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ABSTRACT

Bevin Laurel Maultsby: The Geometry of Radial States in Nonlinear
Elliptic Problems

(Under the direction of Christopher K.R.T. Jones)

In this dissertation we present a geometric approach to the study of nonlinear elliptic

problems. In particular, we analyze radial solutions using techniques from dynamical systems.

These techniques include a thorough study of the invariant manifolds that arise from the

union of the solutions to the elliptic PDE in phase space, as well as computations involving

two vector fields which are tangent to the invariant manifolds.

In Chapter 3, we consider radially symmetric positive solutions to ∆pu + f(u) = 0 on

a ball centered at the origin in Rn. The union of all radially symmetric solutions to this

quasilinear elliptic equation forms an invariant manifold. We use two integral expressions

that arise from vector fields on the manifold to show that for a certain class of f , there can

be at most one such solution satisfying ∆pu+ f(u) = 0 on a ball with Dirichlet boundary

conditions.

In Chapter 4, we make a powerful connection between the Morse index of the operator

Lug = ∆g + f ′(u)g linearized at a solution u of ∆u+ f(u) = 0 and a component of a tangent

vector along the solution trajectory of u in phase space. We use this connection to give

geometric proofs of the Morse indices of radial sign-changing solutions to ∆u+ f(u) = 0 on a

ball in Rn with Dirichlet boundary conditions.
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CHAPTER 1: INTRODUCTION

1.1 Overview

The goal of this dissertation is to study nonlinear elliptic PDEs by using techniques

from geometric dynamical systems. Of particular interest is the p-Laplacian operator ∆p,

which may be singular or nondegenerate and which arises as an Euler-Lagrange equation to a

Dirichlet integral.

In the 1980’s, a great deal was discovered about positive solutions to semilinear elliptic

equations of the form ∆u + f(u) = 0 on a selected domain with appropriate boundary

conditions; we will focus on a ball of radius |x| = R centered at the origin with Dirichlet

boundary conditions. Kwong [22] proved that positive radial solutions of such an elliptic

PDE on this domain were unique provided f(u) was of a certain “superlinear” form; his

results were extended by McLeod [25] to different f(u). In Clemons’ 1990 dissertation under

Jones, he constructed a geometric argument for uniqueness of positive solutions satisfying

∆u + f(u) = 0 on this domain by studying the invariant manifold created by the relevant

radial solutions; see [7].

Our starting goal was to show uniqueness of sign-changing solutions to ∆u+ f(u) = 0

on a ball with Dirichlet boundary conditions. The question was: if u has k zeros on BR(0),

is it necessarily unique (perhaps with a small radius R)? In pursuit of this question, we

supplemented the vector field that was used by Clemons and Jones [7] to show uniqueness

in the case k = 1 in with another vector field whose geometry can be tracked as u changes

signs and |x| → R. Although the original question remains open, we were able to provide

results on the Morse index of a sign-changing solution to ∆u+ f(u) = 0. This material is the

subject of Chapter 4.

If the Laplacian is the quintessential linear second-order elliptic operator, then the p-
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Laplacian is its quasilinear counterpart. The p-Laplace equation ∆pu+f(u) = 0 is challenging

as the p-Laplacian is non-uniformly elliptic if p 6= 2 and singular if p ∈ (1, 2). Using two

vector fields along solutions to ∆pu+ f(u) = 0 in the ball BR(0), we prove that a positive

radial solution satisfying a Dirichlet boundary condition must be unique. Most of Chapter 3

is dedicated to this proof.

In the rest of this introductory chapter, we provide the necessary background information

to understand key concepts from dynamical systems and elliptic partial differential equations

that will be used in subsequent chapters. The introduction concludes with a summary of

Chapters 2-4.

1.2 Dynamical systems

Let us begin with a basic definition of a dynamical system, the flow it generates, and

interesting structures that may arise; much of this material follows [33].

1.2.1 Basic definitions

Definition 1.2.1. A dynamical system is a smooth manifold (called the phase space) U

endowed with a family of smooth functions Φ(x, t) : Ω ⊂ U × I → U , where I ⊂ R. Setting

Φt(x) = Φ(x, t), the Φt satisfy

• Φ0(x) = x, for all x ∈ U , and

• Φt ◦ Φs(x) = Φt+s(x), if both sides are defined.

The group of functions Φt(x) is called a flow on U , and it evolves each point in U by time

t ∈ I. Generally speaking, a dynamical system is a space U together with a rule for how

points in that space evolve. This rule generates a vector field F : U ⊂ Rn → Rn in phase

space; for an autonomous dynamical system, the vector field is often written

ẋ = F (x), (1.1)

for all x ∈ U . The vector field, in turn, generates a flow if F is locally Lipschitz. A point
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p ∈ U is a critical point (or fixed point) of (1.1) if F (p) = 0. Consequently Φ(p, t) = p for

any t ∈ I.

1.2.2 Invariant manifolds

Invariant manifolds are special types of invariant sets for (1.1). While they may arise in

relation to, say, a periodic orbit, we will focus below on invariant manifolds of a fixed point

p ∈ U . As the name suggests, an invariant manifold is “invariant” under the flow Φ, where

we define invariant sets using the following definition.

Definition 1.2.2. A set B ⊂ U is positively invariant if B · t ⊂ B for all t ≥ 0, where

B · t = {Φt(x) | x ∈ B}.

B is negatively invariant if B · t ⊂ B for all t ≤ 0. We say B is invariant if it is both

positively and negatively invariant.

Basic examples of invariant sets in phase space include critical points, periodic orbits, and

regions trapped by homoclinic orbits.

To construct an invariant manifold, we begin by linearizing the system (1.1) at a critical

point. In particular, suppose U ⊂ Rn is open, and consider a C1 vector field F (x) for all

x ∈ U . Let p ∈ U be a critical point; the linearization of (1.1) at p is

ẏ = DF (p)y (1.2)

where y ∈ Rn and DF (p) is an n× n matrix. To study the eigenvalues of DF (p), let σ(∗)

denote the spectrum of ∗. The set of eigenvalues of DF (p) decomposes into subsets via

σ(DF (p)) = σ− ∪ σ0 ∪ σ+

where σ− corresponds to all eigenvalues of DF (p) satisfying Reλ < 0, σ0 to eigenvalues with
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Reλ = 0 and σ+ to eigenvalues with Reλ > 0. Furthermore, the matrix DF (p) can be

diagonalized to the block form

DF (p) =


A− 0 0

0 A0 0

0 0 A+


with σ (A−) = σ−, etc. Spanned by each set of eigenvalues σ−, σ0, and σ+ of DF (p) are

invariant subspaces E−, E0, and E+ such that

Rn = E− ⊕ E0 ⊕ E+

and

σ (DF (p)|E−) = σ−, etc.

Each subspace E−, E0, and E+ is an invariant set for (1.2), which is a linear dynamical

system.

With each of the subspaces E−, E0, E+ established, we define the invariant manifolds.

These manifolds give a “nonlinear” version of the invariant subspaces. There are three classes

of invariant manifolds: stable manifolds, unstable manifolds, and center manifolds, which

are analogous to E−, E+, and E0, respectively. Let N be an open neighborhood of the fixed

point p; the stable manifold is (locally) characterized as follows:

Definition 1.2.3. The local stable manifold is

W s
loc(p) = {x ∈ N | x · t ∈ N for all t ≥ 0,x · t→ p exponentially as t→∞}. (1.3)

In other words, the stable manifold in a neighborhood of p consists of all the points which
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tend exponentially towards p as t→∞. Analogously, the local unstable manifold is the set

W u
loc(p) = {x ∈ N | x · t ∈ N for all t ≤ 0,x · t→ p exponentially as t→ −∞} (1.4)

so that the local unstable manifold consists of all points which evolve to p as time is reversed.

Notice both local manifolds are nonempty, as they both contain p.

Theorem 1.2.4 (Stable and Unstable Manifold Theorem). Assume F ∈ C1 and p is

a fixed point. Then there is a neighborhood N of p and a Lipschitz function

hs : (p + E−) ∩N → E0 ⊕ E+

so that the graph of hs is W s
loc. There exists also a neighborhood M of p and a Lipschitz

function

hu : (p + E+) ∩M → E− ⊕ E0

so that the graph of hu is W u
loc.

This theorem justifies calling the local stable and unstable manifolds defined in (1.3)-

(1.4)“manifolds,” as they are the graphs of Lipschitz functions.

Both local manifolds extend into global invariant manifolds. With U ⊂ Rn as before and

for any choice of neighborhood N , the global versions are constructed by evolving W s
loc(p)

and W u
loc(p) backwards and forwards in time, respectively.

Definition 1.2.5. The (global) stable manifold is

W s(p) = {Φt(x) | x ∈ W s
loc(p), t ≤ 0}. (1.5)

Similarly, the (global) unstable manifold is defined as

W u(p) = {Φt(x) | x ∈ W u
loc(p), t ≥ 0}. (1.6)
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As discussed in [33], the stable and unstable manifolds are unique, and their tangent spaces

at p are E− and E+, respectively.

A fixed point p is hyperbolic if the real part of each eigenvalue λ ∈ σ(DF (p)) is nonzero. If

p is not hyperbolic, then the center subspace E0 is nontrivial. Associated with E0 is the idea

of a center manifold whose tangent space at p is E0. For a neighborhood N 3 p, trajectories

that stay in N for all t ≥ 0 tend to the center manifold as t → ∞, while trajectories that

stay in N for all t ≤ 0 tend to the center manifold as t→ −∞.

We note that global stable and unstable manifolds are always unique, but center manifolds

are not necessarily so. In general, center manifolds are more difficult to define precisely than

stable and unstable manifolds, and the reader should consult [33].

1.2.3 A review of the variational equation in differential form notation

To increase readability, we switch the notation in this section from ẋ to x′. Consider an

autonomous dynamical system

x′ = F (x), x ∈ U ⊂ Rn

as before. If x(t) is a solution to x′ = F (x), and δ0 is a vector tangent to x(t) at t = t0, then

δ0 satisfies the variational equation

δ′ = DF (x)δ. (1.7)

This equation generates a tangent vector field δ(t) with δ(t0) = δ0 and describes how these

tangent vectors move under the flow. As DF (x) is an n× n matrix and δ is an n× 1 vector,

the ith coordinate of δ′ is

δi
′ = (dxi(δ))

′ =
n∑
j=1

∂jFi(x)dxj(δ).

6



We suppress the tangent vector δ and write

dxi
′ =

n∑
j=1

∂jFi(x)dxj.

However, it should be understood that dxi
′ applies to a tangent vector. This calculation

establishes what it means to take the derivative of a 1-form.

Consider now a 2-form dzi ∧ dzj applied to a pair of vectors (δ1, δ2). We claim that

(dzi ∧ dzj)′, where the idea of a “derivative of a form” is the same as above, follows the

product rule. To show this, we perform the following steps:

(dzi ∧ dzj)′ = [dzi ∧ dzj(δ1, δ2)]′

=
d

dt
[dzi(δ1)dzj(δ2)− dzi(δ2)dzj(δ1)]

= dzi(δ1)′dzj(δ2) + dzi(δ1)dzj(δ2)′ − dzi(δ2)′dzj(δ1)− dzi(δ2)dzj(δ1)′

= dzi(δ1)′dzj(δ2)− dzi(δ2)′dzj(δ1) + dzi(δ1)dzj(δ2)′ − dzi(δ2)dzj(δ1)′

= dz′i ∧ dzj + dzi ∧ dz′j. (1.8)

In other words, if we construct a function of t given by

ω(t) = du ∧ dv(δ1(t), δ2(t)),

then using the product rule above yields

ω′(t) =
d

dt
[du ∧ dv(δ1(t), δ2(t))]

= · · ·

= (du ∧ dv)′(δ1(t), δ2(t)),

where · · · repeats the steps to attain (1.8). This construction is relevant to this dissertation,

as we will repeatedly make use of 2-forms and their derivatives.
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Suppose that for a given dynamical system in R3 described by x′ = F (x), where x =

(y, w, r)T , we have two linearly independent vector fields (y′, w′, r′)T and (δy, δw, δr)T that

are tangent to an invariant manifold. (The notation is relevant to Chapters 3-4, and rather

than define these vector fields here we will simply assume that they are linearly independent

as described.) As they are tangent vector fields, both satisfy (1.7). Their cross-product,

(δy∗, δw∗, δr∗)T := (ẏ, ẇ, ṙ)T × (δy, δw, δr)T ,

is a vector field normal to the invariant manifold, and it satisfies the following lemma.

Lemma 1.2.6. For a dynamical system x′ = F (x), let A = DF (x) and let (δy∗, δw∗, δr∗)T

be defined as above. Then this normal vector satisfies


δy∗

δw∗

δr∗


′

= (−A∗ + (TrA)I)


δy∗

δw∗

δr∗

 ,

where A∗ is the transpose of A.

The proof is a straightforward matrix calculation. Lemma 1.2.6 will be consistently

employed to easily compute time derivatives of 2-forms in Chapters 3 and 4.

1.3 Elliptic equations

We first recall some of the elementary definitions and results for elliptic partial differential

equations and Sobolev spaces; see [14] and [32]. Through this section Ω ⊂ Rn is a bounded

domain (an open connected set) with smooth boundary ∂Ω, and u : Ω→ R is in C2(Ω)∩C(Ω).

We remark that for Chapters 2-4, Ω will be the open ball

BR(0) = {x ∈ Rn | |x| < R}, n ≥ 2.

Definition 1.3.1 (Second Order Elliptic Equation). An second-order partial differential
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operator L given by

Lu :=
n∑

i,j=1

aij(x)uxixj +
n∑
i=1

bi(x)uxi + c(x)u (1.9)

is elliptic if there is some constant θ > 0 such that

n∑
i,j=1

aij(x)ξiξj ≥ θ|ξ|2, (1.10)

for a.e. x ∈ Ω and all ξ ∈ Rn.

In Chapter 2-4, we will consider quasilinear elliptic equations with the following second

order operator.

Definition 1.3.2. The p-Laplacian ∆p is defined by

∆pu = div
(
|∇u|p−2∇u

)
, (1.11)

where u : Ω ⊂ Rn → R.

When p = 2, ∆p is the regular uniformly-elliptic Laplacian. When 1 < p < 2, (1.11) is a

singular operator, as it is undefined whenever ∇u = 0. Whenever p > 2, ∆p is a degenerate

elliptic operator; in other words, ∆p satisfies (1.10) with the weaker condition obtained by

setting θ = 0.

Note setting (1.11) equal to zero is the Euler-Lagrange equation for the Dirichlet integral

J(u) =

∫
Ω

|∇u|p dx.

The behavior of (1.11) depends on the particular value of p. Typically p ∈ (1,∞); we remark

that setting p = 1 in (1.11) results in −H, where H is the mean curvature operator of

differential geometry. There is a particular threshold that arises when p = n, in which

case
∫

Ω
|∇u|n dx is conformally invariant. Lastly, setting p =∞ arises in optimal Lipschitz

9



extensions. For an in-depth treatise of the p-Laplacian and p-harmonic functions, we advise

the reader to consult [24].

The general form of the nonlinear elliptic problems studied in Chapters 2-4 is


∆pu+ f(u) = 0 on BR(0)

u = 0 on ∂BR(0),

(1.12)

where p ∈ (1, 2] and f(u) is a nonlinear function.

1.3.1 Sobolev Spaces

The solutions to the elliptic equations such as (1.12) live naturally in Sobolev spaces. Let

Ω ⊂ Rn be a domain. The Sobolev space W 1,p
0 (Ω) is the completion of C∞0 (Ω) with respect

to the norm

||u||p
W 1,p

0 (Ω)
=

∫
Ω

(|∇u|p + |u|p) dx. (1.13)

Thus, W 1,p
0 (Ω) is a Banach space. In the case p = 2, W 1,2

0 (Ω) is a Hilbert space with inner

product

〈u, v〉W 1,2
0 (Ω) =

∫
Ω

(∇u · ∇v + uv) dx.

Consider the energy functional

Jp(u) =
1

p

∫
Ω

|∇u|p dx−
∫

Ω

F (u(x)) dx, (1.14)

where F (t) =
∫ t

0
f(s) ds for a function f ∈ C1([0,∞)). Critical points minimizing the

functional must satisfy

∫
Ω

(
|∇u|p−2∇u · ∇φ− f(u)φ

)
dx = 0,

for every φ ∈ C∞0 (Ω) ([24], [28]). Thus such critical points are weak solutions in W 1,p
0 (Ω) to
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the equation

∆pu+ f(u) = 0,

with Dirichlet boundary conditions.

Definition 1.3.3. For the Sobolev space W 1,p(Ω), Ω ⊂ Rn, the Sobolev critical exponent is

defined by

1

p∗
:=

1

p
− 1

n
. (1.15)

Hence p∗ = np/(n− p). The importance of (1.15) is that as we investigate equations of

the form ∆pu+ f(u) = 0, we choose nonlinearities f(u) with the “correct” growth |u|q−2u.

In particular, we will choose the exponent term q so that q satisfies case (2) in the following

theorem.

Theorem 1.3.4 (Sobolev, Rellich, Kondrachov). If 1 < p < n, then

1. W 1,p(Ω) ↪→ Lp
∗
(Ω) is a continuous embedding, and

2. if q < p∗ + 1, W 1,p(Ω) ↪→ Lq−1(Ω) is a compact embedding.

Notice that the hypothesis 1 < p < n is easily satisfied if p ∈ (1, 2) and n ≥ 2.

1.4 Sturm-Liouville Theory

A Sturm-Liouville (SL) equation is a type of ordinary differential equation in a finite

domain with a well-understood set of eigenvalues and eigenfunctions. In particular, its

eigenvalues are always real and discrete. Typically SL equations are described as having a

smallest eigenvalue, from which the eigenvalues increase without bound. We shall cast SL

equations slightly differently so that the eigenvalues have a largest member and decrease

without limit; this change is convenient in the language of dynamical systems as positive

eigenvalues are unstable.

Moreover, the eigenfunctions are orthogonal to each other and as the eigenvalue decreases,

the corresponding eigenfunctions oscillate (have zeros) more rapidly. The beauty of SL

11



results is that once we have identified a particular ODE as an SL system, then the results on

eigenvalues and eigenfunctions described in this section are immediately applicable to the

system.

