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ABSTRACT 
 
 

STEPHEN B. WILLINGHAM: Microbial Pathogen-Induced Necrosis Mediated By NLRP3 
and ASC 

(Under the direction of Dr. Jenny P-Y. Ting) 
 

 

NLRP3 and ASC are important components of the inflammasome, a multi-protein 

complex required for caspase-1 activation and IL-1β production. NLRP3 mutations underlie 

autoinflammation characterized by excessive IL-1β secretion.  Disease-associated NLRP3 

also causes a program of necrosis-like cell death in macrophages, the mechanistic details of 

which are unknown.  We find that patient monocytes carrying disease-associated NLRP3 

mutations exhibit excessive necrosis-like cell death by a process dependent on ASC and 

cathepsin B, resulting in spillage of the proinflammatory mediator HMGB1.  Shigella 

flexneri and Klebsiella pneumoniae infection also cause NLRP3-dependent macrophage 

necrosis with features similar to the death caused by mutant NLRP3. This necrotic death is 

independent of caspase-1 and IL-1β, and thus independent of the inflammasome. While 

similar proteins mediate pathogen-induced cell death in plants, this report identifies NLRP3 

as an important host regulator of pathogen-induced necrosis in animals, a process we term 

pyronecrosis. 
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1.1  Summary 

 

Inflammation is a crucial element of the host response to cellular insult.  Pathogen-

induced inflammation includes a molecular pathway which proceeds through activation of 

the protease caspase-1 to the release of the inflammatory cytokines IL-1β and IL-18.  

Importantly, pathogens may also induce forms of cell death with inherently pro-inflammatory 

features.  Here I review recent evidence demonstrating that NLR family proteins serve as a 

common component of both caspase-1-activated apoptotic pathways and caspase-

independent necrotic pathways.  Parallels are drawn between NLR protein function and the 

activity of structurally similar proteins involved in cell death: the apoptotic mediator APAF1 

and the plant disease resistance NBS-LRR proteins. 
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1.2  Introduction 
 

 
Table 1.1 - NLRs discussed in this dissertation, classified by effector domain 

 
 

The NLR (nucleotide-binding domain, leucine-rich repeat containing) family of 

proteins (previously known as CATERPILLERs, NODs, NACHT–LRRs; see the HUGO 

Gene Nomenclature webpage on the NLR family) is rapidly emerging as critical regulators of 

immunity. For NLRs discussed in this dissertation, see Table 1.1 Members of this family are 

distinguished by their domain architecture (Fig. 1.1), which consists of a variable N-terminal 

effector domain, a central nucleotide binding domain (NBD), and C-terminal leucine-rich 

repeats (LRRs).  To date, work on NLR proteins in animals has focused largely on their 

ability to mediate the initial immune response to pathogenic insult, particularly with regard to 

inflammation.  However, a number of recent papers show that NLR proteins also represent a 

surprising intersection between innate immunity and cell-death signaling.  Intriguingly, this 

signaling is not confined to apoptosis, but instead extends to two newly recognized cell-death 

programs: pyroptosis and pyronecrosis.  
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Clues to the cell-death-related functions of the NLR proteins can be drawn from the 

structural relationship between NLRs and molecules that are known cell death effectors; the 

apoptotic protease activating factor-1 (APAF1) and the NBS-LRR (nucleotide binding site–

leucine rich repeats, also known as NB-LRR) plant disease resistance proteins (Belkhadir et 

al., 2004).  APAF1 has an important role in triggering mitochondrial-dependent apoptosis.  

Similar to the NLRs, APAF1 has an N-terminal effector domain and a central NBD.  APAF1 

also contains C-terminal repeats, though these differ from the NLRs (Fig. 1.1).  Members of 

the NLR family have an even closer structural resemblance to the NBS-LRR subset of plant 

resistance proteins, which are characterized by a variable N-terminal domain, a central NBD, 

and C-terminal LRRs (Fig. 1.1).  NBS–LRR proteins function in part by helping to induce 

the hypersensitive response, a form of programmed cell death with necrotic features (Lam et 

al., 2001).  In this dissertation, I discuss the emerging theme that mammalian NLRs, similar 

to APAF1 and the NBS–LRRs, act in the regulation of cell death and inflammation. 
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Figure 1.1 - NLR proteins are structurally similar to the pro-apoptotic protein APAF1 and the plant cell-
death mediating NBS-LRR proteins.  NLR proteins are defined by three characteristics: an N-terminal 
effector domain, a central NBD (nucleotide binding domain), and C-terminal LRRs (leucine-rich repeats).  
When defined, NLR effector domains consist of either a pyrin domain (PYR), caspase recruit domain (CARD), 
baculovirus inhibitor of apoptosis repeat (BIR) domains, or a transactivation domain (AD).  One NLR has an 
undefined or uncharacterized effector domains (X). APAF1 (apoptotic protease activating factor 1) also has an 
N-terminal effector CARD and a central NBD.  However, its C-terminal repeats differ from those of the NLRs.  
NBS-LRR (nucleotide binding site, leucine-rich repeats) proteins are characterized by a Toll-IL-1 receptor 
(TIR) or coiled-coil (CC) N-terminal effector domains, a central NBD, and C-terminal LRRs. 
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1.3  NLR Domain Organization 

NLR Effector Domains 
 

NLR effector domains, when defined, consists of an N-terminal CARD, pyrin, BIR or 

Activation Domain, all of which engage in homotypic interactions to mediate signaling 

downstream of NLR molecule activation. Though the overall domain organization of NLRs 

has been conserved from the plant NBS-LRR proteins, the R proteins utilize both TIR (Toll-

IL-1 receptor) and CC (coiled-coil) domains as effectors. Much insight can be gained through 

analysis of the individual effector domains, namely the potential involvement of NLRs in the 

regulation of inflammation and cell death. 

 

NLR Effector Domains: Caspase Recruitment Domain (CARD) 
  

 

 

Of the possible NLR effector domains, the CARD has the deepest roots in cell death. 

Predictive secondary structure analysis indicates CARDs contain a six-α-helix bundle 

characteristic of the death domain-fold superfamily (Fairbrother et al., 2001).  Members of 

this superfamily are well established mediators of protein–protein interactions between 

molecules involved in cell death and inflammation (Tibbetts et al., 2003). Amongst the 

NLRs, CARDs can be found at both the N- and C-terminus, as in NLRC1-5 and NLRP1. The 

caspase recruitment domain (CARD) was defined by Jurg Tschopp over 10 years ago in a 

screen for domains similar to the N-terminus of RAIDD, ICH-1(Caspase-2), and Ced-3 

(Hofmann et al., 1997). At the time, RAIDD was a newly described bipartite adapter 
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involved in signaling downstream of TNFR1 (Duan and Dixit, 1997)1 . Binding to RIP 

through its death domain, RAIDD recruits and activates ICH-1 (Duan and Dixit, 1997). More 

recently, a similar function has been described in which RAIDD recruits ICH-1 to the 

PIDDosome, an apoptotic death initiating complex initiated by p53 in response to DNA 

damage (Tinel and Tschopp, 2004). Interestingly, RAIDD itself was identified in a search for 

motifs similar to the N-terminus of ICH-1. Within the original report the authors repeatedly 

note the resemblance of RAIDD and ICH-1 to ced-3, the C. elegans gene required for cell 

death during development. (Ellis and Horvitz, 1986). Indeed, Tschopp utilized the similarity 

within the N-terminus of these same 3 proteins to define and identify CARD in other 

caspases (Caspase-4, Mch6, ICE), homologues of the viral apoptosis inhibitor lAP (c-lAP1, 

c-lAP2), and the nematode cell death protein ced-4 (Hofmann et al., 1997). Shortly 

thereafter, CARDs were found in many proteins involved in cell death and inflammation. 

Amongst the more notable examples, the CARDs of APAF1 and caspase-9 interact during 

formation the apoptosome to initiate apoptosis after cytochrome c release from the 

mitochondria (Li et al., 1997; Qin et al., 1999). Homotypic CARD interactions are also 

utilized by NRLC1 and NLRC2 to bind the serine-threonine kinase RICK (Seth et al., 2005). 

Interestingly, CARDs are not just used by NLRs for cell death purposes, many CARD-

containing NLRs use their CARDs to directly engage and activate caspase-1 to cause 

inflammation (Mariathasan et al., 2004). Even NLR molecules lacking CARDs can engage 

caspases by interacting with CARD containing adapter proteins such as ASC and TUCAN 

(Agostini et al., 2004; Yu et al., 2005). (For more, see chapter 1.6, NLR Inflammasomes). 
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NLR Effector Domains: Pyrin Domain 
 

 

 

Like CARDs, the pyrin domain also belongs to the death-domain-fold superfamily. 

The pyrin domain was initially described by Bertin et al in late 2000 (Bertin and DiStefano, 

2000). Based on the resemblance of NLRC1 to plant R-proteins and APAF1, this group 

reasoned that though NLRC1 contains an identifiable N-terminal CARD, similar proteins 

may contain novel, non-CARD signaling domains. To identify these, Bertin et al searched for 

proteins possessing regions similar to the central nucleotide binding domain of NLRC1. 

Amongst the results were pyrin, NBS1, CARD7, zebrafish caspase-13, and ASC (Bertin and 

DiStefano, 2000). Ultimately, the term “pyrin domain” was coined to represent the ~95 

residue region of shared homology between pyrin, NBS1, CARD7. Within weeks, Pawloski 

et al also reported the existence of this domain (Pawlowski et al., 2001) . Unlike Bertin et al, 

Pawlowski et al searched for proteins with sequence similarity to the first 100 amino acids of 

the N terminus of the pyrin molecule. The term “PAAD” domain reflects the families of 

proteins recovered in their search, namely Pyrin, AIM (absent in melanoma), ASC, and death 

domain (DD)-like. Interestingly, seven proteins were identified containing both the PAAD 

and newly-defined NACHT domain. Accordingly, these proteins were named PAN, for 

PAAD and nucleotide-binding. Pyrin domains are found in at least 14 NLR proteins, many of 
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which utilize the domain to engage in homotypic interactions with ASC to both positively 

and negatively regulate the activation of caspase-1 (For more information, see chapter 1.6, 

NLR Inflammasomes) 

NLR Effector Domains: Baculovirus Inhibitory Repeats (BIR) Domain 
 

 

NLRB1 (formerly NAIP5) is unique within the NLR family as the only member 

containing BIR (Baculovirus IAP Repeat) effector domain (Listen et al., 1996). The ~70 

amino acid BIR domain can occur in up to three tandem copies and function as a zinc 

binding domain (Crook et al., 1993). The BIR domain was identified in 1993 by Lois Miller 

and her colleagues following a series of experiments involving the Autographa californica 

virus (Crook et al., 1993). Infection of SF-21 cells with p35 mutant A. californica viruses 

results in cellular apoptosis before completion of viral replication. Specifically, these mutants 

are unable to delay cell death sufficiently to allow the formation of polyhedral occlusion 

bodies. To identify baculovirus genes with the ability to inhibit host cell apoptosis, Crook et 

al infected SF-21 cells with p35 mutant A. californica while concurrently transfecting a 

cosmid library prepared from the genomic DNA of the Cydia pomonella granulosis virus 

(CpGV). Subcloning of cosmids demonstrating successful rescue of p35 mutant (as 

determined by polyhedra formation) ultimately yielded a single ORF encoding a ~31 kDa 

protein the authors name IAP, Inhibitor of Apoptosis. Interestingly, IAP has no significant 

homology to p35, but rather the conserved distribution of cysteines and histidine within the 

BIR suggests the presence of a zinc finger-like motif commonly seen in many proteins 
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involved in the regulation of cell death.  Subsequent identification and analysis of similar 

anti-apoptotic baculovirus genes elucidated a common repeating sequence (GX2YX4DX3 

CX2CX6WX9HX6-10C) the authors termed the BIR (Baculovirus IAP Repeat) (Birnbaum et 

al., 1994). The BIR was subsequently identified in species ranging from viruses to mammals 

and now is the defining characteristic of a whole family of anti-apoptotic proteins known as 

the IAPs (Inhibitors of Apoptosis) (Deveraux and Reed, 1999). Both in vitro and in vivo, 

NLRB1 has been shown to inhibit apoptosis in response to several stimuli by BIR-dependent 

inhibition of effector caspases (Diez et al., 2000; Maier et al., 2002). NLRB1 also limits the 

intracellular replication of Legionella pneumophila, though this function is independent of its 

ability to inhibit apoptosis and the role of the BIR domains in this process is unclear (Diez et 

al., 2000; Wright et al., 2003). 

 

NLR Effector Domains: Transactivation Domain (AD) 
 

 
 

 Amongst NLRs, the activation domain has only been identified in the founding 

member, NLRA.  This acidic domain comprises the first 125 residues of NLRA and is 

required for MHC class II gene-specific transcription activation by NLRA (Chin et al., 1997; 

Harton and Ting, 2000). Here, the AD required interact with many proteins involved in 

transcriptional machinery including CREB binding protein (CBP), TFIIB, and TAFIIs 

(Fontes et al., 1997; Fontes et al., 1999; Kretsovali et al., 1998). Interestingly, part of the AD 
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resembles a CARD, but this region lacks caspase recruitment capabilities (Nickerson et al., 

2001). Currently, the AD has no known involvement in initiating or regulating cell death. 

NLR Nucleotide Binding Domains 
 

Similar to APAF1, NLRs possess a large central nucleotide binding domain (NBD) 

which regulates activation and oligomerization of the molecule. Though APAF1 has been 

shown to bind adenosine-based nucleotides, the nucleotide specificity of few NLRs has been 

characterized (Kim et al., 2005; Zou et al., 1999).  ATP binding by APAF1 is required for 

caspase-3 activation, thus nucleotide binding and hydrolysis are likely required for NLR 

activity. Indeed, the binding of ATP is necessary for NLRP3 and NLRC4-mediated cell death 

and inflammation. (Duncan et al., 2007; Lu et al., 2005). ATP is also preferred by NLRP12 

and is required for NLRP12 to inhibit NFκB signalling (Ye et al., 2008). Not all NLRs bind 

adenosine-based nucleotides, NLRA requires GTP binding for its oligomerization and 

transactivation functions (Linhoff et al., 2001). Interestingly, some NLRs may bind 

nucleotides without preference. Such is the case with NLRP1, which binds nucleotide 

triphosphates indiscriminately while activating caspase-1. (Faustin et al., 2007). NLR 

reliance on nucleotide binding suggests nucleotide analogs may have use in modulating NLR 

cell death and inflammatory pathways and in treatment of NLR associated inflammatory 

disorders. 

NLR Leucine Rich Repeats 

 
The C-terminus of NLR molecules is comprised of a varying number of leucine rich 

repeats, which are defined by repeating units of LxxRxxL.  When assembled, the individual 
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beta strand-turn-alpha helix units form a horseshoe shaped domain with the α-helicies 

arrayed outward (Kobe and Deisenhofer, 1994). Similar to the WD40 repeats found in 

APAF1, LRRs are thought to be involved autoregulation, ligand recognition and protein-

protein interactions. In both plant R-proteins and NLRs, truncation of the LRRs can yield 

constitutively active molecules, suggesting the LRRs keep the NLR in an autoinhibited state 

(Dowds et al., 2004; Harton et al., 2002b; Tanabe et al., 2004; Tao et al., 2000; Weaver et al., 

2006). Intramolecular inhibitory contacts between the WD40 repeats and NBD of APAF1 are 

relieved by cytochrome C. (Hu et al., 1999; Schafer and Kornbluth, 2006; Srinivasula et al., 

1998). Similarly, NLR autoinhibition is presumptively disrupted upon LRR interaction with 

an activating stimulus. However, evidence of a direct interaction between the LRRs and 

pathogens or pathogen associated products is sparse. While no evidence yet supports the 

direct interaction of an NLR LRR and a pathogen, yeast two-hybrid experiments have 

detected an interaction between the LRR-like region of Pi-ta, a rice R gene, and the cognate 

AVR effector from the rice blast fungus Magnaporthe grisea (Jia et al., 2000). 
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1.4  Disease Associated Mutations in NLRs 

 
Figure 1.2 - Mutations in NLRs have been identified in several human diseases.  

 

An understanding of the in vivo role of NLR proteins is aided by the remarkable 

association of NLR genes with human immune disorders. A summary of diseases associated 

with NLR mutations is shown in Figure 1.2. NLR molecules were defined based on their 

resemblance to NLRA. Mutations in NLRA result the absence of MHC class II expression on 

immune cells, a condition known as Bare Lymphocyte Syndrome (Steimle et al., 1993). 

Mutations in NLRP3 have been identified in a trio of dominantly inherited autoiflammatory 

disorders collectively referred as CAPS (CIAS1 Associated Periodic Syndromes) 

(Aksentijevich et al., 2002; Feldmann et al., 2002; Hoffman et al., 2001b). These disorders 

are characterized by fever, rash, and excessive IL-1β production (Discussed in detail, chapter 

1.5, Cryopyrin Associated Periodic Syndromes). Both NLRC1 and NLRC2 have been linked 

to inflammatory conditions of the gastrointestinal tract. NLRC1 mutations can result in 

inflammatory bowel disease, while NLRC2 mutations have been identified in Crohn’s 

Disease, a chronic condition involving intestinal inflammation.(Hugot et al., 2001; Ogura et 

al., 2001) Mutations in NLRC2 have also been linked to a second inflammatory condition 

called Blau Syndrome which is characterized by uveitis, arthritis, and skin rash (Miceli-
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Richard et al., 2001). Positional cloning has established NLRB1 as a candidate gene involved 

in Spinal Muscular Atrophy (Roy et al., 1995). Finally, SNP analysis has identified mutations 

in NLRP1 which are observed in vitiligo-associated autoimmune disease, a chronic condition 

involving the loss of pigment in the skin (Jin et al., 2007). While future studies may yet 

reveal additional diseases associated NLRs, this association firmly establishes NLR 

molecules as critical regulators of human inflammation and immunity worthy of further 

investigation.   
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1.5  Cryopyrin Associated Periodic Syndromes (CAPS) 

 

 

 

Figure 1.3- NLRP3 disease associated mutations cluster within or proximal to the nucleotide binding 
domain. No correlation between location of the mutation and resulting severity of disease. Few mutations span 
the CAPS spectrum; these are labeled as “non-specific.”   

