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ABSTRACT

EUNHEE KIM: Nonparametric and Semiparametric Methods in Medical
Diagnostics

(Under the direction of Drs. Donglin Zeng and Joseph G. Ibrahim)

In medical diagnostics, biomarkers are used as the basis for detecting or predicting

disease. There has been an increased interest in using the Receiver Operating Char-

acteristic (ROC) curve to assess the accuracy of biomarkers. In many situations, a

single biomarker is not sufficient for the desired level of accuracy; furthermore, newly

discovered biomarkers can provide additional information for a specific disease. Even

though numerous methods have been developed to evaluate a single biomarker, few sta-

tistical methods exist to accommodate multiple biomarkers simultaneously. The first

paper proposes a semiparametric transformation model for multiple biomarkers in ROC

analysis to optimize classification accuracy. This model assumes that some unknown

and marker-specific transformations of biomarkers follow a multivariate normal distri-

bution; it incorporates random effects to account for within-subject correlation among

biomarkers. Nonparametric maximum likelihood estimation is used for inference, and

the parameter estimators are shown to be asymptotically normal and semiparametri-

cally efficient. The proposed method is applied to analyze brain tumor imaging data

and prostate cancer data.

In the second paper, we focus on assessing the accuracy of biomarkers by adjusting

for covariates that can influence the performance of biomarkers. Therefore, we develop

an accelerated ROC model in which the effect of covariates relates to rescaling the

original ROC curve. The proposed model generalizes the usual accelerated failure time

model in the survival context to the ROC analysis. An innovative method is developed
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to construct estimating equations for parameter estimation. The bootstrapping method

is used for inference, and the parameter estimators are shown to be asymptotically

normal. We apply the proposed method to data from a prostate cancer study.

The paired-reader, paired-patient design is commonly used in reader studies when

evaluating the diagnostic performance of radiological imaging systems. In this design,

multiple readers interpret all test results of patients who undergo multiple diagnostic

tests under study. In the third paper, we develop a method to estimate and compare

accuracies of diagnostic tests in a paired-reader, paired-patient design by introducing

a latent model for test results. The asymptotic property of the proposed test statistics

is derived based on the theory of U-statistics. Furthermore, a method for correcting

an imperfect gold standard bias and sample size formula are presented. The proposed

method is applied to comparing the diagnostic performance of digital mammography

and screen-film mammography in discriminating breast tumors.
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Chapter 1

Introduction and Literature Review

1.1 Measures of Diagnostic Accuracy

The accuracy of a diagnostic test is the ability of a test to discriminate among alterna-

tive status of health (Zweig and Campbell, 1993). The assessment of the performance

of the diagnostic test is done by investigating whether test results differ for the two

health states. The Receiver Operating Characteristic (ROC) analysis are widely used

for the measure of performance, evaluation of diagnostic or prognostic tests and indices,

and comparison of diagnostic techniques or systems. In essence, ROC analysis is an

evaluation technique used in signal detection theory developed in the 1950s and 1960s

(Green and Swets, 1966; Egan, 1975). It was popular in the field of radiology in the

1980s and it is increasingly used for medical and image research in recent years.

1.1.1 Sensitivity and Specificity

For binary results (such as positive or negative), the accuracy of a diagnostic test is often

characterized by the true positive rate (TPR) and the false positive rate (FPR). Positive

test results indicate the presence of a particular condition and negative indicates its

absence. Then, the TPR is defined as the probability that the test result is positive

given that the subject is truly diseased. The FPR is defined as the probability that



the test result is positive given that the subject is truly non-diseased. In biomedical

research, the sensitivity and specificity are often used instead of the TPR and the FPR;

TPR = Pr(positive | disease) = sensitivity

FPR = Pr(postitive | nondisease) = 1− specificity.

Let D denote true disease status where D=1 if the condition is present and 0 if the

condition is absent and Y be the binary test result (Y=1 for a positive, 0 for a negative

test result). Then,

TPR = Pr(Y = 1 | D = 1)

FPR = Pr(Y = 1 | D = 0).

1.1.2 Receiver Operating Characteristic (ROC) Curve

Many diagnostic tests results are not simply positive or negative but are measured on

continuous or ordinal scales. Some tests yield qualitative results on an ordinal scale

based on a subjective assessment of readers. For instance, for the mammography study

of the detection of malignant lesions, readers can give a BIRAD score (American College

of Radiology, 1995) where 1=normal, 2=benign, 3=probably benign, 4=suspicious,

and 5=malignant. On the other hand, diagnostic tests such as temperature, serum

cholesterol, and blood pressure produce continuous test results. In this thesis, we

focus our attention on test results with continuous or ordinal scales and their analyses.

When a diagnostic test is based on a variable measured on a continuous or ordinal

scale, an assessment of the test can be made through the use of the receiver operating

characteristic (ROC) curves (Hanley and McNeil, 1982; Metz, 1978).

The ROC curve is defined as a plot of TPR (sensitivity) versus FPR (1-specificity)
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Figure 1.1: ROC curve

across all possible threshold values. Each point on the graph is created by a differ-

ent threshold value (See Figure 1.1). From Figure 1.1, we can see that the FPR (1-

specificity) increases as the TPR (sensitivity) increases. Thus, the ROC curve shows

the range of possible tradeoffs between sensitivity and specificity.

Some basic properties of the ROC curve are:

a. The ROC curve is a monotonic increasing function mapping (0,1) onto (0,1).

b. The closer the curve follows the left and upper border of the ROC space, the

more accurate the test.

c. On the other hand, the closer the curve comes to the 45-degree diagonal of the

ROC space, the less accurate the test.

d. The ROC curve is invariant to any monotone transformations of the measurement

scale. Thus, the ROC curve does not depend on the scale of the test measure-

ments, making it useful for comparing diagnostic tests of different scales.

3



1.1.3 The Area Under the ROC Curve

It is often convenient to reduce an ROC curve to a single quantitative measure. A

commonly used index of accuracy is the area under an ROC curve (AUC). It reflects

the discriminative ability of a diagnostic procedure and can be used to make inferences

for comparing ROC curves. The area can take values between 0 and 1, but typically

it ranges from 0.5 to 1. The closer AUC is to 1, the better the overall diagnostic

performance of the test. Conversely, an AUC of 0.5 indicates that the test is performing

no better than simply guessing whether a sample is normal or abnormal, and an AUC

of 1 indicates a test always classifies a sample correctly. The area under an ROC curve

has several interpretations (Zou et al., 2002, p.28); (a) the average value of sensitivity

for all possible values of specificity, (b) the average values of specificity for all possible

values of sensitivity (Metz, 1986, 1989), and (c) the probability that a randomly selected

patient with the condition has a test result indicating greater suspicion than that of a

randomly chosen patient without the condition (Hanley and McNeil, 1982).

An alternative summary measure is the partial area under the ROC curve (pAUC),

used to make statistical inference when only a region of the ROC space is of interest.

Methods for estimating and comparing pAUCs are found in the literature (McClish,

1989; Wieand et al., 1989; Zhang et al., 2002).

1.1.4 The ROC Curve for Continuous Tests

Let D be a binary indicator of disease status with D=1 for diseased and D=0 for non-

diseased subjects. Let Y denote a continuous rest result and c be a threshold that any

test results greater than c are considered to be positive. For a given threshold c,

TPR(c) = Pr(Y ≥ c | D = 1)

FPR(c) = Pr(Y ≥ c | D = 0).

4



The ROC curve is the entire set of possible true and false positive rates by dichotomizing

Y with different thresholds. That is,

ROC(· ) = {(FPR(c), TPR(c)), c ∈ (−∞,∞)}.

We also write the ROC curve as (Pepe, 2003, p.68)

ROC(· ) = {(t, ROC(t)), t ∈ (0, 1)},

where the ROC function maps t to TPR(c), and c is the threshold corresponding to

FPR(c) = t.

Let SD and SD̄ denote the survivor functions for Y in the diseased and non-diseased

populations: SD(y) = Pr(Y ≥ y | D = 1) and SD̄(y) = Pr(Y ≥ y | D = 0). Then, the

ROC curve can be expressed as

ROC(t) = SD(S−1
D̄

(t)), t ∈ (0, 1).

Suppose that YD and YD̄ are independent and randomly chosen test results from

the diseased and non-diseased population, respectively. By the definition, AUC =
∫ 1

0
ROC(t)dt =

∫ 1

0
SD(S−1

D̄
(t))dt. We can easily show that

AUC = P (YD > YD̄).

1.1.5 The Binormal ROC Curve

The most popular parametric model is the binormal ROC curve which assumes that test

results are normally distributed in the diseased and non-diseased populations (Dorfman

and Alf, 1969).
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Let X be the test result from diseased subjects and Y be the test result from non-

diseased subjects. Suppose that test results are normally distributed in the diseased

and non-diseased populations. If X ∼ N(µX , σ2
X) and Y ∼ N(µY , σ2

Y ), then

ROC(t) = Φ(a + bΦ−1(t))

where

a =
µX − µY

σX

, b =
σY

σX

and Φ denotes the standard normal cumulative distribution function.

The area under the curve for the binormal ROC curve has a following closed-form

expression:

AUC = Φ

(
a√

1 + b2

)

Note that the shape of the binormal ROC curve is fully characterized by two parameters;

the intercept a (standardized mean difference of the distributions of test results) and

the slope b (the ratio of the standard deviation of the distributions of the test results).

Thus, statistical inference can be made based on the estimated parameters of a and b.

1.1.6 The ROC Curve for Ordinal Tests

Some test responses are collected on ordinal scales. For example, for the mammography

data, the test results are numbered from 1=normal to 5=malignant. With ordinal test

results, the unobservable latent continuous random variable model is often used and a

ROC curve can be obtained by exploiting the latent variable.

Assume that there is an unobserved latent variable L corresponding to the assessor’s

perception of the image. The reader has decision threshold values that correspond to

6



his/her classification. Let Y denote the reported classification. Then,

Y = y ⇔ cy−1 < L < cy, y = 1, 2, · · · , p

where c0 = −∞ and cp = ∞. The reader classifies the image in the yth category if

L falls within the interval corresponding to the reader’s implicit definition for the yth

category (cy−1, cy).

Our interest is in the ROC curve for L, the latent variables. Since Y ≥ y corre-

sponds to L > cy−1, we can express the true and false positive rates as TPR(cy−1) and

FPR(cy−1) based on the threshold cy−1 for L. The set of P + 1 points from the ROC

curve for L are identifiable from the distributions of the observed Y in diseased and

non-diseased subject:

{FPR(cy−1), TPR(cy−1), y = 1, 2, · · · , p + 1}

Suppose that YD denotes a test result from the diseased subjects and YD̄ denotes a

test result from the non-diseased subjects. For the discrete test results, the area under

the ROC curve is given by

AUC = P (YD > YD̄) +
1

2
Pr(YD = YD̄).

1.2 The Study Design in Medical Diagnostics

1.2.1 Scale of the Test Result

The diagnostic test is used in order to classify subjects as diseased or not diseased. Test

results can yield binary, ordinal, or continuous scales. The binary test result is either

positive or negative: positive if a disease is present or negative if a disease is absent.

7



For test results on ordinal or continuous scales, the classification rule is usually set by

a threshold, with results above it classified as positive for disease and results below it

classified as negative, or vice versa. Tests that involve subjective assessments are often

measured on ordinal scales.

1.2.2 Selection of Study Subjects

Enrollment into a study of a diagnostic test usually proceeds in one of two ways.

Subjects can be selected on the basis of known true disease status. That is, a fixed

number of diseased and non-diseased subjects are selected and then the diagnostic test

is applied to the subjects. This design is called a case-control study. Alternatively, the

diagnostic test can be applied to a set of study subjects from the population of interest

and true disease status is determined for them. This design is called a cohort study

because membership in the cohort is the basis for selection into the study.

1.2.3 Study Design for Comparing Tests

When multiple diagnostic tests are to be compared, a paired-reader(or patient) or

unpaired-reader(or patient) design can be considered. In a paired-reader design, mul-

tiple readers interpret the results of all tests. For example, each reader interprets the

results of both CT and MRA in this setting. On the other hand, in an unpaired-reader

design, different readers interpret the results of different tests. Under this setting, for

example, readers who interpret the CT results are not the same readers who interpret

the MRA results. The paired-reader design is more powerful than the unpaired-reader

design since it requires fewer patients and readers. The unpaired-reader design is used

in situations that do not allow a paired-reader design. For example, a unpaired-reader

design is used when different expertise is required to interpret tests and readers do not

have equivalent expertise in each test. In a paired-patient design, a sample of patients

8



undergoes all the diagnostic tests under the study. An unpaired-patient design is the

one where each patient undergoes a single test.

Paired- and unpaired- reader designs can be used with both paired- and unpaired-

patient designs. Correlations between test results must be considered in evaluating a

study that employs a paired design. The most commonly used design is the paired-

patient, paired-reader design, in which multiple readers interpret all the test results of a

sample of patients who undergoes all the diagnostic tests under the study. This design

is also called traditional design. The data setup is given in Table 1.1; here, Tkj1 and

Tkj2 denote the results of test 1 and 2 for the kth patient and are interpreted by the

jth reader. This design is popular because it requires the smallest number of patient

(Obuchowski and Rockette, 1995). Furthermore, it demands one of the smallest reader

samples and one of the fewest number of interpretations per reader.

Table 1.1: Data setup for Paired-patient, Paired-Reader Design
Reader 1 · · · Reader j · · · Reader J

Test1 Test2 Test1 Test2 Test1 Test2
1 T111 T112 · · · T1j1 T1j2 · · · T1J1 T1J2

2 T211 T212 · · · T2j1 T2j2 · · · T2J1 T2J2
...

...
...

. . .
...

...
. . .

...
...

k Tk11 Tk12 · · · Tkj1 Tkj2 · · · TkJ1 TkJ2
...

...
...

. . .
...

...
. . .

...
...

N TN11 TN12 · · · TNj1 TNj2 · · · TNJ1 TNJ2

Note: This design requires N total patients and J total readers.
There are N × I interpretations per reader, where I is the number
of diagnostic tests under study. (Note that I=2 in the table)

In contrast, the unpaired-patient, unpaired-reader design is the most inefficient

design, but situations arise when it is the only design option. The unpaired-patient,

paired-reader design (See Table 1.3) and the paired-patient, unpaired-reader design(See

Table 1.4) are improvements over the unpaired-patient, unpaired-reader design but

inferior to the paired-patient, paired-reader design. Still, these designs may be necessary

9



when the tests are mutually exclusive or when the readers of the tests require different

expertise (Zhou, 2002, p82).

Table 1.2: Data setup for Unpaired-patient, Unpaired-Reader Design
Test 1 Test 2

Reader 1 · · · Reader j · · · Reader J Patient Reader 1̃ · · · Reader j̃ · · · Reader J̃

1 T111 · · · T1j1 · · · T1J1 1̃ T1̃1̃2 · · · T1̃j̃2 · · · T1̃J̃2

2 T211 · · · T2j1 · · · T2J1 2̃ T2̃1̃2 · · · T2̃j̃2 · · · T2̃J̃2
...

...
. . .

...
. . .

...
...

...
. . .

...
. . .

...

k Tk11 · · · Tkj1 · · · TkJ1 k̃ Tk̃1̃2 · · · Tk̃j̃2 · · · Tk̃J̃2
...

...
. . .

...
. . .

...
...

...
. . .

...
. . .

...

N TN11 · · · TNj1 · · · TNJ1 Ñ TÑ 1̃2 · · · TÑ j̃2 · · · TÑJ̃2

Note: This design requires I ×N total patients and I × J total readers, where I is the number
of diagnostic tests under study. There are N interpretations per reader. (Note that I=2 in the
table.)

Table 1.3: Data setup for Unpaired-patient, Paired-Reader Design
Test 1 Test 2

Reader 1 · · · Reader j · · · Reader J Patient Reader 1 · · · Reader j · · · Reader J

1 T111 · · · T1j1 · · · T1J1 1̃ T1̃12 · · · T1̃j2 · · · T1̃J2

2 T211 · · · T2j1 · · · T2J1 2̃ T2̃12 · · · T2̃j2 · · · T2̃J2
...

...
. . .

...
. . .

...
...

...
. . .

...
. . .

...

k Tk11 · · · Tkj1 · · · TkJ1 k̃ Tk̃12 · · · Tk̃j2 · · · Tk̃J2
...

...
. . .

...
. . .

...
...

...
. . .

...
. . .

...

N TN11 · · · TNj1 · · · TNJ1 Ñ TÑ12 · · · TÑj2 · · · TÑJ2

Note: This design requires N × I total patients and J total readers, where I is the number
of diagnostic tests under study. There are N × I interpretations per reader. (Note that I=2
in the table)

Lastly, a paired-patient-per-reader, paired-reader design is the situation where the

N × J total patients undergo all tests under the study, and each reader interprets the

test results of the N patients. This design requires the fewest number of readers but

requires many more patients than the paired-patient paired-reader design. It is an

efficient design when patients can be accrued into the study quickly and inexpensively

(Zhou, 2002, p83).
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Table 1.4: Data setup for Paired-patient, Unpaired-Reader Design
Test 1 Test 2

Reader 1 · · · Reader j · · · Reader J Reader 1̃ · · · Reader j̃ · · · Reader J̃
1 T111 · · · T1j1 · · · T1J1 T11̃2 · · · T1j̃2 · · · T1J̃2

2 T211 · · · T2j1 · · · T2J1 T21̃2 · · · T2j̃2 · · · T2J̃2
...

...
. . .

...
. . .

...
...

. . .
...

. . .
...

k Tk11 · · · Tkj1 · · · TkJ1 Tk1̃2 · · · Tkj̃2 · · · TkJ̃2
...

...
. . .

...
. . .

...
...

. . .
...

. . .
...

N TN11 · · · TNj1 · · · TNJ1 TN 1̃2 · · · TNj̃2 · · · TNJ̃2

Note: This design requires N total patients and J × I total readers, where I is the number
of diagnostic tests under study. There are N interpretations per reader. (Note that I=2
in the table)

Table 1.5: Data setup for Paired-Patient-Per-Reader, Paired-Reader Design
Reader 1 · · · Reader j · · · Reader J

Test1 Test2 Patient Test1 Test2 Patient Test1 Test2

1 T111 T112 1̃ T1̃j1 T1̃j2
˜̃1 T˜̃1J1

T˜̃1J2

2 T211 T212 2̃ T2̃j1 T2̃j2
˜̃2 T˜̃2J1

T˜̃2J2
...

...
...

...
...

...
...

...
...

k Tk11 Tk12 k̃ Tk̃j1 Tk̃j2
˜̃k T˜̃

kJ1
T˜̃

kJ2
...

...
...

...
...

...
...

...
...

N TN11 TN12 Ñ TÑj1 TÑj2
˜̃N T ˜̃NJ1

T ˜̃NJ2

Note: This design requires N × J total patients and J total readers.
There are N × I interpretations per reader, where I is the number
of diagnostic tests under study. (Note that I=2 in the table)
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1.2.4 Correlated ROC Data Structures

The paired design is often used to improve the precision of the analysis. We focus our

discussion on the following two types of correlated ROC data structure: (1) multiple

test measurements on the same patient and (2) multireader ROC studies with multiple

tests (Zou, 2002, p.274). In such studies, it is important to take into account the

correlations for the estimation and the inferences on the accuracy of the diagnostic test.

The statistical methodologies for the analyses from these correlated data structures are

described in later sections in detail.

The first data structure arises when each patient is examined by several diagnos-

tic tests or is repeatedly examined by the same test. Under this data structure, test

responses from different patients can be assumed to be independent although test re-

sponses from the same patient are correlated. One special form from this data structure

is known as clustered data. For example, in a study of the diagnostic accuracy of mag-

netic resonance (MRI) in lung cancer, different regions of the lung were considered

for the presence of cancerous invasions (Webb et al, 1991; Beam, 1998). Beam (1998)

described several approaches to the analysis of clustered data. Regression models from

multiple test measurements on the same patients are discussed in section 1.4.

The second data structure arises when each patient is examined by multiple readers

with multiple tests (or modalities). It is called multi-reader, multi-test study design.

In this setting, the results of diagnostic tests often depend on a radiologist’s subjective

interpretation. For example, after conducting a mammography screening, a radiolo-

gist examines the image characteristics and gives his or her impression of the presence

or absence of malignancy. Because of the variability in readers’ accuracies caused by

differences on interpretations, studies of such diagnostic tests usually involve several

readers. The most popular design for such a study is to have multiple readers examine
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the same set of patients who have undergone each of the diagnostic tests. This struc-

ture is equivalent to the notion of the paired-patient paired reader design as illustrated

before. This design is most likely to occur in a radiology setting and is most efficient

for a comparison of tests. We discuss several approaches (See section 1.3.4) and de-

velop new statistical methodologies of ROC analysis arising from this data structure in

Chapter 3.

1.2.5 Common Sources of Biases in Study Design

Studies of diagnostic tests are subject to an array of biases. Table 1.7 summarizes the

common biases in studies of diagnostic test accuracy (Zou, 2002, p.69). Some of biases

are discussed below:

a. Selection bias : When the sample composition has been influenced by external

factors so that it does not represent the target population, we have selection bias.

b. Spectrum bias : Spectrum bias occurs when diseased subjects in the study are

not representative of disease subjects in the population, or if controls selected

for the study are different from population controls. A common mistake is to

select cases that have more advanced or severe disease and select controls that

are more healthier on average than non-disease subjects in the population. In

this setting, test sensitivity and specificity will be higher than would be expected

in the general population. Cases and controls in a diagnostic study should be

randomly selected from the diseased and non-diseased target population.

c. Imperfect gold standard bias : A gold standard is a procedure that defines presence

or absence of a condition of interest, such as a patient’s disease status. Different

gold standards are used for different tests and applications; Common examples

are autopsy reports, surgery findings, pathology results from biopsy specimens,

13



and so on (Zou, 2002, p.15). If an imperfect reference test is used as a gold

standard, the estimates of test accuracy usually will be biased. This phenomenon

is called imperfect gold standard bias.

d. Verification bias : Verification bias occurs when the test being evaluated is used

to determine which subjects get further evaluation, leading to a diagnostic of the

disease. This problem is exceedingly common in research on diagnostic tests,

particularly when the gold standard test poses some risk to subjects. If deter-

mination of disease status depends on the result of the test, then nave estimate

of sensitivity and specificity based on disease-verified subjects are biased. The

verification bias is also called as work-up bias, referral bias, selection bias and as-

certainment bias (Pepe, 2003, p.169). For example, consider audiology screening

in new borns with DPOAE. If the test suggests that a child is hearing impaired,

then follow-up testing with the gold standard visual reinforcement audiometry

(VRA) behavioral test is clinically indicated and is performed. However, if the

DPOAE test suggests that the child’s ears are responding to sound stimuli, then

there are no clinical reasons to perform the VRA test.

