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Abstract

XILONG CHEN: The Semi-parametric MIDAS Models and Some of Their
Applications: the Impact of News on the Stock Volatility.

(Under the direction of Eric Ghysels.)

In the first essay, I examine whether the sign and magnitude of discretely sampled

high frequency returns have impact on expected volatility over some future horizon.

Technically speaking, I introduce semi-parametric MIxed DAta Sampling (henceforth

MIDAS) regressions. I show that the asymptotic distribution of semi-parametric

MIDAS regressions depends on mixture of sampling frequencies. Also novel is the

parametric specification I consider to deal with (intra-daily) seasonality. In the

empirical work, I find that moderately good (intra-daily) news reduces volatility (the

next day), while both very good news (unusual high intra-daily positive returns) and

bad news (negative returns) increase volatility, with the latter having a more severe

impact. The asymmetries disappear over longer horizons. I also introduce a new class

of parametric models with close ties to ARCH-type models, albeit applicable to high

frequency data. In the second essay, I extend the semi-parametric MIDAS model to

multivariate case and find that besides the asymmetric effect, the market-wide news

and firm-specific news interactively affect the individual firm’s future volatility and

using both of them can increase the out-of-sample forecast performance. In the third

essay, I propose a new type of semi-parametric MIDAS index model, which potentially

applies in a variety of fields, and investigate its estimation and asymptotics.
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Chapter 1

News - good or bad - and its impact
over multiple horizons

1.1 Introduction

Let’s imagine a modern era Rip Van Winkle who, for some unknown reason, had a

weakness for watching and studying stock market volatility.1 Before his long sleep, he

watched ARCH-type models being developed and enriched to fit the stylized features of

asset market fluctuations. The raw data were daily returns, and the stylized facts were

the phenomenon of volatility clustering and various other regularities, including for

equity markets the observation that volatility featured asymmetries - i.e. the response

to good and bad news appeared different. The asymmetry was exploited, notably by

Engle and Ng (1993), who introduced the notion of news impact curve both as an

object of economic interest and a diagnostic tool for volatility modeling. Despite all

the exciting developments since ARCH models saw the daylight, our story’s fictional

protagonist falls asleep in the mid-90s.

1 The story of Rip Van Winkle is about a villager of Dutch descent, who one autumn day settles
down under a shady tree and falls asleep. He wakes up twenty years later and returns to his village
and discovers a different world. Rip Van Winkle - still a loyal subject of King George III - wakes up
not knowing that in the meantime the American Revolution had taken place. It is a celebrated short
story, written by the American author Washington Irving and published in 1819.



When Rip Van Winkle wakes up a decade later he is bewildered by the fact that the

data is different, the models are different, the issues are different. Stylized facts used

to drive volatility model specifications, parametric models that is, before he fell asleep.

Now it seems that measurement has taken over most of the discussions. There is data

of every transaction and it enables one to measure so called realized volatility - a post

mortem sample realization of the increments in quadratic variation of an underlying

continuous time process. Measurement, as it turns out, is not easy, as transactions may

be affected by microstructure noise and quadratic variation increments may contain a

jump component which one might want to separate from the rest. Rip Van Winkle still

recognizes one stylized feature, the importance of volatility clustering. What happened

to the other features of (daily?) data that so many modelers had tried to capture

with the next variation on ARCH? For instance, what happened to asymmetries or so

called leverage effect? The simple measures of realized volatilities involve the intra-

daily sum of high frequency squared returns. More sophisticated measurements that

separate jumps or account for microstructure noise, one way or another, are also based

on squared returns. Did the stylized facts, like asymmetries, disappear or become

irrelevant with high frequency data?

With the focus shifted towards measurement, it is indeed the case that leverage

has no impact on the in-sample asymptotic analysis that was developed against the

backdrop of increasingly available high frequency financial data (see Jacod (1994),

Jacod (1996) and Barndorff-Nielsen and Shephard (2002) as well as the recent survey

by Barndorff-Nielsen and Shephard (2007)). Linear models are used to predict future

volatility, instead of ARCH-type models involving daily returns, and they rely on the

most accurate measures of daily volatility such as realized volatility. The observation

that leverage does not affect measurement appears to have given credence to the fact

that asymmetries do not matter for forecasting. It is worth recalling that originally,
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news impact curves were formulated within the context of daily ARCH type models.

Therefore, news was defined with respect to a particular choice of a daily volatility

model, and the impact curve measured how news, innovations in daily returns that is,

affect tomorrow’s expected volatility. One may therefore wonder whether it is because

daily data was used, that leverage mattered, and that the use of high frequency now

has nullified the issue. This chapter shows that asymmetries still matter a lot. To show

this, I make various contributions to the existing literature.

It is not obvious how we would go about answering the question whether the sign

and magnitude of discretely sampled high frequency returns have any impact on future

volatility predictions. First, the raw input is a return over a short interval and the

prediction period is not the next short interval, but rather some arbitrary future period

- say the next day, week, etc. The mismatch of observation frequency and prediction

horizon brings about issues that cannot be easily handled by simple linear models - let

alone ARCH-type models. Then there is also the pervasive intra-daily seasonality that

prevents one from putting each high frequency interval on equal footing.

We first let the ’data speak’, namely with minimal interference we capture the

mapping between returns over short horizons and future volatility over longer horizons.

To cut straight to the main point, consider an illustrative example of my findings. I take

five minute returns on the S&P 500 index as the primitive input, and the next day’s

realized volatility as the future outcome of interest - hence we are thinking along the

lines of Engle and Ng (1993) but without a daily volatility model. The typical picture

for one day ahead (ignoring the intra-day effects) that emerges from my analysis is as

follows:

3
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The X-axis measures 5-minute returns in the S&P 500 index. The Y-axis is their

expected impact on tomorrow’s volatility (with confidence bands). The pattern that

emerges is interesting. Good news reduces tomorrow’s volatility (recall this is the impact

of a five minute return - up to a scaling factor), i.e. the expected impact dips below

zero.2 In contrast, very good news tends to increase volatility, as does bad news. This

asymmetric pattern has been recognized in the past, notably by Engle and Ng (1993).

However, here we can carry this further across different horizons using high frequency

intra-daily data.

The above plot also reveals that I am essentially dealing with two issues: mis-

specification and aggregation. Mis-specification, because measures of quadratic

variation are based on squared returns, while the above plot tells us that response

functions are not symmetric. Aggregation, because I will build models using high

frequency data directly, while all existing models square intra-daily returns and add

2 For the purpose of clarification we should note that this negative impact pertains to one single five
minute interval and the total impact over one or several days is a weighted sum of every five minute’s
impact. This brings about non-negativity issues regarding the prediction of future volatility - which
will be discussed in the paper.
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them up to daily realized variance.

Technically speaking, I introduce semi-parametric MIDAS regressions. The analysis

in this paper is inspired by recent work on MIDAS regressions, in particular in the

context of volatility as in Ghysels, Santa-Clara, and Valkanov (2006) and Forsberg

and Ghysels (2006). Compared to the semi-parametric infinite ARCH estimation in

Linton and Mammen (2005) I show that the asymptotic distribution of semi-parametric

MIDAS regressions depends on mixture of sampling frequencies. The new asymptotic

results - showing the impact of mixed data sampling - are of general interest, since

the semi-parametric MIDAS regression model has applications beyond that of news

impact curves. Also novel is the parametric specification I consider to handle intra-

daily/daily lags. I introduce a multiplicative scheme that seems to handle high

frequency data well and extends the aforementioned existing MIDAS regression papers

by incorporating seasonal patterns. The scheme I suggest is not specific to intra-daily

seasonal fluctuations. I also introduce various new parametric models applicable to

intra-daily returns, that are inspired by the asymmetric (daily) GARCH models.

The paper is organized as follows. In section 1.2 I introduce semi-parametric MIDAS

regression models in the context of news impact curves and volatility prediction. I also

cover intra-daily seasonality issues. Next, in section 1.3 I discuss asymptotic properties.

Empirical results are reported in section 1.4, while in section 1.5 I introduce a new class

of parametric models - inspired by the original ARCH-type news impact models - that

produce low frequency predictions using high frequency data. Section 1.6 concludes the

paper.

5



1.2 Volatility Measurement and Model

Specification

Volatility is a prevailing feature of financial markets. Its presence implies risk and

although asset returns are often represented as a martingale difference series, volatility

displays strong persistence and therefore is predictable. The recent vintage of volatility

models can be written as linear autoregressive predictions based on so called Realized

Variance, the sum of the squared intra-daily returns. More specifically, we think of

returns over some short time intervals, say i = 1, . . . , M, on day t. To fix notation, let

r(t−1)+(i/M), denote the high-frequency return in subperiod i of period t, where r(t−1)+i/M

≡ log(P(t−1)+i/M)− log(P(t−1)+(i−1)/M), P is the asset price. Such high frequency intra-

daily returns are used to compute Realized Variance, namely:

RVt ≡
M∑
i=1

r2
(t−1)+i/M (1.2.1)

yielding (ignoring the intercept term):

RVt =
τ∑

j=1

ψj(θ)RVt−j + εt (1.2.2)

where the lag coefficients are parameterized by θ. Models based on daily RV have

become very popular see e.g. Andersen, Bollerslev, and Diebold (2002), Andersen,

Bollerslev, Diebold, and Labys (2003) and Barndorff-Nielsen and Shephard (2007)

and references therein. Obviously, there are many variations on this basic theme.

It was noted that RV may include jumps and that the separation between continuous

path part of integrated volatility (the population counterpart of RV ) and the jump

6



component might be useful in formulating a prediction model.3 Moreover, high

frequency returns may be affected by microstructure noise that masks the true price

variation, and therefore various corrected measures of RV have been suggested.4 If we

think of asymptotics in terms of sampling at ever finer intra-daily intervals (i.e. M →
∞), it has also been shown that the so called leverage does not affect the measurement

of realized volatility (see inter alia Jacod (1998) and Barndorff-Nielsen and Shephard

(2007)). Yet, for finite intervals - like five minute intervals - as opposed to arbitrary

small intervals, it may not be warranted to proceed along this path when we want to

think about the impact of five minute returns, on predicting future volatility.5

1.2.1 A new class of regression models

I will not aggregate high frequency returns to daily RV measures. Instead I will

use them directly as regressors, for the purpose of forecasting future daily, weekly

or monthly volatility. Note two important issues, namely (1) we gain information since

I do not aggregate intra-daily returns and (2) I do not impose the quadratic variation

transformation - that is squared intra-daily returns - but instead let the regression fit

decide which functional form to take through the semi-parametric setting.

To predict future volatility with the past high-frequency return, I propose the

3 On the subject of extracting jump see for instance, Aı̈t-Sahalia (2004), Aı̈t-Sahalia and Jacod
(2007b), Aı̈t-Sahalia and Jacod (2007a), Andersen, Bollerslev, and Diebold (2006), Barndorff-Nielsen,
Graversen, Jacod, and Shephard (2006), Barndorff-Nielsen and Shephard (2006), Barndorff-Nielson
and Shephard (2004), Huang and Tauchen (2005), Tauchen and Zhou (2005), among others.

4 See for example, Aı̈t-Sahalia and Mancini (2006), Aı̈t-Sahalia, Mykland, and Zhang (2005),
Andersen, Bollerslev, and Meddahi (2006), Bandi and Russell (2006), Bandi and Russell (2005),
Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006), Ghysels and Sinko (2006) and Hansen and
Lunde (2006).

5 There are some notable exceptions in the recent literature that have tried to accommodate
asymmetries, including Barndorff-Nielsen, Kinnebrock, and Shephard (2008) and Engle and Gallo
(2006). Both consider some form of ’signed’ daily variances, i.e. variance measures multiplied by a sign
indicator function. In contrast, I use the sign of the intra-daily returns directly without aggregation.

7



following semi-parametric MIDAS regression model (again for simplicity restricting

ourselves to a single day):

RVt =
τ∑

j=1

M∑
i=1

ψij(θ)m(rt−j−(i−1)/M) + εt (1.2.3)

where ψij(θ) is a known lag coefficients function with unknown parameter vector θ

and m(.) is an unknown function. My analysis is much inspired by the recent work

of Linton and Mammen (2005) who propose the semi-parametric ARCH(∞). The

difference between the semi-parametric ARCH(∞) and the above regression is the

mixed data sampling scheme.6 Moreover, the difference between the above setting

and existing MIDAS regressions applied to volatility prediction is the presence of the

unknown function m(.). The latter will also be referred to as a news impact curves - a

concept originated by Engle and Ng (1993). Finally, positivity constraints need also to

be imposed, since we are dealing with volatility prediction models.7 Given the similarity

with Linton and Mammen (2005) it is not surprising that I follow their approach.8

6 I assume that τ is finite - yet we could easily assume it to be infinite. I also assume that M is
known and finite. This is a less innocent assumption particularly with respect to the current literature
on measurement of realized volatility. In the conclusions to the paper I return to this topic.

7 I should note that we could consider log RV, which can easily be done in the present context.
Most of the literature on news impact curves deals with the level of volatility, although the original
work by Engle and Ng (1993) considered both level and log specifications.

8Linton and Mammen (2005) point out in footnote 5 of their paper (p. 782) that ”... in small
samples we can find m(y) < 0 for some y, ...”. To remedy the problem they introduce max(σ̂2, ε > 0)
to guarantee positivity. I am grateful to Oliver Linton for sharing his code with me - the positivity
constraint max(σ̂2, ε > 0) appears in both my code and that underlying Linton and Mammen (2005).
As noted later, I never encountered cases in my empirical work where the constraint was binding. It is
perhaps also worth noting that this is also a concern for parametric models - notably those discussed
later in this chapter. For example on page 807 (footnote 10), Linton and Mammen (2005) observe
that for the monthly frequency the news impact curve of the GJR model, introduced by Glosten,
Jagannathan, and Runkle (1993), is monotonically decreasing. Therefore, although for the data range
they report a positive news impact curve is above 0, the news impact curve may be negative as well
for a broader range of returns.
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1.2.2 Dealing with intra-daily seasonality

Intra-daily seasonality in financial markets is pervasive. Wood, McInish, and Ord

(1985), one of the earliest studies employing intra-daily data, documents the well known

U-shaped pattern. Much has been written on the topic of seasonality in economic time

series (see e.g. Ghysels and Osborn (2001)). Broadly speaking there are two approaches:

(1) seasonally adjust series and construct non-seasonal models subsequently, or (2) build

seasonal features of the data into the model specification. Intra-daily seasonality has

been tackled similarly.9

I will deal with intra-daily seasonality along two different lines, one relatively

standard, the other being novel. To start with the standard one, let us reconsider

equation (1.2.3), using ’seasonally adjusted’ high frequency returns

RVt =
τ∑

j=1

M∑
i=1

ψij(θ)m(rsa
t−j−(i−1)/M) + εt (1.2.4)

where returns are adjusted by demeaning and standardizing as follows rsa
t−1+i/M =

(rt−1+i/M − ri)/si, i = 1, . . . , M, t = 1, . . . , T.10 Arguably, this does not take into

account seasonality in higher moments, and since we deal with nonparametric models,

this may be an issue.

In section 1.5 I will consider some parametric specifications for the news impact

curve m. While they will be discussed in detail later, it is worth taking two simple

examples for the purpose of explaining the treatment of intra-daily seasonal effects.

Namely, consider (1) a simple symmetric news impact curve, i.e. m(x) = ax2 and (2)

the asymmetric specification of Nelson (1991), i.e. m(x) = ax + b|x|. In both cases,

9See e.g. Andersen and Bollerslev (1997), Andersen and Bollerslev (1998), Bollen and Inder (2002),
Dacorogna, Gençay, Müller, Olsen, and Pictet (2001), Martens, Chang, and Taylor (2002), among
others.

10In particular, ri = 1/T
∑T

t=1 rt−1+i/M and si =
√

1
T−1

∑T
t=1(rt−1+i/M − ri)2.

9



making the reasonable assumption that ri = 0, ∀ i, the above seasonal adjustment

scheme amounts to (1) m(x) = aix
2 with ai ≡ a/s2

i and (2) m(x) = aix + bi|x|, with ai

≡ a/si and bi ≡ b/si. This suggest we might want to look at specifications of the type λi

m(x), or more generally mi(x), involving unadjusted returns. The unappealing feature

of mi(x), meaning a separate nonparametric function for each subperiod i, is that we

would have to estimate M nonparametric functions. While theoretical conceivable, this

would be impractical. The unappealing feature of λi m(x) is that it is not parsimonious

- involving M extra parameters, with M say 78 - this is again theoretically possible

but impractical.

The scheme I propose builds the intra-daily periodic behavior directly into the model

specification and is to the best of my knowledge novel. It amounts to formulating

a parsimonious parameterization of the intra-daily seasonal effects. The parametric

specification I consider will be multiplicative for intra-daily/daily lags. Namely, I define

ψij(.) as:

ψij(θ) = ψj(θ)ψi(θ) = Beta(j, τ, θ1, θ2)×Beta(i,M, θ3, θ4) (1.2.5)

where the beta polynomial specification has been used in prior work, notably in

Ghysels, Santa-Clara, and Valkanov (2002).11 Here I accommodate intra-daily patterns

according to Beta(i,M, θ3, θ4) while the daily memory decay is patterned according to

Beta(j, τ, θ1, θ2). Note that I impose the restriction that the intra-daily patterns wash

out across the entire day, i.e.
∑

i Beta(i, M, θ3, θ4) = 1. I also impose, without loss

of generality, a similar restriction on the daily polynomial. The intra-daily seasonal

pattern may not be fully captured by the Beta(i,M, θ3, θ4) polynomial. It appears to

work very well empirically, however, and its virtue is that it requires only the estimation

of two parameters. Other more complex specifications could be considered - a topic I

11More specifically: Beta(k,K, α, β) = (k/(K + 1))α−1(1− k/(K + 1))β−1Γ(α + β)/Γ(α)/Γ(β) and
Γ(α) =

∫ +∞
0

e−ttα−1dt. See also Ghysels, Sinko, and Valkanov (2006) for further discussion.

10



leave for future research.

It should finally be noted that the multiplicative scheme is of course restrictive, as

general news impact curves would not scale like the two token parametric examples

I used. There are both empirical and theoretical issues emerging here that will be

discussed later in this chapter.

1.3 Asymptotic analysis of semi-parametric

MIDAS models

In this section I look at equation (1.2.3) from a general perspective, i.e. I consider a

regression model involving a low frequency regressand y and regressors x, sampled

more frequently with a parametric lag structure for temporal dependence and a

nonparametric function m(.). I also discuss the important extension where x features

seasonal fluctuations. The setup in this section is generic and applies to settings beyond

that of news impact curves.

