
KERNEL MACHINE METHODS FOR ANALYSIS OF GENOMIC
DATA FROM DIFFERENT SOURCES

Ni Zhao

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in

the Department of Biostatistics.

Chapel Hill
2014

Approved by:

Michael C. Wu

D Neil Hayes

Eric T Tchetgen

Wei Sun

Yun Li



c© 2014

Ni Zhao

ALL RIGHTS RESERVED

ii



ABSTRACT

NI ZHAO: Kernel Machine Methods for Analysis of Genomic Data from
Different Sources

(Under the direction of Michael C. Wu)

Comprehensive understanding of complex trait etiology requires examination of mul-

tiple sources of genomic variability. Recent advances in high-throughput biotechnology,

especially sequencing technology, have enabled multiple platform genomic profiling of

biological samples. In this dissertation, we consider using the kernel machine regression

(KMR) framework to analyze data from different genetic data sources.

In the first part of this dissertation, we develop a new strategy for identification

of large scale, global changes in methylation that are associated with environmental

variables or clinical outcomes via a functional regression approach. The density or the

cumulative distribution function of the methylation values for each individual can be

approximated using B-spline basis functions with the spline coefficients to summarize

the individual’s overall methylation profile. A variance component score test is proposed

to test for association between the overall distribution and a continuous or dichotomous

outcome and applied to two real studies.

In the second part, we construct a microbiome regression-based kernel association

test (MiRKAT) for testing the association between microbial community profiles and

a continuous or dichotomous variable of interest such as an environmental exposure or

disease status. This method regresses the outcome on the covariates (including poten-

tial confounders) and the microbiome compositional profiles through kernel functions.

We demonstrate the improved control of type I error and superior power of MiRKAT

compared to existing methods through simulations and real studies.
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In the final part, we focus on integrative analysis of genome wide association stud-

ies (GWAS) and methylation studies. We propose to use the KMR for first testing

the cumulative genetic/epigenetic effect on a trait and for subsequent mediation anal-

ysis to understand the mechanisms by which the genomic data influence the trait. In

particular, we develop an approach that works at the gene level (to allow for a com-

mon analysis unit across data types). We compare pair-wise similarity in trait values

between individuals to pair-wise similarity in methylation and genotype values, with

correspondence suggestive of association. For a significant gene, we develop a causal

steps approach to mediation analysis which enables elucidation of the manner in which

the different data types work, or do not work, together.
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CHAPTER 1

Introduction

Complex diseases, such as cancer, cardiovascular disease, diabetes and Alzheimer’s

disease, which constitute the greatest public health burden both nationwide and glob-

ally, are considered to be caused by modest effects of multiple genes, interacting with

environmental and lifestyle factors. Comprehensive understanding of these complex

trait etiology requires examination of multiple sources of genomic variability. Recen-

t advances in high-throughput biotechnology, especially sequencing technology, have

enabled multiple platform genomic profiling of biological samples, which can facilitate

the characterization of biological systems at multiple levels. For example, the Cancer

Genome Atlas (TCGA) project aims to generate comprehensive catalog of the genomic

changes of different cancers, including single nucleotide polymorphism (SNP), DNA

methylation, gene expression, microRNA expression, for the same set of tumor samples

(147, 148, 150). Similarly, the NCI60 project has profiled 60 human cancer cell lines

with respect to gene expression, protein expression, microRNA expression and drug

responses (221, 20, 178, 195, 182). Integrative analysis of these data sources promises

elucidation of the biological processes underlying particular phenotypes. Integrative

analysis of “multi-dimensional genomic data” has proven especially challenging. Typ-

ical analyses of large scale genomic data that examine each feature individually with

subsequent correction for multiple comparisons were problematic(198, 232). First, in-

dividual feature analysis is usually underpowered due to the large number of multiple
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corrections and the relatively smaller effect size in individual features. Further, difficul-

ty aries in interpretation and formation of biological hypothesis when too many features

are called significant. Finally, this method fails to capture the multi-feature/interative

effect and usually have poor reproducibility (223, 142).

To overcome many of these limitations, analysis that associate grouped features

with outcome has gained popularity during the recent years. For example, in Genome

Wide Association Studies (GWAS), multiple-SNP based analyses, in which multiple

related SNPs (by proximity to a gene, pathway or functional groups) are combined into

SNP set and jointly analyzed for association with outcomes of interest, have emerged

as a powerful alternative for identifying associations between multiple gene variants

and complex disease. Investigating cumulative effect of multiple related features (e.g

genes in a pathway, SNPs in a region or CpGs in a gene) across different platforms has

also become a ubiquitous strategy in different complex diseases(218, 94, 176, 240). One

particularly popular strategy in the multiple-feature association study is the kernel ma-

chine regression (KMR) test, which was initially proposed for gene expression data with

continuous or binary phenotypes(112, 111), but has also been extended to candidate

gene studies (96),case-control GWAS studies to test for SNP-set effect (229, 187, 139),

rare variants studies(230).

This approach is built upon a semi-parametric model within the kernel machine

regression framework (40) where the genomic effect can be modeled nonparametrical-

ly with simple confounding factors modeled parametrically. Intuitively, this approach

constructs a pairwise similarity matrix between genetic measurement through the use

of a kernel function, which can then be compared to the similarity between the pheno-

type of interest with high correspondence suggestive of association. Inference can be

conducted through the variance score test, which is operationally simple and fast as it

requires model estimation only under the null hypothesis.
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The dissertation is organized as follows. In Chapter 2, we review current literature

on analysis of multi-dimensional genetic data, with a focus on the KMR framework and

identify unsolved problems. In Chapter 3, we develop two related methodologies under

the KMR framework for identification of large scale, global methylation changes that

are associated with environmental variables, clinical outcomes or other experimental

condition. In Chapter 4, we extend this framework to the field of metagenomic studies

and develop methods for association between microbial composition and outcomes of

interest. In Chapter 5, we develop method to use the powerful kernel machine frame-

work for first testing the cumulative effect of both epigenetic and genetic variability on

a trait, and for subsequent mediation analysis to understand the mechanisms by which

the genomic data types influence the trait.
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CHAPTER 2

Literature Review

2.1 Multidimensional Genetic Data

Genetic research has undergone a dramatic transformation in the past decade be-

cause improved technology and reduced cost enabled collection of genetic data at mul-

tiple levels. Several large scale studies have collected multidimensional genomic data,

including but not limited to whole genome gene expression, genotyping, copy numbers

and rare variants; and have demonstrated the great potential of integrative analysis in

discovering the complex and interrelated biological foundation underlying disease phe-

notypes. While multidimensional genomic studies are gaining increasing popularity,

the methodology to perform the analysis has not kept pace with the collection of the

data.

In this section, we will review the commonly used methods in analyzing different

types of genomic studies and defer the KMR framework to Section 2.2

2.1.1 Genome Wide Association Study and Missing Heritability

Proposed almost 20 years ago as a potentially powerful approach to unravel the

genetic basis of complex diseases (163), genome-wide association studies (GWAS) have

become one of the most common tools for investigating the genetic architecture of

human diseases. The rationale underlying GWAS is the “common disease, common
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variant”, hypothesizing that complex diseases are at least partially attributable to

common variants present in more than 1 − 5% of human population (35, 161, 157).

Facilitated by the commercially available “SNP chips” which capture most, although

not all, common variants in the genome, GWAS aim to detect association between

common variants (especially in SNPs) and disease phenotypes. GWAS have reported

hundreds of SNPs that are robustly associated with common phenotypes (133), some of

which the biological basis have successfully been elucidated (67, 48, 92) or have shown

clinical importance towards personalized medicine (37).

Typically, SNPs discovered by GWAS confer relatively small increments in risk

and can together account for only a small fraction of the genetic variation of complex

traits in human populations, leading to the perceived problem of missing heritability

(130, 134). A number of explanations have been suggested for this missing heritability,

including the existence of unmodeled epistatic interactions, the effect of rare variants

(157) and inherited epigenetic factors (83, 84).

Current GWAS usually test association between SNPs with a phenotypic trait, one

at a time, with stringent genome-wide adjustment for multiple testing. This procedure

can be underpowered due to a number of reasons. First, the effect size of individual

SNPs can too small to reach the genome-wide significance in GWAS(101). Secondly, the

true causal variants are rarely genotyped in practice and detection of association rely on

the linkage disequilibrium (LD) between genotyped SNPs and the causal variant. If the

LD was not sufficient between the causal variant and SNPs that are genotyped on the

GWAS platform, the power of detecting the true association will be reduced (101). This

can also cause the problem of poor reproducibility: many of the highly ranked SNPs

in the discovery phase of GWAS are false positives and cannot be validated because

the estimated association is not for the true causal SNP but the genotyped surrogate

markers.
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Methods that consider joint effect of multiple SNPs simultaneously can be advan-

tageous because it reduces the total number of tests (hence the number of multiple

comparisons) and approximates the causal effect more effectively than could single S-

NP analysis (175). Moreover, the individual SNP approach considers only the marginal

effect of each SNP and fails to accommodate epistatic interaction effect between SNPs

(57), which have been shown to be ubiquitous to a number of common human dis-

eases (142), including type I/II diabetes (202, 39), inflammatory bowel disease (33)

and Alzheimer’s diseases (23, 36, 36). Testing for the epistatic effect e.g. gene-gene

interaction, is generally challenging because of the large number of potential interac-

tions (78). Alternative approaches that use prior biological information to form SNP

set and test for association between the SNP set and phenotypic traits are successful

in improving power and increase the heritability estimates (235, 63).

Rare genetic variants, alleles with a frequency less than 1−5% but potentially higher

penetrance, can be essential in influencing complex disease and constitute another

source of the missing heritability (179). Because of the relatively lower frequency,

rare variants are less likely to be captured by the conventional genotype platforms

used in GWAS. The advent of new sequencing technique (135) offers unprecedented

opportunities for assessing the contribution of rare genetic variation to complex diseases

(50). Standard methods that test for association with single markers are no longer

applicable unless the sample size and/or the effect size are extremly large (102, 128).

Methods analyzing rare variants involve testing the grouped/cumulative effect for a

set of markers across a genomic region, including the burden test and its derivatives

(128, 102, 143, 144) and the KMR which will be reviewed in Section 2.2.
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2.1.2 Gene Expression Data

Gene expression determines a variety of cellular phenotypes. Gene expression pro-

filing, which measures the activity/expression of thousand of genes simultaneously, has

been a routine practice in genetic studies since the microarray technology (212). More

recent technologies such as high-throughput RNA sequencing enables not only more

accurate determination of gene expression level (145), but structural variations, such

as allele-specific expression (167).

The primary goal of many gene expression studies is to identify genes that are differ-

entially expressed under two or more treatment conditions. Traditionally, differential

expression was assessed through fold change, t-test or ANOVA one gene at a time, with

adjustment for the effects of multiple comparisons using criterions such as Bonferroni

correction, false discovery rate or family wise error rate (49, 205). These studies, how-

ever successful, have major limitations, including poor reproducibility across studies

and lack of interpretability because of the long list of single significant genes. Studies

on gene sets, such as genetic pathways (64, 198) have also been very popular. Pathway

analysis relies on existing functional annotation and looks for over-representation of

functional classes in gene expression, which can be more biologically interpretable and

reproducible.

Pattern discovery and class prediction (189) are another two important aspects

of gene expression analysis, both of which provide a high-level overview of the data

set and aim at forming related subgroups which can capture the biological difference.

These two methods approach the phenotype classification differently. Pattern discovery

is an unsupervised learning process. It searches for a biologically relevant unknown

classes based on gene expression signature using dimension reduction tools, such as

singular value decomposition, as well as various clustering techniques. Class prediction

(supervised learning), on the other hand, are designed to classify subjects into known
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groups, which usually involves a training phase on samples with known class labels and

a testing phase, in which the algorithm applies criterions obtained from the training

data to predict class labels for the testing samples.

2.1.3 Metagenomics: Genomic Analysis of Microbial Communities

Metagenomics concerns with the genomic study of uncultured microbial community.

In metagenomics studies, DNA are collectively sampled from the microorganisms from

environment of interest (e.g. agricultural soil, ocean water, or the human gut). The

extracted DNA are then sequenced and used to investigate different aspect of the micro-

bial community, such as bio-diversity, dominant microbial classes, biological functions

and its effect on human health.

Metagenomic analysis has many distinct features from other genomic analysis. First,

the research questions on the metagnomic field are often at the level of microbial com-

munities, within which the organisms and evolutionary relationships are not known.

Data preprocessing is usually required before analysis. Different sampling and filtering

approaches exist that aim to get the DNA of microorganisms that are of interest while

leaving out contaminations that are not of interest. Assembly, binning and annotation

are needed to construct operational taxonomic unit (OTU), i.e., species distinction in

microbiology (228, 81). Secondly, the sampled sequence data is usually zero-inflated,

fragmented and pooled, which are statistically challenging in analysis.

One of the most important aspects of metagenomic studies is to study how a bac-

terial community be affected by or affects its habitat or host, including the micro-

environment within human body. In human studies, microbial composition has been

associated with age, gender, BMI, diet and a number of clinical symptoms (204). Dis-

tance based analysis is one popular strategy in evaluating the association between

microbiota composition and outcomes of interest, in which the phylogenetic distance
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based on OTUs is computed between each pair of samples in the study. Multivari-

ate analysis or the top principal coordinates (PCo) of the matrix of pairwise distances

are used to test for associations via permutation. Commonly used pairwise distance

metrics include weighted and unweighted UniFrac (28, 118, 25) as well as many other

important metrics such as the Bray-Curtis (17) metric.

2.1.4 Epigenetics

The term “epigenetics” refers to the heritable and reversible changes in phenotypes

that are not coded in the DNA sequence, including DNA methylation, histone modi-

fications and nucleosome positioning. Variation in the epigenome plays a key role in

cell differentiation (32, 138) and is considered the main reason of the specialized func-

tions to different cells with the same genome. In multicellular organisms, the ability

that epigenetic modifications can be transmitted to offsprings is essential to generate

individuals with the same genotype but different phenotypes, such as in cloning or in

identical twins (162, 56). Increasing evidence showed that epigenetic modifications are

transgenerational, constituting another source of the missing heritability (84).

DNA methylation is the most studied epigenetic event, which occurs almost exclu-

sively on the cytosine at position C5 in CpG dinucleotides. CpG dinucleotides tend to

cluster in CpG islands, which are usually defined as regions of at least 200 base pairs

with more than 50% G+C content and observed-to-expected CpG ratio of at least

0.6. CpG dinucleotides are pretty rare in human genome, constituting only ∼ 1% of

the genome. However, up to 70% of annotated gene promoters are associated with a

CpG island, making this the most common promoter type in the vertebrate genome

(173, 196). DNA methylation is essential in establishing and maintaining the normal

cellular functions, including embryonic development, X-chromosome inactivation and

allele-specific methylation related to imprinting (206). Aberrant DNA methylation has
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also been related to a variety of human diseases ranging from neurological and autoim-

mune disorders to cancers(155, 219).

Currently, DNA methylation levels are usually evaluated through two methods:

bisulphite sequencing and array based approaches (11, 220, 151, 97), which involve

converting unmethylated cytosines to uracil while leaving 5-methylcytosines intact.

Advances in next-generation sequencing and array technology has enabled the global

assessment of DNA methylation at a high resolution and affordable prices in a large

number of samples (159, 105) and hence epigenome wide association studies (EWAS).

Similar to GWAS, EWAS aim at identifying differentially methylated CpGs associated

with disease states, clinical outcomes, environmental exposures or other experimental

conditions (85, 184, 73, 74).

Analysis of methylation data has been shown to be challenging (14). In addition

to the problems relating to data preprocessing and normalization (44, 203, 132, 201),

associating methylation levels with outcomes is also difficult. A lot of the initial anal-

ysis of DNA methylation have utilized statistical methods that were developed for

gene expression data, such as differences in abundance levels, cluster analysis and class

prediction(88). For example, methods such as t tests, non-parametric tests and general-

ized linear regression with a quasi-binomial logit link were used to assess the differential

DNA methylation in subgroups of samples, in which proper transformation was con-

ducted to make the methylation data from zero to one scale to normally distributed

(9, 188). Alternatively, beta regression has also been used to model DNA methylation

proportions (54).

2.1.5 Group Based Analysis

Comprehensive understanding of complex trait etiology requires examination of mul-

tiple sources of genomic variability. Integrative analysis of these data sources promises
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elucidation of the biological processes underlying particular phenotypes. Multi-feature

testing, in which the cumulative effect of multiple related features is tested for associ-

ation with outcome, has gain considerable popularity (198, 222, 208, 176, 240).

In GWAS, a number of SNP set based analysis methods have been developed. SNP

set based analysis is a two step procedure with the first step to form SNP sets based

on prior biological knowledge and the second step to test for association between the

SNP sets with outcome. SNP sets are usually formed based on their physical proximity

to a known genomic features (229, 222); e.g, genes or pathways. Then the SNP sets

are tested for association against the phenotype as a group via different dimension

reduction approaches. Intuitively, SNP set based analysis borrows information across

different SNPs that are grouped on the basis of prior biological knowledge and hence

provides results with improved reproducibility and increased power, especially when

individual-SNP effects are moderate.

Methods that test for cumulative effect of multiple markers/features can be classified

into two groups: competitive and self-contained tests (64). In GWAS, the competitive

test compares test statistics for SNP set to all the SNPs that are not in the set and

test for over representation of the SNPs in the SNP set, such as the Fisher’s exact test

(27) for pathway effect and the gene set enrichment (198).

Different from competitive tests, a self-contained test compares the a test statistic

to a fixed standard and doesn’t depend on the effect of background features, which

includes the principle component tests, the distance based approach and the kernel

machine regression approach.

Principle component is a widely used tool in statistics for dimension reduction. This

method seeks to represent the data by a linear combination of a small number of or-

thogonal principle components and then applies the standard univariate or multivariate

analysis to test for association. Gauderman et al. (60) proposed a principal components
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analysis based approach (PCA), by which principal components (PCs) are computed

from the SNP set and then tested for the association with phenotype of interest. Gao

et al.(59) proposed to use kernel function to represent the SNP data and subsequently

compute PCs based on the kernel function to test for association and showed superior

power compared to the original PCA analysis in case-control GWAS, especially under

lower relative risks and lower significance levels. Chen et al. (30) developed a pathway-

based analysis using supervised principal components, in which only a selected subset

of SNPs most associated with disease outcome is used for construction of PCs and test

for association. Adjusting for confounding variables in the PCA methods amounts to

adding covariate in to the standard linear or logistic regression model.

