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ABSTRACT
OLGA PERDIKAKI: Essays on Retail Operations.

(Under the direction of Dr. Jayashankar M. Swaminathan.)

The intensified competition that the retail industry faces with the increasing num-

bers of new players in both the local and global markets has forced retailers to critically

examine and redesign their operations and marketing strategies. To remain competi-

tive, many retailers have focused on the provision of enhanced customer experience and

pursued practices of differentiation. In this dissertation comprising of three essays, we

attempt to shed light on retail practices that enhance consumer valuation, on factors

that affect store performance, and on temporal management of demand enhancing ac-

tivities using both analytical and empirical methodologies. The aim of this research is

to develop theoretical insights to help retailers understand their store performance and

effectively manage strategies geared towards enhancing demand and consumer valua-

tion about their product offerings.

In the first essay, we focus on technology investments that can affect consumer

valuation. We examine the impact of such investments in a duopoly setting in which

retailers compete in prices and consumers can search among the two retailers. In the

second essay, we focus on store performance and examine the impact of labor and

traffic characteristics on different store performance metrics using proprietary data of a

retail chain. In the third essay, we focus on general services that retailers could provide

to enhance demand and examine their temporal management under competition and

demand uncertainty.
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CHAPTER 1

Introduction

1.1 Research Motivation

The retail industry is one of the most dynamic and influential industries in developed

economies. In the U.S. the retail business represents about 40% of the Gross Do-

mestic Product (GDP) and is the largest employer (Fisher and Raman (2001)). The

intensified competition that the retail industry faces with the emergence of increasing

numbers of new players in both the local and global markets has forced retailers to

critically examine and redesign both their operations and marketing strategies. To re-

main competitive, many retailers have differentiated themselves by designing enhanced

customer experiences and other strategies to distinguish themselves from competition.

Such practices have provided a fertile ground and new contexts for research in the re-

tail operations arena. This dissertation comprising of three essays aims to shed light

to some important aspects of retail operations that have emerged due to the current

practices. The aim of this research is to develop theoretical insights to help retailers

understand their store performance and effectively manage strategies geared towards

enhancing demand and consumer valuation about their product offerings. In Chapter 2

we examine investments in technologies that can affect consumer valuation and focus on

analyzing the factors that affect retailers’ decisions to undertake such investments. In



Chapter 3 we study the impact of labor and traffic characteristics on store performance

using proprietary data of a retail chain. In Chapter 4 we focus on general services

that retailers could provide to enhance demand and examine their temporal manage-

ment under competition in the face of demand uncertainty. Chapter 5 concludes the

dissertation. A brief overview of each chapter of the dissertation follows.

1.2 Dissertation Overview

1.2.1 Chapter 2

With increased competition in the retail industry many retailers such as Best Buy are

investing in technology, employee training, and presentation in order to improve con-

sumers’ valuation of their product offerings. Such investments in pre-purchase activities

to enhance consumer valuation are costly and are designed to increase the possibility

of purchase, but they do not lead to “stickiness”. In particular, increases in consumer

valuation through pre-purchase services are prone to free-riding since consumers receive

the benefits of such activities offered by a retailer, but may decide to purchase a prod-

uct at another retailer. Gateway’s Country Stores and their subsequent demise provide

a characteristic example of the free riding problems (Frei (2006)).

Chapter 2 investigates the factors that retailers should consider before investing

in pre-purchase activities in order to increase consumer valuation and examines their

effect on retailers’ pricing and profits. We develop a stylized model using first princi-

ples on the distribution of consumer valuation and study a duopoly in which retailers

compete on the basis of price and consumer search is allowed between the two retailers.

In such a setting, a retailer may make investments to increase consumer valuation for

his product, but the final sale could be made at the other retailer, who did not invest

in technologies, leading to free riding. We explore the Nash equilibria in terms of both

2



investment and pricing through a computational study. Then we focus on the pricing

game only and establish the pricing Nash equilibria. We characterize the competitive

effects under different regimes related to market expansion, retailers’ physical proxim-

ity, direction of consumer flow, and magnitude of change in consumer valuation for

two asymmetric investment structures. Next, we focus on a special case in which the

competing retailers are symmetric and characterize the possible Nash equilibria invest-

ment strategies depending on the investment cost. Finally, we present a model with an

endogenous level of investment and analyze the symmetric equilibrium for a symmetric

duopoly.

Our main results are as follows. When the investment decision is endogenous, we

establish the surprising result that in the majority of instances both retailers will decide

to invest in equilibrium but price the product in a manner to avoid consumer search

between them. We also find that the proximity of retailers has an interesting non-

monotonic impact on their decisions to invest. Retailers tend to invest in technology

when they are either very close or very far away but refrain from investing in the in-

termediate range. When we further focus only on the pricing game, we find two major

effects related to improvements in consumer valuation. First, consistent with popular

belief, we find that there is a threshold effect whereby a retailer could overcome com-

petitive effects by improving consumer valuation. However, there are situations where

a greater improvement in consumer valuation by a retailer could lead to lower profits.

Second, we find evidence for a free-riding effect where a retailer who does not invest

in valuation enhancement practices could benefit from an innovative competitor who

increases consumer valuation beyond a threshold. When we focus on symmetric retail-

ers we find that as the investment cost increases the Nash equilibrium strategies shift

from both retailers investing, to only one retailer investing (either retailer 1 or retailer

2), and finally to neither retailer investing. Finally, for the extension where the level

3



of investment is endogenous, we show that a symmetric duopolist’s optimal strategy to

cover his whole local market or part of his market depends on the effectiveness of his

investment cost and the optimal price may indeed decrease with the per unit cost of

acquiring the product.

1.2.2 Chapter 3

The intensified competition in the retail industry has forced retailers to place enormous

importance on store performance metrics. Several retailers nowadays track two metrics

conversion rate, the percentage of incoming traffic who purchased, and basket value,

the average dollar amount spent by customers. Both metrics are important indicators

of store performance. Conversion rate, for example, has been found to be strongly

correlated with customer loyalty while basket value, on the other hand, is typically

linked to the profitability of the retailer. Both conversion rate and basket value can

be correlated with traffic characteristics due to many factors including labor, consumer

purchase behavior, economic conditions, product availability, and merchandise assort-

ment.

In Chapter 3, we use proprietary data pertaining to a retail chain to conduct a

descriptive study of conversion rate and basket value. Specifically, we consider the

correlation between store performance and intra-day traffic variability and traffic un-

certainty. We also measure traffic-labor mismatches and study if they explain the

observed correlations in our sample.

The results of our study are as follows: First, we report the within-store results.

We find that intra-day traffic variability is negatively correlated with both conversion

rate and basket value. A 1% increase in traffic variability is associated with a 0.094%

decrease in conversion rate in a store and 0.037% decrease in basket value. We also find

that, for a given level of traffic, both conversion rate and basket value increase with

4



an increase in store labor at a diminishing rate. A 1% increase in labor is associated

with a 0.102% increase in conversion rate and 0.066% increase in basket value. In

addition, we find that conversion rates are higher during holidays but basket values are

lower suggesting that price promotions offered during the holiday season cause more

customers to purchase but do not lead to higher levels of purchasing. Moreover, we

find that both conversion rates and basket values exhibit significant seasonality.

Next, we report the across-store results. We find that stores with higher traffic

uncertainty have lower conversion rates but similar basket values. We also find that

stores that have higher traffic variability and higher traffic uncertainty have higher

mismatches between required labor and actual labor. Furthermore, our tests reveal

that stores that have lower foot-traffic have higher traffic uncertainty, resulting in mis-

matches between required labor and actual labor. A surprising result of our analysis is

that competition as measured here does not affect conversion rates and basket values.

Finally, we find that stores located in neighborhoods with higher per capita income

have higher conversion rates but similar basket values.

1.2.3 Chapter 4

In Chapter 4 we focus on understanding the temporal management of investments in

activities that can enhance demand under competition in the face of demand uncer-

tainty. In many settings, retailer investments in experience activities are important

in influencing demand for a product. For example, a retailer can stimulate demand

through various ways such as provide training to its sales personnel to promote a given

product, create special areas to show case a product or even invest in technology that

offers a unique experience for a product. All the above activities which we will be

referring to as “service” can affect the purchasing decision of customers. The planning

of such costly activities can be very crucial especially when a new product is being

5



launched in a market. In the case of new product introduction, the retailer needs not

only to decide the optimal price and service investments for the product but also when

to invest in such experience activities. Given that market demand could be highly

uncertain, a retailer may choose to wait until he receives some information regarding

the market state before investing in such activities or he may want to make all these

investments upfront to take advantage of possible reduced investment costs.

In this chapter we develop a two-stage model in order to examine two alternatives

that retailers typically have in terms of timing their investments under both monopoly

and symmetric duopoly settings. The first alternative is to invest in service in advance

of the selling season without knowing the market state (i.e., invest in the first stage) and

the second alternative is to invest in service after the market state realizes (i.e., invest in

the second stage). In both cases a retailer decides on pricing after observing the demand

(i.e., in the second stage). For the monopoly we further examine a hybrid strategy in

which a retailer can invest both before and after the demand state is known. Typically,

investing after the demand state is known is associated with higher investment costs.

We analyze these settings under both equal and different investment costs across stages.

In addition, we investigate the deterministic demand case for the symmetric duopoly

and contrast our results with the stochastic demand case. In the case of a deterministic

demand these alternatives translate to making sequential decisions (i.e., first service

and then price) as opposed to simultaneous decisions (both service and price).

Our major findings in Chapter 4 are as follows. For a monopolist who faces stochas-

tic demand and incurs different investment costs across stages, we show that a hybrid

strategy always dominates a strategy in which a retailer invests only before or only

after the market state is known. In addition, we show that a monopolist would prefer

to delay investments until demand is realized only when the market variability is high

and the differential cost of investments across stages is low. In all other regimes, a mo-

6



nopolist would prefer to invest before the demand is realized. This result is in contrast

to the case of equal investment costs in which a monopolist would always defer such

investments until after the demand is realized.

For a symmetric duopolist who faces deterministic demand and incurs the same

investments costs across stages we show that the dominant strategy is always to make

service investments in the first stage. We find that this is not always the case when

the duopolist incurs higher investment costs in the second stage. Interestingly, when

the intensity of competition of service is high, a symmetric duopolist could be better

off to invest in the second stage as the differential cost of investment in the two stages

increases. We also find computationally that the equilibrium strategies for a symmetric

retailer can shift in a non-monotonic fashion as the differential cost of investment in

the two stages increases. In particular, a retailer could invest in the first stage for high

and low differential costs and in the second stage for intermediate values of differential

costs.

For a symmetric duopolist who faces stochastic demand and incurs same costs across

stages, the dominant strategy is to invest in demand enhancing activities in the first

stage in all regimes except for one characterized by high demand variability, low in-

tensity of competition in service, and high investment cost. This result shows that the

competitive dynamics could significantly diminish the value of delaying investments af-

ter demand is realized. We further characterize some of the investment strategies when

a duopolist incurs higher investment costs in the second stage. Interestingly, we find

that in the case of high intensity of service competition increase in demand variability

could make investing more preferable in the first stage than in the second stage if the

differential costs of investments across stages exceeds a given threshold.
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CHAPTER 2

Improving Valuation Under
Consumer Search:Implications for

Pricing and Profits

2.1 Introduction

The retail sector is a vital sector in most modern economies. In the U.S. for example,

the retail industry represents about 40% of the economy and is the largest employer

(Fisher and Raman (2001)). As a result, several researchers have examined different

retail operations issues, which include inventory management and store execution (see

Eppen and Iyer (1997), Tsay and Agrawal (2000), Raman et al. (2001), Fisher et al.

(2006), Nagarajan and Rajagopalan (2008) for representative work).

With increased competition, retailers are trying to identify ways to differentiate

themselves. One strategy has been to invest in practices that increase consumer valua-

tion of their product offerings. Our interactions with a former top executive at Magnolia

Home theater stores, specialized stores at Best Buy geared towards high end electronic

home theater items, gave us insights regarding the various practices that firms em-



ploy to improve consumer valuation of their product offerings (Freeland (2007)). These

practices include improving the ambience of the store to enhance the presentation of

the product category as well as hiring well-trained experts as salespeople to explain

the product characteristics. Investments in strategies to increase consumer valuation

entail some risk because they are usually costly and may not pay off in increased sales.

Another risk is that a retailer may invest in an enhanced presentation to sell a prod-

uct, but the customer decides to purchase it at another retailer, who hasn’t made the

investment - leading to the free-riding phenomenon. Gateway’s country stores pro-

vides an example of free riding. As indicated by Frei (2006), “When Gateway’s new

stores opened in 1996, they were undeniably impressive. Employees were experienced,

helpful, and abundant (the employee-to-customer ratio was unusually high). Excellent

educational materials were on hand, and the stores were conveniently located to ensure

heavy foot traffic. Unfortunately, Gateway hadn’t guaranteed that the people receiving

the benefits of all that pre-purchase accommodation would also bear the costs. Far too

often, customers took their newly acquired understanding of what they needed and

how the product worked and then placed an order with one of Gateway’s low-price

competitors”.

These observations suggest that in addition to managing inventory in stores (which

often is the focus of studies in operations management) there are other aspects of

store operations that determine eventual sales. Our work studies retailer initiated

increases in consumer valuation, which could affect consumers’ purchasing decision and

the resulting impact on retailers’ profitability. In particular, we focus on increases in
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consumer valuations that are experiential i.e., remain with the consumer even when

they go to another retailer. We do not consider retailer-specific (“sticky”) increases in

consumer valuations such as after-purchase services and coupon offerings which are not

prone to free riding. Specifically, we are interested in addressing the following questions:

How do market characteristics affect the retailer’s decision to invest in such practices?

How does the ability of a retailer to change consumer valuation for a product affect his

retail price and profit under competition? These questions address issues that retailers

need to be aware of when they engage in consumer valuation enhancement activities.

To answer these questions, we first develop a stylized model using first principles

on the distribution of consumer valuation. We assume that consumer valuation is uni-

formly distributed and an improvement is captured by a right shift of the distribution.

We consider a two-stage game in a duopoly setting, where consumers could search

among two retailers who offer a single product. In the first stage, the retailers decide

whether to invest in improvements in customer valuation. In the second stage, given

the investment decisions in the first stage, the retailers engage in price competition. We

explore the Nash equilibria in terms of both investment and pricing through a compu-

tational study. Then we focus on the pricing game only and establish the pricing Nash

equilibria. We characterize the competitive effects under different regimes related to

market expansion, retailers’ physical proximity, direction of consumer flow, and magni-

tude of change in consumer valuation for two asymmetric investment structures. Next,

we focus on a special case in which the competing retailers are symmetric and charac-

terize the possible Nash equilibria investment strategies depending on the investment
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cost. Finally, we present a model with an endogenous level of investment and analyze

the symmetric equilibrium for a symmetric duopoly.

Our main results are as follows. When the investment decision is endogenous, in

the majority of instances both retailers decide to invest in equilibrium but they price

the product in a manner to avoid consumer search between them. We also find that

the proximity of retailers has an interesting non monotonic impact on their decisions

to invest in that retailers tend to invest when they are very close or very far away but

refrain from investing in the intermediate range. When we further focus on only the

pricing game we find two major effects related to improvements in consumer valuation.

First, consistent with popular belief, we find that a retailer could overcome competitive

effects by improving consumer valuation beyond a certain threshold. However, there

are situations where a greater improvement in consumer valuation by a retailer could

lead to lower profits. Second, we find evidence of free-riding, where a retailer who

does not invest could benefit from an innovative competitor who increases consumer

valuation beyond a threshold. When we focus on symmetric retailers we find that as

the investment cost increases, the Nash equilibrium strategies shift from both retailers

investing, to only one retailer investing (either retailer 1 or retailer 2), and finally to

neither retailer investing. Finally, for the extension where the level of investment is

endogenous, we show that a symmetric duopolist’s optimal strategy to cover his whole

local market or part of his market depends on his investment cost effectiveness and the

optimal price charged by him may indeed decrease with the per unit cost of acquiring

the product.
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The rest of the chapter is organized as follows. Section 2 briefly reviews the relevant

literature. In Section 3, we describe the two-stage game for the duopoly and provide

insights on the retailers’ investment decisions. Section 4 focuses on the pricing game.

Section 5 examines a special case in which both retailers are symmetric. In Section 6,

we present an extension to the basic model. Finally, we conclude by summarizing our

findings and provide future research directions in Section 7. We present a summary of

our mathematical notation in Appendix A. Proofs of all the results are in Appendix.

2.2 Literature Review

Our work relates to the retail price competition literature that has been extensively

studied by research in economics, marketing, as well as operations management. Initial

works in this stream focused on competition among brick-and-mortar retailers. In

addition to price competition among traditional retailers, there has recently been a

number of papers that focus on pricing in different contexts such as multi-channel

supply chains and e-commerce. Cattani et al. (2004) and Tsay and Agrawal (2004)

provide extensive reviews of this literature.

There have also been works under retail competition that have incorporated a “ser-

vice” component as a decision variable for retailers in addition to pricing. Two different

types of service are found in the literature: (i) service experience which can be con-

sumed by the customer without necessarily making a purchase at the retailer who offers

it (e.g., informational type of service) and (ii) service experience whose benefits are de-
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rived by making a purchase at the retailer who offers it (e.g., generous warranties,

free-delivery, and installation).

Our work is related to the stream of literature that considers the first type of

service. In settings where the pre-sale activities are conducted independently from the

actual sale of the product, the free-riding problem occurs. The main focus of the free-

riding literature has been the negative impact of free riding on the retailers’ incentive

to provide costly pre-sale service and the way that retailers and manufacturers could

prevent free riding (see Carlton and Perloff (2000), Carlton and Chevalier (2001)).

From this literature the papers by Bernstein et al. (2006) and Shin (2007) are related

to our work.

Bernstein et al. (2006) also explore the idea that consumer valuation could be in-

creased by making appropriate investments. These authors consider manufacturer-

retailer competition and are interested in how free-riding affects a manufacturer’s de-

cision to open a direct store. In contrast, we focus on retailer competition and are

interested in understanding - (1) how the market characteristics, customer search be-

havior, and magnitude of change in consumer valuation could affect retailers’ investment

decisions; (2) how free-riding and profit-loss to competition are affected by the above

factors. Bernstein et al. (2006) find that the direct store price is always higher than

the retail price as long as visiting the direct store increases consumer valuation. Our

computational study, on the other hand, shows cases where the retailer who invests to

increase consumer valuation but has a smaller market share could offer a lower price

relative to the retailer who does not make such an investment, particularly when the
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proportion of searching consumers is high.

Shin (2007) considers two retailers selling the same product competing for the same

customers who are heterogenous in terms of their opportunity costs for shopping and

can be of two types: informed and uninformed. The author focuses on sales assistance

that resolves the matching uncertainty between the retailers’ product specification and

consumers’ needs. In our work, we also consider two retailers selling the same product

but competing for customers who are heterogenous in terms of their valuation for the

retailers’ product. We focus on retailers’ investments which can increase customer

valuation of their product and model explicitly the impact of such investments on the

consumers’ valuation distribution.

Our work contributes to the existing literature in the following aspects. First, we

develop a model that allows us to study the impact of increasing consumer valuation.

Second, we provide managerial insights on how the market characteristics and con-

sumer search behavior could impact the retailers’ investment strategies. Third, we

provide insights on how the ability of retailers to influence consumer valuation impacts

competitive and free riding effects under different regimes related to market expansion,

retailers’ physical proximity, consumer search behavior, and magnitude of changes in

consumer valuation.
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2.3 Model

This section is organized as follows. In §2.3.1 we present a model of how consumer

valuation increases. Then, in §2.3.2 we present our duopoly setting and describe the

consumer search behavior. In §2.3.3 we describe the two-stage investment and pricing

model. Finally, we provide some computational insights in §2.3.4.

2.3.1 Modeling of Consumer Valuation Increase

We first consider a risk neutral firm (retailer 1) which offers one product in a market of

population size μ. Consumers are heterogeneous in the valuation of the product. We

denote the consumption value (alternatively called “willingness to pay”) by V which

is assumed to be uniformly distributed (across the population of consumers) between

0 and 1. The retailer offers the product at price p1 and incurs cost per unit c1 for

acquiring the product. Consumers who visit the retailer incur a cost k1. “This cost

can include the opportunity cost of time, the real cost of travel, and the implicit cost

of inconvenience” (Balasubramanian (1998)). We will be referring to k1 as traveling

cost. Therefore, consumers whose valuation is greater than or equal to the sum of

retail price p1 and cost k1 (p1 + k1) buy the product from retailer 1. In that case, the

retailer’s expected demand and profit are qN
1 = μP (V ≥ p1 + k1) = μ(1− p1 − k1) and

πN
1 = (p1 − c1)q

N
1 (superscript N refers to the scenario in which the retailer does not

invest to increase consumer valuation). We provide a summary of all the scenarios in

the Appendix (see Table A2). The retailer maximizes his expected profit with respect
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to his retail price. The resulting optimal price, demand, and profit are p∗N1 = 1+c1−k1

2
,

q∗N1 = (1−c1−k1)μ
2

, and π∗N
1 = (1−c1−k1)2μ

4
, where 0 ≤ c1 + k1 ≤ 1.

If the retailer engages in consumer-valuation-enhancing activities, a consumer whose

valuation was v prior to visiting the retailer enjoys a valuation v̂ after visiting the

retailer. In the basic model, we assume that the investment leads to a fixed linear

shift α (i.e., V̂ will be uniformly distributed between α and 1 + α as illustrated in

Figure 1). In order to accomplish these activities, we assume that the retailer incurs

a fixed cost I1. This assumption represents situations where fixed investments lead to

a given increase in consumer valuation1. Note that a shift in the consumer valuation

distribution leads to an increase in the average consumer willingness to pay for the

product. As a result, for a price p1 the demand before investment is qN
1 = μ(1−p1−k1)

while the demand after investment is qI
1 = μP (V̂ ≥ p1+k1) = μ(1+α−p1−k1), which is

identical to the demand expression obtained when offering a price discount of α per unit.

Hence, a linear shift model of consumer valuation may seem similar to a price discount

model. However, there are critical differences. First, a linear shift model of consumer

valuation and a price discount model2 lead to different profit functions which will result

in different optimal pricing, demands, and profits. Second, and more importantly, a

price discount creates loyalty to the retailer who runs the promotion whereas increasing

consumer valuation for a product does not guarantee that the consumer would make

the purchase from the retailer who exerts such efforts.

1We study an extension of this basic model in Section 6 in which α is endogenous and the investment
cost is dependent on α.

2In a price discount model the profit function is π1 = (p1 − α − c1)μ(1 + α − p1 − k1) whereas in
our model the corresponding profit function is π1 = (p1 − c1)μ(1 + α− p1 − k1) − I1.
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FIGURE 2.1: Consumer valuation before and after the investment.

The objective for the retailer is to maximize his expected profit πI
1 = (p1 − c1)q

I
1-

I1, by deciding on the price under the constraint that α ≤ p1 + k1 ≤ 1 + α. The

optimal price, demand, and profit as functions of the mean shift α are p∗I1 = 1+α+c1−k1

2
,

q∗I1 = (1+α−c1−k1)μ
2

, and π∗I
1 = (1+α−c1−k1)2μ

4
− I1, where 0 ≤ α ≤ 1 + c1 + k1.

2.3.2 Duopoly and Search

We now consider two retailers in the market (retailer 1 and retailer 2) who offer the

same product at prices p1 and p2 and incur per unit costs of acquiring the product c1

and c2 respectively. Such differences in retailers’ costs may be a reflection of buying

power as well as their operational performance. Both retailers can invest to increase

consumer valuation by incurring investment costs I1 and I2. We assume that the change

in consumer valuation is identical for both retailers but the investment costs of the two

retailers are different to allow for heterogeneity in the retailers’ investment effectiveness.

We further assume that the two retailers are located at some distance from each other

and that the introduction of retailer 2 may bring additional people in to the market

(Mahajan et al. (1993), Huang and Swaminathan (2009)). We consider an additive
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expansion in the market and denote by ε the additional people in the market (i.e., the

new market size will be μ+ ε, where ε ≥ 0).

We assume that γ proportion of the total population is located near retailer 1 and

as a result this proportion visits retailer 1 first. The remaining (1-γ) visits retailer

2 first. Consumers who visit retailer 1 and retailer 2 incur traveling costs k1 and k2

respectively. The search occurs as follows (see Figure 2.2). A consumer visits her local

retailer first. She buys the product from that retailer provided that she obtains non-

negative consumer surplus i.e., v ≥ pi +ki. If the consumer surplus is negative she does

not buy the product at her local retailer. A fraction of such consumers δ (0 ≤ δ ≤ 1)

who have visited their local retailer and have not obtained positive consumer surplus

would be willing to search with updated consumer valuation the other retailer before

leaving the system. The cost that a consumer incurs traveling from one retailer to the

other is denoted by Δk. Similar to Lal and Sarvary (1999), when consumers visit their

local retailer i first they incur a traveling cost ki associated with the cost of undertaking

the shopping trip, and when consumers go from one retailer to the other, they incur a

traveling cost Δk of visiting an additional retailer. Note that we are not modeling the

case where a consumer visits the other retailer after having visited her local retailer,

seeking price-matching guarantee refunds. Though price matching is common in the

retail industry, research shows that on average only about 5 to 7.4 percent of consumers

seek price matching guarantee refunds (Moorthy and Winter (2004), Kukar-Kinney

(2005)). We also do not consider the situation where, after visiting the second store

a consumer returns to the original store to make the eventual purchase. This is a
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FIGURE 2.2: Duopoly.

reasonable assumption when the price differential between the stores is not significant.

Our search scheme is close to that of Anupindi and Bassok (1999) and Ahn et al.

(2002). In Anupindi and Bassok (1999) consumers buy the product from their local

retailer. In the event of a stock-out a fraction of the unsatisfied customers looks for

the product at another retailer. Since we assume that the demand is deterministic so

there is no stock-out, consumers buy the product from their local retailer provided that

they obtain positive consumer surplus. A fraction of consumers who have visited their

local retailer and have not obtained positive consumer surplus will continue their search

with updated consumer valuation. In Ahn et al. (2002) a manufacturer-owned store

(outlet) and an independent retail store are located in different markets. Each consumer

makes the initial attempt to purchase at the store that is closer. All consumers who

have visited the independent retail store and did not obtain positive consumer surplus

travel to the manufacturer-owned store (i.e., one way movement of consumers). Our

search scheme generalizes the search scheme of Ahn et al. (2002) since: (i) consumers
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incur a cost when they visit their local retailer (in their case such cost is zero), (ii)

consumers can search both retailers (in their case there is one way flow) and (iii) only a

proportion of consumers who encounters non-positive consumer surplus searches both

retailers, while the rest leave the system without making a purchase (in their case this

proportion is one). In addition, our work is differentiated from the above search related

literature in the incorporation of updated consumer valuations.

2.3.3 Investment Pricing Game

We consider two retailers engaging in an investment pricing game with the following

sequence of events.

1. The retailers simultaneously decide whether to invest in improvements in cus-

tomer valuation.

2. Based on their investment decision in event 1, the retailers simultaneously deter-

mine their prices.

The above events constitute a two-stage game. In the first stage the retailers make

investment decisions to improve customer valuation. These decisions can lead to the

following possible investment scenarios.

(i) Neither retailer invests (denoted as (NI,NI)).

(ii) Retailer 1 does not invest but retailer 2 invests (denoted as (NI,I)).

(iii) Retailer 1 invests but retailer 2 does not invest (denoted as (I,NI)).

(iv) Both retailers invest (denoted as (I,I)).

In the second stage given the investment decisions made at the first stage, the
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retailers decide on their prices. Let xi ∈ {0, 1} denote retailer i’s decision to invest or

not in improving customer valuation. Then, retailer i’s problem in stage 1 is given by

max
xi∈{0,1}

πi(xi, xj , pi, pj) = (pi − ci)qi(xi, xj , pi, pj) − xiIi

where

qi(xi, xj , pi, pj) = (μ+ ε)γ(xi(1 + α− pi − ki) + (1 − xi)(1 − pi − ki))

+ (1 − γ)δ(μ+ ε)(1 − xi)(1 − xj)(pj − pi − Δk)+

+ (1 − γ)δ(μ+ ε)(1 − xi)xj(pj − pi − Δk)+

+ (1 − γ)δ(μ+ ε)xi(1 − xj)(pj + α− pi − Δk)+

+ (1 − γ)δ(μ+ ε)xixj(pj − pi − Δk)+

The first term of the demand expression (i.e., (μ + ε)γxi(1 + α − pi − ki)) denotes

the demand from local consumers if retailer i invests. The second term (i.e., (μ +

ε)γ(1 − xi)(1 − pi − ki)) denotes the demand from local consumers if retailer i does

not invest. The remaining terms of the demand expression denote the demand from

searching consumers for the above four possible investment strategies (i)-(iv) chosen by

the retailers respectively.

We use backwards induction to solve this two stage-game. For each investment

scenario ((i)-(iv)) we need to solve the second-stage problem and identify the pricing

Nash equilibrium. In order to solve the second stage for a given investment scenario
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we distinguish four theoretically possible cases (because of the (·)+ operator) that

correspond to the following four possible consumer search schemes depending on the

retailers’ prices:

(1) Consumers do not search (denoted as (NS,NS)).

(2) Consumers search from retailer 2 to retailer 1 (denoted as (NS,S)).

(3) Consumers search from retailer 1 to retailer 2 (denoted as (S,NS)).

(4) Consumers search both retailers (denoted as (S,S)).

Specifically, for investment scenarios (ii) and (iii) we need to consider all four cases

(1)-(4) in the second stage whereas for investment scenarios (i) and (iv) we only need

to consider cases (1)-(3) as shown in Proposition 1. All proofs are in Appendix.

Proposition 1 In investment scenarios (ii) and (iii) both retailers can obtain sales

from the consumers who search between retailers. In investment scenarios (i) and (iv)

only one retailer can obtain sales from the consumers who search.

Hence, there are 14 possible cases in the second stage of the game that need to be

analyzed. However, we can indeed show that for a given combination of investment

and consumer search scheme, there exists a unique equilibrium in the pricing game.

Proposition 2 In the two-retailer pricing game a unique Nash equilibrium exists for

every combination of investment scenario and consumer search scheme.

Deriving the two-stage game Nash equilibrium (x∗i , x
∗
j , p

∗
i , p

∗
j) for an arbitrary set of

parameters is analytically intractable. Therefore, we first explore the Nash equilibria

in terms of both investment and prices through a computational study and examine the
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effects of changing different parameters such as γ, δ, Δk, and different types of costs

on the Nash equilibria. Then, in the following section, we focus on the pricing game

only and theoretically characterize the pricing Nash equilibria for a given investment

scenario and consumer search scheme.

2.3.4 Computational Insights

We now describe our computational study and some of the interesting insights that we

obtained for the pricing and investment game. We used a full factorial design experi-

ment summarized in Table A3 in Appendix. We identify the Nash equilibria in terms of

the investment decisions of the two retailers in the two-stage game as follows: We start

backwards to solve the second stage of the game first. For each of the four possible

investment scenarios ((i)-(iv)), we compute the pricing Nash equilibria of the retailers

assuming a given consumer search scheme ((1)-(4)). For each instance of a given in-

vestment scenario, we identify the consumer search scheme that is a Nash equilibrium

(i.e., the consumer search scheme that is being induced by the Nash equilibrium pricing

strategy of the retailers for a given investment scenario). We refer to this consumer

search scheme as search Nash equilibrium. During our computational study, we found

that there are instances that lead to two search Nash equilibria that cannot be ranked

because one retailer is better off with one consumer search scheme and the other retailer

is better off with the other search scheme. We did not consider such instances in the

first stage of the game where the retailers make a decision on whether to invest or not.

Since the payoffs for both retailers for each investment scenario are known from the
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second stage of the game, we can identify the Nash equilibrium investment strategy for

the retailers.

Tables 2.1 and 2.2 provide a summary on the types of Nash equilibria investment

strategies as well as the Nash equilibria search strategies which result from the retailers’

pricing decisions. Table 2.3 summarizes the frequency of occurrence in our experimental

setup of each consumer search scheme for a given investment equilibrium scenario.

TABLE 2.1: Characterization of investment Nash equilibria.
Type of strategies (NI,NI) (NI,I) (I,NI) (I,I) Two Nash equilibria

% 16.143% 22.125% 27.697% 33.16% 0.874%

TABLE 2.2: Characterization of search Nash equilibria.
Type of strategies (NS,NS) (NS,S) (S,NS) (S,S) Two Nash equilibria

% 30.948% 27.752% 25.239% 15.187% 0.874%

TABLE 2.3: Investment and Search Nash equilibria.
(NS,NS) (NS,S) (S,NS) (S,S)

(NI,NI) 57.699% 23.012% 19.289% NA
(NI,I) 8.519% 40.37% 22.716% 28.395%
(I,NI) 13.609% 20.513% 33.728% 32.15%
(I,I) 48.188% 28.418% 23.394% NA

Here are some interesting observations with respect to the impact of the retailers’

investments on the consumer search scheme.