It was noted before that my analysis is much inspired by the recent work of Linton

and Mammen (2005) who propose a semi-parametric ARCH(∞). The estimation

approach in Linton and Mammen (2005) uses kernel smoothing methods and solve

a so called type II linear integral equation. While there are similarities between semi-

parametric MIDAS regressions and the work of Linton and Mammen (2005), it will also

become clear there are important and novel differences. Consider the following generic

setting where a regressor x is sampled M times more frequent (equally spaced) than

yt :

yt =
τ∑

j=1

Bj(θ)m(xt−1−(j−1)/M) + εt (1.3.1)

where the residuals εt are a martingale difference sequence. The lag coefficients

11



Bj(.), j = 1, ..., τ , are described by a finite dimensional parameter θ ∈ Θ ⊂ Rp with
∑τ

j=1 Bj(θ) = 1 for identification. Moreover, without loss of generality, I assume τ =

nM, n ∈ N.

I follow the approach of Linton and Mammen (2005) and (2006), and notably ignore

for the moment the presence of seasonality - an issue that will be discussed later. In

particular, I impose the following key assumption:

Assumption 1.3.1 The process {xs/M}+∞
s=−∞ is stationary; and the processes

{yt, xt−j/M}+∞
t=−∞ for j = 1, . . . , M are jointly stationary and geometrically α-mixing

and α(k) ≤ ask for some constant a and 0 ≤ s < 1 when k is big enough.

The true parameters θ0 and the true function m0(.) are defined as the minimizers

of the population least squares criterion function

S(θ, m) = E




{
yt −

τ∑
j=1

Bj(θ)m(xt−1−(j−1)/M)

}2

 (1.3.2)

Define mθ as the minimizer of the criterion function for any given θ ∈ Θ. A necessary

condition for mθ to be the minimizer of (1.3.2) is that it satisfies the first order condition

E

[{
yt −

τ∑
j=1

Bj(θ)m(xt−1−(j−1)/M)

}
τ∑

k=1

Bk(θ)g(xt−1−(k−1)/M)

]
= 0 (1.3.3)

for any measurable (and smooth) function g yielding a well-defined expectation.

Moreover, the second order condition is −E
[{∑τ

k=1 Bk(θ)g(xt−1−(k−1)/M)
}2

]
. The

fact that the latter is negative implies that the solution of the first order condition

does indeed (locally) minimize the criterion. The first order condition (1.3.3) can be

12



rewritten as

τ∑

k=1

Bk(θ)E[ytg(xt−1−(k−1)/M )]

−
τ∑

k=1

τ∑

j=1,j 6=k

Bk(θ)Bj(θ)E[mθ(xt−1−(j−1)/M )g(xt−1−(k−1)/M )]

=
τ∑

k=1

Bk(θ)2E[mθ(xt−1−(k−1)/M )g(xt−1−(k−1)/M )]

Taking g(.) to be the Dirac delta function, we have that

τ∑

k=1

Bk(θ)E[yt|xt−1−(k−1)/M = x]

−
τ∑

k=1

τ∑

j=1,j 6=k

Bk(θ)Bj(θ)E[mθ(xt−1−(j−1)/M )|xt−1−(k−1)/M = x]

=
τ∑

k=1

Bk(θ)2mθ(x)

for each x. This is an implicit equation for mθ(.) which can be re-expressed

as a linear type two integral equation in L2(f0), where f0 is the marginal

density of xs/M . Define B∗
k(θ) = Bk(θ)/

∑τ
j=1 Bj(θ)

2, k = 1, ..., τ, and B+
i (θ) =

∑τ−|i|
k=1 Bk(θ)Bk+|i|(θ)/

∑τ
j=1 Bj(θ)

2, i = ±1, ...,±(τ − 1). Finally,let f0,j be the joint

density of (xs/M , x(s−j)/M), then:

mθ(x) = m∗
θ(x) +

∫
Hθ(x, y)mθ(y)f0(y)dy, or mθ = m∗

θ + Hθmθ, (1.3.4)

m∗
θ(x) =

τ∑

k=1

B∗
k(θ)E[yt|xt−1−(k−1)/M = x] (1.3.5)

Hθ(x, y) = −
±(τ−1)∑
i=±1

B+
i (θ)

f0,i(y, x)

f0(y)f0(x)
. (1.3.6)

where the sum in (1.3.6) runs from i = 1 -τ, . . . , τ - 1, excluding 0 (using the same

notation as in Linton and Mammen (2005)). Note also that m0= mθ0 . The general

13



estimation strategy for a given sample {{yt}T
t=1, {xs/M}MT

s=1} is (a) for each θ compute

estimators m̂∗
θ, Ĥθ of m∗

θ, Hθ, (b) solve an empirical version of (1.3.4) to obtain an

estimator m̂θ of mθ and (c) choose θ̂ to minimize the profiled least squares criterion

with respect to θ and let m̂(x) = m̂θ̂(x).12

1.3.1 Asymptotic theory

The following theorem establishes the asymptotic properties of the semi-parametric

MIDAS regression model:

Theorem 1.3.1 Suppose that Assumption 1.3.1 and the regularity conditions

appearing in Appendix A.1 hold. Then for each θ ∈ Θ and x ∈ (x, x)

√
Th

[
m̂θ(x)−mθ(x)− h2bθ(x)

] → N(0, ωθ(x))

Moreover,
√

T (θ̂ − θ0) → N(0, Σ)

Furthermore, for x ∈ (x, x)

√
Th(m̂(x)−m(x)− h2b(x)) → N(0, ω(x))

where h denotes the bandwidth defined in Appendix A.1, Σ (eq. (A.2.5)) is variance

matrix, b (eq. (A.2.4)) and bθ (eq. (A.2.2)) are bias functions, ω appears below and ωθ

(eq. (A.2.1)) are variance functions defined in Appendix A.2.

Proof: See Appendix A.2

12The practical implementation of the above estimator is basically the same as in Linton and
Mammen (2005), and therefore omitted here. Chapter 2 Subsection 2.3.2 contains further details.
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In particular, it is shown in Appendix A.2 that

ω(x) =
||K||22

∑τ
j=1 B2

j E
[
ε2

t |xt−1−(j−1)/M = x
]

f0(x)
(∑τ

j=1 B2
j

)2 (1.3.7)

+
M − 1

M

||K||22
∑τ

j=1

∑τ
k=1,k 6=j B2

j B
2
k var(m(xt+(j−k)/M)|xt = x)

f0(x)
(∑τ

j=1 B2
j

)2

The above expression shows that the mixed data sampling scheme in semi-parametric

MIDAS regressions adds an extra term, i.e. the last appearing in the above expression.

When M = 1, the asymptotic distribution collapses to the case covered in Linton and

Mammen (2006). When M > 1, the dependent variable is sampled less frequent than

the regressor which - compared to the case where all processes are sampled at the

frequency 1/M, implies that (M − 1)/M regression equations are missing. It will be

easier to explain the above result intuitively once we cover the seasonal case to which

we turn our attention in the next subsection.

Finally, to calculate the confidence interval, I assume: (1) the sample size is

large enough, so the variance of m̂(x) is the same as the asymptotic variance; (2)

var(m(xs/M)|xk/M = x) = var(m(xs/M)),∀s 6= k; (3) var(εt|xt−j/M = x) = var(εt), j =

1, ..., τ . The confidence interval is then calculated for any x as,

CI(x) = [m̂(x) + Zαŝ(x), m̂(x) + Z1−α

√
ŝ(x)] (1.3.8)

ŝ(x) =

||K||22
(

var(ε̂t) + M−1
M

∑τ
j=1

∑τ
k=1,k 6=j B2

j (θ̂)B2
k(θ̂)

∑τ
j=1 B2

j (θ̂)
var(m̂(xt))

)

Thf̂0(x)
∑τ

j=1 B2
j (θ̂)

where Zα is the α-quantile of the standard normal distribution. I set α = 0.05, so that

Z0.05 = −1.645 and Z0.95 = 1.645.13

13Note that I am computing the confidence interval of m̂(x) corresponding to E(m̂(x)) instead of
m0(x), so I omit the discussion related to the bias part. See Wasserman (2006, p.89) for more details
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1.3.2 Extension to seasonal data

We now consider the case of regressors featuring seasonal fluctuations. The path I

take is inspired by the large literature on periodic models (see again Ghysels and

Osborn (2001) for a comprehensive survey). In periodic models, it is common to

stack and skip-sample all the observations pertaining to one period into a vector and

treat the specification as a multivariate stationary process (an approach dating back to

Gladyshev (1961)). In particular, I replace Assumption 1.3.1 by the following:

Assumption 1.3.2 The process {yt, Xt}+∞
t=−∞ is jointly stationary and geometrically α-

mixing, where Xt = {xt−(M−1)/M , xt−(M−2)/M , ..., xt}, and α(k) ≤ ask for some constant

a and 0 ≤ s < 1 when k is big enough.

Moreover, consider a multivariate function m(Xt) such that we can rewrite model

(1.3.1) as

yt =
τ∑

j=1

Bj(θ)m(Xt−j) + εt (1.3.9)

This framework is, for the purpose of asymptotic analysis, a ’stacked’ version of the

original Linton and Mammen setup. Due to the ”curse of dimensionality”, it is difficult,

if not practically impossible, to directly estimate the multivariate function m(.). Hence,

I propose the additive semi-parametric form of m(.): m(X) =
∑M

i=1 Bi(θ)m(xi).

Replacing m(.) in the model (1.3.9), we obtain:

yt =
τ∑

j=1

Bj(θ)[
M∑
i=1

Bi(θ)m(xt−j−(i−1)/M)] + εt

=
τM∑

l=1

Cl(θ)m(xt−1−(l−1)/M) + εt (1.3.10)

related to the confidence interval of nonparametric estimation.
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where Cl(θ) ≡ BJ(l,M)(θ)BI(l,M)(θ); J(l, M) = d(l − 1)/Me + 1 and I(l,M) =

l − Md(l − 1)/Me; dxe is the largest integer not greater than x. Hence, the new

estimator solves the following equations:

mθ(x) = m∗
θ(x) +

M∑
i=1

M∑

k=1

∫
Hi,k,θ(x, y)mθ(y)fk(y)dy (1.3.11)

m∗
θ(x) =

τM∑
j=1

Cj(θ)∑τM
l=1 Cl(θ)2

E[yt|xt−1−(j−1)/M = x] (1.3.12)

Hi,k,θ(x, y) = −
τ∑

n=1

τ∑

l=1

Ci+(n−1)M(θ)Ck+(l−1)M(θ)∑τ
p=1 Cp(θ)2

fi+(n−1)M,k+(l−1)M(x, y)

fi(x)fk(y)
, k 6= i

(1.3.13)

Hi,i,θ(x, y) = −
τ∑

n=1

τ∑

l=1,l 6=n

Ci+(n−1)M(θ)Ci+(l−1)M(θ)∑τ
p=1 Cp(θ)2

fi+(n−1)M,i+(l−1)M(x, y)

fi(x)fi(y)
(1.3.14)

We can estimate m∗
θ, Hi,k,θ, i, k = 1, ..., M via kernel smoothing for any given θ; then,

solve the equation (1.3.11) to obtain the estimation of mθ and finally find the minimizer

(θ̂, m̂θ̂) of the sample mean square error as the estimation of the parameters and news

impact curve. The asymptotic properties are discussed in Appendix A.3. In particular,

the variance expression now becomes:

ω(x) =
M∑
i=1

||K||22
∑τ

j=1 C2
(j−1)∗M+iE

[
ε2

t |xt−j−(i−1)/M = x
]

fi(x)
(∑τM

l=1 C2
l

)2

It is worth summarizing the differences in asymptotics via intuitive arguments.

We started with a general case

where the M + 1-dimensional vector {yt, xt−1+1/M , ..., xt−1+M/M} is stationary. This

yields a multivariate generalization of the original Linton and Mammen asymptotic

result without the extra (M − 1)/M correction term appearing in Theorem 1.3.1. The

expressions for the stacked vector case with common m differ from the nonseasonal
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setting, since we estimate marginal densities fi and joint densities that depend on i (for

details see again Appendix A.3). In the MIDAS setting where we add the stationarity

assumption 1.3.1 yielding a common f due to stationarity of the x process. The extra

term in Theorem 1.3.1 appears because now we see the function m more often (M − 1

times) than we see the regressand.

It is also worth emphasizing the role played by the multiplicative polynomial

structure I used in equation (1.2.5). In principle one could maintain an additive

structure m(X) =
∑M

i=1 λim(xi), with M free parameters λi. This would involve

estimating M additional parameters λi. I circumvent this by imposing a beta polynomial

structure which captures a parsimonious representation of the intra-daily pattern that

would appear in the those M parameters. This is where the product of beta polynomials

has impact.

To conclude, I should note that the nonseasonal case applies to periodic data, using

a standard argument in the seasonality literature initiated by Gladyshev (1961).14

Namely, (nonseasonal) marginal density functions f0, and joint densities f0,j as well

as expressions E[yt|xt−1−(k−1)/M = x] are meaningful and exist through an ’averaging’

argument that disguises the periodic structure (see Hansen and Sargent (2005)

Appendix A2 of Chapter 17 for formal arguments in a general setting). In the empirical

examples I will follow the latter approach.

14The argument is well known for linear ARMA models, i.e. a periodic ARMA model has a
’stationary’ linear ARMA representation that hides the periodic structure. This relates to the so
called Tiao and Grupe (1980) formula which expresses the generating function for the covariances not
conditioned on season in terms of the (conditional on season) covariance generating function of the
stacked and skip sampled vector process. Bollerslev and Ghysels (1996) discuss extensions to ARCH
models.
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1.4 Empirical Results

I analyze four datasets which consist of five-minute intra-day returns of respectively

Dow Jones and S&P500 cash and futures markets. The data are described in the top

panel of Table A.1. The samples start in 1993 or 1996 and hence do not include the

1987 crash, and end in October 2003. Besides the five-minute data, I also will consider

coarser sampling of returns in our models to see how predictability and asymmetries are

affected by sampling frequency. In the case of S&P 500 futures my data sample includes

that of Bollerslev, Litvinova, and Tauchen (2006), who document that transactions in

the futures market occur on average roughly every 9 seconds. This means that, at least

for the futures data, one may safely assume that microstructure effects are negligible, an

assumption also underlying the analysis in Bollerslev, Litvinova, and Tauchen (2006).15

By considering coarser sampling frequencies I also avoid the possibility that some

microstructure still affects the five-minute data. Besides looking at different sampling

frequencies for the regressors, I look at different prediction horizons for future volatility.

This will allow us to appraise how asymmetries play out at different horizons. So far I

wrote equations predicting RV only one day ahead, and I noted that longer horizons

are straightforward extensions. In the empirical work I consider three horizons (1) one

day, (2) one week and (3) one month. I discuss these cases separately. A major concern

about the semi-parametric model is that of over-fitting. I guard against it by examining

the out-of-sample prediction performance. Table A.1 lists the sample configurations,

namely the data retained for out-of-sample prediction are at least twenty-two months

15 I also computed signature plots (Andersen, Bollerslev, Diebold, and Labys (2000)) which indicate
that 5 minutes appears to be a reasonable sampling frequency for all of my series.
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at the end of the sample.16 Finally, it should also be noted that, as typical in semi-

parametric methods, there are many factors that affect the estimation results, such as

the initial parameters, the lag truncations, the number of grid points and the weights

of each grid point in numerically solving the integral equation, etc. I learned from

experimentation that there appear to be two critical choices that affect the estimation

outcome. They are (1) the bandwidth selection for the kernels, and (2) the number of

grid points. Regarding the bandwidth, I followed the asymptotically optimal bandwidth

selection procedure described in Section 6.1 of Linton and Mammen (2005). The choice

of grid points is more problematic and I did indeed find that my empirical results are

quite sensitive to the selection of the grid size.17

Table A.2 contains one day ahead forecasts for both parametric and semi-parametric

model specifications, with acronyms provided in the lower panel of Table A.1. At this

stage I have not yet discussed any of the parametric specifications, nor have I provided

a rationale for them. This matter will be discussed later. For the moment, it is worth

noting that the semi-parametric MIDAS regression models (denoted SP and SP-SA,

the latter involving seasonally adjusted returns) provide the best out-of-sample fit for

all the five-minute data (for each of the four series, the best models in terms of out-

of-sample predictions appear as bold faced in Table A.2). It is also interesting to note

that the semi-parametric models typically have the best in-sample fit. A comparison

of SP and SP-SA indicates that using the raw five-minute data without adjustment is

the best.

The parametric specifications include the RV, RAV and BPVJ models used

16 I construct the out-of-sample R2 as follows. I estimate the semi-parametric models over the
sample specified in Table A.1. Using data post-estimation sample I compute: R2=1-error2/var(y)
where error2 is the sum of squared difference between realized and predicted RV’s, and y is the
regressand.

17 Although the in-sample estimation results are similar for different number of grid points, the
out-of-sample forecasts vary a lot. The detail is omitted here due to page constraint.
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extensively in the current literature and based on aggregate daily volatility measures.

It means that a regression model involving non-parametric estimation of a response

function applied to high-frequency data, outperforms a fully parametric model involving

daily aggregate measures such as RV, RAV and even the separation of jumps and

continuous path volatility (identified via test statistics involving daily measures

discussed in Andersen, Bollerslev, and Diebold (2006)). Typically, well specified

parametric models outperform semi-parametric ones. Here, however, the semi-

parametric models de facto use more data and are not subject to the pre-specified

quadratic transformation of returns.

Since I have four volatility series, I consider four news impact curves in Figure

A.1 at two horizons: one-day and one-week ahead. Unlike the plot appearing in the

Introduction, I consider now four series instead of a single one. For the moment it

suffices to look at the dotted lines in each of the figures, which represent the news

impact curves obtained via the semi-parametric estimation. It is remarkable to note

how similar the shapes are for the SP model across the four different series. For all

series we recognize a similar shape. The asymmetry of the news impact is obvious.