We will state most of the major theorems on SL equations to provide the necessary

background for Chapter 4; this presentation of SL equations follows [5]. Most sources,

including [5], use Green’s formula to prove the theorems in this section; we use a slight

variation on the usual techniques.

An SL differential equation is of the form

(f1(x)u′(x))
′
+ f2(x)u(x) = λf3(x)u(x), (1.16)

where each fi(x) is real and continuous, f ′1(x) is continuous, and f1(x) and f3(x) are positive

on the open interval (a, b). This type of equation can be viewed as an eigenvalue problem for

the linear operator L defined by

L : u(x) 7→ (f1(x)u′(x))
′
+ f2(x)u(x). (1.17)

The boundary conditions for the types of regular SL systems we consider are either Dirichlet,

Neumann, or Robin conditions at a and b. These conditions can be written

(1) α1u(a) + α2u
′(a) = 0, and

(2) β1u(b) + β2u
′(b) = 0,

(1.18)

where αi, βi ∈ R, with α2
1 + α2

2 > 0, β2
1 + β2

2 > 0. A eigenfunction solution uλ(x) to (1.16)

corresponding to eigenvalue λ is regular if uλ(x) ∈ C1([a, b]).

Let us establish a series of basic results about SL equations which we will use in Chapter 4.

Theorem 1.4.1. The eigenspace for each eigenvalue of a regular SL system is 1-dimensional.

12



Proof. Suppose λ is an eigenvalue with eigenfunctions u1 6= u2. To examine u1 and u2, let us

compute the Wronskian of u1 and u2 at the left endpoint x = a:

W (u1, u2)(a) =

∣∣∣∣∣∣∣
u1 u2

u′1 u′2

∣∣∣∣∣∣∣
x=a

= u1(a)u′2(a)− u′1(a)u2(a) = 0, (1.19)

by (1.21). Thus the two columns are proportional, and we may say u2(a) = Cu1(a). By

Abel’s identity for second-order ordinary differential equations, for any c ∈ [a, b],

W (u1, u2)(c) =

∣∣∣∣∣∣∣
u1 u2

u′1 u′2

∣∣∣∣∣∣∣
x=c

= W (u1, u2)(a)e−
∫ c
a f
′
1(s)/f1(s) ds = 0.

As f1(x) > 0 for a ≤ x ≤ b, the above expression is defined. Hence the columns are

proportional for any x ∈ [a, b], and so u2(x) = Cu1(x). Thus the eigenspace for λ is

1-dimensional.

The function f3(x) gives rise to the following inner product:

〈
uλi(x), uλj(x)

〉
=

∫ b

a

f3(x)uλi(x)uλj(x) dx. (1.20)

Theorem 1.4.2. If i 6= j, then uλi(x) and uλj(x) are orthogonal with respect to (1.20).

Proof. First, we claim that at either endpoint x = a or x = b,

u′λiuλj |a = uλiu
′
λj
|a, u′λiuλj |b = uλiu

′
λj
|b. (1.21)

The equalities in (1.21) stem from the mixed linear boundary conditions; if αi, βi 6= 0, then

u′λi(b)uλj(b) = −β1

β2

uλi(b)

(
−β2

β1

u′λj(b)

)
= uλi(b)u

′
λj

(b),

and similarly at x = a. If either βi = 0 (or αi = 0 at x = a), then u′λi(b)uλj(b) = 0 =

13



uλi(b)u
′
λj

(b).

Assume without loss of generality that λi 6= 0 (in which case it may be possible for λj to

be zero). Using the above statement and integration by parts, we obtain

〈
uλi , uλj

〉
=

∫ b

a

f3(x)uλiuλj dx

=
1

λi

∫ b

a

λif3(x)uλiuλj dx

=
1

λi

[∫ b

a

uλj
(
f1(x)u′λi

)′
dx+

∫ b

a

f2(x)uλiuλj dx

]
=

1

λi

[
uλjf1(x)u′λi |

b
a −

∫ b

a

u′λjf1(x)u′λi dx+

∫ b

a

f2(x)uλiuλj dx

]
.

By (1.21), we can write this as

=
1

λi

[
uλif1(x)u′λj |

b
a −

∫ b

a

u′λif1(x)u′λj dx+

∫ b

a

f2(x)uλiuλj dx

]
=

1

λi

[∫ b

a

uλi

(
f1(x)u′λj

)′
dx+

∫ b

a

f2(x)uλiuλj dx

]
=

1

λi

∫ b

a

f3(x)uλiLuλj dx

=
λj
λi

∫ b

a

f3(x)uλiuλj dx

=
λj
λi

〈
uλi , uλj

〉
.

If λi 6= λj , then for the above conclusion to hold, it must be the case that
〈
uλi , uλj

〉
= 0.

Theorem 1.4.3. The eigenvalues of a regular SL system are real.

Proof. Let u be a nondegenerate eigenfunction which solves (1.16) with eigenvalue λ. Then

u solves (1.16) with eigenvalue λ. As 0 ∈ R, assume λ 6= 0.

From the proof of Theorem 1.4.2, we know

|u|2 = 〈u, u〉 = (λ/λ) 〈u, u〉 = (λ/λ)|u|2.

14
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1

Figure 1.1: An illustration of the general oscillatory behavior of the first three eigenfunctions
to a SL problem, with boundary conditions u(0) = 1 and u(1) = 0. In this picture, the solid
line represents the eigenfunction uλ0 , the dashed line uλ1 and the dotted line uλ2 .

Yet in order for this to be true, we must have λ = λ. So λ ∈ R.

By Theorem 1.4.1, eigenfunctions of an SL system are unique up to scalar multiplication.

Therefore, together with Theorem 1.4.2, we can normalize the eigenfunctions to form an

orthonormal set.

Theorem 1.4.4 (Sturm Comparison Theorem). Let λi and λj be two eigenvalues with

eigenfunctions uλi and uλj satisfying (1.16). If λi > λj, then between consecutive zeros of

uλi, there lies at least one zero of uλj .

We omit the proof of Theorem 1.4.4, as it is very similar to the proof of Lemma 4.3.1 in

Chapter 4. We will also omit the proof of the following theorem, as it is a standard result:

Theorem 1.4.5. The SL problem (1.16) with regular boundary conditions (1.18) has an

infinite set of real eigenvalues

λ0 > λ1 > λ2 > · · · with lim
n→∞

λn = −∞,
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and therefore an infinite number of eigenfunctions uλn(x). Moreover, each eigenfunction

uλn(x) is unique (up to scalar multiplication) and has exactly n zeros on the open interval

(a, b).

The consequences of Theorems 1.4.4 and 1.4.5 on the behavior of eigenfunctions is

illustrated in Figure 1.1. In this illustration, the eigenfunction uλ0 has 0 zeros in (0, 1), uλ1

has 1 zero in (0, 1), and uλ2 has 2 zeros in (0, 1).

1.5 Applications

Let us conclude the introduction by mentioning one of the major applications of the

p-Laplacian. In particular, we remark that the regular Laplacian ∆u is a model for Newtonian

fluids, which are characterized by having the viscous stress proportional to the strain rate at

every point; see, e.g., [4]. The factor |∇u|p−2 describes the speed that fluid particles travel

in relation to each other; this term reduces to 1 in the linear Newtonian setting. For a

non-Newtonian fluid, |∇u|p−2 relates the effect of shear on the viscosity of the fluid. Hence

the p-Laplacian ∆p may be used to model non-Newtonian fluids.

In particular, 1 < p < 2 models pseudoplastics, which are fluids that become less viscous

as the shear increases (examples include blood, several types of paint, nail polish). The

case p > 2 models dilatants, which become more viscous as the shear increases (the classic

example is cornstarch in water).

1.6 Overview of dissertation

In Chapter 2, we describe previous work on symmetry, existence, and uniqueness for

solutions to the elliptic equation (1.12). The bulk of Chapter 3 is dedicated to proving

Theorem 3.0.2 on uniqueness of positive solutions to ∆pu+ f(u) = 0 in a ball with Dirichlet

boundary conditions for a certain class of f . In Chapter 4, we prove several results on Morse

indices for sign-changing solutions for p = 2, notably Theorem 4.5.2, which states that there

must be a solution on a ball with Dirichlet boundary conditions that has k zeros and Morse

index k. Lastly, we mention in Chapter 5 two related problems of current interest.
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CHAPTER 2: BACKGROUND

In this chapter we give an overview of the history and previous results on the semilinear

elliptic equation

∆u+ f(u) = 0, (2.1)

and the quasilinear elliptic equation

∆pu+ f(u) = 0, (2.2)

for different classes of nonlinearities f and in various domains with appropriate boundary

conditions.

2.1 Results on uniformly elliptic partial differential equations

In this section we discuss the symmetry of positive solutions to (2.1), where the domain

is typically a ball with Dirichlet boundary conditions, as well as results on existence and

uniqueness for solutions to (2.1).

With the technique of moving parallel planes, Serrin showed in [30] that if Ω is a smooth

bounded domain and u is a positive solution to ∆u+ 1 = 0 in Ω, with u = 0 on ∂Ω and with

the outward normal vector ∂u
∂ν

constant on ∂Ω, then Ω is necessarily a ball and u is a radial

function. The method of moving parallel planes was originally used by Alexandroff to study

surfaces of constant mean curvature in differential geometry. It was also used by Gidas, Ni

and Nirenberg [18] to obtain the following famous result.

Theorem 2.1.1 (Gidas, Ni, Nirenberg). In the ball Ω = {x ∈ Rn | |x| < R}, let u > 0 be a

positive solution in C2(Ω̄) of

∆u+ f(u) = 0 with u = 0 on |x| = R. (2.3)
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Here f is of class C1. Then u is radially symmetric and

∂u

∂r
< 0, for 0 < r < R.

Part of the power of this result stems from the fact that they make no assumptions on

the nonlinear term f(u) except that f ∈ C1.

In general, existence and uniqueness results for (2.1) and (2.2) do require more restrictive

conditions on f(u). The prototypical example is the Lane-Emden equation f(u) = uq, for

q > 1. If q = (n+2)/(n−2) = 2∗−1, where 2∗ is the Sobolev critical exponent for p = 2, then

(2.1) is a version of the Yamabe problem from differential geometry. This particular exponent

is a critical threshold for f , as demonstrated by the following result of Pohozaev [29]; see [31]

for a discussion in English.

Theorem 2.1.2 (Pohozaev, 1965). Let Ω ⊂ Rn, n ≥ 3, be an open, star-shaped (with respect

to the origin) domain. The equation ∆u+ uq = 0, u|∂Ω = 0, has a positive solution only if

q < 2∗ − 1.

We remark that the topology of the domain is important, and there may be a positive

solution to ∆u+ uq = 0 on a different domain, such as an annulus. To prove Theorem 2.1.2,

Pohozaev proved that positive solutions to ∆u+ uq = 0 must satisfy the Pohozaev identity

∫
Ω

(
2n

q + 1
− (n− 2)

)
uq+1 dx =

∫
∂Ω

|∇u|2 (x · ν) dS. (2.4)

If the domain is star-shaped, the right-hand side of (2.4) is always positive. The left-hand

side, however, is always negative if q > 2∗ − 1. Recall that according to Theorem 1.3.4, the

Sobolev embedding theorem,

W 1,2(Ω) ↪→ Lq(Ω)

is a continuous embedding if q ≤ (n+ 2)(n− 2), with strict inequality resulting in a compact

embedding. Nonexistence of solutions in [29] stems from lack of compactness of the embedding.
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Hence the nonlinearity f plays a big role in the existence or nonexistence of solutions to

(2.1). To establish the existence of solutions to (2.1), authors frequently employ variational

methods to show the existence of minimizers to certain functionals. For example, the critical

exponent nonlinearity f(u) = λu+ |u|p∗−2u arises in the general Yamabe problem. For the

semilinear case p = 2, Brezis and Nirenberg [6] used the energy functional

E(u) =
1

2

∫
Ω

|∇u|2 dx− λ

2

∫
Ω

|u|2 dx− 1

2∗

∫
Ω

|u|2∗ dx

to show a solution must exist if λ is smaller than the first eigenvalue of ∆.

When f(u) satisfies |f(u)| ≤ Cuq−1, C > 0, the question of whether f is subcritical

(q < p∗), critical (q = p∗), or supercritical (q > p∗) may alter not only when a solution

exists but whether or not is unique. For example, in the case p = 2, Ni and Nussbaum [27]

determined that solutions to (2.1) with f(u) = uq−1 + u are not necessarily unique in the

supercritical case q > p∗.

Uniqueness of positive solutions to (2.1) for p = 2 has been addressed by many authors;

the first was Coffman [8] for the subcritical case n = 3 and f(u) = u3 − u. McLeod and

Serrin [26] showed uniqueness results for f(u) = uq − u for certain q, which were generalized

by Kwong [22] to 1 < q < (n + 2)/(n − 2); the method of Kwong was generalized and

simplified by [25]. Other authors who investigated uniqueness of (2.1) with f subcritical,

critical, or supercritical include Kwong and Zhang [23], who proved uniqueness in a ball by

using a Sturm comparison principle.

Clemons and Jones illustrated this last uniqueness result with a geometric approach in [7]

by recasting (2.1) as a dynamical system. The union of all solution forms a two-dimensional

invariant manifold; showing uniqueness of a solution to the Dirichlet equation is interpreted

as showing that the rotation of the manifold can be controlled. In Chapter 3, we will use

similar geometric methods to illustrate recent existence results and prove a uniqueness results

for the p-Laplacian for a large class of f .
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2.2 Results for the p-Laplacian

In general, solutions to ∆pu+ f(u) = 0 for p 6= 2 are considered in the weak sense because

they belong to C1,α(Ω) for some α > 0, see [11]. Many of the results on the uniqueness

or symmetry properties of (2.1) rely on classical elliptic principles such as the maximum

principle. These principles do not apply in a straightforward manner in (2.2), when the

operator is singular (as in the case p ∈ (1, 2)) or degenerate (as in the case p > 2). The

principle of superposition is also lost when p 6= 2.

To underscore the importance of radial solutions to (2.2), we cite the following result

from [9] and [10] on positive solutions to (2.2) on a ball with Dirichlet boundary conditions.

The proof uses a modified moving plane method reminiscent of [18].

Theorem 2.2.1 (Damascelli and Pacella). Suppose p ∈ (1, 2) and Ω is a ball about the origin.

If f is locally Lipschitz continuous in (0,∞) and either

• f(u) ≥ 0 for u ≥ 0, or

• there exists β0 > 0 and a continuous, positive (except at the origin), non-decreasing

function β : [0, β0]→ R with

β(0) = 0, and

∫ β0

0

1

(sβ(s))1/p
ds =∞,

such that f(u) + β(u) ≥ 0 for all u ∈ [0, β0],

then u must be radially symmetric and ∂u
∂r
< 0 for r > 0.

Several authors have examined existence and uniqueness questions for the p-Laplacian

equation (2.2) with different choices of nonlinearity f , different domains (typically all of Rn,

a ball of radius R, or an annulus), and different boundary conditions (usually Dirichlet);

we refer here to [20], [13], [19]. Guedda and Veron [20] determined criteria for existence of

positive solutions to

∆pu+ up
∗−1 + a(x)up−1 = 0,
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in a bounded open subset of Rn with Dirichlet boundary conditions. Their result can be

seen as an extension of the Brezis and Nirenberg [6] result. Erbe and Tang [13] proved

uniqueness to (2.2) with f(u) = uq for q is subcritical. They also proved uniqueness holds for

f(u) = uq1 + λuq2 , with q1 > q2 and λ > 0, if the quantity

ξx2 + λσx+ λ2v

is positive for all x > 0, where

ξ = −
(
n− p− np

q1 + 1

)
σ = v(q2 − q1 + 1) + ξ(q1 − q2 + 1)

v = −
(
n− p− np

q2 + 1

)
.

Gonçalves and Alves [19] used minimax arguments on an energy functional to study existence

of solutions to (2.2) with f(u) = up
∗−1 + h(x)uq in Rn.

Recently, existence of solutions has been studied in a geometric framework, notably by

Franca ([15], [16], [17]). He used an Emden-Fowler transformation to show the existence or

nonexistence of ground states and singular ground states (2.2) for positive solutions to (2.2)

in Rn. The function he studied is a Pohozaev function which is essentially related to the

Hamiltonian structure that may arise in phase space; we will discuss this in Section 3.2.

Adimurtha and Yadava [1] investigated uniqueness of

−∆pu = uq + λ|u|p−2u

in both a ball and an annulus in Rn by using a Pohozaev-type identity. In particular, we

note that for the ball with Dirichlet boundary conditions, they established uniqueness with

λ ≥ 0, 1 < q + 1 ≤ (np)(n− p), p < n.

Aftalion and Pacella [2] investigated uniqueness of positive radial solutions to (2.2) with
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f ∈ C0[0,∞) ∩ C1(0,∞) satisfying the following conditions:

(AP1) f(0) = 0, with some θ > 0 so that f < 0 in (0, θ) and f > 0 in (θ,∞),

(AP2) the expression

K(u) :=
uf ′(u)

f(u)
(2.5)

is nonincreasing in (θ,∞), and

(AP3) The quantity

uf ′(u)− (p− 1)f(u) (2.6)

is positive for u > 0.

The prototypical nonlinearity satisfying (AP1)-(AP3) is f(u) = uq − up−1, q > p− 1. With

an additional requirement on the growth of f near zero, [2] show that (2.2) has at most one

weak radial solution if p ≤ 2 by using a variant of the maximum principle and a suitable

implicit function theorem.

The family of nonlinearities in Chapter 3 gives a weaker condition than (AP3) in Theo-

rem 3.0.2; in fact, the quantity

uf ′(u)− (p− 1)f(u) (2.7)

may change signs at some value of u0, and f may be nonnegative. Moreover, our proof is

geometric, and both quantities (2.5) and (2.6) will emerge in a physical interpretation of

nonuniqueness as quantities that determine how a particular invariant manifold bends.
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CHAPTER 3: UNIQUENESS OF POSITIVE SOLUTIONS FOR THE
p-LAPLACIAN, 1 < p < 2

In this chapter, we show the uniqueness of positive radial solutions to (2.2) on a ball with

Dirichlet boundary conditions for a class of nonlinearities f that includes f(u) = uq and the

model sign-changing function f(u) = uq − u, for q < p∗ − 1. The proof is in the spirit of the

Clemons–Jones geometric proof of the case p = 2 ([7]) but must overcome extra difficulties

arising from the singularity of the operator ∆p.

