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Abstract 

 
EUGENE A. GIBBS-FLOURNOY: Examination of the Adverse Effects of Exposure 

to Gaseous and Particulate Oxidant Air Pollutants in Human Airway Epithelial Cells 
(Under the direction of Dr. James M. Samet) 

Human exposure to ambient air pollution is a pervasive global public 

health problem. Ambient levels of air pollutants , such as particulate matter 

and ozone, are associated with multiple adverse health effects , including 

increases in the incidence of morbidity and mortali ty. The underlying 

mechanism(s) responsible for the adverse effects of most air pollutants is not 

well understood. However, oxidative stress has been implicated as being a 

major contributor to the mechanism of toxic action of numerous gaseous and 

particulate air pollutants.  The lungs serve as the primary route of exposure 

for air pollutants, making cells of the respiratory epithelia principal targets for 

many of the toxicological outcomes of air pollution exposure. The 

concentrations of gaseous and particulate matter (PM) air pollutants are 

primary determinants of the pulmonary toxicity resultant from air pollutant 

exposure.  The study of oxidative responses to air pollutant exposure 

requires that a number of methodological challenges be overcome.  The 

studies of this dissertation purposely address these challenges in the 

following manner: 1) Development and implementation of imaging 

methodologies for the investigation of effects resulting from particulate and 
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gaseous air pollutant exposure to Human Airway Epithelial Cells (HAEC); 2) 

Examination of the cellular mechanisms that underlie oxidative stress 

responses to air pollution exposures in HAEC  using live cell imaging 

methodologies; and 3) Examination of factors that mediate air pollution-

induced changes in intracellular redox status.  The major features of this body of 

work were able to validate and establish significant methodologies for examining the 

interaction of nano-scaled particulates with cellular environments, and observe 

oxidative alterations in the intracellular redox environment of oxidant-exposed cells 

in real-time. Moreover, these findings reveal that exposure to oxidative air pollutants, 

such as ozone, induces a profound increase in the intracellular glutathione redox 

potential of human airway epithelial cells that is indicative of an oxidant-dependent 

impairment of redox homeostasis in the cell. Cumulatively, this work advances 

current toxicological knowledge regarding the spatiotemporal interaction of gaseous 

and particulate air pollutants with cellular environments, while producing effective 

methodologies for the assessment of implications resulting from air pollutant 

exposure.  Furthermore, the methodologies described herein can be used in broader 

toxicological applications assessing similar endpoints from other types of xenobiotic 

exposures. 
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Chapter 1 

Introduction 

 

1.1 Air Pollution and Human Health 

Ambient air pollution is a common problem that afflicts human populations in 

the industrialized world, which persists despite active local, regional, national, and 

global regulatory efforts.  In the United States, as of 2010, it has been estimated that 

approximately 124 million Americans live in areas that exceed current standards 

both established and regulated by the Environmental Protection Agency (EPA) (EPA 

2012).  While this statistic has decreased by ~22% since the previous 2007 estimate 

of 158.5 million, these values indicate that a large portion of the population remains 

exposed to unhealthy levels of air pollution.  Moreover, towards the end of the 20 th 

century, air pollution became recognized as a global public health problem with other 

countries reporting similar estimations of exposure (Ciencewicki et al. 2008; 

Maynard and Howard, 1999; WHO, 2006).  

As stated, exposure to air pollution has been observed to be detrimental to 

human health.  Numerous epidemiological studies over the years have positively 

associated air pollution exposure with increased incidence of morbidity and mortality 

(Stanek et al., 2011). Some of the earliest observations correlating acute instances 

of air pollution with adverse effects on human health include the 1930 Muese Valley 
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Fog in Belgium, the 1948 Smog of Donora Pennsylvania, and the 1952 “Great Fog” 

of London (Stanek et al., 2011; Simkhovich et al., 2008; Nemery et al., 2001; 

Helfand et al. 2001; and Scott, 1953).  In each situation, stagnant atmospheric 

conditions made it favorable for combustion emissions to become trapped, causing 

marked increases in the localized concentration of air pollutants in and around these 

urban environments (Stanek et al., 2011).  Furthermore, several statistical analyses 

have revealed direct temporal correlations between the incidence of such acute 

elevations in air pollution and the number of local hospitalizations and deaths 

(Simkhovich et al., 2008; Yang and Omaye, 2009; and Stanek et al., 2011).  All 

these findings, combined with ongoing research, have prompted efforts to increase 

public awareness of the harmful effects of air pollutant exposure. 

There are multiple types of adverse health effects that have been correlated 

with acute and chronic exposure to air pollution. As expected, the respiratory system 

is the primary target for many of the injurious effects induced by ambient air 

pollution.  These effects range broadly from mild exasperations to death depending 

on the susceptibility of individuals within the population being exposed (Laumbach 

2010).  In general, components of air pollution have been demonstrated to cause 

airway irritation, decreases in lung function, increases in airway hyperactivity, 

increases in pulmonary inflammation, and exacerbation of pulmonary diseases, such 

as asthma and chronic obstructive pulmonary disease (COPD), as well as 

cardiovascular system dysfunctions including myocardial infarction, stroke, and 

atherosclerosis (Stanek et al., 2011; Laumbach 2010; Yang and Omaye 2009).  In 

addition, several risk factors have been associated with individuals most vulnerable 
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to the effects of air pollution; these include age (children and older adults), 

underlying disease burden of the pulmonary and cardiovascular systems, diabetes, 

pregnancy, and genetic polymorphism (American Lung Association, 2012; Bolton et 

al., 2012; Ciencewicki et al., 2008; Kampa and Castana, 2007; Shannahan et al., 

2010; Curtis et al., 2006; Laumbach 2010).  These factors, combined with the known 

health implications resultant from exposure to air pollution, have emphasized the 

need for environmental quality standards used to limit the amount of common air 

pollutants released to the environment.   

Air pollution is a complex mixture largely comprised of two main components, 

gases and particulate matter (PM), both of which are derived from natural and 

anthropogenic sources. Currently, the U.S. EPA regulates six of these components 

known as “criteria” air pollutants.  They include:  ozone, particulate matter, lead, 

nitrogen dioxide (NO2), carbon monoxide (CO), and sulfur dioxide (SO2).  Through 

the mandates of the federal Clean Air Act (CAA), the EPA sets evolving regulations 

for each criteria air pollutant known as the National Ambient Air Quality Standard 

(NAAQS).  These standards are set at levels meant to protect susceptible portions of 

the population.  Furthermore, NAAQS are the basis of the scale used in the location-

specific Air Quality Index (AQI).  The AQI incorporate daily forecasts of air quality for 

NAAQS pollutants, and are used by the public to proactively limit exposure to 

unhealthy levels of ambient air pollution. Of the 6 criteria air pollutants regulated by 

the EPA, ozone and PM are both the most common types of pollution experienced in 

urban environments and they most frequently exceed the established values set to 

protect public health (Laumbach 2010; Pryor 1992). 
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1.2 Particulate Matter (PM) 

By definition, PM is the suspension of solid particles or liquid droplets in the 

ambient air (Ciencewicki et al., 2008).  PM varies broadly in its size and composition 

with organic and inorganic materials contributing to its overall make-up.  Examples 

of PM range from natural dusts to mold spores to combustion and industrially-

derived particulates of anthropogenic origin. Currently, PM is separated into 3 

categories by size based on the aerodynamic diameter of its particles:  1) “coarse” 

particles, PM10, 2.5 – 10 µm in diameter; 2) “fine” particles, PM2.5, ≤ 2.5 µm in 

diameter; and 3) “ultrafine” particles (UFP), PM0.1, particles with diameters ≤ 0.1 µm.  

Of these 3 categories, the EPA regulates ambient PM2.5 and PM10 at 35 µg/m3 and 

150 µg/m3, respectively, not to be exceeded within a 24 hr averaged basis (EPA 

2012).   

Ambient PM is generated from multiple processes via numerous sources, 

both natural and man-made.  Generally speaking, large particulates, ≥ 10 µm, are 

created by more natural processes such as wind erosion, unsettling of loose soils 

and dusts via air turbulence, release of plant pollen, and the evaporation of sea 

spray (Mossman et al., 2007; WHO, 2003; Ogunseitan and Robbins, 2011).  In 

contrast, the ultrafine fraction of PM is largely produced by nucleation, which is a 

physiochemical process that creates minute particles (nuclei) via condensation of 

low vapor-pressure materials formed either by high-temperature vaporization (i.e. 

combustion) or chemical reaction of gases/vapors in the atmosphere (WHO, 2003).  

Compounds capable of generating particulate nuclei include: vaporized transition 
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and heavy metals, combustion-derived elemental and organic carbon, nitrates, and 

sulfates.  The resulting particles expand in size by: 1) coagulating with other nuclei 

to form a larger aggregated particle, and/or 2) having gas or vapors of organic 

molecules condensed onto their surface, which increases their overall diameter 

(WHO, 2003).  It is important to note that combinations of these components and 

events often drive the creation of particles, thus contributing to the broad array of 

ambient PM in relation to size, number, and composition.  This process generates 

particles capable of absorbing and transferring many materials that are 

toxicologically relevant, such as metals, organic hydrocarbons, reactive gases, and 

ions, which are all often packaged around a stable carbon core (Mossman et al., 

2007; Kampa and Castana, 2007).  Ultimately, the overall composition, size, 

number, and surface reactivity of these particles play a role in the adverse health 

effects caused by PM. 

Respiration of the smaller size fractions of PM, namely fine and ultrafine 

particles, is believed to pose the greatest threat to human health as particle size is 

known to correspond to the respirability of particulates to deeper, more vascular, 

areas of the lung (Valavanidis et al., 2008; Yang and Omaye, 2009; Kampa and 

Castanas 2008; Stanek et al., 2011).  More specifically, deposition of coarse PM is 

largely confined to the upper extrathoracic portion of the respiratory tract and is 

largely cleared via physiological mechanisms such as mucociliary clearance; while 

fine and ultrafine PM are capable of reaching deeper tracheobronchial and alveolar 

regions of the lung where they often remain for longer periods of time due to less 

efficient clearance mechanisms (Kampa and Castanas 2008; Olivieri and Scoditti, 
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2005; Stanek et al., 2011).  The latter is of particular concern since particles 

reaching vascular alveolar regions may be capable of releasing soluble components 

which can easily access blood vessels for systemic circulation (Yang and Omaye, 

2009).  Furthermore, depending on the particle size, as well as other physiochemical 

properties, it is believed that nano-scaled particles are capable of transcending 

cellular membranes, gaining access to intracellular compartments and even 

continuing on to extrapulmonary cells, tissues, and organs (Geiser et al., 2005; 

Oberdorster et al., 2005; Oberdorster and Utell; 2002; Terzano et al., 2010; Nakane, 

2012).  While most air pollution research regarding the health effects of PM 

exposure has focused on the larger PM10 and PM2.5 size fractions, a less exhaustive 

portfolio of studies has actually examined the toxicological implications of ultrafine 

PM exposure. 

Health concerns over the effects of human exposure to UFP combined with 

the booming field of nanotechnology have created a need for information on the 

toxicology of nanomaterials. Current knowledge surrounding the impact of 

nanomaterials on human health is limited. Furthermore, early work has made it 

apparent that the effects of nanomaterials cannot be safely extrapolated from the 

toxicologic properties of larger-scaled materials of the same composition (Biswas 

and Wu, 2005). Researchers are quickly learning that the minute size and 

correspondingly large surface to mass ratio of nanomaterials adds additional 

variables, typically in conjunction with shape and chemical make-up, which can 

drastically alter their interactions with cells and tissues (Maynard and Howard, 1999; 

Tetley, 2007). Both incidental and intentional sources of nanomaterials contribute to 
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direct and indirect routes of human exposure in ambient and occupational settings. 

Recent estimates of ambient mineral PM place the global burden at greater than 14 

megatons, with nano-scaled particles accounting for more than 90% of the PM 

abundance while contributing minimally to the overall mass (Murr and Garza, 2009; 

Stanek et al., 2011). Additionally, the global proliferation of nanotechnology has 

produced more than 600 products that annually require metric tons of raw 

nanomaterials, which likely get released into the environment via pre- and post-

consumer utilization (Jones and Grainger, 2009; Xia et al., 2009). As a matter of 

practice, ambient PM in the “nano” range is classified as UFP while nanomaterials 

that are intentionally engineered and synthesized by industry are more commonly 

known as nanoparticles. In either situation, the term “nano” is applied to particles 

with at least one dimension at or below 100 nm.  For the purpose of this dissertation, 

the term nanoparticle (NP) will be used to describe all nano-scaled materials 

regardless of origin. 

 

1.3 Ozone 

Triatomic oxygen, more generally known as ozone (O3), is one of several 

gaseous components that commonly contribute to ambient air pollution. When high 

in the stratosphere, O3 is essential for protecting the Earth’s surface from the harmful 

effects of ultraviolet (UV) radiation produced by the sun.  However, when present at 

ground level (within the troposphere), respiration of O3 is detrimental to human 

health due to its oxidative properties.  O3 is a highly reactive oxidant gas that is 
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tropospherically produced via an intricate series of photochemical reactions involving 

volatile organic compounds (VOCs) and nitrogen oxides (NOx) that are catalytically 

activated by sunlight at wavelengths between 295 - 430 nm (Mudway and Kelly, 

2000; and Ciencewicki et al., 2008).  Interestingly, O3 is not directly produced in 

significant quantities by any anthropogenic source (Mudway and Kelly, 2000).  

Although created in insignificant amounts by electrostatic means including lightning 

strikes and the inadvertent emissions of electronic devices, ground-level ozone is 

largely derived from precursor products, namely VOCs and NOx, of mobile and 

stationary combustion sources (Katsouyanni, 2003; Curtis et al., 2006; and Kampa 

and Castanas 2007).   

Currently, the EPA limits ambient O3 concentrations to 75 ppb, averaged over 

an 8 hr exposure period.  This was recently lowered from the previous standard of 

80 ppb, and remains under evaluation for future changes. It appears as though O3 

has a narrow exposure window in relation to levels of tolerance versus 

concentrations at which adverse effects have been observed.  Estimates put natural 

baseline concentrations of tropospheric O3 to vary between 20 – 40 ppb, which is 

very close to the 60 ppb concentration used during controlled “low dose” exposures 

that were observed to cause decrement in lung function and increases in pulmonary 

inflammation in human studies (Kim et al., 2011; Mudway and Kelly, 2000). 

The pulmonary effects of O3 exposure are well established.  Moreover, many 

of the studies performed to devise exposure limits were conducted as controlled 

human studies, largely reducing the need for cross-species extrapolations (Stanek et 
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al., 2010). In humans, O3 has been demonstrated to cause decrements in the forced 

expiratory volume over 1 second (FEV1), forced vital capacity (FVC), alteration of 

breathing patterns, increases in airway responsiveness, allergen sensitization, 

neutrophillic influx, increases in proinflammatory cytokines and prostaglandins, and 

direct oxidation of cellular and extracellular biomolecules (Stanek et al., 2010; 

Mudway and Kelly, 2000).  While these outcomes have been directly attributed to O3 

exposure, the underlying mechanism driving these endpoints is not fully understood.  

Due to its potent oxidative properties, O3 is capable of easily oxidizing important 

biomolecules causing generation of secondary oxidants and free radicals as well as 

extensive damage to cellular components.  For this reason, oxidative stress has 

been often implicated as the primary means by which O3 causes adverse cellular, 

tissue, and systemic effects.   

 

1.4 Air Pollution and the Lung 

By far, inhalation is the most significant exposure route for air pollutants, 

making the pulmonary system both the initial point of biological interaction and often 

the primary target for the toxic effects of many ambient air pollutants.  In general, the 

lungs are comprised of two basic functional units: 1) airways that conduct air to and 

from terminal areas for gas exchange, and 2) the alveoli that serve as the interface 

where gas exchange occurs (Yang et al., 2008).  Overall, the lungs are capable of 

withstanding moderate insult by certain environmental air pollutants by virtue of a 
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system of physiological defenses inherent to that organ (Olivieri and Scoditti, 2005; 

Newhouse et al., 1976)  

There are both chemical and mechanical elements at work in defending 

against air pollutants.  The pulmonary system is lined by an epithelium which acts as 

a protective barrier to exogenous materials.  Moreover, this epithelium is protected 

by a fluid layer that lines the respiratory tract and serves to both neutralize soluble 

components and trap insoluble components for their successive degradation and/or 

removal.  This epithelial lining fluid (ELF) consists of 2 component layers: 1) an 

upper layer comprised of mucous, and 2) a lower aqueous layer containing 

biologically active small molecules, proteins, and ions (Mudway and Kelly, 2000).   

The ELF is a highly important protective barrier that impedes the interaction of 

xenobiotics with the underlying epithelium.  In fact, the ELF is the first and primary 

barrier encountered by air pollutants as they enter the pulmonary system.  The 

upper, gel-like, mucous layer of the ELF floats above the lower aqueous layer, and is 

continuously moving in an upward direction within the respiratory tract via the action 

of epithelial cilia in a mechanism known as mucociliary clearance (Nicod, 2005; 

Samet and Cheng, 2004). Mucociliary clearance aids in protecting the pulmonary 

system by removing insoluble and biologically active components, such as PM, 

bacteria, and molds, that become trapped in the mucous as air is inhaled.   

Exogenous compounds that make it past the mucosal layer must then interact 

with the lower aqueous layer prior to reaching the underlying epithelium. The 

aqueous layer of the ELF is equipped for detoxification of xenobiotics by the 
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presence of key “antioxidant” compounds, including relatively high levels of reduced 

glutathione, urate, ascorbate (vitamin C), and α-tocopherol (vitamin E), which have 

been demonstrated to be protective against various adverse effects of air pollutants 

(Mudway and Kelly, 2000; Ciencewicki et al., 2008).  The presence of antioxidants is 

especially helpful since it is believed that oxidative stress is a key feature in the 

mechanism of action for many inhaled xenobiotics, including O3.   

As an additional defense, the lungs also have a robust immune and 

inflammatory response to exogenous insult.  This is especially critical for the lower 

airways and alveolar regions since the ELF is generally thickest at the tracheal end 

and thins progressively toward the alveoli (Nicod, 2005; Patton, 1996).  In the 

alveoli, immune cells, such as macrophages, provide additional protection against 

inhaled microorganisms and PM (Maynard and Howard, 1999).  Upon activation, 

macrophages act quickly to destroy and/or remove potential pathogens.  This is 

accomplished through several mechanisms including direct oxidative attack, 

phagocytosis, and cytokine/chemokine-mediated inflammatory response (Lohmann-

Matthes et al, 1994).  Macrophages that have engulfed particles and 

microorganisms can be removed by the mucociliary escalator, or by migrating to 

local lymph nodes for organized immune destruction. 

Unlike other vital organs, due to its very nature the lungs must interface 

directly with the external environment, creating a vulnerable interface that enhances 

potential for localized cellular damage. Of all the components of the pulmonary 

system, the lung epithelia are arguably most vulnerable to the adverse effects of air 
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pollutant exposure.  This is especially true since the lung epithelium is the first 

cellular barrier reached once exogenous materials make it past primary defenses in 

the ELF, mucociliary clearance, and/or local immune cells.  Respiratory epithelial 

cells are equipped to resist the adverse effects of air pollutants.  These cells have 

been reported to have millimolar concentrations of reduced glutathione (GSH) as 

well as robust expression of key protective enzymes including glutathione 

peroxidases, glutathione-s-transferases, glutathione reductase, catalase, superoxide 

dismutase, hemeoxygenase 1, and γ-glutamyl cysteine synthetase to name a few 

(Rubio et al., 2010; Kelly 2003).  All of which are capable of being upregulated via 

activation of the Nrf2 pathway and the antioxidant response element (ARE) (Lewis et 

al, 2010). 

Over the course of studying lung epithelial responses to air pollution, several 

models have been used to elucidate mechanistic pathways.  Fully differentiated 

cultures of primary human airway epithelial cells (HAEC), grown on air-liquid 

interface (ALI), offer responses that are most similar to those of the respiratory 

epithelium, and therefore remain the gold standard for in vitro assessments.  

However, these cultures are not always the most practical tools for the following 

reasons:  1) the scarcity of primary HAEC, 2) the amount of time needed to fully 

differentiate these cells, 3) the specialized growing conditions needed to maintain 

these cultures, 4) limitations in the length of time each culture can be passaged, and 

5) heterogeneity in the genetic makeup of cell donors that may contribute to 

experimental variability in situations where cells from the same individual cannot be 

used throughout a study.  Similarly, undifferentiated primary cultures have also 



13 

 

proven to be just as useful, but limitations regarding the number of passages that 

these cells can be carried can discourage their use.  Given these limitations, in 

1988, a group at the National Cancer Institute reported the stable transformation of 

human bronchial epithelial cells using an SV-40 adenoviral transduction (Reddel et 

al., 1988).  The resulting immortalized cell line, BEAS-2B, was characterized and 

found to have retained common features of the normal human bronchial epithelial 

cells (NHBE) from which they were created.  Since then, BEAS-2B cells have 

become an accepted model for assessing the responses of normal human bronchial 

epithelial cells while maintaining the proliferative capacity of an immortalized cell 

line. 

