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ABSTRACT 

 
RICHARD WYSS: Using High Dimensional Disease Risk Scores in Comparative Effectiveness 

Research of New Treatments 
(Under the direction of Dr. Til Stürmer) 

 

 Nonexperimental research using automated healthcare databases can supplement 

randomized trials to provide both clinicians and patients with timely information to optimize 

treatment decisions. These studies, however, are susceptible to confounding and require design 

and statistical methods to control for large numbers of confounding variables. The propensity 

score (PS), defined as the conditional probability of treatment given a set of covariates, has 

become increasingly popular for controlling large numbers of covariates in 

pharmacoepidemiologic studies. During early periods after the introduction of a new 

treatment, however, accurately modeling the PS can be difficult because of rapid change over 

time in drug prescribing patterns and few exposed individuals. A historically estimated disease 

risk score (DRS), which summarizes covariate associations with the outcome absent of 

exposure, has been proposed as an alternative to PSs for controlling large numbers of 

covariates during these periods. Little is known about the performance and potential benefits 

of using DRSs for confounding control when evaluating the comparative effectiveness of newly 

marketed drugs.  

In this study, we examined the benefits and challenges of using historically estimated 

DRSs compared to PSs when controlling for large numbers of covariates during early periods of 
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drug approval. We further evaluated novel strategies for determining the validity of fitted DRS 

models in their ability to control confounding. We investigated these methodological questions 

using Monte Carlo simulations and empirical data. The empirical analyses included 20% and 1% 

samples of Medicare claims data to compare the new oral anticoagulant dabigatran with 

warfarin in reducing the risk of combined ischemic stroke and all-cause mortality in older 

populations. 

When PS distributions are separated, DRS matching can improve the precision of effect 

estimates and allow researchers to evaluate the treatment effect in a larger proportion of the 

treated population. However, accurately modeling the DRS can be challenging compared to the 

PS. When evaluating the validity of DRS models, measures of predictive performance do not 

always correspond well with reduced bias in treatment effect estimates. Calculating the pseudo 

bias within a “dry run” analysis can provide a more direct measure for assessing the ability of 

fitted DRS models to control confounding.  
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CHAPTER 1 

BACKGROUND AND SPECIFIC AIMS 

1.1 Specific Aims 

Controlling large numbers of confounding variables presents unique challenges 

when evaluating new treatments in comparative effectiveness research. Summary scores, 

which reduce covariate information to a single dimension, have become increasingly 

popular for controlling large numbers of baseline covariates. The propensity score, defined 

as the conditional probability of treatment given a set of measured covariates, has become 

the most widely used summary score in pharmacoepidemiologic research.1, 2 It has been 

hypothesized, however, that modeling the PS during early periods of treatment 

introduction can be difficult as the number of individuals receiving the new treatment can 

be small and factors affecting treatment assignment can change rapidly during early periods 

of dissemination.3, 4    

An alternative summary score to the PS is the prognostic score, also known as the 

disease risk score (DRS). Instead of modeling covariate associations with treatment, the DRS 

models the relationship between covariates and the potential outcome under the control or 

comparator treatment.5-7 Because factors affecting disease risk are more stable over time, it 

has been proposed that modeling the DRS within historical data prior to treatment 

introduction can provide an alternative to the PS for controlling large numbers of covariates 

when evaluating new treatments.3 However, DRSs have not been widely used and the 
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validity and potential benefits of a historically estimated DRS remain unclear. In this study 

we used both Monte Carlo simulations and empirical data to examine the benefits of using 

a historically estimated DRS for controlling large numbers of covariates when evaluating 

new treatments. We further develop and evaluate methods for assessing the validity of DRS 

models directly in their ability to control for confounding. Empirical analyses focused on 

comparing of the new oral anti-coagulant dabigatran with warfarin in preventing combined 

ischemic stroke and all-cause mortality using Medicare claims data. There has been recent 

interest in the use of new oral anticoagulant drugs as an alternative to warfarin for patients 

with atrial fibrillation.8-10 Although clinical studies evaluating these new drug classes have 

shown promising results,10 their comparative effectiveness in real world patient populations 

remain largely unknown. With limited data at the beginning of drug approval, estimation of 

the PS as a function of large numbers of covariates can be problematic. In contrast, 

estimating the DRS within historical data could allow researchers to effectively control for 

large numbers of covariates immediately after drug approval, when data on safety is most 

important. Improved methods for confounding control during early periods of drug 

approval and evolving drug therapies can enhance treatment decisions for healthcare 

providers and the patient community. 

Aim 1: Use both Monte-Carlo simulations and empirical analyses to better 

understand potential benefits of using a historically estimated DRS when controlling large 

numbers of confounding variables during early periods of drug approval. The empirical 

analysis will focus on evaluating the comparative effectiveness of the new oral 
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anticoagulant medication dabigatran compared with warfarin in preventing ischemic stroke 

and all-cause mortality in patients with atrial fibrillation in the Medicare population.   

Rationale: There remains little evidence and understanding of the benefits of a 

historically estimated DRS compared with traditional PS methods in practice. It remains 

unclear what specific advantages the DRS provides over traditional PS methods. 

Aim 2: Use both simulations and substantive analyses to develop and compare novel 

strategies for evaluating risk models in their ability to control for confounding. 

Rationale: Accurately modeling the DRS presents unique challenges that are not 

shared by traditional outcome regression modeling or PS estimation. These difficulties 

highlight the importance of evaluating the validity of the fitted risk model in its ability to 

control for confounding. The validity of fitted DRS models has primarily been assessed 

through measures of predictive performance which give an indirect assessment of the 

ability of the DRS to control for confounding. Recent methods that use the control 

population to create pseudo treatment and pseudo control groups have been proposed as a 

more direct measure for assessing the validity of risk models in terms of confounding 

control. It remains unclear what metrics are optimal for evaluating risk models. 

1.2 Comparative Effectiveness Research 

Randomized controlled trials (RCTs) are the gold standard for evaluating the 

performance of a treatment or drug.11 The strict design of RCTs, including randomization 

and blinding, ensures the internal validity and effective control of variables that may bias 

results. However, information provided by RCTs can be limited for real world clinical 

practice. RCTs can fail to detect rare outcomes and long-term effects due to smaller sample 
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sizes and shorter durations of treatment.12-15  RCTs can also have limited generalizability 

due to restrictions placed on study participation including age, comorbidity and co-

medication.13, 14 Further, RCTs often assess efficacy versus placebo rather than versus an 

alternative treatment for the same indication. 

Comparative effectiveness research has gained considerable attention in recent 

years. It is becoming increasingly recognized that RCTs cannot address every question 

regarding treatment decisions for patients in real world clinical practice. Large automated 

healthcare databases, such as administrative data and electronic medical records, are 

increasingly being used to evaluate drug performance and safety.15  Compared with RCTs, 

observational studies are better suited to provide information on drug utilization as well as 

benefits and harms of drugs in real world settings with populations covering a wide range of 

patient characteristics.11, 14, 15  Automated databases can provide valuable information on 

the real time performance of medical treatments. This is critical for the active surveillance 

of drug effects in real world populations.16 Observational studies using healthcare and 

administrative datasets complement RCTs to improve healthcare providers’ decisions 

regarding drug and treatment choices.15 However, the evaluation of drug effects using 

observational data is susceptible to both measured and unmeasured confounding that is 

caused by the lack of randomization. The validity of studies using automated databases is 

limited by the ability of current statistical and epidemiologic methods to effectively control 

for large numbers of confounding variables.   
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1.2.1 Current Methodological Limitations 

The continual development and application of novel methods is essential to reduce 

bias in observational studies and more accurately address important public health issues 

regarding drug effects and treatment decisions in real world populations. The development 

of improved methods for confounding control is particularly needed during early periods of 

drug approval.3  During these early periods, there is often rapid change over time in drug 

prescribing patterns or in the use of a treatment.4  New users of a recently approved drug 

will often have different patient characteristics than new users of the same drug after the 

drug has been on the market for an extended period of time. Such changes over early 

periods of drug approval present significant challenges for comparative effectiveness 

research and can make rapid response for drug safety difficult.  Developing improved 

methods to control for confounding during early periods of drug approval is needed to 

provide the best evidence for treatment decisions during these early stages.  

Standard methods for confounding control have traditionally consisted of multiple 

regression models.  Although useful in many situations, these methods are limited for 

studies involving large numbers of confounders due to computational complexity, the high 

likelihood of model misspecification and the limited ability to model more complicated 

functional relationships such as interactions and higher order terms for rare outcomes.7  To 

address these limitations, methods that collapse the information of a large number of 

covariates into a single-dimensional summary score and then use this summary measure for 

confounding control have become increasingly popular.1, 6, 17   
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1.3 Summary Scores and Causal Inference 

1.3.1 Counterfactual Framework 

The Neyman-Rubin counterfactual framework provides a formal framework for 

researchers to determine causal effects in both experimental and non-experimental 

studies.18-20 Under the counterfactual model for causal inference, each person in the study 

population has a potential outcome corresponding to each possible treatment level. For 

example, if   represents a dichotomous treatment, then    represents the potential 

response had the individual received treatment and    the potential response had the 

individual received the control or comparator treatment. In practice, only one of the 

potential outcomes is observed for each individual. The observed response,  , has the 

following relationship with the potential outcomes 

               . 

The treatment variable,  , is said to have a causal effect on the observed outcome, 

 , for a given individual if      . For a population of individuals,   has an average causal 

effect on   within the entire population if            , where       and       represent 

the expected or average value of the random variables    and    respectively.  

A fundamental obstacle in non-experimental studies is estimating treatment effects 

in the presence of confounding factors. If controlling for a set of baseline covariates,  , 

results in treatment assignment being independent of potential outcomes, then average 

treatment effects in the population are identifiable.19  Known as the strongly ignorable 

treatment assignment assumption, this condition is formally expressed as             

where   denotes independence of random variables and | denotes conditional on. 
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Heckman21 showed that when estimating the treatment effect on the treated, the strongly 

ignorable treatment assignment assumption is unnecessarily restrictive and the weaker 

condition,       , is sufficient.  Known as the weakly ignorable treatment assignment 

assumption, this condition is sufficient to identify average treatment effects on the treated 

population.5, 21  

1.3.2 Propensity Score Methods 

    For a dichotomous treatment,  , the propensity score is defined as the conditional 

probability of treatment assignment given a set of baseline covariates,  . Formally 

expressed as            , Rosenbaum & Rubin1 show that conditioning on the PS 

results in covariates being independent of treatment assignment, formally denoted as 

        . If treatment assignment is strongly ignorable given a set of baseline 

covariates, i.e.            , Rosenbaum & Rubin1 show that treatment assignment is 

strongly ignorable given the PS, i.e.               . This independence allows for the 

identification of average treatment effects in the full study population or average treatment 

effects in subgroups of the study population, e.g., the treated population. If treatment 

assignment is weakly ignorable, i.e.       , then conditioning on the propensity score 

satisfies            allowing for the identification of average treatment effects in the 

treated population. 

The development and advancement of PSs in various applications and settings has 

been a key factor for improved methodological standards and validity when evaluating drug 

effects in non-experimental settings. However, the performance of PSs is limited in certain 

settings. It has been hypothesized that PSs may not perform well for studies involving rare 
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or emerging treatments.22  Factors affecting treatment assignment are not necessarily 

biological in nature and are more likely to vary and change over time compared to factors 

that affect the outcome or disease.3, 6, 7 For example, physicians becoming more familiar 

with a new treatment may extend the indication to patients with less severe disease or 

more severe co-morbidities.  Other situations where transient factors affect indication for 

treatment include a newly approved treatment quickly diffusing through the market and 

the issuance of black box warnings.  Modeling the PS can potentially be difficult when 

factors affecting treatment assignment change over short periods of time.   

The PS is also not a natural measure to evaluate treatment effect heterogeneity. 

When making treatment decisions, clinicians are almost always concerned about how the 

effect of a treatment varies over various patient profiles affecting the risk for the outcome 

of interest (e.g., 10 year risk for cardiovascular disease based on the Framingham risk 

score).  Although the PS allows us to detect and account for treatment effect heterogeneity, 

it does not provide the best information for health care providers in determining what 

subgroups of the patient population are most likely to benefit from a given treatment 

regime.   

1.3.3 Disease Risk Score Methods 

The disease risk score (DRS) has been shown to be a valid alternative to PSs for 

controlling large sets of confounders.5, 7, 23, 24 Originally introduced by Peters in 194125 as a 

way to reduce dimensionality when matching, the DRS has been used by a variety of 

researchers to control for confounding and assess treatment effect heterogeneity.26, 27 The 

DRS is similar to the PS in that the DRS summarizes the information of a large number of 
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variables with a single-dimensional score.27  Unlike PSs, however, DRSs summarize the 

associations of baseline covariates with the potential outcome under the control therapy 

instead of treatment, i.e., the risk for the outcome.   

Despite the early introduction of DRSs, their use was inhibited in part due to an early 

study by Pike, et al.28 that examined their statistical properties.6, 28  Pike demonstrated that 

adjustment for the DRS can result in exaggerated statistical significance of effect 

estimates.28 After reexamining these findings, Cook & Goldman29 found that this 

exaggeration is small except when there is a very strong correlation between confounders 

and the exposure (correlation coefficient exceeding 90%), which is unlikely to occur in 

practical settings.6, 7, 29 Leacy further explains that this exaggeration in statistical significance 

is due to issues of model misspecification rather than the statistical properties of the DRS.30 

Recently, Hansen5 has solidified the theoretical foundation for the use of DRSs in 

causal inference. Hansen showed that the DRS acts as a prognostic balancing score that can 

yield valid effect estimates with a causal interpretation.5  Formally Hansen defines the 

prognostic score, or disease risk score, as any scalar or multi-dimensional function of   that 

satisfies the condition          .5 In other words, conditioning on the DRS results in a 

form of covariate balance where the potential response under control is independent of a 

set of measured covariates,  . If the outcome follows a generalized linear model, Hansen5 

shows that one possible prognostic score, or DRS, is the linear predictor of   , or the 

conditional mean of    given   (i.e.,        ). Hansen5 further shows that if treatment 

assignment is weakly ignorable given a set of baseline covariates, i.e.       , then 

conditioning on the DRS is sufficient to satisfy           allowing for unconfounded 
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estimates of the treatment effect in the treated population through stratification or 

matching on the DRS.  

Using simulations, Arbogast and Ray7 evaluated the properties of effect estimates 

when applying DRSs. Their study showed the DRS to perform similar to PSs and outcome 

regression models for the settings evaluated.7  Stürmer et al.24 and Cadarette et al.31  used 

data from Medicare recipients to evaluate the performance of disease risk scores compared 

to PS methods and traditional outcome regression in real world settings. In these examples, 

results were similar from the application of DRSs, PSs, or traditional multivariable 

regression.  