Negative and positive returns have a different impact. The finding that so called no

news is good news extensively documented in the literature using daily returns has

the minimum of the news impact curve at zero. Instead, with intra-daily data I find

in Figure A.1 that the intra-daily news impact curves attain their minimum at some

mildly positive return, meaning that such returns result in decreased volatility the next

day (since the impact is negative).18 As noted in the Introduction, we also recognize the

18The shape of the news impact curve should bring us back to the issue of positivity constraints. It
is important to note that each and every day has many five-, ten- or thirty-minute intervals, and for
some m(.) is positive, whereas for others the functional yields a negative value. As far as positivity
is concerned, what matters is the final model prediction which compounds all the high frequency
intervals - so the fact that the function dips below zero over a single interval is not of major concern,
as long as the sum of all weighted functionals of five minute returns remains positive. In none of
our empirical examples did it ever happen that predictions yielded negative volatilities - that is the
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fact that extremely ’good news’, the positive returns (it turns out those larger than the

90% quantiles), cause increased future volatility. Finally, as noted earlier, ’bad news’

has a more acute impact than positive news. To give specific numbers, for the DJ cash

series the news impact curve achieves its minimum at 0.06 % five minute return and

crosses into volatility increasing region at 0.12 % five minute returns. The other series

yield similar results. It is also worth noting from the plots in Figure A.1 that the 95

% asymptotic confidence intervals around the news impact curves tell us that the dips

below zero are statistically significant in all four cases.19

Besides the news impact curves, we need to discuss the parametric part of the semi-

parametric MIDAS regression, or more specifically the Beta polynomials appearing in

equation (1.2.5). I plot only one of the four examples, namely the S&P500 Futures

example. There are three plots that appear in Figure A.2. The first plot displays

the product of the daily and intra-daily lags, hence it contains the profile of the

coefficients ψij. The second plot displays only the daily coefficients ψj and finally the

intradaily coefficients ψi appears in the third plot. The patterns are not surprising,

given the abundant evidence documented in the empirical volatility literature. The

daily coefficients decrease monotonically and are close to zero after 6 to 8 days. The

intra-daily weights display a somewhat asymmetric U-shaped pattern, perhaps best

characterized as a smirk. It means that late afternoon returns, carry relatively more

weight than morning returns. The product of the two provides a spiky decay pattern

compounding the intra-daily and daily response.

Table A.2 also contains both parametric and semi-parametric model specifications

constraint mentioned earlier and also appearing in the Linton and Mammen code - was never binding.

19 In the interest of space I do not report the curves involving the adjusted returns. It turns out that
with the exception of the DJ cash series, there is not such a clear asymmetric pattern that emerges. If
we look at the out-of-sample prediction performance in Table A.2 it appears that SP-SA models are
out-performed by the asymmetric SP regressions.
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for the one-week and -month prediction horizon. Moreover, the plots appearing in

Figure A.1 also cover the weekly horizon news impact curves. We observe from

the patterns that as the horizon increases, the news impact curves tend to become

symmetric and centered around the zero return axis. Hence, the same information set of

five minute returns produces over longer horizons a more symmetric prediction pattern.

This finding will clearly manifest itself later when I consider parametric models. The

asymmetric ones will fare well at short horizons but not at longer horizons.

When we examine the results in Table A.2 we observe that the semi-parametric

models hold up very well as far as forecasting out-of-sample goes. In fact the results

in Table A.2 reveal that the semi-parametric MIDAS is the best across three out of

four series for the monthly horizon. This is remarkable considering the fact that it is

partially based on non-parametric estimation.

The empirical results also show a comparison of 5 minute, 10 minute and half-hourly

sampled returns. With the semi-parametric MIDAS we note in general a decline in

predictive power as we move to coarser sampling frequencies. This result is expected,

as the 5 minute returns do not suffer from microstructure noise and aggregation of

returns reduces the information content.

The lesson we learned so far is that the news impact curve reported in the

Introduction is representative, as it appears similar across different series, and it also

holds up out-of-sample. The models I propose do not involve aggregation of returns

to a daily volatility measure - hence information in high frequency data is preserved.

Moreover, the asymmetric pattern is distinct from that implied by realized volatility

measurement.
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1.5 Parametric Models - New and Old

The findings discussed in the previous section wet our appetite for considering

parametric models that apply directly to intra-daily data. There are at least three

reasons for looking at a new class of parametric models. First, the models I will consider

relate to GARCH-type models and hence bridge a new and old literature. Second,

formal testing in the context of semi-parametric models is quite challenging while it is

not in the case of parametric models. The most important and third reason is very

practical. The estimation of semi-parametric MIDAS regressions is computationally

demanding. The estimation time is roughly equal to MT × τM × n2
g where MT is the

sample size, τM is the number of lags and ng is the number of grid points. Hence, in

our examples with MT ' 200, 000, τM ' 400 and ng = 41, estimation time is about

20 hours for PC with P4 2.4G CPU and 1GB Memory. In contrast, the parametric

models introduced in this section take between 1 and 5 minutes to estimate with the

same data.

The models I introduce are both old and new. They explore via parametric

specifications the patterns that we uncovered with the estimation of m(.) in the

previous section. Not surprisingly, the parametric specifications are inspired by news

impact curves adopted in the ARCH literature. Yet, the models I introduce are not

autoregressive and hence not ARCH-type models. Instead, they are within the context

of MIDAS regressions and replace the function m(.) by various parametric functional

forms. This new class of MIDAS regressions will be compared with more traditional

MIDAS regression models involving daily measures of volatility discussed earlier, that

is RV, RAV and BPV(J). It should also be noted that the new class of parametric

models inherit the parametric polynomial specifications appearing in equation (1.2.5).

That includes, of course the treatment of intra-daily seasonality via the product of beta

polynomials. Alternatively, the parametric models can also be formulated in terms of
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adjusted returns, hence the classical debate about seasonal adjustment emerges here

in the context of nonlinear time series regression models with mixed frequency data

sampling. In a first subsection I introduce the new parametric models. The second

subsection covers the empirical results.

1.5.1 A New Class of Parametric High Frequency Data

Models

The purpose is to introduce various parametric MIDAS regression models that

are inspired by my previously introduced semi-parametric setup. To facilitate the

presentation, I use the following indicator process: 1A which is one when A is true, and

equals zero otherwise. All models involving discretely sampled high frequency data can

be represented in a generic parametric way:

RVt =
τ∑

j=1

M∑
i=1

ψij(θ)NIC(rt−j−(i−1)/M) + εt (1.5.1)

where
∑τ

j=1

∑M
i=1 ψij = 1 and the following news impact curves (NIC) are used:

• NIC(r) = (a + br2), to which I attach the acronym SYMM. The SYMM model

can be regarded as a MIDAS extension of ARCH to the case of high-frequency

data. Obviously, the SYMM model cannot capture any asymmetries that appear

in the data. Note that the parameter a plays the role of the intercept in the

regression equation (1.5.1), since the polynomial weights add up to one.

• Inspired by the GJR model proposed by Glosten, Jagannathan, and Runkle

(1993), I consider the ASYMGJR model with NIC(r) = (a + br2 + c1r<0r
2).

Although in the original GJR model there is a constraint that b, c≥ 0 to guarantee

positivity of volatility, this constraint is most likely redundant with high frequency
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data. So, the constraint is not imposed in the ASYMGJR model.

• Another possible way to allow for asymmetric effects is via a location shift, as in

the Asymmetric GARCH model in Engle (1990b), yielding the ASYMLS model

with NIC(r) = (a + b(r − c)2).20

• The last model with the intra-daily return considered in my study is the ABS

model with NIC(r) = (a + b|r|), which is again a symmetric model. It relates to

the use of RAV (Realized Absolute Value) as a regressor on a daily basis.

All of the above models are compared to the more traditional daily volatility models.

I consider three cases of regressors: RV, RAV, BPV and Jumps yielding the RV model,

RAV model and BPVJ model, respectively. All these models are in the framework of

MIDAS regression, namely:

RVt = a + b

τ∑
j=1

ψj(θ)RVt−j + εt (1.5.2)

RVt = a + b

τ∑
j=1

ψj(θ)RAVt−j + εt (1.5.3)

RVt = a + b

τ∑
j=1

ψj(θ)BPVt−j + 1jump,t−1(c + d(RVt−1 −BPVt−1)) + εt (1.5.4)

where ψj(θ) = Beta(j, τ, θ1, θ2); 1jump,t−1 indicates if there is jump at day t − 1 and

RVt−1 − BPVt−1 is the size of the jump at day t − 1. We use the test suggested by

Huang and Tauchen (2005) to determine 1jump,t.

20I also considered two models which combine the GRJ model and Asymmetric GARCH model:
ASYMC1 model, NIC(r) = (a+ b1r−d<0(r− d)2 + c1r−d≥0(r− d)2); and ASYMC2 model, NIC(r; θ)
= (a + b1r<0(r − d− e)2 + c1r≥0(r − d)2). I do not report the results as they were roughly similar to
the ASYMGJR specification.
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1.5.2 Empirical Results

The full-sample estimation and out-of-sample forecasts are shown in Tables A.2, again

for one-day, one-week and one-month horizons. I cover first the one-day ahead horizon.

According to the R2s in the full-sample, the parametric models (using unadjusted

returns) can be divided into two groups: the first group consists of the asymmetric

ASYMGJR and ASYMLS models; the second group consists of the rest - i.e. the

symmetric ones. Again, for the one-day horizon, the R2s of the models in the first

group is in general 5% to 7% greater than those in the second group. The in-sample

results also hold in the out-of-sample forecasts comparisons. Hence, the asymmetric

effect is an important feature of the news impact curve in the high-frequency data case.

It is also worth noting that symmetric models using intra-daily data still typically

outperform the traditional models based on daily volatility measures, i.e. the RV, RAV

and BPVJ models. Hence, the information gain from intra-daily squared or absolute

returns is genuine and the superior forecasting performance is not entirely due to the

functional mis-specification of asymmetric effects. Yet, the bulk of the gains are due to

mis-specification. Comparing the SYMM and ABS high frequency data models with RV

and RAV, we note that the out-of-sample forecasting improvements are small, whereas

the asymmetric models are far superior to RV and RAV.

Tables A.2 also contain parametric models with seasonally adjusted returns, using

the three different sampling frequencies. Comparing models involving seasonally

adjusted versus unadjusted returns I find that it is fairly even in terms of out-of-sample

prediction performance without a clear pattern. However, in all cases, the difference

between a model with and without adjustment is typically small.

When we turn our attention to lower panel of Table A.2 covering longer horizon

predictions, we observe that symmetric models tend to outperform asymmetric models,

confirming the fact the news impact curves over longer horizons tend to become
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symmetric, as noted from the semi-parametric estimates in Figure A.1. The news

impact curves of two asymmetric models at the one-day horizon, the ASYMLS and

ASYMGJR models, are shown in Figure A.3 (top panel - S&P 500 cash series).

Comparing the news impact curves of the SP model with the two asymmetric parametric

models, we find that the ASYMGJR and SP curves are very similar for negative returns.

However, for extremely good news the two diverge. In contrast, the ASYMLS model

is not of the same shape, yet it does better than the ASYMGJR model in terms of

out-of-sample forecasting. The plot shows that the parametric models still do not fully

capture the news impact as recovered via semi-parametric estimation, and also explains

why the latter features superior forecasting performance. The same goes through for

the one-month horizon symmetric parametric models, as Figure A.3 (lower panel - DJ

cash series) indicates.

To conclude the discussion of empirical results we turn our attention to Table

A.3. For a selection of models and horizons, I report the empirical estimates of the

parametric models. It appears from the results in the table that parameter estimates

of the asymmetric effect (i.e. the parameter c) appears significant, even at the weekly

forecast horizon.21

The overall picture that emerges can be summarized as follows. I essentially made

three types of forecasting performance comparisons. They are (1) semi-parametric with

parametric models - both using high frequency data, (2) parametric models that use

aggregate measures RV, RAV, and BPV J - all three being implicitly symmetric - with

parametric models using high frequency data directly that are also symmetric, and (3)

parametric models that use high frequency data and are asymmetric with parametric

models also using high frequency data directly but are symmetric. The comparison

in (3) deals with parametric mis-specification, i.e. the role played by asymmetry. The

21 I do not report the monthly horizon - which has insignificant asymmetric effects
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comparison (2) tells us something about loss of information due to aggregation and

finally (1) reveals mis-specification of the parametric models. My empirical findings

show that the forecasting gains are mostly due to asymmetries, and the parametric

models I consider still do not fully capture all asymmetries - which is why the semi-

parametric MIDAS regressions outperform all other approaches.

1.6 Conclusions

I introduce semi-parametric MIDAS regressions and study their large sample behavior.

While semi-parametric MIDAS regressions potentially apply in a variety of settings,

the main focus of this chapter is on a specific application, namely news impact curves.

The regression models also inspired a new class of parametric volatility models that

apply directly to high-frequency data. The writing of Engle and Ng (1993) was in

part motivated by the recognition that volatility models, including the at time very

popular daily GARCH(1,1) model of Bollerslev (1986), imposed a particular response

function of shocks to volatility and that most often such response functions were

inherently misspecified. The most preferred model of Engle and Ng (1993), based

on their empirical analysis, was that of Glosten, Jagannathan, and Runkle (1993). The

main findings of this literature still remain very much part of our core beliefs today

regarding the key stylized facts of volatility dynamics. Namely, it is widely believed that

“good” news and “bad” news do not have the same impact on future volatility. This

is a theme that resonates in many empirical asset pricing papers, including Campbell

and Hentschel (1992), Glosten, Jagannathan, and Runkle (1993), among many others.

My empirical findings suggest that the findings from the daily volatility models

remain important for high frequency data. Moderately good (intra-daily) news reduces

volatility (the next day), while both very good news (unusual high positive returns)

and bad news (negative returns) increase volatility, with the latter having a more severe
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impact. The asymmetry evaporates at longer horizons. Parametric specifications,

which bridge the new and old literature, confirm these findings of asymmetry at short

and longer horizons via simple hypotheses imposed on the parameters.

My analysis can easily extend to handle overnight news, regressands other than

future volatility, multivariate nonparametric functions, among others. These are topics

of ongoing and future research. Another challenging topic for future research is the

asymptotics with respect to M in the context of MIDAS regressions. In this respect

the current literature on measurement of realized volatility is ahead of that on predicting

future volatility.
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Chapter 2

News is more than one dimensional

2.1 Introduction

It is difficult to define ’news’. Most academic papers look at a single series, say the

market return, and measure the impact of unexpected events - typically a prediction

error - onto future outcomes such as future volatility. In practice, market participants

absorb news from many sources simultaneously. It is the purpose of this chapter to try

to capture this multi-dimensional aspect of news, with as a specific example the impact

of market-wide and firm-specific news on the future volatility of individual firms.

The topic of this chapter obviously relates to multivariate volatility models and

more specifically the notion of news impact curve, due to Engle and Ng (1993), and

its multivariate extensions. Multivariate ARCH-type models, such as the VEC model

of Bollerslev, Engle, and Wooldridge (1988), the BEKK model of Engle and Kroner

(1995), the CCC model of Bollerslev (1990), the DCC model of Engle (2002), and

GDC model of Kroner and Ng (1998) implicitly deal with the impact of news on future

volatility.1 However, in multivariate ARCH-type models, the sources of news is usually

equal to the number of assets considered.

1See a recent review by Bauwens, Laurent, and Rombouts (2006) for more details.



In this chapter I adopt a framework where possibly a single asset is considered -

say an individual firm - affected by multiple sources of news. Chapter 1 defines news

as a return over a very short time interval and then measure its impact over multiple

horizons. The method is applied only in a univariate setting. I extend the method of

Chapter 1 to the case of multi-dimensional news and define news as the high-frequency

returns, e.g., 30-minute returns in this chapter, of the individual stocks and the market

index.2

The high-frequency returns of the market index, e.g., S&P 500 index in this chpater,

represent the market-wide news. However, the returns of an individual stock not only

contains firm-specific news, but also the market-wide news. It is therefore necessary

to separate, in this case, the two sources of news. To do so, I use the concept of news

impact surface, which was established by Kroner and Ng (1998) as an extension of

the concept of news impact curve by Engle and Ng (1993). Unlike the ARCH-type

parametric setting, I use a semi-parametric setup. This is appealing as it might be

better at capturing the complexity of the various sources of news, despite the potential

problems associated with ”curse-of-dimensionality”. Indeed, the empirical results show

that the multivariate extension of semi-parametric MIDAS models is a good tool to

measure the impact of high-dimensional news. I also build various new parametric

models based on two-dimensional news. As a comparison, some models based on one-

dimensional news are estimated. I find that (1) the models based on multi-dimensional

news show better in-sample fit and out-of-sample forecast performance than the models

based on one-dimensional news; (2) in the case of multi-dimensional news, there still

exists the asymmetric effect of news, i.e., good news and bad news with the same

magnitude have a different effect on the future volatility; (3) The impacts on volatility

2Sampling frequencies other than 30 minutes interval are a possibility. I select this specific frequency
mainly as there are enough transactions for an individual stock in 30 minute interval to avoid the effect
of the micro-structure noise.
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by two sources of news are interactive and firm specific.

The chapter is organized as follows. In section 2.2, I construct various of bivariate

parametric and semi-parametric models in the framework of MIxed DAta Sampling

(henceforth MIDAS) regressions, followed in section 2.3 by the estimation method and

asymptotic properties of the generic multivariate semi-parametric MIDAS models. The

empirical study is shown in section 2.4. Finally, section 2.5 concludes the chapter and

points out some directions of the future work.

2.2 Bivariate Parametric and Semi-parametric

Models

The purpose of this section is to introduce the parametric and semi-parametric models.

I first discuss how to separate market-wide news and firm-specific news. Then, a new

class of parametric models and a semi-parametric model based on two sources of news

will be proposed, followed by a more general semi-parametric model. Finally, two

univariate models will be listed as a comparison.

To set forth notation, let the unit interval correspond to one day. The high-frequency

returns are sampled at the frequency M , i.e., the discretely observed compounded

returns of the individual stock and the market index can be recorded as {r(i)
s/M , r

(m)
s/M}s≥0.