The domain Ω is a ball about the origin of radius R in Rn, n ≥ 2, and we suppose

1 < p ≤ 2. We are interested in regular solutions, meaning u(0) = d > 0. The Dirichlet

problem is 
−∆pu = f(u) in Ω

u > 0 in Ω

u = 0 on ∂Ω,

(3.1)

where ∆pu = div (|∇u|p−2∇u) and the nonlinearity f ∈ C0[0,∞) ∩ C1(0,∞) satisfies (F1),

(F2), and (R) described below.

(F1) f(0) = 0, and either f is nonnegative, or there exists a θ > 0 so that f < 0 for (0, θ)

and f > 0 for (θ,∞).

(F2) The quantity K(u) = uf ′(u)/f(u) is nonincreasing on (0, θ) and (θ,∞), where θ is

defined by (F1).

(R) There is a value q1 > p satisfying

p(n− 1)

n− p
< q1 < p∗ =

pn

n− p
, (3.2)
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and

lim
u→∞

f(u)

uq1−1
= ` > 0. (3.3)

If f(u) changes signs at θ > 0, then there is a value q2 with q1 > q2 > 1, so that

lim
u→0

f(u)

uq2−1
= ν < 0.

The requirement (R) says that if f changes signs, then f behaves asymptotically like

f(u) = uq1−1 + λuq2−1, q1 > q2 > 0, λ < 0.

Let us remark on a few properties of K(u). Under hypothesis (R),

lim
u→∞

uf ′(u)

f(u)
= lim

u→∞
u
uq1−1

f(u)
· f ′(u)

(q1 − 1)uq1−2
· (q1 − 1)uq1−2

uq1−1
= q1 − 1, (3.4)

and similarly K(u)→ q2 − 1 as u→ 0. By (F1), it follows that K(u)→ −∞ as u→ θ− and

K(u)→∞ as u→ θ+. Hence if (F2) and (R) are satisfied, we obtain

• K(u) ≤ q2 − 1 for u ∈ (0, θ),

• K(u) ≥ q1 − 1 for u > θ,

• if a < θ < b, then K(b) > K(a),

where the possibility that f is nonnegative is addressed throughout by setting θ = 0.

We note that the conditions (F1) and (F2) are similar to hypotheses in [2]. However, we

will not require f to change signs at θ, nor do we require (AP3), as the quantity (2.6) may

be positive, negative, or zero for different values of u.

Hence any polynomial of the form

f(u) = uq1−1 − νuq2−1, ν ≥ 0, q1 > q2 > p (3.5)

satisfies (F1), (F2) and (R), including the representative example f(u) = uq−up−1, q > p− 1,

24



from [2]. However, many basic nonlinearities satisfy our requirements without satisfying

(AP3), for example

• f(u) = uq1−1,

• f(u) = u3 − u2, where p and n must be chosen to satisfy (3.2), and

• f(u) =
us1

ν + us2
, where s1, s2, ν > 0, and the condition (R) is satisfied for q1−1 = s1−s2.

As we are interested in positive solutions solving the Dirichlet problem, we do not specify

f(u) for u < 0. However, to show existence using an Emden–Fowler approach, it is often

necessary for f to be odd. One way to ensure this condition holds is to write (3.5) as

f(u) = |u|q1−2u− ν|u|q2−2u, ν ≥ 0, q1 > q2 > p. (3.6)

Lastly, requiring q1 < p∗, where p∗ is the Sobolev critical exponent, makes the growth

rate of f subcritical; the inequalities in (3.2) will be elaborated on in Section 3.2. The bulk

of this chapter is dedicated to proving the following theorem.

Theorem 3.0.2. If 1 < p ≤ 2, (3.2) is satisfied, and f satisfies (F1), (F2), and (R), then

for any positive radius R of Ω, there is at most one radial solution to (3.1).

As the regular Laplacian operator corresponding to p = 2 is well studied, we will focus on

1 < p < 2, when the p-Laplacian is singular. However, we do note that our proof covers the

regular Laplacian case for f nonnegative; a class of nonlinearities that was not addressed

by [7]. The proof follows these steps:

1. rewrite the PDE as an ODE using radial symmetry,

2. rescale solutions u to a new variable y using the Emden Fowler transformation,

3. consider existence of solutions by studying the flow in the {r = 0} plane,

4. compute the winding number of a vector component δu along solutions,
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5. compute the normal vector to the manifold formed by the union of solutions to (3.1)

and vector normal to an {r = constant}-plane, and

6. show that the amount of winding of the third component of these two vectors can be

controlled.

3.1 Set-up as a dynamical system

We recall that in the case p = 2, Gidas, Ni, Nirenberg [18] showed that if f ∈ C1, then

solutions to (3.1) must be radially symmetric and monotone decreasing. This result does

not extend immediately to the case p 6= 1. However, we are interested in radially symmetric

solutions so that we can consider u as a function of r = |x|. The following lemma establishes

that any solution to (3.1) with f(u) in our class of nonlinearities must be radially symmetric

and monotonically decreasing.

Lemma 3.1.1. Any positive solution u to (3.1) with f(u) satisfying (F1), (F2), and (R) is

radially symmetric and monotonically decreasing.

Proof. This is a corollary to the work of Damascelli and Pacella described in section 2.2. If f

is nonnegative, then the result is automatic by Theorem 2.2.1. If f changes signs at θ > 0,

then let

β(u) = uq1−1 − f(u),

where q1 > q2 > p satisfy (R). Then β(0) = 0, β(u) > 0 for 0 < u < θ, and β(u) is

continuous. As f(0) = 0 and f(u) < 0 for u < θ, there is some û ∈ (0, θ) so that f(u) is

nonincreasing on [0, û]. As a result, β(u) is a nondecreasing function on [0, û]. We note also

that f(u) + β(u) = uq1−1 > 0 for all u > 0.

It remains to check that there is some β0 > 0 so that

∫ β0

0

1

(sβ(s))1/p
ds =

∫ β0

0

1

(sq1 − sf(s))1/p
ds =∞.
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We use a comparison test. Notice all terms in the denominator are positive for any s < θ.

Moreover, if s ≤ 1, then q1 > q2 implies

1

(sq1 − sf(s))1/p
≥ 1

(sq2 − sf(s))1/p
=

1(
sq2
(

1− f(s)
sq1−1

))1/p
.

By (R)

lim
s→0

−f(s)

sq1−1
= |ν| > 0.

Hence for any ε > 0 there is a δ > 0 so that if s < δ,

− f(s)

sq1−1
< |ν|+ ε.

Thus for s < δ,

1(
sq2
(

1− f(s)
sq1−1

))1/p
>

1

(sq2 (1 + |ν|+ ε))1/p
.

Let β0 = min{û, 1, δ} so that the above inequalities are valid for all s ∈ (0, β0). Then

∫ β0

0

1

(sβ(s))1/p
ds >

1

(1 + |ν|+ ε)1/p

∫ β0

0

1

sq2/p
ds =∞, (3.7)

as q2/p > 1. Hence all solutions must be radial and monotone decreasing.

3.1.1 Dynamical system in (u, ω, r)-coordinates

Radial solutions u to (3.1) can be rewritten in terms of r = |x| to obtain the following

ODE: (
u′|u′|p−2

)′
+
n− 1

r
u′|u′|p−2 + f(u) = 0, (3.8)

with ′ = d
dr

. Radial symmetry implies u′(0) = 0, and the boundary condition u|∂Ω = 0 can be

written simply as u(R) = 0, where R is the radius of Ω. Setting ω = u′|u′|p−2rp−1 yields a

first-order ODE for ω, (
r1−pω

)′
+ r−p(n− 1)ω + f(u) = 0, (3.9)
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and therefore the (u, ω, r) system can be written as

u′ =
ω

r
|ω|

2−p
p−1 , (3.10)

ω′ = (p− n)
ω

r
− rp−1f(u), (3.11)

r′ = 1. (3.12)

This system is undefined at the value r = 0; by introducing a new independent variable t and

parametrizing r as r(t) = et, then we may choose any value r0 > 0 and define time t so that

r(0) = r0. As a result, we blow up the singularity at r = 0 into an invariant plane {r = 0}.

The resulting first-order system is

u̇ = ω|ω|
2−p
p−1 , (3.13)

ω̇ = (p− n)ω − rpf(u), (3.14)

ṙ = r, (3.15)

with · = d
dt

. Solutions to (3.8) can now be viewed as trajectories in the phase space of

(3.13)-(3.15). In phase space, an initial condition at r = 0 corresponds to the limit of a

solution trajectory as t→ −∞. Suppose a solution satisfies the boundary condition u′(0) = 0

and has an initial value u(0) = a, where a > 0; for this hypothesis to be satisfied in phase

space, a trajectory must have as its limit the point (a, 0, 0) on the u-axis. Each such point

(a, 0, 0) is a fixed point of (3.13)-(3.15); linearization about (a, 0, 0) yields


0 1

p−1
|ω|

2−p
p−1 0

−rpf ′(u) p− n −prp−1f(u)

0 0 1


∣∣∣∣∣∣∣∣∣∣
(a,0,0)

=


0 0 0

0 p− n 0

0 0 1

 . (3.16)

As 1 < p < 2 and n ≥ 2, there is one zero eigenvalue, one negative eigenvalue, and

one positive eigenvalue. (We will not concern ourselves with (3.16) in the case p = 2 as
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u

ω

{r = R}
r

{r = 0}

Figure 3.1: The center, stable, and unstable manifolds for twenty radial solutions to (3.13)-
(3.15) with different initial values u(0) = a > 0. The dotted line in the plane {r = 0} is the
u-axis (the leftmost point along this axis is the origin); this forms the center manifold for
each point (a, 0, 0). The S-shaped curves are the stable manifolds in {r = 0}, and each curve
moving into r > 0 space is an unstable manifold for one of the initial conditions (a, 0, 0).

this is the well-understood case.) Hence each (a, 0, 0) has a 1-dimensional stable manifold

W s
p ((a, 0, 0)), a 1-dimensional unstable manifold W u

p ((a, 0, 0)), and a 1-dimensional center

manifold W c
p ((a, 0, 0)).

An eigenvector for the eigenvalue 0 is parallel to the u-axis; by invariant manifold theory,

the u-axis is the (global) center manifold W c
p ((a, 0, 0)) for each a ∈ R. The global stable

manifold to (a, 0, 0) is the vertical line `a = {(a, ω, 0) : ω ∈ R} in the case p = 2; for

1 < p < 2, the stable manifold is tangent to the vertical vector (0, 1, 0) at (a, 0, 0). We note

that the S-shape of the stable manifold in the plane {r = 0} when p 6= is due to the presence

of |ω|
2−p
p−1 in (3.13)-(3.15). See Figure 3.1 for a picture illustrating these manifolds at several

values of a > 0.

Hence a plays the role of a parameter, and we are interested in examining how W u
p ((a, 0, 0))

behaves for different values of a. We define

W u,c
p =

⋃
a>0

W u
p ((a, 0, 0)); (3.17)
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this union forms a two-dimensional “center-unstable” manifold whose winding behavior we

will track in Section 3.4 until it intersects the plane {r = R}. This intersection is nonempty:

as t grows large in (3.13)-(3.15), r = et will grow large as well. In fact, W u,c
p must contain

the point (0, 0, R) ∈ W u
p ((0, 0, 0)).

Any point lying on W u,c
p is part of a solution that tends to (a, 0, 0), a > 0, as t→ −∞.

These solution trajectories, determined by the choice of a, foliate W u,c
p . Thus we can denote

any such solution by

(u(t, a), ω(t, a), r(t)).

To be more concise, we will occasionally write the above solution as

(u(t), ω(t), r(t))a

to mean (u(t), ω(t), r(t))a → (a, 0, 0) as t→ −∞.

3.1.2 Dynamical system in (y, w, r)-coordinates

We will make use of an Emden–Fowler transformation to exert extra control over the

equations. Let λ ∈ R; the Emden–Fowler transformation for (3.8) is

y = rλu, (3.18)

where the parameter λ will be specified later to prove different cases. With the appropriately

scaled replacement w = r(p−1)λω for ω, one could pass immediately to a system of equations for

(ẏ, ẇ, ṙ), where r = et and · is differentiation with respect to t. To illustrate the construction

of the missing w term as it may be useful for other variations of Laplace’s equation, however,

we show how to create such a w from (3.8) and (3.18) in the calculations below.
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Substituting (3.18) into (3.8) yields

0 = (p− 1)rλ(1−p)
∣∣∣∣y′ − λ

r
y

∣∣∣∣p−2(
λ(λ+ 1)

r2
y − 2λ

r
y′ + y′′

)
(3.19)

+
n− 1

r
rλ(1−p)

∣∣∣∣y′ − λ

r
y

∣∣∣∣p−2(
y′ − λ

r
y

)
+ f(r−λy).

Set z = y′ − λ
r
y so that

z′ = y′′ +
λ

r2
y − λ

r
y′. (3.20)

Then the differential equation (3.19) becomes

(p− 1)rλ(1−p)|z|p−2

(
z′ − λ

r
z

)
+
n− 1

r
rλ(1−p)|z|p−2z + f(r−λy) = 0. (3.21)

We define w by rz = w|w|
2−p
p−1 to obtain the following relations:

z′ = − 1

r2
w|w|

2−p
p−1 +

1

r

1

p− 1
|w|

2−p
p−1w′, (3.22)

|z|p−2z = r1−pw, (3.23)

|z|p−2

(
z′ − λ

r
z

)
= −r−pw(1 + λ) +

1

p− 1
r1−pw′. (3.24)

Substituting (3.22)-(3.24) into (3.21) yields

(p− 1)rλ(1−p)
(
−r−pw(1 + λ) +

1

p− 1
r1−pw′

)
+ (n− 1)rλ(1−p)r−pw + f(r−λy) = 0, (3.25)

which can be solved for w′:

w′ = ((p− 1)λ− n+ p)
1

r
w − rp+pλ−λ−1f(r−λy). (3.26)

To relate w to the original variable u, we note here that w can be written in terms of u as

w = u′|u′|p−2r(p−1)(λ+1). (3.27)
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We note that w allows us to write (3.19) as a system of first-order equations. Defining w

by (3.27) at the same step as (3.18) allows one to bypass the calculations in (3.19)-(3.25)

to obtain the first-order system immediately. We remark that (3.27) does not reduce to the

same w in the Emden–Fowler coordinate system in the proof by Clemons and Jones of the

case p = 2. In particular, in [7] the first equation is y′ = w/r, whereas we have the following

system:

y′ =
λ

r
y +

1

r
w|w|

2−p
p−1 , (3.28)

w′ = ((p− 1)λ− n+ p)
1

r
w − r(p−1)(1+λ)f(r−λy) (3.29)

r′ = 1, (3.30)

where ′ = ∂
∂r

. As in the u-coordinate system, we rescale by parametrizing r as r = et; notice

t and r have the same meaning before and after the Emden–Fowler transformation. The

resulting equations are

ẏ = λy + w|w|
2−p
p−1 , (3.31)

ẇ = ((p− 1)λ− n+ p)w − rp+λ(p−1)f(r−λy) (3.32)

ṙ = r, (3.33)

where · = ∂
∂t

. As before, the limit r → 0 is equivalent to t→ −∞; for the limit of (3.31)-(3.33)

to exist as t→ −∞, we need to ensure that the quantity rp+λ(p−1)f(r−λy) exists in the limit.

Let us treat y as independent of λ and set u = r−λy. Then if λ > 0 and y → 0 such that

u = r−λy → u0 > 0, where u0 is finite, then

lim
r→0

rp+λ(p−1)f(r−λy)

exists if λ ≥ −p/(p− 1). This condition happens automatically if λ ≥ 0.

If we continue to consider the case λ > 0 and suppose that as r → 0, y → y0 > 0, where
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y0 <∞, then u = r−λy →∞. Using (R), we can compare f to rp−λ(q1−p)yq1−1 and obtain

lim
r→0

rp+λ(p−1)f(r−λy)

rp−λ(q1−p)yq1−1
= lim

r→0

rp+λ(p−1)f(r−λy)

rp+λ(p−1)(r−λy)q1−1
= `.

Thus if the limit of rp−λ(q1−p)yq1−1 is finite as r → 0, then limit of rp+λ(p−1)f(r−λy) is finite

as well. We therefore require

λ ≤ p

q1 − p
=: λ̂, (3.34)

and we treat this number as an upper bound for λ. We will not require λ to be nonnegative,

however, and we make a note of the effect that setting λ < 0 has on the dynamics of

(3.31)-(3.33) in Section 3.2.

In the (u̇, ω̇, ṙ) system, each point (a, 0, 0) is a fixed point. The analog under the Emden–

Fowler transformation is the origin; linearization of (3.31)-(3.33) at the origin yields


λ 0 0

0 (p− 1)λ− n+ p 0

0 0 1

 if p 6= 2,


λ 1 0

0 λ− n+ 2 0

0 0 1

 if p = 2, (3.35)

with eigenvalues {λ, (p− 1)λ−n+ p, 1}. Notice that if p ∈ (1, 2), the eigenvectors are parallel

to the axes; see Figure 3.1.

3.2 Critical exponents and existence of solutions

Studying uniqueness amounts to understanding how the manifold W u,c
p evolves as the

radius r increases to some chosen value R; in particular we study how many times W u,c
p

can intersect the plane {u = 0}. The beauty of the Emden–Fowler approach is that the

calculations to show uniqueness are greatly simplified. First, we must understand the effect

of the Emden–Fowler parameter λ on the manifold of interest.
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3.2.1 W u,c
p under the Emden–Fowler transformation

Let T [·] be the Emden–Fowler transformation (3.18) from (u, ω, r) to (y, w, r), and let

T
[
W u,c
p

]
= W̃p. Whenever r > 0 and the Emden–Fowler parameter λ satisfies 0 < λ ≤ λ̂,

then any point T [(u(t), v(t), r(t))a] on W̃p now satisfies

(y(t), w(t), r(t))→ (0, 0, 0) as t→ −∞.

Thus choosing λ ∈ (0, λ̂] has the effect of “blowing down” the u-axis. As a consequence, it no

longer makes sense to parametrize solutions via their limit as t→ −∞. To employ a similar

notion, the notation y(t, a) and (y(t), w(t), r(t))a will mean that the solution (u(t), ω(t), r(t))

obtained from y = rλu satisfies (u(t), ω(t), r(t))→ (a, 0, 0) as t→ −∞.

