean p(x∗1 = x1)p(x∗2 = x2). These priors are intentionally flexible,

because in future applications it might be sensible to consider prior information from pre-

vious studies, or to place mass only on the genomic positions of genes, implicitly favoring

gene-rich genomic regions. Our goal is to enable direct probability statements for the joint

posterior of x1, x2, so that the posterior for entire regions/chromosomes may be obtained

via summation or integration. Numerous Bayesian QTL methods usually use Bayes Factors

to evaluate the inference, which is less formal. Nonetheless, the Bayes factor may also be

easily obtained from our approach.

The right-hand side of (3.2) follows from the assumption of independence of QTL posi-

tions and effect size, p(x1, x2,β) = p(x1) p(x2) p(β). We will denote the marker positions

by the vector xm, the markers flanking x1 by {xleft1 , xright1 }, and the markers flanking x2 by

{xleft2 , xright2 }. The quantity p(data|x1, x2,β) is the ordinary interval mapping likelihood

for n individuals:

p(data|x1, x2,β) = p(g(xm))
n∏
i=1

[ ∑
j1=−1,1

∑
j2=−1,1

p
(
yi|gi(x1) = 2j1 − 1, gi(x2) = 2j2 − 1,β

)
×p
(
gi(x1) = 2j1 − 1, gi(x2) = 2j2 − 1|β, x1, x2, gi(x

left
1 ), gi(x

right
1 ), gi(x

left
2 ), gi(x

right
2 )

)]
,

(3.3)

for which we use model (3.2) and Haldane’s map function for genotype probabilities.

Thus far, our presentation is simply a standard Bayesian outline of the problem. In

contrast to other Bayesian QTL approaches (e.g. Satagopan et al. (1996); Berry (1998);

Sillanpaa and Arjas (1998); Stephens and Fisch (1998); Yi and S. (2000), Yi and Xu (2001),

Yi (2004), Huang et al. (2007)), however, we state the null hypothesis in terms of the

QTL positions x∗1 and x∗2. If x∗1 and x∗2 are on the chromosomes/genome under study, the

alternative hypothesis holds (i.e. H2: x∗1 = x1, x
∗
2 = x2). Otherwise, the null hypothesis

holds, which we denote H0: x∗1 =∞, x∗2 =∞ and H1: x∗1 = x1, x
∗
2 =∞ or x∗1 =∞, x∗2 = x2

(Doerge et al. (1997)). The more commonly-used form of the null hypothesis, dating at

least to Lander and Bostein (1989), is a no-gene null specified in terms of the nuisance

parameters as β ∈ Ω0 ⊂ Ω. The details of these two different null hypotheses have been
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given in Chapter 2.

A second and important advantage of our null hypothesis specification is that inference

for x1 and x2 will be relatively insensitive to the prior for β, because p(β) appears in both

null and alternative terms in p(data). In contrast, when using the no-gene null hypothesis,

inference can be highly sensitive to the prior for β, where the subspace Ω0 is typically of

lower dimension than Ω. We use a flat (proper) prior in our illustrations of the Bayesian

approach, p(β) = 1
|Ω| . Thus Ω must technically be finite. However, for realistic sample

sizes, we can let Ω get arbitrarily large, with essentially no change in our inference.

Using the assumed prior for β, the integral in the numerator of (3.2) becomes

∫
Ω
p(β)p(data|x1, x2,β)dβ =

1
|Ω|

∫
Ω
p(data|x1, x2,β)dβ =

1
|Ω|

C(x1, x2), (3.4)

where C(x1, x2) is the integrated likelihood for a fixed x1 and x2. The denominator of (3.2)

is

p(data) =
∫ ∫

x′
1,x

′
2

p(x′1)p(x′2){
∫

Ω
p(β)p(data|x′1, x′2,β)dβ}dx′1dx′2

=
∫ ∫

x′
1,x

′
2

p(x′1)p(x′2)
1
|Ω|

C(x′1, x
′
2)dx′1dx

′
2, (3.5)

so the 1
|Ω| term cancels out both in the numerator and denominator of the equation (3.2);

then we get

p(x1, x2|data) =
p(x1)p(x2)C(x1, x2)∫ ∫

x′
1,x

′
2
p(x′1)p(x′2)C(x′1, x

′
2)dx′1dx

′
2

=
p(x1)p(x2)C(x1, x2)