 

Significant attention has been focused on one NLR family member, NLRP3, which is 

mutated in a trio of dominantly-inherited periodic fevers: FCAS, Muckle-Wells Syndrome, 

(Hoffman et al., 2001a), and CINCA/NOMID.(Feldmann et al., 2002)  These disorders are 

characterized by spontaneous, yet recurrent, outbreaks of fever, rash, and the excessive 

production of IL-1β in the absence of high titers autoantibodies or antigen-specific T cells. 

Currently, over 100 NLRP3 disease associated mutations have been identified, the 

vast majority of which cluster within or proximal to the NBD (Touitou et al., 2004). 

Interestingly, no correlation is observed between the location of the mutation and the 

corresponding severity disease (Fig. 1.3). 
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Since several NLRP3 point mutations and clinical symptoms have been identified as 

overlapping between FCAS, MWS, and CINCA/NOMID, it has been proposed that these 

fevers comprise a continuum of disease severity collectively referred to as CAPS (Cryopyrin 

Associated Periodic Syndromes). A summary of symptoms associated with each disorder is 

presented in Table 1.2.  FCAS, the mildest of the three, is characterized by recurring 

outbreaks of fever, urticaria rash, and conjunctivitis following generalized cold exposure. 

Each outbreak typically last less than 24 hours, with symptoms often peaking in the evening 

and resolving before morning. These attacks begin before 6 months of age and persist 

through adulthood (Hoffman et al., 2001b). Muckle-Wells syndrome represents an 

intermediate phenotype. In addition to chronic arthritis and episodic outbreaks of rash and 

fever which present at infancy, MWS also features AA amyloidosis and sensorineural 

hearing loss developing during adolescence (Muckle, 1979).  Though FCAS was first 

described in 1940 and Muckle-Wells in 1962, it was not until 2001 that Hoffman et al first 

identified mutations in NLRP3 were responsible for both disorders (Hoffman et al., 2001a). 

In 2002, Feldmann et al. and Aksentijevich et al. identified NLRP3 mutations in a third 

autoinflammatory disorder, CINCA/NOMID (Aksentijevich et al., 2002; Feldmann et al., 

2002). These patients exhibit the most severe symptoms on the CAPS spectrum and are 

typically diagnosed at birth with recurrent outbursts of migratory rash and fever.  Headaches 

are often reported due to chronic aseptic meningitis. Over time, crippling joint deformities 

may develop as a result of massive tumor-like cartilage overgrowth.   
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Table 1.2 – Summary of symptoms characteristic of CAPS  

 

To date, hyperactive formation of the inflammasome (discussed in detail, chapter 1.6, 

NLR Inflammasomes) has been identified as the predominant defect underlying the excessive 

IL-1β and inflammation associated with CAPS. On a molecular level, NLRP3 mutations 

likely weaken the auto-inhibitory interactions between the NBD and LRRs, thereby yielding 

a hyperactive form of NLRP3 more readily able to form the inflammasome (Fig. 1.4) 

(Aksentijevich et al., 2007).  Indeed, expression of pro-IL-1 β is increased in resting 

monocytes from CAPS patients and these cells release more IL-1β following stimulation 

with LPS than mutation-negative controls (Agostini et al., 2004; Aksentijevich et al., 2002; 

Janssen et al., 2004). Furthermore, the remarkable response of CAPS patients to IL-1β 

neutralization highlights the fundamental role of IL-1β in the inflammation associated with 

CAPS. Daily injections of the IL-1 receptor antagonist Anakinra (Kineret) has resulted in a 

rapid reduction in inflammatory symptoms all along the CAPS spectrum (Goldbach-Mansky 

et al., 2006; Hawkins et al., 2004). However, the short half life of Anakinra has spurred 

interest in alternative treatments. These next generation options include a humanized IL-1β 

neutralizing antibody, a soluble IL-1 receptor accessory protein (IRAP), and an “IL-1 Trap,” 

an IL-1 receptor antagonist coupled with an IRAP (Church et al., 2008; Smith et al., 2003). 

The use  
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of an oral caspase-1 inhibitor has also proven effective in blocking the activation and 

secretion of IL-1β in CAPS patients (Stack et al., 2005).   

 

 

 

Figure 1.4 – Depiction of the NLRP3 inflammasome 
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1.6  NLR Inflammasomes 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5 - Comparison of APAF1 and NLRP3 Cell Death Pathways.  Release of cytochrome c from the 
mitochondria initiates apoptosome-dependent apoptosis.  Cytochrome c induces a conformational change in 
APAF1 to relieve the intramolecular interactions holding the molecule in an auto-inhibited state.  Once 
activated, APAF1 and cytochrome c undergo dATP dependent-oligomerization into a heptameric wheel-like 
structure termed the apoptosome.  Pro-caspase-9 molecules aggregate through homotypic interactions between 
their CARDs and those of APAF1.  Subsequent homodimerization of pro-caspase-9 generates active caspase-9 
molecules which cleave and activate the effector caspases -3 and -7 to induce apoptotic cell death.  Similarly, 
NLRP3 activation or disease associated mutations may weaken inhibitory intramolecular interactions between 
the NLRP3 NBD and its C-terminal LRRs. Utilizing the adaptors ASC and CARDINAL, activated NLRP3 
aggregates caspase-1 molecules through the formation of an inflammasome complex.  Complex formation 
potentiates subsequent caspase-1 cleavage and activation.  Based on studies of the NLRP1 inflammasome, the 
complex is likely comprised of 5-7 subunits, each with the ability to recruit pro-caspase-1 molecules.  IL-1β is 
activated by caspase-1 mediated cleavage of the inactive pro-IL-1 β precursor molecule.  However, formation of 
the inflammasome is not the only function of NLRP3.  Activated NLRP3 also initiates pyronecrosis, a 
molecular pathway of necrotic cell death which is dependent on ASC and proceeds through cathepsin B.  This 
cell death pathway does not rely on caspase-1 or IL-1 β, and thus is independent of inflammasome function.   

 
 
 

Due to their structural similarities, the apoptotic mediator APAF1 has been used as a 

model to understand NLR function. Whereas APAF1 activates a caspase-dependent program 
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of cell death, several NLR proteins act to promote a caspase-dependent program of 

inflammation.  Research on the latter has mainly focused on formation of protein complexes 

called inflammasomes (Martinon et al., 2002; Srinivasula et al., 2002).  In some respects the 

inflammasomes resemble the apoptosome, which includes APAF1 (Fig. 1.5).  APAF1 is 

composed of an N-terminal CARD, a central NBD, and C-terminal WD-40 repeats. It is 

thought to be held inactive by intramolecular contact between its WD-40 repeats and N-

terminal regions until cytochrome c and dATP relieve this inactive conformation. This  

enables assembly of the apoptosome, leading to activation of pro-caspase-9 (Schafer and 

Kornbluth, 2006).  The inflammasome NLR proteins appear to act in an analogous manner, 

in that intramolecular interaction mediated by the C-terminal LRRs is proposed to hold these 

proteins in an inactive formation until stimulation promotes inflammasome assembly and 

activating cleavage of pro-caspase-1. (Fig 1.4)  

Biochemical studies have identified a number of inflammasomes, which promote 

inflammation by activating caspase-1, resulting in the release of the pyrogenic cytokine IL-

1β and IL-18 from cells treated with different stimuli (Agostini et al., 2004; Duncan et al., 

2007) (Fig 1.6).  Though differing slightly in their makeup, each inflammasome includes the 

IL-1β-converting enzyme pro-caspase-1, as well as one of four NLR proteins: NLRP1, 

NLRP2, NLRP3, or NLRC4. Given that over 20 human NLR genes have been recognized, it 

is likely that more NLR inflammasomes exist.  A potential fourth inflammasome containing 

the related molecule pyrin has already been identified (Yu et al., 2005). 

The inflammasome complexes appear to differ from each other in respect to their 

activating stimuli (Fig. 1.6).  The NLRC4 inflammasome is activated in response to 

pathogens including Salmonella typhimurium and Legionella pneumophila (Franchi et al., 
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2007; Mariathasan et al., 2004; Miao et al., 2006). The NLRP1 inflammasome is required for 

caspase-1 activation in response to anthrax lethal toxin (Boyden and Dietrich, 2006).  To 

date, the NLRP3 inflammasome is associated with the widest range of stimuli, including LPS 

in the presence of ATP, uric acid crystals, poly I:C, bacterial and viral RNA, and both gram-

positive and gram-negative bacteria (Kanneganti et al., 2006a; Kanneganti et al., 2006b; 

Mariathasan and Monack, 2007; Mariathasan et al., 2006a; Martinon et al., 2006; Sutterwala 

et al., 2006; Willingham et al., 2007).  Though the pathogen recognition steps leading to 

inflammasome activation continue to be elucidated, recent work has shown that cytosolic 

bacterial molecules can induce NLRP3-mediated caspase-1 activity independently of TLR 

signaling (Kanneganti et al., 2007) (For extensive list of activators of NLR inflammasomes, 

see Fig. 1.6) 

Two recent papers describe biochemical stages in inflammasome activation (Agostini 

et al., 2004; Faustin et al., 2007).  Using purified components of the NLRP1 inflammasome, 

Faustin et al. demonstrated that assembly of this inflammasome complex required the 

microbial product muramyl dipeptide (MDP) as well as the presence of nucleotide (Faustin et 

al., 2007).  Surprisingly, and in contrast to the apoptosome, the NLRP1 inflammasome 

exhibited little nucleotide specificity.  However, this does not appear to be true for the 

NLRP3 inflammasome.  Duncan et al. showed that NLRP3 binds specifically to ATP or 

dATP and acts as an ATPase.  NLRP3-catalyzed nucleotide hydrolysis was shown to be vital 

for NLRP3 self-association, interaction with the inflammasome adaptor protein ASC, 

caspase-1 activation and IL-1 release (Duncan et al., 2007). 

Several CARD or pyrin domain containing proteins also regulate the various 

inflammasomes. Amongst the CARD regulators, COP and Iceberg inhibit inflammasome 
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function by interfering with the recruitment and activation of caspase-1 (Druilhe et al., 2001; 

Humke et al., 2000; Lee et al., 2001). The pyrin-only proteins POP1 and POP2 also inhibit 

inflammasome formation through their ability competitively interact with ASC, thereby 

blocking inflammasome formation (Bedoya et al., 2007; Lee et al., 2001). Finally, several 

NLR molecules also negatively regulate the inflammasomes. NLRP10 has the potential to 

inhibit both caspase-1-dependent IL-1β secretion as well as ASC-mediated NF-κB activation. 

Together, NLRP2 and NLRP7 accomplish the same function. However, NLRP7 is restricted 

to blocking caspase-1 activation while NLRP2 blocks ASC-mediated NF-κB activation 

without influencing caspase activity. (Kinoshita et al., 2005) 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 - Specificity of pathogens and pathogen components amongst NLRs involved in the induction 
of cell death and inflammation. The immune response to an ever growing number of pathogens and/or 
pathogen derived molecules relies in part on specific NLR molecules involved in the initiation of cell death, 
inflammation, and NFκB activation. In some cases, a single NLR molecule has been currently implicated in 
regulating a particular facet of the immune response.  However, other stimuli activate several NLR molecules, 
creating a NLR swarm which cooperates to initiate several downstream pathways. Future studies will no doubt 
expand this list and reveal further cooperation amongst NLRs. 
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1.7 NLRs at the Intersection of Cell Death and Immunity 

Several routes to cell death 

Though cell death is known to play an important role in the immune system, the 

majority of studies have focused on the role of apoptosis in cell death.  Emerging evidence 

suggests that additional cell-death pathways are crucial for triggering of inflammation and 

immunity.  To begin to understand the contribution of cell death to immunity, it is useful to 

highlight a number of key differences between these types of death (Table 1.3). 

 Apoptosis is a programmed form of cell death, in that it is a deliberate activity on the 

part of the cell and requires specific molecular mediators, most importantly the apoptotic 

caspases.  Two caspase-dependent pathways, the intrinsic and extrinsic pathways, regulate the 

final stages of apoptosis.  The intrinsic pathway relies on the release of cytochrome c from 

mitochondria to induce formation of the apoptosome, a large protein complex comprised of 

cytochrome c, procaspase-9, APAF1, and deoxyribonucleic ATP (Zou et al., 1997).  Several 

models have been proposed concerning the mechanisms by which apoptosome formation 

results in caspase-9 activation (Riedl and Salvesen, 2007).  The current favored model suggests 

that proximity induced homodimerization of procaspase-9 within the apotosome holoenzyme 

creates an active site, allowing caspase-9 to become an initiator caspase that in turn cleaves and 

activates downstream effector caspases (caspase-3, caspase-6, and caspase-7) (Zimmermann et 

al., 2001).  The extrinsic pathway of apoptosis begins on the cell surface, where death receptors 

– proteins that contain an intracellular death domain (DD) – are activated by ligand binding.  

Receptor-triggered intracellular events result in the proteolytic activation of initiator caspase-8 

and caspase-10, leading to cleavage of effector caspases (caspase-3, caspase-6, and caspase-7) 

(Zimmermann et al., 2001).  Substrates of the effector caspases include poly(ADP) ribose 
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polymerase (PARP), DNA-PK, and other regulatory and structural proteins that maintain 

cellular and genomic integrity (Nicholson, 1999).  Cumulatively, the cleavage of these 

substrates leads to the death and breakdown of the cell. 

In contrast to apoptosis, necrosis has been considered by some to be a passive, and 

therefore unprogrammed, form of cell death.  In general, apoptosis relies on the protease 

activity of caspases, while necrosis is caspase-independent.  Whereas apoptosis is an energy 

expensive process, necrosis has been described as bioenergetic failure, meaning that the cell 

lacks sufficient energy resources to maintain its metabolism.  This condition may be 

triggered by the loss of ion pump activity or overconsumption of ATP (Zong and Thompson, 

2006).  At the nuclear level, necrosis is distinguished from apoptosis by the persistence of 

DNA content, which remains uncondensed.  Perhaps the most striking difference between 

these forms of cell death is at the plasma membrane.  Apoptosis is a slow process marked by 

membrane blebbing and the packaging of cellular material for recycling, but necrosis is 

characterized by rapid loss of plasma membrane integrity with the resultant release of 

cellular contents into the extracellular medium (Edinger and Thompson, 2004). 

This last feature is central to the importance of necrosis in an immune and 

inflammatory context.  Predictably, the release of cellular components has a drastic effect on 

the local environment.  Some of these components, including uric acid, adenine phosphate, 

purine metabolites, and heat-shock proteins, become pro-inflammatory effectors (Zong and 

Thompson, 2006).  Necrotic macrophages can release proinflammatory cytokines such as 

tumour necrosis factor (TNF) and interleukin (IL)-1 (Chen et al., 2007; Dinarello, 1996).  In 

addition, significant attention has been paid to another protein released from necrotic cells, 

the nuclear DNA-binding protein HMGB1 (high-mobility group box protein 1).  Once 
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released, HMGB1 becomes an agonist for RAGE (receptor for advanced glycosylation 

endproducts) and the Toll-like receptors (TLRs) TLR2 and TLR4, all of which are expressed 

by monocytes and some other cell types (Lotze and Tracey, 2005; Park et al., 2004).  

Activation of these receptors results in the exacerbation of inflammation in the 

microenvironment through the induction of additional pro-inflammatory cytokines (Sunden-

Cullberg et al., 2006).  Recent work has identified two more forms of cell death, pyroptosis 

and pyronecrosis, which appear to exploit the pro-inflammatory features of necrosis within 

the context of immunity.  However, the extent to which each resembles apoptosis and 

necrosis is different. 

Pyroptosis is a cell-death pathway activated by microbial pathogens, including 

Salmonella and Listeria (Brennan and Cookson, 2000; Cervantes et al., 2008).  Pyroptosis is 

similar to apoptosis in that DNA damage occurs and the process is caspase-dependent (Fink 

and Cookson, 2005).  However pyroptosis does not rely on the classical pro-apoptotic 

initiator and effector caspases (caspases 3, 8 and 9), but rather on caspase-1.  In addition to 

its apoptotic qualities, pyroptosis exhibits some features of necrosis.  Similar to necrosis, 

pyroptosis is characterized by plasma membrane breakdown.  Moreover, mitochondrial 

membrane integrity is maintained during pyroptosis (Cervantes et al., 2008; Fink and 

Cookson, 2005).  Ongoing studies are aimed at identifying additional molecular mediators of 

pyroptosis.  Very recent work has described the pyroptosome, a large complex comprised of 

ASC dimers that assembles as a feature of this process (Fernandes-Alnemri et al., 2007).  

ASC is a common binding partner for NLR family proteins.  Though it has been 

demonstrated that a large ASC complex can assemble in vitro in the absence of NLR 

proteins, it has also been suggested that NLRs are required for pyroptosome formation in 
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vivo (Fernandes-Alnemri et al., 2007).   From an inflammation standpoint, the two 

outstanding features of pyroptosis are the activation of caspase-1 and the breakdown of the 

plasma membrane.   

 Two very recent studies have identified another NLR-dependent pathway of pro-

inflammatory cell death, termed pyronecrosis, which has primarily necrotic features 

(Fujisawa et al., 2007; Willingham et al., 2007).   This form of cell death is found in genetic 

autoinflammatory diseases involving mutations in the NLRP3 gene and is also associated 

with microbial pathogens such as Shigella flexneri (Willingham et al., 2007). Unlike 

pyroptosis, pyronecrosis is caspase-independent; neither the activating cleavage of effector 

caspase-3 nor its substrate PARP occur during pyronecrosis, and cell death proceeds in the 

presence of caspase-1-specific inhibitor and pan-caspase-inhibitor (Fujisawa et al., 2007; 

Willingham et al., 2007).  However, cell death is abrogated in the presence of an inhibitor of 

the lysosomal protease cathepsin B, implicating lysosome activity in the pathway (Fujisawa 

et al., 2007).  Additional hallmarks of apoptosis are not observed.  Pyronecrotic cells 

demonstrate neither DNA fragmentation nor the loss of mitochondrial membrane potential 

(Willingham et al., 2007).  As determined by electron microscopy, the morphological 

changes characteristic of pyronecrosis are consistent with necrosis and include membrane 

degradation and uncondensed chromatin (Fujisawa et al., 2007; Willingham et al., 2007).  