Assuming the critical exponent inequalities (3.2) are satisfied and p ∈ (1, 2), we describe

below the behavior of the invariant manifold W̃p.

Invariant manifold structure if λ > λ̂. We will never consider this case as we require

λ ≤ λ̂. As it may be interesting in future problems, we note here that should one choose

λ > λ̂, then the limit of (ẏ, ẇ, ṙ) as t → −∞ is undefined. However, the manifold W u,c
p

derives from the (u, ω, r)-system and therefore exists independently of λ. For any ε > 0,

T [W u,c
p ∩ {ε ≤ r ≤ R}] is a two-dimensional manifold with boundary. Selecting λ > λ̂ and

defining W̃p as

W̃p = T [W u,c
p ∩ {ε ≤ r ≤ R}] (3.36)

yields a well-defined two-dimensional manifold with boundary in (y, w, r)-space.

Invariant manifold structure if 0 < λ ≤ λ̂. If λ ∈ (0, λ̂] then (3.35) has one negative

eigenvalue and two positive eigenvalues. Under the Emden–Fowler transformation, W̃p is a
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two-dimensional unstable manifold of the origin.

Invariant manifold structure if λ = 0. If λ = 0, then the Emden–Fowler transformation

is simply u = y. Hence W̃p is identical to W u,c
p , a two-dimensional center-unstable manifold.

Invariant manifold structure if λ < 0. If λ < 0, then there is one positive eigenvalue of

(3.35) and two negative eigenvalues,

{λ, (p− 1)λ− n+ p} .

Thus all trajectories on the plane {r = 0} tend to the origin as t → ∞. If λ 6= n−p
p−2

, these

eigenvalues are distinct. In this case, W̃p transforms to a two-dimensional stable-unstable

manifold composed of the unstable manifold of the origin and the 1-dimensional subspace of

the origin in {r = 0} associated with the eigenvalue λ; this is the subspace tangent to the

y-axis at the origin.

As in Section 3.2.1, if we select λ < 0, then we define W̃p by (3.36) for an appropriately

small ε > 0.

3.2.2 Existence of solutions

In this section, we list two expressions for each ẇ equation: the first leaves f in its general

form (where we assume f is odd), while the second uses (3.6). Recall equations (3.31)-(3.33):

ẏ = λy + w|w|
2−p
p−1

ẇ = ((p− 1)λ− n+ p)w − rp+λ(p−1)f(r−λy)

= ((p− 1)λ− n+ p)w − rp+λ(p−q1)|y|q1−2y + νrp+λ(p−q2)|y|q2−2y,

ṙ = r.
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At this point, we have not specified any particular λ; the choice we make to demonstrate

the existence of solutions is λ = λ̂. This selection characterizes W̃p as described above in

Section 3.2.1, and moreover, this choice is ideal as (3.31)-(3.33) simplifies to

ẏ = λ̂y + w|w|
2−p
p−1

ẇ = ((p− 1)λ̂− n+ p)w − rp+λ̂(p−1)f(r−λ̂y)

= ((p− 1)λ̂− n+ p)w − |y|q1−2y + νr
p− p(p−q2)

p−q1 |y|q2−2y,

ṙ = r,

which in the invariant plane {r = 0} reduces to

ẏ = λ̂y + w|w|
2−p
p−1 (3.37)

ẇ = ((p− 1)λ̂− n+ p)w − rp+λ̂(p−1)f(r−λ̂y)
∣∣∣
r=0

(3.38)

= (pλ̂− n+ p)w − λ̂w − |y|q1−2y. (3.39)

If it were the case that pλ̂− n+ p = 0, then this system would be Hamiltonian in the plane

{r = 0} with

H(y, w) = λ̂yw +
p− 1

p
|w|

p
p−1 +

∫
rp+λ̂(p−1)f(r−λ̂y)

∣∣∣
r=0

dy (3.40)

= λ̂yw +
p− 1

p
|w|

p
p−1 +

1

q1

|y|q1 .

However, whenever λ = λ̂,

pλ̂− n+ p >
−p2

p− q1

+
pq1

p− q1

+ p = 0. (3.41)

The resulting behavior of W u((0, 0)) in the system (3.37)-(3.39) produces a “bowtie” as seen

in Figure 3.2. Existence of solutions to (3.1) follows whenever the structure of the stable and

unstable manifolds is in the configuration of in Figure 3.2; the stable manifold is trapped
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y

ω

Figure 3.2: The stable and unstable manifolds of (y, w, r) = (0, 0, 0) in the {r = 0} plane,
with p = 1.5, d = 3, and q1 = 2.5. The manifold spiraling outward is the unstable manifold.

inside of the curve H(y, w) = 0 while the unstable manifold appears to spiral outwards. It is

a result of Franca [17] that this occurs for a large class of nonlinearities.

We can now explore precisely why we require (3.2) to be satisfied. The different dynamics

corresponding to different values of q1, with (n, p) = (3, 1.8), in the {r = 0}-plane are pictured

Figure 3.3. Notice the switching of roles between the stable and unstable manifolds of (0, 0, 0)

as q1 is varied to be below, in and above the inequalities in (3.2).

As Theorem 3.0.2 is concerned with uniqueness, rather than existence, we will not explore

existence further in this chapter.

3.3 Variational equations

3.3.1 Definitions

For any time τ ∈ R, we define the intersection curve

C(τ) = W u,c
p ∩ {r = r(τ)}. (3.42)
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Figure 3.3: Varying q1 with (n, p) = (3, 1.8) to show the stable and unstable manifolds of
(y, w, r) = (0, 0, 0) in the {r = 0} plane. (a) is less than the lower bound, (b) is the lower
bound, (c) is within the bounds, (d) is at the Sobolev critical exponent p∗, and (e) is above
p∗. In (a) and (b), the origin is a source; for (c)-(e), the origin is a hyperbolic saddle point.
Figures (c) and (e) show the behavior switching between the stable and unstable manifolds.
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For any chosen u with initial condition α > 0, let C(τ, α) be the truncated intersection curve

defined by

C(τ, α) = {(u(τ), ω(τ), r(τ))a ∈ C(τ) : a ∈ (0, α]}.

Notice C(τ, α) ⊂ C(τ) lie in the {r = r(τ)}-plane. The curve defined by

γ(τ, α) = {(u(t), ω(t), r(t))α : t ∈ (−∞, τ ]},

which we will refer to as a solution trajectory, limits to (α, 0, 0) as t→ −∞ and intersects

C(τ, α) at u(τ, α). Examples of both of these curves are sketched in Figure 3.4.

3.3.2 Variational equations

For any choice of t ∈ R, the curve C(t) in (3.42) can be parametrized by the u-coordinate

initial condition a via

ct(a) = (u(t, a), ω(t, a), r(t)). (3.43)

Taking the derivative along ct(a) with respect to a yields a family of tangent vectors with

δr ≡ 0:

dct
da

(α) =

(
∂u(t, a)

∂a

∣∣∣∣
a=α

,
∂ω(t, a)

∂a

∣∣∣∣
a=α

,
∂r(t)

∂a

∣∣∣∣
a=α

)
=: (δu(t, α), δω(t, α), 0). (3.44)

Notice that in the {r = 0}-plane, we can parametrize the center manifold in the same fashion

as c{r=0}(a) = (a, 0, 0), and thus

dc{r=0}

da
(α) = (1, 0, 0).

Hence

lim
t→−∞

δu(t, α) = 1, lim
t→−∞

δω(t, α) = 0.
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The variational equations to describe how such a family of tangent vectors in the (u, ω, r)-

system is carried under the flow are given by

˙δu =
1

p− 1
|ω|

2−p
p−1 δω, (3.45)

˙δω = (p− n) δω − ∂

∂u
(rpf(u)) δu− ∂

∂r
(rpf(u)) δr (3.46)

δ̇r = δr. (3.47)

In particular, the tangent vector field in (3.44) satisfies

˙δu =
1

p− 1
|ω|

2−p
p−1 δω, (3.48)

˙δω = (p− n) δω − rpf ′(u) δu (3.49)

δ̇r = 0. (3.50)

We define two curves in the tangent bundle toW u,c
p as follows: for any point (u(τ), ω(τ), r(τ))a ∈

C(τ, α), we find the tangent vector from (3.44) and form the following curve:

SC(τ,α) = {δu(τ, a), δω(τ, a), 0) : a ∈ (0, α]}.

Similarly, for each point (u(t), ω(t), r(t))α along a single solution trajectory γ(τ, α), we find

the tangent vector

(δu(t, α), δω(t, α), 0)

defined by (3.44) and then construct the following curve:

Sγ(τ,α) = {(δu(t, α), δω(t, α), 0) : t ∈ (−∞, τ ]}.

Figure 3.4 illustrates the tangent vectors that define these curves.

As in Jones and Küpper [21], we will let I denote the winding number of the admissible
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u

u

w

w

(a)

(b)

α1 α̂ α2−θ θ

C(τ̂ , α̂)

γ

Figure 3.4: The plane (a) is the {r = 0}, and (b) is the plane {r = r(τ̂)} from the proof of
Lemma 3.4.1 illustrated for the case k = 1. The curves γ = γ(τ̂ , α̂) and C(τ̂ , α̂) are labeled,
while their corresponding vector fields, Sγ and SC , respectively, are sketched as well.
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curve cτ (a) : [0, α]→ R2. To state the definition of I, we first define a continuous angle mea-

sure ϑ : cτ (a)→ R so that ϑ(cτ (a)) is on the appropriate branch of arctan(δω(τ, a)/δu(τ, a)),

where (δu(τ, a), δω(τ, a)) is the tangent vector along cτ (a) at the point (u(τ, a), ω(τ, a)).

Moreover,

ϑ(cτ (0)) ≡ arctan

(
δω(τ, 0)

δu(τ, 0)

)
∈
(
−π

2
,
π

2

)
. (3.51)

We remark that for 1 < p < 2, the angle ϑ(cτ (0)) is strictly between −π/2 and π/2, as along

the invariant line {(0, 0, r) | r ≥ 0}, the first component δu has ˙δu ≡ 0 by (3.45). Hence

δu ≡ 1 along {(0, 0, r) | r ≥ 0}, and therefore (3.51) is defined for every τ . (The case p = 2 is

done in [21].)

The winding number I along the intersection curve is defined by

I(cτ (a)) =

⌊
1

2

(
−2ϑ(cτ (α))

π
+ 1

)⌋
−
⌊

1

2

(
−2ϑ(cτ (0))

π
+ 1

)⌋
=

⌊
1

2

(
−2ϑ(cτ (α))

π
+ 1

)⌋
;

the symbol b·c denotes the greatest integer function. To show that it does indeed reduce to

the right-hand side and demonstrate how this calculation works, notice

ϑ(cτ (0)) ∈
(
−π

2
,
π

2

)
−2ϑ(cτ (0)) ∈ (−π, π)

−2ϑ(cτ (0))

π
∈ (−1, 1)

−2ϑ(cτ (0))

π
+ 1 ∈ (0, 2)

1

2

(
−2ϑ(cτ (0))

π
+ 1

)
∈ (0, 1)⌊

1

2

(
−2ϑ(cτ (0))

π
+ 1

)⌋
= 0.

This quantity counts the number of net crossings (with clockwise about the origin crossings

positive and counterclockwise about the origin crossings negative) of the δω-axis in the (δu, δω)
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(a)

δu

δω

a2

a3

a4

a5

a6

a7a8

a9

a10

(b)

Point ϑ(cτ (a)) I(cτ (a))
a = 0 π/3 0
a = a2 0 0
a = a3 −π/2 1
a = a4 −5π/4 1
a = a5 −3π/2 2
a = a6 −5π/3 2
a = a7 −5π/2 3
a = a8 −11π/4 3
a = a9 −5π/2 3
a = a10 −7π/3 2

Figure 3.5: (a) An imagined SC(τ,α̂) with 10 selected points. In (b), we estimate the angle
measure ϑ for each of the 10 points, beginning with the open circle and moving in the
direction of increasing initial condition a. For each ϑ, we compute the winding number I in
the third column.

plane. See Figure 3.5 for a demonstration; this demonstration is particularly important as it

shows how the winding number is calculated when the curve SC(τ,a)

∣∣
a≤α stops on the δω-axis.

We establish a convention in this chapter that in winding number drawings, we mark the

beginning of the curve, cτ (0), with an open circle.

We use the word “homotopic” for curves to refer to the notion of being pathwise homotopic

into the punctured plane R2\{0}. The winding number I is then invariant for homotopic

curves. Let us consider the piecewise-defined curves {(0, 0, r) | 0 ≤ r ≤ r(τ)} ∪ C(τ, α) and

{(a, 0, 0) | 0 ≤ a ≤ α} ∪ γ(τ, α). As they form the boundary of the region

{0 ≤ r ≤ r(τ)}
⋂{ ⋃

0<a<α

W u
p ((a, 0, 0))

}
,

there is a piecewise smooth path homotopy between these two curves. Thus the winding

number along them must be the same. However, δu ≡ 1 along both pieces {(a, 0, 0) | 0 ≤

a ≤ α} and {(0, 0, r) | 0 ≤ r ≤ r(τ)}. Thus any winding behavior happens along C(τ, α) and

γ(τ, α). Hence we conclude that I(SC(τ,α)) = I(Sγ(τ,α)).

With this construction, we can now state a result connecting the algebraic winding

number of δu and the number of zeros of δu along γ(τ, α). The following lemma is similar to
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δu

δω

Sγ

direction of δudirection of δu

direction of δu direction of δu

Figure 3.6: An imagined Sγ(τ,α) from Lemma 3.3.1 satisfying ˙δu = 1
p−1
|ω|

2−p
p−1 . The open circle

on the δu-axis indicates that the limit as t→ −∞ of Sγ(τ,α) is (1, 0). The closed circle on the
δω-axis indicates that at the moment this winding number is computed for this particular
trajectory, δu(τ, α) = 0 with δω(τ, α) > 0. The winding number of the curve Sγ(τ,α) in this
case is 4.

Proposition 3.5 from [21].

Lemma 3.3.1. For any trajectory (u(t), ω(t), r(t))α at time t = τ , I(Sγ(τ,α)) is the exact

number of zeros of δu(t, α) for −∞ < t ≤ τ .

This is not immediate: in a winding number calculation, it is possible for crossings

(instances where δu = 0) to cancel each other out if they cross with δω > 0 or δω < 0 in the

opposite direction. We see, therefore, that I(Sγ(τ,α)) is at the very least a lower bound on the

number of times δu = 0. To prove this lemma, therefore, we must show that along γ(τ, α),

the winding curve can only cross the axis {δu = 0} in one direction, namely in a manner

clockwise about the origin.

Remark 3.3.2. When examining Figures 3.6-3.9, it is important to remember that ˙δu is

differentiation of δu with respect to time, and not with respect to the initial condition, a.

Therefore, it is generally not possible to determine ˙δu when examining an r = constant plane.
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Proof. This lemma relies on the fact that ˙δu = 1
p−1
|ω|

2−p
p−1 δω. Consider the (δu, δω)-plane as

pictured in Figure 3.6. We notice immediately that Sγ(τ,α) can never intersect the origin, as

δu = δω = 0 is invariant in (3.48)-(3.48), and the limit of (δu, δω) as t→ −∞ is (1, 0). The

fact that whenever r > 0, the relation

δω = 0 ⇐⇒ ˙δu = 0 (3.52)

implies that any time Sγ(τ,α) crosses the δu-axis (i.e., the line {δω = 0}), then ˙δu = 0. Hence

the Sγ(τ,α) must be perpendicular to the δu-axis at any such crossing. Conversely, the curve

can only turn vertical if it is crossing the δu-axis. Thus there are no tangential intersections

of either axes.

Furthermore, as the sign of δω and ˙δu must be the same, then δu must be increasing

in the first and second quadrants, and decreasing in the third and fourth quadrants. Thus

if it crosses the δω-axis with δω < 0, it must be crossing from the fourth quadrant to the

third quadrant, and if it crosses the δω-axis with δω > 0, it must be crossing from the second

quadrant to the first quadrant. Hence each crossing of the line {δu = 0} must be in the

clockwise direction. Therefore, the winding number I(Sγ(τ,α)) is equal to the exact number of

zeros of δu. A whimsical example of an Sγ(τ,α) that follows these guidelines is pictured in

Figure 3.6.

Recalling that T is the Emden–Fowler transformation, we consider the intersection curve

in Emden–Fowler coordinates by computing

D(t) = T (C(t)).

By construction, D(t) is a curve lying in W̃p in the {r = r(t)} plane. As before, this is
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parametrized by a. Define

dDt

∂a
(α) =

(
∂y(t, a)

∂a

∣∣∣∣
a=α

,
∂w(t, a)

∂a

∣∣∣∣
a=α

,
∂r(t)

∂a

∣∣∣∣
a=α

)
=: (δy(t, α), δw(t, α), 0). (3.53)

Under the Emden–Fowler transformation, the variational equations for the (y, w, r)-system

are given by

δ̇y = λ δy +
1

p− 1
|w|

2−p
p−1 δw, (3.54)

˙δw = ((p− 1)λ− n+ p) δw − ∂

∂y

(
rp+λ(p−1)f(r−λy)

)
δy (3.55)

− ∂

∂r

(
rp+λ(p−1)f(r−λy)

)
δr

δ̇r = δr. (3.56)

Notice in particular that the vector field (δy(t), δw(t), 0)α satisfies (3.54)-(3.56) with δr ≡ 0.

As y = rλu, along this vector field we can write

δy|δr=0 = λrλ−1u δr + rλ δu
∣∣
δr=0

= rλ δu. (3.57)

There are therefore three cases for limt→−∞ δy:

1. if λ > 0, then δy → 0,

2. if λ = 0, then δy → 1, and

3. if λ < 0, then the limit of δy is undefined.

In case (3), although δy is undefined in the limit (more precisely, |δy| → ∞), we recall that

the tangent vector field δu exists independently of λ, and for any ε > 0, T [δu|r≥ε] = δy|r≥ε is

a well-defined vector field.
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3.4 Proof of uniqueness

Nonuniqueness implies that C(T ) contains two points that can be written as

(u(T ), ω(T ), r(T ))α1 = (0, β1, r(T )) and (u(T ), ω(T ), r(T ))α2 = (0, β2, r(T ))

with β1 6= β2, such that u(t, αi) > 0, i = 1, 2, for all t < T .