(1) We notice that the most prevalent Nash equilibrium investment strategy cor-

responds to both retailers investing. There is a very small proportion of instances

(0.874%) that lead to two pure investment Nash equilibria (see Table 2.1). Interest-

ingly, the majority of instances lead to retailers pricing in such a manner so that there

is no search to either retailer (see Table 2.2).
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(2) When both or none of the retailers invest, then they price in such a manner

so as to discourage consumer search. Specifically, 48.188% and 57.699% of situations

where the resulting Nash equilibria is such that both retailers invest or neither retailer

invests, respectively, lead to no search between the retailers. This result is interesting

particularly in the case of both investing, because it enables the retailers to avoid price

competition due to search.

(3) In a number of cases, consumers may decide to search a retailer who invests.

For example, Table 2.3 shows that 20.513% of the cases where retailer 1 invests lead to

consumers searching that retailer and 22.716% of the cases where retailer 2 invests lead

to consumers searching that retailer. In those cases, it is quite possible that the retailer

who has made the investment decides to price lower than the other retailer, and this

effect is more profound when the percentage of consumers willing to search increases.

Such an example is illustrated in Table 2.4 with parameter values γ = 0.2, ε = 0.4,

μ = 1, c1 = c2 = 0.3, k1 = k2 = 0.1, Δk = 0.05, I1 = 0.02, I2 = 0.1, and α = 0.2.

Since I1 << I2 only retailer 1 has an incentive to invest. Note that retailer 1 is at a

disadvantage in terms of market share since γ = 0.2. At low values of δ, retailer 1’s

benefit from consumers who search is low, thus, his incentive to attract consumers from

retailer 2 is low. Hence, retailer 1 prices higher than retailer 2. But as the proportion of

consumers who are willing to search increases, retailer 1’s benefit from the consumers

who search is high. As a result, retailer 1 is willing to drop his price and prices lower

than retailer 2 (even though retailer 1 is the one who has invested).

We further examined the impact of the different parameters on the investment
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TABLE 2.4: An example of the impact of δ on the pricing Nash equilibrium.
δ Investment NE Search NE p1 p2 q1 q2 π1 π2

0.2 (I,NI) (NS,S) 0.622 0.6 0.162 0.336 0.032 0.101
0.5 (I,NI) (NS,S) 0.583 0.6 0.238 0.336 0.047 0.101
0.8 (I,NI) (NS,S) 0.567 0.6 0.314 0.336 0.064 0.101

decisions of the retailers. Here are some of our key insights.

Effect of Proximity: The proximity between the two retailers Δk has an in-

teresting non-monotonic behavior on the retailers’ investment decisions under certain

conditions. Specifically, we find that at low and high values of Δk both retailers have

an incentive to invest, yet for intermediate values of Δk, only one of the retailers has

an incentive to invest. Table 2.5 illustrates such an example with parameter values

γ = 0.8, δ = 0.8, ε = 0.4, μ = 1, c1 = c2 = 0.4, k1 = k2 = 0.3, I1 = I2 = 0.02, and

α = 0.5.

TABLE 2.5: An example of the impact of Δk on the investment Nash equilibria.
Δk Investment NE Search NE p1 p2 q1 q2 π1 π2

0.02 (I,I) (S,NS) 0.8 0.64 0.448 0.282 0.159 0.048
0.1 (I,NI) (S,S) 0.778 0.542 0.509 0.177 0.173 0.034
0.2 (I,I) (NS,NS) 0.8 0.8 0.448 0.112 0.159 0.025

This can be explained because for low values of Δk, the retailers’ competition is very

intense which creates an incentive for both retailers to invest. For high values of Δk,

each retailer is actually acting as a monopolist who can make independent decisions

that do not have an impact on the other retailer. For the intermediate values of Δk, the

competition is not so intense and does not justify the retailer who is at a disadvantage

in terms of market share to commit to an investment decision. This insight suggests

that a retailer should reciprocate investment decisions of a very close competitor but
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could ignore the investments made by a retailer who is further away.

Effect of Searching Consumers: In order to better understand the effects of

the percentage of consumers willing to search δ, we considered three other values δ =

0.1, 0.5, 0.9 (see example in Table 2.6 with the following parameter values: γ = 0.2,

ε = 0.8, μ = 1, c1 = c2 = 0.3, k1 = k2 = 0.1, Δk = 0.05 , I1 = I2 = 0.02, and α = 0.2).

TABLE 2.6: An example of the impact of δ on the investment Nash equilibria.
δ Investment NE Search NE p1 p2 q1 q2 π1 π2

0.1 (I,I) (NS,S) 0.636 0.7 0.169 0.576 0.037 0.210
0.5 (NI,I) (NS,S) 0.517 0.7 0.234 0.576 0.051 0.210
0.9 (NI,I) (NS,S) 0.502 0.7 0.335 0.576 0.068 0.210

Note that in this case γ = 0.2, so retailer 1 is at a disadvantage with respect to the

market share, and hence, needs to price lower in order to attract more consumers. As

a result, consumers always search retailer 1 at equilibrium. Therefore, for low values

of search (δ) both retailers invest at equilibrium. But as the proportion of search

population (δ) increases, retailer 1 does not have an incentive to invest anymore and

is better off free-riding from retailer 2. Therefore, only retailer 2 invests at equilibrium

and consumers search from retailer 2 to retailer 1. We find a similar symmetric effect

when γ = 0.8 since retailer 2 is at a disadvantage in that case with respect to the

market share.

Effect of Market Share, Total Market, and Costs: As expected, market share

γ plays a critical role in the retailer’s decision to invest. As γ increases, retailer 1 is

more likely to invest and retailer 2 is less likely to make such an investment. The

impact of ε and μ on the retailers’ investment decisions is very intuitive. As ε and/or μ
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increase, the retailers have a higher incentive to invest because the market size increases.

An increase in the marginal cost ci results in retailer i having less incentive to invest.

Similarly, an increase in search cost ki forces the retailer to drop his price to make up

for such an increase which subsequently creates disincentives for him to invest. Finally,

as the investment cost increases, the retailers have less incentive to make an investment

in increasing consumer valuation.

2.4 Special Case: Pricing Game

In the previous section, we computationally explored the Nash equilibria in terms of

investment and pricing. We now focus on the pricing game between the retailers for

a given consumer search scheme assuming that the investment game has been played

and an equilibrium has been reached. Although we have analyzed the competitive

effects for most of the investment scenarios we focus our discussion on two asymmetric

investment scenarios (ii) and (iii) (described in subsection 3.3) which create free-riding

opportunities for one of the retailers. Note that in our computational study in the

previous section, we find that almost 50% of the situations lead to investment scenarios

(ii) and (iii) as the resulting Nash equilibria in terms of investment and pricing. In

addition, we focus our discussion on consumer search scheme (4) as it is the most

general search scheme. We defer the presentation of consumer search schemes (1)-(3)

in Appendix.
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2.4.1 Benefiting from Innovative Competition

In this subsection, we study how the profits and prices of a retailer (who does not

invest to improve consumer valuation) under monopoly compare to the case where

there is another retailer in the market (retailer 2) who has decided to invest to improve

consumer valuation. We denote this duopoly scenario as NISS where the first two

letters in the scenario acronym refer to the retailers investment decisions (N for “not

invest”, I for “invest”) and the remaining letters refer to the consumers search scheme

(N for “not search”, S for “search”). The expressions of expected demands and profits

for the retailers are:

qNISS
1 = (μ+ ε)γ(1 − p1 − k1) + (1 − γ)δ(μ+ ε)(p2 − p1 − Δk) (2.1)

qNISS
2 = (μ+ ε)(1 − γ)(1 + α− p2 − k2) + γδ(μ+ ε)(p1 − p2 − Δk + α) (2.2)

πNISS
1 = (p1 − c1)q

NISS
1 (2.3)

πNISS
2 = (p2 − c2)q

NISS
2 − I2 (2.4)

where p1 and p2 need to satisfy the following constraints which ensure nonnegative

demands: 0 ≤ p1 + k1 ≤ 1, α ≤ p2 + k2 ≤ 1 + α, α ≤ p2 + k1 + Δk ≤ 1 + α,

α ≤ p1 + k2 + Δk ≤ 1 + α, p2 − p1 − Δk > 0, and p1 − p2 − Δk + α > 0. The impact

of competition on retailer 1’s price, demand, and profit is illustrated in Table A6 in

Appendix.

Proposition 3 Let π∗NISS
1 be the optimal profit of retailer 1 under duopoly, π∗N

1 be the
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optimal profit under monopoly, and ᾱ(1) be a threshold in the consumer valuation mean

shift (defined in Table A5 in Appendix). Then,

a) if α < ᾱ(1) then π∗N
1 > π∗NISS

1 and

b) if α > ᾱ(1) then π∗N
1 < π∗NISS

1 .

Proposition 3 summarizes the competitive effects on retailer 1’s profit. Specifically,

there exists a threshold in the consumer valuation mean shift ᾱ(1) such that if the mean

shift is low (α < ᾱ(1)), the introduction of retailer 2 leads to retailer 1 losing profit to

competition (π∗N
1 > π∗NISS

1 ); if the mean shift is high (α > ᾱ(1)), retailer 2 creates a

positive externality and retailer 1 free rides (π∗N
1 < π∗NISS

1 ). The impact on retailer

1’s profit due to retailer 2’s investments depends on how many consumers search and

what is their valuation level. When retailer 2 invests in a high level of improvement in

consumer valuation (α > ᾱ(1)), he is likely to price higher which leads to a higher flow

of searching consumers with higher valuations for the product at retailer 1. Therefore,

the profits of retailer 1 under duopoly are higher than those under monopoly.

Note that retailer 1 can still benefit under competition even when retailer 2 does not

bring any market expansion, provided that retailer 2 has made a sufficient investment

to increase consumer valuation. Figure 3 illustrates such an example with parameter

values γ = 0.5, δ = 0.5, ε = 0, μ = 3, c1 = c2 = 0.5, k1 = k2 = 0.3, Δk = 0.1.

Proposition 4 Let ᾱ1, ᾱ2, and ᾱ(1) be thresholds in the consumer valuation mean shift

(i.e., the values of α defined in Table A5 in Appendix that equate retailer 1’s prices,

demands, and profits respectively under duopoly and monopoly regimes). Then,
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FIGURE 2.3: Retailer 1’s profit versus mean shift in scenario NISS.

(i) ∂ᾱ1

∂Δk
> 0,

(ii) ∂ᾱ2

∂Δk
> 0, and

(iii) ∂ᾱ(1)

∂Δk
> 0.

Proposition 4 shows that as Δk increases (retailers are located further away), it will

require higher levels of improvements in consumer valuation so that retailer 1 could

have at least the same price, demand, and profit under duopoly as under monopoly.

If it is indeed true that a competitor could benefit from an innovative retailer’s

investment, then how could the innovative retailer protect himself? In this context it

is interesting what Magnolia Home theater stores are doing. Magnolia Home theater

stores are a successful “arm” of Best Buy and contributed total sales of $46 million dur-

ing the quarter that ended in November 27, 2006 (Stock (2006)). Magnolia has placed

tremendous emphasis on practices that increase consumer valuation of their product

offerings. Such practices include (1) offering premium brands in a demonstration en-

vironment where consumers can actually try out the equipment and (2) employing

knowledgeable sales professionals who can interact one to one with the home theater

enthusiasts to guide them through the home theater experience. Magnolia investments
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to increase consumer valuation are significant which could allow its competitors to

benefit/free-ride based on the results of this section. To mitigate this effect, Mag-

nolia offers many unique assortments that are not available at other stores (Freeland

(2007)). For example, in the television section, they are currently offering a special se-

ries of Samsung products like Samsung PN58A760 58” Class 1080p Flat-Panel Plasma

HDTV that are unique to Magnolia stores. As a result, a customer with an increased

valuation cannot purchase the same product at another store. Hence, one strategy

for an innovative retailer to mitigate free riding could be to offer different assortments

which is not captured in our single product model.

2.4.2 Implications of Competition for an Innovative Retailer

In this subsection, we study how the profits and prices for an innovative retailer who

has decided to invest to improve consumer valuation under monopoly compare to the

case where there is another retailer in the market (retailer 2) who does not invest. In

that case the expressions of expected demands and profits for the two retailers are

qINSS
1 = (μ+ ε)γ(1 + α− p1 − k1) + (1 − γ)δ(μ+ ε)(p2 + α− p1 − Δk) (2.5)

qINSS
2 = (μ+ ε)(1 − γ)(1 − p2 − k2) + γδ(μ+ ε)(p1 − p2 − Δk) (2.6)

πINSS
1 = (p1 − c1)q

INSS
1 − I1 (2.7)

πINSS
2 = (p2 − c2)q

INSS
2 (2.8)
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where p1 and p2 need to satisfy the following constraints: α ≤ p1 + k1 ≤ 1 + α,

0 ≤ p2 + k2 ≤ 1, α ≤ p2 + k1 + Δk ≤ 1 + α, α ≤ p1 + k2 + Δk ≤ 1 + α, p2 + α −

p1 − Δk > 0, and p1 − p2 − Δk > 0. Table A8 in Appendix summarizes the impact

of competition on retailer 1’s price, demand, and profit. Figure 2.4 summarizes the

impact of competition on retailer 1’s profit according to different regimes related to

market expansion, retailers’ physical proximity, and magnitude of change in consumer

valuation.

Proposition 5 Let π∗INSS
1 be the optimal profit of retailer 1 under duopoly, π∗I

1 be the

optimal profit of retailer 1 under monopoly, Δ̄k be a threshold of the retailers’ physical

proximity, ᾱ(2), ᾱ3, and ᾱ be thresholds of the consumer valuation mean shifts and ε̄ be

a threshold of the market expansion (defined in Table A7 in Appendix). Then,

i a) if ε > ε̄, Δk > Δ̄k, and α < ᾱ(2), then π∗I
1 > π∗INSS

1 .

i b) if ε > ε̄, Δk > Δ̄k, and α > ᾱ(2), then π∗I
1 < π∗INSS

1 .

ii) if Δk > Δ̄k and α < ᾱ = min{ᾱ(2), ᾱ3}, then π∗I
1 > π∗INSS

1 .

Proposition 5 provides the following insights:

i) When the market expansion is high and the retailers’ proximity is low, there

exists a threshold in the consumer valuation mean shift ᾱ(2) such that if the mean

shift is low (α < ᾱ(2)) the introduction of retailer 2 leads to retailer 1 obtaining lower

profit (π∗I
1 > π∗INSS

1 ). Otherwise, if the mean shift is high (α > ᾱ(2)) retailer 1’s profit

is higher under duopoly (π∗I
1 < π∗INSS

1 ). Hence, retailer 1 can avoid profit loss to

competition by making a sufficient improvement in consumer valuation.
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ii) In a low proximity regime, a low improvement in consumer valuation (α < ᾱ)

leads to retailer 1 obtaining lower profit.

The remaining regions in Figure 2.4 cannot be characterized as clearly. We per-

formed a computational study in order to gain more insights about the remaining

regimes. The computational study leads to an interesting observation. For example,

for the same regime we can obtain qualitatively different outcomes. Figure 2.5 demon-

High Proximity Low Proximity

Not
Determined

Higher
Profit

Lower
Profit

Higher
Profit

High Proximity Low Proximity

Not Fully
Determined

Lower
Profit

Not
Determined

FIGURE 2.4: The impact on retailer 1’s profit based on the analytical results in scenario
INSS.

Note min ≡ min{ᾱ3, ᾱ4} and max ≡ max{ᾱ3, ᾱ4}

strates an example of a low market and low proximity regime in which competition

can impact retailer 1 in different ways. The parameter values for the left frame are:

γ = 0.45, δ = 0.8, ε = 0.02, μ = 3, c1 = 0.5, c2 = 0.7, k1 = 0.3, k2 = 0.1, Δk = 0.01,

I1 = 0.05 and for the right frame are: γ = 0.45, δ = 0.8, ε = 0.02, μ = 1, c1 = 0.4,

c2 = 0.6, k1 = 0.4, k2 = 0.2, Δk = 0.02, I1 = 0.05. Note that for this example the

value of ᾱ3 (i.e., the value of α at which the price of retailer 1 under monopoly and

under duopoly are equal) happens to be negative. In the right frame, higher levels of

improvement in consumer valuation by retailer 1 lead to higher profits for that retailer.
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Interestingly, in the left frame lower levels of improvement in consumer valuation by re-

tailer 1 lead to higher profits for that retailer. The differential role of the magnitude of

improvement in consumer valuation in these two instances can be explained by looking

at the rate of change of profits with respect to the magnitude of improvements under

monopoly and duopoly regimes. Specifically, the following expression
∂π∗INSS

1

∂α
− ∂π∗I

1

∂α

can give some insights regarding this difference in behavior. The above difference can

be expanded as follows:

∂π∗INSS
1

∂α
− ∂π∗I

1

∂α
= (

∂p∗INSS
1

∂α
q∗INSS
1 − ∂p∗I

1

∂α
q∗I1 )+(

∂q∗INSS
1

∂α
p∗INSS

1 − ∂q∗I
1

∂α
p∗I1 )− (c1(

∂q∗INSS
1

∂α
−

∂q∗I
1

∂α
)).

Note that the second term (
∂q∗INSS

1

∂α
p∗INSS

1 − ∂q∗I
1

∂α
p∗I1 ) and third term (c1(

∂q∗INSS
1

∂α
−

∂q∗I
1

∂α
)) of this expression are respectively negative and positive for both instances whereas

the first term (
∂p∗INSS

1

∂α
q∗INSS
1 − ∂p∗I

1

∂α
q∗I1 ) is positive in the right frame and negative in

the left frame. Also note that the price of retailer 1 under duopoly increases at a higher

rate than his corresponding price under monopoly (
∂p∗INSS

1

∂α
>

∂p∗I
1

∂α
). Since the market

size in the left frame is higher than the market size in the right frame, retailer 1 gets

much higher demand in the left frame than in the right frame which leads to the first

term being negative in the left frame and positive in the right frame. Subsequently,

this difference in the signs of the first term leads to the difference in the signs of the

following expression
∂π∗INSS

1

∂α
− ∂π∗I

1

∂α
. The managerial implication of this result is that a

higher market size can enable a firm to extract significantly more from consumer valua-

tion increases under monopoly than under competition. In such a situation if α > ᾱ(2)

the firm gets hurt from competition.
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FIGURE 2.5: Impact of competition in a low proximity and low market regime.

2.5 Special Case: Symmetric Retailers

In this section, we focus on symmetric retailers and examine the investment Nash equi-

librium. As we discussed in §2.3.3 asymmetry between retailers greatly confounds the

comparison of the profit functions of the retailers across different investment scenarios.

Hence, in this section we seek to obtain further insights by considering symmetric re-

tailers. Note that for the two symmetric investment scenarios ((i) and (iv)) discussed

in §2.3.3 since retailers are symmetric in all aspects including market share they will

price identically. It is easy to show that for these two investment scenarios there is no

demand from consumer search between the retailers. As a result, the retailers obtain

demand only through their local consumers. For the two asymmetric investment sce-

narios ((ii) and (iii)) we will consider the most general case where both retailers obtain

demand from searching consumers. Let π∗j
i denote the optimal payoff of retailer i for in-

vestment scenario j, where i = {1, 2} and j = {(NNNN), (NISS), (INSS), (IINN)}.

Recall that the first two letters in the scenario acronym refer to the retailers investment

decisions (N for “not invest”, I for “invest”) and the remaining letters refer to the con-

sumers search scheme (N for “not search”, S for “search”). We provide the expressions

of the optimal profits for each retailer for all the investment scenarios as well as the

feasible range of the parameters in Appendix.
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Note that since the retailers are symmetric they engage in a symmetric game where

the payoffs for playing a particular strategy depend only on the other strategies em-

ployed, not on who is playing them. This fact simplifies the analysis to identify the

Nash equilibrium strategies. We next characterize the investment Nash equilibrium

strategies for different ranges of investment cost I.

Proposition 6 Let A1 and A2 be two thresholds for investment cost I defined in Ap-

pendix. Then,

a) if 0 < I < A1, the unique pure investment Nash equilibrium is both retailers to

invest.

b) if max{0, A1} < I < A2, the investment Nash equilibrium strategies are either

retailer 1 or retailer 2 to invest

c) if I > max{0, A2}, the unique pure investment Nash equilibrium is neither retailer

to invest.

Proposition 6 characterizes the two retailers investment strategies as a function of

their investment cost. If the investment cost is very low (i.e., 0 < I < A1) then the

optimal strategy for both symmetric retailers is to invest. If the investment cost is very

high (i.e., I > max{0, A2}) then the optimal strategy for the two retailers is not to

invest. For the intermediate values of investment cost retailer 1 investing but retailer

2 not investing or retailer 1 not investing but retailer 2 investing are two pure Nash

equilibrium strategies.

The above holds provided that A2 > A1 > 0. Finding an ordering between A1 and
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A2 is analytically challenging. As a result, we resorted to a computational study. We

performed a full factorial analysis with parameters values described in Appendix (see

Table A4) and found that for all instances considered (1728 in total) A2 > A1 > 0.

This suggests that as the investment cost increases, the Nash equilibrium strategies

shift from both retailers investing, to only one retailer investing (either 1 or 2), and

finally to neither retailer investing.

2.6 A Variant With Endogenous Mean Shift

The analysis so far has assumed that α is exogenously given. We now explore a variant

of the basic model in which each retailer is in a position to decide on the optimal

mean shift and subsequent investment level. Our attempts to incorporate endogenous

investment levels in the asymmetric duopoly led to very cumbersome expressions that

were not amenable to analysis. Hence, we only analyzed the symmetric duopoly and

focused on the equilibrium where both retailers invest.

We consider two symmetric retailers in the market who compete on investments

and prices. We assume that when each retailer invests to increase consumer valuation,

he incurs an investment cost λα2, where λ corresponds to the investment cost factor of

that retailer. The parameter λ captures each retailer’s cost effectiveness in operational

deployment of consumer-valuation-enhancing activities (i.e., a high value of λ denotes a

low-cost effective retailer). In addition, we consider that the investment cost increases

quadratically in α to capture diminishing returns of increases in consumer valuation.
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The intuition behind the quadratic investment cost representation is as follows: In order

for a retailer to achieve a small translation of the mean of consumer valuation to the

right, some minimum services can be sufficient, and the resulting investment cost is low.

But when a retailer targets higher shifts of the mean valuation, he needs to provide a

greater level of services that will increase the cost significantly. This behavior suggests

a convex type of investment cost. Similar approaches to modeling service effort, which

can be broadly defined as any demand-enhancing effort activity, have been used in the

literature (e.g., Tsay and Agrawal (2000)).

We only consider symmetric equilibria (i.e., the optimal mean shifts and prices for

the two retailers are identical). As a result, there will be no demand from searching

consumers to either retailer, and each retailer decides on prices and investment levels

to serve his local consumers. Hence, each retailer acts as a monopolist in his own local

market. Note that for this section we will be using for simplicity the scenario acronym

(II) to refer to (IINN).

The expected demand for the product is given by qII = μ̂P (V̂ ≥ p + k) = μ̂(1 +

α− p− k), where μ̂ = μ+ε
2

. The objective for each retailer is to maximize his expected

profit πII = (p− c)qII-λα2, by deciding on the price under the constraint α ≤ p+ k ≤

1 + α. The optimal price, demand, and profit as functions of the mean shift α are

p∗II(α) = 1+α+c−k
2

, q∗II(α) = (1+α−c−k)μ̂
2

, and π∗II(α) = (1+α−c−k)2μ̂
4

− λα2, where

0 ≤ α ≤ 1 + c+ k. For the case in which p+ k < α, each retailer can increase his price

such that p+k = α, and he will be able to serve his whole local market (μ̂ = μ+ε
2

). Thus,

when p + k < α the expected demand for the product qII = μ̂, and the optimal price,
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demand, and profit as functions of the mean shift α are p∗II(α) = α − k, q∗II = μ̂,

and π∗II(α) = (α− c− k)μ̂− λα2, where α ≥ 1 + c+ k.

The following proposition details how this strategy depends on the value of each

retailer’s investment cost factor λ. Let α∗IEIE be the optimal value of the mean shift.

The superscript IEIE refers to a duopoly scenario in which the level of investment is

endogenous (I for “invest”, E for “endogenous”).

Proposition 7 The optimal value of the mean shift α∗IEIE depends on the value of

each retailer’s investment cost factor λ as follows:

a) if λ < μ̂
2(1+c+k)

, α∗IEIE = μ̂
2λ

b) if λ > μ̂
2(1+c+k)

, α∗IEIE = (1−c−k)μ̂
4λ−μ̂

.

Proposition 7 illustrates the existence of a threshold in the investment cost factor

that determines the optimal mean shift of the consumer valuation distribution. If the

investment cost factor is low (λ < μ̂
2(1+c+k)

), each retailer can price low, which allows

him to serve his whole local market μ̂, whereas if the investment cost factor is high

(λ > μ̂
2(1+c+k)

), each retailer serves only a part of his local market.

Table 2.7 presents a complete characterization of the optimal decisions of each

retailer depending on the value of the investment cost factor and comparative statics.

As anticipated, when the market is partially covered, an increase in the per unit cost

of acquiring the product, traveling cost, and investment cost factor leads to a decrease

in the optimal mean shift, demand, and profit; whereas an increase in the market size

leads to an increase in the optimal mean shift, price, demand, and profit. When a
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retailer serves the whole market, several of the above parameters have no impact on

the corresponding optimal mean shift, price, and demand.

TABLE 2.7: Impact of λ on a retailer’s strategy and comparative statics.
Best retailer strategy Serve part of his local market Serve his whole local market

λ ≥ μ̂
2(1+c+k)

0 < λ ≤ μ̂
2(1+c+k)

mean shift α∗IEIE (1−c−k)μ̂
4λ−μ̂

μ̂
2λ

price p∗IEIE c+ 2(1−c−k)λ
4λ−μ̂

μ̂
2λ

− k

demand q∗IEIE 2(1−c−k)λμ̂
4λ−μ̂

μ̂

profit π∗IEIE (1−c−k)2λμ̂
4λ−μ̂

μ̂(μ̂−4λ(c+k))
4λ

comparative statics c k μ̂ λ c k μ̂ λ
mean shift α∗IEIE - - + - n/a n/a + -

price p∗IEIE + /- - + - n/a - + -
demand q∗IEIE - - + - n/a n/a + n/a
profit π∗IEIE - - + - - - + -

One of the important counterintuitive insights in Table 2.7 relates to how the op-

timal price changes with the per unit cost of acquiring the product when each retailer

serves part of his local market. We find that when λ > max{ μ
2(1+c+k)

, μ̂
2
} = μ̂

2
, then

the per unit cost of acquiring the product has an intuitive impact on the price. The

price increases when the per unit cost of acquiring the product increases. However,

when μ̂
2(1+c+k)

< λ < μ̂
2
, the price surprisingly decreases when the per unit cost of

acquiring the product increases. We can explain this counterintuitive result from the

expression of the optimal price p∗IEIE = 1+α∗IE+c−k
2

, where α∗IEIE = (1−c−k)μ̂
4λ−μ̂

. The

impact of the per unit cost of acquiring the product on the optimal price is as follows:

∂p∗IEIE

∂c
= ∂α∗IEIE

∂c
1
2
+ 1

2
, where ∂α∗IEIE

∂c
= − μ̂

4λ1−μ̂
< 0. Note that while the per unit cost

of acquiring the product increases price directly, it decreases the optimal mean shift

as well. This decrease in the optimal mean shift leads to a decrease in price. Hence,
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the per unit cost of acquiring the product affects the optimal price directly and also

indirectly through the optimal mean shift. As a result, the net impact of the per unit

cost of acquiring the product on the optimal pricing depends on the relative magnitude

of these two effects. When λ = μ̂
2

the two effects cancel out (i.e., the rate of decrease of

the optimal mean shift is equal to the rate of increase of the per unit cost of acquiring

the product) resulting in ∂p∗IEIE

∂c
= 0. When λ > μ̂

2
, each retailer’s cost effectiveness

decreases, which results in a decrease in the optimal mean shift. As the per unit cost of

acquiring the product increases, the rate of decrease of the optimal mean shift is lower

than the rate of increase of the per unit cost of acquiring the product, which leads to an

eventual price increase (∂p∗IEIE

∂c
> 0). But when λ < μ̂

2
, each retailer’s cost effectiveness

increases, which results in an increase in the optimal mean shift. As the per unit cost

of acquiring the product increases, the rate of decrease of the optimal mean shift is now

higher than the rate of increase of the per unit cost of acquiring the product, which

leads to a price decrease (∂p∗IEIE

∂c
< 0).

2.7 Conclusion

As retail competition becomes more intense with numerous entrants in the market,

several retailers have engaged in practices that aim to increase consumer valuation

about their product offerings. Our primary objective has been to explore the effect

of such practices. To enable detailed analysis, we have developed a stylized model

for changes in consumer valuation and how it affects the eventual purchase decision.
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Our analysis has yielded a number of findings. Under duopoly, when the investment

decision is endogenous, surprisingly in the majority of instances both retailers decide

to invest in equilibrium but price the product in a manner to avoid consumer search

between them. We also find that the proximity of retailers has an interesting non

monotonic impact on their decisions to invest in that retailers tend to invest when they

are very close or very far away but refrain from investing in the intermediate range.

When we further focus on the pricing game only we find two major effects related to

improvements in consumer valuation. First, consistent with popular belief, we find that

a retailer could overcome competitive effects by improving consumer valuation beyond

a certain threshold. However, there are situations where a greater improvement in

consumer valuation by a retailer could lead to lower profits. Second, we find that a

retailer who does not invest could benefit from an innovative competitor who increases

consumer valuation beyond a threshold. When we focus on symmetric retailers we find

that as the investment cost increases the Nash equilibrium strategies shift from both

retailers investing, to only one retailer investing, and finally to neither retailer investing.

Finally, for the extension where the level of investment is endogenous, we show that a

symmetric duopolist’s optimal strategy to cover his whole local market or part of his

market depends on his investment cost effectiveness and the optimal price charged by

him may indeed decrease with the per unit cost of acquiring the product.

Our study has two implications for practitioners. First, our model suggests that an

equilibrium strategy could be both firms to invest in valuation enhancing practices but

price in such a way to prevent focal customer base buying from the competitor. The
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above strategy could work as a protective mechanism against free-riding. Such strategy

complements practices that are currently observed in the retail industry including the

offering of unique assortments. Second, retailers need to take into account the physical

proximity to their competitor and the proportion of consumers who are willing to search

for better deals in the market in addition to the costs associated with such investments

prior to deciding whether to engage or not in such practices.

Our model is highly stylized however it provides insights into the success that Mag-

nolia Home theater stores have achieved by offering customer valuation enhancement

activities for high-margin products targeting an affluent customer base. Our analysis

also provides some insights into Gateway’s Country Stores demise. Gateway started

as one of the first widely successful direct sales PC companies targeting initially price-

sensitive consumers. Hoping to grow in a different market and attract top management

and engineers, Gateway opened a chain of retail stores called Gateway Country Stores

and made significant investments in customer valuation enhancement activities with-

out having established first the customer base who would be willing to bear the costs

associated with these activities.

Although our model and its analysis has provided several interesting insights related

to increasing consumer valuations, it has some limitations. To focus our attention on the

effects of competition we use a deterministic demand that is more amenable to analysis

of competition. Embedding stochastic demand in a duopoly setting has been found

to dramatically complicate the analysis of even models that do not include increased

consumer valuation (cf. Tsay and Agrawal (2000)).
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In the asymmetric duopoly, we did not consider the retailers’ decision of how much

to invest to increase consumer valuation but explored such a decision only in the sym-

metric duopoly focusing on the symmetric equilibrium. Our preliminary attempts to

incorporate endogenous investment levels in the asymmetric duopoly led to very cum-

bersome expressions that were not amenable to analysis or deeper managerial insights.

There are several research avenues that could be explored in the future. A possible

extension is to consider the mixed impact of the practices employed by the retailers

to increase consumer valuation on heterogeneous populations. For instance, providing

enhanced informational services could reveal some positive and unique aspects of the

product and subsequently could increase their willingness to pay for some consumers.

On the other hand, enhanced informational services may also help some consumers

identify that the product is not a good fit for them.

In our current model, we consider that consumers visit their local retailers first. If

consumers do not obtain positive consumer surplus at their local retailer, they visit the

competing retailer. Our model captures one of the possible consumer search behaviors

but does not consider price sensitive consumers (i.e., consumers who search among

retailers and buy from the retailer who maximizes their utility). Embedding price

sensitive consumers in our model could be another direction to pursue in the future.

