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ABSTRACT 

Jacob Edward Wulff: Methods for Adapting Global Mass Spectrometry based Metabolomics 
to the Clinical Environment 

(Under the direction of Lloyd J Edwards) 

Metabolomics is a maturing field with successful application to research areas such as 

biomarker discovery and mechanisms of disease. With the ability to profile hundreds or even 

thousands of biochemicals simultaneously, many of which are also used in various laboratory 

diagnostics, the technology has the potential to replace a battery of clinical tests with a single 

test. However, the current state of global analysis presents several challenges for the clinical 

environment. This dissertation addresses two of these challenges. First is handling of missing 

values with respect to comparing an individual sample against a reference population. Second is 

the semi-quantitative nature of the liquid chromatography mass spectrometry. 

The first paper explores basic properties of metabolites, specifically the statistical distribution 

of metabolite concentrations and correlation between them. In human sample sets covering three 

different sample material appropriate for clinical testing, raw ion counts are shown to be vastly 

non-normal and consistently having a heavy right skew. Natural log-transformation is effective 

at removing this skewness and inducing Gaussian behavior, though departures from normality 

may persist in the tails of the distributions. Correlation between library-matched metabolites 

after removing artifact related features is also shown to be of only moderate degree in most 

cases.  

In the second paper, application of the log transformation is used to account for missing 

values in estimating population parameters of a reference cohort. Missing values are largely 
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attributed to the true level falling below the detection limit of the instrument. Combining this 

assumption with the Gaussian model leads to two parametric approaches being introduced for the 

estimation of population parameters. These methods are shown to outperform standard 

imputation approaches in the field using a combination of simulations and real metabolomic 

datasets.  

The third paper addresses merging multiple global LC-MS metabolomic sets of the same 

biological sample type together. Typical normalization methods meant to account for sample to 

sample variation are presented and compared to alternative approaches using technical replicates 

and within batch scaling. Concentrations from targeted analysis of eight clinical biomarkers are 

used to show the superiority of these alternative approaches.
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CHAPTER 1: LITERATURE REVIEW 

1.1. Introduction to Metabolomics 

Metabolomics is the field concerned with the study of small molecule biochemicals, 

collectively known as metabolites, which are the intermediates and end products of metabolism. 

The metabolome refers to the entire set of such small molecules present in a biological organism, 

or specific part thereof. Metabolomic analysis is thus tasked with identifying, measuring and 

understanding the metabolome. This requires a combination of analytical chemistry, 

biochemistry and biology. Metabolites are generally defined as having molecular weight < 1k 

Daltons (Da; grams/mol) which helps to differentiate metabolomics from areas that focus on 

certain classes or species such as proteomics or lipomics [1-3]. Metabolites include a diverse 

background of chemical compounds including amino acids, carbohydrates, nucleotides, peptides 

and lipids among others. Such a diverse set of compounds present an analytical challenge to 

measure but offer a wealth of information. Indeed, because metabolites are directly involved 

with cellular function, information drawn from a metabolomic study will tend to be more 

phenotypic rather than genotypic [4, 5]. Beebe and Kennedy [6] as well as Koen et al. [7] 

illustrate the importance of incorporating metabolic knowledge along with genetic and 

phenotypic information. In this way metabolomics may be seen as compliments to other omics 

fields such as proteomics, genomics or transcriptomics. Metabolomics offers a wide range of 

applications from cancer research to bioprocessing. For the purposes of the proceeding document 

our interest is focused on clinical application and disease screening. Inborn Errors of 

Metabolism, a large class of congenital disorders resulting in impaired metabolic function, will 
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have a large presence throughout the document due to the available data; however, the 

majority of the principles discussed are generalizable to other applications of metabolomics. 

The work contained in this dissertation focuses on High Performance Liquid 

Chromatography Mass Spectrometry (HPLC-MS) which is the most popular method for 

obtaining high-throughput metabolomic data [8, 9]. A brief summary of this technology is 

provided here to help familiarize the reader with some the background of the paper.  

1.2. Chromatography and Mass Spectrometry 

Chromatography is used to separate dissolved compounds in complex mixture by exploiting 

the differential partitioning between two phases: the mobile phase and the stationary phase. The 

mixture to be separated is injected onto a fluidized bed containing the stationary phase, typically 

beads that are functionalized with lipophilic organic molecule. The mobile phase, a liquid state 

typically composed of an inert solvent, dissolves the mixture and is pumped through the 

stationary phase. Dissolved components partition between the liquid and surface of the stationary 

phase. Interaction with the surface varies by compound, causing the individual compounds to 

pass through the stationary phase at different. This is usually in the form of lighter compounds 

moving through more quickly while heavier compounds move more slowly and leads to a 

separation of the compounds over time. Chromatographic systems are identified by the type of 

mobile phase used. Gas chromatography (GC) refers to a gaseous mobile phase, usually a noble 

gas such as helium, while liquid chromatography (LC) refers to a liquid mobile phase, which is 

most commonly an aqueous solution containing an organic solvent (acetonitrile, methanol, etc.), 

acid (formic, phosphoric, etc.), and/or salt.  

As the different compounds elute from the chromatogram they are injected into the mass 

spectrometer (MS). The MS system consists of three main components: an ion source, a mass 
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analyzer and a detector. The ion source ionizes the individual molecules of the compound. These 

ions are then passed to the mass analyzer, which separates them according to their mass to 

charge (m/z) ratio. Finally, the detector tracks the individual m/z ratios and the number of ions 

associated with each. MS can be used to identify a compound based on the resulting profile of 

m/z ratios. When an individual molecule is ionized, the chemical bonds holding the molecule 

together may break, leading to a fragment ion. The number of ways in which a compound may 

fragment and the proportion of molecules that form those fragments relate directly to the 

structure of the parent molecule in addition to the ionization state of the parent molecule and type 

of fragmentation chemistry that is employed. This leads to one of the fundamental powers of 

MS: Different molecules produce different fragmentation spectrums. By cross-referencing the 

fragmentation pattern of an unknown compound against a library of known spectrums the 

compound may be identified. It should be noted that sources of ionizations can be divided into 

two broad categories which also correspond to instrumentation used. Hard ionization methods, 

such as Electron Impact (EI), lead directly to the fragmentation of parent compounds and are 

well suited for GC systems. Soft ionization, which includes the popular Electrospray Ionization 

(ESI) and other atmospheric pressure chemical ionization methods, ionizes the compound in 

such a way that a charge is supported by the molecule without fragmentation. While it is possible 

to measure the m/z ratio of parent molecules in this state it is not possible to identify the 

compound without the daughter ion spectrum. Therefore, soft ionization methods usually involve 

another step to force the fragmentation. Tandem Mass Spectrometry, or MS-MS, involves 

multiple steps of the mass spectrometry process with fragmentation occurring in between [10]. 

Soft ionization techniques are well suited for LC systems. 

In addition to the ion source, MS can be used to produce either positively or negatively 
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charged ions. Compounds, depending on their physical and chemical properties, may ionize and 

fragment much better in one ion mode over the other. Due to the wide range of physical and 

chemical diversity spanned by metabolites, it is advisable to incorporate multiple instrument 

conditions into the analysis in order to maximize coverage of the metabolome. The same mass 

analyzer paired to the same chromatography system can be used in both modes; however, the 

mobile phase will in most cases need to be different in order to facilitate positive ion formation 

or negative ion form [11]. 

GC-MS has been around for decades and by nature it is best suited for volatile compounds, 

or those that can be easily derivatized to a volatile state [12]. However, non-volatile and low 

vapor pressure, non-derivatizable compounds may fail to ionize under GC conditions. Despite 

these shortcomings, GC remained popular for many years until the development of high pressure 

pumps and other hardware for LC systems in the 1980s and 1990s. These advancements led to a 

superior level of sensitivity for the LC-MS system [13] making HPLC-MS the standard in 

metabolomic analysis.  

Alternatives to the pairing of mass spec and chromatography do exist but tend to suffer from 

a much lower coverage of the metabolome in comparison, particularly with HPLC-MS. The 

majority of alternatives, in practices, are focused on specific compound classes or other niche 

roles in which LC-MS does not perform as well. For example, capillary electrophoresis (CE) is a 

separation technique that offers tremendous potential in terms of sensitivity and has been 

successfully coupled to MS for the purpose of metabolomics analysis [14]. But combination with 

ESI is not trivial and hence the full potential of CE-MS has yet to be realized. In its current state 

CE-MS is best suited for the measurement of highly polar compounds [15, 16]. Issaq et al. 

provides a good overview of the separation techniques available in metabolomics [17].  
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The main competition to LC-MS for identification of metabolites would be Nuclear Magnetic 

Resonance Spectroscopy (NMR). NMR exploits the electromagnetic spin of specific nuclei 

containing an odd number of electrons to produce a spectrum of the number of differently 

bonded target nuclei and the relative proportions of each. In a similar manner to the MS 

spectrum, the NMR spectrum can be used to identify compounds. NMR has a number of 

advantages over LC-MS, namely that it does not require chromatography to separate compounds 

and, as it does require the breaking of chemical bonds, it is non-destructive to the sample. NMR 

has successfully been used in many metabolomics studies [18, 19] but the sensitivity is far 

inferior to that of HPLC-MS [20, 21]. For more on NMR see Larive et al. [22] and for a general 

overview of the analytical methods in metabolomics see Verpoorte et al. [23]. 

1.3. The Mass Spectrum 

As mentioned above, the MS process results in the breaking of chemical bonds, producing 

multiple ion features per compound. Consider a simple example with pentane, which is a five-

carbon chain with chemical formula C5H12. When ionized in a mass spectrometer any of the C-

C bonds may be broken and so the possible m/z ratios correspond to an ion with either 1, 2, 3 or 

4 carbons. Note that in metabolomics the majority of analytes involved are too small to stably 

support more than a single charge, so the m/z ratio is generally equivalent to the fragment’s 

mass. The relative heights of the peaks associated with each m/z relate to the relative stability of 

the ion (or corresponding neutral fragment) in question and serve to differentiate compounds 

with similar mass from one another. 2-methylbutane is a four-carbon chain in which the second 

carbon in the chain has a single carbon branch in place of a hydrogen. The chemical formula is 

identical to that of pentane, C5H12, but the branched structure of 2-methylbutane causes the 

four-chain carbon ion (peak centered around 57 m/z) to form more readily than it does with 
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pentane. Figure 1.1, curtesy of Chemguide 

[24], displays the fragmentation mass 

spectra of these two compounds. Global 

profiling will capture thousands to tens of 

thousands of features related to hundreds to 

thousands of metabolites. 

Separation of the ion features is 

performed by the mass analyzer with an 

emphasis on both resolution and sensitivity. 

Resolution refers to the ability to distinguish 

between two peaks, while sensitivity refers 

to the ability to detect an ion source. Among 

the most popular in metabolomics are quadrapole, linear ion trap (LIT), orbitrap, time-of-flight 

(TOF), and Fourier-transform (FT) [25]. MS-MS in inherent to some analyzers, like the ion traps 

and FT, allowing for multi-stage ionization within the same instrument. Some can be joined 

together, such as quadrapole-TOF configuration, to produce a similar multi-stage process and 

origination of the phrase “tandem MS”. Other analyzers can only operate in the traditional MS 

setup. For more specifics on the use of mass analyzers in metabolomics see Vékey [26]. 

1.4. Ion-centric vs. Chemo-centric 

Being able to associate fragment features back to their parent compound requires more 

advanced instrumentation, such as MS-MS and/or pattern recognition software. When these 

resources are available, analysis may performed at the compound level which is referred to here 

as the chemo-centric approach. Measurement will be carried on the quantitation, or quant, ion. 

Figure 1.1: Mass Spectrums of pentane and 2-
methylbutane. Both produce same mass fragments but 
at different relative proportions. 
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This quant ion may be the parent ion itself, typical for MS-MS, or it may be a pre-determined 

daughter peak used to signify presence of the compound. In the latter case, the quant ion is 

usually the most dominant peak in the compound’s spectrum. Minor peaks may also be used to 

confirm identification of the compound; however, these peaks are not used to quantify the 

compound. Absent the resources for the chemo-centric approach, data analysis must be carried 

out on all ion features without regard to parental origin. There are clear implications of the 

approach used on the resulting data. If an ion-centric approach is taken, the number of features 

can be up to 10,000 [27] whereas a chemo-centric approach will yield a much lower number of 

distinct biochemicals [28, 29]. Ion fragments associated with same parent molecule will 

extremely correlated, and thus resolution of these fragments into a single feature preferentially 

removes the most correlated variables. Finally, structural identification features allows for the 

removal of known contaminants which constitute the majority of features produced in MS 

metabolomics [30]. Removing these features not only reduces the size of the data but also likely 

alters characteristics of the data since these features are entirely the result of sample processing 

and lack any biological qualities as is the case with metabolites. It is worth pointing out that a 

chemo-centric approach does not by itself identify compounds by name. Naming requires 

referencing observed spectrums against an internal database, which can be very costly and time 

consuming to maintain in-house. Much of published literature has involved ion-centric data 

likely due to the challenges inherent to compound identification [31]. A few public and 

commercial databases are available [32-34]; however, precise matching can be difficult if the 

conditions (instrumentation, sample preparation, processing, etc.) in the study do not match those 

used to develop the library. Therefore, chemo-centric data may contain a mix of named and un-

named biochemicals.  
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1.5. Data Structure and Routine Analysis 

A metabolomics dataset is an array of n experimental sampling units, or more plainly just 

samples, and m metabolites (chemo-centric) or features (ion-centric). Orientation is arbitrary, but 

in these papers the convention is that the rows are the samples and the columns are the features. 

As such, denoting such a set as Y(n×m) gives  

 Y =  

y11
⋮

…
⋱

y1m
⋮

yn1 … ynm

  

in which the sets of individual yji′𝑠 are the observed value of the ith feature in the jth subject, i ϵ 

{1, …, m} and j ϵ {1, …, n}. In the case of MS, which is the focus of this dissertation, these 

observations are ion counts derived from the area of a peak associated with the metabolite or 

feature in question.  Ion counts vary dramatically between metabolites with average values 

ranging from the tens of thousands up to hundreds of millions or even billions, and hence are 

treated as continuous variables for statistical analysis purposes. On occasion it may be useful to 

consider the matrix as a collection of features or samples. This amounts to segmenting the data 

into a series of columns (features): 

 Y = [  y.1 ⋯ y.m] 

 or a stack of rows (samples): 

 Y  =  

y1.
⋮

yn.

  

From here on the notation 𝒚  and 𝒚  are used to generically indicate all the observed values for 

either the ith feature in the data or the jth subject. That is yi = y
.i = y1i, …, yni

'
 and yj = yj. = 

{yj1, …, yjm}.  
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Generally, a complete metabolomic set, illustrated in Figure 1.2, will also include details on 

the samples and features, respectively. The meta-data, labeled here as Dn×d, contains sample 

details most notably the study design information such as group assignments as well as potential 

factors of interest and possible covariates. Similarly, in certain cases the features may be grouped 

or associated in some way such as by biochemical pathway function or molecular mass. This sort 

of feature annotation, designated as Aa×m, is more likely to occur with chemo-centric data.  

The material, or matrix, that makes up a metabolomic sample is generally biofluid (plasma, 

serum, urine, saliva, sweat, etc) or tissue (muscle, heart, liver, etc.) from either plant or animal 

specimens, although technically any organic substance is permissible with the MS. Regardless of 

whether the dataset contains metabolites or the ion features, statistical analysis can be performed 

in roughly the same manner. However, the chemo-centric allows for the identification of artifacts 

and contaminants, which are features related to sample collection and processing and instrument 

performance [28]. For example, plasticizers, which include phthalates, can easily leach into the 

sample through contact with the test tube or other similar storage device. As another example, 

sample material derived from biopsy specimens can be contaminated by gel used during sonic 

Figure 1.2: Metabolomic Data Components. Set of metabolomic data comprises three matrices: sample details (D), 
observed feature values (Y) and feature details (A).  
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disruption of preserved tissue samples [35]. By identifying and removing these artifacts, a 

greater level of reproducibility is achieved [36].  

Common univariate statistical tests used in metabolomic studies include the t-test and 

ANOVA. Certain studies have even used the z-score to assess individual samples in a population 

[37]. Such applications are an important theme for this dissertation and the z-score itself will be 

discussed further in Chapter 4.  Due to the large number of variables, some form of adjustment 

should be made whenever univariate p-values are being produced, with some form of false 

discovery rate (FDR) method being most practical [27]. Popular multivariate methods are 

principle components analysis, linear discriminant analysis, and partial least squares regression 

among others [38]. 

1.6. Metabolomics Workflow 

The process of obtaining metabolomic data from a sample is intensive. There are six distinct 

phases in the metabolomics workflow which is shown in Figure 1.3. The first phase, sample 

collection, includes all activities related to obtaining physical specimens such as hypothesis 

formulation, experiment design, etc. Once the samples are collected, the samples are sent to the 

facility where metabolite data is obtained. All actions that take place in between sample 

collection and data analysis can be collectively referred to as pre-analytical. Here, the pre-

analytical aspects have been divided i nto four phases to impart some understanding of the 

complexity and influence these steps have on data analysis. The descriptions provided here are 

intended to give a general understanding of the purpose served by each phase. For further 

information on these topics several texts and articles available [39-43].  
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Sample preparation addresses two main goals. The first goal is to freeze or reduce metabolic 

activity. As intermediates of cellular function, metabolites often have rapid intracellular 

conversion and steps must be taken to preserve the status of the metabolome at the time the 

sample is obtained. This is known as “quenching”. The second goal is to lyse the cells contained 

in the sample to maximize recovery. As metabolites are contained within the interior of the cell, 

disrupting the cellular structure is helpful (or even necessary) in order to obtain measurable 

levels of the metabolites. This is known as “extraction”. Quotations are used because the  

description given here is an oversimplification. Specific workflows will vary depending on 

instrumentation, sample material and metabolite groups of interest. For example, derivatization is 

done in GC-MS but not in LC-MS or NMR. Instead these methodologies involve reconstitution. 

Figure 1.3: The metabolomics workflow. A metabolomics experiment begins with sample collection. Phases in 
green are collectively referred to as pre-analytical.  
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Other actions that may take place in between sample collection and data collection include, but 

are not limited to, addition of chemical solvents, homogenization, centrifugation, lyophilisation, 

storage, etc. This makes it challenging to completely describe the sample preparation process 

concisely. Instead the focus here is on the primary purpose of sample preparation. For more 

complete details on the sample preparation process see Metabolome Analysis by Villas-Boas, 

Roessner, Hansen, Smedsgaard, and Nielsen [39] or Collection and Preparation of Clinical 

Samples by Chetwynd, Dunn and Rodriguez-Blanco [43]. 

After the samples have been prepared, the samples are processed through the instrumentation 

of choice. This produces data records associated with each sample. But before analysis can 

begin, this data must be compiled and organized in way that allows the spectral information to be 

combined across samples. This is the pre-processing phase and include peak alignment, baseline 

correction (NMR data), binning of features (ion-centric), or metabolite identification (chemo-

centric) [38, 44-46]. The conclusion of these steps produces a data set consistent with that shown 

in Figure 1.2. 

The final phase before data analysis is processing which involve manipulating certain 

characteristics of the data in order to maximize analysis results. Handling of missing values, 

which plays an important role in this dissertation, is one such step and is discussed in more detail 

in section 1.7.3 and is the subject of Chapter 3. Two other steps common to metabolomics are 

transformations and normalizations. Based on the orientation defined in Figure 1.2, 

transformations refer to operations applied to the columns (metabolites/features) while 

normalizations are applied to the rows (samples). A larger discussion on transformations can be 

found in section 2.3 and normalization is the subject of Chapter 4. Briefly, the intent of 

transformations is to improve some feature of the biochemicals whereas normalizations serve to 
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reduce variation between samples due to endogenous effects [31]. This purpose helps marks the 

distinction between pre-processing and processing. Pre-processing steps are necessary to make 

these feature values comparable between samples. In contrast, data processing can be regarded as 

optional, but generally useful to enhance the signal or other characteristic of the dataset for 

analysis. This leads to some ambiguity to the term “raw” data. The rawest forms of the data is 

that prior to any pre-processing steps. This includes the individual scans from the mass 

spectrometer, of which multiple scans are required to cover the entire chromatographic peak for 

a given metabolite. However, because these scans cannot be meaningfully resolved without pre-

processing steps, the pre-processed data is sometimes referred to as “raw” data since this is data 

from which optional transformations or normalizations can be made. Plainly, this amounts to the 

difference between “raw scan” data versus “raw peak” data. In this dissertation the latter 

definition of raw is used. While pre-processing can influence the data, it is not the subject of the 

present document. Therefore, in this dissertation the term “raw data” implies the resulting data 

given whatever pre-processing steps have been selected.  

Normalization seeks to remove sources of systematic variation by dividing feature values of 

samples according to some metric associated with this variation. In biological organisms many 

processes are subject to tight physiological control. Homeostasis therefore affects many matrices, 

including plasma and cerebral spinal fluid [47]. But some matrices are subject to a high degree of 

sample-to-sample variation due to endogenous characteristics. Such is the case with urine, where 

volume levels can vary greatly depending on water consumption, diet, exercise and other 

physiological condition [47] Creatinine levels have long been associated with kidney filtration 

and are a common normalizer for urine, although osmolality has also been used [47, 48]. In cell 

culture studies metabolite levels can similarly be influenced by the amount of cellular material 
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present [21, 49]. Cell specific normalizers are cell count, protein concentration and DNA 

concentration [21]. Universally available normalizers, many of which are adopted from other -

omic fields, include total ion count, median ion count or housekeeping metabolites [49]. 

Normalization of this type is commonly used due the fact that it can be used in any matrix and is 

easy to calculate. However, it is susceptible to individual outliers and in cases where the 

experiment affects a large proportion of the variables, such normalization can actually remove 

the signal from the data. Many modifications have been made to total ion count for this reason, 

and improved normalization methods remain an active area of research [50]. Regardless of the 

normalizer, the underlying assumption is always the same: certain factors, pre-processing steps 

or biological, related to a sample cause an elevation or suppression of variable levels across the 

whole spectrum. The procedure is popular in proteomics where all variables are of the same class 

(proteins) but in metabolomics, where the variables span a number of classes and functions, the 

effectiveness is less clear. 

1.7. Clinical Utility and Challenges 

As stated previously, Inborn Errors of Metabolism (IEM) form a class of genetic diseases 

involving disorders of metabolism. In most cases a genetic defect leads to the coding of defective 

enzymes, which in turn inhibit the conversion of various substrates required for proper metabolic 

function. Individual symptoms and disease pathology can vary greatly depending upon the 

defective gene and resulting enzyme involved. Alkaptonuria, for example, is caused by a 

mutation in the gene responsible for creating the enzyme homogentisate oxidase (HGD) [51]. 

This results in a defective version of the enzyme homogentisate 1,2-dioxygenase, preventing the 

body from processing the amino acids phenylalanine and tyrosine [52, 53]. Buildup of the 

intermediate homogentisic acid occurs, the oxidated form of which is called alkpton, damaging 
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cartilage and heart valves which can negatively impact quality of life. Major symptoms may not 

present until the 3rd or 4th decade of life as it can take over 30 years for homogentisic acid to 

accumulate to dangerous levels in the body. Medium-chain acyl-CoA dehydrogenase (MCAD) 

deficiency presents in early childhood causing hypoglycemia and liver dysfunction [54]. Fatty 

acid beta-oxidation provides energy to the body after glucose and glycogen are depleted. A 

deficiency of the MCAD enzyme can quickly lead to fatty acid catabolism during periods of 

increased energy needs. Infants are particularly susceptible, and it is believed that prior to 

expanded newborn screening MCAD deficiency was responsible for a number of SIDs case [55, 

56]. Comparing the symptoms and pathology of alkoptonuria and MCAD deficiency helps 

illustrate how different one IEM case can be from another. As a whole, IEMs can affect any 

organ and can occur at various stages of life. There is no single diagnostic test to identify 

someone as having an IEM. Instead, diagnosis of an IEM begins physicians who suspect a case 

ordering a targeted test covering biochemicals that best fit the observed symptoms or to rule out 

a possible candidate. Based on the results of this first round testing, a second round of tests will 

likely be ordered. And so on. This amounts to essentially a guess-and-check approach to 

diagnosing IEMs which may be time consuming. 

Recently, global metabolomics have been used to identify a wide range of IEMs [37, 57]. In 

these studies, samples of human plasma and urine from subjects with known IEMs were profiled. 

In the majority of IEM cases, metabolites that were informative of the subjects underlying 

disease were significantly expressed when compared to control group, thus demonstrating a 

proof-of-concept for using global metabolomics as a screen for IEMs. However, several items 

related to the instrumentation and data processing of LC-MS metabolomics complicate the 

clinical utility of this technology. First is the need for a normal reference population through 
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which outlier metabolites can be identified. MS data is inherently semi-quantitative and are 

subject to run-to-run instrument variation. Yet it is infeasible to run a large set of control samples 

with every run of the instrument. Thus, practical application requires the ability to bridge 

different instrument runs together. Effectively dealing with these missing values and day-to-day 

instrument variation as part of the data analysis, particularly in a clinical environment, serves as 

the motivation for this dissertation. Second is that global MS metabolomics suffers from a high 

rate of missing values, which complicate patient assessment in a clinical setting. The purpose of 

this dissertation is to identify the optimal statistical methodology and data processing steps 

related to these issues when applying global MS based metabolomics in the clinical setting. 

1.7.1.  Relative Quantitation 

Although MS is a very common analytical tool, it is not inherently quantitative. This means 

the ion count values returned by the mass spectrometer are not directly indicative of 

concentration. Instead the quantitation is relative, which is to say that the relative ion counts 

between samples run together can be inferred. For example, suppose the observed ion counts for 

creatinine in two samples analyzed in the same batch are 100,000 and 130,000. From this it can 

be inferred that the second sample contains approximately 30% more creatinine than the first 

sample, although the exact amount of either is unknown. Determining the exact amount involves 

elaborate methods. For instance, the gold standard method utilizes a stable isotope dilution assay 

which incorporates spiking known concentrations of the purified isotope associated with the 

compound of interest along with process controls to monitor extraction efficiency and matrix 

effects [58-60]. This is the process behind targeted analysis, so named because it focuses on the 

analytes of specific compounds (i.e. targets) and the instrumentation is typically optimized for 

these compounds. The challenges of targeting high throughput data is obvious. When utilizing 



17 
 

the global approach, all the metabolites detected may not be known up front. Even if they were, 

identifying associated isotopes, obtaining purified reserves and fitting the full dilution assay 

structure into workflow. As a result, global methods currently exist separately from targeted 

methods. A consequence of this is that separate runs of high-throughput MS, or “untargeted”, 

datasets cannot be directly compared. Overcoming this limitation so that samples can be 

compared across multiple batches is one goal of this dissertation. 

To better understand the semi-quantitative nature, it is helpful to explain how the ion counts 

returned by MS relate to the true concentration. The mass spectrometer is attempting to ionize 

the individual molecules of any given metabolite. The ion count is dependent on two things. One 

is the number of molecules present which depends not just on concentration but also molar mass, 

the number of molecules for a given mass of the compound. A smaller, lighter compound will 

thus have more molecules than larger, heavier compound when both are present at the same 

concentration. The second item influencing ion counts levels is the propensity of the molecule to 

stably carry a charge. This is referred to as ionization efficiency and is dependent on many things 

including chemical structure, meaning it will vary by biochemical, but sample handling and 

instrumentation. Here, instrumentation refers to the specific components, such as mobile and 

stationary phases, ionization method and even sample material. Some of these factors are static, 

i.e. molar mass, or can be controlled with choice of instrument, i.e. ionization method. But others 

will vary from run to run of the instrument. Certain components of the mass spectrometer, like 

the column/stationary phase, degrade over time and must be replaced, the exact solution of the 

mobile phase may vary from lot to lot, various sample preparation steps are performed manually, 

etc. While the instrument and sample processing can be monitored for performance in various 
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ways to indicate when components are needing to be replaced, these items induce variability 

causing the ionization efficiency to vary from run to run.  

Rocke and Lorenzato presented an analytical chemistry model with two sources of error to 

more accurately estimate instrument error [61]. The argument for two components is based on 

empirical experience in which low level concentrations tend to have a near constant error rate but 

at higher levels the error tends to increase as the concentration does. This phenomenon was 

answered by two error components: a linear component and a component that is multiplicative of 

the concentration. This premise forms the basis of model 1.1. Letting y  be the observed ion 

count and xji be the true concentration of metabolite j in subject i, the model used here is as 

follows: 

yji = α + cixjie
ηji  + εji model 1.1 

with ηji ~ N(0, ση
2),  εji ~ N(0, σε

2). Both errors are independent and identically distributed random 

variables with εji being the linear error component and ηji representing the proportional error 

term. The intercept α represents the ion count returned when no amount of the metabolite is 

present and is analogous to the background level of the instrument. The coefficient ci represents, 

generally, the overall ionization efficiency of the system for the biochemical in question. This 

model accounts for the observed behavior in analytical methods since at low levels εji tends to 

dominate the observed error as smaller values of xji results in less contribution from ηji. 

However, as xji increases the greater the impact of ηji causing this term to dominate at high 

concentrations. This is also compatible with the relative assumption between samples as the 

expected value of between any two samples i and i' for a given feature is 

 E[yji] = α + cixji 



19 
 

 E[yji'] = α + cixi'j 

α is mostly a nuisance parameter and many pre-processing steps involve removing counts that 

are not at least 3x to 5x above the baseline level. Therefore, this term may often be assumed as 

small enough to be ignored. Ignoring the intercept term gives the expected ratio of sample i to 

sample i' as xji xji'⁄  which is consistent with relative quantitation. 

While ci is certain to vary from feature to feature, it is unknown if α, ση or σε do. Background 

and error can theoretically vary from feature to feature, though careful monitoring of instrument 

performance should indicate when this occurs and trigger remedial steps. After all, it is not 

uncommon for background levels to increase over time in MS instruments. This would imply, 

since features are processed over time within a sample and samples are then processed 

sequentially through the instrument, the background could vary not only by feature but by 

sample as well. This quickly leads to a model with more unknowns than observations, requiring 

additional assumptions to solve. Since instrument drift often tends to be linear, assuming 

linearity and examining the levels of housekeeping features, spiked in during sample preparation, 

in quality control samples interspersed through the instrument run provides an easy way to 

monitor for such drift. Significant inflation of either error component would lead to large 

increases in the variation of housekeeping markers, which would be grounds for re-analysis. 

Hence it is reasonable to treat the background and error components as fixed. 

Lastly, to extend the model to multiple instrument runs, all model components related to 

instrument performance should be adjusted accordingly. As a result, considering, hypothetically, 

the same set of samples run over multiple days gives 

yjik = αk + cjkx
ji
eηjik  + εjik model 1.2 
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where k ϵ {1, …. } indexes the instrument run. ηjik ~ N(0, σηk
2 ), and εjik ~ N 0, σεk

2 . Obviously, 

from run to run the concentration of the sample does not change. The slope and ionization factor 

can change though, as can the distribution of the errors and background. Examining the expected 

value of the same sample from one run to another gives: 

 E yjik  = αk + cjkx
ji

∗ 𝑒σηk
2 ⁄  

 E yjik' = αk' + cjk'x
ji

∗ 𝑒
σ

ηk'
2 ⁄

. 

Again, ignoring the intercept terms leads to, on average, a proportional relationship between the 

two runs with the second run differing by a factor of (cjk 𝑒σηk
2 ⁄ )/(cjk'𝑒

σ
ηk'
2 ⁄

) compared to the first 

run. Combination of multiple instrument runs can be accomplished by estimation of this ratio. 

This is the subject of Chapter 4. The effect of the varying background from run to run may result 

in some features, particularly those of low level, being lost or having more missing values (see 

section 2.1.2.) in certain runs as their detectability fails to rise sufficiently above the background 

level. Different error variances may result in certain runs being more precise than others; 

however, if all runs are deemed to be acceptable then combined error should also be acceptable 

provided the ratio (cjk 𝑒σηk
2 ⁄ )/(cjk'𝑒

σ
ηk'
2 ⁄

) is adequately accounted for. 

1.7.2.  Missing Values 

Not all of the yji's will have an observed ion count. Compared to other omics fields the rate of 

missing values in global MS metabolomics data is quite high [33, 62-64]. Theoretically, missing 

values can be caused by a number of technical issues, such as ion suppression [65], but the 

technology used is very similar to that used in proteomics where the missing rate is much lower 

[66]. The major difference is that metabolite species are of a much lower molecular mass and 



21 
 

abundance (average ion count) than proteins, and metabolomics workflow is optimized to these 

molecules. In a well-functioning instrument in which technical issues are minimal, missing 

values can largely be attributed to the true value falling below the background level of the 

instrument [62, 64]. In extreme cases the metabolite may be completely missing from the 

sample, a situation most likely to hold for drug metabolites or other xenobiotics. This detection 

limit depends on certain physical and chromatographic properties of each chemical compound 

meaning that it will vary from compound to compound.  

Missing values can technically occur for other reason [67, 68]. If the analytes of two 

compounds elute close together with one peak being relatively large peak and the other being 

relatively small, the dominate peak may prevent the lesser peak from being recorded. In this case 

the missing value is not due to the abundance of a neighboring compound and un-related to the 

level of the lost compound. Another possibility is that a peak is missed because it occurs in-

between scan intervals or because a certain scan records poorly, in which case missingness is 

also unrelated to the true intensity level (this can be avoided by increasing the scan rate, but 

doing so may negatively impact other areas of instrument performance). A literature survey 

returned no studies on the proportion each of these contribute to the overall missing rate. Given 

the wide range technological methods used in the field this is likely to depend the analytical 

approach and type of instrumentation. But it is increasingly of interest to treat missing values in 

MS as limit of detection [69], and in a well-functioning MS system this would theoretically be 

the dominant reason for such occurrences.  

Due to the prevalence of missing values, addressing them forms an important step in the 

analysis workflow. From the experience of the authors, in large chemocentric MS analysis 

almost every sample is guaranteed to experience a missing value in at least one feature and 
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roughly half of the features will experience some amount of missing data. The spirit of high 

throughput metabolomics is the ability to identify a large quantity of metabolite features at once. 

Imagine in a study comparing healthy subjects to some disease in which a feature is found only 

to be present in the disease subjects. Such a feature would hold enormous research value, not just 

for disease identification but also potential treatment. So, in one sense low filled compounds can 

be the most alluring to researchers. Any step which reduces the number of identified features 

chips away at the potential and attraction of global metabolomics.  

However, data quality is also important to obtaining confident, reproducible results. Filtering, 

which removes features when the proportion of missing values is above a certain percentage, is a 

compromise that mitigates the impacts of missing values and is gaining some popularity. 