Similar to classical necrosis, pyronecrosis is accompanied by release of the pro-inflammatory 

cytokine HMGB1 (Willingham et al., 2007)  Recent work suggests an intriguing connection 

between cell death pathways and the NLR proteins, which are early mediators of 

inflammation in response to cellular insult. 
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Table 1.3 – A comparison of cell death pathways 
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NLR proteins, apoptosis, and pyroptosis 
 

Although a comparison between inflammasome and apoptosome activation may help 

to illuminate steps in the induction of inflammation, similarities extend to function as well.  

Much attention has been paid to the role of the NLR protein NLRB1 in determining 

susceptibility to Legionella pneumophila (Wright et al., 2003).  In addition to inducing the 

release of IL-1β through the NLRC4 inflammasome, cytosolic L. pneumophila flagellin also 

activates a caspase-1-dependent form of cell death in macrophages which requires NLRB1 

(Suzuki et al., 2007; Zamboni et al., 2006).  One characteristic of this cell-death pathway is 

nuclear condensation, which is typical of apoptosis (Molofsky et al., 2006).  Moreover, 

membrane blebbing, another feature of apoptosis, was observed in NLRB1-expressing 

HEK293 cells following infection with L. pneumophila (Zamboni et al., 2006). However, 

unlike classical apoptosis, L. pneumophila flagellin-induced macrophage cell death has been 

reported to be independent of caspase-3 activity (Molofsky et al., 2006).  Thus the observed 

apoptotic features may instead be related to pyroptosis.  Notably, caspase-1 and NLRC4-

dependent cell death has been observed at timepoints of less than three hours in Shigella 

flexneri infected cells (Suzuki et al., 2007).  NLRC4 is also required for cell death in 

Salmonella typhimurium-infected macrophages, which is mediated by bacterial flagellin 

(Franchi et al., 2007; Mariathasan et al., 2004).  Though features of the mechanism remain to 

be determined, these results demonstrate that an NLR protein is required to mediate an 

apoptosis-like cell death induced by a bacterial component. 

The above mentioned work suggests a pro-apoptotic function for NLR proteins.  

Intriguingly, evidence supporting a functional relationship between NLRs and anti-apoptotic 

signaling factors has been provided in another system.  In a cell-free system, the NLRP1 
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inflammasome is activated by the bacterial product MDP, resulting in the maturation of IL-

1β.  This process is regulated by two members of the anti-apoptotic BCL2 (B-cell 

CLL/lymphoma 2) family of mitochondrial membrane proteins.  Both BCL2 and BCLXL 

bind to NLRP1 directly to suppress its activity (Bruey et al., 2007).  These data illustrate a 

surprising cross-talk between inflammatory and anti-apoptotic signaling, though the 

influence of this interaction on cell survival or death has not yet been determined.  Although 

the regulation of inflammation is an unexpected role for BCL2 family members, the interface 

between mitochondrial membrane factors and innate immunity is not unprecedented.  Recent 

work has established the mitochondrial outer membrane as a critical staging area for anti-

viral signaling through MAVS (mitochondrial antiviral signaling, also called IPS-1, VISA, 

and CARDIF) the RIG-I (retinoic acid inducible gene-I)-like RNA helicases, and the NLR 

protein NLRX1 (Moore et al., 2008; Seth et al., 2005; Yoneyama and Fujita, 2007). 

Additional work points to NLRP1 as a mediator for toxin-induced cell death.  Boyden 

and Dietrich dissected mouse genetics to implicate NLRP1 as the primary mediator of mouse 

macrophage susceptibility to the anthrax lethal toxin (Boyden and Dietrich, 2006).  In cells 

expressing functional NLRP1, anthrax lethal toxin elicited a form of cell death that is 

caspase-1-dependent (thus suggestive of pyroptosis).  Without functional NLRP1, 

macrophages do not undergo this form of cell death and fail to activate caspase-1 in the 

presence of anthrax lethal toxin.  These findings suggest that NLRP1 mediates macrophage 

cell death as a deliberate response to anthrax lethal toxin, and raise the interesting possibility 

that anti-apoptotic signaling factors may regulate NLRP1-induced death as well as NALP1 

inflammasome activity. 
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NLR proteins, necrosis, and pyronecrosis 

The induction of necrotic cell death as a crucial component of immunity is well 

established across phylogenic kingdoms.  The plant NBS-LRR disease resistance proteins act 

in the defense against pathogens by helping to mediate the hypersensitive response, a form of 

rapid programmed cell death, and it has recently been shown that the NLR family protein 

NLRP3 mediates a similar pathway in monocytes (Fujisawa et al., 2007; Willingham et al., 

2007).   NLRP3 was first identified through its association with two dominantly inherited 

periodic fevers: FCAS (Familial Cold Autoinflammatory Syndrome) and Muckle-Wells 

Syndrome (Aganna et al., 2002; Hoffman et al., 2001a).  It has since been identified as the 

genetic locus for a third fever syndrome, CINCA/NOMID. (Aksentijevich et al., 2002; 

Feldmann et al., 2002).  These three diseases are now considered to be a spectrum of severity 

for one single condition, cryopyrin-associated periodic syndrome (CAPS), which is 

characterized by spontaneous inflammation (Ting et al., 2006).  This suggests that disease-

associated variants of NLRP3 may encode a hyperactive version of NLRP3 that promotes 

excessive production of IL-1β, a possibility that is consistent with the gain-of-function 

phenotype typically associated with dominant inheritance.  Indeed, following stimulation, 

monocytes isolated from patients with NLRP3 mutations demonstrate hyperactivation of IL-

1β {Agostini}(Janssen et al., 2004; Stack et al., 2005). 

However, this is not the extent of the phenotypic changes associated with mutant 

NLRP3.  Peripheral blood mononuclear cells isolated from patients with NLRP3 mutations 

lose viability when exposed to lipopolysaccharide (LPS) (Saito et al., 2008; Willingham et 

al., 2007).  To identify more precisely the cellular consequences of mutant NLRP3 

expression, two groups developed constructs encoding known disease-associated variants of 
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NLRP3 (Fujisawa et al., 2007; Willingham et al., 2007).  The expression of these variants in 

the monocytic cell line THP-1 induces excessive IL-1β release, as expected, but also an 

inflammatory necrosis that we termed pyronecrosis (Willingham et al., 2007).  Intriguingly, 

pyronecrosis is not dependent on IL-1β signaling or caspase-1, though it requires the 

presence of the inflammasome component ASC and intact cathepsin B (Fujisawa et al., 2007; 

Willingham et al., 2007).  The binding of ATP to NLRP3 is also necessary for this pathway 

to proceed (Duncan et al., 2007).  Because NLRP3 and ASC appear to act together in a 

function that is independent of procaspase-1 activation, and hence independent of the 

inflammasome, we suggest that these two factors comprise an alternate complex to promote 

pyronecrosis (Fig. 1.5).  Cumulatively, these observations offer insight into the consequence 

of NLRP3 hyperactivity.  The inherent function of the protein and its relationship to 

pathogen resistance merit further consideration. 

Necrosis has long been observed in monocytic cells infected with intracellular 

bacteria or exposed to toxins.  Though in some cases pathogen-induced cell death is almost 

certainly passive, the active and programmed process of pyronecrosis might be a critical 

feature of macrophage function.  Notable among the necrosis-inducing pathogens is the gram 

negative bacteria Shigella flexneri.  At early timepoints, S. flexneri–induced macrophage cell 

death exhibits apoptotic and pyroptotic features (Navarre and Zychlinsky, 2000; Suzuki et 

al., 2007).  However, S. flexneri induces caspase-1-dependent IL-1β release and caspase-1-

independent necrosis in human monocyte-derived macrophages (Fernandez-Prada et al., 

1997; Koterski et al., 2005; Suzuki et al., 2005).  These characteristics closely mirror those of 

mutant NLRP3-induced cell death, suggesting that native NLRP3 may mediate S. flexneri -

induced necrotic death.  Through the use of knock out and knock down techniques, S. 
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flexneri-induced necrotic cell death was shown to be dependent on NLRP3 in both mouse 

macrophages and in the human monocytic cell line THP-1.  Similar to mutant NLRP3-

induced cell death, this process also depends on ASC and requires the protease cathepsin B 

(Willingham et al., 2007).  These findings demonstrate that NLRP3 mediates pyronecrosis as 

part of its native function within the cell, and show that programmed necrosis can be 

activated in response to pathogen invasion of macrophages.  We suggest that this program is 

an adapted response to bacterial invasion.  Not only does rapid cell death deny the pathogen 

an environment in which to replicate, the process of necrosis is inherently pro-inflammatory, 

leading to release of IL-1β and other factors from surrounding cells.  Thus, pyronecrosis is 

likely to contribute substantially to the disease state in patients with CAPS, who suffer from 

spontaneous inflammation characterized by IL-1β production. 

In its more severe forms, CAPS is also characterized by joint deformities and 

arthralgias (Ting et al., 2006).  NLRP3 expression is not limited to monocytic cells but 

extends to osteoblasts as well, and the joint-related symptoms of CAPS are likely due to 

excessive NLRP3 activity in these cells.  As with Shigella in macrophages, wild type NLRP3 

appears to also regulate pathogen-induced cell death in osteoblasts.  Though Salmonella 

typhimurium activates the NLRC4 inflammasome in macrophages, mouse primary 

osteoblasts do not express NLRC4.  In these cells NLRP3 is partly required for maximal S. 

typhimurium-induced cell death (McCall et al., 2008).  This finding suggests that 

pyronecrosis may contribute to the joint-related symptoms of CAPS  Moreover, it 

demonstrates an additional level of complexity to NLR-mediated cell death.  In the absence 

of NLRC4, NLRP3 assumes a role in the response to Salmonella that it would not otherwise 

play.    
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The induction of necrosis by Shigella, Salmonella, and other microbial pathogens 

may be mediated through toxins.  Some of these toxins have been examined directly with 

respect to caspase-1 activation and cell death.  Nigericin is a toxin produced by Streptomyces 

hygroscopicus.  This molecule functions as a potassium ionophore and is a potent inducer of 

both IL-1β release and necrosis in monocytes (Hentze et al., 2003; Perregaux et al., 1992).  

As with pyronecrosis, both functions are dependent on the activity of cathepsin B (Hentze et 

al., 2003).  Another potent toxin, maitotoxin, is produced by the dinoflagellate 

Gambierdiscus toxicus.  Maitotoxin has been demonstrated to induce necrosis in a manner 

dependent on the calcium-activated cysteine protease calpain and also promotes IL-1β 

release by mouse macrophages (Verhoef et al., 2004; Zhao et al., 1999).  Similar to S. 

flexneri, both nigericin and maitotoxin activate the NLRP3 inflammasome (Mariathasan et 

al., 2006a; Sutterwala et al., 2006).  Moreover, these toxins also alter the levels of 

intracellular potassium (Mariathasan et al., 2006a; Sutterwala et al., 2006).  While molecular 

mediators of nigiricin and maitotoxin continue to be identified, the work outlined above 

indicates the participation of NLRP3 or another NLR family protein in macrophage response 

to these toxins.  
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1.8 NLRC1 and NLRC2 Function in Immunity and Inflammation 

 Perhaps the most well studied NLRs are NLRC1 and NLRC2 (formerly NOD1 and 

NOD2). In 1990, Yuan and Horvitz described a simple pathway in the nematode C. elegans 

wherein CED-4 interacts with and proteolytically activates CED-3, resulting in cell death 

(Yuan and Horvitz, 1990). Subsequently, a number of serine proteases, including caspase-1 

and caspase-3, had been identified as human orthologs of CED-3, while no ortholog had been 

found for CED-4 (Fernandes-Alnemri et al., 1994; Xue et al., 1996; Yuan et al., 1993). That 

changed in 1997 when Zou et al isolated APAF1, a mammalian CED-4 homolog responsible 

for the cytochrome-C dependent activation of caspase-3 and cell death. (Zou et al., 1997). 

Upon these reports, NRLC1 was identified near simultaneously in 1999 by two groups 

searching for proteins resembling the CARD domain of APAF1 (Bertin et al., 1999; Inohara 

et al., 1999). In turn, NLRC2 identified based on genome search for proteins similar to 

NLRC1 (Ogura et al., 2001). Interest in NLRC1 and NLRC2 was further intensified when 

mutations these genes were identified in inflammatory bowel syndrome, Crohn’s disease, and 

Blau Syndrome (Hugot et al., 2001; Miceli-Richard et al., 2001; Ogura et al., 2001). More 

than 90% of NLRC2 mutations identified in Crohn’s disease occur within or proximal to the 

LRR region suggesting a crucial role of for this domain the development of disease (Lesage 

et al., 2002). 

Unlike APAF1, neither NLRC1 nor NLRC2 induce cell death on their own, though 

both interact with caspase-9 to promote apoptosis when concurrently overexpressed (Bertin 

et al., 1999; Inohara et al., 1999). Instead, NRLC1 and NLRC2 function as cytosolic sensors 

which initiate NFκB signaling in response to conserved structures within the bacterial cell 

wall (Girardin et al., 2003a; Inohara et al., 2003). Peptidoglycan (PGN) is a major structural 
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component in the cell wall of Gram positive bacteria, while only existing as a thin layer in 

the periplasmic space of Gram negative bacteria. Hydrolases constantly degrade PGN into 

small glycan chains containing alternating N-acetylglucosamine (GlcNAc) and N-

acetylmuramic acid (MurNAc) sugars. These sugar moieties are linked together by small 

peptides. Importantly, the composition of gram positive and gram negative PGN differ from 

each other. In Gram-positive bacteria, the amino acid lysine is found at the third position in 

the linker peptide, whereas diaminopimelic acid (DAP) is found in most Gram-negative 

bacteria (Girardin et al., 2003c). Both NLRC1 and NLRC2 recognize naturally occurring 

PGN degradation products, albeit through distinct mechanisms. The minimal natural 

structure recognized by NLRC1 is GlcNAc-MurACc-LAla-c-D-Glu-meso-DAP (GM-

triDAP) (Girardin et al., 2003a). The presence of the terminal meso-DAP implicates NLRC1 

in the detection of Gram negative bacteria. In contrast, NLRC2 responds to the muropeptide 

GlcNAc-MurNAc-LAla-D-isoGln (GM-Di), and thus can detect both  Gram-positive and 

Gram-negative bacteria. NLRC2 also responds to muramyl dipeptide (MurNAc-L-Ala-D-

isoGln) (Girardin et al., 2003b; Inohara et al., 2003). While this is not a naturally occurring 

bacterial product, it also can be isolated from both Gram-negative and Gram-positive 

bacteria, suggesting NLRC2 may have a broad sensing range. Importantly, as is the case with 

all NLR-pathogen interactions, no direct binding between NLRC1 or NLRC2 and the PGN 

derivative has been detected. 
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Figure 1.7 - Structure of peptidoglycan derivatives recognized by NLRC1 and NLRC2 

 

 

Initial reports demonstrated that both NRLC1 and NLRC2 utilize homotypic CARD 

interactions to bind the serine-threonine kinase RICK. RICK interacts with IKKγ, resulting in 

IκB phosphorylation, and ultimately the activation of NκFB (Bertin et al., 1999; Inohara et 

al., 1999; Inohara et al., 2000). Indeed, RICK is essential for NLRC1 and NLRC2 activation, 

as NLRC1 and NLRC2-dependent NFκB activation was abolished in RICK deficient mouse 

embryonic fibroblasts (Kobayashi et al., 2002). Furthermore, the interaction of NLRC2, 

RICK, and IKK has also been shown to be essential for the activation of NFκB and JNK 

pathways following Shigella flexneri infection. Either NLRC1 or NLRC2 also been shown to 

mediate NFκB signaling in response to several pathogens including Heliobacter pylori, 

Pseudomonas aeruginosa, Campylobacter jejuni, Chlamydophila pneumoniae, and Listeria 

monocytogenes (Fig. 1.6) (Cervantes et al., 2008; Opitz et al., 2005; Travassos et al., 2005; 

Viala et al., 2004; Zilbauer et al., 2007).  
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1.9 Conclusions 

 

Emerging evidence reveals that NLR proteins contribute to the host cell response to 

insult by not only facilitating the maturation of IL-1β, but also by mediating cell death (Fig. 

1.5).  Both processes have a strong impact on immunity.  IL-1β release is a well-established 

signal for the onset of inflammation and initiation of the adaptive immune response.  The 

consequences of pathogen-induced cell death in the context of immunity have not been 

studied as thoroughly, although a plethora of reports have now shed light on this topic.  One 

obvious result is that invading bacteria are denied an environment in which to replicate.  

However, cell-death programs which result in a loss of plasma-membrane integrity can also 

exacerbate inflammation through the discharge of such intracellular inflammatory cytokines 

and factors such as IL-1β, TNFα, and HMGB1. 

Two such modes of cell death, pyroptosis and pyronecrosis, have been recently 

identified.  Though there are significant differences between the two, such as their 

differential dependence on caspase-1, they are evidently both pathways which respond to 

pathogen by promoting the inherently pro-inflammatory release of cellular contents.  NLR 

proteins have emerged as important regulators of both of these pathways.  Future studies 

should aim to find additional mediators of pyroptosis and pyronecrosis.  Recent work has 

described inhibitory interaction of mitochondrial anti-apoptotic proteins with the NLR family 

protein NLRP1.  Accordingly, pro-pyroptotic and pro-pyronecrotic factors may be found 

within the pool of recognized pro-apoptotic cell-death proteins.  Given that the activity of the 

NLR proteins extends beyond caspase-1 activation to cell death, it will be interesting to see if 

known death regulatory factors contribute to this new role.
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2.1 Abstract 

 

Cryopyrin/CIAS1/NLRP3 and ASC are important components of the inflammasome, 

a multi-protein complex required for caspase-1 activation and cytokine IL-1β production. 

CIAS1 mutations underlie autoinflammation characterized by excessive IL-1β secretion.  