Due in part to this recent theoretical work and evaluation of the properties of DRSs 

using both simulations and empirical data, there has been increased interest in the 

application of DRSs to evaluate drug performance.23  Although generally not superior to PSs, 

the DRS can be advantageous to PSs for controlling confounding in certain settings.24 For 

example, studies with rare exposures (e.g. emerging therapies) and studies involving 

multiple therapies can benefit from DRSs which model covariate associations with the 

outcome rather than treatment.7, 31 Further, DRSs provide a natural measure to evaluate 

treatment effect heterogeneity. Evaluating treatment effect heterogeneity across the 

distribution of disease risk provides a straightforward approach for clinicians to identify 

subgroups of patients that are most likely to benefit from the treatment, thereby improving 

treatment decisions made by healthcare providers.3  

Despite this recent attention, there remain many unanswered questions regarding 

the use of DRSs in practice.  A fundamental challenge in applying DRSs is understanding how 
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these summary measures should be estimated. Although various strategies for estimation 

have been proposed, there remains uncertainty regarding which estimation strategy is 

optimal in diverse settings. This uncertainty is particularly acute for studies using large 

administrative datasets to evaluate the comparative effectiveness of drugs because there 

have been relatively few applications of disease risk scores in these settings. Multiple 

researchers have expressed the need for further empirical and simulation studies to clarify 

the application of DRSs in real world practice.6, 31 

Traditionally, the DRS has been estimated in two ways. The first is to fit a regression 

model to untreated individuals within the cohort and then use this model to predict the 

disease risk for all individuals within the full cohort.  The second is to fit a regression model 

to the full cohort (both treated and untreated) as a function of baseline covariates and 

treatment, and then estimate the disease risk for each individual after setting treatment 

status to untreated.3, 5, 7  

Fitting the DRS to the full cohort benefits from increased sample size, but requires 

accurately modeling the relationship between the treatment and outcome.5 Hansen shows 

that when estimating the DRS within the full cohort, incorrectly modeling the modification 

of treatment by baseline covariates (i.e. disease risk) can result in estimated scores that 

carry information about the true treatment effect. This non-ancillarity in the estimated 

scores can obscure the effect estimate when used for stratified or matching analysis. 

Correctly modeling treatment effect heterogeneity by disease risk can be difficult, 

particularly for large numbers of covariates. Therefore, Hansen recommends using only the 

untreated cohort for estimation of the disease risk.5  However, accurate estimation of the 
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DRS using only the untreated cohort presents its own challenges. Fitting the DRS only within 

the untreated cohort can introduce bias by substantially increasing the potential for 

overfitting the model.3, 5  

 Recently, alternative strategies for estimating DRSs that use data from outside the 

defined new user cohort have been proposed.  Both Hansen and Glynn discuss potential 

advantages of using outside data to estimate the DRS.3, 5 Hansen explains that estimating 

the DRS within an alternate sample of controls can avoid the complications of overfitting 

that can occur when using same-sample estimation. Glynn suggests that out-of-sample 

estimation of the DRS can be particularly advantageous when evaluating evolving drug 

therapies because the first patient receiving the new treatment can be matched to a 

concurrent patient receiving the old treatment based on the estimated disease risk.3  

In contrast with predictors of treatment, factors that predict outcome or disease 

occurrence are more likely to be biological in nature and less likely to vary over time and be 

impacted by physician decisions which can be difficult to identify.3, 6 Because the DRS is 

likely to be stable over time and across populations, Glynn proposes that disease risk can be 

accurately estimated from either a separate population, or the same population but with 

historical data from a period prior to the current study period.3  

During early periods of drug approval, there is usually limited data to accurately 

estimate either the PS or DRS as a function of large numbers of covariates, particularly for 

studies involving rare outcomes or rare exposure. Further, during early periods of a newly 

introduced drug, a well-defined PS may not exist due to evolving factors affecting treatment 
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assignment. Out-of-sample estimation for the DRS potentially avoids these challenges by 

using a sample with sufficient data to accurately estimate the disease risk.  

While having the potential to improve confounding control for the early evaluation of 

treatment therapies, the performance and potential benefits of historical estimation of 

disease risk is not well established. Using observations, or information, from historical data 

can present important challenges. Covariate assessments and coding practices can change 

over time making a historically estimated DRS not generalizable to future time periods and 

populations.   

The challenges outlined above when estimating the DRS highlight the importance of 

evaluating the validity of fitted DRS models in their ability to control for confounding. If 

prognostic balance could be evaluated within the full study population, then measures of 

prognostic balance could be used to evaluate the validity of fitted DRS models in a similar 

way that measures of covariate balance across treatment groups are used to evaluate PS 

models. Prognostic balance, however, can only be evaluated within individuals receiving the 

comparator treatment where the potential outcome under control,   , is observed. It is 

unclear how well measures of prognostic balance within only the control group correspond 

to a reduction in bias in the estimated treatment effect. Measuring prognostic balance only 

within the comparator group can potentially reward models that are overfit to the control 

population. Further, in the presence of unmeasured confounding, the DRS does not result in 

prognostic balance within subgroups of treatment, but only marginally within the entire 

population.5, 32 Measures of prognostic balance only within the control population can 

potentially lead to an incorrect assessment of the specified DRS model.   
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The inability to evaluate prognostic balance within the full study population has led 

to researchers evaluating DRS models primarily through measures of predictive 

performance, such as the c-statistic and goodness of fit tests. However, it is unclear how 

well measures of predictive performance correspond with the ability of DRS models to 

control confounding. When fitting PS models, previous studies have shown that measures 

of predictive performance do not always correspond well with reduced bias in the 

estimated treatment effect.33, 34 Little attention has been given to determining what metrics 

are optimal for evaluating fitted DRS models. 

1.4 Anti-coagulant medications and cardiovascular disease in patients with atrial fibrillation 

 Atrial fibrillation (AF) is the most common cardiac dysrhythmia in the United States 

and is a growing public health concern.35, 36  AF is an established risk factor for stroke, 

cognitive dysfunction, and premature death.37-39 It has been estimated that AF accounts for 

up to 15% of strokes in people of all ages and up to 30% of strokes in people over 80 years 

of age.40, 41  Results from the Framingham Heart Study showed the prevalence of AF to be 

6% and estimated that the lifetime risk for developing AF is approximately 25% for both 

men and women 40 years of age and older.39 The Framingham Heart Study has further 

shown that the risk for AF increases with age.  As the elderly population increases in the 

United States, the prevalence of AF is expected to increase substantially over the next few 

decades.42  

 Standard practice for treating patients with AF includes treatment with an anti-

coagulant for the prevention of thromboembolic events.8 Long term oral anticoagulant 

treatment options for patients with AF have only included long-acting VKAs (warfarin).8 
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Warfarin has been the most widely used VKA and has been shown to decrease rates of 

stroke in patients with AF in several trials.8, 43  Warfarin reduces blood coagulation by 

inhibiting vitamin K-dependent clotting factors. However, the magnitude of the effect on 

these factors is variable and difficult to predict. Warfarin is a drug with a very narrow 

therapeutic window and pronounced inter- and intraindividual variation of effects on 

coagulation. Warfarin thus needs intense monitoring of its effects on coagulation based on 

the INR that needs to be kept within a narrow range. Both ineffectiveness (too low INR) and 

increased risk of bleeding (too high INR) are quite common. Consequently, AF patients 

being treated with warfarin need to be closely monitored to assure that patients are 

attaining an effective dose range. Several studies have shown that as many as 45% of 

patients on warfarin are not within the therapeutic range for a sufficient period of time.8, 10, 

44 Although most patients have been shown to benefit from warfarin, concern for these 

potential complications and adverse bleeding events has often led to an underuse of 

anticoagulant medications among persons with AF.45, 46 It is estimated that warfarin has 

only been used by 30-60% of appropriate patients with AF.45, 47, 48  

 New oral anti-coagulant medications that focus on inhibiting a specific factor in the 

coagulation pathway have recently been developed to overcome the shortcomings of 

warfarin.43 There are numerous oral anticoagulant agents in development. The most 

advanced in clinical research belong to two drug classes: direct thrombin inhibitors (DTIs) 

and factor Xa (FXa) inhibitors.8 Clinical studies evaluating these drug classes in patients with 

AF have shown promising results. Dabigatran, a direct thrombin inhibitor, showed reduced 

rates of stroke or systemic embolism in select patients with AF when compared to warfarin 
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in the RE-LY trial.49 The ROCKET-AF trial showed the oral FXa inhibitor Rivaroxaban to be 

noninferior to warfarin in reducing rates of stroke and produced no significant difference in 

the risk of major bleeding.41  In the ARISTOTLE randomized trial comparing the direct FXa 

inhibitor apixaban to warfarin in patients with AF, apixaban was also shown to be 

noninferior to warfarin in reducing stroke while resulting in fewer major bleeding events.50 

Unlike warfarin, clinical data have further shown that these novel agents have predictable 

pharmacokinetic, pharmacodynamics, and anticoagulant response thereby. The predictable 

performance of these newer agents reduces the need for dose adjustments and frequent 

monitoring of coagulation parameters.8, 9, 51 The abundant clinical data supporting the 

efficacy of these novel oral anticoagulant agents has led to the recent FDA approval of 

dabigatran in October 2010, rivaroxaban in November 2011, and apixaban in December 

2012. In addition to these oral anticoagulants, there are several additional novel 

anticoagulant agents in advanced development.   

 As novel anticoagulants become more widely used, it is possible that there will be a 

paradigm shift in the prescribing of anticoagulation treatments for patients with AF.8 

Although clinical data suggest increased potential for achieving an effective dose range with 

these newer agents without the need for frequent monitoring, the implications on 

population level practice have not been adequately evaluated. Ansel52 discusses limitations 

of these clinical trials highlighting important inclusion/exclusion criteria that may not 

generalize to these new oral anticoagulants having the same performance in real world AF 

patients. A systematic review comparing new oral anticoagulants (dabigatran, rivaroxaban 

and apixaban) to warfarin concluded that these new agents had a lower risk for fatal 
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bleeding and hemorrhagic stroke, but an increased risk for gastrointestinal bleeding, a more 

common event in the elderly.10 Differential performance of these new anticoagulants 

between young and elderly populations is not well established.  

Many clinicians acknowledge that there are gaps in the current understanding of 

how these new medications perform in clinical practice.52-54 Ansell52 asserts that there are 

enough unknowns regarding the effects of these new oral anticoagulants that health care 

providers and patients should be cautious when using these medications as first line 

treatment. Observational research has the potential to supplement information provided by 

the randomized trials and improve our understanding of these new anticoagulants in real 

world practice and diverse patient populations. In a systematic review conducted by Adam 

et al,10 the authors found that the observational literature on adverse events of new oral 

anticoagulants is sparse, consisting only of case reports. We seek to improve the 

information regarding the performance of recently introduced novel oral anticoagulant 

medications by using the previously described methods to thoroughly investigate their 

performance in elderly populations using Medicare data.  

1.4.1 Early Evaluation of New Oral Anticoagulant Drugs for Patients with Atrial Fibrillation  

Due to the very recent approval of these new oral anticoagulants, their evaluation in 

non-experimental settings is difficult, in part due to the limited data available to control for 

large sets of confounders. Out-of-sample estimation methods for disease risk are 

advantageous because these methods can potentially allow for the control of a large 

number of risk factors at the start of drug introduction. While Medicare data do not capture 

some important clinical variables, including blood pressure, they offer major advantages for 
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this kind of research based on the population-based nature (real world) and the ability to 

evaluate clinically relevant outcomes rather than intermediates within a very short time 

(because of the overall size of the population).55, 56 This will potentially allow researchers to 

effectively evaluate the comparative effectiveness of these newer medications at earlier 

periods than previous methods.  
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CHAPTER 2 

METHODS 

2.1 Study Population  

This study consisted of older individuals ages 65 years and older who were 

beneficiaries of the Medicare system. Medicare is a national insurance program for all 

Americans over the age of 65.  Because all elderly Americans are entitled to these benefits, 

individuals receiving Medicare are likely to be representative of the general health care 

utilization of elderly adults in the US population. However, the Medicare data made 

available for research is limited to parts A, B, and D. Medicare part C, which includes 

Medicare Advantage plans, is administered by private insurance companies and is not made 

publicly available. Medicare part C covers approximately 25% of all Medicare beneficiaries 

and contains individuals who tend to have higher socioeconomic status. Furthermore, the 

study populations for the research questions in this study excluded individuals who did not 

participate in Medicare part D. The exclusion of Medicare part C recipients and individuals 

who do not participate in part D may affect the study population to be more representative 

of Medicare beneficiaries of lower socioeconomic status. 

The Medicare data from the Center for the Medicare and Medicaid Services (CMS) 

Chronic Condition Data Warehouse from 2007 to 2012 are available at UNC. The CCW files 

include annual enrollment summary, inpatient, outpatient, skilled nursing facility, carrier 

(physician office visit), hospice, home healthcare agencies, durable medical equipment files 
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and prescription Part D event files. The prescription Part D files include the national drug 

code of the medication, service data, strength of the medication, days of supply, quantity 

dispensed, encrypted and unique prescriber identifier, unique and encrypted pharmacy 

identifier, generic drug name, and the benefit phase of the Part D event. All CCW files are 

linked by an encrypted and unique CCW identifier number for each beneficiary. We used 

100% of patients nationwide who meet the inclusion and exclusion criteria. 

2.2  Study Design  

We included individuals who were continuously enrolled in the Medicare data at 

least 12 months before and through the end of the study period. A new user cohort study 

design was used to evaluate the described research questions.11 We identified Rx claims for 

dabigatran and warfarin within Medicare A, B, and D claims data. We determined periods of 

new use after a pre-specified washout period. New users of dabigatran who had a 

prescription claim for the comparator drug during the specified washout period were 

excluded. We identified new users of dabigatran and warfarin between the years 2010-

2012. The start of this time period corresponds to FDA approval for dabigatran. 

We applied a new user cohort design when evaluating the previously described 

research questions to mitigate both measured and unmeasured confounding caused by 

indication for treatment and healthy users. Confounding caused by indication for treatment 

and healthy-users are two primary sources of bias in comparative effectiveness research. 

New user designs reduce the potential for healthy user bias by excluding prevalent users.57 

Prevalent users of a drug at baseline of follow-up are more likely to have systematic 

differences in the distributions of unmeasured risk factors for the outcome compared to 
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new initiators of the drug.11, 57 In each of the analyses, we further reduced the magnitude of 

confounding caused by indication for treatment by comparing the defined exposure to an 

active comparator with similar indication.58 

All decisions on exclusion criteria for cohort participation were made prior to 

treatment initiation and follow-up. Measured confounders were controlled at baseline 

using propensity score matching and disease risk score matching.  

2.3 Choice of Outcomes 

 We considered a combined outcome of ischemic stroke and all-cause mortality. 