 

1.5 Air Pollutants, Oxidative Stress, and Inflammation 

The lungs undergo continuous exposure to both endogenous and exogenous 

sources of oxidation.  At its simplest, the pulmonary system was designed to 

unremittingly exchange oxygen and carbon dioxide, a situation that itself could 

potentially cause an oxidative tension within the lung. Although gaseous and 

particulate air pollutants each have their individual mechanisms of action, most 

common pollutants, such as O3 and combustion derived PM, are themselves potent 

oxidants and are believed to cause their adverse effects through an oxidative 

mechanism (Rubio et al., 2010; Brunekreef and Holgate, 2002).  Upon inhalation, 

ozone and PM have each been demonstrated to cause adverse pulmonary and 

cardiovascular effects, primarily through oxidative damage and/or (pro)inflammatory 
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mechanisms.  For PM, this is largely due to the physicochemical factors mentioned 

earlier: the overall composition, size, number, and surface properties (Kelly 2003).  

Moreover, the presence of metals and organic hydrocarbons on the surface of 

combustion-derived PM, such as diesel exhaust particles (DEP), have been 

demonstrated to be major contributors to PM-induced oxidative damage via the 

generation of reactive species (Kampa and Castanas, 2008; Cheng et al., 2012; 

Curtis et al., 2006; Yang and Omaye, 2009; Samet et al., 1998).  Ozone, on the 

other hand, is a potent oxidizing gas that is capable of causing oxidative damage by 

directly attacking various biomolecules, or through the indirect generation of 

secondary and tertiary byproducts (Olivieri and Scoditti, 2005).   

According to the most accepted definition, oxidative stress occurs when an 

imbalance in the production of reactive species and free radicals exceeds the 

capacity of cellular mechanisms to avoid or correct oxidative damage (adapted from 

Wamelink et al., 2008). Although reactive nitrogen species (RNS) have also been 

implicated, non-radical reactive oxygen species (ROS) and free radicals are most 

frequently cited as direct mediators of air pollutant-induced oxidative stress (Jones 

2008).  Moreover, air pollutant-induced ROS are believed to cause sustainable 

damage by overwhelming antioxidant defenses of the lung (Kelly 2003).  In the 

proposed mechanism of action, the ensuing “oxidative stress” then drives reactions 

in which ROS are able to interact with important biomolecules, including proteins, 

lipids, and nucleic acids, leading to several pathological outcomes often involving 

aspects of tissue injury and inflammation (Kelly 2003; Ciencewicki et al., 2008).  This 

leads to the onset or exacerbation of common pulmonary diseases such as acute 
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lung injury, asthma, COPD, emphysema, and cancer (Yang and Omaye, 2009). In 

Figure 1.5.1 A and B, Frank Kelly visually depicts oxidative stress as an imbalance 

between antioxidants and free radicals (A), while Ciencewicki and colleagues 

highlight several mechanisms leading to the adverse health effects caused by air 

pollutant-induced oxidative stress (B). (Kelly, 2003; Ciencewicki et al., 2008).  

Common ROS and free radicals resultant from air pollutant interaction with 

lung components include: hydrogen peroxide, superoxide anion, and the hydroxyl 

radical.  Such reactive species interact with antioxidant and non-antioxidants 

components found in the ELF and underlying epithelium.  Under sustained exposure 

conditions, interaction of ROS with antioxidant components like GSH results in 

depletion of antioxidant defenses, promoting oxidative damage.  In addition, 

interaction of ROS with non-antioxidant components, such as proteins and lipids, 

leads to the generation of secondary oxidation products such as protein adducts and 

lipid peroxides (Kelly 2003).  The resulting oxidative damage adversely impacts the 

lung epithelium and resident immune cells, causing elevations in 

cytokine/chemokine and adhesion molecule expression, as well as tight junction 

modification, which all promote influx of inflammatory cells (Kelly 2003).  Collectively 

these events increase lung permeability, which in return enables the onset of 

pulmonary edema.  Importantly, the invasion of activated inflammatory cells likely 

exacerbates air pollution-induced oxidative stress, since these cells use direct 

oxidative attack via the generation of ROS, such as superoxide, which contributes to 

damage of surrounding tissue when not focused on a particular biological pathogen 

(Ciencewicki et al., 2008; Kelly 2003). 
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A) 

  

B) 

 

 Figure 1.5.1 Oxidative Stress and outcomes related. A) oxidative 

stress as an imbalance between antioxidants and free radicals (Kelly, 
2003). B) Mechanisms of air pollutant-induced oxidative stress 

(Cienciwicki et al, 2008). 
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In general, the influx of immune cells to a particular area of injury is often 

associated with inflammation.  Both O3 and PM have been observed to cause 

increased expression of proinflammatory cytokines including interleukin-6 (IL-6), 

interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) (Devlin et al., 1994; Stone 

et al., 2007; Ovrevik et al., 2009).  Moreover, these pollutants have been 

demonstrated to increase the expression of proinflammatory proteins through 

activation of signaling cascades.  Inflammatory transcriptional responses to oxidative 

stress have been demonstrated to involve multiple pathways and transcription 

factors including: Mitogen-Activated Protein Kinases (MAPK), p53, Nuclear Factor 

kB (NF-kB), and Activator Protein 1 (AP-1) (Liu and Sun, 2010; Ma 2010; Veranth et 

al., 2007; Tal et al., 2010). Of these, the transcription factors NF-kB and AP-1 

appear to play the most significant roles in mitigating the inflammatory responses 

induced by air pollution-related oxidative stress (Karin et al., 2001).  In brief, NF-kB 

regulates many genes related to inflammatory response (cytokine/chemokines), cell 

proliferation/death, immune function and synaptic plasticity, while AP-1 regulates 

redox sensitive signaling pathways, MAP kinases, and activation of inflammatory 

mediator gene expression (Stone et al., 2007). More importantly, both of these 

transcription factors are known to be activated by oxidative stress, and mediators 

used in their activation appear to be redox-sensitive (Li et al., 2008; Vagaggini et al., 

2010; Liu and Sun, 2010; Ma 2010; Xia et al., 2006) 

Continued exposure to air pollution-induced oxidative stress is capable of 

promoting enhanced expression of critical antioxidants and adaptive genes.  

Activation of AREs (also known as the Electrophile Response Element, EpRE) 
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through the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway most frequently 

originates these types of responses.  In short, upon oxidant and electrophilic 

activation, Nrf2 is released from its inhibitory protein, Keap-1 (Kelch ECH 

Associating Protein-1), freeing it to translocate to the nucleus where it transactivates 

genes that enhance cell survival.  Nrf2 is reported to regulate more than 200 

“cytoprotective” genes, making it a robust response mechanism for cellular 

protection and detoxification of endogenous and exogenous oxidants, electrophilic 

carcinogens, and oxidatively damaged proteins and organelles (Lewis et al., 2010).  

Upon oxidant-induced activation, Nrf2 promotes transcription of genes related to: 

antioxidant molecules, oxidant degrading enzymes, NADPH synthesis, membrane 

transport, inhibition of cytokine-mediated inflammation, DNA damage recognition, 

cell cycle/growth-related proteins, and proteome maintenance (Lewis et al., 2010; 

Cienciwicki et al., 2008; and Kensler et al., 2007). Often critical in counteracting the 

damage caused by oxidants, classes of “antioxidant” proteins inducible by Nrf2 

include ferritin, heme oxygenase-1 (HO-1), metallothionein, peroxiredoxin, 

sulfiredoxin, and thioredoxin (Lewis et al., 2010). More importantly, of all the 

transcriptional responses resultant from Nrf2 activation, the most important role of 

Nrf2 in response to oxidative stress is likely the regulation of glutathione synthesis 

and maintenance.   
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1.6 The Importance of Glutathione 

Reduced glutathione (GSH) is a biologically-active tripeptide consisting of 

glutamate, cysteine, and glycine (Kelly 1999). GSH is a critical reducing agent and 

potent antioxidant molecule found within all eukaryotic cell types in high, millimolar 

concentrations (Anathy et al., 2012; Meyer and Dick, 2010; Kelly 1999).  Most 

importantly, GSH has been characterized as the major redox buffer of cellular 

environments, and is physiologically required for cell survival (Anathy et al., 2012).  

The high concentration of GSH found within cells accounts for ≥ 90% of the total 

non-protein thiol (sulfur) content, making this compound a major component involved 

in the overall homeostasis of cellular redox (Anathy et al., 2012; Kelly 1999).  

Ultimately, maintenance of the intracellular reducing potential by GSH keeps other 

cellular components in a reduced state, which preserves their biological activity 

(Meister 1995).   

Being a major component of intracellular antioxidant systems, GSH is found 

in various cellular compartments including the cytosol, mitochondria, and nucleus.  

De novo synthesis of GSH, which is restricted to the cytosol in mammalian cells, 

consists of two successive steps: 1) glutamate and cysteine residues are conjugated 

via the action of γ-glutamyl cysteine synthetase (γ-GCS; also known as γ-glutamyl 

cysteine ligase, γ-GCL) creating the γ-glutamylcysteine intermediate; and 2) glycine 

is added to γ- glutamylcysteine by glutathione synthetase (Kelly 1999; Meister, 1995; 

Meyer and Dick, 2010).  The synthesis of GSH is tightly regulated by a feedback 

loop that inhibits γ-GCS activity with increasing concentrations of GSH. The 
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availability of cysteine combined with γ-GCS activity is considered to be the rate-

limiting substrate and step of GSH synthesis, respectively (Meister 1995).   

Unlike other tissues and organs, the lung maintains high GSH concentrations 

both inside and outside cells (Kelly 1999).  There are several imperative functions for 

GSH in relation to intracellular and extracellular environments.  These range from 

direct scavenging of ROS and free radicals; to support of peroxidases as a co-

substrate; to enzymatic and non-enzymatic conjugation of xenobiotics (Kelly, 1999).  

Many of these actions depend on the reactivity of the internal thiol group located 

within the cysteine residue of GSH. Interaction of GSH with oxidants, electrophiles, 

and catalytically-dependant enzymes requires oxidation of its thiol, often resulting in 

the formation of glutathione disulfide (GSSG) and other mixed disulfides (Anathy et 

al., 2012; Kelly, 1999).  In relation to cellular stresses, Dickinson and Forman (2002) 

best summarized the cascade of events to occur as follows: 1) the cellular thiol 

content, to which GSH contributes significantly, is consumed in detoxification 

reactions that protect the cellular environment; 2) barring any overt cytotoxicity, the 

thiol content is then recovered by either enzymatic reduction of disulfides or de novo 

synthesis; and 3) alterations in thiol content and metabolism will impact signaling 

pathways like those mentioned earlier.  This paradigm makes the participation of 

GSH, and other thiol-containing constituents, imperative in the mitigation of an 

ensuing oxidative stress. Cells spend relatively large amount of energy keeping 

glutathione in its reduced state, suggesting that the reductive maintenance of GSH is 

key in upholding the intracellular reducing potential (Anathy et al., 2012; Kelly 1999). 
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The glutathione system consists of a network of accessory proteins that utilize 

or maintain glutathione. These proteins include: glutathione reductase, glutathione 

peroxidase, glutaredoxin, and glutathione-S-transferase. Glutathione peroxidases 

(GPx) oxidize GSH to GSSG during enzymatic reduction of peroxides.  To date, 

eight GPx isoforms have been identified which vary in specificity for substrates as 

well as cellular and tissue location (Toppo et al., 2008; Burk and Hill, 2010). Of the 

eight GPx isoforms, five use selenocysteine in lieu of cysteine to reduce peroxides 

(Lu and Holmgren, 2009).  GPx specifically act in response to hydroperoxides, 

particularly H2O2 and lipid peroxides (LOOH), generated during oxidative events.  Of 

relevance to findings to be presented in this dissertation, GPx1 and GPx4, are both 

selenocysteine peroxidases that largely catalyze the degradation of H2O2 and 

phospholipid hydroperoxides, respectively (Lu and Holmgren, 2008).   

As GSH becomes oxidized to GSSG, the action of glutathione reductase (GR) 

reduces the disulfide back to GSH at the expense of NADPH, which is used as a 

reducing equivalent.  In this regard, GR is a critical component for maintaining the 

existing GSH pool in its reduced state, especially during periods of oxidative stress, 

as de novo synthesis would likely prove insufficient.  This also makes the 

participation of the pentose phosphate pathway (PPP) vital in mediating the effects 

of oxidative stress since it is the major mechanism by which NADPH is produced.  

Glutaredoxins (Grx) ultimately act as thiol transferases by mediating the 

reversible reduction of neighboring disulfide bonds to and from the glutathione pool 

and surrounding thiol-containing proteins (Fernandes and Holmgren, 2004). Grx 
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largely differ from thioredoxins in that they do not require enzyme-mediated 

reduction for their regeneration.  Under normal conditions, Grx catalyze the 

reduction of disulfides (de-glutathionylation) in target proteins, which ultimately leads 

to oxidation of GSH (Fernandes and Holmgren, 2004; Anathy et al., 2012).  

However, during oxidative stress this mechanism can be reversed resulting in the 

generation of protein mixed disulfides (PSSG), reflecting the oxidative status of the 

intracellular glutathione pool (Anathy et al., 2012).  Lastly, glutathione-S-transferases 

(GST) directly conjugate GSH to xenobiotic compounds to facilitate detoxification 

and elimination.  There are at least 7 classes of GSTs, and, most notably, the mu 

and pi isoforms possess genetic polymorphisms that have been linked to air 

pollution susceptibility (Wu et al., 2011; Auerbach and Hernandez, Ko and Hui, 

2010). 

  

1.7 Assessing Oxidative Stress and Associated Challenges  

The internal cellular environment is continuously undergoing physiologically 

relevant reductive and oxidative (redox) processes, which largely remain in 

equilibrium outside of externally applied signals (i.e. receptor activation, cellular 

communication, etc.). When disruption of this equilibrium occurs, such as during 

xenobiotic-induced generation of ROS, the intracellular redox environment shifts to 

an oxidative imbalance which, when sustained, leads to oxidative stress and 

adverse pathophysiological outcomes (Kelly, 2003).  An effort to elucidate the 

causes of pathological outcomes, and to devise appropriate countermeasures, 
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requires effective assessment of the earliest possible initiating events.  Oxidative 

stress mechanisms range from generation of ROS and other reactive species, to 

oxidative damage of biomolecules, to impairment of antioxidant defenses. To add to 

this complexity, the effects of oxidative stress are often reversible, and due to their 

reactivity, the reactive species generated are typically short-lived. All of these factors 

make assessment of a specific “oxidative stress” quite challenging since changes in 

the redox status of cells are not necessarily driven by the impairment of an individual 

component or the existence of a single oxidative species.   

Over the years, various methodologies have been devised to aid in making 

determinations of specific endpoints related to cellular redox status and oxidative 

stress.  In general, many “oxidative stress” assessments examine one or more of the 

following types of endpoints: 1) characterization of oxidative damage such as 

DNA/protein adducts and lipid by-products; 2) examination of reactive species 

(generation of specific ROS, RNS, or free radicals), and 3) measurement of 

antioxidant defenses such as glutathione, NADPH, and ascorbic acid. The results of 

these assessments are generated from a wide range of molecular biology and 

analytical chemistry techniques including enzymatic assays, gel mobility assays, 

chromatography, and NMR.  While the results of these tests may contain meaning, 

the assays used are typically flawed due to lack of specificity, lack of sensitivity, 

disruption of cellular compartments, and/or the unintentional generation of artifacts.  

For example, a typical assessment of NADPH oxidation via an enzymatic assay 

would provide reproducible data that gives an indication of the overall effect on the 

NADPH redox pair.  However, such an assay would require disruption of cellular 
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membranes, which contributes to loss of subcellular compartmental specificity while 

potentially contributing to the generation of oxidation artifacts. To overcome these 

limitations, many investigators have moved on to conducting live-cell experiments 

using fluorescent dyes that report the status of a cellular component or generation of 

a particular reactive species.  While this approach maintains cellular integrity, the 

limiting factor of these assays is typically the properties of the fluorescent reporter 

because most conventional dyes lack true specificity for their intended target.  For 

example, 2’,7’-dichlorodihydrofluoroscein has been well established for detection of 

H2O2 within cells; however, recent investigations have demonstrated the lack of 

specificity of this fluorophore as it also reacts to several other ROS/RNS including 

hydroxyl radicals, peroxynitrite, and nitric oxide (Chen et al., 2010; Gomes et al 

2005).   

To date there is no single measurement that is accepted to assess “oxidative 

stress” as a global characteristic.  Ideally, the penultimate tool used to determine 

oxidative stress would be a reporter robust enough to monitor multiple redox 

pairs/molecules simultaneously, while being sensitive enough to detect small 

initiating changes and maintain cellular integrity for observation of specific tissues or 

subcellular compartments that may be responsible for the changes in redox status. 

While such an ideal sensor does not currently exist, significant progress has been 

made towards development of more reliable biosensors. Of recent, our collaborators 

in the lab of Dr. Christopher Chang have developed small molecule probes that are 

highly specific and sensitive for a particular reactive species, such as H2O2 (Miller et 

al., 2007; Dickinson et al., 2010a). Furthermore, some versions of these dyes are 



25 

 

targetable to subcellular compartments, such as the mitochondria (Dickinson and 

Chang, 2008; Dickinson et al., 2010b).     

 

1.8 Live-Cell Imaging With Genetically-Encoded Fluorescent Reporters of 
Cellular Redox 

Since the discovery of green fluorescent protein (GFP), efforts have been 

made to utilize the genetic encoding of this biomolecule to create intracellular redox 

reporters (biosensors) capable of reporting intracellular conditions in living cells 

undergoing exogenous manipulation (i.e. live-cell microscopy).  There are several 

characteristics of GFP that make it attractive for usage as a redox reporter. These 

include: robust resistance to proteolytic activity, tolerance of structural manipulation, 

and stability in harsh cellular environments (Cannon and Remington, 2008).  Wild-

type GFP (wtGFP), originally isolated from Aequorea victoria, is comprised of 238 

amino acids arranged into an 11-stranded β-barrel that shields an internal α-helix 

(Dooley et al., 2004).  The fluorescent chromophore of this protein is located within 

the internally shielded α-helix, and is the result of spontaneous intramolecular 

cyclization of three amino acids, Ser65/Tyr66/Gly67 (Meyer and Dick, 2010; Cannon 

and Remington, 2008). Furthermore, the remarkable stability of this fluorophore is 

integral to the preservation of its fluorescent properties, as the fluorescence of GFP 

is extinguished when the protein is unfolded or when its chromophore is improperly 

shielded (Cannon and Remington, 2008).   
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More recently, mutagenesis experimentation has led to improvement upon 

the fluorescent properties of GFP.  Most notably, a serine to threonine mutation at 

position 65 yielded a GFP variant that offers enhanced fluorescent intensity and 

greater compatibility with commonly used laser excitation wavelengths (Meyer and 

Dick, 2010).  This variant is commonly known as enhanced GFP (eGFP).  

Importantly, despite genetic manipulation, the spectral properties of wtGFP and 

eGFP have been largely conserved.  Both wtGFP and eGFP have two excitation 

maxima at ~400 nm and 475-490 nm.  Emission of this fluorophore at either 

excitation wavelength occurs at 510 nm (Meyer and Dick, 2010). Spectral and 

structural properties of GFP can be further altered via additional site-directed 

mutagenesis that leads to numerous outcomes, including changes in the emission 

wavelength (color changes) and even “super-folder” capabilities that further stabilize 

the protein’s structure (Zhang et al., 2002; Pedelacq et al., 2006) 

Currently, several examples of GFP-based, genetically-encoded redox 

reporters exist which range in their ability to detect changes in specific redox 

couples, such as GSH/GSSG, or changes in specific ROS, such as H2O2 (Meyer 

and Dick, 2010).  These probes have distinct advantages over conventional 

fluorescent dyes in that they are highly sensitive and specific while being targetable 

to predetermined subcellular locations.  Also, genetically-based probes provide a 

noninvasive means to monitor redox-related cellular responses to various 

experimental conditions which can be monitored in real-time using current live-cell 

imaging techniques (Cannon and Remington, 2008). This greatly improves temporal 

and spatial resolution related to observation of oxidative stress-induced redox 
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changes. The following sections describe two examples of protein-based reporters, 

roGFP and HyPer, both used in experiments described in this dissertation. 

 

1.8.1 roGFP 

Redox-sensitive green fluorescent protein (roGFP) is a variant of GFP 

engineered for monitoring the thiol-disulfide equilibrium, a major determinant of 

oxidative status.  In brief, this biosensor was derived by engineering two surface 

exposed vicinal cysteines into neighboring strands, 7 and 10, on the β-barrel of GFP.  

Strands 7 and 10 of the β-barrel are located close to the chromophore responsible 

for the protein’s fluorescent properties.  The specific location of the cysteine  

modifications within the β-barrel depends on the roGFP variant being examined.   

Originally, 6 variants of roGFP were developed and tested, with two variants, 

roGFP1 and roGFP2, being the best characterized. Both roGFP 1 & 2 have cysteine 

residues inserted at positions 147 and 204, replacing serine and glutamine residues, 

respectively (Cannon and Remington, 2008; Dooley et al., 2004).  Figure 1.8.1.1 

demonstrates the structure of roGFP as well as the positioning of the cysteine 

mutations. The major difference separating roGFP 1 & 2 is the GFP backbone used 

to make the cysteine modifications.  roGFP1 was developed from wtGFP while 

roGFP2 was created from eGFP.  The use of eGFP as the basis for roGFP2 offers 

several benefits over the wtGFP of roGFP1, including: enhanced fluorescent 

intensity, increased dynamic range, resistance to photoswitching (redox-independent 

changes in fluorescent excitation), and greater compatibility with commonly used 
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laser excitation wavelengths (Schwarzländer et al, 2008; Meyer and Dick, 2010, 

Hanson et al., 2004).   