1.3 Estimating the ROC Curve

In this section, statistical methods for estimating ROC curves, calculating the area

under a ROC curve and comparing ROC curves are discussed. We introduce three

approaches for estimating the ROC curve and the corresponding AUC: parametric,

nonparametric, and semiparametric methods.
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Table 1.6: Common Biases in Studies of Diagnostic Test Accuracy
Bias Description
Selection bias The composition of the sample is influenced by external fac-

tors, so the study sample is not representative of the target
population

Spectrum bias The study sample does not include the complete spectrum of
patient characteristic

Imperfect gold The reference procedure is not 100 % accurate standard bias
Workup bias The results from the diagnostic test influence the subsequent

clinical workup needed to establish the patient’s diagnosis
Incorporation bias The results from the diagnostic test under evaluation are

incorporated-in full or part-into the evidence used to estab-
lish the definitive diagnosis

Verification bias Patients with positive (or negative) test results are preferen-
tially referred for the gold standard procedure;the bias occurs
when estimates of accuracy are based only on the verified pa-
tients

Test-Review bias The diagnostic test is evaluated without proper blinding of
the results from the gold standard or competing test

Diagnostic-Review bias The gold standard is evaluated without proper blinding of
the results from the test under study

Reading-Order bias When comparing two or more tests, the reader’s interpreta-
tion is affected by his or her memory of the results from the
competing test

Context bias When the sample prevalence differs greatly from the popula-
tion prevalence, the reader’s interpretations may be affected,
resulting is biased estimates if test accuracy
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1.3.1 Parametric Method

The parametric methods model the ROC curves by assuming test results or some

unknown monotonic transformation of the test results follow a certain distribution.

Under the assumed distribution, parameters of ROC curves are derived and the smooth

ROC curve is produced. The most commonly used distributional assumption is the

binormal model in which parameters are estimated with maximum likelihood methods

(Dorfman and Alf, 1969). The parameter estimates by maximum likelihood methods

is fully efficient assuming that the models are correctly specified. If the distribution

of scores for true-positive and true-negative test subjects are far from binormal, the

parametric AUC and its corresponding standard error derived from a directly fitted

binormal model may be distorted (Goddard and Hinberg, 1990). When test results

are not binormal for continuous data, Zou and Hall (2000) suggested using a Box-Cox

transformation to transform data to binormality and developed maximum likelihood

algorithm for estimating ROC curve parameters.

The ROC curve is invariant to monotonic increasing transformations of test results.

However, the parametric methods for estimating the ROC are not invariant to those

transformations. This approach is not popular in practice because the fully parametric

method makes strong assumptions on the distributions of test results.

1.3.2 Nonparametric Method

Alternatively, the ROC curve can be fitted empirically by using observed data without

making any distributional assumptions for the test results. For continuous test results,

the nonparametric ROC curve may be preferred since it passes through all observed

points and provides unbiased estimates of sensitivity, specificity, and AUC in large

samples (Zweig and Campbell, 1993).

Suppose the test result is measured on an ordinal or continuous scale. By convention,
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Figure 1.2: Empirical ROC curve

we assume that higher values of the test result are more indicative of disease. Let

Xi, i = 1, 2, · · · ,m denote test results from diseased subjects and Yj, j = 1, 2, · · · , n

denote test results from non-diseased subjects. Let N = m + n be the total number of

subjects under the study. Then, for each possible cutpoint c, the empirical TPR and

FPR are calculated as follows.

T̂PR(c) =
1

m

m∑
i=1

I(Xi ≥ c)

F̂PR(c) =
1

n

n∑
j=1

I(Yj ≥ c)

Then, the empirical ROC curve is a plot of T̂PR(c) versus F̂PR(c) for all c ∈ (−∞,∞).

As shown in Figure 1.2, the empirical ROC curve is fitted by connecting the points

(T̂PR(c), F̂PR(c)) for each c, which results in a step function. The empirical ROC

curve is invariant with respect to a monotonic transformation of test results because it

depends only on the ranks of observations in the combined sample (Zweig and Campbell,
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1993). However, the empirical ROC curve is not smooth and the trapezoidal rule tends

to underestimates the true area (Hanley and McNeil, 1982; Swet and Pickett, 1982).

The AUC can be estimated by summing the area of trapezoids formed by connecting

the points of the empirical ROC curve. Nonparametric methods for estimating the

area and its variance have been proposed in the literature (Bamber, 1975; Hanley and

McNeil,1982; DeLong et al, 1988; Obuchowski,1997). The area under the empirical

ROC curve, when the area is calculated by the trapezoidal rule, is given by

θ̂NP =
1

mn

n∑
j=1

m∑
i=1

φ(Xi, Yj),

where

φ(Xi, Yj) =





1 if Y < X,

1/2 if Y = X,

0 if Y > X.

Note that θ̂NP provides an unbiased estimate of θNP = Pr(Y < X)+ 1
2
Pr(X = Y ).

Pr(X = Y ) = 0 for continuous test results.

θ̂NP is equivalent to the Mann-Whitney U-statistic (Bamber, 1975; Hanley and

McNeil, 1982). Thus, the statistical properties of the Wilcoxon statistic can be applied

to predict the properties of the area under an ROC curve. The AUC is a measure based

on pair-wise comparisons of scores from diseased versus non-diseased subjects, not

depending on the actual values of test result. It is the probability that test results from

a randomly selected pair of diseased and non-diseased subjects are correctly ordered.

The variance of the Mann-Whitney statistic can be derived from theory developed for

generalized U-statistics by Hoeffing (1948). Define
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δ10 = E[φ(Xi, Yj)φ(Xi, Yk)]− θ2, j 6= k

δ01 = E[φ(Xi, Yj)φ(Xk, Yj)]− θ2, i 6= k

δ11 = E[φ(Xi, Yj)φ(Xi, Yj)]− θ2,

Then,

V ar(θ̂NP ) =
(n− 1)δ10 + (m− 1)δ01

mn
+

δ11

mn
.

Hanley and McNeil (1983) proposed a nonparametric method for the estimation of

the AUC but used the assumption of Gaussian distribution to estimate variances of

the areas for non-continuous test results. On the other hand, DeLong et al. (1988)

developed the completely nonparametric covariance estimation by using the theory on

generalized U-statistics.

The variance estimator proposed by DeLong et al. (1988) is as follows:

a) Define the X-components for the ith subject, V10(Xi) and the Y-components for

the jth subject, V01(Yj).

V10(Xi) =
1

n

n∑
j=1

φ(Xi, Yj), i = 1, 2, · · · ,m

V01(Yj) =
1

m

m∑
i=1

φ(Xi, Yj), j = 1, 2, · · · , n.

b) The AUC can be estimated using either the X or Y components.

θ̂NP =
m∑

i=1

V10(Xi)

m
=

n∑
j=1

V01(Yj)

n
.

c) Let S10 and S01 be covariance estimates for the X and Y components (S10 and
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S01 are estimates of δ10 and δ01, respectively). Then,

S10 =
1

m− 1
=

m∑
i=1

(V10(Xi)− θ̂NP )2

and

S01 =
1

n− 1
=

n∑
j=1

(V01(Yj)− θ̂NP )2.

d) Then, the variance of the area under the curve is estimated by

V (θ̂NP ) =
1

m
S10 +

1

n
S01.

An asymptotic (1-α) percent confidence interval for the ROC area is given by

(
θ̂NP − z1−α/2

√
ˆV ar(θ̂NP ), θ̂NP + z1−α/2

√
ˆV ar(θ̂NP )

)
.

Hoeffding’s theory extends to a vector of U statistics. Let θ̂=(θ̂1, θ̂2, · · · , θ̂k) be

the vector of the AUC estimators. Let {Xr
i } and {Y r

j } (i = 1, · · · ,m; j = 1, · · · , n; 1 ≤
r ≤ k) be the test results of rth diagnostic measure. Define

δrs
10 = E[φ(Xr

i , Y
r
j )φ(Xs

i , Y
s
k )]− θrθs, j 6= k

δrs
01 = E[φ(Xr

i , Y
r
j )φ(Xs

k, Y
s
j )]− θrθs, i 6= k

δrs
11 = E[φ(Xr

i , Y
r
j )φ(Xs

i , Y
s
j )]− θrθs,

Then, the covariance of the rth and sth statistic is Cov(θ̂r, θ̂s) =
(n− 1)δrs

10 + (m− 1)δrs
01

mn
+

δrs
11

mn
.

The estimated covariance matrix for θ̂ can be computed as follows:

a) For the rth statistic, θ̂r, the X-components for the ith subject, V r
10(Xi) and the
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Y-components for thejth subject, V r
01(Yj) are defined respectively, as

V r
10(Xi) =

1

n

n∑
j=1

φ(Xr
i , Y

r
j ), i = 1, 2, · · · , m

V r
01(Yj) =

1

m

m∑
i=1

φ(Xr
i , Y

r
j ), j = 1, 2, · · · , n.

b) Compute k × k matrix S10 such that the (r,s)th element is

Srs
10 =

1

m− 1
=

m∑
i=1

[V r
10(Xi)− θ̂r][V s

10(Xi)− θ̂s],

and similarly,

Srs
01 =

1

n− 1
=

n∑
j=1

[V r
10(Yj)− θ̂r][V s

01(Yj)− θ̂s].

c) The estimated covariance matrix for the θ̂=(θ̂1, θ̂2, · · · , θ̂k) is S =
1

m
S10 +

1

n
S01.

Let g be a linear function of θ̂. If limN→∞ m/n is bounded and nonzero, for any

contrast Lθ′, where L is a row vector of coefficients,

Lθ̂′ − Lθ′
[
L

(
1

m
S10 +

1

n
S10

)
L′

]1/2

has a standard normal distribution.

If there are multiple test results from the same subjects, estimation and inference of

the accuracy of diagnostic tests must account for intracluster correlation. Obuchowski

(1997) proposed a method for estimating the area under the ROC curve in the presence

of clustered data by applying Delong et al. (1988)’s structural components approach

to ROC curve estimation but extended their method to clustered ROC data using the

ideas of Rao and Scott (1992). Note that Delong et al. (1988)’s method assumes that

the test results are independent observations. In contrast, under the clustered data
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structure, test results from the same subjects are correlated though test results from

different subjects are assumed to be independent. The methodology for the analysis of

clustered data in ROC studies was reviewed by Beam (1998).

1.3.3 Semiparametric Method

Under the semiparametric approach to estimating the ROC curve, the data are trans-

formed to follow a binormal distribution using an unspecified monotonic transforma-

tion. A common approach to the semiparametric estimation of the ROC curve is to

model the ROC curve parametrically without making additional assumptions on the

distribution of test results. It is also called the parametric distribution free approach

(Pepe, 2000; Alonzo and Pepe, 2002).

The maximum likelihood estimation algorithm for fitting binormal ROC curves to

ordinal data has long been available (Swet and Pickett, 1982; Dorfman and Alf, 1969;

Grey and Morgan, 1972, Metz et al. 1998). Dorfman and Alf (1969) proposed an

iterative method for obtaining the maximum likelihood estimates of the parameters of

a binormal ROC curve to ordinal data. The methods for fitting ROC curves to con-

tinuous data are less established than for ordinal data. Metz et al. (1998) developed a

semiparametric method for continuous data to estimate the ROC curve. They assumed

that the data come from a distribution of a latent variable and created ordinal data

by categorizing the original continuous data, thereby using an ML curve-fitting algo-

rithm for the ordinal data. The computer algorithm LABROC4 (a true ML algorithm)

and LABROC5 (a quasi-ML algorithm) are developed for this method. However, this

method is less sensitive to non-normality than the direct parametric method. On the

other hand, Zou and Hall (2000) proposed the maximum likelihood rank-based estima-

tor of the ROC curve for continuous data. They derived the probability distribution

of ranks of test results using the theorem of Hoeffding (1951) and estimated binormal
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parameters from the likelihood which depends only on the rank order statistics of the

data by a Monte Carlo procedure. This method is efficient but computationally in-

tensive. Pepe (2000a) and Alonzo and Pepe (2002) developed similar semiparametric

methods to estimate ROC curves by applying procedures for fitting generalized linear

models to binary data. Cai et al. (2004) proposed two semiparametric methods for

estimating location and scale parameters in the binormal ROC model; (a) maximum

profile likelihood approach, (b) Pseduo maximum likelihood approach.

1.3.4 Analysis of Multi-Reader, Multi-Test Studies

For the studies with multiple test measurements on the same patients, we discussed

DeLong et al. (1988) in section 1.3.2. In this section, we focus on the studies in which

each patient is examined by multiple readers with multiple tests.

Obuchowski and Rockette (1995) proposed a Mixed-Effects ANOVA model on the

accuracy indices (e.g. the ROC curve area), where the tests were considered fixed and

the readers were considered random. They modified the usual ANOVA F-tests to cor-

rect for the correlations between and within readers. Note that their method makes

strong assumptions as follows: First, it assumes that the complex correlation structure

from having the same patient sample evaluated by several readers in a set of tests can

be described by only three correlations; correlation of error terms in diagnostic accu-

racies of the same reader in different tests, the correlation of error terms in diagnostic

accuracies of different readers in the same test, and the correlation of error terms in

diagnostic accuracies of different readers in different tests on the same patients. Second,

it is not clear how well the modified F statistic follows a F distribution, especially in

small samples. Furthermore, this approach does not provide variance estimates, due to

readers and due to the interaction of readers and test, and it cannot handle covariates

on either the patient or reader level (Zhou, 2002, p290).
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Dorfman et al. (1992) proposed a Mixed-Effects ANOVA model on Jacknife pseu-

dovalues for the test statistic. A mixed effect linear model for the jackknife pseudovalues

is fitted in which readers and patients are random factors and tests are a fixed factor.

They assumed that the random effects and error term in the model are normally and

independently distributed. This method has been widely used in practice but has some

weaknesses. In this framework, jackknife pseudovalues are treated as observed data

and considered independent, which is, in fact, correlated.

Ishwaran and Gatsonis (2000) developed a Bayesian hierarchical ordinal regression

models to deal with multi-reader ROC data and other types of multilevel cluster data.

The models include covariates reflecting characteristics of the units at various levels

of aggregation, such as individual patients, radiologists, and hospitals. We further

examine the multi-reader studies with regression framework in section 1.4.

1.4 Regression Analysis for ROC Data

The performance of a diagnostic test can be influenced by risk factors beyond disease

status. Thus, it is important to identify such factors to determine optimal conditions

for test performance. The regression analysis can be used to evaluate or control for the

possible covariate effects. There are three main approaches to incorporating covariate

effects into ROC analysis. The first approach is to specify a model for the test result as

a function of disease status and covariates. A second approach directly models covariate

effects on ROC curve (Pepe 1997, 2000; Alonzo and Pepe, 2001). It is called parametric

distribution free approach for the reason that it assumes a parametric model for the

ROC curve but is distribution-free regarding the distribution of the test results. The

third approach is to model ROC curve summary indices as a function of covariates.

Note that the first two approaches can be applied to both discrete and continuous

covariates. However, the third approach can be used only when the covariates are
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discrete and there are enough observations in each covariate combination to permit

calculation of the summary accuracy measure. Because of limitations in the third

approach, we focus on the first two approaches.

Let Y denote a diagnostic test result and X denote a set of covariates of interest.

The true disease status for the unit being tested is a known binary random variable,

denoted by D, with D=1 if the unit is diseased and 0 if it is not. Without loss of

generality, we assume that larger values of Y are more indicative of disease. The ROC

curve associated with covariate vector X is denoted by ROCX(t), where t is the false

positive rate. ROC curve can be written as ROC(t) = SD(S−1
D̄

(t)), where SD and SD̄

are the survivor functions for Y given X in the diseased and non-diseased populations,

respectively.

1.4.1 Modeling Covariate Effects on Test Results

Tosteson and Begg (1988) proposed the location-scale-type ordinal regression model for

ordinal test results. They postulate that

P [Y ≥ y|Z,D] = S0

(
cy − µ(D,Z)

σ(D, Z)

)

with particular specification for µ, σ, and S0. For identifiability of cy, it is assumed

that µ(0, Z0) = 0 and σ(0, Z0) = 1 at a baseline covariate value Z0.

Under the above ordinal regression model, the induced ROC function at Z is

ROCz(t) = S0(−a(Z) + b(Z)S−1
D̄

(t))

for t ∈ T (Z) = S0([cy − µ(0, Z)]/σ(0, Z)), y = 1, · · · , P − 1, where

a(Z) = (µ(1, Z)− µ(0, Z))/σ(1, Z) and b(Z) = σ(0, Z)/σ(1, Z).
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Toledano and Gatsonis (1995) extended the regression model to include the situation

of correlated data arising from a combination of multiple modalities and/or multiple

readers and developed the the technique of generalized estimating equations (GEEs)

to account for the correlation between the observations. Tosteson and Begg (1988)’s

method has been extended to random effects models (Beam, 1995; Gatsonis, 1995) and

Bayesian methods (Peng and Hall, 1996; Hellmich et al. 1998; Ishwaran and Gatsonsis,

2000) when test results are ordinal.

On the other hand, the linear regression model for continuous test result Y condi-

tional on disease status D and covariates Z is as follows:

Y = µ(D, Z) + σ(D, Z)ε,

where ε is the residual term with mean 0 and variance 1 but with an unknown survivor

function S0. Then, the corresponding covariate-specific ROC curve is

ROCz(t) = S0(−a(Z) + b(Z)S−1
D̄

(t)),

where a(Z) = (µ(1, Z)− µ(0, Z))/σ(1, Z) and b(Z) = σ(0, Z)/σ(1, Z).

With regard to techniques for estimation, parameters in fully parameterized models

can be estimated using the usual likelihood or GEE techniques. The delta method

yields standard errors for induced ROC parameters and confidence bands for induced

ROC curves. Bootstrapping techniques may also be applied which are often easier to

implement (Pepe, 2003, p.146).

1.4.2 Modeling Covariate Effects on ROC Curves

There are several advantages of modelling covariate effects directly on ROC curves

(Pepe, 2003, p.151, p.165). First, the interpretation of model parameters pertains
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directly to the ROC curves. The second advantage is that multiple tests can be eval-

uated and compared with each other within the regression framework even if the test

results are measured in different unit or on different scales which cannot be achieved

by modeling test results.

Pepe (1997, 2000) developed the ROC-GLM regression model,

g(ROCX(t)) = h0(t) + βX

where h0(·) and g(·) denote monotone increasing(or decreasing) functions on (0,1) and

t ∈ TZ ⊂ (0, 1). The link function g is specified as part of the model. Examples are

probit with g(t) = Φ−1(t), logistic with g(t)=logit(t)=log(t/(1− t)) or logarithmic with

g(t)=log(t). h0(t) is a baseline function specified up to some real parameters. The

baseline function h defines the location and shape of the ROC curve, and β quantifies

covariate effects. Pepe (1997, 2000) put forth an interpretation for each point on the

ROC curve as being a conditional probability of a test result from a random diseased

subject exceeding that from a random nondiseased subject. Then, they noted that

generalized linear model methods applied to binary indicator variables can be used

to model ROC curves and estimate parameters in the model. The key limitation of

the ROC-GLM regression model by Pepe (1997) was that the parameter estimation

required special programming that made the approach difficult to implement. Pepe

(2000) and Alonzo and Pepe (2000) simplified the implementation process to perform

parameter estimation.

Recently, Cai and Pepe (2002) extended the parametric ROC regression model

by allowing an arbitrary nonparametric baseline function for h0. Suppose that the

data for analysis are organized as ND data records for nD subjects with disease,

{(Yik,Zik,ZDik), k = 1, · · · , Ki, i = 1, · · · , nD}, and ND̄ data records for nD̄ subjects
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without disease, {(Yjl,Zjl), k = 1, · · · , Kj, i = nD + 1, · · · , nD + nD̄}, where each sub-

ject may have more than one data record, ND =
∑nD

i=1 Ki and ND̄ =
∑nD+nD̄

j=nD+1 Kj. The

covariates denoted by Z are relevant to both diseased and nondiseased subjects.

Then, the ROC curve is modeled as

R0CZ,ZD
(u) = g{h0(u) + β′Z + β′DZD},

where g is a monotone increasing function mapping (−∞,∞) to (0, 1) and h0 is an

unspecified increasing function from (0, 1) to (−∞,∞). Using the fact that condi-

tional on the covariates {Z,ZD} and D = 1, the expected value of I(Y ≥ S−1
D̄,Z

(u)) is

R0CZ,ZD
(u) = g{h0(u) + β′Z + β′DZD}, they constructed the following class of esti-

mating equations for θ0 = (β, βD) based on binary indicator variables:

nD∑
i=1

Ki∑

k=1

∫ b

a

w(Xik, u)Xik[I{Yik ≥ S−1
D̄,Z

(u)} − g{θ′Xik + h(u)}]dv̂(u) = 0,

where the prespecified constants (a, b) are chosen such that P{Y11 < S−1
D̄,Z11

(a)} and

P{Y11 > S−1
D̄,Z11

(b)} are positive; X = [Z′,Z′d]
′, θ′Xik = β′Z + β′DZD, w is a positive

bounded uniformly continuous weight function, v̂(·) is a known increasing but possibly

data dependent function. They used a semiparametric location model (Pepe 1998;

Heagerty and Pepe 1999), SD̄,Z(c) = S0(c − γ′0Z), and estimated the parameter γ0 as

the solution to
nD+nD̄∑
j=nD+1

Kj∑

l=1

Zjl(Yjl − γ ′Zjl) = 0,

which is denoted by γ̂, and the survivor function S0 with the empirical distribution of

the residuals

Ŝ0(c) =
1

ND̄

nD+nD̄∑
j=nD+1

Kj∑

l=1

I(Yjl − γ ′Zjl ≥ c).