Another possible extension of our model relates to studying the supply chain impli-

cations of increased consumer valuation. In this area one could explore how increased

consumer valuation provided by manufacturer-owned stores could impact supply chain

performance, as well as each party’s performance and study coordination mechanisms.
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Although the above extensions are all interesting and relevant, the associated anal-

ysis is sufficiently complicated and different from the models included in the current

chapter.
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CHAPTER 3

The Impact of Labor and Traffic on
Store Performance

3.1 Introduction

In a bricks-and-mortar channel the last mile of a customer’s purchase occurs in the retail

store. In the store, customers may decide whether to purchase or not and also how

much to spend. Retailers track conversion rate, the percentage of incoming traffic who

purchased, and basket value, the average dollar amount spent by customers, to measure

their store performance and place enormous importance on these metrics. Conversion

rate, for example, has been found to be strongly correlated with customer loyalty1.

Basket value, on the other hand, would be linked to the profitability of the retailer.

While the difference in conversion rates and basket values across retailers are to

be expected, we find that both these metrics exhibit considerable heterogeneity across

stores as well as time. For example, in our proprietary data that pertains to an apparel

1Pat Conroy, vice chairman and national principal, consumer business practice at Deloitte and
Touche states that “Customer conversion–it’s the single most important thing that a retailer can do
to sustain long-term growth” (Zaino (2007))



retailer, we find that conversion rate varies between 2% and 45.8% longitudinally and

basket value varies between $2.78 and $365.83. Also, average conversion rate across

stores vary between 9% and 18.9% and basket values vary between $72.4 and $127.9.

Such a wide variation in these performance metrics is surprising given that most retailers

tend to have uniform policies across their stores. Further, as Figures 3.3 and 3.4 show

conversion rate and basket value are independent measures of store performance both

within and across stores. Hence a study of the systematic factors that explain the

longitudinal and cross-sectional variation in these variables would be useful to explain

store performance.

Both conversion rate and basket value can be correlated with traffic characteristics.

Figure 3.5 plots conversion rate intra-day traffic variability for one of the stores in the

sample. Figure 3.6 plots average basket value across stores against traffic uncertainty.

We see strong correlations between the pairs of variables in each Figure. Such strong

correlations could be the result of many factors including labor, consumer purchase

behavior, economy, product availability, and merchandise assortment.

In this chapter, we conduct a descriptive study of conversion rate and basket value

for a retailer. Specifically, we consider the correlation between store performance and

intra-day traffic variability and traffic uncertainty. We also measure traffic-labor mis-

matches and study if they explain the observed correlations in our sample.

There are two main reasons why we focus on conversion rate and basket value

instead of profitability. First, the above two metrics provide additional information

that a manager could use to better utilize his current resources. Information on av-
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erage spending and customer conversion could allow the store manager to direct his

resources as needed in order not to leave money on the table and increase the cus-

tomer’s average spending. Second, conversion rate could be a more appropriate metric

of bench-marking store performance as opposed to profitability or sales. For instance,

sales and profitability could be higher in store A than store B of the same chain simply

because store A is located in an area that attracts more traffic than store B. But store

B could have a higher conversion rate which indicates that it is a better performing

store since it utilizes its existing resources and potential in a more efficient manner.

We report the following results in this chapter. First, we report the within-store

results. We find that intra-day traffic variability is negatively correlated with both

conversion rate and basket value. A 1% increase in traffic variability is associated

with a 0.094% decrease in conversion rate in a store and 0.037% decrease in basket

value. We also find that, for a given level of traffic, both conversion rate and basket

value increase with an increase in store labor at a diminishing rate. A 1% increase

in labor is associated with a 0.102% increase in conversion rate and 0.066% increase

in basket value. In addition, we find that conversion rates are higher during holidays

but basket values are lower suggesting that price promotions offered during the holiday

season cause more customers to purchase but do not increase the size of the average

customer purchase. Moreover, we find that both conversion rates and basket values

exhibit significant seasonality.

Next, we report the across-store results. We find that stores with higher traffic

uncertainty have lower conversion rates but similar basket values. We also find that
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stores that have higher traffic variability and higher traffic uncertainty have higher

mismatches between required labor and actual labor. Furthermore, our tests reveal that

stores that have lower foot-traffic have higher traffic uncertainty resulting in mismatches

between required labor and actual labor. A surprising result of our analysis is that

competition does not affect conversion rates and basket values. This suggests that

the consumers’ decision on whether or not to purchase and how much to purchase is

unaffected by the presence of other competitors once they are in the store. Finally, we

find that stores located in neighborhoods with higher per capita income have higher

conversion rates but similar basket values.

Our research is closest to Fisher et al. (2009) who conduct a cross-sectional study

to show that labor scheduling and execution significantly explain differences in basket

value for a retailer. Our results are consistent with Fisher et al. (2009) in the sense

that we find that mismatches between labor and traffic are correlated with lower basket

values across stores. Furthermore, our use of data on hourly traffic, sales, and labor

is novel and allows us to differentiate variability in traffic within a day and variability

across days and show their association with the mismatches between traffic and labor.

In addition, our research setting allows us to study within-store analysis of basket

value, as well as conversion rates, a metric that has not been studied in operations

management so far. Our study is also the first to study aggregate volatility and show

its association with negative store performance.

Our study has two implications for practitioners. First, many retailers plan labor

based on sales and traffic. Hence, stores that have higher sales and traffic tend to have
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more labor. However, our study shows that stores with lower sales and traffic tend to

have higher volatility. This suggests that planning labor based on average traffic may

be misleading and traffic volatility needs to be taken into account. Even though some

part of traffic volatility is uncontrollable retailers need to handle volatilities that are

under their control either using increased labor or through more flexible labor. Second,

retailers need to analyze their actions to determine if they are resulting in increased

traffic volatility and seek ways to address them. While several studies have considered

the impact of retail actions such as advertising, price promotions etc., we do not know of

any study that considered the impact of such actions on traffic volatility. For example,

several retailers have “early bird specials” that would cause traffic variability to increase

substantially. Hence, our study shows that it is important to coordinate actions that

drive store traffic with those that help manage the potential increase in volatility.

The remaining of the chapter is organized as follows: Section 2 reviews relevant

literature. Section 3 presents the store performance framework that we use. In section

4 we present our hypotheses. Sections 5 and 6 describe the data and the econometric

model respectively. In Section 7 we discuss our results. Section 8 concludes the chapter.

3.2 Literature Review

Our work falls into the stream of literature that examines factors influencing store per-

formance. Several factors have been studied in the literature including store-, market-,

and consumer characteristics. We focus on the role of labor and traffic characteristics
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and review only papers that examine those factors. An interested reader could refer to

Reinartz and Kumar (1999) for a brief literature review on different store performance

studies.

Few papers in the retail operations literature empirically examine the role of labor

capacity in retail store performance. Hise et al. (1983) focus on explaining cross-

sectional variations in store-performance of a retail chain using survey data and find that

among other factors the number of employees is statistically significant in explaining

the financial performance of a store. Ton and Huckman (2005) examine the impact of

employee turnover on store performance and show that the negative effect of turnover on

performance is most pronounced in stores that have low level of process conformance.

Fisher et al. (2006) analyze the drivers of a retail store’s financial performance and

find that store staffing levels have a significant impact on customer satisfaction and

sales. Another study by Fisher et al. (2009) focuses on the impact of labor planning

and execution practices on the financial performance of a retail location. They show

that mismatches between the planned employee staffing level and the actual employee

staffing level have negative impact on the financial performance of a store. Ton (2008)

studies the effect of labor levels on retail store profitability through its impact on

quality defined in terms of service and conformance. In the setting that she studies she

finds that increasing labor has a significant effect on profitability through its impact

on conformance quality but not its impact on service quality.

Our work is different from the above papers in the following aspect. To the best

of our knowledge, our study is the first one to examine empirically the impact of
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labor levels on store conversion effects. The only empirical research to date that has

studied conversion effects at the store level is the work by Lam et al. (2001) who

study the effectiveness of marketing activities (i.e., promotions) on store performance

including attraction, conversion, and spending effects. In contrast, our focus is to

examine the impact of labor capacity as measured by labor hours as well as traffic on

store performance as measured by conversion rate, basket value, and sales.

Our work contributes to existing literature that focuses on retail sales force planning

based on store traffic forecasting. A representative work of this stream of research is

the paper by Lam et al. (1998) which proposes a model that links store sales potential

with store traffic volume, customer type, and customer response to sales force avail-

ability. Our research demonstrates that traffic variability and uncertainty in addition

to average store traffic volume have an effect on store performance. This result has

important operational implications in planning and scheduling sales force. According

to our findings, a retailer while making his store labor force planning may need to

take into account not only factors identified by previous literature (e.g., Lam et al.

(1998)) such as average store traffic volume, customer type, and customer response to

sales force availability but also traffic variability and uncertainty. To the best of our

knowledge, our research is the first attempt in the operations literature that uses traffic

data to empirically examine the effect of traffic variability and uncertainty on store

performance and its potential implications on labor planning and scheduling.
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3.3 Store Performance Framework and Factors In-

fluencing Store Performance

Figure 3.1 presents a modification of the framework suggested by Lam et al. (2001)

for analyzing store performance. This framework breaks down store sales into three

components: store traffic, conversion rate, and basket value. Such a partitioning of sales

can be very useful and can lead to a better understanding of the different factors that

affect sales. Our focus will be on three store performance measures (sales, conversion

rate, and basket value). Conversion rate and basket value are related to the effectiveness

of store related activities in converting potential customers into buyers and encouraging

them to spend more. In addition to store related factors that are under the control

of a retailer, there are several other factors beyond his control that can affect store

performance.

Store Traffic Conversion
Rate

Number of  
Transactions

Basket Value 

Store Sales 

x

x

FIGURE 3.1: A Framework for Analyzing Store Performance

Lam et al. (2001) have suggested an organizing framework for studying the impact

of different controllable and uncontrollable factors on store performance. We borrow his
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framework and classify the different factors based on time dimension into time-variant

and time-invariant. Figure 3.2 illustrates the framework we use for our analysis. Note

that consumer demographics and competitive conditions can actually vary with time.

We assume that the above factors are time invariant for the period of our study.

Time-Variant 
Variables

Merchandise

Price

Promotion and 
Advertising

Sales Force 

Operations
Policies

Seasonality

Day of Week 

Weather

Economic 
Conditions

Time-Invariant 
Variables

Store Design 

Location

Consumer 
Demographics 

Competitive 
Conditions

Store Performance

Conversion Rate 

Basket Value 

Sales

FIGURE 3.2: Factors Influencing Store Performance
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Lam et al. (2001) examine two additional store performance measures (i.e., front

traffic and store entry ratio) since they are interested in the impact of marketing ac-

tivities on attraction in addition to conversion and spending effects. We do not treat

traffic as a performance measure but focus on understanding the impact of traffic vari-

ability and traffic uncertainty on store performance. Traffic variability corresponds to

intra-day traffic variability and traffic uncertainty is proxied by inter-day traffic vari-

ability. More information regarding the above traffic characteristics is provided in the

data description.

In our analysis, we control for all the factors that affect store performance presented

in Figure 3.2 besides merchandise and price for which we unfortunately have no data.

In addition, since traffic variability could be correlated with days of the week we do

not use days of the week as controls in our analysis.

3.4 Hypotheses

In this section, we develop hypotheses regarding the impact of labor and traffic on store

performance. Our hypotheses are motivated based on practice as well as literature.

Impact of Staffing Levels. The linkage between staffing levels and store per-

formance has been highlighted by several researchers who have identified mechanisms

through which the former affects the latter. For example, Fisher et al. (2006) show that

more labor at retail stores is associated with higher customer satisfaction and higher

sales. Ton (2008) examines the effect of labor on profitability through its impact on

56



quality. She finds that increasing labor is associated with an increase in profitability

through its impact on conformance quality. Both studies provide empirical support

that higher labor is associated with higher service quality.

The relationship between service quality and performance has been established by

the literature on customer satisfaction. They find that higher service quality leads to

higher customer satisfaction which then increases customer loyalty resulting in better

performance (Heskett et al. (1994)). For instance, Babakus et al. (2004) find that

both service and merchandise quality exert significant impact on store performance–

measured by sales growth and customer growth–and this impact is mediated by cus-

tomer satisfaction. Sulek et al. (1995) find empirical support that customer satisfaction

has a positive impact on the sales per labor hour for a retail chain of 46 stores.

In the context of retailing, the research stream on customer satisfaction usually

considers sales force as a vital driver of the sales process (and subsequently customer

conversion and spending) by providing information to the customers about the product

characteristics, features, prices, and brands, by helping customers identify the right

product for their needs and locate the product in the store as well as by making the

sales transaction process more efficient. Hence, as the number of sales force increases

each employee will have more time to interact with the customer and assist him/her

in identifying his/her needs with the offerings of the store (Wernerfelt (1994)). As a

result, the customer is more likely to buy at the store. Moreover, customers who are

interested in multiple items can make more purchases at the store if they find sufficient

assistance. In addition, more time spent with customers can provide more opportunities
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to the sales force to engage in cross-selling and up-selling, and subsequently increasing

the amount that customers eventually spend. Building on the above arguments we

hypothesize the following:

Hypothesis 1 Increase in labor is associated with higher store performance.

Impact of Traffic Characteristics.

Traffic uncertainty affects store performance in two ways. First, increase in traffic

uncertainty would lead to increase in demand uncertainty for individual items. Hence,

for a given level of inventory, as traffic uncertainty increases we would expect more

stockouts when the demand is very high and we would expect unused inventory that

needs to be discounted to move when the demand is low.

Second, increase in traffic uncertainty would lead to greater difficulty in planning

store labor. Retailers often use sales and traffic as input to derive their staffing lev-

els. Based on the staffing levels and available labor, they schedule employees in their

stores. For a given staffing level, increase in traffic uncertainty would lead to greater

mismatches between required store labor (to manage in-store customers) and actual

store labor. When the required store labor exceeds actual store labor, the customer

service within the store would decline resulting in fewer customer purchases as well as

decline in customer’s basket value. This leads to the following hypothesis.

Hypothesis 2 Increase in traffic uncertainty is associated with lower store perfor-

mance.
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For a given level of daily traffic, we expect store performance to decline as the

intra-day traffic variability increases due to the following reason. Labor scheduling

is a complex function that requires matching the supply of available store labor with

the traffic demand. Store labor usually comprises of full-time employees, part-time

employees, and temporary workers. These employees may be available at different

times of the day for different durations as opposed to a standard eight-hour work

schedule. Furthermore, there are additional complications such as different skill sets of

the employees, minimum staffing requirements, overtime and wages, budget constraints,

vacations, leaves, etc. that need to be taken into account when scheduling employees.

Therefore, as the variability in intra-day traffic increases, it will become more difficult

for the retailer to schedule daily labor for different hours of the day resulting in over-

and under-staffing at different hours of the day. Finally, Fisher et al. (2009) find that

greater mismatches between store traffic and planned staffing levels result in lower

financial performance across stores. Therefore, we hypothesize the following:

Hypothesis 3 Increase in intra-day traffic variability is associated with lower store

performance.

Based on the above discussion, mismatches between labor and traffic seem to be

one of the mechanisms through which traffic uncertainty and variability could affect

store performance. We are interested in testing out that mechanism and see whether

it indeed holds. To this end, we propose the following hypothesis:

Hypothesis 4 Increase in traffic uncertainty and traffic variability are associated with
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higher mismatches between labor and traffic.

Control Variables

In this section, we have presented hypotheses regarding the effect of labor as well

as the effect of traffic variability and uncertainty on store performance. We have also

hypothesized a mechanism called labor mismatches through which traffic variability

and uncertainty affect store performance. We define labor mismatches as the deviation

between required staffing levels to manage in store operations based on actual traffic and

actual staffing levels. Note that the company could enforce certain labor rules regarding

the staffing levels that need to be maintained which could be different from the staffing

levels that are required to serve in store customers. In addition to the above explanatory

variables, we also control for multiple variables that may impact store performance

according to the framework presented in Figure 3.2. These include weather, seasonality,

consumer demographics, competitive conditions, economic conditions, location, store

design, and promotions.

3.5 Data Description

Our study requires store-level data which is not publicly available. Our store-level

data pertains to a large retail chain provided under conditions of nondisclosure and

anonymity. We will be referring to this retail chain as “Alpha” in this chapter.

“Alpha” is a women’s apparel retail chain. Retailer “Alpha” as of July 2008 operated

212 stores in 35 states of the United States, Puerto Rico, the United States Virgin
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Islands, and Canada. The stores are located primarily in regional shopping centers

and in freestanding street locations. The study period was from January 1, 2007 to

December 31, 2007. The retail chain used counters to record store traffic. As of 2007 the

retailer had installed traffic counters in only 60 stores located in the United States. We

obtained three types of data for retailer “Alpha”: financial data (i.e., retail transactions

in units and store sales in dollars), labor data (i.e., employee hours), and traffic data

for the year of 2007. The above data were provided to us in both hourly level as well as

daily level. We also obtained regular business hours for each store by calling the stores

and requesting this information from a sales associate.

In addition to the above data, we hand-collected data by accessing online the website

of the mall where each store is located and recording stores in the mall directory that

sold women’s apparel and targeted the same age group as retailer “Alpha”. These stores

served as a proxy of competition. Out of 60 stores, 5 stores were located in freestanding

street locations and 4 stores were located in malls that did not have a working website.

Moreover, there were stores for which we did not have any observations for the whole

year of 2007. Those store either opened during that year or they did not install traffic

counters at the beginning of the year. To overcome this problem, we focused only on

those stores for which we could obtain complete information with respect to the above

variables. After we removed outliers in our data set our sample size dropped to 41

stores.

We also collected data on the daily average temperature of each store location.

This data was obtained from the United States National Climatic Data Center in
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Asheville, NC. The center archives data from the National Oceanic and Atmospheric

Administration, a scientific agency within the United States Department of Commerce

focused on the conditions of the oceans and the atmosphere. Climate-Data Inventories

are accessible online and the website provides different search capabilities for locating

weather stations including city, zip-code, state, and county. Each weather station

has archived data on certain aspects of weather covering a specific time period. We

identified weather stations searching by zip-code. There were 5 zip-codes for which we

were not able to identify a weather station and had to use the closest station within 20

miles to that zip-code.

To control for economic conditions, we collected data on the Dow Jones Industrial

Average (DJI) using the Wharton Research Data Services (WRDS) as well as data on

the Standard & Poor Retail Index (RLX) using Thomson Datastream. We used the

Dow Jones Industrial Average to do our analysis and the Standard & Poor Retail Index

to validate the robustness of our results. For the days for which the stock market is

closed and there are no data on the DJI or RLX, we used a five-day moving average to

obtain estimates. In addition, for the RLX we used the previous quarter’s data.

We also obtained demographic data for the population in each store location using

U.S. Census data. We collected information on median household income and per

capita income. The above variables were highly correlated and hence, we only used per

capita income in our analysis.

Among other factors that affect store performance (see Figure 3.2) are time-invariant

store characteristics such as location and store design. We control for such factors using
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store fixed effects.

Store performance is also affected by store promotions. We could not obtain any

information regarding retailer “Alpha’s” promotional activities. However, we control

for major holidays in which retailers typically run promotions. We provide more in-

formation about the holidays we consider when we give a brief description of each

variable.

Although we possessed data on the hourly level we performed our core analysis on

the daily level. We used the hourly level to obtain one of the variables for the analysis

as explained later in the section. The reason why we chose to work with the daily

level was that we found that the financial and labor data for the daily and aggregated

hourly level did not always match. However, this was not the case with the traffic

information. We believe that the reason for this discrepancy is that the hourly level

data is collected on the basis of hours the store is open. Sometimes store managers will

get in early and run returns and employee sales transactions prior to the store opening

hour. This would lead to lower sales and transactions in the hourly aggregated data

when compared to the daily data.

To test our hypotheses it is necessary to estimate traffic variability and traffic uncer-

tainty. We used as measures of traffic variability and traffic uncertainty the intra-day

traffic variability within a store and the inter-day traffic variability across stores respec-

tively.

To calculate the intra-day traffic variability within a store we used the hourly level

data to obtain the coefficient of variation of traffic for each store for every day of the
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year. To calculate inter-day traffic variability across stores, we used the daily level

data to obtain the coefficient of variation of traffic for each store for each week of the

year. We then obtained the overall mean of the coefficient of variation of traffic across

weeks for each store. To test the robustness of our results, we measured inter-day traffic

variability using three alternate models. We describe these models in the sensitivity

analysis section of the chapter.

To test our fourth hypothesis we also need to estimate labor mismatches. If we

possessed information on the planned staffing levels we could obtain deviations between

the actual labor schedule and the planned labor schedule. As in many empirical studies,

our variable choices and definitions are driven by the data availability. Since we did not

have any information on the planned labor and the retailer’s labor planning is based

on traffic we calculated labor mismatches for each store as follows: We regressed labor

hours of each store for a given day on the previous week’s traffic controlling for days of

the week, months as well as holidays. We then obtained the residual of each regression

for each store and calculated the mean residual for each store. In addition, we estimated

labor mismatches using three other models that we present in the sensitivity analysis

section.

Table 3.1 summarizes the variables that we obtained and Table 3.2 summarizes

descriptive statistics for all variables. We use subscript i ranging from 1 to 41 to

denote each store and we use subscript t ranging from 1 to 365 to denote each time

period. Below we give a brief description of each variable.

TRAFFIC(TRAFFICit) is the number of customers that entered a store per day.
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The average arrivals were 729.541 and ranged from 114 to 2719.

SALES(SALESit) is the revenue in U.S. dollars at a store during the day. While

sales averaged about $9083.46 per day per store there was considerable variation both

within a store and across stores.

TRANSACTIONS(TRANSit) corresponds to the number of customer transac-

tions recorded at the checkout counters at a store. On average, a store in a given day

had 97.72 transactions.

CONV ERSION RATE(CRit) is the proportion of customers who made a trans-

action per day per store and is calculated as follows: CRit = TRANSit

TRAFFICit
. The average

conversion rate was about .14 and there was considerable variation both within a store

and across stores.

BASKET V ALUE(BVit) is the value of customers’ shopping basket and is cal-

culated as follows: BVit = SALESit

TRANSit
. Basket value averaged about $90.49 per day per

store.

LABOR HOURS(LBRHRSit) is the total number of employee hours reported per

store in a given day. On average, a total number of 56.432 employee hours were reported

in a store per day.

Because the store business hours varied across the study period (i.e., during holiday

season stores had extended business hours) we divided the daily total employees hours,

traffic, transactions, and sales with the regular business hours of each store to obtain an

average staffing level, traffic level, average transactions, and average sales that we used

for our analysis (see Section 6). We denote these variables as ADJUSTLBRHRSit,
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ADJUSTTRAFFICit, ADJUSTTRANSit, and ADJUSTSALESit.

COMPETITION(COMPi) is measured by the total number of women’s apparel

stores which target the same age group as retailer “Alpha” and are located in the same

mall/shopping center with retailer’s store i. On average, there were 32 such competitors

in each mall.

TEMPERATURE (TEMPit) corresponds to the daily temperature for each store

location. Lam et al. (2001) treated daily temperature as a categorical variable and we

adopted his approach. We used the following temperature ranges as Lam et al. (2001):

(i) below 15 ◦F, (ii) 15 − 40 ◦F, (iii) 40 − 60 ◦F, (iv) 60 − 85 ◦F, (v) above 85 ◦F.

DOW JONES INDEX (DJIt) denotes the Dow Jones Industrial Average that

varied between 12127.81 and 14086.09 during the period of the study.

PER CAPITA INCOME (PERCAPINCi) denotes the per capita income that

was on average $35946.53.

INTER − DAY TRAFFIC V ARIABILITY (TRAFFICUNCi) denotes the

inter-day traffic variability for each store that was on average .365.

INTRA − DAY TRAFFIC V ARIABILITY (TRAFFICV ARit) denotes the

intra-day traffic variability per store in a given day that was on average .643.

HOLIDAY S (δh) corresponds to major holidays such as Christmas season (Dec

23-31), Easter, Memorial Day, Independence Day, Labor Day, Martin Luther King

Day, Mother’s Day, Veterans Day, and Thanksgiving Day. We also control for 3 days

before the occurrence of these holidays since retailers typically run different types of

promotions before these holidays.
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Table 3.3 shows the correlations among longitudinal variables. Note that traffic

variability is negatively correlated with sales, basket value, and conversion rate. In

addition, labor hours are positively correlated with store performance. Table 3.7 shows

correlations among cross-sectional variables. Note that traffic variability and traffic

uncertainty are positively correlated with labor mismatches.

Tables 3.5 and 3.6 present summary statistics for store related variables for different

time slots within a day. Note that average traffic is lowest at the beginning of the

store operating hours (i.e., 10:00am-12:00pm) and reaches its peak between 4:00pm-

6:00pm on a weekday and between 2:00pm-4:00pm on a weekend. Sales and number of

transactions are on average lowest at the beginning of the day and are highest between

6:00pm-8:00pm on a weekday and between 4:00pm-6:00pm on a weekend. On a weekday

conversion rate reaches its peak at the beginning of the day (i.e., 10:00am-12:00pm)

which is also the time period that we observe the lowest number of customer arrivals

and is lowest between 4:00pm-6:00pm which is the time that we have the highest traffic.

On a weekend conversion rate reaches its peak at the end of the day (6:00pm-8:00pm)

and is lowest between 2:00pm-4:00pm which is the period with the highest traffic. On

a weekday basket value is lowest around noon time (12:00pm-2:00pm) and is highest

between 4:00pm-6:00pm whereas on a weekend basket value is lowest at the beginning of

the day (10:00am-12:00pm) and reaches its peak closer to the end of the store operating

hours (6:00pm-8:00pm). On a weekday labor hours are lowest at the opening hours of

the store which is also the time with the lowest customer traffic and are highest between

2:00pm-4:00pm. On a weekend labor hours are lowest at the opening hours of the store
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and highest between 2:00pm-4:00pm which are the periods with the lowest and highest

customer traffic respectively.

Table 3.7 summarizes descriptive statistics for store related variables across different

days of the week. Traffic, sales, and number of transactions are highest on Saturday

and lowest on Tuesday. The day with the highest intra-day traffic variability is Sunday

and the days with the lowest are Tuesday and Wednesday. Conversion rate is lowest on

Sunday, which is also the day with the highest traffic variability, and reaches its peak

on Thursday. Basket value is lowest on Monday and highest on Thursday and labor

hours are lowest on Sunday and reach their peak on Saturday the day with the highest

traffic.

Table 3.8 presents summary statistics for store related variables across months.

Traffic, sales, and number of transactions are highest in December and while traffic

and transactions are lowest in October, sales are lowest in the beginning of the year

(i.e., January). Intra-day traffic variability is lowest in December and is highest in

September. May and June are the months that we observe the highest conversion rate

and October is the month in which we observe the lowest average conversion rate.

Basket value is lowest in January and highest in October and labor hours are lowest in

February and reach their peak in December the month with the highest traffic.

We also conducted independent samples t-tests to compare the average traffic, la-

bor hours, sales, transactions, basket values, and conversion rates of the holiday season

(that corresponds to all major holidays described in this section) and non-holiday sea-

son. There is significant difference between the average traffic, labor hours, sales, trans-
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actions, basket value, and conversion rate of the holiday season and non-holiday season

as illustrated in Table 3.11. Note that the average conversion rate and basket value

are significantly higher during non-holiday season as opposed to average traffic, labor

hours, sales, and transactions which are significantly higher during holiday season.

We computed the logarithm of each variable in order to construct a multiplica-

tive model that we present in the next section. The variables obtained after taking

logarithm are denoted by lower-case letters, i.e., adjusttrafficit, adjusttransit, bvit,

adjustlbrhrsit, etc.

3.6 Econometric Model

Since we have in our possession both longitudinal variables in addition to cross-sectional

variables, we formulate a two-stage econometric model for each store performance mea-

sure following Figure 3.2 to test the proposed hypotheses. As in Lam et al. (2001)

we use a multiplicative model. The first stage of the model focuses on explaining

within-store variations using fixed effects while the second stage focuses on explaining

across-store variations. In the first stage, the dependent variables are the adjusted

number of transactions, the basket value, and the adjusted sales. The independent

variables are adjusted store traffic, adjusted labor hours, traffic variability, the Dow

Jones Industrial Average Index, dummy variables for daily temperature ranges, as well

as dummy variables for months and holidays. We also control for differences across

stores by using time-invariant store fixed effects.
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Based on Figure 3.2, we specify the first stage equations for transactions, basket

value, and sales as:

adjusttransit = Fi + α11adjusttrafficit + α12adjustlbrhrsit + α13trafficvarit

+ α14djit + α15δh + α′
16tδt + α′

17mδm + εit (3.1)

bvit = Ji + α21adjusttrafficit + α22adjustlbrhrsit + α23trafficvarit

+ α24djit + α25δh + α′
26tδt + α′

27mδm + ζit (3.2)

adjustsalesit = Hi + α31adjusttrafficit + α32adjustlbrhrsit + α33trafficvarit

+ α34djit + α35δh + α′
36tδt + α′

37mδm + φit (3.3)

Each equation consists of store fixed effects (Fi, Ji, Hi), coefficients of the indepen-

dent variables, and an error term (εit, ζit, φit). Note that α11, α12, α13, α14, α15, α21,

α22, α23, α24, α25, α31, α32, α33, α34, and α35 are scalars. Let δh be a dummy variable

used to control for holidays. We denote by α′ the transpose of a vector and by δ a

vector of dummy variables for each temperature range δt and for months δm.

In equation (3.1) we use as dependent variable the number of transactions instead of

conversion rate for the following reason: Retailer “Alpha” makes his staffing decisions

based on forecasted traffic. Hence, since conversion rate is the ratio of the number

of transactions to traffic having conversion rate as a dependent variable would create

endogeneity issues because traffic would be affecting labor hours and consequently

adjusted labor hours that is one of the explanatory variables in the right-hand side. To

avoid endogeneity of our regressors, we used the number of transactions as a dependent
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variable controlling for traffic.

In the second stage, the dependent variables are the store fixed effects (Fi, Ji,

Hi) obtained from the equations of the first-stage. The independent variables are

competition, per capita income, and the average traffic uncertainty of a store. These

are the variables that we treat as time-invariant. Hence, the second stage equations are

as follows:

Fi = β11compi + β12percapinci + β13trafficunci + ωi (3.4)

Ji = β21compi + β22percapinci + β23trafficunci + χi (3.5)

Hi = β31compi + β32percapinci + β33trafficunci + ψi (3.6)

In order to test the labor mismatch hypothesis we specify the following equation:

mismatchesi = γ11trafficunci + γ12trafficvari + ηi (3.7)

In the above equation we denote by trafficvari the mean of the longitudinal variable

trafficvarit.

3.7 Results and Discussion

Tables 3.11, 3.12, and 3.13 present the estimates of the parameters for equations (3.1)-

(3.7). Below we present the effects of labor and traffic characteristics on store perfor-

mance.
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Staffing levels. The estimates of the parameters for equations (3.1)-(3.3) are

presented in Table 3.11. Note that since we used a log-linear model the coefficient

estimates need to be interpreted as elasticities. Labor is positively correlated with

conversion rate and basket value. An increase of 1% in labor is associated with a 0.102%

increase in conversion rate and with a 0.066% increase in basket value. We also find

that labor is positively correlated with sales. An increase of 1% in labor is associated

with a 0.173% increase in sales. Note that the elasticity of labor on store performance

is less than 1 which suggests that store performance increases with an increase in store

labor at a diminishing rate. We conclude that Hypothesis 1 is supported in our data.

The significant positive effect of labor on store performance is consistent with pre-

vious literature (Fisher et al. (2006), Ton (2008)). Moreover, our results supplement

Fisher et al. (2006) findings by confirming that labor and other performance metrics

such as conversion rate and basket value in addition to sales are related through a

concave increasing function.

Traffic Characteristics. The parameter estimates for traffic variability and traffic

uncertainty on store performance are presented in Tables 3.11 and 3.12 respectively.

The corresponding parameter estimates for average traffic variability and uncertainty

on labor mismatches are presented in Table 3.13.

First and foremost, we see that stores with higher traffic uncertainty have lower

conversion rates and sales but similar basket values. Hence, higher traffic uncertainty

is associated with lower conversion rates and sales. Our results show support for Hy-

pothesis 2 for conversion rate and sales but not basket value which requires further
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examination. Second, we see that traffic variability is negatively correlated with both

conversion rate and basket value. A 1% increase in traffic variability is associated with

a 0.094% decrease in conversion rate at a store and 0.037% decrease in basket value.

Hence, our results support Hypothesis 3. Moreover, we find that both traffic uncer-

tainty and average traffic variability are positively correlated with mismatches between

required labor and actual labor supporting Hypothesis 4. Hence, our results confirm

that customer traffic uncertainty and variability can have implications in the labor

planning and scheduling process by resulting in labor mismatches. Furthermore, our

tests reveal that stores that have lower foot-traffic have higher traffic uncertainty (see

Figure 3.7) resulting in mismatches between required labor and actual labor.