 

 Figure 1.8.1.1 roGFP structure and function. (Hanson et al, 2004) 
A) Key structural alterations within the β-barrel of roGFP2.  B) roGFP2 

engineered cysteine interactions under oxidized (top) and reduced 
(bottom) conditions 
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The engineered cysteine residues within roGFP contain thiols that are critical 

in the function of this redox reporter. Upon oxidizing conditions, a disulfide bridge is 

formed between the thiol groups of the two engineered cysteines, causing a change 

in the emission intensity of the fluorophore at each excitation of its two maxima.  The 

dual-excitation/single-emission spectral characteristics of GFP allow for ratiometric 

measurements by roGFP variants.  Ratiometry is an important property of any redox 

reporter because it reduces or eliminates measurement errors resultant from 

inconsistencies in fluorophore concentration, illumination intensity, and specimen 

thickness (Cannon and Remington, 2008). Traditionally, ratiometric measurements 

are accomplished by independently monitoring the emissions of each excitation 

wavelength, and then using the emission from one excitation wavelength to 

normalize the intensity changes observed at the other excitation.  During oxidation of 

roGFP, excitation at 405 nm causes increases the intensity of the emitted 

fluorescence intensity while the opposite change in intensity occurs during 488 nm 

excitation. In practice, the final emission intensity is expressed as a ratio of 405/488.  

The most important feature of roGFP is that it has been demonstrated to 

specifically report the redox status of the GSH/GSSG redox pair, which as discussed 

earlier is the major redox pair in the cell. (Gutscher et al., 2008; Meyer and Dick 

2010).   The mechanism of this interaction can be described as follows: 1) GPx 

oxidizes GSH to GSSG in response to peroxides, including H2O2 and lipid 

hydroperoxides (LOOH), thus increasing the glutathione redox potential (EGSH); 2) In 

response to the increase in GSSG, one of the engineered vicinal cysteines of 

roGFP2 becomes S-glutathionylated by Grx; 3) Glutathionylation in turn causes 
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disulfide bond formation and alteration of the spectral properties of the GFP 

fluorophore (Meyer and Dick, 2010).  As with any dynamic reporter of redox 

conditions, the changes in fluorescence intensity of roGFP are reversible.  During 

recovery, Grx catalyzes the reduction of roGFP disulfide bonds through 

deglutathionylation as GSSG levels decrease and normal levels of GSH are 

reestablished by GR, at the expense of NADPH. Thus, the ensuing reduction causes 

a renormalization of EGSH as GSSG levels decrease, and the baseline ratio of 

GSH/GSSG is restored (Meyer and Dick 2010).   

 

1.8.2 HyPer 

HyPer is a genetically-encoded fluorescent reporter designed for the specific 

detection of intracellular H2O2 (Belousov et al., 2006; Meyer and Dick, 2010).  The 

specificity of this fluorophore comes from incorporation of the OxyR regulatory 

domain into the structure of yellow fluorescent protein (YFP).  As reported by 

Belousov and colleagues, OxyR is a prokaryotic stress-response transcription factor 

that specifically responds to the presence of H2O2 (2006).  Moreover, in E. coli, 

OxyR is reported to control the expression of nearly 40 genes meant to intervene in 

H2O2-mediated toxicity (Chiang and Schellhorn, 2012).  Within prokaryotes, OxyR is 

a 305 amino acid polypeptide comprised of two domains: 1) a regulatory domain 

(RD) that is responsive to H2O2, and 2) a DNA-binding domain used to activate 

transcription of cytoprotective genes (Belousov et al., 2006; Christman et al., 1989).  

In the presence of H2O2, the active site of the OxyR regulatory domain becomes 
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hydroxylated to form a cysteine sulfenic acid at position 199.  The resulting sulfenic 

acid then forms an intramolecular disulfide bond with a neighboring cysteine at 

position 208 which creates a conformational change that activates the protein 

(Meyer and Dick, 2010).    

HyPer was created by inserting circularly permuted YFP (cpYFP) into the 

regulatory domain of OxyR obtained from E. coli at positions 205 and 206 (Belousov 

et al., 2006; Meyer and Dick, 2010).  The resulting chimeric protein is a fluorescent 

reporter of H2O2 via the thiol redox state of the OxyR domain.  cpYFP is ultimately a 

variant of GFP, which makes HyPer a ratiometric sensor with two excitation maxima 

at 420 nm and 500 nm and a single emission  maximum at 516 nm (Belousov et al., 

2006). As HyPer detects H2O2, a disulfide bond forms in the OxyR region of the 

protein resulting in a conformational change that directly relates to a ratiometric shift 

in the two excitation maxima of this reporter (Meyer and Dick, 2010).  This leads to 

an increase in the fluorescence intensity at 500 nm excitation while the intensity at 

420 nm decreases as the probe is oxidized by H2O2.  Once calculated, the final 

emission intensity is usually expressed as the ratio of values produced by 500/420 

excitation.   

 

1.9 Conclusions, Hypothesis, and Specific Aims 

Human exposure to gaseous and particulate air pollution is associated with 

elevated rates of morbidity and mortality.  Given that inhalation is the primary route 

of exposure to air pollutants, the cells of the airway epithelium are a major target for 
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many of the toxicological effects of air pollution exposure.  The composition of air 

pollution ranges from well-defined gases, to highly complex mixtures of organic and 

inorganic compounds that comprise PM.  Of recent, the recognition of NP as 

important constituents of PM has added to this complexity, identifying new 

knowledge gaps concerning the impact of cellular interaction with NP.  As is the 

case with pollutants of other environmental media, oxidative stress has repeatedly 

been implicated as a critical feature of the mechanism of action of air pollutants.  

Specifically, oxidative stress has been implicated as an important mechanism by 

which PM exerts adverse effects.  Among the gaseous air pollutants, ozone is a 

highly reactive oxidant gas that remains a major component of air pollution in many 

urban areas.  While the direct effects of ozone on biological systems have been 

fairly well characterized, there are significant informational deficits in regards to the 

specific oxidative effects of ozone.  Thus, it is the overall hypothesis of this 

dissertation that the initiating oxidative events, which influence the downstream 

adverse pulmonary effects from particulate and gaseous exposures, can be studied 

in HAEC with high temporal and spatial resolution using live-cell molecular imaging 

approaches. 

Oxidative stress has been demonstrated to be an important component in the 

toxicity of many air pollutants, including ozone and various types of PM. However, 

the specific mechanisms involved in air pollutant-induced oxidative stress remain 

undetermined.  Elucidation of key oxidative events/components is critical in 

understanding the mechanisms involved in air pollutant-induced oxidative stress in 

HAEC.  Moreover, real-time observation of oxidative effects resulting from HAEC 
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exposure to gaseous and particulate air pollutants in live-cell studies will expand the 

experimental evidence pertaining to the role of oxidative stress in cellular 

susceptibility to air pollution.  Given the transient nature of oxidative events, direct 

fluorescence detection of ROS and redox potential via live-cell imaging using 

dynamic biosensors is an especially effective means of observing these very short-

lived molecules/changes.  Application of newly devised live-cell imaging 

methodologies, combined with the use of molecular probes capable of 1) assessing 

changes in intracellular redox status and 2) monitoring levels of intracellular ROS, 

should aid in the examination of oxidative stress endpoints with high temporal and 

spatial resolution.  Additionally, these molecular probes are targetable to specific 

cellular compartments, which will aid in pinpointing intracellular targets for oxidative 

damage as well as determination of cellular responses to changes in oxidative 

stress. 

The hypothesis of this dissertation is addressed with three specific goals: 1) 

Develop and implement imaging methodologies for the investigation of effects 

resulting from particulate and gaseous air pollutant exposure to HAEC; 2) Examine 

the factors driving oxidative stress responses to air pollution exposures in HAEC 

using live cell imaging methodologies; and 3) Examine factors affecting air pollution-

induced changes in intracellular redox status.  

  



 

 

Chapter 2 

Darkfield-Confocal Microscopy detection of nanoscale particle internalization 
by human lung cells1 

 

2.1 Introduction  

The recent proliferation of nanotechnology combined with concerns over the 

health effects of human exposure to ambient ultrafine particulate matter (UFP) have 

created a need for information on the toxicology of nanomaterials. Studies to date 

have made it apparent that the effects of nanomaterials cannot be safely 

extrapolated from the toxicological properties of larger-scaled materials of the same 

composition (Biswas and Wu, 2005; Hallok et al, 2009).   

Nano-scaled materials are generally defined as structures possessing at least 

one dimension that is 100 nm or less (Oberdörster et al, 2005a; Oberdörster et al, 

2005b). The small size and correspondingly large surface to mass ratio of 

nanomaterials are features which may alter their interactions with cells and tissues 

(Jefferson and Tilley, 1999; Tetley, 2007). Incidental human exposure to 

environmental nanomaterials most often occurs through the inhalation of ambient 

ultrafine particulate matter that is primarily produced during the combustion of fossil 

fuels (Harrison and Yin, 2000). Conversely, nanomaterials that are intentionally 

                                                 
1
 The findings of this chapter were published as follows:  Gibbs-Flournoy E, Bromberg P, Hofer T, 

Samet J, Zucker R. 2011. Darkfield-confocal microscopy detection of nanoscale particle 

internalization by human lung cells. Particle and Fibre Toxicology 8:2.  
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engineered are more commonly known as nanoparticles.  In this manuscript, the 

term nanoparticle (NP) will be used to refer to nano-scaled materials without regard 

to their origin and are considered to be under 100 nm in size.   

Relative to ingestion and dermal absorption, inhalation of NP may be the 

most likely route of human exposure. The small size of NPs not only allows them to 

become airborne easily, but promotes deposition in the deep lung as well (Biswas 

and Wu, 2005).  Indeed, inhaled UFP have been reported to be more potent in 

inducing adverse health effects than larger particles (Biswas and Wu 2005; 

Oberdörster et al, 2005a; Oberdörster et al, 1994; Nurkiewicz et al, 2008). Some 

studies have suggested that inhaled NP penetrate the respiratory epi thelial barrier 

and are distributed systemically to various organs and tissues, including the brain 

(Jefferson and Tilley, 1999; Oberdörster et al, 2004; Pui et al, 2008; Rothen-

Rutishauser, 2007).   

Imaging is a powerful technique for the study of cellular interactions with 

extracellular substrates, including particles (Geiser and Kreyling, 2010; Marquis et 

al, 2009). Many critically important toxicological processes, such as the mechanisms 

through which nanomaterials penetrate into cells, are best addressed using imaging 

approaches. However, with the exception of fluorescently tagged synthetic particles, 

the small size of nanoparticles puts them beyond the limit of detection of about 200 

nm using conventional bright-field light microscopy techniques. As an alternative, 

application of electron microscopy (EM) in NP studies has grown considerably in the 

past few years and remains the “gold standard” for many NP studies as this 
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technology can easily observe particles below 100 nm in size.  Unfortunately, EM is 

costly, labor intensive, limited to materials with sufficient electron density contrast, 

and primarily restricted to fixed specimens.   

Conventional darkfield (DF) microscopy is an illumination technique used in 

light microscopy to optimize differences in contrast by selectively capturing light 

scattered by the specimen. In brief, this is accomplished with the attachment of a 

specialized light condenser that uses a light stop comprised of an annulus with a 

narrow aperture to obliquely illuminate the specimen via a hollow cone of light 

(Murphy, 2001; Spencer M, 1982; Wayne R, 2009). Using a confocal microscope, 

the light illuminating the specimen is focused by the objective, and detected by a 

darkfield condenser. Essentially, these instruments use a reverse light path from 

normal DF applications for DF detection in confocal mode. Consistent with normal 

DF illumination, the blockage of centralized light results in DF-CLSM, reveals only 

structures of the specimen that are capable of scattering the oblique rays of light 

towards the objective are detected via this technique. DF detects light that is 

refracted, diffracted or reflected. This light scattering allows DF to detect extremely 

small structures, offering a potential light microscopy tool for the study of 

nanoparticles associated with cells. If a DF oil condenser with a 1.2-1.4 numerical 

aperture is used, it allows lenses with a higher numerical aperture to also be used 

which diminishes resolution losses in the microscope. However, the numerical 

aperture of the lens must be slightly below that of the numerical aperture of the 

condenser for DF to work. Previous studies have used DF imaging to observe NP 

(Craig et al, 2010; Murdock et al, 2008; Skebo et al, 2007; Zucker et al, 2010; Heidi 



37 

 

and Byron, 2009; Xiao et al, 2010). Largely, these studies have been limited by 

visualizing NP in only a single 2D plane instead of producing a 3D image as 

presented in this communication.  

In the present study, we show that the capability of DF to detect nanoparticles 

that can be effectively interfaced with a confocal laser scanning microscope (CLSM) 

to spatially localize nanoparticles along the z-axis of the cell, thereby permitting a 

determination as to whether nanoparticles are associated with the cell surface or 

within the cell. This communication reports the novel integration of DF and CLSM 

microscopy and its utilization in the measurement of nano-particle uptake and 

localization relative to intracellular organelles and the nucleus in cultured human 

lung cells.   
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2.2 Methods 

2.2.1 Materials and Reagents 

Green fluorescent 6.5 µm, 2.0 µm, 0.5 µm, 140 nm, 100 nm, and 50 nm 

polystyrene spheres (beads) were acquired from Polysciences Inc. (Warrington, PA) 

and Bangs Laboratories Inc. (Fishers, IN).  Titanium dioxide nanoparticles with an 

average diameter of 27 nm were obtained from Degussa (Aeroxide TiO2, 

Parsippany, NJ).  HCS Cell Mask Blue (H32720) and Prolong Gold Antifade 

Reagent with and without DAPI (P36934 and P36935) were purchased from 

Invitrogen (Molecular Probes, Eugene, OR).  First Contact cleaning polymer was 

obtained from Photonic Cleaning Technologies (Platteville, WI). 

2.2.2 Specimen Preparation  

Slide cleaning:  A slide cleaning protocol was devised to minimize the 

presence of unwanted background debris detectable by darkfield microscopy (Bonin 

and Bonissi, 2009; Waterman-Storer, 2001).  New “pre-cleaned” microscope slides 

(Fisher Scientific, Pittsburgh, PA) were subjected to additional cleaning by wiping 

them using ammonia based glass cleaner and lens paper.  As the slides were wiped, 

they were placed into a slide rack taking care to provide even spacing between each 

slide.  Next, the slide rack was placed into a lidded vessel large enough to fully 

submerge the slides and washed successively in the following solutions: 1) 1:5 

dilution of ammonia based glass cleaner in deionized water (dH20), 2) deionized 

water, and 3) 70% ethanol.  Importantly, for each wash step, the lidded vessel 

containing the slides was placed in a bath sonicator and the entire apparatus was 
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sonicated for 30 minutes in each wash solution.  Washed slides were stored in 70% 

ethanol until needed. Just prior to coverslip mounting, a slide was removed from the 

70% ethanol, briefly rinsed in 100% ethanol and allowed to air dry for approximately 

five minutes.  Lastly, to further aid in the removal of slide debris, the specimen area 

of the slide was painted with a commercially available cleaning polymer (First 

Contact), allowed to cure for a minimum of 15 minutes, and peeled off immediately 

before mounting coverslips.  All reagents used to wash slides were filtered using 

0.22 µm filters.  All steps in which the slides were exposed to air (i.e. removal from 

the various wash solutions) were carried out in a biological hood to minimize 

contamination with airborne debris.  Use of this slide cleaning procedure produced 

slides that were relatively free of debris detectable by darkfield microscopy. 

Fluorescent Polystyrene Beads: Suspensions of 50 nm, 100 nm, 140 nm 500 

nm, 2 µm, and 6.5 µm Fluorescent polystyrene beads (Polysciences, Warrington, 

PA) were prepared in dH2O and directly applied to freshly cleaned glass slides.  

Following a drying time of 15 to 20 minutes, #1.5 coverslips were mounted onto the 

slides using Prolong Gold Antifade Reagent.  

 

2.2.3 Cell Culture and Exposure 

Transformed human airway epithelial cells (BEAS-2B, subclone S6; (Reddel 

et al, 1988) were cultured as described previously (Tal et al, 2010) and maintained in 

serum-free KGM (Lonza, Walkersville, MD).  The cells were incubated in a 

humidified incubator at 37◦C in 5% CO2.  For fixed cell studies, cells were sparsely 
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plated (≤ 1.5 x 106 cells/well) on 12 mm, #1.5 coverslips located in 6-well culture 

dishes and allowed to grow for one day prior to exposure.  At the time of exposure, 

media was removed from the cell cultures and 2 ml of a freshly prepared 

homogeneous suspension of 27 nm TiO2 was applied immediately.  Cells were 

typically exposed for either 5 minutes or 2 hours (120 minutes) prior to washing and 

fixation. Pulsed exposures involved continuous exposure for 5 minutes followed by 

removal of exposure media, a brief wash using KGM, and incubation in fresh, 

particle free, media for an additional 115 min.  After exposure, cells were washed 

twice in 1X Dulbecco’s Phosphate Buffered Saline (PBS, Gibco, Grand Island, NY) 

and then fixed in 4% paraformaldehyde (PF) made up in PBS and stained. 

Titanium dioxide Preparation:  For each cell exposure experiment, a fresh stock 

solution of 27 nm TiO2 was prepared by resuspending 1 mg of dry particles in 1 ml of 

sterile dH2O.  This solution was then sonicated for 30 seconds using a temperature-

controlled cup-horn sonicator (Fisher Scientific, Pittsburgh, PA).  The TiO2 particles 

were further diluted to their final concentration of 0.5 or 2.5 µg/ml using Keratinocyte 

Growth Medium (KGM).  Just prior to cell exposure, these particle suspensions were 

sonicated again for 30 seconds and then immediately applied to 6-well dishes that 

contained 12 mm cover slips.   

2.2.4 Cell Fixation, Staining, and Mounting 

Following NP exposure, cells were thoroughly washed in PBS, and fixed for 

approximately 30-60 minutes using 1 ml of 4% paraformaldehyde per well.  After 

fixation, cells were stained using HCS Cell Mask Blue (CMB) as a cytoplasmic stain 
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or 4',6-diamidino-2-phenylindole (DAPI) for nuclear staining.  Staining using CMB 

was done as an adaptation of the procedure provided by the manufacturer.  Briefly, 

1 ml of 0.1 µg/ml CMB in 1X PBS was added to each well and allowed to incubate 

overnight at room temperature.  The next morning, cells were washed in 1X PBS 

followed by a final rinse in dH2O.  Lastly, the coverslips from each well were 

mounted on newly cleaned slides using Prolong Gold Antifade Reagent.  In 

experiments where DAPI staining was performed, cells were mounted using Prolong 

Gold Antifade Reagent with DAPI in lieu of overnight staining.    

2.2.5 Confocal Microscopy Quality Assurance (QA) 

The confocal microscope, lenses and optical components utilized in this study 

were evaluated for QA using the procedures described by Zucker and Zucker et al. 

(Taatjes et al, 2006; Zucker, 2006a-c; Zucker et al, 2007). Briefly, colocalization was 

examined using PSF beads, and field illumination and laser powers were monitored.  

In the Nikon confocal system, laser fluorescence colocalization was present between 

the 488 and 561 lines, while the 404 showed a z axis spectral shift with the other 2 

visible wavelengths (488 nm and 561 nm) and was not colocalized. This lack of 

colocalization of UV and visible laser light with the Nikon C1Si is quite typical of 

confocal microscopes from all manufacturers.  

2.2.6 Simultaneous DF and CLSM 

In conventional DF microscopy, light travels through a DF condenser with a 

numerical aperture that is higher than that of the objective lens. The light illuminates 

the sample and is detected by an objective with a lower numerical aperture than that 
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of the condenser. It is useful to have an iris in the lens to accurately and ideally 

control the numerical aperture of the objective and the amount of scattered light 

entering it. In the technique described here the conventional DF optical path has 

been reversed. The light is focused on the sample with a lens containing an iris, and 

then the scattered light is detected with a transmitted light detector. The numerical 

aperture of the objective must be below the numerical aperture of the condenser for 

DF to work (Figure 2.2.6.1).  
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Figure 2.2.6.1 Schematic diagram of an inverted confocal system 

equipped for simultaneous fluorescence and darkfield imaging. In 

this example, source laser light (Blue) is focused on the specimen for 

fluorescence excitation. Fluorescence light emitted by the specimen 

(Green) is collected by the objective in a conventional CLSM manner. 

The darkfield condenser collects the scattered light. The numerical 

aperture of the objective is adjusted using the iris diaphragm to allow 

only excitation source light that is scattered by the specimen to reach 

the transmitted light detector (TD).  
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Imaging was carried out on two different configurations of confocal 

microscopes from Nikon and Leica. 1) A Nikon Eclipse C1si Spectral Confocal 

imaging system (Nikon Instruments Corporation, Melville, NY) equipped with an oil 

immersion Darkfield condenser (numerical aperture = 1.2 − 1.43) and 404 nm, 488 

nm, 561 nm, and 633 nm lasers served as the primary means for experimental 

analysis. Specimens were observed via an Eclipse Ti microscope using either a 60x 

or 100x Plan Fluor oil immersion objective lens with adjustable iris permitting an 

numerical aperture ranging from 0.5 to 1.25.  DF images were acquired via a 

transmission detector (TD). For fluorescence excitation, a conventional confocal 

optical path is maintained in which laser light originating from the objective lens is 

focused onto the specimen and then collected through the objective lens, 

Fluorescent light is then passed through an aperture (pinhole), and focused onto a 

detector consisting of a photomultiplier tube (PMT) tuned to detect specific 

wavelengths of light.  Transmitted light detection of darkfield images begins with 

illumination by the same laser light originating from the objective lens.  An occluding 

disc built into the darkfield condenser above the specimen blocks incoming light 

travelling on a direct path from the source but collects light scattered by the 

specimen and allows it to reach a transmission detector coupled to a PMT capable 

of monitoring multiple wavelengths of light. It is essential to have the numerical 

aperture of the condenser to be greater than the numerical aperture of the objective 

lens. 2) The 2nd configuration was used to show the methodology is applicable on 

instrument from different manufacturers. A Leica DIRBE microscope with a dark field 

condenser, 1 mm condenser lens and Plan Apo 63x with an adjustable iris 
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diaphragm that was variable between 1.32 numerical aperture and 0.6 numerical 

aperture was employed. This system used a dry condenser, compared with the oil 

condenser from the Nikon system. The Leica system used a Plan Apo lens with an 

air condenser while the Nikon system used a Plan Fluor lens with an oil condenser. 