Removing the most sparsely populated compounds improves reproducibility, but still runs the 

risk of removing potential markers from being discovered. And because global metabolomics 

operates on the front line of biomarker discovery, markers that are missed at this stage may never 

be recovered later on. Whether filtering is applied liberally or conservatively, missing values 

persist to some degree and must be dealt with somehow during statistical analysis. With global 

metabolomics functioning mostly as a biomarker screening tool, researchers often desire a 

complete dataset from which to work and try various approaches. Imputation, which involves 

inserting a value in place of the missing observations, is therefore common. For example, 

average imputation replaces the missing values in a given feature with the mean of the observed 

samples in that feature. Similarly, minimum imputation, which is analogous to LOD, replaces 

missing values with the observed minimum. Numerous other types of imputations methods have 

been used in metabolomics, with none being found to be universally “best”. In fact, the optimal 

approach is likely specific to goals and study design [62-64]. Here it is important to note that the 
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clinical setting differs in several critical ways from the usual biomarker discovery setting. First, 

in contrast to the group-based designs of biomarker discovery, clinical analysis involves 

comparing one patient against a control population or set of reference values derived from such a 

control population.  Second, interest is only in the patient sample which means that imputation of 

control population to achieve a complete data set is not strictly necessary. All that is needed are 

accurate measures of relevant parameters that are derived from the control population. This is a 

novel issue for high through put metabolomics and is the subject of Chapter 5.  

1.7.3.  Metabolite Distribution 

As a maturing field of study, there exists several fundamental unknowns in metabolomic 

data. Among these include the distribution of metabolites themselves. Under the proposed ion 

intensity model 1.1, yji has error components that are both normal and log-normal. In the 

previous section it was discussed how these components influence the distribution for a fixed 

level abundance level. But, the overall distribution of yji will also depend on the distribution of 

xji, the true concentration of the population. Since metabolomics studies often involve factorial 

designs leading to t-tests and ANOVA while simultaneously employing a low number of 

samples, normality is a convenient assumption. There is biological reason to believe metabolites 

are normally distributed. Many biological matrices, including blood/plasma, are subject to 

homeostasis. Tight process regulation could easily lead to a normal behavior. Clearly though, the 

ion intensity model and log-normal behavior of η makes the validity of such an assumption 

questionable. If xji is normal than the product xjie
ηji  is not strictly normal or log-normal, though 

may still be close to normal if ση
2 is small relative to the population variance σi

2. Some 

examination of normality has been done [27], though it has primarily used ion-centric data which 

contains a high proportion of artifacts [30]. Since these features are closely tied to the 
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performance of the instrument, it is likely that most influential error component is σε
2 which 

indicates a normally distributed variable. It is the experience of this author that in chemo-centric 

data metabolites are most accurately described as log-normal. There is some existing evidence to 

support the use of log transformation with metabolites [70, 71]. This could be explained partially 

by the property of the log-normal distribution that holds the product of two log-normal 

distributions, which would the case for xjie
ηji if xji is log-normal, is another log-normal with 

variance equal to the sum of the individual variances. This combined variance would help to 

diminish the relative contribution of σε
2. By establishing the distribution of metabolites, the door 

is opened for parametric approaches to handling missing values and is hence a natural place for 

the papers in this dissertation to begin.  



25 
 

REFERENCES 

[1] L. M. Samuelsson and D. G. Larsson, "Contributions from metabolomics to fish 
research," Mol Biosyst, vol. 4, no. 10, pp. 974-9, Oct 2008. 

[2] U. Roessner et al., "Metabolic profiling allows comprehensive phenotyping of genetically 
or environmentally modified plant systems," Plant Cell, vol. 13, no. 1, pp. 11-29, Jan 
2001. 

[3] P. Puri et al., "A lipidomic analysis of nonalcoholic fatty liver disease," Hepatology, vol. 
46, no. 4, pp. 1081-90, Oct 2007. 

[4] O. Fiehn, "Metabolomics--the link between genotypes and phenotypes," Plant Mol Biol, 
vol. 48, no. 1-2, pp. 155-71, Jan 2002. 

[5] W. Weckwerth, "Metabolomics in systems biology," Annu Rev Plant Biol, vol. 54, pp. 
669-89, 2003. 

[6] K. Beebe and A. D. Kennedy, "Sharpening Precision Medicine by a Thorough 
Interrogation of Metabolic Individuality," Comput Struct Biotechnol J, vol. 14, pp. 97-
105, 2016. 

[7] N. Koen, I. Du Preez, and d. T. Loots, "Metabolomics and Personalized Medicine," Adv 
Protein Chem Struct Biol, vol. 102, pp. 53-78, 2016. 

[8] H. G. Gika, G. A. Theodoridis, R. S. Plumb, and I. D. Wilson, "Current practice of liquid 
chromatography-mass spectrometry in metabolomics and metabonomics," J Pharm 
Biomed Anal, vol. 87, pp. 12-25, Jan 2014. 

[9] K. Dettmer, P. A. Aronov, and B. D. Hammock, "Mass spectrometry-based 
metabolomics," Mass Spectrom Rev, vol. 26, no. 1, pp. 51-78, 2007 Jan-Feb 2007. 

[10] A. D. McNaught and A. Wilkinson, "tandem mass spectrometer," IUPAC. Compendium 
of Chemical Terminology (the "Gold Book")2nd ed.: Blackwell Scientific Publications, 
1997. [Online]. Available. 

[11] M. Y. Fong, J. McDunn, and S. S. Kakar, "Identification of metabolites in the normal 
ovary and their transformation in primary and metastatic ovarian cancer," PLoS One, vol. 
6, no. 5, p. e19963, 2011. 

[12] A. T. JAMES and A. J. MARTIN, "Gas-liquid partition chromatography; the separation 
and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid," 
Biochem J, vol. 50, no. 5, pp. 679-90, Mar 1952. 

[13] J. J. Pitt, "Principles and applications of liquid chromatography-mass spectrometry in 
clinical biochemistry," Clin Biochem Rev, vol. 30, no. 1, pp. 19-34, Feb 2009. 



26 
 

[14] T. Soga, "Capillary electrophoresis-mass spectrometry for metabolomics," Methods Mol 
Biol, vol. 358, pp. 129-37, 2007. 

[15] R. Ramautar, G. W. Somsen, and G. J. de Jong, "CE-MS in metabolomics," 
Electrophoresis, vol. 30, no. 1, pp. 276-91, Jan 2009. 

[16] R. Ramautar, G. W. Somsen, and G. J. de Jong, "CE-MS for metabolomics: 
developments and applications in the period 2012-2014," Electrophoresis, vol. 36, no. 1, 
pp. 212-24, Jan 2015. 

[17] H. J. Issaq, E. Abbott, and T. D. Veenstra, "Utility of separation science in metabolomic 
studies," J Sep Sci, vol. 31, no. 11, pp. 1936-47, Jun 2008. 

[18] S. K. Davies, J. G. Bundy, and A. M. Leroi, "Metabolic youth in middle age - predicting 
ageing in Caenorhabditis elegans using metabolomics," J Proteome Res, Sep 2015. 

[19] M. Austdal et al., "First Trimester Urine and Serum Metabolomics for Prediction of 
Preeclampsia and Gestational Hypertension: A Prospective Screening Study," Int J Mol 
Sci, vol. 16, no. 9, pp. 21520-38, 2015. 

[20] Z. Pan and D. Raftery, "Comparing and combining NMR spectroscopy and mass 
spectrometry in metabolomics," Anal Bioanal Chem, vol. 387, no. 2, pp. 525-7, Jan 2007. 

[21] L. P. Silva, P. L. Lorenzi, P. Purwaha, V. Yong, D. H. Hawke, and J. N. Weinstein, 
"Measurement of DNA concentration as a normalization strategy for metabolomic data 
from adherent cell lines," Anal Chem, vol. 85, no. 20, pp. 9536-42, Oct 2013. 

[22] C. K. Larive, G. A. Barding, and M. M. Dinges, "NMR spectroscopy for metabolomics 
and metabolic profiling," Anal Chem, vol. 87, no. 1, pp. 133-46, Jan 2015. 

[23] R. Verpoorte, Y. H. Choi, N. R. Mustafa, and H. K. Kim, "Metabolomics: back to 
basics," Phytochemistry Reviews, vol. 7, no. 3, pp. 525-537, 2008/10/01 2008. 

[24] J. Clark. (2009). Chemguide: helping you to understand chemistry. Available: 
http://www.chemguide.co.uk/ 

[25] G. A. Gowda and D. Djukovic, "Overview of mass spectrometry-based metabolomics: 
opportunities and challenges," Methods Mol Biol, vol. 1198, pp. 3-12, 2014. 

[26] K. Vékey, "Mass spectrometry and mass-selective detection in chromatography," J 
Chromatogr A, vol. 921, no. 2, pp. 227-36, Jul 2001. 

[27] M. Vinaixa, S. Samino, I. Saez, J. Duran, J. J. Guinovart, and O. Yanes, "A Guideline to 
Univariate Statistical Analysis for LC/MS-Based Untargeted Metabolomics-Derived 
Data," Metabolites, vol. 2, no. 4, pp. 775-95, 2012. 



27 
 

[28] A. M. Evans, M. W. Mitchell, H. Dai, and C. D. DeHaven, "Categorizing Ion-Features in 
Liquid Chromatography/Mass Spectrometry Metabolomics Data," Journal of 
Metabolomics, vol. 2, no. 3, 2012. 

[29] N. G. Mahieu and G. J. Patti, "Systems-Level Annotation of a Metabolomics Data Set 
Reduces 25 000 Features to Fewer than 1000 Unique Metabolites," Anal Chem, vol. 89, 
no. 19, pp. 10397-10406, Oct 2017. 

[30] B. P. Bowen and T. R. Northen, "Dealing with the unknown: metabolomics and 
metabolite atlases," J Am Soc Mass Spectrom, vol. 21, no. 9, pp. 1471-6, Sep 2010. 

[31] M. M. W. B. Hendriks, F. A. v. Eeuwijk, R. H. Jellema, and J. A. Westerhuis, "Data-
processing strategies for metabolomics studies," TrAC, Trends in analytical chemistry 
(Regular ed.), vol. 30, no. 10, pp. 1685-1698, 2011. 

[32] R. Tautenhahn, K. Cho, W. Uritboonthai, Z. Zhu, G. J. Patti, and G. Siuzdak, "An 
accelerated workflow for untargeted metabolomics using the METLIN database," Nat 
Biotechnol, vol. 30, no. 9, pp. 826-8, Sep 2012. 

[33] J. Xia, N. Psychogios, N. Young, and D. S. Wishart, "MetaboAnalyst: a web server for 
metabolomic data analysis and interpretation," Nucleic Acids Res, vol. 37, no. Web 
Server issue, pp. W652-60, Jul 2009. 

[34] J. M. Halket, D. Waterman, A. M. Przyborowska, R. K. Patel, P. D. Fraser, and P. M. 
Bramley, "Chemical derivatization and mass spectral libraries in metabolic profiling by 
GC/MS and LC/MS/MS," J Exp Bot, vol. 56, no. 410, pp. 219-43, Jan 2005. 

[35] B. J. Trock, "Application of metabolomics to prostate cancer," Urol Oncol, vol. 29, no. 5, 
pp. 572-81, 2011 Sep-Oct 2011. 

[36] J. M. Perkel, "Metabolomics: Sifting through complex samples," ed: Biocompare, 2013. 

[37] M. J. Miller et al., "Untargeted metabolomic analysis for the clinical screening of inborn 
errors of metabolism," J Inherit Metab Dis, Apr 2015. 

[38] K. H. Liland, "Multivariate methods in metabolomics – from pre-processing to dimension 
reduction and statistical analysis," TrAC, Trends in analytical chemistry (Regular ed.), 
vol. 30, no. 6, pp. 827-841, 2011. 

[39] S. G. Villas-Boas, U. Roessner, M. A. E. Hansen, J. Smedsgaard, and J. Nielsen, 
Metabolome Analysis An Introduction (Wiley Interscience Series In Mass Spectrometry). 
Hoboken, NJ: John Wiley & Sons, Inc, 2007. 

[40] S. P. Putri and E. Fukusaki, Mass spectrometry-based metabolomics : a practical guide. 
Boca Raton: CRC Press, Taylor & Francis Group, 2015, pp. xiv, 280 pages. 

[41] M. Lämmerhofer and W. Weckwerth, Metabolomics in practice : successful strategies to 
generate and analyze metabolic data. Weinheim: Wiley-VCH, 2013, pp. xxv, 415 pages. 



28 
 

[42] M. Cuperlović-Culf, D. A. Barnett, A. S. Culf, and I. Chute, "Cell culture metabolomics: 
applications and future directions," Drug Discov Today, vol. 15, no. 15-16, pp. 610-21, 
Aug 2010. 

[43] A. J. Chetwynd, W. B. Dunn, and G. Rodriguez-Blanco, "Collection and Preparation of 
Clinical Samples for Metabolomics," Adv Exp Med Biol, vol. 965, pp. 19-44, 2017. 

[44] Y. Xi and D. M. Rocke, "Baseline correction for NMR spectroscopic metabolomics data 
analysis," BMC Bioinformatics, vol. 9, p. 324, Jul 2008. 

[45] M. Katajamaa and M. Oresic, "Data processing for mass spectrometry-based 
metabolomics," J Chromatogr A, vol. 1158, no. 1-2, pp. 318-28, Jul 2007. 

[46] A. C. Sauve and T. P. Speed, "Normalization, baseline correction and alignment of high-
throughput mass spectrometry data," in Genomic Signal Processing and Statistics, 2004. 

[47] B. M. Warrack et al., "Normalization strategies for metabonomic analysis of urine 
samples," J Chromatogr B Analyt Technol Biomed Life Sci, vol. 877, no. 5-6, pp. 547-52, 
Feb 2009. 

[48] S. Ganti and R. H. Weiss, "Urine metabolomics for kidney cancer detection and 
biomarker discovery," Urol Oncol, vol. 29, no. 5, pp. 551-7, 2011 Sep-Oct 2011. 

[49] B. Cao et al., "GC-TOFMS analysis of metabolites in adherent MDCK cells and a novel 
strategy for identifying intracellular metabolic markers for use as cell amount indicators 
in data normalization," Anal Bioanal Chem, vol. 400, no. 9, pp. 2983-93, Jul 2011. 

[50] D. Ryan, K. Robards, P. D. Prenzler, and M. Kendall, "Recent and potential 
developments in the analysis of urine: a review," Anal Chim Acta, vol. 684, no. 1-2, pp. 
8-20, Jan 2011. 

[51] G. H. Reference. (2018). HGD gene. Available: https://ghr.nlm.nih.gov/gene/HGD 

[52] N. C. f. A. T. Sciences, "Alkaptonuria," ed, 2016. 

[53] J. Barwell and E. Boskey. (2016). Alkaptonuria. Available: 
https://www.healthline.com/health/alkaptonuria 

[54] N. O. f. R. Disorders. (2005). Medium Chain Acyl CoA Dehydrogenase Deficiency. 
Available: https://rarediseases.org/rare-diseases/medium-chain-acyl-coa-dehydrogenase-
deficiency/ 

[55] T. Hegyi, B. Ostfeld, and K. Gardner, "Medium chain acyl-coenzyme A dehydrogenase 
deficiency and SIDS," N J Med, vol. 89, no. 5, pp. 385-92, May 1992. 

[56] L. D. Keppen and B. Randall, "Inborn defects of fatty acid oxidation: a preventable cause 
of SIDS," S D J Med, vol. 52, no. 6, pp. 187-8; disscussion 188-9, Jun 1999. 



29 
 

[57] A. Kennedy et al., "Utilizing Metabolomics of Human Urine to Screen for Multiple 
Inborn Errors of Metabolism," Genetic Testing and Molecular Biomarkers, vol. Under 
Review, 2016. 

[58] E. Varga et al., "Stable isotope dilution assay for the accurate determination of 
mycotoxins in maize by UHPLC-MS/MS," Anal Bioanal Chem, vol. 402, no. 9, pp. 
2675-86, Mar 2012. 

[59] M. Granvogl, P. Koehler, L. Latzer, and P. Schieberle, "Development of a stable isotope 
dilution assay for the quantitation of glycidamide and its application to foods and model 
systems," J Agric Food Chem, vol. 56, no. 15, pp. 6087-92, Aug 2008. 

[60] M. Milton and R. Wielgosz, "Uncertainty in SI-traceable measurements of 
amount of substance by isotope dilution mass 
spectrometry," Metrologia, vol. 37, no. 3, p. 199, 2000. 

[61] D. M. Rocke and S. Lorenzato, "A Two-Component Model for Measurement Error in 
Analytical Chemistry," Technometrics, vol. 37, no. 2, pp. 176-184, 1995. 

[62] P. S. Gromski et al., "Influence of missing values substitutes on multivariate analysis of 
metabolomics data," Metabolites, vol. 4, no. 2, pp. 433-52, 2014. 

[63] E. G. Armitage, J. Godzien, V. Alonso-Herranz, Á. López-Gonzálvez, and C. Barbas, 
"Missing value imputation strategies for metabolomics data," Electrophoresis, vol. 36, 
no. 24, pp. 3050-60, Dec 2015. 

[64] O. Hrydziuszko and M. R. Viant, "Missing values in mass spectrometry based 
metabolomics: an undervalued step in the data processing pipeline," Metabolomics, vol. 
8, no. 1, pp. 161-174, 2012. 

[65] T. G. Payne, A. D. Southam, T. N. Arvanitis, and M. R. Viant, "A signal filtering method 
for improved quantification and noise discrimination in fourier transform ion cyclotron 
resonance mass spectrometry-based metabolomics data," J Am Soc Mass Spectrom, vol. 
20, no. 6, pp. 1087-95, Jun 2009. 

[66] D. Albrecht, O. Kniemeyer, A. A. Brakhage, and R. Guthke, "Missing values in gel-
based proteomics," Proteomics, vol. 10, no. 6, pp. 1202-11, Mar 2010. 

[67] E. G. Armitage and C. Barbas, "Metabolomics in cancer biomarker discovery: current 
trends and future perspectives," J Pharm Biomed Anal, vol. 87, pp. 1-11, Jan 2014. 

[68] E. Mattarucchi and C. Guillou, "Comment on "Optimized preprocessing of ultra-
performance liquid chromatography/mass spectrometry urinary metabolic profiles for 
improved information recovery"," Anal Chem, vol. 83, no. 24, pp. 9719-20; discussion 
9720-1, Dec 2011. 



30 
 

[69] Y. V. Karpievitch, A. R. Dabney, and R. D. Smith, "Normalization and missing value 
imputation for label-free LC-MS analysis," BMC Bioinformatics, vol. 13 Suppl 16, p. S5, 
2012. 

[70] P. Manini, G. De Palma, R. Andreoli, M. Goldoni, and A. Mutti, "Determination of 
urinary styrene metabolites in the general Italian population by liquid chromatography-
tandem mass spectrometry," Int Arch Occup Environ Health, vol. 77, no. 6, pp. 433-6, 
Aug 2004. 

[71] T. H. Herdt, J. B. Stevens, W. G. Olson, and V. Larson, "Blood concentrations of beta 
hydroxybutyrate in clinically normal Holstein-Friesian herds and in those with a high 
prevalence of clinical ketosis," Am J Vet Res, vol. 42, no. 3, pp. 503-6, Mar 1981. 

  



31 
 

CHAPTER 2: DISTRIBUTION AND CORRELATION 

2.1. Overview 

Global metabolomics has been developed as a screening platform. This primary function can 

be attributed to cost and difficulty in obtaining sample material, which in turn leads to 

metabolomics having experimental designs with small sample sizes [1]. Another characteristic of 

metabolomic sets are the frequent use of factor designs such as water-stress conditions in plants 

[2] or disease staging [3]. This approach fits well with the semi-quantitative nature of MS where 

only relative difference between samples are meaningful. One cannot use global MS to answer 

how many days of drought it takes phenols or flavonoids to fall below a certain mg/dl 

benchmark, for example. This would be more appropriate for targeted analysis [4].  

However, it is possible through global metabolomics to examine what biochemicals have 

significantly higher or lower levels in water stressed plants compared to non-stressed plants. The 

low sample size, semi-quantitative nature and group-based comparisons combine to position 

global metabolomics primarily as a tool for identifying the most promising candidates from 

hundreds, or even thousands of features. This group-based approach to biomarker identification 

has naturally led to wide spread use of two sample t-test and ANOVA, which have become the 

go-to statistical procedures for metabolomics. The hypothesis tests here involve the means of the 

groups, which for the simple two group setting is 

H0i: µ1i = µ2i 

HAi: µ1i ≠ µ2i 

For i = 1, …, m. The features can then be ranked by p-value. However, an underlying 
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assumption to these univariate methods is a normal distribution. Normality is also central to 

certain multivariate procedures including MANOVA and linear discriminant analysis. Yet, 

biochemicals themselves are not biologically constrained to a Gaussian behavior [5, 6]. 

Generally, this concern would be avoided by using non-parametric equivalents, such as 

Wilcoxon rank sum or Kruskal Wallis, but the lower power of these tests coupled with the low 

sample size make this option undesirable or even impractical. Focusing for a minute on the 

Wilcoxon test, the hypothesis tested is 

H : Distribution of Group 1 = Distribution of Group 2 

HA: Distribution of Group 1 ≠ Distribution of Group 2 

In metabolomics though, it is possible to have as few as three observational units per group [7]. 

A comparison of two such groups using the Wilcoxon test gives the lowest possible obtainable p-

value as 0.1, and this is before any adjustments for multiple comparisons are made. Hence 

parametric hypothesis testing is preferred, and normality is, therefore, a desirable trait. Yet little 

research has been devoted to the distributional behavior of metabolites. Vinaixa et al. [1] have 

previously assessed normality in ion-centric datasets, finding the majority of the features from 

four separate data sets “pass” for normal. Three different types of sample material were covered 

by these sets: two retina, one serum and one cell culture. Given the differences between ion-

centric and chemo-centric data (Section 1.9) [8], it is natural to extend this discussion to the 

chemo-centric setting. This chapter does so using LC-MS metabolomic data with a variety of 

assessment tools and transformations. The results suggest that metabolites can be reasonably 

regarded as log-normal, which is to say that normality is achieved following a natural log 

transformation.  
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Another item of interest is the dependence or association between metabolites. While 

univariate approaches have historically dominated in metabolomics, certain multivariate 

procedures, most notably principal component analysis, are also used widely in metabolomics. 

Correlation plays an extremely important in multivariate statistics. For example, variable 

correlation can have significant impact on the power and Type I error rate of MANOVA [9], 

correlation plays a fundamental role when choosing between LASSO and Elastic Net [10], and 

many network analyses, including Gaussian graphical models, rely on correlation or partial 

correlation. Literature on correlation analysis has been small and inconsistent in metabolomics. 

Vinaixa et al. [1] commented that LC-MS metabolomics is “multi-correlated” to the point that 

certain features border on being collinear, whereas Camacho et al. [11] observed “the large 

majority of metabolite pairs showed little or no correlation”. Clearly this is an issue for which 

greater understanding is beneficial. 

This chapter is devoted to examining the distribution of metabolites, specifically focusing on 

normality, and correlation. Three separate cohorts comprising samples of human plasma, urine 

and cerebral spinal fluid (CSF) were profiled using LC-MS based chemocentric metabolomics. 

Each set is composed of between 30 and 40 healthy individuals creating reasonably large sets of 

single populations with which to explore metabolite properties. All three sets were indexed 

against a propriety library allowing for biochemical identification and arrangement by 

biochemical pathway [8, 12]. This level of annotation allows for further assessment within and 

between the different types of datasets.  

2.2. Assessing Normality 

Normality is one of the richest subjects in statistics with the literature spanning from the 

early 1900s to the present day [13, 14]. Summary measures can be used to assess normality. 
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Most of these metrics revolve around the concepts of skewness and kurtosis. Skewness attempts 

to measure the amount of asymmetry while kurtosis relates to the amount of overall “tailedness”, 

“shoulderdness”, or “peakedness” of a distribution [15, 16]. Skewness is most commonly 

expressed numerically as the third standardized moment, which for Yi a random metabolite 

feature, is defined as: 

𝛾  = E
 𝑌 − µ

3

σi
3   

where µ  and 𝜎  are respectively the mean and variance of 𝒚𝒊. Similarly, kurtosis is the fourth 

standardized moment:  

 ν  = E  
𝑌 − µ

4

σ4   

Other definitions of these statistics exist, such as skewness based on the standardized difference 

between the mean and median [17, 18], but all are geared toward the same fundamental concepts 

of skewness and kurtosis. A recent summary of skewness and kurtosis measures is given in Cain 

et al. [19] though both are usually covered in most elementary statistics books. The definitions 

above are specifically shown because they are prominently used in formal hypothesis tests and 

considered the most recognizable.  

The range of γi is the entire real line. Values of γi < 0 indicate a distribution in which the left 

tail is longer or heavier while γi > 0 indicates the right tail is so. Distributions, which include the 

normal, in which γi = 0 are said to be non-skewed. For kurtosis, νi is strictly greater than 1. For 

any normal distribution νi = 3, and as a result the term excess kurtosis subtracts 3 from the usual 

kurtosis value in order to index against the normal. A value of νi < 3, also known as leptokurtic, 

are taken to imply longer tails and a thinner central peak than a normal. Values of νi > 3, or 
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platykurtic, indicate shorter tails and wider shoulders than a normal.   

For a given sample, inference about the normality of the population can be made from the 

corresponding sample statistics γ̂i and νi, which are found by substituting the sample mean and 

standard deviation in place of their population level parameters and averaging over the sample. 

Interpretation is subjective, but a general rule of thumb is -1 < γ̂i < 1 and 2 < νi < 4. However, 

statistics meant to address skewness or kurtosis are mathematical constructs and need not 

correspond exactly to any philosophical interpretation [20, 21]. For example, γi does not adhere 

to any strict rule or direction when one tail is very long and the other is very heavy. It has been 

shown that statistical tests based on these measures can be misleading [22]. As a result, skewness 

and kurtosis are not often used without other diagnostics. 

Graphical approaches to assessing normality include simple stem and leaf plot, histogram 

and the quantile-quantile plot. This plot compares the observed quantiles of the sample against 

their expected value under a normal distribution. The main attraction to graphical approaches is 

the visual format and, like summary statistics, the ability to indicate where deviation from 

normality is occurring. However, interpretation can be subjective and is challenging to 

implement in omic datasets containing hundreds to thousands of features.  

In contrast to summary and graphical methods, hypothesis testing provides a concrete 

framework for determining if a sample is normal that can be applied easily to large datasets, 

though the informational value behind a test statistic and p-value is limited beyond a simple 

decision tool. All normality tests surveyed in this review utilize the same null hypothesis, namely 

for yi = {y1i,…,yni}
' 

H i : F yi = φ
𝒚𝒊 − µ

𝜎
 

where φ(t) is the cumulative distribution function of the standard normal distribution. Some 
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measure of discrepancy is calculated between the observed sample and what would be expected 

under H i. A consequence leads to a well-known dilemma with normality testing: major 

departures from normality may not trigger rejection if the sample size is small while minor 

departures may be deemed “significant” if the sample size is very large [23, 24]. But in terms of 

formal decision making, normality tests provide the only option and for that reason are quite 

widely used when determining normality. 

Normality tests can be broadly classified depending on the mechanism used to detect 

departure from normality. Here we choose a classification scheme similar to Baringhaus et al. 

[25] which separates tests based on (1) the empirical distribution function (EDF), (2) correlation, 

(3) moment, (4) empirical characteristic function (ECF) and (5) miscellaneous approaches. In the 

descriptions that follow let Xn be a random vector of size n with 𝑥  the jth element of Xn, x(j) the 

jth ordered element of Xn, x = n-1 ∑ xj
1
j=1  the sample mean and  s = (n-1)-1 ∑ (xj − x)2n

j=1  the 

sample standard deviation. 

2.2.1.  EDF Tests 

As the name suggests these tests make use of the empirical distribution function and includes 

those from Kolmogorov-Smirnoff, Cramer-von Misses and Anderson-Darling. Using the 

notation above while letting Vj = φ
x(j) − x

s  and defining: 

Fn(t)=
1

n
I(Vj ≤ t)

n

j=1

, 0 ≤ t ≤ 1 

each of the three tests can be written using the function: 

 Rn(t) = √n (Fn(t)  −  t) 

For the tests above, we have: 
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Cramer – von Mises: 
Rn

2(t)
1

dt 

Kolmogorov – Smirnoff: sup
t

|Rn(t)| 

Anderson – Darling: Rn
2(t)

t (t-1) dt
1

 

Cramer-von Mises (CM) is the oldest of these test with Cramer introducing his version of the test 

statistic in 1928 [26]. Von Mises, working independently, produced a very similar test statistic in 

1931 [27]. Being so similar in content and introduced so closely together in time, the test has 

come to share the names of both individuals. Shortly after introduction of the CM test, 

Kolmogorov introduced a different test statistic in 1933 with important contributions made in 

subsequent years by Smirnoff regarding the distribution of the variables involved [28-31]. The 

result came to be known as the Kolmogorov-Smirnoff test (KS) and has become a stalwart of 

normality testing. Use of this test continues into the present day and it remains a fixture in many 

introductory statistics books despite arguments that it should not be used as a normality test due 

its poor performance [32, 33]. In its defense, KS can be used to test that two samples are derived 

from the same distribution and it is able to handle ties, which many of the more statistically 

powerful tests do not tolerate well. Worth noting is that as a normality test KS specifically tests 

that the data is Standard Normal and thus use of this test requires centering and standardizing the 

sample. Lilliefors went on to extend KS to test for normality without specifying the mean or 

variance [34]. Anderson and Darling (AD) introduced their test in 1952, which gives more 

weight to the tails of the distribution than KS does [35]. More recently, Vasicek provides another 

EDF test using a test statistic based on the sample entropy of the density function [36]. Of the 

EDF tests mentioned here, AD is generally regarded as the most powerful and therefore the most 

advisable [37, 38].  
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2.2.2.  Correlation Tests 

These tests compare the observed ordered statistics from the sample against their expected 

value under a standard normal distribution. Letting z(1) ≤ z(2) ≤ … ≤ z(n) be the ordered statistics 

of n independent draws from a standard normal. Under H  the ordered sample statistics can be 

modeled as a linear function of the z(j)'s such that 

x(j) = µ + σmj + εj 

where mj=E  z(j)  and the εj's represent random error satisfying E εj =0 and cov(ε')=σ2Σ̇ for all j 

ϵ {1, 2, …, n} with Σ̇ being the covariance matrix of z = z(1), …, z(n)
'
. When the sample is 

derived from a normal distribution the ordered sample vector x = {z(1), …, z(n)} will be closely 

linear with the vector of ordered standard normal expectations, m = {m(1), …, m(n)}. Therefore, 

the square of the correlation coefficient ρ2 provides a measure of assessing normality. In practice 

calculating 𝑚  is not trivial and the choice of what to use for m leads to the various tests in this 

category. For w the chosen representative of m we have 𝜌  as 

ρ2(w, x)=

⎝

⎛
∑ (wj − w)(x(j) − x)j=1

∑ (wj − w)2n
j=1 ∑ (x(j) − x)2n

j=1 ⎠

⎞

2

 

In terms of w better known correlations tests can be written as: 

Shapiro-Francia (SF) 
w = m  

Shapiro-Wilk (SW) 
 w = Σ̇

1
m

Σ̇ m
 ‖a‖=Euclidean Norm of a 

de Wet-Venter (DW)  wj = φ-1 j
n+1   
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Weisberg-Bingham 
(WB) 

 wj = φ-1
j-

3
8

n −
3
4 +1

  

Smith-Bain (SB)  wj = φ-1
j −

1
2 n   

Each of these tests are shown to be asymptotically equivalent but in large sample sizes values of 

w are easily calculated for DW, WB and SB [25]. Practical estimation of m was also extended by 

Royston for n ≤ 2,000 and then by Rahman and Govidarajulu for n ≤ 5,000 [39-41]. The 

expected values of normal ordered statistics will be discussed further in Chapter 3.  

A major advantage for correlation tests is the ease by which they can be applied to a censored 

sample by essentially restricting the portion of ṁ that matches with the observed data [42]. 

Additionally, Shapiro-Wilk has consistently demonstrated strong power across a plethora of non-

normal distributions and has become the gold standard for overall power [43]. 

2.2.3.  Moment Tests 

Normality tests utilizing the moments of the distribution in their test statistic are known as 

moment tests and have existed conceptually since at least the late 19th century [44]. Given their 

behavior in the normal distribution, the third and fourth moments are natural metrics for testing. 

These are commonly denoted, respectively, by b1  and b2 and defined as: 

b1 = 

1
n ∑ (xi − x)3

s3    and    b2 = 

1
n ∑ (xi − x)4

1
n ∑ (xi − x)2

2 -3 

b1 is equivalent to the moment-based estimate of skewness (while b2 is the moment based 

estimate of excess kurtosis. As such, tests employing them are sometimes more plainly referred 

to as tests of skewness or kurtosis. Possibly the most well-known test of skewness comes from 
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D’Agostino who provides a transformation for b1 which follows a closely normal distribution 

when the sample is derived from a normal distribution [45]. Anscombe and Glynn detail a 

similar procedure for b2 [46]. Hosking utilizes L-moments to provide an alternate test for 

skewness [47]. Lin and Mudhokar base their Z2 (initially named Z) test on the first and second 

moments utilizing the property that x and s2 are independent if and only if the sample is drawn 

for a normal distribution [48]. The Z2 test is shown to be particularly strong against skewed 

alternatives. Later Mudholkar et al. developed the Z3 statistic based on the first and third sample 

moments and demonstrates strong power against non-normal kurtosis [49]. 

The greatest advantages of moment tests are also tied to their greatest disadvantages. Since 

these test statistics typically focus on either skewness or kurtosis it is very easy to amend them 

toward one-sided alternatives. For example, a researcher may only be interested to know if the 

data is left skewed without care to the data being right skewed. But as a tradeoff the examination 

of only one aspect of non-normality leads to considerably lower power compared to other classes 

of tests that are sensitive to all aspects of non-normality. In order to improve the overall power 

and create an omnibus test, skewness and kurtosis statistics may be combined as with the K2 test 

of D’Agostino-Pearson [50], the combination of Z2 and Z3 [49], the tests by Bowman-Shenton 

[51] and that by Jarque-Bera [52]. More recently Bai and Ng present an omnibus test for time 

series data that is serially correlated [53]. These omnibus tests result in tests that are well 

powered against a wide range of distributions and the use of the individual statistics can be used 

to identify sources of non-normality [54]. However, this second point is refuted based on the 

correlation between b1 and b2 being quite high even for large sample sizes [20, 22].  As a 

result, the diagnostic value of moment tests is questionable. 
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2.2.4.  ECF Tests 

ECF tests are based on upon the characteristic function, which for the normal distribution is 

 ϕ(t) = exp(itµ −
1

2
t2σ2) 

and the empirical characteristic function for a sample of size n is 

 ϕn
(t, Xn)=

1

n
exp(itxj)

n

j=1

 

The earliest ECF test surveyed by this review was by Koutrouvelis whose test statistic divided 

the characteristic function into real and imaginary parts [55]. Around the same time Murota and 

Takechu proposed a test based on an(t)= ϕ(t, Xn s )  which demonstrated good power against 

symmetric distributions but not against skewed distributions [56]. Epps and Pulley provide a test 

that is robust against both skewed and kurtic alternatives and is probably the most well-known of 

ECF tests [44]. Their test statistic is 

 T= ϕn t,
Xn − x

s
−  ϕ(t,Xn)

2

dG(t)
∞

-∞
 

in which ϕ(t,Xn)=exp itx − 1
2 t2s2  and dG(t) is a weight function initially suggested as 

√2𝜋
1
exp( −𝑡2

2 ). 