Ischemic stroke was defined as hospitalization with diagnostic codes in the principal or 

secondary positions (Primary Dx 430-434). Birman-Deych, et al59 demonstrated that ICD-9 

codes for coronary artery disease, stroke, heart failure, and hypertension had high 

specificity (>0.95), low sensitivity (<0.76), and a positive predicted value of 0.95 within the 

Medicare Part A data. They further demonstrate that miscoding of ischemic stroke events as 

hemorrhagic events was rare. Similar findings have been found by other studies evaluating 

the validity of ICD-9 codes in other large administrative databases.60  

2.4 Variable Selection 

For the empirical analysis, we selected a high-dimensional set of covariates using an 

algorithm that is similar in concept to the high-dimensional PS.61 We first selected a reduced 

set of covariates a priori using expert knowledge. We then included an additional 200 

empirically selected covariates that were identified within Medicare files containing 

medication claims, inpatient and outpatient diagnostic codes and procedural codes. When 

selecting the 200 additional covariates, we first identified the top 200 most prevalent codes 
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within each data dimension of the Medicare data (codes with a prevalence greater than 0.5 

were subtracted from 1). Among the codes selected, we then identified the top 200 codes 

based on the strength of their univariate association (odds ratio) with the outcome.  

2.5 Monte Carlo Simulations 

We used Monte Carlo simulations to better understand and evaluate potential 

benefits of DRS matching vs PS matching for Aim 1. Simulations were also used in Aim 2 to 

compare various measures for evaluating the validity of the specified DRS models.  

2.5.1 Simulations for Aim 1 

The simulated causal structure for Aim 1 was motivated by the empirical example 

comparing new-users of dabigatran with warfarin in preventing ischemic stroke and all-

cause mortality. We simulated 100 baseline covariates to reflect settings involving high-

dimensional sets of covariates. Baseline covariates included a mixture of both continuous 

and dichotomous random variables. We simulated a dichotomous treatment as a function 

of the 100 baseline covariates. We then simulated a dichotomous outcome as a function of 

the 100 baseline covariates and treatment.  

We considered four scenarios where we varied the sample size and the strength of 

the effects of covariates on both the treatment and outcome. We allowed coefficients to be 

both positive and negative to reflect practical settings where baseline covariates induce 

confounding in both directions. We implemented the PSs and DRSs using 1 to 1 caliper 

matching where calipers were defined as .01 standard deviations of the respective PS or 

DRS distribution. We compared the performance between PS and DRS matching by 

calculating the bias, defined as the expected value of the difference between the effect 
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estimate and the true effect, by taking the mean of this difference over all simulation runs.  

The mean squared error (MSE) was calculated by taking the mean of the squared bias over 

all simulation runs. We evaluated the precision of the effect estimates using the empirical 

standard deviation of the distribution of the treatment effect estimates across all simulation 

runs.  

2.5.2 Simulations for Aim 2 

We created a variety of populations where we varied the causal structures, covariate 

distributions and covariate associations.  We evaluated scenarios which include rare 

outcomes, rare exposures and small sample sizes.  In comparison to the complexities of real 

world data, these simulated populations were simplified in order to obtain a general 

understanding of the statistical properties and performance of various measures for 

evaluating the validity of DRS models. Simulations allow us to identify specific settings and 

parameters which systematically affect the performance of each of the described methods 

for confounding control.   

2.6  Aim 1: Evaluating Potential Benefits of the Disease Risk Score 

We will evaluate potential benefits of matching on the DRS compared to matching 

on the PS. Potential benefits of the DRS remain largely unclear with few studies 

demonstrating the application of DRSs in large database research.  

2.6.1 Overlap in the distribution of disease risk across treatment.  

Strong channeling can create separation in the PS distribution across treatment 

groups during early periods of drug approval. This can reduce the number of individuals 

who can be compared or matched on the PS and limit the ability to evaluate the treatment 
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effect within a large portion of treated patients, particularly when controlling for large 

numbers of covariates.  

A theoretical advantage of the DRS that has not been discussed is that the degree of 

overlap in the DRS distributions across treatment groups will always be as at least as large 

as the overlap in the PS distributions across treatment groups. Greater overlap in the DRS 

distributions can potentially allow for a greater number of individuals to be compared when 

matching on the DRS compared to matching on the PS.  

The reason for greater overlap in the distribution of disease risk across treatment is 

because of differences in the balancing properties of the PS compared with the DRS. 

Matching treatment groups on the PS is a more restrictive condition then matching 

treatment groups on the DRS. Matching on the DRS does not require covariates to be 

balanced across treatment groups and can include individuals who systematically have 

differing covariate distributions across treatment groups, but similar overall risk for the 

outcome.5  

More formally, because matching on the PS renders baseline covariates 

independent of treatment assignment within the matched population, any function of 

baseline covariates will also be independent of treatment assignment including the DRS. 

Formally,  

                  

since the DRS is simply a function of  . Rosenbaum and Rubin show that 
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implying that                   . In other words, once we condition on the PS, the 

covariate vector,  , or any function of  , including the DRS, does not provide any additional 

information about treatment assignment.  

2.6.2. Controlling for instrumental variables  

Including instrumental variables within the PS can also increase the separation in the 

PS distribution across treatment groups further limiting the number of patients that can be 

matched or compared. In addition, both theory and simulations have shown that controlling 

for variables that do not affect the outcome except through treatment (instrumental 

variables) can reduce the precision of effect estimates and amplify bias caused by 

unmeasured confounders.62, 63  

Unmeasured confounding is a fundamental obstacle in pharmacoepidemiology and 

observational research in general. Primary sources of unmeasured confounding in 

comparative effectiveness research arise from 1) confounding by indication for treatment 

and 2) confounding caused by frailty.57, 64, 65 For example, physicians’ treatment decisions 

may be based on an evaluation of the patient’s health status and prognosis, the patient’s 

theoretical response to treatment, the physician’s past experience with the treatment, or 

an assessment of the patient’s ability and willingness to undergo the treatment (e.g., take a 

medication as prescribed).66 Further, patients who initiate a preventive medication may be 

more likely than other patients to engage in other healthy, prevention-oriented behaviors 

leading to bias known as the healthy user effect.67, 68 Conversely, patients in whom the 

expected benefit is unlikely to materialize (e.g., because of overwhelming competing risks) 

are less likely to be started on preventive therapies and more likely to stop preventive 
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therapies. These types of confounding usually result in the distributions of unmeasured 

covariates being systematically different between treatment groups.  

For studies involving large numbers of covariates, identifying instrumental variables 

can be challenging. Pharmacoepidemiologic and medical studies utilizing automated 

databases often involve large numbers of potential covariates that have not been selected 

with a specific research question in mind and where a multitude of factors other than the 

prognosis strongly influence treatment decisions.  

While the potential for including instrumental variables is highest for a model 

predicting treatment (the PS), it is important to realize that it is not generally avoided by 

modeling the risk for the outcome. Once we condition on treatment (either by modeling 

treatment or by restricting to the untreated), instrumental variables will become associated 

with the outcome via the unmeasured confounders. The DRS, if estimated within the study 

population, will also tend to be affected by bias amplification in the presence of 

unmeasured confounders.  

By modeling covariate associations with the outcome within historical data prior to 

treatment introduction, the DRS implicitly avoids controlling for instrumental variables.32 

Out-of-sample estimation of DRSs is therefore likely to minimize bias caused by 

unmeasured confounding compared with PS methods or outcome regression models, 

including conventionally estimated DRSs. These potential advantages of greater overlap in 

the DRS distribution across treatment groups and the avoidance of controlling for 

instrumental variables can potentially improve the precision of effect estimates by allowing 
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for a larger proportion of treated individuals to be compared during periods where the 

number of individuals receiving the new treatment therapy can be small. 

2.7  Aim 2: Model Validation  

2.7.1. Validation of Propensity Score Models 

We will evaluate the validity of the specified PS models by calculating the average 

standardized absolute mean difference (ASAMD) of the measured covariates across 

treatment groups, where the ASAMD for a single covariate is defined as 

 
  

     
 
  

    
  
   

  
   

    
    

    

 

where 

     the value of   for the ith individual in the treatment group, 

    number of individuals in the treatment group, 

  
   sample variance of   in the treatment group. 

The ASAMD is a straightforward measure to summarize covariate balance and has 

been shown to perform well compared to other measures of covariate balance when 

evaluating the validity of PS models in their ability to control confounding.69, 70  

2.7.2. Validation of Disease Risk Score Models 

Hansen5 showed that unlike propensity balance where covariates are balanced with 

respect to treatment within the entire study population, conditioning on the DRS results in 

‘prognostic balance’ where covariates are balanced with respect to the potential outcome 

under the comparator treatment. Because this potential outcome is not observed for each 

individual in the study cohort, it is not possible to evaluate the validity of DRS models 
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directly in terms of prognostic balance across the entire population. It remains unclear what 

measures are optimal for evaluating risk models in their ability to control for confounding.  

Within the simulated populations, we evaluated the correlation between various 

measures for assessing the validity of fitted DRS models and bias in the estimated treatment 

effect. We evaluated the predictive performance of the estimated DRSs by assessing the 

calibration and discrimination of the predicted values. The calibration was assessed using 

the Hosmer-Lemeshow goodness of fit test71 defined as  

   
        

           
     

 

 

   

 

where 

    number of observations in the gth group, 

           observed number of cases in the gth group, 

           expected number of cases in the gth group. 

We also evaluated the calibration of predicted values by calculating the prediction 

error for each DRS model. The mean prediction error was calculated as  

    

 
        

  
 , 

where     the observed response for individual    and    is the predicted response from 

the risk model.  

We assessed the discrimination of the predicted values by calculating the c-statistic 

defined as the area under the receiver operating characteristic curve.72  This curve is a plot 

of the true positive rate (sensitivity) against the false positive rate (1-specificity) and is 
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calculated by comparing all disjoint pairwise combinations of individuals and calculating the 

proportion of those combinations where the predicted value for the individual with the 

event is higher than the predicted value for the individual with no event.  

Finally, we evaluated the performance of a resampling method proposed by 

Hansen73 that assesses the validity of DRS models in their ability to control for confounding 

rather than their predictive performance. This strategy draws weighted samples from the 

control population to create “pseudo treatment” and “pseudo control” groups so that the 

distribution of covariates across the pseudo treatment groups are representative of those 

across the treatment groups in the original study cohort. With no treatment effect 

separating the pseudo treated and pseudo control groups, the fitted DRS models can be 

evaluated directly in their ability to control for confounding within the pseudo population.  

The pseudo treatment and pseudo control groups are created as follows: 

1. Estimate the propensity score for each individual in the study population. 

2. Create a pseudo treatment group by taking a weighted sample of         

individuals from the control population with weights proportional to the 

odds of receiving treatment. Formally,  

   
    

        
 

where     weight for individual   and       propensity score for 

individual  .  

3. Sampling in step 2 can be done with or without replacement. When sampling 

with replacement, a pseudo control group is created by sampling         
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individuals from the control population with weights equal to one. If 

sampling without replacement, the pseudo control group is created by 

simply taking individuals from the control population that were not selected 

for the pseudo treatment group in step 2 (the complement of the pseudo 

treatment group).  

 Sampling the pseudo treatment group with replacement is similar in concept to 

standardized mortality ratio weighting where a subset of the control population is weighted 

so that the propensity score distributions between the weighted control group (which in 

this case is the pseudo treatment group) and treatment group in the original study cohort 

are exchangeable. Because         , where   is a set of measured baseline covariates 

and       is the propensity score, this exchangeability on the PS implies exchangeability on 

the measured covariates  . With the covariate distributions across the pseudo treatment 

groups being representative of those within the actual treatment group, we can perform a 

“dry run” by fitting the DRS within the pseudo control group, or a historical set of controls, 

and then evaluating its ability of the fitted model to control for confounding within the full 

pseudo population. Since the degree of confounding within the pseudo population should 

be representative of confounding in the original study cohort, DRS models that successfully 

control for confounding within the pseudo population should also control for the same 

measured confounders within the original study cohort.  

 When sampling with replacement, the same individuals can potentially be sampled 

many times over. Sampling without replacement avoids this problem, but requires a more 

complicated sampling scheme to take into account that the sampling probabilities for each 
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individual change with each draw from the finite population. Chen & Dempster74 describe a 

method to maximize information when taking a weighted sample without replacement 

from a finite population. In this paper, we restricted analyses to sampling with replacement. 
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CHAPTER 3 
 

USING DISEASE RISK SCORES TO CONTROL LARGE NUMBERS OF COVARIATES IN 
COMPARATIVE EFFECTIVENESS RESEARCH OF NEW TREATMENTS 

 
3.1 Introduction 

Evaluating the comparative effectiveness of newly introduced treatments presents 

unique challenges in pharmacoepidemiologic research. The propensity score, defined as the 

conditional probability of treatment given a set of observed covariates, has become a 

standard tool for controlling large numbers of confounding variables.1, 2 However, 

accurately modeling the PS for a new treatment can be difficult if the treated population is 

small or factors affecting treatment assignment change rapidly.3, 4  

In a recent paper, Glynn et al.3 proposed using an alternative covariate summary 

score, the disease risk score (DRS), to control for confounding in settings involving new 

treatments. Unlike the PS, which models covariate associations with treatment, the DRS 

models covariate associations with the outcome within the control or comparator 

treatment group. Glynn et al. argued that factors affecting disease risk are more likely to be 

stable over time than are factors affecting treatment, potentially simplifying the estimation 

of the DRS compared to a time-varying PS. Glynn et al. also advocated using data collected 

prior to the introduction of the new treatment to avoid overfitting and provide ample data 

when fitting rich prediction models. 
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Little evidence exists to confirm the theoretical advantage of a historically estimated 

DRS over a traditional PS when evaluating new treatments. A number of studies have shown 

that simply fitting time-specific PS models can perform well when the indication for 

treatment changes rapidly over time.4, 75 Further, the limitations of the PS when the number 

of exposed individuals is small are not well understood. Previous studies have also shown 

that overfitting the PS model does not necessarily compromise confounding control.76 

There remain few examples demonstrating the application of a historically estimated DRS 

when evaluating new treatments. Potential advantages and challenges of using DRSs in 

these settings remain unclear. 

In this paper, we use both simulations and an empirical example to compare the 

performance of the DRS with that of the PS when controlling large numbers of covariates in 

settings involving newly introduced treatments. We discuss both challenges and potential 

advantages of using the DRS for confounding control as well as required assumptions for 

using historical data to model the DRS. We then evaluate the performance of DRS matching 

with PS matching in an empirical example where we compare the new oral anticoagulant 

dabigatran with warfarin in preventing ischemic stroke and all-cause mortality in patients 

diagnosed with atrial fibrillation (AF) in the Medicare population.  