A higher numerical aperture with better resolution was achievable with the Nikon 

system due to the oil condenser. However this oil condenser is not applicable on all 

manufacturers’ inverted microscopes.  

DF-CLSM images of fluorescent polystyrene beads observed in the absence 

of cells were acquired under 404 nm and 488 nm laser illumination/excitation while 

images of TiO2 exposed cells were obtained primarily using 404 nm laser light for 

better resolution. Cellular and organelle-specific fluorescent stains were used to 

image the space in which the NP were localized.  Simultaneous fluorescent 

(Confocal) and transmission (Darkfield) imaging were performed for all two- and 

three-dimensional images acquired using this technique.  All images were collected 

using Nikon EZ-C1 software, and post-acquisitional processing was performed using 

the Nikon NIS-Elements AR software package. The confocal slice number 

corresponding to maximal light scatter intensity was taken as the location of the 

nanoparticle. Similarly, the slice at which maximal fluorescence intensity was 

observed was used to identify the location of the nucleus.  For statistical 

comparison, normalization of particle position relative to the nuclei of multiple cells 

was accomplished by subtracting the nuclear slice number from the particle slice 

number, dividing by the total number of slices, and multiplying by a factor of 100 to 

obtain the closest whole-number.  
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2.2.7 Statistical Analyses 

Pairwise comparisons were analyzed by the Wilcoxon’s signed rank test 

using GraphPad Prism statistical software (San Diego, CA); p<0.05 was considered 

significant.    
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2.3 Results  

2.3.1 DF-CLSM detection of nanoscale particles 

In order to validate the DF-CLSM approach to nanoparticle detection, we 

imaged various intrinsically fluorescent polystyrene spheres of known size, ranging 

from 50 nm to 6.5 µm in diameter. As demonstrated in Figure 2.3.1.1A, the DF and 

CLSM images of polystyrene spheres colocalized in the XY plane with discrete 

particles down to 100 nm in diameter using the 488 nm laser line for optimal 

fluorescence excitation. Preparations of 50 nm fluorescent particles showed weak 

fluorescence with 488 nm excitation, but could still be resolved as monomeric units 

by DF detection (Figure 2.3.1.1A). Figure 2.3.1.1B confirms colocalization of DF 

particle image with fluorescence image in all three spatial axes. These results 

demonstrated the feasibility of the DF-CLSM combination in detecting particles in the 

nano size range using transmitted light detector and correlating these transmitted 

light images (DF) to a specific fluorescence signal which was derived from the same 

laser source. Experiments using 3 laser lines revealed that colocalization of the 404 

nm, 488 nm and 561 nm excitation wavelengths was not attainable in the DF-CLSM 

optical path (Figure 2.3.1.1C). There was a z-axis distortion between 404 nm and 

remaining visible laser lines, as well as a lateral shift between the 561 nm and 488 

nm excitation lines. The co-localization problems were greater with NP than it was 

with micron and submicron particles.  
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Figure 2.3.1.1 Detection of fluorescent polystyrene spheres by co-

localized confocal and darkfield microscopy.  A. Fluorescent 

polystyrene beads of the indicated sizes were illuminated with 488 nm 

laser light.  Emitted particle fluorescence was detected using the 

confocal microscope in the green channel while scattered incident light 

collected by the darkfield condenser was simultaneously observed via 

the transmitted light detector.  For the 140 nm spheres, insets in the 
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lower left-hand corner show an enlarged area for clarity.  B. Three 

dimensional colocalization analysis of a 500 nm fluorescent 

polystyrene sphere imaged by DF-CLSM. The sphere shown was 

excited by 488 nm laser light while simultaneous monitoring for 

fluorescence and scattered light occurred via the green and 

transmitted light channels.  Each set of images shows the XY, XZ, and 

YZ orientation for the combined, green (CLSM), and transmission (DF) 

channels, respectively. The large crosshairs represent the same point 

in space across all the axial views. C. Variability in spatial localization 

of DF images obtained with multiple wavelengths of light.  Shown are 

10x pseudo-colored images of the same 27 nm TiO2 particle 

illuminated by 404 (Blue), 488 (Green), and 561 (Red) laser light.  

Each set of images depicts the X, Y, and Z orientation for the 

transmission (DF) channel. For the combined view, areas of overlap in 

the 488 and 561 excitations are observed in yellow.  The arrows 

represent the midpoint of the same particle illuminated at each 

wavelength, showing a small x,y lateral distortion between the 488 and 

561 nm excitation lines, while both the 488 and 561 have a much 

larger axial (z) dispersions from the 404 excitation line. Note the large 

separation between the blue excitation and the visible laser excitation 

lines. 60x Plan Fluor, Magnification 600x + 1, 5, or 10x zoom as 

designated. 

 

The use of multiline lasers including the 404 nm laser will yield significant 

axial distortion in the cellular localization of the particle. For these reasons, 

subsequent measurements made with DF-CLSM were restricted to single-line 

excitation or sequential multi-line acquisitions in the visible range with only one laser 

line being used to excite the DF signal.  As expected the shortest wavelength (404 

nm) was found to provide the best resolution and was used for high resolution work. 

However the 488 laser provides more functionality as it is compatible with a greater 

number of cellular probes.  
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We next evaluated the utility of the DF-CLSM approach in detecting 

nanoparticles associated with cells.  BEAS 2B cells were exposed to 27 nm TiO2 for 

2 hrs, fixed and imaged using DF-CLSM. Three-dimensional analysis of these cells 

stained with Cell Mask Blue (CMB) revealed the expected cellular morphology 

(Figure 2.3.1.2). Due to the lack of confocality, and the scattering of light in the DF 

light path, three-dimensional reconstruction depicts nanoparticles as elongated rod-

like structures whose longitudinal spread extends symmetrically through the slices of 

the z-stack. A typical fluorescent PSF (Point Spread Function) is not obtained in 

darkfield with the DF-CLSM method. When superimposed on the confocal image of 

the cell, the TiO2 nanoparticle rods appeared to localize through the body of the cell, 

suggesting that they are within the cells. The center of the nanoparticle can be 

determined by the position of maximum intensity in the cigar type image of the NP. 
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Figure 2.3.1.2 Darkfield(DF)/Confocal(CLSM) imaging of TiO2 

nano particles internalized by human bronchial epithelial cells. 

BEAS 2B cells were exposed to 27 nm TiO2 for 2 hours followed by 

fixation and staining with HCS Cell Mask-Blue to visualize the 

cytoplasm. Shown is a pseudo-colored side view taken along the Z-

axis of these cells. Particles appear as elongated structures due to the 

lack of confocality in the darkfield optical path.  The inset displays a top 

(XY) view of the same cells. Cells were excited using only the 404 

laser line while fluorescence was monitored using the blue channel.  

Magnification 1800x with a 3x zoom. 60x plan fluor objective 
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2.3.2 Examination of in vitro particle internalization using DF-CLSM  

We next undertook a series of experiments designed to measure particle 

internalization using DF-CLSM by exploiting the expectation that particle 

internalization is a time-dependent process. Figure 4 shows abridged galleries 

corresponding to representative slices from z-stack images for BEAS 2B cells 

exposed to 27 nm TiO2 for 5 or 120 min. After incubation, the cells were washed in 

PBS and fixed in a medium containing DAPI to stain the cell nucleus. Relative to the 

5 min time point, nanoparticles in cells exposed to TiO2 particles for 120 min were 

detected at slice numbers corresponding to deeper locations within the cell (Figure 

2.3.2.1), consistent with a time-dependent penetration of particles into the cell.  The 

actual position of the particle can be determined by the confocal slice that has the 

maximum intensity in the DF image.  
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Figure 2.3.2.1 Image galleries of BEAS cells exposed to 

nanoparticles for 5 and 120 min.  Shown are optical sections taken 

from a confocal z-stack of nuclear fluorescence with darkfield detection 

of NP. Results show time-dependent internalization of nanoparticle 

uptake by human bronchial epithelial cells imaged by Darkfield (DF) / 

Confocal (CLSM) microscopy. BEAS-2B cells were exposed to 27 nm 

TiO2 particles for 5 min (top gallery) or 120 min (bottom gallery), fixed 

and stained with DAPI. The nanoparticles (depicted as white) were 

located in slices above the blue nucleus at 5 min but were on the same 

sections as the nuclei at 120 min. Cells were excited using the 404 

laser line while fluorescence was monitored using the blue channel.  

Scale bar represents 2 µm.  Magnification 3000x with a  5x zoom. 
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In order to provide an empirical expression of nanoparticle penetration in the 

cell, scattered light and DAPI fluorescence intensities were plotted as a function of z-

stack slice number for BEAS cells exposed to TiO2 for 5 or 120 min (Figure 2.3.2.2). 

Following 5 min of exposure, the peak scatter intensity of a representative particle 

was found at a slice number located above the slice that corresponded with the peak 

fluorescence of the nucleus (Figure 2.3.2.2, panels A and B). In contrast, by 120 min 

of TiO2 nanoparticle exposure, the peak scatter intensity of a representative particle 

was found at a slice number that coincided with the location of the center of the 

nucleus (Figure 2.3.2.2, panels C and D). This shows that this technique can be 

used to measure the transport of particles though the cell.  
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Figure 2.3.2.2 Determination of nanoparticle location using the 

maximum intensity technique.  Scatter and fluorescence intensity 

plots through the z-axis of the entire cell volume are plotted for cells 

incubated with TiO2 for 5 min and 2 hr time points for both a selected 

particle of interest (circled in red) and the corresponding nucleus, 

respectively. Fluorescent and scatter light intensity values have been 

normalized to the same peak height for clarity. Scale bar represents 10 

µm. Magnification 3000x with a 5x zoom. 
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To further test this approach in a practical application, we compared the 

location of maximal particle scatter intensity relative to the nucleus in the z-axis for 

BEAS cells exposed to 27 nm TiO2 continuously for either 5 min, or “pulsed” for 5 

min followed by washing and an additional 115 min incubation in particle-free media 

prior to fixation (120 min-pulsed). The data were normalized for slice number and the 

slice in which the nucleus was centered was designated as zero. Similar to the 

results in Figure 2.3.2.2, a clear shift in the mean particle location inferred from 

maximal light scatter was observed between cells exposed to particles for the 5 and 

the 120 min-pulsed groups. Specifically, there was a time-dependent change in the 

location of the particle maximum intensity and presumed center away from the cell 

surface towards the nucleus and slide surface (Figure 2.3.2.3). Interestingly, the 120 

min-pulse cells showed particles clustered above, coincident with and below the 

nucleus center. This may reflect distinct intracellular paths established by the 

presence of the nucleus within a large fraction of the cell volume or may be due to in 

part to the variation in intracellular “z” volumes. These findings demonstrate that DF-

CLSM is useful to observe time-dependent NP transit within the cell.  
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Figure 2.3.2.3 Statistical analysis of mean particle location in cells 

exposed to 27 nm TiO2 for varying lengths of time.  Particle 

localization within the z-axis was taken as the optical section 

containing maximal intensity in the dark field channel, and is plotted 

relative to the section in which DAPI fluorescence was most intense 

(center of nucleus normalized to zero, depicted as horizontal blue bar).  

Within each group of particles, the black line illustrates an averaged 

(mean) particle location for the center of each particle, as detected 

using DF-CLSM. Note that at 120 min incubation the particles are 

located above, below and at the midpoint of the nucleus, suggesting 

variations in cell morphology and distinct transit paths. 
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2.4 Discussion  

While the use of NP in consumer products, industrial processes, and 

pharmaceutical applications continues to grow, knowledge of the impact of 

nanomaterials on human health remains limited (Yang et al, 2008). Compounding 

the challenge presented by the paucity of toxicological information on nanomaterials, 

investigators studying the biological effects of nanomaterials are faced with a 

number of unique challenges. Fundamental questions pertinent to the interaction 

between nanoparticles and the cell are best addressed with imaging studies. 

However, NP are usually not detectable by conventional light microscopy methods. 

In some instances, fluorescent nano materials (i.e., Q-dots) can be used with 

fluorescent microscopy. Darkfield microscopy can detect the presence of 

nanoparticles, but their location within the cell or on the surface of the cell cannot be 

determined with accuracy using a wide field microscope. The combination of 

darkfield and confocal microscopy described in this manuscript was developed in an 

effort to address some of these imaging challenges by bringing the strengths of two 

distinct light microscopy techniques (DF and CLSM) to study the interactions of cells 

with environmentally relevant NP.  

While confocal and wide-field fluorescence microscopy are commonly used to 

image synthetic nanoparticles tagged with fluorophores (e.g., Q-dots) evidence that 

particle surface chemistry plays a critical role in toxicity raises questions about the 

relevance of these materials as surrogates for “real world” nanoparticles (Meng et al, 

2009; Nel et al, 2009). Electron microscopy (EM) is usually thought of as the “gold 



59 

 

standard” for investigation of the biological impacts of nanomaterials.  Unfortunately, 

EM can be quite laborious and costly to employ.  Darkfield microscopy is essentially 

an illumination-based imaging technique used to enhance the contrast of specimens 

for increased visibility (Murphy, 2001; Spencer M, 1982; Wayne R, 2009; Chandler 

and Roberson, 2009).  Confocal microscopy is a multifaceted light microscopy 

technique that contributes increased resolution and optical sectioning of specimens 

for three dimensional analyses, as well as the precise application of excitation 

wavelengths (Mills et al, 1994; Hibbs, 2004; Smith, 2001). The utility of DF-CLSM in 

detecting NP was established by experiments in which we show that the DF scatter 

signal colocalizes with the fluorescence of polystyrene particles with sizes as low as 

50 nm in diameter. In fact, the DF signal appeared to provide superior discrimination 

of monomeric units relative to fluorescence for 50 nm particles. In this study, the 

location of maximal scatter intensity in the z-axis was presumed to be the physical 

center of the particle. Using this approach, it was possible to determine the depth of 

penetration of the particle within the cell relative to an organelle or the nucleus. In 

separate experiments, similar measurements of particle penetration were made 

using DF-CLSM with the cell membrane as a reference. Thus, the combination of DF 

optics with the power of a confocal microscope yields an image in which NP can be 

visualized within a narrow and precise focal plane for the spatial determination of NP 

within the cell in the z-axis. With the application of currently available and novel 

deconvolution processing algorithms, it may be possible to better localize the NP 

within the volume of the cell in three dimensions. Importantly, the DF-CLSM 

technique allows the visualization of non-fluorescent particles, making it suitable to 
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the study of environmentally relevant NP. An additional advantage of DF-CLSM is its 

potential to be used in experiments involving live-cell imaging, which is impossible 

with conventional EM.  

Detection of NP using DF-CLSM relies heavily on the intrinsic light scattering 

properties of the material being observed.  In the validation of this technique, DF-

CLSM proved to be sufficiently robust to detect several types of NP comprised of 

different materials ranging from polymers to nanodiamonds and metal oxides (Gibbs 

et al, unpublished).  Interestingly, even materials with relatively smooth surfaces, like 

the polymers of polystyrene beads, have sufficient light scattering properties to be 

detected by this technique. The associated signal from larger polystyrene beads is 

less than that produced by smaller TiO2 nanoparticles. 

The DF-CLSM imaging approach holds considerable promise for future 

applications in the study of the biological interactions of NP.  While in the present 

study we chose to use a simple nuclear stain in the assessment of particle 

internalization, other biological processes and interactions could be examined by 

DF-CLSM using the numerous biosensors and staining reagents available. For 

laboratories with existing CLSM imaging equipment, implementation of DF-CLSM 

requires only the acquisition of a relatively inexpensive darkfield condenser and 

objective lenses with a suitable variable iris to adjust the numerical aperture, or 

objectives lenses with low fixed numerical aperture values.  We have been able to 

successfully adapt both Leica and Nikon inverted confocal microscopes with 

condensers costing between $70 and $700, respectively. 
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As with any technique, DF-CLSM has limitations. In this regard, it is important 

to bear in mind that this application of DF is a detection method, not a technique that 

permits direct observation or exact size of the NP.  Thus, this method does not 

produce an accurate size representation of nanoparticles. Likewise, agglomerates of 

nanoparticles may be represented as a single point with a larger size and increased 

light scatter. Therefore, inferences regarding size, shape, and number (i.e., 

agglomeration) of the structures being examined are limited, as other factors such 

as surface irregularity and reflectivity contribute significantly to the signal strength in 

DF detection.  Furthermore, although they are less expensive than their high 

numerical aperture counterparts, it should also be noted that low numerical aperture 

objectives required for DF present disadvantages as well. Low numerical aperture 

objectives impose limits on optical resolution and may introduce chromatic 

aberration into the image. In our characterization of this technique, we have found 

that choosing a single excitation wavelength is the best way to avoid chromatic 

aberration and colocalization errors. Similarly, the DF and confocal fluorescence 

signals should ideally be acquired using the same excitation wavelength in order to 

avoid possible colocalization errors between different wavelengths of lights, as 

shown in Figure 2.3.1.1C. In cases where multiple excitation wavelengths are 

needed, they should be used sequentially rather than simultaneously and the 404 

nm line should not be used with the visible wavelengths. The shortest wavelength 

should be used for the acquisition of the DF signals, but it is important to use a 

wavelength in which the NP is being localized with the fluorescence structure. 

Notably, appropriate use of the excitation wavelengths used during image 
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acquisition must be taken into account because data acquired with sequential 

excitation of multiple wavelengths may introduce chromatic aberration errors in the 

sample between the nanoparticles derived from one wavelength and the fluorescent 

signals derived from the other laser lines.  This is not necessarily a limitation unique 

to this application, but more likely a limitation resulting from the UV and visible 

colocalization issues in CLSM and the quality and alignment of the optical 

components used in the CLSM equipment. It appears that the nanoparticles 

accentuate these colocalization problems relative to submicron and micron particles. 

It is recommended that characterization of issues regarding chromatic aberration 

and colocalization of various wavelengths should be made for each imaging system 

and each lens used.  

  

2.5 Conclusions  

Even with the acknowledged limitations, the DF-CLSM methodology 

represents a novel and workable option for many investigators searching for a light 

microscopy technique that can be used to study the interactions between cells and 

NP in the environment. By interfacing the ability of darkfield microscopy to use light 

scatter to detect very small structures with the power of confocal microscopy to 

render specimens in three dimensions, DF-CSLM provides a solution to the unique 

challenges of conducting toxicological studies in the nano-scale. The DF-CLSM 

technique is superior to widefield DF as it uses the power of the confocal microscope 

to produce 3D images of nanoparticles within cells.  



 

 

Chapter 3 

Monitoring Intracellular Redox Changes in Airway Epithelial Cells Exposed to 
Ozone1  

 

3.1 Introduction 

The intracellular redox environment is a highly dynamic setting governed by 

the formation and degradation of various reactive species of oxygen and nitrogen. 

Under normal physiological conditions, the cytosol, nucleus, and mitochondrial 

matrix space maintain homeostatic conditions in favor of a highly reducing 

environment (Cannon and Remington 2009). Intracellular reducing conditions are 

largely maintained by millimolar concentrations of reduced glutathione and its 

accessory enzymes that together comprise the glutathione system (Anderson 1998). 

Ultimately, maintenance of the intracellular glutathione redox potential (EGSH) comes 

from the metabolism of glucose, as glutathione is reduced by glutathione reductase 

using NADPH produced by the pentose phosphate pathway (Wamelink et al. 2008).  

A number of pathophysiological states are associated with changes in the 

intracellular glutathione redox potential (Dubinina and Dadali 2010; Ma 2010; Yang 

and Omaye 2009). Such “oxidative stress” is commonly cited as a mechanistic 

                                                 
1
 The findings of this chapter have been accepted for publication as follows:  Eugene A. Gibbs-

Flournoy, Steven O. Simmons, Philip A. Bromberg, Tobias P. Dick, and James M. Samet.  
“Monitoring Intracellular Redox Changes in Ozone-Exposed Airway Epithelial Cells”  Environmental 

Health Perspectives, epub ahead of print 2012 
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feature of the toxicity of numerous xenobiotic compounds linked to adverse health 

outcomes (Bargagli et al. 2009; Ciencewicki et al. 2008; Kohen and Nyska 2002). 

For instance, the health effects of the potent ambient air pollutant ozone (O3) are 

understood to be mediated through an oxidative stress mechanism involving the 

oxidation of cellular biomolecules (Ballatori et al. 2009; Kelly et al. 1995; Mudway 

and Kelly 2000). In the lung, ozone exposure causes decrements in pulmonary 

function and induces inflammatory responses derived from the bronchial epithelium, 

a major target of ozone exposure (Ballinger et al. 2005; Kelly et al. 1995; Mudway 

and Kelly 2000; Pryor 1992; Pryor et al. 1995; Song et al. 2010). Due to its high 

reactivity, O3 interacts with cellular and extracellular biomolecules, resulting in 

multiple types of oxidative damage to lipids, proteins, and nucleic acids (Kelly et al. 