D
, (3.6)

where D =
∫ ∫

x′
1<∞,x′

2<∞
p(x′1)p(x′2)C(x′1, x

′
2)dx′1dx

′
2 +

∫
x′
1<∞

p(x′1,∞)C(x′1,∞)dx′1 +∫
x′
2<∞

p(∞, x′2)C(∞, x′2)dx′2 +p(H0)C(∞,∞), C(x′1, x
′
2) is the integrated likelihood for nui-

sance parameters under fixed x′1 and x′2; C(x′1,∞), C(∞, x′2) are the integrated likelihoods

for nuisance parameters under H1; and C(∞,∞) is the integrated likelihood for nuisance

parameters under H0. The denominator D is partitioned into the alternative hypothesis

H2 as well as two null hypotheses: H1 and H0. p(H0) is the prior for H0.

Now it remains to get a good approximation of C(x1, x2) for any fixed x1, x2, C(∞, x2)
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for any fixed x2, C(x1,∞) for any fixed x1 and C(∞,∞) since they have no closed form.

As we have shown in the one QTL model, the Laplace method is the best way to estimate

those approximate forms.

3.1.1 The Laplace Approximation

The Laplace approximation is the method we proposed for the approximation of the

integral likelihood. Using this method, the computational intensivity problem improves

immeasurably. First, we want to get the approximation of C(x1, x2) under the alternative

hypothesis that both QTL reside on the chromosomes/genome under study. We start by

fixing x1, x2 (suppressing the dependence on x1, x2) and defining f(β) = p(data|x1, x2,β).

The applicability of the Laplace approximation relies on standard behavior for the log-

likelihood for large sample sizes: the function is continuous, unimodal, twice differentiable,

and with a maximum in the interior of Ω (Azevedo-Filho and Shachter (1994)). The Laplace

approximation may be motivated by a Taylor expansion at β̂ for a fixed x1, x2:

log(f(β)) = log(f(β̂))− 1
2

(β − β̂)T Σ̂−1(β − β̂) +O(||β − β̂||3), (3.7)

where Σ̂ = I−1(β̂) is obtained by inverting the analytically-derived information matrix at

β̂ and the m.l.e. β̂ is obtained using a standard maximization routine E-M, as is rou-

tinely performed in standard interval mapping. After exponentiating each side of the above

approximation and integrating over all β, we obtain

C(x1, x2) =
∫

β∈Ω
f(β)dβ ≈

∫
f(β)dβ ≈ f(β̂)(2π)dim(β)/2|Σ̂|1/2 ≡ Ĉ(x1, x2). (3.8)

The indefinite integral assumes the space Ω is “large,” and the constants (2π)dim(β)/2|Σ̂|1/2

on the fourth term in equation (3.8) arises from the integration over a multivariate normal

density with mean β̂ and covariance matrix Σ̂. The value f(β̂) is simply the likelihood

at (x1, x2, β̂), which is already available after deriving the standard E-M estimation of

the nuisance parameters β̂ at given location x1, x2. We estimate Σ̂ by plugging β̂ (and

the known recombination fractions to the nearby markers) into the analytically-derived

observed information matrix. Finally, we substitute Ĉ(x1, x2) for C(x1, x2) in equation

92



(3.6) for x1 <∞, x2 <∞.

3.1.2 Approximating the null integrated likelihood

The Laplace approximation is used to estimate the null values C(∞,∞), C(∞, x2), C(x1,∞)

in this section. In Chapter 2, we have already shown that the one QTL null likelihood can

not obtain an accurate estimation by applying the Laplace approximation directly. The H0

likelihood for BC data is a mixture of four normal densities, with each of four genotype

probabilities in equation (3.3) replaced by 1/4. In addition to the curvature in the likelihood

contours, the likelihood can remain relatively high and flat spanning a1 = 0, a2 = 0, δ = 0,

and it is difficult to prescribe a parameter transformation that will make the likelihood

approximately normal in shape. Furthermore, if such a transformation were available, it

would be non-linear, and difficult to transform back to integration over the original Ω.

We use the idea of the improved null Laplace approximation in Chapter 2 to estimate

the integration of the H0 likelihood C(∞,∞) for the joint Bayesian multiple QTL method.