They then estimated the baseline ROC function h0 and the parameter θ0 simultaneously
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as solution to
nD∑
i=1

Ki∑

k=1

[I{Yik ≥ S−1
D̄,Z

(u)} − g{θ′Xik + h(u)}] = 0,

for u ∈ [a, b] and

nD∑
i=1

Ki∑

k=1

∫ b

a

w(Xik, u)Xik[I{Yik ≥ S−1
D̄,Z

(u)} − g{θ′Xik + h(u)}]dv̂(u) = 0,

where Ŝ−1
D̄,Z

(u) = Ŝ−1
0 (u) + γ̂ ′Z.

Cai and Pepe (2002) showed that their semiparametric methods fit the model with

efficiency comparable to that of the fully parametric approach. However, their method

requires to construct the high dimensional estimating equations for β and h, which

makes the implementation process demanding.

1.4.3 Modeling ROC Summary Indices

The third approach to ROC regression is to model some summary index of the ROC

curve as a function of covariates. This approach is feasible if covariates are discrete and

there are sufficient numbers of disease and non-disease observations at each distinct

covariate level in order to estimate the summary index. If we denote the estimated

summary index by θ̂Z , the idea is to fit the model

E{g(θ̂Z)} = β0 + β1X

using standard linear regression methods. Dorfman et al. (1992) and Obuchowski

(1995a) suggested modeling the AUC, while Thompson and Zucchini (1989) recom-

mended modelling the partial area under the curve, pAUC.
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Chapter 2

Combining Continuous Biomarkers

Using Semiparametric

Transformation Models in the ROC

Analysis

2.1 Introduction

Recent technological advances continue to provide non-invasive and more accurate

biomarkers for evaluating disease status. Thus, the assessment of accuracy needs to

keep pace with developments. One standard tool for assessing the accuracy of diagnostic

tests is the Receiver Operating Characteristic (ROC) curve (Swets and Pickett, 1982;

Hanley, 1989). Many methods have been developed to evaluate a single continuous-scale

biomarker in the framework of ROC analysis.

A common approach to the semiparametric estimation of ROC curves is to model

the ROC curve parametrically without making assumptions about the distribution of

test results (Pepe, 2000; Alonzo and Pepe, 2002). The most popular semiparametric

model is the binormal ROC model. Let X denote test results from diseased subjects



and Y denote test results from non-diseased subjects. A binormal ROC curve for X

and Y assumes that for some (unknown) strictly increasing transformation h, h(X) and

h(Y ) have normal distributions. The binormal ROC model is then written as

ROC(u) = Φ{a + bΦ−1(u)},

where Φ(·) is the cumulative distribution function of the standard normal distribution.

Metz et al. (1998) categorized continuous data into ordinal-scale categorical data and

used an ML curve-fitting algorithm to estimate binormal ROC curve. On the other

hand, Zou and Hall (2000) proposed the maximum likelihood rank-based estimator of

the ROC curve by ranking original continuous data and numerically solving the score

equations derived from the likelihood function of the order statistics using a Monte

Carlo procedure. Cai and Moskowitz (2004) proposed a maximum profile likelihood

and a pseudo-maximum likelihood approaches for estimating the binormal ROC model.

Even though numerous methods have been developed for single biomarkers, few

statistical methods exist to accommodate multiple biomarkers that can be used simul-

taneously for disease detection. In many situations, single biomarkers are not sufficient

to achieve the desired level of accuracy and newly discovered biomarkers can provide

additional information. We consider a linear combination of biomarkers in order to

optimize diagnostic accuracy. One possible objective function to be optimized is the

area under an ROC curve (AUC) of a biomarker combination. Using this framework,

Su and Liu (1993) assumed that markers follow a multivariate normal distribution

in both disease and non-disease groups, and showed that Fisher’s linear discriminant

function provides an optimal linear combination of biomarkers. In contrast, Pepe and

Thompson (2000) proposed a nonparametric rank-based method for AUC maximiza-

tion. A second approach to combining biomarkers uses the likelihood function as an

objective function to be optimized such as the logistic regression model. Pepe and
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Thompson (2000) showed that the nonparametric rank-based method performs as well

as the logistic likelihood-based method when the logistic model holds, and better than

the logistic regression model when it does not. However, finding optimal coefficients for

a nonparametric AUC is computationally demanding when the number of biomarkers

exceeds 2. Furthermore, Pepe and Thompson (2000)’s method does not account for

correlated biomarker structure, and relying on a linear combination of biomarkers can

be misleading for prediction because test results can be affected by original biomarker

scales.

In this chapter, we propose joint transformation models for analyzing multiple

biomarkers. Subject-specific random effects are included in the models. Our model

generalizes the usual binormal ROC model and naturally accounts for the dependence

among biomarkers. The derived diagnostic rule does not depend on any monotone

transformation of biomarkers and is not sensitive to extreme biomarker values. In Sec-

tion 2.2, we introduce our models and give the best rule for combining biomarkers. In

Section 2.3, we propose an inference procedure to estimate model parameters based on

the nonparametric maximum likelihood estimation. The asymptotic properties of the

estimators are provided in Section 2.4. Section 2.5 presents the results from simulation

studies. The applications of the model analyzing vessel attributes in magnetic reso-

nance angiography as well as measures for serum prostate-specific antigen (PSA) for

prostate cancer disease are given in Section 2.6. A discussion is given in Section 2.7.

All technical proofs are given in the Appendix.

2.2 Model

Suppose we observe K biomarker measurements from random sample of size n (n1

diseased, n0 non-diseased, n = n1 + n0) subjects. Then, the observed data for subject

i can be represented as (Xik, Di), where Xik is the measurement of kth continuous
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biomarker from ith subject (i = 1, · · · , n; k = 1, · · · , K) and Di is the binary disease

outcome (Di = 1 for diseased; 0 for non-diseased). In a multivariate normal ROC

model, we assume that there exist K non-decreasing transformations H1, · · · , HK such

that (H1(Xi1), · · · , HK(XiK)) follows a multivariate normal distribution in each of dis-

eased and non-diseased groups;

[H1(Xi1), · · · , HK(XiK)|Zi, Di = 0] = Z ′
iai + (εi1, · · · , εiK), i = 1, · · · , n0 (2.1)

[H1(Xi1), · · · , HK(XiK)|Zi, Di = 1] = Z ′
iai + (ε′i1, · · · , ε′iK), i = 1, · · · , n1, (2.2)

where ai = (ai1, · · · , aip)
′ is a p × 1 vector of subject-specific random effect and

Zi = (zi1, · · · , zip)
′ is a p × 1 vector of covariates for ith subject with zi1 = 1.

εi = (εi1, · · · , εiK)′ and ε′i = (ε′i1, · · · , ε′iK)′ are K × 1 vectors of random errors. Here ai

and εi (or ε′i) are independent and are normally distributed with

ai ∼ Np(0, Σa), εi ∼ NK(µ0Zi, Σ0), and ε′i ∼ NK(µ1Zi, Σ1),

where µ0 = (µ′01, · · ·µ′0K)′ with µ0k = (µ0k1, µ0k2, · · · , µ0kp)
′, and µ1 = (µ′11, · · ·µ′1K)′

with µ1k = (µ1k1, µ1k2, · · · , µ1kp)
′. Thus, [H1(Xi1), · · · , HK(XiK)|Di = 0] ∼ N(µ0Zi,

Z ′
iΣaZi11

′ + Σ0) and [H1(Xi1), · · · , HK(XiK)|Di = 1] ∼ N(µ1Zi, Z
′
iΣaZi11

′ + Σ1),

1 = (1, 1, · · · , 1)′K×1. We give the following restrictions for the identifiability of the

model.

(i) Hk(0) = 0, k = 1, · · · , K.

(ii) Σ0 = diag(1, 1, · · · , 1) and Σ1 = diag(σ2
11, σ

2
12, · · · , σ2

1K).

The restrictions (i) and (ii) are imposed not to allow location and scale shifts of the

transformations and parameters to result in same parameters, respectively.
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Under the above assumptions, we propose to use a linear combination of the trans-

formed biomarkers H1(X1), H2(X2), · · · , HK(XK) for describing the performance of

such biomarkers. Consider a linear combination β1H1(X1)+β2H2(X2)+· · ·+βKHK(XK).

Since (H1(X1), H2(X2), · · · , HK(XK)) has a multivariate normal distribution for dis-

eased and non-diseased populations given covariates Z = (z1, · · · , zp)
′, the linear com-

bination is normally distributed with

β1H1(X1) + β2H2(X2) + · · ·+ βKHK(XK)|D = 0 ∼ N(β′µ0Z, β′(Z ′ΣaZ11′ + Σ0)β),

β1H1(X1) + β2H2(X2) + · · ·+ βKHK(XK)|D = 1 ∼ N(β′µ1Z, β′(Z ′ΣaZ11′ + Σ1)β),

where β = (β1, · · · , βK)
′
K×1.

The AUCZ of such a linear combination is given by

β′(µ1 − µ0)Z√
β′(Σ1 + Σ0 + 2Z ′ΣaZ11′)β

.

As shown by Su and Liu (1993), the coefficients for the best linear combination are

βopt,Z ∝ (Σ1 + Σ0 + 2Z ′ΣaZ11′)−1(µ1 − µ0)Z.

The AUC of the optimal linear combination (optimal AUC) is given by

AUCopt,Z = Φ
√(

ZT (µ1 − µ0)T (Σ1 + Σ0 + 2Z ′ΣaZ11′)−1(µ1 − µ0)Z
)
. (2.3)

2.3 Inference Procedures

We propose to use the nonparametric maximum likelihood estimation (NPMLE) to

estimate parameters µ0, µ1, Σ1, and Σa and all the transformations H1, H2, · · · , HK . In

34



the NPMLE, Hk(·) will be assumed to be a non-decreasing step function with jumps

at the observed data for kth biomarker and H
′
k(t) will be replaced by its jump size at

t in the likelihood function. We assume the kth biomarker measurement is censored

if it is larger or smaller than fixed threshold values mk and Mk. Our model includes

uncensored cases of biomarkers in which mk = −∞ and Mk = ∞. The indicator

variables are introduced to denote the censored status; δO
ik = I(mk < Xik < Mk)

and δR
ik = I(Xik > Mk). Define Xi = (Xi1, · · · , XiK)′, M = (M1, · · · , MK)′ and

m = (m1, · · · ,mK)′. Under models (2.1) and (2.2), the observed likelihood function

concerning parameters of interest is given by

n∏
i=1

∫

ai

[
K∏

k=1

{fk(Xik|ai, Zi, Di)}δO
i {1− Fk(Mk − |ai, Zi, Di)}δR

i Fk(mk|ai, Zi, Di)
1−δO

i −δR
i

]

×f(ai)dai,

where fk is the conditional density of Xk given covariates, random effects and disease

status, Fk is the corresponding cumulative distribution function, and f(ai) is the density

of random effects. Particularly,

fk(Xk|a, Z,D = d) = H ′
k(Xk)(2πσ2

dk)
−1/2 exp

{
− 1

2σ2
dk

(Hk(Xk)− Z̃T a− µT
dkZ)2

}

and f(a) = (2π)−q/2 exp{−aT Σ−1
a a/2}.

In addition, we define

H+
k (X) = Hk(X) if X > 0, H−

k (−X) = −Hk(X) if X < 0.

Then, both H+
k and H−

k are increasing functions from (−∞,∞) to (0,∞) and Hk(Xik) =

H+
k (Xik)I(Xik > 0) −H−

k (X̃ik)I(X̃ik > 0) with X̃ik = −Xik. Let θ ≡ (µ0, µ1, Σ1) and
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θ∗ ≡ (θ, Σa). The complete data log likelihood function for (θ∗, H+, H−) is given by

lc(θ
∗, H+, H−) =

∑
Xik>0

2∑

k=1

δO
iklog(h+

k (Xik))

+
∑

Xik>0

2∑

k=1

[{
− δO

ik

2
(H+

k (Xik)− µ′0kZi − Z ′
iai)

2

+δR
iklogP (Xik > Mk|ai, Di)

}
(1−Di)

+
{

δO
ik

(
− 1

2
logσ2

1k −
1

2σ2
1k

(H+
k (Xik)− µ′1kZi − Z ′

iai)
2
)

+δR
iklogP (Xik > Mk|ai, Di)

}
Di

]

+
∑

X̃ik>0

2∑

k=1

δO
iklog(h−k (X̃ik))

+
∑

X̃ik>0

2∑

k=1

[{
− δO

ik

2
(H−

k (X̃ik) + µ′0kZi + Z ′
iai)

2

+(1− δO
ik − δR

ik)logP (Xik < mk|ai, Di)
}

(1−Di)

+
{

δO
ik

(
− 1

2
logσ2

1k −
1

2σ2
1k

(H−
k (X̃ik) + µ′1kZi + Z ′

iai)
2
)

+(1− δO
ik − δR

ik)logP (Xik < mk|ai, Di)
}

Di

]

+
n∑

i=1

logP (ai; Σa), (2.4)

where h+
ik(≡ h+

k (Xik) ≡ H+
k {Xik}) is the jump size of H+

k (·) at Xik and h−ik(≡ h−k (X̃ik) ≡
H−

k {X̃ik)}) is the jump size of H−
k (·) at X̃ik. Note that H+

ik = H+
k (Xik) =

∑n+
k

j=1 h+
jkI(Xjk

≤ Xik) and H−
ik = H−

k (X̃ik) =
∑n−k

j=1 h−jkI(X̃jk ≤ X̃ik) where n+
k (n−k ) is the number of

positive (negative) observed values of the kth biomarker.

We apply an the expectation-maximization (EM) algorithm (Dempster et al., 1977)

to calculate NPMLEs and variances of θ∗ and all jump sizes, µ0 = (µ0kr), µ1 =

(µ1kr), Σ1 = diag(σ2
11, · · · , σ2

1K), Σa = (σ2
arr′), h

+
ik, and h−jk (k = 1, · · · , K; r, r′ = 1, · · · , p;
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i = 1, · · · , n+
k ; j = 1, · · · , n−k ). The maximization for the jump sizes of H+

k or H−
k can

be done separately for each k and the likelihood is strictly concave in these jump sizes

so that most of the optimization algorithm converges in finding the maximum. In

the EM framework, the random effect ai is treated as missing. Let Ê[·] denote the

conditional expectation given the observed data and the current parameter estimates.

The conditional expectations of any functions of ai is computed in the E-step and the

conditional expectation of (2.4) given observed data is maximized in the M-step. Since

σ2 can be updated by maximizing
∑n

i=1 Ê[logP (ai; Σa)] directly, θ should be updated

in the M-step. Thus, the objective function becomes

Ê[lc(θ, H+, H−)] =
∑

Xik>0

K∑

k=1

δO
iklog(h+

k (Xik)) +
∑

Xik>0

K∑

k=1

[{
− δO

ik

2
Ê[(H+

k (Xik)− µ′0kZi

−Z ′
iai)

2] + δR
ikÊ[logP (Xik > Mk|ai, Di)]

}
(1−Di)

+

{
δO
ik

(
− 1

2
logσ2

1k −
1

2σ2
1k

Ê[(H+
k (Xik)− µ′1kZi − Z ′

iai)]
2
)

+δR
ikÊ[logP (Xik > Mk|ai, Di)]

}
Di

]
+

∑

X̃ik>0

K∑

k=1

δO
iklog(h−k (Xik))

+
∑

X̃ik>0

K∑

k=1

[{
− δO

ik

2
Ê[(H−

k (X̃ik) + µ′0kZi + Z ′
iai)

2]

+(1− δO
ik − δR

ik)Ê[logP (Xik < mk|ai, Di)]

}
(1−Di)

+

{
δO
ik

(
− 1

2
logσ2

1k −
1

2

1

σ2
1k

Ê[(H−
k (X̃ik) + µ′1kZi + Z ′

iai)
2]

)

+(1− δO
ik − δR

ik)Ê[logP (Xik < mk|ai, Di)]

}
Di

]
. (2.5)

Let θ̂∗ ≡ (µ̂0, µ̂1, Σ̂1, Σ̂a), Ĥ+ and Ĥ− denote the nonparametric maximum like-

lihood estimates for θ∗, H+, and H−, respectively. We estimate the variance of

(θ̂∗, Ĥ+, Ĥ−) using the observed information matrix of θ̂∗ and jump sizes Ĥ+
k {Xik}
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and Ĥ−
k {X̃ik} by Louis’s formula (1982). The optimal AUC given in (2.3) is estimated

at θ̂∗ and its variance is computed by the delta method.

2.4 Asymptotic Theory

In this section, we derive the asymptotic properties of the NPMLEs under finite cen-

sorship condition. Particularly, we cast our transformation models into the trans-

formation models for multivariate failure times as in Zeng and Lin (2007), also de-

scribed in Zeng and Lin (2009). To this end, biomarkers are treated as survival

times and threshold values as censoring time. Specifically, each biomarker is divided

by two groups: (G1) Xik (> 0), positive biomarker; (G2) −Xik (> 0), biomarker

transformed to be positive by switching a sign. We have a total of 2K different

groups based on K types of biomarkers. Define Tl (l = 1, · · · , 2K) is a biomarker

in the lth group where Tl, l = 1, · · · , K is the kth type of biomarker in G1; and

Tl, l = K + 1, · · · , 2K is the (l − K)th type of biomarker in G2. Let Cl denote cen-

soring time (Ml for G1 and |ml| for G2), Zl covariates, and τ the duration of the

study (τ = Cl). Define µ0k = (µ0k1, µ0k2, · · · , µ0kp)
′, µ1k = (µ1k1, µ1k2, · · · , µ1kp)

′ with

µ0 = (µ′01, · · ·µ′0K)′ and µ1 = (µ′11, · · ·µ′1K)′, Σ1 = diag(σ2
11, · · · , σ2

1K), and Σa = (σarr′),

k = 1, · · · , K; r, r′ = 1, · · · , p. Then, the linear transformation model has a following

form.

H̃(Til) = µ′1lZilDi + µ′0lZil(1−Di) + Z ′
ilai + εil, i = 1, · · · , nl; l = 1, · · · , L.

where H̃(·) is an unspecified increasing function, εil is normally distributed with mean

zero and variance σ2
1lDi + (1 − Di). µ0l = µ0(l+K), µ1l = µ1(l+K), σ

2
0l = σ2

0(l+K), σ
2
1l =

σ2
1(l+K), l < K and L = 2K. Note that H(X) = H̃(X) if X > 0 and H(X) = −H̃(−X)

if X < 0.
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Write Λ(Til) = exp{H̃(Til)}. Let Nil(t) denote the number of lth group of biomark-

ers that are smaller or equal to t. Our model implied that the cumulative intensity for

Nil(t) takes the form

Λl(t|Zil; ai) = Gl

[∫ t

0

Ril(s)exp
{
µ′1lZilDi + µ′0lZil(1−Di) + Z ′

ilai

}
dΛl(s)

]
(2.6)

where Gl is a continuously differentiable and strictly increasing function; Gl(x) =

−log{1 − Φ(logx)} if Di = 0 and Gl(x) = −log{1 − Φ

(
logx

σ1l

)
} if Di = 1. Ril(t) =

I(Cil ≥ t) is an indicator process, µ1l and µ0l are vectors of unknown regression param-

eters, and Λl(·) is an unspecified increasing function. Define θd×1 = (µ0kr, µ1kr, σ
2
1k)

′,

k = 1, · · · , K; r = 1, · · · , p, d = 2Kp + K. Model (2.6) has the same form as the

transformation models with random effects for dependent failure times in Zeng and Lin

(2007, 2009). The likelihood for θ and Λl is given by

∏n
i=1

∫ ∏L
l=1

∏
t≤τ

[
Ril(t)λl(t)exp

(
µ′1lZilDi + µ′0lZil(1−Di) + Z ′

ilai

)

G′
l

{ ∫ t

0
Ril(s)exp

(
µ′1lZilDi + µ′0lZil(1−Di) + Z ′

ilai

)
dΛl(s)

}]dNil(t)

exp
[
−Gl

{ ∫ τ

0
Ril(t)exp

(
µ′1lZilDi + µ′0lZil(1−Di) + Z ′

ilai

)
dΛl(s)

}]

f(a; Σa)da,

(2.7)

with λl(t) = Λ′l(t) (l = 1, · · · , 2K). This can be written in the following form

∏n
i=1

∏L
l=1

∏
t≤τ λl(t)

Ril(t)dNil(t)Ψ(Oi; θ,A),

where A = (Λ1, · · · , ΛL), Oi pertains to the observation on the ith subject, and Ψ

is a function of Oi, θ, and A. Note that H(X) is same as logΛ(X)I(X > 0) −
logΛ(−X)I(X < 0). For the nonparametric maximum likelihood estimation, we al-

low Ĥ to be discontinuous with jumps at the observed biomarkers and maximize the
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modified likelihood function

∏n
i=1

∏L
l=1

∏
t≤τ λl{t}Ril(t)dNil(t)Ψ(Oi; θ,A),

where λl{t} is the jump size of the monotone function exp(H(T )) (for group G1) and

exp(−H(T )) (for group G2) at t.

We establish the asymptotic properties of the NPMLEs, θ̂ and Ĥk, k = 1, ..., K,

under finite detection limits condition, i.e., −∞ < mk < Mk < ∞. We impose the

following regularity conditions.