Another school of self contained methods involve regression models to relate vari-

ation in genomic dissimilarity (or distance) measurement to variation in their phe-

notype values (222). This genomic distance based regression(GDBR) captures the

genotype/haplotype information across multiple loci through the similarity between

any two subjects. P-values can be obtained through permutation using a pseudo-

F statistic. GDBR has been demonstrated the higher power than several commonly

used tests across a wide range of realistic scenarios (106). In addition, a close rela-

tion has been established between the GDBR and a class of haplotype similarity tests

(236, 207, 181, 91). Unlike PC based approach, adjusting for covariates in GDBR is not

straightforward because permutation approach tends to break the correlation structure

between the genotype and the confounding variables. The permutation test can also

be computationally expensive.

Kernel machine regression(KMR) framework also belongs to self contained global

tests. Instead of extracting the PCs from the SNP data, KMR assumes a potential-

ly nonlinear functional relationship between genotypes and the outcome, which can

be modeled through the kernel function. The method is fast and efficient as it uses
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the asymptotical distribution of variance score test and avoids the time consuming

permutation procedure. As a regression based approach, adjusting for covariates are

straightforward. Several studies have demonstrated the superior power of KMR com-

pared to other methods under a wide range of practical scenarios (229, 230, 112, 111).

Details about the method will be reviewed in Chapter 2.2.

2.2 Semiparametric Model via Kernel Machine Regression

Kernel machine regression (KMR) was proposed in the gene expression framework

(112, 111) and extended to test for associations between SNP set and individual complex

phenotype (96, 229). Further extension of this approach was applied to censored sur-

vival data (21, 108), multivariate outcome (131) and rare variants (185, 8, 230, 99, 100).

In this section, we will focus on kernel machine testing with single continuous or di-

chotomized outcome and defer the extended KMR to Section 2.3.

2.2.1 Specification of h(Z) using Kernel Functions

Suppose the data consist of n subjects. For each subject i, i = 1, . . . n, yi denotes

the phenotype of interest, Zi is a 1 × p vector of genotypical data, which can be gene

expression in a pathway, or genotypes for a set of SNPs or rare variants. Xi denotes

a 1 × q vector of confounding variables which we want to adjust for in the model

(e.g. demographic or environmental variables). Under the KMR framework, continuous

traits yi depends on Xi and zi through partial linear model

yi = β0 +Xiβ + h(Zi) + εi (2.1)
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where β is a q×1 vector of regression coefficients, h(Zi) is an unknown smooth function

and ε ∼ N(0, σ2). Similarly, the model risk of dichotomized trait yi can be given as:

logit(p(yi = 1|Xi, Zi)) = β0 +Xiβ + h(Zi) (2.2)

Generally, models (2.1) and (2.2) allow for nonparametric modeling of multi-dimensional

genomic effect with parametric adjustment of confounding effect. When h(·) = 0, the

models reduce to standard linear regression or logistic regression model.

The KMR model makes the assumption that h(·) lies in a function space Hk gen-

erated by a positive semidefinite kernel function K(·, ·) and this kernel function maps

complex and potentially infinite dimensional features into a finite dimensional space.

Mercer’s theorem (40) states that under some minor regularity conditions, K(·, ·) im-

plicitly specifies a unique function spaceHk which can be spanned by a set of orthogonal

basis functions such that h(z) =
∑J

j=1 ωjφj(z) = φ(z)′ω, in which ω is a vector of coef-

ficients. This is the primal representation. Alternatively, h(z) can be represented using

a kernel function K(·, ·) so that h(z) =
∑L

l=1 αlK(z∗l , z), where α1, ...αL be a vector

of constants, L being an integer and z∗1 , ..., z
∗
L ∈ Rp (dual representation). In practice,

the dual representation is more convenient as it avoids the explicit specification of the

basis function and instead only needs to define the kernel function.

The choice of kernel specifies implicitly a complex and nonparametric function space

that can capture signals from possibly high-order interaction effects. A wide range of

kernels have been described in literatures, with some popular ones listed as follows:

(1) Linear kernel : K(z1, z2) = z1z
′
2. Linear kernel generates the usual inner product

space with basis function φ(z) = {z1, ..., zp} and essentially assumes that h(z) = z′β.

Similarly, the weighted linear kernel K(z1, z2) = z1WW ′z′2 generates also a linear func-

tion space while allowing different variables to have different relative weights, controlled

by the weight matrix W = diag[w1, ..., wp], a p× p diagonal matrix.
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(2) The dth order polynomial kernel : K(z1, z2) = (z1z
′
2 + c)d where c is a constant

and d determines the order of the polynomial. This kernel implies that f(z) is a dth

order polynomial function. When d = 1, this first polynomial kernel reduces to the

linear kernel with basis function φ(z) = {z1, ..., zp}. When d = 2, the quadratic kernel

corresponds to function space with basis function φ(z) = {zk, zkz′k}, which is the main

effect of each variables in z and their squared and two way interactions.

(3) Gaussian kernel : K(z1, z2) = exp{−‖z1−z2‖2/ρ} where ‖z1−z2‖2 =
∑p

k=1(z1k−

z2k)
2. The Gaussian kernel corresponds to infinite dimensional function space spanned

by radial basis functions. ρ is an extra tuning parameter which controls the degree

of linearity, with larger ρ forcing h(z) to be more linear while smaller ρ allows more

complex effects to be modeled.

(4) Weighted identity by state (IBS) kernel. K(z1, z2) =
∑p

k=1wk{2I(z1k = z2k) +

I(|z1k− z2k| = 1)}/2p. The weighted IBS kernel evaluates the genetic distance between

a pair of individuals by the fraction of alleles that are shared purely by state (222,

96), subject to proper weighting (230). The weighted IBS kernel has been used in a

number of method to measure the similarity using SNPs data or rare variants (229, 230).

Because the number of alleles that are identical between subjects is a physical property,

this kernel assumes no specific form of the genetic effect, such as the linear effect or

polynomial effect with specific order, and allows for epistatic and interaction effects

between the SNPs or rare variants.

(5) Other positive definite kernels. Many other kernels have been described and

tailored to particular data structures. Examples of other choices of kernel functions

include the spline kernel, the exponential kernel, the neural network kernel and the

sigmoid kernels (177). In fact, any positive semi-definite matrix that measures the

similarity between subjects can be used as kernel matrix. Pan et al (152) has established

correspondence between genomic distance based approach(GDBR) and KMR in that if
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the same positive semi-definite matrix is used as the similarity matrix in distance based

approach and the kernel matrix in KMR, the two tests are equivalent up to ignorable

constants.

2.2.2 Estimation through Mixed Model Framework

In KMR model, the kernel matrix K(·, ·) generates function space Hk such that

f(z) ∈ Hk. Following the general approach in functional data analysis and additive

models (226), Liu et al (112, 111) propose to estimate β and h(z) in models (2.1) and

(2.2) by maximizing the penalized likelihood function.

J(h, β) = −1

2

n∑
i=1

(yi − β0 −Xiβ − h(Zi))
2 − 1

2
λ‖h‖2Hk

(2.3)

and

J(h, β) =
n∑
i=1

{yi log(
µi

1− µi
) + log(1− µi)} −

1

2
λ‖h‖2Hk

=
n∑
i=1

(yi{β0 +Xiβ + h(Zi)} − log{1 + exp(β0 +Xiβ + h(Zi))})−
1

2
λ‖h‖2Hk

(2.4)

where λ is the tuning parameter controlling the balance between the goodness of

fit and the complexity of the model. When λ = 0, the model represents a saturated

model that interpolates all data points. When λ = ∞ the model forces h(Z) = 0 and

reduces to the simple linear or logistic model.

By the Representer Theorem (90), the nonparametric function h(z) in (2.1) and 2.2

can be expressed as

h(Z) =
n∑
i=1

αiK(., Zi) = Kα (2.5)
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Substituting (2.5) into (2.3) and (2.4), the objective function becomes

J(h, β) = −1

2

n∑
i=1

(yi − β0 −Xiβ −
n∑
j=1

αjK(Zi, Zj))
2 − 1

2
λα′Kα (2.6)

and

J(h, β) =
n∑
i=1

{yi(β0 +Xiβ + k′iα) + log(1 + exp(β0 +Xiβ + k′iα)} − 1

2
λα′Kα (2.7)

respectively, in which K is n× n matrix whose (i, j)th elements is K(Zi, Zj) and α is a

vector of constant that needs to be estimated. With predefined λ, estimation of β and

α can be easily carried out by equating the first derivative of the penalized likelihood

function to zero. In reality, the optimal value of λ needs to be estimated through cross

validation or by minimizing the generalized cross validation (GCV) score (215), which

can be computationally expensive.

In the original paper in 2007, Liu et al. (112) showed that the linear KMR model in

equation (2.1) share the same normal equation as in the following linear mixed model:

y = β0 +Xβ + h+ ε (2.8)

where h is a n × 1 vector of random effects distributed as N(0, τK) with τ = λ−1σ2,

β as a vector of regression coefficients for fixed effects and ε ∼ N(0, σ2I). Therefore,

the estimation of h in model (2.1) corresponds to the best linear unbiased predictor

(BLUP) from the linear mixed model which can be obtained through the restricted

maximum likelihood method (REML)(69), with simultaneous estimation of the variance

component τ .

Parallel to the result from linear KMR, the logistic KMR model in (2.2) were shown
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to correspond to the logistic mixed model (111)

logit(µ) = β0 +Xβ + h (2.9)

with h being a n × 1 vector of random effects distributed as N(0, τK). Within the

logistic mixed model framework, the coefficients β and h can be obtained by fitting the

penalized quasi-likelihood (PQL) (146), in which τ is treated as variance component as

well as in the linear case.

2.2.3 Variance Component Score Test

In KMR models, it is of great interest to test the overall effect of the genomic

features on the outcome, i.e, whether h(Z) = 0, with linear adjustment for confounding

variables. From the correspondence between KMR models and linear/logistic mixed

model, h(Z) is distributed with mean 0 and variance τK. Therefore, h(Z) = 0 is

equivalent to τ = 0 and the hypothesis can be restated as

H0 : τ = 0 versus H1 : τ > 0 (2.10)

Test of variance component is nonstandard as the null hypothesis put τ = 0 at the

boundary of the parameter space; the likelihood ratio statistic doesn’t follow the usual

χ2 distribution (180). Moreover, because the kernel matrix is not block diagonal, the

standard approach in mixed models (180) does not apply either and the likelihood ratio

doesn’t follow a mixture of χ2
0 and χ2

1 distribution. Instead, a variance score test was

proposed (112, 111, 229) for both quantitative and binary outcomes. The score statistic

has the form of

Qτ = (y − µ̂0)
′K(y − µ̂0) (2.11)

in which µ̂0 is the estimate of y based on the simple linear/logistic regression model
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in which no genomic effect is present. Under the null hypothesis, the Qτ follows a

mixture of χ2 distribution, which can be approximated by a number of approaches

(45, 41).

The variance component score test avoids the estimation under the alternative hy-

pothesis and only requires fitting the linear/logistic regression model, which is compu-

tationally efficient. For kernels such as the Gaussian kernels which involve additional

parameters ρ, the unknown parameter vanishes under the null hypothesis and become

inestimable. The variance component score test is valid for any value of ρ, with better

choice of ρ merely improves the power.

2.3 Further Work on KMR in Genomic Studies

2.3.1 KMR for Survival Outcomes

The ultimate goal of most genetic studies is to uncover the biological mechanisms

underlying human disease, which can subsequently lead to better understanding of

the disease process and improved disease prevention and management (75). GWAS

with survival outcomes have also been conducted in a number of diseases (5, 77, 53).

Traditional approaches that fit individual Cox proportional hazard models to each

SNP with subsequent multiple testing adjustment suffers from the same limitations as

in the studies with continuous or binary outcomes. In the recent two papers, Lin et

al. (108, 21) proposed to use the KMR framework to test for association between a

set of genetic markers with censored survival outcome. The model assumes that the

survival time T is related to genotype Z and additional covariant X through the Cox

proportional hazard model (38) that

λ(t) = λ0(t) exp(β0 +Xiβ + h(Zi)) (2.12)
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Through the dual representation, h(Z) =
∑n

i=1 αiK(Zi, Z) where αi are unknown

parameters. Testing the null hypothesis that H0 : h(Z) = 0 is equivalent to testing

H0 : h(Z) =
∑n

i=1 αiK(Zi, Z) = 0. The KM score test for censored survival data

assumes that α = {α0, α1, ..., αn}′ follows an arbitrary distribution with mean 0 and

variance τK−, where K is the n×n kernel matrix with the (i, j)th element as K(Zi, Zj),

and K− being the generalized inverse. Then H0 is equivalent to testing the variance

component H0 : τ = 0, with a score statistic as

Q = M̂
′
KM̂− q̂ (2.13)

where M̂ = (M̂1, M̂2, ..., M̂n)′, where M̂i being the martingale residual for individual i

under the null hypothesis that

M̂i(t) = ∆i(t)−
∫ s

0

Yi(t)e
(β̂0+X′

iβ̂)dΛ̂0(t)

q̂ =
n∑
i=1

∫
K(Zi, Zi)Yi(t)e

(β̂0+Xiβ̂)dΛ̂0(t)−
n∑
i=1

n∑
j=1

∫
Yi(t)Yj(t)e

(β̂0+X′
iβ̂)K(Zi, Zj)

Ŝ0(t)
dΛ̂00(t)

with Yi(t) = I(Ui > t), the at risk indicator, β̂ the partial likelihood estimator of

β under the null,and Λ̂0(t) =
∑n

i=1 ∆iI(Ti ≤ t)/Ŝ0(Ti), the Breslow’s estimator of

Λ0(t) =
∫ t
0
λ0(u)du under the null model.

Under the null, the score statistic Q asymptotically follows a mixture of χ2 distri-

butions which can be approximated through resampling approach (21). Specifically,

Cai et al.(21) showed that Q converges in distribution to double-integrated martingale

processes and p-value can be obtained by approximating the distribution of the mar-

tingale processes via resampling to generate realization of the score statistic under the
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null.

2.3.2 Multivariate Phenotype Association by KMR

Although most GWAS are analyzed for one phenotype at a time, data for multiple

related phenotypes are often collected. Joint analysis of multiple disease-related phe-

notypes have the potential to revel genes with pleiotropic effect and increase statistical

power for association (239, 114). Several papers have developed methods for multivari-

ate association analysis of multiple phenotypes (239, 114, 237, 213). However, most of

these multivariate analysis focus on the effect of a single marker.

Similar with the case of univariate outcome, Maity et al. suggested that multi-

variate analysis can also benefit from marker set analysis via KMR and proposed a

multivariate kernel machine regression framework (MVKMR) (131). Specifically, as-

sume that for each individual i = 1, 2, ..., n, Yi = (Y1i, ..., Ypi) be a response vector of

phenotypes of interest, Xi be the confounding variables that need to be adjusted, and

Zi = (Zi1, ...ZiM)′ being the group of SNPs that are of interest. The model can be

constructed as

Yki = Xiβk + hk(Zi) + εki (2.14)

for k = 1, ..., p and i = 1, ..., n,with {ε1i, ...εpi} ∼ N(0,Σ) with Σ = {σkl} where

σkl reflects the correlation between different phenotypes within the same individual

and hk(Z) represents the genetic effect on the kth phenotypes which can be specified

through a kernel function Kl(·, ·). The null hypothesis that the SNP sets have no effect

on the outcome can be written as

H0 : h1(·) = h2(·) = ... = hp(·) = 0

Take Y = (Y1i, ..., Y1,n, ..., YP1, ..., Ypn)′, h = (h1(Z1), ..., h1(Zn), ..., hp(Z1), ..., hp(Zn))′
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and ε = (ε1
′, ..., ε′p)

′, stacked vectors of all the outcome variables, genetic effects and

their corresponding residuals. Also define X = diag(X1, ..., Xp) and β = (β′1, ..., β
′
p)
′.

The model can be rewritten as

Y = Xβ + h + ε (2.15)

whereε ∼ N(0, Σ̃) where Σ̃ = Σ
⊗

In, i.e, Σ̃ is a p × p block matrix with each block

being a diagonal matrix of σkl for k = 1, ..., p and l = 1, ..., p.

Following the same argument as in univariate KMR, estimation of β and h can be

carried out through the linear mixed model framework.

Y = Xβ + h + ε (2.16)

where h ∼ N(0,KΛ) with Λ = diag(τ1, ..., τp)⊗ In, and ε ∼ N(0, Σ̃). Testing the null

hypothesis that H0 : h1(.) = ... = hp(.) = 0 is equivalent to testing H0 : τ1 = ... = τp =

0. The corresponding variance component score statistic

Q = (Y−X′β̂)′V−10 KV−10 (Y−X′β̂) (2.17)

in which V = KΛ + Σ̃ represents the total variance of y, and β̂ and V0 are the

estimates of β and V under the null model. P-value can be calculated by comparing Q

to a mixture of χ2 distribution which can be approximated through moment matching

or empirical approach.

2.3.3 Kernel Machine Test Under Multiple Candidate Kernels

One major advantage of the KMR is its flexibility: choosing different kernels assumes

different functional form of the genetic effect h. As a score test, the test is valid

regardless of the choice of kernel, i.e. with well controlled type I error. However, good
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choice of kernel generates test with improved power. For example, when epistasis is

present, kernels that accommodate nonlinear effects, such as the IBS kernel, can provide

improved power for association between SNP set and the phenotype(222). However,

if there is no epistatic effect, using the linear kernel can usually be more powerful

(108, 229). In practice, information on the underlying genetic effect is seldom known.

A number of methods have been proposed that consider multiple candidate kernels

simultaneously and choose the optimal test to maximize power, with adjustment of

choosing the best kernel.

In the association tests between rare variants and phenotype, Lee et al. (100)

extended the sequence kernel association test (SKAT) to allow for correlations among

different markers. Specifically, they proposed an optimal test that uses as test statistic

a linear combination of burden (156, 144) and SKAT test statistic (230), and showed

that it is equivalent to the SKAT statistic with a new family of kernel that includes a

correlation parameter ρ.

Qρ = (y − µ̂)′∆̂V̂ −1KρV̂
−1∆̂(y − µ̂)

Using notation from generalized linear models, ∆̂ is the estimated link adjustment

∆ = diag(g′(µ)), V̂ = diag{φ̂v(µ̂i)[g
′(µ̂i)]

2}. When canonical link function is used, the

test statistic can be simplified to be

Qρ = (y − µ̂)′Kρ(y − µ̂)/φ̂2

where Kρ = GWRρWG′ is the new kernel function which involves correlation structure,

Rρ = (1 − ρ)I + ρ11′ represents an exchangeable correlation matrix, W is the weight

matrix and G the genotype of the rare variants. For each fixed ρ, Qρ follows a mixture

of χ2 distribution, which can be easily approximately through the variance inversion or
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moment matching approaches.