With this terminology, we set up two possible cases to be ruled out. We will assume

that C(T ) intersects {u = 0} transversally at a = α1 and a = α2 so that δu(T, αi) 6= 0,

i = 1, 2. We remark that this assumption is safe because the proof of uniqueness actually

rules out the possibility that a positive solution could intersect {u = 0} tangentially. In other

words, a consequence of the proof calculations is that any solution u(t, a) which is positive

for 0 ≤ t < t with u(T, a) = 0 cannot have δu(T, a) = 0.

The following lemma is similar to Lemma 1 from [7], with the notable difference that we do

not assume δu must be zero before u = 0 (in other words, we will rule out the “underrotation”

case with a specific calculation later in Section 3.4.1).

Lemma 3.4.1. Nonuniqueness at r(T ) = R means that there exists τ and α̂, with −∞ <

τ < T , such that u(τ, α̂) = 0 and δu(τ, α̂) = 0. Moreover, exactly one of the following two

statements must hold:

1. It is the case that δu(t, α̂) > 0 for all t ∈ (−∞, τ), and δω(τ, α̂) < 0. This is referred

to as “underrotation.”

2. There exists τ0, with −∞ < τ0 < τ < T , such that δu(τ0, α̂) = 0 and δu(t, α̂) 6= 0 for

t ∈ (−∞, τ0) ∪ (τ0, τ). Moreover, δω(τ, α̂) > 0. This is referred to as “overrotation.”

Proof. Consider the interval I = [α1, α2]. By the transversality assumption preceding the

statement of the lemma, we may choose α1 and α2 so that for each a ∈ I, u(τ, a) 6= 0.
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Moreover, by selecting α1 as

α1 = min{a > 0 | u(T, a) = 0}

and α2 as

α2 = min{a > α1 | u(T, a) = 0},

then for each a ∈ I, u(τ, a) ≤ 0. By the intermediate value theorem, for each a ∈ I there is

some time Ta ≤ T such that u(Ta, a) = 0. We define a continuous map associating to each

a ∈ I the corresponding time Ta using the following.

Let tI : I → R be the map that sends each a ∈ I to the first time tI(a) ≤ T such that

u(tI(a), a) = 0. This map is well-defined and continuous, and as I is compact, tI(I) is

compact. Therefore, tI(I) attains its minimum; let τ = min{tI(a)}a∈I , and let α̂ ∈ I denote

a solution trajectory that satisfies u(τ, α̂) = 0.

As α̂ must be an isolated zero, there is a neighborhood Bα̂ ⊂ I about α̂ so that u(τ, a)|Bα̂ >

0. By continuity, we conclude

δu(τ, α̂) =
∂u(τ, a)

∂a

∣∣∣∣
a=α̂

= 0,

as u has a local minimum at α̂. Figure 3.7 illustrates this for the overrotation case.

Either ω(T, α1) > ω(T, α2) or ω(T, α1) < ω(T, α2). (The first possibility is the underrota-

tion case while the second is the overrotation case.) If ω(T, α1) > ω(T, α2), then

I(Sγ) = I(C(τ, α̂)) = 1,

as I(C(τ, α̂)) is homotopic to the curve pictured in Figure 3.8(a). The winding number of

this curve is computed in Figure 3.8(b).

This underrotation scenario implies that the first zero of δu(t, α̂) occurs when t = τ . In

this case, δu(t, α̂) would be positive for all t < τ , as the limit of δu as t → −∞ is 1. The
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u

u

u

ω

ω

ω

(a)

(b)

(c)

α1 α̂ α2

(u(t), ω(t), r(t))α1

(u(t), ω(t), r(t))α2

−θ θ

C(τ, α2)

C(T, α2)(u(t), ω(t), r(t))α̂

Figure 3.7: This figure illustrates the overrotation setup for Lemma 3.4.1. (a) is the plane
{r = 0}, (b) is the plane {r = r(τ)}, and (c) is the plane {r = R}, where r(T ) = R. Pictured
are the curve C(τ) ⊂ W 0

+∩{r = r(τ)} and the curve C(T ) ⊂ W 0
+∩{r = R}. The trajectories

(u(t), ω(t), r(t))α1 and (u(t), ω(t), r(t))α2 each have their first intersection with the plane
{u = 0} when r = R. Lemma 3.4.1 guarantees the existence of α̂ and τ with τ < T such that
the curve (u(t), ω(t), r(t))α̂ intersects {u = 0} when r = r(τ), as pictured. See Lemma 3.4.1
for the precise statement.
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u

ω

δu = 0

δu = 0

δω = 0

(a) C(τ, α̂)

δu

δω

(b) SC(τ,α̂)

Figure 3.8: (a) The general form of C(τ, α̂) from Claim 3 in Lemma 3.4.1 under the assumption
that ω(τ, α1) > ω(τ, α2). The winding number of this curve is 1. Unlike in Figure 3.6, this
curve may be vertical without crossing the δu-axis, as C(τ, α̂) is parametrized by a, whereas
γ in Figure 3.6 is parametrized by t. (b) The general shape of SC(τ,α̂) based on (a).

concludes the proof for case (1) of the lemma.

If ω(τ, α1) < ω(τ, α2), then

I(Sγ) = I(C(τ, α̂)) = 2.

In this case, I(C(τ, α̂) is homotopic to the curve pictured in Figure 3.9(a), whose winding

number is computed in Figure 3.9(b).

This calculation finishes the proof: for the overrotation case there is exactly one value

τ0 ∈ (−∞, τ) such that δu(τ0, α̂) = 0. Notice that in this case, we also discover that

δω(τ, α̂) > 0, as pictured in Figure 3.9(a).

Now we can state the analog of Lemma 3.4.1 in Emden–Fowler coordinates.

Lemma 3.4.2. Assume the same hypotheses of Lemma 3.4.1 with the same T = lnR. Then

nonuniqueness means that there exists τ and α̂, with −∞ < τ < T , such that y(τ, α̂) = 0,

δy(τ, α̂) = 0. Moreover, one of the following two must hold:
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u

ω

δu = 0

δω = 0

δu = 0

δω = 0

(a) C(τ, α̂)

δu

δω

(b) SC(τ,α̂)

Figure 3.9: (a) The general form of C(τ, α̂) from Claim 4 in Lemma 3.4.1 under the assumption
that ω(τ, α1) < ω(τ, α2). (b) The general form of SC(τ,α̂) based on (a). Unlike in Figure 3.6,
this curve may be vertical without crossing the δu-axis, as C(τ, α̂) is parametrized by a,
whereas γ in Figure 3.6 is parametrized by t. The winding number of this curve is 2.

1. In the underrotation case, δy(t, α̂) > 0 for all t ∈ (−∞, τ). Moreover, δw(τ, α̂) < 0.

2. In the overrotation case, there is τ0, with −∞ < τ0 < τ < T , such that δy(τ0, α̂) = 0,

and δy(t, α̂) 6= 0 for t ∈ (−∞, τ0) ∪ (τ0, τ). Moreover, δw(τ, α̂) > 0.

Proof. First it clear that the signs and zeros of u(t, α̂) and y(t, α̂) agree for r > 0 since

u = r−λy. Furthermore, by (3.57), we know that the signs and zeros of δu and δy agree.

Lastly, by (3.27), we know that at a = α̂, t = τ , we have

δω(τ, α̂) =
∂w(τ, a)

∂a

∣∣∣∣
a=α̂
λ=0

=
(
(p− 1)|u′|p−2r(p−1)(λ+1) δu′

)∣∣
λ=0

.

Therefore, the sign of δw(τ, α̂) is the same as the sign of δω(τ, α̂).

Following the methodology in [7], we define the normal vector in the dual space to

T(y(t),w(t),r(t))aW̃p by

(δy∗(t, a), δw∗(t, a), δr∗(t, a)) = (ẏ, ẇ, ṙ(t))× (δy, δw, δr)|(t,a) . (3.58)

51



Unless the normal vector is being evaluated at a specific time, we will often omit the

dependence on time t and write the third component as δr∗ to mean δr∗(t). When discussing

δr∗ for a specific trajectory, we will also suppress the dependence on the initial condition a.

Lemma 3.4.3. On the trajectory (y(t), w(t), r(t))α̂ of Lemma 3.4.2, the third component of

(3.58),

δr∗(τ) = ẏ(τ) δw(τ)− ẇ(τ) δy(τ),

is positive in the underrotation case and negative in the overrotation case.

Proof. This lemma is an immediate consequence of Lemma 3.4.2. For both cases, we know

δy(τ, α̂) = 0, w < 0, and as y(t) is decreasing from y > 0 to y < 0, ẏ < 0. In the underrotation

case δw(τ, α̂) < 0 while for the overrotation case, δw(τ, α̂) > 0.

By Lemma 1.2.6, the normal vector (δy∗, δw∗, δr∗) has derivative

(δr∗)· = (pλ− n+ p) δr∗ + rp+λ(p−1) ((p+ λ(p− 1))f(u)− λuf ′(u)) δy. (3.59)

Lemma 3.4.4. As t→ −∞, the quantity δr∗ · e(n−p−pλ)t → 0

The proof of Lemma 3.4.4 requires a careful examination of u, y, and λ, so we include the

calculation of the limit below in full detail.

Proof. Employing the expression y = rλu to write ẏ = λrλu + rλ+1u′, and recalling that
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r = et and δy = rλ δu, we obtain

lim
t→−∞

e(n−p−pλ)t δr∗ =
ẏ δw − ẇ δy
r−(n−p−pλ)

=

(
λrλu+ rλ+1u′

)
δw

r−(n−p−pλ)
−
[
((p− 1)λ− n+ p)w − rp+λ(p−1)f(u)

]
δy

r−(n−p−pλ)

=

(
λrλu+ rλ+1u′

)
δw

r−(n−p−pλ)

−
[
((p− 1)λ− n+ p)u′|u′|p−2r(p−1)(λ+1) − rp+λ(p−1)f(u)

]
rλ δu

r−(n−p−pλ)

=

(
λrλu+ rλ+1u′

)
δw

r−(n−p−pλ)

−
[
((p− 1)λ− n+ p)u′|u′|p−2rp+pλ−1 − rp+pλ)f(u)

]
δu

r−(n−p−pλ)
.

Hence

lim
t→−∞

e(n−p−pλ)t δr∗ = (λrλ+n−p−pλu+ rλ+n−p−pλru′) δw

−
[
((p− 1)λ− n+ p)u′|u′|p−2rn−1 − rnf(u)

]
δu.

For the second term, u′|u′|p−2, rn−1, rn → 0, f(u)→ f(a), and δu→ 1. Hence

[
((p− 1)λ− n+ p)u′|u′|p−2rn−1 − rnf(u)

]
δu→ 0

independently of the chosen parameter λ ∈ R. For the first term, if 0 < λ ≤ −p
p−q1 , we may

conclude that λ+ n− p− pλ > 0 and δw → 0, forcing the first term to vanish. Notice

(λrλ+n−p−pλu+ rλ+n−p−pλru′) δw = λrλ+n−p−pλ(u+ ru′)(p− 1)|u′|p−2rpλ+p−λ−1 δu′

= (p− 1)
(
rn−1u|u′|p−2 + rn|u′|p−2u′

)
δu′,

which is independent of λ. Thus we conclude the first term must vanish independently of λ.
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Therefore, for any λ ∈ R,

e(n−p−pλ)tδr∗ → 0 as t→ −∞.

Referring back to the linear differential equation for δr∗ in (3.59), let

I(u, λ) = (p+ λ(p− 1))f(u)− λuf ′(u). (3.60)

Then along a given trajectory (y(t, a), w(t, a), r(t)), we can compute δr∗ at any time t for

that trajectory with the following integral,

δr∗(t, a) = e(pλ−n+p)t

∫ t

−∞
e−(pλ−n+p)sr(s)p+λ(p−1)I(u(s, a), λ) δy(s, a) ds.

As r(t) = et and y = rλu, this can be rewritten as

δr∗ = r(t)pλ−n+p

∫ t

−∞
r(s)nI(u(s, a), λ) δu(s, a) ds. (3.61)

Once a particular trajectory has been identified, we will frequently suppress the dependence on

the initial condition u(0) = a and write u δu to mean u(s, a) δu(s, a). As we have converted

from y back to u, notice the Emden–Fowler transformation only manifests itself in the

λ-dependence of I(u, λ).

Let us now define a second 2-form that does not appear in [7]:

Wp(y(a), w(a))(t) :=

∣∣∣∣∣∣∣
y(t, a) (p− 1)w(t, a)

δy(t, a) δw(t, a)

∣∣∣∣∣∣∣ = y δw − (p− 1)w δy|(t,a) . (3.62)

This expression Wp will also appear in the Morse index calculations in Chapter 4. For our

purposes here, we select λ = λ̂. Omitting in the notation below the dependence on time and

54



the initial condition u(0) = a, we obtain

Ẇp =
(
pλ̂− n+ p

)
Wp + rp+λ̂(p−1) ((p− 1)f(u)− uf ′(u)) δy, (3.63)

which is a linear differential equation. We compute

lim
t→−∞

Wp(t)e
(n−p−pλ̂)t = lim

t→−∞
r(n−p−pλ̂)t (y δw − (p− 1)w δy) (3.64)

= lim
t→−∞

r(n−p−pλ̂)t
(
rλ̂u δw − (p− 1)wrλ̂ δu

)
(3.65)

= lim
t→−∞

[
rλ̂+n−p−pλ̂u δw − (p− 1)wrλ̂+n−p−pλ̂ δu

]
. (3.66)

The quantity λ̂ + n − p − pλ̂ is positive; thus rλ̂+n−p−pλ̂ → 0. Moreover, w → 0, u → a,

δw → 0, and δu→ 1, and we conclude

lim
t→−∞

Wp · e(n−p−pλ̂)t = 0. (3.67)

Hence we may use an integrating factor to solve (3.63), and obtain

Wp(t) = r(t)−(n−p−pλ̂)

∫ t

−∞
r(s)n [(p− 1)f(u)− uf ′(u)] δu(s) ds.

In terms of K(u) from hypothesis (F2), we may write

Wp(t) = r(t)−(n−p−pλ̂)

∫ t

−∞
r(s)nf(u) [(p− 1)−K(u)] δu(s) ds. (3.68)

Remark 3.4.5. Lastly, we note that for either the underrotation or overrotation case for the

trajectory identified in Lemma 3.4.2, then by the definition of Wp(τ) = 0 given in (3.62) we

know Wp(τ) = 0, as the vectors (y, (p− 1)w) and (δy, δw) are parallel at t = τ .

To show uniqueness in general, there are two cases to consider: underrotation and

overrotation.
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3.4.1 Eliminate Underrotation

To eliminate the possibility that underrotation of the invariant manifold leads to nonunique-

ness, we set λ = λ̂ in the expressions for δr∗. For the solution identified in Lemmas 3.4.1

and 3.4.2, we have established that t = τ is the time when u(t) = 0 with δu = 0 and δv < 0

(by the assumption of underrotation). Then

δr∗(τ) = r(τ)pλ̂−n+p

∫ τ

−∞
r(s)n

p

q1 − p
f(u) ((q1 − 1)−K(u)) δu ds. (3.69)

By the remarks on K(u) (see (3.4)), we know that (q1 − 1)−K(u) is positive for u < θ and

negative for u > θ, hence

f(u) ((q1 − 1)−K(u)) ≤ 0, u > 0.

(This statement holds for f nonnegative by replacing θ with 0). In underrotation, δu > 0 for

all t < τ ; thus the integrand of (3.69) is nonpositive. Hence δr∗(τ) is nonpositive. However,

δr∗(τ) ≤ 0 contradicts Lemma 3.4.3. Therefore, the underrotation case is impossible.

3.4.2 The overrotation cases

Suppose that for the solution trajectory identified by lemmas 3.4.1 and 3.4.2 underrotation

does not occur; by Lemma 3.4.2, this hypothesis implies that δu = 0 exactly once (at t = τ0)

before u = 0. Let u(τ0) = u0 > 0. Recall that θ from condition (F1) satisfies f(u) < 0 for

u < θ and f(u) > 0 for u > θ if f is sign-changing. The possibility that f is nonnegative is

satisfied by setting θ = 0.

If u0 = θ. Let us first consider a very specific case: suppose that the value u0 described

above corresponds exactly to θ, at which point f(u) = 0. Then we set λ = 0 and find

I(u, 0) = pf(u).
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Equation (3.61) becomes

δr∗(τ) = r(τ)p−n
∫ τ

−∞
r(s)npf(u)δu ds > 0,

as f(u), δu > 0 for u > u0 = θ and f(u), δu < 0 for u < u0 = θ. However, this contradicts

Lemma 3.4.3. Hence we cannot have nonuniqueness if u0 = θ.

Therefore, for the remainder of the proof, we will address overrotation with the basic

assumption that u0 6= θ. Imagine that λ0 can be chosen to force I(u, λ0) to be zero at some

time, in particular at t = τ0 when u = u0. Then we can explicitly compute what λ0 must be

and obtain

λ0 =
pf(u0)

u0f ′(u0)− (p− 1)f(u0)
. (3.70)

We recognize the denominator from (AP3); unlike [2], we will not require it to be nonzero

or have a particular sign. Assuming for the moment that this λ0 is defined and satisfies the

upper bound λ̂, then I(u, λ0) simplifies dramatically to the following expression:

I(u) := I(u, λ0) = λ0 (K(u0)−K(u)) f(u). (3.71)

(a) (b)

Figure 3.10: This figure assumes u0 > θ, with f(u) = u3 − u. (a) is a plot of K(u0)−K(u)
(dashed, with its vertical asymptote at u = θ included), and f(u), solid. The product of
(K(u0)−K(u))f(u) is in (b). Notice this product only changes signs at u = u0.

Suppose f changes signs at u = u0. At first glance, I(u) appears to change signs twice: at
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θ

Λ(u)

λ̂

Case (1)

Case (2)

Case (3)

u

Figure 3.11: The graph of Λ(u) from (3.72), with p = 1.6, n = 3 and f(u) = u3 − u2. This
curve graphs the appropriate choice of λ0 given u0. The vertical asymptote occurs when
uf ′(u)− (p− 1)f(u) = 0, while the horizontal asymptote is the line Λ = λ̂. The x-intercept
occurs at u0 = θ.

u = u0 and u = θ. If u0 > θ, however, by (F2) the expression (K(u0)−K(u)) f(u) is negative

for u < u0 and positive for u > u0; see Figure 3.10. If u0 < θ, then (K(u0)−K(u)) f(u) is

positive for u < u0 and negative for u > u0. Hence it changes signs exactly once, at u0.