(C1) The parameter values (µ0, µ1, σ1k, Σa)
T
d×1 belongs to the interior of a compact set

Θ and H
′
l (t) > 0 for all t ∈ [mk, Mk]. Moreover, for k = 1, ..., K, the true transforma-

tion for Hk, denoted by Hk0, is twice-continuously differentiable and H ′
k0(t) > 0 for all

t ∈ [mk,Mk].

(C2) With probability 1, limn→∞ n1/n = q with 0 < q < 1.

(C3) (Identifiability Condition) If there exist a vector ν and a symmetric matrix M

such that νT Z = 0 and ZT MZ = O, then ν = 0 and M = O. This condition is

equivalent to the linear independence of covariates.

Remark 2.1. (C1) and (C2) are standard conditions for this type of problem.

The following Theorems 2.1 and 2.2 state the consistency and efficiency of the

NPMLEs.

Theorem 2.1. Under Conditions (C1)-(C3),

|θ̂ − θ0|+
K∑

k=1

supt∈[mk,Mk]|Ĥk(t)− Ĥk0(t)| →a.s. 0.

To derive the asymptotic distribution of
√

n(θ̂ − θ0, Ĥk − Hk0, k = 1, ..., K), we
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first define the metric space for which such a random element is defined. We introduce

V = {ν ∈ Rd, |ν| ≤ 1} and Qk = {hk(t) : ‖hk(t)‖V [mk,Mk] ≤ 1}, where V [mk,Mk]

denotes the space of functions with bounded total variations in [mk,Mk]. We then

identify
√

n(θ̂−θ0, Ĥk−Hk0, k = 1, ..., K) as a random element in l∞(V×Q1×· · ·×QK)

by letting

√
n(θ̂ − θ0, Ĥk −Hk0, k = 1, ..., K)[ν, h1, ..., hK ] ≡ √

n(θ̂ − θ0)
T ν

+
K∑

k=1

√
n

∫ τ

0

hk(s)d(Ĥk − Ĥ0k)(s).

Thus, the weak convergence of
√

n(θ̂ − θ0, Ĥk − Hk0, k = 1, ..., K) is with respect to

the same metric space. The following theorem holds.

Theorem 2.2. Under Conditions (C1)-(C3),

√
n(θ̂ − θ0, Ĥk −Hk0, k = 1, ..., K) −→d G in l∞(V ×Q1 × · · · × QK),

where G is a mean-zero and tight Gaussian process. Furthermore, the limiting covari-

ance matrix of n1/2(θ̂ − θ0) attains the semiparametric efficiency bound (Bickel et al.

1993).

Theorems 2.1 and 2.2 are proved in Section 2.8.

2.5 Simulation Studies

Simulation studies were conducted to examine the small-sample performance of the

proposed approach, and to compare it with the performances based on the nonpara-

metric and logistic regression methods (Pepe and Thompson 2000). We used an equal

number of diseased and non-diseased subjects but varied the total sample size n from
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200 to 400. We considered two biomarker measurements for each subject (K=2). More-

over, two transformation functions were set to H1(X) = tan(X1) for biomarker 1 and

H2(X) = 2 log(X2 +1) for biomarker 2, very non-linear transformations. No covariates,

Z, were used in the simulations. Specifically, biomarker data were generated from the

following models: among non-diseased subjects,




H1(X1)

H2(X2)


 = a +




µ01

µ02


 +




ε01

ε02


 ,




ε01

ε02


 ∼ N







0

0


 ,




1 0

0 1





 ,

and among diseased subjects,




H1(X1)

H2(X2)


 = a +




µ11

µ12


 +




ε11

ε12


 ,




ε11

ε12


 ∼ N







0

0


 ,




σ2
11 0

0 σ2
12





 ,

where a was a random effect generated from a normal distribution with mean zero and

variance σ2
a. In the simulation studies, we selected the true parameters as µ01 = −2.5,

µ02 = 1.5, µ11 = 1, µ12 = 2.5, σ2
11 = 2.3, σ2

12 = 2.7 and σ2
a = 4.5. We also considered

the situation without detection limits as well as the one with detection limits. For the

latter, we let m1 = −1.4, M1 = 1.3 and m2 = −0.7,M2 = 25, which resulted in about

4% left censoring and 8% right censoring for biomarker 1, and about 4% left and right

censoring for biomarker 2.

For each simulated data, we applied the EM algorithm to calculate the NPMLEs.

In the E-step, the conditional expectations for the functions of random effect ai were

evaluated by the Gaussian-Hermite approximation, where 20 quadratures were used.

The maximization in the M-step was carried out by the Matlab optimization toolbox.

Specifically, the gradient and Hessian matrix of the conditional expectation of the

complete log-likelihood function were provided by us for the optimization; a “fminunc”

function was used, where each search entails the use of a subspace trust region method
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based on the interior-reflective Newton method (Coleman and Li 1994, 1996). For each

M-step, we set the maximal number of the quasi-Newton search to be five. When the

EM algorithm converged to fixed points, we calculated the observed information matrix

using Louis’ formula (see Appendix A.2). The inverse of this matrix is considered as

an estimation of the asymptotic covariance of the parameter estimators. Finally, we

computed the optimal AUC using formula (2.3), and estimated its variance using the

Delta method.

Table 2.1 and Table 2.2 summarize the respective simulation results from 1,000

replicates for the situation without detection limits and the one with detection limits,

respectively. Column “Est” is the average value of the estimates from 1,000 replicates;

column “ASE” is the average of the estimated standard errors; column “SE” is the

standard deviation of the estimates; column “CP” gives the (100×) coverage propor-

tion of the 95% confidence intervals based on the asymptotic normality. Overall, the

estimated parameters and transformations are very close to the actual values across

sample sizes, and the estimated standard errors using the observed information matrix

approximate the empirical standard errors well. In addition, the coverage proportions

of 95% CIs approach the nominal level of 95% as the sample size increases. Next, we

present the true and estimated transformation values at six fixed points at each scenario

of sample sizes in Table 2.1. Similarly, the true and estimated transformation values

are shown in Table 2.2, but the transformations at the minimum and maximum points

in Table 2.1 are excluded by observing detection limits. This shows that the estimation

of the unknown transformation is pretty accurate in small samples, even at the tails of

biomarker distributions. As shown in figures 2.1 and 2.2, the empirical transformation

functions are almost identical to the true transformation functions for both biomarkers

even with the small sample size, no matter whether biomarkers are censored or not.
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Two biomarkers generated in the simulation studies are highly correlated. For in-

stance, from the parameter estimators in Table 2.1, it can be shown that the estimated

correlations between two biomarkers is 0.64 for diseased and 0.83 for non-diseased sub-

jects when a sample size is 200. At the bottom of Tables 2.1 and 2.2, the proposed

optimal AUC (AUCopt), with the nonparametric AUC (AUCemp) and the AUC based

on the logistic model (AUClgit), are presented. We can see that for highly correlated

biomarkers, the proposed optimal AUC estimate is larger than optimal AUC estimates

by the nonparametric and logistic regression based methods, and its empirical stan-

dard error is smaller than those by the other two methods. Next, we generated two

biomarkers having low correlation and estimated the optimal AUCs using the three

approaches mentioned above. We found that the proposed optimal AUC is similar to

those by the nonparametric and logistic model-based methods when biomarkers have

a weak association.

2.6 Applications

2.6.1 Brain Tumor Data

We apply our method to analyzing brain tumor imaging data from magnetic resonance

angiograms. The American Cancer Society estimates that approximately 20,000 Amer-

icans were diagnosed with brain tumors in 2008, so there is clinical need for a reliable,

noninvasive method of assessing tumor malignancy and evaluating treatment response.

One critical stage in tumor growth is the establishment of blood supply, and magnetic

resonance imaging is useful for detecting malignancy because it can search for the foci

of neoangiogenesis of abnormal vascular permeability. Bullitt et al. (2003) extracted

the quantitative measurements of vessel shapes, as visualized by magnetic resonance
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Table 2.1: Simulation results with complete biomarkers
n = 200 n = 400

Par. True Est ASE SE CP Est ASE SE CP
µ01 -2.5 -2.567 0.348 0.397 91.4 -2.551 0.242 0.256 93.5
µ02 1.5 1.564 0.310 0.355 92.5 1.531 0.214 0.232 93.4
µ11 1 1.047 0.351 0.372 94.4 1.015 0.243 0.245 94.9
µ12 2.5 2.576 0.379 0.418 93.6 2.542 0.263 0.269 95.0
σ2

11 2.3 2.526 1.170 1.316 92.0 2.396 0.789 0.765 95.0
σ2

12 2.7 2.791 1.028 1.111 94.1 2.823 0.711 0.769 94.2
σ2

a 4.5 4.859 0.998 1.519 89.6 4.711 0.676 0.737 93.2

H1(−4π/10) -3.078 -3.143 0.348 0.425 91.7 -3.135 0.240 0.255 93.6
H1(−2π/10) -0.727 -0.743 0.173 0.183 94.0 -0.737 0.121 0.123 95.5
H1(−π/10) -0.325 -0.331 0.116 0.120 94.5 -0.331 0.082 0.081 94.6
H1(π/10) 0.325 0.336 0.119 0.127 95.3 3.313 0.083 0.086 94.9
H1(2π/10) 0.727 0.744 0.183 0.198 93.2 0.733 0.127 0.132 94.9
H1(4π/10) 3.078 3.180 0.491 0.564 91.8 3.113 0.334 0.333 95.4

H2(−0.5) -1.386 -1.415 0.263 0.289 92.5 -1.410 0.183 0.188 94.4
H2(0.5) 0.811 0.829 0.172 0.176 94.5 0.819 0.120 0.119 95.2
H2(4) 3.219 3.297 0.339 0.393 91.2 3.265 0.232 0.249 93.2
H2(8) 4.394 4.506 0.430 0.510 91.0 4.460 0.294 0.311 92.8
H2(12) 5.130 5.264 0.498 0.599 91.4 5.217 0.341 0.360 93.8
H2(20) 6.089 6.257 0.607 0.735 91.0 6.198 0.415 0.446 93.3

AUCopt 0.8812 0.8841 0.020 0.025 88.9 0.8826 0.014 0.017 90.7
AUCemp 0.8486 0.027 0.8457 0.019
AUClgit 0.8473 0.028 0.8451 0.020
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Table 2.2: Simulation results with censored biomarkers
n = 200 n = 400

Par. True Est ASE SE CP Est ASE SE CP
µ01 -2.5 -2.559 0.342 0.378 92.3 -2.546 0.241 0.256 94.5
µ02 1.5 1.554 0.304 0.324 94.5 1.530 0.212 0.230 93.2
µ11 1 1.041 0.348 0.363 95.0 1.011 0.243 0.245 94.1
µ12 2.5 2.565 0.373 0.393 94.3 2.537 0.261 0.270 95.1
σ2

11 2.3 2.492 1.170 1.287 92.1 2.393 0.811 0.798 96.1
σ2

12 2.7 2.784 1.052 1.113 93.7 2.820 0.745 0.799 94.1
σ2

a 4.5 4.750 0.983 1.139 92.0 4.683 0.672 0.733 93.0

H1(−2π/10) -0.727 -0.740 0.172 0.177 93.9 -0.736 0.120 0.124 95.4
H1(−π/10) -0.325 -0.329 0.116 0.118 95.3 -0.330 0.082 0.081 95.4
H1(π/10) 0.325 0.335 0.118 0.123 95.7 0.331 0.083 0.086 94.8
H1(2π/10) 0.727 0.743 0.182 0.190 94.4 0.732 0.126 0.133 94.6

H2(0.5) 0.811 0.825 0.171 0.169 94.5 0.818 0.120 0.119 94.8
H2(4) 3.219 3.281 0.334 0.342 94.0 3.261 0.231 0.250 93.5
H2(8) 4.394 4.484 0.424 0.436 93.4 4.454 0.293 0.314 92.5
H2(12) 5.130 5.242 0.492 0.512 94.1 5.211 0.340 0.363 93.4

AUCopt 0.8812 0.8842 0.020 0.024 90.0 0.8823 0.014 0.017 90.5
AUCemp 0.8556 0.027 0.8529 0.019
AUClgit 0.8488 0.027 0.8469 0.019
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Figure 2.1: Plots of the true and estimated transformation functions without detection
limits (n = 400): the solid curve is the true transformation and the dashed curve is the
average of the estimated curves from 1,000 replicates.
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Figure 2.2: Plots of the true and estimated transformation functions with detection
limits (n = 400): see Figure 2.1.
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angiography, to assess tumor malignancy in a cross-sectional study and evaluate treat-

ment response among patients undergoing anti-VEGF and cytotoxic therapy. The two

most important biomarkers of tortuosity measures are (a) the sum of angles metric

(SOAM), which is the sum of the angles between consecutive trios of points along the

space curve represented by the vessel skeleton and then normalized by path length

to measure the vessel curvature; (b) the inflection count metric (ICM), which counts

inflection points along each space curve, multiplies this number (plus one) times the

total path length, and then divides the product by the distance between endpoints. The

data we used contain both SOAM and ICM biomarker measurements from 45 regions of

interest, where 11 tumors were identified as benign and 34 as malignant. To apply our

approach, we assume models (2.1) and (2.2) hold for these two biomarkers; that is, some

non-decreasing unknown transformations of SOAM and ICM follow a bivariate normal

distribution in both benign and malignant groups. After using the EM algorithm for

inference, we report the parameter estimates in Table 2.3. Table 2.3 shows that the

biomarkers tend to have larger means and smaller variances for malignant tumors than

for benign tumors. The dependence between the two transformed biomarkers is low,

with σ2
a = 0.0217. The transformations for SOAM and ICM, plotted in Figure 2.3,

suggest that the quadratic transformations may be appropriate for obtaining the nor-

mality. Figure 2.4 further demonstrates that our transformations yield the normality

and can actually downsize some extreme observations in the original biomarkers.

With our approach, the optimal linear combination of these two biomarkers is

1.455Ĥ1(SOAM) + 0.676Ĥ2(ICM), where Ĥ1 and Ĥ2 are the two estimated transfor-

mations. The optimal AUC estimate is 0.9823 with a standard error of 0.016, while

the logistic regression yields a combination of 2.8270(SOAM) + 0.1376(ICM) with an

optimal AUC estimate of 0.9893, which is very close to the optimal AUC estimate based
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Table 2.3: Analysis of brain tumor imaging data
Parameter Estimate SE P-value
µ01 -0.094 0.3232 0.7716
µ02 -0.323 0.3358 0.3360
µ11 2.449 0.9773 0.0122
µ12 0.751 0.2611 0.0040
σ2

11 0.685 0.9839 0.4866
σ2

12 0.452 0.2457 0.0659
σ2

a 0.022 0.1213 0.8580

on the nonparametric method. There appears to be little difference among three ap-

proaches, possibly because of the high discrimination power from each single biomarker

(the AUC for SOAM only is 0.9759, and the AUC for ICM only is 0.8262) and the low

dependence between the two biomarkers. However, in this tumor data, the advantage

of normalizing biomarkers in our approach is evident even with such a small sample

size.

2.6.2 Prostate Cancer Data

Next, we illustrate our approach with a prostate cancer study. Serum prostate-specific

antigen (PSA) is the most widely used biomarker to detect prostate cancer. We used

a dataset of 71 prostate cancer subjects and 71 controls who participated in the Beta-

Carotene and Retinol Efficacy Trial (CARET) which is a randomized lung cancer pre-

vention study that began in 1985 and terminated in 1994. Subjects had serum samples

drawn at baseline and at two-year intervals thereafter (Goodman et al., 1993; Etzioni

et al. 1999). We considered the single serum sample per subject measured at the time

closest to the diagnosis among multiple samples accumulated before a participant was

diagnosed as having prostate cancer or not, leaving 139 men (71 cases and 68 controls)

in the dataset.

Two measures of PSA, total PSA and the ratio of free to total PSA, were used for
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Figure 2.3: Estimated transformations for biomarkers in brain tumor imaging data

prostate cancer. We standardized the total serum PSA and the ratio of free to total

PSA measurements by subtracting their mean values, and defined the standardized

PSA values as Y1=log(total PSA) and Y2=-log(free PSA/total PSA). The correlation

between these two biomarkers is fairly high with a correlation coefficient of 0.56521.

Parameter estimates from models (2.1) and (2.2) are given in Table 2.4, showing that

Y1 and Y2 have higher means and variances in cases than in controls. The estimated

correlations between two biomarkers is about 0.41 for diseased and about 0.57 for

non-diseased subjects, suggesting the high dependence of the two biomarkers. The

transformations for Y1 and Y2 given in Figure 2.5 appear to be linear and Figure 2.6

shows that the histograms after transformations are closer to a normal shape than those

before transformations.

We found that the optimal linear combination is 0.5562Ĥ1(Y1)+ 0.0213Ĥ2(Y2), and

its corresponding AUC is 0.9199 (SE 0.0210). On the other hand, the optimal linear
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Figure 2.4: Histogram of biomarkers before transformation and after transformation in
brain tumor imaging data
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Table 2.4: Analysis of prostate cancer data
Parameter Estimate SE P-value
µ01 -2.032 0.2737 <.0001
µ02 -1.148 0.2313 <.0001
µ11 1.456 0.3825 1.9999
µ12 0.433 0.2437 1.9244
σ2

11 2.520 1.1182 1.9758
σ2

12 1.405 0.6208 1.9764
σ2

a 1.324 0.3496 1.9998

combination based on the nonparametric method is Y1 + 0.191Y2, giving an AUC esti-

mate of 0.9095 (SE 0.0252 based on 1000 bootstrap replicates). In addition, the logistic

regression yields 2.0494Y1 +0.4886Y2 and a corresponding AUC estimate of 0.9089 (SE

0.0256 based on 1000 bootstrap replicates). The coefficients of the optimal linear com-

binations from all three methods suggest that total PSA performed better than the

ratio of free to total PSA measured closest to the diagnosis. However, the proposed

method gives a larger value of optimal AUC than those from the nonparametric and

logistic regression methods, demonstrating that our method performs better than the

other two methods for highly correlated biomarkers.

2.7 Discussion

The proposed transformation model has several advantages over Pepe and Thompson’s

(2000) nonparametric method. First, we allow a completely unknown transformation,

so the diagnostic rule is less sensitive to the extreme values of biomarkers. Second,

since our method is applied to the biomarkers characterized by left or right censoring

and accounts for the correlated structure of biomarkers by introducing random effects,

it describes the data properly. Third, in our method, finding optimal coefficients for

the linear combination of biomarkers does not require extensive computation, as the
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Figure 2.5: Estimated transformations for biomarkers in prostate cancer data

nonparametric method does.

Our method combines multiple biomarkers but does not address selecting biomark-

ers. We will generalize our method to high dimensional data such as microarray data

and will propose a method for biomarker selection and classification in an ROC frame-

work. In addition, we will develop a method for longitudinal biomarkers and methods

accounting for the situations where disease status is not binary but in continuous scale

and the imperfect disease status is presented.
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Figure 2.6: Histogram of biomarkers before transformation and after transformation in
prostate cancer data
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2.8 Appendix A

2.8.1 Proofs of Theorems 2.1 and 2.2

The likelihood (2.6) in section 2.4 has a same form as that of the transformation models

with random effects for dependent failure times in Zeng and Lin (2007, 2009) and the

proofs of Theorems 2.1 and 2.2 are equivalent to the asymptotic proof for the multiple

type of events in Zeng and Lin (2009). Therefore, we only need to verify their conditions

(D1)-(D8).

First of all, Zeng and Lin (2009)’s condition (D1) is equivalent to our condition

(C1). The condition (D2) naturally holds for time independent covariates Z, (D3) is

always true because censoring time is same as the duration of the study (Cl = τ), and

(D4) is equivalent to our condition (C2). Note that function Gl in (2.6) is equal to

−log{1− Φ(logx)} for Di = 0 and is −log{1− Φ(logx/σ1l)} for Di = 1. Zeng and Lin

(2007, 2009) verified the linear transformation model Gl(x) = −log{1 − Φ(logx)} sat-

isfies the following condition (D5). Even though Gl(x) for the diseased group depends

on σ1l, the condition (D5) can be proven by exactly same arguments as Zeng and Lin

(2009) assuming that σ1l > 0. Next, (D6) holds naturally for the normally distributed

random effect a. (D7) and (D8) are conditions to ensure parameter identifiability and

non-singular information matrix, and these conditions are satisfied by the following

Propositions A1 and A2.

Proposition A1. Suppose two sets of parameters (θ, H1, ..., HK) and (θ̃, H̃1, ..., H̃k)

give the same observed likelihood function with probability one. Then θ = θ̃, Σa = Σ̃a

and Hk = H̃k for k = 1, ..., K.

proof.

Let θk = (µ0k, µ1k, σ
2
0k, σ

2
1k) and θ̃k = (µ̃0k, µ̃1k, σ̃

2
0k, σ̃

2
1k). It suffices to show that
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lk(Hk, θk, Σa|X,Z) = lk(H̃k, θ̃k, Σ̃a|X, Z) implies Hk = H̃k, θk = θ̃k and Σa = Σ̃a for a

fixed k (k = 1, · · · , K).

The marginal densities for kth biomarker given covariates and disease status are

Hk(X)|Z, D = 0 ∼ N(µ′0kZ,Z ′ΣaZ + σ2
0k), Hk(X)|Z,D = 1 ∼ N(µ′1kZ, Z ′ΣaZ + σ2

1k).

Similarly, for (H̃k, θ̃k, Σ̃a)

H̃k(X)|Z, D = 0 ∼ N(µ̃′0kZ,Z ′Σ̃aZ + σ̃2
0k), H̃k(X)|Z,D = 1 ∼ N(µ̃′1kZ, Z ′Σ̃aZ + σ̃2

1k).