Disease-associated cryopyrin also causes a program of necrosis-like cell death in 

macrophages, the mechanistic details of which are unknown.  We find that patient monocytes 

carrying disease-associated CIAS1 mutations exhibit excessive necrosis-like cell death by a 

process dependent on ASC and cathepsin B, resulting in spillage of the proinflammatory 

mediator HMGB1.  Shigella flexneri infection causes cryopyrin-dependent macrophage 

necrosis with features similar to the death caused by mutant CIAS1. This necrotic death is 

independent of caspase-1 and IL-1β, and thus independent of the inflammasome.    

Furthermore, necrosis of primary macrophages requires the presence of Shigella virulence 

genes.  While similar proteins mediate pathogen-induced cell death in plants, this report 

identifies cryopyrin as an important host regulator of pathogen-induced necrosis in animals, a 

process we term pyronecrosis. 
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2.2 Introduction  

The NLR family (Harton et al., 2002a) (formerly CATERPILLER) is comprised of 

proteins involved in the regulation of innate immunity (Inohara and Nunez, 2003; Martinon 

and Tschopp, 2005).  Functionally similar to the evolutionarily conserved Toll-like receptors 

(TLRs), increasing evidence suggests that NLRs may serve as intracellular molecules that 

sense pathogen-derived products (Hoffmann and Reichhart, 2002; Poltorak et al., 1998). 

Significant attention has been focused one NLR family member, Cryopyrin, which is 

encoded by the gene CIAS1.  CIAS1 is mutated in a trio of dominantly inherited periodic 

fevers: FCAS (Familial Cold Autoinflammatory Syndrome), MWS (Muckle-Wells 

Syndrome), and CINCA/NOMID (Chronic Infantile Neurological Cutaneous and Articular 

syndrome / Neonatal Onset Multisystemic Autoinflammatory Disease), which are proposed 

to represent a continuum of severity for a single condition, CIAS1-associated periodic 

syndrome (CAPS) (Aksentijevich et al., 2002; Feldmann et al., 2002; Hoffman et al., 2001a; 

Hoffman et al., 2001b).   

Recent investigations have highlighted an essential role for IL-1β in the development 

of mutant-CIAS1-associated periodic fevers.  Mutant CIAS1 causes elevated levels of 

spontaneous and induced IL-1β both in vitro and in vivo.  Indeed, FCAS, MWS, and 

CINCA/NOMID have all been successfully treated with daily doses of the IL-1β receptor 

antagonist Anakinra® (Kineret) (Goldbach-Mansky et al., 2006; Hawkins et al., 2004; 

Hoffman et al., 2004).  Cryopyrin participates in the regulation of IL-1β through involvement 

in a multimolecular complex called the inflammasome (Agostini et al., 2004). This complex, 

which also includes ASC (Apoptotic Speck protein containing a CARD) and TUCAN, 

promotes activation of caspase-1/ICE.  In turn, caspase-1 then cleaves pro-IL-1β to produce 



 42 

mature IL-1β, which is released from the cell. Mutations in cryopyrin result in the 

hyperactivation of this pathway, causing excessive IL-1β production and the severe episodes 

of inflammation.   

The functions of cryopyrin in the immune system are not limited to autoinflammatory 

disorders. Several recent reports have established cryopyrin as an important adaptor capable 

of organizing the inflammasome to elicit IL-1β release in response to bacterial, viral, and 

other pro-inflammatory stimuli (Kanneganti et al., 2006a; Kanneganti et al., 2006b; 

Mariathasan et al., 2006a; Mariathasan et al., 2006b; Martinon et al., 2006; Sutterwala et al., 

2006). However, it is not yet known if the protein has additional biologic functions in the 

containment of pathogens.   

Clues regarding an additional role for cryopyrin in response to pathogen may lie 

within its makeup.  Cryopyrin consists of an amino terminal pyrin domain, a central NACHT 

(NAIP, CIITA, HET-E, TP1) domain, and seven carboxy terminal LRRs (Leucine Rich 

Repeats).  This architecture is conserved in plants, where similar proteins comprise a 

subfamily of disease-resistant (R) proteins called NB-LRRs (Ausubel, 2005; Chisholm et al., 

2006).  The NB-LRR proteins respond to microbial pathogen by eliciting a hypersensitive 

death response in infected cells, thus resulting in elimination of the pathogen (Greenberg et 

al., 1994; Nimchuk et al., 2003).  Similarly, one mammalian host response to microbial 

pathogen is macrophage/monocyte necrotic-like death, which can lead to pathogen 

elimination, but also to exacerbated inflammation and sepsis (Krysko et al., 2006).  The 

participation of cryopyrin in initiating necrosis has been hinted at previously, as cryopyrin 

deficient macrophages demonstrate reduced levels of cell death in response to the gram 

positive Staphylococcus bacteria (Mariathasan et al., 2006a). However, the molecular players 
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that mediate such a process and the mechanism of this form of cell death have yet been 

defined.   

We report here that cryopyrin and ASC are required for a process of necrotic-like cell 

death.  We furthermore expand the capabilities of cryopyrin by demonstrating that it 

mediates both the IL-1β and cell death response to a gram-negative bacterium, S. flexneri, 

resulting in cellular necrosis and the exacerbation of inflammation. The observation that 

Shigella-induced cell death is independent of caspase-1 and IL-1β indicates that this process 

occurs independently of inflammasome formation. It further suggests that disease-associated 

cryopyrin represents a hyperactive form of the protein, while the function of the normal 

counterpart is to induce cell death only upon stimulation with bacteria or other pathogens.  
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2.3 Materials & Methods 

 

Cell lines and reagents – THP-1 cells purchased from American Type Culture Collection 

(ATCC) and cultured as described previously (Williams et al., 2005).  Anti-caspase-3 

antibody purchased from Cell Signaling;  anti-PARP, anti-ipaB, anti-Actin, and HRP-

conjugated secondary antibodies from Santa Cruz Biotechnology; anti-HMGB1 antibody 

from Abcam; anti-ASC antibody from Immuno Diagnostic Oy; anti-Cryopyrin antibody from 

Alexis Biochemicals; Super Signal ECL reagent from Biorad; E. Coli LPS from Chemicon.  

Detailed methods for preparation of retroviral shuttle vectors, transduction, and sorting to 

generate THP-1 cell lines stably expressing shRNA have been described (Taxman et al., 

2006).  The shRNA target sequences are as follows:  shASC-GCTCTTCAGTTTCACACCA, 

shCtrl-GCTCTTCctggcCACACCA, shCIAS-GGATGAACCTGTTCCAAAA.  Stable 

expression of shRNA did not induce interferon response as assessed by OAS1 expression 

(not shown). 

 

Generation of recombinant adenoviruses - Recombinant adenovirus expressing CIAS1 or 

LacZ was generated using Adeno-X Expression System (Clontech). Briefly, genes were 

subcloned into pShuttle2 intermediate vector and ligated into the modified Type 5 human 

adenoviral genome vector Adeno-X following excision with PI-Sce and I-Ceu enzymes. 

Recombinant adenovirus was then amplified in HEK293 cells and purified using Adeno-X 

Virus Purification Kit (Clontech). Viral titers were determined by UNC Viral Vector Core 

Facility (UNC-Chapel Hill). 
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Adenovirus transduction of THP-1 cells – THP-1 cells were aliquoted into Falcon 2059 

polypropylene tubes at a density of 106/ml in RPMI 1640 containing 10% FBS. After 

addition of adenovirus (MOI=1 unless otherwise noted), cells were centrifuged at 2000*g for 

2 hours at 37O C. Immediately after centrifugation, cells were resuspended and incubated at 

5*105/ml following the addition of fresh RPMI 1640 containing 10% FBS. 

. 

XTT assay – Cells were plated into 96-well plates at 20,000 cells per well 24 hours after 

adenovirus transduction. 50 µl of serum-free media containing 25µM phenazine methosulfate 

and 1mg/ml XTT was added to each well.  Plates were read at 450nM after four hours of 

incubation. 

 

Mitochondrial membrane potential staining – Cells were stained with 

Tetramethylrhodamine ethyl ester, perchlorate (TMRE) for 25 minutes at 37°C at a final 

concentration of 5nM.  After staining, cells were rinsed in PBS, resuspended in 0.5 ml PBS 

and analyzed using a FACScan (Becton Dickinson) in FL2. 

 

Immunoblotting  – Immunoblots were performed as described previously (Williams et al., 

2005). Cryopyrin was immunoprecipitated with rabbit anti-CIAS-1 peptide IgG. Expression 

was confirmed by probing immunoblots with anti-CIAS1. HMGB1 blots were performed 

directly on culture supernatants and developed as indicated.   

 

Quantitative PCR - Total RNA was isolated, cDNA was reversed transcribed, and 

quantitative PCR was performed using Absolute SYBR green mix (ABgene, UK) to assess 
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ASC mRNA expression as described (Taxman et al., 2006). Realtime values were 

standardized to the expression of 18s rRNA and normalized to 100 in control (untransduced) 

cells.  Primers used for real-time PCR are as follows: ASC-

[AACCCAAGCAAGATGCGGAAG, TTAGGGCCTGGAGGAGCAAG], 18s-

[CGGCTACCACATCCAAGG, GCTGCTGGCACCAGACTT]. 

 

Viaprobe and 7-AAD cell staining – Cells were collected and rinsed twice in cold PBS.  

Pellets were resuspended in 0.5ml PBS with 3 µl Viaprobe (Becton Dickinson) or 1 µl 7-

AAD (BD Pharmingen).  Cells were incubated in the dark for 15 minutes before analysis on 

a FACScan (BD). 

 

Propidium Iodide staining – Following treatment, cells were collected and pelleted via 

centrifugation. Pelleted cells were fixed in 70% ethanol for a minimum of 2 hours, rinsed 

once in PBS, then resuspended in PBS containing 1% Triton, 20 µg/ml propidium iodide 

(Sigma Chemical Co.), and 200 µg/ml RNAse A (Qiagen).  The cells were allowed to stain 

for 15 minutes or longer then analyzed using a FACScan (BD). 

 

ELISA – THP1 Samples were harvested 24 hours post transduction and assayed with BD 

OptEIA Human IL-1β ELISA Set (BD Biosciences) and Human IL-18 ELISA (MBL 

International). Mouse samples were taken at indicated times post infection and assayed with 

BD OptEIA Mouse IL-1β ELISA Set (BD Biosciences). 
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Electron microscopy – THP-1 cells were infected with adenoviruses at MOI=1 and fixed in 

2% paraformaldehyde, 2.5% glutaraldehyde in 0.15M sodium phosphate, pH 7.4 2 or 6  

hours post infection. Electron microscopy was performed at the UNC Microscopy Services 

Laboratory. 

 

Patient cells – Two female patients (ages 62 and 71) with FCAS were included in the study. 

Both FCAS patients had classic clinical presentation and met diagnostic criteria, as described 

previously (Hoffman et al., 2001b). Neither FCAS subject was experiencing significant 

inflammatory symptoms at the time of study, nor on regular anti-inflammatory medications. 

Two female controls (ages 39 and 41) were studied simultaneously with the FCAS patients. 

However, one control was later found to have significantly abnormal inflammatory responses 

and therefore was not included. An additional 4 male controls aged 27-34 were subsequently 

studied. PBMCs were isolated and prepared as previously described (Stack et al., 2005). 

 

CIAS1 and caspase-1 deficient mice - CIAS1-/- and Caspase-1-/- mice were described 

previously and were respectively produced by Millenium Inc. and Dr. Richard Flavell, Yale 

University (Sutterwala et al., 2006).  They were backcrossed for a minimum of six 

generations to C57BL/6. Macrophages were obtained by peritoneal lavage 5 days after 

intraperitoneal injection with 4% thioglycollate and cultured in DMEM supplemented with 

10% fetal calf serum and 50 ug/ml penicillin and streptomycin. Bone marrow macrophages 

were harvested from 6-8 week old mice and cultured for 7 days in 30% M-CSF conditioned 

media. 
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Bacterial infections – Shigella flexneri strain 12022 was obtained from ATCC. 2457T and 

BS103 have been described previously (Fernandez-Prada et al., 1997). THP-1 cells were 

cultured at 106/ml in antibiotic free RPMI. All samples were infected with S. flexneri or S. 

typhi bacteria at a MOI of 50 at 37o for the indicated amount of time. Samples were 

centrifuged at 650*g for 10 minutes immediately following addition of bacteria. 50 g/ml 

gentamicin was added to cultures 2 hours post infection.  
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2.4 Results  

Expression of disease-associated CIAS1 mutants induces a necrotic-like cell death 

 Mutations in CIAS1 are associated with the periodic fever syndromes FCAS, MWS, 

and CINCA/NOMID.  Adenoviral constructs were transduced at a MOI=1 to promote 

efficient exogenous expression of wild type CIAS1 or CIAS1 containing mutations encoding 

the disease-associated amino acid changes A439V or R260W (Fig. 2.8A). A fourth construct 

encoding LacZ was designed as a negative control. Expression of the disease-associated 

mutants dramatically decreased cell viability in the THP-1 monocytic cell line in three 

separate assays: the XTT assay (Fig. 2.1A), trypan blue (Fig. 2.8B) and Viaprobe (Fig. 2.8C).  

Staurosporine was used to induce apoptosis in all of these assays.  To determine the mode of 

cryopyrin-induced cell death, we examined the activation of caspase-3.  During apoptosis, 

caspase-3 undergoes activating cleavage.  In turn, caspase-3 cleaves PARP and other 

downstream substrates.  Neither caspase-3 nor PARP were cleaved in cells expressing a 

disease-associated mutant cryopyrin, though both were cleaved in staurosporine-treated cells 

(Fig. 2.1B).  Further, pretreatment of cells with the pan-caspase inhibitor (zVAD-fmk) failed 

to abrogate cell death (Fig. 2.1C). These results indicate that mutant cryopyrin-induced cell 

death does not require nor proceed via caspase activation. DNA fragmentation, another 

hallmark of apoptosis, was not observed in mutant cryopyrin expressing cells (Fig. 2.1D), 

though the positive control, staurosporine, induced DNA fragmentation in a caspase-

dependent manner (Fig. 2.1D and Fig. 2.9A).  Moreover, in contrast to apoptotic cells, 

mutant-cryopyrin expressing cells did not demonstrate an increase in mitochondrial 

membrane permeability at two timepoints (summarized in Fig. 2.1E, and shown in detail in 

Fig. 2.9B).  Finally, electron microscopy shows that mutant-cryopyrin expressing cells 
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exhibit morphological features consistent with necrosis.  Cells expressing mutant cryopyrin 

demonstrate several of these features: a) degradation of the plasma membrane, b) 

dysmorphic/swollen mitochondria, and c) lack of chromatin condensation (Fig 2.1F, middle 

panel).  Staurosporine caused a typical apoptotic morphology (Fig. 2.1F, right panel).  Taken 

together, our results support previous data indicating that disease-associated variants of 

cryopyrin induce cell death consistent with necrosis (Fujisawa et al., 2006).   

 

Disease-associated cryopyrin mutants induce enhanced IL-1β release, but cell death is 

independent of caspase-1 and IL-1β signaling 

 CIAS1-associated periodic fevers are characterized by excessive IL-1β production. To 

explore the mechanism by which disease-associated cryopyrin causes cell death, we first 

determined if this process is dependent on caspase-1 or IL-1β.  In agreement with previous 

observations, substantially more IL-1β was released from cells expressing mutant cryopyrin 

than cells expressing wild-type cryopyrin (Fig. 2.2A) (Agostini et al., 2004; Dowds et al., 

2004).  IL-18 is also regulated by caspase-1 and levels of IL-18 are greatly induced by 

disease-associated cryopyrin (Fig. 2.2B).  Treatment with YVAD-CHO, a specific peptide 

inhibitor of caspase-1 abrogated mutant cryopyrin-induced release of IL-1β and IL-18 (Figs. 

2.2A and 2.2B.). However, while YVAD-CHO successfully blocked IL-1β and IL18, mutant-

cryopyrin induced cell death was unaffected (Fig. 2.2C).  Kineret® (Anakinra), an IL-1 

receptor antagonist (IL-1Ra) also failed to diminish mutant-cryopyrin induced cell death 

(Fig. 2.2D).  To assure the concentration of Kineret® was adequate to block the biologic 

function of IL-1β, we measured its effect on IL-1β -mediated induction of IL-8 (Fig. 2.2E).  

Even at a concentration a log lower than that used in the cell viability assay (Fig. 2.2D), the 
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induction of IL-8 by IL-1β was abolished by Kineret®.  Together, these results demonstrate 

that mutant cryopyrin-induced cell death occurs independently of caspase-1 activity and IL-1 

β mediated signaling. As previously reported, inhibition of cathepsin B with 50 µM Ca-074-

Me substantially blocked cell death caused by disease-associated cryopyrin, but had no effect 

on staurosporine-induced death (Fujisawa et al., 2006).  Of note, Fig. 2.1C shows that the 

pan-caspase inhibitor caused a slight reversal of disease variant cryopyrin-mediated cell 

death. This slight improvement in viability may be attributed to cross inhibition of cathepsin 

B by the zVAD peptide (Schotte et al., 1999). 

  

Disease-associated mutant cryopyrin induced cell death is ASC dependent 

To further explore the mechanism by which disease-associated CIAS1 causes cell 

death, the role of ASC was examined.  Short hairpin RNA molecules (shRNAs) were 

designed to promote the degradation of ASC mRNA (shASC).  A control shRNA with a 

mutated target ASC sequence was also prepared (shCtrl). These shRNAs were incorporated 

into retrovirus and stably transduced into THP-1 cells, resulting in stable reduction of both 

ASC protein and mRNA (Figs. 2.3A and 2.3B). A second ASC shRNA generated the same 

results (not shown).  Consistent with a role for ASC in the inflammasome, shASC diminished 

spontaneous production of IL-1β induced by wildtype and mutant cryopyrin (Fig. 2.3C). 

More importantly, shASC reverted cell death induced by the A439V disease-associated 

cryopyrin mutant (Fig. 2.3D).  These results demonstrate that ASC is required for mutant 

cryopyrin-induced cell death as well as IL-1β production in monocytic/macrophage cell 

types. 
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Disease-associated cryopyrin mutants induce HMGB1 release 

HMGB1 is emerging as an important therapeutic target for sepsis, cancer, and other 

conditions.  Normally maintained as a nuclear factor within the healthy cell, HMGB1 takes 

on the role of a strong pro-inflammatory factor when released from cells undergoing necrosis 

(Scaffidi et al., 2002). This prompted us to examine the release of HMGB1 in the presence of 

disease-associated cryopyrin. As measured by western analysis, HMGB1 release from cells 

transduced with the wildtype CIAS1-adenovirus is barely detectable, but a high level is 

released by cells expressing either of two disease-associated forms of CIAS1 (Fig. 2.4A). 