3.2 Background 

In comparative effectiveness research, investigators are often interested in 

comparing two alternative treatment therapies. Following Rubin’s77 description of the 

counterfactual framework, let    represent the potential response had the individual 

received the treatment of interest and    the potential response had the individual received 
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the comparator or control treatment. In practice, only one of these potential outcomes is 

observed for each individual.18, 19  

Hansen5 formally defines the DRS as any scalar or multidimensional function of a set 

of baseline covariates,  , that, when conditioned on (e.g., matching or subclassification), 

results in   being independent of   . In the absence of unmeasured confounding, this 

independence is sufficient to identify average treatment effects in the treated population.5, 

21 If the outcome follows a generalized linear model, one possible DRS is the linear predictor 

of   , or the conditional mean of    given   (i.e.,        ). Because    is observed only for 

individuals receiving the comparator treatment, in practice the DRS must be estimated 

indirectly for the treated population. 

Challenges when modeling the DRS. The DRS has typically been estimated in two 

ways. The first is to fit a regression model within the cohort of individuals receiving the 

comparator treatment and then extrapolate this model to predict disease risk for the full 

cohort. The second is to fit a regression model for the full cohort (i.e., both treatment and 

comparator groups) as a function of baseline covariates and treatment, and then estimate 

the disease risk for each individual after setting treatment status to zero.3, 5, 7, 27, 31 Fitting 

the DRS to the full cohort benefits from increased sample size, but requires accurately 

modeling the relation between treatment and outcome. Small misspecifications in the full-

cohort DRS model can introduce bias by resulting in estimated scores that are non-ancillary, 

or carry information about the treatment effect.5, 30 Consequently, Hansen5 recommends 

using only the control population when fitting the DRS model. Leacy30 explained that using 

only the control population when modeling the DRS tends to result in estimated scores that 
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are more robust to model misspecification. Fitting the DRS only among individuals receiving 

the comparator treatment, however, can lead to overfitting,5 which results in 

overestimating disease risk for high-risk comparator patients and underestimating disease 

risk for low-risk comparator patients. Such overfitting can lead to apparent treatment effect 

heterogeneity over the distribution of disease risk and potentially bias overall effect 

estimates.3, 5  

Both Hansen5 and Glynn et al.3 have proposed using controls from a period prior to 

the current study to fit the DRS model. Glynn et al. suggested that estimating the DRS with 

historical data can be particularly advantageous in pharmacoepidemiologic studies using 

large administrative healthcare databases to evaluate newly introduced treatments or 

evolving drug therapies. This approach can avoid overfitting the risk model to the 

comparator group within the study cohort, but assumes that the effects of risk factors on 

the outcome, surveillance of individuals, and coding practices do not change over time. 

Violation of these assumptions could result in fitted DRS models that are not generalizable 

to the study population.  

Potential benefits of matching on the DRS. A theoretical advantage of the DRS that 

has not been widely discussed is that the degree of overlap in the distribution of disease risk 

across treatment groups will always be at least as large as the overlap between the PS 

distributions. This is due to the fact that matching on the PS is more restrictive than 

matching on the DRS. Matching on the PS will only include individuals who, in expectation, 

have similar covariate distributions across treatment. Matching on the DRS, however, will 

not only include individuals who, in expectation, have similar covariate distributions across 
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treatment, but can also include individuals who systematically have differing covariate 

distributions across treatment, but similar overall risk for the outcome.5 More formally, 

once covariates are independent of treatment, then any function of baseline covariates, 

including the DRS, will also be independent of treatment. Therefore, PS-matched treatment 

groups will be balanced on the DRS in expectation. However, because the DRS does not 

balance covariates with respect to treatment, but only with respect to   , DRS-matched 

groups may not be balanced on the PS. The potential for greater overlap in DRS 

distributions across treatment groups may allow a larger percentage of the treated 

population to be compared when matching on the DRS versus the PS.  

3.3 Simulation Study: an Illustrative Example 

We simulated a causal scenario that was motivated by an empirical example 

(described below) comparing dabigatran with warfarin in preventing ischemic stroke and 

all-cause mortality among new users. We simulated 100 baseline covariates. As in most 

pharmacoepidemiologic settings, the majority of these baseline covariates were 

dichotomous (simulated as binomial random variables). We simulated a dichotomous 

treatment and a dichotomous outcome according to equations 3.1 and 3.2.  

                                                                          [3.1]    

                                                                     [3.2]        

We considered four scenarios where we varied the sample size and the strengths of 

covariate-treatment and covariate-outcome associations. In scenario 1, coefficients in 

Equations 1 and 2 were selected randomly from uniform distributions so that the effects of 

covariates on both the treatment and outcome were mild. In Scenarios 2 and 3, coefficients 
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were selected to allow for moderate and strong effects, respectively, on the treatment and 

outcome. In Scenario 4 we included treatment effect heterogeneity to demonstrate how 

effect estimates can differ when different numbers of individuals are matched on the PS 

versus the DRS. We allowed coefficients to be both positive and negative to reflect practical 

settings where baseline covariates induce confounding in both directions. We simulated 

each scenario with sample sizes of 10,000 and 1,000. 

We measured the performance of DRS and PS matching in three ways. We 

calculated the bias, defined as the expected value of the difference between the effect 

estimate and the true effect, by taking the mean of this difference over all simulation runs.  

The mean squared error (MSE) was calculated by taking the mean of the squared bias over 

all simulation runs. To evaluate precision, we estimated the standard error using the 

empirical standard deviation of the distribution of the treatment effect estimates across all 

simulation runs.  

3.4 Simulation Results 

For simulation scenarios not involving treatment effect heterogeneity, Figures 3.1 

and 3.2 show the PS and DRS distributions by treatment group for one simulation run with a 

sample size of 10,000 (Figure 3.1) or 1,000 (Figure 3.2). As expected, the degree of overlap 

(i.e., area of overlapping region) between the DRS distributions was always larger than the 

degree of overlap between the PS distributions. Varying the sample size and the strengths 

of covariate-treatment and covariate-outcome associations affected the overlap in PS 

distributions more strongly than it affected the overlap in DRS distributions (Figures 3.1 and 

3.2).  
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Table 3.1 shows that, for every scenario, a larger percentage of the treated 

population could be matched on the DRS versus the PS because of the greater overlap in 

DRS distributions (percent matched was approximately 100 for DRS matching and ranged 

from 98.8 to 47.6 for PS matching). The DRS-matched estimate generally had greater 

precision and lower MSE compared to the PS-matched estimate, with MSE ranging from 

0.02 to 0.72 for DRS matching and 0.04 to 0.72 for PS matching (Table 3.1). Both DRS and PS 

matching resulted in approximately unbiased estimates for scenarios where there was no 

treatment effect heterogeneity. In the presence of treatment effect heterogeneity, 

matching on the DRS resulted in a more accurate evaluation of the treatment effect within 

the entire treated population (Table 3.1).  

3.5 Empirical Study: Dabigatran vs Warfarin in Patients with Atrial Fibrillation 

We compared the performance of dabigatran versus warfarin in an elderly 

population using linked Medicare Parts A (hospital), B (outpatient), and D (pharmacy) data. 

We identified eligible individuals from a 20% random sample of Medicare beneficiaries with 

fee-for-service enrollment in all three plans for at least one month from October 19, 2010 

(when dabigatran was introduced) through December 31, 2012. New users were defined as 

individuals who initiated dabigatran or warfarin after a 1-year washout period with no 

prescription for any oral anti-coagulant.11 We required continuous enrollment in Medicare 

for at least 12 months prior to drug initiation. All demographic and clinical covariates 

(described below) were defined during the 12 months prior to drug initiation. Individuals 

were censored only if they lost Medicare enrollment during follow-up (intent-to-treat 

analysis).  
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We restricted our study cohort to individuals who were 65 years of age or older and 

had an inpatient or outpatient diagnosis code for atrial fibrillation or atrial flutter (ICD-9 

427.31, 427.32) prior to initiation of dabigatran or warfarin. We excluded individuals with a 

known heart valve replacement because this is a contraindication for dabigatran use. We 

also excluded individuals at a skilled nursing facility at drug initiation.  

Estimation of the DRS and PS. We modeled the one-year risk of combined ischemic 

stroke and all-cause mortality within a population of new warfarin users with an index date 

prior to the introduction of dabigatran (between January 1, 2008 and October 18, 2010). 

This model was then used to predict the disease risk for all individuals within the study 

cohort.  

We also estimated the PS within the study cohort for comparison. The PS and DRS models 

included main effects for the 37 covariates listed in Table 3.2, which were selected a priori 

using expert knowledge. We added 200 empirically selected covariates based on Medicare 

medication claims, inpatient and outpatient diagnostic codes, and procedural codes. We 

identified the 200 most prevalent codes within each data dimension (codes with a 

prevalence greater than 0.5 were subtracted from 1). Of the 600 covariates identified in this 

way, we selected the 200 with the strongest univariate associations (odds ratios) with the 

outcome. The estimated DRS and PS were implemented using 1-1 caliper matching with a 

caliper of 0.01 standard deviations of the respective DRS or PS distribution. We considered 

the dabigatran group to be the treated group. We estimated the hazard ratio within the 

matched populations using Cox proportional hazards models. 

We conducted analyses using 20 and 1 percent samples of the Medicare data to 
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observe the sensitivity of the results as the sample size is reduced. With smaller sample 

sizes, PS overfitting and the resulting separation in PS distributions across treatment groups 

will likely be more pronounced. Previous studies have shown that confounding can be 

stronger shortly after a treatment’s introduction.78-80 To observe the sensitivity of the 

results to the duration of follow-up, we repeated the analysis using data only for the first 

year of dabigatran use (index date between October 19, 2010 through October 18, 2011).  

3.6 Empirical Results 

 We present results for the empirical study in Figures 3.3 and 3.4 as well as Tables 3.2 

and 3.3. Table 3.2 shows the distribution of the 37 a priori selected covariates by treatment 

group. New users of dabigatran were generally healthier, with fewer comorbidities and 

greater use of the healthcare system than new users of warfarin (Table 3.2). Similar 

patterns of initiation have been found in other studies.81  

 Figures 3.3 and 3.4 show the PS and DRS distributions by treatment group for the 

20% (Figure 3.3) and 1% (Figure 3.4) samples of the Medicare data, with follow-up through 

2012. In both analyses, controlling for the larger set of empirically selected covariates 

resulted in greater separation in PS distributions while having little impact on the separation 

in DRS distributions. For the 20% sample (Table 3.3), approximately 100% of the treated 

population was matched on the PS and the DRS, regardless of the number of covariates 

included in the models. In this case, both PS and DRS matching resulted in similar hazard 

ratios and standard errors, both when controlling for the covariates selected a priori (HRs 

0.73 and 0.72 respectively; SEs both 0.03) and after adding the empirically selected 

covariates (HRs 0.88 and 0.87 respectively; SEs both 0.04). 
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When using the 1% sample of the Medicare data and controlling for the covariates 

selected a priori (Table 3.4), PS and DRS matching yielded similar results, with 

approximately 100% of the treated population being matched for both methods (HR and SE 

of 0.75 and 0.16 for PS matching and 0.75 and 0.15 for DRS matching). However, when 

controlling for the expanded covariate set in this sample, only 82% of the treated patients 

were matched on the PS, compared to approximately 100% on the DRS (Table 3.4). The 

reduction in the percentage matched resulted in reduced precision for the PS-matched 

estimate (SE 0.21 versus 0.18) (Table 3.3). In the analyses evaluating treatment effects in 

the first year of dabigatran use (not shown), the pattern of results was similar to that shown 

in Table 3.3, except that unadjusted and adjusted estimates were further from the null and 

standard errors were larger. 

Each of the PS models resulted in good model fit in terms of calibration and 

discrimination for all scenarios (Hosmer-Lemeshow p-value ranging from 0.52 to 0.65; c-

statistic ranging from 0.68 to 0.79). The PS models also performed well in terms of 

balancing covariates across treatment groups with an average standardized absolute mean 

difference (ASAMD) of 0.01 or less for all scenarios. In terms of predictive performance, the 

DRS models had good discrimination (c-statistic ranging from 0.73 to 0.78), but performed 

poorly in terms of calibration (Hosmer-Lemeshow p-value <0.01 for three out of four 

scenarios).   

3.7 Discussion 

In this study, we used both simulations and an empirical example to explore 

potential benefits of using a historically estimated DRS when controlling large numbers of 
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covariates in settings with newly introduced treatments. With few exposed individuals and 

smaller sample sizes, fitting a high-dimensional PS model can increase separation between 

the PS distributions of the treatment groups, reducing the number of treated individuals 

who can be matched on the PS. In theory, the overlap in DRS distributions should always be 

at least as great as the overlap in PS distributions across treatment groups. Therefore, 

matching on the DRS may allow researchers to evaluate the treatment effect within a larger 

proportion of the treated population, compared to matching on the PS. 

In the simulations, we demonstrated that when there was strong separation in the 

PS distributions across treatment groups, matching on the DRS can improve the precision of 

the effect estimate and, in the presence of treatment effect heterogeneity, provide more 

accurate estimates of the treatment effect in the full treated population. For the empirical 

example, we found that when there was moderate separation in the PS distributions across 

treatment groups, DRS and PS matching gave similar estimates of the effect of the new oral 

anticoagulant dabigatran versus warfarin in reducing combined ischemic stroke and all-

cause mortality within the Medicare population. However, when controlling for large 

numbers of covariates with reduced sample size, the separation in the PS distribution across 

treatment groups increased and matching on a historically estimated DRS improved the 

precision of the effect estimate by allowing a larger proportion of the treated population to 

be matched. For both PS and DRS matching, when we added a large set of empirically 

selected covariates, effect estimates became more consistent with the results of clinical 

trials and other studies comparing these treatments within the Medicare population.49, 82 

When we restricted the analysis to the first year of dabigatran use, estimates moved further 
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from the null (becoming less consistent with trial results), likely reflecting the strong 

channeling that occurs shortly after a treatment’s introduction.78-80  

While matching on the DRS can allow for a larger portion of individuals to be 

compared across treatment when there is separation in the PS distributions, it is important 

to consider why the PS distributions are separated. If the separation is due to strong 

differences in confounding variables rather than overfitting the PS model, researchers 

should proceed cautiously. Strong differences in measured confounders can indicate strong 

differences in unmeasured confounders, which could be addressed best in the study design 

phase rather than the analysis phase. We stress the importance of reducing differences in 

the distribution of baseline covariates across treatment groups through proper study design 

(e.g., new-user design and other restriction criteria).78, 83  

While we have focused on potential benefits of matching on the DRS, the DRS also 

has some theoretical disadvantages compared to the PS. Because the DRS is defined in 

terms of a potential outcome, estimating the DRS in practice can be challenging and 

requires additional assumptions. Further, unlike the PS, the DRS cannot be evaluated using 

measures of covariate balance within the full study population. In this study, the estimated 

PS models resulted in good model fit and PS matching balanced covariates across treatment 

groups. When modeling the DRS using historical data, we found it difficult to obtain good 

model fit in terms of the Hosmer-Lemeshow test, particularly when controlling for larger 

numbers of covariates. Other studies have reported similar findings when estimating high-

dimensional DRSs and have proposed implementing shrinkage methods to reduce the 

dimensionality of covariates to improve model fit.84 For this study, however, poor fit in 
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terms of the Hosmer-Lemeshow test did not appear to have a strong impact on the 

performance of the DRS compared with the PS. More research is needed to determine how 

best to estimate and evaluate the validity of DRS models. 