First, assume lk(Hk, θk, Σa|Z, D = 0) = lk(H̃k, θ̃k, Σ̃a|Z, D = 0). Then,

(Hk(X)− µ′0kZ)2

Z ′ΣaZ + σ2
0k

=
(H̃k(X)− µ̃′0kZ)2

Z ′Σ̃aZ + σ̃2
0k

. (2.8)

If (Hk(X)− µ′0kZ) = γ0k(H̃k(X)− µ̃′0kZ), γ0k =

√
Z ′ΣaZ + σ2

0k

Z ′Σ̃aZ + σ̃2
0k

and

Cov(Hk(X), Hl(X)|D = 0) = Z ′ΣaZ = γ0kγ0lZ
′Σ̃aZ. (2.9)

Under the restriction σ2
0k = σ̃2

0k = 1, γ0k =

√
Z ′ΣaZ + 1

Z ′Σ̃aZ + 1
and from (2.9)

Z ′ΣaZ =
(Z ′ΣaZ + 1

Z ′Σ̃aZ + 1

)
Z ′Σ̃aZ ⇐⇒ Z ′ΣaZ = Z ′Σ̃aZ.

Therefore, Σa = Σ̃a and γ0k = 1. Since Hk(0) = 0, it can be shown µ0k = µ̃0k and

Hk = H̃k from (2.8).

Likewise, if we assume lk(Hk, θk, Σa|Z, D = 1) = lk(H̃k, θ̃k, Σ̃a|Z, D = 1) for the

diseased group,

(Hk(X)− µ′1kZ)2

Z ′ΣaZ + σ2
1k

=
(Hk(X)− µ̃′1kZ)2

Z ′Σ̃aZ + σ̃2
1k

. (2.10)
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If

(Hk(X)− µ′1kZ) = γ1k(Hk(X)− µ̃′1kZ), (2.11)

Cov(Hk(X), Hl(X)|D = 1) = Z ′ΣaZ = γ1kγ1lZ
′Σ̃aZ = γ1kγ1lZ

′ΣaZ, which gives

γ1k = γ1l = 1. Then, µ1k = µ̃1k from (2.11) and σ2
1k = σ̃2

1k from (2.10).

Proposition A2. If Hk = Hk0 + ε
∫

hkdHk0 (k = 1, · · · , K), µ0 = µ00 + εν0, µ1 =

µ10 + εν1, Σ0 = Σ00 + εM0, Σ1 = Σ10 + εM1, and Σa = Σa0 + εMa, then
∫

hkdHk0 = 0

and ν0, ν1, M0 and Ma are zero matrices.

proof.

Define H(Xi) = (H1(Xi1), · · · , HK(XiK))′. Note that conditional on disease status,

H(Xi)|Di = 0 ∼ N(µ0Zi, Z
′
iΣaZi11

′ + Σ0), H(Xi)|Di = 1 ∼ N(µ1Zi, Z
′
iΣaZi11

′ + Σ1).

First of all, the non-diseased group log likelihood function can be expressed as

logl0i =
K∑

i=1

logH ′
k(Xik)− 1

2
log|Z ′

iΣaZi11
′ + Σ0|

−1

2
(H(Xi)− µ0Zi)

′(Z ′
iΣaZi11

′ + Σ0)
−1(H(Xi)− µ0Zi).

Define Hk = Hk0+ε
∫

hkdHk0 (k = 1, · · · , K) with H0(Xi) = (H10(Xi1), · · · , HK0(XiK))′

and h∗ = (
∫

h1dH10, · · · ,
∫

hKdHK0)
′, µ0 = µ00 + εν0, µ1 = µ10 + εν1, Σ0 = Σ00 + εM0,

Σ1 = Σ10 + εM1, and Σa = Σa0 + εMa. Then,

logl0i =
K∑

i=1

log(H ′
k0(Xik) + εhk(Xik)H

′
k0(Xik)))− 1

2
log|Z ′

i(Σa0 + εMa)Zi11
′ + Σ0|

−1

2

(
H0(Xi) + εh∗ − (µ00 + εν0)Zi

)′(
Z ′

i(Σa0 + εMa)Zi11
′ + (µ00 + εν0)

)−1(
H0(Xi)

+εh∗ − (µ00 + εν0)Zi

)
. (2.12)
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First, M0 is a zero matrix by the definition of Σ0. We will show all elements of h∗, ν0,

ν1, and Ma are equal to zeros.
∂logl0i

∂ε

∣∣∣
ε=0

is given by

l∗0 =
K∑

k=1

hk(Xik)− 1

2

{
(Z ′

iMaZi)tr((Z
′
iΣa0Zi + Σ00)

−111′) + tr((Z ′
iΣa0Zi11

′ + Σ00)
−1M0)

}

−(h∗(Xi)− ν0Zi)
′(Z ′

iΣa0Zi11
′ + Σ00)

−1(H0(Xi)− µ00Zi) +
1

2
(H0(Xi)− µ00Zi)

′

(Z ′
iΣa0Zi11′ + Σ00)

−1(Z ′
iMaZi11′ + M0)(Z

′
iΣa0Zi + Σ00)

−1(H0(Xi)− µ00Zi). (2.13)

Let A0 = (aij) = (Z ′
iΣa0Zi11′+Σ00)

−1 and B0 = (bij) = (Z ′
iΣa0Zi11

′+Σ00)
−1(Z ′

iMaZi11
′+

M0)(Z
′
iΣa0Zi + Σ00)

−1 i, j = 1, · · · , K.

∂l∗0
∂XikXil

= −aklhkH
′
k0H

′
l0 − alkhlH

′
k0H

′
l0 + bklH

′
k0H

′
l0 = 0 (k 6= l),

which gives akl(hk + hl)− bkl = 0 so that hk should be constant.

Define hk = ck, C = diag(c1, · · · , cK), e = (H0(Xi) − µ00Zi), and e′ = (H0(Xi) −
µ10Zi). Then l∗0 in (2.13) can be rewritten as

∑K
k=1 ck − 1

2

{
(Z ′

iMaZi)tr((Z
′
iΣa0Zi11

′ + Σ00)
−111′) + tr((Z ′

iΣa0Zi11
′ + Σ00)

−1M0)
}

+e′
{1

2
(Z ′

iΣa0Zi11
′ + Σ00)

−1(Z ′
iMaZi11

′ + M0)(Z
′
iΣa0Zi + Σ00)

−1

−C ′(Z ′
iΣa0Zi11

′ + Σ00)
−1

}
e− Z ′

i(Cµ00 − ν0)
′(Z ′

iΣa0Zi11
′ + Σ00)

−1e

= 0.

Therefore, the following two conditions hold.

(A1) Z ′
iMaZi11′ = 2(Z ′

iΣa0Zi11′ + Σ00)C (A2) Cµ00 = ν0

Condition (A1) implies Z ′
iMaZi = ck(Z

′
iΣa0Zi + 1) and Z ′

iMaZi = ckZ
′
iΣa0Zi. Thus, it

can be shown that ck = 0,
∫

hkdHk0 = 0 and ν0 = O. Z ′
iMaZi = O implies Ma = O.
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Similarly, for the diseased group, l∗1 =
∂logl1i

∂ε

∣∣∣∣∣
ε=0

is same as

∑K
k=1 ck − 1

2

{
(Z ′

iMaZi)tr((Z
′
iΣa0Zi11

′ + Σ10)
−111′) + tr((Z ′

iΣa0Zi11
′ + Σ10)

−1M1)
}

+e′
{1

2
(Z ′

iΣa0Zi11
′ + Σ10)

−1(Z ′
iMaZi11

′ + M1)(Z
′
iΣa0Zi + Σ10)

−1

−C ′(Z ′
iΣa0Zi11

′ + Σ10)
−1

}
e− Z ′

i(Cµ10 − ν1)
′(Z ′

iΣa0Zi11
′ + Σ10)

−1e

= 0.

Using the same argument as before, we obtain

(A3) Z ′
iMaZi11

′ + M1 = 2(Z ′
iΣa0Zi11

′ + Σ10)C (A4) Cµ10 = ν1

Since Ma and C are zero matrices, M1 and ν1 are also zero matrices from the condition

(A3) and (A4), respectively.
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2.9 Appendix B

2.9.1 EM Algorithm

Define (Xi1, Xi2) are two continuous biomarkers from subject i (i = 1, · · · , n). It is as-

sumed that there exist non-decreasing transformations H1 and H2 such that (H1(X1), H2(X2))

follows a multivariate normal distribution in each of diseased and non-diseased groups;

[H1(X1), H2(X2)|D = 0] = ai + (εi1, εi2), (εi1, εi2) ∼ N(µ0, diag(1, 1)) and

[H1(X1), H2(X2)|D = 1] = ai + (ε′i1, ε
′
i2), (ε′i1, ε

′
i2) ∼ N(µ1, diag(σ2

11, σ
2
12)),

with random effect ai ∼ N(0, σ2). The parameters to be estimated are µ0(µ01, µ02),

µ1(µ11, µ12), Σ1(σ
2
11, σ

2
12), jump sizes (h+

ik, h
−
jk)k=1,2;i=1,··· ,n+

k ;j=1,··· ,n−k and σ2. The com-

plete data likelihood for θ∗ and (H+, H−) is given by

Lc(θ
∗, H+, H−) =

∏
Xik>0

2∏

k=1

[(
h+

k (Xik)φ(H+
k (Xik)− µ0k − ai)

)δO
ik

(1− Φ(H+
k (Mk)− µ0k − ai))

δR
ik

]Di=0

[(
h+

k (Xik)φ((H+
K(Xik)− µ1k − ai)/σ1k))

)δO
ik

(1− Φ((H+
k (Mk)− µ1k − ai)/σ1k))

δR
ik

]Di=1

φ(ai; σ
2)

×
∏

X̃ik>0

2∏

k=1

[(
h−k (X̃ik)φ((H−

k (X̃ik) + µ0k + ai)
)δO

ik

(1− Φ(H−
k (m̃k) + µ0k + ai))

1−δO
ik−δR

ik

]Di=0

[(
h−k (X̃ik)φ((H−

k (X̃ik) + µ1k + ai)/σ1k)
)δO

ik

(1− Φ((H−
k (m̃k) + µ1k + ai)/σ1k))

1−δO
ik−δR

ik

]Di=1

φ(ai; σ
2),
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where φ(·) is a standard normal density. Thus,

Ê[lc(θ
∗, H+, H−) = Ê[lc(θ, H+, H−)] +

n∑
i=1

Ê[logφ(ai; σ
2)], (2.14)

with

Ê[lc(θ, H+, H−)] =
∑

Xik>0

2∑

k=1

δO
iklog(h+

k (Xik)) +
∑

Xik>0

2∑

k=1

[{
− δO

ik

2

(
(H+

k (Xik)− µ0k)
2

−2Ê(ai)(H
+
k (Xik)− µ0k) + Ê[a2

i ]
)

+δR
ikÊ[log(1− Φ(H+

k (Mk)− µ0k − ai))]
}

(1−Di)

+
{

δO
ik

(
− 1

2
logσ2

1k −
1

2σ2
1k

[(H+
k (Xik)− µ1k)

2

−2Ê(ai)(H
+
k (Xik)− µ1k) + Ê(a2

i )]
)

+δR
ikÊ[log(1− Φ((H+

k (Mk)− µ1k − ai)/σ1k))]
}

Di

]

+
∑

X̃ik>0

2∑

k=1

δO
iklog(h−k (X̃ik)) +

∑

X̃ik>0

2∑

k=1

[{
− δO

ik

2

(
(H−

k (X̃ik) + µ0k)
2

+2Ê(ai)(H
−
k (X̃ik) + µ0k) + Ê[a2

i ]
)

+(1− δO
ik − δR

ik)Ê[log(1− Φ(H−
k (m̃k) + µ0k + ai))]

}
(1−Di)

+
{

δO
ik

(
− 1

2
logσ2

1k −
1

2σ2
1k

[(H−
k (X̃ik) + µ1k)

2

+2Ê(ai)(H
−
k (X̃ik) + µ1k) + Ê(a2

i )]
)

+(1− δO
ik − δR

ik)Ê[log(1− Φ((H−
k (m̃k) + µ1k + ai)/σ1k))]

}
Di

]

(2.15)

where Ê[·] denotes the conditional expectation given the observed data and the current

parameter estimates.

In the E-step, the conditional expectations of any functions of ai are computed via

Gaussian quadrature approximations since the density of ai|Xi does not have a closed
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form. In detail, Ê[g(ai)] is computed in the following manner.

Ê[g(ai)] =

∫
g(ai)f(ai|Xi)dai =

∫
g(ai)

f(Xi|ai)φ(ai; σ
2)

f(Xi)
dai =

1

f(Xi)
Eai

[g(ai)f(Xi|ai)]

and f(Xi) =
∫

f(Xi|ai)φ(ai; σ
2)dai = Eai

[g(ai)f(Xi|ai)], where

f(Xi|ai) =
2∏

k=1

f(Xik|ai)
δO
ikP (Xik > Mk|ai)

δR
ikP (Xik < mk|ai)

1−δO
ik−δR

ik

=
2∏

k=1

[(
H

′
k(Xik)φ(Hk(Xik)− µ0k − ai)

)δO
ik(1− Φ(Hk(Mk)− µ0k − ai))

δR
ik

Φ(Hk(mk)− µ0k − ai)
1−δO

ik−δR
ik

]Di=0

[(
H

′
k(Xik)φ((HK(Xik)− µ1k − ai)/σ1k))

)δO
ik(1− Φ((Hk(Mk)

−µ1k − ai)/σ1k))
δR
ikΦ((Hk(mk)− µ1k − ai)/σ1k)

1−δO
ik−δR

ik

]Di=1

.

Specifically, Ê[ai] and Ê[a2
i ], conditional expectations of functions of ai defined in (B.1)

and (B.2) are computed via Gaussian quadrature approximations. Next, in the M-

step, we maximize Ê[lc(θ
∗, H+, H−) from (2.14). Since σ2 can be updated directly

by maximizing
∑n

i=1 Ê[logφ(ai; σ
2)], the rest of parameters µ0k, µ1k, σ

2
1k, h

+
ik and h−jk

(k = 1, 2; i = 1, · · · , n+
k ; j = 1, · · · , n−k ) will be updated in the M-step.

First of all, the score equations are obtained by differentiating L ≡ Ê[lc(θ, H+, H−)]

from (2.15) with respect to θk ≡ (µ0k, µ1k, σ
2
1k, h

+
ik h−jk) (k = 1, 2; i = 1, · · · , n+

k ; j =

1, · · · , n−k ).

∂L

∂µ0k

=
∑

Xik>0

{
δO
ik(H

+
k (Xik)− µ0k − Ê(ai)) + δR

ikÊ

[
φ(H+

k (Mk)− µ0k − ai)

1− Φ(H+
k (Mk)− µ0k − ai)

] }
(1−Di)

−
∑

X̃ik>0

{
δO
ik(H

−
k (X̃ik) + µ0k + Ê(ai))
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+(1− δO
ik − δR

ik)Ê

[
φ(H−

k (m̃k) + µ0k + ai)

1− Φ(H−
k (m̃k) + µ0k + ai)

] }
(1−Di)

∂L

∂µ1k

=
∑

Xik>0

{ δO
ik

σ2
1k

(H+
k (Xik)− µ1k − Ê(ai)) +

δR
ik

σ1k

Ê

[
φ((H+

k (Mk)− µ1k − ai)/σ1k)

1− Φ((H+
k (Mk)− µ1k − ai)/σ1k)

] }
Di

−
∑

X̃ik>0

{ δO
ik

σ2
1k

(H−
k (X̃ik) + µ1k + Ê(ai))

+
(1− δO

ik − δR
ik)

σ1k

Ê

[
φ((H−

k (m̃k) + µ1k + ai)/σ1k)

1− Φ((H−
k (m̃k) + µ1k + ai)/σ1k)

] }
Di

∂L

∂σ2
1k

=
1

2

∑
Xik>0

{ δO
ik

σ4
1k

(−σ2
1k + (H+

k (Xik)− µ1k)
2 − 2Ê(ai)(H

+
k (Xik)− µ1k) + Ê[a2

i ])

+δR
ik(σ

2
1k)

−3/2Ê

[
(H+

k (Mk)− µ1k − ai)φ((H+
k (Mk)− µ1k − ai)/σ1k)

1− Φ(H+
k (Mk)− µ1k − ai)/σ1k)

] }
Di

+
1

2

∑

X̃ik>0

{ δO
ik

σ4
1k

(−σ2
1k + (H−

k (X̃ik) + µ1k)
2 + 2Ê(ai)(H

−
k (X̃ik) + µ1k) + Ê[a2

i ])

+(1− δO
ik − δR

ik)(σ
2
1k)

−3/2Ê

[
(H−

k (m̃k) + µ1k + ai)φ((H−
k (m̃k) + µ1k + ai)/σ1k)

1− Φ((H−
k (m̃k) + µ1k + ai)/σ1k)

] }
Di

∂L

∂h+
jk

=
δO
jk

h+
jk

−
∑

Xik>0

{
δO
ik(H

+
k (Xik)− µ0k − Ê(ai))I(Xjk ≤ Xik)

+δR
ikÊ

[
φ(H+

k (Mk)− µ0k − ai)

1− Φ(H+
k (Mk)− µ0k − ai)

]
I(Xjk ≤ Mk)

}
(1−Di)

+
{ δO

ik

σ2
1k

(H+
k (Xik)− µ1k − Ê(ai))I(Xjk ≤ Xik)

+δR
ik(σ

2
1k)

−1/2Ê

[
φ((H+

k (Mk)− µ1k − ai)/σ1k)

1− Φ((H+
k (Mk)− µ1k − ai)/σ1k)

]
I(Xjk ≤ Mk)

}
Di j = 1, · · · , n+

k

∂L

∂h−jk
=

δO
jk

h−jk
−

∑

X̃ik>0

{
δO
ik(H

−
k (X̃ik) + µ0k + Ê(ai))I(X̃jk ≤ X̃ik)

+(1− δO
ik − δR

ik)Ê

[
φ(H−

k (m̃k) + µ0k + ai)

1− Φ(H−
k (m̃k) + µ0k + ai)

]
I(X̃jk ≤ m̃k)

}
(1−Di)

+
{ δO

ik

σ2
1k

(H−
k (X̃ik) + µ1k + Ê(ai))I(X̃jk ≤ X̃ik)

+(1− δO
ik − δR

ik)(σ
2
1k)

−1/2Ê

[
φ((H−

k (m̃k) + µ1k + ai)/σ1k)

1− Φ((H−
k (m̃k) + µ1k + ai)/σ1k)

]
I(X̃jk ≤ m̃k)

}
Di

j = 1, · · · , n−k
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First, define equations Ojk (j = 1, · · · , 6; k = 1, 2):

O1k =
φ(H+

k (Mk)− µ0k − ai)

1− Φ(H+
k (Mk)− µ0k − ai)

O2k =
φ(H−

k (m̃k) + µ0k + ai)

1− Φ(H−
k (m̃k) + µ0k + ai)

O3k =
φ((H+

k (Mk)− µ1k − ai)/σ1k)

1− Φ((H+
k (Mk)− µ1k − ai)/σ1k)

O4k =
φ((H−

k (m̃k) + µ1k + ai)/σ1k)

1− Φ((H−
k (m̃k) + µ1k + ai)/σ1k)

O5k =
(H+

k (Mk)− µ1k − ai)φ((H+
k (Mk)− µ1k − ai)/σ1k)

1− Φ(H+
k (Mk)− µ1k − ai)/σ1k)

O6k =
(H−

k (m̃k) + µ1k + ai)φ((H−
k (m̃k) + µ1k + ai)/σ1k)

1− Φ((H−
k (m̃k) + µ1k + ai)/σ1k)

B.1. We need to compute following conditional expectations Êjk (j = 1, · · · , 6; k =

1, 2) from the score equations.

Ê1k = Ê(O1k) = Ê

[
φ(H+

k (Mk)− µ0k − ai)

1− Φ(H+
k (Mk)− µ0k − ai)

]

Ê2k = Ê(O2k) = Ê

[
φ(H−

k (m̃k) + µ0k + ai)

1− Φ(H−
k (m̃k) + µ0k + ai)

]

Ê3k = Ê(O3k) = Ê

[
φ((H+

k (Mk)− µ1k − ai)/σ1k)

1− Φ((H+
k (Mk)− µ1k − ai)/σ1k)

]

Ê4k = Ê(O4k) = Ê

[
φ((H−

k (m̃k) + µ1k + ai)/σ1k)

1− Φ((H−
k (m̃k) + µ1k + ai)/σ1k)

]

Ê5k = Ê(O5k) = Ê

[
(H+

k (Mk)− µ1k − ai)φ((H+
k (Mk)− µ1k − ai)/σ1k)

1− Φ(H+
k (Mk)− µ1k − ai)/σ1k)

]

Ê6k = Ê(O6k) = Ê

[
(H−

k (m̃k) + µ1k + ai)φ((H−
k (m̃k) + µ1k + ai)/σ1k)

1− Φ((H−
k (m̃k) + µ1k + ai)/σ1k)

]
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Next, the elements of the Hessian matrix are as follows.