If f is nonnegative, then I(u) is either zero, or (K(u0)−K(u)) f(u) satisfies the same

statement as u0 > θ above. We will prove this case as part of Case (3), below.

To determine whether or not λ0 is a valid choice for λ, we must understand the quantity

u0f
′(u0)− (p− 1)f(u0) in the expression for λ0. In particular, as u0 is not a quantity that is

easy to determine, let

Λ(u) =
pf(u)

uf ′(u)− (p− 1)f(u)
, (3.72)

so that Λ(u0) = λ0. This curve is illustrated in Figure 3.11. There are three cases to consider:

1. u0f
′(u0) − (p − 1)f(u0) = 0. Notice this case is equivalent to K(u0) = p − 1. Since

p < q1, then by the remarks on K(u), we determine that u0 < θ. We consider this

scenario in Case (1) below.
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2. u0f
′(u0)− (p− 1)f(u0) < 0. We will prove overrotation cannot occur in Case (2) below.

3. u0f
′(u0)− (p− 1)f(u0) > 0. We will consider this situation in Case (3) below. This

case will also cover f nonnegative.

These three possibilities are shown in Figure 3.11. In Figure 3.11, the region to the right,

which corresponds to case (3), shows that the appropriate value of λ0 is strictly less than the

upper bound λ̂. This fact is the subject of the next lemma.

Lemma 3.4.6. If u0 > θ, then λ0 < λ̂.

Proof. We first note that λ0 6= 0 if u 6= θ. Moreover, if λ < 0, then it satisfies λ < λ̂, so

assume λ > 0. Notice

1

λ0

=
u0f

′(u0)

pf(u0)
− p− 1

p
=
K(u0)− (p− 1)

p
.

If u0 > θ, then we know that K(u0) > q1 − 1. Hence

1

λ0

>
q1 − 1− (p− 1)

p
, ⇒ λ <

−p
p− q1

= λ̂.

3.4.3 Proof for Case (1) (the asymptote case)

In the asymptote case, we consider u0f
′(u0)− (p− 1)f(u0) = 0, or equivalently, K(u0) =

p− 1. As u0 must be smaller than θ, for all u ∈ (0, u0), f(u) < 0. Moreover, by (F2), for all

t ∈ (τ0, τ), K(u) ≥ K(u0). Hence for all t ∈ (τ0, τ),

uf ′(u)

f(u)
> p− 1 =⇒ (p− 1)f(u)− uf ′(u) > 0. (3.73)

Recall

Wp(t) = r(t)−(n−p−pλ̂)

∫ t

−∞
r(s)nf(u(s, a)) [(p− 1)−K(u(s, a))] δu(s) ds.
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For this particular region, we write

Wp(τ) = r(τ)−(n−p−pλ̂)

(∫ τ0

−∞
r(s)nf(u) [(p− 1)−K(u)] δu ds

+

∫ τ

τ0

r(s)nf(u) [(p− 1)−K(u)] δu ds

)
=

(
r(τ0)

r(τ)

)(n−p−pλ̂)

Wp(τ0) + r(τ)−(n−p−pλ̂)

∫ τ

τ0

rnf(u) [(p− 1)−K(u)] δu ds.

The last integral is negative, as δu < 0 for t ∈ (τ0, τ) and (3.73) must hold. We can compute

Wp(τ0) directly:

Wp(τ0) = y(τ0, α̂) δw(τ0, α̂)− (p− 1)w(τ0, α̂) δy(τ0, α̂) = y(τ0, α̂) δw(τ0, α̂),

which must be negative as y > 0 and δw < 0. We conclude Wp(τ) < 0. Yet at τ , we know

y(τ, α̂) = δy(τ, α̂) = 0, and therefore

Wp(τ) = y(τ, α̂) δw(τ, α̂)− (p− 1)w(τ, α̂) δy(τ, α̂) = 0. (3.74)

Thus Case (1) is impossible.

3.4.4 Proof for Case (2)

To show that the invariant manifold cannot overrotate to cause nonuniqueness in the case

u0f
′(u0)− (p− 1)f(u0) < 0, we again use Wp(y, w)(t) with λ = λ̂ to write

Wp(τ) =

(
r(τ0)

r(τ)

)(n−p−pλ̂)

Wp(τ0) + r(τ)−(n−p−pλ̂)

∫ τ

τ0

rnf(u) [(p− 1)−K(u)] δu ds.

As before, Wp(τ0) < 0. Suppose u0 > θ, which implies f(u0) > θ. Then

u0f
′(u0)− (p− 1)f(u0) < 0 ⇒ K(u0) < p− 1 < q1 − 1, (3.75)
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which is a contradiction for u > θ; thus u < θ. As u is monotone decreasing and K is

nonincreasing (or nondecreasing as u↘), we conclude that the expression

(p− 1)f(u)− uf ′(u) = f(u) [(p− 1)−K(u)] (3.76)

is positive for all t ∈ (τ0, τ). As in the Case (1) region, we know that for t ∈ (τ0, τ), the

component δu < 0. Hence the last integrand expression is negative. We know that for

t ∈ (τ0, τ), δu < 0; this fact together with (3.73) allows us to conclude that Wp(τ) < 0.

However, this is a contradiction, as Wp(τ) must be zero.

3.4.5 Proof for Case (3)

f sign-changing at u = θ. We conclude with the case u0f
′(u0) − (p − 1)f(u0) > 0. In

this case, we cannot arrive at any contradictions in the style of (3.75). Therefore, we must

consider two possibilities: u0 > θ and u0 < θ.

If u0 > θ, then by Lemma 3.4.6, λ0 is well-defined and satisfies λ < λ̂. Moreover, we see

that f(u0) > 0 in (3.70) implies λ0 > 0. Hence I(u) in (3.71) changes sign once from positive

to negative as u decreases through u0. As a result, the expression for δr∗,

δr∗(τ) = r(τ)pλ−n+p

∫ τ

−∞
r(s)nI(u(s, a), λ) δu(s, a) ds,

is positive. But this contradicts Lemma 3.4.3.

Now suppose u0 < θ. We choose λ0 to be whatever value of λ forces I(u, λ) to change

signs at u0. Since u0 < θ, then as f(u0) < 0, then we conclude λ0 < 0 < λ̂. Recall the

integral definition of δr∗ from (3.61):

δr∗(τ, a) = r(τ)pλ−n+p

∫ τ

−∞
r(s)nI(u(s, a), λ) δu(s, a) ds.

Although the integrand contains u and δu, which are independent of λ, we take extra care

here to calculate δr∗ because we passed through the Emden–Fowler transformation to arrive
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at (3.61). This precaution reconciles the two different ways to calculate δy: the first way

is simply δy = rλ δu, which if r > 0 exists for all λ. However, δy(t) is also defined by the

intersection curve on W̃p, which does not necessarily exist for λ < 0 in the limit r → 0, as

described in Section 3.2.1.

We remark first that by Lemma 3.4.4, the integral definition above does solve (3.59) for

any λ ∈ R. Let ε > 0 be sufficiently small so that the first zero of δu = r−λ δy occurs at

t = τ0 > ln(ε). Then the manifold W̃p = T [W u,c
p ∩ {ε ≤ r ≤ R}] described in Section 3.2.1

captures the sign-switching behavior at τ0. However, for any ε0 ∈ (0, ε), we can just as easily

construct W̃ ′
p = T [W u,c

p ∩ {ε0 ≤ r ≤ R}] so that W̃p ⊂ W̃ ′
p. As δu > 0 for all t < τ0,

∫ ε

ε0

r(s)nI(u(s, a), λ) δu(s, a) ds > 0,

as I(u(t, a)) must be positive for all t ∈ [ln(ε0), ln(ε)]. Therefore,

δr∗(τ) > r(τ)pλ−n+p

∫ τ

ε

r(s)nI(u(s, a), λ) δu(s, a) ds.

However, as I(u, λ) and δu both change signs from positive to negative at τ0, we conclude

that the integrand must always be nonnegative. Hence

δr∗(τ) > 0.

To verify that this conclusion contradicts Lemma 3.4.3, we must make sure that Lemma 3.4.3

is still true for λ < 0. If we convert δr∗ to an expression containing u, ω, δu, and δω rather

than y and w, we obtain

δr∗(τ) = rpλ (λu+ u̇) δω − (λ(p− 1)ω + ω̇) δu
∣∣
t=τ

= rpλ (u̇ δω) |t=τ < 0.

Thus Case (3) is impossible for sign-changing f .
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f nonnegative. We first show that f nonnegative must fall under Case (3). Notice

u0f
′(u0)− (p− 1)f(u0) ≤ 0, ⇒ K(u0) ≤ p− 1 < q1 − 1.

By the remarks on K(u), this statement implies that u0 < θ, which is a contradiction, as

θ = 0 for f nonnegative.

If f(u) ≥ 0 for all u > 0, then λ0 in (3.70) must be positive, and by Lemma 3.4.6, we know

that λ0 is a valid choice for λ. It is possible that I(u) ≡ 0; this would be the case if f(u) = uq.

In this scenario, we conclude by (3.61) that δr∗(τ) ≡ 0; this contradicts Lemma 3.4.3.

If I(u) is not identically zero, then the nonincreasing behavior of K(u) implies

(K(u0)−K(u))f(u) δu ≥ 0.

Hence the sign of

δr∗(τ) = r(τ)pλ−n+p

∫ τ

−∞
r(s)nI(u(s, a), λ) δu(s, a) ds,

is determined by λ0. As λ0 > 0, we conclude δr∗(τ) > 0. However, this contradicts

Lemma 3.4.3. Thus Case (3) is impossible.

3.5 Summary

Over the past several pages, we have performed the following:

1. Converted ∆pu+ f(u) = 0 with radial symmetry and appropriate boundary conditions

into an ODE.

2. Established existence of solutions by using the Emden–Fowler transformation and

setting λ = λ̂.
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3. Defined the winding number for the tangent vector field (δu, δv, 0), and used this to

establish the number of zeros for underrotation and overrotation for a trajectory that

intersects {u = 0} tangentially at t = τ .

4. Computed two vector components, the third component of the normal vector and the

third component of (y, w, r)× (δy, δw, δr), in two different ways.

5. Showed how a careful selection of λ reveals a contradiction between the definitions of

δr∗ and Wp.

Hence we conclude that it is impossible for a positive solution u(t, a) to intersect {u = 0}

tangentially. As this type of intersection must occur to violate uniqueness, we have proven

Theorem 3.0.2.
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CHAPTER 4: MORSE INDICES OF SIGN-CHANGING SOLUTIONS

In this chapter we relate two different properties for a radial solution u of the semilinear

elliptic equation 
∆u+ f(u) = 0 on BR(0)

u = 0 on ∂BR(0).

(4.1)

On one hand, one naturally associates (4.1) with an Euler functional and finds that solutions

of (4.1) are critical points of this functional. In Section 4.2, we use Morse theory to define

the Morse index of the functional at a solution u to measure the directions of decrease of

the functional. We restrict our attention to radial functions and compute the Morse index

of the functional on the subspace of radial functions. On the other hand, we associate u

with a tangent vector field (δu, δv) whose behavior is governed by the variational equations

of (4.1). In particular, we may count the number of zeros of δu on BR(0). We use Sturm-

Liouville theory in Section 4.3 to prove Theorem 4.3.4, which demonstrates how the two

approaches—the Morse index of a radial solution u and the number of zeros of δu—agree.

With this proposition, we then proceed in Sections 4.4 and 4.5 to prove a series of results

about the Morse indices of solutions to (4.1).

Remark 4.0.1. A note on notation. There are several integer-valued quantities referred to

below. For clarity’s sake, k generally refers to the number of zeros a solution u may be

attaining on [0, R] for some particular radius R, while µ refers to the number of zeros of δu

on [0, R], and M denotes the Morse index of u (restricted to the subspace of radial functions

in W 1,2
0 (Ω)). Occasionally the Morse index will be the exact number of zeros of both u and

δu, in which case the distinction becomes blurred.
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4.1 Statement of theorems

We establish in Section 4.4 a series of results on the tangent vector component δu defined

in (3.44). The results on δu are valid for both the regular Laplacian and the p-Laplacian.

As these results may be useful for future work on the p-Laplacian, we leave the propositions

about δu in their most general form. Therefore, the PDE we consider in Section 4.4 is


∆pu+ f(u) = 0 on BR(0)

u = 0 on ∂BR(0).

(4.2)

where 1 < p ≤ 2 and f(u) ∈ C1 satisfies

(H1) f(−u) = −f(u), and

(H2) u [uf ′(u)− (p− 1)f(u)] is nonnegative.

We recognize condition (H2) as similar to (AP3) from [2]. Unlike in Chapter 3, we require

uf ′(u)− (p− 1)f(u) and u to have the same sign. Examples include

(A) the regular Laplacian (p = 2) with f(u) = |u|q−2u− νu, q > 2, ν ∈ R and

(B) f(u) = |u|q1−2u+ ν|u|q2−2u, with p ∈ (1, 2], q1 > 2, q2 ≥ 2, and ν ≥ 0.

Class example (B) is new, as it does not satisfy the requirements of the uniqueness proof in

Chapter 3. With these hypotheses, the main results on the tangent vector component δu are

the following:

1. (Proposition 4.4.5) The number of zeros of δu along any solution u solving the Dirichlet

problem on BR(0) with k zeros is greater than or equal to k.

2. (Proposition 4.4.8) For any k, there exists a solution with k zeros whose vector compo-

nent δu has k or k + 1 zeros.
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3. (Proposition 4.4.9) If a solution with k zeros on BR1(0) has µ > k (where µ is the

number of zeros of the vector component δu), then if that solution u extends to a

solution with j > k zeros on BR2(0), R2 > R1, it cannot possibly be a unique solution

(i.e. there is another solution to the Dirichlet problem on BR2(0) with j zeros).

4. (Proposition 4.4.10) If there are at least two regular solutions whose δu components

have k zeros on BR(0), then there must be a solution whose δu component has more

than k zeros on BR(0).

To consider the Morse index of sign-changing solutions, we will restrict our attention to the

regular Laplacian; i.e. we will set p = 2 in (4.2). The main results of Section 4.5-4.6 are the

following:

1. (Theorem 4.5.1) The Morse index of any solution u solving the Dirichlet problem on

BR(0) with k zeros is greater than or equal to k.

2. (Theorem 4.5.2) For any k, there exists a solution with k zeros whose Morse index is k.

3. (Theorem 4.5.3) If a solution with k zeros on BR1(0) has Morse index > k, or if its

Morse index is k and δu is an eigenfunction, then if extends to a solution with j > k

zeros on BR2(0), R2 > R1, it cannot possibly be a unique solution (i.e. there is another

solution to the Dirichlet problem on BR2(0) with j zeros).

4. (Theorem 4.6.1) If there is a solution u with k zeros on BR(0) and M = k + `, ` ≥ 1,

then for any integer j ∈ {k, k + 1, . . . , k + `}, there is a solution uj with k zeros on

BR(0) and M = j.

We remark that in each theorem, the Morse index refers to the Morse index restricted to the

subspace of radial functions.
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4.2 Morse index

Let Ω ⊂ Rn be a domain, and consider the Sobolev space W 1,2
0 (Ω) as described in

Section 1.3.1. Weak solutions of

∆u+ f(u) = 0, u = 0 on ∂B (4.3)

are critical points of the Euler functional J2(u) defined in (1.14). For the regular Laplacian,

the functional J2 yields an evolution equation whose linearized operator at a solution u of

(4.3) is given by

Lug = ∆g + f ′(u)g. (4.4)

The Morse index of the operator Lu is the number of unstable (positive) eigenvalues of Lu; it

could theoretically be infinite. It is well known in this case ([3]), however, that the linearized

operator Lu is a compact perturbation of the Laplacian whose spectrum is real with only a

finite number of unstable eigenvalues. Therefore, the critical points of J2 (the solutions to

(4.3)) have a finite Morse index. We define a bilinear form B by

B(v, w) =

∫
v

(∇v · ∇w − f ′(u)vw) dx, (4.5)

where v, w ∈ W 1,2
0 (Ω). The Morse index is then the supremum of the dimensions of the

subspaces on which B is negative definite.

We will consider the Morse index of Lu restricted to the subspace of radial functions in

W 1,2
0 (Ω). Throughout this chapter, we will refer to the Morse index of Lu restricted to the

subspace of radial solutions as the Morse index of the solution u. In general, as the space of

radial solutions is a subspace of W 1,2
0 (Ω), the Morse index M that we compute is less than or

equal to the Morse index of Lu defined in (4.4).
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4.3 Sturm-Liouville theory

We consider the space of radial solutions to

∆u+ f(u) = 0

on BR(0) with Dirichlet boundary conditions; thus the eigenvalue problem for the linearized

operator in (4.4) can be written

Lug = g′′ +
n− 1

r
g′ + f ′(u)g = λg. (4.6)

Observe that, by abuse of language, we use the same notation Lu in (4.6) as in (4.4); however,

this operator is the operator in (4.4) restricted to the space of radial solutions. Thus the

Morse index M that we compute is in fact the Morse index of the operator in (4.6).

By multiplying each side by rn−1, we rewrite (4.6) as

(
rn−1g′

)′
+ rn−1f ′(u)g = λrn−1g. (4.7)

Equation (4.7) is in SL form as described in Section 1.4. The boundary conditions on the

eigenfunctions g are the same as those for u, namely g′(0) = 0 and g(R) = 0. From the

discussion in Section 1.4 (as well as the discussion in Section 4.2), we know that L must

have a finite number of positive eigenvalues λ, and the eigenvalues form a discrete and real

sequence

λ1 > λ2 > · · · > λn > · · · → −∞.

Moreover, on the interval (0, R), the eigenfunction gj with eigenvalue λj must have j − 1

zeros; together with the boundary condition gj(R) = 0, we conclude that on BR(0), the

eigenfunction gj has j zeros.

To calculate the amount of oscillation of the eigenfunction with the smallest positive

69



eigenvalue, we will make use of the tangent vector component δu of the vector field (δu, δω, δr)

defined in (3.44). To construct an ODE for δu in the regular Laplacian setting, let p = 2 and

consider the vector field (δu, δv, δr), where v = (ω/r)|p=2. The variational equations for this

vector field are

δu′ = δv

δv′ = −d− 1

r
δv − f ′(u)δu

δr′ = 0.

