
A Data-driven, Piecewise Linear Approach to
Modeling Human Motions

Guodong Liu

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Computer Science.

Chapel Hill
2007

Approved by:

Leonard McMillan

Carol Giuliani

Ming C. Lin

James Stephen Marron

Wei Wang

Bing Yu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/210602892?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


c© 2007

Guodong Liu

ALL RIGHTS RESERVED

ii



ABSTRACT

GUODONG LIU: A Data-driven, Piecewise Linear Approach
to Modeling Human Motions.

(Under the direction of Leonard McMillan.)

Motion capture, or mocap, is a prevalent technique for capturing and analyzing hu-

man articulations. Nowadays, mocap data are becoming one of the primary sources of

realistic human motions for computer animation as well as education, training, sports

medicine, video games, and special effects in movies. As more and more applications

rely on high-quality mocap data and huge amounts of mocap data become available,

there are imperative needs for more effective and robust motion capture techniques, bet-

ter ways of organizing motion databases, as well as more efficient methods to compress

motion sequences.

I propose a data-driven, segment-based, piecewise linear modeling approach to ex-

ploit the redundancy and local linearity exhibited by human motions and describe

human motions with a small number of parameters. This approach models human mo-

tions with a collection of low-dimensional local linear models. I first segment motion

sequences into subsequences, i.e. motion segments, of simple behaviors. Motion seg-

ments of similar behaviors are then grouped together and modeled with a unique local

linear model. I demonstrate this approach’s utility in four challenging driving prob-

lems: estimating human motions from a reduced marker set; missing marker estimation;

motion retrieval; and motion compression.
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Chapter 1

Introduction

Motion capture, or mocap, is a technique for digitally recording movements for use

in entertainment, sports and medical applications. A common form of motion capture

uses optical sensing of strategically placed markers, and uses triangulation from multiple

cameras to estimate the 3D position of each marker. Most often the marker positions

are converted to joint angles for an assumed skeletal model.

Motion capture started as an analysis tool in biomechanics research (Winter, 2004)

but has grown increasingly important as a source of motion data for computer ani-

mation as well as education, training, sports and recently for both cinema and video

games. Motion capture saves time in these applications and creates more natural move-

ments than manual animation. Mocap data are the primary sources of realistic human

motions. As mocap techniques mature and more and more mocap data are generated,

there is an imperative need for compressing, classifying, and searching ever-growing

motion databases and reusing motion data.

In this dissertation I propose a piecewise linear modeling approach (PLM) to mod-

eling human motions. PLM is a data-driven modeling approach. It exploits the redun-

dancy and local linearity that human motion capture data often exhibit and models

mocap data with a collection of local linear models. By doing so human motions can be

sufficiently represented with fewer parameters while still retaining sufficient subtleties.

This finding would open a door for more effective mocap systems, better ways of orga-

nizing large mocap databases, as well as more efficient methods for compressing mocap

data.

In this chapter I will first discuss some existing human motion modeling approaches.

Next I will describe the motivations and briefly review a few driving problems in motion

estimation from a reduced marker set, missing marker recovery, motion data compres-

sion and retrieval. I then will propose my approach and briefly describe how it can be



applied to these driving problems.

1.1 Human Motion Modeling Approaches

Conventional human motion modeling approaches have been based on various human

kinematic skeleton models whose complexity depends on specific motions and applica-

tions. Generally speaking, human kinematic skeleton models represent the human body

as a hierarchy of the bones and joints that together form multiple kinematic chains from

the root all the way to the end-effectors. Neighboring joints along a kinematic chain are

connected by a fix-length, i.e. rigid bone. A pose can then be specified by a translation

and rotation of the root bone and rotations of the rest joints. An articulated figure

consists of a set of rigid segments connected with joints. Varying angles of the joints

yield an enormous number of configurations. The forward kinematics problem takes

these angles as inputs and results in a pose configuration of the figure. A more diffi-

cult problem is the inverse kinematics problem, which attempts to find the joint angles

of a kinematic model given only the positions of the end-effectors and/or constraints.

In a general case, there is no closed-form analytic solution for the inverse kinemat-

ics problem. However, inverse kinematics may be solved via optimization techniques.

Certain special kinematic chains with spherical wrists permit kinematic decoupling.

Kinematic decoupling treats the end-effector’s orientation and position independently

and permits an efficient closed-form solution. Solving for a inverse kinematics solution

is generally computationally expensive, and the results are often unsatisfactory due to

simplifications necessary to make the problem tractable.

An alternative approach for modeling human motions makes use of acquired data to

construct sample-based models instead of parametric models in traditional approaches.

Data-driven modeling approaches have seen their early successes in static scene mod-

eling using image-based Rendering, i.e. IBR, as well as digital human shape modeling.

There have also been methods that apply the principles of data-driven modeling in

modeling human motions to synthesize realistic motions. These methods take advan-

tage of the fact that mocap data are readily available and treat motion modeling as

a database search and interpolation problem. Human motion sequences are organized

into a motion database. New motions can be synthesized by querying the motion

database with the given information and constraints as keys. These approaches drasti-

cally reduce the pressure to build highly accurate, robust and often inevitably compli-

cated human motion models by making a direct use of the available motion database

2



equipped with efficient motion indexing and retrieving mechanisms. One drawback of

these approaches, however, is the necessity of actively maintaining a motion database,

a fact that may create scalability problems when a motion database grows too large

to be held entirely in the memory. Another approach first assumes a human model

from domain knowledge or prior information and then trains the model using the ac-

quired data. However, these strong models could be a burden in some applications

where such domain knowledge or prior information may not be easily available. These

limitations make modeling approaches that assume much weaker priors more attrac-

tive. Researchers also realized that certain motions may lie in a manifold with fewer

degrees of freedom. They attempted to find a low-dimensional (Safonova et al., 2004;

Grochow et al., 2004) space using dimensionality reduction techniques such as principal

component analysis, and they searched for a inverse kinematic solution in that space.

However, most of these methods represent human motions with a global model and may

not be successful in modeling large, heterogenous motion data. Alternatively, there is

considerable evidence that human motions exhibit local linearity (Chai and Hodgins,

2005). It is conceivable that we may get a much more compact model if we model

human motions with a collection of local linear models instead of modeling globally.

1.2 Data-driven Modeling Approaches

Traditional computer graphics mainly focuses on constructing analytical models, often

parameterized. However, an inherent limitation of analytical models as well as physical

simulations is that these models are often simplified to simplify calculations and often

miss valuable subtleties of the real objects or natural phenomenon. On the other hand,

as various data acquisition technologies have matured and data acquisition becomes

faster and cheaper, we have begun to see interest in a new data-modeling approach

which interpolates sampled measurements.

As advances are made for general data modeling methods, dimensionality reduction

techniques, as well as the availability of huge amounts of human mocap data, it is

now possible to consider data-driven modeling approaches that leverage the inherent

realism of acquired data. Such a human motion modeling approach might be capable

of deriving a compact but robust human motion model from mocap data with neither

prior domain knowledge nor assumed skeleton models. As I will demonstrate in this

dissertation, such a model may have advantages over existing human motion modeling

approaches in some applications and may provide an attractive alternative to them

3



under certain situations.

1.3 Motivations

Although mocap data have been widely used in many applications, current motion

capture systems do have limitations, which may prevent them from being used in

some applications. The setup of most mocap systems is cumbersome, time-consuming

and expensive. Frequently, some markers positions are missing due to occlusions and

ambiguities. On the other hand, huge collections of mocap data are rapidly becoming

available, and there is an immediate need for tools that analyze, compress, annotate

and organize these data sets more efficiently.

There is considerable evidence that mocap data significantly over-specify the actual

range of realistic human motions, and thus consistently exhibit redundancy and local

linearity. The data-driven, piecewise linear modeling approach, which I propose in this

dissertation, exploits the local linearity of human motions and model human motions

as a collection of local linear models. For the scope of this dissertation, I concentrate

on the following four driving problems:

1. Estimating human motions from a reduced marker set

2. Estimating missing markers from the available marker set

3. Human motion data retrieval

4. Compressing human motion data sequences

In the following subsections, I will give a brief overview on these four driving prob-

lems.

Estimating human motions from a reduced marker set

A common form of motion capture uses optical sensing of strategically placed markers.

Most often the marker positions are converted to joint angles for an assumed skeletal

model. Usually 40 to 50 markers are used to capture a motion sequence. As many

as 300 markers may be needed to recover more accurate motions. Another example is

capturing facial expression where more densely placed markers (as many as 100 small

markers) are necessary to capture the subtleties of emotions.

4



Adding more markers in a mocap setup typically involves more mounting time

and experience of the technicians. Moreover, adding more markers makes the mocap

process more uncomfortable for the actors. More markers can introduce occlusion and

ambiguity problems, which in turn demand many more cameras. Furthermore, there

is a limit on how many markers can be placed, especially on a limited surface like the

human face.

A cheaper and faster motion capture system would benefit many applications, such

as computer games and virtual reality environments, where it is desired to have inter-

active, intuitive and accurate control over the characters/avatars. In these applications

measurements from only a few markers can be effectively used as control signals. In-

stead of wearing a tight Leotard with many markers, a user may only need to wear

normal clothing with only a few markers mounted on non-intrusive positions. Less

mounting time also makes mocap feasible for more applications, since less overhead

time is spent between users. Fewer marker measurements also reduce ambiguities dur-

ing post-processing of mocap data, and thus require less human intervention. Mapping

a small marker set to a dense mocap database also can be used to infer subtler motions.

Estimating missing markers from the available marker set

A common problem encountered in motion capture is that some marker positions are

often missing due to occlusions or ambiguities. A marker is considered missing if it

is not visible to at least two cameras. A major cause of marker missing is that a

marker is occluded by props, limbs, bodies or other markers. Frequently, the positions

of markers can be missing for a long period of time. Although many methods have

been developed to handle the missing marker problem and are already in use in some

commercial motion capture systems, most procedures require manual intervention and

do not produce satisfactory results for abrupt motions, or for when a high percentage

of markers are missing.

In order to avoid the missing marker problem, many mocap systems use many more

cameras with hopes that each marker can be captured by at least two cameras, even

though it is not guaranteed. When capturing motions that involve interactions of more

than one person, a mocap system has to let the actors perform their respective motions

individually and then merge these individual motions together. As a result an actor has

to pretend interactions with imaginary partners. This motion capture strategy requires

actors to perform naturally and precisely, and it also may introduce great difficulty in

5



stitching these individual motions.

Can we infer the missing marker positions from the other marker positions even

under adverse situations when a considerable portion of the markers may miss for

extended periods of time? Such a missing marker inference method would greatly

improve a mocap system’s robustness as well as making it possible to allow capturing

multi-person interactions in a natural way, that is, capturing simultaneously at the

same site.

Human motion data retrieval

Good realistic motions are costly to create. Such an expense often makes reusing of

motion capture data through transformation and retargetting a more attractive option

than creating new motions from scratch. As more and more human motion capture

data become available, motion databases grow larger and larger. There is a need for the

tools to organize large motion databases and support fast retrieval of similar motions.

In designing a scheme to organize a motion database that supports fast motion data

retrieval, we have to define similarity among motion sequences. Motion sequences can

then be compared and grouped by how similar or dissimilar they are to each other.

For time series in general, similarity is often defined by the overall distance between

the spatio-temporal curves under certain distance metrics. Various similarity metrics

are used by many existing methods. These metrics can be loosely grouped into two

categories: numerical similarity and logical similarity. Numerical similarity is often

defined as a spatio-temporal distance between the time series curves under various dis-

tance metrics, such as Euclidean distance, Mahalanobis distance, etc. However, human

perceptions do not always conform to numerical similarity. Motions may be perceived

as similar even if they may not be quite close under certain distance metrics (Müller

et al., 2005). For example, two walking sequences may be perceived as similar even

they differ considerably in their speeds and styles. Logical similarity is used to reflect

human-perceived similarity with a class of Boolean features to encode the geometric

relationships between body parts. While logical similarity does incorporate the effects

of human perception and are able to differentiate distinct motions, it largely discards

all the numerical information. Consequently, it may fail to identify subtler differences

among motions whose geometric relationships are similar. A similarity metric combin-

ing the strength of numerical similarity and logical similarity would greatly empower

current motion retrieval methods with capabilities of differentiating various motions.

6



Compressing human motion data sequences

As more and more human motion data become available, the growing need for com-

pact storage and fast transmission makes it imperative to compress motion data. For

example, online video games often use motion data to interactively control the game

characters from a remote site across the internet. It is desirable to quickly and reliably

transfer these motion data over the internet with a limited bandwidth. So it is very

important to develop an effective compression method to facilitate efficient storage and

fast transmission of motion data.

There have been extensive studies on compressing time series data in general, and

in particular images, videos and computer animation. However, there is still a lack

of studies on compression methods that are tailored to compressing motion data. Al-

though some general compression methods can also be used to compress motion data,

these methods do not exploit the unique characteristics of motion data. As a result

compressions with those methods are unable to achieve greater compression ratio while

attaining sufficient details of the original motion data.

1.4 Overview of My Approach

There is sufficient evidence that human motion data exhibit local linearity. A short

and simple motion typically accounts for a single behavior, and its poses often lie

near a low-dimensional linear space. Motion data arising from similar motions can

often be described by the same local linear model, which is valid for a limited range of

articulation. A long and complex motion sequence can be considered as a concatenation

of much simpler motion segments. In this dissertation I propose a data-driven, segment-

based, piecewise linear approach to modeling human motions. This approach models

human motion data as a collection of low-dimensional local linear models.

In this approach I first segment a motion sequence into simple motion subsequences

of distinct behaviors and local linearities. These subsequences are referred to as motion

segments. I apply the probabilistic principal component analysis (PPCA) for the seg-

mentation. PPCA treats motion data as an ordered sequence of poses, and it segments

the motion sequence where there is a local change in the distribution of the poses. In

practice a multivariate Gaussian distribution is assumed for poses of a distinct behavior,

and PPCA is used to estimate their distribution. Motion segments from the same be-

haviors should have similar Gaussian distributions and share the same low-dimensional
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space. This segmentation technique can divide complex sequences into simple distinct

and perhaps overlapping behaviors. So I apply a divisive clustering method to identify

and group motion segments that can be represented in the same low-dimensional space,

or in other words, by the same local linear model. Covariance matrix and mean vec-

tor can uniquely determine a Gaussian distribution. I therefore form a feature vector

derived from the covariance matrix and mean to characterize each motion segment. I

then use the feature vectors, one for each motion segment, as modeling primitives to

construct a hierarchy of local linear models. Similar motion segments are partitioned

into the same cluster that corresponds to a particular local linear model. A local lin-

ear mapping function is computed from the poses that belong to the model. Finally,

different classifiers are trained to classify either poses or motion segments to the most

appropriate local linear model. This piecewise linear modeling approach may benefit

many applications. In the following I will briefly explain how I apply this approach to

four driving problems.

To estimate human motions from a reduced marker set, I first select a small set of

the most informative markers, i.e. principal markers. Then all the motion segments are

modeled by PLM, where simple motion segments are grouped together and represented

with a unique local linear model. For each local linear model, a linear mapping function

is computed from the principal marker set to the rest markers. A classifier is also trained

with only the principal markers as inputs to classify the poses to the most appropriate

local linear model. Given a new frame with measurements of only the principal markers,

I first classify it to a local linear model and then estimate the rest marker positions

from the principal markers via the associated linear mapping function.

In missing marker estimation problem, any marker is likely to be missing for ex-

tended periods of time. My strategy is that, for each frame with an arbitrary set of

markers missing, I use all the available marker positions to estimate the missing mark-

ers by exploiting the correlations among markers. I also segment sequences and then

apply PLM to all the motion segments. Since I can not know what markers are missing

until running time, I take a two-stage modeling approach in which I first use a global

linear model to estimate coarsely the missing marker positions, which are refined later

with a more accurate estimation from a local linear model.

I follow a similar PLM modeling pipeline for motion retrieval, except that it is un-

necessary to model each cluster of segments because the purpose here is to search for

similar motions. Furthermore, I construct a motion segment indexing scheme instead

of a frame-based classifier and use the indexing scheme in the later motion querying
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operation. In constructing the indexing structure, I generalize the OBB-Tree, an effi-

cient data structure that has been used in computer graphics for ray-tracing, collision

detection, etc., for the purpose of pruning. Given a new motion sequence, I segment

it into motion segments whose feature vectors are then derived and used to retrieve

similar motions from the database using the indexing scheme.

I have also adopted PLM in developing an efficient method to compress human mo-

tion sequences. Here the rationale is that, having observed the local linearity exhibited

by most human motions, it is conceivable that we may get better overall compression

results if we find those local linear pieces and compress each piece of motions individ-

ually. I first segment a motion sequence into subsequences, such that poses within a

subsequence lie near a low-dimensional linear space. I then compress each segment by

projecting the poses data onto that linear space using principal component analysis.

I can achieve further compression by storing only the key frames projections to the

principal component space and interpolating the other frames in-between via spline

functions during the decompression.

1.5 Thesis Statements and Contributions

Thesis Statement

Human motions can be represented by a data-driven, piecewise linear model with a small

number of parameters. I will show the utility of this model in human motion estimation,

motion database retrieval and motion compression.

In this dissertation I present an alternative human motion modeling approach where

motion data are described as a collection of low-dimensional, local linear models. Mo-

tions of similar behaviors are grouped together on the basis of segments and are modeled

with a unique local linear model. I then apply the framework of this approach on four

challenging driving problems to demonstrate its usefulness. Specifically, the contribu-

tions of this dissertation include:

• A framework of a data-driven, segment-based, piecewise linear modeling approach

to human motions. The key components of this approach include: segmentation

of motion sequences into motion segments of distinct behaviors with low dimen-

sionality; characterization of various-length motion segments by their statistical

distributions; hierarchical clustering of motion segments; local linear modeling

methods to model similar motions; and Random Forest classifiers for classifying

motion data.
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• An efficient method to estimate human motions from a reduced marker set.

• An efficient method to infer missing markers from the available markers.

• An efficient indexing scheme for the retrieval of similar motions from a large

heterogenous motion database.

• An efficient and high-quality compression algorithm for compressing human mo-

tion sequences.

1.6 Thesis Outline

In Chapter 2 I review previous work relevant to this dissertation. I then present a

framework of my approach to modeling human motions in Chapter 3. From Chapter

4 to Chapter 7, I discuss how to apply this modeling approach to address the four

driving problems. Particularly, in Chapter 4 I present a method to estimate human

motions from a reduced marker set. I then address the missing marker problem from

the available markers in Chapter 5. In Chapter 6 I discuss a method on efficient motion

retrieval based on behavioral similarity. In Chapter 7 I describe an efficient compression

method as well as a fast decompression scheme on compression/decompression of mocap

data. In Chapter 8 I discuss the strengths and weaknesses of my approach when applied

to the problems mentioned above as well as other potential applications. I conclude

with a discussion of interesting directions that may be worth further exploration as

future works.
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Chapter 2

Previous Work

In this chapter I review previous work related to the research done in this dissertation.

First, I review methods that apply the data-driven modeling principles in general com-

puter graphics in section 2.1. In section 2.2 I generally review some existing human

motion modeling approaches. I discuss motion segmentation methods in section 2.3. In

section 2.4 I review some previous approaches to compression, particularly the methods

on compressing motion data and animation meshes. In section 2.5 existing database

retrieval and indexing methods are reviewed, especially some methods related to mo-

tion database retrieval. In sections 2.6 and 2.7 I review machine learning techniques.

In particular, I discuss the dimensionality reduction techniques in section 2.6, includ-

ing feature extraction and feature selection. In section 2.7 I discuss some methods on

classification, regression and clustering.

2.1 Data-driven Modeling Approaches in Computer

Graphics

The advances of data acquisition technologies as well as the explosive developments of

computing power have facilitated the application of data-driven modeling approaches on

various fields in computer graphics. For example, a convergence of computer graphics

and computer vision has produced a set of techniques collectively known as image-based

modeling and rendering (IBMR). Image-based modeling refers to the use of images to

drive the reconstruction of 3D models (Kutulakos and Seitz, 2000; Debevec et al.,

1996; Liebowitz et al., 1999; Cipolla et al., 1999). In image-based rendering, the goal

is to achieve more realistic and faster renderings and to simplify the modeling task

by using samples, as opposed to analytical models, as rendering primitives (McMillan



and Bishop, 1995; Levoy and Hanrahan, 1996; Gortler et al., 1996). Image-based ap-

proaches can potentially eliminate the labor-intensive task usually required for modeling

detailed geometric structures. They can also handle subtle real-world effects captured

by images but are difficult to reproduce with conventional graphics techniques. In this

thesis I apply a similar philosophy to the problem of modeling human motion to make

more realistic motions by incorporating actual measurements into the synthesis pro-

cess. While IBMR uses images to generate novel views or to reconstruct 3D models, I

use incomplete mocap information to infer the full motion configurations by exploiting

redundancy and coherency among poses and mocap markers. In human motion mod-

eling, I focus more on interpolation rather than extrapolation by using a collection of

lower-dimensional, local linear models.

There have also been studies that adopted the data-driven approach in modeling

human shapes. Among them, Magnenat-Thalmann and Seo (2004) proposed to auto-

matically estimate intrinsic articulated structures of the human body using the range

scan data from user-tagged landmarks. Researchers also attempted to apply the prin-

cipal of data-driven approaches on modeling human motions, which I will discuss as a

part of the next subsection.

2.2 Existing Human Motion Modeling Approaches

Motion capture data have been used extensively in animations, movies and interactive

games. Arikan and Forsyth (2002) and Kovar et al. (2002a) constructed a motion

graph from a corpus of motion capture data that encapsulated connections among the

motion clips in the database. Motion can be generated simply by performing walks on

the motion graph. Bregler (1995) used linear models to derive motion from photos.

Li et al. (2002) modeled motion sequences as stochastic processes and modeled with

motion texture, defined by a two-level statistical model: a set of motion textons at the

lower level, and the distributions of textons at the higher level. Motion textons are

defined as the repetitive motion primitives such as hopping, spinning and dancing. A

motion texton is modeled by a linear dynamic system, while the texton distribution

is represented by a transition matrix indicating how likely each texton is switched

to another. Their algorithm learns motion textons and their relationships from the

captured motions. The learned motion textures can then be used to generate new

animations automatically and/or edit animation sequences interactively. In contrast,

Pullen and Bregler (2002) proposed another type of motion texture by analyzing motion
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capture data in the frequency domain. Their goal is to assist key frame animation where

the basic contents of motions are provided by the key frames, while the subtle style

and nuance can be added with a similar texturing in images. Their approach allows an

animator to control an initial rough animation with key frames and then fill in missing

degrees of freedom and details using the information in motion capture data. While

both of these motion texturing methods can synthesize motions statistically similar to

the real human motions, they lack the ability to infer human motion with measurable

accuracy from incomplete information, such as positions from only certain markers.

Our method, on the other hand, is capable of recovering realistic human motions pose-

by-pose with high fidelity.