The minimum of the p-values across different values of ρ was used as test statistic

T = inf0≤ρ≤1pρ

Lee et al. derived the theoretical distribution of this SKAT-O statistic by combining

the two kernel matrices via projection and approximate Qρ as a sum of two independent

χ2 mixture distribution. Sample size and power calculation formula was also derived.

By avoiding the computationally expensive resampling approach, this method is fast

to implement and applicable to whole genome studies. However, this method can not

be extended to kernels beyond the linear kernel.

Several extensions of this approach exist in the literature. A later paper from the

same group (99) extended the multiple kernel testing for rare variants and especially

studied the problem that the asymptotical p-values from logistic KMR can be too con-

servative when the sample size is small, leading to incorrect type I error and power loss.

Specifically,this paper proposed a method to adjust the asymptotical null distribution

of Q and obtain p-values by matching through higher moments, especially kurtosis, via

parametric bootstrapping method. A very recent paper (79) extended a similar mul-

tiple kernel approach to test for the combined effect of rare and common variants, in

which the test statistic is a weighted sum of the KM score statistic constructed by using

the rare and common variants separately. All these methods uses linear projection of

the kernel matrices to derive the asymptotical distribution of the test statistics, and

thus can only allow for linear kernels to be tested.

Other approaches have been proposed that allow for multiple arbitrary kernels to be

involved. Wu et al. (233) developed an efficient perturbation procedure that preserves

the correlation structure between the genotypes and confounding variables and allows

for multiple candidate kernels to be considered simultaneously.
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2.4 Causal Mediation Analysis

Establishing causal relationships is one of the central tasks in all aspect of scientific

and social research. In the field of medicine and public health, it is a fundamental step

in elucidating disease mechanism, designing the best prevention strategy and choosing

personalized treatment. It has been heavily debated in philosophy, statistics and epi-

demiology. Simply put, mediation analysis is a causal model that investigates the role

of intermediate variables on the causal path between an independent variable and an

outcome variable (71). Mediation models have been extensively used in psychological

studies to establish the causal chain between a randomized treatment and outcome

variables (123). In the recent years, with the ability to gather sufficient information in

human genome, considerable work has been done using mediation models to decipher

the genetic causal network (13, 66, 80, 216, 210, 46, 200, 140, 109, 174).

2.4.1 Regression Approach to Mediation

The idea of mediation concerns the extent to which the effect of one variable on

another is mediated by some possible intermediate variable. Mediation analysis is an

application of associational causal modeling, i.e., it models causality using measures

of association (61). A mediation hypothesis is usually represented by a diagram of a

causal model (Figure 2.1).

In a mediation model (Figure 2.1), an independent variable X is assumed to cause a

set of mediators M , which, in turn, causes the dependent variable Y , so that the effect

of X on Y is at least partially through the effect of the mediators. The easiest case

of mediation models is the situation when there is only a single mediator M, the effect

of which can be modeled through linear regression (Figure 2.1 Panel A & B). In 1986,

Baron and Kenny (6) presented a pioneer yet simple mediation model, called causal

steps model, for demonstrating that a data set is consistent with the hypothesized
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Figure 2.1: Mediation Diagram

causal relationship if the following four steps are satisfied:

1) the independent variable X is correlated with the outcome Y .

Y = α1 + cX + ε1 (2.18)

2) X is correlated with potential mediator M

M = α2 + aX + ε2 (2.19)

3) M is associated with the outcome variable Y conditional on X

Y = α3 + c′X + bM + ε3 (2.20)

4) To establish that M completely mediate the relationship between X and Y , the

residual effect of X on Y should be zero after controlling for M (path c′ Figure 2.1

Panel B).
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The original Baron and Kenny approach did not include additional covariates in

the model to adjust for confounding effect. Further studies allowed confounding effect

to be corrected by adding extra covariates in the linear models. In this review, we

will present the models without considering additional covariates, however, it should

be noted that cases with additional covariates is analogous to what is presented.

The first three steps were proposed to be tested through the ordinary least square

(OLS) regression models, with the fourth step only required for conclusion of complete

mediation, which can be assessed through a bootstrap approach (86). Other methods of

estimation, such as logistic regression, multilevel modeling, and structural equal model

were proposed in later studies to work with data with non-Gaussian distribution. How-

ever, the necessary steps are the same regardless of the analytic methods (58). More

contemporary researchers believe that only step 2 and 3 are essential in establishing

mediation, especially in the situation of inconsistent mediations (87). Although alterna-

tive models have been proposed, causal steps models still constitute a large proportion

of all mediation tests in psychology and epidemiology studies (123, 168).

The amount of mediation is considered as indirect effect. From equations (2.18),(2.19)

and (2.20),

c = c′ + ab (2.21)

where c is the total effect of X on Y , c′ is the direct effect and ab is the indirect effect.

Equation (2.21) holds exactly when a) OLS was used in each of the steps, b) the

same cases are used in all analysis and c) all equations adjust for the same covariates.

The decomposition of the total effect into direct effect and indirect effect provides

the philosophical foundation that can be generalized to more complex causal inference

models, including structure equation models and models with counterfactual effects

(209).
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There are several ways to test for the indirect effect under the causal steps frame-

work. A first and intuitive way to test for the null hypothesis of indirect effect ab = 0

is to test that both paths a and b are zero. A more highly recommended strategy to

test for the indirect effect ab is to have a single test of ab (125). Sobel (191) proposed

a method that uses the asymptotical normal distribution of ab and corresponding Z

statistic to calculate p-values via Delta method. The approximate standard error of ab

is b2s2a + a2s2b where sa and sb are the standard errors of a and b. The Sobel test is

considered to be very conservative and usually have low power (127) because the test

approximates ab by a symmetric normal distribution while the sample distribution is

usually highly skewed.

Bootstrapping method is a relatively new and increasingly popular approach in test-

ing the indirect effect (186, 16), which computes the nonsymmetric confidence bounds

for ab from the empirical distribution by resampling approach. There are two com-

monly used Bootstrap methods in literature. Percentile Bootstrap directly construct

the empirical distribution and confidence interval by finding the corresponding per-

centiles from the estimates from resampled data sets. Bias corrected Bootstrap meth-

ods (126, 93) calculate confidence interval and p-values by adjusting the bias between

the bootstrapped distribution and the indirect effect. Several recent studies have raised

concerns that the bias corrected bootstrapping test can have type I error that are too

liberal. In a recent paper (70), Hayes and Scharkow recommended using the bias cor-

rected bootstrap if the power is the main concern while use the percentile bootstrap

when the major concern is type I error.

In the cases when outcome Y are categorical variables, the OLS regression approach

is no longer applicable. However, the conceptual decomposition of the total effect into

direct effect and indirect effect still applies. Mackinnon and Dwyer (122) proposed to
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use the modified models for estimation of the standard errors of ab:

Y ∗0 = α1 + cX + δ1 (2.22)

and

Y ∗0 = α1 + c′X + bM + δ2 (2.23)

where Y ∗0 is the the unobserved probit of the probability of being in one of the two

categories of the outcome variable, c reflects the effect of the program on the probit of

the outcome probability in the first equation, c′ is the direct effect of the program on

the probit of outcome probability adjusted for the effects of the mediator, δ1 and δ2 are

the residuals in the probit models. The same Sobel tests and Bootstrap approach can

be used to test for the indirect effect.

Mediation with Multiple Mediators

Scientific and social researches are replete with situations when multiple media-

tors exist between an independent variable X and an outcome variable Y . Multiple

mediation models that incorporate simultaneous mediation by multiple variables have

received less attention in methodological and applied studies than the single mediation

models. However, there are a considerable number of methods proposed that aim to

test for the overall effect of multiple mediation (192, 19, 31, 124, 93).

Figure 2.1 Panel C represents the situation in which there are j possible mediators

between independent variable X and outcome Y . A specific indirect effect through one

mediator can be defined as the product of the two paths linking X to Y via one of

the mediators (19) and the total indirect effect are defined as the summation of all the

specific indirect effect
∑j

i=1 aibi where i = 1, ..., j. Similar to the single mediation case,

the total effect can be written as c = c′ +
∑j

i=1 aibi. In a more recent paper, Preacher
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and Hayes (93) emphasized the difference between the indirect effect through one of the

mediators (e.g.,M1) in a multiple mediation model and the indirect effect in a single

mediation model with only M1 as a mediator. They proposed three testing approaches

for the total indirect effect
∑j

i=1 aibi that mimic the three testing approaches in single

mediation analysis: 1) the causal steps approach, which tests for each specific indirect

effect and concludes mediation if any of the indirect effect is not zero. 2) Product-

of-Coefficients approach which derives the asymptotical variance of the total indirect

effect
∑j

i=1 aibi using multivariate delta method and calculates p-values and confidence

interval through the usual Z test. Similar as the Soblel test, this method relies on

large sample approximation and can result in a lower power if the sample size and/or

effect size are not sufficiently large. 3) Bootstrapping approach, which uses resampling

procedure to establish the empirical distribution of the total indirect effect. Preacher

and Hayes (93) recommended the use to biased corrected Bootstrapping method for

testing of multiple mediation effect.

2.4.2 Counterfactual Approach to Mediation Analysis

While the concept of mediation, defined as indirect effect through the classical

regression framework, is appealing theoretically, it is difficult to extend this definition

to situations when the effect of exposure and mediator on the outcome have interactions

or is non-linear (164, 153). The approach of decomposing the total effect to direct and

indirect effect is not readily applicable because holding the mediator at different levels

would generate different direct effect at the presence of interaction effect.

Recent progress in mediation analysis has extended the concept of direct and indi-

rect effect to situations when non-linearities and interactions are present and considers

the identifiability conditions for a causal relationship. In a paper in 2001, Pearl et

al(153) uses the counterfactual notation and formulated new definition of path-specific
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effect: the controlled direct effect (CDE) and natural direct effect (NDE). Under the

counterfactual framework, the CDE of the exposure on the outcome is defined as

E(Y (x,m) − Y (x∗,m)|C), which is the change in the outcome if the treatment was

changed from x∗ = 0 to x = 1 while the mediator M is fixed at level m across the

population, where C is the confounders that need to be adjusted for. The NDE is

defined as E(Y (x,M(x∗))− Y (x∗,M(x∗))), which is the exposure effect that would be

obtained in the outcome if the exposure were changed from x to x∗ while the mediator

was kept at the level that would be observed as if the independent variable were kept

at x∗. Natural and controlled indirect effects (NID and CID) are defined as the dif-

ference between the total effect and the corresponding direct effect. VanderWeele and

Vansteelandt (209, 211) show that the counterfactual framework can extend the Baron

and Kenny formulae for direct and indirect effect to situations when there is interaction

effect between the exposure and mediator on the outcome.

Specifically, consider a model when there is interactive effect between the exposure

and mediator on the outcome,

E(M |X = x,C = c) = β0 + β1x+ β′2c (2.24)

E(Y |X = x,M = m,C = c) = θ0 + θ1x+ θ2m+ θ3xm+ θ′4c (2.25)

Through models (2.24) and (2.25), under some identifiability assumptions, the CDE,

NDE and NIE for change of independent variable from level x∗ to X is given by under

some identification assumptions

CDE = (θ1 + θ3m)(x− x∗)

NDE = (θ1 + θ3β0 + θ3β1x
∗ + θ3β

′
2c)(x− x∗)

NIE = (θ2β1 + θ3β2a)(x− x∗)

(2.26)
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In cases when there is no interaction effect (θ3 = 0), the CDE and NDE equal to the

direct effect obtained through the Baron-Kenny linear regression approach. However,

in this counterfactual framework, the total effect can be decomposed into the sum of

natural direct and indirect effect even in models with interactions and non-linearities

(153). NDE and NID are useful in evaluating the different mechanism of exposure on

outcome, while CDE and CID are often of greater interest in policy evaluation.

Certain identification assumptions are required for expression (2.26) to hold. The

direct and indirect effect defined previously are conditional on the levels of covariates C.

Let C = (C1, C2) where C1 denotes the confounders of the effect between the exposure

and outcome and C2 denotes the confounders of the mediator-outcome effect. Accord-

ing to VanderWeele et al.(209), two assumptions are required for the identifiability of

the controlled direct effect: 1) no unmeasured confounders of the exposure-outcome

relationship and 2) no unmeasured confounders of the mediator-outcome relationship.

Randomization in the treatment/exposure guarantees the first assumption, but not the

second assumption. Thus, in practice, it is required to control for the common causes of

treatment/exposure and the outcome to control for the first assumption and control for

common causes for mediators and the outcome for the second assumption. For the iden-

tification of natural direct and indirect effect, two additional assumptions are required:

3) no unmeasured confounders of the exposure-mediator effect, which will be automati-

cally satisfied if the treatment are randomized and 4) no unmeasured mediator-outcome

confounders affected by treatment. It is important to note that randomization can only

rule out the confounders with exposure effect but can not rule out confounding effect

associated with the mediator effect as mediators are rarely randomized.
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2.4.3 Mediation Analysis in Genetic Analysis

Recently, mediation analysis has gained increasing interest in genetic studies to

dissect the direct and indirect effect of genetic variants on complex diseases (13, 66,

80, 216, 210, 46, 200, 140, 109, 174). Most of these studies used data from GWAS and

applied mediation methods that were developed through social science literatures or

epidemiological studies, typically with an assumption that the genomic variation such as

SNP, or a quantitative trait locus(QTL), acts as a causal anchor from which all arrows

in the corresponding causality diagram are directed outward. However reasonable this

assumption appears, cautions should be taken when the sampling scheme is not random,

such as in case control studies (104).

Up to now, most of these genetic studies involve analyzing the SNP-trait-trait triads,

in which only a single mediator is concerned. For example, Wang et al. used the So-

bel’s test for binary outcomes to evaluate the mediation effect of smoking and Chronic

Obstructive Pulmonary Disease (COPD) on the relations between CHRNA5-A3 ge-

netic locus and lung cancer risk (216), with adjustment for age and other covariates.

Chen et al. (29) developed theoretical justification in the form of “causality equiva-

lence theorem”, stating the sufficient conditions required for a causal conclusion of the

SNP-trait-trait triads. This method has been used, with certain modifications, in sev-

eral rigorous yet conservative approaches to dissect genetic causal relationship between

genotypes and phenotypes, with gene expression or methylation as potential mediators

(140, 115).

Multiple mediation models have been explored in genetic studies as well. Vander-

Weele et al. (210) modeled smoking as a potential mediator between genetic variant

on 15q25.1 and lung cancer, while allowing for interaction effect between smoking and

COPD, in which mediation through smoking can account for only a small proportion

of the total effect. Wang et al (217) constructed a multiple mediation model, in which
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smoking and COPD constitute two steps in the causal pathway between CHRNA5-

A3 variant and lung cancer. Bootstrapping was used to assess the significance of the

indirect effect.
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CHAPTER 3

Global Analysis of Methylation via a Functional Regression Approach

3.1 Introduction

Recent advances in high-throughput biotechnology have culminated in the devel-

opment of large scale epigenome wide association studies (EWAS) (159) in which the

DNA methylation at hundreds of thousands of CpGs along the genome can be simul-

taneously measured across a large number of samples (10, 172). EWAS have resulted

in the identification of differentially methylated CpGs associated with differences in

disease states, clinical outcomes, environmental exposures, or other experimental con-

ditions (85, 184, 73, 74). These discoveries can provide a breadth of information from

fundamental insights into the mechanisms underlying complex disease and to potential

biomarkers for diagnosis or prognosis (98, 4).

Despite many successes, analysis of EWAS remains challenging (14). In addition to

open questions concerning preprocessing and normalization (44, 203, 132, 201), associ-

ation analysis with outcome variables is also difficult. Standard analysis proceeds via

individual CpG analysis wherein the association between each CpG and an outcome

variable (e.g. disease state, environmental exposure, etc.) is assessed one-by-one. After

computing a p-value for each CpG, multiple testing criteria such as the false discovery

rate (FDR) or Bonferroni corrections are applied. CpGs surviving this correction are
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called differentially methylated and followed for validation and interpretation. Recent-

ly, alternative approaches based on pathway analysis have also been applied and largely

mimic the analyses conducted for gene expression data.

Although individual CpG analysis has been extremely successful in identifying indi-

vidual CpG sites associated with a variety of outcomes, a question of considerable inter-

est lies in whether there is global differential methylation across the entire epigenome

(52). For example, global hypomethylation is believed to occur in cancer (190, 18, 89).

Global methylation analysis was traditionally conducted using assays such as examina-

tion of repetitive Alu elements and long interspersed nucleotide elements (LINE) (234).

Such methods have been widely used for a wide range of diseases and experimental

conditions (24, 15, 183, 55). However, these technologies are limited to primarily re-

peat regions which have only limited coverage on the new individual CpG resolution

technologies. Thus, as the field moves towards new technologies, how to assess global

methylation within the context of large scale studies with individual CpG level reso-

lution remains unclear. Understanding global methylation is important for improved

understanding of the biological systems and mechanisms of disease and also to allow

for the continued relevance of traditional models as we transition towards newer tech-

nologies.

In this paper, we develop two new, related methodologies for assessing global differ-

ential methylation, either epigenome wide or restricted to a large number of CpG sites,

using a functional data analysis approach. The intuition behind our approach is that

global differences in methylation may be observable through differences in the overall

distribution of CpG methylation levels, yet changes in a select, small subset of CpGs

(which fails to reflect “global” methylation differences) will not dramatically change the

entire distribution. Consequently, for our first strategy, we approximate the density of

the methylation distribution for each individual using B-Spline basis functions (160).
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For our second strategy, we approximate the cumulative distribution function (CDF)

of the methylation distribution for each individual using B-spline basis functions. Then

for both approaches, we index the entire distribution of methylation values using the

estimated B-spline coefficients. To test for differential global methylation, we employ

a variance component test (107) previously used for regression based analysis of gene

expression (65, 112, 111) and genetic variants (229, 231).

Our approach offers a number of attractive features. First, since we are using a more

robust summary measure rather than the original CpGs, the approach is therefore tar-

geted towards comprehensive, modest changes in methylation globally. Furthermore

it is robust to very strong differential methylation in a few CpGs of interest – while

interesting this scenario may not reflect true global differential methylation. Second,

we will employ a computationally fast variance component test from the kernel ma-

chine framework which accommodates the high degree of correlation between spline

coefficients while allowing for covariate adjustment.

Finally, our variance component testing approach can be used for a range of out-

come types including continuous, dichotomous, survival (21, 108), and multivariate

(131) outcomes while adjusting for covariates. The ability to adjust for covariates

and confounders is an important feature given recent concerns regarding the need for

controlling cell type effects(76)

The remainder of this article is organized as follows. In the next section, we de-

scribe our proposed methodology for estimating the density function or the CDF of the

methylation distributions for each individual. Then we describe the hypothesis testing

procedure using the variance component test in Section 3.3. We assess the performance

of our approach via simulations in Section 3.4. In Section 3.5, we apply the proposed

work to real data sets to illustrate our approach. We conclude with a brief discussion

in Section
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3.2 Functional Estimation of Methylation Distributions

The idea behind our approach is that large scale, global differences in methylation

will be reflected in differences between individuals in the distribution of their CpG

methylation measurements. Thus, our general approach is to approximate the dis-

tribution of methylation values for each individual and then test for an association

between the distributions and an outcome variable. In this section, we focus on the

two proposed approaches for approximating each individual’s methylation profile using

functional data analytic approaches.