Covariates. The parameter estimates of the covariates provide support for the

framework in Figure 3.2 regarding factors that affect store performance. For example,

the significant positive estimates of the Dow Jones Index support the idea that the

economy affects consumers’ ability and their confidence of making purchases. Our re-

sults show that consumer demographics and specifically the per capita income has a

significant and positive impact on store performance. We find that stores located in

neighborhoods with higher per capita income have higher conversion rates but similar

basket values. We also find that both conversion rate and basket values exhibit signif-

icant seasonality. A surprising result of our analysis is that competition as measured

here does not affect conversion rates and basket values.

Holidays have a significant effect on store performance. Our results show that

holiday season has a positive conversion effect but a negative spending effect which

73



results in a negative overall effect on sales. A possible explanation could be that price

promotions offered during the holiday season affect consumers’ probability of making

a purchase at a store. The direction of the effect of price promotions on basket value

depends on the tradeoff between the sales gain resulting from an increase in the quantity

of the goods sold and the sales loss due to the price discount. Our results indicate that

the latter effect was dominant which is consistent with some of the findings in the

marketing literature (e.g., Lam et al. (2001)).

Summary. Both the hypotheses and the results obtained from our analysis are

summarized in Table 3.14. We find full support for Hypotheses 1, 3, and 4. Regarding

Hypothesis 2 we find support for conversion rate and sales but not basket value which

merits further investigation.

3.8 Sensitivity Analysis

In this section, we perform some sensitivity analysis to test the robustness of our results.

During this analysis we use different model specifications for hypothesis testing and

alternate models to define some of our variables.

First, we checked the robustness of our results testing different traffic uncertainty

models. Recall that we used as measure of traffic uncertainty the inter-day traffic

variability across stores. For our core analysis we obtained this measure as follows:

we calculated the coefficient of variation of traffic for each store over a week and then

obtained the overall mean of the coefficient of variation across weeks for each store.
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We calculated the inter-day traffic variability using three alternate approaches. In

the first approach which we refer to as Model 1 we calculate the coefficient of variation

of traffic for each store over a month and then obtain the overall mean across months for

each store. In the second approach (Model 2) we calculate the coefficient of variation

for each store over two weeks and obtain the overall mean for each store across the two-

week periods. In the third approach (Model 3) we calculate the coefficient of variation

of traffic for each store over the whole year.

Tables 3.15 and 3.16 present the results of regression equations (3.4) and (3.7). Table

3.15 shows that the results obtained from the three alternate model specifications for

traffic uncertainty are robust. We find that traffic uncertainty is negatively correlated

with conversion rate and sales under all model specifications. Similarly, we find that

the coefficient estimates of Models 1-3 in Table 3.16 confirm support for Hypothesis 4.

Second, we checked the robustness of our results using different labor mismatch

models. In the main analysis we had used the following model to obtain mismatches:

LBRHRSit = b11TRAFFICit−1 + b12TRAFFICit−2 + b13TRAFFICit−3

+ b14TRAFFICit−4 + b15TRAFFICit−5 + b16TRAFFICit−6

+ b17TRAFFICit−7 + b18δh + b′
19dδd + b′

20mδm + ηit (3.8)

We defined as a mismatch the residuals of the above regression which we convert into

a single number for each store by obtaining the mean residual for each store in order

to enable cross-sectional analysis to test our fourth hypothesis. The advantage of this
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definition is that we do utilize longitudinal data to create the mismatch variable.

To test the robustness we tried three alternative model specifications for mismatches.

We first removed the dummy variable for holidays from the regression equation (3.8).

We refer to this specification as Model 4. Models 5 and Model 6 were constructed

sequentially from Model 4 by removing days of the week and months from the covariates

respectively. Table 3.17 present the results of regression equation (3.7) for the three

alternate model specifications for mismatches. Table 3.17 shows that our results support

fully Hypothesis 4.

Third, we also tested the robustness of the results from the first stage model in

which we removed one of the covariates at a time and rerun the model. First, we

removed from regression equations (3.1)-(3.3) the dummy variable for holidays. This

is refered to as Model 7. Second, we removed from regression equations (3.1)-(3.3) the

month covariates (i.e., Model 8). The results of the estimation of the above models are

presented in Table 3.17. We find under all alternate model specifications that traffic

variability is negatively associated with store performance which is consistent with our

previous findings.

3.9 Conclusion

Motivated by the increasing efforts that retailers make to track conversion rate and

basket value and the importance that they place on such store performance metrics

we conduct a descriptive study of these metrics for a retailer. Specifically, we consider
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the correlation between store performance and intra-day traffic variability and traffic

uncertainty. We also measure traffic-labor mismatches and study if they explain the

observed correlations in our sample.

We report the following results in this chapter. First, we present the within-store

results. We find that intra-day traffic variability is negatively correlated with both

conversion rate and basket value. A 1% increase in traffic variability is associated with

a 0.094% decrease in conversion rate in a store and 0.037% decrease in basket value.

We also find that, for a given level of traffic, both conversion rate and basket value

increase with an increase in store labor at a diminishing rate. A 1% increase in labor

is associated with a 0.102% increase in conversion rate and 0.066% increase in basket

value. In addition, we find that conversion rates are higher during holidays but basket

values are lower suggesting that price promotions offered during the holiday season

cause more customers to purchase but do not make the average customer purchase

more. Moreover, we find that both conversion rates and basket values exhibit significant

seasonality.

Next, we report the across-store results. We find that stores with higher traffic

uncertainty have lower conversion rates but similar basket values. We also find that

stores that have higher traffic variability and higher traffic uncertainty have higher

mismatches between required labor and actual labor. Furthermore, our tests reveal

that stores that have lower foot-traffic have higher traffic uncertainty resulting in mis-

matches between required labor and actual labor. A surprising result of our analysis

is that competition does not affect conversion rates and basket values. This suggests
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that consumers decision to whether or not to purchase and how much to purchase is

unaffected by the presence of other competitors once they are in the store. Finally, we

find that stores located in neighborhoods with higher per capita income have higher

conversion rates but similar basket values.

Although our analysis has provided several interesting insights related to the link-

ages between staffing levels, traffic variability, traffic uncertainty, and store performance

we need to acknowledge its limitations. One of the drivers of store performance is the

availability of inventory at a store. Our stores are under the same ownership so one

would expect that the target inventory levels should be similar in all stores. However,

there could be large variations in the actual inventory levels across stores as well as

within a store over time. Unfortunately, we could not obtain any information with

respect to the inventory levels for the retailer we studied and as a result, we could not

control for actual inventory in our analysis. Another information that we could not

obtain pertains to the type and size of assortment. Even though the stores that we

considered in our analysis are of the same type there could be large variations in the

size as well as type of assortment that they offer.

Summarizing our study has the following implications for practitioners. First, ac-

cording to our study retailers need to plan labor not only based on sales and traffic

which has been the traditional approach but also take traffic volatility into account.

Even though some part of traffic volatility is uncontrollable retailers need to handle

volatilities that are under their control either using increased labor or through more

flexible labor. Second, retailers often can induce traffic volatility through the actions
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that they take. For example, several retailers have “early bird specials” that would

cause traffic variability to increase substantially. Hence, our study shows that it is

important to coordinate actions that drive store traffic with those that help manage

the potential increase in volatility.

3.10 Supplement with Tables and Figures

FIGURE 3.3: Correlation between conversion rate and basket value for one store
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FIGURE 3.4: Correlation between average conversion rate and average basket value
across stores

FIGURE 3.5: Correlation between conversion rate and intra-day traffic variability for
one of the stores
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FIGURE 3.6: Correlation between basket value and traffic uncertainty across stores

FIGURE 3.7: Correlation between average traffic uncertainty and average store traffic
across stores
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TABLE 3.1: Description of Variables
Variable Description
TRAFFICit Number of customers who entered store i on day t
ADJUSTTRAFFICit Total number of customers who entered store i on day t

divided by the regular business hours of store i on day t
SALESit Revenue in U.S. dollars for store i on day t
ADJUSTSALESit Revenue in U.S. dollars for store i on day t

divided by the regular business hours of store i on day t
TRANSit Number of customer transactions at store i on day t
ADJUSTTRANSit Number of customer transactions at store i on day t

divided by the regular business hours of store i on day t
CRit Proportion of customers who made a transaction

at store i on day t
BVit Value in U.S. dollars of customers’ shopping basket

at store i on day t
LBRHRSit Total number of employee hours reported at store i on day t
ADJUSTLBRHRSit Total number of employee hours reported at store i on day t

divided by the regular business hours of store i on day t
COMPi Total number of stores that are in the mall where store i

is located which sell similar assortment as “Alpha”
TEMPit Daily temperature for store location i
DJIt Dow Jones Industrial Average on day t
PERCAPINCi Per capita income for store location i
TRAFFICUNCi Average inter-day traffic variability for store location i
TRAFFICV ARit Intra-day traffic variability for store location i on day t
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TABLE 3.2: Summary Statistics
Variable Mean Std.Dev. Min. Max.
LONGITUDINAL VAR
TRAFFIC 729.541 379.506 114 2719
TRAFFICV AR .643 .161 .269 1.065
SALES 9083.464 5618.848 140.21 56666.14
TRANS 97.716 47.314 17 371
CR .139 .035 .020 .458
BV 90.494 24.256 2.780 365.83
LBRHRS 56.432 19.508 16.63 140.76
OPERATING HRS 10.500 1.400 6 14
TEMP 64.171 15.299 18 93
DJI 13177.24 507.689 12127.81 14086.09
CROSS − SECTIONAL VAR
COMP 31.523 11.994 15 71
PERCAPINC 35946.530 19417.730 12763 92940
TRAFFICUNC .365 .062 .216 .524
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TABLE 3.4: Correlations among cross-sectional variables
Variable Name 1 2 3 4 5
1. MISMATCH 1.00
2. TRAFFICV AR 0.04* 1.00
3. TRAFFICUNC 0.15* 0.15* 1.00
4. COMP -0.12* -0.42* -0.11* 1.00
5. PERCAPINC -0.14* -0.35* -0.07* 0.29* 1.00

Note:* denotes statistical significance at the 5% level and higher.
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TABLE 3.5: Summary Statistics for Store Related Variables for Different Time Slots
Within a Weekday

Time Slots Variable Mean Std.Dev. Min. Max.
TRAFFIC 29.479 21.831 1 235
SALES 425.580 441.719 19 3772.670

10 : 00AM − 12 : 00PM TRANS 4.767 3.658 1 36
CR .164 .099 .030 1
BV 89.671 55.239 5.825 317
LBRHRS 3.401 1.491 2 11
TRAFFIC 56.441 30.596 4 237
SALES 747.063 594.365 19 3812.190

12 : 00PM − 2 : 00PM TRANS 8.332 4.776 1 40
CR .156 .071 .030 .705
BV 89.696 48.564 5.7 316.426
LBRHRS 4.226 1.709 2 11
TRAFFIC 65.174 35.724 1 238
SALES 840.986 634.361 19.8 3796.250

2 : 00PM − 4 : 00PM TRANS 9.031 5.027 1 40
CR .148 .066 .030 1
BV 93.224 48.243 5.72 316.150
LBRHRS 5.018 1.899 2 11
TRAFFIC 66.009 35.875 1 238
SALES 849.663 645.999 19.980 3812.940

4 : 00PM − 6 : 00PM TRANS 9.029 5.134 1 40
CR .145 .067 .030 1
BV 93.909 47.776 5.802 317
LBRHRS 4.888 1.896 2 11
TRAFFIC 65.997 35.595 1 238
SALES 857.168 633.986 19 3798.600

6 : 00PM − 8 : 00PM TRANS 9.184 5.057 1 35
CR .150 .077 .030 1
BV 93.312 46.710 5.8 316.863
LBRHRS 4.465 1.689 2 11
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TABLE 3.6: Summary Statistics for Store Related Variables for Different Time Slots
Within a Weekend

Time Slots Variable Mean Std.Dev. Min. Max.
TRAFFIC 38.815 30.3680 1 205
SALES 572.516 598.870 19 3809.610

10 : 00AM − 12 : 00PM TRANS 6.427 4.970 1 38
CR .140 .091 .030 1
BV 86.539 48.532 5.691 315.990
LBRHRS 3.388 1.471 2 11
TRAFFIC 93.579 42.027 4 237
SALES 999.621 723.544 21 3813.250

12 : 00PM − 2 : 00PM TRANS 11.092 5.963 1 46
CR .121 .049 .030 .464
BV 88.787 42.111 5.871 314.618
LBRHRS 4.764 1.880 2 11
TRAFFIC 131.650 45.771 8 238
SALES 1335.082 778.738 19.980 3812.120

2 : 00PM − 4 : 00PM TRANS 14.853 6.408 2 46
CR .115 .039 .030 .342
BV 89.665 37.591 5.870 314.128
LBRHRS 5.819 1.951 2 11
TRAFFIC 122.563 48.438 1 238
SALES 1381.591 784.754 29 3813.500

4 : 00PM − 6 : 00PM TRANS 14.959 6.556 1 42
CR .128 .051 .030 .833
BV 92.301 37.228 6.117 309
LBRHRS 5.602 1.863 2 11
TRAFFIC 79.831 57.536 1 238
SALES 1097.237 768.951 19.990 3801.210

6 : 00PM − 8 : 00PM TRANS 11.310 6.649 1 50
CR .190 .176 .030 1
BV 99.266 46.486 5.792 316
LBRHRS 4.967 1.776 2 11
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TABLE 3.7: Summary Statistics for Store Related Variables for Different Days
(Monday-Sunday)

Day Variable Mean Std.Dev. Min. Max.
TRAFFIC 599.476 306.532 209 2464
TRAFFICV AR .627 .142 .269 1.064
SALES 7065.308 4382.507 716.630 33281.200

MONDAY TRANS 82.291 39.169 26 313
CR .143 .035 .025 .338
BV 83.740 24.379 9.146 236.926
LBRHRS 55.599 18.600 22.600 131.05
TRAFFIC 542.024 239.48 187 2264
TRAFFICV AR .606 .138 .269 .898
SALES 6919.516 4002.317 269.7 28311.43

TUESDAY TRANS 76.975 33.134 28 262
CR .146 .035 .029 .458
BV 88.021 26.792 2.780 347.547
LBRHRS 61.773 19.899 26.69 136.91
TRAFFIC 591.691 285.951 214 2462
TRAFFICV AR .606 .135 .272 1.064
SALES 7743.733 4231.748 140.21 35399.85

WEDNESDAY TRANS 84.030 37.829 29 299
CR .146 .035 .027 .344
BV 91.309 26.024 3.260 365.83
LBRHRS 54.107 18.536 27.02 135.59
TRAFFIC 630.881 296.698 217 2378
TRAFFICV AR .609 .135 .270 1.044
SALES 8984.044 5526.249 935.64 48252.4

THURSDAY TRANS 92.312 41.750 29 281
CR .150 .037 .020 .392
BV 94.550 25.493 15.411 236.585
LBRHRS 54.232 18.900 26.65 140.76
TRAFFIC 815.497 341.595 228 2467
TRAFFICV AR .607 .134 .269 .900
SALES 10922.740 5621.024 1876.290 46115.310

FRIDAY TRANS 114.969 45.029 32 312
CR .144 .031 .033 .313
BV 93.045 21.623 22.562 193.533
LBRHRS 59.883 19.311 27.310 129.330
TRAFFIC 1175.169 418.113 323 2605
TRAFFICV AR .674 .135 .278 1.037
SALES 13781.840 6718.914 2691.190 56666.140

SATURDAY TRANS 144.261 52.403 40 371
CR .125 .028 .046 .322
BV 93.611 20.171 29.199 270.075
LBRHRS 62.769 19.232 27.260 138.970
TRAFFIC 730.317 306.934 114 2719
TRAFFICV AR .778 .222 .274 1.065
SALES 7814.846 4530.942 574.220 36815.990

SUNDAY TRANS 85.832 37.736 17 324
CR .119 .028 .040 .291
BV 88.757 22.853 17.944 190.576
LBRHRS 45.854 16.699 16.630 127.810
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TABLE 3.8: Summary Statistics for Store Related Variables for Different Months
(January-June)

Months Variable Mean Std.Dev. Min. Max.
TRAFFIC 666.119 323.674 114 2355
TRAFFICV AR .649 .161 .273 1.064
SALES 6950.871 4477.252 140.210 33281.200

JANUARY TRANS 89.629 42.895 17 313
CR .140 .039 .025 .3
BV 76.164 25.113 2.780 186.375
LBRHRS 53.923 18.290 17.210 131.610
TRAFFIC 704.794 375.571 197 2544
TRAFFICV AR .642 .160 .2690 1.061
SALES 8675.499 5217.262 1230.470 39091.450

FEBRUARY TRANS 91.956 43.898 26 324
CR .138 .038 .020 .3
BV 91.726 23.786 37.342 347.547
LBRHRS 51.134 16.533 18.700 111.230
TRAFFIC 733.200 369.313 219 2338
TRAFFICV AR .646 .162 .279 1.061
SALES 9489.285 6073.535 716.630 44070.110

MARCH TRANS 97.213 46.858 26 289
CR .139 .042 .027 .360
BV 93.821 24.430 18.375 190.779
LBRHRS 55.004 19.534 18.750 129.470
TRAFFIC 711.324 359.870 202 2394
TRAFFICV AR .646 .161 .269 1.060
SALES 9153.486 5566.904 1639.340 35412.020

APRIL TRANS 96.983 46.553 23 297
CR .141 .038 .059 .458
BV 91.212 21.699 29.628 250.492
LBRHRS 56.042 19.322 18.710 121.300
TRAFFIC 732.220 365.294 233 2605
TRAFFICV AR .637 .158 .272 1.065
SALES 9802.685 5868.811 1582.080 49676.780

MAY TRANS 104.065 48.214 31 371
CR .146 .032 .076 .344
BV 91.323 20.724 36.258 177.238
LBRHRS 56.804 19.765 23.260 134.280
TRAFFIC 693.245 331.949 183 2413
TRAFFICV AR .638 .162 .271 1.062
SALES 8593.011 5207.741 870.580 38705.410

JUNE TRANS 99.191 46.781 23 291
CR .146 .031 .062 .305
BV 84.082 20.450 15.010 228.025
LBRHRS 56.954 18.582 18.240 136.910
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TABLE 3.9: Summary Statistics for Store Related Variables for Different Months (July-
December)

Months Variable Mean Std.Dev. Min. Max.
TRAFFIC 703.181 314.899 190 2199
TRAFFICV AR .651 .161 .269 1.063
SALES 7967.695 4303.862 907.760 35416.820

JULY TRANS 92.816 40.685 24 266
CR .135 .030 .040 .260
BV 84.426 21.135 14.641 190.269
LBRHRS 53.828 17.973 18.440 126.940
TRAFFIC 701.352 323.768 209 2273
TRAFFICV AR .643 .156 .270 1.051
SALES 8858.745 5464.121 574.220 48252.400

AUGUST TRANS 92.836 42.077 30 275
CR .135 .031 .051 .295
BV 92.122 24.565 17.944 200.217
LBRHRS 56.546 20.003 18.720 140.760
TRAFFIC 692.778 367.163 212 2336
TRAFFICV AR .657 .166 .276 1.065
SALES 8957.168 5632.290 996.710 56666.140

SEPTEMBER TRANS 91.849 43.513 27 337
CR .139 .035 .054 .288
BV 94.904 25.481 26.229 365.830
LBRHRS 56.001 19.702 18.560 136.610
TRAFFIC 648.295 348.222 215 2401
TRAFFICV AR .640 .161 .280 1.065
SALES 8560.075 5253.109 1636.450 38890.890

OCTOBER TRANS 83.576 37.699 27 291
CR .13680 .033 .064 .273
BV 99.010 26.682 41.875 270.075
LBRHRS 56.726 19.270 16.630 132.220
TRAFFIC 727.054 396.239 217 2449
TRAFFICV AR .645 .164 .273 1.061
SALES 9371.947 5743.932 1302.240 39794.560

NOV EMBER TRANS 93.044 44.960 26 312
CR .134 .031 .045 .269
BV 97.513 25.144 27.442 304.886
LBRHRS 60.665 21.628 18.540 138.970
TRAFFIC 1065.840 501.390 204 2719
TRAFFICV AR .616 .158 .270 1.063
SALES 12901.610 6481.820 1783.480 41693.870

DECEMBER TRANS 141.259 57.844 31 299
CR .139 .032 .072 .279
BV 90.960 22.306 15.411 165.988
LBRHRS 63.728 20.246 21.440 131.050
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TABLE 3.11: Regression Results of First Stage Equations
Transactions Basket Value Sales

adjusttraffic .753*** .046*** .804***
(.004) (.005) (.006)

adjustlbrhrs .102*** .066*** .173***
(.006) (.008) (.010)

trafficvar -.094*** -.037*** -.122***
(.008) (.011) (.014)

dji .522*** .486*** .961***
(.107) (.130) (.173)

40 − 60 ◦F .003 -.005 .004
(.006) (.008) (.010)

60 − 85 ◦F .015* -.010 .014
(.007) (.009) (.012)

> 85 ◦F .004 -.021* -.000
(.010) (.012) (.017)

Jan -.082*** -.092*** -.172***
(.011) (.013) (.017)

Feb -.073*** .038*** -.028**
(.010) (.012) (.017)

Mar -.053*** .073*** .018
(.012) (.015) (.020)

Apr -.060*** .043*** -.014
(.010) (.012) (.016)

May -.042*** .031*** -.006
(.008) (.010) (.013)

June -.047*** -.062*** -.106***
(.009) (.010) (.014)

July -.124*** -.046*** -.168***
(.009) (.010) (.014)

Aug -.116*** .032*** -.084***
(.009) (.011) (.014)

Sep -.106*** .056*** -.044***
(.009) (.010) (.014)

Oct -.158*** .067*** -.089***
(.009) (.011) (.015)

Nov -.126*** .095*** -.027**
(.008) (.009) (.013)

Holidays .025*** -.082*** -.052***
(.005) (.006) (.008)

Constant -6.220*** -.577 -6.374***
(1.021) (1.239) (1.652)

Wald χ2 88560.01*** 8156.73*** 45121.47***

Note:*,**,*** denote statistical significance at the 10%, 5% and 1% levels, respectively. Fixed store
effects are included in the regressions but not shown in the table. The numbers below the parameter
estimates are the respective standard errors. Wald test statistic compares the fit of the model
including explanatory variables to fit of model with only the intercept. GLS estimators are used.
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TABLE 3.12: Regression Results of Second Stage Equation
Transactions Basket Value Sales

comp .010 .071 .083
(.052) (.070) (.095)

percapinc .081** -.007 .076
(.038) (.050) (.067)

trafficunc -.342*** -.119 -.459**
(.095) (.107) (.178)

Constant -7.313*** -.746** -7.666***
(.372) (.415) (.564)

Note:*,**,*** denote statistical significance at the 10%, 5% and 1% levels, respectively. The numbers
below the parameter estimates are the respective robust standard errors.

TABLE 3.13: Regression Results for the Labor Mismatches Equation
Labor Mismatches Equation

trafficunc .014***
(.005)

trafficvar .014**
(.005)

Constant 3.804***
(.004)

Note:*,**,*** denote statistical significance at the 10%, 5% and 1% levels, respectively. The numbers
below the parameter estimates are the respective robust standard errors.

TABLE 3.14: Summary of Hypotheses and Results
Indep. Variable Hypothesis Dep. Variable Anticipated Sign Results
adjustlbrhrs H1 adjusttrans + Supported
adjustlbrhrs H1 bv + Supported
adjustlbrhrs H1 adjustsales + Supported
trafficunc H2 F - Supported
trafficunc H2 J - Not Supported
trafficunc H2 H - Supported
trafficvar H3 adjusttrans - Supported
trafficvar H3 bv - Supported
trafficvar H3 adjustsales - Supported

trafficvar H4 mismatch + Supported
trafficunc H4 mismatch + Supported
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TABLE 3.16: Sensitivity Analysis for H4 for different Traffic Uncertainty Models
Model 1 Model 2 Model 3

trafficunc .017*** .014*** .027***
(.005) (.005) (.007)

trafficvar .013** .013** .010**
(.005) (.005) (.005)

Constant 3.807*** 3.805*** 3.812***
(.004) (.004) (.005)

Note:*,**,*** denote statistical significance at the 10%, 5% and 1% levels, respectively. The numbers
below the parameter estimates are the respective robust standard errors. Traffic uncertainty is
computed as follows: (i) In Model 1 we calculate the coefficient of variation of traffic for each store
over a month’s period and then take the average. (ii) In Model 2 we calculate the coefficient of
variation of traffic for each store over a two week’s period and then take the average. (iii) In Model 3
we calculate the coefficient of variation of traffic for each store over the whole year.

TABLE 3.17: Sensitivity Analysis for H4 for different Mismatch Models
Model 4 Model 5 Model 6

trafficunc .014*** .019*** .021***
(.005) (.006) (.007)

trafficvar .013** .0203*** .021**
(.005) (.006) (.008)

Constant 3.804*** 3.809*** 3.805***
(.004) (.005) (.007)

Note:*,**,*** denote statistical significance at the 10%, 5% and 1% levels, respectively. The numbers
below the parameter estimates are the respective robust standard errors. Mismatches are computed
as the residuals of the following regressions: In Model 4 we regressed labor hours of a given day and
a given store on the previous week’s traffic controlling for days of the week and months. In Model 5
we regressed labor hours of a given day and a given store on the previous week’s traffic controlling
for days of the week. In Model 6 we regressed labor hours of a given day and a given store on the
previous week’s traffic.
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TABLE 3.18: Sensitivity Analysis for H1 and H2
Transactions Basket Value Sales

Model 7 Model 8 Model 7 Model 8 Model 7 Model 8
adjusttraffic .757*** .771*** .035*** .043*** .796*** .818***

(.004) (.004) (.005) (.005) (.006) (.006)
adjustlbrhrs .101*** .102*** .068*** .075*** .175*** .184***

(.006) (.006) (.008) (.008) (.010) (.010)
trafficvar -.089*** -.120*** -.051*** -.027** -.131*** -.143***

(.008) (.008) (.011) (.011) (.014) (.014)
dji .476*** .238*** .658*** .430*** .512*** .623***

(.107) (.049) (.131) (.058) (.162) (.077)
40 − 60 ◦F -.005 .021** .020 .018 .000 .030*

(.011) (.010) (.012) (.011) (.017) (.015)
60 − 85 ◦F -.002*** .017** .017* .025*** .006 .037***

( .008) (.007) (.010) (.009) (.013) (.012)
> 85 ◦F .009 .020* .011 .027*** .016 .042***

(.007) (.007) (.008) (.008) (.011) (.010)
Jan -.086*** -.077*** -.164***

(.011) (.013) (.017)
Feb -.080*** .062*** -.0137

(.010) (.012) (.016)
Mar -.062*** .103*** .036*

(.012) (.015) .020
Apr -.066*** .063*** -.002

(.010) (.012) (.016)
May -.041*** .027*** -.009

(.008) (.010) (.013)
June -.052*** -.049*** -.098***

(.009) (.010) (.014)
July -.125*** -.044*** -.167***

(.009) (.011) (.0147)
Aug -.121*** .045*** -.075**

(.009) (.011) (.014)
Sep -.108*** .062*** -.041***

(.009) (.010) (.014)
Oct -.160*** .0744*** -.085***

(.009) (.011) (.015)
Nov -.126*** .094*** -.027**

(.008) (.010) (.013)
Holidays .027*** -.082*** -.049***

(.005) (.006) (.008)
Constant -5.783*** -3.689*** -2.219* -2.219* -7.288*** -3.323***

(1.021) (.472) (.5594) (1.249) (1.650) (.740)
Wald χ2 87847.69*** 79732.15*** 7689.97*** 5807.91*** 44765.86*** 40508.45***

Note:*,**,*** denote statistical significance at the 10%, 5% and 1% levels, respectively. Fixed store
effects are included in the regressions but not shown in the table. The numbers below the parameter
estimates are the respective standard errors. Wald test statistic compares the fit of the model
including explanatory variables to fit of model with only the intercept. GLS estimators are used. In
Model 7 we have removed holidays from the covariates and in Model 8 we have removed months.

96



CHAPTER 4

Temporal Management of Service

Investments under Demand

Uncertainty and Competition

4.1 Introduction

In many settings, retailer investments in customer experience activities are important

in influencing demand for a product. For example, a retailer can stimulate demand

through various ways such as provide training to its sales personnel to promote a given

product, create special areas to show case a product or even invest in technology that

offers a unique experience for a product. In addition to price, all the above activities

which we will be referring to as “service” can affect the purchasing decision of customers.

The planning of such costly activities can be very crucial especially when a new product

is being launched in a market. In the case of new product introduction, the retailer



needs not only to decide the optimal price and service investments for the product but

also when to invest in such experience activities. Given that market demand could

be highly uncertain, a retailer may choose to wait until he receives some information

regarding the market state before investing in such activities or he may want to make

all these investments upfront to take advantage of possible reduced investment costs.

A retailer typically has three alternatives regarding when to make such investments.

(i) A retailer can make investments in experience activities in advance of the sell-

ing season without knowing the market state to take advantage of possible reduced

investment costs.

(ii) A retailer can make investments in experience activities close to the selling

season but typically incur a higher investment cost.

(iii) A retailer may follow a hybrid strategy by making some investments before and

some after the market state realizes.

In this chapter we focus on understanding the temporal management of service

investments under demand uncertainty and competition. We develop a two-stage model

in order to examine two alternatives that retailers typically have in terms of timing

their investments under both monopoly and symmetric duopoly settings. The first

alternative is to invest in service in advance of the selling season without knowing the

market state (i.e., invest in the first stage) and the second alternative is to invest in

service after the market state realizes (i.e., invest in the second stage). In both cases a

retailer decides on pricing after observing the demand (i.e., in the second stage). For

the monopoly we further examine a hybrid strategy in which a retailer can invest both
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before and after the demand state is known. Typically, investing after the demand state

is known is associated with higher investment costs. We analyze these settings under

both equal and different investment costs across stages. In addition, we investigate the

deterministic demand case for the symmetric duopoly and contrast our results with

the stochastic demand case. In the case of a deterministic demand these alternatives

translate to making sequential decisions (i.e., first service and then price) as opposed

to simultaneous decisions (both service and price).

Our major findings are as follows. For a monopolist who faces stochastic demand

and incurs different investment costs across stages we show that a hybrid strategy

always dominates a strategy in which a retailer invests only before or only after the

market state is known. In addition, we show that a monopolist would prefer to delay

investments until demand realizes only when the market variability is high and the

differential cost of investments across stages is low. In all other regimes a monopolist

would prefer to invest before the demand realizes. This result is in contrast to the

case of equal investment costs in which a monopolist would always defer investments

in service after the demand realizes.

For symmetric duopolists who face deterministic demand and incur same invest-

ments costs across stages we show that the dominant strategy is always to invest in

service in the first stage. We find that this is not always the case when the duopolists

incur higher investment costs in the second stage. Interestingly, when the intensity of

service competition exceeds a given threshold, a symmetric duopolist could be better

off to invest in the second stage as the differential cost of investment in the two stages
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increases. We also find computationally that the equilibrium strategies for a symmetric

retailer can shift in a non-monotonic fashion as the differential cost of investment in

the two stages increases. In particular, a retailer could invest in the first stage for high

and low differential costs and in the second stage for intermediate values of differential

costs.

For symmetric duopolists who face stochastic demand and incur the same costs

across stages the dominant strategy is to invest in service in the first stage in all regimes

except for one characterized by high demand variability, low intensity of competition

in service, and high investment cost. This result shows that the competitive dynamics

could diminish significantly the value of delaying investments after demand realizes. We

further characterize some of the investment strategies when a duopolist incurs higher

investment costs in the second stage. Interestingly, we find that in the case of high

intensity of service competition an increase in demand variability could make investing

in the first stage more preferable than investing in the second stage provided that the

differential costs of investments across stages exceeds a given threshold.

The remaining of the chapter proceeds as follows. In Section 4.2, we briefly discuss

related literature. In Section 4.3, we present and analyze the monopoly. In Sections

4.4 and 4.5 we discuss the symmetric duopoly under deterministic and stochastic de-

mands and characterize the dominant strategies. Finally in Section 4.6 we conclude

this chapter.
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4.2 Literature Review

Our research focuses on temporal management of demand-enhancing activities. The

operations literature has extensively studied timing issues regarding capacity and in-

ventory/production (see Van Mieghem and Dada (1999) for representative work) but

the timing of investments in service activities that stimulate demand has escaped its

attention. Regarding service provision, most papers in the literature have focused on

designing contractual mechanisms to improve channel coordination. Winter (1993)

studies a manufacturer with competing retailers who specify both price and service.