The Epps-Pulley test has been shown to have comparable power to other well-known 

normality tests with recommendation for its relatively easy computation [25]. ECF tests have 

received much praise in the multivariate realm. Whereas EDF and moment tests are criticized for 

lacking consistency [57], Csorgo’s application of the empirical distribution function to the 

multivariate setting [58] was, at the time, praised as being the only multivariate normality 

(MVN) test “genuinely” multivariate in nature [59]. Application of the ECF to testing MVN is 

still ongoing [60]. 
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2.2.5.  Other Tests 

Tests that do not clearly fit into any of the previous categories are grouped together as a 

separate category. These include tests based on Hermite polynomials [61-63] and the moment 

generating function [64]. Of particular interest to this dissertation is the test by Sigut et al. [65], 

which combines Bayesian elements with large deviation theory [66]. 

Unlike most normality tests Sigut et al., through the use of so-called experts, offers the 

ability not just to discriminate between normal and non-normal but also provide diagnostic value. 

Let C  be the class of any sample of size n drawn from a N(0,1) population and let C be the 

class of all samples of a non-normal population with the same size and parameters. The problem 

is then to determine if 𝑋  belongs to C  or C1. The authors introduce the notion of an expert, 

based upon the optimal decision rule under a Bayesian framework given by: 

P(C1)p(Xn|C1)

P(C )p(Xn|C )
 

in which P(Ci) and p(Xn|Ci) are the a priori probabilities and CDFs for i equal to 0 or 1. The error 

associated with such a decision rule is given by: 

E=P(C )E +P(C1)E1 

where E  and E1 are the errors associated with misclassifying samples from C  and C1 

respectively. E  can be rewritten as: 

P
1

𝑛
log

n

i=1

p(Xn|C1)

p(Xn|C )
 ≥ 

1

𝑛
log

P(C1)

P(C )
 

with P  being shorthand for the probability of the event in the case that all observations are from 

the normal class. Using Chernoff’s theorem, it can be shown that as n tends to infinity this 

probability relates to the Chernoff distance between p(Xn|C ) and p(Xn|C1), which is independent 

of the prior probabilities and decays exponentially with the sample size. These arguments are 
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applicable to both E1 and E  as well establishing the expert as an asymptotically optimal 

decision rule. The authors then extend the concept to a sum of experts 

P(C11)p(Xn|C11)

P(C )p(Xn|C )
+

P(C12)p(Xn|C12)

P(C )p(Xn|C )
+…+

P(C1r)p(Xn|C1r)

P(C )p(Xn|C )
 

showing that the previous results hold for this combination. In practice care must be taken so that 

the chosen experts provide a comprehensive basis for “non-normal” as samples derived from 

non-normal populations that are not reasonably “close” to any of the experts become 

problematic. In response the Johnson family of distributions is recommended with four 

parameterizations intended to cover the plane of non-normality defined by the population 

skewness and kurtosis given, respectively, as:  

β1=
E (X-µ)3

(E[(X-µ)2])
3 2⁄

 

and  

β2=
E (X-µ)4

(E[(X-µ)2])2 

Specifically, the quadrants of interest are: 

i. β1 < 0, 1 < β2 <3 

ii. β1 < 0, 3 < β2 <10 

iii. β1 > 0, 1 < β2 < 3 

iv. β1 > 0, 3 < β2 < 10 

Distributions that differ from normal in both skewness and kurtosis will be identified by the 

expert associated with a specific type of deviation. For distributions that deviate only by 

skewness, then a combination of either (i) and (ii) or (iii) and (iv) will be large, depending on 
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whether the distribution is left skewed or right skewed. Similarly, the combination of (i) and (iii) 

or (ii) and (iv) will identify distributions that are leptokurtic or platykurtic with zero skew. 

2.3. Transformation 

Data that is found to be non-normal may be altered through (non-linear) transformation to 

achieve normality. Feature transformation is actually quite common across the omic sciences 

including metabolomics. Some of the more popular transformations are shown in Table 2.1. 

Many involve a linear mechanism via centering (mean/median), scaling (variance / standard 

deviation) or both, and offer no change in distribution. This is sufficient in the typical 

metabolomics study, focusing on biomarker discovery in a sea of features with wildly varying 

abundance levels, where transformations are primarily used to remove variation within and 

between features. For example, when conducting univariate t-tests or analysis of variance 

(ANOVA) it is helpful to remove heteroscedasticity. In the case of multivariate analysis via 

principle component analysis then it may be desirable for the compounds to have equal weight 

[67].  

Although normality is not often the primary focus, some transformations (g-i) are non-linear 

and do offer the possibility to alter the distribution. Both the power and Box-Cox transformations 

are directly intended for such use and can be directly applied to metabolomic data as ion counts 

are strictly greater than 0. They do, as with the generalized log, require estimation of an 

additional parameter δ from the data. With the power and Box-Cox transformations this 

parameter can be estimated using profile likelihood and is dependent on a fully observed sample. 

The natural log transformation is frequently used to help induce normality, being in fact a special 

case of the Power and Box-Cox when λj = 0. It is a popular choice in general and evidence 

supports its value in metabolomics [68]. Unfortunately, it has the unattractive consequence of 
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greatly inflating the transformed variance in features with lower abundance. This phenomenon is 

consistent with the two-component model introduced in Section 1.7. Returning to this model, the 

ion count yji for some metabolite j and sample i is 

yji= α + cjxji
eηji  + εji 

with η ~ N(0,ση
2),  ε ~ N(0,σε

2),  xji is the true concentration and cj represents the overall ionization 

efficiency of the instrument. For this exercise it convenient to combine the true concentration 

 
 Name Calculation  
(a) Centering 𝑦ij

∗ = 𝑦ij − 𝑦i 

(b) Autoscaling yij
∗ =

𝑦ij − 𝑦i

si
 

(c) Range Scaling yij
∗ =

yij − yi

𝑚𝑎𝑥 (yi) − 𝑚𝑖𝑛 (yi)
 

(d) Pareto Scaling yij
∗ =

yij − yi

√si

 

(e) Vast Scaling yij
∗ =

yi(yij − yi)

si
2  

(f) Level Scaling yij
∗ =

yij − yi

yi
 

(g) Loga yij
∗ = loga yij  

(h) Power yij
∗ (λ𝑗 ) =

yij

λ𝑗                for λ𝑗 ≠ 0

ln yij       for λ𝑗 = 0
 

(i) Box-Cox yij
∗ (λ𝑗 ) =

yij
δ − 1

λ𝑗
      for λ𝑗 ≠ 0

ln yij          for λ𝑗 = 0

 

(j) Generalized Log yij
∗ (δ, α) = ln (yij − α) + (yij − α)2 + δ  

Table 2.1: Common Transformations in Metabolomics 
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and instrument ionization as µji = cjxji
 representing the true average ion count. When µji is large, 

the middle term dominates the expression and the distribution of yji is reasonably close to a log-

normal and the log transformation performs well. But, when µji is small the last term dominates 

and yji behaves more as a normal random variable. The mean and variance of yji follow as 

 E yji = α + µji 

 Var yji  = µji
2Λη  + σε  

with Λη
2 = eση(eση − 1), which is the variance of a log-normal variable with mean 0 and standard 

deviation ση (on the log scale). From the observation above µji→ 0 implies that yji

D
→  N. Using 

the delta method, the asymptotic variance when applying the log transformation must be 

converging to 

 var log yji → µji
2Λη

2 + σε *
1

(µji + α)2 

as n goes to infinity. For the next step, recall that α is mostly regarded as a nuisance parameter 

and can frequently be ignored. However, as µji becomes small this intercept may arguably 

become non-trivial. One can either make the assumption that α is ignorable or adjust the 

transformation log yji  −  α . In either case, the result follows: 

 var log yji  −  α → µjiΛη  + σε *
1

µji

 

             → Λη  + 
σε

µji

 

Thus as µji approaches 0 the variance will increase without bound. µji → 0 will obviously occur 

when yji → 0, suggesting the variance will be high for features in which µji is small. This implies 
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low metabolites with low concentration will tend have higher variance; however, recall the ion 

count is dependent on the product of both the concentration and ionization efficiency of the 

molecule. A small concentration of a metabolite with a high ionization efficiency may produce 

more ions than a large concentration of a metabolite that is poorly ionized. 

Inflation of variances at low ion counts is problematic as it can hinder the ability to identify 

biomarkers that fall in this range. One solution is to only log transform metabolites with higher 

abundances and leave the low abundance features alone. This can work well at the extremes, i.e. 

ranges where µjie
ηji or εji dominate, but ranges in which both terms meaningfully contribute 

remains problematic. The generalized log transformation (GLOG) offered a solution to this [69].  

Although utilized for microarrays, the concept is drawn directly from the model first 

presented by Rocke and Lorenzato and natural to use with MS data [70]. As with Power/Box-

Cox, the GLOG involves estimation of a parameter, which can also be found using Maximum 

Likelihood, and is based on the ratio of σε
2/Λη

2 [69]. Note that with the power family the 

transformation parameter is estimated on each individual feature whereas in the GLOG a single 

parameter set is typically used for all features. Further detail on the advantages and 

disadvantages of these transformation can be found in van den Berg et al. [71]. 

2.4. Correlation 

The final item of interest in this chapter is that of correlation. For 𝒚A and yB any two 

metabolites with means µA, µB and variances σA, σB the correlation is defined as  

ρxA,xB =
E  𝒚A − µA E  𝒚B − µB

E  𝒚A − µA

2
E  𝒚B − µB

2
 

The numerator is simply the covariance between yA and yB while the denominator is the square 

root of the product of the two standard deviations. Hence, correlation is the covariance 
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normalized against the variation of two variables and is bounded between -1 and 1. A value of ρ 

equal to 0 implies independence between the two variables, meaning that knowledge of one 

variable provides no information about the other variable. When ρ > 0 the two are said to be 

positively correlated with higher values in one variable being associated with higher values in the 

other. Negative correlations occur when ρ < 0 and higher values in one variable tend to indicate 

lower values in the other. A value of ρ = -1 or ρ = 1 will be achieved when the two variables are 

an exact linear transformation of each other.  The sample correlation is most frequently described 

using the Pearson r correlation coefficient [72], which replaces the population parameters with 

the usual sample estimates: 

Pearson's rxA,xB =
(∑ 𝒚A − xA)(∑ 𝒚B − xB)

∑(𝒚A − xA)2 ∑(𝒚B − xB)2
 

Note that in the above formula the (n-1)-1 terms cancel out. Pearson’s r shares the same boundary 

space as ρ with the interpretation also being the same. As one might expect with 𝜌 signifying a 

linear relationship, this statistic is closely related to simple linear regression (SLR). In fact, r is 

the square root of the 𝑅  statistic, which measures the proportion of variation explained by the 

linear fit. It is therefore unsurprisingly that, like SLR, 𝑟 is sensitive to extreme outliers. A non-

parametric version of the correlation coefficient was developed by Spearman [72] and is in fact 

often recommended for metabolomic data due to the propensity for extremely large outliers [11]. 

The calculation of Spearman’s rank sum correlation coefficient follows exactly from Pearson 

with the exception being that values of both variables are first translated into ranks: 

𝒚A
* ={rank yA1 , …, rank yAn } 

yB
* ={rank yB1 , …, rank yBn } 

 and so 



49 
 

Spearman's ryA,yB = 1-
6 ∑ (yA1

* − yB1
* )n

1

n3 − n
 

Whereas as Pearson indicates a linear relationship between 𝒚A and yB, Spearman indicates a 

monotonic relationship. Spearman is therefore more general and able to capture a wider range of 

relationships in the two variables and is also invariant to any monotonic transformation. 

However, as an estimator Spearman is less statistically efficient than Pearson with hypothesis 

tests for ρ = 0 using Pearson being more powerful. However, in this paper interest is more on the 

coefficients rather than p-values. Correlation coefficient estimates are tabulated and examined 

for each metabolite using both Pearson and Spearman. The availability of pathway information 

for the metabolites allows for an additional layer of assessment based upon functional class. 

Details on these pathways are given in section 2.6. 

2.5. Methods 

As metabolite distributions and correlations are examined it is important to consider the 

potential impact that transformations may have. In each of the normality and correlation methods 

used, results are provided for the untransformed data, as well as data transformed by log, GLOG 

and Box-Cox. These transformations are selected given their ability to alter the distribution of 

the metabolite and the interest of this paper. It is our belief that a simple log transformation is 

effective at inducing normality within metabolites. The GLOG is a closely related function and is 

rooted in MS based analytical chemistry, making it a natural choice for consideration. The Box-

Cox transformation provides a gold standard by which to assess both log based transformations. 

Correlation is assessed by pairwise comparisons using both Pearson and Spearman statistics. 

Three approaches are used to assess normality: Shapiro Wilk, Normal Quantile-Quantile plots 

and Box-Cox λ. The Shapiro-Wilk test is among the most recognizable tests for normality. 

Among the first correlation tests, it was first described in 1965 [73]. It is regarded for being 
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among the most powerful and having high power across a large spectrum of non-normal 

behavior [33]. These reasons led to its selection here as theoretically metabolites are not 

constrained to any specific type of non-normality. Additionally, as a correlation-based test 

Shapiro-Wilk can be adapted to censored samples allowing its application to metabolites in the 

dataset that contain missing values. Additional detail for these methods follow. 

2.5.1.  Shapiro-Wilk 

For a given metabolite y
𝒊
 = {y1i , …, yni}

', the test statistic is: 

Wi = 
∑ aiy[j]i

n
j =1

2

∑ (yji − y)2n
j =1

 

where y[j]i is the jth ordered value of the vector yi 

{a1, …, an} = 
mTV-1

(mTV-1V-1m)
1/2 

with 

V = cov(m) 

m = (m1, …, mn) 

such that 

m  = E y[j]i | y ~N(0,1)  

Due to the symmetry of the normal distribution ∑ m , and by extension ∑ ai, is equal to 0. W  is 

bounded between 0 and 1 and under H  will be closer to 1. Censored samples are handled by 

restricting the range to cover only the observed order statistics. That is 

W  = 
∑ ai y[j ]iΩ

2

∑ (yji − y)2
Ω
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where Ω = {all j : y[ ]i is not missing}. 

2.5.2.  Normal Quantile-Quantile plots 

The normal quantile-quantile (QQ) plot is the most commonly used and recognized graphical 

approach. For 𝒚𝒋 and m as before, the QQ plot displays the pairs  

{y[j]i , m } 

Samples that are normal should follow closely to a straight line while non-normal behavior will 

manifest with non-linear behavior. For example, pairs of a sample from a right skewed 

distribution will tend to show an upward curve for larger values of i. Although QQ plots are easy 

to construct and straightforward to interpret, the lack of a formal decision-making structure 

causes the conclusions to be subjective. High dimensional data presents an additional challenge 

as it is infeasible to examine hundreds or thousands of features in this manner. The approach 

taken here is to consider all possible yji for i ∊ {1, …, n} and j ∊ {1, …, m} simultaneously. Each 

metabolite is mean centered and scaled by the sample standard deviation: 

yji
*=

yji − yj

syj

 

These resulting yji
* 's are then combined into a single vector and all resulting pairs {y[k]

*  , mk} for k 

ϵ {1, …, j*i} are plotted. 

The QQ plot will be used to give a graphical assessment. To accommodate the large number 

of variables each compound will be median scaled and standardized. A single QQ plot will then 

be made for all the values of all the compounds. Because missing values are likely due to limit of 

detection and not missing at random only, compounds that are observed in all samples will be 

used. Next, normality will also be assessed using the Shapiro-Wilk test. P-values can easily be 

tabulated across all compounds and categorized based on standard significance at the 0.05 level. 
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This test is the gold standard for univariate normality and its use here is consistent with previous 

studies. 

2.5.3.  Box-Cox λ 

For a variable of interest yj, the family of power transformations introduced by Tukey [74] 

produces a variable yj(λj) that is optimally normal based on: 

yj(λj)=
     y

j

λj    for λj ≠ 0 

ln yj for λj = 0
 

which is monotonic for all λj. Box and Cox amended this to account for the discontinuity that 

occurs at λj = 0, yielding the following definition:  

yj(λj)=

⎩
⎪
⎨

⎪
⎧ y

j

λj-1

λj
for λj ≠ 0 

ln yj for λj = 0

 

λj is estimated using a profile likelihood based on 

σ√2π
-n

*exp
y

j

λj
− Aθ y

j

λj
− Aθ

2σ2  

in which A is a matrix of predictor variables and θ is an unknown vector of associated 

parameters based on the model 

 E yj = Aθ 

Hence Box-Cox is appropriate for transforming dependent variables of a linear model, but can be 

generalized to other variables by setting A = 1. Some definitions incorporate the geometric mean 

of untransformed variable  GM 𝒚j = yj1*yj2*…*yjn
n  as this allows for simplification of the 

likelihood. These transformations are only appropriate for variables strictly greater than zero, and 
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so the two parameter Box-Cox substitutes yj
' = (yj + αj) in place of yj in order to ensure that all 

values are positive. For MS metabolomic data the single parameter version given should suffice 

as detectable ion-counts are strictly greater than zero. Occasionally, missing values may be 

treated as zero, but this is a very strong assumption implying the metabolite is completely absent 

from the sample. This may hold for some metabolites, such as pharmacological agents or 

xenobiotics, but unlikely to be true for the vast majority of missing values. For the most part the 

components of metabolic processes are expected to be present in all subjects to at least some 

degree (though maybe too low to be observed). Finally, notice that λj = 1 indicates the original yj 

is the optimal choice for normality and thus λj itself can serve as assessment of normality in the 

same manner as skewness and kurtosis.  

2.6. Datasets 

Three separate cohorts of human plasma, urine and CSF were profiled using LC-MS. These 

sets were part of a collaborative work between Metabolon and the Department of Molecular and 

Human Genetics at Baylor College of Medicine and were previously described in Elsea et al. 

[64]. Samples were drawn from pediatric subjects who were found to be free of any IEMs. 

Hence, these samples form a control group for which to compare suspected cases of IEMs and, 

as demonstrated in Miller, Kennedy, Eckhart, Burrage, Wulff et al. {Miller, 2015, Untargeted 

metabolomic analysis for the clinical screening of inborn errors of metabolism, have led to 

significant advancements in the diagnosis of such diseases. As a single, homogenous group these 

sample sets provide an excellent opportunity to assess metabolite properties in the absence of any 

experimental treatment or factor. Further, metabolites can be influenced by demographic factors 

in adults, such as differences in gender, race or age, these sets being a pediatric cohort implies 

such factors prevalent after puberty should be less important here. Samples were collected and 
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stored by the Department of Molecular and Human Genetics at Baylor College of Medicine and 

have previously been described in Elsea et al. [75]. Metabolomic analysis was conducted 

utilizing a Waters ACQUITY ultra-performance liquid chromatography (UPLC) and a Thermo 

Scientific Q-Exactive high resolution/accurate mass spectrometer interfaced with a heated 

electrospray ionization (HESI) source [76]. For more specific details see Elsea et al. [75], 

DeHaven et al. [12], Evans et al. [77] and Evans et al. [76]. In addition to the tier 1 and tier 2 

[78] metabolites that were previously reported, the data here also include those features with 

unique mass spectral signatures but did not match with any available chemical standard in the 

library. 

Table 2.2 summarizes the major characteristics of the three datasets. Identified features are 

matched against an in-house library. Those features that had a match are referred to as “named”. 

Those features having a distinct MS/MS signature but no available standard in the library are 

referred to as “unknown”. Missing values are observed in around half of the metabolites within 

each set, which presents a challenge. Missing values have previously been shown to be 

associated with lower ion abundance and are thus often assumed to be related to limit of 

detection [79]. Propensity for missing values in these data are shown to be greater for lower 

abundant metabolites. Figure 2.1 plots the proportion of observed values by the median of the 

observed abundance level of the observed values. Because median abundance levels range from 

Table 2.2: Summary of metabolite data sets. 
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25 thousand up to 10 billion, it is convenient to log10 transform the medians for plotting.  

Transformed abundance level is used to model the proportion of observed value using 

logistic regression and smooth splines. Both indicate that rate of observation increases as 

abundance level increases and the two fits overlap considerably in plasma and urine. For the 

most part, almost all biochemicals with medians ion count above 107 are fully observed. There 

are a few aberrant compounds in which less than 10% of the samples are observed but the 

median abundance level is well above the 107. Predominantly these are pharmacological 

metabolites and xenobiotics. For example, in the urine plot there are two compounds with a log10 

median abundance around 8 but were observed in less than 20% of samples. These compounds 

are lidocaine and dexopanthenol. In fact, upon further inspection almost all of the biochemicals 

observed in less than 10% of samples were found to be related to pharmacological agents. For 

this reason, the plots have been restricted to show only those metabolites in which more than 

10% of samples were observed. With missing values being associated with lower abundance 

level, the observed value for a metabolite then constitute a left censored sample, which makes it 

challenging to assess normality. For simplicity, only the metabolites that were observed in every 

sample are used here, except for Shapiro-Wilk analysis which can deal with censored samples. 

Figure 2.1: Proportion of observed samples by abundance level in plasma, CSF and urine. X-axis is log10 median 
abundance level. Y-axis is the proportion of samples observed. Solid red line represents logistic 
regression fit. Dotted blue line is a splinal fit using 10 knots. Biochemicals in which less than 10% of 
the samples are observed are excluded. 
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Metabolites in which a 

standard is available in the library 

can be grouped according to their 

biochemical functions. This 

enables pathway associations using 

predetermined functional classes, 

which are shown in Table 2.3. In 

general pathway assignments can 

be somewhat arbitrary due to 

various roles metabolites play. Arginine, for example, is critical in urea cycle but also an 

important component in cellular division and also the regulation of blood pressure, among other 

functions. While the assignments given here could arguably be different in some cases, the 

overall portrait given is accurate. As the total number of biochemicals varies across the three 

sets, the overall counts can be somewhat misleading. CSF for example has the highest amount of 

amino acids as a proportion of its total, even though the raw number is less than either of the 

other two sets. Figure 2.2 shows the relative proportion of each pathway. The three most 

dominant classes are Amino Acids, Lipids and Unknown and these serve to differentiate the 

three datasets. Lipids, or fatty acids, are highest in plasma, though this class is also a large 

contribution to CSF as well. In fact, the overall the pathway distribution is rather similar between 

plasma and CSF with the former having a bit higher proportion of lipids and the latter having a 

higher proportion of amino acids. Still, the main difference between these two matrices is 

density, with plasma having nearly twice as many biochemicals as CSF. Urine is actually the 

densest of the three, with the dominant class being unknowns, the features without an existing 

Table 2.2: Pathway Designations by Matrix 
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library match, which makes up about half of all the metabolites found in this matrix. Though the 

lack of available standard to provide a chemical name is somewhat limiting, it is still useful 

when comparing against the other two matrices suggesting that nearly half of the compounds 

measured in urine are not found in the other two. It is noteworthy that such a large percentage of 

the urine biochemicals did not have an available standard in the library. At the very least this 

further reinforces that the composition of urine is quite different, while CSF and plasma are very 

similar with the latter almost being a subset of the former. To illustrate this point, Figure 2.3, 

courtesy of BioVenn [80], shows a Venn diagram of the individual biochemicals. This illustrates 

the significant overlap in biochemicals between plasma and CSF. 81.8% (428 of 523) of the 

compounds identified in CSF are also found in plasma, whereas the overlap with urine is 72.1% 

(377 of 523). Meanwhile only 56.7% (570 of 1006) of the plasma metabolites overlap with urine. 

All together this shows that the composition of plasma and CSF is extremely similar. CSF also 

has quite a bit in common with urine, while urine and plasma only share about half of their 
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Figure 2.2: Distribution of the eight major pathways plus unknown in plasma, CSF and urine. Unknowns represent 
distinct mass spectrum signatures but did not matching library entry preventing classification. Y-axis is 
percentage of biochemicals per matrix. 
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makeup. Note that while this shows the composition, in terms of metabolites present, is similar, 

it does imply that the concentrations of those metabolites are similar. Answering this completely 

would require running plasma and CSF samples from the same subject concurrently and using 

isotopically labeled standards to account for matrix effects. However, from the ion abundance 

levels shown in Figure 2.1, abundance levels for plasma tend to cluster more around 105.5 - 106 

whereas CSF biochemicals cluster more around 105. This suggests that concentrations in CSF are 

likely lower than that seen in plasma. 

Finally, while plasma and CSF are subject to homeostatic regulation, the concentrations of 

metabolites in urine are known to be strongly influenced by endogenous factors such as water 

intake, exercise, diet and disease state [81-83]. Creatinine normalization is often used to correct 

for such effects, though the practice of normalizing across compounds of such vastly different 

Figure 2.3: Venn Diagram of observed biochemicals in plasma, CSF and urine. 
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biochemical functions and physical properties is not well understood. Normalizations differ from 

transformations in that these are data manipulations within samples while transformations 

manipulate metabolite features. In a data frame in which the rows are the samples and the 

columns are the metabolites, normalizations operate on the rows while transformation act on the 

columns. Results are given for urine both with creatinine normalization and without (un-

normalized). For the most part normalization does not appear to be change the overall 

conclusions. 

2.7. Results 

2.7.1.  Normality 

Summary measures in all three sets suggests clear non-normality across the matrices. Figure 

2.4 shows the histograms of the sample skewness and kurtosis as well as Box-Cox λ across all of 

the biochemicals fully observed. The first notable observation is the surprising consistency of 

behavior across the four data versions. Urine is present twice, once without any normalization 

and also with a creatinine normalization. Skewness is consistently greater than 0 and frequently 

with a magnitude greater than 1, suggesting metabolite distributions have a significantly heavy 

right tail. Metabolites are also consistently lepto-kurtic, in many cases with excess kurtosis of 5 

or more. Estimated λi's for Box-Cox transformation cluster tightly and nearly symmetrically 

about 0. Since λi = 0 indicates a natural log transformation, seeing the metabolites centered on 

this value supports the natural log as a good candidate transformation for achieving normality. 

It’s useful to point out that there is no other clear peak in the λi values. One might have expected 

a significant portion of metabolites to be normal, which would cause clustering around 1. 

However, the uni-modal and symmetric shape to the λi's suggests metabolites are roughly log-

normal with no favored alternative to this behavior.  
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Results for Shapiro Wilk support the raw data being non-normal and that log transforming 

does indeed lead to more normal behavior. Table 2.4 shows the rejection rate of the fully 

observed compounds in the three matrix versions. Rates are given for the raw data as well as 

using a log, GLOG or Box-Cox transformation. Using p < 0.05 the null rejection rate is 5%. No 

Figure 2.4: Summary normality measures in raw data. Statistics are calculated on each biochemical that is fully 
observed in that respective matrix.  
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fewer than 70% of metabolites are rejected in the raw data across the four datasets, strongly 

supporting non-normal behavior. Proportions are highest in urine, where both un-normalized and 

creatinine normalized versions are over 90%. The log transformation reduces the rejection rate 

greatly, down into the mid to high 20s in plasma, CSF and un-normalized urine. So, while the 

log transform significantly improves deviation from normality, roughly a quarter of the 

metabolites are still displaying statistically significant non-normal behavior. Rejection rate for 

GLOG transformation is overall similar to the log with the log being slightly lower in plasma and 

the GLOG being a little lower in CSF and un-normalized urine. Box-Cox reduces the rejection 

rate the furthest further. In plasma the rejection rate is below the null rate. Although rejection in 

CSF and urine under Box Cox remains slightly higher than the null rate, it is still much lower 

than either log or GLOG. Rejections rates in the normalized version of urine are much higher 

than the other matrices across all transformation versions. Log transformation is rejected at 

nearly twice the rate of the other data versions and GLOG is rejected almost three times more. 

This dataset also has the highest Box-Cox rejection rate which, at nearly 10%, is twice the 

rejection rate in plasma. This is somewhat unexpected as, from Figure 2.4, the lambda values for 

both versions of urine were more closely clustered around 0 than plasma and CSF. However, 

Figure 2.4 shows that the urine data contains more skewness and kurtosis than the other two 

Table 2.4: Shapiro-Wilk rejection rate in fully observed metabolites. Rejection is 
based on p < .05 
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matrices and that creatinine transformation actually increases both metrics. 

As a visual approach to normality assessment, so called “combined” QQ plots are shown in 

Figure 2.5. These are made by taking each fully observed metabolite within the dataset, center 

and standardizing, merging together into a single variable and then plotting against the expected 

normal quantiles. The raw data demonstrates a severe right skewed distribution in all four data 

types as one might expect. Application of the log transformation significantly reduces skeweness 

in all four data types, producing a more symmetric set of values. Discrepancies from normality 

persist, mostly in the tails with the effect being strongest in plasma. These departures occur 

roughly in theoretical quantiles below -2 and above 2 and in the form of more extreme values 

Figure 2.5: Combined quantile-quantile plots. Each point represents an observed ion count of a biochemical. 
Biochemical are independently centered and scaled prior to being combined.  
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than expected. Together this implies longer tails in the lowest 5th and highest 5th percentiles. 

GLOG is extremely similar to the log, with the only noticeable deviations from log occurring in 

the normalized urine set in the form of GLOG having more extreme tails. As one would expect 

based on the Shapiro-Wilk p-values, a power transformation based on the Box-Cox induces 

almost perfect agreement with the normal theoretical quantiles throughout.  

There is one particular oddity in the QQ plots regarding Box-Cox and normalized urine. The 

quantiles for normalized urine have the strongest agreement with the theoretical quantiles for 

Box-Cox of any of the four data sets, surprising since the Shapiro-Wilk rejection (Table 2.4) was 

highest in this data type. Generally speaking, these QQ plots do not change the impression but 

serve to further reinforce information from the summary measures in visual way. However, note 

that in the QQ plots, Box-Cox generally produces less extreme tails than expected under the 

normal distribution or leptokurtosis. Recall, from Figure 2.4, that urine tends to be more 

platykurtic than the other sample types and that normalization enhances this property. Indeed, 

extreme tailing is most present in the normalized data for all transformation types. Most likely 

there are a subset of biochemicals which remain platykurtic even after transformation, but since 

Box-Cox tends to move the other features toward leptokurtosis, this dichotomy is masked when 

all the observations are plotted together.  

Next, we move on to biochemicals with missing values. The assumption here is that missing 

values are limit of detection, which would make the observed set of values for a metabolite with 

missing values a left-censored sample. Using Shapiro-Wilk, the observed values are tested for 

being a left-censored Gaussian sample. A minimum observation rate of at least 20% was 

imposed. Table 2.5 shows the Shapiro-Wilk rejection rate for these biochemicals. Box-Cox 

requires the entire sample to be observed and is not shown here. Estimation of the λi's in a 
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censored sample would attempt to transform the observed values to a normal distribution rather 

than fitting to the portion of the normal curve observable through the sample. Log and GLOG, 

when estimating a single pair (αgl , λgl) across the entire dataset, do not have this limitation. The 

rejection rates in the biochemicals with missing values have a similar profile to the fully 

observed biochemicals for both plasma and CSF. The raw data performs a little better here, 

especially in CSF, but both a log and GLOG transformation reduce the rejection rate down into 

the mid- to high 20%s. Profile in the normalized urine is also broadly similar – very high 

rejection in the raw data with the log bringing it down only to 40% while GLOG offers only 

marginal improvement over the raw data. The un-normalized urine is a bit different in these 

missing biochemicals with log and GLOG doing worse than in the fully observed biochemicals. 

The consensus from the results so far suggests that using a log-family transformation is 

largely effective at inducing normality, but some metabolites persist in being non-normal. In an 

attempt to understand why, a few variables immediately come forth as plausible candidates: 

proportion of missing values, abundance level, molecular mass and biochemical function. The 

influence of these factors on normality is examined via the Shapiro-Wilk p-values in the raw data 

with the first three examined in plots of Figure 2.6. Abundance is taken as the average of the 

(observable) ion counts. Due to the large spread in both mean abundance and p-value, a log10 

Table 2.5: Shapiro-Wilk rejection rate in metabolites with missing values. Includes 
biochemicals with 20% ≤ observed proportion < 100%. 
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transformation is used in the plots. With the rejection rate profiles being so similar between 

compounds with and without missing values, it suggests that detection does not appear to be a 

major factor in the distributional behavior. The plots, however, reveal that as the observable 

proportion decreases as the p-value increases. This negative correlation is likely the result of 

fewer samples leading to lower power, and hence explaining why the rejection rate for the raw 

data tended to be a little bit lower for the metabolites with missing values.  

Figure 2.6: P-value by various biochemical characteristics. Blue indicates biochemicals fully observed while 
pink indicates the presence of missing values. Both p-value and mean abundance are on log10 scale. 
Abundance is based upon observed values. Chemical mass is measured in grams / mol.  
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There does appear to be some slight connections with mean abundance, based on observed 

values, and the p-values. In plasma and CSF, the highest abundant compounds (mean abundance 

108 and up) tend towards higher p-values. Below this level the p-values are quite scattered 

though, and no pattern is apparent in the urine even at the highest abundance levels. It’s worth 

pointing out that in the abundance plots the blue points tend to be on the right and the pink points 

are on the left. This fits with that observed in Figure 2.1 showing that more abundant compounds 

tend to have fewer missing values. 

The final plot frame profiling the p-value against the molecular mass of the metabolite does 

not reveal much of a relationship either. There is perhaps some evidence that p-values are higher 

at mass levels around 600 Da and up, but certainly no relationship below 500 Da. One item these 

plots do show is that, unlike abundance, the proportion of missing values is not related to 

molecular mass. The blue and pink points are dispersed evenly throughout these plots in all three 

matrices. It is also apparent from the CSF plot that this matrix is made up of lower molecular 

weight compounds than either plasma or urine.  