We devise the following approximations requiring integration over three parameters, using

the fact that the Laplace approximation for {µ, σ2} works well for fixed a1, a2 and δ. Define

f(a1, a2, δ, µ, σ
2) = p(data|x1 = ∞, x2 = ∞, µ, σ2, a1, a2, δ), and µ̂a1,a2,δ, σ̂

2
a1,a2,δ

(obtained

numerically) as the conditional m.l.e.s for fixed a1, a2, δ, with corresponding covariance

matrix estimate Σ̂a1,a2,δ on the restricted space. We then have the improved null Laplace

approximation of Ĉ(∞,∞) written as:

Ĉ(∞,∞) =
∫ ∫ ∫

a1,a2,δ
[
∫ ∫

µ,σ2

f(a1, a2, δ;µ, σ2)dµdσ2]d(a1)d(a2)d(δ)

=
∫ ∫ ∫

a1,a2,δ
f(a1, a2, δ, µ̂a1,a2,δ, σ̂

2
a1,a2,δ)2π|Σ̂a1,a2,δ|1/2d(a1)d(a2)d(δ).

The H1 likelihood for BC data is a mixture of four normal densities, with each of four

genotype probabilities in equation (3.3) replaced by 1/2×p
(
gi(x) = k|β, gi(xleft), gi(xright)

)
depending on x equal to x1 or x2, where k is the genotype of the QTL on the chromosomes

under study and xleft, xright are the flanking markers on the left and right for QTL.

Similarly we use the idea of the improved null Laplace approximation to estimate the

integration of the H1 likelihood C(x1,∞) and C(∞, x2). For C(x1,∞), we devise the ap-
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proximation requiring integration over three parameters, using the fact that the Laplace

approximation for {µ, σ2} works well for fixed a1, a2 and δ. Define f(a1, a2, δ, µ, σ
2) =

p(data|x1, x2 =∞, a1, a2, δ, µ, σ
2), and µ̂a1,a2,δ, σ̂

2
a1,a2,δ

(obtained numerically) as the condi-

tional m.l.e.s for fixed a1, a2, δ, with a corresponding covariance matrix estimate Σ̂a1,a2,δ on

the restricted space. We then have the improved null Laplace approximation of Ĉ(x1,∞)

written as:

Ĉ(x1,∞) =
∫ ∫ ∫

a1,a2,δ
[
∫ ∫

µ,σ2

f(a1, a2, δ, µ, σ
2)dµdσ2]d(a1)d(a2)d(δ)

=
∫ ∫ ∫

a1,a2,δ
f(a1, a2, δ, µ̂a1,a2,δ, σ̂

2
a1,a2,δ)2π|Σ̂a1,a2,δ|1/2d(a1)d(a2)d(δ).

In the same way, we can obtain Ĉ(∞, x2).

3.1.3 Posterior Curves for All Nuisance Parameters

The advantage of using the Bayesian method is that we can calculate the posterior

densities for all parameters β as well as their highest posterior density (HPD) regions. The

following is the formula of p(β|data):

p(β|data) =
∫
allx1,x2

p(β|x1, x2, data)p(x1, x2|data)d(x1)d(x2). (3.9)

We already use the laplace approximation to estimate p(x1, x2|data). The posterior

density of β given x1, x2 can be approximated by

p̂(β̂|x1, x2, data) =
1

(2π)d/2|Σ̂|1/2
exp(−1

2
(β − β̂)T (Σ̂)−1(β − β̂)),

where Σ̂ = I−1(β̂) is obtained by inverting the analytically-derived information matrix at

β̂ and the m.l.e. β̂ is obtained using a standard maximization routine E-M; d represents

the number of the nuisance parameters β. This approximation uses the Taylor expansion

of p(β|x1, x2, data) around β̂ for each x1, x2. The approximated density is multivariate

Gaussian distribution.
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We obtain p(β|data) from the equation (3.9). The joint posterior probability p(β|data)

is the joint normal distribution, so the posterior probability of each parameter is normally

distributed, too. Because we know the posterior probability for each parameter is approxi-

mately normal, which is symmetric, we can calculate the 95% HPD region for each parameter

using the following formula: the parameter posterior mean± 1.96∗
√
the parameter posterior variance.

If the 95% HPD region for each parameter does not include 0, this means the parameter

has the effect for the model.