The author finds that vertical restraints could achieve the first-best solution. Desiraju

and Moorthy (1997) find that when the retailer has private demand information, the

manufacturer could achieve higher profit by enforcing retail price and service perfor-

mance requirements. Perry and Porter (1990) show that resale price maintenance and

franchise fees could correct the sub-optimal level of retail service although resale price

maintenance alone is not enough. Iyer (1998) studies how a manufacturer should re-

spond to the consumer’s location difference and the difference in the willingness to pay

for the retail service when two retailers specify both the retail price and the quality

of service for the manufacturer’s product. Tsay and Agrawal (2000) study a setting

in which a single manufacturer sells its product through two different retailers. They

find that the retailers are better off when service plays a role in their competition than

when they compete only based on price. Our demand model is a modification of Tsay

and Agrawal (2000) for a stochastic demand environment but our focus is quite differ-
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ent. First, we are interested in understanding under what circumstances a monopolist

should postpone or not the service investments until demand realizes. Second, we aim

to understand the equilibrium investment strategies in a symmetric duopoly where each

retailer can invest in service either before or after the demand realizes. Since there is

no study in the literature studying the timing of service investments in an uncertain

demand environment under competition, we aim to fill this gap with this study.

4.3 Model-Monopoly Benchmark

In the following, we first introduce the demand model, the sequence of events, and the

firm’s decisions.

We consider one retailer in the market introducing a new product. The retailer

experiences a stochastic linear demand that is decreasing in retailer’s price (pk) and

increasing in the retailer’s service (sk). Service captures all the activities mentioned in

the introduction that could stimulate demand.

Dk(pk, sk) = αk − bppk + bssk (4.1)

where αk > 0, bp > 0 and bs ≥ 0.

αk denotes the market base for the retailer at demand state k, k = {H,L} taking

values αL = m− u and αH = m+ u with equal probabilities. Hence, P (α = m+ u) =

P (α = m − u) = 1
2

where m is a measure of the mean demand and u is a measure

of demand variability. We restrict our analysis to 0 < u < m. We refer to αL as
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the “low” market and similarly αH as the “high” market. Mathematically, αk is the

demand faced by the retailer at demand state k when the retailer prices at 0 and offers

no accompanying service. bp and bs measure the responsiveness of the retailer’s market

demand to his price and service respectively.

The retailer’s cost of providing service level sk is η
s2
k

2
, where the quadratic form

suggests diminishing returns of such expenditures and η (a strictly positive term which

we refer to as “investment cost factor”) denotes the effectiveness of the retailer in

operational deployment of service. The above demand model is a modification of Tsay

and Agrawal’s model (cf. Tsay and Agrawal (2000)) for a monopoly setting with

stochastic demand.

The retailer needs to decide the timing of service investments. We examine three

alternatives regarding when to make such investments.

(i) A retailer can make investments in experience activities in advance of the sell-

ing season without knowing the market state to take advantage of possible reduced

investment costs.

(ii) A retailer can make investments in experience activities close to the selling

season but typically incur a higher investment cost.

(iii) A retailer may follow a hybrid strategy by making some investments before and

some after the market state realizes.

We denote these three scenarios as F (investment only in first stage), S (investment

only in second stage) and B (investment in both stages). In particular, in Stage 1 the

retailer knows the distribution of demand and in Stage 2 he knows the realization of
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the demand. Stage 2 corresponds roughly to the beginning of the sales season and at

this stage the retailer decides on pricing. At this time, the firm has observed interest in

and demand for samples and most of the market uncertainty has been resolved. In the

following subsection, we present each scenario and assume that making an investment

at the second stage (i.e, after the demand is realized) is more expensive than at the first

stage (η2 > η1). A reason behind this is that the retailer may have to incur expedited

costs after the demand has realized in order to make the service investments.

4.3.1 Scenario F (Investment Only in First Stage)

In this scenario, the retailer decides on price after the demand has realized and on

service before the demand realization. The demand at state k will be as follows:

Dk(pk, s) = αk − bppk + bss. We solve this two-stage problem by backwards induc-

tion.

Second stage solution

In the second stage the demand is revealed to the retailer. The retailer decides on the

optimal price to maximize his profit given in (4.2).

πk(pk, s) = pk(αk − bppk + bss), k = {H,L} (4.2)
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The optimal price can be obtained by the first-order conditions since the profit function

given the service level is concave in price (i.e., ∂2πk

∂p2
k

= −2bp < 0).

p∗i (s) =
αk + bss

2bp
, k = {H,L}

First stage solution

In the first stage the retailer maximizes his expected profit (π̂) provided in (4.3) by

choosing the service level s.

max
s
π̂(s) =

1

2
(pLDL(s) − η1

s2

2
) +

1

2
(pHDH(s) − η1

s2

2
) (4.3)

The profit function is strictly concave in the service level s if 2η1bp − b2s > 0. The

optimal service level is found by applying the first order conditions and substituting

the optimal service in the price, demand, and profit expressions, thus obtaining the

following:

pF
L =

2αL(2η1bp − b2s) + b2s(αH + αL)

4bp(2η1bp − b2s)

pF
H =

2αH(2η1bp − b2s) + b2s(αH + αL)

4bp(2η1bp − b2s)

sF =
bs(αH + αL)

2(2η1bp − b2s)

DF
L =

b2s(αH − αL) + 4bpαLη1

2(4η1bp − 2b2s)

DF
H =

4bpαHη1 − b2s(αH − αL)

2(4η1bp − 2b2s)

π̂F =
4bp(α

2
H + α2

L)η1 − b2s(αH − αL)2

16bp(2η1bp − b2s)
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4.3.2 Scenario S (Investment Only in Second Stage)

In this scenario, the retailer decides on the service level and price simultaneously after

the demand has realized, which reduces the problem to a single stage. The retailer

solves

max
pk,sk

πk(pksk) = pkDk(pk, sk) − η2
s2

k

2
(4.4)

The first-order conditions are:

∂πk

∂pk
= αk − 2bppk + bssk = 0 (4.5)

∂πk

∂sk

= −η2sk + bspk = 0 (4.6)

The Hessian is ⎛
⎜⎜⎝

∂2πk

∂p2
k

∂2πk

∂pksk

∂2πk

∂skpk

∂2πk

∂s2
k

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−2bp bs

bs −η2

⎞
⎟⎟⎠

Second order conditions for profit maximization by the retailer will be satisfied if 2η2bp−

b2s > 0. The optimal price and service are obtained solving a system of equations from

the first order conditions. Substituting the optimal price and service expressions on
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the demand function and profit we obtain the following expressions.

pS
k =

αkη2

2η2bp − b2s
, k = {H,L}

sS
k =

αkbs
2η2bp − b2s

, k = {H,L}

DS
k =

αkη2bp
2η2bp − b2s

, k = {H,L}

πS
k =

α2
kη2

2(2η2bp − b2s)
, k = {H,L}

π̂S =
1

2
πS

L +
1

2
πS

H

4.3.3 Scenario B (Investment in Both Stages)

In this scenario, we assume that the retailer can invest s1 in the first stage and s2 in

the second stage. We further make the assumption that the two service levels have an

additive impact on demand i.e., Dk(pk, s1, s2k) = αk − bppk + bs(s1 + s2k).

Second stage solution

In the second stage, the retailer decides on the service level s2 and price after the

demand has realized. The retailer solves the following problem

max
pk,s2k

πk(pk, s1, s2k) = pkDk(pk, s1, s2k) − η2
s2
2k

2
(4.7)
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Second order conditions for profit maximization by the retailer are satisfied if 2bpη2 −

b2s > 0. From first order conditions we obtain:

pk(s1) =
(αk + bss1)η2

2bpη2 − b2s
, k = {H,L}

s2k(s1) =
(αk + bss1)bs
2bpη2 − b2s

, k = {H,L}

First stage solution

In the first stage, the retailer maximizes his expected profit (π̂) by choosing the service

level s1.

max
s1

π̂(s1) =
1

2
(pLDL(s1) − η1

s2
1

2
− η2

s2
2L

2
) +

1

2
(pHDH(s1) − η1

s2
1

2
− η2

s2
2H

2
) (4.8)

The profit function is strictly concave in the service level s1 if 2bpη1η2− b2s(η1 +η2) > 0.

The optimal service (s1) is obtained from first order conditions. From substitution we
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obtain the following expressions:

pB
L =

η2(2αL(2bpη1η2 − b2s(η1 + η2)) + b2sη2(αH + αL))

2(2bpη1η2 − b2s(η1 + η2))(2bpη2 − b2s)

pB
H =

η2(2αH(2bpη1η2 − b2s(η1 + η2)) + b2sη2(αH + αL))

2(2bpη1η2 − b2s(η1 + η2))(2bpη2 − b2s)

sB
1 =

bs(αH + αL)η2

2bpη1η2 − b2s(η1 + η2)

sB
2L =

bs(2αL(2bpη1η2 − b2s(η1 + η2)) + η2b
2
s(αH + αL))

2(2bpη1η2 − b2s(η1 + η2))(2bpη2 − b2s)

sB
2H =

bs(2αH(2bpη1η2 − b2s(η1 + η2)) + η2b
2
s(αH + αL))

2(2bpη1η2 − b2s(η1 + η2))(2bpη2 − b2s)

DB
L =

bpη2(4bpαLη1η2 + b2s((αH − αL)η2 − αLη1))

2(2bpη1η2 − b2s(η1 + η2))(2bpη2 − b2s)

DB
H =

bpη2(4bpαHη1η2 − b2s(αHη1 + (αH − αL)η2))

2(2bpη1η2 − b2s(η1 + η2))(2bpη2 − b2s)

π̂B =
η2(4bp(α

2
H + α2

L)η1η2 − b2s(2(α2
H + α2

L)η1 + (αH − αL)2η2))

8(2bpη1η2 − b2s(η1 + η2))(2bpη2 − b2s)

4.3.4 Comparison of the scenarios in Monopoly

In this subsection, we compare the three scenarios in monopoly. The following propo-

sition summarizes the effect of timing of service investments on the retailer’s price,

service level, demand, and profit.

Proposition 8 For a monopolist we have the following ordering of prices, service lev-

els, demands, and profits.

(1) p̂B > p̂F > p̂S

(2) sF > ŝS

(3) sB
1 > sF

(4) sB
2 > ŝS
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(5) D̂B > D̂F > D̂S

(6) π̂B > π̂F

(7) π̂B > π̂S

(8a) π̂F ≥ π̂S if η2 ≥ η̃2

(8b) π̂F ≥ π̂S if η2 < η̃2 and u ≤ û and π̂F < π̂S if η2 < η̃2 and u > û

where η̃2 = 4bpη1−b2s
2bp

and û = m
√

2bp(η2−η1)

2bpη1−b2s

Proposition 8 shows that a monopolist always benefits from having the opportunity

to make service investments in both stages. Interestingly, the service level that a

monopolist invests in the first stage in scenario B is higher than the corresponding

service level in scenario F. This result is driven by the assumption that the service levels

in both stages have an additive impact on demand, which creates demand enhancement

and leads to service levels s1 and s2 being complements as opposed to substitutes. If this

opportunity of investing in both stages does not exist and the monopolist has to decide

between investing at the first stage only or at the second stage only, then the scenario

that dominates depends on the relative magnitude of the investment cost factors in the

two stages as well as the demand variability. If the investment cost at the second stage

is high enough (η2 > η̃2), then scenario F dominates scenario S. Even if the investment

cost at the second stage is low enough (η2 < η̃2), scenario F can still dominate scenario

S provided that the demand variability is low (u < û). In the case of high demand

variability and low investment cost at the second stage scenario S dominates scenario

F. Note that when the investment costs in the two stages are the same (η1 = η2), then

a monopolist is always better off to postpone investments in service to the second stage
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(i.e., scenario S dominates scenario F). Figure 4.1 is a pictorial representation of the

F S

F F

L H

L

H
2

u

FIGURE 4.1: Scenario Dominance for a Monopolist Under Stochastic Demand and
Different Investment Costs

regimes under which a monopolist would prefer to invest before or after the demand

realization. Note that low investment cost in the second stage corresponds to η2 < η̃2

and low demand variability corresponds to u < û.

Lemma 1 The impact of different parameters on thresholds η̃2 and û is as follows:

i) ∂η̃2

∂bp
> 0, ∂η̃2

∂bs
< 0, ∂η̃2

∂η1
> 0

ii) ∂û
∂bp

< 0, ∂û
∂bs

> 0, ∂û
∂m

> 0, ∂û
∂η1

< 0, ∂û
∂η2

> 0

Lemma 1 presents comparative statics on thresholds η̃2 and û. Let us consider the

case where the investment cost at the second stage is low (i.e., η2 < η̃2). Note that

as the elasticity of price (bp) increases the region under which scenario S dominates F

becomes larger. This is because as the elasticity of price increases (i.e., consumers are

very price sensitive) a retailer could be better off offering low price (which is the case

under regime S) even for low demand variability. On the other hand, as the elasticity of

service (bs) increases the region under which scenario S dominates F becomes smaller.

As the elasticity of service increases (i.e., consumers are very service sensitive) a retailer
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would only be better off offering low service (which is the case under regime S) only if

demand variability is very high.

In the following section we describe the duopoly model. We first discuss the deter-

ministic demand in order to gain some insights regarding the dynamics of price and

service competition and then analyze the stochastic demand.

4.4 Duopoly - Deterministic Demand

We now consider two symmetric retailers in the market indexed by i ∈ {1, 2} and

j = 3−i selling the same product. The retailers engage in price and service competition.

The customer demand faced by retailer i is: Di(pi, pj , si, sj) = α− bppi + θp(pj − pi) +

bssi − θs(sj − si), where α, bp > 0, bs, θp, θs ≥ 0. θp, θs denote intensity of competition

between the two retailers with regards to pricing and service behavior. This functional

form of demand has the desirable property that for a fixed set of retailers actions, the

total market size (D1 +D2) is invariant to changes in θp or θs.

We assume that both retailers have the ability to make service investments. We

focus on the following symmetric outcomes:

(1) Both retailers invest in the first stage (scenario FF).

(2) Both retailers invest in the second stage (scenario SS).

In the following subsection we analyze the two scenarios (FF and SS) under the

assumption that investment costs of the two stages are the same (i.e., η1 = η2 = η)

in order to isolate the effect of competition on the decision of the retailers to time
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such investments. We will later waive this assumption and consider the case where the

investment at the second stage is more expensive than that at the first stage (η2 > η1).

4.4.1 Scenario FF (Two Competing Retailers Investing in First

Stage)

In this scenario, both retailers decide on prices in the second stage and on service levels

in the first stage.

Second stage solution

In the second stage, the retailers engage only in price competition. The demand for

retailer i is given by Di(pi, pj, si, sj) = α− bppi + θp(pj − pi) + bssi − θs(sj − si).

The profit function for retailer i is equal to his revenue since he does not incur any

investment cost at the second stage.

πi(pi, pj, si, sj) = pi(α− bppi + θp(pj − pi) + bssi − θs(sj − si)) i ∈ {1, 2}, j = 3 − i,

The first-order conditions are:

∂πi

∂pi
= α− bppi + bssi − pi(bp + θp) + θp(pj − pi) − (sj − si)θs = 0 (4.9)

Since ∂2πi

∂p2
i

= −2(bp + θp) < 0, the profit function given service levels is strictly

concave in prices. Solving for p1 and p2 simultaneously from the above two equations,
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we obtain the equilibrium prices:

pi(si, sj) =
R+ Ssi − Tsj

W
, i ∈ {1, 2}, j = 3 − i, (4.10)

where

R = α(2bp + 3θp)

S = 2bp(θs + bs) + θp(2bs + θs)

T = θs(2bp + θp) − θpbs

W = (2bp + θp)(2bp + 3θp)

The corresponding demand quantities at the equilibrium prices are:

Di(si, sj) =
(R+ Ssi − Tsj)(θp + bp)

W
, i ∈ {1, 2}, j = 3 − i. (4.11)

From (4.10) and (4.11) note that when T < 0, for a fixed choice of retailer i’s service

level, retailer i will see its equilibrium price as well as the demand at this equilibrium

price increase as competing retailer j increases its service level. Hence, we assume that

T > 0, i.e.,

T > 0 ⇔ θs(2bp + θp) − θpbs > 0 (4.12)

First stage solution

In the first stage, retailer i maximizes his profit (πi) by choosing his service level si.

max πi(si) = piDi(si) − η
s2

i

2
. (4.13)
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The profit function is strictly concave in the service level si if W 2η− 2(θp + bp)S
2 > 0.

Further, for a pure-strategy Nash equilibrium to exist, we require that the reaction

functions for the two retailers intersect once. A sufficient condition for this to happen

is the following (Tirole (1990)):

∣∣∣∂2πi

∂s2
i

∣∣∣ > ∣∣∣ ∂2πi

∂sisj

∣∣∣ ⇔W 2η − 2(θp + bp)S
2 − 2ST (θp + bp) > 0 (4.14)

The optimal service levels, prices, demands, and profits are provided below:

pFF
i =

RWη

W 2η − 2S(S − T )(θp + bp)
i ∈ {1, 2}

sFF
i =

2RS(θp + bp)

W 2η − 2S(S − T )(θp + bp)
i ∈ {1, 2}

DFF
i =

RWη(θp + bp)

W 2η − 2S(S − T )(θp + bp)
i ∈ {1, 2}

πFF
i =

R2η(θp + bp)(W
2η − 2S2(θp + bp))

(W 2η − 2S(S − T )(θp + bp))2
i ∈ {1, 2}

Note that the diagonal dominance condition (4.14) is sufficient to ensure concavity

of the profit function in the service levels as well as positive service levels, prices, and

demands.

4.4.2 Scenario SS (Two Competing Retailers Investing in Sec-

ond Stage)

In this scenario, both retailers decide on service levels and prices in the second stage.

As a result, the retailers engage in simultaneous price and service competition.

115



Retailer i solves maxπi(pi, pj, si, sj) = pi(α−bppi+θp(pj−pi)+bssi−θs(sj−si))−η s2
i

2
,

i ∈ {1, 2} and j = 3 − i. The first-order conditions are:

∂πi

∂pi
= α− bppi + bssi − pi(bp + θp) + θp(pj − pi) − (sj − si)θs = 0 (4.15)

∂πi

∂si

= −ηsi + pi(bs + θs) = 0 (4.16)

The Hessian is

⎛
⎜⎜⎝

∂2πi

∂p2
i

∂2πi

∂pisi

∂2πi

∂sipi

∂2πi

∂s2
i

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−2(bp + θp) bs + θs

bs + θs −η

⎞
⎟⎟⎠

Second order conditions for profit maximization by retailer i will be satisfied if

2η(bp + θp) − (bs + θs)
2 > 0. Joint concavity of the profit function in (p, s) ensures

existence of a pure equilibrium strategy. Uniqueness is not too difficult to demonstrate

in this case since the equilibrium is symmetric. Since the players have two-dimensional

strategies, finding a symmetric equilibrium reduces to determining whether a system

of 2 equations has a unique solution (Cachon and Netessine (2004)). The conditions

that ensure joint concavity are sufficient in our case to ensure the existence of a unique

solution. The optimal price, service level, demand and profit expressions for retailer i
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are given below:

pSS
i =

αη

η(2bp + θp) − bs(bs + θs)
i ∈ {1, 2}

sSS
i =

α(θs + bs)

η(2bp + θp) − bs(bs + θs)
i ∈ {1, 2}

DSS
i =

αη(θp + bp)

η(2bp + θp) − bs(bs + θs)
i ∈ {1, 2}

πSS
i =

α2η(2η(θp + bp) − (bs + θs)
2)

2(η(2bp + θp) − bs(bs + θs))2
i ∈ {1, 2}

We impose 2η(bp + θp) − (bs + θs)
2 > 0 to ensure that the second order conditions

are satisfied. In addition, we impose η(2bp + θp) − bs(bs + θs) > 0 to ensure positive

service and price.

4.4.3 Comparison of scenarios FF and SS (same investment

costs)

In this subsection, we compare scenarios FF and SS in duopoly under deterministic

demand and same investment costs across stages. The following proposition summarizes

the effect of timing of service investments on the duopolists’ prices, service levels,

demands, and profits.

Proposition 9 For duopolist i we have the following ordering of prices, service levels,

demands, and profits.

(1) pFF
i < pSS

i

(2) sFF
i < sSS

i
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(3) DFF
i < DSS

i

(4) πFF
i > πSS

i

Proposition 9 shows that a symmetric duopolist always charges higher price and

invests in a higher level of service when he does not commit to service (i.e., invests

in the second stage). In addition, he enjoys higher demand if he invests in service

provision in the second stage. Interestingly, a duopolist will have higher profit if he

makes an investment in the first stage. The reason behind this is that the investment

cost is quadratic and the investment cost per unit of service η needs to be large enough

to ensure existence and uniqueness of the NE in both scenarios. As a result, a duopolist

will prefer to invest less in service which is the case if he makes a service investment

upfront. Hence, a duopolist will always be better off in Scenario FF.

We next consider the case where the investment costs in the two stages are different

and specifically when η2 > η1. Since the derivation of the expressions for scenarios FF

and SS is done in a similar fashion as in the case with the same investment costs it

can be omitted. We next present the comparison of the scenarios FF and SS under

different investment costs.

4.4.4 Comparison of scenarios FF and SS (different invest-

ment costs)

The following proposition summarizes the effect of timing of service investments on the

duopolist’s price, service level, and demand in the case where the investment cost in
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the second stage is higher than the corresponding cost in the first stage.

Proposition 10 For duopolist i we have the following ordering of prices, service levels,

and demands.

(1) If η2

η1
≥ η̄, then pFF

i ≥ pSS
i and if η2

η1
< η̄, then pFF

i < pSS
i .

(2) If η2

η1
≥ η̄, then sFF

i ≥ sSS
i and if η2

η1
< η̄, then sFF

i < sSS
i .

(3) If η2

η1
≥ η̄, then DFF

i ≥ DSS
i and if η2

η1
< η̄, then DFF

i < DSS
i ,

where η̄ = (2bp+θp)(2bp+3θp)(bs+θs)
2(bp+θp)(2bs(bp+θp)+θs(2bp+θp))

.

Proposition 10 shows that if the investment cost in the second stage is high enough

(η2

η1
> η̄), a symmetric duopolist will charge higher price, invest in higher service, and

enjoy higher demand in the first stage. Otherwise, he will invest in higher service in

the second stage and hence charge higher price and enjoy higher demand.

For the remaining of the analysis we let for simplicity of exposition η1 = η and

η2 = η + ε, where ε > 0. We first illustrate how the profit function of a symmetric

duopolist in scenario SS changes with respect to ε. This allow us to derive some of

the conditions under which investment in the second stage dominates investment in the

first stage and vice versa.

Proposition 11 Let ε1 = bs(bs+θs)2+η(2bp+θp)θs−bs(2bp+3θp)
bs(2bp+3θp)−(2bp+θp)θs

, then we have the following

cases:

1. If θpbs

2bp+θp
< θs <

bs(2bp+3θp)
2bp+θp

and ε ≥ ε1, then
∂πSS

i

∂ε
≤ 0.

2. If θpbs

2bp+θp
< θs <

bs(2bp+3θp)
2bp+θp

and ε < ε1, then
∂πSS

i

∂ε
> 0.

3. If θs ≥ bs(2bp+3θp)
2bp+θp

, then
∂πSS

i

∂ε
> 0.
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Note that when there is competition across two dimensions (i.e., price and service),

then an increase in the differential investment cost of the two stages (ε) could result in

profit increase for a symmetric duopolist.

The following proposition presents two of the regimes that we are able to fully

characterize analytically.

Proposition 12 a) If θpbs

2bp+θp
< θs <

bs(2bp+3θp)
2bp+θp

and η > max{ bs(bs+θs)2

bs(2bp+3θp)−(2bp+θp)θs
, ηmax},

then πSS
i < πFF

i ∀ ε > 0.

b) If θs ≥ bs(2bp+3θp)
2bp+θp

, then there exists a threshold ε̄3 such that if ε < ε̄3, then

πSS
i < πFF

i and if ε > ε̄3, then πSS
i > πFF

i . The expressions for ηmax and ε̄3 are

provided in the Appendix.
 

 
           
 
 
 
 
 
 
 
 
 
 

FF FF SS

 

FIGURE 4.2: Scenario Dominance (obtained analytically) for a Symmetric Duopolist
Under Deterministic Demand and Different Investment Costs

Figure 4.2 summarizes the regimes that we obtain analytically.

The regime that we are not able to fully characterize is the following: θpbs

2bp+θp
< θs <

bs(2bp+3θp)
2bp+θp

and ηmax < η < bs(bs+θs)2

bs(2bp+3θp)−(2bp+θp)θs
. For the above regime a numerical study

shows that there could be several different cases depending on the parameter values.
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1. We could have πSS
i < πFF

i ∀ ε > 0.

2. There could exist two thresholds of ε (i.e., ε̄1, ε̄2 > 0) such that if ε < min{ε̄1, ε̄2}

or ε > max{ε̄1, ε̄2} then πSS
i < πFF

i else if min{ε̄1, ε̄2} ≤ ε ≤ max{ε̄1, ε̄2} then πSS
i ≥

πFF
i .

3. There could exist two thresholds of ε (i.e., ε̄1, ε̄2) such that min{ε̄1, ε̄2} < 0 and

max{ε̄1, ε̄2} > 0. If 0 < ε < max{ε̄1, ε̄2} then πSS
i < πFF

i and if ε > max{ε̄1, ε̄2} then

πSS
i > πFF

i .

Figure 4.3 summarizes the regimes that we obtain numerically. Note that unlike the

FF FF SS FF SS FF

1. 2. 3.

FIGURE 4.3: Scenario Dominance (obtained numerically) for a Symmetric Duopolist
Under Deterministic Demand and Different Investment Costs

deterministic case with equal costs, where the dominant strategy is always to invest in

the first stage, in the case of higher investment costs in the second stage we can have

a richer set of investment strategies depending on the parametric setting.

First, when the intensity of competition with regard to service (θs) is low (i.e.,

θpbs

2bp+θp
< θs <

bs(2bp+3θp)
2bp+θp

) and the investment cost is high (i.e., η > max{η̄, ηmax}), then

the dominant strategy would be for a symmetric retailer to invest in the first stage.
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Second, when the intensity of competition with regard to service (θs) is low (i.e.,

θpbs

2bp+θp
< θs <

bs(2bp+3θp)

2bp+θp
) and the investment cost is low (i.e., ηmax < η < η̄), then we

could observe a non-monotonic behavior on the Nash equilibrium strategies in the sense

that for low (i.e., ε < min{ε̄1, ε̄2}) or high values of ε (i.e., ε > max{ε̄1, ε̄2}), a symmetric

duopolist would be better of investing in the first stage whereas for intermediate values

he would be better off postponing investments to the second stage.

Third, when the intensity of service competition is high (i.e., θs ≥ bs(2bp+3θp)
2bp+θp

),

then ε has an interesting impact on the dominant outcome. We show that as the cost

differential of the two stages (i.e., ε) increases, a symmetric duopolist would be better off

making the investment in the second stage. We also observe such instances numerically

even when the intensity of service competition is low for some parameter values.

4.5 Duopoly - Stochastic Demand

In this section, we describe the duopoly model and discuss the timing of the service

investment under demand uncertainty. The customer demand faced by retailer i at

demand state k is: Dik(pik, pjk, sik, sjk) = αk − bppik +θp(pjk −pik)+ bssik −θs(sjk −sik)

where αk, bp > 0 and bs, θp, θs ≥ 0.

As in the monopoly case, αk takes values αL = m − u and αH = m + u for low

demand and high demand state with equal probabilities. We focus our attention on

the following scenarios:

(1) Both retailers invest before the demand realizes (scenario FF).
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(2) Both retailers invest after the demand realizes (scenario SS).

As in the case of deterministic demand, we first analyze the two scenarios (FF and

SS) under the assumption that investment costs of the two stages are the same (i.e.,

η1 = η2 = η) and later examine the case where the investment cost at the second stage

is more expensive than that at the first stage (η2 > η1).

4.5.1 Scenario FF (Two Competing Retailers Investing in First

Stage)

In this case both retailers decide on price after the demand has realized and on service

before the demand realization. The demand for retailer i at demand state k is given

by Dik(pik, pjk, si, sj) = αk − bppik + θp(pjk − pik) + bssi − θs(sj − si).

Second stage solution

The profit function for retailer i is equal to his revenue since he does not incur any

investment cost at the second stage.

πik(pik, pjk, si, sj) = pik(αk − bppik + θp(pjk − pik) + bssi − θs(sj − si)), (4.17)

i ∈ {1, 2}, j = 3 − i, k ∈ {H,L}
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The first-order conditions are:

∂πik

∂pik

= αk−2(bp+θp)pik+θppjk+(bs+θs)sik−θssjk = 0, i ∈ {1, 2}, j = 3−i, k ∈ {H,L}

(4.18)

Since ∂2πik

∂p2
ik

= −2(bp + θp) < 0, the profit function given the service levels is strictly

concave in prices. Solving for p1k and p2k simultaneously from the above two equations,

we obtain the equilibrium price for each retailer:

pik(si, sj) =
Rk + Ssi − Tsj

W
i ∈ {1, 2}, j = 3 − i, k ∈ {H,L} (4.19)

where

Rk = αk(2bp + 3θp), k ∈ {H,L}

S = 2bp(θs + bs) + θp(2bs + θs)

T = θs(2bp + θp) − θpbs

W = (2bp + θp)(2bp + 3θp)

The corresponding demand quantities at the equilibrium prices are:

Dik(si, sj) =
(Rk + Ssi − Tsj)(θp + bp)

W
i ∈ {1, 2}, j = 3 − i, k ∈ {H,L} (4.20)

From (4.19) and (4.20) note that when T < 0 for a fixed choice of retailer i’s service

level, retailer i will see its equilibrium price as well as the demand at this equilibrium

price increase as competing retailer j increases its service level. Hence, we assume that
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T > 0, i.e.,

T > 0 ⇔ θs(2bp + θp) − θpbs > 0 (4.21)

First stage solution

In this stage retailer i maximizes his expected profit (π̂i) by choosing his service level

si.

max π̂i(si) =
1

2
(piLDiL(si) − η

s2
i

2
) +

1

2
(piHDiH(si) − η

s2
i

2
) (4.22)

The profit function is strictly concave in the service level si if W 2η− 2S2(bp + θp) > 0.

Further, for a pure-strategy Nash equilibrium to exist, we require that the reaction

functions for the two retailers intersect once. A sufficient condition for this to happen

is the following (Tirole (1990)):

∣∣∣∂2π̂i

∂s2
i

∣∣∣ > ∣∣∣ ∂2π̂i

∂sisj

∣∣∣ ⇔W 2η − 2S(S + T )(θp + bp) > 0 (4.23)
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The optimal service, price, demand, and profit expressions are as follows:

pFF
iL =

2W 2ηRL + 2S(S − T )(bp + θp)(RH −RL)

2W (W 2η − 2S(S − T )(bp + θp))
i ∈ {1, 2}

pFF
iH =

2W 2ηRH − 2S(S − T )(bp + θp)(RH − RL)

2W (W 2η − 2S(S − T )(bp + θp))
i ∈ {1, 2}

sFF
i =

2S(RH +RL)(bp + θp)

2(W 2η − 2S(S − T )(bp + θp))
i ∈ {1, 2}

DFF
iL =

(bp + θp)(2W
2ηRL + 2S(S − T )(bp + θp)(RH − RL))

2W (W 2η − 2S(S − T )(bp + θp))
i ∈ {1, 2}

DFF
iH =

(bp + θp)(2W
2ηRH − 2S(S − T )(bp + θp)(RH −RL))

2W (W 2η − 2S(S − T )(bp + θp))
i ∈ {1, 2}

π̂i
FF =

(bp + θp)(RH −RL)2(W 2η − 2S(S − T )(bp + θp))
2

4W 2(W 2η − 2S(S − T )(bp + θp))2

+
(bp + θp)(RH +RL)2W 2η(W 2η − 2S2(bp + θp))

2W 2(W 2η − 2S(S − T )(bp + θp))2
i ∈ {1, 2}

Note that the diagonal dominance condition (4.23) is sufficient to ensure concavity

of the profit function in the service level as well as positive service, price, and demand.

4.5.2 Scenario SS (Two Competing Retailers Investing in Sec-

ond Stage)

In this case both retailers decide on both the service level and price after the demand

has realized. Retailer i solves max πik(pik, pjk, sik, sjk) = pikDik(pik, pjk, sik, sjk) − η
s2
ik

2
,

i ∈ {1, 2}, j = 3 − i, and k ∈ {H,L}.
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The first-order conditions are:

∂πik

∂pik

= αk − 2(bp + θp)pik + θppjk + (bs + θs)sik − θssjk = 0 (4.24)

∂πik

∂sik
= −ηsik + pik(bs + θs) = 0 (4.25)

The Hessian is

⎛
⎜⎜⎝

∂2πik

∂p2
ik

∂2πik

∂piksik

∂2πik

∂sikpik

∂2πik

∂s2
ik

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−2(bp + θp) bs + θs

bs + θs −η

⎞
⎟⎟⎠

Second order conditions for profit maximization by retailer i will be satisfied if

2η(bp + θp) − (bs + θs)
2 > 0 which is also a sufficient condition to ensure existence and

uniqueness of the Nash equilibrium in terms of price and service (see previous discussion

in the deterministic demand). The optimal expressions for retailer i are given below:

pSS
ik =

αkη

η(2bp + θp) − bs(bs + θs)
i ∈ {1, 2}, k ∈ {H,L}

sSS
ik =

αk(bs + θs)

η(2bp + θp) − bs(bs + θs)
i ∈ {1, 2}, k ∈ {H,L}

DSS
ik =

αkη(bp + θp)

η(2bp + θp) − bs(bs + θs)
i ∈ {1, 2}, k ∈ {H,L}

πSS
ik =

α2
kη(2η(bp + θp) − (bs + θs)

2)

2(η(2bp + θp) − bs(bs + θs))2
i ∈ {1, 2}, k ∈ {H,L}

π̂SS
i =

1

2
πSS

iL +
1

2
πSS

iH i ∈ {1, 2}

We impose 2η(bp + θp) − (bs + θs)
2 > 0 to ensure that the second order conditions are

satisfied. In addition, we impose (2bp + θp)η− bs(bs + θs) > 0 to ensure positive service
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and price.