Finally, Table 2.6 gives the proportion of Shapiro Wilk rejected biochemicals by pathway 

designation using the biochemicals that are fully observed. The idea here is to see if any pathway 

or subset of pathways behaves differently from the others. Are some pathways more normal 

others, or are do the non-normal biochemicals tend to come from certain classes? Unfortunately, 

certain pathways are rather small in these sets, such as Energy metabolism which only has 6 

members in plasma and 9 in both CSF and urine. So, the table certainly lacks for precise 

estimates of the proportions and makes formal testing challenging. But in many cases, it is still 

useful for observational purposes if nothing else. The proportion of rejected compounds, for 

example, is consistently high across all pathways and all matrix types in the raw data. There may  
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Table 2.6: Shapiro-Wilk rejection rate by Pathway. Rejection based on p < .05. 
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some specific differences, like in plasma where the difference between amino acids and lipids, 

both of whom are large members in the matrix, is nearly 20% (88.0% vs 68.9%). Similarly, in 

CSF carbohydrates (46.7%) and nucleotides (65.2%) are quite a bit lower than lipids (82.9%). 

This not only suggests some differences between the metabolite pathways but also between the 

matrices themselves, and further demonstrates that while many biochemicals may be present in 

multiple matrices, their behavior can be quite different. See the lipids, which in the raw data has 

the lowest rejection rate in plasma but the second highest rejection rate in CSF. Regardless of the 

specific pathway comparisons, the proportion of rejected compounds is quite high across all the 

raw data. In every single case, a natural log transformation reduces the proportion of rejected 

biochemicals from the raw, and Box-Cox always reduces the proportion even further. Overall 

improvement with either transformation is therefore not attributed to any specific class of 

biochemicals. All pathways see improvement and the response is consistent across all pathways. 

2.7.2. Correlation 

For the four data types, correlations were examined between each pairwise combination of 

metabolites. Three different versions of correlations are presented: (1) Pearson R using raw data, 

(2) Pearson R using natural log transform and (3) Spearman Rho. While all three versions have 

been used, (2) and (3) are recommended due to the propensity for large outliers in the data [9]. 

Data is filtered in two ways based on proportion of missing values. The first way is to restrict to 

only those metabolites that are fully observed. This still leads to a myriad of pairings with 

146,611 distinct pairs in plasma, 32,896 pairs in CSF and 119,805 pairs in urine (119,316 when 

normalizing to creatinine). The second way is to take all compounds that are at least 10% 

observed. This leads to a total number of distinct pairs in which at least two samples are 

observed in both pairs as 484,182 in plasma, 105,706 in CSF, 735,357 in un-normalized urine 
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and 734,143 in normalized urine.  

For biochemicals with missing values, correlation is based on the pairs that are present. 

Results are displayed in Table 2.7. For simplicity, only Pearson R values on the raw data are 

displayed for compounds observed in at least 10% of samples because, as seen in the table, 

correlations are very similar regardless of whether Pearson or Spearman is used or whether a log 

transformation is applied or not. Across the three datasets correlations are centered around 0.1. 

The exception to this is un-normalized urine in which a moderate correlation around 0.3 is more  

typical. Plasma and CSF are, once again, very similar and creatinine normalization causes the 

urine to look more like those two. The inner quartile range of correlation coefficients for these 

datasets is rough between -0.1 and 0.35 with urine and CSF being a little higher while plasma is 

a little lower. This shows the metabolites tend to be more positively correlated than negatively, 

and that the range of correlation for most pairs would be considered low to moderate in most 

Table 2.7: Summaries of pairwise correlations based on Pearson r. 
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situations. Instances of extreme association do occur, however. In plasma, for example, the two 

isomers of bilirubin, the Z, Z and E, E forms, are highly correlated with each other (Pearson R = 

0.958). Both are also correlated with biliverdin (ZZ Pearson R = 0.990, EE Pearson R = 0.927), 

which is the precursor metabolite to bilirubin in the breakdown of macrophages. And while 

negative correlations are less prevalent, there are still instances of strong negative associations as 

well. Note that when considering any metabolite with an observation rate of at least 10% there 

are several pairs with correlation of +/-1. This is because through the pairings some metabolites 

will have just two observed values in common, which results in a perfect positive or negative 

correlation depending on how the rankings match up. For this reason, it is more useful to focus 

on compounds that are completely observed, but from the table it is clear that considering 

metabolites with missing observations produces fairly similar values.  

Figures 2.7-2.10 visually integrate Pearson R with pathway information in the form of a 

heatmap. This is essentially a matrix in which each cell corresponds to a pair of biochemicals, 

given by the row and column intersection, and the value is a color translated from the Pearson r 

value. A value of r = 0 is white. As correlations move towards 1 the color moves toward red. The 

diagonals are thus bright red reflecting the perfectly positive correlation a compound has with 

itself. Similarly, as the correlation moves towards -1 the color becomes more and more blue. The 

biochemicals were grouped according to pathway and the cells were shaded such that 

increasingly negative correlation is more and more blue, increasingly positive. 

These maps show that though there are instances of very strong correlations, the strongest of 

which are almost exclusively positive, in general biochemicals are not strongly associated with 

each other. Furthermore, instances of strong correlations appear to be somewhat matrix specific. 

In plasma, strong, positive correlations tend to cluster around the diagonal. This is an indication  
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Figure 2.7: Plasma correlation heatmap. Coloring based on Pearson r coefficient with blue for negative values and 
red for positive.  Each row and column represent a specific metabolite, which are ordered left to right, top 
to bottom according to pathway assignment. 
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Figure 2.8: CSF correlation heatmap. Coloring based on Pearson r coefficient with blue for negative values and 
red for positive.  Each row and column represent a specific metabolite, which are ordered left to right, 
top to bottom according to pathway assignment. 
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Figure 2.9: Urine (un) correlation heatmap. Coloring based on Pearson r coefficient with blue for negative values 
and red for positive. Each row and column represent a specific metabolite, which are ordered left to right, 
top to bottom according to pathway assignment. 
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Figure 2.10: Urine (normalized) correlation heatmap. Coloring based on Pearson r coefficient with blue for 
negative values and red for positive.  Each row and column represent a specific metabolite, which are 
ordered left to right, top to bottom according to pathway assignment. 
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that strong correlations are more likely to occur between metabolites within a pathway versus 

metabolites in different pathways. Case in point, in plasma the lipids do not correlate very 

strongly with non-lipids, and in fact several have a slight negative correlation with most other 

compounds, but some of the largest and strongest intensity blocks are within the lipid class. Yet, 

in the CSF and the un-normalized urine rather strong correlations are observed throughout the 

map. Creatinine normalization noticeably lowers the correlations across the entire urine map, but 

it remains almost exclusively red with noticeable patches spread throughout the map as opposed 

to clustering within pathway.  

There is also some evidence of within pathway associations. This sub pathway behavior is 

most strongly seen in plasma where a subset of the lipids correlates strongly with each other but 

negatively correlated with most other biochemicals, including other lipids. Inspection of this 

group finds that members are comprised of medium and long chain fatty acids, branched chain 

fatty acids and polyunsaturated fatty acids. Lipid categories not found in this group include 

plasmalogens, phospholipids, monoacylglycerols and di-acyglycerols to name a few. This shows 

that even though metabolites may be chemically related, they need not share the same behavior. 

Sub setting is also seen within a group of amino acids in the top left most corner of normalized 

urine map.  

Figures 2.11-2.14 provide another pathway view for correlations. Each node is an individual 

metabolite, clustered together in a circle by pathway and the pathway circles then arranged in a 

circular pattern like the numbers on a clock face. Two metabolites are connected when the 

Pearson R between the two metabolites exceeds the minimum threshold, which here is set to 0.7 

in order emphasis the strongest relationships. Because negative correlations are rare, pathway 

figures for r < 0 are not provided. To further aid in interpretability, the unknowns and named  
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Figure 2.11: Plasma correlation network graph. Nodes are metabolites. Connecting lines indicate pairwise Pearson r 
coefficient ≥ .7. Pathways are presented a clockwise manner based on the order listed in the legend. 



77 
 

  

Figure 12: CSF correlation network graph. Nodes are metabolites. Connecting lines indicate pairwise Pearson r 
coefficient ≥ .7. Pathways are presented a clockwise manner based on the order listed in the legend. 
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Figure 2.13: Urine (un) correlation network graph. Nodes are metabolites. Connecting lines indicate pairwise 
Pearson r coefficient ≥ .7. Pathways are presented a clockwise manner based on the order listed in the 
legend. 
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Figure 2.14: Urine (normalized) correlation network graph. Nodes are metabolites. Connecting lines indicate 
pairwise Pearson r coefficient ≥ .7. Pathways are presented a clockwise manner based on the order listed 
in the legend. 
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metabolites without a pathway are removed. A total of 426 metabolites are available in plasma 

for this graph. Although the number of lines may seem large at first, recall there are 90,525 

pairwise combination and only 1,343 (1.5%) with correlation above 0.7. Amino acids as a whole, 

are strongly associated with lipids and nucleotides, and there is strong relationship within the 

amino acid and lipid pathways. But members of the other six pathways are not consistently 

related, and their relationships to other pathways are largely determined by individual members. 

This is probably most relevant to xenobiotics where behavior of any member is an amalgamation 

of diet, environment, microbiome, pharmacological behavior, etc. Associations with the 

metabolites may provide useful insight to the physiological function these biochemicals belong 

to.  

The pathway plot for CSF is similar to plasma. Restricting to the pathway associated 

members gives 207 metabolites with a total of 21,321 pairs, of which 945 (4.4%) are above 0.7. 

Amino acids and lipids are again strongly associated both within and between pathway 

classifications, but as with plasma the other six pathways are not that correlated internally and 

their relationships with other pathways are largely member specific. Un-normalized urine, with 

301 metabolites yielding a total of 45,150 pairs of which 1,730 (3.8%) are above 0.7, shows 

really strong association between amino acids and nucleotides. However, after creatinine 

normalization (300 metabolites – 44,850 pairs – 1,124 (2.5%) ≥ 0.7), the graph very much 

resembles plasma as far as pathway relationships are concerned. 

2.8. Conclusions 

This chapter demonstrates that ion counts of metabolites have a left skewed distribution for 

an overwhelming majority of features. The behavior is observed in three separate types of human 

material commonly used for clinical testing. A natural log transformation is largely effective at 
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removing skewness and inducing normality; however, it is not perfect with around a quarter of 

metabolites still exhibit statistically significant departures from normality. The power 

transformation can reduce this the proportion down to near the null level but requires estimating 

the λi's for each metabolite. This is somewhat of a nuisance as the semi-quantitative nature of the 

instrumentation means that these parameters are likely to change from run to run, and is 

complicated by metabolites with missing values, which may be non-ignorable. The natural log is 

a static transformation and avoids these sorts of issues. Aggregate quantile-quantile plots point to 

this departure being mostly in the extreme tails. This may be due to the reference population 

being composed of non-IEM suspects that initially suspected of having a metabolic disorder, 

implying some level of poor health and the label of “healthy” being somewhat misleading. It is 

possible that some subjects were mis-diagnosed, given the low diagnosis rate for IEMs, or that 

they have non-IEM disease which still impacts their metabolic profile. Since the subjects are 

independent with likely different diseases, only a small fraction of any given metabolite would 

be affected. Hence, it may be that metabolites truly are log-normal and intentionally censoring 

the upper and lower 5% is sufficient to adjust for diseased subjects when the diseases are not 

concentrated on a specific disorder. 

The second point of this chapter also shows that when the data are resolved in a chemo-

centric fashion, global metabolomics is not overly correlated. In general features are at most 

mildly correlated with an average Pearson correlation coefficient around 0.3 and instances of 

moderate to high correlations, consider here to be values of 0.5 and up, are rare.  An examination 

of biochemical pathways found that certain pathways are more correlated than others, most 

notably the amino acids and lipids. Thus, metabolomic datasets that concentrate on certain 

classes of biochemicals may exhibit higher correlation, but in global approach doesn’t appear to 
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elevate correlations much overall. 

These results are useful for general understanding of global LC-MS metabolomics and also 

have significant implications for statistical analysis. Because many studies employ a low sample 

size, parametric hypothesis testing is preferable to maximize power. Using a log transformation 

or other similar approach is largely helpful at satisfying this pre-requisite. Correlation is an 

important characteristic for many multivariate tests including Hotelling’s T Square and Principle 

Component Analysis as well as network methods such as Gaussian Graphical Models. 

Knowledge of how metabolomic sets structure is useful for maximizing statistical analysis.  
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CHAPTER 3: MISSING VALUES 

2.9. Introduction 

Much of this dissertation is a result of collaboration between Metabolon and the Molecular 

and Human Genetics Dept. at Baylor College of Medicine. Initially this partnership explored the 

diagnostic value of high throughput metabolomics for the identification of IEMs [1]. This work 

demonstrated the power of global MS-based metabolomics as a screen for IEMs detailed in 

Miller, Kennedy, Eckhart, Burrage, Wulff et al. [2] and Kennedy, Miller, Wulff, et al. [3] and 

Elsea, Kennedy, Pappan, Donti, Evans, Wulff, et al. [4]. The technology has also demonstrated 

diagnostic potential in other disease settings. Donti et al. [5] details the ability of metabolomics 

to differentiate between adenylosuccinate lyase deficiency versus other neurometabolomic 

disorders sharing a similar genotypic profile. Similarly, metabolomics sphingomyelin levels were 

found to be depressed in subjects with peroxisomal biogenesis disorder (PBD) compared to 

disease mimics [6]. Recent research offers the potential for improved detection and/or staging of 

pancreatic [7], ovarian [8], colorectal [9] cancers through metabolomics. Evidence also supports 

the use of metabolomics in motor neuron diseases, including detection of Amyotrophic Lateral 

Sclerosis (ALS) [10], monitor progression of Alzheimer’s [11], or informing treatment of 

Parkinson’s [12].  

The implications for these results and others is that metabolomics represents not just a tool 

for biomarker discovery, but offers the potential inform on disease progression and effectiveness 

of treatment at the individual patient level [13, 14]. Customization of treatment, more formally 

known as Personalized Medicine [15], Precision Medicine [16] or N-of-1 [17], has become 
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popular in recent years. For metabolomics, which has traditionally operated as a screening 

platform, the application to the clinical environment represents a significant shift for the 

technology. 

2.10. The Z-Score 

One approach to assessment at the individual level is to profile the individual’s metabolic 

profile against the overall population at large. This is particularly effective in IEMs because the 

disease generally inhibits the body’s ability to convert intermediates of important metabolic 

pathways, leading to either a buildup or depletion of metabolites in biochemical pathway 

affected. Identification of these cases amounts to outlier detection. The initial statistical analysis 

in Miller et al. [2] relied mainly on z-scores, which is equivalent to autoscaling (section 2.XX) 

and is used in metabolomic data [18, 19]. Autoscaling is attractive in metabolomics because all 

features on the same scale and hence given the same weight in analysis. The downside is that 

unit scaling may mask useful information about technical variation. For this reason, pareto 

scaling, which divides by 𝜎  rather than σi, is sometimes preferred as it keeps a better sense of 

the original scale while still making metabolite feature more homogenous [20]. In a direct 

comparison between auto and pareto scaling, Masson et al. identified autoscaling as more 

effective for GC-MS [21]. Conversely, Gromski et al. using NMR data found kNN classification 

to be highest with pareto scaling compared to various other scaling methods, including 

autoscaling [22]. The most appropriate transformation is likely to depend on the data and 

analysis in question. 

The z-score translates the patient’s biochemical level into the number of standard deviations 

from the average value of that compound. That is, for a given subject j and biochemical i, taking 

yji  as the observed metabolite value for the subject. The z-score is then 
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zji = 
yji − µi

σi
 

with µ  and σ  being the mean and standard among healthy subjects for compound i. Cases of 

IEMs present as outliers with very high or low values in the biochemical(s) related to their 

specific dysfunction. To illustrate this outlier behavior, the z-score plots of two subjects are 

shown in Figure 3.1. In these plots the individual metabolites are plotted with the x-axis being 

the z-scores and the y-axis being the individual metabolites. The metabolites are colored 

according to major biochemical pathway and fall into 1 of 8 classes. The first plot, subject A, is 

from a urine sample and is shown to have a high level of N-acetylglucosaminylasparagine, a 

compound signifying aspartylglucosaminuria [23]. The second plot, subject B, is from a plasma 

sample and shows two high outliers. One of these is pipecolate, elevated levels of which are 

related to Zellweger syndrome, Refsum Disease 

and others peroxisomal disorders [24, 25]. The 

other outlier, which is technically the most 

extreme hit in the plot for this subject, is S-

methylcysteine. This biochemical is known to be 

associated with certain diets [26] and may be 

associated with cardiotoxicity [27], but no 

connection between this molecule and IEMs were 

found in a literature search.   

The presence of S-methylcysteine highlights 

an important reality of using z-score analysis. In 

extreme situations ion suppression may lead to 

erroneously low values whereas very high levels 

Figure 3.1: Z Score plots of suspected IEM cases. 
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in one sample may carry over to subsequent samples in run [28]. In cases of instrument error the 

biochemical may be regarded as a false positive, but note that the z-score for this subject may be 

accurate and not necessarily the result of instrument error. Genetic outliers are known to exist in 

perfectly normal, healthy subjects, with the average individual having anywhere from 60 to 200 

genetic mutations [29]. The same phenomenon could easily occur in metabolomic components as 

well, leading to natural outliers that do not inform on the disease state. One may wish to refer to 

such outliers as non-informative markers instead of false positive. However, for diagnosis 

purposes the distinction appears to be moot. Regardless of whether the values of this biochemical 

is truly high in the subject or made artificially high by the instrument, either way these points are 

analogous to type I errors and create points of investigation that require follow up. Additional 

input from a clinician familiar with the patient’s history is therefore always necessary to 

accurately diagnose a subject. Thus z-scores have a couple desirable traits. First, they are 

computationally easy. Second, they are easily interpretable by a physician. However, due to the 

natural outliers present in high through put metabolomics it is imperative to limit process 

induced outliers as much as possible. 

2.11. Alternatives to Z-Scores 

Other approaches besides z-scores are available both in clinical practice and statistical 

modeling strategies have been used extensively in the field of metabolomics. In fact, 

metabolomics is closely related to chemometrics [30-32]. Chemometrics involves a rich array of 

statistical methodology [33]. For example, partial least squares regression and principal 

component regression are have often been used in metabolomics [34]. It is, therefore, 

unsurprising to see multi-analyte or multivariate methods applied to metabolomics. Some 

examples of these are given next. 
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2.11.1. Linear Models 

Impaired Glucose Tolerance (IGT) is a hyperglycemic state associated with higher blood 

glucose levels than normal but not high enough to qualify as type 2 diabetes [35, 36]. Generally, 

someone with IGT is considered to be pre-diabetic meaning that they have difficulty absorbing 

glucose but not to the same degree as someone with diabetes. Standard diagnosis for IGT 

involves the oral glucose tolerance test (OGTT) which involves fasting for at least 8 hours, 

taking a baseline blood draw, consuming a 75 gram oral glucose solution and measuring glucose 

levels after 2 hours. Blood glucose between 140 mg/dL and 199 mg/dL after 2 hours is indicative 

of IGT as are certain level of increase over baseline.  

Demonstrating the ability of multiple metabolites to model impaired glucose tolerance (IGT) 

without the need for invasive procedures, Cobb, Eckhart, Perichon, Wulff et al. [37] used a 

logistic regression model to predict the probability of a subject being IGT. Letting p stand for the 

probability of a subject being IGT, the logit of IGT is modeled as linear combination four 

metabolites: 

log
p

1-p
=b  + b1*α–hydroxybutrate + b2*linoleoyl–glycerolphosphocholine + 

b3*4–methy–2–oxopentanoate + b4*Oleate 

The model was developed using a total 1,623 available plasma samples from two separate 

cohorts: Relationship between Insulin Sensitivity and Cardiovascular Disease Study (RISC; 

n=955)[38] and The Diabetes Mellitus and Vascular health initiative (DMVhi; n=668) [39]. 

Model development was done in RISC (AUC=.82) and then validated in DMVhi (AUC=.83). 

This model was found to perform significantly better (p < .05) than the standard OGTT in both 

the training and test cohort. 
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In the realm of continuous outcomes, glomerular filtration rate (GFR) measures renal 

function by estimating the flow of fluid through the kidney. Calculating the true or measured 

GFR (mGFR) requires an intensive regiment consisting of multiple blood draws and urine 

collections plus a continuous intravenous infusion. In practice GFR is typically estimated 

(eGFR), most commonly with creatinine levels in serum (sCR). One such formulation, the 

Modification of Diet and Renal Disease (MDRD) study equation, is given by 

eGFRMDRD=175*sCR-1.154*Age-0.203*0.742if female*1.212if black 

which is a linear regression equation (or four separate regression equations) depending on race 

and sex, on the log scale: 

log(eGFRMDRD)= log(175) −  1.154* log(sCR) −  0.203* log(Age) +  

log(0.742)*I(female) + log(1.212)*I(black) 

The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation, which is the 

current recommended standard of care for estimating GFR, involves a more complicated linear 

model: 

            log(eGFRCKD-EPI)= log(144)  + a* min
sCR

k
,1  −  1.209* max

sCR

k
,1  +  

log(0.993) *Age + log(1.018)*I(female)+1.156*I(black) 

where 

a= -0.329 if female
-0.411 if male

 

k= 0.7 if female
0.9 if male

 

The sex and race differences in the models are due to creatinine which is known to be higher in 

men than women and higher in African Americans than non-African Americans. Recently, new 

algorithms for estimating GFR have been proposed based on metabolites beside creatinine in 
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addition to offering the potential to remove sex and race which are becoming increasingly 

undesirable [40]. 

2.11.2. Metabolite Ratios 

There are biological reasons to support the use of multiple analytes. First, individual 

metabolites could enhance one another. For example, both urea and creatinine are known to be 

related to kidney function with poor function leading to elevations of each. Therefore, high levels 

in both urea and creatinine help strengthen a conclusion of poor kidney function. When assessing 

quality of plasma samples, increases in lysophosphatidylcholines with decreases in 

phosphatidylcholines signal prolonged storage at room temperature [41]. Because these two 

classes move in different directions, taking a ratio between members of each classes provides 

better diagnostic ability for poor storage conditions. Similarly, creatinine and creatine are both 

known to be different on average between adult men and adult women with men tending to have 

higher levels of creatinine while women tend to have higher levels of creatine. Either of these 

markers are individually good discriminator of gender; however, in certain conditions the ratio of 

the two can provide an even stronger discriminator. The second advantage to using multiple 

metabolites is robustness. The number of metabolic processes and interactions in the human 

body is vast [42], allowing any given metabolite to be affected by multiple conditions. Focusing 

on either eGFRMDRD or eGFRCKD-EPI, these models associate low levels of kidney function with 

high levels of creatinine. Yet creatinine can clearly be affected by other conditions. In fact, high 

levels of creatinine are also associated with diabetes and heart disease [43]. But since creatinine 

is also associated with exercise, kidney function and other conditions, reliance on this metabolite 

can lead to increases in the false positive and false negative rates when a person’s behavior is 

outside “normal” behavior.  
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Association with multiple conditions is not unique to creatinine. Tryptophan is known to be 

positively associated with GFR [37], but as it is not synthesized by the body its levels are 

strongly related to diet [44]. For example, a person with even the poorest of kidney function 

could in theory appear healthy if they ate enough poultry or flax seeds [45].  

Vitamins are obviously important to healthy human function but are frequently taken as 

supplements for various reasons: ascorbic acid is believed to help improve immune function, 

folic acid is recommended during pregnancy to boost fetal brain development, and so on. 

Vitamin pills and other supplements often contain ingredient levels that are well above the 

recommended daily intake level. The popular energy drink Red Bull for example contains 2.5 

times the daily amount of pyridoxal (vitamin B6). The point here is that any single marker could 

easily be affected by a person’s behavior. Having multiple metabolites in the model helps to 

mitigate these problems. 

2.11.3. Decision Trees 

Another way to address the complicated nature of metabolism is with decision trees. 

Returning to the IEM scenario, pipecolate is an example of this. Peroxisomal Biogenesis 

Disorders are related to the inability to breakdown certain amino acids, particularly very long 

chain fatty acids. Presence of these diseases are characterized by elevated levels of cerotic acid  

(C26:0) and hexocosenoic acid (C26:1) as well as the ratios of long chain fatty acids [46]. Within 

this family of disorders, pipecolate is absent from single gene mutation variations but present in 

the Zellweger syndrome spectrum. As a simple example this could be described with the 

decision tree shown in Figure 3.2. The advantage to decision trees is that pipecolate does not 

factor in until after sufficiently high levels of cerotic and hexocosenoic acid have been found to 

warrant a diagnosis of PBD. Thus, an extremely high level of pipecolate, which can also occur in 
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pyridoxine-dependent epilepsy and other non PBD disorders [47, 48] would not by itself trigger 

a false identification of PBD.  This decision tree-based algorithm is possible because of the 

unique relationship between pipecolate and disorders in the Zellweger spectrum. Such 

relationships are not always present and even when they are there is still the matter of 

determining what constitutes sufficiently elevated levels of the long chain fatty acids in the first 

split and the same for pipecolate in the second split, not to mention if there are other diseases 

related to the fatty acids in question. Ultimately, any algorithm used to classify a broad range of 

IEMs could incorporate a combination of decision trees and linear models. But developing such 

a model would require a greater understanding of the relationships of the hundreds of metabolites 

measured by global MS, many of which have received little to no attention.  

2.11.4. Challenges to Modeling Rare Diseases 

Developing extensive knowledge of global metabolic interactions, particularly the disease-

metabolite relationships, may require large cohort studies. Particularly in the case of IEMs and 

other rare diseases. Consider collectively IEMs occur in roughly 1 out of 1,000 births [49-52], 

though incidence may vary considerably by region. Individually, incidence of specific disorders 

Figure 3.2: Hypothetical Decision Tree for Peroxisomal Disorders 



99 
 

within this family will be much less frequent. Alkaptonuria, which was discussed in Chapter 2, 

occurs once in every 250,000 to 1,000,000 births [53]. MCADD, the other IEM discussed in 

Chapter 2, occurs about once every 50,000 births [54]. This makes it challenging to acquire a 

reasonably sized cohort for specific disorder, let alone all disorders encompassing IEMs. On the 

other hand, a simple z-score calculated against a reference group of healthy individuals is 

sufficient to indicate outliers. Under normal theory, a z-score above 2 or below -2 indicates an 

extreme 2.5th percent. In the previous chapter it was shown that a natural log transformation is 

reasonably effective at achieving a normal distribution for most metabolites. Combination of the 

log transformation followed by z-scoring leads to a straightforward way of identifying potential 

metabolomic outliers as the first step toward rare disease identification and can also be applied to 

the emerging discipline of n of 1 or personalized/precision medicine as well. Therefore, this 

dissertation is concerned with the general detection of biochemicals with extreme levels through 

the use of univariate z-scores. 

2.12. Missing Values  

As introduced in 1.7.2, The large amount of missing values in global MS metabolomics 

require some method of missing data analysis. As missing values play a central role it is 

appropriate to review the broader topic of missing data. Missing data are ubiquitous in scientific 

research and the topic has received much attention from both the statistical community and 

researchers within individual fields and there is a vast amount of literature covering the subject 

[55-57]. Conventionally, missing data are classified into three categories based on the 

mechanism behind the missing data. The strongest of these is Missing Completely at Random 

(MCAR) under which the probability of being missing is unrelated to the true value as well as 

any level of any covariate. A step down from this assumption is Missing at Random (MAR) in 
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which the missing value is related to a covariate, but otherwise unrelated to its true value.  

Lastly, if the missing value depends on some function of the value itself, with or without regard 

to the covariate levels, then the mechanism is termed Missing Not at Random (MNAR). In the 

context of metabolomics data, imagine yj is the level of some metabolite and A is any set of 

covariates, including, potentially, other metabolites. Using the dummy variable Dj = 1 if the 

compound level is missing and Dj = 0 if the compound level is observed the three conditions can 

be written mathematically as 

MCAR  P Dj = 1  𝒚j,A  = P(Dj = 1) 

MAR  P Dj = 1  𝒚j,A  = P(Dj = 1 | A ) 

MNAR  P Dj = 1  𝒚j,A  = P(Dj = 1 | g(𝒚j,A )) 

To illustrate examples of each of these consider the following suppositions. First, suppose a 

short in the machine causes the portion of the chromatogram in which the metabolite elutes to be 

lost in the last third of the run. This situation would be MCAR as missingness, or the manner in 

which data are missing from the data, depends on neither the true value nor any other variable 

pertinent to the experiment. Next, suppose that the biochemical in question elutes very close to 

another biochemical with massive abundance so large that the peak could cover the area of both 

biochemicals. This scenario would be MAR as missingness is tied to the size of the neighboring 

compound but otherwise unrelated to the value of the biochemical in question. Last, consider the 

LOD scenario when a value is missing because it falls below the background level of the 

instrument. It is clear that this situation is MNAR since missingness is directly tied to the sample 

level. In this case a missing value constitutes partial information, namely that the sample is 

below a certain threshold but otherwise unknown. In statistics such partially known 
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measurements are referred to as censored, with the observed values for a metabolite constituting 

a left-censored sample [58].  

2.12.1.  Regulatory Suggested Methods 

Use of global metabolomics to identify subjects with a disease, like IEMs, is a diagnostic 

screening test, and the instrumentation involved is most likely to be classified as a Laboratory 

Developed Test (LDT) [59]. At present the US Food and Drug Administration (FDA) does not 

monitor LDTs in the same fashion as pharmaceutical drugs, though FDA approval is required for 

Medicare and Medicaid reimbursement of LDTs and FDA’s current level of monitoring is under 

internal review. But for now, Federal oversight of LDTs is limited to Clinical Laboratory 

Improvement Amendments CLIA [60], which are a series of regulations to “establish quality 

standards for laboratory testing performed on specimens from humans, such as blood, body fluid 

and tissue, for the purpose of diagnosis, prevention, or treatment of disease, or assessment of 

health” [61]. The intent is to ensure a level of technical proficiency as well as a consistent 

process for generating and interpreting results. The process itself is unspecified as the law is 

intended to include all laboratories covering a broad industry of diagnostic and treatment 

activities. Missing data is mentioned only in the context of reporting results in the presence of 

missing patient records. Therefore, these do not provide suggestions for handling of missing 

(output) data. Outside of the Federal agencies, independent laboratory licensing is provided by 

the College of American Pathologists (CAP) [62]. Similar to CLIA, CAP accreditation focuses 

mainly on laboratory procedure, including things like consistency and accuracy of 

instrumentation as well as proper maintenance of patient records. It too does not offer any 

guidance on handling of missing values.  
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The FDA does provide guidance for missing values with regards to clinical trials. These 

methods include Complete Case, Single Imputation, Multiple Imputation, Full Information 

Maximum Likelihood and the EM algorithm. In the research role, metabolomics itself has come 

to rely mainly on imputation methods to handle missing values [63-65]. Various forms of single 

imputation have been used. Additional imputations include K Nearest Neighbors [22, 66], which 

is a popular machine learning algorithm and has been employed in various settings [67]. 

Imputations are also borrowed from other omic fields, including a family of imputation methods 

based on Principle Component Analysis.  These methods for handling missing values are 

detailed next. 

2.12.1.1.  Complete Case 

Complete Case Analysis involves removing observations in which missing values occur. This 

approach can be applied either to the samples, retaining only those subjects which experience no 

missing value in any of the compounds, or on the variables, removing any compound feature that 

is not completely observed. It is equivalent to completely filtering out features or samples with 

missing proportion greater than 0. After the data has been trimmed to the fully observed subset, 

routine analysis can be performed. Statistical analysis by complete cases is only unbiased if the 

missing data is MCAR, a condition that is rarely true in practice let alone for high throughput 

metabolomics. Although very simple to execute, when applied to metabolomics the loss of 

information can be staggering and often impractical. As observed by Steinfath et al [68]:  

“The following simple calculation shows that such omissions would be extremely costly 
and may render the experiment worthless. Let us assume that only 1% of all 
measurements, i.e. of the components in the data matrix, are missing. Let us also assume 
that we have 100 genotypes and 100 metabolites. Then, according to the binomial 
distribution, on average, 63% of the rows or columns must be omitted, while in the case 
of pairwise correlation, generally only one or two values must be omitted. Therefore, in 
the case of multivariate methods, an estimation of missing values is reasonable.” 
 



103 
 

Here, Steinfath and his colleagues recognize the fundamental problem with removing all trace of 

missing values from the data, yet the individual metabolites may contain only a few missing 

observations. The assumption posited assumes that missing values are MAR, which is likely not 

the case. However, the total amount of missing data proposed by Steinfath is extremely 

conservative [22, 66]. In the experience of this author a general rule of thumb is that roughly half 

the metabolites in a large, global analysis will be fully observed while the other half will have 

some fraction of missing values. Overall percentage of missing values can vary depending on 

instrumentation and sample type, but it is generally true that complete case will result in 

significant, often unacceptable, reduction to the data. 

2.12.1.2.  Single Imputation 

Single Imputation (SI) replaces missing observations with an identical value based on the 

observed data. As an example, a vector of 7 with four observed values is shown. In the case of 

mean imputation, the average of the four observed values is 1.5, which is subsequently filled in 

for the three unobserved values.  

1.2
2.2

0.7

1.9

   

Mean 
Imputation

⎯⎯⎯⎯⎯   

1.2
2.2
1.5
0.7
1.5
1.5
1.9

 

Choices of SI frequently used in metabolomics include mean or median [66], zero [69] and 

minimum / half-minimum [70]. Mean and median are consistent with missing at random while 

the other three are associated with missingness resulting from low values. As metabolomics is 

high dimensional it is worth noting that SI is generally applied to each individual compound or 

feature separately because the LOD could vary from compound to compound. One exception to 

this would be zero imputation. This is an extreme case of low valued assumption, implying that 
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compounds unobserved in sample are completely absent from that sample. This may be true in 

certain cases especially with drugs or other xenobiotics, but many endogenous metabolites are 

likely present to some degree. 

In clinical trials, Last Observation Carried Forward is a form of single imputation for 

longitudinal data. Repeated sampling of the same biological unit is a common experimental 

design strategy and has been used in metabolomics [71]. However, longitudinal studies in 

metabolomics could be confounded by circadian rhythm. Metabolite levels fluctuate over a 24-

hour period, responding to basic environmental changes such as sleeping, eating and physical 

activity. Understanding the relationship between metabolites and the circadian rhythm is an 

active area of metabolomics [72, 73]. Although repeated sampling is un-related to the IEM 

setting of this thesis there is diagnostic potential through monitoring of metabolite levels. This 

approach would be particularly applicable with patient monitoring for disease progression or 

treatment response. In such studies, specifying study conditions and sample collection to mitigate 

circadian variation is important for minimizing intra-subject variability. Therefore, it is important 

that the consistency of sample collection be extended, ideally, to commonalities such as the same 

time of day and/or the same fasted status for each sample draw. 