3.1.4 Sequential Multiple QTL Bayesian Model

In order to save computation time for quickly finding multiple QTL locations without

calculating the posterior probability, we developed the sequential multiple QTL heuristic to

overcome this problem. We use the two QTL model to illustrate our idea of this method.

The algorithm is as follows:

(1) First, we find the first estimated QTL location on the chromosomes under study by

using our one QTL Bayesian method via the Laplace approximation.

(2) Second, conditional on the first QTL location we detected, we use the two QTL

Bayesian method without considering the null hypothesis (the partial two QTL Bayesian

method) to find the second QTL location on the chromosomes under study.

(3) Then conditional on the second QTL location we detected, we use the partial two

QTL Bayesian method again to find the first QTL location on the chromosomes under

study.

Then iteratively repeat the process above until the QTL estimated locations converge.

We finally can find two QTL locations quickly, instead of calculating the joint posterior

probability of two QTL.

Figure 3.1 provides an example to illustrate our method. We study two chromosomes

for detecting two QTL locations. First, we detect the first QTL location using the one

QTL Bayesian method via the Laplace approximation. We find that the location of the

first QTL is at 10.5cM on the first chromosome. Second, given that the first QTL location

is at 10.5cM on the first chromosome, we use the partial two QTL Bayesian model to detect

the second QTL location, which is at 80.5cM on the second chromosome. Then conditional
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Figure 3.1: The sequential Bayesian QTL method algorithm for detecting two QTL.
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on this second QTL location at 80.5cM on the second chromosome, we go back to look

for the location of the first QTL, which is at 15.5cM on the first chromosome. Finally,

we condition on this first QTL location and find the second QTL, which is still at 80.5cM

on the second chromosome. This means that our process has converged to the first QTL

location at 15.5cM on the first chromosome and the second QTL location at 15.5cM on

the second chromosome. In this way, we can obtain the QTL locations quickly instead of

calculating the joint posterior probability for all putative QTL locations. In order to test

if the QTL locations we detect are significant or not, we can use the log10 of the likelihood

ratio test statistic.

3.2 Simulation Studies

We use the simulation studies to demonstrate the proposed joint Bayesian multiple QTL

model and the proposed sequential Bayesian multiple QTL model.

3.2.1 Simulation Results for the Joint Bayesian Multiple QTL Model

We generate 100 BC data sets from each of the hypotheses: H0, H1 and H2 respectively

to evaluate our joint Bayesian two QTL method. In Figure 3.2, nine histograms show the

simulation results. Histograms in the first row show the posterior simulation results for 100

data sets generated from H0. Histograms in the second row are the posterior simulation

results for 100 data sets generated from H1. Histograms in the third row are the posterior

simulation results for 100 data sets generated from H2. The most left plot on the first row

shows the histogram of 100 H0 posterior probabilities, i.e. p(H0|data), obtained using our

method from 100 H0 data sets. The middle plot on the first row shows the histogram of 100

H1 posterior probabilities, i.e. p(H1|data), obtained by our method from 100 H0 data sets.

The most right plot on the first row shows the histogram of 100 H2 posterior probabilities,

i.e. p(H2|data), obtained from 100 H0 data sets by using our method. Because the 100

data sets are all generated from H0, we can see that p(H0|data) for all data sets have higher

posterior probabilities compared to p(H1|data) and p(H2|data) histogram plots by using

our method. We can also use the same procedure to interpret the histograms on the second

row, where the data are generated from H1. The far left plot on the second row shows
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the histogram of 100 H0 posterior probabilities, i.e. p(H0|data), obtained by our method

from 100 H1 data sets. The middle plot on the second row shows the histogram of 100 H1

posterior probabilities, i.e. p(H1|data), obtained by our method from 100 H1 data sets. The

far right plot on the second row shows the histogram of 100 H2 posterior probabilities, i.e.

p(H2|data), obtained by our method from 100 H1 data sets. Because the 100 data sets are

all generated from H1, the p(H1|data) for all data sets have higher posterior probabilities

compared to p(H0|data) and p(H2|data) plots by using our method. For the histograms on

the third row, we can use the same procedure to explain them. Because the 100 data sets

are all generated from H2 on the third row, the p(H2|data) for all data sets have higher

posterior probabilities compared to p(H0|data) and p(H1|data) plots by using our method.