Here we use ′ = d
dr

rather than passing through r = et to write · = d
dt

. Notice

δu′′ = δv′ = −n− 1

r
δv − f ′(u)δu,

or equivalently

δu′′ +
n− 1

r
δv + f ′(u)δu = 0.

Hence (
rn−1δu′

)′
+ rn−1f ′(u)δu = 0, (4.8)

which suggests that δu solves (4.7) with eigenvalue 0. However, although δu′(0) = 0 it is not

necessarily the case (and will frequently not be the case) that δu(R) = 0. Despite the differing

boundary conditions, we apply below the same techniques from the Sturm Comparison

Theorem to demonstrate that the oscillatory behavior of δu determines the Morse index of u.

If δu satisfies δu(R) = 0 then δu is an eigenfunction on [0, R] with eigenvalue 0. In this

case, the Morse index of u is immediate: if δu has µ zeros on [0, R], then the Morse index

of u is µ − 1. As δu(R) is not necessarily zero, however, we cannot assume that δu is an

eigenfunction with eigenvalue 0. Let gM be the eigenfunction whose eigenvalue λM is the

smallest positive eigenvalue; then the Morse index of u on [0, R] is M . The first lemma shows

that δu oscillates in [0, R] at least as much as gM .
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(a) (b)

(c) (d)

Figure 4.1: In (a)-(d), the solid black curve is the eigenfunction u4 with the smallest positive
eigenvalue (in this example, the smallest positive eigenvalue is λ4, as there are three interior
zeros on (0, R)). The dashed curve is the eigenfunction u5 for λ5, the largest negative
eigenvalue, and the dotted curve is the tangent vector component δu. In this figure, δu does
not satisfy δu(R) = 0; thus it is not an eigenfunction. (a) illustrates the Theorem 1.4.4, the
Sturm Comparison Theorem, as well as Theorem 1.4.5. (b) compares u4 with δu; we note
that δu must have at least 4 zeros according to Lemma 4.3.1. (c) compares u5 with δu, and
by Lemma 4.3.2, we know that δu cannot have more than 5 zeros. (d) combines all of the
information about δu based on u4 and u5; as a result, δu must have exactly 4 zeros.

Lemma 4.3.1. The number of zeros of δu on [0, R] is greater than or equal to M .

Proof. We write the expressions (4.8) and (4.7) for δu and gM , respectively, multiply each

expression by the other function, and subtract:

(
rn−1δu′

)′
gM + rn−1f ′(u)δu gM = 0

−
(
rn−1g′M

)′
δu− rn−1f ′(u)gM δu = −λMrn−1gM δu

(
rn−1δu′

)′
gM −

(
rn−1g′M

)′
δu = −λMrn−1gM δu.
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The left-hand side can be rewritten to attain

[
rn−1 (gM δu′ − g′M δu)

]′
= −λMrn−1gM δu. (4.9)

Integrating (4.9) from 0 to x ∈ [0, R] yields

xn−1 (gM(x)δu′(x)− g′M(x)δu(x)) = −λM
∫ x

0

rn−1gM δu dr, (4.10)

where the left-hand side uses the fact that g′(0) = δu′(0) = 0.

Now suppose x1 is the first zero in [0, R] for gM . Then gM (x) is either positive or negative

for all x < x1. Then (4.10) becomes

−xn−1
1 g′M(x1)δu(x1) = −λM

∫ x1

0

rn−1gM δu(r) dr,

We proceed with a sign argument. Notice that if gM(x) > 0 for x < x1, then as gM(x1) is

decreasing, g′M(x1) < 0. If gM(x) < 0 for x < x1, then g′M(x1) > 0. As either case results in

opposite signs for gM and g′M , we therefore assume without loss of generality that gM (x) > 0

for x < x1. Hence the signs are

(+)δu(x1) = (−)

∫ x1

0

(+)δu dr.

If δu did not change signs on (0, x1), there would be a contradiction. Hence δu must have a

zero before the first zero of gM . Let us denote by y1 the first zero of δu, then y1 < x1.

Now let xj < xj+1 be any two values in [0, R] that yield consecutive zeros of gM . We

integrate (4.9) from xj to xj+1 to obtain

xn−1
j+1 (−g′M(xj+1)δu(xj+1))− xn−1

j (−g′M(xj)δu(xj)) = −λM
∫ xj+1

xj

rn−1gM δu dr,

where the left-hand side uses the fact that gM(xj) = gM(xj+1) = 0. Choosing either gM > 0
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or gM < 0 in (xj, xj+1) forces the same sign-changing behavior in δu, so suppose without loss

of generality that gM > 0 in (xj, xj+1). Then g′M(xj) > 0 and g′M(xj+1) < 0, and the signs

become

(+) ((+)δu(xj+1))− (+) ((−)δu(xj)) = (−)

∫ xj+1

xj

(+) δu dr.

Again δu must change signs to avoid contradiction.

Hence before the first zero of gM there must be a zero of δu, and between any two zeros

of gM there must be a zero of δu. Therefore, δu cannot have fewer zeros that gM .

The next lemma has as analogous proof as the previous one, so we omit it.

Lemma 4.3.2. The number of zeros of δu on [0, R] is less than or equal to M + 1.

If δu is an eigenfunction, then it would have exactly M + 1 zeros on [0, R]. To prove

Lemma 4.3.2 if δu is not an eigenfunction, it suffices to compare δu with gM+1, where gM+1 is

the eigenfunction with the largest negative eigenvalue. Similar computation to the preceding

proof shows that gM+1 must have a zero before the first zero of δu and between any consecutive

zeros of δu.

Lemma 4.3.3. If δu is not an eigenfunction, then the number of zeros of δu on [0, R] is

equal to M , the Morse index of u.

Proof. We compare δu to gM+1, which has M + 1 zeros denoted {x1, x2, . . . , xM+1}; k of its

zeros occur in [0, R) and the (M + 1)’th occurs when r = R. Suppose δu had M + 1 zeros,

{y1, y2, . . . , yM+1}. Then by the previous lemmas, we can compare the sets and conclude that

xi ≤ yi for each i = {1, . . . ,M + 1}. However, xj+1 = R, and as δu is not an eigenfunction,

then δu(R) 6= 0. Therefore, yM+1 must be smaller than R, which is a contradiction.

The results of these lemmas can now be summarized by the following theorem relating µ,

the number of zeros of δu, to the Morse index of u on BR(0).
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Theorem 4.3.4. Let u be a radial solution to (4.1), and let µ be the number of zeros of δu

on BR(0). If δu(R) = 0, then the Morse index of u on BR(0) is µ− 1. If δu(R) 6= 0, then

the Morse index of u on BR(0) is µ.

If δu(R) = 0, then δu is an eigenfunction with eigenvalue 0, proving the first statement of

Theorem 4.3.4. If δu(R) 6= 0, then Lemma 4.3.3 proves the second statement.

4.4 Proofs of results on δu, 1 < p ≤ 2

In this section, we focus on the behavior of the tangent vector component δu. As these

results are true for radial solutions for ∆pu for 1 < p ≤ 2, and not solely the case p = 2, we

prove each statement in the more general p-Laplacian setting.

We recall the center-unstable manifold W u,c
p defined in (3.17) with intersection curve C(τ)

defined in (3.42). The winding number of δu has the same meaning as in Section 3.3.2. In

particular, we recall the following principle, a consequence of Lemma 3.3.1:

The algebraic winding number of δu on [0, R] is equal to µ.

In the subsequent section, Section 4.5, we will connect the results on δu for the regular

Laplacian (p = 2) to results on the Morse indices of sign-changing solutions.

Let us first recall the variational equations (3.48)-(3.50) for the tangent vector (δu, δω, 0)

from Section 3.3.2:

˙δu =
1

p− 1
|ω|

2−p
p−1 δω,

˙δω = (p− n) δω − rpf ′(u) δu

δ̇r = 0.

From the construction of the winding number, the following lemma is immediate.

Lemma 4.4.1. Suppose a solution has u(t, a) = 0 at some time t = τ . If µ is even at t = τ ,

then either δu(τ, a) > 0, or δu(τ, a) = 0 with δω(τ, a) > 0.

If µ is odd at t = τ , then either δu(τ, a) < 0, or δu(τ, a) = 0 with δω(τ, a) < 0.
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Proof. As the initial condition of the tangent vector (δu, δω, δr) is (1, 0, 0), the winding begins

in the right-half of the (δu, δω)-plane. An even net number of crossings means either a return

to the right-half plane, where δu > 0, or (δu, δω) curve ends on the positive δω-axis. An odd

net number of crossings means the curve ends either in the left-hand plane or on the negative

δω-axis.

Recall the 2-form Wp(y, w)(t) from Section 3.4.4. We will use the same construction for

(u, ω) below.

Definition 4.4.2. The 2-form Wp(u, ω)(t) along a solution curve u(t, a) is defined by the

determinant

Wp(u, ω)(t) =

∣∣∣∣∣∣∣
u (p− 1)ω

δu δω

∣∣∣∣∣∣∣ = u δω − (p− 1)ω δu.

We will often suppress the dependence on (u, ω). Although Wp(t) is real-valued, we notice

that Wp(t) can be viewed as the length of the vector (u, ω, 0)× (δu, δω, 0) which is parallel

to the r-axis. We use Wp(t) to understand how a particular solution u(t, a) must wind about

the r-axis as it attains zeros. In particular, notice the rule

“δu = 0 when u = 0 =⇒ Wp = 0, ” (4.11)

as the two vectors (u, (p− 1)ω) and (δu, δω) are parallel at that moment.

Lemma 4.4.3. The quantity Wp(t) for a solution (u(t), ω(t), r(t))a has an explicit analytical

expression as

Wp(t) = rp−n
∫ t

−∞
rd
(

(p− 1)f(u)− u df
du

)
δu ds.

Proof. For any radial solution u(t, a) solving (4.1) on W u, as t→ −∞, (u, (p− 1)ω)→ (a, 0)
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and (δu, δω)→ (1, 0). Therefore, Wp(t)→ 0. Notice further that

Ẇp = u̇ δω + u ˙δω − (p− 1)ω̇ δu− (p− 1)ω ˙δu

= ω|ω|
2−p
p−1 δω + u

(
(p− n)δω − rp df

du
δu

)
− (p− 1) ((p− n))ω − rpf(u)) δu− ω|ω|

2−p
p−1 δω

= (p− n)Wp + rp
(

(p− 1)f(u)− u df
du

)
δu.

Rearranging terms gives the following linear differential equation:

Ẇp + (n− p)Wp = rp
(

(p− 1)f(u)− u df
du

)
δu. (4.12)

Notice

lim
t→−∞

Wp(t)e
(n−p)t = 0

as Wp → 0 and n− p ≥ 0. Recalling that r = et, we now solve (4.12) using an integrating

factor to obtain

Wp(t) = rp−n
∫ t

−∞
r(s)n

(
(p− 1)f(u(s, a))− u(s, a)

df

du
(s, a)

)
δu(s, a) ds.

We often suppress the (s, a) when the initial condition is understood, and write

Wp(t) = rp−n
∫ t

−∞
rn
(

(p− 1)f(u)− u df
du

)
δu ds.

The above lemma is true for any nonlinearity f ∈ C1 satisfying (H2). For an explicit

example, in case (A), with p = 2 and f(u) = |u|q−2u− νu, we can calculate

(p− 1)f(u)− uf ′(u) = (2− q)|u|q−2u.

For any particular solution u(t, a), let tk refer to the time when that solution attains its kth
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zero.

Lemma 4.4.4. Suppose a solution has µ1 at tk1 and µ2 at tk2 > tk1. Then µ2 > µ1.

Proof. By Lemma 3.3.1, it is clear that µ2 ≥ µ1, as a solution trajectory u(t, a) cannot lose

instances where δu = 0 as t increases .

It suffices to show that if a solution u(t, a) has µ = N at its (k − 1)th zero, then it must

have µ > N at its kth zero. By Lemma 3.3.1, verifying this claim amounts to showing that

δu must change signs between tk−1 and tk.

Suppose without loss of generality that k > 1 is even. So u(t, a) < 0 for t ∈ (tk−1, tk),

which by (H2) implies (p − 1)f(u) − uf ′(u) > 0. To achieve a contradiction, assume that

µ = N at both t = tk−1 and t = tk. Then as δu cannot signs between tk−1 and tk, it must be

the case that either δu < 0 or δu > 0 for all t ∈ (tk−1, tk).

If δu < 0, then at the (k − 1)th zero, the sign of Wp(tk−1) is negative since

Wp(tk−1) =

∣∣∣∣∣∣∣
u (p− 1)ω

δu δω

∣∣∣∣∣∣∣ = −ω δu ≤ 0, (4.13)

as ω is negative for odd zero. At the kth zero, ω > 0 and so

Wp(tk) ≥ 0. (4.14)

Returning to the analytical expression for Wp(t), as we have assumed that δu < 0 for all

t ∈ (tk−1, tk), then by (H2) in this interval we must have

(
(p− 1)f(u)− u df

du

)
δu < 0.

This fact together with (4.13) and Lemma 4.4.3 allows us to write

Wp(tk) = r(tk)
p−d

[
r(tk−1)d−pWp(tk−1) +

∫ tk

tk−1

rd
(

(p− 1)f(u)− u df
du

)
δu ds

]
< 0,
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which contradicts (4.14). Instead, if δu > 0, then

Wp(tk−1) ≥ 0, and Wp(tk) ≤ 0,

contradicting

Wp(tk) = r(tk)
p−n

[
r(tk−1)n−pWp(tk−1) +

∫ tk

tk−1

rn
(

(p− 1)f(u)− u df
du

)
δu ds

]
> 0.

Hence δu must be zero between tk−1 and tk. As the winding number counts the exact number

of zeros of δu along this trajectory, µ(tk) must be larger than N .

The following proposition is now immediate.

Proposition 4.4.5. For any solution with k zeros, µ ≥ k.

Proof. From the proof of Theorem 3.0.2, we know that the number of zeros of δu of any

solution at its first zero is 1 (as µ = 0 implies underrotation). Hence, the proof follows

by induction. Assume that for any solution at its (k − 1)th zero, µ ≥ k − 1. Then by

Lemma 4.4.4, the number of zeros of δu at the kth zero of any solution satisfies

µ ≥ (k − 1) + 1 = k.

Lemma 4.4.6. If µ(u(tk, a)) = k, then (−1)kδu(tk, a) > 0.

Proof. If the winding number of δu(tk, a) is k, then Lemmas 4.4.4 and 4.4.5 imply that

winding number of u at tk−1 is k − 1. Therefore, if δu(tk) = 0, then δu cannot change signs

for t ∈ (tk−1, tk), as it had attained k − 1 zeros by tk−1, and it attains its kth zero at tk. The

same argument as in Lemma 4.4.4 now yields a contradiction again.

In particular, let us again assume without loss of generality that µ = k is even. Then

by Lemma 4.4.1 we must rule out the possibility that δu(tk, a) = 0 with δω(tk, a) > 0.
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Combining the hypothesis that δu = 0 with δω > 0 and the relation ˙δu = 1
p−1
|ω|

2−p
p−1 δω allows

us to conclude that δu < 0 in the interval (tk−1, tk). Therefore, δu ≤ 0 at t = tk−1, whence

Wp(tk−1) = u δω − v δu = −v δu ≤ 0.

Hence

Wp(tk) = r(tk)
−(n−p)

[
r(tk−1)n−pWp(tk−1) +

∫ tk

tk−1

rn
(

(p− 1)f(u)− u df
du

)
δu ds

]
< 0.

However, if we assume that δu(tk) = 0, then Wp(tk) = 0. Therefore, we cannot have δu = 0,

and so δu > 0. In general, we must have (−1)kδu(tk, a) > 0.

Let Stk,k be the set of all solutions on W 0
+ attaining their kth zero at time tk. Denote by

u(t, αk) the first such solution to have its kth zero on C(tk); in other words, define αk by

αk = min{a > 0 : u(t, a) ∈ Stk,k}.

We can now rule out the analogous underrotation formation discussed in the proof of

Lemma 3.4.1; see Figure 4.2(a) for an illustration.

Corollary 4.4.7 (to Lemma 4.4.6). With terms defined as above, C(tk) cannot underrotate

at u(tk, αk). In other words, if δu(tk, αk) = 0, then (−1)kδω(tk, αk) < 0.

Proof. Underrotation would imply that µ = k with δu = 0, contradicting Lemma 4.4.6, see

Figure 4.2(a) with the relevant winding number computed in Figure 4.2(b).

We have now proved the following lower bound for δu:

Proposition 4.4.8. With αk defined as in Lemma 4.4.7, the number of zeros µ of δu(tk, αk))

is k or k + 1.

This theorem results from Proposition 4.4.5, Corollary 4.4.7.
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u

ω

(a) C(t4, α4)

δu

δω

(b) S(t4,α4)

Figure 4.2: Figure (a) shows the curve homotopic to C(tk, αk) in the plane {r = r(tk)}
described in Corollary 4.4.7 in the case k = 4. The winding number for this case is computed
in (b).

Proof. Either (−1)kδu > 0, in which case µ = k, or δu = 0 with (−1)kδω < 0, in which case

µ = k + 1.

As in the proof of Lemma 4.4.6, the following assertion relies on the fact that ˙δu =

1
p−1
|ω|

2−p
p−1 δω.

Proposition 4.4.9. With αk defined as in Lemma 4.4.7, suppose u(t, αk) has µ(u(tk, αk)) ≥

k + 1. Then if u(t, αk) attains any jth zero with j > k at tj > tk, it cannot be unique. In

other words, Stj ,j\u(t, αk) 6= ∅.

Proof. Let d = j − k. By Lemma 4.4.4, if µ(u(tk, αk)) ≥ k + 2, then

µ(u(tj, αk)) ≥ k + 2 + d = j + 2.

By Proposition 4.4.8, the set Stj ,j must contain a solution with µ = j or j + 1.