We conclude that under certain assumptions, using historical data to model the DRS 

is a valid method to control for confounding when evaluating newly marketed drugs. 

Further, when there is strong separation in the distribution of the PS across treatment 

groups, matching on a historically estimated DRS versus a PS can allow researchers to 

evaluate the treatment effect within a larger proportion of the treated population. We 

further conclude, however, that accurately modeling the DRS can be more challenging as 

compared to modeling the PS, even in settings involving newly introduced treatments. 

When using summary scores for confounding control, we recommend conducting and 

reporting results from PS analyses in addition to analyses using a historically estimated DRS. 
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3.8 Tables and Figures 

Table 3.1 Simulation results  

Scenarioa  Sample 
Size 

Method Bias St. 
Error 

MSE x10 % matched 

A       
 10,000      
  Unadjusted 0.06 0.08 0.11 ----- 
  PS match 0.01 0.09 0.08 98.8 
  DRS match 0.01 0.09 0.08 99.9 
 1,000      
  Unadjusted 0.06 0.23 0.56 ----- 
  PS match 0.00 0.27 0.72 89.2 
  DRS match 0.01 0.27 0.72 99.8 
B       
 10,000      
  Unadjusted 0.12 0.06 0.18 ----- 
  PS match 0.00 0.08 0.06 89.9 
  DRS match 0.01 0.07 0.06 99.9 
 1,000      
  Unadjusted 0.13 0.22 0.65 ----- 
  PS match 0.00 0.26 0.67 77.4 
  DRS match 0.00 0.22 0.48 99.9 
C        
 10,000      
  Unadjusted 0.23 0.05 0.55 ----- 
  PS match 0.00 0.06 0.04 58.9 
  DRS match 0.00 0.04 0.02 100 
 1,000      
  Unadjusted 0.23 0.16 0.79 ----- 
  PS match 0.01 0.25 0.63 47.7 
  DRS match 0.01 0.15 0.23 99.8 
D       
 10,000      
  Unadjusted 0.22 0.05 0.51 ----- 
  PS match 0.04 0.06 0.05 58.9 
  DRS match 0.01 0.04 0.02 100 
 1,000      
  Unadjusted 0.22 0.18 0.81 ----- 
  PS match 0.05 0.24 0.60 47.6 
  DRS match 0.01 0.16 0.26 99.9 
a Scenario A: mild covariate effects on treatment and outcome; Scenario B: moderate 
covariate effects on treatment and outome; Scenario C: strong covariate effects on treatment 
and outcome; Scenario D: treatment effect heterogeneity with strong covariate effects on 
treatment and outcome  
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Table 3.2 Baseline covariates measured during 1-year washout period 

 Warfarin 
(N=56,260) 

Dabigatran 150mg 
(N=11,407) 

Demographics:   
Age 78.91 76.76 
Race (1 white, 0 other) (%) 89.2 91.72 
Sex (% female) 42.17 48.95 
   
% Diagnoses   
Cardiovascular:   
      Chest pain 38.41 35.05 
      Heart disease 74.56 66.62 
      Heart failure 30.74 19.23 
      Hypertension 65.08 63.30 
      Hyperlipidemia 35.21 41.09 
      Myocardial Infarction 3.49 1.89 
      Cerebrovascular disease 21.29 17.38 
      Stroke   
           Ischemic 6.09 4.31 
           Hemorrhagic 0.34 0.16 
      TIA 6.9 6.34 
      VTE 10.36 1.67 
Diabetes 35.09 30.02 
Kidney disease 12.58 4.74 
Renal failure 16.09 5.75 
Bleeding 1.88 0.68 
Anemia 15.63 9.95 
   
Baseline Meds: (%)   
Anti-depressants 28.27 22.89 
Antihypertensives:   
      ACE/ARB 52.22 50.23 
      Loop diuretics 40.91 28.70 
      Nonloop diuretics  52.55 41.97 
Hypolipidemic drugs:   
      Statins  49.40 52.45 
      Fibrate 5.02 4.98 
Rate Control Therapy:   
      Beta blockers 70.83 71.99 
      CCB 43.97 41.80 
      Glycoside 18.49 17.10 
Rhythm Control Therapy 19.10 23.21 
   
Healthcare Use (average #):   
# ECG claims  3.74 3.80 
# PSA claims 0.36 0.49 
# of fecal occult blood tests 0.12 0.13 
# colonoscopies  0.14 0.14 
# flu shot claims 0.76 0.79 
# of lipid assessments 1.52 1.72 
# of mammography claims 0.25 0.29 
# of PapSmear claims 0.05 0.07 



 
 

Table 3.3 Empirical results comparing new users of dabigatran with new users of warfarin in preventing combined 
ischemic stroke and all-cause mortality in the Medicare population between October 19, 2010 and December 31, 2012.  

Sample Sizea # 
covsb 

Method Hazard 
Ratioc 

St. 
Errord 

95% CI % 
matched 

Model Fite 

c-stat p-value ASAMDf 

20% Sample          
  Unadjusted 0.48 0.02 (0.46, 0.50) ------ ------ ------ 0.14 
 37         
  PS match 0.73 0.03 (0.69, 0.77) 100 0.68 0.63 <0.01 
  DRS match 0.72 0.03 (0.68, 0.76) 100 0.73 <0.01 ------ 
 237         
  PS match 0.88 0.04 (0.81, 0.95) 100 0.73 0.52 <0.01 
  DRS match 0.87 0.04 (0.80, 0.94) 100 0.78 <0.01 ------ 
1% Sample          
  Unadjusted 0.47 0.07 (0.41, 0.54)    0.17 
 37         
  PS match 0.75 0.16 (0.55, 1.03) 98.3 0.71 0.65 0.01 
  DRS match 0.75 0.15 (0.56, 1.01) 100 0.73 0.18 ------ 
 237         
  PS match 0.89 0.21 (0.59, 1.34) 81.5 0.79 0.61 0.01 
  DRS match 0.86 0.18 (0.60, 1.22) 99.3 0.77 <0.01 ------ 
a 20% (N=67,667) and 1% (N=3,383) samples of the Medicare data. 

b Number of covariates in PS and DRS model 
c RELY trial relative risk for 150mg dabigatran vs warfarin:  0.76 (0.60, 0.98) for ischemic stroke;  0.88 (0.77, 1.00) for 
death from any cause. In the current study, >90% of the outcomes were death from any cause.  
d Bootstrapped standard errors. Hazard ratio estimates are the mean of the bootstrapped sampling distribution  
e c-statistic and p-value for each PS and DRS model. 

f The average standardized absolute difference (ASAMD) of covariates across PS matched treatment groups. Because 
the DRS does not balance covariates across treatment, the ASAMD was only calculated for PS models. The unadjusted 
ASAMD was calculated for all 237 covariates. 
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Figure 3.1 PS and DRS distributions across treatment groups with a sample size of 10,000 
subjects and 100 covariates included in the PS and DRS models. In plots A and B the effects 
of covariates on both treatment and the outcome were mild, in plots C and D covariate 
effects were moderate, and in plots E and F the covariate effects were strong. The 
overlapping coefficient is an estimate of the percentage of overlapping area between the 
two density functions. 
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Figure 3.2. PS and DRS distributions across treatment groups for one run of the simulation 
study with a sample size of 1,000 subjects and 100 covariates included in the PS and DRS 
models. In plots A and B the effects of covariates on both treatment and the outcome were 
mild, in plots C and D covariate effects were moderate, and in plots E and F the covariate 
effects were strong. The overlapping coefficient is an estimate of the percentage of 
overlapping area between the two density functions. 
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Figure 3.3.  PS and DRS distributions across dabigatran and warfarin treatment groups 
for a 10 percent sample of the Medicare dataand individuals with an index date 
between October 2010 and December 2012. In plots A and B the PS and DRS models 
included 37 a priori selected covariates. In plots C and D the PS and DRS models 
included 37 a priori selected covariates and 200 empirically selected covariates. The 
overlapping coefficient is an estimate of the percentage of overlapping area between 
the two density functions. 
 
 
 
 
 
 
 
 



51 
 

 
 
Figure 3.4.  PS and DRS distributions across dabigatran and warfarin treatment groups for a 
1 percent sample of the Medicare data and individuals with an index date between October 
2010 and December 2012. In plots A and B the PS and DRS models included 37 a priori 
selected covariates. In plots C and D the PS and DRS models included 37 a priori selected 
covariates and 200 empirically selected covariates. The overlapping coefficient is an 
estimate of the percentage of overlapping area between the two density functions.
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CHAPTER 4 
 

METRICS TO EVALUATE DISEASE RISK SCORES IN NON-EXPERIMENTAL RESEARCH 
 
4.1 Introduction 

 Controlling large numbers of confounding variables is a fundamental challenge in 

pharmacoepidemiologic research. Summary scores, which reduce baseline covariate 

information to a single dimension, have become increasingly popular for confounding 

adjustment. The propensity score, defined as the conditional probability of treatment given 

a set of measured covariates, has been the most widely used summary score for 

confounding control.2 An alternative to the propensity score is the prognostic score, also 

known as the disease risk score (DRS). Unlike the PS which models covariate associations 

with treatment assignment, the DRS models the associations between covariates with the 

outcome under the control or comparator treatment.5  

Both the PS and DRS control for measured confounders by acting as balancing 

scores. Rosenbaum & Rubin1 show that upon conditioning on the PS, measured covariates 

are independent of treatment assignment. Hansen5 shows that the DRS is also a balancing 

score, but instead of balancing covariates with respect to treatment assignment, the DRS 

acts as a “prognostic balancing” score in that conditioning on the DRS results in covariates 

being independent of the potential outcome under control (discussed further below).   

In practice, the PS and DRS are unknown and must be estimated from the available 

data. A favorable aspect of the PS is the ability to check the validity of the model by 
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assessing the balance of covariates across treatment groups within the entire study 

population. A number of studies have shown a strong correspondence between measures 

of covariate balance and the ability of the PS model to reduce confounding bias.85, 86 It has 

become common practice and recommended that PS estimation should be approached 

with the primary goal of minimizing covariate imbalance rather than focusing on the 

prediction of treatment assignment.34, 87, 88  

The optimal strategy for evaluating DRS models is less clear. The goal of the DRS is to 

control confounding by balancing covariates with respect to the potential outcome under 

control. Because this potential outcome is only observed for individuals receiving the 

comparator treatment, “prognostic balance” cannot be evaluated within the entire study 

population. Consequently, the validity of fitted DRS models has primarily been assessed 

through measures of predictive performance, including the c-statistic and goodness of fit 

tests. It remains unclear how well measures of predictive performance correspond with the 

ability of the DRS to reduce confounding bias. 

In this study we use simulations and an empirical example to compare metrics for 

evaluating the predictive performance of DRS models and their correspondence with bias in 

treatment effect estimates. We further discuss and evaluate a strategy proposed by 

Hansen73 where DRS models are evaluated in their ability to control confounding by 

performing a “dry run” analysis within a pseudo population of individuals who are sampled 

from the control population in a way to represent the covariate distributions within the full 

study cohort. Finally, we demonstrate the discussed concepts through an empirical example 

comparing dabigatran vs warfarin in preventing ischemic stroke and all-cause mortality 
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within the Medicare population. While a number of studies have discussed and analyzed 

ways for evaluating fitted PS models,85, 86 there remains little discussion in the literature 

regarding how DRS models should be evaluated when the goal of the DRS is to control for 

confounding bias. 

4.2 Background and Notation 

Following the Neyman-Rubin counterfactual framework,18, 19 let    represent the 

potential response had the individual received treatment and    the potential response had 

the individual received the control or comparator treatment. In practice, only one of the 

potential outcomes is observed. Let    represent the observed response and   a 

dichotomous treatment. Further, let   represent a set of measured baseline covariates with 

     the PS and      the DRS, both as a function of the baseline covariates  . 

Rosenbaum & Rubin1 show that upon conditioning on the PS, measured covariates 

are independent of treatment assignment. Formally expressed as          where   

denotes independence of random variables and | denotes conditional on, this 

independence results in covariates being balanced across treatment groups.  If treatment 

assignment is strongly ignorable, i.e.            , this property of covariate balance that 

results from conditioning on the propensity score satisfies                allowing for 

the identification of average treatment effects in the full population or within subgroups of 

the population (e.g., the treated population). If treatment assignment is weakly ignorable, 

i.e.       , then conditioning on the propensity score satisfies            allowing for 

the identification of the average treatment effects on the treated population. 
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Formally, a prognostic score is defined as any scalar or multi-dimensional function of 

  that satisfies the condition          .5 In other words, conditioning on the DRS results 

in a form of covariate balance where the potential response under the comparator 

treatment is independent of a set of measured covariates,  . Hansen5 shows that if 

treatment assignment is weakly ignorable, then conditioning on the DRS satisfies 

          allowing for unconfounded estimates of treatment effects in the treated 

population through stratification or matching.  

If the outcome follows a generalized linear model, then one possible DRS is the 

linear predictor of   , or the conditional mean of    given   (i.e.,        ). In practice,    is 

only observed for individuals receiving the comparator treatment and the function         

must be estimated indirectly for the treated population.   

4.2.1 Challenges when modeling the DRS and evaluating its ability to control confounding 

The DRS has primarily been estimated in one of two ways: 1) model          within 

the cohort of individuals receiving the comparator treatment and then extrapolate this 

model to predict disease risk for all individuals within the full cohort; 2) model the function 

          by fitting a regression model to the full cohort (i.e., both treated and control) as 

a function of baseline covariates and treatment, and then estimate         for each 

individual through the function            by setting treatment status to zero.6, 7, 23, 30, 31 

Fitting the DRS to the full cohort benefits from increased sample size, but requires 

accurately modeling the relationship between the treatment and outcome. Small 

misspecifications in the full cohort DRS model can result in the estimated scores that carry 

information about the treatment effect. This non-ancillarity in the estimated DRSs can 
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introduce bias when used for confounding control.5, 30 Consequently, Hansen5 recommends 

using only the control population when fitting the DRS model to ensure partial ancillarity in 

the estimated scores. Leacy30 explains that using only the control population when 

modeling the DRS tends to result in estimated scores that are more robust to model 

misspecification. Fitting the DRS only within individuals receiving the comparator treatment, 

however, increases the potential for overfitting the risk model to the control population in 

the study cohort. Such overfitting can overestimate disease risk for high-risk comparator 

patients and underestimating disease risk for low-risk comparator patients, leading to 

apparent treatment effect heterogeneity over the distribution of disease risk and 

potentially biased effect estimates.3, 5, 32  

Both Hansen5 and Glynn3 have proposed that fitting the DRS within a historical 

sample of controls can reduce problems of overfitting. This strategy has received particular 

attention in pharmacoepidemiologic studies involving large automated databases and the 

evaluation of newly introduced treatments.3, 32 Fitting the DRS within historical controls, 

however, requires additional assumptions that the effects of risk factors on the outcome, 

coding practices, and surveillance of individuals do not change over time. These difficulties 

when modeling the DRS highlight the importance of evaluating the validity of fitted DRS 

models.  