There are also methods that synthesize motions by interpolating between exist-

ing motions. Among them, Rose et al. (1998) described motions in a parameterized

space, where the parameterized motions are called verbs and the parameters that con-

trol them are called adverbs. This verb/adverb scheme allows interpolating between

example motions with substantial repertoire of expressive behaviors and great degrees

of subtleties. Brand and Hertzmann (2000) constructed a Hidden Markov Model

(HMM)-based statistical model, called style machine, that can generate new motion

sequences in a broad range of styles just by adjusting a small number of stylistic knobs

(parameters). Mukai and Kuriyama (2005) applied a practical technique of geostatis-

tics, called universal kriging, for statistically estimating the correlations between the

dissimilarity of motions and the distance in the parametric space. They interpolated

motions based on spatial statistics by regarding all motion clips as spatial samples dis-

tributed in a multidimensional abstract space. Lee et al. (2002) proposed to preprocess

a motion capture database for flexibility in behaviors and efficient search. Flexibility

is created by identifying plausible transitions between motion segments, and efficient

search through the resulting graph structure is obtained through clustering with inputs

from simple user interfaces.

Researchers have also investigated the problem of inferring plausible human motions

from a reduced measurement set. A common approach uses a small set of electromag-

netic sensors to drive a virtual human model. Badler et al. (1993) tracked, in real-time,

the position and posture of a human body using a minimal number of six DOF sen-

sors to capture full body standing postures. They used four sensors to create a good

approximation of a human operator’s position and posture and mapped it onto an ar-

ticulated computer graphics human model. The joints with no sensors attached are

positioned by a fast inverse kinematics algorithm. Semwal et al. (1998) used eight
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sensors augmented with information about natural body postures to infer full body

human motions in real-time. These methods typically rely on inverse kinematics to

estimate skeleton joint-angles from the constraints implied by the actual measurements

(O’Brien et al., 2000). They depend on nonlinear solution methods and are prone to

ambiguous solutions (Craig, 1989). As a result various optimization and smoothing

criteria were introduced to resolve a unique solution. Moreover, the placement of the

reduced set of markers in these methods is determined by trial and error. Our method

offers a simple way to automatically select a set of the most informative markers and use

them to infer the underlying human motions on a pose-by-pose basis without assuming

human skeleton and other prior knowledge.

There is a significant redundancy in motion data due to spatial and temporal coher-

ences in human behaviors. Safonova et al. (2004) and Grochow et al. (2004) demon-

strated that specific simple motions can be accurately described via a low-dimensional

parameterization based on dimensionality reduction techniques. Safonova et al. (2004)

observed that most dynamic simple motions can be represented in spaces of five to ten

dimensions. They presented a method to synthesize physically realistic human motions

in low-dimensional, behavior-specific spaces. They showed that when the optimiza-

tion problem was solved within this low-dimensional subspace, a user can specify the

desired motion as an initial guess in a sparse, intuitive way. Grochow et al. (2004)

proposed an inverse kinematics approach that applied a global nonlinear dimensional-

ity reduction on human motion data. They used a Gaussian Process Latent Variable

Model (Lawrence, 2004) to find a low-dimensional nonlinear manifold that can suffi-

ciently describe motion data. Their approaches worked well with small homogenous

data sets. However, for a large motion data set with various types of motions, a global

modeling approach like theirs may be very slow and might not suit the data set well.

I propose a piecewise linear approach to modeling human motions as a hierarchy of

local linear models. My approach is better suited to describe a large heterogeneous

motion data set. The local linear modeling approach for dimensionality reduction was

considered by Bregler and Omohundro (1994), Hinton et al. (1994) and was further

developed and applied on motion capture database by Chai and Hodgins (2005). Chai

and Hodgins (2005) utilized temporal coherence of the control signals to accelerate the

nearest neighbor search for similar poses and dynamically constructed a local linear

model for the pose to be estimated. However, their method needs to actively maintain

a motion database and might be ineffective when a database is very large. In contrast,

I construct a compact model out of a motion database. My method does not need to
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maintain a database after an offline modeling process, and it scales well with the size

and heterogeneity of human motion databases.

The missing marker problem is commonly encountered in marker-based motion cap-

ture systems. Interpolation methods (Guo and Robergé, 1996; Rose et al., 1998; Wiley

and Hahn, 1997) can effectively estimate the missing marker if a marker is missing for

short periods of time, typically less than 0.5 second (10-30 frames). Some commercial

mocap systems such as Peak and Vicon also provide missing marker recovery solutions

based on various spline interpolation techniques, coupled with the use of kinematic

information and skeleton models. Kalman filters (Dorfmller-Ulhaas, 2003) have also

been used to predict the missing markers in current frame with the available temporal

information. These methods, however, can become ineffective quickly and often require

manual intervention when markers are missing for a long period of time, or are missing

from the very beginning.

Herda et al. (2000) used human skeleton and marker positions from the immediately

previous frames to predict the missing markers. If only a few isolated markers are

missing over an extended period of time, their positions can still be inferred from

the neighboring markers that share the kinematic relations with the missing markers.

However, an accurate skeleton information must be assumed a priori in order to apply

this method. Hornung and Sar-Dessai (2005) proposed to utilize more markers in a

mocap set up and assemble neighboring markers into a rigid clique. Markers in a clique

have fixed inter-marker pairwise distances. When a marker is missing, its position can

be recovered through the distance constraints imposed by the markers within the same

clique. This approach may become infeasible if a significant portion of the neighboring

markers are missing so that the clique is unable to be formed from the available markers.

2.3 Motion Segmentation and Characterization

Many methods have been developed on segmentation of various types of data. Com-

puter vision-based approaches to recognition, tracking and segmentation of high-level

behaviors are widely used (Fleet et al., 2000; Oliver et al., 2002). There also have been

extensive studies on segmentation of video sequences. Among them, Brand and Ket-

tnaker (2000) used entropy minimization to construct Hidden Markov Models (HMMs),

with high-level behaviors being mapped to states of the HMMs. Zelnik-Manor and

Irani (2001) applied clustering methods based on distance metrics developed over a

variety of temporal scales. Peyrard and Bouthemy (2002) proposed an online seg-
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mentation method based on considerations of information loss. Motion data is general

simpler than video data. These methods are either too complicated for modeling mo-

tion data (Brand and Kettnaker, 2000; Peyrard and Bouthemy, 2002) or may rely on

the presence of the hand-annotated data, while I am interested in segmenting motions

based only on the information available from the current motion sequence.

Methods have also been developed particularly for segmenting motion data. In par-

ticular, there have been some successes in motion segmentation at low levels. Rose

et al. (1998) segmented a motion sequence into simple motion strokes characterized by

the abrupt changes of velocities during transitions in order to retrieve example motions.

Fod et al. (2002) segmented motion data by detecting zero crossings of angular veloci-

ties. Li et al. (2002) explored a more sophisticated technique where low-level segments

(textons) were represented as the output of linear dynamic systems. A segmentation of

motion is also implicit in a state machine or motion graph representation (Brand and

Hertzmann, 2000; Kovar et al., 2002a; Arikan and Forsyth, 2002). I on the other hand

are interested in segmenting motion sequence into different behaviors. Barbič et al.

(2004) presented three methods to automatically segment a motion sequence into dis-

tinct behaviors. I implement their Probabilistic PCA method which creates segments

using a probabilistic model of motions and has shown better performance in segmenting

human motion sequences.

In characterizing human motions, Forbes and Fiume (2005) used a representative

pose to characterize a motion clip. But it is often inadequate to use a single pose to

summarize a whole motion sequence. It is also challenging to choose a representative

pose for each motion sequence. Keogh et al. (2004) used a low-bound box that bounds

the high-dimensional spatio-temporal curve of a motion segment to summarize this

motion segment. I characterize a motion segment by summarizing the distributions of

the poses that belong to the motion segment, and I think it would be more effective

to characterize a motion sequence by their statistical properties than the low-bounding

boxes. In particular, I derive an equal-length feature vector from the mean vector and

the covariance matrix of each motion segment.

2.4 Motion Compression

Many techniques have been developed to compress various types of data (Salomon,

2000). Recently there have been more studies on compression of animation mesh data

due to an increasing popularity of animation in movies and video games (Lengyel,
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1999; Alexa and Müller, 2000; Gupta et al., 2002; Ibarria and Rossignac, 2003; Guskov

and Khodakovsky, 2004; Karni and Gotsman, 2004; Sattler et al., 2005).

A typical animation mesh has at least thousands of vertices with fixed connectivity

among vertices. An animation mesh data sequence consists of the vertex positions for

each frame/mesh. To exploit the spatial correlations among animation vertices, Alexa

and Müller (2000) constructed a compact representation of an animation sequence by

applying PCA on a whole animation sequence. Karni and Gotsman (2004) further

compressed the PCA projections of frames with linear predictor coding (LPC) to ex-

ploit the temporal coherence. Both of these methods attempted to construct a global

linear model, while human motion data are in general nonlinear and especially exhibit

local linearity. Simple motions in fact lie near a linear subspace with much lower di-

mensionality. Global PCA in compression of motion capture data tends to require

more principal components to be retained and thus may be unable to achieve a higher

compression rate. In contrast, my method starts with motion segmentation to identify

the local linearity of a motion sequence and then compresses each motion segment indi-

vidually. Ibarria and Rossignac (2003) introduced a Dynapack algorithm that exploits

inter-frame coherence and used two predictors to encode the mesh motion. I exploit

the temporal coherence using the spline interpolations to further compress the PCA

projections of the frames.

Lengyel (1999) proposed the decomposition of a mesh into subparts and described

these parts as rigid-body motions, while only a heuristic solution to segmentation was

provided. Sattler et al. (2005) proposed a method for compressing animation sequences

based on clustered principal component analysis (CPCA). They considered the trajec-

tory of a vertex as a data point and clustered the trajectories into parts that moved

almost independently. These mesh parts could then be compressed separately by PCA.

In compressing motion data, Arikan (2006) proposed a method that clusters the fea-

tures, i.e. virtual markers, into groups and compressed the features in each group

separately. All of these three methods attempted to exploit the spatial correlations

among features through a whole sequence. They broke down a sequence into simpler

parts of correlated features and fitted them with low-dimensional linear models for

compression. However, a motion sequence also exhibits local low-dimensional linearity

at different segments, i.e. subsequences. So I take a different approach from those

methods and divide a long and complex sequence into segments along the temporal

axis. Since motion capture data sequences are usually much longer than the animation

mesh data sequences, and there are typically fewer markers in a motion sequence than

17



the vertices in the animation mesh, my approach is more suitable for compression of

motion data.

2.5 Motion Database Retrieval and Indexing Meth-

ods

Human motion data are a special instance of high-dimensional time series. It can be

handled the same way as the other multi-dimensional time series data (Das et al.,

1997; Faloutsos et al., 1994; Lee et al., 2000). In general, time series data are treated

as multi-dimensional curves in the spatio-temporal space. Similarity is defined as the

closeness between the time series curves under specified distance metrics such as Eu-

clidean distance.

An indexing structure is desired for effective motion retrieval. There have been

extensive studies in the database community for efficient indexing schemes on a variety

of databases. R-tree has been one of the most popular indexing methods, and it has

spawned many decedent methods. The original R-trees proposed by Guttman (1984)

are hierarchical data structures based on B+-trees. They are used for the dynamic or-

ganization of a set of d-dimensional geometric objects, represented by the d-dimensional

minimum bounding rectangles, i.e. MBRs. Many variants have been proposed to make

the method more effective or tailored to different databases. R∗-trees and R+-trees

are two of the popular ones. Multi-dimensional data can be indexed by R-trees and

many of its variants. However, most multi-dimensional indexing structures have poor

performances when dimensionality is greater than 8-12. A dimensionality reduction

method must be applied to transform high-dimensional data into lower-dimensional

spaces. Faloutsos et al. (1994) introduced the framework of GEneric Multimedia IN-

dexing method (GEMINI) which can exploit any dimensionality reduction method to

enable the indexing. The technique was originally introduced for time series but has

been successfully extended to other types of data. They provided the lower bounding

lema, sometimes also called contractive property, that guaranteed no false dismissal.

A common drawback of distance-based metrics is that they are sensitive to distor-

tions at temporal axis as well as noise and outliers. This prevents direct application of

existing methods to human motion data. Dynamic Time Warping (DTW) technique,

which partially addresses the temporal distortion problem by local scaling, can be used

to align time series before the calculation of distances (Berndt and Clifford, 1994; Yi
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et al., 1998; Kim et al., 2001; Keogh, 2002). Keogh (2002) proposed a lower bound-

ing technique to make DTW fast enough to retrieve time-warped time series in large

databases. Longest Common Subsequence method (LCSS) (Das et al., 1997; Vlachos

et al., 2002), as an alternative to DTW, further matches two sequences by allowing not

only the sequences to stretch at the time axis, but also allowing some elements to be

unmatched. It has been used to perform motion retrieval in Keogh et al. (2004). Some

other methods (Chan and Fu, 1999; Faloutsos et al., 1994) have also been proposed

to transform high-dimensional time series onto another parameterized space such as

frequency domain using discrete Fourier transform (DFT) or wavelet transform, and

to model the time series in that space. However, these methods may be ill-suited to

non-cyclic patterns.

Kovar and Gleicher (2004) developed a DTW-based indexing structure, termed

match web, to automatically search for similar motions in a motion database and then

used them as intermediaries to find more distant motions. I construct a hieratical tree

of motion segments, with similar motion segments at the same or the neighboring leaf

nodes. My indexing scheme is a generalization of OBB-Trees (Gottschalk et al., 1996)

to the high-dimensional feature space. OBB-Trees have been used in computer graphics

community for ray-tracing, collision detection, etc. An OBB, i.e. Oriented Bounding

Box, is a rectangular bounding box in a 3D space oriented in such a way that it would

generate the tightest bound to enclose a spatial object. A large and complicated object

can be decomposed into a hierarchy of pieces. At each level of decomposition, each

piece of data is bounded by an OBB. The resulting hierarchy of OBBs is called a OBB-

Tree. OBB Trees achieve tighter bounding box than the regular Minimum Bounding

Rectangles.

Forbes and Fiume (2005) presented a method for quickly searching long, unseg-

mented motion clips for subregions that most closely match a short query clip. Their

search algorithm is based on a weighted PCA-based pose representation in the joint an-

gle space. Conventional PCA-based approaches don’t take into account the hierarchical

nature of the pose data represented by joint angles. Weighted PCA addressed this issue

by putting more weights on more important joints. However, it is very much an art

to assign the weights to all the joints in the joint hierarchy. In querying for similar

motion clips, their query strategy is to select characteristic points from a query motion

clip and use that point to search in the motion database. This strategy attempts to

summarize a motion clip with a single pose. However, it is inadequate and perhaps

unreliable to use only one pose to represent an entire motion clip. It also put great
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pressure to choose a right characteristic point since it is vital to the query process.

The aforementioned methods only measure the numerical similarity which may not

reflect the way how human perceives similarity among motions. Müller et al. (2005)

discussed a notion of logical similarity. They introduced a class of Boolean features

expressing geometric relationships between certain body points of a pose, with examples

such as whether the right foot lies in front of or behind the plane spanned by the left

foot, the left hip joint and the center of the hip. They divided a motion sequence

into an ordered list of simple strokes, during which a set of geometric relationships

remained invariant. Transitions through a particular path of geometric features were

used as the signature to effectively encapsulate qualitative and logical information of

the motion sequences. Their approach marked a new attempt to evaluate human-

perceived motion similarities. However, useful quantitative information was lost during

the encoding process. At the same time, their model may still contain redundant, low-

level information. For example, a cyclic motion such as walking has to be segmented

into many strokes, one for each foot step, despite the fact that those foot steps may look

alike. In addition, defining a set of features manually is difficult and requires human

intervention.

2.6 Dimensionality Reduction Techniques

Dimensionality reduction is commonly used in machine learning to deal with a high-

dimensional space of features. The original feature space is mapped onto a new,

reduced-dimension space and the examples are represented in that new space. The

mapping is usually performed either by selecting a subset of the original features,

i.e. feature selection, or by constructing some new features, i.e. feature extraction.

Feature extracting methods can be divided into two categories: linear methods and

nonlinear methods. Linear methods find a linear mapping from the high-dimensional

space to the low-dimensional embedded linear space. Nonlinear methods assume that

high-dimensional data of interest lies on an embedded non-linear manifold within a

higher dimensional space. High-dimensional data can then be mapped onto these low-

dimensional manifolds via various nonlinear mapping functions.

Common linear methods include independent component analysis (ICA) (Hyvari-

nen et al., 2001), principal component analysis (PCA) (also called Karhunen-Love

transform KLT) (Jolliffe, 1986) and singular value decomposition (SVD) (Press

et al., 1986). Principal components analysis is arguably the most widely used linear
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feature extraction method. It is a linear transformation that transforms the data to a

new coordinate system, such that the greatest variance by any projection of the data

comes to lie on the first coordinate (called the first principal component), the second

greatest variance on the second coordinate, and so on. PCA has been used in some

algorithms developed in this dissertation.

Nonlinear methods include kernel PCA (Schölkopf et al., 1998), multidimensional

scaling (Cox et al., 2000), Gaussian process latent variable models (GPLVM) (Lawrence,

2004), Isomap (Tenenbaum et al., 2000), locally linear embedding (LLE) (Roweis and

Saul, 2000), etc. Kernel PCA provides a non-linear PCA through the use of kernel

functions. Gaussian process latent variable model is a probabilistic non-linear PCA.

Like kernel PCA, GPLVM uses a kernel function to form the mapping in the form of

a Gaussian process. However, in GPLVM the mapping is from the embedded space to

the data space, whereas in kernel PCA it is in the opposite direction.

Multidimensional scaling (MDS), Isomap and locally linear embedding are proxim-

ity matrix-based methods where data are presented in the form of a dissimilarity matrix

or a distance matrix. Isomap builds on classical MDS but seeks to preserve the intrinsic

geometry of the data as captured in the geodesic manifold distances between all pairs

of data points. The crux is estimating the geodesic distance between faraway points

given only input-space distances. For neighboring points input-space distance provides

a good approximation to geodesic distance. For faraway points geodesic distance can

be approximated by adding up a sequence of short hops between neighboring points.

These approximations are computed efficiently by finding shortest paths in a graph

with edges connecting neighboring data points. LLE computes a different local quan-

tity. It calculates the best coefficients to approximate each point by a weighted linear

combination of its neighbors, and then tries to find a set of low-dimensional points.

These low-dimensional points can be linearly approximated by their neighbors with the

same coefficients that were determined from the high-dimensional points. Both Isomap

and LLE are simple to implement, have a small number of free parameters and tend

not to trap in local minima like many other popular learning algorithms. Also both

yield impressive results on artificial and real data sets.

Previous approaches to feature selection fall into one of three basic categories: the

wrapper method (Kohavi and John, 1997; Ng, 1998), the filter method (Liu and Mo-

toda, 1998; Hall, 2000; Dash et al., 2000; Yu et al., 2003; Yu and Liu, 2003) and hybrid

methods (Tsamardinos and Aliferis, 2003). A wrapper method typically requires a pre-

determined data mining or modeling task prior to feature selection. A filter method,
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on the other hand, relies solely on the characteristics of the data without assuming

any predefined task. Algorithms in this category often have lower computational com-

plexity than the wrapper method. Filter methods can be further categorized into two

groups: feature ranking (Hall, 2000) and subset searching (Dash et al., 2000). Feature

ranking algorithms order the importance of individual features by assigning a weight

to each feature.

Cohen et al. (2002) proposed a hybrid method that they called principal feature

analysis (PFA). They first applied PCA on the data set and identified a set of principal

components that effectively decorrelate the feature set. Feature coordinates can be

determined by projecting each feature onto the eigenvectors of this decomposition.

Finally, a set of the most informative features are selected in the eigenspace. PFA

has comparable performance to PCA but selects a set of original features with a more

intuitive interpretation than the principal components derived in PCA. Building upon

PFA, I design an algorithm capable of selecting a set of principal markers in addressing

one of the driving problems.

2.7 Classification, Regression and Clustering

Supervised learning and unsupervised learning are two important machine learning

techniques. Supervised learning is used to create a function based on training data.

The training data consist of pairs of input objects (typically vectors) and desired out-

puts. The output of the function can be a continuous value (called regression) or can

predict a class label of the input object (called classification). Unsupervised learning

is distinguished from supervised learning by the fact that there is no a priori output.

In unsupervised learning a data set of input objects is gathered.

Linear and nonlinear regression are two types of regression techniques. If the re-

lationship between the variables being analyzed is not linear in parameters, a number

of nonlinear regression techniques may be used to obtain a more accurate regression.

While linear regression models can be built in linear time, constructing nonlinear regres-

sion models in general remains as a challenging problem, especially for high-dimensional

data. Piecewise linear regression (Ferrari-Trecate and Muselli, 2002; Iwai et al., 2002;

Torgo and Costa, 2003; Vijayakumar and Schaal, 2000) has been used as an alternative

to approximate the nonlinear surface within certain error tolerance using a collection

of local linear models. The underlying principle is that any smooth function can be

well-approximated by a low degree polynomial in the neighborhood of any point. The
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core kernel of this method is to learn the local linearity.

Commonly used classification approaches include k-nearest neighbor, decision trees,

support vector machine, neural networks, Bayesian networks, etc. Random Forest (RF)

(Breiman, 2001) is a powerful classification tool that displays outstanding performance

in regard to classification error. RF grows and combines many decision trees into

predictive models. The overall prediction is determined by voting over all the trees in

the forest and choosing the class with the most votes. Since the trees are generated

randomly and independently, there is no risk of overfitting for large numbers of trees. I

choose the RF classifier over other popular classification methods as a key component

of the PLM pipeline, because RF has shown excellent classification results and seems

to be a good fit for classifying human motion data.

As a form of unsupervised learning, clustering (Jain et al., 1999) is the partitioning

of a data set into subsets (clusters), so that the data in each subset share some common

traits - often proximity according to some defined distance measure. Data clustering

algorithms can be hierarchical or partitioning. Hierarchical algorithms find successive

clusters using previously established clusters, whereas partitioning algorithms deter-

mine all clusters at once. Hierarchical algorithms can be agglomerative (bottom-up) or

divisive (top-down). Agglomerative algorithms begin with each element as a separate

cluster and merge them into successively larger clusters. Divisive algorithms begin with

the whole set and proceed to divide it into successively smaller clusters. In constructing

a model hierarchy, I adopt the divisive clustering approach for constructing a model

hierarchy.

K-means clustering method (MacQueen, 1967) clusters objects into k partitions

based on attributes. It is a variant of the expectation-maximization algorithm in which

the goal is to determine the k means of data generated from Gaussian distributions. It

assumes that the object attributes form a vector space. The objective is to minimize

total intra-cluster variance. The algorithm starts by partitioning the input points into

k initial sets, either at random or using some heuristic data. It then calculates the mean

point, or centroid, of each set. It constructs a new partition by associating each point

with the closest centroid. Then the centroids are recalculated for the new clusters,

and the algorithm repeats by alternate application of these two steps until the points

no longer switch clusters. The algorithm has remained extremely popular because it

converges extremely quickly in practice. I use k-means as my splitting algorithm to

partition the data points at each branch into two subsets.
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Chapter 3

Data-driven Piecewise Linear Modeling

Preliminaries

Human motion data exhibit local linearity. A short and simple motion typically ac-

counts for a single behavior, and its poses often lie near a linear space with a much

lower dimensionality than the original space. Motion data arising from similar motions

can often be described by the same local linear model, which is valid for a limited range

of articulation. A long and complex motion sequence can be considered as a concate-

nation from much simpler motion segments. I propose a data-driven, segment-based,

piecewise linear modeling (PLM) approach to finding and grouping motions of similar

behaviors in their inherent low-dimensional linear spaces.