Though ASC is essential for HMGB1 release (Fig. 2.4B), caspase-1 activity is not (Fig. 

2.4C).  HMGB1 release following the induction of apoptosis with staurosporine is not 

observed at the 6 hr timepoint, but is only observed 24 hr post-treatment.  This is likely the 

consequence of secondary necrosis caused by longer treatment time (Fig. 2.9C). Collectively, 

the results presented in Figs. 2.3 and 2.4 suggest that mutant cryopyrin causes necrotic-like 

cell death and subsequent HMGB1 release in an ASC-dependent but caspase-1 independent 

fashion. 

 

LPS induces death of FCAS patient cells. 

We next sought to determine the effects of CIAS1 mutation on cell viability in 

peripheral blood mononuclear cells (PBMCs) from FCAS patients with confirmed CIAS1 

mutations.  Samples were obtained from patients with CIAS1 mutations who have not 

undergone anti-inflammatory treatment.  The endotoxin lipopolysaccharide (LPS) has been 

used by others to induce monocytic cell death (Karahashi and Amano, 1998).  LPS is also 

known to induce CIAS1 mRNA and protein expression, both of which are very low in resting 
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mononuclear cells (O'Connor et al., 2003).  LPS challenge resulted in a dose-dependent 

decrease in cell viability in patient PBMCs but not healthy controls, supporting the 

conclusions made from exogenous expression of disease-associated cryopyrin (Fig. 2.5A). 

As disease-associated cryopyrin variants are generally accepted as gain-of-function mutants, 

properties observed with disease-associated cryopyrin are expected to be observed with 

wildtype cryopyrin, either at a reduced level or under stimulated conditions.  While 

adenovirus with disease-associated CIAS1 caused substantial cell death at MOI=1, 

transduction of adenovirus containing wildtype cryopyrin into THP-1 cells also resulted in 

cell death when a higher MOI was used, (Fig. 2.5B). These findings prompted us to 

determine whether wildtype cryopyrin plays a role in cell necrosis associated with bacterial 

pathogenesis. 

 

Shigella flexneri induced cell death requires cryopyrin and ASC, but not caspase-1. 

 Necrosis of monocytes and macrophages is a documented response to pathogenic 

bacteria, although proteins that control this process are not well defined (Golstein and 

Kroemer, 2007; Zong and Thompson, 2006)  Significant evidence indicates Shigella causes a 

necrotic-like cell death, although apoptosis has also been reported (Koterski et al., 2005; 

Nonaka et al., 2003; Suzuki et al., 2005; Zychlinsky and Sansonetti, 1997). This led us to 

examine the potential of wildtype cryopyrin to mediate necrosis in response to Shigella 

flexneri.  Stable reduction of cryopyrin protein in THP-1 cells was achieved utilizing 

retroviral- transduced shRNAs specific for CIAS1 which caused a near-ablation of targeted 

gene expression (Fig. 2.6A).  The induction of IL-1β by S. flexneri was nearly abolished in 

cryopyrin-deficient cells as measured by ELISA, providing a biologic assay to assure that the 
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CIAS1 shRNA caused the intended biologic effect (Fig. 2.6B).  More importantly, S. flexneri-

induced death was substantially abrogated in shCIAS1 cells (Fig. 2.6C).  The presence of 

shCIAS1 did not affect staurosporine-induced cell death, indicating specificity of cryopyrin 

for S. flexneri-induced death. To confirm that cryopryin mediated cell death requires ASC, 

we tested the ability of Shigella to elicit cell death and IL-1β in ASC deficient THP1 cells. 

As expected, both cell death and IL-1β release were substantially abrogated in the shASC 

cells (Fig. 2.6D and 2.6E). 

  To examine the physiologic importance of these results, we utilized macrophages 

isolated from wildtype and CIAS1 gene-ablated mice. In wildtype bone-marrow derived 

macrophages, Shigella caused a 2.5-3 fold increase in cell death compared to uninfected 

macrophages. However, in CIAS1-/- macrophages, Shigella failed to initiate cell death above 

the level of uninfected cells (Fig. 2.6F).  Moreover, the level of IL-1β secretion was reduced 

approximately 15-fold in peritoneal macrophages from CIAS1-/- mice (Fig. 2.6G).  The 

requirement of CIAS1 for both cell death and IL-1β release in response to S. flexneri 

establishes wildtype cryopyrin as a critical host adaptor capable of responding to a gram 

negative bacterial pathogen.  In contrast, bone marrow-derived macrophages isolated from 

mice lacking caspase-1 demonstrated no differential cell death response to S. flexneri (Fig. 

2.6H), though caspase-1 remained essential for IL-1β activation (Fig. 2.6I).  These results 

indicate that cryopyrin and ASC, but not caspase-1, are required for S. flexneri-induced 

macrophage necrosis.   

Cryopyrin-dependent cell death is not observed in cells infected with another 

intracellular bacteria, Salmonella typhi, thus indicating that the role of cryopyrin cannot be 

generalized to all intracellular bacteria (Fig. 2.10) (Mariathasan et al., 2006a).  To assess if 
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cryopyrin-induced cell death is caused by virulence factors expressed by S. flexneri, we 

compared avirulent, plasmid-cured S. flexneri (BS103) and the virulent parental strain 

(2457T).  The former lacks a 230-kb virulence plasmid which encodes the invasion plasmid 

antigens IpaB, IpaC, and IpaD. These antigens are essential for S. flexneri virulence and 

entrance into the host cell (Menard et al., 1993).  Immunoblot analysis was used to confirm 

the plasmid-cured Shigella strain lacks the IpaB protein, while this protein is detected in the 

parental strain (Fig 2.6J, left panel, inset). Cell death was assayed at two (2 and 4 hr) 

different time points.  At both timepoints, virulent Shigella (2457T) caused cell death, and 

this process was reduced in macrophages lacking the CIAS1 gene (Fig 2.6J, right and left 

panels).  As expected, when macrophages were infected with the plasmid-cured BS103 

strain, cell death is reduced by >80%.  This residual level of cell death was not affected by 

the absence of CIAS1. These results indicate that virulence factors expressed by S. flexneri 

causes CIAS1-dependent cell death. 

 

Cryopyrin mediates Shigella induced necrotic-like cell death with properties similar to 

mutant cryopyrin-induced death. 

Having established that cryopyrin was essential for Shigella-mediated cell death, we 

sought to determine the nature of cell death and whether it was consistent with the necrotic-

like death induced by mutant cryopyrin. Infection of shCTRL THP-1 cells with S. flexneri for 

six hours resulted in cell death with features morphologically consistent with necrosis (Fig. 

2.7A, compare Panels i and ii).  To verify that the necrotic cells contain bacteria, we 

performed electron microscopy at an earlier timepoint (2 hours after infection) when the cell 

morphology is less fragmented.  Cells with a negative control shRNA that are infected with 
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bacteria demonstrate the initial loss of cytoplasm, indicating necrosis (Fig. 2.7A, Panel iii).  

In contrast, cellular morphology consistent with cell death was not observed in shCIAS1 

cells, despite the presence of several intracellular Shigella bacteria (Fig. 2.7A, Panel iv). 

Next, we examined biochemical properties of cryopyrin initiated IL-1β and cell death 

response to Shigella.  In contrast to the apoptotic control staurosporine, Shigella-induced cell 

death did not result in the cleavage of PARP after 6 hours (Fig. 2.7B). Earlier reports have 

suggested that S. flexneri induces apoptosis in macrophages at early timepoints, while 

necrosis is observed at later points (Zychlinsky et al., 1992; Koterski et al., 2005).  We 

observed that treatment with the pan-caspase inhibitor zVAD slightly diminished cell death 

after 2 hours of infection, but not after 6 hours of infection.  The caspase-1 specific inhibitor 

YVAD had no effect. Attempts to inhibit cell death and IL-1β release with glycine, 

previously shown to reduce Shigella-induced apoptosis, were also ineffective (Fig. 2.11) 

(Edgeworth et al., 2002). However, the cathepsin B inhibitor Ca-074-Me substantially 

blocked cell death, further validating that mutant cryopyrin and Shigella-induced necrosis 

occurred via the same pathway (Fig. 2.7C). Although the caspase-1 inhibitor YVAD failed to 

block cell death, it substantially abrogated both IL-1β and IL-18 in response to Shigella in 

shCTRL cells, indicating that cell death is predominantly caspase-1, IL-1β, and IL-18 

independent (Fig. 2.7D and 2.7E). As expected, shCIAS1 nearly abolished both IL-1β and 

IL-18. Finally, Shigella-mediated cell death was associated with the release of HMGB1 (Fig. 

2.7F). In contrast, treatment with apoptosis inducing staurosporine for 2 and 6 hrs did not 

cause HMGB1 release. 

 Thus S. flexneri-induced death shared multiple characteristics associated with the 

necrotic-like cell death observed with disease-associated cryopyrin, suggesting that this 
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process is mediated by cryopyrin and ASC, proceeds through cathepsin B independent of 

either caspase-1 or IL-1β, resulting in HMGB1 release. 
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2.5 Discussion  

We report a necrotic-like cell death caused by disease-associated mutants of CIAS1 

which is dependent on ASC but not on caspase-1 or IL-1β.  This process results in release of 

the proinflammatory mediator, HMGB1, which likely propagates the inflammatory response.   

Additionally, we show that ASC and native, wildtype cryopyrin are required for S. flexneri-

induced cell death, which proceeds in a manner identical to that induced by disease-

associated cryopyrin.  These results implicate cryopyrin as a crucial regulator of pathogen-

induced necrotic-like death, a process proposed to play an important role in the pathogenesis 

of a myriad of infectious diseases, which we propose to call pyronecrosis.  

From the perspective of cryopyrin-associated periodic fever, these results and the 

accumulated data in the literature suggest that cryopyrin mutants directly regulate disease 

progression through at least two distinct signaling pathways.  It is known that cryopyrin 

participates in the activation of caspase-1, the maturation of IL-1β, and subsequent 

hyperactivation of the inflammatory process via an ASC-dependent process (Agostini et al., 

2004).  Previous reports have indicated that disease-associated mutants demonstrate a gain-

of-function phenotype with respect to these properties leading to enhanced IL-1β release 

(Dowds et al., 2004).  We report a second gain-of-function, the induction of necrotic-like cell 

death.  The manner of death is particularly important.  While it is generally believed that 

apoptotic cells die an orderly death with minimal impact on inflammation, necrosis involves 

the spilling of cellular contents into the environment, intensifying local inflammation and 

damaging neighboring cells (Krysko et al., 2006).  It is important to keep in mind that the IL-

1 receptor antagonist Anakinra® has been successfully used to treat patients suffering from 

the CIAS1 associated periodic syndrome, indicating that excessive IL-1β production 
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underlies disease.   This would seem to suggest that the inflammasome function of cryopyrin 

is solely responsible for periodic fever in these patients.  However, given that necrosis allows 

for the release of pro-inflammatory factors such as HMGB1, which in turn promote further 

release of IL-1β, it is likely that cryopyrin-mediated cell death also contributes to disease-

state in patients. 

Both disease-associated cryopyrin expression and S. flexneri infection triggered the 

release of HMGB1, a chromatin-associated protein released by necrotic cells.  Once HMGB1 

is released, it acts as a potent danger indicator, inducing several pro-inflammatory cytokines 

by signaling through the RAGE, TLR2, and TLR4 receptors to elicit a severe inflammatory 

response (Andersson et al., 2000; Hori et al., 1995; Park et al., 2004).  Serum HMGB1 is 

increased during both endotoxin exposure in mice, and in septic patients who succumbed to 

infection (Wang et al., 1999). HMGB1 neutralization has been shown to significantly reduce 

inflammation and improve survival in animal models of established sepsis (Yang et al., 

2004).  The release of HMGB1 elicited by bacterial-induced cell death further supports the 

use of HMGB1 antagonists to reduce inflammation during sepsis.  

The results shown here demonstrate a requirement for ASC in cryopyrin induced cell 

death. ASC was initially identified as a cytosolic protein aggregated into specks in myeloid 

cells undergoing apoptosis and has since been implicated in several cell death pathways in 

non-myeloid cells (Masumoto et al., 1999).  Functionally ASC is a bipartite adapter protein 

comprised of N-terminal pyrin domain (PD) and C-terminal CARD.  It is proposed that these 

domains each engage in homotypic interactions, thereby linking the PD of cryopyrin to the 

CARD region of caspases.  Constitutive interactions between several transfected disease-

associated cryopyrin mutants and ASC have been reported when overexpressed in a 
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HEK293T cells (Dowds et al., 2004).  Overexpressed ASC has also been shown to interact 

with caspases-8 and-9, and several studies have implicated ASC in the progression of 

apoptosis.  The concurrent over-expression of a related protein, Ipaf, with ASC in HEK293T 

cells results in caspase-8 dependent apoptosis, while over-expression of ASC alone induces 

caspase-9 mediated cell death in HEK293 cells (Masumoto et al., 2003; McConnell and 

Vertino, 2000).  These observations  suggest the involvement of apoptotic caspases in ASC-

induced cell death in non-monocytic cells (Dowds et al., 2004; Masumoto et al., 2003; Wang 

et al., 2004).  However, co-immunoprecipitation experiments in monocytic THP-1 cells 

indicate that ASC/caspase interaction is limited to caspase-1, suggesting that ASC is not 

involved in the initiation of apoptotic caspases in these cells (Stehlik et al., 2003). Our results 

in a monocytic cell type demonstrate that ASC is important in a necrotic-like cell death 

pathway that is caspase-independent.   

The results here delineate an endogenous program of necrosis initiated by cryopyrin 

and ASC. This pathway proceeds through cathepsin B, yet occurs independent of caspase-1, 

IL-1β, and the inflammasome. Recently, ASC has also been implicated in the initiation of 

another rapid form of inflammatory cell death called pyroptosis. In contrast to the necrosis 

initiated by cryopyrin and ASC, pyroptosis requires caspase-1 activation by ASC following 

the dimerization of ASC into speck-like pyroptosomes (Hersh et al., 1999).  Pyroptosomes 

per se do not contain detectable cryopyrin, however the role of cryopyrin in the formation of 

this structure was not tested.  This form of cell death has features of both apoptosis and 

oncosis. Unlike the cryopyrin/ASC necrosis pathway described here, pyroptosis can be 

blocked by exogenous caspase inhibitors however the requirement for cathepsin B has not 

been investigated (Fernandes-Alnemri et al., 2007). The involvement of ASC in the induction 
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of both pyronecrosis and pyroptosis establish ASC as a key component in the host defense 

arsenal to invading pathogens. 

Several recent reports establish cryopyrin as a pivotal regulator of IL-1 and IL-18 

release to both bacterial and viral challenges.  Utilizing macrophages isolated from CIAS1-/- 

mice, components of the immune response to gram positive bacteria such as Staphylococcus 

aureus and Listeria monocytogenes, as well as Sendai and Influenza viruses have been shown 

to require cryopyrin (Kanneganti et al., 2006a; Mariathasan et al., 2006b).  However, 

infection with gram negative Salmonella typhimurium or Francisella tularensis elicits 

caspase-1 activation and IL-1β release in a cryopyrin-independent fashion (Mariathasan et 

al., 2005; Sutterwala et al., 2006).  Macrophage cell death induced by Salmonella and  

Francisella are similarly unaffected by CIAS1 deficiency (Mariathasan et al., 2005).  

Alternate proteins mediate the response to these pathogens.  Ipaf, which participates in its 

own inflammasome, is responsible for initiating inflammation in response to Salmonella 

typhimurium (Mariathasan et al., 2004). It has been suggested that cryopyrin does not 

mediate the recognition of gram negative bacteria.  However, our results indicate that 

cryopyrin mediates both IL-1β release and cell death in response to the gram negative 

bacteria S. flexneri in THP-1 cells and mouse macrophages (Fig. 2.7).  Thus, cryopyrin 

mediates IL-1β processing and secretion in response to specific gram positive and negative 

bacteria.   

Despite substantial progress made in understanding pathogen-induced host cell death, 

the mechanisms governing Shigella induced host cell death have not been conclusively 

delineated (Haimovich and Venkatesan, 2006).  This study illuminates a necrotic host cell-

death pathway detonated by Shigella requiring both cryopyrin and ASC. While the strain 
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M90T (Serogroup 5) has been reported to induce both necrosis and caspase-1 dependent 

apoptosis (Francois et al., 2000; Raqib et al., 2002; Zychlinsky et al., 1992), many others 

have observed caspase-1 independent necrosis initiated by strains 2457T (Serogroup 2A), 

YSH6000 (Serotype 2A), and now 12022 (Serogroup 2B) (Fernandez-Prada et al., 1997; 

Fernandez-Prada et al., 2000; Koterski et al., 2005; Nonaka et al., 2003). These differences 

have been attributed to differences in species and infected cell types, Shigella strains, 

duration and multiplicity of infection, and conclusions regarding the nature of cell death 

drawn from incomplete methodology (Nonaka et al., 2003).  The results presented here verify 

and define cryopyrin and ASC as key components of a caspase-1 independent mechanism by 

which Shigella induces necrosis and should do much to advance the understanding of 

Shigella pathogenesis. 