If measures of prognostic balance were available within the full study population, 

these measures could be used to evaluate DRS models in a similar way that measures of 

covariate balance across treatment groups are used to evaluate PS models. However, 

prognostic balance can only be evaluated within individuals receiving the comparator 
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treatment. Measuring prognostic balance only within the comparator group can potentially 

reward models that are overfit to the control population. Further, in the presence of 

unmeasured confounding, the DRS does not result in prognostic balance within subgroups 

of treatment, but only marginally within the entire population.5, 32 Fitted risk models that 

induce prognostic balance within the control population does not imply that those models 

will induce prognostic balance within the entire study cohort. 

4.3 Dry Run Analysis 

Hansen73 proposes incorporating the propensity score when evaluating the ability of 

risk scores to control confounding. Hansen explains that, in theory, researchers can use the 

propensity score to draw weighted samples from the control population to create “pseudo 

treatment” and “pseudo control” groups whose covariate distributions on measured 

covariates are representative of the treated and control populations in the full study 

cohort.73  With no treatment effect separating the pseudo treated and pseudo control 

groups, researchers can perform a “dry run” analysis by fitting the DRS model to the pseudo 

control group, or a historical set of controls, and then evaluate the validity of the fitted 

model based on its ability to control for confounding within the pseudo population. If 

subclassification or matching on the estimated DRSs result in unconfounded null effect 

estimates within the pseudo population, then the fitted model should be successful in 

controlling confounding on the same measured covariates within the original sample.  

To create a “pseudo treatment” group, individuals are sampled from the control 

population within the study cohort with weights proportional to the odds of receiving 

treatment. For the “pseudo control” group, individuals are sampled with weights of one. 
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Sampling can be done with or without replacement. Sampling with replacement is similar in 

concept to standardized mortality ratio (SMR) weighting where a portion of the control 

population is weighted to represent the PS distribution within the treated population.89 

With smaller sample sizes or large weights, sampling with replacement can result in the 

same individuals being sampled many times over. Sampling without replacement avoids this 

problem, but requires a more complicated sampling scheme known as maximum entropy 

sampling to maximize information when sampling from a finite population. Chen et al.74 

provide a detailed explanation of maximum entropy sampling from finite samples.  

In theory, this strategy provides a more direct approach for evaluating the ability of 

a DRS model to control for measured confounding. There remains little evidence, however, 

of its performance in practice and the optimal strategy for evaluating DRS models remains 

unclear.  

4.4 Simulation Study 

We simulated a dichotomous treatment ( ) and outcome ( ), six binary covariates 

(                  ) and four standard-normal covariates (           ). We defined the 

conditional probability of treatment and outcome according to Equations 4.1 and 4.2.  

                                                                                                          

                               
        

                    [4.1] 

                                                                                                     

                                
        

             [4.2] 

The coefficient values for    and   ,   1,…,10, were selected by drawing values 

from separate uniform(-.7,.7) distributions. This range of values (i.e., potentially ranging 
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from -0.7 to 0.7) was chosen to reflect the range for the majority of coefficient values 

observed in an empirical example comparing dabigatran versus warfarin described below. 

We repeated this process 50 times by drawing a separate set of values for    and   , 

  1,…,10, to consider a total of 50 unique parameter combinations. With each parameter 

combination we simulated 100 datasets and fit 32 unique DRS models using logistic 

regression with various degrees of model misspecification. Each of the models included 

main effects for the covariates    through    , but different sets of higher order terms. We 

considered all possible combinations of the higher order terms (32 total). We fit the DRS 

models within a simulated historical set of data that was similar to the study cohort, but 

with no treatment introduced.  

We evaluated the predictive performance for each DRS model within the original 

study cohort by calculating three measures of predictive performance: the c-statistic, the 

Hosmer-Lemeshow goodness of fit test and the mean squared error (MSE) of the predicted 

values. We also evaluated each DRS model by performing a “dry run” analysis to calculate 

the pseudo bias after stratifying on the fitted DRSs within a pseudo population. We created 

pseudo treatment and control groups by sampling with replacement from the actual control 

population in the original study cohort with weights proportional to the odds of the PS or 

one respectively. Because the dry run analysis relies on using the PS to create the sampling 

weights, we estimated the PS using logistic regression and considered different degrees of 

misspecification: no misspecification (included all higher order terms), moderate 

misspecification (excluded one quadratic and one interaction term), and strong 

misspecification (excluded all higher order terms).  Finally, we evaluated the correlation 
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between bias in the effect estimates with the measures of predictive performance and the 

calculated pseudo bias.  

For each parameter combination, we repeated the analysis to consider scenarios 

involving smaller sample sizes, low prevalence of both treatment and outcome, risk factors 

(i.e., variables that affect the outcome but have no effect on treatment), different 

distributions for baseline covariates, and different directions in confounding. We also 

repeated all analyses using a probit model to simulate treatment and the outcome (i.e., 

probit rather than logit model in Equations 1 and 2). Simulating data with a probit model 

allowed us to evaluate scenarios where model misspecification in the PS and DRS models 

was a result of the functional form of covariates in the model as well as the functional form 

of the model itself (i.e., misspecified link function). In this case, there was mild 

misspecification in both the fitted PS and DRS models even when all higher order terms 

were included within the models. Table 4.1 provides a description of the simulated 

scenarios. 

4.5 Simulation Results 

We present results for the simulation study in Figures 4.1 and 4.2, and Table 4.2. 

Figures 4.1a through 4.1f show box plots for the Spearman correlation coefficients between 

each of the described measures for evaluating DRS models and the absolute bias in the 

treatment effect. Each box-plot shows the distribution of 50 correlation coefficients (one 

correlation coefficient for each of the 50 parameter combinations). Each sub figure 

represents a different simulation scenario.  
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When the PS was correctly specified, there was a very strong correlation between 

the calculated pseudo bias and the actual bias within the original study cohort (Figure 4.1a). 

As the misspecification in the PS model increased, the strength of this correlation became 

less pronounced (Figures 4.1c and 4.1e). The correlation between the measures of 

predictive performance and bias were less consistent and attenuated compared to the 

correlation between the full cohort study bias and the pseudo bias when the PS was 

correctly specified (Figures 4.1a-4.1f).  Among the measures of predictive performance, the 

p-value for the Hosmer-Lemeshow goodness-of-fit test showed the weakest correlation 

with predicting bias in the effect estimate (Figure 4.1d). Similar patterns were found when 

treatment and outcome were simulated using a probit model (results not shown). In this 

case, pseudo bias1 represented the bias within the pseudo population when there was mild 

misspecification in the PS model.  

Figure 4.1 shows that the c-statistic and MSE had good performance in predicting 

bias in the effect estimate when comparing various models fit to the same dataset. In 

practice, however, researchers will often want to make a decision on a single fitted model 

to decide if the model is appropriate. The calculated pseudo bias and p-value from 

goodness-of-fit tests may have an advantage in this case as the actual values from these 

measures can carry the same meaning across different data generating models (e.g., a p-

value of <0.01 implies poor model fit regardless of the data generating model). To explore 

this issue, we calculated a single correlation for each measure after combining the 

calculated values across all parameter combinations and scenarios instead of calculating the 

correlation between each measure and bias separately for each data generating model 
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(Figure 4.2). Similar to Figure 4.1, when the PS was correctly specified, the calculated 

pseudo bias showed the strongest correlation with bias in the treatment effect and had a 

calculated intercept from the least squares regression line of approximately 0 (Figure 4.2a). 

Among the measures of predictive performance, the p-value from the Hosmer-Lemeshow 

test showed the strongest correlation after combining results across different data 

generating models (Figure 4.2d).  

4.6 Empirical Example: Dabigatran vs Warfarin  

We compared the performance of dabigatran vs warfarin in an elderly population 

using a 20 percent sample of linked Medicare parts A (hospital), B (outpatient), and D 

(pharmacy) data. We included Medicare beneficiaries with fee for service enrollment in all 

three plans for at least one month between October 19, 2010 through December 31, 2012. 

New users were defined as individuals who initiated dabigatran or warfarin after a 1 year 

washout period of having no prescription for either dabigatran, warfarin, or any other oral 

anti-coagulant. We included all individuals who were continuously enrolled in Medicare for 

at least 12 months prior to drug initiation. All demographic and clinical covariates were 

defined during the 12 months prior to drug initiation. Individuals were censored only if they 

lost enrollment in the Medicare system during follow-up (intent to treat analysis).  

We restricted our study cohort to individuals who were 65 years of age or older and 

had an inpatient or outpatient diagnosis code for atrial fibrillation or atrial flutter (ICD-9 

427.31, 427.32) prior to initiation of dabigatran or warfarin. We excluded individuals with a 

known heart valve transplant since this is a contraindication for dabigatran use. We also 

excluded individuals at a skilled nursing facility at drug initiation since diagnoses within 
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these facilities are not always captured within Medicare claims data.  

To avoid overfitting the risk model to the control population within the study cohort, 

we modeled the one year risk of combined ischemic stroke and all-cause mortality within a 

historical population of new warfarin users with an index date prior to the introduction of 

dabigatran (between January 1, 2008 through October 18, 2010). This model was then used 

to predict the disease risk for all individuals within the study cohort. We fit PS and DRS 

models that included main effects for each of the covariates listed in Table 4.2 and an 

additional 200 empirically selected covariates that were identified within Medicare files 

containing medication claims, inpatient and outpatient diagnostic codes and procedural 

codes. When selecting the 200 empirically selected covariates, we first identified the top 

200 most prevalent codes within each data dimension (codes with a prevalence greater 

than 0.5 were subtracted from 1). We then selected the top 200 codes based on the 

strength of their univariate association (odds ratio) with the outcome. The estimated DRSs 

were implemented through stratification and again through 5-1 digit matching.90  

To evaluate the validity of the fitted DRS model, we created a pseudo treatment 

group by sampling new-warfarin users within the original study cohort (i.e., index date after 

October 19, 2010). Sampling was done with replacement and with weights proportional to 

the odds of the PS. We created a pseudo control group by sampling with replacement from 

the same population, but with weights equal to one. We then evaluated the validity of the 

historically fitted DRS model by observing how well stratifying on the estimated scores 

controlled for confounding within the pseudo population. For comparison, we also 

evaluated the predictive performance of the estimated DRSs by assessing the calibration 
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(Hosmer-Lemeshow goodness of fit test) and discrimination (c-statistic) of the predicted 

values.  

4.7 Empirical Results 

We present results for the empirical study in Figure 4.3 and Tables 4.2 and 4.3.  

Table 4.2 shows the distribution of 37 a priori selected covariates across treatment groups. 

New-users of dabigatran were generally healthier with fewer comorbidities and greater use 

of the healthcare system than new-users of warfarin (Table 4.2). Similar patterns of 

initiation have been found in other studies.81 Figure 4.3 shows similar PS distributions 

between the sampled pseudo population and original study cohort. Assuming the PS model 

is a close approximation to the true PS function, then the distribution of measured 

covariates across treatment groups and degree of confounding should also be similar across 

the pseudo and original study cohorts. 

In Table 4.3 we present the unadjusted hazard ratio, as well as hazard ratios after 

DRS and PS matching. In Table 4.3 we also present measures for evaluating the validity of 

the historically estimated DRS as well as the PS model. Both PS and DRS matching resulted 

in similar effect estimates with hazard ratios of 0.88 (0.81, 0.95)and 0.87 (0.80, 0.94) 

respectively. The fitted PS model resulted in good predictive performance in terms of 

discrimination and calibration with a c-statistic of 0.73 and hosmer-lemeshow p-value of 

0.52 (Table 4.3). The fitted DRS also resulted in good discrimination with a c-statistic of 0.78, 

but poor calibration in terms of the hosmer-lemeshow goodness-of-fit test with a p-value of 

<0.01 (Table 4.3). After matching on the PS, treatment groups were approximately balanced 
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on measured covariates with an ASAMD of <0.01, while DRS matching resulted in a pseudo 

bias of approximately 0.01 (Table 4).  

4.8 Discussion 

 In this study, we used simulations and an empirical example to compare various 

measures for evaluating DRS models in their ability to reduce bias in effect estimates.  We 

considered three measures of predictive performance including the c-statistic, the p-value 

from the Hosmer-Lemeshow goodness of fit test, and the MSE of the predicted values. We 

also evaluated the performance of the “dry run” method proposed by Hansen73 where the 

fitted DRS is evaluated within a “pseudo population” of individuals who are sampled from 

the control population to create pseudo treatment and pseudo control groups that are 

representative of the original study cohort.  In simulations, the calculated pseudo bias from 

the “dry run” had the strongest correlation with the bias in the treatment effect estimate 

when the functional form of the PS was either correctly specified or a close approximation 

to the true PS model. When there was moderate to strong misspecification in the PS, there 

was little to no correlation between the calculated pseudo bias from the dry run with the 

bias in the effect estimate.  

Among the measures that evaluated the predictive performance of the fitted DRS 

models, the c-statistic and mse had the strongest correlation with bias in the effect estimate 

when comparing various models fit to the same data. In practice, however, researchers will 

often fit a single model (e.g., high-dimensional PS or DRS) and want to make a decision if 

the model is adequate in terms of confounding control. The c-statistic and MSE do not 

provide the best information for researchers when making a decision on a single DRS 
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model. In this study, we found that the c-statistic and MSE showed little to no correlation 

with bias in the effect estimate after combining measures across various data generating 

models.  

Overall, we found that measures for evaluating the predictive performance of DRS 

models did not always correspond well with reduced bias in the estimated treatment effect. 

Previous studies have reported similar findings when evaluating PS models.33, 34, 91  To what 

extent measures of predictive performance should be used when evaluating summary 

scores remains uncertain. Measures of predictive performance do not directly evaluate the 

ability of summary scores to control confounding. In contrast, measures of covariate 

balance across treatment groups when fitting the PS and the calculated pseudo bias within 

a “dry run” analysis when fitting the DRS can provide more direct measures for assessing 

the ability of the fitted models to control confounding.  