Obviously, rs/M is the kth intra-daily return at day t, where s = (t − 1) ∗ M + k

and 1 ≤ k ≤ M , so sometimes I use the notation rt+k/M instead of rs/M . The

Realized Volatility at day t, RVt, which is the practical implementation of the integrated

volatility, is defined as follows:

RVt =
M∑

k=1

r
(i)
t−1+k/M (2.2.1)
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As indicated in the Introduction, the high-frequency return of the individual stock

r(i) contains two types of news: market-wide news and firm-specific news. Since the

market-wide news can be measured by the high-frequency return of the market index

r(m), the question remaining is how to extract the firm-specific news, denoted by r(f),

from the return of the individual stock. In the simplest case, let’s assume that the two

types of news is linearly combined in the individual stock return, i.e., the relationship

can be expressed in the following equation:

r
(i)
s/M = βr

(m)
s/M + r

(f)
s/M (2.2.2)

Hence, rearranging equation (2.2.2), we can obtain the firm-specific news:

r
(f)
s/M = r

(i)
s/M − βr

(m)
s/M (2.2.3)

It is the well-known way to define market beta in the Capital Asset Pricing Model

(CAPM).3

All our models to be proposed are in the framework of the MIxed DAta Sampling,

MIDAS, regressions, which deal with data sampled at different frequencies. MIDAS

regressions have been widely applied in the context of volatility forecasting by Forsberg

and Ghysels (2006), Ghysels, Santa-Clara, and Valkanov (2006), Ghysels, Sinko, and

Valkanov (2006), among others. To predict the volatility with the high-frequency

return, I propose the following generic MIDAS regression model:

RVt =
τ∑

j=1

M∑

k=1

ψkj(θ)NIS(r
(f)
t−j+(k−1)/M , r

(m)
t−j+(k−1)/M) + εt (2.2.4)

3β in equation (2.2.2) or (2.2.3) is defined over the high-frequency returns, which can be compared
to the other market betas widely studied in the literature, such as the monthly market beta in Braun,
Nelson, and Sunier (1995), and the daily market beta in Cho and Engle (1999).
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where ψkj(θ) is a known lag coefficients function of the unknown parameters θ =

(θ1, θ2, θ3, θ4) and NIS(., .) is a function representing the impact on the future

volatility by the two sources of news. The parametric specification I consider will

be multiplicative for intra-daily/daily lags, the same as that in Chapter 1 to deal with

the seasonality in high-frequency returns. Namely, I define ψkj(.) as:

ψkj(θ) = ψj(θ)ψk(θ) = Beta(j, τ, θ1, θ2)×Beta(k, M, θ3, θ4) (2.2.5)

where Beta(l, L, α, β) = (l/(L+1))α−1(1−l/(L+1))β−1Γ(α+β)/Γ(α)/Γ(β) and Γ(α) =
∫ +∞

0
e−ttα−1dt. Intra-daily patterns are accommodated via Beta(k, M, θ3, θ4) while the

daily memory decay is patterned via Beta(j, τ, θ1, θ2). Note that I impose the restriction

that the intra-daily patterns wash out across the entire day, i.e. I impose the restriction

that the weights of the intra-daily polynomial add up to one,
∑

k Beta(k, M, θ3, θ4) = 1.

I could also impose a similar restriction on the daily polynomial in order to separately

identify a slope coefficient.

The remaining problem is to determine the form of NIS(., .). I consider four kinds

of functionals:

1. BSYMM model:

NIS(r(f), r(m)) = α0 + α1(r
(f))2 + α2(r

(m))2 + α3r
(f)r(m) (2.2.6)

The BSYMM model can be regarded as a MIDAS extension of multivariate

GARCH(1,1) to the case of high-frequency data. The product of the two types

of news is included in the model in order to capture their interactive impact.

Obviously, the BSYMM model cannot capture any asymmetries that appear in

the data.
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2. BASYMS model:

NIS(r(f), r(m)) = α0 + α1(r
(f))2 + α2(r

(m))2 + α3r
(f)r(m) (2.2.7)

+ α41r(f)<0(r
(f))2 + α51r(m)<0(r

(m))2 + α61r(f)<01r(m)<0r
(f)r(m)

+ α71r(f)≥01r(m)<0r
(f)r(m) + α81r(f)<01r(m)≥0r

(f)r(m)

The BASYMS model is inspired by the GJR model proposed by Glosten,

Jagannathan, and Runkle (1993), who consider the effect of the sign of the news.

3. BASYMLS model:

NIS(r(f), r(m)) = α0 + α1(r
(f) − α4)

2 + α2(r
(m) − α5)

2 + α3(r
(f) − α4)(r

(m) − α5)

(2.2.8)

The BASYMLS model shows another possible way to allow asymmetric effects:

with location shifted. It is inspired by the asymmetric GARCH model of Engle

(1990a).

4. BSPL model:

NIS(r(f), r(m)) = n(r(f), r(m)) (2.2.9)

The BSPL model is a bivariate semi-parametric MIDAS model. Here, n(., .) is a

unknown non-parametric function. It is flexible and avoids the misspecification

error. The estimation result can be interpreted through the news impact surface.

Note that the last letter in the acronym BSPL stands for linear because this model

depends on the assumption that the firm-specific news can be extracted through

the linear regression (2.2.3). How to estimate this model will be discussed in the

next section.

The BSPL model depends on the linear assumption, which might restrict the
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forecast ability of the model. I propose the following bivariate semi-parametric MIDAS

regression model, BSP model, to relax the linear assumption:

RVt =
τ∑

j=1

M∑

k=1

ψkj(θ)m(r
(i)
t−j+(k−1)/M , r

(m)
t−j+(k−1)/M) + εt (2.2.10)

In fact, the non-parametric function n(., .) in BSPL model should be equivalent to

m(., .) since n(r(f), r(m)) = n(r(i) − βr(m), r(m)) = m(r(i), r(m)). It is expected that the

BSPL model has the similar in-sample estimation as the BSP model, which is confirmed

by the empirical study. However, the linear transformation requires the estimated β.

If the linear assumption is wrong, the out-of-sample forecast performance of the BSPL

model may be worse than that of BSP model, which is also confirmed by the empirical

evidence.

As a comparison, I consider the RV model and the univariate semi-parametric

MIDAS models considered in Chapter 1. The definition of the RV model is as follows:

RVt =
τ∑

j=1

ψj(θ)(γ0 + γ1RVt−j) + εt (2.2.11)

where ψj(θ) = Beta(j, τ, θ1, θ2). The definition of the Univariate Semi-Parametric

MIDAS (USP) model is as follows:

RVt =
τ∑

j=1

M∑

k=1

ψkj(θ)m(r
(i)
t−j+(k−1)/M) + εt (2.2.12)

where ψkj(θ) is defined in equation (2.2.5) and m(.) is an unknown non-parametric

function. Both univariate models are based on the combined news, the high-frequency

return of the individual stock.
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2.3 Multivariate Semi-parametric MIDAS

Regression Models

One of the novel features introduced in this paper is the multivariate semi-parametric

MIDAS regression model. It can be regarded as an extension of the univariate

semi-parametric MIDAS models introduced in Chapter 1. In this section, a generic

specification is first introduced. Then, the estimation method and asymptotic

properties are discussed.

2.3.1 Model specification and Estimation Method

As a starting point, it is worth recalling that our estimation is mainly inspired by the

method proposed by Linton and Mammen (2005). They use kernel smoothing methods

and solve a so called type II linear integration equation to estimate the semi-parametric

ARCH(∞) model, which is expressed via the following equation:

σ2
t =

∞∑
j=1

ψj(θ)m(rt−j) (2.3.1)

where rt are daily returns; σ2
t is the conditional variance of the return; ψj(.) is a

known function, e.g., ψj(θ) = θj−1; hence θ is an unknown parameter and m(.) is an

unknown function. Chapter 1 adopts their method and extend it to the univariate

semi-parametric MIDAS model. In this section, I will further extend the estimation

method to the multivariate case. I discuss the semi-parametric model estimation in a

generic setting:

yt =
τ∑

j=1

Bj(θ)m(xt−1−(j−1)/M) + εt (2.3.2)

where εt is a martingale difference sequence with its mean independent of the past of

the d−dimensional vector regressors xs/M . The lag coefficients Bj(.), j = 1, ..., τ , are
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described by a finite dimensional parameter θ ∈ Θ ⊂ Rp with
∑τ

j=1 Bj(θ) = 1 for

identification and Bj(θ) ≥ 0; the true parameters θ0 and the true function m0(.) are

unknown. Without loss of generality, I assume τ = nM, n ∈ N.

I follow the approach of Linton and Mammen. Suppose {yt} and {xs/M} are

stationary. Let θ0 and m0 be defined as the minimizers of the population least squares

criterion function

S(θ, m) = E




{
yt −

τ∑
j=1

Bj(θ)m(xt−1−(j−1)/M)

}2

 (2.3.3)

Define mθ as the minimizer of the criterion function for any given θ ∈ Θ. A necessary

condition for mθ to be the minimizer of (2.3.3) is that it satisfies the first order condition

E

[{
yt −

τ∑
j=1

Bj(θ)m(xt−1−(j−1)/M)

}
τ∑

k=1

Bk(θ)g(xt−1−(k−1)/M)

]
= 0 (2.3.4)

for any measurable (and smooth) function g yielding a well-defined expectation.

Moreover, the second order condition is −E
[{∑τ

k=1 Bk(θ)g(xt−1−(k−1)/M)
}2

]
. The

fact that the latter is negative implies that the solution of the first order condition

does indeed (locally) minimize the criterion. The first order condition (2.3.4) can be

rewritten as

τ∑

k=1

Bk(θ)E[ytg(xt−1−(k−1)/M)]

−
τ∑

k=1

τ∑

j=1,j 6=k

Bk(θ)Bj(θ)E[mθ(xt−1−(j−1)/M)g(xt−1−(k−1)/M)]

=
τ∑

k=1

Bk(θ)
2E[mθ(xt−1−(k−1)/M)g(xt−1−(k−1)/M)]
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Taking g(.) to be the Dirac delta function, we have that

τ∑

k=1

Bk(θ)E[yt|xt−1−(k−1)/M = x]

−
τ∑

k=1

τ∑

j=1,j 6=k

Bk(θ)Bj(θ)E[mθ(xt−1−(j−1)/M)|xt−1−(k−1)/M = x]

=
τ∑

k=1

Bk(θ)
2mθ(x)

for each x. This is an implicit equation for mθ(.). It can be re-expressed

as a linear type two integral equation in L2(f0), where f0 is the marginal

density of xs/M . Define B∗
k(θ) = Bk(θ)/

∑τ
j=1 Bj(θ)

2, k = 1, ..., τ, and B+
i (θ) =

∑τ−|i|
k=1 Bk(θ)Bk+|i|(θ)/

∑τ
j=1 Bj(θ)

2, i = ±1, ...,±(τ − 1). Finally,let f0,j be the joint

density of (xs/M ,x(s−j)/M), then:

mθ(x) = m∗
θ(x) +

∫
Hθ(x,y)mθ(y)f0(y)dy, or mθ = m∗

θ + Hθmθ, (2.3.5)

m∗
θ(x) =

τ∑

k=1

B∗
k(θ)E[yt|xt−1−(k−1)/M = x] (2.3.6)

Hθ(x,y) = −
±(τ−1)∑
i=±1

B+
i (θ)

f0,i(y,x)

f0(y)f0(x)
. (2.3.7)

Hence, m0 = mθ0 .

2.3.2 Practical Implementation of the Estimation Method

The general estimation strategy for a given sample {{yt}T
t=1, {xs/M}MT

s=1} is (a) for each

θ compute estimators m̂∗
θ, Ĥθ of m∗

θ, Hθ, (b) solve an empirical version of the integral

equation (2.3.5) to obtain an estimator m̂θ of mθ and (c) choose θ̂ to minimize the

profiled least squares criterion with respect to θ and let m̂(x) = m̂θ̂(x).

There are many suitable estimators of the regression functions and density functions
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in the estimator; I shall use local linear regression estimators for m∗ and a fairly

standard density estimator for H but other choices are possible.

For any sequence {yt} and any lag j, j = 1, ..., τ , define the estimator ĝj(x) = ĉ0,

where (ĉ0, ĉ11, ..., ĉ1d) are the minimizers of the weighted sums of squares criterion

T∑

t=τ/M+1

{yt − c0 −
d∑

i=1

c1i(xt−1−(j−1)/M,i − xi)}2Khd(xt−1−(j−1)/M − x)

with respect to (c0, c1), where K is a symmetric probability density function, h is a

positive bandwidth, and Khd(.) =
∏d

i=1 K(./h)/h. Further define,

f̂0,i(y,x) =
1

MT − 2τ

MT−τ∑
s=τ+1

Khd(xs/M − y)Khd(x(s−i)/M − x), i = ±1, ...,±(τ − 1)

f̂0(x) =
1

MT

MT∑
s=1

Khd(xs/M − x)

m̂∗
θ(x) =

τ∑
j=1

B∗
j (θ)ĝj(x)

Ĥθ(x,y) = −
±(τ−1)∑
i=±1

B+
i (θ)

f̂0,i(y,x)

f̂0(y)f̂0(x)

Then define m̂θ as any solution to the equation

m = m̂∗
θ + Ĥθm, (2.3.8)

in L2(f̂0). I give a brief solution in practice. Let {αj, j = 1, ..., n} be some

equally spaced grid of points in [0, 1]. let xi,s/M denote the ith element of xs/M and

qi,j = F̂−1
i,0 (αj) be the empirical αj quantiles of xi,s/M . Construct grid points {qk}nd

k=1 ≡
⊗d

i=1{qi,j}n
j=1, i.e., qk = (q1,j1 , q2,j2 , ..., qd,jd

)T and k = 1 +
∑d

i=1(ji − 1)ni−1, ∀ 1 ≤ i ≤
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d, 1 ≤ k ≤ nd, 1 ≤ ji ≤ n. Now approximate (2.3.8) by

m̂(qk) = m̂∗
θ(qk) +

nd∑
j=1

Ĥθ(qk,qj)m̂(qj), k = 1, ..., nd (2.3.9)

The linear system (2.3.9) can be written in matrix notation

(Ind − Ĥθ)m̂θ = m̂∗
θ

where Ind is the nd × nd identity, m̂θ = (m̂(q1), ..., m̂(qnd))T and m̂∗
θ =

(m̂∗
θ(q1), ..., m̂

∗
θ(qnd))T , while

Ĥθ =


−

±(τ−1)∑

l=±1

B+
l (θ)

f̂0,l(qk,qj))

f̂0(qk)f̂0(qj)




nd

k,j=1

is an nd × nd matrix. When nd is not too big, e.g., nd < 2000, we can find the solution

values m̂θ = (Ind−Ĥθ)
−1m̂∗

θ; otherwise, iterative methods are indispensable (see Linton

and Mammen (2005) for more details).

Let θ̂ = arg minθ∈Θ ŜT (θ), where

ŜT (θ) =
1

T − τ/M

T∑

t=τ/M+1

{
yt −

τ∑
j=1

Bj(θ)m̂θ(xt−1−(j−1)/M)

}2

Finally, let m̂(x) = m̂θ̂(x).

2.3.3 Asymptotic theory

The following theorem establishes the asymptotic properties:

Theorem 2.3.1 Suppose that assumptions appearing in Appendix B.1 hold. Then for
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d ≤ 3, each θ ∈ Θ and x ∈ Xd

√
Thd

[
m̂θ(x)−mθ(x)− h2dbθ(x)

]
=⇒ N(0, ωθ(x))

Moreover,
√

T (θ̂ − θ0) =⇒ N(0, Σ)

Furthermore, for x ∈ Xd

√
Thd(m̂(x)−m(x)− h2db(x)) =⇒ N(0, ω(x))

where h denotes the bandwidth defined in Appendix B.1, Σ (eq. (B.2.5)) is variance

matrix, b (eq. (B.2.4)) and bθ (eq. (B.2.2)) are bias functions, ω (eq. (B.2.3)) and ωθ

(eq. (B.2.1)) are variance functions defined in Appendix B.2.

Proof: See Appendix B.2

The asymptotic property of the univariate semi-parametric MIDAS model in

Chapter 1 is a special case of Theorem (2.3.1) when d = 1. It is worth to mention

that the above theorem only holds for d ≤ 3, that is because the estimators of the

d−dimensional density function f(.) and the 2d−dimensional density function f0,j(., .)

cannot both converge for any given bandwidth h when d > 3.

2.4 Empirical Study

I apply the bivariate semi-parametric and parametric MIDAS models in the US stock

market. The dataset consists of 30-minute intra-day returns of the S&P 500 index over

a four year period, from November 1, 1999 to October 31, 2003. I also have 30-minute

returns for a collection of individual stocks that belong to the Dow Jones Industrial

Average (DJIA) index. The stocks considered are: AIG, BA, GE, GM, HD, IP, MCD,
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and MSFT. The tickers and compony names are listed in Table B.1. All return data

are reported from 9:30 am to 4:00 pm every trading day. The returns for some days are

missing or removed because of the price error, or holiday. The final dataset contains

978 trading days with 13 observations per day for a total of 12,714 30-minute returns

for each asset. For each individual stock, I utilize its own 30-minute return with 30-

minute return of the S&P 500 index to construct the two-dimensional news, while the

one-dimensional news is characterized by the 30-minute return of the individual stock.

I divide the full-sample period into the in-sample period and out-of-sample period:

the in-sample period is from November 1, 1999 to October 31, 2001; and the out-of-

sample period from November 1, 2001 to October 31, 2003. Table B.2 summaries the

descriptive statistics of the realized volatility of our assets. Table B.3 lists the model

acronyms and descriptions.

The in-sample fit and out-of-sample forecast performance of each model is shown

in Table B.4. Comparing the bivariate and univariate models, it is obvious that the

bivariate models in general have a better in-sample fit and, particularly, out-of-sample

forecast than the univariate models. Especially, as shown in Table B.5, the bivariate

semi-parametric MIDAS model, BSP model, increases the forecast accuracy by 28%

comparing to the RV model and 13% comparing to the univariate semi-parametric

MIDAS model. It implies that to forecast the volatility of an individual stock, we

should consider the market-wide news and firm-specific news separately, i.e., to utilize

two-dimensional other than one-dimensional news.

The main concern about the semi-parametric model is whether it is over-fitting. As

shown by the out-of-sample forecast in Table B.4, the bivariate semi-parametric MIDAS

model, BSP model, performs best for four of eight stocks. For each of the other four

stocks, its out-of-sample R2 is very close to the biggest R2. The other semi-parametric
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model, BSPL model, restricted by the linear assumption, provides the better out-of-

sample forecast performance in average than the bivariate parametric models.4 Hence,

the flexible semi-parametric models are also reliable.

In Chapter 1, one main conclusion is that the asymmetric effect does matter in

volatility forecasting based on one-dimensional news. It is confirmed in this paper by

the comparison between the univariate semi-parametric model and the RV model: the

former obviously outperforms the latter. Then, should the conclusion be extended to

the case of two-dimensional news? The answer is yes, which is supported by evidences

from several aspects. First, the estimations of most of parameters related to the

asymmetric effect, namely α4 to α8 in BASYMS model, and α4 and α5 in BASYMLS

model, are significant, which are shown in Table B.6. Second, the BASYMLS model

predicts much better than BSYMM model in most cases. Third, as illustrated in Figure

B.1, the news impact surfaces, no matter in bowl-shape or slide-shape, are obviously

asymmetric: when the firm-specific news and the market-wide news are both bad, the

future volatility will be increased most severely. Hence, when using two-dimensional

news to forecast the volatility, the asymmetric effect should be considered.