1995; Laumbach ; Mudway and Kelly 2000; Srebot et al. 2009; Van der Vliet et al. 

1995; Yang and Omaye 2009). While numerous studies have established oxidant 

damage of biomolecules as a result of O3 exposure, direct measures of ozone-

mediated 'oxidative stress' have been difficult to achieve, yet alteration of a defined 

intracellular redox couple like glutathione would represent an important early 

indicator of the oxidative effects of O3 exposure.  

Recent methodological advances have made it possible to focus studies of 

pro-oxidative changes to specific redox couples within defined subcellular 

compartments (Meyer and Dick 2010), potentially affording greater specificity in 

mechanistic investigations of the oxidative effects of xenobiotic exposures.  A new 

generation of genetically-encoded fluorophores permits direct assessment of the 

oxidative effects of xenobiotic compounds in relation to the glutathione redox pair 
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(GSSG/GSH) with unprecedented spatial and temporal resolution (Cheng et al. 

2012; Meyer and Dick 2010). roGFP2 acts as a reporter of intracellular glutathione 

redox potential by equilibrating with the GSH/GSSG redox pair (Cannon and 

Remington 2006, 2008; Dooley et al. 2004; Meyer and Dick 2010; Morgan et al. 

2011). In short, in a reaction that depends on catalysis by glutaredoxins, roGFP2 

responds to oxidation of reduced glutathione (GSH) to its oxidized form, GSSG, via 

the internal formation of a disulfide bond (Gutscher et al. 2008; Meyer 2008; Meyer 

and Dick 2010) (Figure 3.1.1). The formation of the disulfide bond alters the spectral 

characteristics of the GFP fluorophore, causing the intensity of the emitted green 

fluorescence (~520 nm) induced by excitation at 488 nm to decrease, while causing 

the emitted fluorescence after excitation at 405 nm to increase, thus making this 

sensor a ratiometric probe.   
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Figure 3.1.1 roGFP2 interactions with the glutathione system. 

(adapted from Meyer and Dick, 2010).  Glutathione peroxidases (GPx) 

oxidize GSH to GSSG in response to peroxides, including H2O2 and 

lipid hydroperoxides (LOOH), thus increasing the glutathione redox 

potential (EGSH).  In response to the increase in GSSG, one of the 

engineered vicinal cysteines of roGFP2 becomes S-glutathionylated by 

glutaredoxin (Grx). Glutathionylation in turn causes disulfide bond 

formation and alteration of the spectral properties of the GFP 

fluorophore.  In the reductive pathway, Grx catalyzes the reduction of 

roGFP2 disulfide bonds through deglutathionylation as GSSG levels 

decrease and normal levels of GSH are reestablished by glutathione 

reductase (GR), at the expense of NADPH, causing a renormalization 

of EGSH. Glucose and the pentose-phosphate pathway (PPP) create 

NADPH, which is used by GR to reduce GSSG to GSH. 
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Further efforts to improve the responsiveness of roGFP2 have led to the conjugation 

of pathway-specific enzymes to create a chimeric fusion of proteins operating as 

redox relays. In particular, the conjugation of glutaredoxin 1 (Grx1) to roGFP2 has 

been shown to enhance the kinetics of the roGFP2 response to the oxidation of 

glutathione (Gutscher et al. 2008).  

In the present study, we used live-cell microscopy to monitor the cytosolic 

EGSH of airway epithelial cells undergoing exposure to ozone in real-time. Here, we 

report an approach to validate the use of roGFP2-based redox sensors in 

toxicological studies of xenobiotics with strong oxidizing properties.   
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3.2 Methods 

3.2.1 Materials and Reagents 

Tissue culture media and supplements were purchased from Lonza 

(Walkersville, MD). Wilco Wells glass-bottom culture dishes were obtained from Ted 

Pella (Redding, CA) and Warner Instruments (Hamden, CT). Fugene 6 transfection 

reagent was acquired from Roche Applied Science (Indianapolis, IN). Kits to 

measure intracellular glutathione and NADPH were bought from Promega (Madison, 

WI) and AbCam (Cambridge, MA), respectively. Laboratory reagents and chemicals 

including Hydrogen peroxide, Dithiothreitol (DTT), 2-acetylamino-3-[4-(2-

acetylamino-2- 

carboxyethylsulfanylthiocarbonylamino)phenylthiocarbamoylsulfanyl]propionic acid 

(2-AAPA), Buthionine sulfoximine (BSO), and Sodium selenite were obtained from 

Sigma-Aldrich (St. Louis, MO). Basic laboratory supplies were purchased from 

Fisher Scientific (Raleigh, NC).  

 

3.2.2 Cell Culture 

Transformed human airway epithelial cells (BEAS-2B, subclone S6; (Reddel 

et al. 1988)) were cultured as previously described (Tal et al. 2010) and maintained 

in serum-free keratinocyte growth medium, KGM (Lonza, Walkersville, MD). The 

cells were incubated in a humidified incubator at 37°C in 5% CO2. For most live-cell 
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exposures, BEAS-2B cells were plated in 35mm Wilco Wells glass-bottom dishes 

with a 12 mm #1.5 glass aperture (Ted Pella, Redding, CA).  

 

3.2.3 Genetically Encoded Redox Sensors 

Plasmid for the redox-sensitive green fluorescent protein 2, roGFP2, was the 

generous gift of Dr. S. J. Remington (University of Oregon, Eugene, OR). Plasmid 

for the hydrogen peroxide sensor, HyPer, was purchased from Evrogen (Axxora, 

Farmingdale, NY). Cytosolic and mitochondrially targeted versions of roGFP2 and 

HyPer were placed in lentiviral vectors as described previously (Cheng et al. 2012).  

 

3.2.4 Plasmid Transfection and Lentiviral Transduction 

One to two days prior to exposure, BEAS-2B cells were transiently 

transfected with 1 – 2 ug of plasmid DNA encoding Grx1-roGFP2, HyPer, or roGFP2 

using 3 – 5 ul of Fugene 6 transfection reagent for each 35mm culture dish. Stable 

expression of a specific genetically encoded fluorescent reporter was performed via 

lentiviral transduction. In short, a lentivirus encoding roGFP2 or HyPer (specifically 

targeted to the cytosol or mitochondria) was incubated for 4 hrs (37°C / 5% CO2) 

with wild-type BEAS-2B cells using a multiplicity of infection (MOI) of 5 – 10 in a 

single well of a 6-well dish. The viral particles were then removed and fresh KGM 

was placed on the cells, and the BEAS-2B cells were then allowed to grow to 

confluency. Upon confluency, the cells were expanded to T75 dishes where they 
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were propagated for multiple passages.  For some experiments, stably transduced 

cells were sorted for optimal fluorescence expression at the UNC Core Flow 

Cytometry Facility 

 

3.2.5 Exposure Conditions 

Newly transfected or stably transduced BEAS-2B cells expressing the 

fluorescent reporter of interest were cultured as described above. Prior to exposure, 

subconfluent cells were equilibrated in Locke solution (Taylor-Clark and Undem 

2010) for 2 hrs. at 37°C in 5% CO2. For the studies herein, two versions of Locke 

Solution were derived by adding or excluding 1 mg/ml dl-glucose. Irrespective of the 

type of Locke solution used to equilibrate cells, all live-cell O3 exposures were 

performed using 0.5 ml of Locke solution without glucose. For all imaging 

experiments, cells were exposed in a custom-built stage-top exposure system 

maintained at 37°C with 1.5 L/min of 5% CO2/balance air at a relative humidity ≥ 

95% (Figure 3.2.5). In some experiments, cells were pretreated with 100 µM 2-

AAPA, a dithiocarbamate inhibitor of glutaredoxins, during the 2 hr buffer 

equilibration period. Similarly, pretreatment of cells with 1 µM sodium selenite for 24 

– 48 hrs prior to O3 exposure was carried out to induce the overexpression of 

glutathione peroxidases (GPx). 
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Figure 3.2.5 Stage-top ozone exposure system.  Displayed are 

components of the stage-top ozone exposure system used for all real-

time assessments of living cells undergoing O3 exposure.  5% 

CO2/Balance Air entering the system is first humidified by bubbling it 

through autoclaved dH2O housed in a 37°C incubator.  The gas is then 

passed through an O3 generator where O3 is created by using a UV 

pen lamp.  Concentrations of O3 are controlled by a voltage regulator 

which adjusts lamp intensity.  The newly generated O3 then flows to a 

temperature-controlled, stage-top exposure chamber via a heated line.  

All gas entering the exposure chamber is sampled by a Dasibi ozone 

analyzer at a T-fitting placed at the end of the heated line, just before 

the entrance to the chamber.  The humidity of gas diverted to the O3 

analyzer is removed using a Perma Pure gas drier.  All heated 

components are maintained at or above 37°C to maintain ≥90% 

humidity of the flowing gas.   
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For each experiment, cells were exposed to control air (5% CO2/Balance air) 

or ozone concentrations ranging from 0.15 – 1.0 ppm. The entire exposure period 

typically consisted of 3 component intervals collectively lasting up to an hour in 

length. They included: 1) an initial untreated baseline period of 5 min; 2) an 

exposure period of up to 45 min; and 3) a 10 min control exposure period in which 

cells were oxidized by 0.1 to 1.0 mM hydrogen peroxide for 5 min and then reduced 

by 10 mM DTT for an additional 5 min. During these exposures, the ozone 

concentration in the exposure chamber was monitored in real-time using a Dasibi 

Model 1003-AH Ozone Analyzer sampling at a flow of 2.0 L/min. Ozone exposures 

for non-imaging assays were performed using exposure chambers operated by the 

U.S. Environmental Protection Agency’s (EPA) Environmental Public Health 

Division.  

 

3.2.6 Imaging Analysis  

All live-cell experiments done in real-time were conducted using a Nikon 

Eclipse C1si spectral confocal imaging system equipped with an Eclipse Ti 

microscope, Perfect Focus System, and 404 nm, 488 nm, 561 nm, and 633 nm 

primary laser lines (Nikon Instruments Corporation, Melville, NY). Images were 

acquired using a 60X Plan Apo lens. For experiments involving the genetically 

encoded fluorescent reporters, roGFP2 and HyPer, green fluorescence was 

observed via the use of independent excitations at 404 and 488 nm while emitted 

light was collected for each using a 525/30 nm band-pass filter (Chroma, Bellows 
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Falls, VT). Results were calculated as ratios of the emissions excited by the 488 nm 

and 404 nm lasers scanned sequentially at a frequency of 1 min. All imaging data 

were acquired using the Nikon EZ-C1 software. 

 

3.2.7 Measurement of Intracellular NADPH 

After cells were equilibrated in fresh KGM or Locke solution (+/- glucose) for 2 

hrs, the intracellular levels of total NADPH were assessed using an AbCam 

NADP/NADPH assay kit. The manufacturer’s instructions provided with the kit were 

used to carry out this assay. Following the equilibration period, cells were 

immediately placed on ice and washed with cold 1X PBS just prior to the initial lysis 

step. Absorbance was read at 450 nm using a PolarStar Optima microplate reader 

(BMG Labtech, Durham, NC). 

 

3.2.8 Statistical Analysis 

All imaging data were quantified using NIS-Elements AR software (Nikon, 

Melville, NY). For each experiment, the responses of 5–10 cells were collected as 

regions of interest (ROI) and then averaged to derive an overall response. Data are 

expressed as the mean of at least three repeated experiments. Pairwise 

comparisons of control and treatment groups were performed using ANOVA and 

linear regression with p < 0.05 taken as being statistically significant.  
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3.3 Results 

3.3.1 Ozone exposure induces an increase in the cytosolic glutathione redox 

potential 

The presence of glucose in the exposure media is known to shorten the half-

life of O3 (Taylor-Clark and Undem 2010). Therefore, in these experiments, cells 

were first equilibrated in Locke solution containing glucose (LS+G) for 2 hrs prior, 

and then switched to Locke solution without glucose (LS-G) for the exposure. 

Exposure of BEAS-2B cells expressing cytosolic roGFP2 to 0.15 - 0.50 ppm O3 

resulted in a dose- and time- dependent probe response, reflecting an increase in 

the cytosolic glutathione redox potential (Figure 3.3.1). Increasing O3 concentration 

hastened the onset while elevating the magnitude of the oxidative response reported 

by roGFP2 (Figure 3.3.1).  Addition of 0.1 mM H2O2 at the end of each O3 exposure 

produced a maximal response which was fully reversible with the addition of 10 mM 

DTT.  
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Figure 3.3.1 Exposure to O3 induces a dose- and time-dependent 

increase in the cytosolic glutathione redox potential in airway 

epithelial cells.  BEAS-2B cells expressing cytosolic roGFP2 were 

exposed to clean air for 5 min followed by a 0 (Air Control), 0.15, 0.25 

or 0.50 ppm O3 exposure for 35 min in a stage-top exposure system 

maintained at 37 °C, >90% relative humidity, and 5 % CO2.  Shown are 

the ratiometric values (404/488) calculated from the fluorescence 

intensity emitted at 510 nm induced by sequential excitation at 404 and 

488 nm, and plotted relative to the 5 min baseline.  Addition of 0.1 mM 

H2O2 at the end of the O3 exposure produced a maximal response 

which was fully reversible with the addition of 10 mM DTT. The 

pseudo-colored images displayed below the plotted data represent 

ratiometric changes in fluorescence of cells being exposed to 0.5 ppm 

O3.  Increases in the ratiometric fluorescence intensity are represented 

by changes in color from Violet/Blue to Red as indicated by the scale 

bar in the upper left hand corner of each image.  Each panel was taken 

in series at 10 min intervals starting at T=0 min for panel 1 and ending 

with T=40 min for panel 5.  The scale bar in the bottom right corner of 

each panel is 10 µm in length. The data shown were derived from 3 or 

more separate experiments monitoring 7 or more cells in real-time 

throughout the exposure period. 
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3.3.2 Glucose deprivation potentiates the elevation of EGSH induced by ozone 
exposure 

On an individual basis, BEAS 2B cells equilibrated in the presence of glucose 

(LS+G) were observed to respond variably to a given concentration of O3, 

suggesting substantial heterogeneity of redox homeostasis within the cellular 

population under the given conditions. Figure 3.3.2.1A shows the individual 

responses of seven BEAS-2B cells in the same field of view being exposed to 0.5 

ppm O3, with some cells responding with strongly increasing EGSH, while others 

responded only minimally. Furthermore, some cells exhibited an intermediate 

response followed by a recovery of EGSH despite continued O3 exposure. Given the 

importance of pentose phosphate pathway (PPP)-generated NADPH in maintaining 

intracellular reduced glutathione levels, we hypothesized that glucose deprivation 

would sensitize the cells to a subsequent O3 exposure. As shown in Figure 3.3.2.1B, 

depriving the cells of glucose for 2 hr prior to exposure homogenized the magnitude, 

time of onset, and rate of response of the cells to O3.  Glucose status did not affect 

the probe response to addition of H2O2 and DTT (Figures 3.3.2.1 A and B). As 

expected, glucose deprivation led to decreased cellular NADPH levels (Figure 

3.3.2.2). 
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Figure 3.3.2.1 Glucose deprivation sensitizes cells to O3-induced 

roGFP2 oxidation.  Shown are the responses of 7 BEAS-2B cells 

equilibrated in Locke Solution containing 1 mg/ml glucose (A), or 0 

mg/ml (B).  Cells were exposed to 0.5 ppm O3. Addition of 0.1 mM 

H2O2 at the end of the O3 exposure produced a maximal response 

which was fully reversible with the addition of 10 mM DTT. 
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Figure 3.3.2.2  Determination of NADPH levels.  The effect of 

glucose deprivation on NADPH was assessed following a 2 hr 

equilibration in either Locke Solution with glucose (LS+G) or Locke 

Solution without glucose (LS-G), and expressed as percent change 

from the mean NADPH concentration measured from cells maintained 

in growth media (KGM).  *p<0.01, n≥3 experiments. 
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3.3.3 Validation of glutathione-dependent roGFP2 responses to ozone 
exposure 

Given the extreme reactivity of O3
 with biomolecules, we considered the 

possibility that the spectral changes of the probe interpreted as changes in EGSH are 

the result of a direct oxidation of roGFP2 by O3 itself or by an O3-generated 

secondary oxidant. We therefore undertook a series of experiments to determine 

whether O3-induced changes in the roGFP2 fluorescence intensity ratio involve 

components of the glutathione system through which roGFP2 has been 

demonstrated to respond (Figure 3.1.1). We first aimed to confirm that O3 exposure 

leads to increased levels of GSSG. To this end we assessed the extent of 

intracellular glutathione oxidation in control and ozone treated cells. We observed up 

to 3-fold increases in GSSG following 1 ppm O3 exposure in LS-G as compared to 

air controls (Figure 3.3.3.1), which agrees with previous reports of the effect of O3 

exposure on intracellular glutathione (Chalfant and Bernd 2011; Todokoro et al. 

2004).   
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A 

 

B 

 

Figure 3.3.3.1  Determination of intracellular glutathione. A) The 

total glutathione content (GSH + GSSG) of cells exposed to either 0 

(air control) or 1 ppm O3 in Locke solution without glucose (LS-G) for 

50 min.  To ensure the total glutathione content could be modulated, 

cells were exposed to an air control in either LS-G or growth medium 

(KGM) following pretreatment with buthionine sulfoximine (BSO), a γ-

glutamylcysteine synthetase inhibitor used to decrease glutathione 

levels.  The responses are plotted as percent change from the KGM air 

control.  B) The oxidized glutathione content (GSSG) of cells exposed 

either 0 (air control) or 1 ppm O3 for 50 min in LS-G.  Cells exposed to 

0 ppm O3 in growth media (KGM) serve as the control, and responses 

are plotted as percent change from the control.   
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Next, we asked whether the roGFP2 response to O3 is influenced by 

glutaredoxin (Grx) activity. Grx is essential to mediate roGFP2 oxidation by GSSG 

(Figure 3.1.1), but should play no role if roGFP2 is directly oxidized by O3. On the 

one hand, we compared the response of roGFP2 (which interacts with endogenous 

Grx) with that of Grx1-roGFP2, a translational fusion of glutaredoxin-1 and roGFP2. 

The fusion of these components is known to kinetically improve the equilibration 

between roGFP2 and GSSG in a highly specific manner (Gutscher et al. 2008; 

Meyer and Dick 2010). We found that the O3-induced increase of EGSH in BEAS cells 

expressing Grx1-roGFP2 occurred earlier and at a faster rate relative to that 

reported by cells expressing unlinked roGFP2, thus indicating a GSSG/Grx-specific 

response (Figure 3.3.3.2A).  In contrast, we investigated the effect of glutaredoxin 

inhibition by pretreating cells with the dithiocarbamate derivative 2-AAPA (Sadhu et 

al. 2012). The inhibitor completely ablated roGFP2 responses to ozone, as well as to 

H2O2 and DTT (which also act indirectly through glutathione oxidation and reduction, 

respectively) (Figure 3.3.3.2B), thus confirming the role of glutaredoxin as the 

catalyst necessary for roGFP2 responsiveness to O3. Together these observations 

confirm that O3 is not simply sensed by the probe through direct oxidation, but rather 

by its specific effects on the glutathione redox couple.  

Having confirmed that O3 induces formation of GSSG, which is then detected 

by the roGFP2 probe, we asked whether glutathione peroxidases (GPx), major 

generators of GSSG, are involved in the ozone response. Here we investigated the 

role of glutathione peroxidase activity in O3-induced roGFP2 redox changes by 

pretreating BEAS cells with 1 µM 3 
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exposure. Previous studies have used selenium supplementation as an effective 

means of increasing glutathione peroxidase expression (Helmy et al. 2000; Holben 

and Smith 1999; Leist et al. 1996), a finding that we also observed in preliminary 

studies with BEAS cells (Figure 3.3.3.3). Se-induced overexpression of GPx was 

found to accelerate roGFP2 oxidation during a 0.5 ppm O3 exposure (Figure 

3.3.3.2C), thus suggesting that O3 gives rise to peroxides, which are then converted 

by GPx to GSSG, which is in turn reported by roGFP2 through the intervention of 

Grx. 
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Figure 3.3.3.2  Manipulation of the glutathione system modulates 

roGFP2 responses to ozone.  A. Changes in cytosolic glutathione 

redox potential induced by 0.5 ppm O3 exposure as reported by BEAS-

2B cells expressing either roGFP2 or Grx1-roGFP2.  B.  BEAS-2B cells 

were pretreated with 100 µM 2-AAPA, a glutaredoxin inhibitor, prior to 

exposure to 0.5 ppm O3. The responses shown are the normalized 

404/488 ratios plotted relative to their established baseline.  C.  BEAS-
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2B cells were pretreated with 1 µM sodium selenite for 48 hrs prior to 

0.5 ppm O3 exposure. To facilitate comparison of the responses in A 

and C, the normalized ratios were plotted as a percentage of the 

signals obtained at maximal oxidizing and reducing conditions 

achieved using 1 mM H2O2 and 10 mM DTT, respectively.  Other 

experimental conditions were as described for Figure 3.3.1. Values 

shown are mean ± SE (n ≥ 3). 