Further resolved is the putative involvement of caspase-1 in mediating Shigella 

induced cell death. Previous reports have suggested that the virulence factor IpaB is secreted 

by Shigella via a type III secretion system upon contact with host cells and subsequently 

binds directly to caspase-1 to induce cell death.(Blocker et al., 1999; Chen et al., 1996; 

Menard et al., 1994) Our results clearly demonstrate a caspase-1 independent pathway as 

both caspase-1 specific inhibitors and macrophages lacking caspase-1 were equally 

susceptible to Shigella-induced cell death as wildtype controls, a result consistent with other 

reports (Suzuki et al., 2005). It should be noted that Suzuki et al. observed an early apoptotic 

event requiring caspase-1and IpaB preceded a later necrotic event which occurs independent 

of caspase-1 or IpaB, and thus both outcomes are possible. While we show here that 

cryopyrin and ASC are required for Shigella initiated necrosis, the activation of NFкB and 

JNK in epithelial cell line following Shigella infection has been reported to require the 
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overexpression of NOD1/CARD4 (Girardin et al., 2001).  Although verification of this 

finding using primary epithelial cells from mice lacking NOD1/CARD4 has not been 

performed to confirm the physiologic relevance of this data, taken together, these data 

suggest that several NLR proteins might mediate different aspects of the immune response to 

Shigella in a cell-type specific fashion.  

In summary, we report that disease-associated cryopyrin mediates a form of necrotic-

like cell death that is replicated when normal monocytes encounter the bacterial pathogen S. 

flexneri.  These findings suggest that the gain-of-function mutant cryopyrin in patients might 

propagate an inflammatory response without the normal stimulation caused by pathogens. 

These findings also show a parallel with pathogen-induced, NB-LRR-mediated cell death 

found in plants. A long history of elegant studies in plants have shown that cell death is a 

major mechanism by which plant R proteins mediate host response to multiple microbial 

pathogens (Belkhadir et al., 2004).  It will be important to determine if other NBD-LRR 

proteins also cause the induction of cell death in myeloid and non-myeloid cells, and if these 

proteins mediate both apoptotic and necrotic death in a pathogen-specific fashion.   
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Figure 2.1 – Disease-associated cryopyrin causes necrotic-like cell death.  A) Cell 

viability is diminished in THP-1 cells expressing disease-associated CIAS1 mutants.  XTT 

reduction was measured 24 hours after adenoviral transduction. B) Mutant CIAS1 induced 

cell death does not cause caspase-3 or PARP cleavage.  Immunoblots for caspase-3 or its 

substrate PARP were performed on lysates made from cells infected with the indicated 

adenoviral constructs or treated with staurosporine.  Cleaved caspase-3 and PARP are 

observed in staurosporine-treated cells but not in THP-1 cells expressing wildtype or disease-

associated A439V CIAS1. C) Incubation with 100 µM pan-caspase (zVAD-fmk) inhibitor 

does not substantially block cell death. D) THP-1 cells expressing the R260W or A439V 

disease-associated mutant die without exhibiting DNA fragmentation.  DNA content was 

measured by PI staining followed by flow cytometry. The percentage of cells with sub-G1 

content, indicating the DNA-fragmentation characteristic of apoptosis, is shown.  E) Disease-

associated cryopyrin expression does not promote the loss of mitochondrial membrane 

potential.  THP-1 cells were treated as indicated.  Mitochondrial membrane potential was 

measured with the potential sensitive dye TMRE.   Data summarized here is shown in Figure 

2.9B.  F) Representative EM images of wildtype cryopyrin (left), A439V transduced 

(middle) and staurosporine treated (right) THP-1 cells. A439V transduced cells demonstrate 

necrotic features including: a) degradation of the plasma membrane, b) dysmorphic/swollen 

mitochondria, and c) the lack of chromatin condensation. Staurosporine treated cells exhibit a 

typical apoptotic morphology.   
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Figure 2.2 – Disease-associated CIAS1 induces IL-1β release, but cell death is IL-1β 

independent.  A)  IL-1β is released from THP-1 cells infected with two mutant forms of 

CIAS1 as measured by ELISA. IL-1β release is abrogated with 100 µM YVAD. B) IL-1β is 

released from THP-1 cells infected with two mutant forms of CIAS1 as measured by ELISA. 

IL-1β release is abrogated with 100 µM YVAD. C) Cell death induced by CIAS1 mutants is 

not inhibited by 100 µM YVAD.  Viability was measured by XTT reduction 24 hours post 

transduction. D) Kineret®, the IL-1 receptor antagonist, does not prevent cryopyrin-induced 

cell death.  THP-1 cells were infected with the indicated adenovirus for 24 hours in the 

presence or absence of Kineret®. NT, not treated with Kineret®.  E) IL-8 induction in THP-1 

cells by recombinant IL-1β is inhibited by Kineret®. IL-1β induced a significant level of IL-

8 production; this biologic effect of IL-1β was completely abrogated by Kineret®. F) Cell 

death induced by cryopyrin mutants is blocked by a cathepsin B inhibitor, Ca-074-Me. THP-

1 cells were infected with the indicated adenovirus for 24 hours in the presence or absence of 

Ca-074-Me.  Viability was measured by XTT reduction after 24 hours 
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Figure 2.3 - Mutant CIAS1-induced THP-1 cell death is ASC dependent.  A and B) 

Expression of ASC is markedly decreased in cells stably transduced with shRNA designed to 

promote the degradation of ASC mRNA (shASC).  Immunoblot analysis and real-time PCR 

of the indicated stable cell lines verify a decrease of ASC protein (A) and mRNA (B). C) IL-

1β release following infection with CIAS1-containing adenovirus is abrogated in cells with 

shASC.  IL-1β was determined by ELISA.  Values <10 pg/ml are considered not detectable 

(“N/D”).  D)  Mutant CIAS1-induced cell death is abrogated in cells with decreased 

expression of ASC caused by shASC.  XTT reduction was measured 24 hours after 

adenoviral infection.  
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Figure 2.4 - HMGB1 is released from THP-1 cells following expression of disease-

associated CIAS1 mutants. A) Two disease-associated CIAS1 mutants induce substantially 

more HMGB1 release than the wild type gene. B) HMGB1 release is abrogated in cells with 

shASC which reduced ASC expression. C) Inhibition of caspase-1 with YVAD-CHO does 

not substantially affect HMGB1 release. Nitrocellulose membranes stained with amido black 

are provided as loading controls.  
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Figure 2.5 – Cell death in cells isolated from CAPS patients and in cells expressing 

wildtype CIAS1.  A)  Cell viability is decreased in PBMCs from FCAS patients in response 

to LPS. XTT reduction was used to assay cell viability, and was measured 72 hours after 

stimulation.  *p<0.05, ** p<0.01 when compared to controls. B) Cell viability is diminished 

in THP-1 cells expressing wild type CIAS1 at higher multiplicities of infection.  XTT 

reduction was measured 48 hours after adenoviral infection. 
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Figure 2.6 – Shigella flexneri induced cell death and IL-1β require CIAS1 and ASC but 

not caspase-1. A) Cryopyrin protein expression is decreased in THP-1 cells transduced with 

cryopyrin-specific shRNA (shCIAS1). B) S. flexneri induced IL-1β release is diminished in 

CIAS1 deficient THP1 cells C) THP-1 cells with shCIAS1 resist S. flexneri-induced death 

but not staurosporine-induced death. D and E) ASC is required for S. flexneri-induced cell 

death (D) and IL-1β release (E) in THP-1 cells. F) CIAS1-/- bone marrow-derived 

macrophages exhibit decreased levels of cell death in response to S.flexneri. G) S. flexneri-

induced IL-1β release from thioglycolate-elicited peritoneal macrophages is reduced in 

CIAS1-/- macrophages. H) S. flexneri does not require Caspase-1 to initiate cell death. I) S. 

flexneri requires caspase-1 to induce IL-1β production in bone marrow-derived macrophages. 

J) Cryopyrin initiates cell death in response to virulent Shigella. Bone marrow derived 

macrophages were infected with either 2457T (virulent) or BS103 (avirulent) S. flexneri at a 

MOI of 50 for 2 or 4 hours. Absence of virulence plasmid in BS103 was verified by ipaB 

immunoblot (inset). In all cases, cell death was measured by 7-aad uptake or LDH release 

and IL-1β determined by ELISA. 
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Figure 2.7 - Shigella flexneri induces cryopyrin-dependent necrosis. A) Infection with S. 

flexneri for six hours induced cell death that is morphologically consistent with necrosis (see 

panels i and ii).  To detect intracellular bacteria a shorter infection (2 hr) time was used so 

that the cells are just entering the initial phase of cell death. Cells with shCTRL, but not 

shCIAS1 exhibited a lost of cytoplasmic content as determined by EM imaging. Insets show 

the presence of bacteria (opaque round or oblong structures). B) PARP is not cleaved 

following S. flexneri infection. C) 50 µM cathepsin B inhibitor (Ca-074-Me) substantially 

abrogates S. flexneri cell death. In contrast, 100 µM pan-caspase (zVAD-fmk) and 100 µM 

caspase-1 specific (YVAD-CHO) inhibitors fail to block S. flexneri-induced cell death in 

shCTRL and shCIAS1 cells at 6 hours. D and E) S. flexneri induced IL-1β (D) and IL-18 (E) 

release is reduced in shCIAS1 THP-1 cells and in cells treated with 100 µM YVAD-CHO. F) 

S. flexneri-induced HMGB1 release is abrogated by shCIAS1, and thus is cryopyrin 

dependent. In all cases, cell death was measured by 7-aad uptake.  IL-18 and IL-1β release 

were determined by ELISA 
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Figure 2.8 – Immunoblot of CIAS1 and supplemental cell death assays. A) Adenoviral 

constructs promote similar expression of FLAG-tagged CIAS1 variant and wildtype proteins 

in the 293T cell line as revealed by immunoblotting.  B and C) Increased cell-permeability to 

two viability dyes indicates that disease-associated cryopyrin reduced cell viability.  Cell-

permeability following 48 hours of staurosporine treatment or infection with the indicated 

construct was determined by (B) trypan blue and (C) flow cytometry performed on Viaprobe 

stained cells. 
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Figure 2.9 – Staurosporine induced cell death and mitochondrial membrane 

permeability transition controls. A) Staurosporine-induced cell death causes DNA 

fragmentation that is sensitive to a pan-caspase inhibitor.  One hour pretreatment with 100  

µM zVAD-fmk blocks DNA fragmentation induced by 1 µM staurosporine. B) Cells 

expressing disease-associated cryopyrin do not undergo a mitochondrial membrane 

permeability transition. Cells were treated as indicated for 4 or 8 hours before staining with 

TMRE to measure membrane permeability.  Results are presented along two axes, forward 

scatter (y axis) and TMRE (x axis).  Healthy cells are positive along both axes (Gate A, see 

first panel).  Cells which have lost both forward scatter and membrane potential are 

considered dead (Gate C).  Cells which maintain forward scatter while losing membrane 

potential are undergoing a transition state (Gate B).  Only cells treated with the pro-apoptotic 

agents etoposide and staurosporine show an accumulation in Gate B.  However, cells 

expressing mutant cryopyrin or treated with pro-apoptotic agents show an accumulation in 

gate C, indicating that all three treatments result in cell death. C)  HMGB1 is not released 

from THP1 at the 2 and 6 hr time points after treatment with 1 µM staurosporine, but it is 

released upon prolonged (24 hr) treatment, likely after secondary necrosis reported in the 

literature. 
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Figure 2.10 - Salmonella induced cell death does not require CIAS1. Bone marrow 

derived macrophages were infected with Salmonella typhi at a MOI of 50 for 2 hours. Cell 

death was determined by flow cytometry performed on 7-aad stained cells 
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Figure 2.11 - Glycine fails to abrogate S.flexneri initiated cell death or IL-1β release.  

A) Glycine did not reduce cryopyrin mediated cell death. THP-1 cells were pretreated with 

10mM glycine for 1 hour before infection with S.  flexneri at a MOI of 50 for the indicated 

time period. B) Glycine does not affect Shigella induced IL-1β at the indicated time period. 



 

 

CHAPTER III 

KLEBSIELLA PNEUMONIAE INDUCES IL-1β RELEASE AND 
PYRONECROSIS THROUGH NLRP3. 
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Klebsiella pneumoniae induces IL-1β release and pyronecrosis through NLRP3. J Ex Med 
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3.1 Abstract 

  

NLRP3 has emerged as an important regulator of pathogen-induced inflammation.  It 

not only participates in one of several caspase-1-activating inflammasome complexes, which 

mediate maturation of the pro-inflammatory cytokine IL-1β, but is also a critical mediator of 

pyronecrosis, an inflammatory cell death program with necrotic features.  Both processes 

have been shown to be activated by pathogens in vitro, but the consequence of these 

processes to the host organism remains undetermined. Here we show that the extracellular 

pathogen Klebsiella pneumoniae induces pyronecrosis and NLRP3-dependent IL-1β 

processing in the human monocytic cell line THP-1 and in bone marrow derived 

macrophages. Consistent with these results, mice lacking NLRP3 exhibit significant 

decreases in lung inflammation following pulmonary infection with K. pneumoniae. 

However, these mice are more susceptible to K. pneumoniae induced lethality compared to 

controls.  Cumulatively, these results demonstrate that NLRP3 activity is beneficial to the 

host in defense against K. pneumoniae. 

 

 

 

 

 

 

 

 



 84 

3.2 Introduction 

 

Klebsiella pneumoniae is a non-motile, non-flagellated, gram negative, rod-shaped 

bacterium which normally resides within the mouth, skin, and intestines. Pathogenic K. 

pneumoniae invades the lungs where it is capable of inducing severe bacterial pneumonia 

that is often complicated with bacteremia and sepsis (Sahly and Podschun, 1997).  Airway 

infection typically leads to extensive lung injury resulting from increased inflammation, 

hemorrhage, and the necrotic destruction of lung tissue. This process results in thick, blood-

laced mucous known as “currant jelly” sputum, which is characteristic of K. pneumoniae-

induced pneumonia. Worldwide, K. pneumoniae is amongst the most common gram negative 

bacteria encountered by clinicians and is a leading cause of community-acquired and 

hospital-associated respiratory infection (Ko et al., 2002).  Its frequency in the latter context 

is particularly alarming. K. pneumoniae is responsible for up to 23% of nosocomial 

infections, and the difficulty in treatment of elderly or otherwise compromised patients 

results in a mortality rate of up 50% (Feldman et al., 1995).  Moreover, the growing 

prevalence of antibiotic resistant strains in this species has led to increased attention and 

concern (Keynan and Rubinstein, 2007; Paterson et al., 2004). Though recent work has 

identified innate mechanisms underlying the initial host response to bacterial infection, little 

work has yet been done to examine the contribution of these mechanisms to Klebsiella 

pathogenesis or immunity. 

Initially described in our laboratory, the NLR (nucleotide binding – leucine rich 

repeats, formerly CATERPILLER) family of genes/proteins is increasingly implicated in the 

regulation of immunity (Harton et al., 2002a; Ting and Davis, 2005).  The NLR family 
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member NLRP3 (formerly cryopyrin), which is expressed abundantly in neutrophils and 

macrophages, is emerging as a critical mediator of inflammation.  CIAS1/NLRP3, the gene 

encoding this protein, was first identified through its association with the periodic fever 

condition CAPS (CIAS1-associated periodic syndromes), which comprises a wide range of 

severity (Ting et al., 2006).  This condition is believed to result from gain-of-function 

mutations in NLRP3.  Using disease-associated variants, our lab and others confirmed the 

importance of NLRP3 in mediating inflammation directly, by participating in IL-1β 

maturation, and demonstrated an unexpected role for NLRP3 in promoting inflammation 

indirectly, by inducing a necrotic pathway of cell death (Fujisawa et al., 2007; Willingham et 

al., 2007). 

A role for NLRP3 in caspase-1 maturation is also well established.  Following 

stimulation, NLRP3, ASC (Apoptotic Speck-like protein containing a Card), 

Cardinal/TUCAN, and pro-caspase-1 combine to form one of several known inflammasome 

complexes. Within this complex, pro-caspase-1 is activated, which in turn cleaves and 

activates the pyrogenic cytokines IL-1β and IL-18 (Agostini et al., 2004).  Currently, 

activation of the NLRP3 inflammasome is associated with the widest spectrum of stimuli.  

Among these are gram-positive and gram-negative bacteria, including Staphylococcus 

aureus, Listeria monocytogenes, and Shigella flexneri (Fig 1.6).  To date, no studies have 

examined inflammasome activation in response to K. pneumoniae.   

Recent work from our laboratory has demonstrated a second pro-inflammatory 

function for NLRP3 (Willingham et al., 2007).  Necrosis has been shown to occur in 

monocytic cells infected with intracellular bacteria or following exposure to toxins.  Though 

in some cases pathogen-induced death is likely to be a passive response, programmed 
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necrotic cell death pathways are potentially critical to macrophage function.  Recently, our 

lab has identified a novel mechanism of necrotic-like cell death, termed pyronecrosis 

(Willingham et al., 2007).  Pyronecrosis requires the activity of NLRP3, its partner protein 

ASC, and the lysosomal protease cathepsin B (Willingham et al., 2007).  Though 

pyronecrosis is entirely independent of caspase-1, it is inherently pro-inflammatory.  One 

defining feature of necrosis is the loss of plasma membrane integrity and subsequent spilling 

of intracellular contents.  Certain intracellular components, notably the nuclear factor 

HMGB1, elicit strong pro-inflammatory effects when released into the microenvironment 

(Scaffidi et al., 2002). 

Pyronecrosis serves as an interesting contrast to pyroptosis, another form of 

pathogen-induced cell death.  Both pyronecrotic and pyroptotic cells demonstrate 

morphological features characteristic of necrosis.  However, the two pathways are readily 

distinguishable at the molecular level.  Unlike pyronecrosis, pyroptosis requires the activity 

of caspase-1. These two pathways also appear to be induced by different stimuli.  