3.2.1 Estimation of the Density for Each Sample

Our first approach for approximating the overall methylation profile for each indi-

vidual is based on approximation of each individual’s density function. In short, we

will compute the profile of the histogram for each individual by first creating a fine his-

togram of the methylation values and then fitting a B-spline to the binned histogram

data. The spline coefficients will be used to summarize the profile and will be analyzed

in the testing stage.

For the ith sample in the study, i = 1, . . . , n, suppose that the true underlying

density function of the methylation values is Hi(·). However in practice, the actual form

of this density function is unknown. Instead, we only observe methylation percentages

{Xi1, . . . , Xim}, where m is the number of observed probes, and Xij is the methylation

level of the jth CpG on the ith sample. To estimate the underlying density, we first

generate a fine histogram of the methylation values. In particular, for a pre-specified

large number B, we define bins Ik = [k−1
B
, k
B

) for k = 1, . . . , B, and calculate the

empirical relative histogram by

Ĥik = Ĥi(tk) =
B

m

m∑
j=1

I

(
k − 1

B
≤ Xij <

k

B

)
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where tk denotes the mid-point of the bin Ik for k = 1, . . . , B. Noting that each Xij

is the percent methylation (between 0 and 1), then Ĥi(t) with t ∈ Ik is the density of

probes falling into the kth bin. In principal, B is a constant that can be tuned, and is

related to the kernel bandwidth in kernel density estimation area. Larger values of B

correspond to more bins and a finer histogram and better capture of small effects, yet

greater sensitivity to differences generated by small changes in the overall distribution

rather than global changes. Our experience suggests that setting B = 200 produces

a reasonably fine histogram (Fig. 1a), but in practice, B is also a tuning parameter

which can be selected.

Once we have constructed the histogram, we can estimate the smooth methylation

profile by fitting a B-spline to the histograms to obtain a smooth curve. In particular,

we take a functional data analysis view of the problem and assume that the Ĥi(·)

is simply the observed value from the true functional process Hi(·). The underlying

Hi(·) is the profile of the methylation distribution for the ith sample, which we use

to summarize the global methylation values for the sample. We can apply standard

B-splines to model each Hi(·).

Briefly, B-splines are a sequence of joined polynomial segments between a series of

knots which are used to model functional data. Between each pair of knots the curves

are modeled as a polynomial of some order greater than 1. For a pre-specified number

of interior knots R and order L of the polynomials, the total number of B-spline basis

functions is given by p = R + L. We model the true methylation profiles Hi(·) by

Hi(t) =

p∑
`=1

ci`φ`(t),

where φ1(·), . . . , φp(·) are the B-spline basis functions, and ci1, . . . , ciL are unknown co-

efficients specific to the ith sample. To estimate the coefficients, we propose to minimize
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the penalized least squares criterion

B∑
k=1

(
Ĥik −Φ′kCi

)2
+ λC′iSCi,

where Φk = {φ1(tk), . . . , φp(tk)}′, Ci = (ci1, . . . , cip)
′ and S is a penalty matrix.

Here λ is a penalty parameter that controls the roughness of the fitted function. A

larger value of λ results in a smoother estimate while a smaller values of λ produces

rougher fit. The resulting estimate of the coefficient vector c has a closed form and can

be computed using standard penalized least squares estimation.

Two important issues in this context are the number and placement of the knots, and

the choice of the penalty parameter λ. Since methylation percentages are between 0 and

1 and approximately bimodal, we place more knots in the areas with strong curvature

(closer to 0 and 1) and fewer knots in between. In general, we observed that 25-35 knots

with polynomial order 4 seems to be a reasonable model for the data. Regarding the

choice of λ, there are many available data based methods such as leave one out cross-

validation, generalized cross-validation and the restricted maximum likelihood criteria,

see e.g., (169). In this article we use generalized cross-validation (GCV) method to

select λ.

Although Ĥi(·) can be thought of as an approximation of the density for the methy-

lation values, strictly speaking, adjustments are needed to ensure that it has the prop-

erties of being a probability density function. However, since we are simply using the

profile of the histogram as a tool for summarizing the entire profile of methylation

values, this is not necessary from the perspective of testing.

3.2.2 Estimation of the Cumulative Distribution Function

Our second approach for approximating the overall methylation profile for each indi-

vidual is based on approximation of each individual’s cumulative distribution function
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Figure 3.1: Approximating the density for each sample: Example histograms for two
samples and the corresponding B-spline approximated densities.

(CDF). Similar to before, we will estimate the empirical CDF (ECDF) and then fit

a B-spline to the ECDF. The spline coefficients will again be used to summarize the

profile and will be analyzed in the testing stage. The advantage of this approach is two-

fold: first, binning to create a histogram is no longer necessary and second, sensitivity

of results to knot placement is mitigated.

For the ith sample in the study, i = 1, . . . , n, we assume that the true CDF is Fi(·),

and estimate the ECDF as:

F̂ik = F̂ (tk) =
1

m

m∑
j=1

I(Xij ≤ tk),

where {tk, k = 1, . . . , B} form an equally spaced grid of B points in [0, 1].
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In constructing a basis for the CDF, we again use a grid of 35 knots between 0 and 1

due to the nature of methylation data, but in contrast to modeling the density function,

we space the knots evenly since the difference in curvature is no longer as apparent.

We again assume a B-Spline basis representation for the true CDF with order 4 basis

functions and write

Fi(t) =

p∑
`=1

ci`φ`(t)

where φ1(·), . . . , φR(·) are the B-spline basis functions. As with the estimation for the

density functions, the unknown coefficients for the ith subject can be estimated using

penalized least squares with F̂ik, k = 1, . . . , B as the responses, and the smoothing

parameter λ can be estimated using generalized cross validation criterion. Once we

have obtained the coefficients for the B-splines for each individual, we can test for

association with the outcome variable.

3.3 Variance Component Test in Approximated Distributions

After applying B-splines to approximate either the density or the CDF for each

sample in the study, we allow the B-spline coefficients to index the entire distribution.

Consequently, to test for global changes in methylation, we need only test whether the

spline coefficients are associated with the outcome. To do this while accommodating

potential confounding variables and the (typically) high correlation between B-spline

coefficients, we propose to use the variance component test used within the SKAT

framework for genotype analysis(229, 231, 96).

Here and in the sequel we let Ci = [ci1, ci2, . . . , cip]
′ denote the vector of B-spline

coefficients for the ith individual in the study and Zi be a vector of covariates for

which we would like to control. We further let yi denote the outcome of interest.

For simplicity, we focus on univariate continuous or dichotomous outcomes, but our

framework generalizes naturally to other outcomes such as survival times or multivariate
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Figure 3.2: Approximating the CDF for each sample: example ECDFs for two samples
and the approximated B-spline approximations of the CDFs.

measurements. The objective is to test for association between Ci and yi while adjusting

for Zi.

Natural models for relating the variables of interest to the outcome are the linear

model

yi = α0 +α′Zi +

p∑
j=1

βjcij + εi (3.1)

for continuous outcomes and the logistic model

logitP (yi = 1) = α0 +α′Zi +

p∑
j=1

βjcij (3.2)

for dichotomous outcomes, where we define α0 to be an intercept, α and βj to be the
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regression coefficients corresponding the to covariates and each B-spline coefficient, and

εi to be a random error term with mean 0 and variance σ2.

To test for an association between C and y corresponds to testing:

H0 : β1 = β2 = . . . = βp = 0. (3.3)

In principle, this can be done using a p-df test, but the C tend to be highly correlated

and p can be large such that power is low. An alternative approach is to assume that

the βj follow some arbitrary distribution G(·) with mean 0 and variance τ . Then τ

indexes the significance of the entire group of B-spline coefficients and then testing

(3.3) is equivalent to testing

H0 : τ = 0, (3.4)

which can be done using a variance component score test. In particular, for continuous

outcomes we can construct the score statistic

Q =
(y − α̂0 − Zα̂)′CC′(y − α̂0 − Zα̂)

σ̂2

where α̂0, α̂, and σ̂ are estimated under (3.4). Similarly, for dichotomous outcomes we

can construct the score statistic

Q = (y − ŷ)′CC′(y − ŷ)

where ŷ = logit−1(α̂0 + Zα̂) and both α̂0 and α̂ are again estimated under the null,

(3.4).

Under the null hypothesis, Q asymptotically follows a mixture of chi-squares dis-

tributions. In particular, Q ∼
∑
λ`χ

2
1 where λ` are the eigenvalues of P

1/2
0 CC′P

1/2
0

and P0 = I−X(X′X)−1X′ for continuous outcomes and P0 = D−DX(X′DX)−1X′D

44



for dichotomous outcomes with D = diag{ŷi(1 − ŷi)}. This distribution can be ap-

proximated use moment matching methods(112, 113) or exact approaches(42, 43, 45)

allowing for easy p-value computation.

A key advantage of using the variance component testing framework is that the

degrees of freedom of the test adjust naturally to the correlation among the B-spline

coefficients. In fact, if the coefficients are perfectly correlated, then the test reduces to

a single degree of freedom test since the number of nonzero eigenvalues of CC′ is only

one.

3.4 Simulations

We assessed the size and also the power of our proposed approaches for global

analysis of methylation profiles.

3.4.1 Type I Error

To examine type I error for both dichotomous and continuous outcomes, we simu-

lated 2,000 data sets containing methylation profiles for n individuals. We generated

data under the null by simulating 10,000 methylation values for each individual, from a

beta distribution with parameters 0.45 and 0.55. Dichotomous outcomes by assigning

n/2 of the individuals were to be “controls” (yi = 0) and n/2 individuals to be “cas-

es” (yi = 1). For continuous simulations, the outcome variable yi was simulated as a

standard normal independently of the methylation profiles. To each of the simulated

data sets, we applied both of the proposed strategies for global analysis methylation

profiles. Specifically, we used B-splines to approximate the density of each individual’s

methylation distribution an to approximate the CDF of each individual’s methylation

distribution. For the density estimation, we constructed histograms using 200 evenly

spaced bins between 0 and 1. The knots for the B-spline were spaced at intervals of
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Table 3.1: Type I error simulation results.

Dichotomous Continuous
n Density CDF Density CDF

40 0.054 0.050 0.046 0.044
60 0.052 0.052 0.049 0.054
80 0.056 0.052 0.046 0.046
100 0.052 0.047 0.044 0.052
500 0.055 0.044 0.045 0.045

0.02 between 0 and 0.3 and between 0.7 and 1. Since the region in the center is less

variable, knots were placed at intervals of 0.1 in length. For the CDF estimation, we

estimated the ECDF at 1000 evenly spaced points between 0 and 1. A number of 35

knots for B-spline estimation were also evenly spaced between 0 and 1. After estimating

the spline coefficients for approximating the density and for approximating the CDF,

we applied the variance component score test to test for association between the spline

coefficients and the outcome variable. We allowed n to vary as 40, 60, 80, 100, and 500.

For each choice of n, we estimated the type I error rate as the proportion of p-values

less than α = 0.05 across the 2,000 simulations.

The type I error results for both dichotomous and continuous outcomes are presented

in Table 3.1 and indicate that the size of the proposed test is correctly controlled at

the 0.05 level, even when the sample size is modest.

3.4.2 Power

We examined the power of the proposed approaches for dichotomous outcomes. In

particular, we simulated n/2 individuals, designated as “controls”, each with 10,000

methylation measurements from a beta distribution with parameters 0.45 and 0.55.

Then for each of n/2 “cases”, we simulated γ× 10, 000 observations from a beta distri-

bution with parameters 0.55 and 0.45 with the remaining (1−γ)×10, 000 again sampled

from a beta distribution with parameters 0.45 and 0.55. γ indexes the strength of the
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difference in the methylation profile between cases and controls and was allowed to take

values between 0 and 0.5. We again let n vary as 40, 60, 100, and 500. For each choice

of n and γ, we simulated 200 data sets and assessed the power of both the density based

and CDF based testing procedures as the proportion of p-values less than α = 0.05.

Approximation of the density and CDF were done as in the type I error simulations.

The power as a function of log10 γ is plotted in Figure 3.3 for both the density and

CDF based approaches. As anticipated, power grows as a function of both n and γ

for both approaches. Importantly, when γ is small, neither approach has much power,

which is not necessarily undesirable since the objective is to identify scenarios in which

there is an observable change in the overall distribution rather than a few significantly

different probes. Overall, using the CDF tended to yield higher power than the density

based approach. This is, in part, due to the fact that using the density based approach

requires an additional layer of smoothing which can reduce modest effects. However,

lack of power for small values of γ may actually be more meaningful in terms of the

biological objective.

3.5 Data Applications

We illustrate our proposed methods for global analysis of methylation profiles via

application to some real data sets.

3.5.1 Epigenetic Comparison of Newborns and Nonagenarians

Methylation levels at key genes and genome wide are believed to vary with age

(224, 95, 165, 129, 82, 72). Recently, Heyn et al. (74) conducted a study to examine

differences methylation between blood from newborn infants and nonagenarians. We

illustrate our proposed methods for global analysis via application to this data set

which was available from the Gene Expression Omnibus (GEO) (47) (http://www.
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Figure 3.3: Power simulations results.

ncbi.nlm.nih.gov/geo/) under accession number GSE30870. Briefly, the study used

the Illumina HumanMethylation450 array to measure methylation at approximately

485,000 CpGs genome wide in blood from 20 nonagenarians and 20 newborn infants.

For our analysis, we restricted attention to the approximately 470,000 autosomal CpGs.

We applied both the density and CDF based analysis procedures to the data set to

test for global differential expression between newborns and nonagenerians. As in the

simulations, for the density based approach, we again computed the relative histogram

using 200 evenly spaced breaks between 0 and 1, and then we approximated the density

using B-splines with knots placed at intervals of 0.02 between 0 and 0.3 and between

0.7 and 1.0. Between 0.3 and 0.7, knots were evenly spaced at intervals of 0.10. For the

CDF based approach, we computed the ECDF for each sample at a grid of 1000 values
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between 0 and 1 and then approximated the CDF using B-splines with knots placed at

35 evenly spaced intervals between 0 and 1. For both approaches, GCV was used to

estimate the B-spline smoothing parameter λ. The approximate densities and CDFs

are shown in Figure 3.4. We then used the variance component test under a logistic

model to regress a binary indicator for whether each subject was a nonagenerian on the

B-spline coefficients from the the approximate density or from the approximate CDF.

No additional covariates were considered.

Using the density based approach, we obtain a p-value for association of 0.265 which

fails to meet significance, but on the other hand, if we use the CDF based approach, we

obtain a p-value of 0.024. The significant CDF based approach appears to better reflect

the authors’ observations that the newborn infants tended to have greater methylation

genome wide and the nonagenarians tended to have hypomethylation at key genes.
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Figure 3.4: Approximate densities and CDFs from the nonagenarian study. Red curves
are the nonagenarian methylation profiles and black curves are the infant methylation
profiles.
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3.5.2 Head and Neck Squamous Cell Carcinoma Methylation Study
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Figure 3.5: Approximate densities and CDFs from the head and neck squamous cell
carcinoma study. Red curves are the methylation profiles for the cancer cases and black
curves are the methylation profiles for the healthy controls.

Methylation is known to play an important role in a wide variety of cancers including

head and neck squamous cell carcinoma (HNSCC) (51, 171, 166). Thus, in a second

data example, we applied the proposed methodology to determine if global methylation

differences are observed between blood from subjects with HNSCC and healthy controls

using a data set available from GEO (accension number GSE40005). The data included

genome wide methylation measurements at approximately 485,000 CpGs in blood from

12 cases with HNSCC and 12 controls.

We applied the proposed density and CDF based approaches as in the the study

of newborns vs nonagenarians to test for association between global methylation and

case-control status while adjusting for age and gender. The approxmate densities and
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CDFs for each sample are shown in Figure 3.5. Using the density based approach, we

obtain a p-value of 0.0016 while using the CDF based approach we obtain a p-value of

0.00015, both of which are highly significant suggesting that large scale differences in

the overall methylation distribution are associated with cancer. This is again reflective

of prior knowledge indicating that cancer is associated with large scale differences in

methylation (136, 154).

3.6 Discussion

In this article, we propose two new strategies for global analysis of methylation

profiles which is based on approximation of either the density of the methylation values

for each individual or the CDF of the methylation values for each individual using a

functional regression approach. Specifically, by indexing each individual’s methylation

distribution using B-spline basis coefficients, we can test for association between the

overall methylation distribution and an outcome variable, while adjusting for additional

covariates, by simply testing the spline coefficients. Although the proposed method

tests the global null hypothesis, a key advantage of the proposed method is that we

are essentially applying smoothing when we approximate the density or the CDF using

B-splines. Therefore, this reduces the influence of single (or a few) probes strongly

associated with the outcome.

Overall, of the two proposed methods, the CDF based approach tends to have higher

power, as reflected by greater statistical significance in the data applications and in

the simulations, due to the additional layer of smoothing done when approximating

the density which arises from computing the relative histograms. However, the lower

power of the density based approach also means that it is sensitive only to true large

scale, global methylation differences.

For hypothesis testing, we focus on testing the spline coefficients using a variance
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component test in which the outcome is regressed on the spline coefficients. This allows

for natural accommodation of the high correlation among the spline coefficients since

the degrees of freedom of the test adapt to the correlation while adjusting for covariates.

However, alternative testing procedures are also possible. For example, one could also

treat global methylation as the outcome and use a Hotelling’s T 2 test or MANOVA

to asses significance. While our variance component testing approach and other tests

could all protect type I error, alternative methods may yield improved power if the

underlying models better reflects the true state of nature.