4.5.3 Comparison of scenarios FF and SS (same investment

costs)

In this subsection, we compare scenarios FF and SS in duopoly under stochastic demand

and same investment costs across stages. The following proposition summarizes the

effect of timing of service investments on the duopolist’s price, service level, demand,

and profits.

Proposition 13 For duopolist i we have the following ordering of prices, service levels,

demands, and profits.

(1) p̂i
FF < p̂i

SS

(2) sFF
i < ŝi

SS

(3) D̂i
FF

< D̂i
SS

(4) If ηmax < η < η̂ then π̂i
FF > π̂i

SS.

(5) If η > max{η̂, ηmax}, bsθp

2bp+θp
< θs <

bs(2bp+3θp)

2bp+θp
, and u ≤ ū then π̂i

FF ≥ π̂i
SS

whereas if u > ū then π̂i
FF < π̂i

SS.

(6) If η > max{η̂, ηmax} and θs >
bs(2bp+3θp)

2bp+θp
then π̂i

FF > π̂i
SS.

The expressions for η̂, ηmax, and ū are provided in the Appendix.

Proposition 13 shows that a duopolist always prices lower, offers lower service, and has

lower demand if he invests in the first stage. The strategy that a duopolist should follow

to maximize his profits depends on his investment cost, the intensity of competition in
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FIGURE 4.4: Scenario Dominance for a Symmetric Duopolist Under Stochastic De-
mand and Equal Investment Costs

service as well as the degree of demand variability. Figure 4.4 is a pictorial representa-

tion of the regimes under which a duopolist would prefer to invest before or after the

demand realization. Note that low investment cost corresponds to ηmax < η < η̂, low

intensity of competition in service corresponds to bsθp

2bp+θp
< θs <

bs(2bp+3θp)
2bp+θp

and low de-

mand variability corresponds to u < ū. There are four possible quadrants depending on

the value of the investment cost and the intensity of competition in service. Quadrant

1 corresponds to the case of low investment cost and low intensity of competition in

service. Quadrant 2 corresponds to the case of low investment cost and high intensity

of competition in service. Quadrant 3 corresponds to the case of high investment cost

and low intensity of competition in service. Quadrant 4 corresponds to the case of high

investment cost and high intensity of competition in service. Note that in contrast to

a monopolist whose dominant strategy is always to postpone service provision under

same investment costs, a duopolist would consider commitment to service as the dom-

inant strategy in most regimes. The only regime under which a duopolist would delay

service investments after demand realization is the case of high investment cost, low
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intensity of competition in service, and high demand variability. Hence, we find that

in the face of competition the value of delaying service investments can be significantly

diminished. The following proposition presents an ordering of the effect of demand

variability on profits for scenarios F, S (under monopoly) and FF, SS (under duopoly).

Proposition 14 i) if η and θs are in quadrants 1,2, or 4 (see Figure 4.4), then ∂π̂i
S

∂u
>

∂π̂i
F

∂u
> ∂π̂i

F F

∂u
> ∂π̂i

SS

∂u
.

ii) if η and θs are in quadrant 3 (see Figure 4.4), then ∂π̂i
S

∂u
> ∂π̂i

F

∂u
and ∂π̂i

SS

∂u
> ∂π̂i

F F

∂u
.

In all quadrants other than 3 (where the investment cost is high and the intensity of

competition in service is low) demand variability has a greater impact on profits in the

monopoly as opposed to the duopoly. Moreover, in those quadrants demand variability

has the most impact on a monopolist’s profits who postpones investment to the second

stage and the least impact on a symmetric duopolist’s profits who postpones investment

to the second stage.

4.5.4 Comparison of scenarios FF and SS (different invest-

ment costs)

We now consider the stochastic demand case where the cost of investing in the second

stage is higher than that in the first stage. We first illustrate how demand variability

affects the profits of a symmetric duopolist in scenarios FF and SS. This allows us

to derive some of the conditions under which investment in the second stage would

dominate investment in the first stage and vice versa.
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Proposition 15 Let ε2 = 2b2s(bs+θs)(bp+θp)+η((2bp+θp)θs−bs(2bp+3θp))(2bp+θp)

(bs(2bp+3θp)−(2bp+θp)θs)(2bp+θp)
, then we have

the following cases:

1. If θpbs

2bp+θp
< θs <

bs(2bp+3θp)
2bp+θp

and ε ≤ ε2, then ∂π̂i
F F

∂u
≥ ∂π̂i

SS

∂u
.

2. If θpbs

2bp+θp
< θs <

bs(2bp+3θp)
2bp+θp

and ε > ε2, then ∂π̂i
F F

∂u
< ∂π̂i

SS

∂u
.

3. If θs ≥ bs(2bp+3θp)

2bp+θp
, then ∂π̂i

F F

∂u
> ∂π̂i

SS

∂u
.

Note that as the variability of demand increases there are regimes where the ex-

pected profit of a symmetric duopolist in scenario FF increases at a higher rate than

the corresponding expected profit at scenario SS. As a result there could be regimes in

which the dominant strategy could shift from investing in the second stage to investing

in the first stage as the variability of demand increases.

Proposition 16 a) If θs ≥ bs(2bp+3θp)
2bp+θp

and ε < ε̄3, then π̂i
SS < π̂i

FF . If ε > ε̄3 then

there exists a threshold ū1 such that if u < ū1, then π̂i
SS > π̂i

FF and if u ≥ ū1, then

πSS
i ≤ πFF

i .

b) If θpbs

2bp+θp
< θs <

bs(2bp+3θp)
2bp+θp

and η > max{ bs(bs+θs)2

bs(2bp+3θp)−(2bp+θp)θs
, nmax}, then there

exists a threshold ū2 such that if u < ū2, then π̂i
SS < π̂i

FF and if u ≥ ū2, then

π̂i
SS ≥ π̂i

FF .

The expressions for ηmax, ε̄3, ū1 and ū2 are provided in the Appendix.

Proposition 16 presents the characterization of some of the possible regimes and the

dominant strategies which are illustrated in Figure 4.5. Recall that in the deterministic

demand case with different costs, when the intensity of competition of service is high

(i.e., θs ≥ bs(2bp+3θp)
2bp+θp

), the dominant investment strategy for a symmetric duopolist

131



FF SS
FF

SS FF     
 

FIGURE 4.5: Scenario Dominance (obtained analytically) for a Symmetric Duopolist
Under Stochastic Demand and Different Investment Costs

would shift from investing in the first stage to investing in the second stage as the

differential costs of investments across stages (ε) increases (Proposition 12(b)). In the

case of stochastic demand we could have a non-monotonic behavior in the investment

strategies. Specifically, when the differential cost of investments (ε) is low, the dominant

strategy for a retailer would be to make investments in the first stage. Beyond a given

value of ε and for low levels of demand variability a symmetric duopolist would be better

off to invest in the second stage but interestingly, as demand variability increases, the

dominant strategy would be to make service investments in the first stage.

When the intensity of competition of service is low ( θpbs

2bp+θp
< θs <

bs(2bp+3θp)

2bp+θp
) and

the investment cost is high (η > max{ bs(bs+θs)2

bs(2bp+3θp)−(2bp+θp)θs
, nmax}), then a symmet-

ric duopolist would always make an investment in the first stage under deterministic

demand (Proposition 12(a)). In the case of stochastic demand a symmetric duopolist

would still prefer to invest in the first stage for low demand uncertainty. But as demand

uncertainty increases there will be value in postponing investment after the demand
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realizes which could lead to investing in the second stage. Note that we have not been
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FIGURE 4.6: Scenario Dominance (obtained numerically) for a Symmetric Duopolist
Under Stochastic Demand and Different Investment Costs

able to fully analytically characterize the regime in which θpbs

2bp+θp
< θs <

bs(2bp+3θp)

2bp+θp
and

nmax < η < bs(bs+θs)2

bs(2bp+3θp)−(2bp+θp)θs
. A computational study demonstrated that we could

have a rich number of different strategies in the above regime. Some of the possible

cases are described below and illustrated in Figure 4.6

1. There could exist two thresholds of ε (i.e., ε̄1, ε̄2 > 0). If ε < min{ε̄1, ε̄2} there

could exist a threshold ū3 such that if u < ū3 then π̂i
SS < π̂i

FF and if u ≥ ū3 then

π̂i
SS ≥ π̂i

FF . Similarly if ε > max{ε̄1, ε̄2} then there could exist a threshold ū4 such

that if u < ū4 then π̂i
SS < π̂i

FF and if u ≥ ū4 then π̂i
SS ≥ π̂i

FF . If min{ε̄1, ε̄2} ≤ ε ≤

max{ε̄1, ε̄2} then π̂i
SS ≥ π̂i

FF .

2. There could exist two thresholds of ε (i.e., ε̄1, ε̄2) such that min{ε̄1, ε̄2} < 0 and

max{ε̄1, ε̄2} > 0. If 0 < ε < max{ε̄1, ε̄2} then π̂i
SS < π̂i

FF . If ε > ε2 then π̂i
SS > π̂i

FF .

If max{ε̄1, ε̄2} < ε < ε2 then there exists a threshold ū5 such that if u < ū5 then

π̂i
SS > π̂i

FF and if u ≥ ū5 then π̂i
SS ≤ π̂i

FF .
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4.6 Conclusion

Motivated by the increasing importance that retailers place on activities that enhance

demand we examine the temporal management of investments in service in the face of

demand uncertainty and competition.

We develop a two-stage model in order to understand the trade-offs that retailers

need to take into consideration while deciding on the timing of service investments. We

focus mainly on two alternatives that retailers typically have in terms of timing their

investments and examine them under both monopoly and symmetric duopoly settings.

The first alternative is to make service investments in advance of the selling season

without knowing the market state (i.e., invest in the first stage) and the second alter-

native is to make service investments after the market state realizes (i.e., invest in the

second stage). In both cases a retailer decides on pricing after observing the demand

(i.e., in the second stage). For the monopoly case we further examine a hybrid strategy

in which a retailer can invest both before and after the demand state is known. Typ-

ically, investing after the demand state is known is associated with higher investment

costs. We analyze these settings under both equal and different investment costs across

stages. In addition, we investigate the deterministic demand case for the symmetric

duopoly and contrast our results with the stochastic demand case. In the case of a

deterministic demand these alternatives translate to making sequential decisions (i.e.,

first service and then price) as opposed to simultaneous decisions (both service and

price).
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Our major findings are as follows. For a monopolist who faces stochastic demand

and incurs different investment costs across stages we show that a hybrid strategy

always dominates a strategy in which a retailer invests only before or only after the

market state is known. In addition, we show that a monopolist would prefer to delay

investments until demand realizes only when the market variability is high and the

differential cost of investments across stages is low. In all other regimes a monopolist

would prefer to invest before the demand realizes. This result is in contrast to the case

of equal investment costs in which a monopolist would always defer service investments

after the demand realizes.

For a symmetric duopolist who faces deterministic demand and incurs same in-

vestments costs across stages we show that the dominant strategy is always to make

service investments in the first stage. We find that this is not always the case when

the duopolist incurs higher investment costs in the second stage. Interestingly, when

the intensity of service competition is high, a symmetric duopolist could be better off

to invest in the second stage as the differential cost of investment in the two stages in-

creases. We also find computationally that the equilibrium strategies for a symmetric

retailer can shift in a non-monotonic fashion as the differential cost of investment in

the two stages increases. In particular, a retailer could invest in the first stage for high

and low differential costs and in the second stage for intermediate values of differential

costs.

For a symmetric duopolist who faces stochastic demand and incurs same costs across

stages the dominant strategy is to invest in service in the first stage in all regimes
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except for one characterized by high demand variability, low intensity of competition

in service, and high investment cost. This result shows that the competitive dynamics

could diminish significantly the value of delaying investments after demand realizes. We

further characterize some of the investment strategies when a duopolist incurs higher

investment costs in the second stage. Interestingly, we find that in the case of high

intensity of competition in service increase in demand variability could make investing

in the first stage more preferable than investing in the second stage provided that the

differential costs of investments across stages exceeds a given threshold.

One of the key messages of this research, apart from offering several insights with

regards to temporal management of investments in demand enhancing activities is that

competition could actually diminish the value of postponing such investments after

demand realization.

Our results, of course, reflect our assumptions. This immediately suggests a number

of opportunities to build upon this work. While our linear demand relationships are

analytically tractable, more general demand relationships could be considered. These

could include different functional forms and different type of service costs to reflect

economies of scale.

We have consider symmetric players to keep the analysis tractable but one could

introduce different types of asymmetries that can potentially exist between retail com-

petitors. For example, the cross-retailer demand effects could be nonsymmetric, as

could the functional forms of the service cost terms.

The game structure we have considered is only a subset of the possibilities that
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can occur. One could introduce a manufacturer who could be a Stackelberg leader

and examine the implications of service investments on the manufacturer’s profitability

as well as the supply chain as a whole. Similarly, we could also consider competition

between distinct channels, each of which consists of a manufacturer and a retailer.
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CHAPTER 5

Conclusion

Retail Operations has emerged as an important area of research in recent years. There

are several reasons that have led to this advent. First, retailing is a large, growing,

and dynamic sector in most countries both developed and developing. Second, retail

operations has some unique aspects that are different from other issues faced by other

players in a supply chain providing a fertile ground for operations management re-

search. Third, the advanced computer technology, the advent of the Internet, and the

emergence of new players in both the local and global markets has create tremendous

opportunities to study new applications, contexts, and theory in retail operations. In

this dissertation comprising of three essays, we attempt to shed light on retail practices

that enhance consumer valuation, on factors that affect store performance, and on tem-

poral management of investments in demand enhancing activities using both analytical

and empirical methodologies.

The second chapter of the dissertation titled “Improving Valuation Under Consumer

Search:Implications for Pricing and Profits” investigates technology type of investments



that can affect consumer valuation. In this chapter, we employ analytical methodology

in order to investigate first how consumer valuation practices followed by retailers could

affect their prices and profits under competition and second how market characteristics

could affect retailers’ decision to invest in the above practices. We study a duopoly in

which retailers compete in prices and consumers can search among the two retailers. In

such a setting, a retailer may incur investments to increase consumer valuation for his

product, but the final sale could be made at the other retailer, who may not incur such

investments, leading to free riding. We explore the Nash equilibria in terms of both

investment and pricing through a computational study. Then we focus on the pricing

game only and establish the pricing Nash equilibria. Next, we focus on a special case

in which the competing retailers are symmetric and characterize the possible Nash

equilibria investment strategies depending on the investment cost. Finally, we present

a model with an endogenous level of investment and analyze the symmetric equilibrium

for a symmetric duopoly.

Among other results our key findings in Chapter 2 are as follows. When the invest-

ment decision is endogenous, surprisingly in the majority of instances both retailers

decide to invest in equilibrium but price the product in a manner to avoid consumer

search between them. We also find that the proximity of retailers has an interesting non

monotonic impact on their decisions to invest in that retailers tend to invest when they

are very close or very far away but refrain from investing in the intermediate range.

When we further focus on the pricing game only we find two major effects related to

improvements in consumer valuation. First, consistent with popular belief, we find that
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a retailer could overcome competitive effects by improving consumer valuation beyond

a certain threshold. However, there are situations where a greater improvement in

consumer valuation by a retailer could lead to lower profits. Second, we find that a

retailer who does not invest could benefit from an innovative competitor who increases

consumer valuation beyond a threshold. When we focus on symmetric retailers we find

that as the investment cost increases the Nash equilibrium strategies shift from both

retailers investing, to only one retailer investing (either retailer 1 or retailer 2), and

finally to neither retailer investing. Finally, for the extension where the level of invest-

ment is endogenous, we show that a symmetric duopolist’s optimal strategy to cover his

whole local market or part of his market depends on his investment cost effectiveness

and the optimal price charged by him may indeed decrease with the per unit cost of

acquiring the product.

In the third chapter of the dissertation titled “The Impact of Labor and Traffic on

Store Performance” we investigate the effect of store labor and customer traffic charac-

teristics on store performance. We conduct a descriptive study of two store performance

metrics, conversion rate and basket value using proprietary data pertaining to a retailer.

Specifically, we consider the correlation between store performance and intra-day traffic

variability and traffic uncertainty. We also measure traffic-labor mismatches and study

if they explain the observed correlations in our sample.

We report the following results in Chapter 3. First, we report the within-store

results. We find that intra-day traffic variability is negatively correlated with both

conversion rate and basket value. We also find that, for a given level of traffic, both
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conversion rate and basket value increase with an increase in store labor at a diminishing

rate. In addition, we find that conversion rates are higher during holidays but basket

values are lower suggesting that price promotions offered during the holiday season

cause more customers to purchase but do not make the average customer purchase

more. Moreover, we find that both conversion rates and basket values exhibit significant

seasonality.

Next, we report the across-store results. We find that stores with higher traffic

uncertainty have lower conversion rates but similar basket values. We also find that

stores that have higher traffic variability and higher traffic uncertainty have higher

mismatches between required labor and actual labor. Furthermore, our tests reveal

that stores that have lower foot-traffic have higher traffic uncertainty resulting in mis-

matches between required labor and actual labor. A surprising result of our analysis

is that competition does not affect conversion rates and basket values. This suggests

that consumers decision to whether or not to purchase and how much to purchase is

unaffected by the presence of other competitors once they are in the store. Finally, we

find that stores located in neighborhoods with higher per capita income have higher

conversion rates but similar basket values.

Finally, in the fourth chapter of the dissertation, titled “Temporal Management of

Service Investments under Demand Uncertainty and Competition” we employ analyt-

ical methodology to investigate the timing of investments in activities that enhance

demand under competition in the face of demand uncertainty. We develop a two-stage

model in order to examine two alternatives that retailers typically have in terms of
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timing their investments under both monopoly and symmetric duopoly settings. The

first alternative is to invest in advance of the selling season without knowing the mar-

ket state (i.e., invest in the first stage) and the second alternative is to invest after the

market state realizes (i.e., invest in the second stage). In both cases a retailer decides

on pricing after observing the demand (i.e., in the second stage). For the monopoly

we further examine a hybrid strategy in which a retailer can invest both before and

after the demand state is known. Typically, investing after the demand state is known

is associated with higher costs of investments. We analyze these settings under both

equal and different costs of investment across stages. In addition, we investigate the

deterministic demand case for the symmetric duopoly and contrast our results with

the stochastic demand case. In the case of a deterministic demand these alternatives

translate to making sequential decisions (i.e., first service and then price) as opposed

to simultaneous decisions (both service and price).

Our major findings in Chapter 4 are as follows. For a monopolist who faces stochas-

tic demand and incurs different investment costs across stages we show that a hybrid

strategy always dominates a strategy in which a retailer invests only before or only

after the market state is known. In addition, we show that a monopolist would prefer

to delay investments until demand realizes only when the market variability is high

and the differential cost of investments across stages is low. In all other regimes a

monopolist would prefer to invest before the demand realizes. This result is in contrast

to the case of equal investment costs in which a monopolist would always defer service

investments after the demand realizes.
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For a symmetric duopolist who faces deterministic demand and incurs same in-

vestments costs across stages we show that the dominant strategy is always to make

investments in service in the first stage. We find that this is not always the case when

the duopolist incurs higher investment costs in the second stage. Interestingly, when

the intensity of service competition is high a symmetric duopolist could be better off

to invest in the second stage as the differential cost of investment in the two stages in-

creases. We also find computationally that the equilibrium strategies for a symmetric

retailer can shift in a non-monotonic fashion as the differential cost of investment in

the two stages increases. In particular, a retailer could invest in the first stage for high

and low differential costs and in the second stage for intermediate values of differential

costs.

For a symmetric duopolist who faces stochastic demand and incurs same costs across

stages the dominant strategy is to invest in service in the first stage in all regimes

except for one characterized by high demand variability, low intensity of competition

in service, and high investment cost. This result shows that the competitive dynamics

could diminish significantly the value of delaying investments after demand realizes. We

further characterize some of the investment strategies when a duopolist incurs higher

investment costs in the second stage. Interestingly, we find that in the case of high

intensity of competition in service increase in demand variability could make investing

in the first stage more preferable than investing in the second stage provided that the

differential costs of investments across stages exceeds a given threshold.

Together these three essays can contribute to the better management of retail prac-
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tices and activities that could enhance demand and consumers’ valuation as well as

enable retailers to improve store performance. Summarizing these essays provide the

following key messages for practitioners. First, a retailer’s decision to engage in con-

sumer valuation enhancing practices needs to be made taking into consideration the

following important factors in addition to the costs associated with such investments:

the physical proximity to their competitor as well as the demographics of their local

customers such as willingness to pay and search for better deals in the market. Second,

the timing of activities that enhance demand depends on the existence of competitors

in the market. Retailers need to be aware that strategies regarding the timing of such

activities which could be dominant in a monopolistic environment may have dimin-

ishing value in the face of competition. Moreover, the nature of competition such as

the relative competitive intensity in price and service plays an important role in the

adoption of the most suitable strategy. Third, with respect to labor planning and its

impact on store performance retailers need to refrain from traditional labor planning

approaches that are based solely on sales and average customer traffic and acknowledge

the importance of taking traffic volatilities into account as well. Finally, even though

traffic volatilities can be uncontrollable to a certain extent, retailers need to under-

stand that their own actions could often induce them and seek ways to address such

volatilities.

This dissertation can be extended on several fronts. For example, an interesting

extension to the first essay, which has focused solely on retailer induced increases in

customer valuations, would be to consider the supply chain implications of increased
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consumer valuation. Intensified retail competition can also affect the manufacturers’

market share and profitability which results in manufacturers adopting different strate-

gies of enhancing customer valuation. Specifically, several manufacturers, especially in

the electronics industry, have engaged in activities such as improving product design

that may differentiate their products, increase consumers valuation about their product

line, and command higher prices (Guth et al., 2008)1. In settings where a manufac-

turer sells directly to consumers, stocking decisions and investment decisions could be

planned together to improve the firm’s profitability. In supply chains where a manufac-

turer sells his product through an independent retailer, who stocks competing products

from multiple manufacturers, the manufacturer may need to make his investment de-

cisions to enhance product valuation before the retailer commits to his stocking levels.

An interesting question that arises in such a setting is how the presence of substitutable

products in a stochastic demand environment affects the incentive of a manufacturer

to invest in activities that increase consumer valuation for his product.

Another possible extension relates to understanding how the opportunities to in-

vest in demand enhancing services for a product line affect the interactions between

a manufacturer and her retailer. In the third essay, we focused on the timing of de-

mand enhancing services that are typically undertaken by a retailer. Many demand

enhancing services, e.g. information about how to install or use the product, after

sales support, warranty repair etc. can be provided either by the manufacturer or they

1Guth R.A., J. Scheck, Clark D. (2008). “Window Dressing: PC Makers Take a Stylish Turn to
Tackle Apple-Pink, Spotted Laptops Aimed at New Buyers; Designers Rule at Dell.” The Wall Street
Journal, January 4 2008.
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can be delegated to the retailer. Such services can increase the consumer’s perceived

value of the product. An interesting question in such setting would be to explore how

the competitive environment and the retailer’s relative efficiency to the manufacturer’s

relative efficiency interacts with the manufacturer’s decision about whether to deliver

the services directly to a consumer or to outsource these services to the retailer.
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A1 Appendix for Chapter 2

TABLE A1: Notation.
Notation Description

V Consumer willingness to pay prior to the investment
f Pdf of V
F Cdf of V

V̂ Consumer willingness to pay after the investment

f̂ Pdf of V̂

F̂ Cdf of V̂
γ Fraction of consumers who visits retailer 1 first
δ Fraction of consumers who is willing to search
μ Market size
ε Market expansion
ci Retailer i’s per unit cost of acquiring the product
ki Consumer traveling cost at retailer i
Δk Consumer traveling cost from one retailer to the other
Ii Retailer i’s investment cost
λi Retailer i’s investment cost factor
α Consumer valuation distribution mean shift

pj
i Retailer i’s price in scenario j

dj
i Retailer i’s demand in scenario j

πj
i Retailer i’s profit in scenario j

Before we present the proofs, we review a useful definition on supermodularity (see

Topkis (1979) for details on submodular games).

Definition 1 Suppose f(x1, x2) is twice differentiable, then f(x1, x2) is supermodular

in (x1, x2) if and only if
∂2f(x1, x2)

∂x1∂x2
≥ 0.

Proof of Proposition 1. Let V and V̂ be the consumer valuation before and after

the investment, with corresponding domains [0,1] and [α,1+α]. We could theoretically

have four possible investment scenarios: (i) Neither retailer invests, (ii) Retailer 1 does

not invest but retailer 2 invests, (iii) Retailer 1 invests but retailer 2 does not invest,
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TABLE A2: Scenarios examined.
Scenario Description

N Retailer 1 does not invest
I Retailer 1 invests

IEIE Both retailers invest and α is endogenous
IINN Both retailers invest and there is no consumer search

NNNN Neither retailer invests and there is no consumer search
NISS Retailer 1 does not invest, retailer 2 invests,

and consumers search both retailers
NISN Retailer 1 does not invest, retailer 2 invests,

and consumers search from retailer 1 to 2
NINS Retailer 1 does not invest, retailer 2 invests,

and consumers search from retailer 2 to 1
INSS Retailer 1 invests, retailer 2 does not invest,

and consumers search both retailers
INSN Retailer 1 invests, retailer 2 does not invest,

and consumers search from retailer 1 to 2
INNS Retailer 1 invests, retailer 2 does not invest,

and consumers search from retailer 2 to 1

(iv) Both retailers invest.

(i) Consumers who do not obtain positive consumer surplus at retailer 1 buy from

retailer 2 if p2+k1+Δk ≤ u ≤ p1+k1, which implies that p1 > p2+Δk. Consumers who

do not obtain positive consumer surplus at retailer 2 buy from retailer 1 if p1+k2+Δk ≤

u ≤ p2 + k2, which implies that p2 > p1 + Δk. But p1 > p2 + Δk and p2 > p1 + Δk

cannot be satisfied at the same time hence, only one retailer can obtain sales from the

consumers who search (i.e., consumers who did not buy at their local retailer and visit

the competing retailer).

(ii) Consumers who do not obtain positive consumer surplus at retailer 1 buy from

retailer 2 if p2 + k1 + Δk ≤ û ≤ p1 + k1 + α, which implies that p1 > p2 + Δk − α.

Consumers who do not obtain positive consumer surplus at retailer 2 buy from retailer
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TABLE A3: Full Factorial Design 1.
Parameters Values

γ 0.2, 0.5, 0.8
δ 0.2, 0.8
ε 0, 0.4, 0.8
μ 1
c1 0.3, 0.4
c2 0.3, 0.4
k1 0.1, 0.3
k2 0.1, 0.3
Δk 0.05, 0.2
I1 0.02, 0.1
I2 0.02, 0.1
α 0.2, 0.5

TABLE A4: Full Factorial Design 2.
Parameters Values

δ 0.1, 0.3, 0.5, 0.7
μ̂ 5, 10, 15, 20
c 0.1, 0.3, 0.5
k 0.1, 0.2, 0.3

Δk 0.5, 1, 1.5, 2
α T3, T4, T5

Note:The feasible range for the parameter α is α ∈ (T1, T2) where T1 = δΔk(2+3δ)
δ(1+δ) and

T2 = ((1+δ)(1−c−k)+δΔk)(2+3δ)
δ(1+δ) . For our computational study, we considered three values of α, T3, T4

and T5 (T3 = T1+T2
2 , T4 = T1+T3

2 , and T5 = T2+T3
2 ) that divide the interval (T1, T2) in three

equally-spaced intervals

1 if p1 + k2 + Δk ≤ û ≤ p2 + k2, which implies that p2 > p1 + Δk. Both retailers can

obtain sales from the consumers who search under the following conditions: Δk < α/2,

p1 > p2 + Δk − α, and p2 > p1 + Δk.

(iii) Consumers who do not obtain positive consumer surplus at retailer 1 buy

from retailer 2 if p2 + k1 + Δk ≤ û ≤ p1 + k1, which implies that p1 > p2 + Δk.

Consumers who do not obtain positive consumer surplus at retailer 2 buy from retailer
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1 if p1+k2+Δk ≤ û ≤ p2+k2+α, which implies that p2 > p1+Δk−α. Both retailers can

obtain sales from the consumers who search under the following conditions: Δk < α/2,

p1 > p2 + Δk, and p2 > p1 + Δk − α.

(iv) Consumers who do not obtain positive consumer surplus at retailer 1 buy

from retailer 2 if p2 + k1 + Δk ≤ û ≤ p1 + k1, which implies that p1 > p2 + Δk.

Consumers who do not obtain positive consumer surplus at retailer 2 buy from retailer

1 if p1 + k2 + Δk ≤ û ≤ p2 + k2, which implies that p2 > p1 + Δk. But p1 > p2 + Δk

and p2 > p1 + Δk cannot be satisfied at the same time hence, only one retailer can

obtain sales from the consumers who search (i.e., consumers who did not buy at their

local retailer and visit the competing retailer).

Concluding, only in investment scenarios (ii) and (iii) both retailers can obtain sales

from the consumers who search.

Proof of Proposition 2. Using Definition 1, we can prove the supermodularity of

the expected profit function of each retailer. We illustrate the supermodularity for the

case in which retailer 1 does not invest, retailer 2 invests, and consumers search in both

directions (i.e., scenario NISS). The same logic applies for the rest of the scenarios

and we omit the proof to conserve space. Retailer 1’s profit in scenario NISS is:

πNISS
1 = (p1 − c1)((μ+ ε)γ(1 − p1 − k1) + δ(μ+ ε)(1 − γ)(p2 − p1 − Δk))

∂2πNISS
1

∂p1∂p2
= δ(μ+ε)(1−γ) ≥ 0, which proves the supermodularity of πNISS

1 . Similarly,

we can prove that πNISS
2 is supermodular in (p1, p2). Because we have a supermodular

game there exists at least one Nash equilibrium.

Conditions of uniqueness of NE
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The literature has considered several methods for proving NE uniqueness (Cachon

and Netessine (2004)). One of the sufficient conditions for the uniqueness of a NE is

the “diagonal dominance” condition, which in a two-player game is stated as follows:

If a Nash equilibrium exists and |∂2πi(p1,p2)
∂pi∂pj

| < |∂2πi(p1,p2)

∂p2
i

|, i, j = 1, 2, i 	= j, then the

Nash equilibrium is unique. Using “diagonal dominance” the conditions we obtain for

the uniqueness of the NE for the scenarios in Table A2 hold. Hence, the NE is unique.

Proof of Proposition 3.

The retailers’ profit functions πNISS
1 and πNISS

2 are concave in their corresponding

prices p1 and p2. The optimal prices p∗NISS
1 and p∗NISS

2 for the two retailers are the

intersection of the best response functions obtained from the first order conditions of

retailers’ profits (see equations (3) and (4)). Evaluating the expressions for demands

qNISS
1 and qNISS

2 and profits πNISS
1 and πNISS

2 at their optimal prices provides us with

the corresponding optimal demand and profit expressions. We find the expressions

for ᾱ1, ᾱ2, and ᾱ(1) respectively by solving the following equations: p∗NISS
1 = p∗N1 ,

q∗NISS
1 = q∗N1 , and π∗NISS

1 = π∗N
1 . We present all the expressions in Table A5.