All bivariate parametric models and the BSPL model are based on the assumption

that the firm-specific news can be linearly extracted from the individual stock’s return.

Is this assumption reasonable? It is difficult to tell from the estimation result. On

one hand, the fact that the bivariate parametric model performs best for some stocks

positively supports the assumption; on the other hand, the BSPL model is dominated

by the BSP model in all cases except Microsoft while they are both semi-parametric

models and the only difference between them is that the former relies on the assumption

but the latter does not. Hence, the assumption might be suitable for some stocks, or

4Comparing the BSPL model with the bivariate parametric models through the same method as
shown in Table B.5, the BSPL model’s forecast performance is 9% better than the BSYMM model,
27% better than the BASYMS model, and 11% better than the BASYMLS model.
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capture the main characteristics of the relationship between two types of news but not

all.

In the bivariate parametric models, I consider the product of the two types of news,

since I guess the two types of news may have interactive impact on the future volatility.

This guess is confirmed since the estimations of the coefficients of the product, like α3

in BASYMLS model, or at least one of α6 to α8 in BASYMS model, are statistically

significant, which is shown in Table B.6. In fact, we can also see the interactive impact

in Figure B.2, which demonstrates the news impact curves of each stock with some

given values of the market-wide news. These news impact curves are sliced from the

news impact surfaces of the BSPL model in Figure B.1. If there were no interactive

impact, the curves in each sub-plot would be parallel to each other. However, they are

obviously not. Moreover, how the two types of news interactively affect on the volatility

is different across the stocks. For instance, for MCD (McDonald’s), the change of the

market-wide news seems to have no effect on the very good firm-specific news; for HD

(Home Depot), the good market-wide news and no news (news value equal to zero)

have the same effect on the firm-specific news, but for GM, most of the impact of the

firm-specific news coincide for the same magnitude of good and bad market-wide news.

The interactive impact can be regarded as a support of the action to model on the two

types of news separately (two-dimensional news) but not together (one-dimensional

news).

The last point is about the lag’s structure: I distinctly consider the daily decay and

intra-daily pattern in all models. Figure B.3 shows the coefficients of lags, ψij, of the

BSP model. Although BA and GE have a peak at second-day lag, the daily pattern

of each stock is almost the same, monotonically decreasing, i.e., the effect of the news

diminishes as the time interval between the news and the volatility increases. On the

other hand, the intra-daily pattern depends on the stock. As shown in Figure B.4, some
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are like a smile; some with a peak around noon; and some monotonically decreasing.

It implies that considering the intra-daily pattern alone is a good setting.

2.5 Conclusions and future work

I utilize the high-frequency returns to investigate the impact on the future individual

stock’s volatility by two types of news: market-wide news and firm-specific news. I

construct and employ various of parametric and semi-parametric models on the two-

dimensional news in the framework of MIDAS regression. According to the empirical

study based on eight individual stocks and S&P 500 index, I find that introducing

various news will increase the forecasting accuracy. I also find that there still exists the

asymmetric effect of news in the two-dimensional case, i.e., good news and bad news

with the same magnitude have a different impact on future volatility. Moreover, the

two types of news have an interactive impact on future volatility. This may be one of

the reasons why we need to consider the two types of news separately.

Compared to parametric models, flexible multivariate semi-parametric models are

favorable. Since these models are general regressions, they should have a wide

applicability. For instance, they can be used to study the properties of news impact on

the time-varying market betas, which is an open and active field in asset pricing.5 The

models I proposed are also easily generalized to other news sources, such as trading

volume, industry-wide news, etc.

5For instance, Braun, Nelson, and Sunier (1995) find that there is no asymmetric effect of news on
conditional betas by employing a bivariate EGARCH model with monthly portfolio returns; on the
other hand, Cho and Engle (1999) show that there does exist the asymmetric effect of news on the
betas by the similar model with daily individual stock data.
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Chapter 3

A Semi-parametric MIDAS Index

Model

3.1 Introduction

In the semi-parametric index models, the regressor and regressand are generally sampled

at the same frequency. However, to use information as much as possible, or to construct

a more accurate index, we may need to deal with data sampled at different frequencies

in one model, e.g. in the case of explaining monthly stock volatility with daily returns.

To my knowledge, there is no semi-parametric index model dealing with data sampled

at different frequencies. To fill the gap in the literature, I propose a new type of semi-

parametric index model, namely semi-parametric MIxed DAta Sampling (henceforth

MIDAS) index model. I also provide the estimation method and asymptotic properties.

Let’s start with the generalized linear model in the form E(yt|xt−1, ..., xt−n) =

m(
∑n

k=1 γkxt−k).
1 In general, we are facing sample {yt, xt}T

t=1. If we need n lags

x to construct index, we only need estimate n unknown parameters. However,

1McCullagh and Nelder (1989) have a complete discussion of the application and estimation of the
generalized linear model.



when x is sampled M times more frequently than y, i.e. we are facing sample

{yt, {xt−1+1/M , ..., xt−1+M/M}}T
t=1,M >> 1, the lags will increase dramatically to nM

and then the size of unknown parameters.2 For instance, in the case of using past 12

months’ daily stock squared returns to forecast next month’s volatility, if we use the

generalized linear model, we need to estimate 252(= 12 × 21) parameters, which is

impractical! To overcome this shortcoming, I introduce the semi-parametric index

model with the merit of MIDAS regression - using a known weight function with

parsimonious unknown parameters to describe the coefficients γj, j = 1, ..., nM , as

in the following form:

E(yt|xt−1/M , ..., xt−τ/M) = m(
τ∑

j=1

Bj(θ)xt−j/M) (3.1.1)

where τ = nM . One of the flexible weight functions Bj(.) is the Beta function with only

two unknown parameters; more complex choices of weight functions are also possible.3

The above model (3.1.1) can be further generalized to

E(yt|xt−1/M , ..., xt−τ/M) = m(
τ∑

j=1

Bj(θ)g(xt−j/M ; α)) (3.1.2)

where g(.) is a known function with unknown parameter α. The model (3.1.2) is the

semi-parametric MIDAS index model I investigate in this chapter.

This chapter is organized as follows. In section 3.2, I propose the estimation

method of the semi-parametric MIDAS index model. Then, I illustrate the asymptotic

properties in Section 3.3. Finally, Section 3.4 concludes.

2xt−1+i/M denotes the ith subperiod x in period t.

3The Beta function is defined as Beta(k, K, α, β) = (k/(K + 1))α−1(1 − k/(K + 1))β−1Γ(α +
β)/Γ(α)/Γ(β) and Γ(α) =

∫ +∞
0

e−ttα−1dt. See also Ghysels, Sinko, and Valkanov (2006) and Chapter
1 for further discussion.
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3.2 Model and Estimation Method

To easily describe the estimation method and asymptotic properties later, I express the

semi-parametric MIDAS index model (3.1.2) in the following form:

yt = m

(
τ∑

j=1

Bj(θ)g(xt−1−(j−1)/M ; α)

)
+ εt (3.2.1)

where εt is a martingale difference sequence independent on the past regressors xs/M ;

the lag coefficients Bj(.), j = 1, ..., τ , are described by a finite dimensional parameter

θ ∈ Θ ⊂ Rp with
∑τ

j=1 Bj(θ) = 1 for identification and Bj(θ) ≥ 0; g(.; α) is a known

function with a finite dimensional parameter α; the true parameter θ0, α0 and the true

function m0(.) are unknown; τ = nM, n ∈ N.

Let β0 = (θ0, α0) and m0 be defined as the minimizers of the population least squares

criterion function

Q(β, m) = E




{
yt −m

(
τ∑

j=1

Bj(θ)g(xt−1−(j−1)/M ; α)

)}2

 (3.2.2)

For convenience, define

Ut(β) =
τ∑

j=1

Bj(θ)g(xt−j/M ; α) (3.2.3)

which simplifies the criterion (3.2.2) to

Q(β,m) = E
[{yt −m (Ut−1(β))}2] (3.2.4)

Define mβ as the minimizer of the criterion function for any given β ∈ B ⊂ Rq. A

necessary condition for mβ to be the minimizer of (3.2.2) is that it satisfies the first

order condition
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E [{yt −mθ (Ut−1(β))}h(Ut−1(β))] = 0 (3.2.5)

for any measurable (and smooth) function h for which this expectation is well-

defined. The second order condition is −E
[{h(Ut−1(β))}2] which is negative implying

that the solution of the first order condition does indeed (locally) minimize the criterion.

Taking h(.) to be the Dirac delta function, the first order condition (3.2.5) can be

rewritten as

E[yt|Ut−1(β) = u] = mβ(u)

for each u.

Apply the local polynomial method to estimate the unknown function values

{m(λ)
β (u)}λ=0,...,p at a given point u:

{m(λ)
β (u)}λ=0,...,p (3.2.6)

= arg min
{gλ}λ=0,...,p

T∑

t=τ/M+1

{
yt −

p∑

λ=0

gλ
(Ut−1(β)− u)λ

λ!

}2

Kh(Ut−1(β)− u)

To set up proper notations, for any fixed u ∈ A, where set A is a compact set defined

in Assumption A1 in Appendix C.1, define estimators

m̂
(λ)
β (u) = λ!h−λE>

λ (Z>WZ)−1Z>WV (3.2.7)

where
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Z =

{(
Ut(β)− u

h

)λ
}

τ/M≤t≤T−1,0≤λ≤p

W = diag

{
1

T
Kh(Ut(β)− u)

}T−1

t=τ/M

V = (yt)τ/M+1≤t≤T

Eλ is a (p + 1) vector of zeros whose (λ + 1)-element is 1, p > 0 is an odd integer.

Let β̂ = arg minβ∈B Q̂T (β), where

Q̂T (β) =
1

T − τ/M

T∑

t=τ/M+1

{
yt − m̂β

(
τ∑

j=1

Bj(θ)g(xt−1−(j−1)/M ; α)

)}2

Finally, let m̂(x) = m̂β̂(x).

3.3 Asymptotic Properties

Theorem 3.3.1 Under Assumptions A1 to A8 in Appendix C.1, for any fixed u ∈ A,

as T →∞, the estimator m̂
(λ)
β (u) defined by (3.2.7) satisfies

√
Th2λ+1

{
m̂

(λ)
β (u)−m

(λ)
β (u)− hp+1−λb(u)

}
=⇒ N(0, υ(u))

where

b(u) = λ!Bλm
(p+1)
β (u)/(p + 1)! (3.3.1)

υ(u) = (λ!)2 f−1(u)Vλ var(yt|Ut−1 = u) (3.3.2)

f(.) is the design density of U , and Bλ and Vλ are, respectively, the λth element of
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S−1µ and the λth diagonal element of S−1S̃S−1, S, µ and S̃ are defined in Appendix

C.2.

Proof: See Appendix C.2

Assume that p− λ is odd. The global optimal bandwidth for estimating m(λ)(u) is

hopt =

[
{(p + 1)!}2 Vλf

−1(u) var(yt|Ut−1 = u)

2T (p + 1− ν) [m(p+1)(x)]
2
B2

λ

]1/(2p+3)

(3.3.3)

Let εt(β) = yt −mβ

(∑τ
j=1 Bj(θ)g(xt−1−(j−1)/M ; α)

)
, and let

Σ =

{
E

[
∂εt

∂β

∂εt

∂βᵀ (β0)

]}−1

E

[
∂εt

∂β

∂εt

∂βᵀ ε2
t (β0)

]{
E

[
∂εt

∂β

∂εt

∂βᵀ (β0)

]}−1

Theorem 3.3.2 Under Assumptions A1 to A9 in Appendix C.1,

√
T (β̂ − β0) =⇒ N(0, Σ)

Proof: See Appendix C.3

3.4 Conclusion

The semi-parametric MIDAS index model has both merits of semi-parametric index

model and MIDAS regressions: (1) to overcome the ”curse-of-dimensionality” in

multi-variate non-parametric model; and (2) to deal with data sampled at different

frequencies. The estimation is easy to be implemented and the parameter estimation

has root-n convergency. We expect the semi-parametric MIDAS index model have a

wide application.
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Appendix A

Appendix of Chapter 1

A.1 Regularity conditions

To facilitate the asymptotic analysis, I make the following assumptions on the residuals and regressors,

the kernel function K(.), and the bandwidth parameter h. Define ηs,j as

y(s+M+j−1)/M − E[y(s+M+j−1)/M |xs/M ], if (s + j − 1)/M ∈ Z (A.1.1)

ζs,j(θ) = mθ(x(s−j)/M )− E[mθ(x(s−j)/M )|xs/M ] (A.1.2)

ηs,θ = M

τ∑

j=1

B∗
j (θ)ηs,j (A.1.3)

ζs,θ = −
±(τ−1)∑

j=±1

B∗
j (θ)ζs,j(θ) (A.1.4)

Moreover, I assume that:

• Either Assumption 1.3.1 or 1.3.2 hold.

• E[|yt|2ρ] < ∞ for some ρ > 2.

• (1) If Assumption 1.3.1 holds, the covariate process {xs/M}∞s=−∞ has absolutely continuous

density f0(.) supported on [x, x] for some −∞ < x < x < ∞ and the bivariate densities

f0,j(.) are supported on [x, x]2. The function m(.) together with the densities f0(.) and f0,j(.)

are continuous and twice continuously differentiable over (x, x) and (x, x)2, and are uniformly

bounded, f0(.) is bounded away from zero on [x, x], i.e., infx≤ω≤x f0(ω) > 0. (2) otherwise,

if Assumption 1.3.2 holds, the covariate process {xt−1+i/M}∞t=−∞ has absolutely continuous

density fi(.) supported on [x, x] for some −∞ < x < x < ∞ and the bivariate densities

fi+tM,j+sM (.) are supported on [x, x]2, i, j = 1, ...,M ; t, s ∈ Z; i + tM 6= j + sM . The function
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m(.) together with the densities fi(.) and fi+tM,j+sM (.) are continuous and twice continuously

differentiable over (x, x) and (x, x)2, and are uniformly bounded, fi(.) is bounded away from

zero on [x, x], i.e., infx≤ω≤x fi(ω) > 0. 1

• The parameter space Θ is a compact subset of Rp, and the value θ0 is an interior point

of Θ. There exist no measurable function m(.) with
∫

m(x)2f0(x)dx = 1 such that
∑τ

j=1 Bj(θ)m(xt−1−(j−1)/M ) = 0 with probability one. For any ε > 0

inf
||θ−θ0||>ε

S(θ, mθ) > S(θ0,mθ0)

• The density function µ of (ηs,j , ζs,j(θ)) is Lipschitz continuous on its domain. The joint densities

µ0,j , j = 1, 2, ..., τ − 1, of ((ηt,0, ζs,0(θ)), (ηs,j , ζs,j(θ))) are uniformly bounded.

• The bandwidth sequence h(T ) satisfies T 1/5h(T ) → γ as T → ∞ with γ bounded away from

zero and infinity.

• For each x ∈ [x, x] the kernel function K has support [−1, 1] and
∫

K(u)du = 1 and
∫

K(u)udu = 0, such that for some constant C, supx∈[x,x] |K(u) − K(v)| ≤ C|u − v| for all

u, v ∈ [−1, 1]. Define µj(K) =
∫

ujK(u)du and ||K||22 =
∫

K2(u)du.

• εt satisfies E
[
εt|{xt−1−(s−1)/M}∞s=1, {εt−j}∞j=1

]
= 0 a.s.

A.2 Proof of Theorem 1.3.1

Define the functions βj
θ(x), j = 1, 2, as solutions to the integral equations βj

θ = β∗,jθ + Hθβ
j
θ , in which:

β∗,1θ (x) = m∗′′
θ (x),

β∗,2θ (x) =
±(τ−1)∑

i=±1

B∗
i (θ)

{
E(mθ(x(s−i)/M |xs/M = x)

f
′′
0 (x)

f0(x)
)−

∫
[∇2f0,s(x, y)]

mθ(y)
f0(x)

dy

}

1The following assumptions are based on Assumption 1.3.1; if necessary, they could be adjusted
according to Assumption 1.3.2 in the similar way. Hence, I omit the adjusted version when Assumption
1.3.2 holds.
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where the operator ∇2 is defined as ∇2 = ∂2/∂x2 + ∂2/∂y2. Then define

ωθ(x) =
||K||22
f0(x)

var[ηθ,s + ζθ,s] (A.2.1)

bθ(x) =
1
2
µ2(K)

[
β1

θ (x) + β2
θ (x)

]
(A.2.2)

Define:

ω(x) =
||K||22

∑τ
j=1 B2

j (θ0)E
[
ε2

t |xt−1−(j−1)/M = x
]

f0(x)
[∑τ

j=1 B2
j (θ0)

]2 (A.2.3)

+
M − 1

M

||K||22
∑τ

j=1

∑τ
k=1,k 6=j B2

j (θ0)B2
k(θ0) var(m(xt+(j−k)/M )|xt = x)

f0(x)
(∑τ

j=1 B2
j (θ0)

)2

b(x) = µ2(K)
{

1
2
m′′(x) + (I −Hθ)−1

[
f ′0
f0

∂

∂x
(Hθm)

]
(x)

}
(A.2.4)

Let εt(θ) = yt −
∑τ

j=1 Bj(θ)mθ(xt−1−(j−1)/M ), and let

Σ =
{

E

[
∂2εt

∂θ∂θᵀ (θ0)
]}−1

E

[
∂εt

∂θ

∂εt

∂θᵀ ε2
t (θ0)

]{
E

[
∂2εt

∂θ∂θᵀ (θ0)
]}−1

(A.2.5)

The proof follows Linton and Mammen (2005) and Linton and Mammen (2006). First, for general

θ we apply Proposition 1, p. 815, of Linton and Mammen (2005). Thus, we write

m̂∗
θ(x)−m∗

θ(x) = m̂∗,B
θ (x) + m̂∗,C

θ (x) + m̂∗,D
θ (x) (A.2.6)

(Ĥθ −Hθ)mθ(x) = m̂∗,E
θ (x) + m̂∗,F

θ (x) + m̂∗,G
θ (x) (A.2.7)

where m̂∗,B
θ (x) and m̂∗,E

θ (x) are deterministic and O(T−2/5),

m̂∗,B
θ (x) =

h2

2
µ2(K)m∗′′

θ (x)

m̂∗,E
θ (x) =

h2

2
µ2(K)

±(τ−1)∑
s=±1

B+
j (θ)

{
E(mθ(xt+j/M )|xt = x)

f ′′0 (x)
f0(x)

−
∫

[∇2f0,j(x, y)]
mθ(y)
f0(x)

dy

}
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while (using the notation Kh for a kernel with bandwith h):

m̂∗,C
θ (x) =

1
Tf0(x)

τ∑

j=1

∑
t

B∗
j (θ)Kh(xt−1−(j−1)/M − x)(yt − E(yt|xt−1−(j−1)/M ))

=
1

Tf0(x)

τ∑

j=1

∑
s

B∗
j (θ)Kh(xs/M − x)ηs,j

=
1

MTf0(x)

∑
s

Kh(xs/M − x)ηs,θ

m̂∗,F
θ (x) = − 1

MTf0(x)

±(τ−1)∑

j=±1

∑
s

B+
j (θ)Kh(xs/M − x)(m(x(s−j)/M )−E(m(x(s−j)/M )|xs/M ))

= − 1
MTf0(x)

±(τ−1)∑

j=±1

∑
s

B+
j (θ)Kh(xs/M − x)ζs,j

=
1

MTf0(x)

∑
s

Kh(xs/M − x)ζs,θ

and the remainder terms m̂∗,D
θ (x) and m̂∗,G

θ (x) satisfy

sup
θ∈Θ

sup
x∈[x,x]

|m̂∗,J
θ (x)| = op(T−2/5), J = D,G

From this one obtains an expansion

m̂θ(x)−mθ(x) = m̂B
θ (x) + m̂E

θ (x) + m̂∗,C
θ (x) + m̂∗,F

θ (x) + op(T−2/5) (A.2.8)

where m̂B
θ (x) = (I − Hθ)−1m̂∗,B

θ (x) and m̂E
θ (x) = (I − Hθ)−1m̂∗,E

θ (x), and the error is op(T−2/5)

over x and θ ∈ Θ. Form this expansion we obtain the main result. Specifically, m̂∗,C
θ (x) + m̂∗,F

θ (x)

is asymptotically normal with zero mean and the stated variance after applying a CLT for near

epoch dependent functions of mixing processes. The asymptotic bias comes from m̂B
θ (x) + m̂E

θ (x).