Now suppose µ(u(tk, αk)) = k + 1. Then by Proposition 4.4.8, δu(tk, αk) = 0 and

(−1)kδω(tk, αk) < 0. Suppose without loss of generality that k is even, whence δω(tk, αk) < 0.
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Recall that

˙δu =
1

p− 1
|ω|

2−p
p−1 δω,

which constrains the winding of δu along u(t, αk), as illustrated in Figure 3.6. Hence as

t increases by a small enough amount, δu must be decreasing. By Lemma 4.4.4, δu must

change signs between t = tk and t = tj , and thus at some time t0 between t = tk and t = tk+1,

we must have δu > 0.

Lemma 4.4.4 asserts that δu must change signs at least once along u(t, αk) between each

zero. Should δu along u(t, αk) change signs exactly once between subsequent zeros up to

and including j, then δu will point “backwards” in each case, and thus u(t, αk) cannot be a

unique kth, (k + 1)th, . . ., jth zero at any of these times tk, tk+1, . . . , tj.

(For illustration purposes, if δu changes signs exactly once between tk and tk+1 (with k

even), then δu(tk+1, αk) > 0. As k + 1 is odd by our assumption on k, there must be an

initial condition α̂k < αk with u(tk+1, α̂k) = 0 for the (k + 1)th time and δu(tk+1, α̂k) ≤ 0.)

If δu changes signs m > 1 times between t` and t`+1, k ≤ ` < j, then the winding number

at t`+1 becomes

µ ≥ `+ 1 +m > `+ 2.

Thus if d′ = j − (`+ 1), then the winding number at tj satisfies

µ > `+ 2 + d′ = j + 1.

However, we again refer to Proposition 4.4.8 and assert that the set Stj ,j must contain a

solution with µ = j or j + 1.

Proposition 4.4.10. If there are two (or more) nondegenerate solutions u1(t, α1) and

u2(t, α2) with k zeros on BR(0) and µ(tk, αi) = k, i = 1, 2, then there must be at least one

solution u0(t, α̂), with α1 < α̂ < α2, with k zeros on BR(0) and µ(tk, α̂) ≥ k + 1.

Proof. Without loss of generality, suppose k is even. Further suppose that (u(t), v(t), r(t))α1
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and (u(t), v(t), r(t))α2 , with α1 < α2, are nondegenerate solutions with µ = k at t = tk. By

Lemma 4.4.6, δu(tk, αi) > 0. Therefore, for some ε > 0 small enough,

u(tk, α1 + ε) > 0, and u(tk, α2 − ε) < 0.

By the Intermediate Value Theorem, there is some α̂ ∈ (α1 +ε, α2−ε), such that u(tk, α̂) = 0.

Moreover, we can choose α̂ so that δu(t, α̂) ≤ 0, as Lemma 4.4.6 requires that C(tk) must

cross from {u > 0} to {u < 0} as a increases from α1 to α2.

By the contrapositive of Lemma 4.4.6, as δu(tk, α̂) ≤ 0, then µ ≥ k + 1.

4.5 Proofs of theorems on the Morse index of ∆u+ f(u) = 0

We now apply Theorem 4.3.4 to the results of Section 4.4 to calculate the Morse index of

solutions u to (4.1). The first result is an immediate application of Proposition 4.4.5.

Theorem 4.5.1. For any solution to (4.1) with k zeros on BR(0), the Morse index is at

least k.

For Theorem 4.5.1, we note that in general, µ(u(tk, αk)) is equal to the Morse index. The

exception is if δu(tk, αk) = 0, in which case µ is the M + 1, by Proposition 4.3.4. However,

by Corollary 4.4.7, we cannot have δu(tk, αk) = 0 with µ(u(tk, αk)) = k. Thus Theorem 4.5.1

holds.

The following result is an application of Proposition 4.4.8 to the case p = 2:

Theorem 4.5.2. With αk defined as in Lemma 4.4.7, the Morse index of µ(u(tk, αk)) is k.

Proof. Either (−1)kδu > 0, in which case the Morse index is µ = k, or δu = 0 with

(−1)kδω < 0, in which µ = k + 1. However, by Theorem 4.3.4, µ = k + 1 and δu = 0 implies

the Morse index is k.

The following theorem is a repeat of Proposition 4.5.3 for the case p = 2. Because of

the relationship between δu and M when δu = 0 established by Theorem 4.3.4, it is stated

slightly differently.
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Theorem 4.5.3. With αk defined as in Lemma 4.4.7, suppose u(t, αk) has M(u(tk, αk)) ≥

k + 1, or suppose M = k and δu is an eigenfunction. Then if u(t, αk) attains any jth zero

with j > k at tj > tk, it cannot be unique. In other words, Stj ,j\u(t, αk) 6= ∅.

4.6 Proof of Theorem 4.6.1

The next theorem is similar to Proposition 4.4.10, but not identical, see Figure 4.3 (A2)

for an example of and intersection curve that produces two solutions with Morse index k,

without necessarily producing a solution with Morse index M ≥ k + 1. However, the next

theorem is a stronger result. Its proof requires an exhaustive examination of many different

cases.

Theorem 4.6.1. Suppose u`(t, α) has k zeros on BR(0), for R = etk . Suppose the Morse

index of u` on BR(0) is M = k + `, ` > 1. Then there are solutions u1, u2, . . . , u`−1 so that

for any i ∈ {1, . . . , `− 1}, the solution ui has Morse index k + i at t = tk.

For example, if k = 4 and there is a solution with k zeros and Morse index M = 12, then

there must be a solution with Morse index M = 5, another with M = 6, etc., up to 12. (The

existence of a solution with M = 4 is guaranteed by Theorem 4.5.2.)

Proof. By hypothesis, we suppose there is a solution u`(t, α) with k zeros on BR(0) (R = etk)

with Morse index k + `, ` > 1. By Theorem 4.5.2, we know there is a solution u0(t, α0) with

α0 < α so that u0 has Morse index k at t = tk. We wish to find a set of solutions

{u0, u1, . . . , uk+`−1, uk+`}

so that ui has k zeros and Morse index k + i at t = tk. It suffices to show that if there is

such a solution uM , 0 < M < k + `− 1, with Morse index M then there must be a solution

uM+1 with Morse index M + 1. Let αM be the initial condition of the solution uM .

We assume without loss of generality that k is even and divide the proof into four main

cases A, B, C, D below based on the sign of δuM(tk, αM). Each case has several subcases;
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we supplement the proofs of all of the cases with Figures 4.3-4.8. Each large graph in

Figures 4.3-4.8 depicts a curve homotopic to C(tk, α̃) for k = 2, while the accompanying inset

figure illustrates the winding along C(tk, α̃).

The curve C(tk, αM ) is dashed, the solutions uM (tk, αM ) and u(tk, α̃) are depicted as dots

on C(tk, α̃), and the portion of the intersection curve that connects them, C(tk)|αM≤a≤α̃, is

solid. As the dashed portion of C(tk) is irrelevant to determining the change in Morse index

from uM to u(t, α̃), these figures give the general picture for any k.

Let

α̃ = min{a > αM | u(tk, a) = 0 and u has k zeros on BR(0)}.

We consider how the curve C(tk, α̃) looks between the solutions uM(t, αM) and u(t, α̃) to

track the winding of δu. Then we can determine how the Morse index of u(t, α̃) compares to

uM .

The outcome for each case is that the Morse index of u(t, α̃) either

(O1) stays the same,

(O2) decreases,

(O3) increase by 1, which demonstrates the existence of a solution with Morse index M + 1,

or

(O4) increases by 2.

In outcomes (O1) or (O2), we restart the process by replacing uM and αM with u(t, α̃) and

α̃. In outcome (O4), we will show that the configuration of the intersection curve guarantees

that there is a solution u(t, α∗) with α∗ > α̃ that must have Morse index M or M + 1. The

process then restarts with u(t, α∗).

Case A

For Case A, we suppose δu(tk, αM) > 0.
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Suppose ω(tk, αM) > ω(tk, α̃). Then δu(tk, α̃) is either negative (Case (A1)), zero with

δω(tk, α̃) < 0 (Case (A2)), or zero with δω(tk, α̃) > 0 (Case (A3)). In Case (A1), the

vector (δu(tk, a), δω(tk, a)) must rotate clockwise from the right half of the (δu, δω) to the

left half; therefore, the index of δu along C(tk) increases by 1. Hence the Morse index of

u(tk, α̃) = M + 1. In Cases (A2) and (A3), the index of δu along C(tk) increases by 1 and 2,

respectively. As δu(tk, α̃) = 0, then by Theorem 4.3.4 the Morse index of u(tk, α̃) is M and

M + 1, respectively.

The part of C(t, α̃) for αM ≤ a ≤ α̃ is path homotopic to the curves in Figure 4.3 (A1),

(A2), and (A3).

Now suppose ω(tk, αM ) < ω(tk, α̃). Then δu(tk, α̃) is either negative (Case (A4)), zero with

δω(tk, α̃) < 0 (Case (A5)), or zero with δω(tk, α̃) > 0 (Case (A6)). If ω(tk, αM) < ω(tk, α̃),

then C(tk) underrotates for αM ≤ a ≤ α̃. Hence the index of δu decreases over this interval,

and thus the Morse index of any solution decreases, placing us in outcome (O2). See Figure 4.3

(A4), (A5), and (A6).

Case B

For Case B, we suppose δu(tk, αM) > 0. There are again six cases: three for ω(tk, αM) >

ω(tk, α̃) and three for ω(tk, αM) < ω(tk, α̃). If ω(tk, αM) > ω(tk, α̃), then the curve is

underrotating, and the Morse index decreases; see Figure 4.4 (B1), (B2), and (B3).

If ω(tk, αM) < ω(tk, α̃), then the same arguments as in Cases (A1), (A2) and (A3) shows

that the Morse index of u(t, α̃) at tk must be either M or M + 1; see Figure 4.4 (B4), (B5),

and (B6).

In cases C and D, we suppose that δu(tk, αM ) is zero with δω > 0 or δω < 0, respectively.

Case C

Suppose δu(tk, αM) is zero with δω(tk, αM) > 0. Again we consider two possibilities:

ω(tk, αM) > ω(tk, α̃), or ω(tk, αM) < ω(tk, α̃). Each of these possibilities then has six

individual cases, based on whether choosing either δu(tk, α̃) negative, zero with δω(tk, α̃) < 0,
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or zero with δω(tk, α̃) > 0, and either C(tk)|αM<a<α̃ on half plane u > 0 or on u < 0. Again

for each case, we can track how the index of δu changes along C(tk) from u(tk, αM ) to u(tk, α̃).

The twelve possible cases are shown in Figures 4.5 and 4.6.

In cases (C8) and (C10), the Morse index of u(t, α̃) at t = tk is M + 2, placing us in

outcome (O4). In both (C8) and (C10), we have ω(tk, αM) > ω(tk, α̃) with C(tk)|αM<a<α̃ on

the right half plane. Thus the curve C(tk) must intersect the ω axis for some a > α̃ with

ω(tk, a) < ω(tk, α̃). Hence we define α∗ by

α∗ = min{a > α̃ | u(tk, a) = 0 and u has k zeros on BR(0), ω(tk, a) < ω(tk, α̃)}. (4.15)

In case (C8), the solutions u(tk, α̃) and u(tk, α∗) are in configurations (B1), (B2), or (B3).

Thus the Morse index of u(t, α∗) at t = tk must be M or M + 1.

In case (C10), the solutions u(tk, α̃) and u(tk, α∗) are in configuration (C7), (C9), or (C11).

Thus the Morse index of u(t, α∗) at t = tk must be M or M + 1.

Case D

Case D is similar to Case C. We suppose δu(tk, αM) is zero with δω(tk, αM) < 0. There

are again two possibilities for ω(tk, α̃): either ω(tk, αM) > ω(tk, α̃), or ω(tk, αM) < ω(tk, α̃),

with six individual cases each. We track how the index of δu changes along C(tk) from

u(tk, αM) to u(tk, α̃) in Figures 4.7 and 4.8.

In cases (D1) and (D3), the Morse index of u(t, α̃) at t = tk is M + 2, placing us in

outcome (O4). In both (D1) and (D3), we have ω(tk, αM) < ω(tk, α̃) with C(tk)|αM<a<α̃ on

the left half plane. Thus the curve C(tk) must intersect the ω axis for some a > α̃ with

ω(tk, a) > ω(tk, α̃). Hence we define α∗ by

α∗ = min{a > α̃ | u(tk, a) = 0 and u has k zeros on BR(0), ω(tk, a) > ω(tk, α̃)}. (4.16)

In case (D1), the solutions u(tk, α̃) and u(tk, α∗) are in configuration (A4), (A5), or (A6).
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Thus the Morse index of u(t, α∗) at t = tk must be M or M + 1.

In case (D3), the solutions u(tk, α̃) and u(tk, α∗) are in configuration (D2), (D4), or (D6).

Thus the Morse index of u(t, α∗) at t = tk must be M or M + 1.
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(A1)

MM + 1

(A2)

M

M

(A3)

M

M + 1

(A4)

M
M − 1

(A5)

M

M − 2

(A6)

M

M − 1

Figure 4.3: Figures (A1)-(A6) illustrate the six possible subcases of Case A in the proof of
Theorem 4.6.1.
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(B1)

M M − 1

(B2)

M

M − 1

(B3)

M
M − 2

(B4)

M
M + 1

(B5)

M

M + 1
(B6)

M

M

Figure 4.4: Figures (B1)-(B6) illustrate the six possible subcases of Case B in the proof of
Theorem 4.6.1.
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(C1)

M
M + 1

(C2)

M

M

(C3)

M

M + 1

(C4)

M

M − 1

(C5)

M
M

(C6)

M
M

Figure 4.5: Figures (C1)-(C6) illustrate six of the possible twelve subcases of Case C in the
proof of Theorem 4.6.1.
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(C7)

M

M − 2

(C8)

M

M + 2

(C9)

M
M − 2

(C10)

M
M + 2

(C11)

M

M − 1

(C12)

M

M + 1

Figure 4.6: Figures (C7)-(C12) illustrate six of the possible twelve subcases of Case C in the
proof of Theorem 4.6.1.
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(D1)

M

M + 2

(D2)

M

M − 1

(D3)

M

M + 2
(D4)

M
M − 2

(D5)

M

M + 1

(D6)

M

M − 1

Figure 4.7: Figures (D1)-(D6) illustrate six of the possible twelve subcases of Case D in the
proof of Theorem 4.6.1.
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M + 1
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M
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M
M

(D11)

M

M − 1

(D12)

M

M + 1

Figure 4.8: Figures (D1)-(D6) illustrate six of the possible twelve subcases of Case D in the
proof of Theorem 4.6.1.
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CHAPTER 5: REMARKS AND FUTURE DIRECTIONS

Let us summarize what we have achieved. In Chapter 3, we proved uniqueness of positive

radial solutions of the p-Laplacian problem ∆pu+ f(u) = 0 for a large class of nonlinearities

f . The approach was geometric and we interpreted solutions of the equation as curves on

a manifold in phase space. In Chapter 4, we established connections between geometric

properties of solutions and the Morse index of a linearized operator restricted to the subspace

of radial solutions in W 1,2
0 (Ω). In this chapter, we describe some continuations of these results

and other applications of the geometric methods to two related problems.

5.1 Hyperbolic metric

A possible future direction is to extend uniqueness results further to different metrics.

The hyperbolic metric is particularly challenging because this metric has the effect of bringing

increased r-dependence into the dynamics. With the hyperbolic metric, radial solutions in

BR(0) ⊂ Rn solve the following ordinary differential equation:

urr + (n− 1) coth(r)ur + f(u) = 0, (5.1)

with f ∈ C1([0,∞)). The approach to this equation is similar to the p-Laplacian and uses an

Emden-Fowler transformation. In particular, rather than defining y as y = rλu, we use the

transformation y = sinhλ(r)u.

With this transformation, the definitions

z(r) = y′ − λ coth(r)y

w(r) = tanh(r)z,
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and the reparametrization of r as a function of t so that ṙ = tanh(r), we can rewrite (5.1) as

the system

ẏ = λy + w (5.2)

ẇ = sech2(r)w − (n− 1− λ)w − tanh2(r) sinhλ(r)f (5.3)

ṙ = tanh(r), (5.4)

where · is differentiation with respect to t. The variational equations for (5.2)-(5.4) with

δr ≡ 0 are

δ̇y = λ δy + δw (5.5)

˙δw = sech2(r)δw − (n− 1− λ) δw − tanh2(r)f ′(u) δy. (5.6)

Let us consider the two 2-forms from Chapter 3 for (5.2)-(5.6). The 2-form

δr∗ = ẏ δw − ẇ δy

satisfies

(δr∗)· = (2λ− n+ 1 + sech2(r)) δr∗ + 2sech2(r) tanh2(r)w δy (5.7)

+ tanh2(r) sinhλ(r)
[
(λ+ 2sech2(r))f(u)− λuf ′(u)

]
δy.

This linear differential equation contains the expression

IH(u, λ) := (λ+ 2sech2(r))f(u)− λuf ′(u),

which is reminiscent of (3.60) in the p-Laplacian calculation. However, the term w δy from
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(5.7) must be dealt with differently. The other form,

WH(t) =

∣∣∣∣∣∣∣
y w

δy δw

∣∣∣∣∣∣∣ ,
yields

ẆH = (2λ− n+ 1 + sech2(r))WH + tanh2(r) sinhλ(r) (uf ′(u)− f(u)) δy.

Hence if f(u) satisfies uf ′(u)− f(u) 6= 0, then this form might eliminate underrotation.

5.2 Algal bloom model

In this section, we mention a separate uniqueness result which uses a very similar approach

to Chapter 3. The steady state algal bloom model derived by Ebert et al. [12] is a second-order

ordinary differential equation. It models density ρ of an algal bloom population as a function

of the depth in the water layer x, where x = 0 is the surface and x = L is the bottom of the

layer. The model is

ρ′′ − Cρ′ + A
(
e−x−

∫ x
0 ρ(y) dy −B

)
ρ = 0, (5.8)

where ρ(x) ≥ 0 for all 0 ≤ x ≤ L. The boundary conditions are the Robin conditions

[ρ′ − Cρ]x=0,L = 0. (5.9)

For the algal blooms of interest, the parameters A,B,C, L satisfy 0 < A <∞, 0 < B < 1,

C ∈ R, and 0 < L <∞.

We can recast (5.8) as a dynamical system with three first-order equations to view solutions

as curves in phase space. Using a 2-form equivalent to Wp with the appropriate variational

equations, we have performed a sign argument similar to the approach in Section 3.4.4 to

show that (5.8) has a unique solution.
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