In section 3.1 I review commonly used mocap techniques and popular mocap data

representations. In section 3.2 I present an overview of my approach. From section 3.3

to 3.8, I discuss the key PLM components. In particular, in section 3.3 I describe the

normalization of motion data as a preprocessing step. In section 3.4 I discuss segmenting

motion sequences into distinct behaviors. In section 3.5 I explain the characterization of

motion segments by their means and covariance matrices. I then present a hierarchical

clustering method to group simple motion segments in section 3.6. In section 3.7 I

describe how to construct a local linear model out of the motions grouped together.

Finally, in section 3.8 I discuss training the classifiers used in classifying poses into the

most likely local linear models.

3.1 Motion Capture and Representation

Motion capture, or mocap, is a technique of digitally recording movements for enter-

tainment, sports and medical applications. A performer wears a set of markers at



(a). Front (b). Back

Figure 3.1: Motion capture marker placement guide. Courtesy of Carnegie Mellon
University’s Graphics Lab.

each joint: acoustic, inertial, LED, magnetic or reflective markers, or combinations of

any of these, to identify the movements of the joints. Sensors track the positions or

angles of the markers. The motion capture computer program records the positions,

angles, velocities, accelerations and impulses, providing an accurate digital representa-

tion of the motion. Motion capture can reduce the costs of animation, which otherwise

requires the animator to draw each frame or, with more sophisticated software, key

frames which are interpolated by the software. Mocap also saves time and creates more

natural movements than manual animation.

There are two types of optical capture systems available commercially today - ac-

tive optical and passive optical systems. They both use the same underlying principals.

Figure 3.1 shows a standard optical mocap marker configuration. A series of cameras

placed around the capture space track the positions of markers attached to the body of

a performer. Triangulation is used to compute the 3D position of a marker at any given

sample from an array of 2D information recorded by every camera. Passive optical sys-

tems, by which motion data used in this dissertation were acquired, use retro-reflective
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Figure 3.2: Human skeleton model. The red dots indicate the marker positions. The
yellow line segments indicate the body segments (i.e. bones).

markers, while active optical systems use illuminating elements as markers. Active

markers require wires to the markers, while passive markers do not. Passive optical

systems currently are the dominant favorite among entertainment and biomechanics

groups due to their ability to capture large numbers of markers at high frame rates and

accuracy.

Magnetic systems calculate position and orientation by the relative magnetic flux

of three orthogonal coils on the transmitter and each receiver. The relative intensity

of the voltage or current of the three coils allows these systems to calculate both range

and orientation by meticulously mapping the tracking volume. The markers are not

occluded by nonmetallic objects but are susceptible to magnetic and electrical interfer-

ence from metal objects in the environment or wiring, which affect the magnetic field,

and electrical sources such as monitors, lights, cables and computers.

RF (radio frequency) positioning systems are becoming more viable as higher fre-

quency RF devices allow greater precision than older RF technologies. However, to

achieve the resolution of optical systems, frequencies of 50 gigahertz or higher are

needed.

In recent years there have been studies on markerless motion capture in computer

vision community. However, this technique is still in its infancy, and so far the proposed

methods are generally slower as well as suffering from resolution issues that make them
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Figure 3.3: A diagram of segment-based, piecewise linear modeling process.

less attractive than marker-based approaches.

Motion capture data are usually represented in two popular formats: 3D marker

positions and joint angles. A marker position has x, y, and z coordinate values in the

world coordinate system. C3D is one of the mostly used data formats to store the

3D marker positions. Mocap data used in this dissertation are in the C3D format.

Marker positions are often converted into joint angles under a pre-specified skeleton

model (Figure 3.2). A joint angle is simply the angle between the two body segments

on either side of the joint, measured in degrees. To represent motions in a joint angle

format, one has to store a skeleton model which is a rooted hierarchy of connected,

fixed-length bones and frame-by-frame changes in joint angles. Commonly used joint-

angle based mocap data formats are ASF/AMC, BVA, BVH and HTR.

3.2 Overview

The segment-based, piecewise linear modeling (PLM) approach models human motions

as a collection of low-dimensional, local linear models. Figure 3.3 shows a diagram of

the PLM modeling framework with key components including segmentation, charac-

terization, clustering, local linear modeling and classification. Segmentation divides a

motion sequence into segments of distinct behaviors. Characterization describes each

motion segment with an equal-length feature vector summarizing the pose distribution.

Clustering these feature vectors to group together the motion segments of similar be-

haviors. Local linear modeling constructs a low-dimensional, local linear model for each

group of similar motion segments. Classifier Training trains classifiers to identify the

most appropriate local linear models for the frames in a motion sequence. Not all the

components are necessary for every application of the PLM approach. As I will show in

the later chapters, some applications may apply only to a subset of this general PLM
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Figure 3.4: Snapshots of a walking sequence.

framework, while adding some other modules if necessary.

Throughout the paper I treat each pose of motion data as a data point represented

by a 3m-dimensional column vector, y ∈ R3m, containing 3D marker positions of

m markers. Thus a motion data set with N pose instances can be represented by

a 3m × N data matrix Y = [y1, y2, · · · , yN ], where yi is a column vector of marker

positions (i = 1, · · · , N). For convenience, each entry of the 3m-dimensional marker

position vector is referred to as a feature and each pose is then considered as a high-

dimensional data point with 3m features.

3.3 Normalization

Normalization serves as a preprocessing step in the modeling pipeline. Typical motion

data are captured in an absolute world coordinate frame. Data of poses that are

essentially similar to each other may appear to be quite different due to offsets in

translations and orientations. For example, in Figure 3.4 two poses pointed to by the

arrows appear to be very similar to each other except that the second pose is just a few

steps away from the first pose and faces to a different direction. Furthermore, motion

sequences captured in different absolute world coordinates may have quite different data

matrices, although they appear to be very similar to each other. In order to remove the

influence of translation and orientation among poses and be able to reveal their inherent

similarity/dissimilarity, I describe relative motions in a model-rooted frame, where all

the translational and orientational effects are removed from the pose vectors through

appropriate transformations. Such a transformation procedure is called normalization.

The normalization process is quite straightforward. Figure 3.5 illustrates this nor-

malization process. I choose the marker located at the STRN as the origin, the same

z-axis as in the original world coordinate system. I compute a vector from the left

shoulder marker to the right shoulder marker, and I then project it to the horizontal
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Figure 3.5: An illustration of a normalization process. The green disk indicates the
marker position at the STRN, which is the origin in the normalized coordinate system.
The two red disks indicate the marker positions at left and right shoulders. The x, y,
and z axes of the original world coordinate system is drawn at the left bottom; the x’,
y’, z’ axes of the normalized coordinate system are drawn around the green disk of the
STRN marker.

plane and use the projected vector as the new x-axis. The cross product between newly

defined z and x axes produces the y-axis. For a given pose, I first center the pose posi-

tion vector by its STRN marker position and then apply a series of rotations to convert

the x, y and z coordinates of each marker position to the corresponding coordinates

in the normalized coordinate system. For some applications of the PLM approach, a

denormalization procedure is necessary to transform the results back to the original

feature space.

3.4 Motion Segmentation

There is ample evidence that pose sequences from simple single-behavior motions lie on

or near a very low-dimensional linear subspace (Safonova et al., 2004). For example,

in Figure 3.6 I show PCA of several simple walking motion clips. Although the original

feature space has over 100 dimensions, PCA computation reveals that the inherent

dimensions are much lower. While a short and simple motion sequence is more likely to

contain a single behavior, a long and complex motion may consist of a series of different
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Figure 3.6: Percentages of variances explained by the principal components for differ-
ent walking sequences. The curve in black with dots is for all the walking sequences
combined; the rest of the curves with circles are for individual walking sequences of
different styles.

behaviors, with transitional frames from one behavior to another. In Figure 3.7 I show

a long motion sequence, including several simple motions of distinct behaviors. In

order to further model motion data and effectively organize a motion database, it is

important to correctly identify different behaviors in the motion sequences and divide

them into motion segments accordingly.

There have been studies on motion segmentation (Pavlovic et al., 2000; Li et al.,

2002; Barbič et al., 2004). I choose the probabilistic PCA (PPCA) approach (Barbič

et al., 2004) to segment a motion sequence into subsequences of distinct behaviors. As

an extension of traditional PCA, PPCA is based on a probabilistic model (Tipping and

Bishop, 1999) and models the residual variance discarded by PCA. The pose distribu-

tion of a motion sequence is an important statistical property that can be exploited

for segmenting motion data into distinct behaviors. Motion data are considered as an

ordered sequence of poses and are modeled with multivariate Gaussian distributions in

PPCA. A motion sequence is segmented where there is a local change in the distribution
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Figure 3.7: Snapshots of the sample frames from a long motion sequence. The sequence
can be seen as a concatenation of three single-behavior motions: walking (frames 1:10
in the top row), squatting (rames 11-20 in the middle row) and stretching (frames 21:30
in the bottom row).

of the poses.

To derive a multivariate Gaussian model from a motion sequence of n poses, X =

[x1, x2, ..., xn], where xi is a 3m-dimensional column vector of marker positions (i =

1, ..., n), and I first retrieve the mean pose of the motion sequence as

x̄ =
1

n

n∑
i=1

xi, (3.1)

I subtract the mean pose from each pose vector and form a data matrix D with each row

corresponding to a 3m-dimensional mean-centered pose vector. I then apply Singular

Value Decomposition to D such that

D = UΣV T , (3.2)

where columns of U and V are orthogonal unit vectors, and Σ is a 3m× 3m diagonal

matrix with nonnegative decreasing singular values σj on its diagonal. I compute a

ratio

Er =

∑r
j=1 σj

2

∑3m
j=1 σj

2
, (3.3)

where Er indicates the portion of the total variance covered by the leading r principal
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Figure 3.8: Plot of Mahalanobis distance H as K is repeatedly increased by ∆ in PPCA
segmentation.

components. I keep the first r principal component such that Er is larger than a

preset tolerance τ . I then define an average square of discarded singular values σj

(j = r + 1, ..., 3m) as

σ2 =
1

3m− r

3m∑
i=r+1

σi
2, (3.4)

and subsequently

W = Vr(Σ
2
r − σ2I)1/2, (3.5)

where Σ2
r denotes the upper right r × r block of Σ, and Vr is the first r columns of V.

Now I can compute the covariance matrix C as

C =
1

n− 1
(WW T + σ2I) =

1

n− 1
V Σ̃2V T (3.6)

where Σ̃ is acquired by replacing all discarded singular values of Σ with σ2.

In practice I start by modeling the first K frames of a motion sequence as a multi-

variate Gaussian distribution using the method described above. I then estimate how

likely motion frames K + 1 through K + T belong to the Gaussian distribution of the

first K frames, defined by their mean x̄ and covariance matrix C, computed by PPCA.
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I do this by calculating an average Mahalanobis distance H (Duda et al., 2000) as

H =
1

T

K+T∑
K+1

(xi − x̄)T C−1(xi − x̄) (3.7)

Next I increase K by a small number of frames ∆ and repeat the estimation of dis-

tribution for the first K frames (K := K + ∆), and I compute the distance H with

respect to the new distribution. Figure 3.8 shows a plot of H as K repeatedly increases

by ∆. In the plot a cut is declared at the peak following a valley and when the height

difference between the valley and the peak is greater than a threshold R. In general,

increasing R results in fewer segments that correspond to more distinct behaviors, and

decreasing R results in a finer segmentation. When a cut is made, the first K frames

constitute one segment and are removed from the sequence. I continue to segment

the rest of the sequence until the length of the remaining subsequence is less then

the sum of the initial value of K and T . In my experiments I set the initial values

K = 200, τ = 0.95, T = 150, ∆ = 10, R = 500. The segmentation results are not very

sensitive to the minor adjustments of K, T or ∆, although bigger adjustments would

certainly affect the sizes of the segments.

3.5 Characterization of Motion Segments

Segmentation divides complex motion sequences into simple and distinct behaviors

but provides no information on which segments are more similar to each other. In

addition, motion segments may have a different number of frames; this fact prevents

us from directly comparing or clustering these motion segments for the purpose of

grouping, since most clustering techniques require the participated objects to have the

same dimensionality. I am aiming to derive from each motion segment a set of features

that can sufficiently characterize a motion segment while having the same number of

features across the motion segments with different number of frames.

It has been observed that motion data representing similar behaviors nearly lie in the

same low-dimensional space, with similar shapes, orientations and pose distributions

(see an example shown in figure 3.9). This property is insensitive to spatial variation as

well as temporal distortion. Based on this observation and also considering the fact that

pose distribution is a good summary of a motion segment, I decide to derive features

that characterize the pose distribution of each motion segment. First, I assume a
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Figure 3.9: Projections of five walking sequences onto their two common leading prin-
cipal axes. The curves of these walking sequences clearly have similar shapes and
orientations. They differ mostly by mean positions and scales.

multivariate Gaussian distribution on the poses in each motion segment. I then choose

to derive features from the covariance matrix and the mean vector of each motion

segment, since they can uniquely determine a Gaussian distribution. Even for segments

of different number of poses, the derived means and covariance matrices would be of the

same size as along as each pose has the same number of features. This is particularly

appealing to us since it satisfies my goal to derive an equal number of features from

every motion segment of arbitrary number of frames. Let µ = (µ1, µ2, ..., µ3m)T be the

mean pose and Σ be the covariance matrix of a motion segment defined as

Σ =




σ1,1 σ1,2 · · · σ1,3m

σ2,1 σ2,2 · · · σ2,3m

...
...

. . .
...

σ3m,1 σ3m,2 · · · σ3m,3m




I form a feature vector

f = [wνT , (1− w)µT ]
T
, (3.8)

where ν is a column vector consisting of the variances and covariances. These values are
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retrieved by concatenating the elements in the upper triangle and the main diagonal

of the convariance matrix Σ, and w is a weighting factor to balance the importance

between the covariance matrix Σ and the mean vector µ. If I consider poses as data

points in a 3m-dimensional space, Σ is a 3m× 3m matrix, and µ is a 3m× 1 vector. I

then have a 3m(3m + 3)/2-dimensional feature vector associated with the segment.

However, this feature vector space has very high dimensionality with very sparse

data points, each representing a motion segment. So I use PCA to reduce the dimen-

sionality of the feature vectors. My empirical results show that typically fewer than 40

principal components are needed to cover the 95% of the variance.

3.6 Clustering Motion Segments

I present here a divisive clustering method to identify and group motion segments that

can be represented in the same low-dimensional space, or in other words, by the same

local linear model. The goal of clustering is to group a collection of data points into

subsets, i.e. “clusters”, such that those within each cluster are more closely related to

one another than those assigned to different clusters. Before any clustering I have to

give a definition on similarity. I define the similarity as the Euclidean distance between

the feature points. Given a collection of n feature points of d dimensions, the similarity

is defined as follows:

similarity =

√√√√
d∑

i=1

(pi − qi)
2, (3.9)

where p and q are two arbitrary d-dimensional feature points. That is to say, given

two feature points, the closer Euclidean distance is between the two feature points, the

more similar they are and vice versa.

I construct a hierarchy of local linear models by divisive clustering on feature vectors

of motion segments, with the Euclidean norm as a distance metric. I start by putting

all the feature points into a single cluster. Before I start the procedure, I need to decide

on a threshold distance. Once this is done, the procedure proceeds as follows:

1. The mean of the cluster is computed.

2. The pairwise distance between each feature point in the cluster and the cluster

mean is computed.
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Figure 3.10: An illustration of cluster tree. Each leaf node is associated with a local
linear model by a model ID.

• If the pairwise distance between any feature point and cluster mean is greater

than the threshold, this cluster is divided into two sub-clusters. The splitting

is done by a K-Means splitting algorithm with K set to 2. Then for each of

the sub-clusters, the procedure goes back to step 1.

• If the pairwise distances between all the feature points and cluster mean are

equal to or less than the threshold, then the clustering procedure stops at

this branch, and this cluster is considered as a leaf in the modeling hierarchy.

The whole divisive clustering process continues until the feature points in all the clusters

satisfy the distance tolerance. Figure 3.10 illustrates an example cluster tree.

3.7 Local Linear Modeling

For the motion segments grouped into the same cluster, their poses often lie near a

linear space of much lower dimensionality. Poses can be interpolated on this low-

dimensional space. For example, Figure 3.11 shows one of these clusters and interpolates

novel poses along each of the four principal axes. I aim to find a local linear model

that can sufficiently describe the lower-dimensional linear space as well as a series of
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Figure 3.11: Motion interpolation along the four principal axes of local linear model.
I, II, III and IV represent the leading four principal axes. Four principal axes are
drawn horizontally with the cluster mean in the middle. Poses are interpolated in both
directions along the four axes from the mean.

linear operations that can transform poses onto this newly formed coordinate system.

Since principal component analysis has been one of the commonly used techniques and

popular choices to find the embedded linear space out of high-dimensional data sets,

I apply PCA on the mocap data to find the local linear models. I first compute the

mean pose out of those pose vectors and subtract the mean from the poses. I then apply

PCA on these mean-centered pose vectors. I keep the first k eigenvectors, such that the

residual variance covered by the discarded eigenvectors is less than a preset threshold.

For each group of similar motions, I save the mean vector and the leading k principal

components as a compact model of the poses in the group. As I will demonstrate in

the later chapters, these low-dimensional linear models are good approximations of the

original human poses. By keeping an adequate number of principal components that

sufficiently cover the variance of the associated poses, I can preserve the important

subtleties exhibited by most human motions.

Least-squares methods are often used in a local linear modeling process. As I will

later show in the driving problems, I apply the linear least-squares methods to ap-

proximate the unknown motions from incomplete information. For example, in missing

marker estimation, a least-squares method is used to estimate a pose’s projection onto
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the principal component space from the available marker measurements. In order to

facilitate the understanding on my local linear modeling scheme, I will briefly discuss

the principal of standard linear least square method.

Linear least-squares method is a mathematical optimization technique to find an

approximate solution to a system of linear equations that has no exact solution. This

usually happens if the number of equations (m) is bigger than the number of the vari-

ables (n).

In mathematical terms, we want to find a solution to the equation

Ax = b, (3.10)

where A is a m-by-n (with m > n) matrix; while x and b are respectively n- and

m-dimensional column vectors. This is equivalent to minimizing the Euclidean norm

squared of the residual Ax− b, that is, the quantity

‖Ax− b‖2 =
m∑
i

([Ax]i − bi)
2, (3.11)

where [Ax]i is the ith component of the vector Ax. Using the fact that the squared

norm of v is vT v, where vT is the transpose of v, we may rewrite the expression as

(Ax− b)T (Ax− b) = (Ax)T (Ax) + bT b. (3.12)

The minimum is found at the zero of the derivative with respect to x, i.e.,

2AT Ax− 2AT b = 0, (3.13)

which leads to the normal equation

AT Ax = AT b. (3.14)

Thus, the unique solution is given by

x = (AT A)−1AT b. (3.15)
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3.8 Training Classifiers

My segment-based, piecewise linear modeling approach partitions motion segments into

a collection of clusters that are then modeled by low-dimensional linear models. A key

component in this framework is to correctly identify a local linear model for a given

pose in a motion sequence. A classifier is trained for this purpose.

Among various types of classifiers, The Random Forest (RF) classifier has shown

excellent performance in handling human motion data. A Random Forest classifier is a

classifier that consists of many decision trees, i.e. CART trees. Each tree is constructed

with the following algorithm:

1. Let the number of training cases be N , and the number of variables in the classifier

be M .

2. Let m of input variables be used to determine the decision at a node of the tree;

m should be much smaller than M .

3. Choose a training set for this tree by choosing N times with replacement from

all N available training cases. Use the rest of the cases to estimate the error of

the tree, by predicting their classes.

4. For each node of the tree randomly choose m variables on which to base the

decision at that node. Calculate the best split based on these m variables in the

training set.

This process is repeated until a user-defined number of trees have been created. The

collection of the trees is a Random Forest. In Random Forest the individual CART

trees are not influenced by each other when being constructed. Once a Random Forest

is constructed, the prediction for each tree is used in a voting process. The overall

prediction is determined by voting over all the trees in the forest and choosing the class

with the most votes. Random Forest has some advantages over other classification

techniques that are quite appealing to us. For example, Random Forest does not need

to do any variable selection or data reduction and will automatically identify the best

predictors. It also has an ability to handle data without preprocessing. Data do not

need to be rescaled, transformed or modified. It is also resistant to outliers. Random

Forest is also resistant to over-training. Since it generates numerous trees based on two

forms of randomization, and each tree is an independent, random experiment, growing

a large number trees in Random Forest does not create a risk of overfitting. Finally,
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Random Forest has a mechanism of self-testing using out-of-bag data and is based on

an extension of cross validation. These good properties make Random Forest a very

attractive candidate for classifying human motion data in this dissertation research.

In my classifier training process, the inputs are the marker positions and model

IDs of the poses in the training set. The output is the resulting RF classifier. As my

experiments later show, Random Forest performs well with a high degree of accuracy

and is robust to the size and heterogeneity of motion data. This in turn indicates that

my piecewise linear modeling approach to label identification is sufficient and effective

to characterize human motion data.
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Chapter 4

Human Motion Estimation from a Reduced Marker

Set

Motion capture is a prevalent technique for capturing and analyzing human articula-

tions. However, most motion capture systems are cumbersome, expensive, intrusive

and time consuming. These drawbacks may not only prevent mocap data from being

easy to use, but they also might make it impractical for potential applications.

I use a small set of markers to quickly generate plausible human motions on a frame-

by-frame basis. My model is very compact and completely eliminates the need for a

motion database after offline training. It is also very fast in estimating motions from

a reduced marker set. As the experiments show in later sections, I can reconstruct

human motion frame by frame at a rate of over 600 frames per second. Thus, my

method shows great promise for use in most interactive motion applications.

I eventually hope to employ this method for generating self-avatars for virtual en-

vironments (VEs), where the combined encumbrances of both a head-mounted display

and a full mocap setup are impractical. However, it is conceivable that a participant

might undergo a short mocap session prior to entering a virtual environment. This

training data would then be used to estimate a plausible avatar from a significantly

reduced marker set.

This chapter is organized as follows: in section 4.1 I give an overview on the al-

gorithms and briefly discuss the key components, including principal marker selection,

piecewise linear modeling, classifier training as well as the motion reconstruction. Then

from section 4.2 to 4.5, I will describe these key components in detail, respectively. I

will present the experimental results with discussions in section 4.6. Finally I will

summarize this chapter in section 4.7.



Figure 4.1: Key component diagram of the motion estimation process from a reduced
marker set.

4.1 Overview

My goal is to estimate human motions from a small set of the most informative markers.

Figure 4.1 is a diagram of the key components in a process of motion estimation from a

reduced marker set. I will give a brief overview here, with more details explained later.

Principle marker selection. Principal component analysis (PCA) is one of the

most popular methods for dimensionality reduction of a feature set. However, the

principle components are latent variables and are hard for interpretation. I, on the

other hand, want to choose a small subset of the original markers which I call principle

markers and which contain most of the essential information of the whole marker set.