Note that because of the boundary modification to the kernel we have Ef̂0(x) = f0(x) + O(h2) and

Ef̂0,j(x, y) = f0,j(x, y) + O(h2) for all x, y.

The proof below makes use the following results. For δT = T−3/10+ζ with ζ > 0 small enough,

max
1≤|j|≤τ−1

sup
x,y∈[x,x]

|f̂0,j(x, y)− f0,j(x, y)| = op(δT ) (A.2.9)

sup
x∈[x,x]

|f̂0(x)− f0(x)| = op(δT ) (A.2.10)
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This follows by the exponential inequality of Bosq (1998, Theorem 1.3), see p. 817, Linton and

Mammen (2005).

PROOF OF (A.2.6). For each j,

ĝj(x)− gj(x) =
1

Tf0(x)

∑
t

Kh(xt−1−(j−1)/M − x)η̃t,j +
h2

2
µ2(K)bj(x) + RTj(x)

where η̃t,j = yt−E(yt|xt−1−(j−1)/M ) = η(t−1)M−(j−1),j as defined in (A.1.1); bj(x) is the bias function

and RTj(x) is the remainder term, which is op(T−2/5) uniformly over j ≤ τ and x ∈ [x, x]. See p. 818

of Linton and Mammen (2005) for detail. Therefore,

m̂∗
θ(x)−m∗

θ(x) =
τ∑

j=1

B∗
j (θ) [ĝj(x)− gj(x)]

=
1

Tf0(x)

τ∑

j=1

∑
t

B∗
j (θ)Kh(xt−1−(j−1)/M − x)η̃t,j

+
h2

2
µ2(K)

τ∑

j=1

B∗
j (θ)bj(x) + op(T−2/5)

uniformly over x ∈ [x, x]. Then (A.2.6) follows.

PROOF OF (A.2.7). We have

(Ĥθ −Hθ)mθ(x) =
∫

Ĥθ(x, y)mθ(x)f̂0(y)dy −
∫

Hθ(x, y)mθ(x)f0(y)dy

= −
±(τ−1)∑

j=±1

B+
j (θ)

∫ [
f̂0,j(x, y)

f̂0(x)
− f0,j(x, y)

f0(x)

]
mθ(y)dy

Denote by ∫
f0,j(x, y)

f0(x)
mθ(y)dy = E

[
m(x(s−j)/M )|xs/M = x

] ≡ rj(x)

Then we can write

∫
f̂0,j(x, y)

f̂0(x)
mθ(y)dy =

∫
f̂0,j(x, y)mθ(y)dy

f̂0(x)
=

1
MT

∑
s Kh(xs/M − x)m∗

s−j
1

MT

∑
s Kh(xs/M − x)

(A.2.11)
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where

m∗
s =

∫
Kh(y − xs/M )mθ(y)dy (A.2.12)

=
∫

Kh(y − xs/M )(mθ(y)−mθ(xs/M ))dy + mθ(xs/M )

= mθ(xs/M ) + m′
θ(xs/M )

∫
Kh(y − xs/M )(y − xs/M )dy

+
1
2

∫
Kh(y − xs/M )(y − xs/M )2m′′

θ (x∗s/M (y))dy

= mθ(xs/M ) +
h2

2
µ2(K)m′′

θ (xs/M ) + o(h2)

by a second order Taylor expansion, a change of variables and the assumed property of the kernels.

The error is uniformly o(h2) over s, θ. Note that (A.2.11) is just like a local constant smoother of

m∗
s−j on xs/M and can be analyzed in the same way.

∫ [
f̂0,j(x, y)

f̂0(x)
− f0,j(x, y)

f0(x)

]
mθ(y)dy =

∫
f̂0,j(x, y)mθ(y)dy

f̂0(x)
− rj(x)

=
1

MT

∑
s Kh(xs/M − x)(m∗

s−j − rj(x))
1

MT

∑
s Kh(xs/M − x)

=
1

MT

∑
s Kh(xs/M − x)(m∗

s−j −mθ(x(s−j)/M ))
1

MT

∑
s Kh(xs/M − x)

+
1

MT

∑
s Kh(xs/M − x)(mθ(x(s−j)/M )− rj(xs/M ))

1
MT

∑
s Kh(xs/M − x)

+
1

MT

∑
s Kh(xs/M − x)(rj(xs/M )− rj(x))

1
MT

∑
s Kh(xs/M − x)

' h2

2
µ2(K)E

[
m′′

θ (x(s−j)/M )|xs/M = x
]

+
1

MTf0(x)

∑
s

Kh(xs/M − x)ζs,j

+
h2

2
µ2(K)

[
r′′j (x) +

2r′j(x)f ′0(x)
f0(x)

]
(A.2.13)

by standard arguments for Nadaraya-Watson smoother. The approximation is valid uniformly over

|j| ≤ τ − 1, x ∈ [x, x] and θ ∈ Θ.

The bias terms in (A.2.13) are h2

2 µ2(K)
[
r′′j (x) + 2r′j(x)f ′0(x)

f0(x) + E
[
m′′

θ (x(s−j)/M )|xs/M = x
]]

, which

can be rearranged as

h2

2
µ2(K)

[
−f ′′0 (x)

f0(x)
rj(x) +

1
f0(x)

∫ (
∂2f0,j(x, y)

∂x2
+

∂2f0,j(x, y)
∂y2

)
mθ(y)dy

]
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Refer to p. 23 of Linton and Mammen (2006) for details. In conclusion, we have

∫
Ĥθ(x, y)mθ(x)f̂0(y)dy −

∫
Hθ(x, y)mθ(x)f0(y)dy

= −
±(τ−1)∑

j=±1

B+
j (θ)

[
1

MTf0(x)

∑
s

Kh(xs/M − x)ζs,j

]

+
±(τ−1)∑

j=±1

B+
j (θ)

h2

2
µ2(K)

[
f ′′0 (x)
f0(x)

rj(x)− 1
f0(x)

∫ (
∂2f0,j(x, y)

∂x2
+

∂2f0,j(x, y)
∂y2

)
mθ(y)dy

]

+ op(T−2/5)

uniformly over x ∈ [x, x] and θ ∈ Θ. This concludes the proof of (A.2.7).

The root-n consistency of θ̂ is the same as in Linton and Mammen (2005, 2006), so I omit them

here. We can now effectively set θ= θ0, and obtain a simpler expansion for m̂θ0(x)−m(x). To simplify

I omit θ0 in Bj(θ0) and obtain:

m̂∗,C
θ (x) =

1
Tf0(x)

τ∑

j=1

∑
t

B∗
j Kh(xt−1−(j−1)/M − x)(yt − E(yt|xt−1−(j−1)/M ))

=
1

Tf0(x)

τ∑

j=1

∑
t

B∗
j Kh(xt−1−(j−1)/M − x)εt

+
1

Tf0(x)

τ∑

j=1

τ∑

k=1,k 6=j

∑
t

Kh(xt−1−(j−1)/M − x)B∗
j Bkζ(t−1)M−j+1,j−k

m̂∗,F
θ (x) = − 1

MTf0(x)

±(τ−1)∑

j=±1

∑
s

Kh(xs/M − x)B+
j ζs,j

− 1
MTf0(x)

τ∑

j=1

τ∑

k=1,k 6=j

∑
s

Kh(xs/M − x)B∗
j Bkζs,j−k

Therefore:

m̂∗,C
θ (x) + m̂∗,F

θ (x) =
1

Tf0(x)

τ∑

j=1

∑
t

B∗
j Kh(xt−1−(j−1)/M − x)εt

+
1

Tf0(x)

τ∑

j=1

τ∑

k=1,k 6=j

∑
t

Kh(xt−1−(j−1)/M − x)B∗
j Bkζ(t−1)M+j−1,j−k

− 1
MTf0(x)

τ∑

j=1

τ∑

k=1,k 6=j

∑
s

Kh(xs/M − x)B∗
j Bkζs,j−k

=
1

Tf0(x)

τ∑

j=1

∑
t

B∗
j Kh(xt−1−(j−1)/M − x)εt +

τ∑

j=1

τ∑

k=1,k 6=j

B∗
j BkA
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where

A =
1

Tf0(x)

∑
t

Kh(xt−1−(j−1)/M − x)ζ(t−1)M−j+1,j−k −
1

MTf0(x)

∑
s

Kh(xs/M − x)ζs,j−k

=
M − 1

MTf0(x)

∑
t

Kh(xt−1−(j−1)/M − x)ζ(t−1)M−j+1,j−k

− 1
MTf0(x)

M∑

i=1

(∑
t

Kh(xt−1−(j−1−i)/M − x)ζ(t−1)M−j+1+i,j−k

)

Since

√
Th

(
(Tf0(x))−1

∑
t Kh(xt−1−(j−1−i)/M − x)ζ(t−1)M−j+1+i,j−k

)

=⇒ N(0, ||K||22f0(x)−1 var(m(xt+(j−k)/M )|xt = x)), ∀i, j, k

and if i.i.d. Zi ∼ N(0, σ2
i ),

∑
i Zi ∼ N(0,

∑
i σ2

i ),

√
ThA =⇒ N(0, [(M − 1)2 + (M − 1)]M−2||K||22f0(x)−1 var(m(xt+(j−k)/M )|xt = x))

Therefore,
√

Th
(
m̂∗,C

θ (x) + m̂∗,F
θ (x)

)
=⇒ N(0, ω(x)) where

ω(x) =
||K||22

∑τ
j=1 B2

j E
[
ε2

t |xt−1−(j−1)/M = x
]

f0(x)
(∑τ

j=1 B2
j

)2

+
M − 1

M

||K||22
∑τ

j=1

∑τ
k=1,k 6=j B2

j B2
k var(m(xt+(j−k)/M )|xt = x)

f0(x)
(∑τ

j=1 B2
j

)2

Likewise, there is a simplification for the bias term m̂B
θ (x) + m̂E

θ (x).

If εt is i.i.d. and independent of the process {xs/M}, the first item of ω(x) is simplified as

||K||22σ2
ε/

(
f0(x)

∑τ
j=1 Bj(θ0)2

)
, where σ2

ε is the variance of εt. When M = 1, the result is the same

as that in Linton and Mammen (2006). If Ĥmod
θ (x, y) is used, b(x) is simplified to µ2(K)m′′(x)/2.

61



A.3 Asymptotic Properties of the Seasonality

Model

Note that most of the proof in Appendix A.2 does not require that {xs/M} is stationary, but

{yt, xt−1+1/M , ..., xt−1+M/M} is stationary. By replacing f0(.) with the appropriate fi(.), f0,j(., .)

with the appropriate fi/M+n,k/M+l(., .), Bj(θ) with Cl(θ), and rearranging the equations, we can

achieve the asymptotic properties of the seasonality model (1.3.10) in the exact same form as that in

Theorem 1.3.1, certainly with different definition of the bias functions and variance functions, which

are described in the following paragraphs.

Define operator Hθ as follows:

Hθm =
∫ M∑

i=1

M∑

k=1

Hi,k,θ(x, y)fk(y)m(y)dy (A.3.1)

If function G is the solution to the integral equation G = G∗+HθG, we can express G as (I−Hθ)−1G∗.

Then, for any given θ, (1) the bias function is as follows:

bθ(x) = 1
2µ2(K)(I −Hθ)−1

[
β∗,1θ (x) + β∗,2θ (x)

]
(A.3.2)

where

β∗,1θ (x) = m∗′′
θ (x),

β∗,2θ (x) =
M∑

i=1

M∑

k=1

τ∑
n=1

τ∑

l=1,l 6=n if i=k

Ci+(n−1)M (θ)Ck+(l−1)M (θ)
∑τM

p=1 Cp(θ)2
{
α1

θ(x) + α2
θ(x)

}

α1
θ(x) = E(mθ(xl+k/M )|xn+i/M = x)

f
′′
i (x)
fi(x)

α2
θ(x) = −

∫
[∇2fn+i/M,l+k/M (x, y)]

mθ(y)
fi(x)

dy

∇2 ≡ ∂2/∂x2 + ∂2/∂y2

and (2) the variance function is:

ωθ(x) =
∑M

i=1
||K||22
fi(x) var[ηθ,i + ζθ,i] (A.3.3)
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where

ηθ,i =
τ∑

n=1

C(n−1)M+i(θ)∑τM
p=1 Cp(θ)2

(yt − E(yt|xt−1−n+i/M = x))

ζθ,i =
M∑

k=1

τ∑
n=1

τ∑

l=1,l 6=n if i=k

Ci+(n−1)M (θ)Ck+(l−1)M (θ)
∑τM

p=1 Cp(θ)2
(mθ(xl+k/M )− E(mθ(xl+k/M )|xn+i/M = x))

When the estimation of θ converges to the true value, the bias and variance functions are:

b(x) = µ2(K)

{
1
2
m′′(x) + (I −H)−1

M∑

i=1

[
f ′i
fi

∂

∂x
(Him)

]
(x)

}
(A.3.4)

ω(x) = ||K||22
M∑

i=1

τ∑
n=1

C(n−1)M+i(θ)∑τM
p=1 Cp(θ)2

E
[
ε2
t |xt−1−n+i/M = x

]

fi(x)
(A.3.5)

where

Him =
∑M

k=1

∑τ
n=1

∑τ
l=1

l 6=n if i=k

Ci+(n−1)M (θ)Ck+(l−1)M (θ)∑τM
p=1 Cp(θ)2

∫ fi+(n−1)M,i+(l−1)M (x,y)

fi(x) m(y)dy

The asymptotic property of the estimation of θ is exactly same as that in Theorem 1.3.1, so it is

omitted here.
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Table A.1: Details of the data series and model acronyms

The top part of the table provides the details of the data used in our study. I analyze four
series which consist of intra-day returns of respectively Dow Jones and S&P500 cash and futures
markets. The lower part summarizes all models, showing the equation numbers, the models’
acronyms and some details. The generic specification appears in equation (1.5.1), namely: RVt =∑τ

j=1

∑M
i=1 ψij(θ)NIC(rt−j−(i−1)/M )+ εt where

∑τ
j=1

∑M
i=1 ψij = 1 and news impact curves NIC(r)

are used.

Period Days Trading Hours M

Full Sample

Dow Jones Cash 4/1/1993˜10/31/2003 2669 9 : 30˜16 : 05 78
Futures 10/6/1997˜10/31/2003 1529 7 : 25˜15 : 20 96

S&P 500 Cash 4/1/1993˜10/31/2003 2550 8 : 35˜15 : 00 78
Futures 10/1/1997˜10/31/2003 1531 8 : 35˜15 : 30 84

Out-of-sample

Dow Jones Cash 4/1/2001˜10/31/2003 649 9 : 30˜16 : 05 78
Futures 11/1/2001˜10/31/2003 504 7 : 25˜15 : 20 96

S&P 500 Cash 1/2/2002˜10/31/2003 456 8 : 35˜15 : 00 78
Futures 1/2/2002˜10/31/2003 463 8 : 35˜15 : 30 84

News Impact Acronym Explanation

Intra-daily returns - Parametric

(a + br2) SYMM Symmetric
(a + b|r|) ABS Absolute Value

(a + br2 + c1r<0r
2) ASYMGJR Asymmetric GJR

(a + b(r − c)2) ASYMLS Asymmetric Location Shift

Intra-daily returns - Semi-parametric

Eq. (1.2.3) SP Semi-parametric
Eq. (1.2.4) SP-SA Semi-parametric with Seas. Adj. Returns

Models with daily volatility

Eq. (1.5.2) RV RV
Eq. (1.5.3) RAV RAV
Eq. (1.5.4) BPVJ BPV and Jumps
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Figure A.1: One-day ahead and one-week ahead news impact curves for SP
models

The plots represent estimates of semi-parametric news impact curves - i.e. the function m - as specified
in equation (1.2.3). Results for four series using five minute intra-daily returns are displayed. They
are: (a) Dow Jones Cash Market; (b) Dow Jones Futures Market; (c) S&P 500 Cash Market; and (d)
S&P 500 Futures Market. The confidence bands are computed according to formula (1.3.8).
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Figure A.2: Parametric polynomial lag estimates of semi-parametric
MIDAS

This figure shows the lag polynomials of the semi-parametric MIDAS regression using the S&P 500
futures data. The first plot provides the product of the daily and intra-daily Beta polynomials
appearing in equation (1.2.5). The second contains only the daily polynomial whereas the third
only the intra-daily.
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Figure A.3: One-day and one-month ahead news impact curves for semi-
parametric and parametric MIDAS models

The plots represent estimates of semi-parametric news impact curves - i.e. the function m - as specified
in equation (1.2.3). Results for two series using five minute intra-daily returns are displayed. They
are: (a) S&P 500 Cash Market (one-day ahead) and (b) Dow Jones Cash Market (one-month ahead).
The confidence bands are computed according to formula (1.3.8).
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Appendix B

Appendix of Chapter 2

B.1 Regularity conditions

To facilitate the asymptotic analysis, I make the following assumptions on the residuals and regressors,

the kernel function K(.), and the bandwidth parameter h. Define

ηs,j = { y(s+M+j−1)/M − E[y(s+M+j−1)/M |xs/M ], if (s + j − 1)/M ∈ Z
0, otherwise

(B.1.1)

ζs,j(θ) = mθ(x(s−j)/M )− E[mθ(x(s−j)/M )|xs/M ] (B.1.2)

ηs,θ = M

τ∑

j=1

B∗
j (θ)ηs,j (B.1.3)

ζs,θ = −
±(τ−1)∑

j=±1

B∗
j (θ)ζs,j(θ) (B.1.4)

Moreover, I assume that:

• The process {xs/M}+∞s=−∞ is stationary; and the process {yt,Xt}+∞t=−∞ are jointly stationary

and geometrically α-mixing, where Xt = {xt−(M−1)/M ,xt−(M−2)/M , ...,xt}, and α(k) ≤ ask for

some constant a and 0 ≤ s < 1 when k is big enough.