Our proposed methodology opens doors to new areas of research. First, although

we focus on testing global methylation across all CpGs, the approach can be restricted

to specific subsets of CpGs such as CpGs falling within specific epigenetically relevant

features (e.g. CpG islands, promoters, repeats, etc.) or the CpGs within a particular

gene pathway thereby enabling a set or pathway based analysis that tests the global

null hypothesis but is more geared towards a true pathway effect. Second, while we

have explored the relationship between global methylation and a single dichotomous or

continuous outcome, alternative outcome types are possible and warrant further explo-

ration. Finally, while our work focuses on testing the overall methylation distributions,

the idea of using a functional regression approach to summarize the overall distribution

can also allow for understanding the relationship between outcome variables and other

covariates while in the pressence of global methylation differences, i.e. adjusting for

the effect of methylation. This is important since methylation can serve as a poten-

tial confounder in biological models and adjustment for this can be important. Such

explorations remain for future research.
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CHAPTER 4

Microbiome Kernel Machine Profiling

4.1 Introduction

The advent of massively parallel sequencing has transformed the field of metage-

nomics and enabled high-throughput profiling of microbiota in a large number of sam-

ples via targeted sequencing of the 16S rDNA gene. Knowledge on how microbial

communities differ across individuals can provide key information on the role of com-

munities in relation to variation in biological and clinical variables and is essential for

gaining a broader understanding of biological mechanisms underlying disease and re-

sponse to exposures. Although considerable resources have been devoted to sequencing

technologies and to quantifying individual taxa, successful application of microbial pro-

filing to studying biomedical conditions requires novel statistical methods to efficiently

test for associations with microbial diversity.

Current strategies for evaluating the association between microbiota composition

and outcomes of interest has focused largely on distance based analysis. Using standard

analyses, the phylogenetic distance based on the quantified taxa, organized into opera-

tional taxonomic units (OTUs), is computed between each pair of samples in the study.

Multivariate analysis or the top principal coordinates (PCo) of the matrix of pairwise

distances are used to test for associations via permutation. Commonly used pairwise

distance metrics include weighted and unweighted UniFrac (118, 117, 119, 25, 68) as
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well as many other important metrics such as the Bray-Curtis (17) metric. While there

are similarities between metrics, their performances vary and are targeted to specific

scenarios.

Although distance based analyses have been successful in identifying many outcomes

related to community variability, a key limitation of the existing distance based meth-

ods is that they fail to allow for easy covariate adjustment which is essential in order to

control for confounders. Failure to control for confounders can easily lead to spurious

results through false positives or through attenuated evidence for association. Existing

methods are not easily modified to accommodate covariates due to model formulations

and due to the reliance on permutation. Further, PCo based analyses implicitly assume

the top PCo’s capture the variability that is attributable to the outcome of interest.

However, since the PCo’s are unsupervised and computed without regard to the out-

come variable, there is no guarantee that they capture the appropriate signal, possibly

resulting in considerable power loss. Finally, given the wide range of distance metrics

available, each with differing performance under different scenarios, it can be difficult to

choose a particular metric to use. The best metric for any particular data set depends

on the underlying true state of nature, which is unknown a priori - knowledge on this

would generally preclude need for analysis. Using multiple metrics and cherry picking

the best result will result in inflated type I error rates and lead to large numbers of

spurious results. New methods are needed.

We propose in this paper the microbiota regression-based kernel association test

(MiRKAT), a flexible, computationally efficient regression approach for testing the

association between microbial community profiles and a continuous or dichotomous

variable of interest such as an environmental exposure or disease status, while adjusting

for confounders. Our test uses the kernel machine regression framework, previously

developed for genotyping data (96, 229, 231), to directly regress the variable of interest
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on the covariates (including potential confounders) and the microbiome compositional

profiles. An analytical p-value for the association between community profiles and the

outcome is rapidly computed via a variance component score test. Intuitively, the kernel

machine framework will compares pairwise distance/similarity in the outcome variable

to pairwise distance/similarity in the microbiota community profiles such as measured

through UniFrac metric or another valid metrics. Consequently, MiRKAT allows for

fast, supervised, distance-based association testing under a regression framework that

permits controls for potential confounding.

Because the best distance metric to use for testing the association between a particu-

lar outcome and microbial diversity is generally unknown, we also develop an “optimal”

MiRKAT that simultaneously examines multiple distance metrics, selects the best dis-

tance metric to compute a p-value for association, and adjusts for having taken the

optimal distance metric. The power of the optimal test is generally close to the power

from using the best distance metric and is always better than using poor choices of

distances. Thus, this allows for good power in the omnibus while still protecting the

type I error rate.

We demonstrate through simulations and analysis of metagenomic studies of irri-

table bowel syndrome (IBS) and smoking that MiRKAT is often more powerful than

existing tests with improved control for type I error across a broad range of models for

both continuous and dichotomous variables.

4.2 Methods

4.2.1 Notation

Assume that n samples have been sequenced and microbial communities profiled.

For the ith subject, let yi denote outcome variable of interest, Zi = (Zi1, Zi2, ..., Zip)

corresponds to the abundances of individual OTUs, and Xi = (Xi1, Xi2, ..., Xim) are
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additional covariates that we want to control for, such as age, gender, and other clin-

ical and environmental variables which are known to influence microbial community

diversity and be related to a range of outcomes. The goal is to test for association

between the outcome and microbial profiles while adjusting for the covariates X. Note

that we will refer to y as an “outcome” that depends on the microbiome composition

while in some situations it may be a variable that is thought to influence microbial

diversity; however, since our goal is association testing rather than causal modeling,

the distinction is unimportant given the duality (65).

4.2.2 Distance Based Association Test for Microbiome Composition

Distance based approach is the most commonly used strategy for association test

between microbiota composition and outcomes of interest, which relies on Mental-Carlo

generation of p-value using permutation. For the case when only a single distance

metric is considered, the method PERMANOVA (Permutational Multivariate Analysis

of Variance Using Distance Matrices)(137) can be summarized as follows:

1) Construct an n× n distance matrix D for all pairs of samples based on the micro-

biome composition data Z.

2) Obtain centered similarity matric G = (I − 11′/n)A(I − 11′/n), with A = (−D2
ij/2)

3) Calculate the projection matrix H = y(y′y)−1y′

4) Construct the psedo-F statistic F = tr(HGH)/(m−1)
tr((I−H)G(I−H))/(n−m)

, where tr(A) is the trace

of matrix A.

5) Calculate p-value using permutation by shuffling y.

For microbiome composition data, the OTUs are related by a phylogenetic tree.

Phylogenetic distance measures that exploit the degree of divergence between different
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sequences are usually much more powerful compared to distance measures that ignores

the phylogenetic tree information. Microbiologists have proposed many distance metric

to efficiently incorporate the phylogenetic relationship. The most widely used distance

metrics are the UniFrac distance (118, 119, 68), which “measures the phylogenetic

distance between sets of taxa in a phylogenetic tree as the fraction of the branch

length of the tree that leads to descendants from either one environment or the other,

but not both”(118). The unweighted UniFrac distance (118), denoted as DU , uses

only OTU absence or presence information and measures the fraction of branch length

of the phylogenetic tree that are unique to any microbial community. The weighted

UniFrac distance (DW )(120) uses OTU abundance information and weights the branch

length by abundance difference between the two communities. The generalized UniFrac

distance (28) can be considered as an extension of the weighted and unweighted UniFrc

distance with one additional parameter ξ, which can be represented as D(ξ). When

ξ = 1, the generalized UniFrac distance D(1) corresponds to the weighted UniFrac

distance DW and when ξ = 0, the D(0) is reduced to the unweighted UniFrac distance

DU . Beyond the UniFrac distance family, Bray-Curtis (17) is another popular distance

for quantifying the compositional dissimilarity between two different samples, which is

equivalent to the Sorensen similarity index (194).

Each distance metric focuses on different aspect of microbiome changes and can

be most powerful in detecting only a certain scenario. In practice, the optimal choice

of distance is unknown in prior in metagenomic studies. Chen et al.(28) develope-

d a method that combines different distance matrices in a single test by taking the

maximum of pseudo-F statistics for each distance matrix. Significance is assessed by

permutation.

57



4.2.3 Microbiota Regression-based Kernel Association Test

MiRKAT exploits the kernel machine regression framework to relate the covariates

and the microbiota profiles to the outcomes. Specifically, for a continuous outcome

variable we use the linear kernel machine model:

yi = α0 +α′Xi + f(Zi) + εi (4.1)

and for a dichotomous outcome variable (e.g. y = 0/1 for case/control) we use the

logistic kernel machine model

logit(P (yi = 1)) = α0 + α′Xi + f(Zi) (4.2)

where α0 is the intercept, α = [α1, ..., αm]′ is the vector of regression coefficients for the

m covariates, and for continuous phenotypes εi is an error term with mean zero and

variance σ2.

The relationship between the metagenomic profile and the outcome variable is fully

characterized by f(·). Technical mathematical details are omitted, but under the kernel

machine framework, f(Zi) =
∑n

i′=1 γi′K(Zi, Zi′) for some γ1, γ2, ..., γn. The K(Zi, Zi′) is

some positive definite metric of similarity between the i-th and i′-th samples in the study

based on their metagenomic profiles. Different choices of K(Zi, Zi′) result in different

models. For example, setting K(Zi, Zi′) =
∑p

j=1 ZijZi′j implies f(Zi) =
∑p

j=1 Zijβj, i.e.

the model is linear. Replacing the kernel function with more sophisticated similarity

metrics results in more complex models.

Within the context of metagenomic studies, a wide range of similarity metrics can be

defined. Although existing work focuses primarily on distance metrics for compositional

dissimilarity, these can be trivially transformed to similarity metrics. For example, if we

compute the UniFrac distance between sample i and the sample i′ as DU(Zi, Zi′), then a
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corresponding similarity can be computed as KU(Zi,Zi′) = 1−DU(Zi, Zi′). Similarly,

if we define DBC(Zi, Zi′) to be the Bray-Curtis distance between sample i and the

sample i′, then the corresponding similarity metric is KBC(Zi, Zi′) = 1−DBC(Zi, Zi′).

Other similarity metrics can be analogously defined based on commonly used distance

metrics.

The goal is to test for association between microbiome composition and the variable

of interest. Since the relationship between the yi and the Zi is fully determined by the

function f(Zi), then this is equivalent to testing the null hypothesis that H0 : f(Z) = 0.

Through an important relationship between kernel machine regression and mixed

models (112, 111, 62), it has been shown that f(Z) can be viewed as a subject specific

random effect which follows a distribution with mean 0 and variance τK where τ is

a constant and K is the n × n “kernel matrix” with (i, i′)th term equal to K(Zi, Zi′).

Then testing for an association between the microbiome composition and the outcome

is equivalent to testing the null hypothesis that H0 : τ = 0. Under the connection

with mixed models, this can be done using a standard variance component score test

(107). A key advantage of the score test is that it only requires fitting the null model

yi = α0+α
′Xi+εi for continuous traits and logit(P (yi = 1)) = α0+α

′Xi for dichotomous

traits.

In particular, the score statistic is given as

Q = (y − µ̂)′K(y − µ̂) (4.3)

µ̂ is the predicted mean of y under H0, i.e. µ̂ = α̂0 + α̂′X for continuous traits and

µ̂ = logit−1(α̂0 + α̂′X) for dichotomous traits; and α̂0 and α̂ are estimated under the

null model by regressing y on only the covariates X.

Under the null hypothesis, Q asymptotically follows a mixture of chi-square dis-

tributions. In regular KMR, p-value can be analytically obtained through moment
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matching (113) or exact methods (41, 45). However, in the cases of microbiome com-

position data, this asymptotical approximation is shown to be too conservative because

of the high sparsity of OTU tables. Instead, we propose a residual permutation ap-

proach in which we constructed empirical null distribution of Q by generating a large

number N of Q∗ = (y∗−µ̂∗)′K(y∗−µ̂∗) where (y∗−µ̂∗) is a permutation of the residuals

(y − µ̂) in score statistic Q. Then p =
∑
I(Q < Q∗)/N .

Note that the proposed test is a score test, such that all parameters are estimated

under the null hypothesis, i.e. f(Z) does not need to be estimated. Although the

permutation requires Monte-Carlo calculation of p-value, it requires fitting a simple

linear or logistic regression model once and randomly resample from the corresponding

residuals, which can still be efficient. As all the parameters are estimated under the

null model, this means that even if a poor similarity metric is chosen, the test is still

statistically valid. Better choices of similarity metrics simply improve power. From the

perspective of testing, a metric that better captures similarity and that better reflects

the true relationship between the metagenomic compositional profiles and the outcome

will result in higher power.

4.2.4 Optimal MiRKAT under Multiple Distance Metrics

A problem of significant practical interest in metagenomic analysis is selecting an

appropriate distance metric. Different distance metrics are targeted towards different

scenarios and consequently yield differential power. However, the best distance metric

depends on the underlying true state of nature which is not known prior to analysis.

MiRKAT can also lose power if poorly chosen distance metrics are used, though the type

I error is protected. Therefore, we develop the optimal MiRKAT which simultaneously

examines multiple distance metrics and optimally creates an omnibus test across all

possible metrics. The intuition behind the approach is that the optimal MiRKAT will
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consider testing using each distance metric, select minimum p-value from all of the dis-

tance metrics, and then adjust for having taken the minimum using rapid perturbation

methods tailored towards the kernel machine testing set up. Perturbation is similar

to permutation except the distribution of the score statistic is used. Consequently,

perturbation is often faster than permutation can allow for covariate adjustment even

under correlation whereas permutation does not. Technical and algorithmic details are

presented in Appendix I.

4.2.5 Numerical Experiments and Simulations

We simulated data based on the strategy of Chen et al (28). In particular, we use

a phylogenetic tree that are obtained from a real throat microbiome data set (26) for

OTU data simulation. We estimate the mean OTU proportions using the dirichlet dis-

tribution from the real data, the parameter of which are subsequently used to simulate

OTU count data using multinomial distribution.

We considered several different simulation scenarios to examine the type I error and

power of our proposed MiRKAT method, compared with distance based regression. For

all scenarios, we considered 2000 simulations with sample size n = 50, 100 and 200. We

also considered different situations when the highly abundant OTUs or when only the

less abundant OTUs have effect on the outcome. For simplicity, we would only show

the simulation result for the case when the highly abundant OTUs are of effect with

n = 50. For simulations when the less abundant OTUs are of effect, the type I error

was similar, the power was smaller to the case when the highly abundant OTUs are of

effect.

Data were simulated as yi = x1i + x2i + βh(zi1, zi2, ..., zip) + εi, where εi ∼ N(0, 1),

x1i and x2i be covariates to be adjusted for and (zi1, zi2, ..., zip) be the abundance of the

10 most abundant OTUs.
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We considered situations when X and Z are correlated and when X and Z are

independent. In both cases, x1i are simulated as Bernoulli random variable with success

probability 0.3. In the case when X and Z are independent,x2i = µi, where µi ∼

N(0, 1). For the case when X and Z are correlated, we let x2i = µi + cos(
∑
zij), j =

1, ..., p, where
∑
zij is the total OTUs measurement for the 10 most abundant OTUs.

h(zi1, zi2, ..., zip) = β′Z where βj = 1/(z̄j) where z̄j is the average abundance for

the jth OTU across all samples, so that the OTUs with higher abundance would have

smaller effect size. We tested under the case when β = 0 for type I error, and assessed

power of the tests by changing the values of the coefficient β.

A wide range of distance matrices were constructed using the Unifrac packages

from the OTU data Z: DW , DU , D(0.5), D(0) and DBC , which represent the weighted and

unweighted UniFrac distance, Generalized UniFrac distance with ξ = 0.5 and ξ = 0 and

the Bray-Curtis distance. We tested for associations between microbial OTUs Z and

the trait y using each of the distance metric, with or without adjustment for additional

covariates X. Specifically, we applied generalized Unifrac method and our proposed

MiKRAT tests using each of these five distance matrices. We also applied omnibus

tests which consider all these matrices using PermanovaG (Permutational multivariate

analysis of variance using multiple distance matrices) from GUniFrac packages (28) for

the distance based approach and our proposed MiKRAT methods, adjusting or not

adjusting for confounders X.

4.3 Results

4.3.1 Type I Error Control for MiRKAT and Competing Methods

The type I error of these different simulation situations were shown in Figure 4.3.1.

For cases when X and Z are independent, both distance based methods and our pro-

posed MiRKAT are valid, with or without adjusting for covariates X. However, when
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X and Z are correlated, all distance based methods produced seriously inflated type

I error, even after adjusting for X covariates in the model. The only model that had

correctly controlled type I error when X and Z are correlated is the MiRKAT method

with covariates X adjustment.

4.3.2 Statistical Power for MiRKAT and Competing Methods

When X and Z are independent, both MiKRAT and distance based methods have

valid type I error and can be compared with respect to power. Figure 4.2 shows the

power of all constructed tests under this simulation scenario. The power increases for

all methods with the increase of association strength. When the same distance matrices

were used, the MiKRAT and corresponding distance based method have similar power

without adjusting for covariates. In fact, the two methods were shown to be equivalent

when the same positive definite matrix was used as similarity matrix in distance based

methods and kernel machine regression (152).

Adjusting for X would increase power in MiRKAT, possibly due to reduced variance

of estimated residuals. However, adjusting for X in distance based method didn’t

increase power. For this specific case of our simulation when only the highly abundant

bacterial have effect in outcome, the Bray-Curtis distance matrix produced highest

power as opposed to other distance matrices, and the proposed omnibus test MiKRAT

was the second most powerful test. As have been shown, each distance matrix can

perform best under certain scenarios; none of them can have the optimal performance

under all conditions. For example, for the simulations under which the less abundant

OTUs are of effect, the unweighted Unifrac distance DU and D0 had better power than

using DBC . The Omnibus MiKRAT method can unify all possible distance matrices

and thus be the most robust test for all situations.

For situations when X and Z are correlated, all methods except the proposed
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MiRKAT method with X adjustment had seriously inflated type I error, suggesting

that adjusting for all potential confounder is an important aspect of this proposed

method.

4.3.3 Application to IBS and Smoking Data Sets

We illustrated our methods by application to two data sets. The first data set

was the same as analyzed in Chen et al (28),which investigated the smoking effect on

the oropharyngeal and nasopharyngeal bacterial community using 454 pyrosequencing

of 16S sequence tags (26). The details of the data set can be obtained elsewhere

(26, 28). Generally, swab samples were collected from right and left nasopharynx and

oropharynx of 29 smoking and 33 nonsmoking adults. The variable region 1-2 (V1-V2)

of the bacterial 16S rRNA gene was PCR amplified and subject to multiplexed pryo-

sequencing. OTUs were constructed using QIIME pipeline. For this specific data set,

only left oropharyngneal samples were included. Samples with read number less than

500 and OTU with only one read were removed, resulting in an OTU table of 60 samples

(28 smokers vs 32 nonsmokers) and 856 OTUs. Covariates in this data included gender,

antibiotic use within 3 months and respiratory disease. Chen et al tested association

between smoking status and microbial community composition using distance based

approach by applying PERMANOVA method, without adjusting for covariates in the

model. However, other covariates can be associated with smoking status as well as

microbial community composition, thus becoming a confounder. For example, the odds

ratio of smoking between males and females is 2.33 in this data set, making gender

a potential confonder. We applied our MiKRAT method to analyze the association

between smoking and microbial community composition, using the same set of Unifrac

distance matrices DW , DU , D(0.5), D(0),and DV AW as in Chen et al as similarity matrix,

but adjusted for gender, antibiotic use and respiratory disease. Similar to the findings
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from Chen et al, all of the distance matrices achieved statistical significance at 0.05 level,

and test using D(0.5) produced the smallest p-value 0.0014, followed by 0.0017 using

D(0) .The p-values from DW , DU and DV AW are 0.0031 0.0086 and 0.0149 respectively.