Comparing retailer 1’s optimal price and demand under monopoly and duopoly

regimes we obtain the results summarized in Table A6. Note that Table A6 presents

sufficient conditions (but not necessary). In Table A6 retailer 1’s profit is lower under

duopoly than under monopoly for low levels of α and it is higher under duopoly than

under monopoly for high levels of α. Hence, there exists a threshold in the consumer

valuation mean shift ᾱ(1) such that if α < ᾱ(1) then π∗N
1 > π∗NISS

1 and if α > ᾱ(1) then

π∗N
1 < π∗NISS

1 .
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TABLE A5: Expressions for scenario NISS.
Notation Expression
p∗NISS
1 (δ + γ(2(1 − δ) − γ(2 − 3δ)) + α(1 − γ)(1 − γ(1 − δ))δ − (1 − γ)δ(2 − γ(2 − 3δ))Δk

+2(1 − γ(1 − δ))(γ(1 − δ) + δ)c1 + (1 − γ)(1 − γ(1 − δ))δc2
−2γ(1 − γ(1 − δ))k1 − (1 − γ)2δk2)/(4δ + (1 − γ)γ(2 − δ)(2 − 3δ))

q∗NISS
1 ((γ(1 − δ) + δ)(ε+ μ)(δ + γ(2(1 − δ) − γ(2 − 3δ)) + α(1 − γ)(1 − γ(1 − δ))δ

−(1 − γ)δ(2 − γ(2 − 3δ))Δk − (1 − γ)2δk2 − (2δ + (1 − γ)γ(2 − (4 − δ)δ))c1
−2γ(1 − γ(1 − δ))k1 + (1 − γ)(1 − γ(1 − δ))δc2)/(4δ + (1 − γ)γ(2 − δ)(2 − 3δ))

π∗NISS
1 ((γ(1 − δ) + δ)(ε+ μ)(δ + γ(2(1 − δ) − γ(2 − 3δ)) + α(1 − γ)(1 − γ(1 − δ))δ

−(1 − γ)δ(2 − γ(2 − 3δ))Δk − (1 − γ)2δk2 − (2δ + (1 − γ)γ(2 − (4 − δ)δ))c1
−2γ(1 − γ(1 − δ))k1 + (1 − γ)(1 − γ(1 − δ))δc2)2)/(4δ + (1 − γ)γ(2 − δ)(2 − 3δ))2

ᾱ1 (2(1 − γ) + 3γδ + 2(2(1 − γ + 3γδ))Δk − γδc1 − 2(1 − γ(1 − δ))c2
−(4 − 4γ + 3γδ)k1 + 2(1 − γ)k2)/(2 − 2γ(1 − δ))

ζ −2(1 − γ)(1 − γ(1 − δ))(γ(1 − δ) + δ)δ(δ + γ(2 − 2δ − γ(2 − 3δ))
−(1 − γ)δ(2 − γ(2 − 3δ))δk)(ε+ μ)

η (1 − γ)2(1 − γ(1 − δ))2(γ(1 − δ) + δ)δ2(4δ + γ(1 − γ)(2 − δ)(2 − 3δ))2μ(ε+ μ)(1 − c1 − k1)2

θ 2(1 − γ)3(1 − γ(1 − δ))(γ(1 − δ) + δ)δ2(ε+ μ)k2

+4(1 − γ)γ(1 − γ(1 − δ))2(γ(1 − δ) + δ)δ(ε+ μ)k1

−2(1 − γ)2(1 + γ(1 − δ))(1 − γ(1 − δ))(γ(1 − δ) + δ)δ2(ε+ μ)c2
+2(1 − γ)(1 − γ(1 − δ))(γ(1 − δ) + δ)δ(2δ + (1 − γ)γ(2 − (4 − δ)δ))(ε + μ)c1

τ −2(γ(1 − δ) + δ)(δ + γ(2 − 2δ − γ(2 − 3δ)) − (1 − γ)δ(2 − γ(2 − 3δ))Δk)
υ (1 − γ)(2δ(2 − δ + 2δΔk) − 2γ2(1 − δ)(2 − 3δ)(1 + δΔk)

+γ(4 − δ(10 − 4Δk − δ(7 − 8Δk + 6δΔk))))
φ 2(γ(1 − δ) + δ)(2δ + (1 − γ)γ(2 − (4 − δ)δ))ε− (1 − γ)(4(1 − δ)δ

−2γ2(1 − δ)(2 − (4 − δ)δ) + γ(4 − (4 − δ)δ(3 − 2δ)))μ
χ 2(1 − γ)(1 − γ(1 − δ))(γ(1 − δ) + δ)δ(ε+ μ)
ψ −4γ(1 − γ(1 − δ))(γ(1 − δ) + δ)ε+ (1 − γ)(4δ + γ(4 − 4γ(1 − δ)2 − (8 − 3δ)δ))μ
ω −2(1 − γ)2(γ(1 − δ) + δ)δ(ε+ μ)
ᾱ2 (τε + υμ+ φc1 − χc2 − ψk1 − ωk2)/(2(1 − γ)(1 − γ(1 − δ))(γ(1 − δ) + δ)δ(ε+ μ))
ᾱ(1) (ζ ±√

η + θ)/(2(1 − γ)2(1 − γ(1 − δ))2(γ(1 − δ) + δ)δ2(ε+ μ))

Proof of Proposition 4.

Taking the partial derivatives of ᾱ1, ᾱ2, and ᾱ(1) with respect to Δk we obtain that:

∂ᾱ1

∂Δk
= ∂ᾱ2

∂Δk
= ∂ᾱ(1)

∂Δk
= 2−2γ+3γδ

1−γ+γδ
> 0.

Proof of Proposition 5. The retailers’ profit functions πINSS
1 and πINSS

2 are con-

cave in their corresponding prices p1 and p2. The optimal prices p∗INSS
1 and p∗INSS

2 for

the two retailers are the intersection of the best response functions obtained from the

first order conditions of retailers’ profits (see equations (7) and (8)). Evaluating the

152



TABLE A6: Impact of competition on retailer 1 in scenario NISS.
Sufficient Conditions Impact

μ < (ε + μ)(γ + δ(1 − γ)) and α < ᾱ2 p∗N
1 > p∗NISS

1 , q∗N
1 > q∗NISS

1 , and π∗N
1 > π∗NISS

1

μ < (ε + μ)(γ + δ(1 − γ)) and ᾱ2 < α < ᾱ1 p∗N
1 > p∗NISS

1 and q∗N
1 < q∗NISS

1

μ < (ε + μ)(γ + δ(1 − γ)) and α > ᾱ1 p∗N
1 < p∗NISS

1 , q∗N
1 < q∗NISS

1 , and π∗N
1 < π∗NISS

1

μ > (ε + μ)(γ + δ(1 − γ)) and α < ᾱ1 p∗N
1 > p∗NISS

1 , q∗N
1 > q∗NISS

1 , and π∗N
1 > π∗NISS

1

μ > (ε + μ)(γ + δ(1 − γ)) and ᾱ1 < α < ᾱ2 p∗N
1 < p∗NISS

1 and q∗N
1 > q∗NISS

1

μ > (ε + μ)(γ + δ(1 − γ)) and α > ᾱ2 p∗N
1 < p∗NISS

1 , q∗N
1 < q∗NISS

1 , and π∗N
1 < π∗NISS

1

expressions for demands qINSS
1 and qINSS

2 and profits πINSS
1 and πINSS

2 at their opti-

mal prices provides us with the corresponding optimal demand and profit expressions.

We obtain the expressions for ᾱ3, ᾱ4, and ᾱ(2) respectively by solving the following

equations: p∗INSS
1 = p∗I1 , q∗INSS

1 = q∗I1 , and π∗INSS
1 = π∗I

1 . The equation q∗INSS
1 = q∗I1

is a first degree polynomial of the form αx = y. We derive the expression for ε̄ and

Δ̄k by setting x = 0 and y = 0 and solving for ε and Δk respectively. We present all

these expressions in Table A7 other than the expression for ᾱ(2), which is very long and

hence, we omit it. Comparing retailer 1’s optimal price and demand under monopoly

and duopoly regimes we obtain the results summarized in Table A8.

From Table A8 we can make the following observations: (i) When the retailers’

proximity is low (Δk > Δ̄k) and market expansion is high (ε > ε̄) retailer 1’s profit

for low levels of α is lower under duopoly than under monopoly and for high levels of

α is higher under duopoly than under monopoly. Hence, there exists a threshold in

the consumer valuation mean shift ᾱ(2) such that if α < ᾱ(2) then π∗I
1 > π∗INSS

1 and if

α > ᾱ(2) then π∗I
1 < π∗INSS

1 . (ii) When the retailers’ proximity is low (Δk > Δ̄k) and

market expansion is low (ε < ε̄), then π∗I
1 > π∗INSS

1 for α < ᾱ3. Hence, from (i) if the

retailers’ proximity is low there exists a threshold ᾱ = min{ᾱ(2), ᾱ3} such that if α < ᾱ
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TABLE A7: Expressions for scenario INSS.
Notation Expression
p∗INSS
1 (δ + γ(2(1 − δ) + γ(3δ − 2)) + 2α((1 − γ)γ(1 − δ)2 + δ) − (1 − γ)δ(2 + γ(3δ − 2))Δk

+2(1 − γ(1 − δ))(γ(1 − δ) + δ)c1 + (1 − γ)(1 − γ(1 − δ))δc2
−2γ(1 − γ + γδ)k1 − (1 − γ)2δk2)/(4δ + (1 − γ)γ(2 − δ)(2 − 3δ))

q∗INSS
1 (δ + γ(2(1 − δ) + γ(3δ − 2)) + 2α((1 − γ)γ(1 − δ)2 + δ) − (1 − γ)δ(2 + γ(3δ − 2))Δk

−(2δ + γ(1 − γ)(2 − (4 − δ)δ))c1 + (1 − γ)(1 − γ(1 − δ))δc2
−2γ(1 − γ + γδ)k1 − (1 − γ)2δk2)(γ(1 − δ) + δ)(ε+ μ)/(4δ + (1 − γ)γ(2 − δ)(2 − 3δ))

π∗INSS
1 (δ + γ(2(1 − δ) + γ(3δ − 2)) + 2α((1 − γ)γ(1 − δ)2 + δ) − (1 − γ)δ(2 + γ(3δ − 2))Δk

−(2δ + γ(1 − γ)(2 − (4 − δ)δ))c1 + (1 − γ)(1 − γ(1 − δ))δc2 − 2γ(1 − γ + γδ)k1

−(1 − γ)2δk2)2(γ(1 − δ) + δ)(ε+ μ)/(4δ + (1 − γ)γ(2 − δ)(2 − 3δ))2 − I1
ᾱ3 (2(1 − γ) + 3γδ + 2(2(1 − γ) + 3γδ)Δk − γδc1 − 2(1 − γ(1 − δ))c2

−(4(1 − γ) + 3γδ)k1 + 2(1 − γ)k2)/γδ
τ1 −2(γ(1 − δ) + δ)(δ + γ(2 − 2δ − γ(2 − 3δ)) − (1 − γ)δ(2 − γ(2 − 3δ))Δk)
υ1 (1 − γ)(2δ(2 − δ + 2δΔk) − 2γ2(1 − δ)(2 − 3δ)(1 + δΔk)

+γ(4 + δ(−10 + 4Δk + δ(7 − 8Δk + 6δΔk))))
φ1 2(γ(1 − δ) + δ)(2δ + (1 − γ)γ(2 − (4 − δ)δ))ε− (1 − γ)(4(1 − δ)δ

−2γ2(1 − δ)(2 − (4 − δ)δ) + γ(4 − (4 − δ)δ(3 − 2δ)))μ
χ1 2(1 − γ)(1 − γ(1 − δ))(γ(1 − δ) + δ)δ(ε+ μ)
ψ1 4γ(1 − γ(1 − δ))(γ(1 − δ) + δ)ε+ (1 − γ)(4δ + γ(4 − 4γ(1 − δ)2 + (8 − 3δ)δ))μ
ω1 −2(1 − γ)2(γ(1 − δ) + δ)δ(ε+ μ)
τ2 2(γ(1 − δ) + δ)(δ + γ(2 − 2δ − γ(2 − 3δ)))
υ2 −(1 − γ)(−4(1 − γ)γ − 2(2 − 5(1 − γ)γ)δ + (2 − γ(7 − 6γ))δ2)
φ2 2(γ(1 − δ) + δ)(2δ + (1 − γ)γ(2 − (4 − δ)δ))ε− (1 − γ)(4(1 − δ)δ

−2γ2(1 − δ)(2 − (4 − δ)δ) + γ(4 − (4 − δ)δ(3 − 2δ)))μ
χ2 2(1 − γ)(1 − γ(1 − δ))(γ(1 − δ) + δ)δ(ε+ μ)
ψ2 −4γ(1 − γ(1 − δ))(γ(1 − δ) + δ)ε− (1 − γ)(−4δ − γ(4 − 4γ(1 − δ)2 − (8 − 3δ)δ))μ
ω2 −2(1 − γ)2(γ(1 − δ) + δ)δ(ε+ μ)
η1 4(1 − γ(1 − δ))(γ + δ − γδ)2ε− (1 − γ)(−4γ2(1 − δ)3 + 4(1 − δ)δ

+γ(4 − δ(12 − (11 − 4δ)δ)))μ
ᾱ4 (τ1ε+ υ1μ+ φ1c1 − χ1c2 − ψ1k1 − ω1k2)/η1
ε̄ (1 − γ)μ(4γ2(δ − 1)3 + 4(1 − δ)δ) + γ(4 + δ((11 − 4δ)δ − 12))/(4(1 − γ(1 − δ))(γ + δ − γδ)2)

Δ̄k (τ2ε− υ2μ− φ2c1 + χ2c2 + ψ2k1 + ω2k2)/(2(1 − γ)(γ(1 − δ) + δ)δ(2 − γ(2 − 3δ))(ε+ μ))

then π∗I
1 > π∗INSS

1 .

Proof of Proposition 6.

When the retailers are symmetric the expressions of profit for the four investment

scenarios examined (IINN), (NNNN), (INSS), (NISS) are as follows:

πIINN
i = (p− c)μ̂(1 + α− p− k) − I, i = 1, 2

πNNNN
i = (p− c)μ̂(1 − p− k), i = 1, 2

154



TABLE A8: Impact of competition on retailer 1 for scenario INSS.
Sufficient Conditions Impact

ε > ε̄, Δk < Δ̄k and α < ᾱ3 p∗I
1 > p∗INSS

1 and q∗I
1 < q∗INSS

1

ε > ε̄, Δk < Δ̄k, and α > ᾱ3 p∗I
1 < p∗INSS

1 , q∗I
1 < q∗INSS

1 , and π∗I
1 < π∗INSS

1

ε > ε̄, Δk > Δ̄k, and α < min{ᾱ3, ᾱ4} p∗I
1 > p∗INSS

1 , q∗I
1 > q∗INSS

1 , and π∗I
1 > π∗INSS

1

ε > ε̄, Δk > Δ̄k, and ᾱ3 < α < ᾱ4 p∗I
1 < p∗INSS

1 and q∗I
1 > q∗INSS

1

ε > ε̄, Δk > Δ̄k, and ᾱ4 < α < ᾱ3 p∗I
1 > p∗INSS

1 and q∗I
1 < q∗INSS

1

ε > ε̄, Δk > Δ̄k, and α > max{ᾱ3, ᾱ4} p∗I
1 < p∗INSS

1 , q∗I
1 < q∗INSS

1 , and π∗I
1 < π∗INSS

1

ε < ε̄, Δk < Δ̄k, and α < min{ᾱ3, ᾱ4} p∗I
1 > p∗INSS

1 and q∗I
1 < q∗INSS

1

ε < ε̄, Δk < Δ̄k, and ᾱ3 < α < ᾱ4 p∗I
1 < p∗INSS

1 , q∗I
1 < q∗INSS

1 , and π∗I
1 < π∗INSS

1

ε < ε̄, Δk < Δ̄k, and ᾱ4 < α < ᾱ3 p∗I
1 > p∗INSS

1 , q∗I
1 > q∗INSS

1 , and π∗I
1 > π∗INSS

1

ε < ε̄, Δk < Δ̄k and α > max{ᾱ3, ᾱ4} p∗I
1 < p∗INSS

1 and q∗I
1 > q∗INSS

1

ε < ε̄, Δk > Δ̄k, and α < ᾱ3 p∗I
1 > p∗INSS

1 , q∗I
1 > q∗INSS

1 , and π∗I
1 > π∗INSS

1

ε < ε̄, Δk > Δ̄k, and α > ᾱ3 p∗I
1 < p∗INSS

1 and q∗I
1 > q∗INSS

1

πINSS
1 = (p1 − c)(μ̂(1 + α− p1 − k) + μ̂δ(p2 + α− p1 − Δk)) − I

πINSS
2 = (p2 − c)(μ̂(1 − p2 − k) + μ̂δ(p1 − p2 − Δk))

πNISS
1 = (p1 − c)(μ̂(1 − p1 − k) + μ̂δ(p2 − p1 − Δk))

πNISS
2 = (p2 − c)(μ̂(1 + α− p2 − k) + μ̂δ(p1 − p2 − Δk + α))

Note that in order to ensure positive demand from searching consumers and local

consumers we need to constrain α in the following region:

α ∈ ( δΔk(2+3δ)
δ(1+δ)

, ((1+δ)(1−c−k)+δΔk)(2+3δ)
δ(1+δ)

).

Since we have symmetric retailers the following should hold:

π∗IINN
1 = π∗IINN

2 , π∗NNNN
1 = π∗NNNN

2 , π∗INSS
1 = π∗NISS

2 , and π∗NISS
1 = π∗INSS

2 ,

where the optimal profit expressions are given below:

π∗IINN
i = μ̂(1+α−c−k)2

4
− I, i = 1, 2

π∗NNNN
i = μ̂(1−c−k)2

4
, i = 1, 2

π∗INSS
1 = (1+δ)μ̂((2+3δ)(1−c−k−δΔk)+2α(1+δ)2 )2

(4+8δ+3δ2)2
− I

π∗INSS
2 = (1+δ)μ̂((2+3δ)(1−c−k−δΔk)+αδ(1+δ))2

(4+8δ+3δ2)2
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π∗NISS
1 = (1+δ)μ̂((2+3δ)(1−c−k−δΔk)+αδ(1+δ))2

(4+8δ+3δ2)2

π∗NISS
2 = (1+δ)μ̂((2+3δ)(1−c−k−δΔk)+2α(1+δ)2 )2

(4+8δ+3δ2)2
− I

We now explore the different possible Nash Equilibrium strategies.

Case 1: Both retailers invest

Both retailers invest is a unique Nash equilibrium strategy if the following holds:

π∗IINN
1 > π∗NISS

1 .

Let A1, A2 denote the values of investment cost at which π∗IINN
1 = π∗NISS

1 and

π∗INSS
1 = π∗NNNN

1 respectively.

A1 = μ̂(1+α−c−k)2

4
− (1+δ)μ̂((2+3δ)(1−c−k−δΔk)+αδ(1+δ))2

(4+8δ+3δ2)2
and

A2 = (1+δ)μ̂((2+3δ)(1−c−k−δΔk)+2α(1+δ)2 )2

(4+8δ+3δ2)2
− μ̂(1−c−k)2

4

One can easily show that π∗IINN
1 > π∗NISS

1 if 0 < I < A1.

Hence, both retailers invest is a unique Nash equilibrium strategy if 0 < I < A1.

Case 2: Neither retailer invests

Neither retailer invests is a unique Nash equilibrium strategy if the following holds:

π∗INSS
1 < π∗NNNN

1 .

One can easily show that π∗INSS
1 < π∗NNNN

1 if I > max{0, A2}.

Hence, neither retailer invests is a unique Nash equilibrium strategy if I > max{0, A2}.

Case 3: Only one retailer invests (either retailer 1 or retailer 2)

Either retailer 1 invests and retailer 2 does not invest or retailer 1 does not invest

and retailer 2 invests are two unique Nash equilibrium strategies if the following holds:

(i) π∗INSS
1 > π∗NNNN

1 and (ii) π∗IINN
1 < π∗NISS

1 .

One can easily show that (i) π∗INSS
1 > π∗NNNN

1 and (ii) π∗IINN
1 < π∗NISS

1 if
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max{0, A1} < I < A2. Hence, either retailer 1 invests and retailer 2 does not in-

vest or retailer 1 does not invest and retailer 2 invests are two unique Nash equilibrium

strategies if max{0, A1} < I < A2.

Proof of Proposition 7.

The expressions of profit for a retailer for a given α are : π∗II(α) = (1+α−c−k)2μ̂
4

−λα2,

where 0 ≤ α ≤ 1 + c+ k and π∗II(α) = (α− c− k)μ̂− λα2, where α ≥ 1 + c+ k. The

corresponding local optima are α∗IEIE = (1−c−k)μ̂
4λ−μ̂

, for 0 ≤ α ≤ 1+c+k and α∗IEIE = μ̂
2λ

,

for α ≥ 1 + c + k. Thus, each retailer’s profit function has two branches. The first

branch π∗II(α) = (1+α−c−k)2μ̂
4

−λα2 is concave when μ̂
λ
< 4 and convex otherwise, while

the second branch π∗II(α) = (α − c − k)μ̂ − λα2 is concave. In order to identify the

global optimum we consider all possible cases in terms of relative magnitude of (1−c−k)μ̂
4λ−μ̂

,

μ̂
2λ

, and 1 + c+ k.

Case A: First branch is concave ( μ̂
λ
< 4).

We have the following subcases: (i) (1−c−k)μ̂
4λ−μ̂

< μ̂
2λ

< 1 + c + k, (ii) 1 + c + k <

μ̂
2λ

< (1−c−k)μ̂
4λ−μ̂

, (iii) μ̂
2λ

< (1−c−k)μ̂
4λ−μ̂

< 1 + c + k, (iv) (1−c−k)μ̂
4λ−μ̂

< 1 + c + k < μ̂
2λ

, (v)

μ̂
2λ
< 1 + c+ k < (1−c−k)μ̂

4λ−μ̂
and (vi) 1 + c+ k < (1−c−k)μ̂

4λ−μ̂
< μ̂

2λ
. The only feasible subcases

are (i) and (ii), in which the global optima are α∗IEIE = (1−c−k)μ̂
4λ−μ̂

, and α∗IEIE = μ̂
2λ

respectively.

Case B: Second branch is convex ( μ̂
λ
> 4).

We have the following subcases: (i) 1 + c+ k < μ̂
2λ

and (ii) μ̂
2λ
< 1 + c+ k. The only

feasible subcase is (i) and the global optimum is μ̂
2λ

.
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Combining cases A and B we obtain that a) if λ < μ̂
2(1+c+k)

, then α∗IEIE = μ̂
2λ

b)

if λ > μ̂
2(1+c+k)

, then α∗IEIE = (1−c−k)μ̂
4λ−μ̂

.

Consumers search from retailer 1 to retailer 2

The profit expressions for retailer 1 for investment scenarios (ii) and (iii) are as

follows:

(ii) Retailer 1 does not invest but retailer 2 invests

πNISN
1 = (p1 − c1)(μ+ ε)γ(1 − p1 − k1).

(iii) Retailer 1 invests but retailer 2 does not invest

πINSN
1 = (p1 − c1)(μ+ ε)γ(1 + α− p1 − k1) − I1.

Let π∗k
1 , d∗k1 , and π∗k

1 be the optimal prices, demands and profits in scenarios k =

{NISN, INSN}.

Proposition A1 Retailer’s 1 optimal price, demand, and profit are impacted from

competition as follows:

(i) p∗N1 = p∗NISN
1 and p∗I1 = p∗INSN

1

(ii) If μ > (μ + ε)γ then a) q∗N1 > q∗NISN
1 and q∗I1 > q∗INSN

1 and b) π∗N
1 > π∗NISN

1

and π∗I
1 > π∗INSN

1 .

(iii) If μ < (μ+ ε)γ then a) q∗N1 < q∗NISN
1 and q∗I1 < q∗INSN

1 and b) π∗N
1 < π∗NISN

1

and π∗I
1 < π∗INSN

1 .

Proof of Proposition A1.

(i) Since retailer 1’s profits under monopoly and duopoly are concave in p1 the first
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order conditions are both sufficient and necessary. Taking first order conditions of the

profit expressions we have:

∂πNISN
1

∂p1

= (1 − p1 − k1)(μ+ ε)γ − (p1 − c1)(μ+ ε)γ = 0 (A-1)

∂πINSN
1

∂p1
= (1 + α− p1 − k1)(μ+ ε)γ − (p1 − c1)(μ+ ε)γ = 0 (A-2)

Let p∗k1 = arg{maxp1≥c1 π
k
1}, where k = {NISN, INSN}. Hence, from (A-1) and (A-2)

it follows that p∗N1 = p∗NISN
1 = 1+c1−k1

2
and p∗I1 = p∗INSN

1 = 1+α+c1−k1

2
.

(ii) a) The expressions of optimal demands are: q∗N1 = (1−c1−k1)μ
2

, q∗NISN
1 = (1−c1−k1)(μ+ε)γ

2
,

q∗I1 = (1+α−c1−k1)μ
2

, and q∗INSN
1 = (1+α−c1−k1)(μ+ε)γ

2
. Hence, if μ > (μ + ε)γ, then

q∗N1 > q∗NISN
1 and q∗I1 > q∗INSN

1 . If μ < (μ+ ε)γ, then q∗N1 < q∗NISN
1 and q∗I1 < q∗INSN

1 .

(ii) b) The expressions of the optimal profits are: π∗N
1 = (1−c1−k1)2μ

4
, π∗NISN

1 =

(1−c1−k1)2(μ+ε)γ
4

, π∗I
1 = (1+α−c1−k1)2μ

4
− I1, and π∗INSN

1 = (1+α−c1−k1)2(μ+ε)γ
4

− I1. Hence, if

μ > (μ+ε)γ, then π∗N
1 > π∗NISN

1 and π∗I
1 > π∗INSN

1 . If μ < (μ+ε)γ, then π∗N
1 < π∗NISN

1

and π∗I
1 < π∗INSN

1 .

Proposition A1 shows that when consumers search from retailer 1 to retailer 2

(consumer search scheme (3)), retailer 1 prices identically under monopoly and duopoly

regimes. The impact of competition on retailer 1’s profit and demand depends solely

on the relative magnitude of retailer 1’s market potential under monopoly (μ) and

duopoly regimes ((μ + ε)γ). Specifically, if the market potential of retailer 1 under

monopoly is higher than the corresponding market potential under duopoly (μ > (μ+
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ε)γ), competition leads to retailer 1 obtaining lower demand and profit. If the market

potential of retailer 1 under monopoly is lower than the corresponding market potential

under duopoly (μ < (μ + ε)γ), retailer 1 obtains higher demand and profit under

competition. The impact of competition on retailer 1’s price and profit is intuitive

since there is no search of consumers from retailer 2 to retailer 1. As a result, the only

factor that affects retailer 1 is the market expansion. It can be shown similarly that

identical results hold for consumer search scheme (1).

Benefiting from Innovative Competition

Consumers search from retailer 2 to retailer 1

Figure A1 summarizes the impact of competition on retailer 1’s profit according

to different regimes related to market expansion, retailers’ physical proximity, and

magnitude of change in consumer valuation.

Proposition A2 Let π∗NINS
1 be the optimal profit of retailer 1 under duopoly, π∗N

1 be

the optimal profit of retailer 1 under monopoly, Δ̃k1 be a threshold of the retailers’

physical proximity, α̃(1), α̃2, and α̃ be thresholds of the consumer valuation mean shifts

(defined in Table A9). Then,

i) if Δk < Δ̃k1 and (μ+ ε)(γ + δ(1 − γ)) > μ, then π∗N
1 < π∗NINS

1 ,

ii) if Δk < Δ̃k1 and α > α̃ = max{0, α̃2}, then π∗N
1 < π∗NINS

1 ,

iii a) if Δk > Δ̃k1 and α < α̃(1), then π∗N
1 > π∗NINS

1 ,

iii b) if Δk > Δ̃k1 and α > α̃(1), then π∗N
1 < π∗NINS

1 .

Proposition A2 provides the following insights:
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i) Retailer 1 has higher profits under competition in a high market expansion and

high proximity regime. This result is intuitive. Since the retailers’ proximity is high,

consumers are more likely to buy from retailer 1 after having visited retailer 2, which

combined with high market expansion will lead to higher profit for retailer 1 under

duopoly.

ii) When the retailers are close (i.e., proximity is high)–irrespective of the market

expansion–retailer 1 will obtain higher profit provided that the magnitude of change in

consumer valuation exceeds a certain threshold (denoted as α̃).

iii) When the retailers are far (i.e., proximity is low)–irrespective of the market

expansion–retailer 1 has higher profit under competition, provided that the magnitude

of change in consumer valuation exceeds a certain threshold (denoted as α̃(1)). The

intuition behind this is that since the retailers’ proximity is low, the consumer flow from

retailer 2 to retailer 1 will be limited. As a result, retailer 1 benefits under competition

only if his competitor makes a significant investment to increase consumer valuation.

If the magnitude of change in consumer valuation is below a certain threshold then

retailer 1’s profit is lower under duopoly.

Low ProximityHigh Proximity

Lower Profit Higher
Profit

Higher Profit

Low ProximityHigh Proximity

Lower Profit Higher
Profit

Not
Determined

Higher
Profit

FIGURE A1: The impact on retailer 1’s profit based on the analytical results in scenario
NINS.
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Note that in Figure A1 there is a regime (low market expansion and high proxim-

ity) in which the competitive effects are not fully determined. To gain more insights

regarding the competitive outcomes under that regime, we performed a computational

study, which showed the existence of a threshold in the consumer valuation mean shift

α̃(1). If the mean shift is low (α < α̃(1)), the introduction of retailer 2 leads to retailer

1 obtaining lower profit and if the mean shift is high (α > α̃(1)), retailer 2 creates a

positive externality and retailer 1 free rides.

In summary, our analytical results along with the computational study demonstrate

that competition may not always harm retailer 1. Even if retailer 2 brings in a small

market expansion, retailer 1 can be more profitable under competition, provided that

retailer 2 has made a sufficient improvement in consumer valuation. This result is

consistent with the findings of the general case.

Proof of Proposition A2.

The retailers’ profit functions πNINS
1 and πNINS

2 are concave in their corresponding

prices p1 and p2. The optimal prices p∗NINS
1 and p∗NINS

2 for the two retailers are the

intersection of the best response functions obtained from the first order conditions of

retailers’ profits. Evaluating the expressions for demands qNINS
1 and qNINS

2 and profits

πNINS
1 and πNINS

2 at their optimal prices provides us with the corresponding optimal

demand and profit expressions. We obtain expressions for α̃1, α̃2, and α̃(1) respectively

by solving the following equations: p∗NINS
1 = p∗I1 , q∗NINS

1 = q∗I1 , and π∗NINS
1 = π∗I

1 . We

find the expression for Δ̃k1 by setting α̃1 = 0 and solving for Δk. We provide these

expressions in Table A9.
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TABLE A9: Expressions for scenario NINS.
Notation Expression

p∗NINS
1 (2γ + δ(1 − γ) + αδ(1 − γ) − 2δ(1 − γ)Δk + 2(γ(1 − δ) + δ)c1

+(1 − γ)δc2 − 2γk1 − (1 − γ)δk2)/(4γ(1 − δ) + 4δ)

q∗NINS
1 (ε + μ)(2γ + δ(1 − γ) + αδ(1 − γ) − 2δ(1 − γ)Δk − 2(γ(1 − δ) + δ)c1

+(1 − γ)δc2 − 2γk1 − (1 − γ)δk2)/4

π∗NINS
1 ((ε + μ)(2γ + δ(1 − γ) + αδ(1 − γ) − 2δ(1 − γ)Δk − 2(γ(1 − δ) + δ)c1

+(1 − γ)δc2 − 2γk1 − (1 − γ)δk2)2)/(16(γ(1 − δ) + δ))

α̃1 1 + 2Δk − c2 − 2k1 + k2

α̃2 (2μ − (2γ + δ(1 − γ) − 2(1 − γ)δΔk)(ε + μ) − 2(μ − (γ(1 − δ) + δ)(ε + μ))c1−
(1 − γ)δ(ε + μ)c2 + 2(γε − (1 − γ)μ)k1 + (1 − γ)δ(ε + μ)k2)/((1 − γ)δ(ε + μ))

α̃(1) (− 2δ(1−c1−k1)
1−γ

± 2
√

(1−γ)2(γ(1−δ)+δ)δ2μ(ε+μ)(1−c1−k1)2

(1−γ)2(ε+μ)
+

δ(2 − δ + 2δΔk − 2(1 − δ)c1 − δc2 − 2k1 + δk2))/δ2

Δ̃k1 (c2 + 2k1 − k2 − 1)/2

Comparing retailer 1’s optimal price and demand under monopoly and duopoly

regimes we obtain the results summarized in Table A10. From Table A10 we can make

the following observations: (i) When the retailers’ proximity is high (Δk < Δ̃k1) if

the market expansion is high (μ < (μ + ε)(γ + δ(1 − γ))), then π∗N
1 < π∗NINS

1 . (ii)

When the retailers’ proximity is high (Δk < Δ̃k1) if the market expansion is low

(μ > (μ + ε)(γ + δ(1 − γ))), then π∗N
1 < π∗NINS

1 , for α > α̃2. Hence, from (i) if the

retailers’ proximity is high there exists a threshold α̃ = max{0, α̃2} such that if α > α̃

then π∗N
1 < π∗NINS

1 . (iii) If the retailers’ proximity is low (Δk > Δ̃k1) retailer 1’s profit

is lower under duopoly than under monopoly for low levels of α and it is higher under

duopoly than under monopoly for high levels of α. Hence, there exists a threshold in

the consumer valuation mean shift α̃(1) such that if α < α̃(1) then π∗N
1 > π∗NINS

1 and if

α > α̃(1) then π∗N
1 < π∗NINS

1 .