∂2L

∂µ2
0k

=
∑

Xik>0

[
−δO

ik + δR
ik

∂Ê1k

∂µ0k

]
(1−Di)−

∑

X̃ik>0

[
δO
ik + (1− δO

ik − δR
ik)

∂Ê2k

∂µ0k

]
(1−Di)

∂2L

∂µ0k∂µ1k

=
∂2L

∂µ1k∂µ0k

= 0

∂2L

∂µ0k∂σ2
1k

=
∂2L

∂σ2
1k∂µ0k

= 0

∂2L

∂µ0k∂h+
jk

=
∂2L

∂h+
jk∂µ0k

=
∑

Xik>0

[
δO
ikI(Xjk ≤ Xik) + δR

ik

∂Ê1k

∂h+
jk

]
(1−Di)

j = 1, · · · , n+
k

∂2L

∂µ0k∂h−jk
=

∂2L

∂h−jk∂µ0k

= −
∑

X̃ik>0

[
δO
ikI(X̃jk ≤ X̃ik) + (1− δO

ik − δR
ik)

∂Ê2k

∂h−jk

]
(1−Di)

j = 1, · · · , n−k
∂2L

∂µ2
1k

=
∑

Xik>0

[
− δO

ik

σ2
1k

+
δR
ik

σ1k

∂Ê3k

∂µ1k

]
Di −

∑

X̃ik>0

[
δO
ik

σ2
1k

+
(1− δO

ik − δR
ik)

σ1k

∂Ê4k

∂µ1k

]
Di

∂2L

∂µ1k∂σ2
1k

=
∂2L

∂σ2
1k∂µ1k

=
∑

Xik>0

[
− δO

ik

σ4
1k

(H+
k (Xik)− µ1k − Ê(ai))

+δR
ik

{
− 1

2
(σ2

1k)
−3/2Ê3k + (σ2

1k)
−1/2∂Ê3k

∂σ2
1k

}]
Di +

∑

X̃ik>0

[
δO
ik

σ4
1k

(H−
k (X̃ik)

+µ1k + Ê(ai))− (1− δO
ik − δR

ik)
{
− 1

2
(σ2

1k)
−3/2Ê4k + (σ2

1k)
−1/2∂Ê4k

∂σ2
1k

}]
Di

∂2L

∂µ1k∂h+
jk

=
∂2L

∂h+
jk∂µ1k

=
∑

Xik>0

[
δO
ik

σ2
1k

I(Xjk ≤ Xik) + δR
ik(σ

2
1k)

−1/2∂Ê3k

∂h+
jk

]
Di, j = 1, · · · , n+

k

∂2L

∂µ1k∂h−jk
=

∂2L

∂h−jk∂µ1k

= −
∑

X̃ik>0

[
δO
ik

σ2
1k

I(X̃jk ≤ X̃ik) + (1− δO
ik − δR

ik)(σ
2
1k)

−1/2∂Ê4k

∂h−jk

]
Di,

j = 1, · · · , n−k
∂2L

∂σ4
1k

=
1

2

∑
Xik>0

[
δO
ik

( 1

σ4
1k

− 2

σ6
1k

[(H+
k (Xik)− µ1k)

2 − 2Ê(ai)(H
+
k (Xik)− µ1k)

+Ê(a2
i )]

)
+ δR

ik

{
− 3

2
(σ2

1k)
−5/2Ê5k + (σ2

1k)
−3/2∂Ê5k

∂σ2
1k

}]
Di
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+
1

2

∑

X̃ik>0

[
δO
ik

( 1

σ4
1k

− 2

σ6
1k

[(H−
k (X̃ik) + µ1k)

2 + 2Ê(ai)(H
−
k (X̃ik) + µ1k)

+Ê(a2
i )]

)
+ (1− δO

ik − δR
ik)

{
− 3

2
(σ2

1k)
−5/2Ê6k + (σ2

1k)
−3/2∂Ê6k

∂σ2
1k

}]
Di

∂2L

∂σ2
1k∂h+

jk

=
∂2L

∂h+
jk∂σ2

1k

=
∑

Xik>0

[
δO
ik

σ4
1k

(H+
k (Xik)− µ1k − Ê(ai))I(Xjk ≤ Xik)

−δR
ik

{
− 1

2
(σ2

1k)
−3/2Ê3k + (σ2

1k)
−1/2∂Ê3k

∂σ2
1k

}
I(Xjk ≤ Mk)

]
Di, j = 1, · · · , n+

k

∂2L

∂σ2
1k∂h−jk

=
∂2L

∂h−jk∂σ2
1k

=
∑

X̃ik>0

[
δO
ik

σ4
1k

(H−
k (X̃ik) + µ1k + Ê(ai))I(X̃jk ≤ X̃ik)

−(1− δO
ik − δR

ik)
{
− 1

2
(σ2

1k)
−3/2Ê4k + (σ2

1k)
−1/2∂Ê4k

∂σ2
1k

}
I(X̃jk ≤ m̃k)

]
Di,

j = 1, · · · , n−k
∂2L

∂h+
jk∂h+

j′k
= −δO

jkI(j = j′)

(h+
k (Xjk))2

−
∑

Xik>0

{
δO
ikI(Xj′k ≤ Xik)I(Xjk ≤ Xik)

+δR
ik

∂Ê1k

∂h+
j′k

I(Xjk ≤ Mk)
}

(1−Di) +
{ δO

ik

σ2
1k

I(Xj′k ≤ Xik)I(Xjk ≤ Xik)

+δR
ik(σ

2
1k)

−1/2 ∂Ê3k

∂h+
j′k

I(Xjk ≤ Mk)
}

Di, j, j′ = 1, · · · , n+
k

∂2L

∂h+
jk∂h−j′k

=
∂2L

∂h−j′k∂h+
jk

= 0, j = 1, · · · , n+
k ; j′ = 1, · · · , n−k

∂2L

∂h−jk∂h−j′k
= −δO

jkI(j = j′)

(h−k (X̃jk))2
−

∑

X̃ik>0

{
δO
ikI(X̃j′k ≤ X̃ik)I(X̃jk ≤ X̃ik) + (1− δO

ik − δR
ik)

∂Ê2k

∂h−j′k
I(X̃jk ≤ m̃k)

}
(1−Di) +

{ δO
ik

σ2
1k

I(X̃j′k ≤ X̃ik)I(X̃jk ≤ X̃ik)

+(1− δO
ik − δR

ik)(σ
2
1k)

−1/2 ∂Ê4k

∂h−j′k
I(X̃jk ≤ m̃k)

}
Di, j, j′ = 1, · · · , n−k

B.2.
∂Êjk

∂θk

(j = 1, · · · , 6; k = 1, 2) from the above elements of the Hessian matrix

are derived below.
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∂Ê1k

∂µ0k

= Ê

[
∂O1k

∂µ0k

]
= Ê

[{
(H+

k (Mk)− µ0k − ai)φ(H+
k (Mk)− µ0k − ai)(1− Φ(H+

k (Mk)

−µ0k − ai))− φ2(H+
k (Mk)− µ0k − ai)

}
/(1− Φ(H+

k (Mk)− µ0k − ai))
2
]

∂Ê2k

∂µ0k

= Ê

[
∂O2k

∂µ0k

]
= Ê

[{
− (H−

k (m̃k) + µ0k + ai)φ(H−
k (m̃k) + µ0k + ai)(1− Φ(H−

k (m̃k)

+µ0k + ai)) + φ2(H−
k (m̃k) + µ0k + ai)

}
/(1− Φ(H−

k (m̃k) + µ0k + ai))
2
]

∂Ê3k

∂µ1k

= Ê

[
∂O3k

∂µ1k

]
= Ê

[{ 1

σ2
1k

(H+
k (Mk)− µ1k − ai)φ((H+

k (Mk)− µ1k − ai)/σ1k)

(1− Φ((H+
k (Mk)− µ1k − ai)/σ1k))− 1

σ1k

φ2((H+
k (Mk)− µ1k − ai)/σ1k)

}
/

(1− Φ((H+
k (Mk)− µ1k − ai)/σ1k))

2
]

∂Ê4k

∂µ1k

= Ê

[
∂O4k

∂µ1k

]
= Ê

[{
− 1

σ2
1k

(H−
k (m̃k) + µ1k + ai)φ((H−

k (m̃k) + µ1k + ai)/σ1k)

(1− Φ((H−
k (m̃k) + µ1k + ai)/σ1k)) +

1

σ1k

φ2(H−
k (m̃k) + µ1k + ai)/σ1k)

}
/

(1− Φ((H−
k (m̃k) + µ1k + ai)/σ1k))

2
]

∂Ê3k

∂σ2
1k

= Ê

[
∂O3k

∂σ2
1k

]
= Ê

[{ 1

2σ4
1k

(H+
k (Mk)− µ1k − ai)

2φ((H+
k (Mk)− µ1k − ai)/σ1k)

(1− Φ(H+
k (Mk)− µ1k − ai)/σ1k)− 1

2
(σ2

1k)
−3/2(H+

k (Mk)− µ1k − ai)

φ2((H+
k (Mk)− µ1k − ai)/σ1k)

}
/(1− Φ(H+

k (Mk)− µ1k − ai)/σ1k))
2
]

∂Ê4k

∂σ2
1k

= Ê

[
∂O4k

∂σ2
1k

]
= Ê

[{ 1

2σ4
1k

(H−
k (m̃k) + µ1k + ai)

2φ((H−
k (m̃k) + µ1k + ai)/σ1k)

(1− Φ((H−
k (m̃k) + µ1k + ai)/σ1k))− 1

2
(σ2

1k)
−3/2(H−

k (m̃k) + µ1k + ai)

φ2((H−
k (m̃k) + µ1k + ai)/σ1k)

}
/(1− Φ((H−

k (m̃k) + µ1k + ai)/σ1k))
2
]

∂Ê5k

∂σ2
1k

= Ê

[
∂O5k

∂σ2
1k

]
= Ê

[{ 1

2σ4
1k

(H+
k (Mk)− µ1k − ai)

3φ((H+
k (Mk)− µ1k − ai)/σ1k)

(1− Φ(H+
k (Mk)− µ1k − ai)/σ1k)− 1

2
(σ2

1k)
−3/2(H+

k (Mk)− µ1k − ai)
2

φ2((H+
k (Mk)− µ1k − ai)/σ1k)

}
/(1− Φ(H+

k (Mk)− µ1k − ai)/σ1k))
2
]
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∂Ê6k

∂σ2
1k

= Ê

[
∂O6k

∂σ2
1k

]
= Ê

[{ 1

2σ4
1k

(H−
k (m̃k) + µ1k + ai)

3φ((H−
k (m̃k) + µ1k + ai)/σ1k)

(1− Φ((H−
k (m̃k) + µ1k + ai)/σ1k))− 1

2
(σ2

1k)
−3/2(H−

k (m̃k) + µ1k + ai)
2

φ2((H−
k (m̃k) + µ1k + ai)/σ1k)

}
/(1− Φ((H−

k (m̃k) + µ1k + ai)/σ1k))
2
]

∂Ê1k

∂h+
jk

= Ê

[
∂O1k

∂h+
jk

]
= Ê

[{
− (H+

k (Mk)− µ0k − ai)φ(H+
k (Mk)− µ0k − ai)

(1− Φ(H+
k (Mk)− µ0k − ai)) I(Xjk ≤ Mk) + φ2(H+

k (Mk)− µ0k − ai)

I(Xjk ≤ Mk)
}

/(1− Φ(H+
k (Mk)− µ0k − ai))

2
]
, Xjk > 0, j = 1, · · · , n+

k

∂Ê3k

∂h+
jk

= Ê

[
∂O3k

∂h+
jk

]
= Ê

[{
− 1

σ2
1k

(H+
k (Mk)− µ1k − ai)φ((H+

k (Mk)− µ1k − ai)/σ1k)

(1− Φ((H+
k (Mk)− µ1k − ai)/σ1k))I(Xjk ≤ Mk) + (σ2

1k)
−1/2φ2((H+

k (Mk)

−µ1k − ai)/σ1k)I(Xjk ≤ Mk)
}

/(1− Φ((H+
k (Mk)− µ1k − ai)/σ1k))

2
]
,

Xjk > 0, j = 1, · · · , n+
k

∂Ê2k

∂h−jk
= Ê

[
∂O2k

∂h−jk

]
= Ê

[{
− (H−

k (m̃k) + µ0k + ai)φ(H−
k (m̃k) + µ0k + ai)

(1− Φ(H−
k (m̃k) + µ0k + ai))I(X̃jk ≤ m̃k) + φ2(H−

k (m̃k) + µ0k + ai)

I(X̃jk ≤ m̃k)
}

/(1− Φ(H−
k (m̃k) + µ0k + ai))

2
]
, X̃jk > 0, j = 1, · · · , n−k

∂Ê4k

∂h−jk
= Ê

[
∂O4k

∂h−jk

]
= Ê

[{
− 1

σ2
1k

(H−
k (m̃k) + µ1k + ai)φ((H−

k (m̃k) + µ1k + ai)/σ1k)

(1− Φ((H−
k (m̃k) + µ1k + ai)/σ1k))I(X̃jk ≤ m̃k) + (σ2

1k)
−1/2φ2((H−

k (m̃k)

+µ1k + ai)/σ1k)I(X̃jk ≤ m̃k)
}

/(1− Φ((H−
k (m̃k) + µ1k + ai)/σ1k))

2
]
,

X̃jk > 0, j = 1, · · · , n−k

2.9.2 Variance Estimation

Let θ̂∗ ≡ (θ̂, Σ̂a) be the estimates of θ = (µ01, µ02, µ11, µ12, σ
2
11, σ

2
12) and Σa at con-

vergence. We estimate the variance of (θ̂∗, Ĥ+, Ĥ−) with observed information matrix
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of θ̂∗ and jump sizes Ĥ+
k {Xik} and Ĥ−

k {X̃ik} by Louis’s formula (1982). Note that

Ĥ+
k (Xik) =

∑
Xjk≤Xik

Ĥ+
k {Xjk} and Ĥ−

k (X̃ik) =
∑

X̃jk≤X̃ik
Ĥ−

k {X̃jk}. Let li(θ
∗, H+, H−)

be the complete data log likelihood function for ith subject and δ ≡ (θ∗, H+, H−). De-

fine Ui(δ̂) =
∂

∂δ
li(δ̂)

∣∣∣
δ=δ̂

= (U ′
i(θ̂

∗), U ′
i(Ĥ

+), U ′
i(Ĥ

−))′ and U̇i(δ) =
∂

∂δ
Ui(δ̂). Then,

the observed information matrix is estimated by

−∑n
i=1 E[U̇i(δ̂)|Xi, Di, δ̂]−∑n

i=1{E[Ui(δ̂)U
′
i (δ̂)|Xi, Di, δ̂]

+E[Ui(δ̂)|Xi, Di, δ̂]E
′
[Ui(δ̂)|Xi, Di, δ̂]}.

Complete data log likelihood function for ith subject is expressed as

li(θ
∗, H+, H−) =

2∑

k=1

δO
iklogH+

k {Xik}I(Xik > 0) +
2∑

k=1

[{
− δO

ik

2
(H+

k (Xik)− µ0k − ai)
2

+δR
iklog(1− Φ(H+

k (Mk)− µ0k − ai))
}

(1−Di)

+
2∑

k=1

{
− δO

ik

2

(
logσ2

1k +
1

σ2
1k

(H+
k (Xik)− µ1k − ai)

2
)

+δR
iklog(1− Φ((H+

k (Mk)− µ1k − ai)/σ1k))
}

Di

]
I(Xik > 0)

+
2∑

k=1

δO
iklogH−

k {X̃ik}I(X̃ik > 0) +
2∑

k=1

[{
− δO

ik

2
(H−

k (X̃ik) + µ0k + ai)
2

+(1− δO
ik − δR

ik)log(1− Φ(H−
k (m̃k) + µ0k + ai))

}
(1−Di)

+
2∑

k=1

{
− δO

ik

2

(
logσ2

1k +
1

σ2
1k

(H−
k (X̃ik) + µ1k + ai)

2
)

+(1− δO
ik − δR

ik)log(1− Φ((H−
k (m̃k) + µ1k + ai)/σ1k))

}
Di

]

I(X̃ik > 0) + logφ(ai; σ
2) (2.16)

The elements of Ui(δ) and U̇i(δ) for fixed i (i = 1, · · · , n) are computed below.
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B.3. Ui(δ) = (Ui(θ
∗), Ui(H

+), Ui(H
−))′

Ui(µ0k) =
∂li

∂µ0k

=

[
δO
ik(H

+
k (Xik)− µ0k − ai) + δR

ik

φ(H+
k (Mk)− µ0k − ai)

1− Φ(H+
k (Mk)− µ0k − ai)

]

I(Xik > 0)(1−Di)−
[
δO
ik(H

−
k (X̃ik) + µ0k + ai)

+(1− δO
ik − δR

ik)
φ(H−

k (m̃k) + µ0k + ai)

1− Φ(H−
k (m̃k) + µ0k + ai)

]
I(X̃ik > 0)(1−Di)

Ui(µ1k) =
∂li

∂µ1k

=

[
δO
ik

σ2
1k

(H+
k (Xik)− µ1k − ai)

+δR
ik(σ

2
1k)

−1/2 φ((H+
k (Mk)− µ1k − ai)/σ1k)

1− Φ((H+
k (Mk)− µ1k − ai)/σ1k)

]
I(Xik > 0)Di

−
[

δO
ik

σ2
1k

(H−
k (X̃ik) + µ1k + ai)

+(1− δO
ik − δR

ik)(σ
2
1k)

−1/2 φ((H−
k (m̃k) + µ1k + ai)/σ1k)

1− Φ((H−
k (m̃k) + µ1k + ai)/σ1k)

]
I(X̃ik > 0)Di

Ui(σ
2
1k) =

∂li
∂σ2

1k

=
1

2

[
δO
ik

σ4
1k

(−σ2
1k + (H+

k (Xik)− µ1k − ai)
2 + δR

ik(σ
2
1k)

−3/2

(H+
k (Mk)− µ1k − ai)

φ((H+
k (Mk)− µ1k − ai)/σ1k)

1− Φ((H+
k (Mk)− µ1k − ai)/σ1k)

]
I(Xik > 0)Di

+
1

2

[
δO
ik

σ4
1k

(−σ2
1k + (H−

k (X̃ik) + µ1k + ai))
2 + (1− δO

ik − δR
ik)

(σ2
1k)

−3/2(H−
k (m̃k) + µ1k + ai)

φ((H−
k (m̃k) + µ1k + ai)/σ1k)

1− Φ((H−
k (m̃k) + µ1k + ai)/σ1k)

]

I(X̃ik > 0)Di

Ui(σ
2) =

∂li
∂σ2

= − 1

2σ2
+

a2
i

2σ4

Ui(H
+
k {Xjk}) =

∂li
∂H+

k {Xjk}
=

δO
jkI(i = j)

H+
k {Xjk}

−
[
δO
ik(H

+
k (Xik)− µ0k − ai)I(Xjk ≤ Xik)

+δR
ik

φ(H+
k (Mk)− µ0k − ai)

1− Φ(H+
k (Mk)− µ0k − ai)

I(Xjk ≤ Mk)

]
I(Xik > 0)(1−Di)

−
[

δO
ik

σ2
1k

(H+
k (Xik)− µ1k − ai)I(Xjk ≤ Xik)

+δR
ik(σ

2
1k)

−1/2 φ((H+
k (Mk)− µ1k − ai)/σ1k)

1− Φ((H+
k (Mk)− µ1k − ai)/σ1k)

I(Xjk ≤ Mk)

]

I(Xik > 0)Di, Xjk > 0, j = 1, · · · , n+
k
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Ui(H
−
k {X̃jk}) =

∂li

∂H−
k {X̃jk}

=
δO
jkI(i = j)

H−
k {X̃jk}

−
[
δO
ik(H

−
k (X̃ik) + µ0k + ai)I(X̃jk ≤ X̃ik)

+(1− δO
ik − δR

ik)
φ(H−

k (m̃k) + µ0k + ai)

1− Φ(H−
k (m̃k) + µ0k + ai)

I(X̃jk ≤ m̃k)

]

I(X̃ik > 0)(1−Di)−
[

δO
ik

σ2
1k

(H−
k (X̃ik) + µ1k + ai)I(X̃jk ≤ X̃ik)

+(1− δO
ik − δR

ik)(σ
2
1k)

−1/2 φ((H−
k (m̃k) + µ1k + ai)/σ1k)

1− Φ((H−
k (m̃k) + µ1k + ai)/σ1k)

I(X̃jk ≤ m̃k)

]
I(X̃ik > 0)Di, X̃jk > 0 j = 1, · · · , n−k

B.4. U̇i(δ) =
∂

∂δ
Ui(δ)

∂Ui(µ0k)

∂µ0k

=

[
−δO

ik + δR
ik

∂O1k

∂µ0k

]
I(Xik > 0)(1−Di)

−
[
δO
ik + (1− δO

ik − δR
ik)

∂O2k

∂µ0k

]
I(X̃ik > 0)(1−Di)

∂Ui(µ0k)

∂µ1k

=
∂Ui(µ1k)

∂µ0k

= 0

∂Ui(µ0k)

∂σ2
1k

=
∂Ui(σ

2
1k)

∂µ0k

= 0

∂Ui(µ0k)

∂σ2
=

∂Ui(σ
2)

∂µ0k

= 0

∂Ui(µ0k)

∂H+
k {Xjk}

=
∂Ui(H

+
k {Xjk})

∂µ0k

=

[
δO
ikI(Xjk ≤ Xik) + δR

ik

∂O1k

∂H+
k {Xjk}

]
I(Xik > 0)

(1−Di), Xjk > 0, j = 1, · · · , n+
k

∂Ui(µ0k)

∂H−
k {X̃jk}

=
∂Ui(H

−
k {X̃jk})

∂µ0k

= −
[
δO
ikI(X̃jk ≤ X̃ik) + (1− δO

ik − δR
ik)

∂O2k

∂H−
k {X̃jk}

]

I(X̃ik > 0)(1−Di), X̃jk > 0, j = 1, · · · , n−k
∂Ui(µ1k)

∂µ1k

=

[
− δO

ik

σ2
1k

+
δR
ik

σ1k

∂O3k

∂µ1k

]
I(Xik > 0)Di

−
[

δO
ik

σ2
1k

+
(1− δO

ik − δR
ik)

σ1k

∂O4k

∂µ1k

]
I(X̃ik > 0)Di
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∂Ui(µ1k)

∂σ2
1k

=
∂Ui(σ

2
1k)

∂µ1k

=

[
− δO

ik

σ4
1k

(H+
k (Xik)− µ1k − ai) + δR

ik

{
− 1

2
(σ2

1k)
−3/2O3k

+(σ2
1k)

−1/2∂O3k

∂σ2
1k

}]
I(Xik > 0)Di −

[
− δO

ik

σ4
1k

(H−
k (X̃ik) + µ1k + ai)

+(1− δO
ik − δR

ik)
{
− 1

2
(σ2

1k)
−3/2O4k + (σ2

1k)
−1/2∂O4k

∂σ2
1k

}]
I(X̃ik > 0)Di

∂Ui(µ1k)