The Omnibus tests generated a p-value of 0.0042, indicating that smoking can affect

the microbial community composition significantly.

Irritable bowel syndrome (IBS) is a functional bowel disorder characterized by ab-

dominal pain and disturbed bowel habits. Substance P(SP) is an important excitable

neurotransmitter associated with inflammation and pain in IBS. The second data set

we evaluated included samples from 23 IBS patients and 23 healthy adults. We tested

the association between microbial community composition and disease status/SP level

by applying the MiRKAT method unifying three different kernels: DW , DU and DBC ,

after adjusting for age, gender, BMI and race. There was no significant association

between the microbial composition and IBS disease status. SP level is significantly

associated with microbial community composition with a p-value of 0.0375 after co-

variates adjustment. Test using DU was the most significant with p-values of 0.017 and

tests with DW and DBC failed to generate significant result.

4.3.4 Relationship between MiRKAT and Competing Methods

MiRKAT is closely related to several existing methods for microbiome analysis. In

particular, with large sample size, the PERMANOVA method (137) can be shown to

be a special case of the kernel machine test under the scenario in which there are no

confounding variables (152). Consequently, the MiRKAT with single kernel can be

viewed as a generalization of PERMANOVA that accommodates additional covariates.

In numerical simulations, the correlation between p-values obtained from single kernel

MiRKAT and the corresponding distance based method is usually more than 0.99 at

cases when there are no covariates to adjust for.
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Similarly, optimal MiRKAT can be viewed as a generalization of the approach

of Chen et al (28), which is similar in unifying different types of distance matrices

to detect a wide range of biologically relevant changes. However, there is a subtle

but important distinction between the permutation approaches of these two methods.

The optimal MiRKAT perturbs the minimum p-value across all single-kernel tests to

obtain the final p-value while the generalized Unifrac method permutes the maximum F

statistics across all PERMANOVA tests. This is potentially problematic as F statistics

constructed using different distance matrices can have different degrees of freedom and

direct comparison will yield reduced power. On the contrary, p-values are generally

scale free and directly comparable. The correlation between p-values obtained from

optimal MiRKAT methods and generalized Unifrac method is usually around 0.80.

4.4 Discussion

In this paper, we proposed a kernel machine regression based method (MiRKAT)

to test for associations between microbial community composition and outcome of in-

terest, in which covariate effects are modeled parametrically and the microbiome effect

is modeled non-parametrically. An extension of this method allows for multiple candi-

date kernels to be used simultaneously and inherently adjust for multiple testing using

perturbation. We showed via simulation that the unifying omnibus test is robust in

that it suffered little power loss compared with when the optimal kernel was used, while

had substantial power gain compared to when an improper kernel was used.

Microbiome data are statistically challenging to analyze due to their high dimen-

sionality, phylogenetic constraints among OTUs, excessive zeros and over dispersion,

which are circumvented by using distance matrices as a summary. Since the best dis-

tance matrix was unknown prior to analysis, the omnibus test enables us to detect a

wider range of biological relevance. The sparsity of the data can cause problems for
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calculating p-values using asymptotical distribution, making the normal approximation

too conservative when the sample size is not large enough. Nevertheless, the residual

permutation and corresponding perturbation approach are valid under small sample

scenario. We recommend using the asymptotic result when sample size is greater than

1000 for a continuous variable and use residual permutation method when sample size

is smaller.

As MiRKAT is a regression based method, incorporating additional covariates into

the model is very natural. We showed via simulation that when covariates exist which

are associated with both outcome of interests and microbial composition, failing to

adjust for these confounders would cause seriously inflated type I error. MiRKAT

is the only valid (with respect to type I error) method that can properly adjust for

confounders in our simulation setting. Meanwhile, the regression framework enables it

easily to be extended to other types of outcome variables such as survival, longitudinal

and multivariate outcomes, and the ability to effortlessly accommodate a wide range

of different distance metrics allows it to serve as a comprehensive framework for a wide

variety of metagenomic studies.
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Figure 4.1: Type I error of different methods at α = 0.05 level: Data was simulated for
n = 50 and only the 10 most abundant bacteria have any effect on the outcome. M:
MiKRAT D: distance based method. ♦: nominal α = 0.05.
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Figure 4.2: Power comparison of different methods: Data was simulated for n = 50
and only the 10 most abundant bacteria have any effect on the outcome. Additional
covariates X and bacterial effect Z were simulated independently. M: MiKRAT D:
distance based method.
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CHAPTER 5

Integrative Analysis of Methylation and Genotyping Studies

5.1 Introduction

The etiology for most common human diseases are believed to be multifactorial,

with risk factors including heritable genetic variants as well as environmental, behav-

ioral factors and possible interactions between them. In the past few years, genome-wide

association studies (GWAS) have been successful in identifying many genetic variants,

especially in the form of single nucleotide polymorphism (SNPs), that are associated

with a number of common human diseases (214). However, SNPs discovered by GWAS

can usually account for only a small fraction of the genetic variation of traits in the hu-

man population, leading to the so-called “missing heritability” phenomenon (130, 134).

Several reasons have been suggested for the missing heritability, including the lack of

power to detect common variants with small effects as well as the complex gene-gene

interaction and inherited epigenetic factors, especially methylation (83, 84). Compre-

hensive understanding of these complex trait etiology requires examination of multiple

source of genetic variants. Consequently, many large GWAS consortia are expending to

simultaneously examine the joint effect of DNA methylation (115). Integrative analysis

of this “multi-dimensional genomic data” were shown to be promising in elucidating the

biological processes underlying the disease of interests, for example, in certain cancer

(141, 240, 149).
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Integrative analysis of genotype and methylation data are challenging in two aspects.

First, genotype and DNA methylation are measured in different scales and units, it is

unclear how to utilize both data types to determine whether a particular genetic region

is associated with the trait of interest. Secondly, it is of great interest in genomic studies

to understand the relative roles of different sources of genomic variability in complex

trait etiology, for example, whether methylation mediates the genetic effect. In this

paper, we propose a two-step framework for first testing the joint effect of both genetic

and epigenetic variability on a trait with subsequent mediation analysis to elucidate

the possible mechanisms by which these genomic features influence the phenotype.

The standard approach in analyzing GWAS involves testing the effect of each SNP

individually on the phenotype of interest, using usually parametric regressions or the

Cochran-Armitage trend test. Subsequent adjustment needs to be conducted for mul-

tiple comparisons because thousands or even millions of SNPs have been tested. Albeit

successful in a lot of applications, this approach has been shown to be underpowered,

especially in cases when a large number of genetic variants have only small effect sizes,

mainly due to the difficulty in achieving genome-wide significance level. Additionally,

individual-SNP analysis suffers from poor reproducibility, because of the imperfect link-

age disequilibrium (LD) between the typed SNPs and the true causal variants, which

are seldom typed. Instead, we develop an approach that works at the gene level to

allow for the common unit of analysis across genotypes and methylation data.

In particular, in our first step, we propose to use the powerful kernel machine

framework for testing the cumulative effect of both epigenetic and genetic variants.

Kernel machine testing (112, 111) is an operationally simple method for SNP set testing

and have been applied in a variety of settings to identify SNP-sets that are associated

with a number of diseases (110, 116, 139, 187). We extend this approach to test the joint

genetic and epigenetic effect on the phenotype of interest. Pairwise similarities in the
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trait values between individuals are compared with the similarity matric constructed

from the genotype and methylation data for a particular gene, with high correspondence

suggestive of association. Similarity metric in genotype and methylation is constructed

by an optimally weighted averages of the similarities using each single data type with

the weights determined either by a grid search or adaptive projection method.

In the second step, we adopt classic methods from causal inference literature to

investigate the mechanism by which the different genetic variants can affect the phe-

notype. Specifically, we extend the popular causal steps approach toward mediation

analysis to answer the question whether the effect of genetic variants on the phenotype

is at least partially mediated through the methylation effect.

Originally developed in psychological and behavior science literatures (6, 121) and

extended to many other statistical applications(164, 193, 209) including genetic studies

(140, 174, 115), causal steps approach infers causal mediation relationship through a

series of linear regression models. In order to establish that the effect of genotypes

on phenotypic traits are mediated at least partially through methylation, causal steps

model requires the following three conditions to be satisfied(174, 115): 1) genotype is

associated with the phenotype 2) genotype is associated with methylation, 3) methy-

lation is associated with the phenotype after controlling for the genotype. Standard

mediation analysis that relies on linear regressions are no longer applicable for set-based

analysis. In this paper, we develop multidimensional casual steps model counterpart

to incorporate gene based genotype and methylation data by using the multivariate

version of the kernel machine regression.

Overall, we propose a novel framework that tests the joint genetic and epigenetic

effect on the phenotypic trait with subsequent mediation analysis to establish the causal

relationship between these variables. The method works at gene level, which unifies

the unit in analyzing methylation and genotype data. The kernel machine framework
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allows for flexible and robust modeling of the genetic effect, including heterogeneity

in effect sizes, non-linear and interactive effects. We demonstrate through simulations

and real data analysis that our proposed approach often improves power to detect trait

associated genes and often correctly specify the mechanism through which the genetic

and epigenetic variability influences power. Further more, extension of this approach

to rare variants and sequencing studies are straightforward.

The rest of the article is organized as follows. Section 5.2 defines our notations

and elaborate our two-step statistical framework, including the joint genetic/epigenetic

effect test and the subsequent causal steps model for mediation. Section 5.3 presents

simulation studies of this framework. The manuscript concludes with summaries and

discussion in Section 5.5.

5.2 Material and Methods

Current technology has enabled multi-platform genomic profiling of the same biolog-

ical samples, including genome wide genetic and epigenetic measurement, providing the

possibility to analyze their joint effect and to evaluate their relative roles in influencing

phenotypic traits. We propose a two step framework that first tests the cumulative

effect with subsequent mediation analysis to infer the causal relationship between these

variants. We consider set-based test in which SNPs and CpG markers are assigned to S-

NP or CpG sets based on meaningful biological criteria, such as proximity to predefined

genes. This approach unifies the unit of genotype and methylation data and enables

joint testing of both effects. For the cumulative effect, we extend the powerful and

flexible kernel machine regression framework to allow for possible correlations between

genetic and epigenetic variants by constructing optimally weighted kernels from both

data types. For the subsequent mediation analysis, we borrow the idea from the classic

causal steps model and extend it to multi-dimensional genetic data by incorporating
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multivariate kernel machine regression.

5.2.1 Notation

Suppose the data constitute n samples with continuous phenotypic traits (y1, y2, ...yn)′.

M and G are n× p1 and n× p2 matrices of methylation and genotype data with each

row denoting methylation or genotype values for a single individual where p1 and p2

are the total number of CpG sites or SNP markers within a gene that are considered

for the analysis. Let X denote a n× q matrix of additional variables we want to adjust

for in the model, such as age, gender, smoking status, and principal component for

population structure.

5.2.2 Cumulative Test of Genetic and Epigenetic effects

For the first step to test for the cumulative effect of genetic and epigenetic variants,

we relate the continuous (quantitative) traits through the semiparametric model in

which the genetic/epigenetic effect are modeled non-parametrically through the kernel

function while the additional covariates are adjusted for parametrically. The model can

be represented as:

yi = β0 +Xiβ + h(Gi,Mi) + εi (5.1)

where yi denotes the phenotypic value for the ith person in the sample, Xi is the set of

additional covariates that we wish to control, Gi and Mi are the vectors of genotype

and methylation data for p1 SNPs and p2 CpG markers in the gene of interest. εi is

assumed to be independent measurement errors with mean 0 and variance σ2, β0 is the

intercept and β are the regression coefficients for additional covariates. Let Z = (G,M)

represent both the genetic and epigenetic data with h(Zi) = h(Gi,Mi). For testing the
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null hypothesis that the gene has no effect on phenotype,

H0 : h(Z) = 0 (5.2)

Under the kernel machine regression framework, the function h(Gi,Mi) are defined

only through a positive definite kernel function K(·, ·), which measures the similari-

ties between different individuals in genetic and epigenetic variants. In principle, any

positive definite matrix that satisfies the conditions of Mercer’s theorem (40) can be

used as a valid kernel. However, good choice of kernels can lead to statistical tests with

substantial higher power.

The kernel machine regression framework has been widely applied to SNP-set anal-

ysis with several kernels specifically designed for genotype data under different genetic

effect models (96, 229, 106). Popular kernels that in SNP-set analysis include the lin-

ear, the identical by state (IBS) and the weighted IBS kernels. Specifically, the linear

kernel is the usual inner product between the covariate vectors for different individuals

and corresponds to an underlying model which assumes a linear relationship between

the phenotype and the SNPs in the SNP set. The IBS kernel and the weighted IBS

kernels evaluate the similarity between different subjects by counting the number of al-

leles that are shared identical, which accommodate the non-linearity between the SNP

effect. Thus, the (weighted) IBS kernel can sometimes offer improved power to linear

kernel when epistasis is present (222), but when no epistasis is present, using the linear

kernels is usually more powerful. Kernel machine regression has also recently gained

popularity in analyzing methylation data, with suitable kernels including the gaussian

kernel, linear kernel, quadratic kernel.

Constructing a proper joint kernel that incorporates both genetic and epigenetic

effects is not straightforward. First, it is usually unrealistic to assume that the SNP-set

and the methylation markers influence the phenotype in the same manner and naive
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construction of kernels using data set that concatenates the two data types are usually

improper. Secondly, the units and scales are inherently different for methylation and

genotype data. Genotype data counts the number of minor alleles at each loci and are

scaled to 0, 1 and 2 while methylation data measures the proportion of methylation

levels at each position and are inherently quantitative. Proper weighting scheme should

be performed in constructing the composite kernel. Methylation data can be easily

standardized to have mean 0 and unite variance. However, standardization of genotype

data are nevertheless non-intuitive.

In this paper, we consider a composite kernel approach to model the joint effect of

genetic and epigenetic variants. In particular, we assume

Kc(Zi, Zj) = wK1(Gi, Gj) + (1− w)K1(Mi,Mj) (5.3)

where Z = (G,M) include both the genetic and epigenetic variants, w ∈ (0, 1),and K1

and K2 are proper kernel functions for genotype and methylation data respectively.

The composite kernel can be viewed as a weighted average of two kernels which cor-

respond to genotype and methylation effect respectively. The weights are constrained

to ensure the positive definiteness of K. One key advantage of this composite kernel

is that it allows for distinct mechanism for methylation and genotype effects. For ex-

ample, we can construct the composite kernel Kc by choosing K1 to be the IBS kernel

which allows for epistatic effect on the SNP set and choosing K2 to be the linear kernel,

which models the effect of methylation markers linearly. Weighting of genotype and

methylation data are carried out at the kernel level instead of at the original data level.

Within the prediction-based statistical learning literature, considerable studies have

been devoted to estimation and prediction based on composite kernels (22, 199). Testing

under the composite kernel is rarely investigated. For fixed weight w one may directly

apply the kernel machine test with Kc considered as any single kernel. Briefly, by using
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the connection between the kernel machine regression model and the linear mixed model

yi = β0+Xiβ+hi+εi where h is the random effect distributed as N(0, τKc), the test of

no genetic/epigenetic effect h = 0 is equivalent to the variance component test H0 : τ =

0. One can use the variance component score test Qc = (y− ŷ)′Kc(y− ŷ))/σ̂2, where ŷ

and σ̂2 are the estimates under the null model. Asymptotically, Qc is distributed as an

unknown mixture of χ2 distribution, with the mixture weights determined by the eigen

values of P
1/2
0 KcP

1/2
0 where P0 = I − X̃(X̃ ′X̃)−1X̃, X̃ = (1, X). Many methods can be

used to approximate the distribution of Qc under H0, including the moment matching

(112, 113) and exact methods based on inversion of the characteristic function (43, 45).

In reality, optimal w is unknown as it depends on the true nature of the genetic

and epigenetic effects. It is tempting to estimate w from the data and then resort to

the same variance component score test as if w is fixed. Unfortunately, this supervised

estimation and testing approach would inflate the type I error just as in the multiple

testing problem. In this section, we propose two approaches to test the joint genetic

and epigenetic effect using this composite kernel which avoid the direct estimation of

w. The first method involves constructing multiple candidate composite kernels using

a grid search of w, calculating p-values under each kernel, taking the minimum of these

p-values and adjusting for taking the minimum by a computationally efficient pertur-

bation test. The second approach calculates the asymptotical p-value through kernel

PCA via projection. We will present these two methods in detail in the subsequent

sections 5.2.2 and 5.2.2.
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Perturbation based Inference

The basic idea underlying perturbation based approach is to generate a number

of composite kernels across a range of w, compute p-values under each candidate k-

ernel, take the minimum p-value and adjust for this multiple comparison via pertur-

bation. This approach follows the same perturbation scheme as reported in previous

research,which focuses on testing under multiple kernels constructed from the same da-

ta type, and extends to incorporate composite kernels constructed from different data

types. This method starts with constructing L composite kernels using different choices

of weights w = (w1, ..., wd, ..., wL),

Kcd = wdK1 + (1− wd)K2

where (w1, ..., wd, ..., wL) are selected between 0 and 1.

For quantitative traits, under H0, (y−ŷ)/σ̂ is asymptotically distributed as standard

normal when sample size n is reasonably large. Then each Qd = (y − ŷ)′Kcd(y − ŷ)/σ̂2

can be viewed as a quadratic form of two standard normal vectors flanking different

kernel matrices. Under H0, each Q1, ..., QL share the same vector of standard normals,

with all the differences lie in the kernel matrices which measure the similarities of the

genetic and epigenetic data between individuals. This method perturbs each Qd by

replacing (y − ŷ)/σ̂ using newly generated standard normal vectors to construct the

empirical null distribution. For completeness, we include in this paper the detailed

steps in this perturbation approach following (233)

1. For each Kcd, construct the variance component score test and obtain correspond-

ing p-values.

2. Obtain the minimum p-values po = min1≤d≤Lpd
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3. For each d ∈ (1, ..., L), obtain the Λd = diag(λd,1, ..., λd,md
) and Vd = [vd,1, ..., vd,md

]

with λd,1, ..., λd,md
being the positive eigenvalues of P

1/2
0 KcdP

1/2
0 and vd,1, ..., vd,md

being their corresponding eigenvectors.

4. Construct

Σ =



I V ′1V2, . . . V ′1VL

V ′2V1 I, . . . V ′2VL
...

... . . .
...

V ′LV1 V ′LV2 . . . I


and construct Cholesky decomposition of Σ = RR′.