 

 

 

 

Figure 3.3.3.3  Selenium-induced GPx1 overexpression.  Detection 

of GPx1 expression following a 48 hr pretreatment with either 0 

(vehicle control, VC) or 1 uM sodium selenite; cell lysates were 

separated by SDS-PAGE and immunoblotted with anti-GPx1.  The 

expected size of GPx1 is approximately 22 kDa. 
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3.3.4 Investigating the role of secondary products in ozone-induced redox 
changes 

Since the data shown in Figure 3.3.3.2-C suggested the involvement of 

peroxides in the O3 response, we asked whether there is a specific role for hydrogen 

peroxide. For these experiments we examined generation of H2O2 as a 

consequence of O3 exposure using the cytosolic-targeted H2O2-sensor, HyPer. O3 

caused a relatively modest increase in the HyPer response during the exposure 

period (Figure 3.3.4.1). However, the observed HyPer response did not precede nor 

match the magnitude of the roGFP2 response, making it unlikely that the observed 

increase in EGSH is primarily caused by H2O2 generation.  
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Figure 3.3.4.1 Comparison between roGFP2 and HyPer responses 

to O3.  BEAS-2B cells expressing either roGFP2 or the H2O2 sensor 

HyPer, were exposed to 0.5 ppm O3 as described for Figure 3.3.1.  To 

facilitate comparison, the normalized ratios were plotted as a 

percentage of the signals at maximal oxidation and reduction achieved 

using 1 mM H2O2 and 10 mM DTT, respectively.  Values shown are 

mean ± SE (n ≥ 3). 

 

 

Mitochondrial oxidant production, frequently associated with increased 

oxidation of mitochondrial glutathione, has been implicated as a contributing factor in 

the cellular response to xenobiotics (Cheng et al. 2010; Cheng et al. 2012; Hanson 

et al. 2004). Therefore, we next used mitochondrially-targeted roGFP2 (roGFP2-m) 

to assess the impact of ozone exposure on the mitochondrial glutathione redox 

potential of BEAS-2B cells. As shown in Figure 3.3.4.2, exposure to 1 ppm ozone, 

twice the amount used for cytosolic assessments, induced an increase in 

mitochondrial EGSH. However, relative to the cytosolic roGFP2 response, the 
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increase in mitochondrial EGSH occurred at a slower rate and achieved a lower 

magnitude. This suggests that mitochondrial oxidants are not the primary source of 

the oxidants that lead to increased cytosolic EGSH.  

 

 

Figure 3.3.4.2. O3-induced EGSH changes affects the cytosol more 

rapidly than the mitochondrial matrix. BEAS-2B cells expressing 

roGFP2 targeted to either the cytosol or mitochondria were exposed to 

either 0.5 ppm (roGFP2-Cyto) or 1.0 ppm (roGFP2-Mito).  For direct 

comparison, the normalized ratios were plotted as a percentage of the 

maximal oxidation achieved using 1 mM H2O2 and 10 mM DTT. Other 

experimental conditions were as described in Figure 2. Values shown 

are mean ± SE (n ≥ 3). 

  



88 

 

3.4 Discussion 

“Oxidative stress” is a frequently cited mechanistic component of the adverse 

health effects induced by numerous xenobiotic compounds (Bargagli et al. 2009; 

Chung and Marwick 2010; Jones 2008; Kohen and Nyska 2002; MacNee 2001; 

Ward 2010; Yang and Omaye 2009). However, the term “oxidative stress” is a very 

broad concept and the detection of early and specific indices of oxidant stress has 

proven to be methodologically difficult. The advent of genetically-encoded 

fluorescent reporters that are sensitive to their redox environment has enabled real-

time imaging-based assessments of oxidant outcomes in living cells with 

unprecedented spatial and temporal resolution. In this study, we validated the use of 

one such reporter, roGFP2, for the specific assessment of xenobiotic-induced 

changes in the glutathione redox potential using ozone as a model toxicant and 

BEAS-2B cells as a model of the human bronchial epithelium.  

The pro-oxidative change in EGSH observed in this study represents an early 

event in the oxidant injury caused by O3. Ozone is a potent oxidant gas that has the 

potential to interact directly with virtually any cellular component, potentially including 

fluorescent reporter molecules such as roGFP2. Thus, in interpreting the probe 

response observed in O3-exposed BEAS-2B cells, we had to consider the possibility 

that O3 could be bypassing the glutathione system through which roGFP2 sensors 

normally respond (Gutscher et al. 2008; Meyer and Dick 2010).  

Our findings strongly suggest that even in the presence of a strong oxidant 

like O3, roGFP2 is oxidized only indirectly through its known coupling to the 
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glutathione system. This conclusion is supported by several observations: First, 

glucose deprivation increased O3-mediated roGFP2 oxidation, consistent with the 

requirement for NADPH in robustly maintaining EGSH, the lack of glucose preventing 

regeneration of reducing equivalents throughout the exposure period. NADPH levels 

were approximately 70% lower in cells equilibrated in the absence of glucose, which 

appears to be sufficient to sensitize cells uniformly. In addition, it is important to bear 

in mind that there are other cellular processes that draw on the NADPH pool, and 

the continued lack of glucose largely prevents active regeneration of reducing 

equivalents throughout the exposure period.   

Second, we confirmed the role of glutaredoxin in mediating the roGFP2 

response to O3. Grx1 is required to transfer oxidative equivalents from the 

glutathione pool to roGFP2. In previous studies using Grx1-roGFP2, the chimeric 

linkage of glutaredoxin-1 to roGFP2 enhanced responses to physiological oxidants 

such as H2O2 (Gutscher et al. 2008; Meyer and Dick 2010). Importantly, Grx1-

roGFP2 also accelerated the roGFP2 response to O3, where as inhibition of 

endogenous Grx with 2-AAPA prevented roGFP2 oxidation in the presence of O3. 

While early reports describe 2-AAPA as being an inhibitor of glutathione reductase, 

a more recent study reports that this dithiocarbamate derivative acts as a direct 

inhibitor of glutaredoxins as well (Sadhu et al. 2012). Thus, the finding that 2-AAPA-

treated cells failed to respond to O3 supports the involvement of Grx and is 

consistent with the claim that 2-AAPA is an inhibitor of glutaredoxins.  Importantly, 

the fact that use of this inhibitor was effective at disconnecting the glutathione pool 
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from the redox reporter argues against a non-specific interaction between O3, or a 

secondary oxidant, and the roGFP2 sensor.   

Lastly, findings from experiments examining the effect of overexpression of 

glutathione peroxidases (GPx) using prolonged selenite supplementations are 

consistent with an upstream role of GPx in the oxidative pathway leading to O3-

induced roGFP2 oxidation. GPx couple the reduction of (hydro)peroxides to the 

generation of GSSG (Arthur 2000; Mates and Sanchez-Jimenez 1999; Meyer and 

Dick 2010). In our system, the increased expression of GPx enhanced roGFP2 

oxidation, suggesting that O3 exposure generates (hydro)peroxides, which then drive 

the formation of GSSG. In fact, ozone has been shown to produce many types of 

lipid hydroperoxides upon exposure (Mudway and Kelly 2000; Yang and Omaye 

2009). Moreover, cells exposed to O3 may have an increased H2O2 burden as well. 

Overall, the results from GPx overexpressing cells suggest that the increased 

activity of these enzymes leads to an enhanced catalytic destruction of peroxides 

with concomitant GSH oxidation, leading to the roGFP2 response to ozone.  

Using the H2O2 probe HyPer, our initial assessments suggested slightly 

elevated H2O2 production following ozone exposure of BEAS cells. The quantitative 

interpretation of HyPer responses is however difficult. It is not clear to what extent 

the OxyR domain of HyPer may be outcompeted by endogenous peroxidases. In 

addition, HyPer is highly pH sensitive, as much as the cpYFP module on which it is 

based (Schwarzlander et al. 2012). Thus, an O3–induced intracellular acidification 

could dampen the HyPer response to H2O2. Nevertheless, following O3 exposure, 
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HyPer responded to exogenously applied H2O2 and DTT as expected, which 

demonstrates the general functionality of the probe. Taken together, the delayed 

time of onset, slow rates of response, and the relatively low magnitude of the HyPer 

responses, may suggest that H2O2 production is not a major factor in the total O3-

induced EGSH effects. Furthermore, preliminary experiments using mitochondrially-

targeted HyPer also show that the mitochondrial EGSH change induced by O3 is 

unlikely to be the result of H2O2 production by mitochondria. Similarly, there is 

minimal alteration of the roGFP2 response upon O3 exposure of cells 

overexpressing catalase (Gibbs-Flournoy et al., unpublished).  Likewise, the 

measurements in mitochondrially-targeted roGFP do not support a mitochondrial 

source for the O3-induced increase in cytosolic EGSH.  These results suggest that the 

relevant oxidant species, potentially a hydroperoxide, is primarily generated in the 

cytosol, or within the outer membranes, and the mitochondrial EGSH response would 

be expected to lag behind that of the cytosol. Additionally, differences in peroxidase 

composition and activity may contribute to the lag in the O3-induced mitochondrial 

EGSH response relative to the cytosol.  

The studies presented herein cannot completely exclude a partial contribution 

of direct interactions between O3, or its secondary byproducts, with the thiols of the 

roGFP2 sensor. In addition, because the roGFP2 fluorescence ratio reflects EGSH, 

which is a function of both the GSSG:GSH ratio and the total glutathione 

concentration, it is possible that O3-induced electrophilic attack mediates the 

changes reported by roGFP2 by consuming reduced GSH. It should, however, be 

noted that the EGSH in the cytosol or mitochondrial matrix is much more sensitive to 
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an increase in GSSG than to depletion of GSH. This is because the EGSH in the 

cytosol (around -320 mV, or even lower, in mitochondria) represents nanomolar 

GSSG in a millimolar pool of GSH. To deflect the roGFP2 signal from -320 mV to 

about -260 mV, only requires the concentration of GSSG to increase from 200 nM to 

20 uM (in a 10 mM total glutathione pool). To achieve the same magnitude of EGSH 

response by depleting GSH exclusively would require a loss of 90% of GSH (e.g. 

from 10 mM to 1 mM) (Meyer and Dick, 2010). Such a massive depletion of GSH by 

ppm concentrations of ozone (which could generate only limited amounts of 

electrophiles) seems stochiometrically unlikely. If one also considers the relative 

kinetics of GSSG generation and consumption (GSSG generation by GPx exhibits 

second order rate constants in the range of 1x108 M-1s-1), it appears reasonable to 

suggest that the ozone effect reported in our study is primarily due to GSSG 

generation, and that the contribution of glutathionylated electrophile(s) formation is 

minor. 

Thus, while there may be several different O3-induced processes that 

together drive glutathione oxidation, including lipid peroxidation, H2O2 generation 

and others, the available evidence strongly suggests that the cytosolic roGFP2 

responses to O3 exposure are appropriately reporting the glutathione redox 

potential. Taken together, these results demonstrate that roGFP2-based sensors 

can be used to monitor shifts in glutathione redox homeostasis in O3-exposed cells. 

Furthermore, the experimental approach utilized may be used for the validation of 

“oxidant stress” induced by other reactive xenobiotics in living cells.   
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3.5 Conclusion 

These studies demonstrate the utility of using genetically-encoded fluorescent 

reporters in making reliable assessments of cells undergoing exposure to 

xenobiotics with strong oxidizing properties. 

 



 

 

Chapter 4 

Examination of Factors Affecting Ozone-Induced Oxidative Stress 

 

4.1 Introduction 

Exposure to air pollution remains a public health problem.  Specifically, 

inhalation of ozone (O3), and other common air pollutants, leads to numerous 

adverse health effects, largely impacting the pulmonary and cardiovascular systems 

(Curtis et al, 2006; Krewski and Rainham, 2007; Kampa and Castanas, 2008; 

Simkhovich et al, 2008).  The lung is both an initial point of entry as well as a primary 

target of the deleterious effects of air pollution exposure, including ozone.  To 

counteract the harmful effects of inhaled toxicants, the lung has several protective 

defenses, which include its robust epithelia, antioxidant-containing epithelial lining 

fluid (ELF), mucociliary clearance, and native immune response (Nicod 2005).  All of 

these factors combine to provide protection against gaseous and particulate air 

pollutants.   

The adverse effects of air pollution exposure are likely attributable to oxidative 

stress, and redundant protective elements serve to mitigate oxidant-induced lung 

injury (Ciencewicki et al, 2008).  Specifically, the ELF, which serves as the first point 

of contact upon inhalation, contains relatively high levels of small molecules and 
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proteins dedicated to buffering the extracellular redox environment.  Such 

“antioxidants” include: glutathione, glutathione peroxidases, ascorbate (vitamin C), 

urate, α-tocopherol (vitamin E), catalase, and superoxide dismutase (Van der Vliet et 

al, 1999; Sun et al, 2001). 

Ozone is a potent oxidizing compound that has been shown to interact with 

specific ELF components (Kermani et al, 2006; Pryor 1991; Mudway and Kelly, 

2000).  Moreover, the ELF is suspected to be integral in blunting the adverse effects 

of O3-induced oxidation by scavenging the potent oxidant before it is able to reach 

the underlying epithelium (Mudway and Kelly, 2000; Pryor, 1991).  This is thought to 

occur because: 1) the ELF has a robust oxidant-buffering capacity, 2) the high 

reactivity of O3 with various biomolecules, and 3) a relatively low solubility of O3 in 

aqueous environments.  Most important in mitigating the effects of O3, extracellular 

concentrations of glutathione, urate, ascorbate, and α-tocopherol have all been 

shown to react with O3 in both in vivo and in vitro studies (Kermani et al., 2006; 

Mudway et al., 1996; Mudway and Kelly, 2000; Van der Vliet et al., 1995).  

Despite their demonstrated protective role, studies have also implicated ELF 

components in potentiating pulmonary oxidative stress during O3 exposure 

(Ciencewicki et al., 2008; Ballinger et al., 2005).  Moreover, mounting evidence 

suggests that ozone is capable of interacting with cellular membranes in the 

generation of secondary products as well as possibly crossing the plasma 

membrane into the intracellular environment (Garner et al., 2009; Ballinger et al., 

2005; Pryor 1991).  This suggests that the buffering capacity of the ELF is not 
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necessarily sufficient to fully protect the underlying epithelium.  Recently, our 

laboratory has demonstrated potent changes in the intracellular glutathione redox 

potential (EGSH) of airway epithelial cells undergoing O3 exposure (Gibbs-Flournoy et 

al., Chapter 3).  In succession to these studies, we have now come to evaluate the 

driving forces by which the observed EGSH changes occur, and the efficacy of 

extracellular antioxidants in protecting epithelial cells from such changes.  Using a 

novel ozone-reactive fluorophore, VSL1-162-1 (VSL1), we have assessed the ability 

of O3 to cross cellular membranes and reach the cytosol unreacted.  In addition, this 

study examines the protective effects of physiologically relevant concentrations of 

extracellular glutathione (GSH), uric acid (UA), ascorbic acid (AH2), and α-tocopherol 

(α-T) at mitigating the EGSH changes observed in previous studies.     
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4.2 Methods 

4.2.1 Materials and Reagents 

Tissue culture media and supplements were purchased from Lonza 

(Walkersville, MD). Wilco Wells glass-bottom culture dishes were obtained from Ted 

Pella (Redding, CA) and Warner Instruments (Hamden, CT).  Pegylated catalase 

and laboratory reagents/chemicals, including hydrogen peroxide, dithiothreitol (DTT), 

uric acid, ascorbic acid, reduced glutathione, and α-tocopherol were obtained from 

Sigma-Aldrich (St. Louis, MO).  Basic laboratory supplies were purchased from 

Fisher Scientific (Raleigh, NC).  

 

4.2.2 Cell Culture 

Transformed human airway epithelial cells (BEAS-2B, subclone S6; (Reddel 

et al. 1988)) were cultured as previously described (Tal et al. 2010) and maintained 

in serum-free keratinocyte growth medium, KGM (Lonza, Walkersville, MD). The 

cells were incubated in a humidified incubator at 37°C in 5% CO2. For most live-cell 

exposures, BEAS-2B cells were plated in 35mm Wilco Wells glass-bottom dishes 

with a 12 mm #1.5 glass aperture (Ted Pella, Redding, CA).  
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4.2.3 Genetically Encoded Redox Sensors 

Plasmid for the redox-sensitive green fluorescent protein 2, roGFP2, was the 

generous gift of Dr. S. J. Remington (University of Oregon, Eugene, OR).  A 

cytosolically targeted version of roGFP2 was placed in a lentiviral vector as 

described previously (Cheng et al. 2012). 

 

4.2.4 Lentiviral Transduction 

Stable expression of roGFP2 was performed via lentiviral transduction. In 

short, a lentivirus encoding roGFP2 (specifically targeted to the cytosol) was 

incubated for 4 hrs (37°C / 5% CO2) with wild-type BEAS-2B cells using a 

multiplicity of infection (MOI) of 5 – 10 in a single well of a 6-well dish. The viral 

particles were then removed and fresh KGM was placed on the cells, and the BEAS-

2B cells were then allowed to grow to confluency. Upon confluency, the cells were 

expanded to T75 dishes where they were propagated for multiple passages.  For 

some experiments, stably transduced cells were sorted for optimal fluorescence 

expression at the UNC Core Flow Cytometry Facility 

 

4.2.5 Fluorescent Detection of Ozone 

The ozone-specific fluorescent probe, VSL1-162-1, and the fluorescent H2O2 

probe, PG-1, were the generous gift of Dr. Christopher Chang (University of 

California, Berkeley, CA).  Both probes are boronated fluorescein derivatives, and 
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both were used to detect the presence of intracellular O3. For experiments using PG-

1, pegylated catalase was used to limit the contribution of H2O2 to any increases in 

fluorescence intensity.  Prior to exposure (15-20 min), BEAS-2B cells were stained 

with 2.5 or 5.0 uM PG-1 or VSL1, and allowed to incubate at 37°C in 5% CO2.  Both 

probes were allowed to remain in the Locke solution during the O3 exposures. 

 

4.2.6 Exposure Conditions 

Wild-type or stably transduced BEAS-2B cells expressing roGFP2 were 

cultured as described above. Prior to exposure, subconfluent cells were equilibrated 

in Locke solution (Taylor-Clark and Undem 2010) for 2 hrs at 37°C in 5% CO2.  For 

antioxidant assessments, 65 uM AH2 + 500 uM UA + 250 uM GSH + 25 uM α-

Tocopherol were added to the Locke solution to mimic physiologically-relevant 

concentrations found in human epithelial lining fluid (Mudway and Kelly, 2000).  All 

live-cell O3 exposures were performed using 0.5 ml of Locke solution without 

glucose. For all imaging experiments, cells were exposed in a custom-built stage-top 

exposure system maintained at 37°C with 1.5 L/min of 5% CO2/balance air at a 

relative humidity ≥ 95% (Gibbs-Flournoy et al, Chapter 3).   

For each experiment, cells were exposed to control air (5% CO2/balance air) 

or 0.5 ppm ozone. The entire exposure period typically consisted of 3 component 

intervals collectively lasting up to 50 min in length. They included: 1) an initial 

untreated baseline period of 5 min; 2) an exposure period of up to 35 min; and 3) a 

5-10 min control exposure period.  For roGFP2 assessments, cells were oxidized by 
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1.0 mM hydrogen peroxide for 5 min and then reduced by 10 mM DTT for an 

additional 5 min during the control exposure period.  Two concentrations of H2O2, 

0.1 and 1.0 mM, were added during the control period for PG-1 experiments.  For 

VSL1 assessments, the control period consisted of adding 3.5 ml of warm (~37°C) 

Locke solution onto the cells following the O3 exposure, resulting in a 8-fold dilution 

of the extracellular fluid. During these exposures, the ozone concentration in the 

exposure chamber was monitored in real-time using a Dasibi Model 1003-AH Ozone 

Analyzer sampling at a flow of 2.0 L/min.  

 

4.2.7 Imaging Analysis 

All live-cell experiments done in real-time were conducted using a Nikon 

Eclipse C1si spectral confocal imaging system equipped with an Eclipse Ti 

microscope, Perfect Focus System, and 404 nm, 488 nm, 561 nm, and 633 nm 

primary laser lines (Nikon Instruments Corporation, Melville, NY). Images were 

acquired using a 60X Plan Apo lens. For experiments involving roGFP2, green 

fluorescence was observed via the use of independent excitations at 404 and 488 

nm while emitted light was collected for each using a 525/30 nm band-pass filter 

(Chroma, Bellows Falls, VT). All roGFP2 results were calculated as ratios of the 

emissions excited by the 488 nm and 404 nm lasers scanned sequentially at a 

frequency of 1 min. For PG-1 and VSL1 experimentation, green fluorescence was 

observed using 488 nm excitation, and the emitted light was collected using a 
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525/30 nm band-pass filter.  All imaging data were acquired using the Nikon EZ-C1 

software. 

 

4.2.8 Statistical Analysis 

 All imaging data were quantified using NIS-Elements AR software (Nikon, 

Melville, NY). For each experiment, the responses of 5–10 cells were collected as 

regions of interest (ROI) and then averaged to derive an overall response. For 

experiments using the fluorescent probes PG-1 and VSL1, an ROI was drawn in an 

area devoid of cells in efforts to assess the extracellular fluorescence.  Data are 

expressed as the mean of at least two repeated experiments. Pairwise comparisons 

of control and treatment groups were performed using a student’s T-test, or ANOVA 

with a Bonferroni post-hoc test, with p < 0.05 taken as being statistically significant. 
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4.3 Results 

4.3.1 PG-1 fluorescence increases during O3 exposure despite the presence of 

catalase 

Peroxy Green-1 (PG-1) is an H2O2-specific fluorescent probe that was 

specifically designed by the Chang lab for the detection of intracellular H2O2 (Miller 

et al., 2007).  Because previous studies suggest H2O2 generation may be a by-

product of O3 exposure (Pryor 1991), we used PG-1 to investigate this outcome.  