∂σ2
=

∂Ui(σ
2)

∂µ1k

= 0

∂Ui(µ1k)

∂H+
k {Xjk}

=
∂Ui(H

+
k {Xjk})

∂µ1k

=

[
δO
ik

σ2
1k

I(Xjk ≤ Xik) + δR
ik(σ

2
1k)

−1/2 ∂O3k

∂H+
k {Xjk}

]

I(Xik > 0)Di, Xjk > 0, j = 1, · · · , n+
k

∂Ui(µ1k)

∂H−
k {X̃jk}

=
∂Ui(H

−
k {Xjk})

∂µ1k

= −
[

δO
ik

σ2
1k

I(X̃jk ≤ X̃ik) + (1− δO
ik − δR

ik)

(σ2
1k)

−1/2 ∂O4k

∂H−
k {X̃jk}

]
I(X̃ik > 0)Di, X̃jk > 0, j = 1, · · · , n−k

∂Ui(σ
2
1k)

∂σ2
1k

=
1

2

[
δO
ik

{ 1

σ4
1k

− 2

σ6
1k

(H+
k (Xik)− µ1k − ai)

2
}

+δR
ik

{
− 3

2
(σ2

1k)
−5/2O5k + (σ2

1k)
−3/2∂O5k

∂σ2
1k

}]
I(Xik > 0)Di

+
1

2

[
δO
ik

{ 1

σ4
1k

− 2

σ6
1k

(H−
k (X̃ik) + µ1k + ai)

2
}

+ (1− δO
ik − δR

ik)

{
− 3

2
(σ2

1k)
−5/2O6k + (σ2

1k)
−3/2∂O6k

∂σ2
1k

}]
I(X̃ik > 0)Di

∂Ui(σ
2
1k)

∂σ2
=

∂Ui(σ
2)

∂σ2
1k

= 0

∂Ui(σ
2
1k)

∂H+
k {Xjk}

=
∂Ui(H

+
k {Xjk})

∂σ2
1k

=

[
δO
ik

σ4
1k

(H+
k (Xik)− µ1k − ai)I(Xjk ≤ Xik)

−δR
ik

(
− 1

2
(σ2

1k)
−3/2O3k + (σ2

1k)
−1/2∂O3k

∂σ2
1k

)
I(Xjk ≤ Mk)

]
I(Xik > 0)Di

Xjk > 0, j = 1, · · · , n+
k

∂Ui(σ
2
1k)

∂H−
k {X̃jk}

=
∂Ui(H

−
k {X̃jk})

∂σ2
1k

=

[
δO
ik

σ4
1k

(H−
k (X̃ik) + µ1k + ai)I(X̃jk ≤ X̃ik)

−(1− δO
ik − δR

ik)
(
− 1

2
(σ2

1k)
−3/2O4k + (σ2

1k)
−1/2∂O4k

∂σ2
1k

)
I(X̃jk ≤ m̃k)

]

I(X̃ik > 0)Di, X̃jk > 0, j = 1, · · · , n−k
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∂Ui(σ
2)

∂σ2
=

1

2σ4
− a2

i

σ6

∂Ui(σ
2)

∂H+
k {Xjk}

=
∂Ui(H

+
k {Xjk})
∂σ2

= 0, j = 1, · · · , n+
k

∂Ui(σ
2)

∂H−
k {X̃jk}

=
∂Ui(H

−
k {X̃jk})
∂σ2

= 0, j = 1, · · · , n−k

∂Ui(H
+
k {Xjk})

∂H+
k {Xj′k}

= −δO
jkI(i = j = j′)

(H+
k {Xjk})2

I(Xjk > 0)−
[
δO
ikI(Xj′k ≤ Xik)I(Xjk ≤ Xik)

+δR
ik

∂O1k

∂H+
k {Xj′k}

I(Xjk ≤ Mk)

]
I(Xik > 0)(1−Di)

−
[

δO
ik

σ2
1k

I(Xj′k ≤ Xik)I(Xjk ≤ Xik) + δR
ik(σ

2
1k)

−1/2 ∂O3k

∂H+
k {Xj′k}

I(Xjk ≤ Mk)

]
I(Xik > 0)Di, Xjk > 0, Xj′k > 0, j, j′ = 1, · · · , n+

k

∂Ui(H
+
k {Xjk})

∂H−
k {X̃j′k}

=
∂Ui(H

−
k {X̃j′k})

∂H+
k {Xjk}

= 0, Xjk > 0, X̃j′k > 0, j = 1, · · · , n+
k ; j′ = 1, · · · , n−k

∂Ui(H
−
k {X̃jk})

∂H−
k {X̃j′k}

= −δO
jkI(i = j = j′)

(H−
k {X̃jk})2

I(X̃jk > 0)−
[
δO
ikI(X̃j′k ≤ X̃ik)I(X̃jk ≤ X̃ik)

+(1− δO
ik − δR

ik)
∂O2k

∂H−
k {X̃j′k}

I(X̃jk ≤ m̃k)

]
I(X̃ik > 0)(1−Di)

−
[

δO
ik

σ2
1k

I(X̃j′k ≤ X̃ik)I(X̃jk ≤ X̃ik) + (1− δO
ik − δR

ik)(σ
2
1k)

−1/2 ∂O4k

∂H−
k {X̃j′k}

I(X̃jk ≤ m̃k)

]
I(X̃ik > 0)Di, X̃jk > 0, X̃j′k > 0, j, j′ = 1, · · · , n−k

2.9.3 The Optimal AUC and its Variance

The linear combination of H1(X1) and H2(X2), β1H1(X1) + β2H2(X2) (β = (β1, β2)
′
)

follows a multivariate normal distribution with

β1H1(X1) + β2H2(X2)|D = 0 ∼ N(β′µ0, β
′(σ211′ + Σ0)β)
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β1H1(X1) + β2H2(X2)|D = 1 ∼ N(β′µ1, β
′(σ211′ + Σ1)β).

The coefficients for the best linear combination are βopt,Z = (Σ1+Σ0+2σ211′)−1(µ1−
µ0) and the area under the ROC curve of the optimal linear combination is

AUCopt,Z = Φ
√

(µ1 − µ0)T (Σ1 + Σ0 + 2σ211′)−1(µ1 − µ0).

Define η =
√

(µ1 − µ0)T (Σ1 + Σ0 + 2σ211′)−1(µ1 − µ0) and θ∗ ≡(θ, σ2) with θ ≡
(µ01, µ02, µ11, µ12, σ

2
11, σ

2
12). Then, using the multivariate delta method, the variance

of AUCopt,Z given by

(φ(η))2

{
g2

4g3
1

V ar(g1) +
1

4g1g2

V ar(g2)− 1

2g2
1

Cov(g1, g2)

}
,

where

g1(θ
∗) = (σ2

11 + 2σ2 + 1)(σ2
12 + 2σ2 + 1)− 4σ2 and

g2(θ
∗) = (σ2

12+2σ2+1)(µ11−µ01)
2+(σ2

11+2σ2+1)(µ12−µ02)
2−4σ2(µ11−µ01)(µ12−µ02).

Let Σθ∗ denote the covariance of θ∗. The covariance of g1 and g2 is Σg1,g2 = ∇g(θ∗)T Σθ∗∇g(θ∗),

where

∇g(θ∗) =




0 −2(µ11 − µ01)(σ
2
12 + 2σ2

a + 1) + 4σ2
a(µ12 − µ02)

0 −2(µ12 − µ02)(σ
2
11 + 2σ2

a + 1) + 4σ2
a(µ11 − µ01)

0 2(µ11 − µ01)(σ
2
12 + 2σ2

a + 1)− 4σ2
a(µ12 − µ02)

0 2(µ12 − µ02)(σ
2
11 + 2σ2

a + 1)− 4σ2
a(µ11 − µ01)

(σ2
12 + 2σ2

a + 1) (µ12 − µ02)
2

(σ2
11 + 2σ2

a + 1) (µ11 − µ01)
2

2(σ2
11 + σ2

12 + 2) 2(µ11 − µ01)
2 + 2(µ12 − µ02)

2 − 4(µ11 − µ01)(µ12 − µ02)



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Chapter 3

Accelerated Regression Model in

the ROC Analysis

3.1 Introduction

Recent technological advances continue to provide non-invasive and more accurate

biomarkers for evaluating disease status and patients’ treatment response. Examples

include the use of Prostate-Specific Antigen and CA-125 to detect the presence of

prostate cancer and ovarian cancer, respectively. The Receiver-Operating Character-

istic (ROC) curve is a useful tool to assess the accuracy of biomarkers for diagnosis

and prognosis of disease (Swets and Pickett, 1982; Hanley, 1989; Pepe 2000b). Let Y1

denote the biomarker for diseased subjects and Y0 denote the biomarker for nondiseased

subjects. Let c be a threshold value that any test results greater than c are considered

to be positive. Without loss of generality, we assume that higher values of test results

are more indicative of disease. Then, for a given threshold c, the true positive and false

positive rates are respectively

S1(c) = P (Y1 ≥ c) and S0(c) = P (Y0 ≥ c).



The ROC curve is a plot of the true positive rates versus the false positive rates,

ROC(· ) = {(S0(c), S1(c)), c ∈ (−∞,∞)}. Equivalently, the ROC function can be

expressed as ROC(· ) = {(t, ROC(t)), t ∈ (0, 1)} = {(t, S1(S
−1
0 (t)), t ∈ (0, 1)}.

The performance of a diagnostic test can be influenced by risk factors. For example,

subject characteristics such as age and gender, the experience and expertise of persons

performing the test, and the environment in which and the time when a test is performed

can affect test results. Thus, it is important to identify such factors to understand and

determine the optimal conditions for the best performance.

In the existing literature, three approaches to incorporating covariate effects into

ROC analysis have been suggested (Pepe, 1998). The first approach is to model the

ROC curve summary indices as a function of covariates. Dorfman et al. (1992) and

Obuchowski (1995) suggested modeling the area under the curve (AUC), while Thomp-

son and Zucchini (1989) recommended modelling the partial area under the curve

(pAUC). This approach is feasible only when covariates are discrete and there are

enough patients in each covariate combination to permit the reliable calculation of the

summary accuracy measure. The second approach is to model the distributions of

test results as a function of disease status and covariates. Tosteson and Begg (1988)

described the use of ordinal regression model to induce the regression models for the

ROC curve for tests with ordinal outcomes. Their method has been extended to random

effects models (Beam, 1995; Gatsonis, 1995) and Bayesian methods (Peng and Hall,

1996; Hellmich et al. 1998; Ishwaran and Gatsonsis, 2000). However, in this approach,

the parameter estimates do not reflect the covariate effects on the ROC curve. The

third approach directly models covariate effects on the ROC curve (Pepe 1997, 2000a;

Alonzo and Pepe, 2001). It is called the parametric distribution free approach since it

only assumes a parametric model for the ROC curve but is distribution-free regarding

the distribution of the test results. The most important advantage of this approach is
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that the interpretation of model parameters pertains directly to the ROC curves.

Specifically, in the the third approach mentioned above, Pepe (1997, 2000a) pro-

posed the parametric ROC regression models of the generalized linear model (GLM)

form,

ROCX(t) = g(h(t) + βT X), t ∈ (0, 1),

where ROCX(t) denotes the ROC curve at a false positive rate t associated with co-

variates X, g(.) is a known link function, and h(.) is a baseline function specified up

to some real parameters. The baseline function h defines the location and shape of the

ROC curve, and β quantifies covariate effects. Recently, Cai and Pepe (2002) extended

the parametric ROC regression model to a semi-parametric approach by allowing an

arbitrary nonparametric baseline function for h. They assumed a semiparametric lo-

cation model for S0(y|X) (Pepe 1998; Heagerty and Pepe 1999) and constructed high-

dimensional estimating equations for β and h. They showed that their semiparametric

methods fit the model with efficiency comparable to that of the fully parametric ap-

proach. Note that the last two models assume that the effects of covariates are related

to the location shift of the same ROC curve. This may not be true in some practice.

In this chapter, we develop an alternative regression model, namely, the acceler-

ated ROC model by adjusting for covariates that can influence the performance of a

biomarker. We consider modeling covariates directly on the ROC curve and our model

generalizes the usual accelerated failure time model in the survival context to the ROC

analysis. In Section 3.2, we describe an accelerated ROC model as well as the proce-

dures for estimating parameters of covariates β and the ROC function. The asymptotic

properties of β and the ROC function are given in Section 3.3 and the simulation studies

are followed in Section 3.4. As an example, we apply our method to a prostate cancer

dataset in Section 3.5. A discussion and all technical proofs are given in Sections 3.6

and 3.7, respectively.
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3.2 Model and Inference Procedure

Suppose we observe n1 biomarker measurements from diseased subjects and n0 biomarker

measurements from nondiseased subjects. Yi1 (i = 1, · · · , n1) denotes the biomarker

measurement for diseased subject i and Yj0 denotes biomarker measurements for nondis-

eased subject j. We assume that each subject may have more than one type of covariates

and denote them as Xi1 and Xj0 for diseased subject i and nondiseased subject j, respec-

tively. In most practice, the biomarker measurement is subject to an upper detection

limit, denoted by τ . Thus, the observed data consist of {(min(Yi1 ∧ τ), Xi1, ∆i1), i =

1, · · · , n1} for diseased subjects and {(min(Yj0∧τ), Xj0, ∆j0), j = 1, · · · , n0} for nondis-

eased subjects, where ∆i1 = I(Yi1 ≤ τ) and ∆j0 = I(Yj0 ≤ τ).

To model the covariate effects on the ROC curve, we propose the following acceler-

ated ROC model,

ROCX(t) = G(eβT X logt), t ∈ (0, 1), (3.1)

where G(.) is an unknown and increasing function satisfying G(0) = 1 and G(−∞) = 0.

The latter is because ROC(1) = 1 and ROC(0) = 0. Note that the effect of X in the

ROC model relates to rescaling the original ROC curve. To see how this is different from

the model in Pepe (1997, 2000a), we plot the ROC curves based on these two models in

Figure 3.1, where the the ROC curve on the left side is based on the parametric ROC

regression model by Pepe (1997, 2000a) and the ROC curve on the right side is based

on our accelerated ROC model (3.1). It is clear that our model implies the covariate

affects sensitivity dramatically for the low false positive rates compared to the model

in Pepe (1997, 2000a).

The model (3.1) can be rewritten as

S1(Y |X) = G(eβT X logS0(Y |X)). (3.2)
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Figure 3.1: ROC1(t) = Φ(0.6X + 0.8Φ−1(t)), ROC2(t) = exp(0.5e−0.8X log(t))

Note that we do not make any assumptions on the model for S0(Y |X). To estimate β,

we define Zi1 = −logS0(Yi1|Xi1). Using equation (3.2), it can be shown that

P (Zi1 ≤ z|Xi1) = 1− P (−logS0(Yi1) > z|Xi1) = 1−G(eβT Xi1 loge−z)

= 1−G(−zeβT Xi1) ≡ F (zeβT Xi1),

with F (x) = 1−G(−x). Hence, Zi1 satisfies the accelerated failure time model, so the

inference for β can be conducted by solving the log-rank estimating equation, which is

commonly used for the estimation in the accelerated failure time model. Specifically,

the log-rank estimating equation is given by

n1∑
i=1

∆i1

{
Xi1 −

∑
j I(logZj1 + βT Xj1 ≥ logZi1 + βT Xi1)Xj1∑

j I(logZj1 + βT Xj1 ≥ logZi1 + βT Xi1)

}
= 0. (3.3)
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Since S0 is unknown, we estimate S0 nonparametrically using the smoothed Breslow

estimator as follows:

Ŝ0(y|x) = exp

{
−

n0∑
j=1

I(Yj0 ≤ y)
4j0Kan(Xj0 − x)∑n0

k=1 I(Yk0 ≥ Yj0)Kan(Xk0 − x)

}
, (3.4)

where Kan(x) = K(x/an)/ad
n with an being the bandwidth and d the dimension of X.

Thus, Zi1 is estimated by Ẑi1 = −logŜ0(Yi1|Xi1). After plugging Ẑi1 into (3.3), β̂ is

obtained by solving

n1∑
i=1

∆i1

{
Xi1 −

∑
j I(logẐj1 + β̂T Xj1 ≥ logẐi1 + β̂T Xi1)Xj1∑

j I(logẐj1 + β̂T Xj1 ≥ logẐi1 + β̂T Xi1)

}
= 0.

Remark 3.1. When X is discrete, the estimator for S0, Ŝ0(y|x) in (3.4) can be replaced

by the Breslow estimator using the data with Xj0 = x. i.e.,

Ŝ0(y|x) = exp

{
−

n0∑
j=1

I(Yj0 ≤ y)4j0I(Xj0 = x)∑n0

k=1 I(Yk0 ≥ Yj0)I(Xk0 = x)

}
.

Remark 3.2. When X has more than one continuous covariate, the kernel estimate Ŝ0

may not perform well with a moderate sample size. In this case, we suggest estimating

S0(y|x) based on the Cox regression model using the nondiseased data. That is,

Ŝ0(y|x) = exp
[
− Λ̂(y)exp(γ̂T x)

]
,

where Λ̂(y) is the estimated cumulative baseline cumulative function and γ̂ is the re-

gression parameter estimate.

We next describe the procedures for estimating the function G and the ROC function
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given in (3.1). Clearly, P (Zi1e
βT Xi1 ≤ z|Xi1) = 1 − G(−z). Therefore, Zi1e

βT Xi1 is

independent of Xi1 and has distribution function 1−G(−z). This implies that we can

estimate G consistently by using the empirical distribution of Wi1 ≡ Zi1e
βT Xi1 . Since

Zi1 is subject to right-censoring, so is Wi1. We use the Kaplan-Meier estimator to

estimate the survival function of Wi1. After replacing Wi1 with its estimate

Ŵi1 = −eβ̂T Xi1 log Ŝ0(Yi1; Xi1), i = 1, ..., n1,

we estimate G(·) using

Ĝ(t) =

n1∏
i=1

[
1− ∆i1I(Ŵi1 ≤ −t)∑n1

j=1 I(Ŵj1 ≥ Ŵi1)

]
. (3.5)

Finally, the ROC curve for any covariate value X is estimated by

R̂OCX(t) = Ĝ(eβ̂T X logt), t ∈ (0, 1). (3.6)

To make inference, we estimate the variances of β̂ and Ĝ using the bootstrap

method; Bootstrap samples are drawn repeatedly with replacement from the dataset,

and for each bootstrap sample, β and G are estimated. We then use the variances of

these β̂’s and Ĝ’s as our estimates. Alternatively, the variances can be estimated by a

different resampling method, which is described in Section 3.7.2.

Remark 3.3. The proposed approach can be generalized to handle the situation when

each subject may have multiple or repeated biomarkers. In this case, the estimating

equation for β is replaced by

n1∑
i=1

ni1∑

k=1

∆ik1

{
Xik1 −

∑
j

∑nj1

l=1 I(logẐjl1 + β̂T Xjl1 ≥ logẐik1 + β̂T Xik1)Xjl1∑
j

∑nj1

l=1 I(logẐjl1 + β̂T Xjl1 ≥ logẐik1 + β̂T Xik1)

}
= 0,
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where ∆ij1, Ẑij1 and Xij1 are the observations of jth measurement for subject i in the

diseased group, and Ẑij1 can be estimated similarly as Ẑi1. The bootstrapping method

can still be used for inference by randomly selecting subjects for each bootstrap sample.

3.3 Asymptotic Properties

In this section, we derive the asymptotic properties of β̂ and Ĝ. First, we assume the

following conditions hold.

(C.1) The true parameter value, β0, belongs to a compact set B.

(C.2) The true densities with respective to a dominating measure for (Y1, C1, X1) and

(Y0, C0, X0) are (χ + 1)-continuously differentiable, where χ > d/2. Additionally, X1

and X0 have bounded support.

(C.3) The matrix [1, X1] is linearly independent with positively.

(C.4) The kernel function K(·) is differentiable with bounded symmetric support and

first (χ− 1) moments begin zero. Moreover, nad
n →∞ and na2χ

n → 0.

(C.5) n0/n → ν ∈ (0, 1), where n = n0 + n1.

(C.1) and (C.5) are standard conditions for this type of problem. In (C.2), both

C1 and C2 are same as τ based on our model. (C.3) ensures the identifiability of the

regression parameters, and (C.4) states the restrictions on the choice of possible ker-

nel functions. Examples of the kernel function include the Gaussian kernel and the

Epanechnikov kernel for χ = 2. Both (C.2) and (C.4) are necessary conditions to

prove the asymptotic distribution of β̂. Obviously, if S0 is estimated using the Breslow

method with discrete X1 or from the Cox regression method, (C.4) is not needed.

Under these conditions, the following consistency theorem holds.
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Theorem 3.1. Under Conditions (C1)-(C5), |β̂ − β0| →a.s. 0.

The following two theorems state the asymptotic normality of β̂ and Ĝ.

Theorem 3.2. Under Conditions (C1)-(C5),
√

n(β̂ − β0) converges in distribution to

a mean zero normal random vector as n →∞.

Theorem 3.3. Under Conditions (C1)-(C5),
√

n(Ĝ(log t)−G0(log t)) converges weakly

to a zero mean Gaussian process in l∞([0, 1]).

The proofs of Theorems 3.1-3.3 are provided in Section 3.7. For the proof of Theorem

3.1, we use the fact that Ŝ0(y; x) converges uniformly in (y, x) to S0(y; x) as n goes to

∞, which is given in Zeng (2004). We then apply Theorems 2.10.3 and 5.9 of van der

Vaart (1998). The proofs of Theorem 3.2 and 3.3 follow the same arguments as in

Zeng (2004), and we use the central limit theorems for the empirical process indexed

by classes depending on samples (Theorem 2.11.23, van der Vaart and Wellner, 1996).

3.4 Simulation Studies

Simulation studies were conducted to examine the performance of the proposed method.