The simulation results for all nine histograms demonstrate that our method works well for

multiple QTL analysis.

A Receiver Operating Characteristic (ROC) curve is a plot to show the true positive

rate against the false positive rate for different possible cut points of a diagnostic test. This

curve is for binary outcomes. The area under the ROC curve (AUC) is a measure to evaluate

how accurate the method is. If the measure AUC is nearly 1, this means the method is an

excellent test. But if AUC is around or below 0.5, this means that the method is a worthless

test. In Figure 3.3, we use the ROC curve to evaluate our methods for detecting posterior

probability p(H0|data), p(H1|data) and p(H2|data) under different thresholds. The left plot

on the first row is to evaluate p(H0|data) vs. p(H1|data) plus p(H2|data) for 100 simulated

data generated from H0. AUC in this plot is nearly 1, therefore our method is a excellent

test for detecting p(H0|data). The right plot on the first row is to evaluate p(H1|data) vs.

p(H0|data) plus p(H2|data) for 100 simulated data generated from H1. The AUC in this plot

is also nearly 1, thus our method for detecting p(H1|data) is also very accurate. Similarly,

the plot on the second row is to evaluate p(H2|data) vs. p(H1|data) plus p(H0|data) for 100

simulated data generated from H2. AUC measure in this plot is again nearly 1 so it means

our method is a good test for detecting p(H2|data).

We also simulate 100 BC data sets under the following condition that the first QTL

location is at 25 cM, the second QTL location is at 75 cM, the first QTL effect a1 is

0.5, the second QTL effect a2 is 0.5 and their interaction effect δ is 0.1. We use our
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joint Bayesian multiple QTL method to evaluate whether our method can detect the QTL

locations accurately. In Figure 3.4, the x axis is the estimated location for the first QTL,

the y axis is the estimated location for the second QTL, and there are 100 points on the

plot, which shows the estimated QTL locations for 100 simulated data sets using our joint

Bayesian multiple QTL method. The average estimated first QTL location from 100 data

sets is 27.71 cM and the average estimated second QTL location from 100 data sets is 74.10

cM. The average estimated QTL values are very close to the true QTL locations, so we can

conclude that our method detecte the QTL locations accurately.

Figure 3.2: 300 simulation results for data generated from H0, H1 and H2.
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Figure 3.3: ROC curve for all three hypotheses.
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Figure 3.4: 100 simulation results for detecting QTL locations by using joint Bayesian two
QTL method.
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3.2.2 Simulation Results for Sequential Bayesian Multiple QTL model

We developed the sequential Bayesian multiple QTL method mainly to look for QTL

locations quickly, so it is important to know whether this method can detect the QTL

locations accurately. We use the same 100 simulated data sets (which we used before to

evaluate how accurately the joint Bayesian multiple QTL method could detect the true

QTL) to evaluate the proposed sequential method and show the simulated result in Figure

3.5. In Figure 3.5, the x axis is the estimated location of the first QTL, the y axis is the

estimated location of the second QTL, and there are 100 points on the plot, which displays

the estimated QTL locations for 100 simulated data sets, by using the proposed sequential

Bayesian multiple QTL method. The average estimated first QTL location from the 100

data sets is 26.47 cM and the average estimated second QTL location from the 100 data sets

is 74.38 cM. The average estimated QTL values are very close to the true QTL locations,

so we conclude that the sequential method can detect the QTL locations accurately.

We also compare the simulated results of both the joint and sequential methods and are

interested in that if they can detect consistent estimated QTL locations. Figure 3.6 shows

the comparison results for both methods. The upper plot shows the simulated results of

the first QTL locations for 100 data sets. The x axis is the estimated first QTL location

obtained from the joint method and the y axis is the estimated first QTL location obtained

from the sequential method. The lower plot shows the simulated results of the second QTL

locations for 100 data sets. The x axis is the estimated second QTL location obtained

from the joint method and the y axis is the estimated second QTL location obtained from

the sequential method. Most of the estimated first QTL locations are consistent for both

methods except that one simulation result has some variation. For the simulation results

of the second QTL locations, both methods have quite similar estimated locations. From

Figures 3.3 to 3.5, we therefore can conclude that both methods have high accuracy and

give consistent results for detecting QTL locations. However, the speed of the sequential

Bayesian multiple QTL method is much higher than the speed of the joint Bayesian multiple

QTL method.
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Figure 3.5: 100 simulation results for detecting QTL locations by using sequential Bayesian
two QTL method.