Figure 4.2 shows a couple of example illustrations of human poses with the principal

markers highlighted. I adapt a PCA-based principle feature analysis method (Cohen

et al., 2002) to selecting a set of principle markers.

Piecewise linear modeling. I first apply the probabilistic PCA (PPCA) (Tip-

ping and Bishop, 1999; Barbič et al., 2004) to divide a motion sequence into simple

motion subsequences of distinct behaviors and local linearities. These subsequences are

referred to as motion segments. I then characterize each motion segment by an equal-

length feature vector and use these feature vectors as modeling primitives to construct

a hierarchy of local linear models via a divisive clustering method. Similar motion seg-

ments are partitioned into the same leaf cluster. Poses in a leaf cluster are associated

with a unique local linear model and are used to compute a linear mapping function
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Figure 4.2: Shown above are the principal markers selected from 2 motion data sets.
The green disk indicates the marker used as the origin in the normalized coordinate
systems. The principal markers are shown in black and the estimated markers are
shown in red.

from a set of principal markers to the rest markers.

Training classifier. In order to be able to use the local linear models to estimate

full-body human poses from a principle marker set, I need to identify the most appro-

priate model given a pose with only the positions of principle markers available. A

Random Forest classifier (Breiman, 2001) is trained for this task from the training set

data, of which each pose is labeled with a local linear model ID.

Motion reconstruction. Given a new motion sequence with only position mea-

surements from the principal markers, I classify each frame to the most appropriate

local linear model using the Random Forest classifier. I then use the associated linear

mapping functions to reconstruct the full marker positions of the poses from the prin-

cipal marker set. I smooth out possible discontinuities using a mixture of local linear

models for the poses at the transitions between models.

4.2 Principal Marker Selection

Human motion data has significant redundancy which can be revealed with PCA. Figure

4.3 shows the accumulative variance explained by the principal components for a data

set comprised of a variety of human behaviors, including walking, running, bending

and washing. The first 10 principal components cover 99% of the variability, implying

that a data set like this, with 40 markers (120 features), has only slightly more than

10 degrees of freedom. In selecting the principle markers, an approach like principal
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Figure 4.3: Percentage of variance explained by the principal components of a motion
data set composed of 12,670 frames with 40 markers (120 features). Fewer than 20
principal components are needed to reconstruct the original feature set to with 99%
accuracy.

feature analysis, i.e. PFA (Cohen et al., 2002), is very appealing. PFA has comparable

performance to PCA but selects a set of original features which are measurable and

have a more intuitive interpretation than the principle components derived by PCA. On

the other hand, PFA treats each feature independently, even though the three features

of each marker are always measured together. So I design an algorithm based on PFA,

which selects a minimal set of principal markers instead of individual principal features

in PFA.

The basic idea of PFA is to exploit the structure of the principal components from

PCA and choose the principal features, which retain the essential information in the

sense of both maximizing variability of the features in the lower-dimensional space and

minimizing the reconstruction errors. I first use PFA to partition all the features into

clusters. Then I impose some criteria to weight the importance of each marker and

select a minimal set of the most important markers satisfying a cover of all clusters of

features. The steps of principal marker selection are summarized as follows:

1. Run PCA on the covariance matrix of data matrix Y .

2. Construct a 3m× q matrix Aq by selecting the q dominant eigenvectors that are
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sufficient to satisfy a desired reconstruction error tolerance. The rows of Aq form

the feature weight vectors, i.e. V1, ..., V3m, Vi ∈ Rq (i = 1 : 3m), which are the

projections of the feature variables on the q leading principle components.

3. Take element-wise absolute value of Vi to obtain absolute feature weight vectors

|Vi| ∈ Rq and use K-means clustering algorithm to partition the 3m absolute

feature weight vectors to K clusters with K slightly greater than q.

4. Weight markers according to their importance. Remove the least important mark-

ers, as long as every cluster is still covered by at least one marker after the re-

moving.

A key rationale behind this feature clustering method is the realization that the

rows of the matrix Aq can be used to effectively characterize the relationships between

the features. In other words, if two features are highly correlated, they will have similar

absolute value weight vectors.

I use the number of unique clusters containing a marker feature to define the im-

portance of a marker. That is to say, a marker that appears in more distinct clusters

is considered to be more important. To break ties between markers, I prefer those

whose sum of the square distances from the marker’s features to their cluster mean is

minimal. Markers are sorted in the order of least importance. I continue removing the

least important markers as long as every cluster is still covered by at least one feature.

This process is repeated until no more markers can be eliminated.

K-means clustering is an iterative algorithm whose result depends on the choice of

initial cluster means. However, it is my experience that the resulting clusters and the

set of principal markers are surprisingly consistent and insensitive to the initial settings.

In Figure 4.4 I illustrate a frequency histogram of the selected principal markers from

1000 runs of my principal marker selection algorithm on a motion data composed of

40 markers and 12,670 frames. All seven principle markers are consistently selected in

more than 94% of all runs.

4.3 Piecewise Linear Modeling

I apply the piecewise linear modeling approach to partition motion data into a collection

of local linear models using motion segments as the modeling primitives. The modeling

process, as described in Chapter 3, consists of key components such as processes of
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Figure 4.4: Frequency histogram of selected principle markers from 1000 runs.

motion segmentation and characterization, computing local linear models as well as

classifier training. Segmentation and characterization are implemented exactly the

same way as described in Chapter 3, while local linear modeling and classifier training

are modified to accommodate the situation in this driving problem. In this section I

only describe how I compute the local linear model and train the classifiers.

For each local linear model, I compute a least-squares mapping function to estimate

the 3D positions of the non-principal markers from a principal marker set. Assuming

k out of m markers constitute a principal marker set, I represent a pose as a 3m × 1

vector y = [xT , zT ]T , where x ∈ R3k represents the 3D positions of principle markers,

and z ∈ R3(m−k) represents the 3D positions of the rest markers. Then the least squares

mapping matrix B can be computed for a cluster of n poses as

B = ZXT (XXT )
−1

, (4.1)

where X = [x1, x2, ..., xn] is a 3k × n matrix, and Z = [z1, z2, ..., zn] is a 3(m − k) × n

matrix.

In order to use the local linear models and the associated mapping functions to

estimate full-body poses from a principle marker set, a Random Forest (Breiman, 2001)

classifier is trained to identify the most appropriate model with only the position values

from the principle markers. In my classifier training process, I label each frame from

the training set with its model ID, and I use its principal marker positions as input for
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training the Random Forest classifier. Random Forest (RF) is a powerful classification

tool that has displayed outstanding performance in regard to classification errors. RF

grows and combines decision trees into predictive models. The overall prediction is

determined by voting over all the trees in the forest and choosing the class with the

most votes. Since the trees are generated randomly and independently, there is no

risk of overfitting for large numbers of trees. As my experiment shows, RF performs

well with a high degree of accuracy, and it is robust to the size and heterogeneity of

motion data. This, in turn, indicates that my piecewise linear modeling approach to

label identification and selection method of principle markers is sufficient and effective

in characterizing motion data.

4.4 Motion Reconstruction

4.4.1 Estimations of Poses

Once I’ve learned piecewise linear models and trained a Random Forest classifier with

a training set, I are ready for estimating human motions from a principle marker set.

For each frame, given measurements on its principle markers denoted by vector x, I

use an Random Forest classifier to identify the most appropriate local linear model and

the associated least-squares mapping function from the principal markers to the rest of

markers. I then estimate the 3D positions of the remaining markers, z, as

z = Bx (4.2)

where B is a linear mapping matrix.

4.4.2 Estimating Poses in Transition with Mixture of Local

Linear Models

An inherent shortcoming with piecewise linear modeling approach is the temporal dis-

continuity at the transitions between models, manifested as visible jerkiness in the

reconstructed motion. A change of bias in the reconstruction errors is one of the

leading causes to temporal discontinuity. For example, if the reconstruction errors of

consecutive frames are all biased towards the same direction, the motion may still ap-

pear smooth, although its root-mean-square (RMS) error may be a bit higher. On the

other hand, if the biases are toward different directions, it may cause more severe jerk-
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Figure 4.5: The probability distribution histogram of the velocity errors for recon-
structed motions from a motion data set.

iness even if the root-mean-squared error is moderate. The bias direction tends to vary

more dramatically during transitions between local linear models. Therefore, temporal

discontinuities are frequently visible at the transitions between local linear models.

I provide a simple metric to evaluate the jerkiness for each marker reconstruction.

For a given marker, let pt and p
′
t be the true and predicted positions at time t;, and

pt−1 and p
′
t−1 be the positions at time t − 1. Then I compute the true and predicted

velocities v and v
′
as follows:

v = pt − pt−1 (4.3)

v
′
= p

′
t − p

′
t−1 (4.4)

I then take the Euclidean norm of their vector difference (e.g. errors) as my jerkiness

metric, γ i.e.,

γ =‖ v − v
′ ‖ (4.5)

When the errors are biased in similar directions, v and v
′

tend to be closer to

each other, leading to smaller values of γ. On the other hand, differences in the bias

directions of v and v
′
lead to larger values of γ.

I verify the validity of this jerkiness metric experimentally on motion reconstruction

using my method from a motion data set. In Figure 4.5 I plot a histogram of γ for all

markers, where transition and non-transition frames are shown in different colors. The
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histogram shows that non-transition frames tend to be non-jerky, or in other words,

smooth. On the other hand nearly all jerky frames occur at transitions between local

linear models.

A typical solution is to incorporate a factor that evaluates the continuity of the

pose relative to the previous poses into the optimization phase (Chai and Hodgins

2005; Grochow et al. 2004). In contrast, I perform a fuzzy regression for the poses at

the transitions of local linear models to smooth out the temporal discontinuity. Instead

of using only the local linear model where the pose is classified to reconstruct a full-

body pose, I use a mixture of models associated with the current pose and some poses

prior to it. This approach shares the spirit of fuzzy/soft classification and addresses

the fact that transitional poses tend to be competed by different local linear models.

Let xt be a pose vector containing the 3D positions of principle markers at time t, I

estimate the positions of the rest of the markers, zt, as,

zt =
∑

i

wiBixt, (4.6)

where wi = ri/(h+1) is a weight for the ith model, ri is the number of poses classified to

the ith model among the prior h poses and current pose, and Bi is the mapping matrix

for the ith model. Basically, I want to put more weights on the model that is favored by

more of the h poses prior to the current pose. In my experiments, h = 10 − 30 works

very well.

4.5 Experiments

4.5.1 Design

I evaluated my modeling approach using Carnegie Mellon University’s Graphics Lab

Motion capture database available at http://mocap.cs.cmu.edu. To obtain a reason-

able representation of motion data space, I prepared a large and heterogeneous human

motion database including various motions from multiple subjects. I divided the mo-

tion sequences into a training set and a testing set, with the training set having similar

sequences to the sequences in the testing set. I used the training set to learn local

linear models and to extract a set of principle markers. Full-body poses were then

reconstructed for the testing sequences based on the marker positions of the princi-

ple marker set, and they were compared to the actual full marker measurements. I
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compared the performance of my method to the nearest neighbor search method.

4.5.2 Results

My training set consisted of 132 sequences with a total of 151,882 frames collected from

21 subjects. The training sequences contained a variety of motions, such as walking,

running/jogging, golfing, soccer kicking, Salsa dancing, jumping, cartwheeling, climbing

steps, etc. Even for the same category of motions, sequences of different styles from

different subjects were included. The testing set contained 28 sequences with 19,553

frames from 18 subjects. Among them, there were 9 walking sequences, 6 running,

5 golfing, 2 cartwheeling, 2 Salsa dancing, 1 walking on uneven terrain, 1 running

jumping, 1 soccer kicking, and 1 climbing three steps. Four testing sequences, namely,

1 walking, 1 soccer kicking, 1 running and 1 golfing were from 4 new subjects who never

performed any motion that was used in the training set.

In selecting a set of principle markers from the training set, I computed PCA to

cover 95% of the total variance of all the poses in the training set. Then I applied

the principal marker selection method to automatically select a set of six principal

markers, placed at left forehead (LFHD), right elbow (RELB), left arm (LARM), right

leg (RLEG), left toe (LTOE) and right toe (RTOE). The training set sequences were

segmented into 271 motion segments with lengths varying from 128 to 3,670 frames

(mean: 560; standard deviation: 425; median: 440). The dimensionalities of motion

segments were as low as 2 for walking motion or as high as 14 for Salsa dancing. Divisive

clustering of motion segments according to their feature vectors yielded 65 clusters,

i.e., 65 local linear models. Principle marker positions were used to classify the frames

into the most appropriate local linear models via the Random Forest classifier. The

classification error rate was 0.29%.

The reconstructed motions were visually plausible for all the testing sequences.

There was no visible jerkiness at the transitional poses. My method performed rea-

sonably well for the motions acted out by new subjects who never appeared in the

database. I compared my method to the nearest neighbor search method with re-

spect to root-mean-squared (RMS) reconstruction errors and jerkiness. In general, my

method produced much more accurate results with less jerky estimates of motions. The

average RMS error and velocity error over all the testing sequences were 45 mm/marker

and 20 mm/marker, respectively, with my method. The corresponding errors with the

nearest neighbor search method are 56 mm/marker and 76 mm/marker, respectively.
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Figure 4.6: Shown above is a snapshot from my motion model viewer. The golden
model on the left represents the actual pose data. The cyan model on the right shows
an estimate of this pose based on the principal markers, which are depicted as white
disks. The green disk indicates the origin marker. An RMS error meter for the entire
marker set appears above the models with a full-scale value of 200 mm/marker.
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Figure 4.7: Comparison of my method to the nearest neighbor search method in esti-
mating three motion sequences. The top row compares the reconstruction RMS error
(mm/marker). The second row compares the jerkiness (i.e., velocity error γ as previ-
ously defined).
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Figure 4.7 showed frame-by-frame RMS errors and jerkiness for three testing sequences

with poses estimated using both my method and the nearest neighbor search method.

The RMS error curve was much smoother using my method than the nearest neighbor

search method. In particular, the nearest neighbor search method had a lot of spikes

in the reconstruction error curve, which could have indicated severely jerky artifacts,

confirmed by the frame-by-frame jerkiness curve. In fact, my method reduced the jerk-

iness by 80% in most of the sequences. Visual inspection of the reconstruction results

also confirmed my conclusion.

I also demonstrated in my experiments that the motion reconstruction by my

method was very fast. With the Random Forest classifier, the classification time was

0.00012 sec/frame, while the linear pose reconstruction time was 0.0014 sec/frame.

This brings the total time needed for estimating a pose from a set of principal markers

to 0.0015 sec/frame, or over 600 frames per second. I ran my experiments in Matlab

V7 on a Dell Inspiron Laptop, with 1.4GHz CPU and 512M physical memory. A more

powerful computer and more efficient code implementation may push the performance

higher.

4.6 Conclusions

I presented a piecewise linear modeling approach to human motion data that were

parameterized by a set of principal markers. I learned local linear models and prin-

ciple markers from a training set of human motion data samples. The whole motion

reconstruction process was efficient, with no need to search in a motion database. The

experimental results demonstrated that this method can quickly generate plausible hu-

man motions on a frame-by-frame basis, and scales well with size and heterogeneity of

motions. Thus, I believe it is possible to use only a few markers as control signals for

interactive computer applications.

I identified a low-dimensional, local linear space at the motion segment level instead

of at the frame level. Motion segments offer a more appropriate resolution for motion

data modeling to retain temporal relationships to some extents by grouping tempo-

rally adjacent yet spatially homogenous frames together into one local linear model.

Fewer local linear models are needed when modeling with motion segments than with

individual frames, resulting in a more compact model hierarchy. It also improves the

reconstruction quality by reducing unnecessary model transitions, a primary source of

temporal discontinuity, i.e. jerkiness.
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Modeling human motions in the mocap marker space pushes motion data process-

ing a step closer to raw data measurements, eliminating skeleton estimation, skeleton

calibration and potential information loss during the conversion of marker measure-

ments to joint angles. On the other hand, there may be a normalization issue with the

use of marker data due to size differences among human subjects. Nevertheless, the

experiments showed that the performance of the proposed method was not sensitive

to normal variations in subjects’ sizes. In the experiments equivalent motions from

different subjects tend to lie in the same local linear space, so the corresponding map-

ping function is actually computed based on data from different subjects. Calibration

of subjects of different sizes does not appear to be essential with this marker-based

approach. However, more experiments are needed in this regard.

I presented an algorithm for selection of a principle marker set. People may also want

to follow their intuitions or experiences to select the principle markers, for example, on

the extremities. It is of interest to compare the results obtained from automatically

selected markers with those from the manually selected markers. Missing markers are

often encountered in mocap data. It is desirable to use a training set with complete

and precise marker measurements to learn a reliable model. However, in reconstruction

of a new motion sequence, my method potentially allows for missing principle markers

because Random Forest has efficient imputing methods to replace missing values. It is

worth conducting experiments to see to what extent the missing principal markers are

allowed to retain an acceptable motion reconstruction.
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Chapter 5

Estimation of Missing Markers in Human Motion

Capture

A common problem encountered in motion capture is that some marker positions are

often missing during the course of motion capture. As mentioned in the previous

chapters, an optical mocap system utilizes video cameras to track the movements of a

set of reflective markers that are strategically attached to the actor’s body. The 3D

marker positions are estimated via triangulation from multiple cameras. A marker is

considered missing if it is not visible to at least two cameras.

A major cause of missing markers is that a marker is occluded by props, limbs,

bodies or other markers. Also, it is not unusual that some markers can be missing

for long periods of time. Although many methods have been developed to handle

the missing marker problem and are already in use in commercial mocap systems,

most procedures require manual intervention and are not satisfactory with problems

of diverse motions, a high percentage of missing markers, and/or extended occlusions.

In this chapter I propose a method for missing marker estimation that is especially

appealing under these situations.

Previous missing marker estimation methods are very effective in recovering missing

marker positions if markers are only missing for a very short period of time. However,

most methods quickly become ineffective or even inapplicable when a significant portion

of markers is missing for a long period of time, or missing at the very beginning or the

end of a motion sequence. The method proposed in this chapter complements those

methods by allowing arbitrary markers to be missing for a considerable period of time,

while still being able to recover their positions using all the available marker positions.

Without assuming any skeleton model, I learn a global model as well as a hierarchy

of local linear models from a training set that contains sufficiently representative motion



sequences. I then take a two-stage, coarse-to-fine approach to estimating the missing

marker positions of a new sequence. I apply the global linear model to obtain a coarse

estimation at the first stage, and I then refine the estimation via local linear models

at the second stage. This method is very simple, fast and robust in recovering missing

markers and estimating human motions. Most importantly, it allows different sets of

markers to be missing for a moderate-to-long period of time. In the experiments I

demonstrate that this method can successfully estimate missing markers over a variety

of motions from multiple subjects.

This chapter is organized as follows: in section 5.1 I give an overview on the al-

gorithms and briefly discuss the key components, including global linear modeling,

piecewise linear modeling, classifier training and the motion reconstruction. Then from

section 5.2 to 5.4, I describe these key components in details. I present the experimental

results in section 5.5. I conclude this chapter with discussions in section 5.6.

Figure 5.1: Motion data modeling and missing marker estimation process.

5.1 Overview

There are two essential components in the process of missing marker estimation (Figure

5.1): modeling training data and estimating missing markers for new sequences. A

training dataset contains sufficiently representative examples of motions. I take a two-

stage modeling approach. At stage 1 I model motion data as a single global linear model,

represented by the principal components. At stage 2 I model motion data in a refined

fashion by a collection of local linear models, which together form a model hierarchy.

Given a new sequence with missing data, I first fill in missing marker positions with
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the approximations derived from the global linear model. Next, for each frame with

initially filled-in values, I identify the most appropriate local linear model via a classifier

trained at the modeling stage, and I then make a refined estimation for the missing

markers by obtaining a least-squares solution from the known markers and the principal

components associated with the local linear model.

5.2 Global Linear Modeling

Global PCA modeling is the first and the coarser stage of the modeling process. At this

stage a single linear model is constructed by applying PCA to the whole training set.

I compute the principal components by applying singular value decomposition (SVD)

(Press et al., 1986) on data matrix Y and form a 3m × d eigenvector matrix P , with

its d columns being the leading d principal components. The eigenvector matrix P as

well as the mean vector µ will be used to calculate the initial estimates of the missing

markers.

5.3 Piecewise Linear Modeling

Piecewise linear modeling is the second stage of the two-stage modeling process. It is

used to provide a refined estimation of missing markers based on the coarse estimate

from the global linear model at stage 1. The piecewise linear model described here is

also a modified version of the general PLM approach presented in Chapter 3. First I

segment motion sequences into segments of simple motions and characterize each mo-

tion segment with a feature vector derived from the mean vector and the covariance

matrix of the pose data of each segment. Next, I group similar motion segments via

divisive clustering of the feature vectors. Finally, I construct a local linear model for

the poses in each cluster by their mean vector as well as by their principal component

vectors. Among these key components, segmentation and characterization are imple-

mented exactly the same way as described in Chapter 3, while local linear modeling

and classifier training are modified to accommodate the situation in this application.

In this section, I only describe how I compute the local linear models and train the

classifiers.
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5.3.1 Classifier training

I train a Random Forest classifier(Breiman, 2001) to classify frames of a new sequence

into different local linear models that are extracted from the training set. Random

Forest (RF) is a powerful classification tool that grows and combines decision trees into

predictive models. The overall prediction is determined by voting over all the trees in

the forest and by choosing the class having the most votes. For each frame labeled

with a model ID, instead of using only a subset of markers (principal markers) as in

human motion estimation from a reduced marker(Chapter 4), I retrieve all of its marker

position values and use them as input variables for training the RF classifier.

5.3.2 Local linear modeling

For the motion segments partitioned into the same group, i.e. cluster, a single linear

model is constructed by applying PCA to all the poses belong to these segments. To

compute each local linear model, I retrieve a mean pose of all the poses. I then compute

PCA to obtain an eigenvector matrix Pi for the ith local linear model and take the

leading d principal components, i.e. the leftmost d columns of the matrix Pi. Finally,

I save the mean vector and the principal components.

5.4 Missing Marker Estimation

I take a two-step, coarse-to-fine approach to estimating the missing marker positions of

new motion sequences. In the first step, I apply the global PCA model computed from

the training set to obtain a coarser estimation of the missing markers. Then a frame,

with missing markers replaced by the initial estimates in step 1, is classified into the

most appropriate local linear model via the RF classifier. I next find a least-squares

solution to the projection of the frame onto the principal component space associated

with the identified local linear model. Finally, I transform them back to the original

marker space to obtain the estimates of the missing marker positions. I will explain in

more detail on these two estimation stages.

5.4.1 Estimation with the global linear model

Given a frame with all the known markers correctly labeled and the rest of the markers

missing, I compute a least-squares approximation of the missing marker positions from
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the available (known) marker positions using the global PCA linear model. Let the

mean vector of the global linear model to be µ, with µa and µm being the parts of

µ corresponding to the available and missing unknown markers, respectively. I first

retrieve the 3k × 1 position vector of the k known markers, f , and obtain a centered

vector s by subtracting from f the corresponding part of the mean vector of the global

PCA linear model. Then I form a 3k × d matrix U from the eigenvector matrix P by

taking the entries corresponding to the known markers, with a 3(m− k)× d matrix V

taking the remaining entries. If I let a d × 1 vector, w, be the projection of a frame

on the leading d principal component axes, I compute a least-squares solution to w

according to

Uw = s (5.1)

and estimate the 3(m− k)× 1 position vector of missing markers, x, as

x = V w + µm. (5.2)

The least-squares solution to w is

w = UT (UUT )−1s, (5.3)

and thus

x = V UT (UUT )−1s + µm. (5.4)

However, such an initial estimate of missing markers from one global model may

be too coarse, especially when the database is a large, heterogeneous motion data set

where various types of motions are included. So it is crucial to use the local linear

models at the next stage to refine the estimation result of at this stage.