Naturally, SI is very simple to implement. Unlike complete case though, SI does not produce 

universally unbiased parameter estimates even under MCAR. For proof of this, assume that 

values are indeed MCAR. Imputation with the observed mean will produce unbiased estimates 

for the mean. However, replacement with a single value will lead to an unnatural reduction in 

variation thus providing under estimates of the variance. Next assume that missingness follows 

LOD. Imputation with zero, half minimum or minimum. When estimating parameters for the z-

score transformation, minimum imputation is almost guaranteed to be produce an inflated 
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estimate of the mean since the true will in most cases be lower than the imputed value. The only 

way this can be unbiased for the mean is if every single missing value happens to be right at the 

LOD. Through similar arguments, zero imputation is all but guaranteed to underestimate the 

mean. And of course, all will poorly estimate the standard deviation for the same reason mean 

imputation does. 

2.12.1.3. Multiple Imputation 

In contrast to SI, multiple imputation (MI) creates multiple sets of imputed data. Each 

realization contains plausible values of the missing data sampled from a Bayesian posterior 

distribution. The sets are analyzed as any complete dataset would be with final inference coming 

from a combination of the results across all the sets. MI is advantageous for a few reasons. 

Estimates are consistent and asymptotically normal under MAR or if the model of the missing 

data mechanism is correctly specified. Next, the variance of parameter estimates can be divided 

into portions due to between imputation and within imputation. Decomposition of the variance 

allows variability due to the imputation to be accounted for, unlike the single imputation case 

where variation is often artificially deflated, and that the impact of imputing can be assessed. 

Finally, MI is available in a few software packages, although most of these appear to assume 

MAR. One challenge to MI can be reproducibility due to the randomness of the draws. Also, 

there are a number of ways in which to implement MI, which may also contribute to confusion 

and inconsistency of results. Methods for simple missingness mechanisms include Linear 

Regression, Propensity Scores and Predictive Mean Matching. The first two of these are offered 

by PROC MI in SAS [74]. For more complex or data specific missingness structures there is the 

Markov Chain Monte Carlo (MCMC) approach; however, this assumes multivariate normality. 

Multiple (or Multivariate) Imputation by Chained Equations (MICE)[75], also known as Fully 
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Conditional Specification [76] or Sequential Regression [77] among others, is a popular 

extension of MI for multivariate data that has been used in a number of disciplines. 

2.12.1.4. Maximum Likelihood 

Maximum Likelihood is a statistical technique for parameter estimation involving the 

likelihood function: 

 L(θ;𝑿𝒏)= f (x ; θ)

n

j=1

 

The formula is equivalent to the probability density (pdf) of a random sample 𝑿𝒏; however, the 

emphasis of the likelihood is to view θ as a function of the observed data. Taking the derivative 

of L with respect to θ, setting the result equal to 0 and solving for θ results in parameter 

estimates which maximize the likelihood function, giving the name maximum likelihood (ML). 

In practice a log transformation is applied along with a sign change to simplify the calculation by 

turning the product into a summation: 

−
∂ log f (𝑥 ; θ)

∂θ
 = 0

n

j = 1

 

This function is known as the score equation. The negative sign follows from log f(𝑥i;θ) ≤ 0 as 

the pdf is always bounded between 0 and 1. Conceptually this approach may be thought of as 

producing the “best” estimates of θ given the observed data. In general ML tends to be efficient. 

However, the estimates may be biased and in many cases in which unbiased estimators can be 

claimed it is only done so asymptotically. Additionally, the solution to the score equation(s) may 

not have a closed form in certain settings, requiring numerical approximations to solve. 

 In relation to this dissertation, missing data due to limit of detection has two principle forms 

in ML. The first is censoring, in which an observation is recorded but there is no value to 
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associate with it due to the true value being below the detection threshold. The second is 

truncation in which values below the detection threshold are not just unknown but the 

observations themselves are unrecorded. For metabolomics, the number of missing values for a 

given compound is always known and when due to limit of detection it is appropriate to 

incorporate the partial information from these observations into the model. However, as 

discussed in Chapter 2, strictly speaking there are times when missing values will not be LOD. 

Alternative reasons for missing values are more in line with MCAR, where ignoring the missing 

values is acceptable. Truncation may offer a tradeoff over censoring, producing more accurate 

estimates when some values are actually MCAR/MAR but being less efficient when all values 

are due to LOD. As this paper focuses on the LOD assumption, the censoring approach is used 

exclusively. 

2.12.1.5. Expectation-Maximization Algorithm 

Broadly, the Expectation-Maximization (EM) Algorithm is a two-step, iterative approach 

useful for generating maximum likelihood estimates when the likelihood function is difficult to 

solve directly, such as with latent variables or missing data. The overall process is shown in 

Figure 3.3. The algorithm begins with the Expectation, or E, step in which creates a function of 

the expected log-likelihood based on current parameter estimates. This is followed by the 

Maximization, or M, step in which the derived function is maximized to obtain updated 

parameter estimates. With these updated estimates in hand the algorithm returns to the E step and 

continues cycling until some tolerance between the current and updated estimates is achieved. 

Key here is the ability to handle missing values. In this case the EM steps essentially take 

current estimates of the parameters to generate estimates of the missing values based on the 

conditional expectations. After filling in the missing values, new parameter estimates are created. 
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Primarily the purpose is to generate parameter estimates; however, a “complete” dataset can be 

found from the final E step. Overall, EM is regarded as being efficient and generally accurate 

regarding its primary goal – parameter estimation. As with ML, it does require specification of 

the likelihood function. 

2.12.2.  Common Metabolomic Imputations 

In regard to missing data, metabolomic researchers are mostly interested in a complete 

dataset. Therefore, producing plausible estimates of the missing observations is most critical. 

The previous methods suggested by FDA are not necessarily meant for this purpose and many of 

Figure 3.3: EM process flow diagram. 
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those methods require specifying a statistical model. Following Chapter 2 and 3, metabolite 

characteristics may not be known leaving researchers uneasy about specifying such behavior. 

Imputation in metabolomics has come to rely more on non-parametric methods. There does exist 

some overlap, such as SI via mean, minimum, zero, etc. But more complicated imputation 

strategies have largely been borrowed from other omic fields. This include variations on 

Principle Component Analysis, k Nearest Neighbors and Random Forest. The latter two have 

been found to perform well in comparison with other methods. Greater detail on given on these 

methods next. 

2.12.2.1. Principal Component Analysis 

Principal Component Analysis (PCA) is a popular multivariate technique with broad use in a 

number of disciplines including chemometrics and metabolomics [33, 78-81]. PCA is most 

simply a data reduction technique that reduces a set of correlated vectors into a smaller set of 

uncorrelated, or “principal”, component vectors. Intuitively, even when there are a massive 

number of variables on n observations it should take no more than n - 1 independent pieces of 

information to completely separate the subjects in an experiment. Thus, PCA has useful 

application in high dimensional data in which m ≫ n and also in data that is highly correlated. 

More precisely, for Xn×m a matrix of m metabolite features on n samples the singular value 

decomposition theorem states there exist matrices Un×n, Vm×n and Dn×n (note that in practical 

applications 𝑿 will always be of rank n) such that: 

X = UDV' 

D is a diagonal matrix with elements known as the singular values of 𝑋 satisfying 

D11 ≥ D22 ≥ … ≥ Dnn. U and V are the solutions associated with the eigenvalues of XX' and X'X 

respectively: 
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XX'U = UD2 

X'XV = VD2 

The full PCA decomposition of X is given by Y = XV. The columns of Y are orthogonal to each 

other and are referred to as the principle components of X. A useful interpretation, relating the 

singular values, is that the ith component of Y accounts for Di  ∑ Dj⁄  of the observed variation in 

X.  

Pearson and Hotelling were the first to use PCA in the early 20th century [82, 83]. It was 

introduced to missing data by Christoffersson to handle matrices with missing values [84]. Near 

the turn of the century Tipping and Bishop added a probabilistic model to PCA (PPCA), which is 

closely related to factor analysis [85]. From this Oba developed an imputation method consisting 

of three parts: principal component regression, Bayesian estimation and an EM-like algorithm 

[86]. This approach is termed Bayesian PCA (BPCA). Finally, when suspicion that missing 

values are not believed to be a linear function of latent parameters Non-linear PCA (NLPCA) 

may be used [87]. For PPCA and NLPCA, missing values are essentially ignored during the 

fitting process but can be imputed on the back end.  

2.12.2.2. k Nearest Neighbors 

Broadly speaking, k-nearest neighbors (kNN) is a simple machine learning algorithm. In 

statistical application it is a tool for non-parametric prediction. It functions much the way other 

prediction tools do: Given a set of outcomes variables on n observations with m input variables 

from which to train, outcomes for a new observation can be made based upon the inputs. When 

the output variable is categorical it is often referred to as kNN classification, while continuous 

outputs are called kNN regression. It’s worth pointing out that in metabolomic imputation, the 

neighbors are generally the metabolites with missing values for one metabolite of a sample filled 
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in based upon the observed values of the neighbors for the same sample. The alternative would 

be to fill in values of a metabolite in a missing sample based upon the observed values of the 

metabolite in another sample. Replacement by nearest sample is less likely to be successful since 

there is no guarantee that a group of randomly selected subjects would associate well. However, 

in theory certain metabolites can be very closely associated with one another based upon 

biochemical function or pathway relationship.  

The specific algorithm for kNN involves comparing the input for a new observation 

(sometimes referred to as query) to the input of the training set by some dissimilarity measure. 

This is most commonly based on one of the following distance measures:  

Euclidean = yji  −  y i'
2

n

j = 1

 

Manhattan =  yji  −  y i'  

n

j = 1

 

Minkowski =  yji -  y i'  
q

n

i = 1

q

 

Hamming = Di  where 
 yji =  y i'  : Di = 0

yji ≠  y i'  : Di = 1  

Euclidean represent the shortest distance between two points in an 𝑛-Dimensional space and is 

the most popular distance measure for continuous values. Manhattan measures the distance 

between two points based on a grid structure. Minkowski is the generalization of the first two, 

giving Manhattan when q = 1 and Euclidean when q = 2. While these three are all appropriate for 

numeric values, Hamming is able to handle categorical variables by counting the number of 

instances in which yi and yi' disagree. Although not highly applicable for metabolomics, 
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metabolites could conceivably be dichotomized based on the ion counts being below versus 

above a certain threshold, or by an indicator variable based on presence or absence of an ion 

count. Regardless, once the dissimilarity is calculated, the k training observations with the 

smallest dissimilarity are used to formulate a prediction of the outcome variable based on some 

function of the k training outcomes. When the outcome is categorical this can be the mode of the 

k “neighbors” while continuous variables typically use the mean or median. 

The nearest neighbor concept has been extended to missing data as a method to produce 

realistic replacements for missing values and has become popular in the omic fields [88]. As an 

imputation method it is non-parametric and software packages for kNN imputation are widely 

available; however, it is not guaranteed to produce unbiased estimates under MAR or even 

MCAR.  

To illustrate how kNN works a classification example is given. Taurocholate (TC), 

glycocholate (GCC), taurochenodoexycholate (TCDC) and glycochenodeoxycholate (GCCDC) 

are the major bile acids in humans and are markers of liver health. Non-alcoholic fatty liver 

disease (NAFLD) is a form of liver disease in which excessive amounts of fat accumulate in the  

liver regardless of alcohol consumption resulting in impaired liver function. Non-alcoholic 

steatosis (NASH) is more advanced condition which can lead to liver failure. The following 

observations relate the biochemical levels of 7 hypothetical patients to fictional disease 

outcomes:  

Patient TC GCC TCDC GCCDC Condition 
1 4.2 10.4 9.7 19.1 Normal 
2 3.8 9.1 10.6 12.6 Normal 
3 5.8 9.7 11.4 17.3 NAFLD 
4 4.1 8.1 8.9 11.8 NAFLD 
5 3.1 6.5 12.8 3.2 NASH 
6 3.5 7.9 15.1 9.8 NASH 
7 4.3 9.2 12.8 7.3 ? 
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The first six with known disease conditions represent training samples while the seventh sample 

is unknown and the desire is to classify it based on the data at hand. Using Euclidean as the 

dissimilarity measure and setting k = 3 gives: 

Patient TC GCC TCDC GCCDC 
Euclidean 
Distance 

Rank 

1 0.01 1.44 9.61 139.24 12.26 6 
2 0.25 0.01 4.84 28.09 5.76 3 
3 2.25 0.25 1.96 100.00 10.22 5 
4 0.04 1.21 15.21 20.25 6.06 4 
5 1.44 7.29 0.00 16.81 5.05 2 
6 0.64 1.69 5.29 6.25 3.72 1 

The three smallest distances are, in ascending order, patients 6, 5 and 2. The corresponding 

conditions are NASH, NASH and Normal. With NASH being the condition of two of the three 

closest neighbors, patient 7 is predicted as being NASH. If Condition had been continuous, such 

as a severity measure, then the prediction would be either the mean or median (or some other 

function) of the three neighbors. 

The main attractions to kNN are rapid processing speed, ability to handle categorical and 

continuous variables in both the inputs and outputs, and distributional free assumptions. The 

number of user defined settings are few. Dissimilarity is generally Euclidean for continuous 

variables and Hammering for Categorical. Resolving the prediction from the neighbors is 

typically done by the mean, though median may be more appropriate when severe outliers are 

present. The biggest hurdle is determining the value of k and the optimal value will depend upon 

the data. Selecting k = 1 is analogous using Nearest Neighbor or 1NN. A rough rule of thumb is 

k = 10 and this is the default in a number of software packages; however, in metabolomics 

performance has been shown to level off around k = 5.  

Major drawbacks to kNN are that it can be harmed by the presence of non-informative input 

variables, imbalance in the output variable and ties in the prediction for classification, and 
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inconsistent scales among continuous inputs. For the first point, consider that neighbors are 

evaluated by some dissimilarity, which, for the common measures listed above, will increase in 

magnitude as more input variables are included. When a large number of the input variables in 

the training set are unrelated to those of the new variable then the dissimilarity measure becomes 

dominated by noise meaning that training sample association with a new observation is largely 

determined by chance. In essence, non-informative inputs tend to weaken the power of the 

dissimilarity measure to discriminate between values. Focusing on kNN classification, by 

increasing the number of observation of a given class the more opportunity there is to increase 

the classes’ reach due to natural variation within a population. Thus, when one class is severely 

over-represented in the training set compared to other classes the more opportunity that class has 

to be close to any new observation.  This can be overcome by condensing the training space, 

such as with subsampling, to produce a training set with equal representation of the class variable 

or alternatively by weighting the prediction so that closer neighbors have more impact on the 

prediction. A similar solution can be employed for instances of when two or more classes have 

equal representation in the k nearest neighbors. In the binary case ties can be avoided by setting k 

to an odd value; however, in the general multiclass setting there is no way to guarantee that a tie 

will be avoided. Ties must be broken somehow. Taking the value of the closest neighbor (i.e. 

1NN) or defaulting to the most prevalent class are analogous to weighting. However, random 

selection of the tied categories is also possible.  

The most relevant drawback to metabolomic data is the impact of input variables with vastly 

different scales. This can be seen somewhat in the example provided above. 

Glycochenodeoxcholate has a larger abundance than the others causing this metabolite to 

dominate the dissimilarity (under distance-based metrics at least). Scaling of variables is 
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therefore important with kNN. Section 2.1 discussed various scaling techniques for metbolomic 

data. Repeating the above example by dividing the levels of each metabolite by the median of the 

training set gives:  

Patient TC GCC TCDC GCCDC Condition 
1 1.063 1.209 0.882 1.566 Normal 
2 0.962 1.058 0.964 1.033 Normal 
3 1.468 1.128 1.036 1.418 NAFLD 
4 1.038 0.942 0.809 0.967 NAFLD 
5 0.785 0.756 1.164 0.262 NASH 
6 0.886 0.919 1.373 0.803 NASH 
7 1.089 1.070 1.164 0.598 ? 

and the associated Euclidean based ranking is:  

Patient TC GCC TCDC GCCDC 
Euclidean 
Distance 

Rank 

1 0.0006 0.0195 0.0794 0.9355 1.02 6 
2 0.0160 0.0001 0.0400 0.1887 0.49 2 
3 0.1442 0.0034 0.0162 0.6719 0.91 5 
4 0.0026 0.0164 0.1257 0.1361 0.53 3 
5 0.0923 0.0986 0.0000 0.1129 0.55 4 
6 0.0410 0.0229 0.0437 0.0420 0.39 1 

The three closest neighbors are now patients 1, 2 and 4, the conditions of which are NASH, 

Normal and NAFLD. This indecision is arguably more reflective of the data: the new 

observation is similar to the NASH patients in GCCDC but more similar to the Normal or 

NAFLD patients in TC and GCC. Regardless of one’s opinion, median scaling has altered the 

neighbors (though the 1NN tie breaker would keep the prediction the same). 

One final point for clarity, in the examples the patients form the neighbors and the missing 

variable is imputed from other values of this same variable. In the metabolomics setting the 

compounds become the neighbors and missing values in a compound are replaced based upon 

the values of other compounds. This further emphasizes the importance of scaling the variables. 
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2.12.2.3.  Random Forest 

Random Forest is another machine learning algorithm useful for classification and regression 

built upon decision trees. Unlike kNN, Random Forest is a supervised approach that uses the 

entire dataset. Multiple trees are created, each by randomly sampling from both the samples and 

candidate predictors. For a given tree, the samples selected for training are referred to as “in bag” 

and the unselected samples are “out of bag” (OOB). Within each random selection a tree is 

created based upon the observed outcome to classify the in-bag samples with the tree grown until 

the nodes are pure. An additional caveat to growing the tree is that at each node separation is 

based on the best split from a subsampling of the predictors rather than the best predictor. This 

approach to splitting protects against overfitting and is shown to boost performance [89]. The 

Final prediction for each sample is then aggregated over all the sets in which the sample was out 

of bag. Forests created for continuous outcomes are referred to as regression forests, and use 

regression trees rather than classification trees, with the final prediction being the mean or 

median predicted value. Categorical outcomes are termed classification forests with final 

predictions based on the mode.  

The usual advantages and disadvantages from such ensemble approaches hold for Random 

Forest. Namely, the use of several (up to several thousand) trees significantly improves accuracy 

but sacrifices interpretability. Additional advantages are the ability to assess predictive 

performance by comparing out of bag predictions against the true value as well as the ability to 

assess the contribution of the individual predictors. The latter feature is helpful for biomarker 

identification as more influential variables are good candidates for further investigation. For an 

excellent review of Random Forest see Liaw and Wiener [90].  
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2.13. Methods 

This paper seeks to evaluate the performance of common imputation methods versus more 

clinically accepted missing data methods in regard to estimating the mean and standard deviation 

from a single “control” population. The common imputation methods selected are (1) None – no 

imputation of the data, (2) Mean – single imputation with the observed mean/average on a 

feature to feature basis, (3) Min – single imputation with the observed minimum, (4) kNN – k 

Nearest Neighbors using metabolites as the neighbors and (5) RF – Random Forest regression. 

The two competing clinical methods are (6) rankit regression (RR) which involves regression the 

observed order statistics against their corresponding expected values under a standard normal 

distribution and (7) Maximum Likelihood (ML) for left censored data.  (1)-(3) were chosen 

because they are common to metabolomics and are acceptable for use in clinical trial evaluation. 

(4) and (5) were selected over others because previous studies have found them to generally have 

better performance than other methods [22, 66, 91].  

These alternatives were selected based on the results of chapter 4 which found that 

metabolites have strong normal tendency following a natural log transformation. Invoking this 

property allows for the use of maximum likelihood or other parametric models which can be 

combined with left censoring following the LOD assumption. Both methods do this. As EM is a 

ML based approach, inclusion of this method felt redundant. Finally, MI has many attractive 

properties, but it has already been explored in metabolomic data where its performance was 

found to be poor [66].  

2.13.1.  Rankit Regression 

For X a normal variate with mean µ and variance σ 2 and Z the standard normal with mean 0 

and variance 1, the distribution of X is related to that of Z by the following relationship: 



118 
 

X ~ µ + σZ 

This can be recognized as a linear regression problem. Given a random sample Xn drawn from an 

unknown normal distribution, estimates of µ and σ 2 can be found by regression the ordered 

values of Xn against the corresponding expected values under a standard normal. Notationally, 

let x(i) be the ith ordered value of Xn and z(i) be the ith ordered value of sample of size n drawn 

from the standard normal. Additionally, let zi
* = E(z(i)). These are known as the rankits of the 

normal distribution. In general, the expected value of an ordered statistic is non-trivial. However, 

it is possible to show the expected value of x(i)'s are in fact a linear transformation of the 𝑧(i)'s: 

(3.3.1-1) 
 E x(i)  = x(i)

∞

-∞

n!

(n-i)!i!
F x(i)

i
1-F x(i)

n-i
f x(i) dx(i) 
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 = x(i)
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(n-i)!i!
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i

1-ϕ
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σ
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∞
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(3.3.1-3) 
 = x(i)
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(3.3.1-4) 
 = μ

n!

(n-i)!i!
ϕ(u)i[1-ϕ(u)]n-iφ(u)du

∞

-∞
+ 

 
    σ u

n!

(n-i)!i!
ϕ(u)i[1-ϕ(u)]n-iφ(u)du

∞

-∞
 

(3.3.1-5) = μ + σzi
* 

Step 2 follows from a property of exponential families. Step 3 comes from the change of variable 

u = (x-μ) σ⁄ . The first resulting integral in step 4 is equivalent to the probability density function 

of the ithordered rankit of a standard normal, which over the entire real line has probability equal 
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to 1. The second integral is equivalent to the expected value the 𝑖  ordered rankit from a 

standard normal. Returning to the so called rankit regression model of interest: 

x(n)

⋮
x(1)

= a + b
E (z(n))

⋮
E (z(1))

 

The least squares estimate of 𝑎 and 𝑏 are: 

 a = x  −  bz̅* 

 b = 
∑ (n

1 zi 
*  −  z̅*)(x(i)  −  x)

∑ (zi
*  −  z̅*)

2n
1

 

Next, consider any subset of U ⊆ {1, …., n} and the expected value of the linear coefficients are: 

(3.3.1-6) 
 E(b)=E  

∑ (zi
*  −  z̅*)(x(i)  −  x)U

∑ (zi
*  −  z̅*)

2
U

  

(3.3.1-7) 
=

∑ (U zi
*  −  z̅*)E(x(i)  −  x)

∑ (zi
*  −  z̅*)

2
U

 

(3.3.1-8) 
=

∑ (U zi 
*  −  z̅*)({μ + σzi

*} − {μ + σz̅})

∑ (zi
*  −  z̅*)

2
U

 

(3.3.1-9) 
=

σ ∑ (U zi
*  −  z̅*)(zi

*  −  z̅})

∑ (zi
*  −  z̅*)

2
U

 

(3.3.1-10)  E(b)=σ 

And 

(3.3.1-11)  E[a] = E xU  −  bz̅U
*  

(3.3.1-12) = μ + σz̅U
* − z̅U

* E[b] 
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(3.3.1-13) = μ + σz̅U
*  −  σz̅U

*  

(3.3.1-14)  E[a]=μ 

The substitution made in (3.3.1-8) and (3.3.1-12) follows from the result in (3.3.1-5). Hence the 

regression coefficients are unbiased estimators of 𝜇 and 𝜎 for any subset of the ordered values 

{x(1), …, x(n)}, including the full set X(n). In fact, when all the ordered values are used z̅* = 0 due 

to the symmetry of the normal distribution implying: 

a = x  −  bz̅*= x 

 b = 
∑ (n

1 zi
*  −  z̅*)(x(i) −  x)

∑ (zi
*  −  z̅*)

2n
1

 = 
∑ (1 zi

*)(x(i)  −  x)

∑ (zi
*)

2n
1

 

So, in the complete case the estimate of the mean is identical to the sample average while the 

estimate of the standard deviation is the ratio between the sum of the observed ranks, after 

centering, and the rankits over the sum of the rankits squared. 

In terms of this thesis, rankit regression is relevant as it can easily be adapted to left-censored 

data by ignoring the unobserved values and regressing only with the observed values, treating 

them as the highest ordered values in the data. This approach is straightforward as many software 

applications have the capability to perform simple linear regression. The biggest challenge is 

finding values of 𝑧∗ as the rankits are not trivial to calculate. However, numerical 

approximations are readily available [92]. 

2.13.2.  Maximum Likelihood and Left-Censoring 

The general likelihood function for a sample in which there are 𝑛 total observations and 𝑘 

values are missing due to begin below a certain value Ti is: 

 L θi ; yi =
n!

ki!(n −  ki)!
P(x < Ti)

ki * P(x <  yji | yji > Ti)

n

ki+1
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The likelihood above is in two parts. The first part, P(x < Ti)
ki, represents the probability 

associated with the unobserved values, while the second part, P(x <  xji | xji > Ti), relates to the 

probability of the observed values.  Under a normal distribution with parameters µ and σ the 

likelihood is: 

 L µj, σi ; yi  = 
n!

k!(n-ki)!
(σi√2π)

-1
exp

−(x-µi)
2

2σi
2 dx

Ti

-∞

ki

 

* σi√2π
-(n-ki)

exp
− ∑ yji − µi

2
n
ki+1

2σi
2  

Here the j subscripting of the metabolomic framework is used to emphasize that there are several 

features with each having their own distribution (θi), point of truncation (Ti), and number of 

missing values k . However, the total number of samples, n, is the same. For simplicity the i 

subscripting is removed in the following sections, but the emphasis on individual metabolites 

remains. The log-likelihood gives: 

 l= log
n!

k!(n-k)
+k*log (σ√2π)

-1
exp

−(x-µ)2

2σ2 dx
T

-∞
− (n-k)log σ√2π −

yj-µ
2

2σ2

n

k+1

 

Using the transformation ξ = (T-µ) σ⁄  the likelihood can be simplified to: 

 l = log
n!

k!(n-k)!
+k*log[ϕ(ξ)]-(n-k)log σ√2π −

yj − µ
2

2σ2

n

k+1

 

 The score functions follow as: 

dl
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1
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 −  0 −  
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=
−k*φ(ξ)

σϕ(ξ)
+
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σ2

n
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Setting these equal to 0 and solving gives: 

yj  −  µ  = kσ*
φ(ξ)

ϕ(ξ)

n

k+1

 

yj −  (n −  k)µ = kσ*
φ(ξ)

ϕ(ξ)

n

k + 1
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Due to the symmetry of the standard normal distribution φ(t) = φ(-t) and ϕ(t) = 1 −  ϕ(−t). This 

relationship is used to maintain some consistency with the estimating equations in the truncated 

case: 

y −  µ = 
k

n −  k
σ*

φ(−ξ)

1 −  ϕ(−ξ)
 

σ2 1-
k

n −  k
ξ*

φ(−ξ)

1-ϕ(−ξ)
=

∑ yi
2  −  y2n

k+1

n −  k
+(y  −  µ)2 

2.13.3.  Maximum Likelihood and Left-Truncation 

In the normal truncated case the likelihood function is  
 

 L(µ,σ) = 1-ϕ
 T -µ

σ

-1
1

σ√2π
exp −

yj  −  µ
2

2σ2

n

j = 1

 

 

T, as before, represents the point of truncation giving the probability of a value being unrecorded 

as ϕ(( T-µ) σ⁄ ). The term in the first part of the likelihood relates to this probability of being 

observed and normalizes the area over the space [T,∞) to a total probability of 1. ML estimators 

for µ and 𝜎 have previously been shown [93-95]. Rewriting by expanding the product and using 

the transformation ξ= (T-µ) σ⁄  produces: 

 L(µ, σ) = (1 −  ϕ(ξ)) n(σ√2π)
n
exp −

yj  −  µ
2

2σ2  

Taking the natural log gives: 

 l(ξ, σ) = − n* log 1 −  ϕ(ξ)  −  n*log σ√2π −
yj  −  µ

2

2σ2  

The resulting score equations are: 
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dl

dµ
 = − n*

1

1 −  ϕ(ξ)
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dµ
 −  n*0 −
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Solving for each parameter gives: 

−n*φ(ξ)

σ(1 −  ϕ(ξ))
 + 

yj  −  µ

σ2 =0 

yj - µ
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n*φ(ξ)

σ(1 −  ϕ(ξ))
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n
=
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And: 
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n
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nσ2*(1 −  
ξ*φ(ξ)

1 −  ϕ(ξ)
) = (yj

2) −  ny2 + ny2  −  2nyµ  + nµ2 

σ2* 1 −  
ξ*φ(ξ)

1 −  ϕ(ξ)
 = 

∑ (yj  −  y)2

n
 + (y-µ)2 

These equations produce a system of two equations with two unknowns (recall ξ is a function of 

µ and σ) which can be approximated using the Newton Raphson method [96]. 

2.13.4. Maximum Likelihood vs. Rankit Regression  

As stated above, one challenge with rankit regression is estimation of the rankits themselves. 

Much work has been devoted to the approximation of these values for items that include the 

normal quantile plots and Shapiro-Wilk Test [97-99]. As the x-variable in the rankit regression, 

any bias in the estimation of the rankits can lead to spurious conclusions. To illustrate this, a 

simple simulation of a normal random variable Xn with mean µ = 10, standard deviation σ = 3 

and n = 30 is conducted. The variable is censored by removing low values three at a time, 

beginning with three smallest and progressively increasing up until only the three largest values 

remain. At each level of censoring both maximum likelihood and rankit regression are used to 

estimate the value.  

To evaluate different approaches to estimating the rankits themselves, rankit regression was 

conducted in three different ways. The first uses the qqnorm function from R, which is used 

create normal quantile plots in that software. Estimates generated by qqnorm come from the 

function points, which, for n > 10, the default is to take the quantiles corresponding to ϕ
j-0.5

n
 

for j ϵ {1, …, n}. This decent approximation to the rankits is not exact, leading to systematic bias 

in the estimates. To address this bias, the second approach simulates a N(0,1) variable, referred 

to as Zn, with Xn regressed on the ranks of Zn. On average, the ranks of Zn will be equal to the 

desired ranks, leading to less bias. But since each individual realization is not the true rankits, 
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higher variance in the estimates are expected. In essence, this second approach does not remove 

error in rankit estimation but allows it to balance out over the simulations. Third, 100,000 

realizations of Zn are created, sorted and the ranks averaged to produce the independent variable 

Zn
avg. This third way should have the least systematic bias due to error in the rankits while 

minimizing variance in the estimator. 

Figure 3.4: Parameter estimates from Maximum Likelihood versus Rankit Regression, part I. Individual estimates in 
black with average values in red. Rankits based on qqnorm function in R.  
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Simulations results found that maximum likelihood does indeed exhibit bias in both the mean 

and standard deviation while rankit regression generally performs as expected. These results are 

summarized in Figures 3.4-3.5, which show the individual parameter estimates as a function of 

the proportion of missing values in the sample. Trend lines for the average parameter estimates  

Figure 3.5: Parameter estimates from Maximum Likelihood versus Rankit Regression part II. Individual estimates 
in black with average values in red. Rankits based on simulated standard normal and average of 100,000 
standard normal simulations. 
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Table 3.1: Estimates of Population Parameters in Maximum Likelihood versus Rankit 
Regression. Results based on simulations of normal random variable with true mean 10 
and true standard deviation 3. 
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are indicated in red. Maximum likelihood shows 

steadily increasing bias towards over-estimates in 

the mean and under-estimates in the standard 

deviation over the range of proportion missing.  

The bias appears to inflate at around 60% missing 

values.  

Rankit regression using qqnorm is less biased, 

but an inspection of the average estimates, shown 

in Table 3.2, reveal a similar trend towards 

overestimates in the mean and under-estimates in 

the SD. Impact is most apparent in the SD 

parameter where rankit regression by qqnorm is 

seen to consistently underestimate the parameter 

through all proportions of missing values. While 

the bias in RREG is around .5-1 unit less than 

maximum likelihood, the variability of the 

estimates is much greater. This result is to be 

expected as maximum likelihood methods are 

generally very efficient. Bias in rankit regression 

using Zn demonstrates more variability than 

qqnorm, as expected, at all levels of missing values. The variability of these estimates is 

tremendous in both parameters at 80-90% missing values. However, Zn does tend to be slightly 

less biased than qqnorm, especially in the standard deviation, up to 70% missing values. Lastly, 

Table 3.2: Difference in Rankit Estimates 
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rankit regression by Zn
avg demonstrates little evidence of bias at any parameter level while having 

variance that is roughly equivalent, if a little bit higher, than when using qqnorm. The specific 

rankit estimates for the qqnorm and Zn
avg approaches are displayed in Table 3.2. Magnitudes 

between the two are largest in the tails, which fits with the bias under qqnorm being most 

noticeable at 80-90% missing. With this much of the data gone, estimation is entirely dependent 

on these most extreme values which happen to be the most off. 

The evaluations that follow, the expectation is that maximum likelihood will generally 

perform well. However, being only asymptotically unbiased there is the possibility that in certain 

circumstances, such as very large proportions of missing data or small sample sizes, rankit 

regression will prove to be less biased. However, the findings here support maximum likelihood 

for left censored data as being clearly more efficient. The variability of rankit regression 

estimation is an item to pay attention to in further assessment. 

2.13.5. Assessment 

Selected methods will be evaluated in chemocentric metabolomic data using the same three 

data sets evaluated in Chapter 4. Using only those metabolites which were completely observed 

in all samples, the data is first log transformed, and then observed values are removed in left-

censored fashion. Each method was applied to censored data to produce estimates of the mean 

and standard deviation, which were then compared against the corresponding sample values of 

the fully observed data. Error in the method can be described as the difference between the fully 

observed parameter value τ and the estimate of that parameter τ̃. Comparison involves taking the 

so called relative error, which is error as a proportion of the fully observed value: 

Relative Error = 
 τ̃  − τ

τ
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In order for relative error to be defined τ must be non-zero. This should not be a problem here 

since the standard deviation is always non-zero and ion counts are always positive values that 

are, even at the lowest level, in the thousands. The primary reasoning for relative error is that by 

viewing error as a percentage of the original parameter value it makes results comparable 

between features and between parameters. That is, we can not only equate relative error in the 

mean between two features, but also compare relative in the mean against that of the standard 

deviation for the same feature. Error is also closely related to bias, which is an important concept 

in statistics and one of the most, if not the most, important ways to evaluate estimators. By 

aggregating relative error across all features, some estimate of bias can be achieved.  

Before experimenting with these data sets, simulation experiments were conducted to test the 

performance of the methods under ideal circumstances and their sensitivity to the normality and 

left censored assumption. These theoretical results will be a point of reference in which to 

consider the results in the real datasets and to understand the importance of the assumptions to 

performance. Simulations experiments are described fully in section 5.4.  