103



Figure 3.6: Compare 100 simulation results of joint method and sequential method for
detecting QTL locations.
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3.3 Real Data Analysis

We apply the proposed joint Bayesian multiple QTL model to the BC data from

Sugiyama et al. (2001). The phenotype in this paper is the salt-induced hypertension -

blood pressure measurement. Hypertension is a polygenic, complicated and highly variable

trait, so this phenotype is suitable for our joint Bayesian multiple QTL method. This BC

data set is the male progeny obtained from a cross of salt-sensitive C57BL/6J (B6) and non-

salt-sensitive A/J (A) inbred mouse strains. These two mouse strains produced 250 male

BC progeny. Females are not included in our analysis because salt increases blood pressure

more in B6 males than in B6 females. From the results of Sugiyama et al. (2001), there are

some significant QTL linked to the salt-induced hypertension phenotype. On chromosome

6, there is one significant QTL with a main effect on the phenotype; on chromosome 15,

there is also one significant QTL with a main effect on the phenotype, and both QTL on

chromosomes 6 and 15 have an interaction effect. We conducted the real data analysis on

these two chromosomes, because our methods can deal with the situation where there are

multiple QTL with interaction effects on the chromosomes under study.

Chromosome 6 is 80 cM long with 11 markers and chromosome 15 is 70 cM long with 11

markers. The 250 BC mice are genotyped but many of them have the missing marker infor-

mation. If the genotype information for some markers is missing, the nearest non-missing

genotype marker can be used as an alternative flanking marker. The phenotypic value is

standardized in our data analysis. We generated 100 putative QTL locations uniformly

across chromosomes 6 and 11 respectively to evaluate the QTL posterior probabilities at

each location. We chose 1
3 as the prior for H0 and 1

600 for each putative location under H1.

The prior for the QTL location is specified as 1
30000 for H2.

In Figure 3.7, we plot the posterior probabilities for 10000 putative locations on chromo-

somes 6 and 15. The x axis is the putative QTL location for chromosome 6, the y axis is the

putative QTL location for chromosome 15, and the z axis shows the posterior probability.

We found that the first estimated QTL location is at 73.76 cM on chromosome 6, which

is very close to the significant marker D6Mit15 at 74cM on chromosome 6 in the paper

Sugiyama et al. (2001); the second estimated QTL location is at 19.41 cM on chromosome
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15, which is also very close to the significant marker D15Mit152 at 20.2 cM on chromosome

15 in the paper Sugiyama et al. (2001). The posterior probability of H2 (i.e. p(H2|data)) is

0.9751, which is very close to 1. The posterior probability of H1 (i.e. p(H1|data)) is 0.0187

and the posterior probability of H0 (i.e. p(H0|data)) is 0.0062. Both H0 and H1 posterior

probabilities are very small. Therefore, there is strong evidence that there are two QTL on

chromosomes 6 and 15 based on the information that p(H2|data) is almost 1. In Figure 3.8,

we use a contour plot to show our real data analysis results. In this contour plot, the x axis

is the putative QTL location for chromosome 6, and the y axis is the putative QTL location

for chromosome 15. We can see very clearly that there is a peak at the QTL location 73.76

cM on chromosome 6 and at 19.41 cM on chromosome 15.

In Figure 3.9, we draw the posterior probability curve for all nuisance parameters

µ, a1, a2, δ and σ2. From the posterior probability curve of µ, we obtain the posterior

mean of the parameter µ is 0.0403 and the posterior variance is 0.0037. The posterior mean

of the parameter a1 is 0.1995 and the posterior variance is 0.0046, so we know the additive

effect of the first QTL is positive with a value 0.1995 on chromosome 6. The posterior

mean of the parameter a2 is -0.2037 and its posterior variance is 0.0042; this means that

the second QTL has a negative effect around -0.2 on chromosome 15. The posterior mean

of the parameter δ has a negative effect around -0.2875 and the posterior variance is 0.0045,

thus these two QTL have a negative interaction effect with a value -0.2875. The interaction

effect is consistent with the results in paper Sugiyama et al. (2001): the two QTL have an

interaction effect which is negative. The posterior mean of the parameter σ2 is 0.8180 with

a posterior variance of 0.0309.