5.4.2 Estimation using the local linear models

Once I fill in the missing marker positions of a frame with the estimated values at

stage 1, I classify this updated frame, consisting of full marker positions, to the most

appropriate local linear model by the Random Forest classifier. I then retrieve the mean

vector and the eigenvector matrix associated with the local linear model to estimate

the missing marker positions through a least-squares solution method as described at

stage 1. Let si be the centered position vector of the available markers from the ith

local linear model. Similar to the definition of µ above, I denote the mean vector of the
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ith local linear model as µi with µa
i and µm

i being the parts of µi corresponding to the

available and and missing markers, respectively. For a particular pose classified into

the ith local linear model, I estimate the missing marker positions z as

z = ViU
T
i (UiU

T
i )−1si + µm

i , (5.5)

where Ui and Vi are the two matrices formed by taking the corresponding entries from

the eigenvector matrix Pi.

When modeling time series data, an inherent drawback of piecewise linear modeling

approach is temporal discontinuity at the transitions between two different linear mod-

els. As a solution I incorporate a mixture of local linear models associated with the

previous poses to smooth out the jerkiness at the transitional poses, and re-estimate z

as

z =
∑

j

wjVjU
T
j (UjU

T
j )−1sj + µm

i , (5.6)

where wj = rj/(h + 1) is a weight for the jth model, and rj is the number of poses

classified to the jth model among the prior h poses and current pose. The rationale

behind this is that I want to put more weights on the model that is favored by more of

the current pose and its previous h poses. In my experiments, h = 10− 30 works well.

5.5 Experiments

I divided data into a training set and a testing set. The training set consists of 132

motion sequences with a total of 151,882 frames collected from 21 subjects. I included a

variety of motions (i.e., walking, running/jogging, golfing, soccer kicking, Salsa dancing,

jumping, cartwheel, climbing steps), as well as different styles of the same motion

from different subjects. Segmentation of the training sequences yielded 271 segments,

with length varying from 128 to 3,670 frames (mean: 560; standard deviation: 425;

median: 440). All the motion data were preprocessed by a normalization procedure,

as described in the previous chapter, to remove the effects of translation and rotations

of the poses. Hierarchical clustering of segments according to their feature vectors

produced 65 clusters, i.e., 65 local linear models. I retained the leading 15 principal

components to approximate the poses of each local linear model.

I used a testing set to validate my method. The testing set contained 28 sequences

with 19,553 frames from 18 subjects. Among them, there were 9 walking sequences, 6
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running, 5 golfing, 2 cartwheel, 2 Salsa dancing, 1 walking on uneven terrain, 1 running

jump, 1 soccer kicking, and 1 climbing three steps. None of the testing sequences were

included in the training set. Four testing sequences, namely, 1 walking, 1 soccer kicking,

1 running and 1 golfing were from 4 new subjects who never appeared in the training

set.

I assessed the performance of my method with different number of markers missing

(i.e., 5, 8 10, 15 and 20) in each frame of the testing sequences. In each experiment,

for every testing motion sequence, I randomly chose a fixed number of markers to be

missing for a period of 1 second (120 frames). For example, in the first experiment I

randomly chose markers 1, 15, 21, 32, 38 to be missing for the 1st second and 2, 7, 12,

29, 40 to be missing for the 2nd second.

I also compared my method to spline interpolation in two scenarios where there

were always 8 markers missing in the middle of a sequence, with the missing marker

set being changed for every second. However, in the first scenario, full marker positions

were known at the two ends of the motion sequence, while in the other scenario, 8

randomly selected markers were also missing for a period of time either at one end or

two ends of a sequence.

Figure 5.2 shows the frame-by-frame root-mean-squared (RMS) errors (mm per

missing marker) of each experimental result. It appeared that the reconstruction er-

rors were minimal when there were 8 markers missing. Although the errors increased

with increasing number of missing markers, the magnitude remained acceptable. Even

when the number of missing markers reached 20, i.e., 50% of the total markers, the

reconstructed motions were still plausible. I tested my method against various types of

motion sequences that were not included in the training set. The results showed that

my method was robust enough to produce reasonably good estimation to these het-

erogeneous motions. However, I also observed that the estimation results may appear

unsatisfactory when many important markers were missing together, e.g., when all the

markers on one leg and arm were missing.

I showed in Figure 5.3 the reconstruction results for each coordinate of two missing

marker positions in a short segment of a motion sequence, using both the spline inter-

polation method and my method. When a marker was missing in the middle of the

sequence, shown in the top panel of Figure 5.3, my method recovered sufficient details

missed by spline interpolation. In another example where a marker was also missing

at the very beginning of the sequence, as shown in the last two panels of Figure 5.3,

spline extrapolation completely failed due to the fact that there was only support on
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(a). 8 missing markers.

(b). 15 missing markers.

(c). 20 missing markers.

Figure 5.2: Marker reconstruction errors in the scenarios of different numbers of missing
markers.
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Number of Global Local linear Local Total
missing PCA model model time
markers estimation classification estimation

5 0.52 15.36 1.90 17.78
8 0.50 14.98 1.94 17.42
10 0.50 15.32 1.95 17.77
15 0.46 15.25 1.93 17.64
20 0.42 15.61 1.95 17.98

Table 5.1: Running time (ms/frame) of estimation procedure when various numbers of
markers are missing.

one side of the missing frames. In contrast, my method was still able to recover the

missing marker reasonably.

One advantage of my method is that the estimation procedure can run very fast after

off-line motion modeling using the training set. In Table 5.1 I show the distribution of

the time spent at each key step. It only takes on average less than 18 milliseconds to

estimate the missing marker positions per frame. That is over 50 frames per second,

well above the typical interactive frame rate (i.e., 30 frames/second). It also appears

that the total estimation time per frame remains about the same despite the increasing

number of missing markers. I ran my experiments in Matlab V7 on a Dell Inspiron

Laptop, with 1.4GHz CPU and 512M physical memory. A more powerful computer

and more efficient code implementation may push the performance much higher.

Due to the fact that there is a lack of real datasets with missing markers, I have to

randomly remove the measurements from some markers to create missing markers at

each frame. However, this random missing marker setup may not be a perfect reflection

of the real missing marker scenario, where it is perhaps more likely that neighboring

markers tend to be missing together. For example, most markers on a arm or a leg

are more likely to be missing at the same due to occlusion. In the future I would

like to have an opportunity to gather real missing marker datasets to demonstrate my

method’s utility on those datasets.

5.6 Conclusions

I presented a piecewise linear modeling approach to estimating missing markers in

human motion capture data and reconstructing plausible human motions. I learned

the local linear models from a training set without prior knowledge of the human
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skeleton. I exploited the correlations among mocap markers to infer the missing marker

positions from the positions of the known markers. The motion reconstruction process

was efficient, with no need to search in a database or to estimate/calibrate a skeleton

model. The experimental results demonstrated that my method can quickly generate

plausible human motions on a frame-by-frame basis without any manual intervention.

This method complements the interpolation-based methods in that it consistently

produces reasonable estimation of missing markers even when the missing time gap

is so long such that the interpolation methods become ineffective or inapplicable. It

also achieves better estimation than the spline interpolation methods when the frames

at either ends of a sequence have missing markers. On the other hand, this data-

driven, piecewise linear modeling method has limitations similar to other data-driven

modeling approaches. It assumes that the training set both adequately samples and is

representative of the data space. Moreover, its ability to extrapolate from the training

data is more limited than its interpolation capabilities. The notion, however, of an

interpolation system that is limited by its underlying model is not unique to data-

driven methods. Kinematic models are also limited by the accuracy with which they

represent linkages and by their motion ranges.

I limited my model to only marker positions and ignored velocities and accelera-

tions. Using more information could improve my model; however, in my approach,

adding more data may also increases the dimensionality of the problem. This implies

the need for even more data, and I are already undersampled. This increases the like-

lihood of overtraining my model, thereby limiting its ability to generalize, as discussed

earlier. One of the strengths of my models is that it is very simple and fast. There are

few parameters to be tweaked during the modeling phase. Incorporating velocity and

even acceleration may make the model too complicated and slow down the estimation.

Another reason that prevents us from using the acceleration and velocity is the concern

of the accumulation of errors. Computing the acceleration and velocity requires the

knowledge of the positions of the previous frames. However, some markers in the pre-

vious frames may have been missing and have to be estimated as well. So these frames

may not be accurate enough to be used to estimate the current frame. I are concerned

that this may in fact affect the estimation of the current frame due to the accumulation

of errors. In my opinion only the available marker positions of the current frame have

the most accurate information since they are actually measured. They should therefore

play more important roles in estimating the other marker positions.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.3: Comparison of estimating results (original motion in blue, spline interpo-
lation results in green and my estimation results in red). In each figure the horizontal
axis indicates the frame number, while the vertical axis indicates the reconstruction
error per marker. The top panel with Figures a, b and c, corresponds to the marker
on the right ankle; the middle panel (Figures d, e and f) and bottom panel (Figures
g, h and i) correspond to the marker on the left arm. The middle panel only shows
the original marker positions and my estimations, while the bottom panel shows the
original marker positions, spline interpolations and my estimations, respectively, in a
larger scale.
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Chapter 6

Motion Sequence Retrieval Based on Behavioral

Similarity

Human motion capture data have been widely used in many research fields and appli-

cations. However, in order to reuse the existing motion capture data appropriately, one

has to be able to efficiently find the suitable motion clips from a motion database. As

more and more human motion capture data becomes available, motion databases grow

larger and larger. There is an imperative need for the tools to organize large motion

databases and support fast retrieval of similar motions.

In designing a scheme to organize a motion database that supports fast motion data

retrieval, I have to define similarity among motion sequences. Motion sequences can

then be compared and grouped by how similar or dissimilar they are to each other. For

time series in general, similarity is often defined by the overall distance between the

spatio-temporal curves under a certain distance metric. However, as a special type of

time series, motion sequences may be perceived to us as similar even if they may not

be closer under certain distance metrics. For example, two walking sequences may be

perceived as similar even though they considerably differ in their speeds and styles. I

define a similarity measure in terms of behavioral similarity perceived by humans, as

opposed to numerical similarity measured by various distance metrics. Behavior-based

similarity metric appears to be more suitable for an activity identification task where

the main concern is to determine what behavior the person is engaging, while stylish

detail differences are less weighted. My similarity measure is a higher-level abstraction

of motion similarity. A similar concept was also considered by (Müller et al., 2005)

for content-based retrieval of motion data. They defined logical similarity by using a

class of Boolean features to express the geometric relationships among a particular set

of joints. However, geometric features have to be selected manually and appropriately,



and the actual quantitative information of motion data may not be fully used to model

the data.

I take advantage of the strengths of both numerical and logical similarities. In

particular, I apply the piecewise linear modeling approach to modeling human motions

at behavioral level and use similarity in behaviors to establish an indexing system

for similar human motion sequence retrieval. I first segment long motion sequences

into segments of distinct behaviors. I model each motion segment quantitatively with

a feature vector derived from the overall statistical properties of the poses. These

derived feature vectors serve as a statistical signature for the corresponding motion

segments. I then construct a compact but effective indexing scheme in the feature

space for efficient retrieval of similar motions. Given a new motion sequence, I segment

it into single behavioral segments whose feature vectors are then derived and used to

retrieve similar motions from the database. The process of data modeling and the

construction of indexing structure is fully automatic. The resulting indexing structure

is very compact as compared to the original motion database. This method is also

robust to spatio-temporal variations among similar motions, and thus eliminates the

use of time-warping techniques. The experiments show that this method is efficient

and flexible in organizing, indexing and querying a large motion database based on

similarity in behaviors.

The rest of the chapter is organized as follows. I give an overview of the proposed

method in Section 6.1. In Section 6.2 I describe the indexing scheme constructed by the

piecewise linear modeling approach. In Section 6.3 I discuss the a process of querying

a motion database indexed by this method. I then present the experimental results in

Section 6.4. Finally, in Section 6.5 I conclude with discussions.

6.1 Overview

My goal is to construct a motion database indexing scheme to support fast queries for

similar motions. I first model the motion sequences and then establish a hierarchical

index structure to facilitate the motion retrieval. The following is a brief overview on

each module of my method (Figure 6.1), with more details given in the later subsections.

Normalization. Normalization converts all the poses from different coordinated

systems onto a universal model-rooted coordinate system, where all the translational

and orientational effects are removed from the poses through appropriate transforma-

tions.
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Figure 6.1: Key component diagram of the motion databases retrieval.

Motion segmentation. Motion segmentation divides a complex motion sequence

into one or more segments of distinct behaviors. I apply the Probabilistic PCA (PPCA)

(Tipping and Bishop, 1999) for motion segmentation.

Motion segment characterization. For each motion segment corresponding

to a simple behavior, I characterize it with the statistical distribution of its poses. In

particular, I extract a feature vector from the mean vector and the covariance matrix of

each motion segment. Motion segments associated with similar behaviors have similar

feature vectors.

Indexing. I use feature points of the segments as modeling primitives to con-

struct a compact indexing scheme of a motion database. I take a divisive clustering

approach, which recursively partitions the points in feature space into subsets until

a preset threshold is reached. At each partition level, I compute minimum bounding

rectangles, i.e. MBRs, that not only enclose all the data points associated with the

node, but also orient along the directions of maximum variance spreads. This strategy

results in much tighter bounds than the minimum bounding envelopes using traditional

axis-aligned bounding boxes.

Query. If a query is already a simple motion consisting of a single behavior,

I may directly extract a feature vector from the query sequence. This feature vector

corresponds to a point in the indexing space, where I then search for the closest matches

to the query. If the query is a complex motion containing more than one behavior, I

first segment the query motion into distinct behaviors; then, for each segmented simple
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(a). (b).

Figure 6.2: Illustration of the hierarchical indexing structure: (a) shows a model tree,
with one internal node being circled; (b) shows that associated with the circled model
tree branch, all of the branch’s data points can be completely bounded by a bigger
OBB box and by two smaller and overlapped OBB box.

motion, a set of closest matches are sought from the indexing hierarchy. Finally I rank

the returning candidates with their overall closeness to the query sequence.

Since normalization, motion segmenting and characterization have been presented

as the key components of a generic PLM modeling framework in Chapter 3, I will not

explain those component again in this chapter. Instead, I will describe more details on

indexing and query in the following sections.

6.2 Indexing

An efficient indexing scheme may greatly facilitate the retrieval of information. I create

an indexing structure that can provide easier, faster and more robust retrieval of human

motion data without directly comparing high dimensional motion sequences at all.

My indexing structure is constructed in a feature space, with each feature point

representing a motion segment. The closeness of points is measured via the Euclidean

distance. The closer the two feature points, the more similarity in behaviors between

the two motion segments represented by the feature points. The goal is to group
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together the closest feature points, i.e., motion segments with similar behaviors. I

partition a data set into a hierarchy using a divisive clustering method. I start from

the root node corresponding to a whole data set of feature vectors and recursively

partition the data evenly into two subsets until the number of the feature points at the

node is less than a preset threshold. At each internal node, I conduct PCA and then

project the data points onto the first principal axis, i.e. the eigenvector with the largest

eigenvalue. Next, I split the data around the median of the projected data. Splitting

by the median typically results in a more balanced tree structure. It is also more robust

against outliers.

Pruning is a popular strategy to speed up a query process by avoiding expensive

searches on apparently unmatched sequences in a database. I take an approach similar

to the OBB-Trees (Gottschalk et al., 1996). At each node I compute PCA out of the

data points in the feature space, and then form a minimum bounding rectangle (MBR)

in the k-dimensional space spanned by the leading k eigenvectors. This typically results

in a MBR with a tighter bound of the enclosed data instance. Figure 6.2 illustrates

the hierarchical indexing structure, where the feature points are clustered divisively,

and the corresponding MBRs are constructed accordingly to each partition level. The

partition process continues until a desired granularity is reached at every leaf node.

Once a motion database and the associated indexing structure are established, sub-

sequent updates are allowed and can be done either dynamically or in a batch mode. A

batch mode update is recommended to be done only when a significant amount of new

data become available and must be added to the database. In this case the indexing

hierarchy has to be rebuilt all over again using the feature points of both the old data

and the new data. A dynamic update, on the other hand, can be done at any time

in between the batch mode updates, with an assumption that the data being updated

are small in size as compared to the current database, so that the distribution of the

database will not change dramatically with the new data being added. Now I describe

two dynamic operations, insertion and deletion, respectively.

Dynamic Insertion. A dynamic insertion adds in feature points, one at a time,

to the indexing tree. When a new motion sequence becomes available and needs to be

added to an existing motion database as well as the associated index hierarchy, I first

segment the motion sequence into motion segments of single behaviors. Then for each

motion segment, a feature vector is derived from the mean vector, and the covariance

matrix of the poses in the segment. Then I project this new feature vector to the

lower-dimensional indexing space. The projection then becomes a new feature point in
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the indexing space and is ready for the dynamic insertion. Starting from the root node,

I recursively insert the feature point to the most appropriate node. At each node, with

the associated cluster of feature points, I perform a dynamic insertion as follows:

1. Subtract the cluster mean of a node from the feature point to be inserted.

2. Project the mean-centered feature point to the principal component space spanned

by the principal component axes associated with the cluster.

3. Check if the projection of the feature point is out of the original minimum bound-

ing rectangle. If so, I update the boundaries of the affected minimum bounding

rectangle to include the inserted feature point. If the node is an internal node,

meaning it has two children, I then project the inserted feature point to the prin-

cipal space of each child cluster. I then insert the feature point to the child node

whose minimum bounding rectangle increases the least after inserting the feature

point. The update stops if the node is a leaf node.

Dynamic Deletion. First, I simply delete the feature point from the leaf node

to which it belongs. I then update the minimum bounding rectangle if any of its

boundaries are affected (decreased) by the deletion of the feature point. Next, I find

its parent node and perform the same deletion operation. The process continues until

the root node is reached.

6.3 Query

A query motion sequence may be either a short simple motion sequence that corresponds

to a single behavior or a long complex motion sequence including multiple distinct

behaviors. I discuss the query process under these two scenarios, separately, in the

following subsections.

6.3.1 Query for single-behavior motions

Querying for a single-behavior motion is simpler than querying a multi-behavior motion,

since segmentation of motion sequences is not necessary. I first retrieve a feature vector

from the mean and the covariance matrix from the query motion and project this

feature vector onto the indexing space where it becomes a feature point. I then search
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in the indexing space for those feature points that are the closest to the query point

under the Euclidean distance metric.

In order to avoid unnecessary point-by-point comparisons and to improve the search

efficiency, I prune the indexing hierarchy by setting up a search radius r for the query

point. Starting from the root node, I recursively search through the indexing tree

for the feature points that are within the search radius. The searching procedure is

described as follows:

1. At each node project the query point to the principal component space associated

with the node.

2. Check to see if the corresponding oriented minimum bounding box overlaps with

the search area, i.e. the hypersphere defined by the query point and the search

radius r. Stop further searching, and return no candidate if it doesn’t overlap;

otherwise, go to step 3.

3. If the node is an internal node, repeat step 1 for each of its two child nodes;

otherwise, go to step 4.

4. Compute the distance of each feature point in the leaf node to the query point,

and return the points whose distances to the query point are within the search

radius r.

The returned candidates are then ranked based on their distances to the query point.

The motion segments associated with these returned feature points are the matched

sequences to the query.

6.3.2 Query for multiple-behavior motions

If the query is a long and complex motion sequence containing more than one behavior, I

segment the query sequence into a series of motion segments of distinct behaviors before

any query operation. For each segmented simple subsequence, I retrieve their feature

vectors and project them onto the indexing space to get the corresponding feature

points, and then use these feature points to query the indexing database for a set of

closest matches applying the strategy described above. For each returned candidate,

I identify its corresponding motion sequence in the database. I then align pairs of

the query and each candidate sequence by matching them to the maximum proportion
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on the basis of segment similarity. The optimal alignment can be cast into a string

matching problem and solved by dynamic programming.

The term Dynamic programming was coined by Bellman (1957). Dynamic pro-

gramming (DP) solves an optimization problem by first solving smaller subproblems

and caching the optimal scores for the solutions of each subproblem instead of recal-

culating them. Every dynamic programming algorithm has three steps: initialization,

matrix filling (scoring) and backtrack (alignment). In string matching by dynamic pro-

gramming, the optimal alignments are computed for every substring and those scores

are saved in a matrix. Then a Backtrack step is used to determine the actual align-

ments that result in the maximum score. As follows I will briefly describe these three

steps in solving string alignment.

Initialization. Given two strings s1 and s2 of lengths M and N , I first construct

a score matrix A with M + 1 columns and N + 1 rows. Then the entries in the first

row and in the first column are filled with zero.

Matrix filling (scoring). At this step, for each entry of the matrix A, we attempt

to find the maximum score, representing a substring alignment scenario. Start from

the left-top corner, we define the score at the matrix position (i, j) as

Ai,j = max(Ai,j + Si,j, Ai,j−1 + wM , Ai−1,j + wN),

where Si,j is defined as the diagonal match/mismatch score, wM and wN are the gap

penalty scores of strings s1 and s2, respectively.

Backtrack (alignment). The backtrack step determines the actual alignments

that result in the maximum score. Starting from the right-bottom corner, the backtrack

algorithm proceeds as follows:

1. Start from position (N +1,M +1), i.e. the right-bottom corner, set (N +1,M +1)

as current position. Go to step 2.

2. Add current position (i, j) to the candidate position list. Go to step 5 if it is

already the left-top corner; otherwise, go to step 3.

3. From its immediately adjacent neighbors, find the position (m,n) with the highest

score. Go to step 4.

4. Set (m,n) as the current position. Go to step 2.

5. Compute and output the alignment from the candidate position list.
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Candidate D A B E C
Query a b c

Table 6.1: Alignment of candidate sequences with a query sequence.

In order to match motion sequences using dynamic programming, I first need to

define match between motion segments. A pair of motion segments are considered a

match if their distance in the indexing space is less then a pre-set distance thresh-

old. I convert each motion sequence into a string by assigning each motion segment

a label. for example, A query sequence consists of three ordered segments, labeled

“abc”. One candidate sequence has five segments, also labeled “DABEC”. Two labels

are considered to be equivalent if they represent a pair of matched motion segments.

I assign different scores for matched and mismatched scenarios. I also penalize gaps

by assigning gap penalty scores. Now I am able to cast the motion sequence com-

parison problem into a string matching problem, which can be solved effectively by

dynamic programming. Table 7.1 illustrates how two aforementioned label sequences

are aligned, where (a, A), (b, B) and (c, C) are matching segment pairs, respectively.

In this example, a motion sequence represented by “ABEC” should return as an answer

for the query “abc”. I finally rank the returns according to their overall similarity to

the query motion sequence.