Creating a pseudo population that is representative of the original study cohort 

requires accurate estimation of the PS. In this case, one could simply use the PS for 

confounding control. The DRS, however, has some desirable qualities that can be beneficial 

to researchers even when a correctly specified PS is available. DRSs provide a natural 

measure to evaluate treatment effect heterogeneity. When making treatment decisions, 

clinicians are almost always concerned about how the effect of a treatment varies over 

various patient profiles affecting the risk for the outcome (e.g., 10 year risk for 

cardiovascular disease based on the Framingham risk score).  Although the PS allows us to 

detect and account for treatment effect heterogeneity, it does not provide the best 

information for health care providers in determining what subgroups of the patient 
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population are most likely to benefit from a given treatment regime. Further, matching or 

stratifying on the PS can be more restrictive then matching or stratifying on the DRS. The 

DRS can potentially allow for a greater number of individuals to be compared across 

treatment groups than the PS. This can be beneficial when there is strong separation in PS 

distributions (e.g., strong channeling with newly introduced treatments). 

As with any simulation and empirical example, results are limited to the scenarios 

assessed. More research is needed to evaluate the performance of the discussed methods 

over a wide range of settings specific to large database research. Further, the optimal 

strategy for sampling from the control population when performing a “dry run” analysis 

remains unclear. More research is needed to evaluate various sampling strategies when 

creating pseudo treatment and pseudo control groups. Finally, neither measures of 

covariate balance for the PS or a “dry run” analysis for the DRS provide information on bias 

caused by unmeasured confounding or proper variable selection. We therefore stress the 

importance of using subject matter expertise to gain an understanding of the underlying 

causal structure before performing PS or DRS analyses.83 

We conclude that accurately modeling the DRS within the study cohort, or within a 

historical set of controls presents unique challenges that are not shared by the PS. 

Measures of predictive performance do not necessarily identify the ability of a DRS model 

to control confounding.  If the PS can be accurately modeled, evaluating the ability of the 

DRS model to control confounding within a “dry run” analysis can provide insight into the 

validity of fitted DRS models. 

 



 
 

4.9 Tables and Figures 

Table 4.1. Simulation Scenarios 

Scenario Distribution of Covs Direction of 
Confounding 

Baseline Prev 
of T and Y 

Type of covariates Sample 
size (n) 

 Binomial(0.5) Normal(0,1)   Confounder Risk factor  

A                                Both directions 50%        ----- 10,000 
B                                Both directions 10%        ----- 10,000 
C -------        Both directions 50%        ----- 10,000 
D                                Both directions 50%        ----- 1,000 
E                                Both directions 50%              10,000 
F                                Same direction 50%        ----- 10,000 

 

 

6
8
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Table 4.2: Baseline covariates during 1 year washout period 

 Warfarin 
(N=56,260) 

Dabigatran 150mg 
(N=11,407) 

Demographics:   
Age 78.91 76.76 
Race (1 white, 0 other) (%) 89.2 91.72 
Sex (% female) 42.17 48.95 
   
% Diagnoses   
Cardiovascular:   
      Chest pain 38.41 35.05 
      Heart disease 74.56 66.62 
      Heart failure 30.74 19.23 
      Hypertension 65.08 63.30 
      Hyperlipidemia 35.21 41.09 
      Myocardial Infarction 3.49 1.89 
      Cerebrovascular disease 21.29 17.38 
      Stroke   
           Ischemic 6.09 4.31 
           Hemorrhagic 0.34 0.16 
      TIA 6.9 6.34 
      VTE 10.36 1.67 
Diabetes 35.09 30.02 
Kidney disease 12.58 4.74 
Renal failure 16.09 5.75 
Bleeding 1.88 0.68 
Anemia 15.63 9.95 
   
Baseline Meds: (%)   
Anti-depressants 28.27 22.89 
Antihypertensives:   
      ACE/ARB 52.22 50.23 
      Loop diuretics 40.91 28.70 
      Nonloop diuretics  52.55 41.97 
Hypolipidemic drugs:   
      Statins  49.40 52.45 
      Fibrate 5.02 4.98 
Rate Control Therapy:   
      Beta blockers 70.83 71.99 
      CCB 43.97 41.80 
      Glycoside 18.49 17.10 
Rhythm Control Therapy 19.10 23.21 
   
Healthcare Use (average #):   
# ECG claims  3.74 3.80 
# PSA claims 0.36 0.49 
# of fecal occult blood tests 0.12 0.13 
# colonoscopies  0.14 0.14 
# flu shot claims 0.76 0.79 
# of lipid assessments 1.52 1.72 
# of mammography claims 0.25 0.29 
# of PapSmear claims 0.05 0.07 
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Table 4.3. Empirical results comparing dabigatran vs warfarin in the Medicare population between 

October 19, 2010 through December 31, 2013 (n=67,667)  

# covsa Method HR (95% CI) Pseudo 

biasa 

ASAMDb c-

statistic 

Hosmer 

lemeshow testc 

237       

 Unadjusted 0.48 (0.46, 0.50) 0.45 0.12 ----- ----- 

 PS matching 0.88 (0.81, 0.95) ----- 0.01 0.73 p=0.52 

 DRS matching 0.87 (0.80, 0.94) 0.01 ----- 0.78 p<0.01 
a PS and DRS models included 200 empirically selected covariates and 37 covariates selected a priori. 
b average standardized absolute mean difference of covariates across treatment groups 
c p-value from Hosmer-Lemeshow goodness of fit test 
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Figure 4.1. Box-plots of the correlation coefficients between each measure and absolute bias in the 

effect estimate for all parameter combinations. Each box-plot contains the correlation coefficients 

for the given measure across all parameter combinations. Plot a) shows  the box plots for the basic 

scenario; plot b) the scenario containing low treatment and outcome prevalence, plot c) the 

scenario containing all continuous variables; plot d) small sample size; plot e) both confounders and 

risk factors in DRS; and plot f) confounding only in one direction. 
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Figure 4.2. Measures for evaluating DRS models plotted against the absolute bias in the effect 

estimate for all parameter combinations in the basic scenario. Pseudo bias 1 in plot a) is the 

absolute bias within the pseudo population when the PS is mildly misspecified.  Pseudo bias 2 in plot 

c) represents the bias in the pseudo population when the PS model is moderately misspecified, and 

pseudo bias 3 in plot e) when the PS model is strongly misspecified.  
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Figure 4.3. Propensity score distributions from original study cohort of dabigatran and warfarin new-

users plotted against the pseudo propensity score distributions from the pseudo population of 

warfarin new-users. 
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CHAPTER 5 

CONCLUSIONS & PUBLIC HEALTH SIGNIFICANCE 

5.1 Summary of Specific Aims 

 Health care providers need rapid evaluation of newly marketed drugs to make 

timely decisions and optimize patient care. Large head-to-head clinical trials remain the 

gold standard when evaluating the efficacy of a given treatment, but can have limited 

generalizability and require long periods of time to complete. Electronic health care 

databases can provide timely information on patient populations who take newly 

introduced treatments in real time. Analyzing these data, however, present methodological 

challenges. Strong channeling and selective prescribing can lead to confounding by 

indication, requiring statistical methods and appropriate study design when evaluating 

these data.  

Propensity scores have become widely used for controlling large numbers of 

confounding variables in large database research. It has been hypothesized, however, that 

the performance of PS methods may be limited when evaluating newly introduced 

treatments. A historically estimated disease risk score has been proposed as an alternative 

method for controlling large numbers of covariates in these settings. However, accurately 

modeling the disease risk score presents many challenges and it remains unclear if the use 

of disease risk scores in these settings is advantageous.
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5.1.1 Summary of Aim 1 

Using Medicare data, we examined the performance of using a historically estimated 

disease risk score when evaluating the comparative effectiveness of newly marketed drugs. 

We focused on evaluating the comparative effectiveness of the new oral-anticoagulant 

dabigatran with warfarin in preventing combined ischemic stroke and all-cause mortality. 

Currently, there is limited information available on the net beneficial gains that new oral 

anticoagulant medications have on cardiovascular events compared to warfarin in real-

world practice.   

Due to the very recent approval of these new oral anticoagulants, their evaluation in 

non-experimental settings is difficult, in part due to the limited data available to control for 

large sets of confounders. It has been hypothesized that out-of-sample estimation methods 

for disease risk can be advantageous because these methods will allow for the control of a 

large number of risk factors at the start of drug introduction, potentially allowing 

researchers to evaluate the comparative effectiveness of these newer medications at earlier 

periods than previous methods.  

When comparing dabigatran with warfarin, we found that dabigatran new-users 

tended to be younger and healthier than new-users of warfarin. After controlling for a high-

dimensional set of covariates, effect estimates were more consistent with clinical trials. 

Controlling for a high-dimensional set of baseline covariates can improve confounding 

control, but can also create separation in the PS distributions across treatment groups, 

limiting the number of exchangeable individuals within the study cohort. When PS 

distributions are separated, we found that the DRS can allow researchers to compare the 
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treatment effect within a larger proportion of the population, potentially improving 

precision and the accuracy of the treatment effect when the parameter of interest is the 

average treatment effect in the full treated population. In this study, we found that this 

benefit of the DRS is most pronounced with smaller sample sizes. Finally, while it has been 

hypothesized that the DRS can be more stable over time potentially simplifying its 

estimation compared to the PS for newly marketed drugs, in our example we found 

modeling the DRS to be more challenging than modelling the PS. In general, modeling the 

DRS presents more challenges than modelling the PS, even in settings involving new 

treatments. Reporting results from PS analyses in addition to analyses using a historically 

estimated DRS can be beneficial in comparative effectiveness research of new treatments. 

5.1.2 Summary of Aim 2 

Accurately modeling the DRS, either within historical set of controls or the original 

study cohort, presents challenges that are not shared when modeling the PS. These 

difficulties highlight the importance of evaluating the validity of fitted DRS models.   

Researchers have primarily evaluated risk models by assessing their predictive performance 

in terms of discrimination (e.g., c-statistic) and calibration (e.g., goodness of fit tests). In this 

study, we found that measures for evaluating the predictive performance of DRS models did 

not always correspond well with reduced bias in the estimated treatment effect. In 

contrast, measures of covariate balance across treatment groups when fitting the PS and 

the calculated pseudo bias within a “dry run” analysis when fitting the DRS can provide 

more direct measures for assessing the ability of summary scores to control confounding.  
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Creating a pseudo population that is representative of the original study cohort 

requires accurate estimation of the PS. In this case, one could simply use the PS for 

confounding control. The DRS, however, has some desirable qualities that can be beneficial 

to researchers even when a correctly specified PS is available. DRSs provide a natural 

measure to evaluate treatment effect heterogeneity and can allow for a greater number of 

individuals to be compared across treatment groups than the PS. This can be beneficial 

when there is strong separation in PS distributions (e.g., strong channeling with newly 

introduced treatments). In conclusion, the DRS can be beneficial when evaluating newly 

introduced treatments. Finding more accurate ways to evaluate the validity of fitted DRS 

models can improve the quality of the estimation of disease risk scores. Hansen’s proposed 

method of evaluating the fitted DRS within a “dry run” analysis is promising, but more 

research is needed over a range of settings specific to large database research. 

 



78 
 

REFERENCES 

1. Rosenbaum PR R, DB. The central role of the propensity score in observational studies for 
causal effects. Biometrika. 1983;70(1):41-55.  
 
2. Sturmer T, Joshi M, Glynn RJ, Avorn J, Rothman KJ, Schneeweiss S. A review of the 
application of propensity score methods yielded increasing use, advantages in specific settings, but 
not substantially different estimates compared with conventional multivariable methods. Journal of 
clinical epidemiology. 2006;59(5):437-47.  
 
3. Glynn RJ, Gagne JJ, Schneeweiss S. Role of disease risk scores in comparative effectiveness 
research with emerging therapies. Pharmacoepidemiology and drug safety. 2012;21 Suppl 2:138-47.  
 
4. Mack CD, Glynn RJ, Brookhart MA, et al. Calendar time-specific propensity scores and 
comparative effectiveness research for stage III colon cancer chemotherapy. Pharmacoepidemiology 
and drug safety. 2013;22(8):810-818. 
 
5. Hansen BB. The prognostic analogue of the propensity score. Biometrika. 2008;95(2):481-8. 
doi:10.1093/biomet/asn004 
 
6. Arbogast PG, Ray WA. Use of disease risk scores in pharmacoepidemiologic studies. 
Statistical methods in medical research. 2009;18(1):67-80.  
 
7. Arbogast PG, Ray WA. Performance of Disease Risk Scores, Propensity Scores, and 
Traditional Multivariable Outcome Regression in the Presence of Multiple Confounders. American 
journal of epidemiology. 2011;174(5):613-20.  
 
8. Singh M, Adigopula S, Patel P, Kiran K, Khosla S. Recent advances in oral anticoagulation for 
atrial fibrillation. Therapeutic advances in cardiovascular disease. 2010;4(6):395-407.  
 
9. Cabral KP, Ansell J, Hylek EM. Future directions of stroke prevention in atrial fibrillation: the 
potential impact of novel anticoagulants and stroke risk stratification. Journal of thrombosis and 
haemostasis : JTH. 2011;9(3):441-9.  
 
10. Adam SS, McDuffie JR, Ortel TL, Williams JW, Jr. Comparative effectiveness of warfarin and 
new oral anticoagulants for the management of atrial fibrillation and venous thromboembolism: a 
systematic review. Annals of internal medicine. 2012;157(11):796-807.  
 
11. Ray WA. Evaluating medication effects outside of clinical trials: new-user designs. American 
journal of epidemiology. 2003;158(9):915-20.  
 
12. Ray WA. Population-based studies of adverse drug effects. The New England journal of 
medicine. 2003;349(17):1592-4.  
 
13. Rubin DB. Estimating causal effects from large data sets using propensity scores. Annals of 
internal medicine. 1997;127(8 Pt 2):757-63.  
 



79 
 

14. R L. Beyond clinical trials: The importance of large databases in evaluating differences in the 
effectiveness of bisphosphonate therapy in posmenopausal osteoporosis. Bone. 2007;40:S32-S5.  
 
15. Ray WA. Improving automated database studies. Epidemiology. 2011;22(3):302-4.  
 
16. Sentinel Initiative. http://www.fda.gov/safety/FDAsSentinelInitiative/ucm2007250.htm. Last 
accessed March 4, 2013.  
 
17. Glynn RJ, Schneeweiss S, Sturmer T. Indications for propensity scores and review of their use 
in pharmacoepidemiology. Basic & clinical pharmacology & toxicology. 2006;98(3):253-9.  
 
18. Rubin D. Estimating causal effects of treatments in randomized and nonrandomized studies. 
J Educ Psychol. 1974;66(5):688-701.  
 
19. Rubin D. Causal inference using potential outcomes. J Amer Statist Assoc. 
2005;100(469):322-31.  
 
20. Sekhon J. The Neyman_Rubin model of causal inference and estimation via matching 
methods. The Oxford Handbook of Political Methodology. 2007.  
 
21. Heckman J, Ichimura, H, Todd, P. Matching as an econometric evaluation estimator. Review 
of Economic Studies. 1998;65:261-94.  
 