Implications of Competition for an Innovative Retailer
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TABLE A10: Impact of competition on retailer 1 for scenario NINS.
Sufficient Conditions Impact

μ < (ε + μ)(γ + δ(1 − γ)) and Δk < Δ̃k1 p∗N
1 < p∗NINS

1 , q∗N
1 < q∗NINS

1 , and π∗N
1 < π∗NINS

1

μ < (ε + μ)(γ + δ(1 − γ)), Δk > Δ̃k1, and α < α̃2 p∗N
1 > p∗NINS

1 , q∗N
1 > q∗NINS

1 , and π∗N
1 > π∗NINS

1

μ < (ε + μ)(γ + δ(1 − γ)), Δk > Δ̃k1, and α̃2 < α < α̃1 p∗N
1 > p∗NINS

1 and q∗N
1 < q∗NINS

1

μ < (ε + μ)(γ + δ(1 − γ)), Δk > Δ̃k1, and α > α̃1 p∗N
1 < p∗NINS

1 , q∗N
1 < q∗NINS

1 , and π∗N
1 < π∗NINS

1

μ > (ε + μ)(γ + δ(1 − γ)), Δk < Δ̃k1, and α < α̃2 p∗N
1 < p∗NINS

1 and q∗N
1 > q∗NINS

1

μ > (ε + μ)(γ + δ(1 − γ)), Δk < Δ̃k1, and α > α̃2 p∗N
1 < p∗NINS

1 , q∗N
1 < q∗NINS

1 , and π∗N
1 < π∗NINS

1

μ > (ε + μ)(γ + δ(1 − γ)), Δk > Δ̃k1, and α < α̃1 p∗N
1 > p∗NINS

1 , q∗N
1 > q∗NINS

1 , and π∗N
1 > π∗NINS

1

μ > (ε + μ)(γ + δ(1 − γ)), Δk > Δ̃k1, and α̃1 < α < α̃2 p∗N
1 < p∗NINS

1 and q∗N
1 > q∗NINS

1

μ > (ε + μ)(γ + δ(1 − γ)), Δk > Δ̃k1, and α > α̃2 p∗N
1 < p∗NINS

1 , q∗N
1 < q∗NINS

1 , and π∗N
1 < π∗NINS

1

Consumers search from retailer 2 to retailer 1

Figure A2 presents the impact of competition on retailer 1’s profit according to

different regimes related to market expansion, retailers’ physical proximity, and mag-

nitude of change in consumer valuation. We find that retailer 1 always benefits under

competition in a high market expansion and high proximity regime but retailer 1’s

profit is always lower under competition in a low market expansion and low proximity

regime.

Proposition A3 Let π∗INNS
1 be the optimal profit of retailer 1 under duopoly, π∗I

1 be

the optimal profit of retailer 1 under monopoly, Δ̃k1, Δ̃k2 be thresholds of the retailers’

physical proximity, and α̃3 be a threshold of the consumer valuation mean shift (defined

in Table A11). Then,

i) if Δk > max{Δ̃k1, Δ̃k2} and α < α̃3, then π∗I
1 > π∗INNS

1 .

ii) if Δk < min{Δ̃k1, Δ̃k2} and α < α̃3 then π∗I
1 < π∗INNS

1 .

Proposition A3 shows that in a low proximity regime (Δk > max{Δ̃k1, Δ̃k2}), if

retailer 1 invests in low improvement in consumer valuation his profit will be lower
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FIGURE A2: The impact on retailer 1’s profit based on the analytical results in scenario
INNS.

under competition. Interestingly, in a high proximity regime (Δk < min{Δ̃k1, Δ̃k2}) a

low improvement in consumer valuation allows retailer 1 to obtain higher profit under

duopoly.

Because several of the regimes in Figure A2 cannot be fully characterized analyt-

ically, we performed some computational study to gain more insights on the undeter-

mined regimes. The computational study showed the existence of a threshold in the

consumer valuation mean shift (α̃(2)). When the market expansion is high, a low mean

shift (α < α̃(2)) leads to retailer 1 being worse off under duopoly and a high mean

shift (α > α̃(2)) allows retailer 1 to benefit under duopoly. Interestingly, when the

market expansion is low, a low mean shift is beneficial for retailer 1 in terms of profits,

whereas a high mean shift can hurt retailer 1’s profits (see Figure A3 with parameter

values γ = 0.1, δ = 0.3, ε = 1.5, μ = 3, c1 = 0.2, c2 = 0.7, k1 = 0.7, k2 = 0.1,

Δk = 0.1, I1 = 0.05). The nature of search partially drives the counterintuitive re-

165



Retailer 1's profit
(monopoly)

1.4

Retailer 1's profit
(duopoly)

1.2

R
et

ai
le

r 1
's

 p
ro

fit

1

0.8

0.6

0.4

0.2

0
0.5 1 1.5

Mean shift

FIGURE A3: Retailer 1’s profit versus mean shift in scenario INNS.

sult illustrated in Figure A3. Because the retailers are closely located to each other,

consumers, who visit retailer 2 and do not obtain positive surplus, are likely to buy

from retailer 1 if they search. As a result, retailer 1 is in an advantageous position

which allows him to increase his price (i.e., p∗INNS
1 > p∗I1 ). Note that as the consumer

valuation mean shift increases by Δα, retailer 1’s demands q∗INNS
1 and q∗I1 increase

by Δα
2

(μ + ε)(γδ + (1 − γ)δ) and Δα
2
μ, respectively. Hence, q∗I1 increases at a faster

rate than q∗INNS
1 because the market expansion is low (μ > (μ + ε)(γδ + (1 − γ)δ)).

Hence, even if originally the values of α are such that q∗INNS
1 > q∗I1 and consequently

π∗INNS
1 > π∗I

1 , as α increases, q∗I1 becomes eventually higher than q∗INNS
1 , which can

reverse the relative magnitude of profits. In summary, our analytical results along with

the computational study demonstrate that in a high market expansion regime retailer 1

should strive for a high improvement in consumer valuation in order to overcome profit

loss to competition. This is not the case for a low expansion regime. When retailer 1

faces low market expansion, he should target low improvements in consumer valuation.
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Finally, there are some regimes such as high proximity, high market expansion and low

proximity, low market expansion where the outcome of competition does not depend on

retailer 1’s magnitude of improvement in consumer valuation. In such cases, the market

characteristics (i.e., market expansion and retailers’ physical proximity) determine the

competitive effects on retailer 1’s profits.

Proof of Proposition A3.

The retailers’ profit functions πINNS
1 and πINNS

2 are concave in their corresponding

prices p1 and p2. The optimal prices p∗INNS
1 and p∗INNS

2 for the two retailers are the

intersection of the best response functions obtained from the first order conditions

of retailers’ profits. Evaluating the expressions for demands qINNS
1 and qINNS

2 and

profits πINNS
1 and πINNS

2 at their optimal prices provides us with the corresponding

optimal demand and profit expressions. We obtain the expressions for Δ̃k1, α̃3, and

α̃(2) respectively by solving the following equations: p∗INNS
1 = p∗I1 , q∗INNS

1 = q∗I1 , and

π∗INNS
1 = π∗I

1 . The equation q∗INNS
1 = q∗I1 is a first degree polynomial of the form

αx1 = y1. We derive the expression for Δ̃k2 by setting y1 = 0 and solving for Δk. We

present all these expressions in Table A11.

Comparing retailer 1’s optimal price and demand under monopoly and duopoly

regimes we obtain the results summarized in Table A12. In Table A12 we can see

that if the retailers’ proximity is low (Δk > max{Δ̃k1, Δ̃k2}), then π∗I
1 > π∗INNS

1 for

α < α̃3. In the case that the retailers’ proximity is high (Δk < max{Δ̃k1, Δ̃k2}) then

π∗I
1 < π∗INNS

1 for α < α̃3.
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TABLE A11: Expressions for scenario INNS.
Notation Expression

p∗INNS
1 (2γ + δ(1 − γ) + 2α(γ(1 − δ) + δ) − 2δ(1 − γ)Δk + 2(γ(1 − δ) + δ)c1

+(1 − γ)δc2 − 2γk1 − (1 − γ)δk2)/(4γ(1 − δ) + 4δ)

q∗INNS
1 (ε + μ)(2γ + δ(1 − γ) + 2α(γ(1 − δ) + δ) − 2δ(1 − γ)Δk − 2(γ(1 − δ) + δ)c1

+(1 − γ)δc2 − 2γk1 − (1 − γ)δk2)/4

π∗INNS
1 ((ε + μ)(2γ + δ(1 − γ) + 2α(γ(1 − δ) + δ) − 2δ(1 − γ)Δk − 2(γ(1 − δ) + δ)c1

+(1 − γ)δc2 − 2γk1 − (1 − γ)δk2)2)/(16γ(1 − δ) + 16δ) − I1

α̃3 (−2μ + (2γ + δ(1 − γ) − 2(1 − γ)δΔk)(ε + μ) + 2(μ + (γ(1 − δ) + δ)(ε + μ))c1

+(1 − γ)δ(ε + μ)c2 − 2(γε − (1 − γ)μ)k1 − (1 − γ)δ(ε + μ)k2)/(2(μ − (γ(1 − δ) + δ)(ε + μ)))

ζ1 −(γ(1 − δ) + δ)(−2μ + (2γ + δ(1 − γ) − 2(1 − γ)δΔk)(ε + μ))

η1 (1 − γ)2(γ(1 − δ) + δ)δ2μ(ε + μ)(1 + 2Δk − c2 − 2k1 + k2)2

θ1 (γ(1 − δ) + δ)(2(μ − (γ(1 − δ) + δ)(ε + μ))c1 + (1 − γ)δ(ε + μ)c2 − 2(γε − (1 − γ)μ)k1 − (1 − γ)δ(ε + μ)k2)

α̃(2) (ζ1 ±√
η1 − θ1)/(−2(γ(1 − δ) + δ)(μ − (γ(1 − δ) + δ)(ε + μ)))

Δ̃k1 (c2 + 2k1 − k2 − 1)/2

Δ̃k2 (−2μ + (γ(2 − δ) + δ)(ε + μ) + 2(μ − (γ(1 − δ) + δ)(ε + μ))c1+

(1 − γ)δ(ε + μ)c2 + 2(μ − γ(ε + μ))k1 − (1 − γ)δ(ε + μ)k2)/(2(1 − γ)δ(ε + μ))

TABLE A12: Impact of competition on retailer 1 for scenario INNS.
Sufficient Conditions Impact

μ < (ε + μ)(γ + δ(1 − γ)), Δk < min{Δ̃k1, Δ̃k2} p∗I
1 < p∗INNS

1 , q∗I
1 < q∗INNS

1 , and π∗I
1 < π∗INNS

1

μ < (ε + μ)(γ + δ(1 − γ)), Δ̃k1 < Δk < Δ̃k2 p∗I
1 > p∗INNS

1 and q∗I
1 < q∗INNS

1

μ < (ε + μ)(γ + δ(1 − γ)), Δk > max{Δ̃k1, Δ̃k2}, and α < α̃3 p∗I
1 > p∗INNS

1 , q∗I
1 > q∗INNS

1 , and π∗I
1 > π∗INNS

1

μ < (ε + μ)(γ + δ(1 − γ)), Δk > max{Δ̃k1, Δ̃k2} and α > α̃3 p∗I
1 > p∗INNS

1 and q∗I
1 < q∗INNS

1

μ > (ε + μ)(γ + δ(1 − γ)), Δk < min{Δ̃k1, Δ̃k2}, and α < α̃3 p∗I
1 < p∗INNS

1 , q∗I
1 < q∗INNS

1 , and π∗I
1 < π∗INNS

1

μ > (ε + μ)(γ + δ(1 − γ)), Δk < min{Δ̃k1, Δ̃k2}, and α > α̃3 p∗I
1 < p∗INNS

1 and q∗I
1 > q∗INNS

1

μ > (ε + μ)(γ + δ(1 − γ)), Δ̃k2 < Δk < Δ̃k1 p∗I
1 < p∗INNS

1 and q∗I
1 > q∗INNS

1

μ > (ε + μ)(γ + δ(1 − γ)), Δk > max{Δ̃k1, Δ̃k2} p∗I
1 > p∗INNS

1 , q∗I
1 > q∗INNS

1 , and π∗I
1 > π∗INNS

1

B1 Appendix for Chapter 4

Proof of Proposition 8.

(1) The difference between the optimal expected prices in scenarios F and S is

p̂F − p̂S = (η2−η1)b2s(αH+αL)
2(2bpη1−b2s)(2bpη2−b2s)

Since, η2 > η1, 2bpη1 − b2s > 0, and 2bpη2 − b2s > 0 we have p̂F > p̂S.

The difference between the optimal expected prices in scenarios B and F is

168



p̂B − p̂F =
b2sη2

1(αH+αL)

2(2bpη1−b2s)(2bpη1η2−b2s(η1+η2))

Since, 2bpη1 − b2s > 0 and 2bpη1η2 − b2s(η1 + η2) > 0 we have p̂B > p̂F . Hence,

p̂B > p̂F > p̂S.

(2) sF = argmaxs{Eπ(s)} and ŝS = E(argmaxs π(s)) where E is the expectation

with respect to demand. Since π(s) is strictly concave in s then applying Jensen’s

inequality we get sF = argmaxs{Eπ(s)} > E(argmaxs π(s)) = ŝS. Hence, sF > ŝS.

(3) The difference in s1 in scenarios B and F is

sB
1 − sF

1 = η1b3s(αH+αL)
2(2bpη1−b2s)(2bpη1η2−b2s(η1+η2))

Since 2bpη1 − b2s > 0 and 2bpη1η2 − b2s(η1 + η2) > 0 we have sB
1 > sF

1 .

(4) The difference in s2 in scenarios B and S is

sB
2 − ŝS = b3s(αH+αL)η2

2(2bpη2−b2s)(2bpη1η2−b2s(η1+η2))

Since 2bpη2 − b2s > 0 and 2bpη1η2 − b2s(η1 + η2) > 0 we have sB
2 > ŝS.

(5) The difference in expected demands in scenarios F and S is

D̂F − D̂S = (η2−η1)bpb2s(αH+αL)
2(2bpη1−b2s)(2bpη2−b2s)

Since, 2bpη1 − b2s > 0 and 2bpη2 − b2s > 0 we have D̂F > D̂S.

The difference in expected demands in scenarios B and F is

D̂B − D̂F =
η2
1b2sbp(αH+αL)

2(2bpη1−b2s)(2bpη1η2−b2s(η1+η2))

Since, 2bpη1 − b2s > 0 and 2bpη1η2 − b2s(η1 + η2) > 0 we have D̂B > D̂F .

Hence, D̂B > D̂F > D̂S.

(6) The difference in expected profits in scenarios B and F is

π̂B − π̂F =
2u2b2s(2bpη1−b2s)(2bpη1η2−b2s(η1+η2))+4m2bpb2sη2

1(2bpη2−b2s)

8bp(2bpη1−b2s)(2bpη2−b2s)(2bpη1η2−b2s(η1+η2))

Since, 2bpη1 − b2s > 0 and 2bpη2 − b2s > 0, and 2bpη1η2 − b2s(η1 + η2) > 0 we have

169



π̂B > π̂F .

(7) The difference in expected profits in scenarios B and S is

π̂B − π̂S =
b2sη2

2(αH+αL)2

4(2bpη2−b2s)(2bpη1η2−b2s(η1+η2))

Since, 2bpη1 − b2s > 0 and 2bpη1η2 − b2s(η1 + η2) > 0 we have π̂B > π̂S.

(8) The difference in expected profits in scenarios F and S is

π̂F − π̂S = −2u2b2s(2bpη1−b2s)+4m2bpb2s(η2−η1)

8bp(2bpη1−b2s)(2bpη2−b2s)

Obviously the sign of π̂F−π̂S depends on the sign of −2u2b2s(2bpη1−b2s)+4m2bpb
2
s(η2−

η1) which is a second degree polynomial in terms of u. The above polynomial has

two roots one of which is negative. Hence, only one root which we denote by û =

m
√

2bp(η2−η1)

2bpη1−b2s
is positive. û < m if and only if η2 < η̃2 = 4bpη1−b2s

2bp
. Hence, if η2 ≥ η̃2

then π̂F ≥ π̂S. If η2 < η̃2 and u < û then π̂F > π̂S else if η2 < η̃2 and u > û we have

π̂F < π̂S.

Proof of Lemma 1.

i) ∂η̃2

∂bp
= b2s

2b2p
> 0, ∂η̃2

∂bs
= − bs

bp
< 0, ∂η̃2

∂η1
= 2 > 0

ii) ∂û
∂bp

= −mb2s(
bp(η2−η1)

2bpη1−b2s
)3/2

√
2b2p(η2−η1)

< 0, ∂û
∂bs

=

√
2mbs

√
bp(η2−η1)

2bpη1−b2s

2bpη1−b2s
> 0, ∂û

∂m
=

√
2bp(η2η1)

2bpη1−b2s
> 0,

∂û
∂η1

= − mbp(2bpη2−b2s)
√

2(2bpη1−b2s)2
√

bp(η2−η1)

2bpη1−b2s

< 0, ∂û
∂η2

=
m

√
(η2−η1)bp

4bpη1−2b2s

η2−η1
> 0

Proof of Proposition 9.

(1) The difference between the optimal prices in scenarios FF and SS is

pFF
i − pSS

i = − αηbsθp(2bp+3θp)T

(W 2η−2S(S−T )(θp+bp))(η(2bp+θp)−bs(bs+θs))

Since T > 0, (W 2η − 2S(S − T )(θp + bp)) > 0, and η(2bp + θp) − bs(bs + θs) > 0 we
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have pFF
i < pSS

i .

(2) The difference between the optimal services in scenarios FF and SS is

sFF
i − sSS

i = − αηθp(2bp+θp)(2bp+3θp)T
(W 2η−2S(S−T )(θp+bp))(η(2bp+θp)−bs(bs+θs))

Since T > 0, (W 2η − 2S(S − T )(θp + bp)) > 0, and η(2bp + θp) − bs(bs + θs) > 0 we

have pFF
i < pSS

i .

(3) The difference between the optimal demands in scenarios FF and SS is

DFF
i −DSS

i = − αηθpbs(2bp+3θp)T (bp+θp)
(W 2η−2S(S−T )(θp+bp))(η(2bp+θp)−bs(bs+θs))

Since T > 0, (W 2η − 2S(S − T )(θp + bp)) > 0, and η(2bp + θp) − bs(bs + θs) > 0 we

have DFF
i −DSS

i .

(4) The difference between the optimal profits in scenarios FF and SS is

πFF
i − πSS

i = α2η2θp(2bp+3θp)2T 2Y
2(W 2η−2S(S−T )(θp+bp))2(η(2bp+θp)−bs(bs+θs))2

where Y = (2bp + θp)
2(4bp + 5θp)η − 2bs(θp + bp)(4bp(bs + θs) + θp(3bs + 2θs))

Hence, if Y > 0 then πFF
i > πSS

i , else πFF
i ≤ πSS

i .

Y > 0 ⇔ η > 2bs(bp+θp)(4bp(bs+θs)+θp(3bs+2θs))

(2bp+θp)2(4bp+5θp)

In order to ensure existence and uniqueness of the NE in scenarios FF and SS we

should impose the following condition on η, η > max{2(bp+θp)S(S+T )
W 2 , (bs+θs)2

2(bp+θp)
} = nmax

It is easy to show that nmax >
2bs(bp+θp)(4bp(bs+θs)+θp(3bs+2θs))

(2bp+θp)2(4bp+5θp)
as a result Y cannot be

negative or zero. Thus, Y > 0. So we have πFF
i > πSS

i .

Proof of Proposition 10.

(1) The difference between the optimal prices in scenarios FF and SS is

pFF
i − pSS

i = 2αbs(2bp+3θp)(bp+θp)(2bp(bs+θs)+θp(2bs+θs))η2−αbs(2bp+θp)(2bp+3θp)2(bs+θs)η1

(W 2η1−2S(S−T )(θp+bp))(η2(2bp+θp)−bs(bs+θs))
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Hence if η2

η1
≥ (2bp+θp)(2bp+3θp)(bs+θs)

2(bp+θp)(2bp(bs+θs)+θp(2bs+θs))
= η̄ then pFF

i ≥ pSS
i and if η2

η1
< η̄ then

pFF
i < pSS

i .

(2) The difference between the optimal services in scenarios FF and SS is

sFF
i −sSS

i = 2αbs(2bp+3θp)(bp+θp)(2bp+θp)(2bp(bs+θs)+θp(2bs+θs))η2−αbs(2bp+θp)2(2bp+3θp)2(bs+θs)η1

(W 2η1−2S(S−T )(θp+bp))(η2(2bp+θp)−bs(bs+θs))

Hence if η2

η1
≥ (2bp+θp)(2bp+3θp)(bs+θs)

2(bp+θp)(2bp(bs+θs)+θp(2bs+θs))
= η̄ then sFF

i ≥ sSS
i and if η2

η1
< η̄ then

sFF
i < sSS

i .

(3) The difference between the optimal demands in scenarios FF and SS is

DFF
i −DSS

i = (bp+θp)
2αbs(2bp+3θp)(bp+θp)(2bp(bs+θs)+θp(2bs+θs))η2−αbs(2bp+θp)(2bp+3θp)2(bs+thetas)η1

(W 2η1−2S(S−T )(θp+bp))(η2(2bp+θp)−bs(bs+θs))

Hence if η2

η1
≥ (2bp+θp)(2bp+3θp)(bs+θs)

2(bp+θp)(2bp(bs+θs)+θp(2bs+θs))
= η̄ then DFF

i ≥ DSS
i and if η2

η1
< η̄ then

DFF
i < DSS

i .

Proof of Proposition 11.

We consider the impact of ε on the optimal profits of a duopolist in scenario SS.

We have sign(
∂πSS

i

∂ε
) = sign((ε+ η)((2bp + θp)θs − bs(2bp + 3θp)) + bs(bs + θs)

2).

Recall that we have imposed the following condition on θs to exclude positive ex-

ternalities of retailer i’s service on retailer j’s demand: θs >
bsθp

2bp+θp
.

We let ε1 = bs(bs+θs)2+η(2bp+θp)θs−bs(2bp+3θp)
bs(2bp+3θp)−(2bp+θp)θs

and examine the following cases:

Case 1. If bsθp

2bp+θp
< θs <

bs(2bp+3θp)
2bp+θp

and ε ≥ ε1 we have
∂πSS

i

∂ε
≤ 0.

Case 2. If bsθp

2bp+θp
< θs <

bs(2bp+3θp)

2bp+θp
and ε < ε1 we have

∂πSS
i

∂ε
> 0.

Case 3. If θs ≥ bs(2bp+3θp)
2bp+θp

we have
∂πSS

i

∂ε
> 0.

Proof of Proposition 12.
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Let η1 = η and η2 = η + ε. Recall that in the case of equal costs (i.e., η1 = η2 = η)

πFF
i > πSS

i . Let ε1 = bs(bs+θs)2+η(2bp+θp)θs−bs(2bp+3θp)

bs(2bp+3θp)−(2bp+θp)θs
. In order to ensure existence and

uniqueness of the NE in scenarios FF and SS we should impose the following condition

on η, η > max{2(bp+θp)S(S+T )
W 2 , (bs+θs)2

2(bp+θp)
− ε} = nmax

Case a. If bsθp

2bp+θp
< θs <

bs(2bp+3θp)
2bp+θp

and η > max{ bs(bs+θs)2

bs(2bp+3θp)−(2bp+θp)θs
, nmax} then

ε1 < 0 and hence from Proposition 11 we have
∂πSS

i

∂ε
≤ 0. As a result we have πSS

i < πFF
i

∀ ε > 0

Case b. If θs ≥ bs(2bp+3θp)
2bp+θp

then from Proposition 11 we have
∂πSS

i

∂ε
> 0. Hence,

then there exists a threshold ε̄3 such that if ε < ε̄3 then πSS
i < πFF

i and if ε > ε̄3 then

πSS
i > πFF

i .

Note that πFF
i − πSS

i could be expressed as a second degree polynomial in terms

of ε. ε̄3 is the positive root of that polynomial for the parameter setting under which

θs ≥ bs(2bp+3θp)
2bp+θp

.

Proof of Proposition 13.

(1) The difference between the optimal expected prices in scenarios FF and SS is

p̂i
FF − p̂i

SS = − ηbs(αH+αL)θp(2bp+3θp)T
2((2bp+θp)η−bs(bs+θs))(W 2η−2S(S−T )(bp+θp))

< 0

Hence, we have p̂i
FF < p̂i

SS.

(2) The difference between the optimal expected service levels in scenarios FF and

SS is

sFF
i − ŝi

SS = − η(αH+αL)θp(2bp+θp)(2bp+3θp)T
2(W 2η−2S(S−T )(bp+θp))((2bp+θp)η−bs(bs+θs))

< 0

Hence, we have sFF
i < ŝi

SS.
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(3) The difference between the optimal expected demands in scenarios FF and SS

is

D̂i
FF − D̂i

SS
= −η(bp + θp)

bs(αH+αL)θp(2bp+3θp)T
2((2bp+θp)η−bs(bs+θs))(W 2η−2S(S−T )(bp+θp))

< 0

Hence, we have D̂i
FF

< D̂i
SS

.

(4) Recall, that in the deterministic demand case (i.e., u = 0) when η1 = η2 = η

the dominant strategy for a symmetric duopolist is to invest in the first stage. We

now examine the impact of demand variability on profits in order to characterize the

dominant strategy under stochastic demand.

∂π̂i
F F

∂u
= 2u(bp+θp)

(2bp+θp)2
> 0, ∂π̂i

SS

∂u
= uη(2η(bp+θp)−(bs+θs)2)

(η(2bp+θp)−bs(bs+θs))2
> 0.

Recall that η > ηmax = max{2(bp+θp)S(S+T )

W 2 , (bs+θs)2

2(bp+θp)
} to ensure existence and unique-

ness of NE for the scenarios SS and FF . In addition, we have θs > bsθp

2bp+θp
. Let

η̂ = 2b2s(bp+θp)(bs+θs)
(2bp+θp)(bs(2bp+3θp)−(2bp+θp)θs)

.

1. If bsθp

2bp+θp
< θs <

bs(2bp+3θp)
2bp+θp

and ηmax < η < η̂ (i.e., quadrant 1) then ∂π̂i
F F

∂u
> ∂π̂i

SS

∂u
.

2. If θs >
bs(2bp+3θp)

2bp+θp
(i.e., quadrant 2 and quadrant 4) then ∂π̂i

F F

∂u
> ∂π̂i

SS

∂u
.

3. If bsθp

2bp+θp
< θs <

bs(2bp+3θp)
2bp+θp

and η > max{ηmax, η̂} (i.e., quadrant 3) then ∂π̂i
F F

∂u
<

∂π̂i
SS

∂u
. Hence,

i) if η and θs are in quadrants 1, 2, or 4 then ∂π̂i
F F

∂u
> ∂π̂i

SS

∂u
as a result FF will

always be a dominant strategy for those cases.

ii) if η and θs are in quadrant 3 then ∂π̂i
SS

∂u
> ∂π̂i

F F

∂u
. Hence, there will exist a

threshold ū such that if u > ū scenario SS is the dominant strategy and if u < ū

scenario FF is the dominant strategy.

The expression for ū is ū =
√

C
−A

, where C = η2m2θp(2bp + θp)
2(2bp + 3θp)

4(bsθp −
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(2bp + θp)θs)
2(η(2bp + θp)

2(4bp + 5θp) − 2bs(bp + θp)(4bp(bs + θs) + θp(3bs + 2θs))) and

A = −η(2bp + θp)(bs + θs)(bs(2bp + 3θp)− (2bp + θp)θs)+ 2b2s(bp + θp)(bs + θs)
2. We next

prove that C > 0. C > 0 ⇔ η > 2bs(bp+θp)(4bp(bs+θs)+θp(3bs+2θs))
(2bp+θp)2(4bp+5θp)

. One can easily show

that ηmax >
2bs(bp+θp)(4bp(bs+θs)+θp(3bs+2θs))

(2bp+θp)2(4bp+5θp)
. Hence, C > 0. In addition, −A > 0 ⇔ θs <

bs(2bp+3θp)
2bp+θp

which holds in quadrant 3.

Proof of Proposition 14. The impact of demand variability on profits under

monopoly for scenarios S and F is given below:

∂π̂i
F

∂u
= u

2bp
> 0, ∂π̂i

S

∂u
= uη

2bpη−b2s
> 0. It can be easily shown that ∂π̂i

S

∂u
> ∂π̂i

F

∂u
.

The impact of demand variability on profits under duopoly for scenarios SS and

FF is given below:

∂π̂i
F F

∂u
= 2u(bp+θp)

(2bp+θp)2
> 0, ∂π̂i

SS

∂u
= uη(2η(bp+θp)−(bs+θs)2)

(η(2bp+θp)−bs(bs+θs))2
> 0. It can be easily shown that

∂π̂i
F

∂u
> ∂π̂i

F F

∂u
.

Hence, ∂π̂i
S

∂u
> ∂π̂i

F

∂u
> ∂π̂i

F F

∂u
. In Proposition 13 we showed the following:

1. If bsθp

2bp+θp
< θs <

bs(2bp+3θp)

2bp+θp
and ηmax < η < η̂ (i.e., quadrant 1) then ∂π̂i

F F

∂u
> ∂π̂i

SS

∂u
.

2. If θs >
bs(2bp+3θp)

2bp+θp
(i.e., quadrant 2 and quadrant 4) then ∂π̂i

F F

∂u
> ∂π̂i

SS

∂u
.

3. If bsθp

2bp+θp
< θs <

bs(2bp+3θp)
2bp+θp

and η > max{ηmax, η̂} (i.e., quadrant 3) then ∂π̂i
F F

∂u
<

∂π̂i
SS

∂u
. Hence,

i) If η and θs are in quadrants 1,2, or 4 then ∂π̂i
S

∂u
> ∂π̂i

F

∂u
> ∂π̂i

F F

∂u
> ∂π̂i

SS

∂u
.

ii) If η and θs are in quadrant 3 then ∂π̂i
S

∂u
> ∂π̂i

F

∂u
and ∂π̂i

SS

∂u
> ∂π̂i

F F

∂u
.

Proof of Proposition 15.

Let ε2 = 2b2s(bs+θs)(bp+θp)+η((2bp+θp)θs−bs(2bp+3θp))(2bp+θp)
(bs(2bp+3θp)−(2bp+θp)θs)(2bp+θp)

.
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Next, we identify the impact of demand variability on the duopolist profits for

scenario FF and scenario SS.

∂π̂i
F F

∂u
= 2u(bp+θp)

(2bp+θp)2

∂π̂i
SS

∂u
= u(η+ε)(2(η+ε)(bp+θp)−(bs+θs)2)

(η+ε)((2bp+θp)−bs(bs+θs))2

sign(∂π̂i
F F

∂u
− ∂π̂i

SS

∂u
) = sign((η + ε)(2bp + θp)(bs + θs)((2bp + θp)θs − bs(2bp + 3θp)) +

2b2s(bp + θp)(bs + θs)
2)

Case 1. If θpbs

2bp+θp
< θs <

bs(2bp+3θp)
2bp+θp

and ε ≤ ε2 then ∂π̂i
F F

∂u
≥ ∂π̂i

SS

∂u
.

Case 2. If θpbs

2bp+θp
< θs <

bs(2bp+3θp)
2bp+θp

and ε > ε2 then ∂π̂i
F F

∂u
< ∂π̂i

SS

∂u
.

Case 3. If θs ≥ bs(2bp+3θp)
2bp+θp

then ∂π̂i
F F

∂u
> ∂π̂i

SS

∂u
.

Proof of Proposition 16.

Since we have characterized some of the strategies for the deterministic demand

case under different costs we will use this as a guidance for the stochastic demand case.

(a) If θs ≥ bs(2bp+3θp)

2bp+θp
then from Proposition 15 we have ∂π̂i

F F

∂u
> ∂π̂i

SS

∂u
. Hence, if

ε < ε̄3 then π̂i
SS < π̂i

FF . If ε > ε̄3 then there exists a threshold ū1 such that if u < ū1

then π̂i
SS > π̂i

FF and if u ≥ ū1 then π̂i
SS ≤ π̂i

FF .

b) If θpbs

2bp+θp
< θs <

bs(2bp+3θp)
2bp+θp

and η > max{ bs(bs+θs)2

bs(2bp+3θp)−(2bp+θp)θs
, nmax} then from

Proposition 15 we have ∂π̂i
F F

∂u
< ∂π̂i

SS

∂u
. As a result, there exists a threshold ū2 such

that if u < ū2 then π̂i
SS < π̂i

FF and if u ≥ ū2 then π̂i
SS ≥ π̂i

FF . Note that π̂i
FF − π̂i

SS

can be expressed as a second degree polynomial in terms of u. ū1 and ū2 are the

positive roots of that polynomial for the respective parametric regimes. Recall, that

nmax = max{2(bp+θp)S(S+T )
W 2 , (bs+θs)2

2(bp+θp)
− ε}
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