6.4 Experiments

I evaluated my compression method with Carnegie Mellon University’s Graphics Lab

motion capture database available at http://mocap.cs.cmu.edu. I prepared a large and

heterogeneous human motion database consisting of 609 sequences with total 949,076

frames collected from 45 different actors over 300 minutes. The motion database con-

tains a variety of motions such as walking, running, climbing stairs, cartwheeling and

boxing, to name a few. Even for the same motion, I included different styles from dif-

ferent actors. The sequences in the database were segmented into 1,570 segments with

lengths varying from 97 to 6,961 frames (mean: 605; standard deviation: 550; median:

440). Hierarchical clustering of segments, according to their feature vectors, yielded

160 clusters, each comprised of similar behaviors. The indexing structure was just

1.2M bytes vs. 675M bytes of the entire motion sequence database. I demonstrated

my method with two types of queries: queries for simple motion sequences without

segmentation and queries for general motion sequences with segmentation.
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6.4.1 Query for simple sequences

Simple sequences are defined as those that require no segmentation to distinct behav-

iors. In other words, each simple sequence corresponds to a single behavior. Since mo-

tion segments obtained from the sequences in the database are such simple sequences, I

ran the experiments with these segments as queries. I processed a query for each motion

segment in the motion database, requesting various number of returns. I verified the

similarity between the queried motion and the returned candidate motions by visual

inspection of the motion sequence videos and by checking the sequence annotations

from the original motion sequence database. The results in Table 6.2 show that (1) the

average query time was about 1 second, and (2) the percentage of correct returns was

over 90%. Dissimilar motions were occasionally returned but usually at the lower rank

among the returned candidates. The queried motions themselves are always ranked the

first in the returned list.

Returns per query Search radius Percentage of Average query
behaviorally time (Sec.)

similar motion
1 0.02 100% 0.76
2 0.1 98.76% 1.03
5 0.15 97.4% 1.08
10 0.2 92.24% 1.07

Table 6.2: Summary of querying simple motions

I also showed two query examples, walking and cartwheeling, in Figures 6.3 and 6.4.

I chose a representative pose from each returned sequence and plotted them together.

In the walking query example, 20 matched sequences were returned, and all of them

were walking motions. Most of the returns for a cartwheel motion query were also

motion sequences with very similar behaviors, either cartwheels or flips. Only two out

of 19 returned motions were not quite similar to the query motion. The appearance of

dissimilar motions may be due to fewer similar motions available in the motion database.

Additionally, the stylistic differences may overwhelm the behavioral similarity between

two motions. Nevertheless, the returned motions with high degree of similarity usually

ranked higher than the more dissimilar motions.

75



Figure 6.3: Selected frames from query returns for a walking motion. The query is
highlighted with a circle.

Figure 6.4: Selected frames from query returns for a cartwheeling motion. The query
is highlighted with a circle.
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6.4.2 Query for sequences with segmentation

In this experiment I considered each sequence in the database as a query and seg-

mented the sequence before searching in the indexing space. The segmentation of a

query motion sequence can be done either manually by the user or automatically by

the algorithm. In my experiment I automatically segmented the query sequences into

motion segments by the PPCA segmentation algorithm. The query performance on

609 sequences is given in Table 6.3. A query example of soccer kicking motion sequence

was shown in Figure 6.5. As compared to the query for simple sequences, there was no

Returns Percentage of Average query Segmentation
per query behaviorally time (Sec.) time (Sec.)

similar motions
10 88.26% 7.26 6.06

Table 6.3: Summary of querying complex motions with segmentation.

significant change in the percentage of returned similar motions and the rank of queried

motion in the returning list (see Table 6.3). Although the average query time did in-

crease to 7.26 seconds compared to about 1 second in the single behavior motion query,

most of the query time (6.06 seconds) was spent on the PPCA segmentation. PPCA

segmentation with larger steps ∆ may shorten the segmentation time with no signifi-

cant drops in query performance. In addition, a user can always choose to segment the

motion manually before querying the database.

I ran my experiments in Matlab 7 on a Dell Inspiron Laptop, with 1.4GHz CPU

and 512M physical memory. A more powerful computer and more efficient code imple-

mentation may push the performance higher to make the motion segmentation.

6.5 Conclusions

I applied a data-driven, piecewise linear approach to modeling human motions at a

behavioral level. Based on this modeling approach, I designed an indexing scheme

for efficient retrieval of behaviorally similar motion sequences from a large motion

database. I believe that my method is a step forward in the study of human-perceived

similarities among human motions. My method breaks down long motion sequences

into segments of single-behavior motions. It then extracts equal-length feature vectors

from the distributions of poses in the motion segments and uses them as the modeling

primitives in a newly parameterized space. By doing so I can encapsulate the essence
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of motions in a very compact but effective data structure. This model is immune to

spatio-temporal variation among similar motions and is able to group together similar

motions with different styles. The process of model construction and data query is

efficient and scales well with data size and dimensionality.

Although my method does not guarantee that the returns for any particular query

are in an absolute right order, more similar motion sequences do rank higher than the

other not-so-similar motion sequences in most cases. I believe that my method not only

provides an efficient way to organize and categorize a larger human motion database,

but also can be used independently for motion retrieval tasks such as assisting the

composition of animation sequences in video games.
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Figure 6.5: A snapshot of a soccer motion query. The first sequence is the query. The
other two sequences are the returning results.
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Chapter 7

Segment-Based Human Motion Compression

Human motion data have been used in many research fields and applications, such as

animating human-like computer characters in video games, driving avatars in virtual re-

ality environments, and generating special effects in movies. In particular, online video

games often use motion data to interactively control the game characters from a remote

site across the internet. As more and more motion data become available, compressing

motion data for compact storage and fast transmission becomes imperative.

In order to achieve a greater compression ratio while still being able to retain high

fidelity to the original motion sequences, I propose a motion compression method that

exploits both spatial and temporal coherences inherent in a human motion sequence.

First, I segment a motion sequence into segments of simple motions. Poses from each

motion segment lie near a space with low linear dimensionality. I then compress these

motion segments individually by PCA approximation. I compute PCA from each mo-

tion segment and approximate pose position vectors by their projections onto the space

spanned by the principal components. This segment-based PCA compression typically

needs fewer principal components than compression using global PCA on a whole se-

quence to achieve similar distortion ratio. To take advantage of temporal coherence

and further compress the PCA projections of the poses of each motion segment, I adap-

tively select and store only the key frames from each motion segment and use them as

the control points for the cubic spline interpolation in the principle component space.

This motion sequence compression method is efficient and easy to implement, with a

corresponding decompression process that is simple and fast as well.

The rest of the chapter is organized as follows. In Section 7.1 I give an overview

of the proposed method. In Section 7.2 I develop an algorithm to compress motion

segments by PCA. I then describe how to achieve further compression by selecting the

key frames in Section 7.3. In Section 7.4 I provide a decompression algorithm. I present



the experimental results in Section 7.5 and finally conclude with discussions in Section

7.6.

7.1 Overview

Figure 7.1 shows a flow chart of the compression and decompression pipeline. An

overview of each component in the compression/decompression process is given below.

Figure 7.1: A diagram of motion data compression.

Normalization. In order to achieve high compression performance, I apply a nor-

malization procedure (already described as a key component in PLM modeling pipeline

in Chapter 3) to convert all the poses from different coordinated systems onto a uni-

versal, model-rooted homogeneous coordinate system, where all the translational and

orientational effects are removed from the poses through appropriate transformations.

I used three markers for normalization, namely, the markers at STRN, the left and

right shoulders. These three normalization markers are crucial to the quality of the full

pose configuration. I compress these three special markers separately from the rest of

the markers, which I call the non-normalization markers.

Motion segmentation. I segment the normalized motion data sequence into

subsequences of simple motions whose poses lie near a low-dimensional linear space.

Compression of segments by PCA. For each motion segment, I approximate

the pose position vectors by their projections onto the space spanned by the leading

principal components.
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Key frame selection for spline interpolation. Given PCA projection data of

each frame of a motion segment, I adaptively select and store only the key frames as

control points, such that the spline interpolation of the rest of the frames yields an

approximation error below a preset threshold.

Decompression. In decompression I use spline interpolation to recover the po-

sitions of the normalization markers, as well as the PCA projections of the non-key

frames for the non-normalization markers. I then reconstruct the positions of the non-

normalization markers in the normalized coordinate system.

Denormalization. Denormalization transforms all the normalized poses back to

their original coordinate systems.

Since normalization and segmentation have been presented in Chapter 3, I will not

discuss those components again in this chapter. Instead, I will describe in more detail

the rest of the key components in the following sections.

7.2 Compression of Segments by PCA Approxima-

tion

PCA is a dimensionality reduction technique which retains those characteristics of a

data set that contribute most to its variance. For a motion segment whose pose position

vectors lie near a much lower-dimensional space, PCA is a very effective method of

finding that low-dimensional space. I compute PCA for each motion segment and keep

the leading k eigenvectors, such that the residual variance covered by the discarded

eigenvectors is less than a preset threshold. The projections of the pose position vectors

onto the k-dimensional principle component space are used as the approximations of

the original poses. A motion segment is represented by a k-dimensional trajectory over

time, with k being varied in different motion segments.

The reconstruction errors of all the mocap markers are not perceived on the same

scale by my sensing system. Human vision tends to be more sensitive to errors on

certain body parts than the others. For example, even very small errors at the foot

marker positions could be detected and perceived as a major artifact called sliding feet

or skating effect (Kovar et al., 2002b; Ikemoto et al., 2006). To address this issue, I

compress the foot markers separately from the rest of the markers with a tighter error

tolerance.
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7.3 Key Frame Selection for Spline Interpolation

Human motion capture data demonstrate strong temporal coherence, as most time

series do. We can reliably estimate a frame with its temporally adjacent neighbors.

I opt to select and store only the PCA projections of the key frames from a motion

segment to achieve further compression. In decompression I can apply the cubic spline

interpolation to recover the non-key frames, using the saved key frames as control points

for the spline function.

(a) (b)

Figure 7.2: Adaptive key frame selection. (a) is a diagram of the key frame selection
process; while (b) illustrates how the initial control points are selected and how the
subsequence control points are added.

I adopt the cubic spline interpolation approach because of its computational sim-

plicity, good approximation property and implicit smoothness (minimum curvature

property). Selection of the key frames as control points is an adaptive process. As

shown in Figure 7.2, I start by fitting each PCA-projected trajectory by a cubic spline

function with four evenly distanced control points, two at both ends of the motion

segment and the other two at the 1
3

and 2
3

temporal positions of the segment. I then

interpolate all of the frames using the cubic spline functions and compute the interpola-

tion errors. For each frame the approximation error of spline interpolation is calculated

as the L2 norm of the difference between the k-dimensional interpolated vector and

the original projection vector. If the approximation error of the interpolation exceeds a
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preset threshold for any frame between the two existing control points, then the frame

in the middle of those two control points is selected as a new control point and is added

to the list of the existing control points. I continue adding control points and inter-

polating the frames until the interpolation errors of all the frames are within an error

threshold.

As mentioned earlier the three normalization markers only go through one-level

compression via the key frame selection. Since these three markers are crucial to the

de-normalization of the rest of the markers during decompression and may ultimately

affect the final decompression result, I apply a more stringent error tolerance in selecting

the key frames.

For each compressed motion segment, I need to store the key frames for the three

normalization markers: one mean vector, the k principal component vectors and the

PCA projections of the key frames for the non-normalization markers.

7.4 Decompression and Denormalization

Decompression of motion data sequences is conducted separately for the normalization

markers and non-normalization markers as follows.

Normalization markers: Since I only compress the motion data of the normaliza-

tion markers in their original measurement space by selecting the key frames as control

points for the cubic spline interpolation, I simply need to reconstruct the non-key frames

with spline interpolation using those key frames as control points.

Non-normalization markers: Given the PCA projections of the key frames in

each segment, I run cubic spline interpolation using those key frames as control points

to estimate the PCA projections of the other frames. Then I reconstruct the marker

positions in the normalized coordinate system using the principal component vectors

associated with each of the motion segments. Finally, I transform the normalized mocap

marker data back to the original marker coordinate system using the reconstructed

positions of the normalization markers.

An inherent shortcoming with the local linear modeling approach is the temporal

discontinuity at the transitions between PCA models, manifested as visible jerkiness

in the reconstructed motion. For example, if I approximate two temporally adjacent

motion segments using two different sets of principal component vectors, then it is likely

to see jerkiness at the transition frames between these two segments.

In order to address this problem, instead of using only one PCA model to reconstruct
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Sequence Description # of Frames Size (KBytes)
1 Jumping Jacks, side 4,592 4,413

twists, bending
over, squats

2 Long break-dance 4,499 4,324
sequence

3 Walk, squats, running, 10,590 10,177
stretches, jumps, punches

and drinking
4 Walk, squat, 9,206 8,847

Stretching, kicking,
and punching

Table 7.1: Used motion capture data sequences.

the poses at the transition of local PCA models, I use a mixture of PCA models

associated with the particular pose and its neighboring poses. Let bti be a column

vector containing the reconstructed 3D positions of markers at pose t based on PCA

model i, I estimate the marker positions yt, as

yt =
∑

i

wibti, (7.1)

where wi = ri/(h + 1) is a weight for the ith PCA model, and ri is the number of

frames corresponding to the ith model among the frames t− h/2 to t + h/2. Basically,

I put more weight on the model that is favored by more of the h + 1 poses. In my

experiments, h = 10− 20 works very well.

7.5 Experiments

I evaluated my compression method with Carnegie Mellon University’s Graphics Lab

motion capture database available at http://mocap.cs.cmu.edu. I used the 3D motion

data on a set of 41 markers. The sampling rate is 120 frames per second. Table 7.1

shows the basic information of the motion sequences.

As discussed previously, the reconstruction errors may not be perceived on the same

scale for different markers, so I chose different error tolerances according to the impor-

tance of markers. The PCA residual error threshold was set as 10 mm/marker for

the six foot markers and 30 mm/marker for the other non-normalization markers. The

spline interpolation error threshold was set as 10 mm/marker for the non-normalization
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markers and 1 mm/marker for the normalization markers. Larger error tolerances typ-

ically result in more visible artifacts during the reconstruction. Extreme cases include

apparent shifting of certain body parts, as well as jerkiness at the transitions. I as-

sessed the performance of my compression method with regards to compression ratio

and reconstruction quality. I visually evaluated the reconstruction results using my

motion model viewer and quantitatively evaluated the reconstruction errors with two

distortion measures. The first one is a distortion rate d similar to Keogh et al. (2004),

which measures the quality of reconstruction for the whole motion sequence, and is

defined as

d =
‖A− Ã‖

‖A− E(A)‖ , (7.2)

where A is a 3m × N data matrix containing the original motion sequence collected

from m markers over N frames. Ã is the reconstructed result of the same motion

sequence after decompression. E(A) is an average matrix in which each column consists

of the average marker positions for all the frames. The second distortion measure

is the per-frame distortion, which is defined as the Root-Mean-Squared (RMS) error

(mm/marker) in each frame.

The compression and reconstruction results of four motion sequences were presented

in Table 7.2. The frame-by-frame distortions were shown in Figure 7.3. These results

show that my compression method achieved a high compression ratio with low distortion

rate. The reconstructed motion sequences are of reasonably good quality with fairly

smooth transitions from one PCA-modeled segment to another. Also by using a tighter

PCA residual error tolerance for the foot markers instead of a uniform tolerance for all

the markers, I greatly reduced the sliding-feet artifact and thus significantly improved

the perceived visual quality of the reconstructed motion sequences. Some reconstructed

sample frames are given in Figure 7.4.

As motion sequences became more complicated, more principle components and key

frames were needed to ensure the reconstruction quality. For example, the long sequence

of breakdancing was quite fast-paced and sophisticated, thus it required larger number

of principle components and key frames than the other sequences to obtain comparable

reconstruction quality. Therefore, the resulting compression rate is not as high as the

other motion sequences.

I compared my method to the global PCA method as well as the segment-based

piecewise PCA method without spline interpolation (Table 7.3). It showed that the
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(a). Sequence 1 (b). Sequence 2

(c). Sequence 3 (d). Sequence 4

Figure 7.3: Reconstruction errors of decompression.
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Sequence 1 2 3 4
# of segments 6 9 10 9
Average # of 4.6 10.9 3.1 4.2

Principal components
# of control points 117 231 235 221
Compression ratio 1:55.2 1:18.4 1:61.7 1:56.0

Distortion rate d (%) 5.1 7.1 5.1 5.4
Compression time (ms/frame) 1.3 1.4 1.3 1.2
decompression time(ms/frame) 0.7 0.7 0.7 0.7

Table 7.2: Compression and decompression results

piecewise PCA compression method improved the compression performance for all the

sequences, as compared to the global PCA compression method. However, the most

significant improvement came from its use, combined with the spline interpolation,

which efficiently incorporated the temporal coherence of the sequences. Note that 3

out of 41 markers were used as normalization markers in my experiment, and only 38

markers actually went through the segment-based PCA compression, so the compression

effect of piecewise PCA may not be fully demonstrated. However, I expect significant

advantages for segment-based PCA compression when the number of markers increases

substantially.

I ran the experiments in Matlab V7 on a Dell Inspiron Laptop, with 1.4GHz CPU

and 512M physical memory. Both of my compression and decompression algorithms are

very fast and scale linearly with the number of frames in motion sequences. As Table 2

shows, the compression time is about 1.3 ms/frame for all four motion sequences, while

the decompression time for each sequence is 0.7 ms/frame.

7.6 Conclusions

I presented a novel method to compress human motion data sequences based on the

data-driven, piecewise linear modeling approach. I exploited both spatial and tempo-

ral coherences of motion data to achieve a considerably high compression rate with

low degree of distortion. The experimental results showed that it is important to seg-

ment a long and complicated motion sequence into subsequences of short and simple

motions, and to compress each of these subsequences separately. My segment-based

approach requires fewer principal components to achieve the same error threshold than

traditional global PCA compression, and this leads to a higher compression rate and
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Sequence Method Compression Ratio Distortion Rate (%)
Global PCA 1:5.3 4.2

1 Piecewise PCA 1:8.0 4.1
My method 1:55.2 5.1
Global PCA 1:3.7 5.8

2 Piecewise PCA 1:5.0 5.4
My method 1:18.4 7.1
Global PCA 1:6.4 4.9

3 Piecewise PCA 1:9.4 4.3
My method 1:61.7 5.1
Global PCA 1:5.3 4.5

4 Piecewise PCA 1:8.4 4.5
My method 1:56.0 5.4

Table 7.3: Comparison of different compression methods.

better reconstruction results. PCA approximation is an effective way to characterize

the correlations among mocap markers and significantly reduces the dimensionality of

the marker data without the loss of important aspects of the human motions. Spline

interpolation on top of PCA approximation further improves the compression rate by

taking into account the correlations among temporally adjacent frames.

This compression method is a lossy compression scheme. If more accuracy is de-

manded, quantization can be used to store the differences between the reconstruction

results and the original true values, so that the actual errors can be further reduced to

the quantization errors only. However, doing so means we have to allocate extra space

to store these quantized errors, and the trade-off would be the reduced compression

ratio. The experimental results showed that few visual artifacts appear when the in-

formation reflected by the residual errors is discarded, so the use of quantization may

not be necessary.

Motion capture data are often represented as joint angles in animation research.

Since joint angles are a hierarchical representation, it is difficult to achieve high quality

compression by directly compressing the joint angle data due to the accumulation of

errors along the chain of the joints. As a solution we can first convert joint angles into

joint positions and then compress these joint positions instead. In a concurrent work

by Arikan (Arikan, 2006), the conversion to positional data of so-called virtual markers

was also involved in the compression of joint angle data. It is worth examining how

effective my method is, as compared to Arikan’s approach in handling the joint angle

data.
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While I demonstrated the utility of this compression method with full-body human

motion capture data, in my future work I would like to evaluate how well my method

performs in compressing other types of human motion data, such as facial expressions.

In addition, the application of this compression method to other formats of data such

as animation meshes, sequences of point clouds and range scan data also merits further

study.
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Sequence 1:
(a) jumping & twists

(b) bending over (c) stretching

Sequence 2: breakdance

Sequence 3: (a) jumping (b) squats (c) drinking

Sequence 4: (a) walking (b) punching (c) kicking

Figure 7.4: Sample frames from the decompressed motion sequences.
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Chapter 8

Conclusions and Future Work

Human motions are a special type of high-dimensional time series. Traditional mod-

eling approaches typically rely on prior assumptions, domain knowledge and physical

simulations to construct often over-simplified models. This strategy was appropriate

during the early days when data acquisition techniques had not matured enough, and

so motion capture data were difficult and expensive to acquire. However, nowadays mo-

tion capture data have been widely used in more and more applications. Since many

applications demand highly realistic motions with so many details and subtleties, it

becomes much harder for these traditional models to satisfy the needs of those applica-

tions. On the other hand, data-driven modeling approaches, by adopting a Let the data

tell the story strategy, construct appropriate sample-based models by analyzing the

sampled data, with only minimal assumptions and domain knowledge. They applied

data mining and modeling techniques to construct models that are accurate enough to

capture the essence and subtleties of a data set with the least human interventions and

bias. Due to minimal constraints imposed from the assumptions, data-driven models

are often flexible enough and adapt very well to various types of data, as well as adverse

and noisy environments.

During the past decade, we have experienced great advances in data acquisition,

analysis, modeling and computational technology that have made many elegant but

computationally expensive and time consuming algorithms run within a reasonable

time frame. These advances have spawned more and more methods that are based

on the data-driven modeling approach. The segmented-based, piecewise linear human

modeling approach presented in this dissertation makes a conscious effort to systemat-

ically apply the principles of data-driven approaches in modeling human motions.



8.1 Synopsis

In this dissertation I have presented the framework of a data-driven, segment-based,

piecewise linear modeling approach to modeling human motions. In particular, I dis-

cussed the segmentation of motion sequences into subsequences of distinct behaviors

and low dimensionality. I also described the characterization of motion segments by

their statistical distributions. I presented a divisive clustering method to group similar

motions together. I then explained how to construct a local linear model out of the

poses from each group of similar motions. Finally, I discussed the classification strategy

to identify the most appropriate local linear model, given a frame or a segment of mo-

tions. In order to demonstrate this modeling approach’s usefulness in modeling human

motions, I applied the framework of this approach to four driving problems carefully

chosen from a broad range of human motion related applications, namely, human mo-

tion estimation from a reduced marker set; missing marker estimation from available

markers; motion retrieval from a large, heterogenous database; and motion sequence

compression.

In the remainder of this chapter, I will discuss the strengths and weaknesses of this

modeling approach, especially when being applied to the aforementioned four driving

problems. I will then discuss some interesting applications as well as open problems

that may merit further investigations in the future work.