22. PR JMaR. Invited Commentary: Propensity Scores. American journal of epidemiology. 
1999;150(4):327-33.  
 
23. Tadrous M, Gagne JJ, Sturmer T, Cadarette SM. Disease risk score as a confounder summary 
method: systematic review and recommendations. Pharmacoepidemiology and drug safety. 
2013;22(2):122-9.  
 
24. Sturmer T, Schneeweiss S, Brookhart MA, Rothman KJ, Avorn J, Glynn RJ. Analytic strategies 
to adjust confounding using exposure propensity scores and disease risk scores: nonsteroidal  
antiinflammatory drugs and short-term mortality in the elderly. American journal of epidemiology. 
2005;161(9):891-8.  
 
25. CC P. A Method of Matching Groups for Experiment with No Loss of Population. The Journal 
of Educational Research. 1941;34(8):606-12.  
 
26. WA B. A Technique for Studying the Effects of a Television Broadcast. Journal of the Royal 
Statistical Society. Series C. 1956;5(3):195-202.  
 
27. Miettinen OS. Stratification by a multivariate confounder score. American journal of 
epidemiology. 1976;104(6):609-20.  
 
28. Pike MC, Anderson J, Day N. Some insights into Miettinen's multivariate confounder score 
approach to case-control study analysis. Epidemiology and community health. 1979;33(1):104-6.  
 

http://www.fda.gov/safety/FDAsSentinelInitiative/ucm2007250.htm


80 
 

29. Cook EF, Goldman L. Performance of tests of significance based on stratification by a 
multivariate confounder score or by a propensity score. Journal of clinical epidemiology. 
1989;42(4):317-24.  
 
30. Leacy FP, Stuart EA. On the joint use of propensity and prognostic scores in estimation of the 
average treatment effect on the treated: a simulation study. Statistics in medicine. 2014;33(20): 
3488-508. 
 
31. Cadarette SM, Gagne JJ, Solomon DH, Katz JN, Sturmer T. Confounder summary scores when 
comparing the effects of multiple drug exposures. Pharmacoepidemiology and drug safety. 
2010;19(1):2-9.  
 
32. Wyss R, Lunt M, Brookhart MA, Glynn RJ, Stürmer T. Reducing bias amplification in the 
presence of unmeasured confounding through out-of-sample estimation strategies for the disease 
risk score. J. Causal Infer. 2014;2(2): 131-146.  
 
33. Westreich D, Cole SR, Funk MJ, Brookhart MA, Sturmer T. The role of the c-statistic in 
variable selection for propensity score models. Pharmacoepidemiology and drug safety. 
2011;20(3):317-20.  
 
34. Wyss R, Ellis AR, Brookhart MA, et al. The role of prediction modeling in propensity score 
estimation: an evaluation of logistic regression, bCART, and the covariate-balancing propensity 
score. American journal of epidemiology. 2014;180(6):645-55.  
 
35. Conen D CC, Glynn RJ, Tedrow UB, Everett BM, Buring JE, Albert CM. Risk of death and 
cardiovascular events in initially healthy women with new-onset atrial fibrillation. JAMA. 
2011;305(20):2080-7.  
 
36. Khoo CW, Lip GY. Burden of atrial fibrillation. Current medical research and opinion. 
2009;25(5):1261-3.  
 
37. Stewart S, Hart CL, Hole DJ, McMurray JJ. A population-based study of the long-term risks 
associated with atrial fibrillation: 20-year follow-up of the Renfrew/Paisley study. The American 
journal of medicine. 2002;113(5):359-64.  
 
38. Wang TJ, Larson MG, Levy D, et al. Temporal relations of atrial fibrillation and congestive 
heart failure and their joint influence on mortality: the Framingham Heart Study. Circulation. 
2003;107(23):2920-5.  
 
39. Lloyd-Jones DM, Wang TJ, Leip EP, et al. Lifetime risk for development of atrial fibrillation: 
the Framingham Heart Study. Circulation. 2004;110(9):1042-6.  
 
40. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation: a major contributor to stroke in the 
elderly. The Framingham Study. Archives of internal medicine. 1987;147(9):1561-4.  
 
41. Patel MR, Mahaffey KW, Garg J, et al. Rivaroxaban versus warfarin in nonvalvular atrial 
fibrillation. The New England journal of medicine. 2011;365(10):883-91.  
 



81 
 

42. Miyasaka Y, Barnes ME, Gersh BJ, et al. Secular trends in incidence of atrial fibrillation in 
Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future 
prevalence. Circulation. 2006;114(2):119-25. 
 
43. Mega JL. A new era for anticoagulation in atrial fibrillation. The New England journal of 
medicine. 2011;365(11):1052-4.  
 
44. Jones M, McEwan P, Morgan CL, Peters JR, Goodfellow J, Currie CJ. Evaluation of the pattern 
of treatment, level of anticoagulation control, and outcome of treatment with warfarin in patients 
with non-valvar atrial fibrillation: a record linkage study in a large British population. Heart. 
2005;91(4):472-7.  
 
45. Choudhry NK, Anderson GM, Laupacis A, Ross-Degnan D, Normand SL, Soumerai SB. Impact 
of adverse events on prescribing warfarin in patients with atrial fibrillation: matched pair analysis. 
BMJ. 2006;332(7534):141-5.  
 
46. Choudhry NK, Soumerai SB, Normand SL, Ross-Degnan D, Laupacis A, Anderson GM. 
Warfarin prescribing in atrial fibrillation: the impact of physician, patient, and hospital 
characteristics. The American journal of medicine. 2006;119(7):607-15.  
 
47. Cohen N, Almoznino-Sarafian D, Alon I, et al. Warfarin for stroke prevention still underused 
in atrial fibrillation: patterns of omission. Stroke; a journal of cerebral circulation. 2000;31(6):1217-
1222.  
 
48. Fang MC, Stafford RS, Ruskin JN, Singer DE. National trends in antiarrhythmic and 
antithrombotic medication use in atrial fibrillation. Archives of internal medicine. 2004;164(1):55-60.  
 
49. Connolly SJ, Ezekowitz MD, Yusuf S, et al. Dabigatran versus warfarin in patients with atrial 
fibrillation. The New England journal of medicine. 2009;361(12):1139-51.  
 
50. Granger CB, Alexander JH, McMurray JJ, et al. Apixaban versus warfarin in patients with 
atrial fibrillation. The New England journal of medicine. 2011;365(11):981-92.  
 
51. Alexander GC, Sehgal NL, Moloney RM, Stafford RS. National trends in treatment of type 2 
diabetes mellitus, 1994-2007. Archives of internal medicine. 2008;168(19):2088-94.  
 
52. Ansell J. New oral anticoagulants should not be used as first-line agents to prevent 
thromboembolism in patients with atrial fibrillation. Circulation. 2012;125(1):165-70; discussion 70.  
 
53. De Caterina R, Husted S, Wallentin L, et al. New oral anticoagulants in atrial fibrillation and 
acute coronary syndromes: ESC Working Group on Thrombosis-Task Force on Anticoagulants in 
Heart Disease position paper. Journal of the American College of Cardiology. 2012;59(16):1413-25.  
 
54. Kaluski E, Maher J, Gerula CM. New oral anticoagulants: good but not good enough! Journal 
of the American College of Cardiology. 2012;60(15):1434; author reply -5.  
 



82 
 

55. Winkelmayer WC, Liu J, Setoguchi S, Choudhry NK. Effectiveness and safety of warfarin 
initiation in older hemodialysis patients with incident atrial fibrillation. Clinical journal of the 
American Society of Nephrology : CJASN. 2011;6(11):2662-8.  
 
56. Hess PL, Greiner MA, Fonarow GC, et al. Outcomes associated with warfarin use in older 
patients with heart failure and atrial fibrillation and a cardiovascular implantable electronic device: 
findings from the ADHERE registry linked to Medicare claims. Clinical cardiology. 2012;35(11):649-
657.  
 
57. Brookhart MA, Sturmer T, Glynn RJ, Rassen J, Schneeweiss S. Confounding control in 
healthcare database research: challenges and potential approaches. Medical care. 2010;48(6 
Suppl):S114-20.  
 
58. Schneeweiss S, Patrick AR, Sturmer T, et al. Increasing levels of restriction in 
pharmacoepidemiologic database studies of elderly and comparison with randomized trial results. 
Medical care. 2007;45(10 Supl 2):S131-42.  
 
59. Birman-Deych E, Waterman AD, Yan Y, Nilasena DS, Radford MJ, Gage BF. Accuracy of ICD-9-
CM codes for identifying cardiovascular and stroke risk factors. Medical care. 2005;43(5):480-5.  
 
60. Kokotailo RA, Hill MD. Coding of stroke and stroke risk factors using international 
classification of diseases, revisions 9 and 10. Stroke; a journal of cerebral circulation. 
2005;36(8):1776-81.  
 
61. Schneeweiss S, Rassen JA, Glynn RJ, Avorn J, Mogun H, Brookhart MA. High-dimensional 
propensity score adjustment in studies of treatment effects using health care claims data. 
Epidemiology. 2009;20(4):512-22.  
 
62. Brookhart MA, Schneeweiss S, Rothman KJ, Glynn RJ, Avorn J, Sturmer T. Variable selection 
for propensity score models. American journal of epidemiology. 2006;163(12):1149-56.  
 
63. Myers JA, Rassen JA, Gagne JJ, et al. Effects of adjusting for instrumental variables on bias 
and precision of effect estimates. American journal of epidemiology. 2011;174(11):1213-22.  
 
64. Redelmeier DA, Tan SH, Booth GL. The treatment of unrelated disorders in patients with 
chronic medical diseases. The New England journal of medicine. 1998;338(21):1516-20.  
 
65. Welch HG, Albertsen PC, Nease RF, Bubolz TA, Wasson JH. Estimating treatment benefits for 
the elderly: the effect of competing risks. Annals of internal medicine. 1996;124(6):577-84.  
 
66. Walker AM. Confounding by indication. Epidemiology. 1996;7(4):335-6.  
 
67. Glynn RJ, Knight EL, Levin R, Avorn J. Paradoxical relations of drug treatment with mortality 
in older persons. Epidemiology. 2001;12(6):682-9.  
 
68. Brookhart MA, Patrick AR, Dormuth C, et al. Adherence to lipid-lowering therapy and the 
use of preventive health services: an investigation of the healthy user effect. American journal of 
epidemiology. 2007;166(3):348-54. 



83 
 

 
69. McCaffrey DF, Ridgeway G, Morral AR. Propensity score estimation with boosted regression 
for evaluating causal effects in observational studies. Psychological methods. 2004;9(4):403-25.  
 
70. Lee BK, Lessler J, Stuart EA. Improving propensity score weighting using machine learning. 
Statistics in medicine. 2010;29(3):337-46.  
 
71. Hosmer DWL, S. A goodness-of-fit test for the multiple logistic regression model. 
Communications in Statistics 1980;A10:1043-69.  
 
72. Pepe MS. The statistical evaluation of medical tests for classification and prediction. Oxford, 
UK: Oxford University Press2003. 
 
73. Hansen BB. Bias reduction in observational studies via prognosis scores. : Statistics 
Department, University of Michigan, Ann Arbot, Michigan 2006. 
 
74. Chen XD, A.P., Liu, J.S. Weighted finite population sampling to maximize entropy. 
Biometrika. 1994;81(3):457-69.  
 
75. Seeger JD, Kurth T, Walker AM. Use of propensity score technique to account for exposure-
related covariates: an example and lesson. Medical care. 2007;45(10 Supl 2):S143-8.  
 
76. Rassen JA, Glynn RJ, Brookhart MA, Schneeweiss S. Covariate selection in high-dimensional 
propensity score analyses of treatment effects in small samples. American journal of epidemiology. 
2011;173(12):1404-13.  
 
77. Rubin D. Estimating causal effects of treatments in randomized and nonrandomized studies. 
Journal of Educational Psychology. 1974;66:688-701.  
 
78. Franklin JM, Rassen JA, Bartels DB, Schneeweiss S. Prospective cohort studies of newly 
marketed medications: using covariate data to inform the design of large-scale studies. 
Epidemiology. 2014;25(1):126-33.  
 
79. Schneeweiss S, Gagne JJ, Glynn RJ, Ruhl M, Rassen JA. Assessing the comparative 
effectiveness of newly marketed medications: methodological challenges and implications for drug 
development. Clinical pharmacology and therapeutics. 2011;90(6):777-90.  
 
80. Gagne JJ, Bykov K, Willke RJ, Kahler KH, Subedi P, Schneeweiss S. Treatment dynamics of 
newly marketed drugs and implications for comparative effectiveness research. Value in health : the 
journal of the International Society for Pharmacoeconomics and Outcomes Research. 
2013;16(6):1054-62.  
 
81. Desai NR, Krumme AA, Schneeweiss S, et al. Patterns of Initiation of Oral Anticoagulants in 
Patients with Atrial Fibrillation - Quality and Cost Implications. The American journal of medicine. 
2014.  
 



84 
 

82. Graham DJ, Reichman ME, Wernecke M, et al. Cardiovascular, Bleeding, and Mortality Risks 
in Elderly Medicare Patients Treated with Dabigatran or Warfarin for Non-Valvular Atrial Fibrillation. 
Circulation. 2014.  
 
83. Robins JM. Data, design, and background knowledge in etiologic inference. Epidemiology. 
2001;12(3):313-20.  
84. Kumamaru HG, JJ; Glynn, RJ; Setoguchi, S; Schneeweiss, S. Dimension reduction and 
shrinkage methods for improving high dimensional disease risk score estimation in a historical 
cohort. Pharmacoepidemiology and drug safety. 2014;23(s1):267.  
 
85. Franklin JM, Rassen JA, Ackermann D, Bartels DB, Schneeweiss S. Metrics for covariate 
balance in cohort studies of causal effects. Statistics in medicine. 2014;33(10):1685-99.  
 
86. Ali MS, Groenwold RH, Pestman WR, et al. Propensity score balance measures in 
pharmacoepidemiology: a simulation study. Pharmacoepidemiology and drug safety. 
2014;23(8):802-11.  
 
87. Rubin DB. On principles for modeling propensity scores in medical research. 
Pharmacoepidemiology and drug safety. 2004;13(12):855-7.  
 
88. Imai KR, M. Covariate balancing propensity score. J R Stat Soc B. 2014;76(1):243-63.  
 
89. Hernan MA, Robins JM. Estimating causal effects from epidemiological data. Journal of 
epidemiology and community health. 2006;60(7):578-86.  
 
90. Parsons LS. Reducing bias in a propensity score matched-pair sample using greedy matching 
techniques. SUGI 26 Proceedings: Cary, NC: SAS Institute2001. 
 
91. Weitzen S, Lapane KL, Toledano AY, Hume AL, Mor V. Weaknesses of goodness-of-fit tests 
for evaluating propensity score models: the case of the omitted confounder. Pharmacoepidemiology 
and drug safety. 2005;14(4):227-38.  

 

 

 