From the information above, we can calculate the highest posterior density (HPD) in-

tervals for all parameters. The HPD interval for µ is (-0.0783, 0.1589), which includes 0, so

the parameter µ has no effect for QTL. The HPD interval for a1 is (0.0665, 0.3324), which

does not include 0, so the model has a positive effect for the first QTL. The HPD interval

for a2 is (-0.3315, -0.0759), which does not include 0, so the model has a negative effect for

the second QTL. The HPD interval for δ is (-0.4317, -0.1433), which does not include 0,

so the model has a negative interaction effect for these two QTL. The HPD interval for σ2

is (0.4732, 1.1628), which does not include 0, so the model shows that there is significant
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environmental variation.

Figure 3.7: Posterior distributions of QTL locations on the chromosome 6 and 15 of the BC
data from paper Sugiyama et al. (2001). Joint two QTL Bayesian method is used in this
real data analysis.

3.4 Conclusions

We proposed the joint Bayesian multiple QTL method to detect QTL that affect the

phenotype in which we are interested . By using our method, we not only can find the

significant QTL that affect the phenotype faster than the standard MCMC method but

also can obtain the posterior probability for inference. It is easy to interpret the statistical

results using the posterior probability directly. Most Bayesian methods use the Bayes factor

to interpret their results, which is less formal. Using our method, we also can get the Bayes

factor. In the simulation results and real data analysis, our proposed joint method can
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Figure 3.8: The contour plot of QTL locations on the chromosome 6 and 15 of the BC data
from paper Sugiyama et al. (2001). Joint two QTL Bayesian method is used in this real
data analysis.
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Figure 3.9: The posterior probability curve of all the parameters in real data analysis.
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detect QTL locations accurately and obtain the correct linkage posterior probability for the

hypothesis. Therefore, we can conclude that our method has great accuracy and moderate

speed for multiple QTL analysis. In future work, we may extend the idea of this method

in eQTL analysis to the detection of multiple eQTL and look for a faster null hypothesis

approximation for our joint Bayesian multiple QTL method.

We also developed a sequential Bayesian multiple QTL method for detecting QTL lo-

cations that affect the phenotype we are interested in without calculating the posterior

probability. In the simulation study, this method results that are consistent with the joint

Bayesian multiple QTL method for detecting significant QTL locations. This means that it

has high accuracy for detecting QTL locations and the method only takes several seconds

to find the QTL locations. In contrast, the joint Bayesian method can take several hours,

depending on how complicated the QTL model is. Therefore, we conclude that by using

this sequential Bayesian multiple QTL method, we can save much computation time over

other methods and quickly and accurately find QTL locations.

Extensions for full multiple QTL Bayesian methods to the high-throughput setting are

a high-priority, and we plan extensions based on our conditional-search heuristic.
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3.5 Appendix: Fisher Information matrix under HA for Back-

cross in Two QTL Model

The alternative hypothesis in this section is that the locations of 2 QTL are on the

chromosome under study and nuisance parameters are β = {µ, a1, a2, δ}. Likelihood

function for the ith individual under the alternative hypothesis can be expressed as:

f(yi|β, x) =
1∑

j1=0

1∑
j2=0

f(yi|k1 = 2j1 − 1, k2 = 2j2 − 1,β, x1, x2)

× p(k1 = 2j1 − 1, k2 = 2j2 − 1|β, x1, x2)

=
n∏
i=1

1√
2πσ2

{exp(−(yi − µ+ a1 + a2 − δ)2

2σ2
)g0(x1, x2)

+ exp(−(yi − µ+ a1 − a2 + δ)2

2σ2
)g1(x1, x2)

+ exp(−(yi − µ− a1 + a2 + δ)2

2σ2
)g2(x1, x2)

+ exp(−(yi − µ+ a1 + a2 − δ)2

2σ2
)g3(x1, x2)},

where

g0(x) = p(k1 = −1, k2 = −1|β, x1, x2), g1(x) = p(k1 = −1, k2 = 1|β, x1, x2),

g2(x) = p(k1 = 1, k2 = −1|β, x1, x2), g3(x) = p(k1 = 1, k2 = 1|β, x1, x2),

For simplicity, we reparameterize the nuisance parameters from β = {µ, a1, a2, δ} to

β̂ = {µ0, , µ1, , µ2 , µ3} and those µs represent the means of different populations, which

depend on two QTL genotypes.