During these experiments, we observed a pronounced and sustained increase in the 

intracellular PG-1 fluorescence in BEAS-2B cells undergoing 0.5 ppm O3 exposure 

(Figure 4.3.1).  To verify that the PG-1 signal is dependent on the concentration of 

H2O2 present, we conducted a control experiment in which the exposure medium 

was supplemented with pegylated catalase (pCat). The expectation was that the 

catalase would ablate or reduce the observed increases in PG-1 fluorescence 

intensity.  However, the O3-induced increase in fluorescence intensity was 

unaffected despite the addition of 50 units of pCat, an amount that was sufficient to 

ablate PG-1 fluorescence in response to concentrations of H2O2 up to 1 mM (Figure 

4.3.1).  
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Figure 4.3.1  O3-induced changes in PG-1 fluorescence intensity.  

BEAS-2B cells equilibrated with the H2O2 probe, PG-1, were exposed 

in the presence or absence of pegylated catalase to clean air for 5 min 

followed by 0.50 ppm O3 exposure for 35 min in a stage-top exposure 

system maintained at 37oC, >90% relative humidity, and 5 % CO2.  

Plotted relative to the 5 min baseline, the data shown are the emitted 

fluorescence intensity values at 510 nm resultant from 488 nm 

excitation.  Following the O3 exposures, addition of 0.1 and 1.0 mM 

H2O2 demonstrate the responses of the fluorophore to its intended 

target.  Values shown are mean ± SE (n ≥ 3) 
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4.3.2 VSL1 detects intracellular ozone 

Upon confirmation of our findings, the creators of PG-1 generated a new 

fluorophore, VSL1-162-1, for the specific detection of ozone within cells.  An ideal 

intracellular O3 sensor would be a trappable fluorescent probe, meaning that it can 

be targeted to and contained within a predetermined subcellular compartment(s).  

While the unreacted VSL1 molecule is not a conventionally trappable fluorophore in 

that it can diffuse through the membrane and thereby exits the cell, activation of 

VSL1 with O3 produces a fluorescent product that is no longer capable of 

transcending plasma membranes.  This is a useful property for examining the 

presence of intracellular O3, since any molecule of VSL1 within the intracellular 

environment that has reacted to O3 will then become trapped within the confines of 

the plasma membrane.  Conversely, probe molecules that have reacted with O3 

outside of cells will become trapped in the extracellular environment and can 

therefore be washed away.  During characterization studies, VSL1 showed little or 

no reactivity towards H2O2 and other forms of ROS/RNS (Chang, personal 

communication).  Exposure of cells to 0.5 ppm O3 in the presence of VSL1 caused a 

marked increase in both the intracellular and extracellular (background) fluorescence 

of the probe, as assessed by real-time confocal imaging (Figure 4.3.2).  Importantly, 

upon an 8-fold dilution of the exposure medium, the intracellular fluorescence of O3 

exposed cells was observed to be largely retained within the cell while the 

extracellular fluorescence of VSL1 was substantially reduced (Figure 4.3.2). 
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Figure 4.3.2  VSL1 detection of intracellular O3.  BEAS-2B cells 

equilibrated with the O3 specific probe, VSL1, were exposed to clean 

air for 5 min followed by 0.50 ppm O3 exposure for 35 min in a stage-

top exposure system maintained at 37oC, >90% relative humidity, and 

5 % CO2.  Plotted relative to the 5 min baseline, the data shown are 

the emitted fluorescence intensity values at 510 nm resultant from 488 

nm excitation.  Plotted in red are the intracellular responses of VSL1 

for BEAS cells undergoing O3 exposure. Simultaneously, the 

extracellular background VSL1 fluorescence is plotted in black.  At 45 

min, 3.5 ml of pre-warmed Locke solution was added to the exposure 

dish causing an 8-fold dilution of the existing exposure medium.  Any 

remaining cellular fluorescence following dilution is assumed to be 

intracellularly trapped O3-reacted VSL1. Values shown are mean ± SE 

(n ≥ 3)  
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4.3.3 Extracellular antioxidants impair VSL1 responses to O3 

To examine the impact of extracellular antioxidants on the spatial detection of 

O3, cells were exposed to 0.5 ppm O3 in the presence of 65 uM AH2 + 500 uM UA + 

250 uM GSH + 25 uM α-Tocopherol (α-T) supplemented into the exposure medium 

2 hrs prior to the beginning of each experiment.  During these exposures, the 

intracellular fluorescence intensity of VSL1 was attenuated in antioxidant-

supplemented medium as compared to unsupplemented exposures (Figure 4.3.3A).  

A similar trend was also observed for the extracellular VSL1 fluorescence, 

suggesting an impairment of O3 solubility within the antioxidant-supplemented 

exposure medium (Figure 4.3.3B).  Importantly, for antioxidant supplemented and 

unsupplemented exposures, the intracellular and extracellular retention of O3-

reacted VSL1 remained unchanged following the 8-fold dilution performed at the end 

of each exposure period (Figure 4.3.3C).   
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Figure 4.3.3  Extracellular antioxidants impair the intracellular and 

extracellular detection of O3 by VSL1.  BEAS-2B cells equilibrated 

with the O3 specific probe, VSL1, were exposed to clean air for 5 min 

followed by 0.50 ppm O3 exposure for 35 min in a stage-top exposure 

system maintained at 37oC, >90% relative humidity, and 5 % CO2.  

Plotted relative to the 5 min baseline, the data shown are the emitted 

fluorescence intensity values at 510 nm resultant from 488 nm 

excitation.  A) The relative intracellular responses of VSL1 for BEAS 

cells undergoing O3 exposure. B)  The relative extracellular 

(background) responses of VSL1 during O3 exposure. At 45 min, 3.5 

ml of pre-warmed Locke solution was added to the exposure dish 

causing an 8-fold dilution of the existing media.  Any remaining 

fluorescence following dilution is assumed to be O3-reacted VSL1. C) 

The percentages of VSL1 fluorescence retained immediately following 

the 8-fold dilution as compared to the background, for O3 exposures 

occurring in the presence and absence of extracellular antioxidants.  

Values shown are mean ± SE (n ≥ 3)   
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4.3.4 Extracellular antioxidants decrease O3-induced changes in the cytosolic 
glutathione redox potential 

Our previous studies using roGFP2 have found potent increases in the EGSH 

of BEAS-2B cells exposed to various concentrations of O3 (Gibbs-Flournoy et al., 

Chapter 3). In order to determine whether antioxidant-mediated scavenging of 

intracellular O3 protects against the increased intracellular glutathione redox 

potential (EGSH), roGFP2-expressing cells were exposed to O3 in the presence or 

absence of extracellular antioxidants.  In the current study, AH2, UA, GSH, and α-T 

were supplemented into the exposure medium of roGFP2 expressing cells.  The 

presence of these antioxidants dramatically attenuated O3-induced increases in 

cytosolic EGSH as measured by roGFP2 (Figure 4.3.4).   
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Figure 4.3.4 Extracellular antioxidants blunt O3-induced increases 

in cytosolic glutathione redox potential.  In the presence or 

absence of extracellular antioxidants, BEAS-2B cells expressing 

cytosolic roGFP2 were exposed to clean air for 5 min followed by 0.50 

ppm O3 exposure for 35 min in a stage-top exposure system 

maintained at 37oC, >90% relative humidity, and 5% CO2.  Shown are 

the ratiometric values (404/488) calculated from the fluorescence 

intensity emitted at 510 nm induced by sequential excitation at 404 and 

488 nm, and plotted relative to the 5 min baseline.  Values shown are 

mean ± SE (n ≥ 3) 
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4.4 Discussion 

The reactivity and solubility of O3 with biomolecules in aqueous conditions 

have long been thought of as representing factors that limit the ability of this toxicant 

to reach the underlying respiratory epithelium (Mudway and Kelly, 2000; Pryor 

1991).  The oxidative changes occurring from O3 exposure have been largely 

attributed to the generation of secondary oxidants, such as (hydro)peroxides, lipid 

aldehydes and other lipid ozonation products, which are more capable of directly 

interacting with cellular environments (Ciencewicki et al, 2008).  In contrast, a recent 

study by Garner and colleagues demonstrated the feasibility for O3 to be detected 

within cells (2009).  However, the high concentration of O3 used in that study, 

combined with logistical issues regarding the exposure methodology left many 

unanswered questions about their observations. The present study explores the 

ability of O3 to cross cellular membranes into the intracellular environment.  In 

addition, we examined the protective potential of common antioxidants present in 

human epithelial lining fluid, and their ability to prevent O3-exposed cells from 

incurring oxidative injury. 

Our initial studies examining H2O2 generation during O3 exposure revealed an 

unexpected observation.  Experiments using the H2O2-specific fluorescent reporter, 

PG-1, demonstrated distinct increases in intracellular fluorescence despite the 

presence of pegylated catalase (pCat).  pCat was chosen for these PG-1 control 

experiments because of its ability to cross cellular membranes making it available to 

the intracellular and extracellular environments for the immediate degradation of 
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H2O2 as it is generated.  As shown, the 50 units of pCat used for this experiment 

were enough to prevent PG-1 responses to two doses of H2O2 added at the end of 

each exposure.  This finding suggests that the observed PG-1 increases in 

fluorescence intensity were not induced by H2O2, but by O3. 

As a follow up to the PG-1 findings, the O3-specific fluorophore, VSL1, was 

used to determine whether unreacted O3 is capable of crossing cellular membranes 

into the intracellular environment.  As mentioned earlier, upon reaction with O3, 

VSL1 becomes intracellularly trapped making any changes in the intensity of the 

fluorophore shielded from outside manipulation such as dilution of the extracellular 

media.  Indeed, the robust changes in cellular VSL1 fluorescence suggest that O3 is 

capable of entering intracellular compartments unreacted.  Moreover, this finding is 

further substantiated by 2 additional observations: 1) the ~4-fold difference in the 

intracellular and background fluorescence intensities suggests compartmentalization 

of the fluorophore, and 2) the substantial retention of cellular fluorescence, as 

compared to the background, suggest that the reacted fluorophore has become 

trapped within the intracellular environment making it unavailable to be simply 

diluted away.   

Under physiological conditions, the epithelial lining fluid (ELF) is the first line 

of protection for the respiratory tract against the toxicological effects of inhaled air 

pollutants.  This highly important biological barrier prevents toxicants from directly 

interacting with the underlying epithelium, which is the first cellular barrier 

encountered upon entry into the lung.  The ELF is comprised of a wide milieu of 
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biomolecules largely dedicated to trapping and detoxifying respired xenobiotics.  In 

relation to O3 exposure, four antioxidants have been repeatedly described as being 

critical for buffering the oxidative effects O3.  They are: uric acid, ascorbic acid, 

reduced glutathione, and α-Tocopherol (Mudway and Kelly, 2000; Kelly et al., 1995). 

Hence, in assessing the ability of O3 to cross cellular membranes, we felt that it was 

important to take the potential participation of extracellular antioxidants into 

consideration for possible attenuation or ablation of intracellular O3 detection.   

As evidenced by our studies, the presence of physiologically-relevant 

concentrations of extracellular antioxidants is sufficient to scavenge extracellular 

ozone and thus decrease the concentration available to transcend the plasma 

membrane of exposed BEAS-2B cells.  This appears to be a direct antioxidant-

mediated limitation of O3 solubility within the exposure medium since there was a 

significant attenuation of the background fluorescence during antioxidant-

supplemented O3 exposures.  However, it is important to acknowledge that despite 

the presence of these antioxidants, we still observed increases in the intracellular 

fluorescence intensity of VSL1 that was largely retained following an 8-fold dilution of 

the extracellular medium.  The concentrations of AH2, GSH, UA and α-T used in 

these experiments were based on the upper limits of Mudway and Kelly’s estimation 

of the physiological concentrations of these antioxidants in human airways (2000).  

Using an exposure volume of 0.5 ml places a conservative estimate of the 

approximate medium thickness to be ~1.3 mm. At this thickness, our simulated ELF 

would impose a greater aqueous barrier to O3 penetration than current estimations 

of the thickest portions of the ELF located in the upper airways (Mudway and Kelly, 
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2000).  Also, since the cellular and background retention of VSL1 fluorescence was 

largely conserved across supplemented and unsupplemented antioxidant 

exposures, it appears that the chemical interaction of O3 with VSL1 is not directly 

altered by the presence of extracellular antioxidants.  Taken together, these data 

suggest that although antioxidants in the ELF are capable of scavenging 

extracellular O3, the antioxidant defense of our simulated ELF was insufficient in fully 

protecting cells from direct interaction with O3 molecules. 

To further examine the antioxidant-mediated impairment of intracellular O3, 

we tested the effect of these molecules on preventing the alteration of a specific 

oxidative endpoint.  Using cytosolically-targeted roGFP2, we observed profound 

decreases in oxidative alteration of the intracellular glutathione redox potential 

(EGSH) induced by O3 in antioxidant-treated cells.  Previously, our lab characterized 

the impact of O3 exposure on EGSH, however an ultimate driving force could not be 

fully attributed to any single initiating event.  Taking the times of onset and overall 

profile of the roGFP2 and VSL1 O3 responses, the evidence presented here 

suggests that the interaction of O3 with intracellular biomolecules could likely be 

responsible for the oxidative shifts in the EGSH measured by roGFP2.  
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4.5 Conclusion 

Based on preliminary studies, it is tentatively concluded that O3 is capable of 

transcending cellular membranes to gain access to the intracellular environment.  

While our studies simulating the ELF of O3 exposed cells suggest that pulmonary 

defenses for buffering O3-induced oxidation can be overcome, we must 

acknowledge that these studies are not able to account for the participation of other 

ELF components in mounting additional protection.  However, it is equally fair to 

speculate that once free radical propagation reactions involving ozone and 

accessory proteins and lipids are taken into account, the oxidative insult to epithelial 

cells would likely be potentiated.  While the presence of these biomolecules would 

provide additional targets to further blunt the ability of O3 to cross cell membranes, 

the secondary and tertiary byproducts resulting from such interactions would 

probably create new reactive species capable of promoting additional oxidative 

damage.  All of these events culminate in stimulating cellular oxidative stress, which 

would likely lead to the detriment of the cells being exposed. 

 



 

 

Chapter 5 

Overall Conclusions and Significance 

Air pollution is a highly complex and variable mixture of gaseous and 

particulate components.  Similarly, the individual mechanisms by which air pollutants 

induce adverse health effects are numerous, with the pulmonary and cardiovascular 

systems being most frequently impacted by exposure.  Despite the complexity of air 

pollution and its effects, several common questions remain unresolved regarding the 

interaction of air pollutants with intra- and extracellular environments, and the 

initiating events by which these toxicants induce cellular damage.  Over years of 

studying air pollution interactions with human physiology, it has become evident that 

these mechanistic questions may be answered more clearly through direct 

observation using imaging-based approaches.  The studies described herein use 

advanced molecular imaging methods to investigate the in vitro interaction of 

common air pollutants with components of the human pulmonary system.  Taken 

together, this body of work yielded useful data towards advancing knowledge of 

fundamental concepts that have remained elusive due to methodological limitations 

and shortcomings in the assessment of air pollution interactions with cellular 

environments. Unlike pollution affecting other environmental media, the implications 

from exposure to air pollution are particularly challenging since there are currently no 

means to effectively remediate pollutants in outdoor air.  This places a high level of 
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importance on the study of air pollution since there are no choices in the air we 

breathe, and no practical intervention, engineered or behavioral, exists which 

permits full avoidance of ambient air pollutants.   

The initial study of this project examines particulate interactions with the 

intracellular environment of lung epithelial cells.  It specifically establishes and 

utilizes a novel method for determining particle internalization, with a particular focus 

on environmentally-relevant nanoscaled materials (Chapter 2).  Exposure to ambient 

UFP is estimated to increase since new technologies implemented as a means to 

limit particulate mass output from internal combustion engines inherently favor the 

generation of nanoscaled particles as the smaller particles contribute minimally to 

the total particulate mass emitted (Oberdörster and Utell, 2002).  Currently, the US 

EPA does not regulate the UFP fraction of ambient PM.  Moreover, the rapidly 

expanding field of nanotechnology, combined with increasing levels of ambient UFP, 

is steadily escalating human exposure to NP while little is known about the health 

implications of these exposures.  

Many NP evade normal pulmonary defenses leaving them free to interact with 

cellular environments (Oberdörster and Utell, 2002; Oberdörster et al, 2005).  

Detection of internalization is a specific interest of NP toxicity because assessment 

of this parameter would aid in answering mechanistic questions regarding particle 

toxicity and translocation to extrapulmonary tissues. Upon internalization, the 

intrinsic properties of many toxicologically-active nanomaterials likely induce cellular 

damage due to direct interaction with intracellular biomolecules.  Previous studies 
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have demonstrated NP depletion of important biomolecules such as glutathione, as 

well as activation of signaling cascades that lead to expression of proinflammatory 

cytokines and antioxidant proteins (Xia et al., 2007; Vernanth et al., 2007; 

Nurkiewicz et al., 2008; Madl and Pinkerton, 2009).  However, many of these studies 

describe these outcomes as global changes with little insight as to how they came 

about.   

For instance, a relatively benign NP, such as carbon black, may be 

toxicologically inactive in extracellular environments; yet, upon entry, such particles 

would be free to nonspecifically bind critical proteins and antioxidant molecules, or 

release surface-bound toxicants such as transition metals, endotoxin, or redox 

cycling chemicals, which could be detrimental to the host cell (Li et al, 2008; 

Mühlfeld et al, 2007).  Such is likely the case for diesel exhaust particles (DEP), 

which vary in size and shape, but have an elemental carbon core with numerous 

organic and inorganic materials, including various transition metals and redox-

cycling compounds, adsorbed to their surface (Park et al, 2011).  Moreover, DEP 

has been demonstrated to strongly induce activation of inflammatory signaling 

cascades often via an oxidation-mediated mechanism (Nemmar et al, 2012; Park et 

al, 2011; Tal et al, 2010).  Discrimination amongst direct and indirect interaction of 

NP with intracellular targets is often difficult to assess without the aid of fluorescent 

properties, which is lacking in most environmentally-relevant NP.  The method 

devised in Chapter 2 was specifically designed to permit detection of non-fluorescent 

ambient particulates.     
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Interaction of air pollutants with intra- and extracellular environments is critical 

for the initiation and propagation of mechanistic factors inducing adverse health 

effects.  Hence the importance of the studies performed in Chapters 2 and 4.   In 

Chapter 2, using the nuclei of TiO2-exposed BEAS-2B cells as points of intracellular 

reference, we were able to show the time-dependent internalization of an 

environmentally-relevant NP using the DF-CLSM methodology.  These data provide 

insight into a significant outcome of extracellular NP interaction with lung epithelia.  

Similarly, in Chapter 4 we were able to examine the impact of extracellular 

antioxidants on the intracellular detection of O3, while linking antioxidant-mediated 

decreases in intracellular O3 detection to attenuation of O3-induced changes in 

intracellular redox status.  Detection of air pollutant-induced alterations in cellular 

redox status is of particular importance because it assesses events directly related 

to an oxidative stress. 

Oxidative stress is a key mechanistic factor driving the adverse health effects 

caused by gaseous and particulate air pollutants.  However, assessment of 

xenobiotic-induced oxidative stress has been difficult to achieve due to 

methodological shortcomings for the sensitive, specific, and direct non-disruptive 

measurement of intracellular redox status.  In relation to particulate-induced 

oxidative stress, ambient UFP and various kinds of engineered NP have been 

shown to generate numerous types of ROS including H2O2, superoxide, and 

hydroxyl radicals (Figure 5.1) (Li et al, 2008; Xia et al, 2007).   



120 

 

 

Figure 5.1  Mechanisms of particle-mediated ROS production. (Li 

et al, 2008) 

In efforts to identify changes indicative of oxidative stress, a large portion of 

this dissertation was dedicated to the observation and validation of an approach for 

the direct monitoring of endpoints related to intracellular redox status.  Chapters 3 

and 4 examine the potent oxidative effects of O3 on intra- and extracellular 

environments.  O3 is arguably the most potent oxidizing air pollutant, and it was used 

in these studies as a model to make novel assessments of xenobiotic-induced 

oxidative stress.  Using roGFP2, a genetically-encoded fluorescent reporter of the 

intracellular glutathione redox potential (EGSH), we observed potent O3-induced 

increases in EGSH.   

While oxidative stress is a major driving force for many adverse outcomes, 

the mechanisms by which this cellular state can be triggered are numerous and 
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often reversible.  Within the cellular environment there are multiple redox systems 

that are not necessarily in equilibrium despite reactions within these systems being 

thermodynamically favored (Jones, 2006; Meyer and Dick, 2010; Gutscher et al, 

2008).  Furthermore, it is now clear that cellular “oxidative stress” is not a global 

characteristic simply inducible by the existence of a particular reactive species or 

poorly-characterized alterations in an endpoint of the “cellular redox state”.  

However, it is reasonable to use a specific redox pair(s) in assessment of the 

oxidative status of cells.  This is especially relevant when referring to a specific 

subcellular compartment such as the cytosol.   

The non-disruptive monitoring of the intracellular GSH/GSSG redox pair is an 

advantageous means of assessing the oxidative state of cells undergoing xenobiotic 

exposure.  GSH is a major contributor to the overall maintenance of intracellular 

redox homeostasis.  Moreover, studies show that mice deficient in γ-GCS, the rate-

limiting enzyme of glutathione synthesis, readily die of massive apoptosis, 

demonstrating the critical importance of GSH for cell survival (Dalton et al, 2004).  