Pyronecrosis has been observed in monocytic cells infected with Shigella 

flexneri(Willingham et al., 2007).  Pyroptosis was first observed in monocytic cells infected 

with Salmonella, which activates signaling through a different NLR protein, NLRC4 

(formerly IPAF) (Brennan and Cookson, 2000; Mariathasan et al., 2004).  NLRC4 has been 

implicated in pyroptotic cell death in response to Salmonella typhimurium and Pseudomonas 

aeruginosa (Brennan and Cookson, 2000; Franchi et al., 2007; Mariathasan et al., 2004; 

Sutterwala et al., 2007).  Interestingly, though ASC is required for activation of caspase-1, 

deletion of ASC does not abrogate caspase-1 dependent pyroptosis initiated by P. aeruginosa 

(Sutterwala et al., 2007).   
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Despite the wealth of in vitro data implicating the NLR family in pathogen-induced 

inflammation, in vivo evidence for the importance of these proteins remains elusive.  We 

show here that NLRP3 carries out both its IL-1β processing and pyronecrotic functions in 

response to K. pnuemoniae, and that the absence of NLRP3 decreases the rate of survival in 

mice infected with the bacteria.   This is the first demonstration that NLRP3 activity is 

protective to the organism in vivo, and reveals an important component of the host immune 

response to K. pneumoniae. 
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3.3 Materials and Methods 

 

Experimental Animals - All studies were conducted in accordance with the National 

Institutes of Health Guide for the Care and Use of Laboratory Animals and were approved by 

the Institutional Animal Care and Use Committee of the University of North Carolina at 

Chapel Hill. Mice deficient in NLRP3, ASC, NLRC4, and Caspase-1 were generated as 

previously described (Mariathasan et al., 2004; Sutterwala et al., 2006). WT animals were 

obtained from NCI. All animals were maintained in specific pathogen-free animal facilities at 

The University of North Carolina at Chapel Hill.   

 

Cell lines and reagents – THP-1 cells purchased from American Type Culture Collection 

(ATCC) and cultured as described previously (Williams et al., 2005).  Anti-caspase-3 

antibody purchased from Cell Signaling; anti-PARP, anti-Actin, and HRP-conjugated 

secondary antibodies from Santa Cruz Biotechnology; anti-HMGB1 antibody from Abcam; 

Super Signal ECL reagent from BioRad.  Detailed methods for preparation of retroviral 

shuttle vectors, transduction, and sorting to generate THP-1 cell lines stably expressing 

shRNA have been described (Taxman et al., 2006).  The shRNA target sequences are as 

follows:  shASC-GCTCTTCAGTTTCACACCA, shCtrl-GCTCTTCctggcCACACCA, 

shNLRP3-GGATGAACCTGTTCCAAAA.   

  

Bacteria – Klebsiella pneumoniae 43816, serotype 2 was obtained from the ATCC and 

propagated in LB for approximately 2 hours at 37oC.  Bacteria density was estimated by 
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measuring the absorbance at 600 nm (1 OD600 = 3 X 108 bacteria/ml).  Accurate CFUs were 

determined for each experiment by plating an aliquot onto LB agar plates.  

 

Klebsiella pneumoniae induced airway inflammation.  OD readings were determined on 

actively growing cultures of K. pneumoniae.  Bacteria were pelleted, washed twice with PBS, 

and resuspended in an equal volume of  PBS.  Mice were anesthetized and challenged via 

intratracheal (i.t.) instillation with 4 X 104 CFUs of K. pneumoniae in 50 µl of PBS.  Mock 

challenged mice received 50 µl of PBS. THP-1 cells were with infected with Salmonella and 

Klebsiella at a MOI=50 for 1 or 6 hours, respectively. Bone marrow derived macrophages 

were infected with Klebsiella (MOI=200, 6 hours) or Salmonella (MOI=50, 1 hour). Samples 

were centrifuged at 650*g for 10 minutes immediately following addition of bacteria. 

Gentamicin (50 µg/ml) was added to cultures 1 hour post infection.  

 

Assessment of bacteria burden.  Mice were euthanized via i.p. injection with 2,2,2 

tribromoethanol (avertin).  Whole liver (gal bladder removed), spleen and lungs were 

removed, wet weight assessed, homogenized in 500 µl HBSS with a Tissue Master 125 hand 

held tissue homogenizer (Omni International) and centrifuged. The resulting supernatants 

were serially diluted and plated on LB plates and grown for 24 hours at 37oC.  

 

Assessment of airway inflammation.  Survival, body weight and body temperature were 

assessed over the course of 48 hours post K. pneumoniae infection.  Mice were euthanized 

via lethal i.p. injection with avertin and serum was harvested via cardiac puncture.  The liver, 

kidney and spleen were harvested, weighed and either homogenized in 500 µl HBSS or fixed 
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in 4% paraformaldehyde (PFA).  Mice were then perfused with HBSS and a tracheal cannula 

was inserted below the larynx.  The lungs were lavaged 5 times with 1 ml HBSS.  The 

recovered bronchoalveolar lavage fluid (BALF) was pooled and red blood cells were lysed 

via hypotonic saline treatment.  Total BALF cellularity was assessed with a hemacytometer 

and trypan blue staining.   Aliquots of each BALF were cytospun onto slides and Diff-Quik 

(Dade Behring) stained for differential cell counts.  Leukocytes were identified based on 

morphological criteria of no fewer than 200 cells per BAL sample.  An aliquot of BALF was 

serially diluted, plated on LB agar plates, and incubated for 24 hours at 37oC to assess 

bacteria burden.  The remaining BALF was centrifuged and the supernatant was collected.  

Following BALF harvest, the lungs were fixed by inflation (20-cm pressure) and immersion 

in 4% PFA. 

 

Histopathology.  Whole inflated lungs were embedded in paraffin wax. 4-µm sections were 

cut and stained with hematoxylin and eosin (H&E).  Serial sections of the left lobes of the 

lungs that yield maximum longitudinal visualization of the intrapulmonary main axial airway 

were examined and the degree of inflammation was scored by one of the authors (I.C.A.) 

who was blinded to genotype and treatment.   

 

Cytokine and chemokine assessment.  Cell free supernatants were harvested from K. 

pneumoniae (MOI=200, 6 hour) or S. typhi (MOI=50, 1 hour) infected thioglycolate-elicited 

peritoneal macrophages. Supernatants were analyzed using RayBio® Mouse Cytokine 

Antibody Array G Series 3 (RayBiotech Inc. Axon scanner 4000B with GenePix software 

was used to collect fluorescence intensities from cytokine-bound antibody spots. These 
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values were normalized to the ratio of positive control values for each sample. Afterward, the 

total normalized florescence values of replicate spots were averaged and expressed as fold 

increase over the non-infected sample for each respective genotype. “N/D” indicates 

cytokines where the raw fluorescence values of replicate spots deviated more than 2 fold 

from each other and were thus dismissed. If this occurred in the non-treated sample, the 

cytokine was removed from the data set. Cytokine concentrations were determined directly 

by RayBiotech Inc. using their Quantibody processing service.  

 

Preparation of Macrophages – Bone marrow was harvested from 6-8 week old mice and 

cultured for 7 days in antibiotic free DMEM supplemented with 10% FCS and 30% M-CSF 

conditioned media. Bone marrow derived macrophages were washed and cultured in 

antibiotic free DMEM+10% FCS immediately prior to bacterial infection. 

 

ELISA – Samples were harvested at indicated times and assayed with OptEIA Human IL-1β 

ELISA Set or OptEIA Mouse IL-1β ELISA Set (BD Biosciences).  

 

Cell Viability  – Cell viability was assayed per manufacturer protocol using either CytoTox-

ONE™ Homogeneous Membrane Integrity Assay (Promega), ToxiLight® BioAssay Kit 

(Lonza Bioscience), or 7-AAD (BD Pharmingen) staining as indicated. In the case of 7-AAD 

cell staining, cells were collected and rinsed twice in cold PBS.  Pellets were resuspended in 

0.5ml PBS with 1 µl 7-AAD. Cells were incubated in the dark for 15 minutes before analysis 

on a FACScan (BD). 
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3.4 Results 

 

K. pneumoniae-induced cell death and IL-1ββββ release require NLRP3 and ASC. 

 

To date, the participation of NLR proteins in host immune response to K. pneumoniae 

has not been examined.  We observed both cell death and IL-1β release following infection 

of THP-1 human monocytic cells with K. pneumoniae (Fig. 3.1A and 3.1B).  Both processes 

were abrogated in the absence of NLRP3 (Fig. 3.1A and 3.1B).  Reduction of NLRP3 was 

achieved through stable integration of retroviruses encoding shRNAs designed to promote 

the targeted degradation of NLRP3 mRNA, as described previously (Taxman et al., 2006).   

Previously, we demonstrated that ASC, a partner protein of NLRP3, is required for 

Shigella flexneri–induced cell death in THP-1 cells (Willingham et al., 2007).  Therefore, we 

tested the ability of Klebsiella to elicit cell death and IL-1β in ASC-deficient THP-1 cells. 

Both IL-1β release and cell death were substantially abrogated in the shASC cells (Fig. 3.1C 

and 3.1D).  To expand the physiologic importance of these results, bone marrow derived 

macrophages were isolated from wild-type mice and mice deficient for NLRP3, ASC, or 

NLRC4.   Deletion of NLRP3 or ASC resulted in a near complete inhibition of IL-1β induced 

by Klebsiella as measured by ELISA, whereas NLRC4 null macrophages demonstrated no 

substantial difference from wild type (Fig. 3.1E).  Importantly, this phenomenon is not 

common to all pathogenic bacteria.  In agreement with previous work, IL-1β release from 

macrophages infected with Salmonella typhi was unaffected by NLRP3 deletion, whereas 

deletion of NLRC4 eliminated the inflammatory response (Fig. 3.1E).  The NLRP3 

inflammasome was previously reported to be activated by a combination of E. coli 

lipopolysaccharide (LPS) and ATP (Agostini et al., 2004).  To determine if the NLRP3 
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inflammasome is also activated by Klebsiella LPS, bone marrow derived macrophages were 

challenged with 50 ng/ml LPS isolated from K. pneumoniae for 16 hours followed by 

stimulation with 5 mM ATP for 20 min. In contrast to wild type and NLRC4 deficient 

macrophages, deletion of ASC or NLRP3 eliminated Klebsiella LPS-induced IL-1β release 

(Fig. 3.1F). Together, these results indicate that NLRP3 is the predominant NLR activated by 

Klebsiella and that deletion of either NLRP3 or ASC substantially abrogates the hosts 

inflammatory and cell death responses. 

  

NLRP3 mediates Klebsiella induced pyronecrosis. 

Having established that NLRP3 is essential for Klebsiella-induced cell death, we 

sought to determine the nature of this phenomenon.  Indicative of pyronecrosis, K. 

pneumoniae-induced cell death was markedly reduced in shControl THP-1 cells treated with 

the cathepsin-B inhibitor Ca-074-Me (Fig. 3.2A). Pan-caspase inhibitor (zVAD-fmk) also 

reduced Klebsiella induced cell death, likely reflecting a well-documented off target 

inhibition of cathepsin B by the zVAD peptide (Schotte et al., 1999). The caspase-1 specific 

inhibitor YVAD-cho had no effect (Fig. 3.2A).  Both pan-caspase and caspase-1 specific 

inhibitors were used at concentrations sufficient to inhibit caspase activity, as evidenced by 

the attenuation of Klebsiella induced IL-1β release (Fig. 3.2B).  Interestingly, the cathepsin B 

inhibitor not only blocked Klebsiella induced cell death in THP1 cells, but also prevented IL-

1β release in response to the pathogen (Fig. 3.2B).  This effect was also observed in bone 

marrow derived macrophages (Fig. 3.2C). 

Additional features of Klebsiella-induced cell death are also consistent with 

pyronecrosis.  As measured by western analysis, HMGB1 is released from K. pneumoniae 
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infected shCTRL cells but not shNLRP3 cells (Fig. 3.2D).  HMGB1 is not released by THP-1 

cells treated with staurosporine, a well-established inducer of apoptotic cell death (Fig 3.2D).  

During apoptosis, caspase-3 undergoes activating cleavage.  In turn, caspase-3 cleaves PARP 

and other downstream substrates.  Neither caspase-3 nor PARP were cleaved in shCTRL or 

shNLRP3 cells infected with Klebsiella, though both were cleaved in staurosporine-treated 

cells (Fig. 3.2E).   

 

K. pneumoniae induces chemotactic and inflammatory cytokine production in primary 

mouse macrophages 

 The processing and release of proinflammatory cytokines and chemokines is 

fundamental to proper innate immune response to pathogens.  Cell free supernatants prepared 

from Klebsiella- or Salmonella-infected macrophages were analyzed on anti-cytokine 

antibody arrays containing antibodies to 62 inflammatory mediators (For mediators induced 

≥3 fold, see Fig. 3.3A. For complete set, see Table 3.1).  Production of G-CSF, IL-1β, IL-1α, 

and IFNγ was markedly decreased in both ASC and NLRP3 deficient macrophages (Fig 

3.3A).  Modest decreases in CD62L, Fractalkine, and IL-3 receptor beta were also observed 

(Fig. 3.3A).  IL-1β was not decreased in NLRP3 deficient macrophages treated with 

Salmonella, which activates the NLRC4 inflammasome.  Of note, several inflammatory 

cytokines including MIP-1α, MIP-2, TNFα, and IL-6 were induced to a greater extent in 

macrophages lacking NLRP3, perhaps to compensate for the loss of IL-1β (Fig. 3.3A).  To 

confirm the results obtained by the antibody array, a subset of inflammatory mediators were 

measured using quantitative multiplexed anti-cytokine arrays. Cytokine measurements of IL-
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1β, IFNγ, and KC support the data obtained by the antibody arrays (Fig 3.3B, for complete 

list of quantified cytokines, see Table 3.2).  

 

Mice lacking NLRP3 and ASC demonstrate significantly increased mortality following 

K. pneumoniae airway infection.   

 To determine whether NLRP3 and ASC are involved in mediating the host immune 

response to K. pneumoniae in vivo, we used a mouse airway infection model. Mice were 

intratracheally challenged with (4 x 104) CFUs of K. pneumoniae and survival was assessed 

over the course of 4 days. Mice lacking NLRP3 demonstrated significantly increased 

mortality compared with wild type mice (p < 0.05, Logrank Test) (Fig. 3.4).   ASC deficient 

mice demonstrated similar increases in mortality.  This increase in lethality was not 

associated with significant increases in either local or systemic bacterial burden as only 

subtle differences were detected (Fig. 3.7).  No significant difference in survival was 

observed between mice lacking NLRC4 and wild type animals.  

 
NLRP3 deficient mice demonstrate significantly attenuated airway inflammation 

following K. pneumoniae infection.   

Our in vitro evidence suggested that NLRP3 reduction prevents K. pneumoniae-

induced inflammation. To determine if inflammation was also reduced in vivo, NLRP3 

deficient mice were challenged with (7.4 x 104) CFUs of K. pneumoniae for 48 hours and 

histology analysis was performed on lung sections cut to reveal the main bronchi of the large 

lobe. Representative sections from the apical region of the main bronchi of the large lobe 

(10x magnification) are shown from indicated genotypes (Fig. 3.5A). In comparison to WT 

and NLRC4-/- mice, NLRP3-/- mice show decreased inflammatory cell recruitment and less 
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occlusion of the alveolar spaces.  These findings are consistent with a decrease in overall 

inflammation (Fig. 3.5A). To quantify this change each of 6 histology parameters was scored 

as 0 (absent), 1 (mild), 2 (moderate), or 3 (severe):  mononuclear cell infiltration; 

polymorphonuclear cell infiltration; airway epithelial cell hyperplasia/injury; extravasation; 

perivascular cuffing; and percent of lung involved with inflammation.  The scores of the 

parameters were averaged for a total histology score. All mice demonstrated a significant 

increase in airway inflammation following K. pneumoniae challenge.   However, a 

significant attenuation in airway inflammation was only observed in mice lacking NLRP3 

(Fig. 3.5B). 

 

In vivo levels of IL-1β and cell death are reduced in K. pneumonia challenged NLRP3-/- 

mice. 

 NLRP3 is required for pyronecrosis in both human and mouse cells challenged with 

Klebsiella. To determine if NLRP3 was also required for the induction of pyronecrosis in 

vivo, we measured IL-1β levels in the bronchoalveolar lavage fluid (BALF) and serum of K. 

pneumoniae infected mice. In both cases, deletion of NLRP3 caused a reduction in IL-1β, 

with larger differences observed in the serum (Fig. 3.6A-B).  This decrease in IL-1b was 

accompanied by an increase in IL-6 in serum and BALF samples (Fig 3.6C-D). Deletion of 

ASC also demonstrated marked decreases in circulating levels of IL-1β (Fig. 3.6A).  Deletion 

of NLRP3 not only reduced IL-1β, but also decreased overall levels of cell death in BALF 

samples as determined by lactate dehydrogenase release (Fig. 3.6E).  To examine whether 

NLRP3 is responsible for the induction of necrosis in vivo, HMGB1 levels were measured in 

serum samples of K.pneumoniae challenged mice.  As measured by western blot analysis, 
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Klebsiella-induced HMGB1 release was substantially abrogated in NLRP3-/- mice (Fig. 

3.6F).  
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3.5 Discussion 

Several recent reports have established a role for NLR proteins in mediating 

pathogen-induced inflammation in vitro, but in vivo confirmation of these results has been 

lacking. Here, we identify NLRP3 as a critical effector of the host immune response to K. 

pneumoniae, a major cause of community-acquired bacterial pneumonia. This is the first 

demonstration that an NLR molecule participates in IL-1β maturation and cell death in 

response to K. pneumoniae.  Furthermore, these results demonstrate the in vivo consequences 

of NLRP3 activity on host survival and inflammation. Despite substantial decreases in lung 

inflammation, mice lacking NLRP3 demonstrate increased susceptibility to Klebsiella-

induced lethality.  This finding confirms that NLRP3 activity contributes to protective host 

responses to bacterial pathogens. 

Following Shigella flexneri, K. pneumoniae is the second gram negative bacterial 

pathogen identified which activates the NLRP3-dependent cell death program termed 

pyronecrosis (Willingham et al., 2007). This pathway of cell death has morphological 

features characteristic of necrosis, and like necrosis is inherently pro-inflammatory.  Cellular 

components spill out from the pyronecrotic cell into the microenvironment.  Among these 

components is HMGB1, a nuclear protein which takes on the role of a powerful pro-

inflammatory cytokine when released from the cell (Sunden-Cullberg et al., 2006; 

Willingham et al., 2007).  HMGB1 stimulates the RAGE, TLR2, and TLR4 receptors on 

neighboring monocytes and macrophages and results in the induction of several 

inflammatory cytokines, including TNFα, IL-1β, and IL-6 (Andersson et al., 2000; Hori et 

al., 1995; Park et al., 2004).  K. pneumoniae induced a significant increase in the systemic 

levels of HMGB1 in the wild type mice, while no HMGB1 was observed in the serum from 
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NLRP3-/- animals.  This NLRP3-dependent release of HMGB1 was also observed in human 

THP-1 monocytic cells challenged with Klebsiella. Previously, we demonstrated that 

caspase-1 inhibitors failed to abrogate NLRP3 mediated HMGB1 release, suggesting that this 

phenomenon does not require inflammasome activity (Willingham et al., 2007).  It should be 

noted that HMGB1 levels are significantly increased in human septic patients, including 

those with K. pneumoniae sepsis (Wang et al., 1999).  Neutralization of HMGB1 is currently 

under investigation as a therapeutic target for the intervention of sepsis, bacteremia, and 

induced acute respiratory distress syndrome (Abraham et al., 2000; Mantell et al., 2006). 