5. Generate r = [r1, . . . , rm]′ ∼ N(0, I) with m =
∑d=L

d=1 md and obtain r∗ = Rr.

For the dth kernel, assign r∗d = [r∗a, . . . , r
∗
a+md

] where a =
∑j=d−1

j=1 (mj + 1). This

corresponds to that r∗ ∼ N(0,Σ).

6. Compute Q∗d = r∗′d Λdr
∗
d for each d and corresponding p-values p∗d. Take the

minimum p∗ = min(p∗1, . . . , p
∗
d, . . . , p

∗
L).

7. Repeat the steps 5 and 6 for a large number of B times to obtain p∗1, . . . , p
∗
B.

8. Obtain the final p-value by p = B−1
∑B

b=1 I(p∗b ≤ po).

The principle behind perturbation is similar to that behind permutation in that they

both generate a large number of test statistics under H0 to construct the empirical null

distribution. However, perturbation is advantageous because it retains all the possi-

ble correlation between additional covariates and genetic/epigenetic effect through the

unchanged kernel matrix. On the other hand, permutation requires all the covariates

to be uncorrelated to the genetic/epigenetic data for covariates adjustment, which is

usually unsatisfied in many situations. Secondly, perturbation is much more computa-

tionally efficient: it requires only generating a number of random normal vectors while
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permutation requires reconstruction of kernel matrices, and recalculation of p-values

through the moment matching or characteristic function inversion method. Finally, it is

necessary to directly use the minimum p-value as test statistic instead of the maximum

score statistics because Q values constructed from different kernels are dramatically dif-

ferent with respect to degrees of freedom, making Qs not directly comparable. Instead,

p-values are scale free.

Kernel PCA approach

One major advantage of the aforementioned composite kernel approach is that it

adaptively model the genetic effect and epigenetic effect by varying the weight w.

Therefore, it can maintain high power across a wide range of scenarios, including cases

when only the genetic (or epigenetic) variation has an effect on the phenotypic trait

and the cases when both of them influence the trait value with different effect size.

Although computationally more efficient than the permutation based approach, the

perturbation method still relies on Monte Carlo calculation of p-values. Analytical

calculation of p-values can not be obtained easily because of the possible correlation

between the genetic and epigenetic effects.

In this section, we consider an adaptive approach that also relies on the composite

kernel. However, we approximate the composite kernel space via kernel PCA and basis

projection, to enable analytical computation of the final p-values. It is apparent that

model (5.1) with composite kernel (5.3) is equivalent to the following model

yi = β0 +Xiβ + h1(Gi) + h2(Mi) + εi (5.4)

in which h1(·) and h2(·) are random effects with h1(·) ∼ N(0, τwK1) and h2(·) ∼

N(0, τ(1− w)K2).

Consider λG,1 ≤ λG,2 ≤ · · · ≤ λG,k and λM,1 ≤ λM,2 ≤ · · · ≤ λM,l are the
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positive eigenvalues of kernel matrices K1 and K2 with corresponding eigenvectors

[vG,1, vG,2, . . . , vG,k] and [vM,1, vM,2, . . . , vM,l]. Let ZG = [vG,1, vG,2, . . . , vG,k] and ZM =

[vM,1, vM,2, . . . , vM,l]. Then ZG and ZM can be viewed as the basis for the corresponding

kernel K1 and K2. Model (5.4) can be rewritten as

yi = β0 +Xiβ + ZG,iβG + ZM,iβM + εi (5.5)

with βG = [βG,1, . . . , βG,j, . . . , βG,k]
′ and βM = [βM,1, . . . , βM,j, . . . , βM,l]

′. Testing H0 :

h(G,M) = 0 is equivalent to testing H0 : βG,1 = · · · = βG,k = βM,1 = · · · = βM,j = 0.

Further, we linearly transform the model (5.5) via projection and construct the

following model (79):

yi = β0 +Xiβ + Z∗GγG + ZMγM + εi (5.6)

where Z∗G = (I −M)ZG with M = ZM(Z ′MZM)−1Z ′M is the projection matrix onto the

column space of ZM . γG = [γG,1, . . . , γG,j, . . . , γG,k]
′ and γM = [γM,1, . . . , γM,j, . . . , γM,l]

′

are the regression coefficient under the transformed model.

Note that Z∗G is the residuals by performing linear regressions of each component

of ZG on ZM and corresponds to a subspace that is orthogonal to the column space

of ZM . We assume γG and γM are random variables that γG
iid∼ N(0, τw) and γM

iid∼

N(0, τ(1 − w)) (79). The null hypothesis βG = 0, βM = 0 in the previous model (5.5)

is equivalent to H0 : τ = 0 under this transformed model.

Similar to the perturbation based approach, we construct composite kernels by

varying 0 = w1 < · · · < wd < · · · < wL = 1 that K∗cd = wdK
∗
1 + (1−wd)K2. A variance
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component score statistics under the transformed model can be constructed as follows:

Q∗cd = wd(y − ŷ)′K∗1(y − ŷ) + (1− wd)(y − ŷ)′K2(y − ŷ)

= wdQ
∗
G + (1− wd)QM

(5.7)

where K∗1 = Z∗GZ
∗′
G = (I −M)ZGZ

′
G(I −M) and K2 is the same kernel matrix from

epigenetic data as previous. We consider the minimum p-values across different choices

of w as test statistic

po∗ = min
1≤d≤L

p∗d

where p∗ds is the p-value for Q∗cd. It is easy to see that Q∗G and Q∗M are asymptoti-

cally independent with both of them following a mixture of χ2 distribution. We can

approximate this mixture of χ2 distribution via moment matching(79).

To be specific, Q∗G = k1 =∼
∑mG

q=1 λG,qχ
2
1 and Q∗M = k2 =∼

∑mM

q=1 λM,qχ
2
1 with

λG,q being the eigenvalues of P
1/2
0 K∗1P

1/2
0 and λM,q being eigenvalues of P

1/2
0 K2P

1/2
0 , in

which P0 is defined as before. Consider qd being the (1 − po∗)th percentile of Q∗cd for

w = wd. Then the final p-value can be calculated as

p = 1− P [Q∗c,1 < q1, . . . , Q
∗
c,L < qL]

= 1− P [w1k1 + (1− w1)k2 < q1, . . . , wLk1 + (1− wL)k2 < qL]

= 1− P [k1 < min
1≤d≤L

qd − wdk2
1− wd

]

(5.8)

Overall, the key idea behind this approach is to construct two orthogonal kernel

spaces via projection, leading to a mixture of independent χ2 distributions and enabling

analytical p-value calculation. In this section, we project the SNP effect onto the

kernel space of the methylation effect, however, projection on the other direction can

be conducted similarly. Both approaches are considered in our simulation studies.
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5.2.3 Subsequent Mediation Analysis

Having established the cumulative effect of a set of SNPs/CpG markers on certain

phenotype, a natural subsequent step would be to explore the causal relationship be-

tween these variables. In this section, we adopt the classic casual steps model (6, 121)

for mediation analysis, and extend it to multi-dimensional genomic data by incorpo-

rating multivariate kernel machine regression framework.

The idea of mediation concerns the extent to which the effect of one variable on

another is mediated by some possible intermediate variable, which can usually be repre-

sented by directed diagrams (figure 5.1) with arrows representing causal relationships.

In the setting of genomic study, if the effect of genotype (G) on certain phenotype (y)

is at least partially directed through methylation (M) level, then the methylation can

be considered as a mediator, represented by (M2) in figure 5.1. Here G is considered as

an independent variable, which is reasonable under the assumption that genotypes are

randomly segregated and fixed at DNA level. DNA methylation, on the other hand,

changes with age, diet, various environmental exposure, etc. M is considered as a po-

tential mediator, assuming that DNA methylation variation is prior to and contributes

to the occurrence of the phenotype, either a disease or change in quantitative trait-

s. This assumption is reasonable if the time sequence of events can be established or

the reverse causality can be ruled out via scientific reasons. For example, if the DNA

methylation level is measured at baseline (such as at infant stage) before the disease

occurrence/phenotypic change, the causal model M2 can be assumed with confidence.

Similarly, suppose we are interested in the cis-regulation of gene expression. Because it

is unlikely that the gene expression level can affect the DNA methylation of the same

gene, the mediation model M2 can also be assumed.

Originally developed in the 1980s (6), the causal steps model is one of the most

popular mediation tests among psychology and epidemiology studies (123, 168) despite
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Figure 5.1: Mediation Diagram

many recent alternatives. Under the causal steps model, the mediation effect of M on

the effect of G on y can be established if the following conditions are satisfied:

1) G and y are associated,

2) G is associated with M

3) M is associated with y conditional on G

4) G is independent of y conditional on M

In practice, step 1) is usually implicit that causality test is generally conducted

only for genes that are significantly associated with phenotype of interest. In our
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mediation framework, we conduct subsequent mediation analysis only for genes that

show significant cumulative effect on the phenotypic trait based on the aforementioned

cumulative test presented in Section 5.2.2.

Conditions 2) and 3) are the most essential steps in establishing a causal chain

(186, 168). In the standard situation when G, M and y are all univariate, these two

conditions can be tested via the linear regression models M = β1 + aG + ε and y =

β2 + c′G + bM + ε in which we test H0 : a = 0 and H0 : b = 0 for the two conditions

respectively, where the a, b and c′ represent the causal effect as in the diagram 5.1.

For cases when G and M are multi-dimensional, such as in our situation when G

and M corresponds to a set of SNPs and CpG markers respectively, the linear model

approaches are no longer applicable. Instead, we utilize the kernel regression framework

in which the effect of SNP/methylation set are modeled nonparametrically. We defer

the detailed model specification to sections 5.2.3 and 5.2.3.

The final step 4) aims at establishing a complete mediation of M on the G → y

relationship, i.e, all effect of G on y are through M with no other intermediate vari-

ables. This is a challenging problem both practically and conceptually. Practically, in

the simple case when G, M and y are all univariate, this equates to testing the model

y = β0 + c′G + bM + ε with H0 : c′ 6= 0 vs H1 : c′ = 0, which is a non-standard

equivalence test for which rigorous testing is difficult to accomplish. For this simple

case, Chen et al. developed equivalence test procedure via careful specification of the

alternative space, a range that are considered sufficiently close to 0 that the difference

are practically ignorable, and parametric bootstrapping (29, 140). However, this ap-

proach does not work for the case with multi-dimensional G and M because of the

difficulty in specifying a “tight”alternative space within the multi-dimensional context.

Conceptually, complete mediation implies the process by which G influences y has been

completely explained and no other intermediate variable should be investigated. With
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issues such as imperfect measurement, sample size and power to detect significant as-

sociations, claiming complete mediation can be misleading in complex situations(168).

Therefore, we include in our multivariate causal steps model only steps 2) and 3).

Test the association between genotype and methylation

In this step, the multi-dimensional methylation data M is considered as continuous

outcome and testing for the association between G and M is required, i.e, a situation

when we want to test for the joint effect of multiple markers on multiple outcomes

simultaneously. Commonly adopted strategies for kernel machine analysis on multiple

outcomes include (1) multiple univariate kernel machine tests with subsequent multiple

testing correction, (2) use a summary statistic (e.g, the mean, or methylation from

surrogate CpG site (7)) obtained from the multiple outcome as an outcome and fit

univariate kernel machine regression, and (3) multivariate regression approach based

on kernel machine regression.

In the first framework, each methylation marker was considered as a separate out-

come and the similar kernel regression model can be applied to each methylation marker.

Then methods such as false discovery rate or family wise error rate can be applied to

adjust for multiple comparison. Although intuitive and computationally efficient, this

method fails to utilize the correlations within different methylation markers, result-

ing in reduced power, especially when the number of comparisons is large. The second

method makes a strong assumption that the effect of genotype on all methylation mark-

ers are the same and can be captured by the chosen summary statistic. By using the

summary statistic, this method reduces the dimensionality of the continuous outcome

and can lead to potentially improved power if the assumption are satisfied. However,

in cases when the assumption are violated, this method can cause serious power loss.
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The third method utilizes a multivariate kernel machine regression(MVKMR) frame-

work to evaluate the joint effect of multiple genotype markers on the methylation status

(131). Under this framework, the model can be written as

Mij = X̃iβj + gj(Gi) + εij (5.9)

where i = 1, ..., n with n being the sample size, j = 1, ..., p1 with p1 being the number

of CpG markers, and X̃i are the additional covariates to adjust for, including intercept.

εi1, ..., εip1 ∼ N(0,Σ) with Σ = σkl where σkl reflects the correlation between Mk and

Ml of the same individual. Notice that in this scenario the covariates X̃i and Yi are the

same for all methylation markers. Testing the null hypothesis that G is not associated

with M would be equivalent to testing

H0 : g1(G) = g2(G) = ... = gp1(G) = 0

Again, we use kernel machine framework to specify gj(G) by a kernel function K(·, ·)

where gj(G) =
∑L

l=1 αlKj(G
∗
l , G) for some integer L, some constants αl and some

G∗1, ..., G
∗
L ∈ Rp2 . A score test can be used to test the proposed null hypothesis.

Define

M = (M11, ...,M1n, ...,Mp1,1, ...,Mp1,n)′

g(G) = {g1(G1), ..., g1(Gn), ..., gp1(G1), ..., gp1(Gn)}′

K = diag(K1, ..., Kp1)

Also define X̃ = diag(X̃, ..., X̃), and β = {βT1 , ..., βTp1}
′. The model can be rewritten in

matrix form that

M = X̃β + g(G) + ε
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where ε ∼ N(0, Σ̃) with Σ̃ = Σ⊗ Ip1, which is a p1 by p1 block matrix with each block

as a diagonal matrix σkl1n for k = 1, ..., p1 and l = 1, ..., p1. This represents the fact

that the correlation is nonzero for methylation markers from the same individual and

methylation from different samples are independent.

The score like statistics, as shown by Maity et al(131), can be obtained as T =

(M−Xβ̂)′Σ̃−1KΣ̃−1(M−Xβ̂), where Σ̃ and β̂ can be estimated under the null model.

To obtain the p-value, first, the eigen-decomposition of K = UDU′ is calculated and

T = r′Dr where r = U′Σ̃−1(M − Z′β). Under the null hypothesis, r ∼ N(0,U′P0U)

where P0 = Σ̃−1 − Σ̃−1X̃(X̃
′
Σ̃−1X̃)−1X̃

′
Σ̃−1. Therefore, we can approximate the

distribution of T as a mixture of χ2 distribution with weights being the eigen values of

U′P
1/2
0 KP

1/2
0 U.

Two simplifications of the original MVKMR can be considered to fit our specific

setting that the multiple outcome are methylation level from the same individual. The

first one is to assume a common kernel function K for all g1(G), ..., gp1(G). In other

words, we assume K1 = ... = Kp1 ≡ K and K = Ip1 ⊗K. This approach can greatly

facilitate the computation of the weights in the mixture of χ2 distributions for p-

value calculation. Please refer to Appendix II for details about the simplification in

calculating p-value.

A second simplification is that instead of considering each methylation marker as

distinct outcomes and fitting a multivariate kernel regression model, we consider the

methylation values as a Markov Chain of several methylation blocks(12). Within each

block, the methylation level at different CpG marker can be considered to have a

common mean and be collapsed as a single outcome variable. For example, the CpG

markers in the same CpG island can be considered to have a common underlying

mean, given the small reported variance for methylation values within the same island

(241, 34). Other algorithm that infer the block structure, such as those that infer linkage
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disequilibrium (158) or clustering algorithm, may also be used to define methylation

blocks.

Association between methylation and phenotype conditional on genotype

We consider the additive least square kernel machine regression framework for this

step. The model can be specified as

yi = β0 +Xiβ + h1(Gi) + h2(Mi) + εi

in which β is a vector of regression coefficients and εi ∼ N(0, σ2). Simlarly, we consider

two function space H1 and H2 generated from two positive semidefinite kernels K1

and K2 corresponding to genotype and methylation data respectively. Notice that

y is related to M only through h2(M) and testing the effect of methylation would

be equivalent to testing the null hypothesis that H0 : h2(M) = 0. By establishing

the correspondence between additive least square kernel machine regression and the

additive linear mixed model framework, a variance component score test of Zhang and

Lin can be employed for this test, in which (238).

Q = (y − β̂0 −Xβ̂ − ĥ1)′K2(y − β̂0 −Xβ̂ − ĥ1)

where β̂0, β̂, ĥ1 are estimated under the null model yi = β0 +Xiβ + h1(Gi) + εi.

Notice that the null model belongs to the kernel machine regression framework and

estimation can be obtained by maximizing the following scaled penalized likelihood

function

J(h, β) = −1

2

n∑
i=1

{yi −X ′iβ − h2(Gi)}2 −
1

2
λ‖h2‖2H2

where λ is the tuning parameter controlling the tradeoff between goodness of fit and
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the complexity of the model. The estimate of λ, β and h2 can be obtained via re-

stricted maximum likelihood (REML) using the connection between the least square

kernel machine and the linear mixed model(112) or by fitting a penalized additive

model using generalized cross validation (GCV) criteria (225, 227). Similarly, we can

approximate the statistics Q by a mixture of χ2 distributions with weights being the

diagonal elements of D, in which D is the positive eigenvalues of matrix P0K2P0, and

P0 is the projection matrix under the null P0 = I − (I + λ−1K1)
−1λ−1K1 + X(X ′(I +

λ−1K1)
−1X)−1X ′(I + λ−1K1)

−1

5.3 Simulations Study

Performance of our proposed cumulative test and subsequent causal steps model was

evaluated by simulation studies under a variety of realistic scenarios, in all of which

the SNP sets were generated on the basis of the LD structure of a real gene and the

methylation sets were simulated to have the same correlation structure as obtained

from real data. This allows us to investigate the size and power of our proposed testing

framework in real data analysis.

In all our simulations, we considered gene ASAH1, acid ceramidase 1(229), a 28.5-

kb-long gene which encodes enzyme acid ceramidase. Expression of this gene has been

associated with prostate cancer and mutations are associated with a lysosomal storage

disorder known as Farber disease (103, 170, 242).

5.3.1 Simulation for Cumulative Test

We first conducted simulation to investigate the size and power of the proposed

cumulative test. We simulated genotype data for 93 SNPs within gene ASAH1 us-

ing HAPGEN2 (197) to have the same LD structure as the CEU (CEPH [Utah res-

idents with ancestry from northern and western Europe])samples from international
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HAPMAP project under release 24(3). 29 of these 93 HapMap SNPs are genotyped

with the Affymetrix Genome-Wide Human SNP Array 6.0 (1), constituting the “typed”

SNPs. These were the set of SNPs used for kernel construction in all testing scenarios.