Given the importance of GSH as indicated by its integration into cell survival 

mechanisms (Circu and Aw, 2010; Anathy et al, 2012), xenobiotic-induced changes 

in its overall oxidation state likely reflect an important shift in the global redox status 

of cells.  Providing this alteration persists, and is not sufficiently reversed, onset of 

an oxidative stress is likely to ensue resulting in the aforementioned adverse 

outcomes ranging from cell death to altered gene expression.  Therefore, in 

reference to the O3 studies performed in Chapters 3 and 4, the increases in cytosolic 

EGSH induced by O3 reflect an oxidative shift in intracellular redox status, which 
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represents a clear departure from homeostasis, and an unambiguous index of 

oxidant stress.   

Of recent, interest in the oxidation of protein thiol content has steadily gained 

acceptance as a means of initiating and promoting the adverse effects of xenobiotic 

exposure.  Many of the intracellular redox systems, including glutathione, involve the 

use of thiol reactivity as the primary means of buffering and/or communicating 

cellular oxidation.  Furthermore, redox-sensitive signaling proteins often employ 

exposed cysteine(s) in their active sites as oxidative sensors of their surrounding 

environment.  In particular, phosphatases have been demonstrated to have redox-

sensitive cysteines whose oxidation causes inactivation of the protein (Samet and 

Tal, 2010; Sarsour et al, 2009).  As a result, the basal level of kinase activity can 

then prevail causing activation of various signaling pathways leading to outcomes 

such as inflammatory gene expression (Samet and Tal, 2010).  All of these factors 

make assessment of the thiol/disulfide equilibrium useful in determination of 

changes in cellular redox status as well as outcomes of sustained oxidative stress.   

There are physiological roles for the intra and extracellular generation of ROS 

that should not be mistaken as a type of oxidative stress.  Within cells, ROS have 

been demonstrated to act as secondary messengers for the specific activation of 

redox-sensitive signaling pathways (Murphy et al, 2011).  Of recent, H2O2 has been 

persuasively argued to be the most likely ROS to act as a secondary messenger 

(Forman et al, 2010).  In relation to pulmonary inflammation, AP-1 and NFkB 

pathways have been shown to be responsive to oxidative stimulus via DEP and O3 
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exposures (Cheng et al, 2012; Cienciwicki et al, 2008).  Similarly, ROS such as 

superoxide and hydroxyl radicals are used by immune cells, including macrophages 

and neutrophils, in the generation of oxidative bursts used for microbicidal functions 

(Amulic et al, 2012; Slauch 2011).   

While acute, localized increases in physiologically-relevant concentrations of 

certain ROS, such as H2O2, may serve as secondary messengers in cellular 

communication and activation of signaling cascades, xenobiotic-induced oxidative 

shifts in cellular redox can potentiate, impede, or otherwise interfere with activation 

of these physiological pathways that were meant to be transient in nature.  By further 

extrapolating the data presented in Chapters 3 and 4, it appears as though O3, or its 

secondary byproducts, would be free to non-specifically attack exposed thiol groups 

of various proteins upon entry into intracellular compartments.  This hypothesis is at 

least partially substantiated by preliminary experiments in which we were able to 

observe direct O3-induced oxidation of GSH to GSSG in acellular experiments (Data 

not shown).  Likewise, O3 has been reported to selectively activate transient receptor 

potential ankyrin 1 (TRPA1) cation channels in mouse bronchopulmonary C-fibres 

(Taylor-Clark and Undem, 2010).  In that study, a direct O3 activation of TRPA1 

could not be substantiated nor ruled out; nonetheless, the results of our studies 

suggest that a direct activation is likely.  Moreover, TRPA1 channels are known to 

be activated via modification of cysteine thiol residues, which is entirely consistent 

with a direct interaction of O3 with this ion channel (Song et al, 2011; Bandell et al, 

2004).  Within humans, airway hyperresponsiveness, decreases in lung function, 

and other nervous system-mediated pulmonary effects have been demonstrated to 
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be direct results of O3 exposure.  This suggests that O3 interactions with membrane-

bound ion channels, and other thiol-containing receptors, are capable of inducing 

activation of pulmonary nerve cells, which in return, underlies these pulmonary 

responses.  Taken together, these data suggest that O3 have an impact on the direct 

oxidation of intracellular protein thiols.   

A similar series of events is also applicable to the activation of other receptors 

in airway epithelial cells.  For example, both O3 and PM have been demonstrated to 

cause activation, and increased expression, of the epidermal growth factor receptor 

(EGFR) (Afaq et al, 2009; Churg et al, 2005; Leung et al, 2004; Tal et al, 2008).  

Activation of EGFR leads to transduction of signaling pathways responsible for 

cellular proliferation and survival (Herbst, 2004).  Naturally, a consequence of 

constituitive activation of EGFR is the initiation and promotion of cancer.  In fact, the 

development of certain types of lung cancer has been attributed to defects in EGFR, 

which are linked to environmental pollutant exposure and lifestyle exposures such as 

tobacco smoking (Petrelli et al, 2012; Couraud et al, 2012; Samet et al, 2009; Yano 

et al, 2012).  Although specific details regarding ligand-mediated versus direct 

oxidative/phosphorylative activation of this receptor are yet to be elucidated, the 

mechanisms by which this receptor is activated appear to be reflective of its 

interaction with specific xenobiotic compounds.   

A particularly interesting finding in Chapter 3 suggests that there is an 

inherent link between cellular maintenance of redox status and metabolic pathways 

(Chapter 3, Section 3.3.2).  Observations made as early as 1966 have described the 
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interplay of ROS with GSH as a molecular basis for metabolic regulation (Jacob and 

Jandl, 1966).  Our findings also indicate a role of energy metabolism in the 

maintenance of intracellular redox as glucose-deprived cells were sensitized to the 

effects of O3-induced increases in EGSH (Figure 3.3.2.1).  Concomitantly, NADPH 

levels were also observed to decrease (Figure 3.3.2.2), and we inferred those 

decreases to correspond to an impairment of GR activity, inhibiting the reduction of 

GSSG to GSH, thus sensitizing the cells to a sustained oxidative insult.  The major 

pathway for production of NADPH is the pentose phosphate pathway (PPP).  

Oxidative stress is believed to indirectly regulate the PPP since the activity of 

glucose-6-phosphate dehydrogenase (G6PD), the rate limiting enzyme of the PPP, 

has been demonstrated to increase in response to demand for NADPH in 

maintenance of cellular redox (Rahman et al, 1999).  Moreover, oxidative stress has 

been observed to increase PPP activity in human epithelial cells, while deficiency in 

G6PD has been shown to enhance the sensitivity of erythrocytes and fibroblasts to 

oxidative insult (Wamelink et al., 2008; Ho et al., 2000).   

Taken together, reductive maintenance of GSH is dependent on the 

participation of components within the glutathione system, as well as support from 

outside metabolic elements such as the PPP.  The findings presented in Chapter 4 

suggest that the metabolic capacity, and even the nutritional status, of cells exposed 

to oxidative air pollutants plays a significant role in the ability of cells to prevent 

oxidative stress. Moreover, considering that GSH is required for maintenance of 

intracellular redox homeostasis, inhibitory alterations of key metabolic pathways 

would adversely impact the reductive maintenance of GSH.  The implications of 
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such alteration would ultimately increase cellular susceptibility to oxidative stress.  In 

fact, G6PD deficiency in humans is the most common human enzyme defect 

(Cappellini and Fiorelli, 2008), and has been recently reported as a factor for 

increasing oxidative stress in the development of heart failure (Hecker et al, 2012).  

As evidenced by Hecker and colleagues, G6PD deficiency is not a lethal condition; 

however, individuals known to have this genetic defect are advised to avoid 

situations believed to cause overt oxidative stress, as such exposures have been 

shown to induce hemolysis (Cappellini and Fiorelli, 2008).   Hemolysis is a common 

pathological outcome for individuals with G6PD deficiency since erythrocytes have 

an enhanced sensitivity to oxidative stress due to their lack of isocitrate 

dehydrogenase, an enzyme typically found in mitochondria (Wamelink et al., 2008).   

Studies examining the effects of air pollution exposure have uncovered the 

existence of specific genetic polymorphisms that have direct impact on pulmonary 

defenses against air pollutants.  Most notably, polymorphisms yielding deficiencies 

in the expression of certain GST isozymes, such as GSTM1 and GSTP1, have been 

linked to increased susceptibility to oxidative injury caused by common air pollutants 

including ozone and PM (Wu et al, 2011; Ballatori et al, 2009; Cienciwicki et al, 

2008).  In addition, a simple serine to proline polymorphism in the NADPH:quinone 

oxidoreductase 1 (NQO1) gene has been observed to make the resulting enzyme 

resistant to degradation.  This resistance to degradation has been shown to 

contribute to O3-induced toxicity by enhancing the activity of NQO1, which reduces 

quinones to hydroquinones, a product that is then oxdized by O3 to yield secondary 

ROS (Yang et al, 2008).  Furthermore, O3 exposure studies using human subjects 
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found individuals with both polymorphisms to have greater decreases in lung 

function as well as increased markers of oxidative stress, including DNA adducts 

and lipid peroxides, in comparison to subjects lacking these genotypic changes 

(Bergamaschi et al, 2001.; Corradi et al, 2002).  Also, these same polymorphisms 

have been associated with the exacerbation or onset of underlying pulmonary 

diseases such as asthma (Yang et al, 2008).  As a whole, these observations 

provide evidence in support of genetic predisposition being a factor for human 

susceptibility to the adverse effects of air pollution. 

Interestingly, preliminary studies conducted in our lab using primary cells from 

GSTM1 null and sufficient individuals did not find any significant differences amongst 

the genotypes in relation to protection or alteration of changes in EGSH as measured 

by roGFP2 (data not shown).  This observation was not necessarily surprising since 

GSTs directly conjugate GSH to xenobiotic molecules in phase II metabolic 

reactions, which would ultimately lead to consumption of the GSH pool.  While the 

non-oxidative consumption of GSH could have an impact on the intracellular redox 

potential, the consumption of GSH would have to be considerable for detectable 

alteration of the cytosolic EGSH during acute exposures to oxidizing compounds.  

This is largely due to the presence of high intracellular concentrations of GSH.  

Thus, this observation reinforces conventional thoughts regarding the protective 

effects of GSTs being specifically centered on their ability to detoxify and remove 

xenobiotics as opposed to a direct maintenance of the intracellular redox state.  

Hence, GSTs are important in detoxifying recognizable reactive species generated 
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from air pollution exposure in the reduction of oxidative stress once it ensues, as 

opposed to directly buffering oxidative injury before, or as, it occurs.  

In examining the features of oxidant-induced lung injury, perturbation of 

epithelial integrity is often critical in the toxicological mechanisms of air pollutants.  

As stated previously, the lung epithelium is the first cellular barrier reached upon 

entry, often making it a primary target of the deleterious effects of inhaled 

xenobiotics.  All cells are encompassed by a phospholipid bilayer known as the 

plasma membrane, which differentiates the intra- and extracellular environments.  

Interaction of oxidants with the plasma membrane has adverse outcomes, with the 

most common being lipid peroxidation.  In general, lipid peroxidation is the oxidative 

degradation of lipids.  It occurs as a series of reactions inducible by a variety of 

ROS, including H2O2 and superoxide, which ultimately results in damage to cellular 

membranes (Siddique et al, 2012).  Additionally, O3 and PM have been reported to 

cause lipid peroxidation, with numerous lipid peroxidation products being most 

frequently characterized as a consequence of O3 exposure (Mudway and Kelly, 

2000; Nemmar et al, 2012).  Furthermore, byproducts of lipid peroxidation can 

themselves be oxidatively active making them capable of inflicting additional 

oxidative damage (Pulfer and Murphy, 2004; Uhlson et al, 2002).    

The epithelial lining fluid (ELF) contains numerous low molecular weight 

antioxidants, antioxidant proteins, and unsaturated lipids, which generally exist to 

either aid in the physiological functioning of the lung, or to protect the lung from the 

outside environment.  As a protective barrier, the ELF is there to mitigate the effects 
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of respired toxicants before they can reach the underlying epithelium. However, the 

existence of so many oxidizable targets within the ELF likely makes this protective 

lung component a potentiator of oxidative damage.  For example, due to its 

reactivity, O3 solubility within the ELF clears rapidly making it unavailable to interact 

with lung components upon cessation of exposure; but, the adverse effects of O3 

occur long after an acute exposure (Figure 5.2) (Ballinger et al, 2005; Mudway and 

Kelly, 2000).  While these effects are largely attributable to direct cellular damage 

that occurred during exposure, it is likely that the production of O3-induced 

byproducts, resultant from reactions with ELF components, are the latent drivers that 

potentiate the adverse effects beyond the initial O3 exposure.  This is likely related to 

the lag time required to detoxify the remaining oxidative byproducts as evidenced by 

the peak in LOPs (lipid ozonation products) across the initiation and progression 

periods (Figure 5.2).   
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 Figure 5.2 Time course of acute human responses to 

environmentally-relevant O3 concentrations. (Mudway and Kelly 

2000)  The temporal profiles of endpoints related to five groups of O3-

induced responses are plotted across time.  Each group of profiles is 

divided into three temporal periods: Initiation (responses observed 

during the exposure), Progression (the time during which O3 responses 

develop after the exposure period), and Resolution (the period of time 

where acute responses resolve back to pre-exposure levels).  The five 

types of responses are: A) pulmonary function (FEV1, FEF, SRaw ); B) 

inflammatory cell responses (Total cells, Macrophages, Neutrophils, 

Lymphocytes); C) inflammatory mediators (FN, IL-8, IL-6, MPO, PGE2); 

D) epithelial injury (Shed epithelial cells, Albumin/total protein, LDH); 

and E) extracellular antioxidant responses (UA, AA, GSH, LOP) 

 

Assumably, a plot of PM-induced effects monitoring the same endpoints of 

the above figure would likely be exaggerated in relation to the exposure effects.  

Depending on the physiochemical properties of the particulates inhaled, certain 

particles would likely persist within the lung for longer durations of time beyond the 
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exposure period.  This would be especially true for UFP since the size of these 

particles causes them to avoid certain pulmonary defenses such as the mucociliary 

clearance pathway. 

Complementary effects of gaseous and particulate air pollutants likely 

influence the adverse outcomes of air pollution exposure.  For example, O3 has 

been demonstrated to increase the permeability of epithelial cell membranes (Yang 

and Omaye, 2009), which could possibly potentiate the ability of particulates to 

reach intracellular environments.  In this situation, cells exposed to O3 and PM would 

then face a two-fold oxidative attack.  Even if the ELF of pulmonary epithelial cells is 

capable of fully buffering moderate concentrations of O3, the generation of 

secondary ROS, combined with the additional intracellular burden of redox-active 

particles, could overwhelm antioxidant defenses.  Moreover, in the case of DEP 

exposure, where the organic content of these particles can be relatively high, 

interaction of O3 with the organic content could lead to the generation of additional 

oxidation products that may be capable of transcending injured lipid bilayers for 

direct oxidative attack.  Overall, the proposed conditions would reinforce the 

progression of an oxidative stress response. 

Ultimately, the adverse effects of air pollution exposure leading to oxidative 

stress are dictated by several factors.  Many of these factors are best summarized 

by the hierarchical model of oxidative stress responses proposed by Andre Nel as 

depicted in Figure 5.3 (Li et al, 2008).   
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 Figure 5.3  Hierarchical model of oxidative stress responses. (Li et 

al, 2008). 

 

For our purposes, oxidative stress is defined as occurring when an imbalance in the 

production of reactive species and free radicals exceeds the capacity of cellular 

mechanisms to avoid or correct oxidative damage.  In the hierarchical model by Li 

and colleagues, the levels of succession for oxidative stress are placed in relation to 

three tiers of cellular response.  Moreover, this particular model places oxidative 

stress in relation to the GSH/GSSG ratio.  In relation to our definition, tier 1 of the 

hierarchical model is dedicated to mitigating and correcting oxidative damage 

obtained from a sustained exposure.  At this level, the GSH/GSSG ratio is still 

relatively high, which serves to prevent activation of inflammatory signaling 

cascades.  As the oxidative stress ensues, antioxidant defenses become 

overwhelmed and the GSH/GSSG ratio drops to a level where redox-sensitive 
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signaling pathways become activated, possibly due to the loss of protein tyrosine 

phosphatases that maintain signaling quiescence.  This initiates an inflammatory 

response that attempts to contain and facilitate the repair of damaged tissues.  

Lastly, total compromise of cellular antioxidant defenses, as reflected by a low 

GSH/GSSG ratio, in combination with extensive oxidative damage, triggers overt 

cytotoxicity, resulting in activation of apoptotic or necrotic pathways often directed by 

mitochondrial cues.   In relation to pulmonary oxidative stress, it is important to note 

that while adequate, this linearized model does not necessarily account for the 

reversible nature of redox processes.  Also, it does not account for adaptive 

responses mediated via the nervous system such as alteration of breathing patterns.  

In addition, sustained oxidative stress does not necessarily end with an overt 

cytotoxicity.  As mentioned earlier, the adverse effects of oxidative stress could alter 

or inactivate critical signaling molecules, such as phosphatases, leading to an 

aberrant activation of signaling cascades related to cell proliferation and survival (i.e. 

cancer).   

The genetic background and disease burden of exposed individuals must also 

be taken into account when examining the adverse effects of air pollution.  As 

discussed earlier, the effect of polymorphism of key oxidant-mitigating proteins can 

certainly affect an individual’s level of susceptibility to air pollutant exposure.  

Similarly, underlying disease burden can also make a relatively unhealthy individual 

more susceptible to the adverse effects of air pollution exposure.  Both 

cardiovascular and pulmonary diseases, including asthma, COPD, diabetes, 

hypertension, and atherosclerosis, have been demonstrated to enhance in vivo 
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responses to air pollution in humans and various animal models (American Lung 

Association, 2012; Bolton et al., 2012; Curtis et al, 2006; Kampa and Castana, 2007; 

Laumbach, 2010; and Shannahan et al, 2010;).  Ultimately, determination of the 

adverse effects of air pollution exposure is multifactorial.   

In moving forward, the future of oxidative stress assessment looks promising.  

In relation to cellular responses, the redox research community has been making 

strides to move away from global assessments of oxidative stress in pursuit of 

assessing changes in specific mechanistic components that impact redox 

homeostasis.  Similarly, toxicologists are always looking for better ways of assessing 

redox related-endpoints in pursuit of answering mechanistic questions.  With 

improvements upon existing technologies, and development of new tools, our 

understanding of xenobiotic-induced oxidative stress will progress.  While this 

project has utilized the latest sensors available, new ones emerge continuously.  

Mutation of GFP continues to drive the development of new fluorescent reporters 

that improve upon previous versions.  For instance, a new version of roGFP2, called 

roTurbo, was recently reported and is purported to improve upon the current version 

of the sensor by being a brighter, more readily oxidizable fluorophore (Dooley et al, 

2012).   

The future of oxidative stress measurement will center on development of 

probes with enhanced sensitivity, specificity, and targetability to predetermined 

subcellular locations.  Moreover, designers of future probes should seek to diversify 

their sensors while making them compatible with high throughput technologies.  
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Currently, many of the available small molecule probes like PG-1 and VSL1, as well 

as their genetically encoded counterparts, such as roGFP and HyPer, only emit 

green fluorescence.  This makes the process of assessing redox related changes 

more challenging because observations using different probes must be done 

independently or through specialized post-acquisitional processing.  Of recent, my 

colleague in the Samet lab, Dr. Wan-Yun Cheng, was able to develop a new imaging 

technique for resolving closely-emitted fluorophores within the same cells.  While 

this technique is a wonderful contribution to the scientific community, it relies on the 

use of instruments with spectral detectors, a technology that is not always available 

in the typical confocal core facility.  Ideally, the emitted wavelengths of next-

generation fluorophores would be available in blue and red spectra so that 

combinations of fluorophores can be used simultaneously to characterize different 

redox endpoints using conventional filter-based optics.  Also, improvements upon 

small molecule sensors should continue in relation to specificity and sensitivity while 

making them containable within specific subcellular compartments.   

In conclusion, the work presented herein use current imaging techniques to 

advance our understanding of the toxicological implications of exposure of human 

cells to common air pollutants.  Over the course of these studies, we were able to 

develop and implement approaches for 1) detecting and assessing nanoscaled 

particle internalization and 2) making real-time assessments of xenobiotic-induced 

changes in EGSH.  These methods became critical for the determination of important 

endpoints related to the spatiotemporal interaction of air pollutants with cellular 

environments as well as the direct oxidative consequences of such interactions.  
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Most importantly, we were able to observe endpoints directly related to air pollutant-

induced oxidative stress.  Using ozone as a model air pollutant, we have 

demonstrated perturbation of the intracellular glutathione redox potential, an 

endpoint specifically attributable to oxidative stress.  Moreover, we have generated 

data that suggest that the observed changes in redox potential are the result of 

direct O3 interaction with intracellular components, a phenomenon that was 

previously thought to be unfeasible.  Also, the importance of common extracellular 

antioxidants in the protection of epithelial cells from O3-induced increases in EGSH 

was demonstrated.  Using the approach described in our characterization of O3-

induced redox changes, future toxicological studies of various types of xenobiotics 

can now more directly assess an important endpoint of oxidative stress.  Similarly, 

with growing concerns over the health implications of intentional and unintentional 

NP exposure, the DF-CLSM methodology should assist in characterizing factors 

determining particle entry to intracellular environments.   
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