Briefly, a series of relatively small datasets were created in which the columns are based on 

either a normal or a chosen representative non-normal distribution. Observations will then be 

removed from a portion of the dataset, with the methods being applied using the assessment 

approach outlined above. Use of kNN and RF necessitate simulating an entire dataset since both 

of these methods use the fully observed features to impute missing values. Naturally, correlation 

between the features is important to these methods and is included as part of the simulation 

experiments. Finally, since performance of kNN is known to suffer when the variables are on 

different scales, and metabolomic sets easily qualify this definition with average feature 

abundance ranging from the tens of thousands to the hundreds of millions, median scaling is also 
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including in the simulation workflow. Scaling is selectively used in the field and median scaling 

was chosen due to the propensity for large outliers in metabolomic data [18, 100]. Indeed, results 

using kNN were observed to be much poorer without any scaling. The other methods, including 

RF, were largely unaffected. Scaling is thus optional, for the other methods. Fortunately, median 

scaling has no effect on relative error for NONE, MEAN, MIN, ML and RR. It is important to 

realize that in practice such scaling can of course only be performed on the observed data. Thus, 

to best imitate the process in real data variable scaling is performed after variable censoring. 

2.14. Simulation Experiments 

2.14.1.  Workflow 

The proposed methods, ML and RR, assume normality and that missing values are due to the 

ion count falling below the instruments level of detection. Goals of the simulation experiments 

are as follows (i) evaluate performance of the methods when both assumptions are true, (ii) 

evaluate change in performance when one of the two assumptions fail and (iii) evaluate the 

impact of correlation on kNN and RF. Besides kNN and RF, the other five procedures are 

univariate, since they act on each feature separately, meaning it would be sufficient to asses these 

using simulations of a single variable. However, since kNN and RF operate from a dataset with 

fully observed variables it was necessary to simulate a full dataset. For this reason, these 

experiments involve 1,000 simulation runs of a multivariate dataset Yn×m=[y1 y2 … ym] 

where the yj's are identically distributed random variables. A value of n = 30 is selected as the 

standard since it is consistent with the sample sizes of the datasets discussed in Chapter 4. A 

value m = 114 is chosen with the variables y1, …, y14  censored such that the lowest 2*j values 

are removed for j ϵ {1, …, 14}. Variables y15, …, y114  are uncensored and represent the fully 

observed data available to kNN and RF for imputing. The methods are then applied to produce 
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estimates {y1, …, y14}  and {s̃1, …, s̃14} of, respectively, the censored sample means and standard 

deviations. These estimates are compared back to the usual sample mean and standard deviation 

without censoring the variable.  

Beginning with the hypothesis that the assumptions of normality and LOD are correct, Yn×m 

is first simulated as multivariate normal. It is presumed that the correlation between metabolites 

is a highly influentially characteristic that will impact the performance of both kNN and RF. 

Metabolite correlation will vary depending on instrumentation. For example, ion-centric data is 

known to be highly correlated due to a single parent metabolite producing multiple related 

fragmentation features [101], but in Chapter 4 it was shown that the majority of feature pairs 

have at most only a moderate level of correlation. Incorporating this correlation can be 

accomplished by beginning with a multivariate normal Zn×m having mean vector 𝟎 and variance 

covariance matrix In. Let Yn×m be as follows: 

Yn×m = Zn×m*Chol(Ʃ)+µ 

where Chol(.) is the Cholesky root. Yn×m will be normally distributed with mean µ and variance-

covariance Ʃ. These simulations use the compound symmetry structure, namely: 

Ʃρ = σ2

⎣
⎢
⎢
⎢
⎡
1 ρ
ρ 1 ⋯

ρ ρ
ρ ρ

⋮ ⋱ ⋮
ρ ρ
ρ ρ ⋯

1 ρ
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⎥
⎥
⎥
⎤

 

Let YN
 ρ designate the multivariate dataset with mean vector µ and variance-covariance Ʃρ. Within 

each simulation a single random draw of Zn×m is made from which the datasets YN
 ρ for ρ = 0, 

1

3
, 

1

2
, 

2

3
, 

9

10
 are created. The complete workflow of this simulation is shown in Figure 3.6.  

The two proposed methods are expected to perform well under normal and LOD simulations 

with performance degrading as the amount of missing values increases. One curiosity is whether 
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performance is linked to the number of values that are missing or the proportion of values that 

are missing. To examine this the normal LOD simulations are repeated using n = 10 and n = 600 

in addition to the standard n = 30. The smallest sample setting is particularly interesting with ML 

since this method is known to be only asymptotically unbiased. 

The first assumption to be tested is the LOD assumption. Aside from LOD, potential sources 

of missingness are largely independent of the true value, i.e. lost scans or swamping from 

another peak, implying missing at random. Therefore, simulations with normal are conducted by 

removing values completely at random instead of in a left censored fashion. This will inform 

how critical the LOD assumption is and the possible impact of the methods on minor, but 

Figure 2.14.16: Feature set simulation workflow. Each experiment comprises 1,000 simulations. Znxm is a 
multivariate standard normal from which Xρ is constructed with pairwise (spearman) correlation ρ for all 
vectors. Normal simulations involve Xρ being multivariate normal while the non-normal simulations consist 
of log-normal and uniform. In all cases, values removed are done so by taking the lowest from the variables 
selected. For the normal simulation case, simulations are also performed by removing values at random. 
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plausible sources of missing values. 

The next assumption to be tested is normality. There are numerous ways in which non-

normality can manifest. The approach taken here is to create non-normality through skewness 

and kurtosis. The results of Chapter 4 showed that metabolites, particularly when untransformed, 

are prone to large outliers leading to a significant right skew. The log-normal distribution is 

useful at producing such right tailed data and has the added benefit of indicating what happens 

when a log transformation is not applied to a feature that does have strong log-normal behavior. 

Noting that metabolites can sometimes be rather evenly distributed within a tight range, we turn 

to the uniform distribution which is a non-skewed platykurtic distribution with excess kurtosis -

6/5. In addition to both distributions having some basis for being used, data can also be simulated 

using the same workflow by transforming YN
 ρ. In the log normal case this is done by simply 

taking the exp(YN
 ρ) = YLN

 ρ . Similarly, any random variable can be made uniform using the 

cumulative distribution function from the target variable. Thus, for the uniform we have 

YU
 ρ = FY(YN

 ρ). Being able to create non-normal variables from YN
 ρ allows for the correlation 

structure to be somewhat preserved. Since both transformations are monotonic and one-to-one, 

the spearman correlation will be unaffected, though the Pearson correlation will vary.  

Table 3.3 summarizes all conditions of the simulation. In the real dataset the average ion 

count abundance level of metabolites was around 

15 in the compounds that were fully observed 

after a log transformation (plasma = 15.09, CSF = 

15.33, and urine = 16.75) while the standard 

deviation ranged from just less than 0.5 to over 0.9 

(plasma = 0.50, CSF = 0.48, urine = 0.91). Based 

Table 3.3: Conditions of simulation 
experiments. 
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on this, in the normal simulations µj = 15 and σj = 0.6 for all j ϵ {1, …, 114}. For the log-normal 

case, µj = 2.65 and σj = 0.3 so that the resulting exponentiated variable has mean of 14.8, close to 

that in the normal case, along with skewness of 0.94. With the uniform µj is 0 and σj is 1, treating 

a standard normal 𝑌j
 ρ=Ф-1 𝑍j

 ρ *2+14. This produces a uniform distribution with mean 15 and 

standard deviation of 0.57. 

2.14.2.  Results 

2.14.2.1. Normal Distribution and LOD 

To begin, one simulation run from YN
  is presented. Tables 3.4 and 3.5 show the estimated mean 

and standard deviation for each method as well as the corresponding uncensored parameter  

value. A clear result from these tables is that median scaling considerably alters the original 

parameter value, shown in uncensored column. Each variable begins as N(15,0.62) and the 

impact of median scaling when no values are missing move each variable towards a 

N(1,0.62/152). Dividing the variable by an average of 15 centers the distribution around 1. 

However, as low values are removed from the data the observed median steadily increases 

Table 3.4: Estimates of mean in one simulation. Distribution is normal with missing values 
censored below and ρ=0. 
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further and further above 15 as more and more of the lower values are removed. Thus, as the  

amount of missing values increases the target mean is being driven up. This effect of median 

scaling presents a challenge. For example, examining the eighth line of Table 3.4, in which 16 

values have been censored (corresponding to j = 8) the five common metabolomics methods are 

all very close to 1. On other hand, ML estimates a mean of 0.980 while RREG gives an estimate 

of 0.982. These estimates are actually closer to the true uncensored level of 0.970 after scaling. 

Although the standard deviation does not display a systematic trend with regards to missing 

proportion, the uncensored values are prone to shift noticeably ranging from a high of 0.056 to a 

low of 0.031. From Table 3.5, when 14 values are missing NONE estimates the standard 

deviation as 0.04 while both ML and RREG estimate just over 0.06. NONE may seem better as 

the theoretical standard deviation (without censoring) is 0.6/15=0.04. However, the uncensored, 

scaled sample standard deviation is actually 0.056 for the variable in question. Figures 3.7 and 

3.8 plot the results of the estimated mean and standard deviation against their corresponding 

uncensored values for the seven methods. Each dot corresponds the estimated mean or standard   

Table 3.5: Estimates of SD in one simulation. Distribution is normal with missing values 
censored below and ρ=0. 



138 
 

   

Figure 3.7: Estimated mean versus sample mean in one simulation of normal data where values are censored from 
below and ρ=0. 

Figure 3.8: Estimated standard deviation versus sample mean in one simulation of normal data where values are 
censored from below and ρ=0. 
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deviation from one of Y1
 , …, Y14

  and the solid red line represents line y = x, indicating 

agreement between the uncensored value and the estimated value. All five common 

metabolomics methods over predict the mean parameter while under predicting the standard 

deviation. In the mean parameter especially, the estimated value appears to have little correlation 

with the uncensored value. In contrast, both of the proposed methods spread around the line y = 

x, particularly in the mean parameter where higher values of the uncensored parameter are 

approximated well. Of course, this is just one simulation with pairwise correlation 0. Figures 3.9 

and 3.10 plot the results for the mean and standard deviation of all 1,000 simulations for all 

seven methods at each level of ρ. As expected the value of ρ does not affect any of the five 

univariate procedures. Focusing on the mean, NONE, AVG and MIN always over predict. This 

result fits with what one would expect as the observed values are always higher than the full 

sample when missing values are censored from below. In fact, NONE and AVG are identical in 

the mean parameter since imputing with the average does not change the average. MIN 

demonstrates somewhat better behavior at higher values of the parameter. Again, due to the  

scaling after censoring higher values of the uncensored mean imply fewer missing values, so 

performance in this range is expected. As the proportion of censored values decreases the 

observed min is approaching the lowest the sample, meaning fewer values are having to be 

imputed and those that are being imputed are being approximated with a value closer to their true 

level. As with NONE, AVG and MIN, kNN and RF almost always over predict the mean. kNN 

sees some improvement with greater correlation between the variables, but even at ρ = 
9

10
 there is 

a still a bias toward lower values. RF improves only marginally with increasing correlation. At 

ρ = 0 the profile for random forest is very similar to NONE or AVG, while at ρ = 
9

10
 the profile is 

similar to MIN. RREG and ML share very similar profiles and both over and underestimate in  
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Figure 3.9: Error in mean under Normal and LOD simulations. X-axis is uncensored sample mean. Y-axis is 
predicted mean. Columns represent pairwise correlation between variables in data set. Red line is y=x. 
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Figure 3.10: Error in SD under Normal and LOD simulations. X-axis is uncensored sample SD. Y-axis is predicted 
SD. Columns represent pairwise correlation between variables in data set. Red line is y=x. 
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roughly equal measure, suggesting less bias. Accuracy again tends to be better at the larger 

parameter values / lower proportions of missing values. The variation within the estimates for 

RREG and ML is quite large compared to the other methods as well. Across both profiles the 

estimates range from 0.75 to 1.01, while the other methods are largely confined to 0.95 to 1.03. 

The larger spread indicates that while RREG and ML are less biased, they are more variable as  

the amount of missing values increases. Bias in the standard deviation is present for the five 

common methods as well, but in this case the methods consistently under estimate the 

uncensored parameter. On occasions NONE does overestimate the standard deviation, but these 

are rare instances in which the variable is sufficiently right skewed. Notice that this behavior is 

absent from AVG. This is because imputed missing values with the observed average will 

always lower the standard deviation, effectively increasing the sample size while holding the 

variation constant. MIN and AVG are very similar in this regard, though MIN does tend to 

provide better mean estimates in variables that have higher means. Both kNN and RF behave 

similarly to AVG when the correlation is low. As correlation increases, RF more closely 

resembles MIN which is identical to the relationship observed in mean parameter. kNN displays 

two interesting qualities compared to the others in the standard deviation. First is a unique trait in 

which standard deviation estimates never decrease much below .01 while all the other methods 

have instances of basically reaching 0. Values of zero in the standard deviation imply imputation 

with a near constant value. That kNN avoids near 0 estimates of the standard deviation indicates 

the neighbors are producing distinct values to replace the missing observations. Second, as the 

correlation increases the variance in the estimates becomes tighter and less biased. At the highest 

levels of correlation this consistency is important, because while RREG and ML appear to be 

unbiased, both exhibit greater variability than the other methods. Estimated standard deviation 
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values for the five common methods over the entire experiment are generally between 0 and 

0.06. Estimates for RREG, however, range from 0 to 0.26 – more than four times all the other 

methods. The spread for ML isn’t as extreme as RREG with but does exhibit estimates well 

above 0.08.  

Figures 3.11 and 3.12 plot the relative error for the mean and standard deviation, 

respectively, by the percentage of missing values. The results indicate a similar pattern as that 

seen in the previous set of plots showing the uncensored values against the estimated values; 

namely, that the five common metabolomics methods over predict in the mean parameter and 

underestimate the standard deviation. Unsurprisingly, relative error steadily increases for all five 

of these methods as the proportion of missing values increases, with a minimum at 100% which 

is, of course, the maximum percentage any estimator bounded by zero can decrease by. In the 

mean parameter NONE, AVG and MIN all have similar profiles with MIN showing slightly less 

relative error for moderate and high levels of missingness. Regardless of the value for ρ, kNN 

and RF are virtually indistinguishable from those methods in the mean parameter, with 

performance somewhat in between MIN and AVG/NONE. In contrast, error for RREG and ML 

remains centered around 0 for even large proportions of missingness. However, the variation in 

the errors increases dramatically as the proportion of missing values approaches 1. Both are 

prone to severe underestimates when the amount of missing values exceeds 80%, especially 

RREG. In the standard deviation, NONE performs better than AVG and MIN. This is the result 

of single imputation eliminating variation across the samples. RF continues to track closely with 

AVG and MIN regardless of ρ. KNN, however, shows great improvement for even low 

correlation of ρ = 
1

3
 and continues to improve as the correlation increases.  
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Figure 3.11: Relative error in mean under Normal and LOD simulations. X axis in the proportion of missing values. 
Y axis represents percent change from uncensored sample value. Red line represents y=0. 
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Figure 3.12: Relative error in SD under Normal and LOD simulations. X axis in the proportion of missing values. Y 
axis represents percent change from uncensored sample value. Red line represents y=0. 
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There is a curious behavior with kNN such that with ρ =  the standard deviation estimate 

with the highest amounts of missing values are predicted better than those with moderate levels 

of missingness. As the proportion of missing values increases, the imputed variable under kNN is 

becoming more and more a reflection of the neighbors. Since the variables are on the same scale 

this results in the imputed variable becoming more and more like another random variable. 

However, the median scaling following variable censoring causes the neighbors to be shifted 

slightly upward, systematically shifting the imputed values high compared to the original values.  

Simultaneously, the weighted average over the k neighbors reduces the overall variability in 

the imputed values. The result for high proportion of missing values is an imputed variable that 

is slightly higher on average and with lower variation than the original variable. In short, kNN is 

systematically replacing the censored variables with values that is slightly shifted due to the 

scaling and less variable as a result of aggregating across the neighbors. Meanwhile, RREG and 

ML have similar profiles with over and under estimates occur, just as they did in the mean 

parameter. Both of these methods display noticeably higher variance than the other methods as 

the amount of missing data becomes very large. However, the most dramatic errors in these two 

methods tend to be over-estimates rather the underestimates seen in the other five methods.  

Bias plots, shown in Figures 3.13 and 3.14, take the average relative error as a function of 

the missing proportion for all ρ in {0,
1

3
,

1

2
,

2

3
,

9

10
}. On average the five common methods 

overestimate the mean and underestimate the standard deviation, as expected. When ρ = 0, 

average relative error profiles for kNN (green) and RF (gray) are similar to that of AVG (red), 

though kNN does a little better with the standard deviation at higher levels of missingness. As 𝜌 

increases the profile for RF moves closer and closer towards that of MIN (yellow) in both 

parameters. kNN does the same in the mean parameter, but in the standard deviation it performs  
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Figure 3.13: Bias in mean parameter under Normal and LOD simulations. X-axis represents percentage of missing 
values. Y-axis is average relative error. 
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Figure 3.14: Bias in SD parameter under Normal and LOD simulations. X-axis represents percentage of missing 

values. Y-axis is average relative error. 
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better than other four common methods even when the correlation is as little as ρ = 
1

3
.  Average 

relative error for ML (purple) and RREG (blue) remain close to zero in both parameter up until 

missing rates of 80-90%. When the proportion of missing values reaches 80% and beyond, which 

in these simulations implies 6 or fewer observations, deviation from zero becomes noticeable 

with clear bias of over-estimation in the mean and under-estimation in the standard deviation. 

Though it is most evident at over 80% missing, the trend begins to emerge around 60%. Recall 

that ML is asymptotically unbiased and comes with no guarantee in small sample situations. 

These simulations suggest that noticeable bias begins for ML when the number of observed data 

points is around 10. RREG on the other hand remains unbiased in both parameter over the entire 

missing proportion range. Increasing variability does manifest for RREG, however, at around 

80%.  

An additional point, which can be extracted from the relative error plots, is that across all the 

seven methods used the relative error is much greater in the standard deviation than in the mean. 

On average increase in the mean is never more than 10% for any of the seven methods, but 

average decreases of 20% are rather common in the standard deviation. Such under estimates can 

have important consequences to outlier detection methods that rely on variance related measures 

to detect outliers. In the z-scores, the standard deviation is the denominator, meaning that a 

decrease of 50% would lead to a doubling of the z-score. Such decreases are common in the  

standard deviation for the five common methods when more than half of the 30 observations are 

missing. Such errors can lead to a large inflation of false positive rate. For example, in the 

normal distribution a value of 1.96 represents the upper 2.5% of the distribution. If one were to 

take this as a cutoff for identifying an outlier, then under estimates of 50 percent in the standard  

deviation would lead to any true z-score of 0.98 being classified as an outlier. Theoretically, such 
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an increase would lead to a false positive rate of 16.3%, more than six times the assumed rate. 

Technically, error will also be present in the mean parameter; however, error in the mean tends 

to be much lower, as a percentage of the true value, than error in the standard deviation. For 

example, at around 50% missing, average error in the mean is only 2-3% for the five common 

methods. So, it is reasonable to consider mainly the standard deviation when assessing impact on 

the z-score). An inflation of the false positive rate may be acceptable in certain situation. 

Screening tests for example may trade a higher false positive rate for increased power. However, 

in reality, there is a cost involved to investigating any subject flagged as a possible case. At some 

point the cost associated with an excessive number of false positives renders the test impractical. 

Finally, the last item considered here is the variation of the methods. Tables 3.6 and 3.7 show 

the bias for the seven methods at each proportion of missing values as well as the variance 

Table 3.6: Relative error averages and variances in Mean parameter from normal simulations 
with missing values left-censored. Correlation coefficient ρ=1/3. 
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associated with the proportion. For simplicity only, the values are shown for ρ = 
1

3
 as this level is 

consistent with the average correlation seen in the real metabolomic sets in Chapter 2. These 

tables confirm that while ML and RREG are more consistent on average with the sample 

parameters these methods also demonstrate more variability when missing proportion is above 

60%, and this variation is much greater when the proportion is above 80%. Variance of the 

estimates under the five common methods steadily increase as missing proportion increases, but 

tend to stay around or under 1 up to the most extreme missing proportion of 93.3%. The variance 

in ML and RREG approaches a value of 1 around 60% missing values and increase rapidly from 

then on. 

2.14.2.2. Large Sample Normal Simulations and LOD 

To examine the influence of sample size, the same simulation was repeated using n = 600. The 

number of samples censored is increased proportionally according to 20*j for j ϵ {1, …, 14}. 

Table 3.7: Relative error averages and variances in SD parameter from normal simulations with 
missing values left-censored. Correlation coefficient ρ = 1/3 
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This way the proportion of values missing is identical to the previous simulation, but the number 

of available samples remaining is twenty times greater. Maintaining the same missing proportion 

while also having a large sample size will help answer whether results are dependent on the 

proportion of data available or on the number of samples available. Given that normal-LOD 

simulations have already been explored, only the relative error and bias plots are shown for the 

large sample setting (Figures 3.15-18). The same y-axes ranges were kept for comparison, and 

the general trend remains the same for all methods. However, it is easy to see that variation in the 

estimates is greatly reduced. The bias plots show that both ML and RREG remain almost 

completely unbiased in both parameters throughout the entire range, implying that the number of 

available samples is more important that the percentage of available values. 

2.1.1.1.Small Sample Normal Simulations and LOD 

Analogous to the large sample simulation, a small simulation with 𝑛 = 10 is conducted next. 

Due to the number of available samples, the number of samples being censored was modified to j 

for j ϵ {1, …, 8}. For this simulation only, the bias plots are shown. These are shown in Figures 

3.19 and 3.20. There a couple notable results in this simulation. First is that in the mean 

parameter, bias is not found to be as extreme in any of the methods. This is because these 

simulations end when 8/10=80% of the values are missing as opposed to 28/30=93% in the 

simulations with n = 30. In those simulations ML was found to deteriorate quickly when more 

than 80% of the values were missing. The deterioration is stronger here, and more noticeably in 

the standard deviation with average under-estimates of 20% when 5 of 10 values are missing.  

Combined with the results of the large sample simulation, the accuracy of ML is tied most 

strongly to the number of available samples rather than proportion of missing values. RREG 

continues to be unbiased in both parameters.  However, the estimates produced by this method  
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Figure 3.15:  Relative error in mean under large sample Normal-LOD simulations. X axis in the proportion of 
missing values. Y axis represents percent change from uncensored sample value. Red line represents y=0. 
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Figure 3.16:  Relative error in mean under large sample Normal-LOD simulations. X axis in the proportion of 
missing values. Y axis represents percent change from uncensored sample value. Red line represents y=0. 
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Figure 3.17: Bias in mean parameter under large sample Normal-LOD simulations. X-axis represents percentage of 
missing values. Y-axis is average relative error. 
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Figure 3.18: Bias in standard deviation parameter under Normal and LOD simulations. X-axis represents percentage 
of missing values. Y-axis is average relative error. 
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Figure 3.19: Bias in mean parameter under small sample Normal-LOD simulations. X-axis represents percentage of 
missing values. Y-axis is average relative error. 
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Figure 3.20: Bias in standard deviation parameter under small sample Normal-LOD simulations. X-axis represents 
percentage of missing values. Y-axis is average relative error. 
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continue to show much higher variability than ML or any other method. 

2.1.1.1.Normal Simulations and MAR 

The following simulations explore sensitivity to the maximum likelihood and rankit 

regression assumptions. Here we begin by removing values at random instead of in a left 

censored fashion. Multivariate normal datasets are simulated and processed as before, with the 

only exception being that the 2*j values removed from Yj are chosen randomly rather than by 

being the 2*j lowest values. Results are displayed using the same plots and tables for error, 

relative error and average relative error as before. Figures 3.21 and 3.22 plot the error by the true 

parameter for normally distributed data with missing values removed at random. In evaluating of 

methods at estimating the mean, none of the methods display much of a pattern with regard to 

true parameter value. NONE, AVG, kNN and RF give estimates that cluster around the true level 

(red line). MIN overestimates the mean in the rare occasion that the values removed at random 

happen to favor the lowest values in the set. In general, though, underestimates are more 

common because MIN is a biased estimate of a randomly remove value and is best suited to the 

left-censored scenario. Over estimates occur in the rare instances that the values removed 

happened to be among the lowest in the variable, in which case minimum imputation is 

appropriate. But in most cases, replacing values removed at random with the observed minimum 

will result in a lower value for the imputed observation, and thus an under estimate.  

When applied to simulated data sets with observations MAR, kNN shows little association 

under low correlation, but as correlation increases, true mean values tend to be predicted with a 

mean above 1 while true mean values below 1 tend to be predicted being below 1. Under low 

correlation RF again behaves very similarly to NONE and AVG, but as correlation increase its 

profile becomes more like kNN. RREG and ML have similar profiles to MIN, generally 

underestimating the mean, though in a more extreme manner. The smallest estimate produced by  
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Figure 3.21: Error in mean under Normal and MAR simulations. Columns represent pairwise correlation between 
variables in data set. Red line represents y=x. 
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Figure 3.22: Error in SD under Normal and LOD simulations. Columns represent pairwise correlation between 
variables in data set. Red line represents y=x. 
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MIN was above 0.85, while ML produces estimates below 0.4 and RREG gives estimates below 

0.2.  

In the standard deviation, NONE over and underestimates that appear randomly distributed 

around the true value. AVG always produces lower estimates of the standard deviation, again the 

further result of imputing with a static value that is equal to the sample average and therefore 

only serves to depress the observable variation in the dataset. KNN and RF again match very 

well with AVG under low correlation. MIN, unlike AVG, produces over and under estimates of 

the standard deviation routinely. While this too imputes with a static value, using the observed 

minimum can add variation to the imputed variable as a value that is on average equal to the 

mean is being removed and replaced with a relatively extreme (and low) value.  

As the correlation increases RF continues to perform about the same whereas kNN 

demonstrates a clear linear fit between its estimated standard deviation and the true standard 

deviation. Meanwhile both RREG and ML continue to display a more extreme form of minimum 

imputation. Both methods will over and under estimate the standard deviation, but frequently 

produce extreme over estimates with values of .2 for ML and 0.3 for RREG. 

Next, Figures 3.23-26 show the relative error and average relative error against the 

proportion of missing values. NONE, AVG, kNN and RF indicate they are unbiased estimators 

of the sample mean while MIN, RREG and ML tend to underestimate. In the standard deviation, 

NONE appears unbiased while AVG increasingly underestimates the variation in the data as the 

proportion of missing values increases. MIN tends to overestimate, but as the proportion of 

missing values increases and resulting variable becomes more and more imputed the standard 

deviation begins to lower. At higher amounts of missing values MIN underestimates as a result. 

When there is no correlation between the variables, kNN and RF behave much like AVG, but  
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Figure 3.23: Relative error in mean under Normal and MAR simulations. X axis in the proportion of missing values. 
Y axis represents percent change from uncensored sample value. Red line represents y=0. 
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Figure 3.24: Relative error in SD under Normal and MAR simulations. X-axis in the proportion of missing values. 
Y-axis represents percent change from uncensored sample value. Red line represents y=0. 
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Figure 3.25: Bias in mean parameter under Normal and MAR simulations. X-axis represents percentage of 
missing values. Y-axis is average relative error. 
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Figure 3.26: Bias in SD parameter under Normal and MAR simulations. X-axis represents percentage of missing 
values. Y-axis is average relative error. 
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become less biased as ρ increases. KNN appears roughly unbiased at ρ = 0.9 and the estimates 

are generally contained within 20% of the true sample value. Though through RF estimates 

improves over MEAN imputation by becoming less biased at correlation increases, the method 

never becomes completely unbiased even at ρ = 0.9. Contrasting with the others methods, RREG 

and ML are biased upwards in the standard deviation and do so in an extreme fashion consistent 

with MAR results thus far. Overestimates of 100-200% are not uncommon when the proportion 

of missing values is around 50%. The other methods are generally contained to 50-60% for the 

same amount of missing values. The final items in the assessment of normal data with values 

missing at random are Tables 3.8 and 3.9 showing the average relative error at each proportion of 

missing for all seven methods when the correlation is one third. These tables reveal a picture that 

is reversed from left-censored missingness in the mean parameter with the five common 

imputation approaches being nearly unbiased while the two proposed methods are increasingly 

Table 3.8: Relative error averages and variances in Mean parameter from normal simulations. 
Missing values are MAR and ρ = 1/3. 
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biased towards underestimates. However, as with left-censored missingness, this bias, as a 

proportion of the sample mean, does remain relatively small at less than 10% for moderate to 

intermediate amounts of missing values.  

With regard to the standard deviation, none of the methods are revealed to be unbiased as the 

five common methods underestimate the standard deviation on average while both proposed 

methods overestimate. This is not entirely unexpected for AVG and MIN, due to the nature of 

single imputation, nor for KNN and RF which under correlation of 0.33 have thus far functioned 

similarly to AVG. It is somewhat surprising that NONE underestimates with increasing 

magnitude as the amount of missing values increases since the remaining values reflect the true 

population. As such, one might expect this method to be an unbiased estimator of both the mean  

and the standard deviation when values are removed at random. The reason for this is the 

distribution of the sample standard deviation follows a scaled chi-square distribution. 

Table 3.9: Relative error averages and variances in SD parameter from normal simulations.  
Missing values are MAR and ρ = 1/3. 
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Asymptotically this distribution approaches a normal, by which the symmetry of the distribution 

allows the relative error to equally balance out. However, as the number of missing values 

increases, the chi-square creates a more and more right skewed data. The asymmetry causes the 

relative error to be below zero on average. Aside from this issue, NONE arguably shows the best 

performance when missing values are MAR, having the least average relative error, although the 

variance becomes quite large compared to the other methods for moderate to large amounts of 

missing values. RREG and ML show the worst performance, overestimating the standard 

deviation by 10% when just two values are removed. Bias in these two methods are routinely 2 

to 10 times higher than the five common methods and variation of these estimators is enormous 

in comparison. Neither of the two proposed methods, which assume left-censored missing 

values, handle the MAR data even when the distributional assumption is satisfied. Mistakenly 

applying these left-censored techniques to data which violate this missing assumption can lead to 

poor estimates. The damage is most apparent in the standard deviation where over-estimates of 

50% or more become common for even moderate amounts of missing data. 

Conclusions from the MAR simulation is that when values are missing at random NONE 

appears to be the best option overall, though it will systematically underestimate the standard 

deviation when the number of observed values gets very small and the variance of this estimate 

becomes quite large when more than 50% of the data is missing. K nearest neighbors is also 

effective when the variables in the dataset are moderately correlated, when ρ ≥ 0.33 or higher, 

but will still have issues underestimating the standard deviation once the proportion of missing 

values nears 50%. In these simulations, random forest did not perform any better than kNN and 

for the most part is very similar to imputation with the observed average except when the 

correlation is very high, ρ = 0.9.  
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2.1.1.2. Log-Normal 

 The first examination of non-normality 

involves the log-normal distribution. The main 

purpose of using a log-normal distribution is to 

examine the impact of violation in normality due to 

right-skew. Since metabolomic datasets often 

contain extreme values, right skewness is a 

reasonable possibility. Further, the results of 

Chapter 2 showed that untransformed ion counts 

are frequently right skewed. Performance of the missing value methods in log-normal data will 

elaborate on the potential consequences of not log transforming the data prior to parameter 

estimation. Datasets were constructed in the same fashion as the normal simulation scheme, but 

then exponentiated to produce a log-normal dataset: 

YLN
 ρ  = exp Zn×m*Chol Ʃρ +µ  

The untransformed values µj = 2.65 and σj = 0.3 for j ϵ {1, …, 114}. are used as this produces a 

variable with transformed mean: 

µLN, i = e 2.65+
0.09

2 =14.8 

and is similar to that of the normal simulations. The standard deviation was chosen as this 

produces a skewness of: 

𝛾 LN,i =  (e0.09 + 2) e0.09  −  1  = 0.94 

This makes for a moderately right skewed variable as indicated by Figure 3.27. The transformed 

standard deviation however is quite different at a value of: 

Figure 3.27: Probability density function of 
variables used for lognormal simulation. 
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σLN, i = (e0.36  −  1)e2*2.65 + 0.36 = 5.2. 

However, it is necessary to accept a larger standard deviation than that used in the normal 

simulations in order to get the skewness near 1 and maintain a mean around 15.  

Results of the log-normal simulations are presented in the same manner as previous simulation 

results. Figures 3.28 and 3.29 show the estimated parameter against the uncensored sample 

values. Patterns for the mean parameter are rather like those of the normal simulation when 

missing values are left-censored 

. Mean estimates from NONE and AVG almost appear random except that neither, naturally, 

ever underestimates from the true uncensored value. MIN somewhat tracks with the true value, 

predicting levels above .5 well but performance degrades the lower the true value is and is 

noticeably worse when the true level drops below .2. Recall that under the LOD mechanism, 

lower levels of the true parameter are associated with larger amounts of missing values, while 

higher levels are associated with lower amounts of missing values. RF is very similar to AVG 

(and NONE) when variable correlation is low, and the pattern moves closer to that of MIN as the 

correlation increases. Similarly, kNN estimates are also very similar to MIN and AVG under low 

correlation but, unlike RF, estimation improves as ρ increases. The improvement brought to kNN 

by higher correlation doesn’t produce a patter the same as MIN though, as kNN begins to show 

unbiasedness around .2 or less.  

ML and RREG are shown to underestimate and overestimate at all levels of the true 

parameter, though of course the accuracy is better at higher levels of the true parameter. While 

this general pattern is consistent with simulations of normally distributed, left-censored data, the 

range of the estimates for both parameters is much greater when log normal data is used. In the 

normal, left censored simulation the mean estimates were always above 0.75, whereas here the  
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Figure 3.28: Error in mean under Log-normal simulations. X-axis is uncensored sample mean. Y-axis is predicted 
mean. Columns represent pairwise correlation between variables in data set. Red line represents y=x. 
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Figure 3.29: Error in SD under Log-normal simulations. X-axis is uncensored sample SD. Y-axis is predicted SD. 
Columns represent pairwise correlation between variables in data set. Red line represents y = x. 
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lowest estimates for ML are below 0 and for RREG are below -0.5. The wider range of estimates 

suggests lower accuracy for log-normal data.  

Patterns for the standard deviation are quite different. NONE shows evidence of being 

unbiased but suffers more variability and the occurrence of large outliers compared to the other 

traditional methods. RREG and ML show similar patterns to each other though with a greater 

degree of variability as estimates regularly reach up to .7 while most others are confined to 

below .45. This suggests, as seen in the mean, a lower level of accuracy for the two parametric 

methods. Profiles for AVG, MIN, KNN and RF closely resemble each other indicating a similar 

 level of accuracy that appears better than the other three methods. Once again, the value of 𝜌 

does not appear to be RF as profiles of standard deviation estimates by this method remain 

largely unchanged from ρ = 0 up to ρ = 0.9. The standard deviations calculated using kNN to fill 

in missing values do change as 𝜌 increases, becoming less biased for lower values of the 

standard deviation.  