• E[|yt|2ρ] < ∞ for some ρ > 2.

• The process {xs/M}∞s=−∞ has absolutely continuous density f0(.) supported on Xd ≡
⊗d

i=1[xi, xi] ⊆ Rd for some −∞ < xi < xi < ∞ and the densities f0,j(.) are supported on

X2
d. The function m(.) together with the densities f0(.) and f0,j(.) are continuous and twice

continuously differentiable over Xd and X2
d, and are uniformly bounded, f0(.) is bounded away

from zero on Xd, i.e., infω∈Xd
f0(ω) > 0.
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• The parameter space Θ is a compact subset of Rp, and the value θ0 is an interior point

of Θ. There exist no measurable function m(.) with
∫

m(x)2f0(x)dx = 1 such that
∑τ

j=1 Bj(θ)m(xt−1−(j−1)/M ) = 0 with probability one. For any ε > 0

inf
||θ−θ0||>ε

S(θ, mθ) > S(θ0,mθ0)

• The density function µ of (ηs,j , ζs,j(θ)) is Lipschitz continuous on its domain. The joint densities

µ0,j , j = 1, 2, ..., τ − 1, of ((ηt,0, ζs,0(θ)), (ηs,j , ζs,j(θ))) are uniformly bounded.

• The bandwidth sequence h(T ) satisfies T 1/(4+dh(T ) → γ as T →∞ with γ bounded away from

zero and infinity.

• For each x ∈ Xd the kernel function K ≡ ∏d
i=1 K(.) has support [−1, 1]d and

∫
K(u)du = 1

and
∫

K(u)udu = 0, such that for some constant C, supxi∈[xi,xi] |K(u)−K(v)| ≤ C|u− v| for

all u, v ∈ [−1, 1] and i = 1, ..., d. Define µj(K) =
∫

ujK(u)du and ||K||22 =
∫

K2(u)du.

• εt satisfies E
[
εt|{xt−1−(s−1)/M}∞s=1, {εt−j}∞j=1

]
= 0 a.s.

B.2 Proof of Theorem 2.3.1

Let vector x = (x1, ..., xd)>. Define the functions βj
θ(x), j = 1, 2, as solutions to the integral equations

βj
θ = β∗,jθ + Hθβ

j
θ , in which:

β∗,1θ (x) =
d∑

i=1

∂2m∗
θ(x)

∂x2
i

,

β∗,2θ (x) =
1

f0(x)

±(τ−1)∑

j=±1

B+
j (θ)

d∑

i=1

∂2f0(x)
∂x2

i

E
[
m(x(s−j)/M )|xs/M = x

]

− 1
f0(x)

±(τ−1)∑

j=±1

B+
j (θ)

d∑

i=1

∫ (
∂2f0,j(x,y)

∂x2
i

+
∂2f0,j(x,y)

∂y2
i

)
mθ(y)dy

Then define

ωθ(x) =
||K||22
f0(x)

var[ηθ,s + ζθ,s|xs/M = x] (B.2.1)

bθ(x) =
1
2
µ2(K)

[
β1

θ (x) + β2
θ (x)

]
(B.2.2)
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Define:

ω(x) =
||K||22

∑τ
j=1 B2

j E
[
ε2

t |xt−1−(j−1)/M = x
]

f0(x)
(∑τ

j=1 B2
j

)2 (B.2.3)

+
M − 1

M

||K||22
∑τ

j=1

∑τ
k=1,k 6=j B2

j B2
k var(m(x(s+j−k)/M )|xs/M = x)

f0(x)
(∑τ

j=1 B2
j

)2

b(x) = µ2(K)
d∑

i=1

{
1
2

∂2m(x)
∂x2

i

+ (I −Hθ)−1

[
1
f0

∂f0

∂xi

∂

∂xi
(Hθm)

]
(x)

}
(B.2.4)

Let εt(θ) = yt −
∑τ

j=1 Bj(θ)mθ(xt−1−(j−1)/M ), and let

Σ =
{

E

[
∂εt

∂θ

∂εt

∂θᵀ (θ0)
]}−1

E

[
∂εt

∂θ

∂εt

∂θᵀ ε2
t (θ0)

]{
E

[
∂εt

∂θ

∂εt

∂θᵀ (θ0)
]}−1

(B.2.5)

The proof follows Linton and Mammen (2005), Linton and Mammen (2006) and Chapter 1. First,

for general θ we apply Proposition 1, p. 815, of Linton and Mammen (2005). Thus, we write

m̂∗
θ(x)−m∗

θ(x) = m̂∗,B
θ (x) + m̂∗,C

θ (x) + m̂∗,D
θ (x) (B.2.6)

(Ĥθ −Hθ)mθ(x) = m̂∗,E
θ (x) + m̂∗,F

θ (x) + m̂∗,G
θ (x) (B.2.7)

where m̂∗,B
θ (x) and m̂∗,E

θ (x) are deterministic and O(h2) = O(T−2/(4+d)),

m̂∗,B
θ (x) =

h2

2
µ2(K)

d∑

i=1

∂2m∗
θ(x)

∂x2
i

m̂∗,E
θ (x) =

h2

2f0(x)
µ2(K)

±(τ−1)∑

j=±1

B+
j (θ)

d∑

i=1

∂2f0(x)
∂x2

i

E
[
m(x(s−j)/M )|xs/M = x

]

− h2

2f0(x)
µ2(K)

±(τ−1)∑

j=±1

B+
j (θ)

d∑

i=1

∫ (
∂2f0,j(x,y)

∂x2
i

+
∂2f0,j(x,y)

∂y2
i

)
mθ(y)dy
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while:

m̂∗,C
θ (x) =

1
Tf0(x)

τ∑

j=1

∑
t

B∗
j (θ)Khd(xt−1−(j−1)/M − x)(yt − E(yt|xt−1−(j−1)/M ))

=
1

Tf0(x)

τ∑

j=1

∑
s

B∗
j (θ)Khd(xs/M − x)ηs,j

=
1

MTf0(x)

∑
s

Khd(xs/M − x)ηs,θ

m̂∗,F
θ (x) = − 1

MTf0(x)

±(τ−1)∑

j=±1

∑
s

B+
j (θ)Khd(xs/M − x)(m(x(s−j)/M )− E(m(x(s−j)/M )|xs/M ))

= − 1
MTf0(x)

±(τ−1)∑

j=±1

∑
s

B+
j (θ)Khd(xs/M − x)ζs,j

=
1

MTf0(x)

∑
s

Khd(xs/M − x)ζs,θ

and the reminder terms m̂∗,D
θ (x) and m̂∗,G

θ (x) satisfy

sup
θ∈Θ

sup
x∈Xd

|m̂∗,J
θ (x)| = op(h2), J = D,G

From this one obtains an expansion

m̂θ(x)−mθ(x) = m̂B
θ (x) + m̂E

θ (x) + m̂∗,C
θ (x) + m̂∗,F

θ (x) + op(h2) (B.2.8)

where m̂B
θ (x) = (I − Hθ)−1m̂∗,B

θ (x) and m̂E
θ (x) = (I − Hθ)−1m̂∗,E

θ (x), and the error is op(h2) over

x and θ ∈ Θ. Form this expansion we obtain the main result. Specifically, m̂∗,C
θ (x) + m̂∗,F

θ (x)

is asymptotically normal with zero mean and the stated variance after applying a CLT for near

epoch dependent functions of mixing processes. The asymptotic bias comes from m̂B
θ (x) + m̂E

θ (x).

Note that because of the boundary modification to the kernel we have Ef̂0(x) = f0(x) + O(h2) and

Ef̂0,j(x,y) = f0,j(x,y) + O(h2) for all x, y.

The proof below make use the following results. For δT = T−(4−d)/(2d+8)+ζ with ζ > 0 small

enough,

max
1≤|j|≤τ−1

sup
x,y∈Xd

|f̂0,j(x,y)− f0,j(x,y)| = op(δT ) (B.2.9)

sup
x∈Xd

|f̂0(x)− f0(x)| = op(δT ) (B.2.10)
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This follows by the exponential inequality of Bosq (1998, Theorem 1.3), see p. 817, Linton

and Mammen (2005). Note that the rate δT is arbitrarily close to the rate of convergence of 2d–

dimensional nonparametric density or regression estimators when the bandwidth h = Op(T−1/(d+4)),

so the dimension d must be less than 4; otherwise δT ≥ 1. For the case that d is greater or equal to 4,

one might change the bandwidth h when estimating f̂0,j(x,y), but the discussion is beyond the scope

of this paper.

PROOF OF (B.2.6). For each j,

ĝj(x)− gj(x) =
1

Tf0(x)

∑
t

Khd(xt−1−(j−1)/M − x)η̃t,j +
h2

2
µ2(K)bj(x) + RTj(x)

where η̃t,j = yt−E(yt|xt−1−(j−1)/M ) = η(t−1)M−(j−1),j as defined in (A.1.1); bj(x) is the bias function

and RTj(x) is the remainder term, which is op(h2) uniformly over j ≤ τ and x ∈ Xd. See p. 818 of

Linton and Mammen (2005) for detail. Therefore,

m̂∗
θ(x)−m∗

θ(x) =
τ∑

j=1

B∗
j (θ) [ĝj(x)− gj(x)]

=
1

Tf0(x)

τ∑

j=1

∑
t

B∗
j (θ)Khd(xt−1−(j−1)/M − x)η̃t,j

+
h2

2
µ2(K)

τ∑

j=1

B∗
j (θ)bj(x) + op(h2)

uniformly over x ∈ Xd. Then (B.2.6) follows.

PROOF OF (B.2.7). We have

(Ĥθ −Hθ)mθ(x)

=
∫

Ĥθ(x,y)mθ(x)f̂0(y)dy −
∫

Hθ(x,y)mθ(x)f0(y)dy

= −
±(τ−1)∑

j=±1

B+
j (θ)

∫ [
f̂0,j(x,y)

f̂0(x)
− f0,j(x,y)

f0(x)

]
mθ(y)dy

Denote by ∫
f0,j(x,y)

f0(x)
mθ(y)dy = E

[
m(x(s−j)/M )|xs/M = x

] ≡ rj(x)
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Then write

∫
f̂0,j(x,y)

f̂0(x)
mθ(y)dy =

∫
f̂0,j(x,y)mθ(y)dy

f̂0(x)
(B.2.11)

=
1

MT

∑
s Khd(xs/M − x)m∗

s−j
1

MT

∑
s Khd(xs/M − x)

where

m∗
s =

∫
Khd(y − xs/M )mθ(y)dy (B.2.12)

=
∫

Khd(y − xs/M )(mθ(y)−mθ(xs/M ))dy + mθ(xs/M )

= mθ(xs/M ) +
∫

Khd(y − xs/M )∇mθ
(xs/M )>(y − xs/M )dy

+
1
2

∫
Khd(y − xs/M )(y − xs/M )>Jmθ

(x∗s/M (y))(y − xs/M )dy

= mθ(xs/M ) +
h2

2
µ2(K)

d∑

i=1

∂2mθ(xs/M )
∂x2

i

+ o(h2)

by a second order Taylor expansion, a change of variables and property of the kernels assumed in

Appendix B.1. ∇ and J are the gradient and the Hessian, respectively. The error is uniformly o(h2)
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over s, θ. Note that (B.2.11) is just like a local constant smoother of m∗
s−j on xs/M .

∫ [
f̂0,j(x,y)

f̂0(x)
− f0,j(x,y)

f0(x)

]
mθ(y)dy

=
∫

f̂0,j(x, y)mθ(y)dy

f̂0(x)
− rj(x)

=
1

MT

∑
s Khd(xs/M − x)(m∗

s−j − rj(x))
1

MT

∑
s Khd(xs/M − x)

=
1

MT

∑
s Khd(xs/M − x)(m∗

s−j −mθ(x(s−j)/M ))
1

MT

∑
s Khd(xs/M − x)

+
1

MT

∑
s Khd(xs/M − x)(mθ(x(s−j)/M )− rj(xs/M ))

1
MT

∑
s Khd(xs/M − x)

+
1

MT

∑
s Khd(xs/M − x)(rj(xs/M )− rj(x))

1
MT

∑
s Khd(xs/M − x)

' h2

2
µ2(K)

d∑

i=1

E

[
∂2mθ(x(s−j)/M )

∂x2
i

|xs/M = x
]

(B.2.13)

+
1

MTf0(x)

∑
s

Khd(xs/M − x)ζs,j

+
h2

2
µ2(K)

d∑

i=1

[
∂2rj(x)

∂x2
i

+
2∂rj(x)/∂xi ∂f0(x)/∂xi

f0(x)

]

by standard arguments for Nadaraya-Watson smoother. The approximation is valid uniformly over

|j| ≤ τ − 1, x ∈ Xd and θ ∈ Θ.

The bias terms in (B.2.13) are

h2

2
µ2(K)

d∑

i=1

[
∂2rj(x)

∂x2
i

+
2∂rj(x)/∂xi ∂f0(x)/∂xi

f0(x)
+ E

[
∂2mθ(x(s−j)/M )

∂x2
i

|xs/M = x
]]

But there is a cancelation and the bias terms can be rearranged as

h2

2
µ2(K)f0(x)−1

d∑

i=1

[
−∂2f0(x)

∂x2
i

rj(x) +
∫ (

∂2f0,j(x,y)
∂x2

i

+
∂2f0,j(x,y)

∂y2
i

)
mθ(y)dy

]
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Refer to p. 23 of Linton and Mammen (2006) for details. In conclusion, we have

∫
Ĥθ(x,y)mθ(x)f̂0(y)dy −

∫
Hθ(x,y)mθ(x)f0(y)dy

= −
±(τ−1)∑

j=±1

B+
j (θ)

[
1

MTf0(x)

∑
s

Khd(xs/M − x)ζs,j

]

+
±(τ−1)∑

j=±1

B+
j (θ)

h2

2
µ2(K)f0(x)−1

d∑

i=1

[
∂2f0(x)

∂x2
i

rj(x)−
∫ (

∂2f0,j(x,y)
∂x2

i

+
∂2f0,j(x,y)

∂y2
i

)
mθ(y)dy

]

+ op(h2)

uniformly over x ∈ Xd and θ ∈ Θ. This concludes the proof of (B.2.7).

The consistency and root-n consistency of θ̂ are the same as that in Linton and Mammen (2005)

and Linton and Mammen (2006), so I omit them here.

We can now effectively take θ = θ0, and one obtains a simpler expansion for m̂θ0(x)−m(x). Omit

θ0 in Bj(θ0) to simplify notation. In particular:

m̂∗,C
θ (x) =

1
Tf0(x)

τ∑

j=1

∑
t

B∗
j Khd(xt−1−(j−1)/M − x)(yt − E(yt|xt−1−(j−1)/M ))

=
1

Tf0(x)

τ∑

j=1

∑
t

Khd(xt−1−(j−1)/M − x)B∗
j εt

+
1

Tf0(x)

τ∑

j=1

∑
t

Khd(xt−1−(j−1)/M − x)B∗
j

τ∑

k=1,k 6=j

Bkζ(t−1)M−j+1,j−k

=
1

Tf0(x)

τ∑

j=1

∑
t

B∗
j Khd(xt−1−(j−1)/M − x)εt

+
1

Tf0(x)

τ∑

j=1

τ∑

k=1,k 6=j

∑
t

Khd(xt−1−(j−1)/M − x)B∗
j Bkζ(t−1)M−j+1,j−k

m̂∗,F
θ (x) = − 1

MTf0(x)

±(τ−1)∑

j=±1

∑
s

Khd(xs/M − x)B+
j ζs,j

= − 1
MTf0(x)

τ∑

j=1

τ∑

k=1,k 6=j

∑
s

Khd(xs/M − x)B∗
j Bkζs,j−k
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m̂∗,C
θ (x) + m̂∗,F

θ (x)

=
1

Tf0(x)

τ∑

j=1

∑
t

B∗
j Khd(xt−1−(j−1)/M − x)εt

+
1

Tf0(x)

τ∑

j=1

τ∑

k=1,k 6=j

∑
t

Khd(xt−1−(j−1)/M − x)B∗
j Bkζ(t−1)M+j−1,j−k

− 1
MTf0(x)

τ∑

j=1

τ∑

k=1,k 6=j

∑
s

Khd(xs/M − x)B∗
j Bkζs,j−k

=
1

Tf0(x)

τ∑

j=1

∑
t

B∗
j Khd(xt−1−(j−1)/M − x)εt +

τ∑

j=1

τ∑

k=1,k 6=j

B∗
j BkA

where

A =
1

Tf0(x)

∑
t

Khd(xt−1−(j−1)/M − x)ζ(t−1)M−j+1,j−k

− 1
MTf0(x)

∑
s

Khd(xs/M − x)ζs,j−k

=
M

MTf0(x)

∑
t

Khd(xt−1−(j−1)/M − x)ζ(t−1)M−j+1,j−k

− 1
MTf0(x)

M∑

i=0

∑
t

Khd(xt−1−(j−1−i)/M − x)ζ(t−1)M−j+1+i,j−k

=
M − 1

MTf0(x)

∑
t

Khd(xt−1−(j−1)/M − x)ζ(t−1)M−j+1,j−k

− 1
MTf0(x)

M∑

i=1

(∑
t

Khd(xt−1−(j−1−i)/M − x)ζ(t−1)M−j+1+i,j−k

)

Since

√
Thd

(
(Tf0(x))−1

∑
t

Khd(xt−1−(j−1−i)/M − x)ζ(t−1)M−j+1+i,j−k

)

=⇒ N(0, ||K||22f0(x)−1 var(m(xt+(j−k)/M )|xt = x)), ∀i, j, k

and if i.i.d. Zi˜N(0, σ2
i ),

∑
i Zi˜N(0,

∑
i σ2

i ),

√
ThdA =⇒ N(0, [(M − 1)2 + (M − 1)]M−2||K||22f0(x)−1 var(m(xt+(j−k)/M )|xt = x))
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Therefore,
√

Thd
(
m̂∗,C

θ (x) + m̂∗,F
θ (x)

)
=⇒ N(0, ω(x))

where

ω(x) =
||K||22

∑τ
j=1 B2

j E
[
ε2

t |xt−1−(j−1)/M = x
]

f0(x)
(∑τ

j=1 B2
j

)2

+
M − 1

M

||K||22
∑τ

j=1

∑τ
k=1,k 6=j B2

j B2
k var(m(xt+(j−k)/M )|xt = x)

f0(x)
(∑τ

j=1 B2
j

)2

Likewise, there is a simplification for the bias term m̂B
θ (x) + m̂E

θ (x).