Likelihood function can be further expressed as

111



f(yi|β, x) = f(yi|β̂, x) =
1∑

j1=0

1∑
j2=0

f(yi|k1 = 2j1 − 1, k2 = 2j2 − 1, β̂, x1, x2)

× p(k1 = 2j1 − 1, k2 = 2j2 − 1|β̂, x1, x2)

=
n∏
i=1

1√
2πσ2

{exp(−(yi − µ0)2

2σ2
)g0(x1, x2) + exp(−(yi − µ1)2

2σ2
)g1(x1, x2)

+ exp(−(yi − µ2)2

2σ2
)g2(x1, x2) + exp(−(yi − µ3)2

2σ2
)g3(x1, x2)}

=
1√

2πσ2
Ai,

where

µ0 = µ− a1 − a2 + δ, µ1 = µ− a1 + a2 − δ,

µ2 = µ+ a1 − a2 − δ, µ4 = µ+ a1 + a2 + δ,

Ai =
3∑
s=0

exp(−(yi − µs)2

2σ2
)gs(x), s = 0, 1, 2, 3.

The likelihood for all the individuals are :

f(y|β̂, x) =
n∏
i=1

f(yi|β̂, x) = (2πσ2)−
n
2

n∏
i=1

Ai

After taking log for the likelihood above:

` = ln f(y|β̂, x) ∝ −n
2

lnσ2 +
n∑
i=1

ln Ai

Therefore,
∂log(f(y|β, x))

∂β
=
∂`

∂β̂

∂β̂

∂β

V |∂
2log(f(y|β, x))

∂β2
|mle = | ∂

2`

∂β̂2
|mle|J(β̂|β)|2.

In the following sections, ∂2`
∂β̂2

is derived and |J(β̂|β)| =16.
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3.5.1 The First Derivatives of the Loglikelihood Function

We define

Bi(s)
.=
∂Ai

∂µs
= gs(x)exp(−(yi − µs)2

2σ2
)
(yi − µs)

σ2
,

where s = 0, 1, 2, 3.

and

Ci
.=

∂Ai

∂σ2

=
3∑
s=0

gs(x)exp(−(yi − µs)2

2σ2
)
(yi − µs)2

2(σ2)2

=
1

2σ2

3∑
s=0

(Bi(s) ∗ (yi − µs))

Then,
∂`

∂µs
=

n∑
i=1

Bi(s)
Ai

where s = 0, 1, 2, 3.
∂`

∂σ2
= − n

2σ2
+

n∑
i=1

Ci

Ai

3.5.2 The Second Derivatives of the Loglikelihood Function

We define the following notations:

B2i(s, s)
.=

∂2Ai

∂µ2
s

=
∂Bi(s)
∂µs

= Bi(s)
yi − µs
σ2

− Bi(s)
yi − µs

= Bi(s)(
yi − µs
σ2

− 1
yi − µs

)

where s = 0, 1, 2, 3.
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Di(s)
.=

∂2Ai

∂µs∂σ2
=
∂Ci

∂µs

=
1

2σ2
(B2i(s, s)(yi − µs)−Bi(s))

where, s = 0, 1, 2, 3.

and

Ei
.=

∂2Ai

∂(σ2)2
=
∂Ci

∂σ2

=
3∑
s=0

(
1

2σ2
Di(s) ∗ (yi − µs)−

1
2(σ2)2

Bi(s) ∗ (yi − µs))

Then, the second derivatives are

∂2`

∂µ2
s

=
n∑
i=1

(
B2i(s)

Ai
− Bi(s)2

Â2
i

), (s = 0, 1, 2, 3)

∂2`

∂µs∂µt
=

n∑
i=1

(−Bi(s)Bi(t)

Â2
i

), (s, t = 0, 1, 2, 3; s 6= t)

∂2`

∂µs∂σ2
=

n∑
i=1

(
Di(s)
Ai

− CiBi(s)

Â2
i

), (s = 0, 1, 2, 3)

∂2`

∂(σ2)2
=

n

2(σ2)2
+

n∑
i=1

(
Ei

Ai
− C2

i

Â2
i

)
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