Figures 3.30 and 3.31 show the relative error in the estimation of mean and standard 

deviation respectively as a proportion of missing values. Profiles in the mean parameter for 

NONE, AVG, MIN, KNN and RF are rather consistent, showing over estimates that increase as 

the proportion of missing values increases. MIN has less error at the higher levels, peaking at 

around 2.2 times the uncensored mean level while AVG and NONE peak around 2.5 times. 

Estimates from kNN show slight improvement as 𝜌 increases, whereas RF does not improve in 

any meaningful way. ML and RREG produce under and over estimates of both parameters but 

are prone to extremely low mean estimates. The magnitude of these underestimates of the mean 

are, once again, most acute in RREG. There is evidence that underestimates of the mean are 

favored as the amount of missing values increases, and the magnitude of the relative error is  
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Figure 3.30: Relative error in mean under Log-normal simulations. X axis in the proportion of missing values. Y 
axis represents percent change from uncensored sample value. Red line represents y=0. 
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Figure 3.31: Relative error in SD under Log-normal simulations. X axis in the proportion of missing values. Y axis 
represents percent change from uncensored sample value. Red line represents y = 0. 
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extremely large when the proportion of missing values is above 80%.  

Some remarkable differences between the five traditional methods are exhibited in the 

profiles of standard deviation estimates. NONE generally underestimates the standard deviation 

but extreme overestimates begin to appear around 40% missing and increase in frequency and 

magnitude as the proportion of missing values increases. AVG and MIN are rather similar, 

attributed to the right-skew pushing the observed average and minimum closer together. RF 

continues to track with both AVG and MIN with no meaningful improvement seen with 

increasing correlation. KNN has the most unusual pattern. When the correlation is low kNN  

underestimates, though not to the same degree as AVG / MIN / RF. As ρ increases, the bias in 

kNN standard deviation estimates decrease, showing relative error to shrink substantially from ρ 

= 0 to ρ = 0.9. However, as the proportion of missing values rises above 50%, kNN tends to 

overestimate the standard deviation. At ρ = 0.9, kNN appears roughly unbiased for low amounts 

of missing values, biased towards lower values at intermediate to moderate levels of missing 

values, and then biased toward overestimates for high amounts of missing values. RREG and ML 

standard deviation estimates remain similar those of the normal, left-censored simulation with 

the exception of being even more variable and producing even larger overestimates, particularly 

when the missing proportion is above 80%.  

Next, the average relative error plots, given in Figures 3.32 and 3.33, show that on average 

the five common methods (NONE through RF) overestimate the mean parameter with a 

magnitude that is greater magnitude than the two proposed methods. NONE and AVG have 

about 5-10% more bias than MIN. In a familiar theme KNN and RF fluctuate, being similar to 

NONE and AVG when the correlation between variables is zero and moving closer to MIN as 

correlation increases.  ML and RREG are biased towards lower estimates of the mean, though as  
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Figure 3.32: Bias in mean parameter under Log-Normal simulations. X-axis represents percentage of missing values. 
Y-axis is average relative error. 
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Figure 3.33: Bias in SD parameter under Log-normal simulations. X-axis represents percentage of missing values. 
Y-axis is average relative error. 
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a percentage the average error is generally contained to around 20% even as the percentage of 

missing values exceeds 90%. ML fairs better than RREG at high levels of missing values. The 

other five methods reach 20% error when the amount of missing values is between 50% to 70% 

and increase rapidly thereafter.  

For the standard deviation, average relative error is similar in magnitude for all seven 

methods. RREG and ML are biased upwards while the five common methods are biased 

downward. NONE shows a little less bias compared to AVG and MIN. RF again matches closely 

to AVG and MIN, as has been typically observed in these simulations. Performance of KNN is 

similar to AVG and NONE at low levels of missing values but deviates as the missing proportion 

increases from 50% to 100%. When correlation is low this deviation is minor but as the 

correlation increases KNN deviates more strongly towards zero as the proportion of missing 

values increase. In fact, when ρ > 0, KNN fully reverses to a bias of overestimates between 80% 

and 100% missing values. Similar to the mean parameter, ML outperforms RREG in the standard 

deviation as well. 

Finally, Tables 3.10 and 3.11 show the average relative error and variance for the seven 

methods when ρ = 0.33. These show that while RREG and ML are less biased estimators of both 

sample parameters than the other five methods, but that once again the variability in these 

methods becomes extremely high as the proportion of missing values increases. Even for 40% 

missing values these two methods have variance that is 3-4 times higher in the mean and 2-4 

times higher in the standard deviation.  The simulation results for log-normal data reveal that 

none of the seven methods to be unbiased in either parameter when variables are left-skewed. As 

with the previous normal simulations, relative errors in the mean parameter tend to be less than  
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Table 3.10: Relative error averages and variances in Mean parameter from log-normal 
simulations. Missing values are left-censored and ρ=1/3. 

Table 3.11: Relative error averages and variances in SD parameter from log-normal simulations. 
Missing values are left-censored and ρ=1/3. 
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those in the standard deviation, but the overall magnitudes are much more similar. Both of the 

proposed methods are less biased on average than the five common methods; however, once 

again the variability in these methods is much higher, leading to a degree of unreliability.  

2.1.1.3.Uniform Simulations  

The second attempt to examine non-normality involves the Uniform(14,16). As with the 

simulation of log-normal distributions, missing values are removed in a left-censored fashion. 

Results are shown in Figures 3.34-39. Error plots show the five common methods to have a 

similar pattern in both parameters to those of the normal simulation when missing values are also 

left-censored. One minor difference is that here NONE never overestimates the standard 

deviation. Both proposed methods show notable differences compared the simulation results 

using the normal distribution with left-censored missingness. Both proposed methods almost 

exclusively overestimate the mean parameter and neither produces the severely overestimated 

standard deviations seen in the normal, left-censored simulations.  

As with data simulated using other distributions, the range of both parameter estimates from 

RREG and ML compared to the others suggests that these methods are more variable. In the 

relative error plots, the mean is consistently over-estimated by the five common methods and at a 

similar percentage, which ranges from 2% at low to intermediate proportions of missing values 

up to 8% at high levels of missing values. While RREG and ML both produce estimates with 

similar errors, these methods also produce estimates that are close to the original, uncensored 

sample mean. One unusual observation, compared to the previous simulations, is the variation in 

RREG estimates are comparable that of ML. All previous simulations experiments have shown 

the opposite. In the standard deviation, NONE, AVG and MIN show similar patterns of 

underestimation in which the bias consistently increases as the percentage of missing values  
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Figure 3.34: Error in mean under Uniform simulations. X-axis is uncensored sample mean. Y-axis is predicted 
mean. Columns represent pairwise correlation between variables in data set. Red line represents y=x. 
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Figure 3.35: Error in SD under Normal and MAR simulations. X-axis is uncensored sample SD. Y-axis is predicted 
SD. Columns represent pairwise correlation between variables in data set. Red line represents y=x. 



185 
 

  

Figure 3.36: Relative error in mean under Uniform simulations. X axis in the proportion of missing values. Y axis 
represents percent change from uncensored sample value. Red line represents y=0. 
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Figure 3.37: Relative error in SD under Uniform simulations. X axis in the proportion of missing values. Y axis 
represents percent change from uncensored sample value. Red line represents y=0. 
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Figure 3.38: Bias in mean parameter under Uniform simulations. X-axis represents percentage of missing values. Y-
axis is average relative error. 
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Figure 3.39: Bias in SD parameter under Log-normal simulations. X-axis represents percentage of missing values. 
Y-axis is average relative error. 
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increases. RF is virtually indistinguishable from NONE, AVG and MIN even as the correlation 

between variables in the dataset increases. KNN on the other hand once again improves 

substantially in terms of bias as this correlation increases. RREG and ML continue to over and 

under estimates in both parameters, but, like the other five methods, the greatest magnitudes of 

the error are overestimates of the mean and in underestimates of the standard deviation. The 

average relative error plots are interesting as roughly all seven methods are shown to be quite 

similar in both parameters. This is particularly true with the mean parameter as all methods 

steadily increase from roughly unbiased when the proportion of missing values is close to 0 to 

overestimates of about 6% as the proportion of missing values approaches 1. MIN tends to be a 

little bit better than AVG / NONE while RF and KNN are closer to AVG/NONE when the 

correlation is low and migrate towards MIN as the correlation improves. RREG and ML do a 

little bit better than the other methods, most notably when the proportion of missing values is 

between 50-70%, but the performance of all methods in the mean parameter is fairly close 

throughout.  

Average profiles in the standard deviation are also similar across the methods. All seven 

methods are biased towards underestimation and, with the exception of KNN, the profiles move 

from near unbiased to standard deviations that are basically zero as the proportion of missing 

values approaches 1. Variance estimates approaching zero is expected for the single imputation 

methods, but it is notable that the phenomenon also occurs in both parametric methods. AVG has 

the worst bias followed closely by RF, which is generally different by only a few percentage 

even when ρ = .9. NONE and MIN demonstrate very similar performance and do 10-20  

percentage points better than AVG and RF when the missing proportion is between 20% and 

80%.  RREG and ML have less bias than the other five methods up to missing proportions of 60 
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to 70%. Between 60-70% missing values, kNN becomes the least biased and bias actually 

decreases for this method as the missing proportion increases further.  

The final item for the uniform simulations are Tables 3.12 and 3.13 giving the average 

relative error and associated variance of the seven methods in both parameters when the between 

correlation is 0.33. Estimates of the mean with RREG and ML are about 1-2% better than the 

other methods on average while the variance of their estimates is anywhere from two to ten times 

higher than other methods. Both the bias and variance increase steadily in all methods as the 

proportion of missing values increases. Table 3.13 indicates that RREG and ML have anywhere  

from a one-quarter to one-third the bias that NONE, AVG, MIN and RF do for the most part. 

Table 3.12: Relative error averages and variances in Mean parameter from uniform simulations. 
Missing values are left-censored and ρ=1/3. 
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However, bias for these methods still reaches about 20% when around half of the values are 

missing. ML also degrades more quickly than RREG as the missing proportion increases. kNN 

becomes biased very quickly, underestimating the standard deviation parameter by more than 

20% with only 20% of the  values are missing. But, the bias in the standard deviation parameter 

levels off quickly at just under -40 and becomes less biases above 70% missing values while 

RREG and ML continued to degrade. 

2.1.2. Conclusions 

These simulations show the five common methods consistently underestimate the standard 

deviation and with magnitude that, relative to the original parameter, is much greater than the 

Table 3.13: Relative error averages and variances in SD parameter from uniform simulations. 
Missing values are left-censored and ρ=1/3. 
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error in the mean parameter. This result is not surprising for the single imputation methods AVG 

and MIN, which underestimate in every condition considered here, since the replacement of 

missing values with a constant value naturally decreases variability in the imputed feature. No 

imputation of the data at all is arguably preferable to these methods for this reason, producing 

less biased estimates of standard deviation and having a similar amount of relative bias in the 

mean.  

In every simulation experiment, RF estimates in both parameters proved to be little better 

than average imputation except when inter-variable correlation was the very high (ρ = 0.9) and 

missing values were left-censored, in which case average relative errors in this method were 

closer those of minimuvm imputation. The strong resemblance to average imputation implies 

that the algorithm employed by random forest imputation has little effect except when the 

correlation between the missing variable and the neighbors is very high. In the left-censored 

case, close correspondence to MIN further signals that RF correctly associates missing values 

with low values; however, the imputed values estimated by RF remain at a near constant value. 

The performance of RF in these simulations is surprising given the success of the method in 

other studies [22, 65]. The main difference between these simulations and those studies is that 

here the dataset consists of a single, homogenous population. Datasets examined by others 

involved multiple groups which were found to be statistically significant by hypothesis testing or 

separate by the first two components in a PCA analysis. Such strong group differences are likely 

to enhance the correlation of the data set as within group samples are more similar than between 

group samples. The implication of this is that random forest is effective at picking out averages 

between different populations but does not do well at discriminating between individual values 

within a single population.  
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The best performer of the five common methods is kNN. Similar to random forest, kNN 

always overestimates the mean, being close to average imputation when ρ = 0 and close to 

minimum imputation when ρ = 0.9. However, kNN preserved the standard deviation much better 

even under “weak” inter-variable correlation of ρ =  0.33. This performance in weakly correlated 

data suggests kNN does better than RF at producing an imputed variable whose distribution is 

closer to that of the censored variables.  

Both proposed methods do well when values are left-censored. When the distribution is 

normal, maximum likelihood and rankit regression are nearly unbiased for both the mean and 

standard deviations up to a missing proportion of 80%. In the leptokurtic setting, represented 

here by the uniform distribution, the methods exhibited bias in both parameters, but the 

magnitude of this bias was less than the other methods. Finally, under a log-normal distribution, 

which here was both left skewed and platykurtic, both proposed methods had less bias, in terms 

of magnitude, in the mean while similar bias in the standard deviation.  

It is notable that in the log-normal case maximum likelihood overestimates the standard 

deviation while the other methods underestimated this parameter. The one condition in which 

ML and RREG were shown to struggle was when values were removed randomly rather than 

from the lower tail. Overestimates of the standard deviation by ML and RREG were more severe 

than the underestimates seen in the other methods. This suggests that ML and RREG are more 

sensitive to LOD assumption than to the normality assumption. Another notable observation for 

both proposed methods is that they consistently show higher variance in their estimates than the 

other methods which could lead to a loss of confidence in the methods. Though error estimates 

may be close to zero on average, if the errors vary widely from data set to data set clinicians may 

not feel comfortable relying on the patient z-score results. Confidence is needed for each 



194 
 

individual instrument run. As the variance of both parametric methods degrades quickly at high 

proportions of missingness, it seems wise to restrict estimation to only those features with a 

maximum of 70% or 80% missing. 

2.2. Metabolomic Datasets 

2.2.1.  Data Summary 

Metabolomic datasets utilized in this paper consist of the three same sets used in Chapter 2: 

plasma (n = 31), cerebral spinal fluid (CSF; n = 31) and urine (n = 40). Relevant characteristics 

to these experiments are summarized in Table 3.14. The proportion of metabolites containing 

MVs varies between 46% and 60%, fitting with the authors’ previous experience that, as a 

general rule of thumb, roughly half the metabolites have some level of missing values while the 

other half are completely observed. 

2.2.2. Evaluation 

To assess performance of the considered methods in the three metabolomic sets, all 

metabolites with missing values are first discarded. Then, known values from the remaining 

metabolites are removed in a left-censored fashion. Each method is then applied to the artificially 

censored dataset, from which the error between the original sample parameter and the estimated 

value is found. Continuing with the simulated work, “full” datasets are created in order to 

provide data to kNN and Random Forest for which to fill in missing values.  Such mimic datasets 

Table 3.14: Summary of metabolomic data sets indicating the number of samples, metabolites 
and amount of missing data per set. 
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are created by taking those metabolites that are fully observed and randomly selecting half 

(rounding down) to be censored. For each one of the selected metabolites the lowest k values are 

removed with k ~ U(1, n – 2). This process was repeated 500 times for each matrix.  

Following results from Chapter 2, metabolites are log transformed in order to help induce 

normality. Following censoring, metabolites are also median scaled in order to maintain 

consistency with the simulations. The complete steps in order are as follows beginning with fully 

observed data, (1) log transform, (2) randomly sample metabolites for censoring, (3) metabolites 

scaled based on median of “observed” values, (4) estimated parameter value and compare to 

uncensored parameter, (5) repeat steps 2 thru 4 five hundred times. 

To illustrate the value of variable scaling for kNN, Figures 3.40-43 show the estimated 

parameters and their percent bias versus the corresponding sample values in the seven methods. 

There is a pronounced association between error and average metabolite abundance level under 

kNN. The effect is subtle in the mean but more pronounced in the standard deviation. 

Metabolites with high mean values tend to be under predicted in the mean while metabolites with 

lower mean values tend to be over-predicted in the standard deviation. Association between 

performance and metabolite abundance is a result of there being fewer metabolites at the extreme 

margins. For example, in the plasma there are only five metabolites with a mean log abundance 

level above 22. Thus, when one of these metabolites has missing values some of the neighbors 

must be of lower average ion abundance, causing these high abundance metabolites to be 

imputed with lower abundant ones and thus much lower values, dragging down the imputed  

average.  Conversely, the lowest abundant metabolites are forced to rely on metabolites with 

larger ion counts to replace their missing values, but since kNN generally over imputes missing 

values the effect is indistinguishable. A similar problem is seen in the standard deviation, where,  
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Figure 3.40: Estimated mean by true mean after natural log transformation and no further scaling of the 
metabolites (Plasma). 

Figure 3.41: Percent bias in mean parameter by average log abundance without median scaling. kNN under 
predicts highest abundant metabolites due to neighbors generally being of lower abundance. (Plasma) 
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Figure 3.42: Estimated standard deviation by true standard deviation after natural log transformation and no 
further scaling of the metabolites. Plasma data set. 

Figure 3.43: Percent bias in standard deviation parameter by log standard deviation without median scaling. 
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due to the different scaling, it is relatively easy to manufacture a 2- to 3-fold increase. However, 

the other methods are shown to be consistent across the range of the uncensored parameter 

values and, as seen in the subsequent results, variable scaling helps to remove this phenomenon 

in kNN as well.  

The methods considered will be evaluated by examining the error, as described in section 

3.6, between the estimated mean and standard deviation versus their original, uncensored 

parameter values. The intention of viewing the results in this manner is to address the concept of 

bias, which relates the expected value of an estimator against the parameter it is trying to 

estimate. However, direct comparison to the population level mean and standard deviation for  

the metabolites is challenging for two reasons. First, knowledge of metabolite behavior at the 

population level may not be readily available. The Human Metabolome Database [42] does 

provide references to normal levels for many metabolites, but when performing a global profile 

of a sample there is no guarantee that out of the many hundreds detected a reference range will 

be available for all metabolites given the patient demographics and sample type being profiled. 

Second, the semi-quantitative nature of the instrumentation implies that the ion counts in any 

batch do not directly infer a concentration from which population knowledge can be translated. 

Use of the dataset leads to comparisons with the fully observed sample mean and standard 

deviation, which are themselves unbiased estimators of their respective population values. How 

the methods compare to these statistics thus provides some inference about bias while also 

informing how well these methods compared to the fully observed data.  

Lastly, all elements of data pre-processing and processing are worthy candidates for 

influencing the results of data analysis. However, these items work is beyond the scope of this 

dissertation. Instead, we use the best available practice, which in the case of urine involves 
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normalization [100, 102-104]. While plasma and CSF are homeostatic, metabolite concentrations 

in urine are known to be closely associated with creatinine levels and as a result creatinine is 

frequently used to adjust for dilution effects and was previously performed in this data [3]. A 

creatinine factor was created by dividing each sample’s creatinine level by the overall average 

creatinine level and then normalizing by this factor prior to log transformation. This way the 

overall ion counts of the features have roughly the same abundance level after normalization as 

they did before. Maintaining the original abundance scale in the urine prior to log transformation 

retains consistency with the processing steps in the other matrices. 

2.2.3.  Results 

Results of NONE estimating the Mean parameter in one simulation from the plasma dataset 

are shown in Figure 3.44. Each point represents a metabolite selected for censoring with the x-

axis being the proportion of samples removed, kj n⁄ , an  d the y-axis being the relative error. 

Points below the line y = 0 indicate estimated mean for that metabolite was more than the true 
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Figure 3.44: Percent bias under NONE from one image of plasma. Each point represents a biochemical selected for 
censoring in the image. 
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mean while positive values indicate the estimate was lower. For this particular method and 

parameter, all the points are negative as the mean of the observed values will always be more 

than uncensored mean when values are removed from below. As expected, error increases as the 

proportion of values removed increases, though clearly some metabolites are more impacted than 

others. When comparing all seven methods it is most convenient to examine the relative error as 

a function of kj n⁄ , similar to the simulated result average bias plots using in the simulations. 

Performance was remarkably similar across the different datasets. The two parameters are first  

2.2.3.1. Mean Parameter 

Figures 3.45-53 displays the error, relative error and average relative error plots, just as the 

simulations, in the mean parameter for all seven methods across the three datasets. These figures 

are rather consistent across the three matrices, indicating that the five common methods 

consistently overestimate the mean parameter while both proposed approaches are less biased. 

The pattern is similar to those of the normal simulation when missing values are left-censored. 

One exception is that the two proposed methods sometimes demonstrate a notable bias towards 

over or under estimates across the three sets. The magnitude of the errors is consistent with the 

normal, left censored simulations though the relative percentage does appear a bit higher in 

urine.  

Random Forest and kNN track very closely to NONE/AVG indicating that, as expected, the 

low correlation in chemo-centric sets is not sufficient to strengthen these methods very much. A 

series of splinal plots are shown in Figures 3.54-56 representing a smoothed curve for relative 

error as function of kj n⁄ .  The solid black line gives the smooth spline of the average, while the 

dotted bands are the 1st and 3rd quartiles, essentially represent Inner Quartile Range as a function 

of x. Average bias most commonly manifests as over-estimates of the true value. All five of the  
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Figure 3.46: Percent error of mean parameter in Plasma. Each point represents an individual biochemical selected 
for censoring. Red line represents y=0. 

Figure 3.45: Estimated by uncensored mean in Plasma. Each point represents an individual biochemical selected for 
censoring. Red line represents y = x. 
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Figure 3.47: Percent error of mean parameter in CSF. Each point represents an individual biochemical 
selected for censoring. Red line represents y=0. 

Figure 3.48: Estimated by uncensored mean in CSF. Each point represents an individual biochemical selected for 
censoring. Red line represents y=x. 
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Figure 3.50: Estimated by uncensored mean in Urine. individual biochemical selected for censoring. Red line 

indicates y=x. 

Figure 3.49: Percent error of mean parameter in Urine. Each point represents an individual biochemical selected for 
censoring. Red line represents y=0. 
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Figure 3.51: Average relative error of missing data methods for mean parameter in Plasma. 
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Figure 3.52: Percent bias of missing data methods for mean parameter in CSF. 
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Figure 3.53: Percent bias of missing data methods for mean parameter in Urine. 
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Figure 3.54: Trend plot for percent bias of mean parameter in Plasma. Trend lines are based on splinal fits. Solid 
line is the average while dotted are first and third quartiles. Red line indicates no error. 

Figure 3.55: Trend plot for percent bias of mean parameter in Plasma. Trend lines are based on splinal fits. Solid 
line is the average while dotted are first and third quartiles. 



208 
 

common metabolomics estimators have similar patterns, with the amount of bias steadily 

increasing as the amount of censored data increases. Both kNN and RF have strong similarity 

with the single imputation methods implying the observed data is not very useful at informing on 

the unobserved portions. In comparison both parametric methods were found to be unbiased up 

until the proportion of missing values reaches 80%. However, for all methods the bias is 

generally small, being no more than 2-5% for even moderate amounts of missing data. Variance 

is also notable. These plots make clear another similarity between the simulated output and the  

real data, namely the increased variability of the proposed methods as the proportion of 

missingness increases. The IQR bands dramatically increase as the missing proportion reaches 

80%, which in these datasets implies 6 or fewer observations, and this behavior is strongest for 

RREG. 

Figure 3.56: Trend plot of percent bias of mean parameter in Urine. Trend lines are based on splinal fits. Solid line 
is the average while dotted are first and third quartiles. 
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2.2.3.2. Standard Deviation Parameter 

Plots for the standard deviation are given in Figures 3.57-68. As with the mean parameter, the 

results are very similar across the three matrices and are consistent with the normal, left-censored 

simulations. The five methods consistently underestimate the true variation in the metabolites. 

AVG, MIN and RF appear as the most biased with magnitudes reaching around 50% for missing 

proportions between 30-60%, and the error nears 80% when the proportion of missing values 

exceeds 80%. kNN demonstrates slightly better behavior with higher levels of missing values, 

indicating the neighbor approach can be useful at extracting structural information in extreme 

circumstances, but overall the standard deviation has been significantly decreased. Of the 

common metabolomics approaches, NONE yields as the least bias. In contrast to the common 

methods, both ML and RREG are practically unbiased throughout. ML is roughly unbiased on 

average up through 80% missing values, at which point it begins to underestimate the standard 

deviation. Conversely, RREG begins to show bias towards over estimate beyond 50% missing 

values in the plasma and CSF. However, in urine this RREG shows less bias than ML throughout 

the range of missing values. 

2.3. Summary 

This paper demonstrates the usefulness of parametric approaches to handle missing data in 

metabolomics, specifically a Gaussian model for the metabolites. Following a natural log-

transformation, maximum likelihood and rankit regression are shown to produce estimates of 

population parameters that are, for all practical purposes, unbiased up to even large proportions 

of MVs. The ability to produce accurate population estimates in the presence of missing values  

has direct value for diagnostic screening, including the identification of IEMs. Additionally, 

these results were observed in three different types of human material following a log  
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Figure 3.57: Estimated by uncensored SD in Plasma. Each point represents an individual biochemical selected for 
censoring. Red line represents y=x. 

Figure 3.58: Percent error of SD parameter in Plasma. Each point represents an individual biochemical selected for 
censoring. Red line represents y=0. 
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Figure 3.59: Estimated by uncensored SD in CSF. Each point represents an individual biochemical selected for 
censoring. Red line represents y = x. 

Figure 3.60: Percent error of SD parameter in CSF. Each point represents an individual biochemical selected for 
censoring. Red line represents y=0. 
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Figure 3.62: Percent error of SD parameter in Urine. Each point represents an individual biochemical selected for 
censoring. Red line represents y=0. 

Figure 3.61: Estimated by uncensored SD in Urine. Each point represents an individual biochemical selected for 
censoring. Red line represents y = x. 
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Figure 3.63: Percent bias of missing data methods for SD parameter in Plasma. 
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Figure 3.64: Percent bias of missing data methods for SD parameter in CSF. 
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Figure 3.65: Percent bias of missing data methods for SD parameter in Urine. 
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Figure 3.66: Trend plot for percent bias of SD parameter in Plasma. Trend lines are based on splinal fits. Solid line 
is the average while dotted are first and third quartiles. 

Figure 3.67: Trend plot for percent bias of SD parameter in Plasma. Trend lines are based on splinal fits. Solid line 
is the average while dotted are first and third quartiles. 
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likely to have a severe impact but a 50% reduction in the standard deviation would double 

transformation, implying metabolites derived from plasma, CSF or urine samples of human 

subjects can be reasonably regarded as log-normal.  

Among data processing steps the log transformation is straightforward as it does not require 

estimating any tuning parameters, such as λ for Box-Cox or δ and α for the generalized log 

(Chapter 2.3). The log, therefore, is invariant to the removal or addition of any samples or ion-

features. Relative comparisons between the two mean and standard deviation indicate that 

imputation is most impactful on the variance of the metabolites. This is highly relevant to z-

scores, as a 5-10% change in the mean, which is about the worst seen in this parameter, isn’t the 

magnitude of a metabolite’s z-score.  

Figure 3.68: Trend plot for percent bias of SD parameter in Plasma. Trend lines are based on splinal fits. Solid line 
is the average while dotted are first and third quartiles. 
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Both kNN and random forest showed weak performance, particularly the latter which was 

virtually indistinguishable from average imputation in the real datasets. Yet both have previously 

been identified as strong performers [22, 64, 66, 105]. It is important to remember that individual 

datasets may have vastly different characteristics and the most effective method is likely to 

depend on the analysis of interest. As previously assessed datasets have focused on identifying 

group differences in the presence of missing values, those datasets have come with an artificial 

group structure. The datasets here consist of a single population, implying that kNN and random 

forest may be effective at picking up differences between groups of samples but weak at 

discriminating between individual values of a homogenous population. Meanwhile both 

maximum likelihood and rankit regression demonstrate near unbiased performance for the mean 

and standard deviation up to a missing rate of 70%. Consistency is another matter as the 

variability of these methods is roughly twice that of the traditional approaches, consequences of 

which are most pertinent at moderate to high levels of missing values. In the three metabolomic 

data sets, maximum likelihood estimates were found to be more stable in general and especially 

for missing proportions above 50%. Lower variation in ML estimates compared to RREG was 

also consistently observed in the computer simulations. Therefore, between the two ML is the 

preferred method. 

Another advantage to the proposed methods is that they can easily be adapted to handle right 

censored values as well. Erroneous values could occur in the upper tail of the distribution with 

ion suppression, in which heavily abundant features are observed but with ion counts that do no 

reflected the true concentration [106]. In certain situations, it may be advisable to ignore values 

above a certain point. More generally, metabolomics data can be subject to extreme high outliers. 
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Intentionally censoring a certain amount of the highest values, say 1-5%, may be useful in large 

studies to avoid the impact of such outliers or extreme subjects. 

A major untested assumption is that missing values are due to limit of detection. While this is 

a common assumption in the field, our search of the literature returned no papers investigating 

the veracity of this assumption. Further work is required to fully understand the sources of MVs, 

the prevalence of these sources and, ideally, the ability to identify the source of specific missing 

observations. However, when a missing value can reasonably be attributed to LOD, Gaussian 

models are an advisable approach to handling MVs in metabolomics. 
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CHAPTER 4: MERGING METABOLOMIC DATASETS 

4.1. Introduction 

The LC-MS workflow requires periodic maintenance that requires turning off the machine. 

These periods in which the machine is actively processing samples is referred to here as a “runs” 

or “batches”. Instrument performance can vary from run to run. A major obstacle in global LC-

MS based metabolomics is drawing comparisons between samples processed across different 

instrument runs or different instruments. There are several reasons for wanting to compare 

samples from different instrument runs or different instruments. Before being analyzed on a mass 

spectrometer, samples are prepared and a portion is then transferred to an analysis well in a 

multi-well plate. The number of wells available depends on the type and size of wells used but is 

generally some multiple of 6 [1]. Even instrumentation that can accommodate large plates or 

multiple small plates are generally restricted to at most a few hundred wells [2]. Large 

epidemiologic studies with thousands of samples can easily exceed this capacity. In another 

example, a longitudinal clinical experiment or cohort study may not have all samples available at 

one time for analysis. In particular, the clinical environment is analogous to these situations as 

new patients are regularly being admitted and evaluated.  

Mass spectrometry itself is inherently semi-quantitative, with the observed variable returned 

by the instrument being the number of ion counts associated with the feature, i.e. “ion peak”, 

which depend not just on the concentration in the sample but also biochemical and instrument 

characteristics. For a given weight, a compound with higher molar mass will have fewer 
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molecules than a compound with a lower molar mass. Fewer molecules implies fewer ions, 

but the ionization efficiency, which relates the number of ions formed to the molecules available, 

varies by compound as well as with instrument performance. Hence the number of ions 

measured relates to the amount in the sample but is not sufficient to determine concentration. 

Instead, biochemical and instrument calibration are fixed for a given instrument run, which 

allows for inference of relative concentrations for samples within the run. One sample, for 

example, may have 30% more ions than another sample for a given biochemical. While the exact 

amount of the biochemical cannot be determined, assuming the sample types are the same and 

the concentrations are within the linear range of the instrument, one can infer that whatever the 

concentrations may be the first sample is 30% greater than the second. An implicit assumption is 

that ion recovery is linear over the concentrations being measured, which is explained in the 

following paragraph. 

Exact concentrations are derived though calibration curves, aka standard curves, in which 

known concentrations of the target compound are included to provide a reference point for the 

ion counts and calculate the levels in samples of interest according to their position on the curve. 

For a thorough review of calibration curves see the five-part series by Dolan [3-7], but 

calibration curves are most conveniently treated as a linear function. In a dataset consisting of m 

features and n samples, let cji be the true concentration of the ith subject and jth analyte. For yji 

the ion intensity associated with the same sample and ion, the assumption under the linear 

calibration is that 

yji = β0j + β1jcji+ εji 

which is a simple linear regression model. The parameters β0j and β1j, which vary by analyte, are 

estimated via a set of cji's with known concentration. β1j is strictly greater than 0 while the 
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intercept β0j is largely a nuisance parameter and generally close to 0 for any concentration range 

that extends well above the limit of detection of the instrument. In fact, single point calibration 

curves, in which all cji's have the same concentration, remove β0j entirely and can perform well 

when the concentration level is chosen appropriately [8]. Multi-point calibration curves involve 

multiple concentration levels and are better suited for examining the linear assumption. When 

results suggest non-linearity, polynomial models or other non-linear function may be used [9]. 

Alternatively, analysis may be restricted to limits of quantitation in which the assay is found to 

be linear. Producing a sample of known concentration obviously requires being able to measure 

the exact quantity of target metabolite. This will usually require being able to obtain a purified 

amount of the metabolite to measure that, because of chemical reactions that can occur in 

solution, occupies a well. Allocating an entire well to a single compound is clearly infeasible in 

an untargeted analysis as (1) the metabolites to be captured may not all be known a-priori and (2) 

the number of metabolites totals hundreds or even thousands and easily exceeds the available 

sample wells per instrument run. Lacking full quantitation, one must find some way to relate the 

ion counts in different batches to each other. 

This problem is not unique to metabolomics as similar LC-MS instrumentation is used in 

proteomics as well. Normalization is popular in proteomics and represents a potential solution 

for metabolomic data [10-12]. Normalization attempts to correct each individual sample for 

systematic effects due to collection, processing and instrumentation. In theory such correction 

would adjust for instrument effects as well, although metabolites span a much wider range of 

physical properties and chemical classes than seen in proteomics, leaving the effectiveness of 

normalization in global MS metabolomics unknown.  

An alternative to normalization is to include related samples, referred to as anchoring, across 
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multiple instrument runs by which metabolite specific adjustment can be performed. Doing so 

provides a reference point with which to orient the batches to one another. Similar approaches 

have been shown to perform well against standard normalization schemes in GC-MS data [13].  

Through a mix of targeted and untargeted data, this chapter examines the concept in LC-MS 

data. The results show that addressing metabolites individually generates global data that is more 

consistent with targeted concentration and less variable over the whole metabolome versus 

typical normalizations which tend to ignore the breadth of physical properties spanned by global 

LC-MS metabolomics. Furthermore, the number of anchors required to perform this approach is 

investigated and shown to be minimal for the vast majority of metabolites and is therefore not 

burdensome to instrument time and resources. 

4.2. Traditional Normalization 

Normalization is a commonly used method to remove a significant portion of sample to 

sample variation from the data. This purpose distinguishes normalizations from transformations, 

which are used to manipulate quantitative characteristics of metabolite features. In a practical 

manner, in a metabolomics set where the samples are the rows and the features are the columns, 

normalization acts on the rows while transformation acts on the columns. The most common 

normalization is total ion count (or total ion current) normalization (TIC) in which all 

metabolites in a sample are divided by the total number of ions observed in the sample [12]. 