If εt is i.i.d. and independent of the process {xs/M}, the first item of ω(x) is simplified as

||K||22σ2
ε/

(
f0(x)

∑τ
j=1 Bj(θ0)2

)
, where σ2

ε is the variance of εt. When M = 1, the result is the

extension of the univariate case in Linton and Mammen (2006) to the multivariate case.
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Table B.1: Tickers and company names

This table lists the tickers of the eight individual stocks investigated in the paper and their
corresponding company names.

Ticker Company

AIG American International Group
BA Boeing
GE General Electric
GM General Motors
HD Home Depot
IP International Paper
MCD McDonald’s
MSFT Microsoft
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Table B.2: Statistics of the realized volatilities of the return series

This table provides the statistics of the realized volatilities of the return series used in our study.
I analyze eight series which consist of 30-minute intra-daily returns of respectively AIG, BA, GE,
GM, HD, IP, MCD, and MSFT, together with the corresponding S&P500 index in the case of two-
dimensional news. The in-sample period of the data is from November 1, 1999 to October 31, 2001;
the out-of-sample period from November 1, 2001 to October 31, 2003.

Mean Std. Dev. Min Max Skewness Kurtosis

In-sample Period

AIG 3.178 2.919 0.1932 22.42 2.257 10.49
BA 5.008 5.069 0.1865 39.58 3.161 16.71
GE 4.111 3.910 0.3279 49.70 4.662 43.70
GM 4.291 3.897 0.1536 39.24 3.577 26.11
HD 5.780 4.814 0.3391 36.02 2.302 10.40
IP 6.786 5.634 0.3339 34.71 1.959 7.917

MCD 4.091 4.687 0.1252 75.86 8.246 117.10
MSFT 6.140 5.193 0.5850 52.07 2.804 18.49

S&P 500 1.472 1.892 0.1272 20.62 5.820 49.96

Out-of-sample Period

AIG 3.555 4.669 0.0641 50.78 5.443 43.69
BA 4.210 4.095 0.1938 30.33 2.821 13.75
GE 3.727 3.876 0.1813 29.53 3.100 16.18
GM 3.818 4.321 0.1050 42.56 3.812 25.92
HD 4.422 5.069 0.2406 50.55 3.442 21.15
IP 2.770 2.438 0.3263 21.15 3.223 18.93

MCD 3.890 4.789 0.2167 44.42 4.272 27.12
MSFT 3.549 3.331 0.1439 37.95 3.703 28.81

S&P 500 1.532 1.710 0.1255 13.62 3.317 17.09
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Table B.3: Model acronyms and details

This table summarizes all models used the paper, showing the equation numbers, the models’ names
acronyms and some details.

Equation No. Model Name (abbr.) Explanation

Univariate Models

(2.2.11) RV RV Model
(2.2.12) USP Univariate Semi-parametric Model

Bivariate Models

(2.2.6) BSYMM Bivariate Symmetric Model
(2.2.7) BASYMS Bivariate Asymmetric Model Considering Sign Effect
(2.2.8) BASYMLS Bivariate Asymmetric Model Considering Location Shifted
(2.2.9) BSPL Bivariate Semi-parametric Model with Linear Assumption
(2.2.10) BSP Bivariate Semi-parametric Model
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Table B.4: One-day ahead in-sample fit and out-of-sample forecast
performance of models

The top panel of the table shows the R2 of in-sample estimation, with the in-sample period from
November 1, 1999 to October 31, 2001. The lower panel provides out-of-sample forecasting, with
the out-sample period from November 1, 2001 to October 31, 2003. The best model, for each series,
appears as boldfaced. Model acronyms appear in Table B.3.

RV USP BSYMM BASYMS BASYMLS BSPL BSP

In-sample Estimation

AIG 0.2105 0.2473 0.2240 0.2584 0.2481 0.2647 0.2733
BA 0.2089 0.2417 0.2235 0.2652 0.2407 0.2656 0.2839
GE 0.0828 0.1570 0.1268 0.1698 0.1461 0.1857 0.1702
GM 0.0941 0.1157 0.1179 0.1430 0.1250 0.1828 0.1715
HD 0.1302 0.1779 0.1427 0.2093 0.1992 0.2146 0.2089
IP 0.2552 0.2766 0.2743 0.2880 0.2760 0.2771 0.2754

MCD 0.0445 0.0852 0.0748 0.1055 0.1011 0.1052 0.0765
MSFT 0.2423 0.2825 0.2611 0.3280 0.3116 0.2873 0.2833

Out-of-sample Forecast

AIG 0.2937 0.2810 0.3126 0.1713 0.3530 0.2724 0.3518
BA 0.2225 0.2462 0.2301 0.1700 0.2594 0.2470 0.2556
GE 0.2729 0.2835 0.2455 0.1920 0.2512 0.2929 0.3299
GM 0.3293 0.3658 0.3029 0.2590 0.3061 0.3170 0.3974
HD 0.3276 0.3432 0.3089 0.3887 0.3857 0.3349 0.3628
IP 0.1895 0.2865 0.2531 0.2680 0.2575 0.2426 0.3019

MCD 0.1174 0.1315 0.1142 0.1056 0.0671 0.1522 0.1818
MSFT 0.2857 0.3443 0.3117 0.3059 0.4052 0.3655 0.3534
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Table B.5: Comparison between the univariate and bivariate models

The top panel of the table shows the comparison of R2 of in-sample estimation; the lower panel
provides out-of-sample forecasting comparison. Model acronyms appear in Table B.3. Note that
∆R2

1 ≡ (R2
BSP −R2

RV )/R2
RV and ∆R2

2 ≡ (R2
BSP −R2

USP )/R2
USP .

RV BSP ∆R2
1 USP BSP ∆R2

2

In-sample Estimation

AIG 0.2105 0.2733 0.2983 0.2473 0.2733 0.1051
BA 0.2089 0.2839 0.3590 0.2417 0.2839 0.1746
GE 0.0828 0.1702 1.0556 0.1570 0.1702 0.0841
GM 0.0941 0.1715 0.8225 0.1157 0.1715 0.4823
HD 0.1302 0.2089 0.6045 0.1779 0.2089 0.1743
IP 0.2552 0.2754 0.0792 0.2766 0.2754 −0.0043

MCD 0.0445 0.0765 0.7191 0.0852 0.0765 −0.1021
MSFT 0.2423 0.2833 0.1692 0.2825 0.2833 0.0028

Average 0.5134 0.1146

Out-of-sample Forecast

AIG 0.2937 0.3518 0.1978 0.2810 0.3518 0.2520
BA 0.2225 0.2556 0.1488 0.2462 0.2556 0.0382
GE 0.2729 0.3299 0.2089 0.2835 0.3299 0.1637
GM 0.3293 0.3974 0.2068 0.3658 0.3974 0.0864
HD 0.3276 0.3628 0.1074 0.3432 0.3628 0.0571
IP 0.1895 0.3019 0.5931 0.2865 0.3019 0.0538

MCD 0.1174 0.1818 0.5486 0.1315 0.1818 0.3825
MSFT 0.2857 0.3534 0.2370 0.3443 0.3534 0.0264

Average 0.2810 0.1325
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Figure B.1: News impact surfaces in BSPL models

In the figure, X-axis and Y-axis are firm-specific news and market-wide news, respectively. Each sub-
plot corresponds to the individual stock as follows: (a) AIG and S&P 500 index; (b) BA and S&P 500
index; (c) GE and S&P 500 index; and (d) GM and S&P 500 index; (e) HD and S&P 500 index; (f)
IP and S&P 500 index; (g) MCD and S&P 500 index; and (h) MSFT and S&P 500 index.
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Figure B.2: News impact curves of firm-specific news for some given market
index values

(a) AIG and S&P 500 index; (b) BA and S&P 500 index; (c) GE and S&P 500 index; and (d) GM
and S&P 500 index; (e) HD and S&P 500 index; (f) IP and S&P 500 index; (g) MCD and S&P 500
index; and (h) MSFT and S&P 500 index.
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Figure B.3: Lags’ coefficients of BSP models

Each sub-plot corresponds to the individual stock as follows: (a) AIG and S&P 500 index; (b) BA and
S&P 500 index; (c) GE and S&P 500 index; and (d) GM and S&P 500 index; (e) HD and S&P 500
index; (f) IP and S&P 500 index; (g) MCD and S&P 500 index; and (h) MSFT and S&P 500 index.
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Figure B.4: Intra-daily pattern of BSP models

Each sub-plot represents a kind of intra-daily pattern.
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Appendix C

Appendix of Chapter 3

C.1 Regularity conditions

Definition: α-mixing (or strongly mixing) if

α(k) = sup
B∈σ(Xt,t≤0) C∈σ(Xt,t≥k)

|P (B ∩ C)− P (B)P (C)| → 0, as k →∞

Definition: β-mixing (or absolute regularity) if

β(k) = E sup
C∈σ(Xt,t≥k)

|P (C)− P (C|σ(Xt, t ≤ 0) )| → 0, as k →∞

To facilitate the asymptotic analysis, I make the following assumptions on the residuals and

regressors, the kernel function K(.), and the bandwidth parameter h.

Assumptions:

A1 The process {xs/M} is stationary; and the process {yt, Xt} is geometrically β-mixing, where

Xt = {xt−(M−1)/M , xt−(M−2)/M , ..., xt}.
A2 Assume that f0,l(u, v) ≤ M1, where f0,l(u, v) is the joint density of U0 and Ul and

E
{
Y 2

1 + Y 2
l+1|U0 = u,Ul = v

} ≤ M2,∀l ≥ 0.

A3 The kernel function K is a bounded density function with a bounded support [−1, 1], satisfying

u2δp+2K(u) → 0 as |u| → ∞ for some constant δ > 2.

A4 The conditional distribution G(y|U) of Y given U = u is continuous at the point U = u.

A5 εt is i.i.d., independent of the process {xs/M}, and has a continuous density function which is

positive everywhere. E(εt) = 0 and E(ε2
t ) = σ2

ε .

A6 Assume that h = O(n1/(2p+3)).

A7 m
(i)
β (.), ∂(i)g(.)/∂θ(i) and ∂(i)Bj(.)/∂θ(i), i = 0, 1, 2, are bounded function for any β ∈ B. For

example, g(x) can not be 1/x. g(.) must take the functional form so that θ can be identified. For
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example, g(x) can not be α + h(x) since α can not be identified.

A8 The link function m(.) has Lipschitz continuous (p + 1)th derivative.

A9 The parameter space B is a compact subset of Rq, and the value β0 is an interior point of B.

For any ε > 0

inf
||β−β0||>ε

Q(β,mβ) > Q(β0,mβ0)

C.2 Proof of Theorem 3.3.1

Denote µj =
∫

ujK(u)du, νj =
∫

ujK2(u)du and µ = (µp+1, ..., µ2p+1)>,

S =




µ0 · · · µp

...
. . .

...

µp · · · µ2p




, S̃ =




ν0 · · · νp

...
. . .

...

νp · · · ν2p




Since Ut is a function of Xt−τ+1, ..., Xt and Xt is stationary, σ(Ut, t ≥ k) ⊂ σ(Xt, t ≥ t − τ + 1).

Hence βU (k) ≤ βX(k) and Ut is geometrically β-mixing and then geometrically α-mixing because Xt

is geometrically β-mixing and 2αU (k) ≤ βU (k). Then, it is easy to verify that the Conditions 1˜4 in

Masry and Fan (1997) are satisfied, so that we conclude Theorem 3 by Theorem 5 in Masry and Fan

(1997).

C.3 Proof of Theorem 3.3.2

Consistency. We apply some general results for semi-parametric estimators. Write QT (β) =

T−1
∑T

t=1 {yt −mβ (Ut−1(β))}2, and let Q(β) = E [QT (β)]. QT (β) − Q(β) = op(1) because mβ(.)

and ∂mβ(.)/∂β are both bounded functions and the law of large numbers for near epoch dependent

functions of mixing processes can be applied. Then, letting εt(β) = yt − mβ(Ut−1(β)), we have for
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each β ∈ B,

∣∣∣Q̂T (β)−QT (β)
∣∣∣ ≤ 2

T

T∑
t=1

|εt(β)| max
1≤tt≤T

|m̂β(Ut−1(β))−mβ(Ut−1(β))|

+
[

max
1≤tt≤T

|m̂β(Ut−1(β))−mβ(Ut−1(β))|
]2

+
1
T

T∑
t=1

ε2
t (β)

= op(1)

In fact, this order is uniform in β and we have

sup
β∈B

∣∣∣Q̂T (β)−QT (β)
∣∣∣ = op(1)

Therefore, we have sup
β∈B

∣∣∣Q̂T (β)−Q(β)
∣∣∣ = op(1). By assumption A9, Q(β) is uniquely minimized

at β = β0, which then implies consistency of β̂.

Root-N consistency. Because Q̂T (β) is a second order smooth function, one has ∂Q̂T (β)/∂β = 0

and hence for some β̃ between β̂ and β,

∂Q̂T (β0)
∂β

=
∂Q̂T (β0)

∂β
− ∂Q̂T (β̂)

∂β
=

∂2Q̂T (β̃)
∂β∂β>

(β0 − β̂)

which means
√

T (β̂ − β0) = −
√

T

(
∂2Q̂T (β̃)
∂β∂β>

)−1
∂Q̂T (β0)

∂β

Since β̂
p−→ β0, β̃ between β̂ and β, and

∣∣∣∣
∂2QT (β)
∂β∂β>

− ∂2Q(β)
∂β∂β>

∣∣∣∣ =
∣∣∣∣
∂2QT (β)
∂β∂β>

− 2E

[
∂εt

∂β

∂εt

∂βᵀ (β) +
εt∂

2εt

∂β∂βᵀ (β)
]∣∣∣∣

≤
∣∣∣∣
∂2QT (β)
∂β∂β>

− 2E

[
∂εt

∂β

∂εt

∂βᵀ (β)
]∣∣∣∣ +

∣∣∣∣2E

(
εt∂

2εt

∂β∂βᵀ (β)
)∣∣∣∣

=
∣∣∣∣
∂2QT (β)
∂β∂β>

− 2E

[
∂εt

∂β

∂εt

∂βᵀ (β)
]∣∣∣∣

= op(1)
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According to Lemma A.3 in Yang (2006),

sup
β∈B

∣∣∣∣∣
∂2Q̂T (β)
∂β∂β>

− ∂2QT (β)
∂β∂β>

∣∣∣∣∣ = O

(
hp−1 +

(√
nh

)−1

h−2 log n

)
= op(1) a.s.

One concludes that

sup
|β̃−β|≤εT

∣∣∣∣∣
∂2Q̂T (β̃)
∂β∂β>

− 2E

[
∂εt

∂β

∂εt

∂βᵀ (β0)
]∣∣∣∣∣ = op(1)

Write

∂Q̂T (β0)
∂β

=
2
T

T∑
t=1

(yt − m̂(Ut−1(β0)) + m(Ut−1(β0))−m(Ut−1(β0)))

×
(

∂m̂(Ut−1(β0))
∂β

+
∂m(Ut−1(β0))

∂β
− ∂m(Ut−1(β0))

∂β

)

= I1 + I2 + I3 + I4

where

I1 =
2
T

T∑
t=1

(yt −m(Ut−1(β0)))
∂m(Ut−1(β0))

∂β
=

2
T

T∑
t=1

εt(β0)
∂εt(β0)

∂β

I2 =
2
T

T∑
t=1

(m(Ut−1(β0))− m̂(Ut−1(β0)))
(

∂m̂(Ut−1(β0))
∂β

− ∂m(Ut−1(β0))
∂β

)

I3 =
2
T

T∑
t=1

(yt −m(Ut−1(β0)))
(

∂m̂(Ut−1(β0))
∂β

− ∂m(Ut−1(β0))
∂β

)

I4 =
2
T

T∑
t=1

(m(Ut−1(β0))− m̂(Ut−1(β0)))
∂m(Ut−1(β0))

∂β

By the central limit theorem for (geometric) near epoch dependent processes over an α-mixing

base,
√

TI1 is asymptotically normal with mean E [2 (∂εt/∂β) εt(β0)] = 0 and finite variance as

4E
[
(∂εt/∂β) (∂εt/∂βᵀ) ε2

t (β0)
]
.

According to Lemma A.3 in Yang (2006), the term I2 is bounded by

Op

(
hp+1 +

(√
Th

)−1

log T

)
Op

(
hp +

(√
Th

)−1

h−1 log T

)
= op(T−1/2)
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Similar to the proof of Theorem 3 in Yang (2006), applying Lemmas 2 and 3

of Yoshihara (1976) and Lemma A.3 of Yang (2006), the terms I3 is bounded by

Op

(
T−1/2

(
hp +

(√
Th

)−1

h−1 log T

))
= op(T−1/2) and I4 bounded by Op

(
hp+1 + T−1h−1/2

)
=

op(T−1/2) .

Hence, we show that

√
T (I1 + I2 + I3) = op(1),

√
TI4 =⇒ N(0, 4E

[
∂εt

∂β

∂εt

∂βᵀ ε2
t (β0)

]
)

98



Bibliography

Aı̈t-Sahalia, Y., 2004, Disentangling diffusion from jumps, Journal of Financial
Economics 74, 487–528.

, and J. Jacod, 2007a, Testing for jumps in a discretely observed process, Annals
of Statistics, forthcoming.

, 2007b, Volatility estimators for discretely sampled Lévy processes, Annals of
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