8.2 Strengths and Weaknesses

This modeling approach requires minimal human intervention during the modeling

process. Traditional human modeling approaches rely heavily on human knowledge of

the domain of the data. However, this knowledge may not always be available. It is

more often that a pre-assumed model becomes very complicated and inevitably big but

still seems inadequate in describing all the subtleties exhibited by the data. In contrast,

my data-driven approach doesn’t need to assume any human skeleton model using prior

assumptions and domain knowledge. This property makes this approach very flexible

in modeling human motion data under various environments and conditions where

traditional modeling approaches may not be very effective nor feasible. My approach

applies a very simple and natural concept that assumes that human motions lie in a

piecewise linear space. Poses of each group of similar motion segments are near a very

low-dimensional space and can be sufficiently modeled with a lot fewer parameters.
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These local linear models can collectively provide a compact but sufficiently accurate

and robust model for a large and heterogenous motion dataset. By using an appropriate

modeling resolution based on motion segments, we can capture the essence of human

motions in a relatively simple and compact model while ignoring insignificant details

and noise exhibited in human motion data. Since domain knowledge is not explicitly

involved in the modeling process, my approach, without any significant modification,

can be potentially applied to a dataset other than human motions. For example, as I

will show in the next section of future work, we can apply the principle of this modeling

approach to model the molecular dynamics of protein, despite the fact that this type

of data set bears no resemblance to human motions.

Everything has two sides. There is no exception here. A data-driven, sample-based

modeling approach relies heavily on the training data, as does my modeling approach.

An inherent weakness of this approach is the limitation to extrapolation. In other words

it can only reproduce motions similar to what have been seen in the training set and

would fail if used to hallucinate new motions that bear no similarity to the motions in

the training set. For example, a model trained by only walking and running motions

would not be able to produce novel motions such as boxing or dancing, etc. In order to

reliably recover various motions under different conditions, this approach needs a large

heterogenous motion database of a wide range of human motions.

Another common drawback of a data-driven modeling approach is the overfitting

problem. Unlike traditional modeling approaches where we may well know the un-

derlying model or how many sub-models exist, a data-driven modeling approach like

ours, usually seeks a model of the data which will give us, on average, the best possi-

ble predictions for novel data. We are more likely to have overfitting problems if we

have relatively few data points. In the opposite case, where we have essentially an

infinite number of data points, we are not usually in danger of overfitting the data,

as the noise associated with any single data point plays a small role in my overall

fit. However, overfitting may still occur in a large but imbalanced motion database,

where we may have more than enough samples for some motions but limited samples

for certain other motions. In order to construct a robust and effective model using

this approach, it is important to be consciously aware of this overfitting issue and to

provide large, heterogenous and balanced motion data as a training set, where every

distinct motion is well represented with sufficient samples. In this dissertation study,

I also implemented some mechanisms proven to be effective in the modeling process

to mitigate the overfitting problem. For example, one reason that leads me to ap-
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ply the Random Forest classification rather than other classification techniques is that

Random Forest has an inherent resistance to overfitting with the prediction-by-voting

strategy and cross-validation mechanism (Breiman, 2001). The experimental results

showed that this classification technique effectively addressed the overfitting issue in

the classification phase.

Throughout this dissertation I model human motions in the mocap marker space

instead of in the derived joint angle space with an assumed human skeleton. Modeling

in the marker space has advantages over modeling in the joint angle space. Significant

aspects of human motions are not captured via joint angles, in particular, shape defor-

mations due to the motions of muscles and other fleshy areas. Generally, evidence of

this sort of motion is available from the measured data, i.e. raw marker data. How-

ever, such subtle information may have been smoothed out during the conversion onto

the joint angle space. Modeling human motions in the marker space pushes motion

data processing a step closer to raw data measurements. Doing so also streamlines the

modeling process by eliminating skeleton estimation and skeleton calibration, which

are otherwise needed when modeling human motion data in the joint angle space. The

3D marker position data are also easy to manipulate because they are parameterized

as spatial coordinates rather than angles, thus allowing for a simple Euclidean metric,

which otherwise is not applicable in joint angle space. Modeling in marker space also

appears to be a more natural choice in working on some applications and often has

a more straightforward modeling process, which often produces simpler but more ef-

fective human motion models. For example, in the first driving problem, i.e. human

motion estimation from a reduced marker set, I estimate the remaining marker posi-

tions from a small set of principal markers. A joint angle based approach would have

to construct a model in the joint angle space and estimate from the principal marker

positions all the joint angle values, which in turn produces the full configuration of

a pose. It would make more sense and seems to be more straightforward to directly

model in the marker space and infer from the principal marker positions the positions

of the remaining markers. Similar arguments could be made in the other two driving

problems, namely, missing marker estimation as well as motion sequence compression.

On the other hand, there may be a normalization issue with direct use of marker data

due to size differences among human subjects. Nevertheless, my experiments showed

that the performance of the proposed method was not sensitive to the normal variations

in subjects’ sizes, as long as the human subject whose motions to be estimated falls in

a normal range of the representative human subjects in the motion database. In the
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experiments equivalent motions from different subjects tend to lie in the same local lin-

ear space, so the corresponding mapping function is actually computed based on data

from different subjects. Calibration of subjects of different sizes does not appear to be

essential with this marker-based approach. However, more experiments are needed in

this regard.

The framework that I presented in this dissertation is a piecewise linear approach.

As compared to other traditional nonlinear modeling methods, such as neural network,

Hidden Markov Models, Gaussian process latent variable models (GPLVM), etc., piece-

wise linear modeling is simple and straightforward. Furthermore, human motions do

exhibit local linearity and piecewise linear models would fit well with such type of data.

This modeling approach models human motions as a collection of local linear models.

Each local linear model is very compact but effective in capturing the subtleties of

human motions. PCA-based low-dimensional local linear mapping function is compu-

tationally more efficient than the optimization-based searching methods that may be

sometimes trapped at the local minimums in the searching space. As demonstrated

in the experimental results in the four driving problems, piecewise linear modeling

achieved better modeling performance in terms of more accurate and plausible motion

estimation, as well as higher motion compression ratio, than the methods adopting

the global modeling approaches. On the other hand, piecewise linear modeling has its

inherent limitations as well. Temporal discontinuity at the transitions between linear

models often causes visible artifacts in the motions reconstructed from a piecewise lin-

ear model. I have discussed in the previous chapters that the cause for this temporal

discontinuity is due to the change of bias direction of the reconstruction errors. Al-

though this inherent limitation can’t be completely eliminated, I did provide a solution

by using a mixture of linear models to mitigate the artifacts caused by the temporal

discontinuity, so that they are not visible to the human perception.

My approach is a segment-based modeling approach. Data-driven approaches, even

piecewise linear modeling, have been explored before in some fields and are thus not

new ideas. However, it is important to construct a piecewise linear model based on

motion segments instead of individual poses. Human motion data are a special high-

dimensional time series. Human perception is very sensitive to temporal discontinuity.

One side effect of piecewise linear modeling, with individual poses as the modeling

primitives, is that it tends to group similar poses from different motion sequences of

different behaviors into the same local linear model while partitioning temporally ad-

jacent frames from the same motion sequence into different local linear models. This
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may lead to many unnecessary model transitions when reconstructing a simple and

single-behavior motion. Too many unnecessary transitions between linear models may

cause temporal discontinuity manifested as visible jerkiness, an artifact in the recon-

structed human motions. In data modeling it is important to choose an appropriate

modeling resolution. By modeling human motions at the resolution of motion segments,

we guarantee poses of the same motion segment to be in the same local linear model.

This modeling strategy closely resembles in spirit how human perception works and

can drastically reduce unnecessary transitions between models. Thus it may improve

the overall quality of the estimated motions.

8.3 Future Work

I have demonstrated my approach’s usefulness in the four challenging driving problems

chosen from a wide range of human motion applications. There are many other interest-

ing problems that may be well worth the investigation under this modeling framework.

In the following subsections, I will discuss a few interesting problems that may benefit

from applying this human motion modeling approach.

8.3.1 Relieving ambiguity in marker labeling

Marker labeling is an important step during a motion capture process. Labeling is

basically the assigning of specific names to specific markers. Once we have more than

one entity that we’re trying to track, we need to know which is which by naming

them, and this is where labeling comes in. It is more than often that during a marker

labeling process, we may encounter a so called correspondence problem, because when

they occur, we do not know which blob in a camera image corresponds to which marker

since the markers are just dots on an image. Occlusion and ghosting are two primary

sources of marker ambiguity. Occlusion occurs when a performer turns around, and

two or more markers are eclipsed (or occluded) by their bodies. When they re-appear

it is no longer certain which is which. Ghosting occurs when two markers are seen by

only two cameras, and the cameras and the markers lie in the same plane. In this case

there is an ambiguity about exactly where the markers are. Again, while several means

are available, it may not be possible to automatically re-establish the identity of the

markers. Instead, human interventions are often needed for the marker re-identification

task.
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Re-establishing marker identity (or correspondence) across the gaps of motion data

requires hours of manual labor doing what is referred to as cleanup. Also, while adding

cameras is desirable for accuracy and enlargement of the captured volume, it tends to

increase the opportunities for ghosting or occlusion, and thus makes re-identifying the

markers to each camera harder. This optical data cleanup problem is the source of the

early (and correct at the time) belief that it took almost as long to capture and clean

up motion data as it would to hand-animate it.

We can greatly ease the burden of the marker re-identification task by applying

the same piecewise linear modeling approach to this problem as applied to the missing

marker problem. Once a marker is classified as occluded or ambiguous, it is declared

as missing, and its position would be recovered from the other available marker posi-

tions. Once we recover the missing marker positions, we compare the estimated marker

positions with the ambiguous blobs and assign them to the marker whose position has

the closest distance to the estimated marker positions. By doing so we could dramati-

cally speed up the marker labeling process as compared to the existing marker labeling

methods.

8.3.2 Markerless motion capture

The past two decades have seen great progress in marker-based motion capture meth-

ods, resulting in robust systems that can produce accurate results. On the other hand,

markerless motion capture methods have only seen a decade’s worth of research. Even

though promising results have been reported, these systems have not provided the same

robustness or precision as their marker-based competitors. While marker-based meth-

ods might be used to give satisfactory and accurate results for the purposes of some of

the applications outlined above, the process of wearing special clothing and/or markers

is generally unpleasant and time consuming, thus favoring the use of markerless mo-

cap systems. Additionally, some applications demand that there is no intrusion to the

subject’s body whatsoever. It is therefore clear why development of robust markerless

tracking algorithms is desirable.

In recent years there have been studies on markerless motion capture in the com-

puter vision community. In markerless motion capture, human images are acquired

through some passive sensing mechanisms and then reconciled into kinematic motions.

General approaches to markerless motion capture are to first assume a human skeleton

as a rooted hierarchy of bones and joints, and then to use silhouettes or other image
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information to estimate or infer the joint positions on the human skeleton. However,

it is not always easy to make a sufficiently accurate estimation in a timely manner on

all the joint positions from the available image cues at anytime. On the other hand,

it is conceivable that at different positions, only certain joint positions can be more

accurately estimated than the other joint positions.

A strategy to tackle this problem entails estimating all the joint positions solely from

the silhouettes of captured human figures. We only estimate a subset of the joints that

can be accurately estimated from the silhouettes at a current particular position. At

the next stage, we infer from the newly estimated joint positions the rest joint positions,

the same way as we approach the missing marker problem. By this two-stage approach,

we can recover all the joint positions more reliably than the existing markerless mocap

methods with much less time and computing power. However, it is a nontrivial problem

to adopt the piecewise linear modeling approach in estimating the joint positions from

the silhouette. Normalization, for example, may be an issue. Nevertheless, there is

great promise that my approach can be applied to this problem, in principle, to quickly

and accurately recover the human motions in markerless motion capture system.

8.3.3 Discrimination of abnormal motions from normal mo-

tions

In some applications such as evaluating the progress of physical therapy and patient

monitoring, it is important to be able to discriminate abnormal motions from normal

motions. Healthy people typically have similar normal poses as well as normal motions.

In normal motions, although they often fluctuate due to different body shapes, styles

and other noises, major coordinations (couplings) among body parts are preserved, i.e.

invariant. In abnormal motions, in contrast, certain coupling invariability may have

been violated while new couplings may have formed.

A typical human motion sequence consists of three components: generic compo-

nents, style component and noise components. The generic component captures the

major coupling invariability, while the style and noise components only count for a

small variation from the generic poses. Motion sequences with the same generic motion

tend to be similar and also tend to have similar motion transition trajectories. On the

other hand, abnormal motions differ dramatically from any of the normal motions since

they are considered to be derived from different generic motions.

Motion discrimination is inherently a classification problem. In a large motion
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dataset, normal and abnormal motions often tangle with each other in a high-dimensional

space. It is impossible to find a global classifier to identify normal and abnormal mo-

tions. The piecewise linear modeling approach adopts a divide-and-conquer strategy

to partition motion sequences into smaller and simpler motion segments that can be

described with local linear models. Each of the resulting motion segments can then

be characterized by the statistical properties from which a signature may be derived.

These signatures can be later used to train a classifier to discriminate between normal

and abnormal motions for a given pose or motion clip.

A path can also be drawn from an abnormal motion to its intended normal coun-

terpart motion with sufficient data support. This path would be useful in monitoring

and quantitatively evaluating patients’ rehabilitation from diseases that have severely

damaged their motor systems and consequently altered their motion patterns.

8.3.4 Automatic motion pattern mining and annotation

Human motions are highly coordinated among different body parts. There exist con-

sistent patterns in many different motions. These patterns are invariant among similar

motions under certain resolutions. Annotation is a technique of giving a descriptive

summary on the identifiable motions with certain patterns. Annotation can be applied

at different modeling resolutions, for example, at a lower (finer) level where simple

motion strokes such as lifting a foot, waving a hand, etc., are the annotation primi-

tives. On the other hand, at a higher level of resolution, more abstract and behavioral

motion segments, such as walking, running, jumping, sitting, etc., compose the vocab-

ulary of the annotations. Annotations of higher abstraction-level motions can always

be rephrased with the vocabularies in the lower-level motion annotations. For example,

walking, can always be equivalently described as alternate swinging between hands and

feet.

Currently, most annotations are most done manually. In particular, human expertise

is heavily relied upon to find and define meaningful patterns as the building blocks at

various modeling resolutions. As greater amounts of motion data become available, we

need to develop an effective and efficient strategy to find the patterns and annotate

various motions with only minimal human intervention.

My piecewise linear modeling approach can be applied to achieve this goal. At

a higher and more abstract level of resolution, human motions are to be categorized

as a collection of short, simple, and most of the time, single-behavior motion clips,
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i.e. segments. We have already been able to find such simple motions by segmenting

long and complicated motion sequences into distinct behaviors and by grouping similar

motions together by the similarities in their statistical distributions. Signatures can

also be derived from the statistical properties of the motion segments. Standard data

mining methods can then be applied to search for meaningful patterns.

In order to find primitives for low-level annotations, each behavioral motion seg-

ment is further divided into simple-strokes, in which the geometric relationships among

certain key body parts remain invariant. We can first select a subset of key body

parts with a strategy similar to the principal marker selection presented in Chapter 4,

and then encode each frame of the original single-behavior motion segments with the

pairwise geometric relationships among the key body parts. With this strategy we can

annotate motion sequences at multiple modeling resolutions automatically or with only

minimal human intervention.

8.3.5 Modeling protein dynamics

Protein structures are not static. Instead, proteins are dynamic molecules that often

undergo conformational changes while performing their specific functions, such as an

enzyme reaction or ligand binding. Many of the bonds in a protein can rotate and

flex, and entire structural segments of the protein can move on a variety of timescales.

The types and timescales of motions that the protein experiences can play a significant

role in the way that the protein functions. The dynamic properties intrinsic to a

protein structure may provide information on the location and the energetics of the

conformational change process, and are thus the focus of many biophysical studies.

Protein dynamics are essential for specific biological functions (Huitema and van Liere,

2000).

The piecewise modeling approach has promises to be useful in modeling protein

dynamics, which can be treated as a special high-dimensional time series. For exam-

ple, the principal marker selection method can be applied to capture the most relevant

aspects that influence the binding process and determine the affinity with which a po-

tential drug candidate binds to its protein target. As compared to the global modeling

approach used in the existing protein dynamics modeling methods, the local linear

modeling strategy may produce a more compact but more accurate model with a lot

fewer parameters. It can be used for fast protein molecular modeling that may capture

the essence of a variety of protein dynamics in a timely manner with a high accuracy
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but relatively low cost.

8.3.6 Summary

I have briefly discussed a few interesting problems that could potentially benefit from

my data-driven, piecewise linear modeling approach and outlined a strategy on each

problem discussed. I believe that this approach provides a viable, and perhaps better

alternative to the traditional modeling approaches under certain circumstances. This

data-driven, segment-based, piecewise linear approach would find great utilities on

many more applications within and beyond human motion modeling.
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Appendix A

Source Code

I present here the core source code developed during the course in this dissertation.

I will first present the generic modules for constructing segment-based, local linear

models. I then present the additional source code used in addressing each of the four

aforementioned driving problems. All the source code was written in Matlab version 7.

A.1 Segment-based, Piecewise Linear Modeling

A.1.1 Normalization

0001 %##########################################################################
0002 %The following function is used to normalize the mocap frames. M stores #
0003 %each frame’s full marker positions. FrM stores only the positions of the #
0004 %three markers used for the normalization. #
0005 %##########################################################################
0006 function N M = Normalize(FrM, M)
0007
0008 nFrame = size(M,1);
0009 nPnt = size(M,2)/3;
0010 N M = zeros(size(M));
0011 for i = 1:nFrame
0012 Origin = FrM(i,[1:3]);
0013 Lsho = FrM(i,[4:6]);
0014 Rsho = FrM(i,[7:9]);
0015 Xaxis = (Rsho - Lsho) / norm(Rsho - Lsho);
0016 Zaxis = [0,0,1];
0017 Xaxis = Xaxis - dot(Xaxis, Zaxis)*Zaxis;
0018 Xaxis = Xaxis / norm(Xaxis);
0019 Yaxis = cross(Zaxis, Xaxis);
0020 frameTran21 = [Xaxis; Yaxis; Zaxis];
0021 frameTran12 = inv(frameTran21);
0022 for j = 1:nPnt
0023 N M(i,j*3-2:j*3) = (M(i,j*3-2:j*3) - Origin) * frameTran12;
0024 end
0025 end
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A.1.2 Motion segmentation and characterization

0001 %##########################################################################
0002 %The following function is the main function of the PPCA motion sequence #
0003 %segmentation algorithm. It iteratively calls its sub function to segment #
0004 %a motion sequence into subsequences. #
0005 %##########################################################################
0006 function ppcaSegMain(dFolder, sFolder, per, block, delta, trange)
0007
0008 load NormIdx;
0009 fname = [dFolder, ’/M*N*.mat’];
0010 allFiles = dir(fname);
0011 cnum = 0;
0012 tnum = 0;
0013 clus = [];
0014 segs = [];
0015 segNames = [];
0016 index = 0;
0017 flist = [];
0018 for i=1:size(allFiles, 1)
0019 matName = [dFolder, ’/’, allFiles(i).name];
0020 newName = allFiles(i).name(1:end-4);
0021 flist(i).name = newName;
0022 tmp = load(matName);
0023 MN = tmp.M N;
0024 M = MN(:, NormIdx);
0025 sizem = size(M,1);
0026 current = 1;
0027 offset = 0;
0028 indx = 0;
0029 segIdx = [];
0030 while (1)
0031 sIdx = ppcaSegSub(M(current:end,:), per, block, delta, trange);
0032 indx = indx + 1;
0033 segIdx(indx,:) = [offset+1, offset+sIdx];
0034 offset = offset+sIdx;
0035 if (offset < sizem)
0036 current = offset+1;
0037 continue;
0038 else
0039 break;
0040 end;
0041 end
0042 segs(i).segIdx = segIdx;
0043 numOfSegs = size(segIdx,1);
0044 segs(i).segs = [index+1:index+numOfSegs];
0045 for j=1:numOfSegs
0046 if (j < 10)
0047 fname = [sFolder, ’/’, newName, ’0’, int2str(j)];
0048 index = index+1;
0049 segNames(index).name = [newName, ’0’, int2str(j)];
0050 else
0051 fname = [sFolder, ’/’, newName, int2str(j)];
0052 index = index+1;
0053 segNames(index).name = [newName, int2str(j)];
0054 end;
0055 M N = MN(segIdx(j,1):segIdx(j,2), :);
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0056 save(fname, ’M N’);
0057 numOfFs = size(M N, 1);
0058 cnum = cnum + 1;
0059 st = tnum + 1;
0060 ed = tnum + numOfFs;
0061 clus(cnum,:) = [st, ed];
0062 tnum = ed;
0063 end
0064 end
0065 fname = [sFolder, ’/clus’];
0066 save(fname, ’clus’);
0067 fname = [sFolder, ’/segs’];
0068 save(fname, ’segs’);
0069 fname = [sFolder, ’/segNames’];
0070 save(fname, ’segNames’);
0071 return;

0001 %##########################################################################
0002 %The following function is the child function of the PPCA motion #
0003 %segmentation algorithm. #
0004 %##########################################################################
0005 function len = ppcaSegSub(M, per, block, delta, T)
0006
0007 R =500;
0008 [sizem, numOfDims] = size(M);
0009 if (sizem <= block + T)
0010 len = sizem;
0011 return;
0012 end;
0013 index = 0;
0014 max1 = -1000000000;
0015 max2 = max1;
0016 min1 = 1000000000;
0017 status = 1;
0018 for K=block:delta:sizem-T
0019 Nmean = mean(M(1:K,:),1);
0020 N = M(1:K,:) - repmat(Nmean, K, 1);
0021 Cinv = ppcaMod(N, per);
0022 sumh = 0;
0023 for j=1:T
0024 centered = (M(K+j,:)-Nmean);
0025 sumh = sumh + centered * Cinv * centered’;
0026 end
0027 index = index + 1;
0028 sumH(index) = sumh / T;
0029 continue;
0030 if (status == 1)
0031 if (sumH(index) > max1)
0032 max1 = sumH(index);
0033 status = 2;
0034 end;
0035 elseif (status == 2)
0036 if (sumH(index) < max1 && sumH(index) < min1)
0037 min1 = sumH(index);
0038 status = 3;
0039 else
0040 if (sumH(index) > max1)
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0041 max1 = sumH(index);
0042 status = 2;
0043 end;
0044 end;
0045 elseif (status == 3)
0046 if (sumH(index) < min1)
0047 min1 = sumH(index);
0048 status = 3;
0049 else
0050 if (sumH(index) > max2)
0051 max2 = sumH(index);
0052 status = 4;
0053 end;
0054 end;
0055 else
0056 if (sumH(index) < max2)
0057 if (max2 - min1 >= R)
0058 len = K;
0059 xaxis = [1:index] * delta;
0060 plot(xaxis, sumH);
0061 return;
0062 else
0063 max2 = -1000000000;
0064 if (sumH(index) < min1)
0065 min1 = sumH(index);
0066 end;
0067 status = 3;
0068 end;
0069 else
0070 max2 = sumH(index);
0071 end;
0072 end;
0073 end
0074 len = sizem;
0075 return;