Methylation data of the 21 CpG markers within gene ASAH1 is simulated as multi-

variate normal N(µ,Σ) with Σ simulated to have the same correlation structure as

estimated from a real study (2) and µ being a common mean vector. Simulation of

methylation data using the symmetric or exchangeable correlation structure generates

very similar result with respect to type I error and power to all our proposed methods

and thus were omitted from this manuscript. We considered two scenarios in simulating

the methylation data: 1) Methylation is independent of genotype data µ = −0.1. 2)

Methylation level depends on genotype µ = −0.1 + 0.1G31, where G31 is a randomly

picked 31th SNP within the SNP set.

We first conducted simulations to verify that the proposed joint test procedure can

properly control the genome-wide type I error. We simulated n continuous outcomes

via the following null model with n = 200, 500, 1000

yi = Xi + εi (5.10)

where X is a vector of covariate with X ∼ N(0, 1). We considered the a number

of testing approaches. Table 5.1 summarizes all the methods that we considered in

evaluating the cumulative tests.

Out of the 6 models that we considered, model 1 and 2 are projection based kernel

PCA approach and model 3 are perturbation based omnibus test. Both the perturba-

tion based omnibus test and the kernel PCA method start by constructing composite

kernel Kc = wK1 + (1−w)K2 where K1 and K2 are based on the genotype and methy-

lation data respectively. For methylation, we considered the linear kernel while for

genotype data, we considered the IBS kernels because of its ability to model interactive
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Table 5.1: Cumulative Effect Tests Model Specification

Model Class K1(G) K2(M) Comments

M1 Kernel PCA IBS Linear K2(M) to K1(G)
M2 Kernel PCA IBS Linear K1(G) to K2(M)
M3 Perturbation IBS Linear
M4 Naive K = ZZ’ Z = [G,M]
M5 SNP only IBS –
M6 Methylation only – Linear

effects. For the kernel PCA method, we investigated the performance of both projection

directions that one projects the SNP effect onto the kernel space of the methylation

effect and the other projects in the opposite direction. For the perturbation based

approach, we used a grid of w as 0, 0.25, 0.5, 0.75, 1. For comparison, we considered

several alternative models. The naive model (M4) tests the joint effect of methylation

and genotype via data matrix Z which is a naive concatenation of G and M . We also

considered models that tests only the SNP effect and the methylation effects. 100,000

simulations were conducted to assess the genome-wide type I error rate.

Simulations were also conducted under the alternative to assess the empirical power

of the proposed joint genetic/epigenetic effect tests. Similarly as in the type I error

simulation, we considered situations when the genotype and methylation are indepen-

dent or situations when genotype can affect the average methylation level. Within each

of the scenario, we simulated under the models

yi = Xi + βsGi,29 + βmMi,19 + εi (5.11)

and

yi = Xi + βsGi,29Gi,55 + βmMi,19 + εi (5.12)

where G)·,29, and M·,19 are the 29th SNPs and the 19th CpG marker in the set of

simulated genotype and methylation data, which constitute the causal SNPs and CpG

92



markers. In the first simulation scenario, we essentially considered one causal SNP with

additive effect and one causal CpG marker while in the second scenario, we considered

two potential causal SNPs with an interactive epistatic effect, but no separate main

effect, along with one causal CpG markers. By varying the values of βs and βm,

we control the strength of association between genetic/epigenetic variation and the

phenotypic outcome. By choosing different βs and βm, we constructed situations when

there is only genotype effect or methylation effect or both with different effect sizes.

2000 simulations were conducted to assess the empirical power.

5.3.2 Simulation for Multivariate Causal Steps Model

We also evaluated the performance of our proposed multivariate causal steps model

via simulations on gene ASAH1. The multivariate causal steps model constitutes two

steps with the first step to establish G and M are associated and the second step to

test M and y are associated conditional on G. We aim at evaluating the size and power

for the two steps individually.

Type I error for each of the two steps in the causal model was evaluated by con-

ducting 2000 simulations under the null model, in which genotype and methylation was

independently simulated as previously described in Section 5.3.1. Outcome data was

simulated under the following model that doesn’t rely on G or M:

yi = Xi + εi

where X ∼ N(0, 1) and εi ∼ N(0, 1) were simulated independently.

We considered two causal scenarios in assessing the power of each individual test

in the causal steps model. The complete mediation are situations when the genetic

effect on the outcome is through and only through the changes in the methylation

level, which equates to nonzero a and b effects and c = 0 in the causal diagram. The
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partial mediation corresponds to scenario that there is both direct and indirect genetic

effect that methylation is a partial mediator between genotype and outcome.

In both the complete mediation and partial mediation scenario, genotype data

was simulated the same way as previously described in Section 5.3.1. Methylation

data was similarly simulated to be multivariate normal with mean µ and covari-

ance matrix Σ, where Σ is the same as in Section 5.3.1. However, we simulated

the 21 CpG markers as three contiguous blocks of size 3,15 and 3 respectively. The

mean methylation level remains the same within each block, but the average methy-

lation level can vary between blocks. Specifically, we considered the mean vector

µ = (µ1, . . . , µ1, µ2, . . . , µ2, µ3, . . . , µ3)
T , with µ1, µ2 and µ3 repeated for 3,15 and 3

time respectively. Notice that the simulation in Section 5.3.1 that all the CpG mark-

ers have a common mean constitutes a special case of this simulation. We simulated

under the case that a randomly chosen SNP 31 in the genotype data can affect the

methylation levels by µi1 = −0.1 + 0.1Gi,31, µi2 = −0.1 + 0.2Gi,31, and µi3 = −0.1.

The continuous outcome was simulated by yi = Xi + 0.2Gi,29 + 0.2M̄1−3 + εi for the

partial mediation and yi = Xi + 0.2M̄1−3 + εi for the case of complete mediation, in

both of which X ∼ N(0, 1), Gi,29 is the genotype from the 29th SNP in the gene and

M̄1−3 represents the mean methylation level across first block of CpG markers.

For the first step, we conducted the MVKMR as in Section 5.2.3 in which M is

considered as multivariate outcome and regressed on the genotype G through kernel

function K(G). We considered two testing approaches: the first approach (MG block)

utilized the contiguous block information and collapses markers within the same block

as a single outcome variable, and the second approach (MG original) considered each

CpG marker as distinct outcome for MVKMR. For both approaches, the IBS kernel was

used because of its robustness. For the second step, we utilized the additive least square

kernel machine regression framework presented in Section 5.2.3 with linear kernels for
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M and IBS kernels for G

5.4 Results

5.4.1 Empirical Size and Power for Cumulative Test

Table 5.2 summarizes the size result of the simulation studies on testing the cu-

mulative effect of the genetic and epigenetic variation. We used 100, 000 simulations

to evaluate the type I error at α = 0.05, 0.01 and 0.001. We showed in Table 5.2 the

type I error for cases when G and M are independent. For cases when G and M are

related, the type I error result are essentially the same. From the simulations, all these

methods have well controlled type I error for all the sample sizes we tested on, at all α

levels that are tested on.

Table 5.2: Empirical Type I Error Rate at different α levels

α n M1 M2 M3 M4 M5 M6

0.05

200 0.948 0.944 1.004 1.000 0.981 1.005

500 0.954 0.947 1.008 1.001 0.980 1.006

1000 0.952 0.953 1.007 1.002 0.986 1.004

0.01

200 0.943 0.973 0.962 1.072 0.955 1.034

500 0.945 0.966 0.959 1.072 0.949 1.038

1000 0.973 0.950 0.984 1.026 0.978 1.017

0.001

200 1.119 1.141 0.987 0.998 1.119 1.042

500 1.138 1.129 1.062 1.005 1.100 1.062

1000 1.037 1.027 1.008 0.978 1.012 1.022

Presented as type I error divided by corresponding α

Figure 5.2 presents the power for all the tests, with the upper panel showing the

power result for simulation case (5.11), in which the SNP and CpG have additive effect
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and the lower panel showing the result for the case 5.12, in which we observe epistatic

SNP effect.

1. KPCA, M −> G
2. KPCA, G −> M
3. Perturb
4. Naive
5. G only
6. M only
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Figure 5.2: Empirical Power for Tests on Cumulative Genetics and Epigenetic Effects

On the basis of the figure 5.2, all the methods have increased power when the effect

size increases. We first compared the proposed joint test models (M1-M3) with models

(M5-M6) that tested the single genetic/epigenetic effect. Unsurprisingly, in situations

when there is only genetic effect (βm = 0, βs 6= 0), the model(M5) that only tests

the SNP-set effect is more powerful than the joint tests (M1-M3) because of the fewer

degrees of freedom. Similar conclusions can be drawn for situations when there is

only the epigenetic effect. However, in reality, information on the underlying genetic
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architecture is never known in prior. In situations when there is both genetic/epigenetic

effect, testing on only one of the effects can cause a considerable power loss compared

to joint testing.

Secondly, comparison was made between our proposed composite kernel based ap-

proaches M1-M3 with the naive model M4, which constructed linear kernels based on

naive concatenation of genetic and epigenetic variations. For the first simulation sce-

nario with additive SNP and methylation effect, the naive model has the highest power

when there is both genetic and epigenetic effects. The composite kernel approaches,

including the perturbation based approaches and the kernel PCA methods, on the other

hand, have only modest power loss in this situation compared to the naive model. For

situations when there is interactive SNP effect, the naive model performs poorly as it

fails to accommodate the epistatic effect. Across all simulation scenarios, the composite

kernel approach can lead to substantially improved power over poor choices of kernels

and only modest power loss compared to when using the optimal kernel.

Finally, we compared between the proposed composite kernel based methods. The

perturbation approach have superior or similar power compared to the kernel PCA ap-

proaches across all simulation scenarios. Among the kernel PCA approaches, projection

of the epigenetic variation on the kernel space of genetic variation provides higher power

when the overall genetic effect is bigger (or more extremely, methylation do not have

an effect at all). Similarly, projecting the genetic effect on the epigenetic effect provides

higher power when the overall epigenetic effect is dominating the genetic effect. Over-

all,the power loss for projecting the epigenetic effect onto the kernel space of genetic

effect is modest when the epigenetic effect is dominating. However,the power loss can

be substantial for projecting the genetic effect onto the kernel space of epigenetic effect

when there is dominating genetic effect.
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5.4.2 Multivariate Causal Steps Model Results

Figure 5.3 represents the type I error and empirical power evaluated at α = 0.05

level for the two steps in the causal mediation analysis under three different causal

scenarios for sample size n = 500. The results for n = 200 or 1000 are similar.

Under the null model, all the methods, including the two MVKMR models that

test the association between M and G and the additive least square kernel regression

that tests the association between M and the phenotype y conditional on G, showed

valid type I error. Also, all tests have adequate power under both alternative scenarios,

including the partial mediation and the complete mediation scenario. Unsurprising-

ly,the MG block test that utilized the block structure of the methylation data have

higher power than the corresponding test that treats each CpG marker as individual

outcomes.
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MG Original
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Figure 5.3: Type I error and empirical power for causal mediation tests
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5.5 Discussion

In this paper, we propose a statistical framework for integrative analysis of genome

wide methylation and genotype studies, in which we first test the cumulative genet-

ic/epigenetic effects with subsequent mediation analysis to decide their relative roles.

Our analysis is based on SNP-set and CpG marker set that are constructed using pri-

or biological knowledge, such as proximity to a known gene or other genomic features.

This approach unifies the units in analyzing methylation and genotype data. We model

the cumulative genetic/epigenetic effect via a flexible, semiparametric kernel machine

regression by constructing composite kernels. For genes that show significant associa-

tion with the phenotype, we construct mediation analysis to understand their relative

roles in affecting the phenotype. The subsequent mediation model tests whether methy-

lation is a mediator by first testing the association between genotype and methylation

and then testing the association between methylation and the phenotype adjusting for

genotypic effect.

We proposed two approaches for the cumulative test, both of which start by con-

structing a composite kernel as a weighted average of two kernels based on genotype

and methylation respectively. In principle, any valid kernel that measures the similarity

between genotype or methylation from different individuals can be used in construct-

ing the composite kernel, allowing for flexible modeling with different genotype and

methylation effect mechanism. Therefore, the composite kernel approach can be ad-

vantageous than the naive model which concatenates the genotype and methylation

data to construct a single common kernel (with possible weighting) and tests the join-

t effect through this common kernel. By using the single common kernel, the naive

model assumes a common genetic and epigenetic effect mechanism which can be unrea-

sonable. The composite kernel approach, on the other hand, can incorporate kernels

that are specifically designed for SNP data and methylation data, incorporating possible
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epistatic SNP effect and other possible interaction effect in methylation data.

Both of our cumulative test approaches rely on the adaptive selection of the opti-

mal weights in constructing the composite kernel. The perturbation based approach

selects the optimal weight via a grid search of different w, and adjusts for multiple com-

parison via computationally efficient perturbation. In our simulations, we constructed

composite kernels as a weighted average of IBS kernels for SNP data and linear ker-

nel for methylation data. However, it should be noted that even more flexible model

can be conducted by incorporating multiple kernels for genetic and epigenetic data

respectively.

The kernel PCA approach relies on the projection of genetic variation onto the

epigenetic variation, or reversely. Although the projection enables decomposition of

the genetic and epigenetic effect to facilitate analytical p-value computation, it can

weaken the association signal. In our simulation experiments, the kernel PCA approach

tends to be less powerful than the perturbation approach, especially when the sample

size is modest (n = 200, data not shown). The direction of projection can also be

important, the relative power of which depends on the relative genetic and epigenetic

effect sizes. In our simulation, the power loss can be magnificent for projecting the

genetic variation to the epigenetic variation when the genetic effect is dominating,

especially when the sample size is modest (n = 200, data not shown). In practice, we

suggest using the perturbation approach than the kernel PCA approach in the context

of the joint association testing of genetic and epigenetic variation.

For genes that show significant joint genetic/epigenetic effect, we propose a two step

process to explore the possible causal relationship between genotype, methylation and

phenotype. The multivariate causal steps model extends the classic univariate causal

steps model to incorporate multidimensional mediator and independent variable. In

each step, we test association via the kernel machine regression framework for flexible
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semiparametric modeling of genetic and epigenetic effect. Critical to this process is the

correct specification of the causal model prior to analysis that methylation level change

is prior to and possibly contributes to variation in the phenotype: i.e, methylation is a

potential mediator between genotype on phenotype. This assumption is reasonable in

situations when the time order of events can be established, such as in cases when the

methylation level is measured at baseline (such as at birth or before disease) or when

the phenotype is unlikely to cause methylation level change. Application of the causal

model without consideration of the underlying model assumption can result in spurious

conclusions.

In summary, we have proposed a statistical framework for genome wide integra-

tive analysis of methylation and genotype studies, with first testing the cumulative

association of genetic and epigenetic variation at each gene with phenotypic trait and

subsequent mediation analysis for causal inference. We employed a semiparametric

kernel machine regression framework to allow for flexible modeling of SNP-set and

methylation set effect. We show via simulation and real data application the well con-

trolled genome wide type I error as well as the superior power compared to competing

models.
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APPENDIX I

Exact Method for MiRKAT Using Multiple Kernels

Because of the sparsity of the OTU data, the asymptotic approximation from the

mixture of χ2 distribution can be too conservative when sample size are not large

enough. Inference based on the exact distribution is difficult because of the correlation

of test statistics under different kernels. Instead we can resort to residual permutation

to obtain exact p value.

Suppose that d different kernels K = (K1, ..., Kk, ..., Kd) were considered, the fol-

lowing residual permutation approach can be used to obtain the final p-value as well

as kernel specific p-values at the same time.

1. Fit the null linear or logistic regression model by regressing y on X and obtain

the residuals r = y − µ̂.

2. For each Kk, with k in (1, ..., d), Qk can be calculated as Qk = r′Kkr.

3. Permute the residual r for a large number of B times, and with each permutated

r∗b , calculate Q∗kb = r∗′b Kkr
∗
b .

4. The kernel specific p-value for kth kernel is estimated as pk = B−1
∑B

b=1 I(Qk <

Q∗kb) and the minimum p-value across all the d kernels specific p-values po =

min1≤k≤d pk.

5. For each permutation b and each kernel k, p∗kb = (B−1)−1
∑B

b′ 6=b,b′=0 I(Q∗kb < Q∗kb′),

which equates to getting a p-value for each permutated data set under each kernel.

The minimum p-value across all d kernels can be obtained as p∗ob = min1≤k≤d p
∗
kb.

6. Calculate the final p-value as p = B−1
∑B

b=1 I(po > p∗ob)
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Notice that for each permutation b, p∗1b, ..., p
∗
db are calculated using the same set of

reasmpled residuals and thus are correlated. Kernel specific p-values can be obtained

through steps 1 to 4.
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APPENDIX II

Obtaining χ2 Mixture Weights for Joint Association Test

Methylation data M is considered as multivariate continuous outcome. The model

(5.9) that tests the association between the methylation and genotype is:

Mij = X̃iβj + gj(Gi) + εij

where i = 1, ..., n with n being the sample size, j = 1, ..., p1 with p1 being the number

of CpG markers, and X̃i are the additional covariates to adjust for, including intercept.

εi1, ..., εip1 ∼ N(0,Σ) with Σ = σkl where σkl reflects the correlation between Mk and

Ml of the same individual. For the first simplification, we consider a common kernel

function K for all g1(G), ..., gp1(G). In other words, we assume K1 = ... = Kp1 ≡ K

and K = Ip1 ⊗K.

Define

M = (M11, ...,M1n, ...,Mp1,1, ...,Mp1,n)′

g(G) = {g1(G1), ..., g1(Gn), ..., gp1(G1), ..., gp1(Gn)}′

K = Ip1 ⊗K

X̃ = diag(X̃, ..., X̃)

β = {βT1 , ..., βTp1}
′

(5.13)

The model can be rewritten in matrix form that

M = X̃β + g(G) + ε

104



Then the test statistics T can be written as:

T =(M−Xβ̂)′Σ̃−1KΣ̃−1(M−Xβ̂)

=(M−Xβ̂)′(Σ−2 ⊗K)(M−Xβ̂)

Because M−Xβ̂ ∼ N(0, Σ̃) = N(0,Σ⊗ Ip1), T can be approximated by a mixture

of χ2 distribution with weights being eigenvalues of Σ̃1/2Σ̃−1KΣ̃−1Σ̃1/2, which can be

written as (Σ1/2⊗Ip1)(Σ−2⊗K)(Σ1/2⊗Ip1) = (Σ1/2Σ−2Σ1/2)⊗K = Σ−1⊗K. Suppose

λ1, ..., λl and µ1, ...µm are eigenvalues of K and Σ respectively, then the weights for

the mixture of χ2 distribution are λiµj with i ∈ (1, ..., l), j ∈ (1, ...,m). In this way,

we reduce the eigen-decomposition of np1 × np1 matrices to matrices of sizes n× n for

computation efficiency.
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