Though inhibition of NLRP3-dependent pyronecrosis may be detrimental to host survival, 

neutralization of HMGB1may provide an opportunity to abrogate NLRP3-mediated 

inflammation without increasing host mortality. 

Our results indicate that NLRP3-dependent pyronecrosis is the predominant cell death 

and inflammation pathway induced by Klebsiella.  In contrast to the Salmonella induced 

pyroptosis pathway, ablation of NLRC4 or caspase-1 has minimal effect on inflammation or 

cell death induced by K. pneumoniae. In some instances, pyronecrosis may be attenuated by 

high concentrations of pan caspase inhibitor (ZVAD-fmk) due to a known off target 

inhibition of cathepsin B (Schotte et al., 1999).  Interestingly, cathepsin B inhibitors not only 

block NLRP3-mediated pathogen induced cell death, but also block the induction of IL-1β 

maturation by K. pneumoniae.  This finding suggests that IL-1β release is primarily 

downstream of pyronecrosis, which is not surprising given the strong pro-inflammatory 

activity of HMGB1.   

In addition to its clinical relevance, Klebsiella airway infection is one of the most 

thoroughly characterized mouse models of gram negative bacterial pneumonia and acute lung 
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injury with secondary bacteremia. (Lau et al., 2007; Lawlor et al., 2005).  Amongst K. 

pneumoniae virulence factors identified in these models, production of a prominent capsule 

is the most well-characterized determinant of pathogenesis (Cortes et al., 2002; Favre-Bonte 

et al., 1999).  Capsule production has been shown to enhance virulence primarily through 

protecting the pathogen from phagocytosis by macrophages and the initiation of an immune 

response. Currently, over 75 different capsule serotypes of Klebsiella have been classified 

based on the variable expression of 2 surface antigens, the lipopolysaccharide “O” antigen 

and the capsular polysaccharide “K” antigen. Approximately 9 different O antigens and over 

75 K antigens have been identified, both of which contribute to pathogenicity (Podschun and 

Ullmann, 1998).  In particular, K. pneumoniae serotype K2 is amongst the most clinically 

relevant serotypes due to its high incidence in both urinary tract infections and pneumonia 

cases and its marked virulence in mouse pneumonia models (Lau et al., 2007; Yu et al., 

2007). Several previous reports have noted that serotype K2 lacks the mannose-α2/3-

mannose sequence recognized by the macrophage mannose receptor, thereby increasing its 

resistance to phagocytosis (Kabha et al., 1995). As NLRP3 is expected to function as a 

cytosolic pathogen sensor, internalization of the bacteria or bacterial LPS is likely required 

for initiation of pyronecrosis.  Thus, this increased resistance to phagocytosis likely 

contributes to the relatively high MOI and longer timepoints required for the NLRP3-

mediated induction of IL-1β and our inability to detect Klebsiella induced cell death in bone 

marrow derived macrophages. In the future, it will be interesting to determine the influence 

of other capsule serotypes and mannose composition in triggering pyronecrosis. Though 

capsule K1 and K2 serotypes are most frequently associated with in vivo virulence, it must be 
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noted that capsule serotype is not an absolute determinant of virulence (Lau et al., 2007; Yu 

et al., 2007).  

In summary, our results indicate that NLRP3 and ASC are key regulators of necrosis 

and inflammation associated with K. pneumoniae infections.  The induction of NLRP3-

dependent pyronecrosis by K. pneumoniae results in the extracellular release of HMGB1, 

further propagating host inflammation.  Mice deficient in NLRP3 demonstrated significant 

reductions in both local and systemic inflammation and cell death when challenged with 

Klebsiella. However, these mice demonstrate increased mortality upon Klebsiella, indicating 

that pyronecrosis helps protect the host from pathogen induced death. Though future attempts 

to neutralize NLRP3-dependent pyronecrosis in vivo may result in decreased inflammation 

and necrotic tissue destruction, these studies suggest strong consideration of the detrimental 

consequences on host survival. 
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Figure 3.1 - Klebsiella pneumoniae induced cell death and IL-1β require NLRP3 and 

ASC. A) K. pneumoniae induced IL-1β release is decreased in THP-1 cells stably transduced 

with NLRP3-specific shRNA (shNLRP3).  B) shNLRP3-THP-1 cells are resistant to K. 

pneumoniae-induced death. C and D) ASC is required for K. pneumonia-induced IL-1β 

release (C) and cell death (D) in THP-1 cells. THP-1 cells were with infected with 

Salmonella and Klebsiella at a MOI=50 for 1 or 6 hours, respectively.  E) NLRP3-/- and ASC-

/- bone marrow-derived macrophages exhibit decreased levels of IL-1β release in response to 

K. pneumoniae but not Salmonella typhi..  NLRC4-/- macrophages demonstrate no defect in 

K. pneumoniae induced IL-1β release, but IL-1β release is attenuated in response to S. typhi. 

G) K. pneumoniae LPS (50 ng/ml, 16 hours) in combination with ATP (5 mM, 20 min.) 

stimulates NLRP3 and ASC-dependent, but NLRC4-independent, IL-1 β release from bone 

marrow derived macrophages. Bone marrow derived macrophages were infected with 

Klebsiella at a MOI=200 (6 hours) or Salmonella at a MOI=50 (1 hour). 
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Figure 3.2 - Klebisella pneumoniae induces NLRP3 and Cathepsin B dependent 

pyronecrosis. A) 50 µM cathepsin B inhibitor (Ca-074-Me) substantially abrogates K. 

pneumoniae induced cell death (A) and IL-1β release (B) in shCTRL and shNLRP3 cells. In 

contrast, 100 µM pan-caspase (zVAD-fmk) and 100 µM caspase-1 specific (YVAD-CHO) 

inhibitors fail to block K. pneumoniae-induced cell death but do inhibit IL-1β release. C) 50 

µm cathepsin B inhibitor (Ca-074-Me) also attenuates NLRP3- dependent IL-1β release in 

bone marrow derived macrophages stimulated by K. pneumoniae. D) K. pneumoniae-induced 

HMGB1 release is abrogated by shNLRP3.  E) Caspase-3 and PARP are cleaved in response 

to an apoptotic stimulus (staurosporine), but not in THP-1 cells following K. pneumoniae 

infection. Cell death was measured by LDH release and IL-1β release was determined by 

ELISA. 
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Figure 3.3 - Klebsiella pneumoniae induces inflammatory cytokines and chemokines in 

primary macrophages. A) Thioglycolate-elicted peritoneal macrophages of indicated 

genotypes were infected with K. pneumoniae (MOI=200, 6 hours) or S. typhi (MOI=50, 1 

hour). Cell free supernatants were analyzed on RayBiotech G Series 3 cytokine antibody 

arrays. Cytokines and chemokines induced ≥3 fold over the non-treated control of each 

genotype are shown. For complete list of results, see Table 3.1) “N/D” designates samples 

which were not reliably measured. Quantification of IL-1β, IFNγ, and KC support trends 

observed on cytokine arrays. Cytokine levels were determined using RayBiotech custom 

Quantibody service. For the complete list of results, see Table 3.2.  
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Figure 3.4 - NLRP3 and ASC deficient mice demonstrate significantly increased 

mortality following K. pneumoniae airway infection.  Mice were intratracheally challenged 

with (7.5 x 104) CFUs of K. pneumoniae and survival was assessed over the course of 4 days. 

Mice lacking NLRP3 or ASC demonstrated significantly increased mortality compared with 

wild type mice (p < 0.05, Logrank Test). No significant difference in survival was observed 

between mice lacking NLRC4 and wild type animals. 
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Figure 3.5: NLRP3 deficient mice demonstrate significantly attenuated airway 

inflammation following Klebsiella pneumoniae infection.  A) In comparison to WT and 

NLRC4-/- mice, NLRP3-/- mice show decreased inflammatory cell recruitment and less 

occlusion of the alveolar spaces following K. pneumoniae infection. Mice were challenged 

with (7.4 x 106) CFUs of K. pneumoniae for 48 hours. Representative histology sections from 

the apical region of the main bronchi of the large lobe (10x magnification) are shown. B) 

Significant attenuation in airway inflammation is observed in K. pneumoniae challenged 

NLRP3-/- mice. Histology images were evaluated and seach of the following inflammatory 

parameters were scored between 0 (absent) and 3 (severe): mononuclear cell infiltration; 

polymorphonuclear cell infiltration; airway epithelial cell hyperplasia/injury; extravasation; 

perivascular cuffing; and percent of lung involved with inflammation.  The scores of the 

parameters were averaged for a total histology score.  
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Figure 3.6 - NLRP3 regulates Klebsiella pneumoniae induced IL-1β and necrotic cell 

death in vivo. A) Serum levels of IL-1β are substantially reduced in NLRP3-/- or ASC-/- mice 

challenged with K. pneumoniae. B) A modest, yet significant, decrease in K. pneumoniae 

induced IL-1β is observed in the bronchoalveolar lavage fluid (BALF) of NLRP3-/- mice 

compare to wildtype. In contrast, IL-6 levels are elevated in the serum (C) and BALF (D) of 

NLRP3-/- mice following. K pneumoniae infection. IL-1β and IL-6 were both measured by 

ELISA. E) Decreased levels of cell death are detected in the BALF of K. pneumoniae 

infected NLRP3 deficient mice as determined by LDH release. F) Serum levels of HMGB1 

are dramatically reduced in NLRP3-/- mice as determined by western blot analysis. 
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Figure 3.7 - Increased mortality of Klebsiella pneumoniae infected NLRP3-/- mice is not 

due to increased bacterial burden. Mice were euthanized via intraperitoneal (i.p.) injection 

with 2,2,2 tribromoethanol (avertin).  Whole liver (gal bladder removed), spleen and lungs 

were removed, wet weight was assessed and the tissues were homogenized in 500 µl of 

Hanks balanced salt solution (HBSS) with a Tissue Master 125 hand held tissue homogenizer 

(Omni International).  Homogenized tissues were centrifuged and the resulting supernatants 

were serially diluted and plated on LB agar plates and grown for 24 hours at 37oC.  
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Table 3.1 Results of all cytokines and chemokines profiled using RayBiotech G Series 3 

cytokine antibody array. Thioglycolate-elicted peritoneal macrophages of indicated 

genotypes were infected with K. pneumoniae (MOI=200, 6 hours) or S. typhi (MOI=50, 1 

hour). Cell free supernatants were analyzed on RayBiotech G Series 3 cytokine antibody 

arrays. “N/D” designates samples which were not reliably measured. 
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Table 3.2: All cytokines and chemokines quantified by RayBiotech custom Quantibody 

service.  
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4.1 Conclusions & Future Directions 

 

The discovery of NLR-regulated cell death and inflammatory pathways has opened 

several interesting opportunities for future research. No doubt, additional bacterial, viral, and 

environmental NLR activators will continue to be identified and will further our 

understanding of the interplay that occurs between NLRs in immunity. Given over 20 NLR 

molecules have been identified, both with pro- and anti-inflammatory properties, some 

degree of cooperation and antagonism is expected, as is some functional redundancy. Beyond 

the characterization of the NLRs and their activating stimuli, three critical questions remain 

unanswered:  1) What signaling pathways involved in pyronecrosis and pyroptosis? 2) Why 

do cathepsin B inhibitors block NLRP3 inflammasome activity? and 3)Why are the NLRP3 

deficient mice more susceptible to pathogen induced lethality?  

 

1 – What signaling pathways involved in pyronecrosis and pyroptosis? 

The greatest opportunity raised by this work is the characterization of the 

pyronecrosis and pyroptosis pathways. At this time, the two cell death pathways are 

distinguished only by the requirement of caspase-1 and much work is needed to fully 

elucidate pyronecrosis and pyroptosis signaling. We’ve shown that NLRP3, ASC, and the 

lysosomal protease cathepsin B are required to initiate pyronecrosis, a caspase-1 independent 

form of necrotic cell death. However, it is unclear how and where cathepsin B interacts with 

NLRP3 or ASC. Our preliminary data suggests that NLRP3 is required for pathogen-induced 

cathepsin B activation. It’s possible that cathepsin B interacts with ASC and NLRP3 within a 

complex similar to the apoptosome or inflammasome, which we term the necrosome. The 
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existence of this complex could be evaluated by co-immunoprecipitation assays and/or the 

purification of high molecular weight complexes containing NLRP3, ASC, and cathepsin B. 

Given the ability of disease-associated NLRP3 mutants to induce pyronecosis, novel 

components of the necrosome and pyronecrosis pathway could be identified by mass 

spectrometry analysis following immunoprecipitation of mutant NLRP3. Finally, the use of 

small molecule inhibitors of known cell death mediators may be effective in identifying 

components of the pyronecrosis and pyroptosis pathways.  This approach has proven useful 

in identifying cathepsin B and caspase-1 as a mediators of pyronecrosis and pyroptosis and 

may yield additional results. 

Several opportunities are available in the characterization of pyroptosis also. Though 

caspase-1 inhibitors fail to abrogate pyronecrosis, the ability of cathepsin B inhibitors to 

block pyroptosis has not been investigated. This could be evaluated by determining if 

cathepsin B inhibitors block Salmonella or Pseudomonas induced cell death, two known 

activator of NLRC4-dependent pyroptosis (Brennan and Cookson, 2000; Franchi et al., 2007; 

Sutterwala et al., 2007).  Our lab and others have confirmed the requirement of caspase-1 in 

pyroptosis initiated by Salmonella, however the events leading to caspase-1 activation are 

worthy of additional investigation. Both NLRC4 and ASC deficient macrophages fail to 

activate caspase-1 in response to Salmonella typhimurium and Pseudomonas aeruginosa, an 

event presumably required to initiate caspase-1 dependent cell death (Mariathasan et al., 

2004; Sutterwala et al., 2007). However, ASC-/- macrophages demonstrate no defect in 

Pseudomonas induced cell death and only a partial decrease in Salmonella induced 

pyroptosis. This suggests that in the absence of ASC, NLRC4 initiates cell death in a 
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caspase-1 independent manner. It’s possible that this involves another caspase, such as 

caspase-11, but this backup mechanism is currently unknown. 

 

2 - Why do cathepsin B inhibitors block NLRP3 inflammasome activity? 

Biochemical studies have identified a number of inflammasomes, which promote 

inflammation by activating caspase-1, resulting in the release of the pyrogenic cytokine IL-

1β and IL-18 from cells treated with different stimuli (Agostini et al., 2004; Duncan et al., 

2007) (Fig 1.6).  The NLRP3 inflammasome consists of NLRP3, ASC, and CARDINAL, 

which aggregate and activate pro-caspase-1 in an induced proximity model analogous to the 

activation of caspase-8 and caspase-9 (Agostini et al., 2004; Martinon et al., 2002).  We have 

demonstrated that cathepsin B inhibitors not only inhibit pyronecrosis, but also NLRP3 

mediated IL-1β release in response to pathogens. This suggests a previously unrecognized 

role for cathepsin B in regulating inflammasome activity. The mechanism of this inhibition is 

currently unknown. The simplest explanation is that cathepsin B is required for cleavage and 

activation of caspase-1, though this is untested. Also unknown is whether this effect is 

specific for the NLRP3 inflammasome or if cathepsin B inhibitors regulate the NLRC4 and 

NLRP1 inflammasomes as well.  Answering these questions will significantly impact our 

understanding of inflammasome function and may fundamentally alter our perception of how 

the NLRs elicit inflammation and cell death.  

  

3 - Why are the NLRP3 deficient mice more susceptible to K. pneumoniae induced 
lethality?  
 
  Few others have attempted to evaluate the in vivo relevance of NLRs in response to 

pathogens, often with lackluster results. The dramatic defects associated with NLR 
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deficiency in vitro are typically much more subtle when evaluated in animal models, perhaps 

reflecting NLR functional redundancy and cell type specific functionality. We have 

demonstrated that mice lacking NLRP3 exhibit significant decreases in lung inflammation 

following pulmonary infection with K. pneumoniae. However, these mice are more 

susceptible to K. pneumoniae induced lethality compared to controls.  Cumulatively, these 

results demonstrate that NLRP3 activity is beneficial to the host in defense against K. 

pneumoniae, though the cause of the increased NLRP3-/- mortality is currently unknown.  

In plants, the hypersensitive response initiated by R genes is required for the 

inhibition of pathogen growth, thus bacterial burden was expected to be substantially higher 

in NLR deficient mice (Mackey et al., 2002; Morel and Dangl, 1997). Indeed, NLRC1 and 

NLRC2 are required for L. monocytogenes clearance and host survival (Kim et al., 2008). 

Similar modest increases in pathogen expansion were observed in NLRC4-/- mice injected 

with P. aeruginosa, though this was not associated with a loss of viability (Franchi et al., 

2007; Sutterwala et al., 2007).  However, NLRP3 deficient were not more permissive to K. 

pneumoniae growth or systemic dissemination, indicating that pathogen replication is 

unlikely responsible for this effect.  

While NLRP3-/- mice demonstrated dramatic decreases in IL-1β and HMGB1, they 

also had significant increases in IL-6 as well as several other inflammatory mediators after K. 

pneumoniae challenge. This may be a compensatory response for the loss of IL-1β and may 

contribute to the increased mortality, though this has not been evaluated. Finally, it’s possible 

that the 24-36 hour delay in K. pneumoniae induced lethality is simply a combination of 

several minor factors. This could include the bacterial growth, cytokine production, and the 

actions of other NLRs.  In the future, it will be interesting to revisit these in vivo pathogen 
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experiments in mice deficient for several NLRs, thereby eliminating any confounding 

functional redundancy. 
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