Although commonly used, TIC is susceptible to being overly influenced by a small number of 

features with very large ion counts. Various adjustments to this basic premise include median 

normalization, MS-total useful signal (MSTUS) [14], median absolute deviation [15], 

probabilistic quotient normalization (PQN) [16] and cyclic locally weighted regression (Cyclic 
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Lowess)[17] among others [18, 19]. However, most of these normalizations are built on the 

assumption that on “average” the ion count of each sample should be more or less equal.  

In this paper normalizations are separated into three classes depending on the mechanism of 

action. The first class involves dividing ion intensities by a function of the sample’s ion spectra. 

The second class of normalization relies on Minus-Average (MA) plots. The third class are those 

normalizers that do not fit into either of the first two classes. 

4.2.1. Class I – Spectral Division 

Normalizers of the first class are defined as the ratio of the sample’s raw intensity values and 

a function of the sample spectra. That is to say, letting yj =  yj1 , … , yjm  be the vector of 

observed ion counts and y j
 Ɲ the resulting normalized vector, the relationship is such that: 

yj
 Ɲ = 

𝑦

ƒ (𝒚  )
, … ,

𝑦

ƒ (𝒚  )
 

where ƒj(⦁) is some function. Table 4.1 summarizes ƒj for the first class of normalizations.  

Several of these methods are variations on TIC, such as MSTUS which restricts the summed 

signal to only those features that are common to all samples. Vector Normalization takes TIC 

into two dimensions by measuring the Euclidean distance of the observed vector from the origin 

0, and for this reason is sometimes referred to as Euclidean Norm. Both TIC and Vector 

Normalization are specific versions of the more general form Σ y
 ji
 pp

. Mean is simply TIC 

adjusted for the number of features. Median Absolute Deviation (MAD) takes median a step 

further by finding the absolute deviations from the median within a sample and using the median 

of these to normalize. Some Spectral Division normalization methods use a baseline or control 

spectrum correction. Such spectra can be determined a-priori or chosen from the available 
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samples such as the sample with the median TIC. Linear Baseline scaling (LB) and PQN are 

examples of this. In LB, each sample is normalized so that the TIC of the resulting normalized 

sample is equal to that of the “baseline”. LB assumes a constant linear relationship between the 

sample and the baseline. Non-linear extensions are available. Although the name includes 

“scaling”, the intent is consistent with normalization which seeks to adjust all spectrum of each 

sample to the same level in some sense and the computation is consistent with the Class I 

definition. PQN, which involves a four-step process, is the most computation intensive of Class I 

normalizers listed here. In the first step TIC normalization is performed. Second, a control 

spectrum is calculated – this may be based upon a designated sample or the median spectra from 

 

  

TIC 
ƒ𝑖 = 𝑥𝑖𝑗

𝑚

𝑗 =1
 

 

MSTUS 
ƒ𝑖 = 𝑥𝑖𝑗

𝐴
 

𝐴 = {𝑘} 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥𝑖𝑘  𝑛𝑜𝑡 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 ∀ 𝑖 ∈ {1, … , 𝑛} 
 

Vector ƒ𝑖 = 𝑥𝑖𝑗
2

𝑚

𝑗 =1

1/2

 

 

Mean 
ƒ𝑖 =

𝑥𝑖𝑗

𝑛

𝑚

𝑗 =1
 

 

Median ƒ𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑌𝑖) 
 

MAD ƒ𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑌𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑌𝑖)|) 
 

LBa ƒ𝑖 =
𝑚𝑒𝑑𝑖𝑎𝑛(𝑌𝑖)

𝑚𝑒𝑑𝑖𝑎𝑛(𝑌𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ) 

 

PQNb 

ƒ𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛{𝑞𝑖1 … 𝑞𝑖𝑚 } 

𝑞𝑖𝑗 =
𝑥𝑖𝑗

𝑇𝐼𝐶

𝑥𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ,𝑗
𝑇𝐼𝐶  

 

a,b  Baseline / Control spectrum may be taken from a designated sample or calculated from available data, such as 
sample with median TIC. 

Table 4.1: Class I Normalizers 
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all samples may be used. Third, for each feature the ratio, i.e. quotient, of the TIC normalized 

intensity of the sample and control spectrum is found. The final normalizer is then the median of 

all quotients. Most class I normalizers are straightforward to calculate and are not 

computationally time intensive. Hence, these are popular and common choices for normalizing.  

4.2.2. Class II – Minus Average (MA) normalizers 

The second class of normalizers involve the plot of the minus versus average, which are 

essentially Altman-Bland plots on the log scale [20, 21]. For any two samples j and j' the MA are 

the scatter plot where each feature has coordinates minusji , avgji  given by:  

minusji=log2 yji − log2 yj'  

avgji=
log2 yji +log2 yj'

2
 

The minus (M) can be viewed as being the log of the ratio while average (A) is the log of the 

product. Orienting the two spectra in this way is intended to magnify systemic effects, both 

linear and non-linear. From this plot a curve can be fit to the data to determine normalized values 

for the two samples. Cyclic Locally Weighted Regression (Cyclic Lowess) and Contrast 

Normalization [22] (CN) are normalizers of this type. Under Cyclic Lowess, a non-linear local 

regression curve (lowess) is fit to the MA plot for a given pair of samples. The process is then 

repeated for all possible pairwise combinations of samples in the dataset. Following a complete 

iteration over all samples, a model tolerance parameter is calculated and the cycle is repeated 

until some tolerance is achieved between the latest cycle and preceding one. The complete set of 

all ion features for all samples can be expressed as 

 Yn×m =  

y1
y2
⋮

yn
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in which is  yj= y1i, …, ymi  is the vector of ion intensities for the 𝑗  subject. Under CN, 𝒀n×m is 

log transformed such that  

log(Y)  = 

⎣
⎢
⎢
⎡

 

log( y1)

log( y2)
⋮

log( yn)

 

⎦
⎥
⎥
⎤

 

with log(yj)= log(yj1), …, log(yjm)  then linearly transformed using a m by m orthonormal 

matrix M to produce a new set of orthogonal vectors: 

YO = log(Y) M. 

The first row of M is the repetition of the constant 1 √𝑚⁄ . The other rows of M are not uniquely 

defined, except in the case of m = 2 which gives 

 M2 = 
1

√2
 
1 1
1 -1

  . 

For m  > 2, M is not unique which requires some consideration in the next step in which 𝒚1
𝟎, the 

first row of YO, is used to predict the remaining rows yj
𝟎 for j = 2, …, n. Referring to these 

predictions as yi
 𝟎, using loess regression with weighted least squares produces yi

𝟎’s that are 

invariant to the choice of M. Estimation of yi
𝟎's is iterated until some tolerance between the 

previous and newest estimate is achieved. The final normalized matrix is then given by  

 Y Ɲ = 

⎣
⎢
⎢
⎢
⎡

 

y1
0

y2
0 −  y2

0

⋮

yn
0 −  yn

0

 

⎦
⎥
⎥
⎥
⎤

 . 

From this point the dataset may be analyzed or mapped back to the original space by taking the 

anti-log transformation of each element of Y ƝM. The similarity to cyclic lowess may not be 

immediately obvious; however, notice when m = 2 the contrast matrix M coupled with the log 
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transformation is analogous to the orientation of the MA plot. Contrast normalization essentially 

generalized the MA concept to higher dimensions. From here, both methods utilize lowess to 

smooth out the normalized values.  

4.2.3. Class III – Other 

Normalizations that don’t fit the criteria of Class I or Class II are considered. One example of 

this is Quantile Normalization (Quant) which rescales the dataset so that the distribution of 

intensities within each sample is the same across all samples. Let yj, ord be the ordered set of 

intensities for sample j: 

 yj, ord = yj[1] , …,   yj[m] . 

Consider next the vector of average ordered statistics across all yj, ord's: 

 yord = y[1], …, y[m]  = 
yj[1]

n

n

j=1

, …, 
yj[m]

n

n

i=1

   

This process essentially orders the intensities from lowest to highest within each row of the 

dataset and then takes the average of each rank. The normalized value of any given sample and 

feature is then  

 yji
Ɲ = y[ ] 

where q ϵ {1, …, m} is the rank of yji among all the intensities for sample j. Notice that the set of 

normalized values is the same for all j. Standardizing the spectra is one advantage to Quant in 

that it directly puts the intensities of each sample on the same scale, making sample-to-sample 

comparisons easier. A significant drawback is that features with missing values must be removed 

or imputed. Second, biochemicals that are significantly more abundant than all other features, 

such as oleate in plasma or creatinine in urine, may be normalized to a near static state. The same 
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problem would occur in metabolites that are significantly lower in abundance than all other 

metabolites; however, this case is uncommon in untargeted metabolomics because a significant 

proportion of features have intensities approaching the instrument’s LOD.  

4.3. Proposed Alternatives for Instrument Run  

This chapter is concerned with alternatives to adjusting for instrument runs that involve 

correcting each metabolite separately. The methodology for such adjustment is accomplished 

through the use of common samples included in each instrument run, or batch, being combined. 

Samples in the same batch are normalized against these common samples, called anchors. 

Computationally, this anchor normalization approach is similar to performing LB but with 

normalization taking place within each batch and acting on the biochemicals rather than on the 

samples. As a result, the proposed method is more accurately classified as scaling rather than 

normalization since the manipulation is performed on each feature (i.e. column) in the data 

independently disregarding any sense of overall spectral equivalence. The intent is not to induce 

any sort of equivalence between the features, such as scaling each metabolite against its own 

mean to put each feature on the same scale or performing log / GLOG transformation to induce 

constant variance. Instead, the purpose of this anchoring approach is to account for systematic 

changes in the samples due to instrument run. The term “normalization” is used for the 

application of the following proposed methods to make clear that the intent of these methods is 

to adjust for instrument variability which has traditionally been the role of normalizations. 

The main challenge to this anchoring approach is finding a baseline between samples across 

different batches. Solutions to such a reference point are considered here in two approaches. The 

first approach, referred to as anchor normalization, uses pooled technical replicates which are 

incorporated each time a new batch of samples is analyzed. The second approach, here referred 
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to as batch normalization, involves balancing the experimental design equally across all 

instrument runs. It should be pointed out that batch normalization described here is not the same 

as Batch Normalizer described by Wang et al. [27], which utilizes the total ion count in its 

normalization of the dataset. Both approaches are described in the subsequent sections. It is 

useful to emphasize once more, that in either case the adjustment is taking place on the 

metabolites (i.e. columns) of the data rather than on the samples (i.e. rows), as is the case with 

typical normalizations. 

4.3.1. Anchor Normalization 

Returning to the linear calibration model, consider two separate instrument runs in which k 

technical replicates of the same sample are run in both batches. The ion intensity of the ith 

metabolite of batch b ϵ {1, 2} for any replicate j ϵ {1, …, k} is given as 

 yjib = βibxie
ηjib  + εjib. 

The subscript of the sample concentration, xi, is dependent only on the biochemical since these k 

samples are technical replicates and thus have the same concentration. Recall that ηib ~ N(0, σηib
2 ) 

and  εib ~ N(0, σεib
2 ) so that both terms depend on the batch and metabolite, but not the individual 

replicates. The expected value of any such replicate is then: 

µ  = E yjib  = βibxie
σεib

2 / . 

Rearranging these terms gives 

µib = E yjib  = βibeσεib
2 /2 xi. 

As both the IE factor 𝛽  and the term resulting from log-normal error component eσεib
2 /2 are both 

fixed, but unknown, parameters depending only on the batch and metabolite, they can be  
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combined into a single parameter term. Letting βib
*  = βibeσεib

2 /2 it is easy to see that mean ion count 

for the batch is proportional to true concentration level: 

µ  = 𝛽∗ xi 

Hence, the mean ion count for the two batches are proportional: 

µ

𝛽∗ =  
µ

𝛽∗  

By the central limit theorem, there exists a k such that average of the replicates within a batch 

𝑦ib =
𝛽 𝑥 𝑒 + εjib

𝑘
   

is reasonably close to 𝛽∗ xi.  

Consider experimental samples analyzed on two independent instruments or over two 

batches of the same instrument. Assuming a sufficient number of replicates are used, dividing 

each batch by the average of the batch’s technical replicates will anchor the samples to a 

common scale, namely the relative concentration to the replicate. Hence the term anchor 

samples. 

Anchor normalization is appropriate for batches with small number of experimental samples, 

when the experimental design is unknown, or when the experimental design prevents all sample 

types of interest from being available at the same time, such as a time course or longitudinal 

study. Of course, finding a source of material to use for the inter-batch technical replicates can be 

non-trivial. QC samples, which are included as part of many metabolomic workflows to monitor 

instrument performance [23, 24, 25, 26], are convenient sources of material when available to 

serve as anchor samples. Another option would be to pool a small amount of each sample in the 

first batch, and then inserting aliquots of these into each batch to be combined. Aliquoting into 

each batch requires a-priori knowledge of the situation and requires significantly more material 
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depending on the number of batches forecasted, however.  

4.3.2. Batch Normalization 

Consider a large number of samples drawn from the same experimental design and randomly 

assigned to separate instrument runs. The ion intensity of the ith metabolite of batch b ϵ {1, 2} for 

any replicate j ϵ {1, …, nb} is given as 

yjib = βibxjibeηjib  + εjib 

with nb the number of experimental samples in the batch. In this situation the concentration xjib 

depends on the metabolite, sample and batch, since each sample in the experiment represents a 

different individual being tested. However, since each batch is composed of the same 

experimental design and contains a large, randomly selected subset of samples, it follows from 

the Law of Large Numbers that the average concentration of the ith metabolite should be roughly 

the same and equal to the mean concentration of the metabolite µxi. Hence, a similar technique 

can be employed as before for the expected average ion count µyi in terms of the mean batch 

concentration µxi: 

 µyi = E 𝑦jib  = βibeσεib
2 /2�̅�jib = 𝛽∗ µ

xi
. 

This leads to a similar result as in anchor normalization. In a sense, the use of technical replicates 

has been replaced with experimental samples at the cost of requiring for larger sample sizes and 

identical batch designs, which are required to connect the two ends in above equation. 

 In many settings, batch normalization may be more feasible than obtaining enough material 

for technical replicates to serve as the anchor samples for anchor normalization. Additionally, 

analysis of anchor samples increases the number of samples per batch, increasing the cost and 

time required for large experiments. Thus, batch normalization can be considered appropriate for 

large experiments that replicate the study design across multiple batches. Therefore, this 
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approach may be preferable as being more cost effective. And while it does require large 

numbers of samples, the concept can be extended to groups of samples within the batch. For 

example, suppose an experiment of control and stage I disease subjects are run on the first 

instrument batch. After some time, a second batch comparing the same type of control subjects 

to stage II disease subjects. Although the entire experimental design differs between the two 

runs, one could conceivable normalize the two sets based on the common control group. It is 

important to emphasize that when saying the controls are the same “type”, this requires more 

than simply being from the same population. It involves all facets of analysis, including sample 

collection, sample storage, additional preanalytical methodology, and instrumentation. 

Replicating so many stages of the metabolomics workflow could be impractical in many 

situations. Therefore, when all samples of a large study are not available for analysis at once and 

the entire design cannot be replicated at a later date or is too detailed to , the anchor 

normalization approach should be considered. 

4.4. Methods 

The goal of this chapter is to compare anchor (ANCH) and batch (BAT) normalization to 

standard -omic normalizations that might be considered for a metabolomic dataset. The available 

data, which is described in the following section, contains technical replicates of pooled plasma 

included in each batch which serve as the anchor samples. ANCH was performed by median 

scaling each metabolite of each batch against the anchor samples. BAT was performed by 

scaling each batch against the median of the experimental samples contained within that batch. 

In general, the sample mean is more a consistent estimator than the sample median, but the mean 

can be impaired by skewed distributions when the number of samples in small. The results of 

Chapter 2 indicate metabolite ion counts tend to be heavily right skewed; thus, the median was 
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chosen instead out of precaution. 

Normalization methods compared in this section include: total ion count (TIC), median 

absolute deviation (MAD), probabilistic quotient normalization (PQN) and cyclic lowess 

(CLOW). This list includes a representative mix of commonly used Class I and II normalizers.  

4.4.1. Relative Standard Deviation 

All considered normalizations were applied and the relative standard deviation (RSD) was 

compared for each biochemical between the raw (un-normalized) and normalized data. RSD, 

also known as coefficient of variation (CV), calculates the observed variance in an experimental 

group as a percentage of the group average and is often used in clinical chemistry to judge the 

performance of an assay. The total variance will be a combination of biological and instrument 

effects. In theory, lower instrument error should lead to lower RSDs. 

4.4.2. Variance Components of Experimental Samples 

A variance components model using instrument run as a random effect was also performed 

on the experimental samples in the various normalized versions of the data. This model, which 

was fit to each metabolite, is given by 

yjib=µi + D  + εjib 

in which µi is the overall mean ion count of the ith feature, Dib ~ N(0,σDi
2 ) is the random error 

associated with the bth instrument batch and εjib ~ N(0, σi
2) is the error associated with the 

individual measurement representing the population variation where Dib and εjib are independent. 

The variance of an individual sample is then 

 var yjib  = σDi
2  + σi

2 

By finding estimates σDi and σ, the proportion of the overall variance due to the instrument batch 

can be estimated as  σDi
2 𝜎Di

2 +𝜎i
2 . Normalizations that effectively address batch-to-batch 
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variation in instrument performance should, ideally, reduce this variance component close to 0. 

4.4.3. Variance Components of Anchor Samples 

 A useful result of decomposing the variance into batch and instrument error components is 

the ability to quantify the number of anchor samples needed to reduce the overall error below an 

acceptable threshold. By fitting a variance component model on the anchor samples gives 

yanch j, ib = µanch, i +  Danch, ib + εanchj, ib 

with µanch, i ,  Danch, ib  and εanchj, ib the parameters specific to the anchor samples but analogous to 

the previously described components model. The variance of the batch anchor average is  

 var yanch, ib  = σanch, Di
2  + 

𝜎 ,

𝑘
 

where k is the number of anchor samples used in batch b. By increasing k, the contribution of 

batch component to the variance can be reduced to an acceptable level. Reducing this error as 

much as possible is ideal and it is the total variance, which depends greatly on  σanch, Di
2 , which 

may be most important. However, acceptable limits of variation are not immediately available 

across the entire metabolome relative to the ion-count levels of a given batch.  

As an alternative, limiting the total variance to within a certain percentage of  σanch, Di
2  is 

considered. The formula to determine the minimum size k which keeps the variance of the 

anchor batch average within p% of the instrument error is 

σanch, Di
2  + 

σanch,i
2

k
 ≤ (1 + p)σanch, Di

2  . 

Solving for k gives 

 k  ≥ 
100

p

σanch,i
2

σanch, Di
2  . 
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There is no clinically accepted or otherwise immediately obvious value of p from which to 

investigate, but values of 5-20% appear to be a reasonable place to start. 

4.4.4. Global vs. Targeted 

Quantitative measurements using stable isotope dilution LC-MS/MS assays for the true 

concentration of 7 biochemicals detected in the global profiling dataset are also available. 

Normalized versions of the global dataset were compared to the targeted results using Pearson’s 

R  and mean square error (MSE). For the MSE comparisons, both the global and untargeted data 

were centered and scaled to account for the different scales between the ion counts and 

concentration.  

4.5. Data 

Plasma samples from participants enrolled in the Insulin Resistance Atherosclerosis Study 

(IRAS) were obtained for metabolomic profiling. IRAS was a seventeen-year multicenter, tri-

ethnic observational study sponsored by the National Heart, Lung and Blood Institute to examine 

the relationship between insulin resistance and cardiovascular disease [28]. The initial IRAS 

cohort enrolled 1,625 African Americans, Hispanics, and non-Hispanic whites between the ages 

of 45 and 65 in four regions across the country with baseline entry from 1992 and 1994 and a 

five-year follow up. The IRAS Family Study enrolled approximately 1,280 additional family 

members of selected Hispanic and African American members from the original IRAS cohort 

with baseline enrollment between 1999 and 2002 and proceeded by another five-year follow up 

period [29]. The total number of participants for IRAS Family Study was about 1,440 with ages 

ranging from 18 to 81. Material from 1,718 plasma samples collected during IRAS and IRAS 

Family Study were analyzed with global LC-MS/MS metabolomic profiling.  

These samples, which are primarily used for monitoring performance of the instrument, serve 
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as the anchor samples. The entire instrument platform contains four arms, two versions of both 

positive and negative ion modes. The two positive ions modes split the chromatogram in half and 

thusly designated Pos Early and Pos Late. Both negative modes survey the entire chromatogram 

with one specifically intended for polar compounds. These arms are designated Neg and Polar.  

Accommodating the number of samples in the study required between 13 and 15 instrument runs 

per arm. Between 6 and 24 aliquots of pooled plasma were included on each batch. TIC was 

performed on each arm of the platform separately, while the other normalizations were 

performed across the combined arms. 

The resulting analysis measured 1,780 features across the four arms yielding 1,276 unique 

metabolites. Features included for study here are limited to those that were observed in at least 

99% of participant samples, a criterion satisfied by 767 features. Since anchor normalization is 

dependent on measurement of a feature in the anchor matrix, and can be unreliable if not well 

detected, a detection requirement of at least 2/3 in the anchor samples was imposed in order to 

include a feature in this normalization process. Under this requirement, an additional 24 features 

were lost because the anchor samples did not reliably measure these features. Three features 

were lost because the anchor was insufficiently filled in every instrument run, while the other 21 

features were lost due to low fill in at least one but not all runs. 

Seven analytes had previously been shown to be markers for impaired glucose tolerance as 

described by Cobb, Eckhart, Perichon, Wulff, et al. [30]. The markers in question are α-

hydroxybutyrate (AHB)(Polar), β-hydroxybutrate (BHB)(Polar and Pos Early), 4-methyl-2-

oxopentanoic acid (4MOP)(Neg), 1-linoleoylglycerolphosphocholine (LGPC)(Neg, Polar, Pos 

Late), oleic acid (Neg), pantothenate (Neg and Polar) and serine (Neg, Polar, Pos Early). These 

analytes were measured quantitatively using a separate quantitative mass spectrometric assay in 
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all 1,718 subjects. 

4.6. Software 

All analysis was performed in R version 3.4.3 [31]. The following packages were used: 

limma package [32], nlme package [33] and Data Normalization R-script by Hochrein et al. [34]. 

4.7. Results 

4.7.1. Global data 

Results from the variance components model, shown in Table 4.2, show that standard -omic 

normalizations do not effectively reduce the impact of instrument run. Across the 743 features, 

on average 35% of the observed variation is attributed to instrument run. MAD, PQN and 

CLOW do not improve upon this number much whilr MAD actually increases, though only 

slightly and likely to be random noise level, in instrument effect. Overall profiles of the five-

number summary for MAD, PQN and CLOW are more or less the same as the profile of the raw 

data as well. TIC does manage to address instrument variation somewhat, lowering the average 

contribution across the metabolites down to 24% and the five-number summary also shows TIC 

Table 4.2: Variance components in global metabolites. Five-number summary of variance 
proportion due to instrument run across all 743 metabolites. 
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to be consistently lower than Raw. ANCH and BAT on the other hand dramatically reduce the 

variation due to instrument run. This is not surprising for BAT which centers based on the 

participant samples from which the Dib's are calculated. Thus, the variance component is not 

highly insightful in terms of what to expect in a future dataset for this method. ANCH, on the 

other hand, is completely independent of participant samples, and the average instrument 

component here is just 7.3%. Additionally, half of the metabolites in this experiment have a 

component proportion ≤ 3.6% and three quarters have a component proportion below 10%.  

Next, RSDs of participant samples across all metabolites are shown in Table 4.3. Strictly 

speaking, lower RSD need not, as a general rule, automatically signal more effective removal of 

instrument effect. This is because ion counts for the experimental samples include both 

biological and instrument variation, as opposed to technical replicates which contain only 

instrument variation. However, with around one third of the ion count variation being due batch 

effects on average, it seems reasonable that normalizations effectively removing instrument run 

will generally be lower. On average the overall standard deviation is roughly 63.5% of the 

Table 4.3: Coefficient of Variation in global metabolites. Five-number summary of RSDs 
across all 743 metabolites.  
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metabolite mean in the uncorrected data. All of the normalization methods generally reduce the 

RSD, both on average and across the quantiles of the five-number summary. The standard -omic 

normalizations show a small, but consistent decrease in the RSD with an average value around 

59%. ANCH and BAT are even lower, with ANCH less than 55% on average and BAT less than 

53%. 

Moving on to the variance components model in the anchor samples, the five-number 

summary for the proportion due to the batch component, σanch, Di , in the raw data is as follows: 

Minimum = 8.3%, 1st Quartile = 75.8%, Median = 87.9%, 3rd Quartile = 93.3%, Maximum = 

98.9%. The average σanch, Di is 82.5%. So, as expected variation between instrument runs account 

for a great deal of variability, with an average 82.5% of the variation in the raw ion counts of the 

anchor samples being due to this batch effect. Figure 4.1 plots the individual σanch, Di's against 

their respective σanch,i's. Interestingly, the estimated standard deviations of the two components 

are somewhat similar in scale, though batch component does tend to be larger the replicate 

component, which fits with the average percentage due to batch being so high. The plot is also 

populated with several outliers in both components. Taking a log transformation helps to better 

Figure 4.1: Instrument run variation versus instrument error variation. Based on estimates from variance 
components model  
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see the individual standard deviation estimates and reveals a weak, positive correlation between 

the two components. Table 4.4 shows the five-number summary across all metabolites for 

sample size required to minimize instrument error to no more than 5% of the batch component. 

On average the metabolites require just over 10 replicates, but this is inflated by the presence of a 

few metabolites requiring extremely large sample sizes. Three quarters of the metabolites 

surveyed actually require just over 2 replicates and 86.4% require 5 or less (not shown). 

4.7.2.  Targeted Versus Global  

For the 7 metabolites measured by both the quantitative and semi-quantitative assays, raw ion 

counts are plotted against their concentration levels from the targeted analysis in Figures 4.2 and 

4.3. Individual points are colored by instrument run and there is noticeable banding of colors in 

most of the features. Among the metabolites that are measured on multiple arms, instrument 

effect can vary by arm. Plots for LGPC for instance indicate a handful of rather poor performing 

batches in Polar and Pos Late, but in Neg batch differences are less pronounced. Similarly, serine 

has clear differences between instrument days on Neg and Polar, but such effects are not as 

apparent on Pos Early. Thus, neither arm is likely to be superior overall, but certain arms may 

perform better for certain metabolites. Table 4.5 and Figure 4.4 show the R2 between the 

clinically measured concentrations and raw intensities by normalization method. Certain 

metabolites correlate better than others. Oleate has raw R  of 0.777 while 4MOP has a raw R2 of 

0.584 for instance. Additionally, for metabolites observed on multiple arms the performance may  

Table 4.4: Summary of minimum anchor replicate limiting instrument error to 5%. Based on 
estimates σanch, i

2  and σanch, Di
2  from variance components model. 
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Figure 4.2: Targeted vs raw ion counts. Points are colored to highlight separate instrument runs. 
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Figure 4.3: Targeted vs raw ion counts continued. Points are colored to highlight separate instrument runs. 
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Table 4.5: R2 in targeted metabolites. Targeted concentrations from clinical assay versus 
global ion counts. 
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Figure 4.4: R2 in targeted metabolites. X-axis are individual biochemical versions listed in ascending order of raw 

R2. Platform names have been shortened such that N = Neg, P = Polar, PE = Pos Early and PL = Pos Late. 
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Table 4.6: MSE for targeted metabolites. Targeted concentrations and global ion counts are mean 
centered and scaled against the standard deviation. 

Figure 4.5: MSE for targeted metabolites. X-axis are individual biochemical versions listed in ascending order of 
raw MSE. Platform names have been shortened such that N = Neg, P = Polar, PE = Pos Early and PL = Pos 
Late. 
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better on certain arms than on others, which is consistent with the plots in Figures 4.2 and 4.3.  

This phenomenon is most evident in LGPC, where the raw ion counts have an R2 on the Neg arm 

of .396 while the other two arms for this biochemical are just above .06. Similarly, serine has a 

R2 in the raw data on Pos Early of nearly 0.8 while the Neg and Polar versions are below 0.5. 

Some versions are more prone to instrument effects and higher instrument effect will introduce 

more variation. In extreme cases, as with LGPC on Polar and Pos Late, the instrument’s ability 

to measure the biochemical is lacking to the point that the version of this compound is not 

trustworthy. Examining the normalized versions of the data, it is often the case that typical 

normalizations actually result in a lower R2 compared to the raw version of the data. MAD 

consistently has the lowest R2 of any data version. TIC, PQN and CLOW occasionally have a 

higher R2, but, as Figure 4.4 clearly shows, for the most part typical normalizations provide no 

obvious improvement to this measure. Anchor and Median normalization on the other hand 

always have a higher R2 than the raw data. Furthermore, with the exception of LGPC, the R2 

levels are consistently around 0.9, which represents a very strong improvement for AHB, 4MOP 

and serine (Neg version).  

Examination of the MSE, shown in Table 4.6 and Figure 4.5, is consistent with the R2 

results. While MSE levels vary by biochemical and platform arm, traditional normalizations 

generally increase the amount of error between global and targeted versions. In contrast, ANCH 

and MED have consistently lower MSE over the raw version and in some cases, most notably 

AHB and serine, the decrease is quite large.   

The various versions for each analyte are plotted in Figures 4.6-4.18. These help to illustrate 

visually the superior performance of ANCH and BAT at reducing the instrument run effect. 

Color bands associated with the separate run days collapse together while the points tighten  
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Figure 4.6: Normalization comparisons to targeted levels in 3-hydroxybutyrate (Polar Platform). 
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Figure 4.7: Normalization comparisons to targeted levels in 3-hydroxybutyrate (Pos Early). 
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Figure 4.8: Normalization comparisons to targeted levels in 4-MOP. 
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Figure 4.9: Normalization comparisons to targeted levels in L-GPC (Neg). 
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Figure 4.10: Normalization comparisons to targeted levels in L-GPC (Polar). 
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Figure 4.11: Normalization comparisons to targeted levels in L-GPC (Pos Late). 
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Figure 4.12: Normalization comparisons to targeted levels in Oleate. 
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Figure 4.13: Normalization comparisons to targeted levels in Pantothenate (Neg). 
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Figure 4.14: Normalization comparisons to targeted levels in Pantothenate (Polar). 
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Figure 4.15: Normalization comparisons to targeted levels in Pantothenate (Pos Early). 
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Figure 4.16: Normalization comparisons to targeted levels in Serine (Neg). 
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Figure 4.17: Normalization comparisons to targeted levels in Serine (Polar). 
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Figure 4.18: Normalization comparisons to targeted levels in Pantothenate (Pos Early). 
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across the whole range of clinical concentrations. Relationships between untargeted and targeted 

data is fairly linear. The exception to this observation is oleate which displays concavity in the 

form of higher values being increasingly depressed. This pattern is consistent with ion 

suppression, but curiously the non-linearity is present in normalized versions only, particularly 

TIC, and not the raw values. Other analytes from the same arm as oleate (Neg) do not display 

this behavior, implying that while normalization is over-correcting oleate the problem is not due 

the arm itself. 

4.8. Conclusions 

Results in both the global and targeted data support that normalization based on anchor 

samples or experimental samples themselves at the individual compound level are much more 

effective at reducing variation due to instrument run. In every instance of the 7 metabolites with 

available clinically derived concentrations, anchoring improved the R2 and MSE over the raw 

data. The standard omic normalization frequently resulted in little to no improvement, and on 

occasion would worsen the association between the global and targeted values. Across all global 

metabolites, anchoring consistently lowered the observed variation in the data more so than the 

omic methods. There is some evidence that scaling based on the experimental samples 

themselves does better than anchoring from the independent set of technical replicates. However, 

in practice this may be difficult due to the number of samples available at the time of each 

instrument run or the number of experimental groups that must be randomized. The results 

presented here suggest Anchor normalization with as few as 5 technical replicates was extremely 

effective and can be feasibly accomplished through the use of quality control samples which are 

already available in many metabolomic workflows. 
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CHAPTER 5: SUMMARY 

The chapters comprising this dissertation have practical and immediate implications to 

challenges of applying untargeted, global MS metabolomics to the clinical environment, and also 

to the field in general. Chapter 2 informs on basic metabolite characteristics across three 

common human matrices: plasma, urine and cerebral spinal fluid. Across all three of these 

matrices, raw ion counts of the chemo-centric approach to metabolomics displayed a consistent 

right skew that was largely corrected using a natural log transformation. Furthermore, 

correlations between features using a chemo-centric approach are generally moderate at most, 

with average correlations of around 0.3. This knowledge is helpful when simulating metabolomic 

data when examining feasibility of experimental designs or estimating sample size from power 

calculations.  

Building upon this, Chapter 3 presents new parametric methods for handling missing data in 

metabolomics when values are left-censored due to the true value falling below the instruments 

level of detection. Compared to standard imputation approaches in the field, both methods are 

shown to produce more accurate estimates of population parameters. This is most critical to 

estimates of variance, which can be severely under-estimated in imputed data. Conversely, both 

proposed methods remain largely unbiased in both the mean and standard deviation even when 

up to 70-80% of metabolite values are missing. This has clear value for establishing reference 

ranges of healthy populations, but also for every day metabolomic studies as the problem of 

missing values is inherent to global MS and researchers often employ designs with few sample 

sizes due to cost and availability. Parametric approaches can help to maximize power while also 
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providing more robust results. 

 The final chapter demonstrates typical omic normalizations that more or less treat all 

features the same, disregarding the various types of chemical classes present in a global 

metabolomics set, is deeply flawed. When addressing instrument run effects, such approaches 

are no better, and often worse, than using the raw ion counts alone. Adjusting for instrument run 

at the metabolite level, rather than sample level, via a group of anchor samples included in the 

run or balancing the experimental design across the instrument runs is far more effective at 

reducing batch effects. Further, when using technical replicates to anchor the batches together, 

the number of replicates required can be quite low implying minimal cost of instrument 

resources. This is useful both for clinical practice, which is continuously evaluating new 

samples, and for large metabolomics studies requiring multiple instrument runs.  

While each of these chapters address key elements of metabolomics for clinical practice, 

truly implementing these techniques requires doing so simultaneously. Handling missing values 

across multiple merged sets presents a complication as metabolite detection may vary from batch 

to batch. Assuming different levels of LOD per batch, maximum likelihood is capable of 

handling this whereas rankit regression is not. However, in anchored data missing values may 

occur because the metabolite was not detected in the anchor samples. For samples in these 

batches, it may be more appropriate to treat them as MAR. This gets at the larger issue that a key 

assumption in these paper, that missing values are due to LOD, is left untested. Although it is 

generally assumed, it is also believed that some proportion is due to other reasons. An 

examination into the sources of missing values and their relative contribution to the overall 

missingness would be highly valuable. If a significant proportion of missingness is MAR, 

maximum likelihood with truncated rather than censored samples may be more advisable.   