0001 %##########################################################################
0002 %The following function is used to derive a feature vector from each #
0003 %motion segment by making a weighted concatenation of the elements of #
0004 %the mean vector and the upper triangle of the covariance matrix. #
0005 %##########################################################################
0006 function compFeatures(dFolder, fvFolder, w)
0007
0008 load NormIdx;
0009 fname = [dFolder, ’/M*N*.mat’];
0010 allFiles = dir(fname);
0011 fvec = [];
0012 for i=1:size(allFiles, 1)
0013 %read the ith file
0014 matName = [dFolder, ’/’, allFiles(i).name];
0015 newName = allFiles(i).name(1:end-4);
0016 tmp = load(matName);
0017 MN = tmp.M N;
0018 M = MN(:, NormIdx);
0019 fmean = w * mean(M,1);
0020 cv = cov(M);
0021 rvec = diag(cv)’;
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0022 svec = [];
0023 for j=1:size(rvec,2)
0024 svec(j) = sqrt(rvec(j));
0025 end
0026 fvec(i,:) = [fmean, svec];
0027 end
0028 fname = [fvFolder, ’/fvec’];
0029 save(fname, ’fvec’);
0030 return;

0001 %##########################################################################
0002 %The following function is used for dimensionality reduction of the #
0003 %segment feature vectors. It computes PCA out of all the feature vectors #
0004 %and keeps the leading principal components. It then projects each feature#
0005 %vector to this principal component space and uses these projections to #
0006 %approximate the feature vectors. #
0007 %##########################################################################
0008 function dimRedux(fvFolder, pcper, pcsize)
0009
0010 fname = [fvFolder, ’/feavec’];
0011 tmp = load(fname);
0012 feavec = tmp.fvec;
0013 numOfFs = size(feavec, 1);
0014 fmean = mean(feavec, 1);
0015 [evec,eval] = empca(feavec’, pcsize);
0016 cenvec = feavec - repmat(fmean, numOfFs, 1);
0017 clear feavec;
0018 tmp = 0;
0019 for i=1:numOfFs
0020 tmp = tmp + dot(cenvec(i,:), cenvec(i,:));
0021 end
0022 totalvar = tmp / (numOfFs - 1);
0023
0024 for i=pcsize:-1:1
0025 if (sum(eval(1:i)) / totalvar > pcper)
0026 continue;
0027 else
0028 dim = i+1;
0029 vportion = sum(eval(1:dim)) / totalvar
0030 break;
0031 end;
0032 end
0033 fvec = cenvec * evec(:,1:dim);
0034 fname = [fvFolder, ’/fvec’];
0035 save(fname, ’fvec’);
0036 fname = [fvFolder, ’/fmean’];
0037 save(fname, ’fmean’);
0038 fname = [fvFolder, ’/evec’];
0039 save(fname, ’evec’);
0040 fname = [fvFolder, ’/eval’];
0041 save(fname, ’eval’);
0042 fname = [fvFolder, ’/vportion’];
0043 save(fname, ’vportion’);
0044 return;
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A.1.3 Construction of model hierarchy

0001 %##########################################################################
0002 %The following function is the main function of the divisive clustering #
0003 %algorithm. It recurively calls its sub function to construct a model #
0004 %hierarchy using the dimension-reduced feature vectors as the modeling #
0005 %primitives. #
0006 %##########################################################################
0007 function clusteringMain(fvFolder, mFolder, vtol)
0008
0009 global numOfLeaves;
0010 global leaf;
0011 leaf = [];
0012 numOfLeaves = 0;
0013 fname = [fvFolder, ’/fvec’];
0014 tmp = load(fname);
0015 M = tmp.fvec;
0016 numOfFs = size(M, 1);
0017 mlist = [1:numOfFs];
0018 root = fcluSN(M, mlist, ’0’, vtol);
0019 fname = [mFolder, ’/clusterTree’];
0020 save(fname, ’root’);
0021 fname = [mFolder, ’/numOfLeaves’];
0022 save(fname, ’numOfLeaves’);
0023 fname = [mFolder, ’/leaf’];
0024 save(fname, ’leaf’);
0025 return;

0001 %##########################################################################
0002 %The following function is the child function of the divisive clustering #
0003 %algorithm. #
0004 %##########################################################################
0005 function node = clusteringSub(localM, mlist, code, vtol)
0006
0007 global numOfLeaves;
0008 global leaf;
0009 node.code = code;
0010 numOfFs = size(localM, 1);
0011 localMean = mean(localM, 1);
0012 node.Mean = localMean;
0013 maxVar = -1000000;
0014 for i=1:numOfFs
0015 cvar = norm(localM(i,:) - localMean);
0016 if (cvar > maxVar)
0017 maxVar = cvar;
0018 else
0019 continue;
0020 end;
0021 end
0022 node.radius = maxVar;
0023 node.mlist = mlist;
0024 if (maxVar <= vtol) % leaf node
0025 numOfLeaves = numOfLeaves + 1;
0026 node.class = numOfLeaves;
0027 node.leftFlag = -1;
0028 node.left = [];
0029 node.rightFlag = -1;
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0030 node.right = [];
0031 leaf(numOfLeaves).mlist = mlist;
0032 else
0033 mat = [localM(1, :); localM(numOfFs,:)];
0034 [clusterIdx, C] = kmeans(localM, 2, ’start’, mat, ’maxiter’, 200);
0035 node.KmeanTime = toc;
0036 lIndex = 0; % the number of frames on the left branch
0037 rIndex = 0; % the number of frames on the right branch
0038 for i=1:numOfFs
0039 if (clusterIdx(i) == 1)
0040 lIndex = lIndex + 1;
0041 lMlist(lIndex) = i;
0042 else
0043 rIndex = rIndex +1;
0044 rMlist(rIndex) = i;
0045 end;
0046 end
0047 if (lIndex > 0)
0048 node.leftFlag = 1;
0049 node.left = fcluSN(localM(lMlist, :), mlist(lMlist), ...
0050 [node.code, ’0’], vtol);
0051 else
0052 node.leftFlag = -1;
0053 end;
0054 if (rIndex > 0)
0055 node.rightFlag = 1;
0056 node.right = fcluSN(localM(rMlist, :), mlist(rMlist), ...
0057 [node.code, ’1’], vtol);
0058 else
0059 node.rightFlag = -1;
0060 end;
0061 end;
0062 return;

A.1.4 Local linear modeling

0001 %##########################################################################
0002 %The following function is used to construct a local linear model for the #
0003 %segments grouped together. It retrieves the mean and the principal #
0004 %components of the poses in the same cluster. It then builds mapping #
0005 %functions from a space spanned by the available markers to the principal #
0006 %component space as well as to the full marker space. #
0007 %##########################################################################
0008 function localLinearModel(dFolder, mFolder, projDim)
0009
0010 load NormIdx;
0011 fname = [mFolder, ’/leaf’];
0012 tmp = load(fname);
0013 leaf = tmp.leaf;
0014 numOfLeaves = size(leaf, 2);
0015 fname = [dFolder, ’/M*N*.mat’];
0016 allFiles = dir(fname);
0017 index = 0;
0018 for i=1:numOfLeaves
0019 S = [];
0020 numOfSegs = size(leaf(i).mlist, 2);
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0021 mlist = leaf(i).mlist;
0022 for j=1:numOfSegs
0023 fname = [dFolder, ’/’, allFiles(mlist(j)).name];
0024 tmp = load(fname);
0025 S = [S; tmp.M N(:,NormIdx)];
0026 end
0027 sizes = size(S, 1);
0028 smean = mean(S, 1);
0029 NS = S - repmat(smean, sizes, 1);
0030 Cov = cov(NS);
0031 [pc,latent,explained] = pcacov(Cov);
0032 proj = NS * pc(:,1:projDim);
0033 mp(i).pcs = pc(:,1:projDim)’;
0034 mp(i).smean = smean;
0035 end
0036 fname = [mFolder, ’/mp’];
0037 save(fname, ’mp’);
0038 return;

A.2 Principal Marker Selection

0001 %##########################################################################
0002 %The following function is used to group the correlated mocap features #
0003 %together. It first computes the principal components out of the poses in #
0004 %the data set. It then calls a clustering method to cluster the features #
0005 %by their weights on the principal component space. #
0006 %##########################################################################
0007 function [clusters, mcIdx, C, V] = pfaFeatureClustering(M, EnergyRatio)
0008
0009 nFrm = size(M,1);
0010 VarDim = size(M,2);
0011 M mean = mean( M, 1 );
0012 for j = 1: nFrm
0013 M(j,:) = M(j,:) - M mean;
0014 end;
0015 cov = M’ * M;
0016 [pc,latent,explained] = pcacov(cov);
0017 q = 0;
0018 Additional = 2;
0019 EnergySum = 0;
0020 for i = 1 : VarDim
0021 EnergySum = EnergySum + explained(i);
0022 if ( EnergySum / 100 >= EnergyRatio )
0023 q = i;
0024 break;
0025 end;
0026 end;
0027 V = zeros( VarDim, q);
0028 for i = 1 : VarDim
0029 V(i,:) = abs(pc(i,[1:q]));
0030 end;
0031 K = q + Additional;
0032 iSelect = 0;
0033 Idxs = zeros(1, VarDim);
0034 [IDX,C] = kmeans(V, K, ’replicates’, 400, ’maxiter’, 6000);
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0035 iSelect = 1;
0036 Idxs(1,:) = IDX’;
0037 [clusters, mcIdx] = FeaturePFA2( C, V );
0038 return;

0001 %##########################################################################
0002 %The following function is used to cluster mocap features and group #
0003 %correlated features together. #
0004 %##########################################################################
0005 function [clusters, mcIdx] = pfaFeatureClustering(C, V)
0006
0007 K = size(C, 1);
0008 VarDim = size(V, 1);
0009 nPrn IDX = zeros(1, K);
0010 for i=1:K
0011 cls(i).list = [];
0012 cls(i).distances = [];
0013 end
0014 for j = 1:VarDim
0015 minDis = 1e+10;
0016 for i = 1:K
0017 dis = norm(V(j,:) - C(i,:));
0018 if dis < minDis
0019 minDis = dis;
0020 minIdx = i;
0021 end;
0022 end
0023 mcIdx(j) = minIdx;
0024 cls(minIdx).list = [cls(minIdx).list, j];
0025 cls(minIdx).distances = [cls(minIdx).distances, minDis];
0026 end;
0027 for i=1:K
0028 [sortDis, idx] = sort(cls(i).distances);
0029 clusters(i).sortedIdx = cls(i).list(idx);
0030 clusters(i).distances = sortDis;
0031 end
0032 return;

0001 %##########################################################################
0002 %The following function takes clusters of correlated marker features as #
0003 %input and selects a set of principal markers by their importances. #
0004 %##########################################################################
0005 function pfIdxList = selectPrincipalMarkers(clusters, mcIdx, C, V, numOfMarkers)
0006
0007 feature = mcIdx;
0008 numOfDims = 3;
0009 for i=1:numOfMarkers
0010 tmp = [];
0011 v = [];
0012 for j=1:numOfDims
0013 tmp = [tmp, feature((i-1)*numOfDims+j)];
0014 v = [v, norm(V((i-1)*numOfDims+j,:) - C(feature((i-1)*numOfDims+j),:))];
0015 end
0016 stmp = sort(tmp);
0017 index = 1;
0018 for j=2:numOfDims
0019 if (stmp(j) == stmp(j-1))
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0020 continue;
0021 else
0022 index = index + 1;
0023 end;
0024 end
0025 mWeight(i) = index;
0026 MD(i) = markerDis(stmp, v, V, C);
0027 end
0028 numOfClusters = size(clusters, 2);
0029 for i=1:numOfClusters
0030 numOfMs = size(clusters(i).sortedIdx, 2);
0031 currentM = -1;
0032 clusters(i).features = 0;
0033 for j=1:numOfMs
0034 marker = clusters(i).sortedIdx / 3;
0035 if (currentM ~= marker)
0036 clusters(i).features = clusters(i).features + 1;
0037 currrentM = marker;
0038 end;
0039 end
0040 end
0041 markers = [mWeight’, MD’];
0042 [sortedMs, sortedMidx] = sortrows(markers);
0043 prnMarkers = [];
0044 for i=1:40
0045 markerIdx = sortedMidx(i);
0046 flag = 0;
0047 for j=1:numOfDims
0048 clusterIdx = feature((markerIdx-1)*3 + j);
0049 restFeatures = clusters(clusterIdx).features - 1;
0050 if (restFeatures <= 0)
0051 flag = 1;
0052 break;
0053 end;
0054 end
0055 if (flag == 0)
0056 for j=1:numOfDims
0057 clusterIdx = feature((markerIdx-1)*3 + j);
0058 clusters(clusterIdx).features = clusters(clusterIdx).features - 1;
0059 end
0060 else
0061 prnMarkers = [prnMarkers, markerIdx];
0062 end;
0063 end
0064 pfIdxList = [];
0065 for i=1:size(prnMarkers, 2)
0066 for j=1:numOfDims
0067 pfIdxList = [pfIdxList, (prnMarkers(i)-1)*3 + j];
0068 end
0069 end
0070 return;
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A.3 Motion Compression

0001 %##########################################################################
0002 %The following function is used to compress a motion segment. It first #
0003 %compress frames by their projections onto the linear space spanned by the#
0004 %leading principal components. It then adaptively select key frames and #
0005 %only stores these key frames’ PCA projections. #
0006 %##########################################################################
0007 function CM = compressSub(M, e, ers)
0008
0009 [numOfFs,dim] = size(M);
0010 covx = cov(M);
0011 Mean = mean(M,1);
0012 [acs, latent, explained] = pcacov(covx);
0013 se = 0;
0014 total = sum(latent);
0015 for i=1:dim
0016 se = se + latent(i);
0017 if (sqrt((total-se)/40) <= e)
0018 pdim = i;
0019 break;
0020 end;
0021 end
0022 pcs = acs(:,1:pdim);
0023 projs = (M - repmat(Mean,numOfFs, 1)) * pcs;
0024 knot(1) = 1;
0025 kvalues(1:pdim,1) = projs(1,:);
0026 tmp = round(numOfFs/3);
0027 knot(2) = tmp;
0028 kvalues(1:pdim,2) = projs(tmp,:);
0029 tmp = round(numOfFs/1.5);
0030 knot(3) = tmp;
0031 kvalues(1:pdim,3) = projs(tmp,:);
0032 knot(4) = numOfFs;
0033 kvalues(1:pdim,4) = projs(numOfFs,:);
0034 numOfKnots = 4;
0035 newKnot = [];
0036 knotFlag = 1;
0037 while (knotFlag > 0)
0038 newKnot = [];
0039 pp = spline(knot, kvalues);
0040 v = ppval(pp,[1:numOfFs])’;
0041 index = 0;
0042 knotFlag = -1;
0043 for i=1:numOfKnots-1
0044 index = index + 1;
0045 newKnot(index) = knot(i);
0046 for j=knot(i):knot(i+1);
0047 dis = norm((projs(j,:) - v(j,:))/40);
0048 if (dis > ers)
0049 index = index + 1;
0050 pos = round((knot(i)+knot(i+1))/2);
0051 newKnot(index) = pos;
0052 knotFlag = 1;
0053 break;
0054 end;
0055 end
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0056 end
0057 index = index + 1;
0058 newKnot(index) = numOfFs;
0059 knot = newKnot;
0060 numOfKnots = size(knot,2);
0061 kvalues = projs(knot,1:pdim)’;
0062 end
0063 CM.knot = knot;
0064 CM.kvalues = kvalues;
0065 CM.Mean = Mean;
0066 CM.pcs = pcs;
0067 return;

A.4 Motion Retrieval

0001 %##########################################################################
0002 %The following function is used to query the motion database for similar #
0003 %motions. #
0004 %##########################################################################
0005 function query(infoname, qFolder, qfile, weigh)
0006
0007 load NormIdx;
0008 load(infoname);
0009 fname = [fvecFolder, ’/fmean’];
0010 tmp = load(fname);
0011 fmean = tmp.fmean;
0012 fname = [fvecFolder, ’/rdim’];
0013 tmp = load(fname);
0014 rdim = tmp.rdim;
0015 fname = [fvecFolder, ’/evec’];
0016 tmp = load(fname);
0017 evec = tmp.evec;
0018 fname = [mbFolder, ’/mod*’];
0019 allModels = dir(fname);
0020 fname = [qFolder, ’/’, qfile];
0021 tmp = load(fname);
0022 M = tmp.M N(:, NormIdx);
0023 [sizem, numOfDims] = size(M);
0024 current = 1;
0025 offset = 0;
0026 indx = 0;
0027 segIdx = [];
0028 fvec = [];
0029 choice = 1;
0030 tpcs = [];
0031 while 1
0032 sIdx = ppcaSegSub(M(current:end,:), per, block, delta, 150);
0033 st = offset + 1;
0034 ed = offset + sIdx;
0035 cv = cov(M(st:ed,:));
0036 Mean = mean(M(st:ed,:), 1);
0037 index = 0;
0038 indx = indx + 1;
0039 svec = [];
0040 for j=1:numOfDims
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0041 for k=j:numOfDims
0042 index = index + 1;
0043 svec(index) = cv(j,k);
0044 end
0045 end
0046 feavec = [svec / sum(svec), Mean * weigh];
0047 segIdx(indx,:) = [offset+1, offset+sIdx];
0048 fvec(indx, :) = (feavec - fmean) * evec(:,1:rdim);
0049 offset = offset+sIdx;
0050 if (offset < sizem)
0051 current = offset+1;
0052 continue;
0053 else
0054 break;
0055 end;
0056 end
0057 numOfModels = size(allModels, 1);
0058 while (1)
0059 mflags = -1 * ones(1, numOfModels);
0060 mnums = -1 * ones(1, numOfModels);
0061 for i=1:numOfModels
0062 allMatches(i).matches = [];
0063 fs(i).fids = [];
0064 end
0065 mFolder = [mbFolder, ’/’, allModels(midx).name];
0066 fname = [mFolder, ’/clusterTree’];
0067 tmp = load(fname);
0068 root = tmp.root;
0069 numOfFs = size(fvec, 1);
0070 fids = [];
0071 for i=1:numOfFs
0072 [fids(i)] = fclassSubK(root, fvec(i,:));
0073 end
0074 fs(midx).fids = fids;
0075 match = matching(fids, segIdx, dFolder, mFolder, segFolder, range, ...
0076 tol, fvec, fvecFolder, M, ntol);
0077 numOfRs = size(match, 2);
0078 allMatches(midx).matches = match;
0079 end
0080 return;

0001 %##########################################################################
0002 %The following function is called by the query function to search in the #
0003 %motion database index space for the closest matches to the querried #
0004 %motion segment #
0005 %##########################################################################
0006 function matches = matching(tcidx, tcb, dFolder, mFolder, segFolder, ...
0007 range, tol, tvec, fvecFolder, x, ntol, dtw)
0008
0009 global fvec;
0010 load NormIdx;
0011 fname = [mFolder, ’/clusterTree’];
0012 tmp = load(fname);
0013 root = tmp.root;
0014 fname = [dFolder, ’/M*N*.mat’];
0015 allFiles = dir(fname);
0016 fname = [mFolder, ’/fs’];
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0017 tmp = load(fname);
0018 fs = tmp.fs;
0019 numOfSeqs = size(fs, 2);
0020 fname = [segFolder, ’/segs’];
0021 tmp = load(fname);
0022 segs = tmp.segs;
0023 fname = [fvecFolder, ’/fvec’];
0024 tmp = load(fname);
0025 fvec = tmp.fvec;
0026 clear tmp;
0027 numOfTS = size(tcidx, 2);
0028 tflags = -1 * ones(1, numOfTS);
0029 numOfTF = tcb(numOfTS, 2) - tcb(1,1) + 1;
0030
0031 cPercent = [];
0032 for i=1:numOfTS
0033 cPercent(i) = (tcb(i,2) - tcb(i,1) + 1) / numOfTF;
0034 end
0035 [fhits, hsIdx] = fclaMN(mFolder, segFolder, numOfSeqs, cPercent, ...
0036 tvec, tol, range);
0037 numOfH = size(hsIdx, 2);
0038 oid = 0;
0039 match = [];
0040 scores = [];
0041 for i=hsIdx
0042 hits = [];
0043 candIdx = fs(i).cidx;
0044 ccb = segs(i).segIdx;
0045 numOfS = size(candIdx, 2);
0046 fvecSegs = segs(i).segs;
0047 candPer = [];
0048 for j=1:numOfS
0049 candPer(j) = ccb(j,2) - ccb(j,1) + 1;
0050 end
0051 total = sum(candPer);
0052 candPer = candPer / total;
0053 for j=1:numOfS
0054 hits(j).hit = [];
0055 for k=1:numOfTS
0056 if (ismember(k, fhits(fvecSegs(j)).hits))
0057 hits(j).hit = [hits(j).hit, k];
0058 end;
0059 end
0060 end
0061 index = 0;
0062 for st=1:numOfS
0063 if (size(hits(st).hit, 2) < 0)
0064 continue;
0065 end;
0066 for ed=numOfS:-1:st
0067 if (size(hits(ed),2) < 0)
0068 continue;
0069 end;
0070 sumc = 0;
0071 sumu = 0;
0072 hit = 0;
0073 tflags = -1 * ones(1, numOfTS);
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0074 for j=st:ed
0075 sizeh = size(hits(j).hit, 2);
0076 if (sizeh > 0) t
0077 sumc = sumc + ccb(j,2)-ccb(j,1)+1;
0078 for k=1:sizeh
0079 thit = hits(j).hit(k);
0080 if (tflags(thit) < 0)
0081 sumu = sumu + cPercent(thit);
0082 tflags(thit) = 1;
0083 end;
0084 end
0085 end;
0086 end
0087 totals = ccb(ed,2)-ccb(st,1)+1;
0088 portion = sumc / totals;
0089 if (sumu >= range)
0090 if (portion >= range && sumc <= numOfTF / dtw && sumc ...
0091 >= numOfTF * dtw)
0092 perq = sumu;
0093 perc = portion;
0094 index = index + 1;
0095 oid = oid + 1;
0096 match(oid).seqId = i;
0097 match(oid).seqname = allFiles(i).name(1:end-4);
0098 match(oid).seg = candIdx(st:ed);
0099 match(oid).pos = [st:ed];
0100 match(oid).mscore = perq * perc;
0101 match(oid).qscore = perq;
0102 match(oid).cscore = perc;
0103 match(oid).cidx = fs(i).cidx;
0104 scores(oid) = perq;
0105 hit = 1;
0106 fname = [dFolder, ’/’, allFiles(i).name];
0107 tmp = load(fname);
0108 y = tmp.M N(ccb(st,1):ccb(ed,2), NormIdx);
0109 match(oid).avg = norm(mean(x,1)-mean(y,1));
0110 fc = fvec(fvecSegs(st:ed),:);
0111 match(oid).avg2 = cs3(tvec, fc);
0112 scores(oid) = match(oid).avg2;
0113 end;
0114 else
0115 hit = -1;
0116 break;
0117 end;
0118 end
0119 end
0120 end
0121 [scs, sids] = sort(scores, ’descend’);
0122 matches = match(sids);
0123 return;

117



Bibliography

Alexa, M. and Müller, W. (2000). Representing animations by principal components. Comput.
Graph. Forum, 19(3).

Arikan, O. (2006). Compression of motion capture databases. ACM Trans. Graph., 25(3):890–
897.

Arikan, O. and Forsyth, D. A. (2002). Interactive motion generation from examples. In
SIGGRAPH ’02: Proceedings of the 29th annual conference on Computer graphics and
interactive techniques, pages 483–490, New York, NY, USA. ACM Press.

Badler, N. I., Hollick, M. J., and Granieri, J. P. (1993). Real-time control of a virtual human
using minimal sensors. Presence, 2(1):82–86.
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