First, we defined the true function of G as G(x) = exp(αx). Then, the ROC function

given in (3.1) becomes ROCX(t) = exp[αeβT X log(t)]. The biomarker values for diseased

and non-diseased subjects, y1 and y0, were generated by

y0 = −ln(U0)/(exp(γT X)) and y1 = −ln(U1)/(αexp(γT X + βT X)), (3.7)

where U0 and U1 are uniform random variables from U [0, 1]. It is easy to check such (y0,

y1) gives the above ROC function. We used an equal number of diseased and nondis-

eased subjects but varied the total sample size n from 200 to 400. Additionally, we set
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the upper detection limit τ as the 95th percentile of the biomarker in the nondiseased

group.

We conducted three different simulations with different types of covariates. For

the first simulation, a binary covariate X was generated from a Bernoulli distribution

with probability 0.5 and true parameters in (3.7) were set to β = 0.5, γ = −0.5 and

α = 0.5. Because X was discrete, we estimated S0(y|x) using the Breslow estimator

given in Remark 3.1. In the second simulation, we used a continuous covariate generated

from uniform (0,1) distribution, and true parameters were set to β = −1, γ = −0.5

and α = 1.5. In this simulation, S0(y|x) was estimated using the smoothed Breslow

estimator given in (3.4), where the Gaussian kernel function K(x) =
1√
2π

exp(−x2/2)

with an = n1
−1/3 were applied. For the last simulation, two continuous covariates,

both generated from uniform (0,1), were used with β = (−1.2,−2)T , γ = (−2, 2)T and

α = 5. We then fitted the Cox model to estimate Ŝ0 as described in Remark 3.2. In

all the simulation studies, we obtained β̂ by solving the log-rank estimating equation

(3.3) through bisection search.

Table 3.1 summarizes the simulation results based on 1000 replicates. Column

“Est” is the average value of the estimates from 1,000 replicates; column “ASE” is the

average of the estimated standard errors by the bootstrap method with 1000 replicates;

column “SE” is the standard deviation of the estimates; column “CP” gives the (100×)

coverage proportion of the 95% confidence intervals based on the asymptotic normality.

Overall, the estimates for β are very close to the actual values across sample sizes, and

the estimated standard errors using the bootstrap method approximate the empirical

standard errors well. In addition, the coverage proportions of 95% CIs are close to the

nominal level of 95% across sample sizes. In the same table, we present the true and

estimated function G at three fixed points, where the three points were chosen to be

the quartiles of the true distribution of −W1 (= −eβT X1 log S0(Y1; X1)). The coverage
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Table 3.1: Simulation results with G(t) = exp(αt)
n1 = n0 = 100 n1 = n0 = 200

Par. True Est ASE SE CP Est ASE SE CP
Simulation Study 1. X: 0 or 1

β 0.5 0.479 0.309 0.302 95.7 0.517 0.219 0.210 94.9

G(−2.7) 0.259 0.255 0.081 0.080 95.6 0.262 0.060 0.060 93.0
G(−1.3) 0.522 0.519 0.084 0.082 94.8 0.524 0.060 0.059 94.0
G(−0.5) 0.779 0.774 0.063 0.060 96.0 0.778 0.044 0.042 94.3

Simulation Study 2. X ∼ Uniform(0,1)

β -1 -1.120 0.510 0.494 95.4 -1.123 0.364 0.346 94.7

G(−0.8) 0.301 0.282 0.103 0.101 96.9 0.279 0.076 0.076 94.9
G(−0.4) 0.549 0.525 0.109 0.106 94.3 0.526 0.080 0.077 94.3
G(−0.15) 0.799 0.780 0.080 0.076 95.1 0.782 0.056 0.053 95.0

Simulation Study 3. X1 ∼ Uniform(0,1), X2 ∼ Uniform(0,1)

β1 -1.2 -1.196 0.582 0.564 95.2 -1.198 0.393 0.376 95.4
β2 -2 -2.064 0.578 0.575 95.6 -2.029 0.392 0.384 95.0

G(−0.26) 0.273 0.272 0.135 0.141 92.3 0.275 0.101 0.101 95.0
G(−0.14) 0.497 0.479 0.148 0.153 94.1 0.492 0.108 0.106 94.5
G(−0.06) 0.741 0.715 0.121 0.195 95.3 0.732 0.083 0.077 95.2

proportions of 95% CIs for G were calculated based on the log transformation of G.

For all simulations, the estimated values of G are very close to the actual values at

all three points. Figures 3.2-3.4 display the true and estimated ROC curves from the

three simulations. Apparently, all three figures show that estimated ROC curves are

extremely close to the true ROC curves.
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Figure 3.2: Plots of the true and estimated function G (n=200) from Simulation Study
1 (X: 0 or 1): the solid curve is the true G and the dashed curve is the average of the
estimated curves from 1,000 replicates.
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Figure 3.3: Plots of the true and estimated function G (n=200) from Simulation Study
2 (X∼ Uniform(0,1)): the solid curve is the true G and the dashed curve is the average
of the estimated curves from 1,000 replicates.
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Figure 3.4: Plots of the true and estimated function G (n=200) from Simulation Study
3 (X1, X2∼ Uniform(0,1)): the solid curve is the true G and the dashed curve is the
average of the estimated curves from 1,000 replicates.
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3.5 Application

We illustrate our approach with a prostate cancer dataset. Prostate-specific antigen

(PSA) is a protein produced by the prostate gland, and the PSA test measures the

level of PSA in the blood. Most healthy men have PSA levels under 4 nanograms per

milliliter (ng/mL) of blood, and the chance of having prostate cancer goes up as the

PSA level increases. PSA occurs in 2 major forms in the blood. One form is attached

to blood proteins while the other circulates free (unattached). The free PSA (fPSA)

is the ratio of how much PSA circulates free compared to the total PSA level. Low

free PSA may indicate prostate cancer and most men with prostate cancer have a free

PSA below 15%. If free PSA is below 7%, prostrate cancer is most likely. According to

American Cancer Society and National Cancer Institute, men with free PSA at 7% or

lower should undergo biopsy. We used a dataset of 71 prostate cancer subjects and 68

controls who participated in the Beta-Carotene and Retinol Efficacy Trial (CARET).

The objective of this analysis was to evaluate the capacity of free PSA for dis-

criminating men with prostate cancer from those without before the onset of clinical

symptoms. This trial enrolled 12,025 men at high risk of lung cancer as a result of

smoking or asbestos exposure and evaluated the efficacy of beta-carotene and retinol

in preventing lung cancer, which began in 1985 and terminated in 1994. Subjects who

participated in CARET had serum samples drawn at baseline and at two-year intervals

thereafter (Goodman et al., 1993; Etzioni et al., 1999). Blood samples drawn after

diagnosis of prostate cancer were excluded from this analysis, leaving on average 1 to 7

blood samples per subject (average 3.2 samples per case and 3.5 samples per control).

The average age was 63.7 (range from 46.7 to 80.8) and the average time was -3.06

years (range from -9.008 to -0.003 yrs). Previous studies have suggested that age and

the time PSA measured may affect the discrimination of prostate cancer. Let X be the

age when PSA was measured and T be the time between the onset of symptoms and
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the time at which the serum sample was drawn, so that time is negative and increase

to 0 as measurements are closer to the time of clinical diagnosis. We then fitted the

following accelerated ROC model adjusting for age X and time T :

ROCT,X(u) = G(eβxX+βtT logu).

We found β̂x = 0.0485 with SE 0.0248 (p-value 0.0505) and β̂t = −0.0587 with SE

0.0442 (p-value 0.1841). The positive coefficient for age suggests that discrimination is

better in younger men than in old men, and the negative coefficient for time implies

that discrimination improves when PSA is measured closer to diagnosis although the

time T is not significant. Figure 3.5 displays the estimated ROC curves at age=57, 63,

and 68 when T=-2.82, which is the median of time T. The AUCs are 0.8579, 0.8103, and

0.7623 at age=57, 63, and 68, respectively. Again, it appears that free PSA performes

better for younger men. To assess the fit of our model, in Figure 3.6, we plotted the

empirical ROC curves for free PSA for each of three age groups where the groups were

based on the categorization of age X. The figure shows a similar pattern as Figure 3.5.

The empirical AUCs of each age group are 0.8575, 0.8062, and 0.7527 for age ≤ 61,

61< age ≤ 65, and age ≥ 65. The AUCs based on the proposed method agree well

with the empirical AUCs for these groups, demonstrating the good fit of the accelerated

regression model.

3.6 Discussion

In this chapter, we have focused on assessing the accuracy of biomarkers by adjusting

for covariates that could influence the performance of biomarkers. We developed an

accelerated ROC model by employing the properties of the accelerated failure time

model. Based on Pepe (1997, 2000a)’s method, the covariate effect is related to the
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Figure 3.5: Estimated ROC curve for PSA adjusted for age and time T
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Figure 3.6: Empirical ROC curve for PSA by time
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location-shift of the original ROC curves. On the other hand, in our proposed method,

the effect of covariates in the ROC model relates to rescaling the original ROC curve.

Therefore, our model provides a useful alternative to the traditional method. Note that

the parameter estimates of covariates based on the log-rank estimating equation may

not be efficient. Regarding this issue, we will explore other methods which attain the

semiparametric efficiency.
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3.7 Appendix

3.7.1 Proof of Theorem 3.1

With direct calculations, condition (C.3) implies that matrix

σ1 ≡ − ∂

∂β
E

[
∆1

Q1(log Z1 + βT X1)

Q0(log Z1 + βT X1)

]

is positive for β ∈ B, where Q1(x) = E[X1I(log Z1+βT X1 ≥ x)] and Q0 = E[I(log Z1+

βT X1 ≥ x)]. Therefore, β0 must be the unique solution to the following equation

E

[
∆

(
X1 − Q1(log Z1 + βT X1)

Q0(log Z1 + βT X1)

)]
= 0,

We introduce the following notations. We use Pn1 and P1 to denote the empir-

ical measure and expectation base on i.i.d observations in the diseased group, i.e.,

(Yi1, Xi1, ∆i1), i = 1, ..., n1. Similarly, we use Pn0 and P0 to denote the empirical

measure and expectation based on i.i.d observations in the non-diseased group, i.e.,

(Yj0, Xj0, ∆j0), j = 1, ..., n0. Moreover, we use Gn1 and Gn0 denote empirical processes

√
n1(Pn1 −P1) and

√
n0(Pn0 −P0) respectively. Thus, by definition, β̂ should solve

0 = Pn1

[
∆1

{
X1 −

∑n1

i=1 I(log Ẑi1 + β̂T Xi1 ≥ log Ẑ1 + β̂T X1)Xi1∑n1

i=1 I(log Ẑi1 + β̂T Xi1 ≥ log Ẑ1 + β̂T X1)

}]
.

We start to show the consistency of β̂. First, conditional on non-diseased data,

(Ẑi1, Xi1, ∆i1) are i.i.d. Therefore, the class

F ≡
{

I(x ≥ log Ẑ1 + βT X1) : x ∈ (−∞,∞), β ∈ B
}
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is the VC-class, so is Donsker. Note that the following random functions

n−1

n1∑
i=1

I(log Ẑi1+βT Xi1 ≥ log Ẑ1+βT X1)Xi1, n−1

n1∑
i=1

I(log Ẑi1+βT Xi1 ≥ log Ẑ1+βT X1),

and

E∗
[

I(log Ẑ1 + βT X1 ≥ log Ẑ∗
1 + βT X∗

1 )X1

n−1
∑n1

i=1 I(log Ẑi1 + βT Xi1 ≥ log Ẑ∗
1 + βT X∗

1 )

]
,

where here and in the squeal, E∗ and E∗∗ denote the expectation with respect to those

random variables with asterisk and double asterisk respectively, can be expressed as

the limit of the convex combinations of F and are bounded from above. Thus, they

belong to sconvF , which is a Donsker class from Theorem 2.10.3 of van der Vaart and

Wellner (1996). Therefore, by the Glivenko-Cantelli theorem, it is easy to see

sup
β

∣∣∣Pn1

[
∆1

{
X1 −

∑n1

i=1 I(log Ẑi1 + βT Xi1 ≥ log Ẑ1 + βT X1)Xi1∑n1

i=1 I(log Ẑi1 + βT Xi1 ≥ log Ẑ1 + βT X1)

}]

−E

[
∆1

{
X1 − E∗[I(log Ẑ∗

1 + βT X∗
1 ≥ log Ẑ1 + βT X1)X

∗
1 ]

E∗[I(log Ẑ∗
1 + βT X∗

1 ≥ log Ẑ1 + βT X1)]

}] ∣∣∣ →a.s. 0.

Furthermore, as n goes to ∞, Ŝ0(y; x) converges uniformly in (y, x) to S0(y; x) as shown

in Zeng (2004). Thus, the limit function

E

[
∆1

{
X1 − E∗[I(log Ẑ∗

1 + βT X∗
1 ≥ log Ẑ1 + βT X1)X

∗
1 ]

E∗[I(log Ẑ∗
1 + βT X∗

1 ≥ log Ẑ1 + βT X1)]

}]

converges uniformly in β to

E

[
∆1

{
X1 − Q1(log Z1 + βT X1)

Q0(log Z1 + βT X1)

}]
.

The latter has a unique minimum zero at β0 by condition (C.1). Additionally, it satisfies

the separability at β0 by condition (C.3). Therefore, from Theorem 5.9 of van der Vaart

95



(1998), β̂ converges almost surely to β0.

3.7.2 Proof of Theorem 3.2

Next, we derive the asymptotic distribution of β̂. From equation

Pn1

[
∆1

{
X1 −

∑n1

i=1 I(log Ẑi1 + β̂T Xi1 ≥ log Ẑ1 + βT X1)Xi1∑n1

i=1 I(log Ẑi1 + β̂T Xi1 ≥ log Ẑ1 + β̂T X1)

}]
= 0. (3.8)

if we define

Q̂1(x) = E[X1I(log Ẑ1 + β̂T X1 ≥ x)], Q̂0(x) = E[I(log Ẑ1 + β̂T X1 ≥ x)],

then we obtain that

Gn1

[
∆1

{
X1 −

∑n1

i=1 I(log Ẑi1 + β̂T Xi1 ≥ log Ẑ1 + β̂T X1)Xi1∑n1

i=1 I(log Ẑi1 + β̂T Xi1 ≥ log Ẑ1 + β̂T X1)

}]

−Gn1E
∗
[

∆∗
1I(log Ẑ1 + β̂T X1 ≥ log Ẑ∗

1 + β̂T X∗
1 )X1

n−1
∑n1

i=1 I(log Ẑi1 + β̂T Xi1 ≥ log Ẑ∗
1 + β̂T X∗

1 )

]

+Gn1E
∗
[

∆∗
1I(log Ẑ1 + β̂T X1 ≥ log Ẑ∗

1 + β̂T X∗
1 )Q̂1(log Ẑ∗

1 + β̂T X∗
1 )

n−1
∑n1

i=1 I(log Ẑi1 + β̂T Xi1 ≥ log Ẑ∗
1 + β̂T X∗

1 )Q̂0(log Ẑ∗
1 + β̂T X∗

1 )]

]

= −√n1E

[
∆1

{
X1 − E∗[I(log Ẑ∗

1 + β̂T X∗
1 ≥ log Ẑ1 + β̂T X1)X

∗
1 ]

E∗[I(log Ẑ∗
1 + β̂T X∗

1 ≥ log Ẑ1 + β̂T X1)]

}]
.

From the Donsker theorem, we have

−√n1E

[
∆1

{
X1 − Q̂1(log Ẑ1 + β̂T X1)

Q̂0(log Ẑ1 + β̂T X1)

}]
= Gn1g(∆1, X1, Z1; β0) + op(1), (3.9)

where

g(∆1, X1, Z1; β0) = ∆1

{
X1 − Q1(log Z1 + βT

0 X1)

Q0(log Z1 + βT
0 X1)

}
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−E∗
[
∆∗

1I(log Z1 + βT X1 ≥ log Z∗
1 + βT X∗

1 )X1

Q0(log Z∗
1 + βT

0 X∗
1 )

]

+E∗
[
∆∗

1I(log Z1 + βT X1 ≥ log Z∗
1 + βT X∗

1 )Q1(log Z∗
1 + βT

0 X∗
1 )

Q0(log Z∗
1 + βT

0 X∗
1 )2

]
.

On the other hand, from condition (C.2),

Q̂0(x) = E
[
P

(
Y1 ≥ Ĥ−1

0 (ex−β̂T X1 ; X1)
∣∣∣X1

)]
,

where Ĥ−1
0 (y; x) denotes the inverse of H0(y; x) ≡ − log S0(y; x) for given x. Thus, if

letting f1(y|x) be the conditional density of Y1 given X1, then

Q̂0(x) = −E
[
f1

(
H−1

0 (ex−β̂T X1 ; X1)
∣∣∣X1

)(
Ĥ−1

0 (ex−β̂T X1 ; X1)−H−1
0 (ex−β̂T X1 ; X1)

)]

+E
[
P

(
Y1 ≤ H−1

0 (ex−β̂T X1); X1)
∣∣∣X1

)]
+ o(1).

By slightly modifying the inverse map lemma (Lemma 3.9.20, van der Vaart and Wellner

1996), we can show

Ĥ−1
0 (ex−β̂T X1 ; X1)−H−1

0 (ex−β̂T X1 ; X1)

= −Ĥ0(H
−1
0 (ex−β̂T X1 ; X1); X1)−H0(H

−1
0 (ex−β̂T X1 ; X1); X1)

H ′
0(H

−1
0 (ex−βT

0 X1 ; X1); X0 = X1)
+ o(1),

and it holds uniformly in x, β̂ and X1. Moreover, since Ĥ0(·; x) converges to H0(·; x) in

D[0, τ ] uniformly in x, we obtain

Q̂0(log Ẑ∗
1 + βT

1 X∗
1 )

= E


 f1

(
H−1

0 (Z∗
1e

βT
0 X∗

1−βT
0 X1 ; X1)|X1

)

H ′
0(H

−1
0 (Z∗

1e
βT
0 X∗

1−βT
0 X1 ; X1); X0 = X1)

×
(
Ĥ0(H

−1
0 (Z∗

1e
βT
0 X∗

1−βT
0 X1 ; X1); X1)−H0(H

−1
0 (Z∗

1e
βT
0 X∗

1−βT
0 X1 ; X1); X1)

)]

+E
[
P

(
Y1 ≥ H−1

0 (Ẑ∗
1e

β̂T
0 X∗

1−β̂T X1 ; X1)
∣∣∣X1

)]
+ o(1).
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The last term on the right-hand side can be further approximated by

E
[
P

(
Y1 ≥ H−1

0 (Z∗
1e

βT
0 X∗

1−βT
0 X1 ; X1)

∣∣∣X1

)]

E

[
f1(H

−1
0 (Z∗

1e
βT
0 X∗

1−βT
0 X1 ; X1)|X1)

H ′
0(H

−1
0 (Z∗

1e
βT
0 X∗

1−βT
0 X1 ; X1); X0 = X1)

Z∗
1e

βT
0 X∗

1−βT
0 X1

×
{

Ĥ0(Y
∗
1 ; X∗

1 )−H0(Y
∗
1 ; X∗

1 )

H0(Y ∗
1 ; X∗

1 )
+ (β̂ − β0)(X

∗
1 −X1)

}]
.

Similarly, we can expand the numerator term in the left-hand side of (3.11), i.e.,

Q̂1(log Ẑ1 + β̂T X1). We eventually obtain that (3.11) is equivalent to

Gn1g(∆1, X1, Z1; β0) + op(1) =
√

n1σ1(β̂ − β0)

+
√

n1E
[
σ2(Z1, X1, X

∗
1 )

(
Ĥ0(H

−1
0 (Z1e

βT
0 X1−βT

0 X∗
1 ; X∗

1 ); X∗
1 )

−H0(H
−1
0 (Z1e

βT
0 X1−βT

0 X∗
1 ; X∗

1 )
)]

+
√

n1E
[
σ3(Y1, X1)

(
Ĥ0(Y1; X1)−H0(Y1; X1)

)]
, (3.12)

for some differentiable functions σ2 and σ3. Particularly, σ1 has the same expression as

given in condition (C.3) with β = β0 so σ1 is non-singular.

Using the same arguments as in Zeng (2004) and condition (C.4), we can show that

uniformly in x and y ∈ [0, τ ],

(Ĥ0(y; x)−H0(y, x))

=

{
(Pn0 −P0)

[
∆I(Y0 ≤ y)(n0a

d
n)−1Kan(X0 − x)

(n0ad
n)−1

∑n0

k=1 I(Yk0 ≥ Y0)Kan(Xk0 − x)

]

−(Pn0 −P0)

E∗
[

∆∗I(Y0 ≥ Y ∗
0 )(n0an)−1Kan(X∗

0 − x)

(n0ad
n)−1

∑n0

k=1 I(Yk0 ≥ Y ∗
0 )Kan(Xk0 − x)E∗∗[I(Y ∗∗

0 ≥ Y ∗
0 )Kan(X∗∗

0 − x)]

]}
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+O(aχ
n)

≡ (Pn0 −P0)qn(y, x, Y0, X0) + op(1).

We plug the above expression into equation (3.13) then (3.11). From condition (C.4),

we obtain

Gn1g(∆1, X1, Z1; β0) + op(1)

=
√

n1σ1(β̂ − β0)

+
√

n1(Pn0 −P0)E
[
σ2(Z1, X1, X

∗
1 )qn(H−1

0 (Z∗
1e
−βT

0 X1+βT
0 X∗

1 ; X∗
1 ), X∗

1 , Y0, X0)
]

+
√

n1(Pn0 −P0)E [σ3(Y1, X1)qn(Y1, X1, Y0, X0)] (3.13)

Finally, we apply Theorem 2.11.23 in van der Vaart and Wellner (1996) to the last

two terms in the right-hand side of equation (3.13). Particularly, their conditions are

satisfies by observing that after integration by parts, both

E
[
σ2(Z1, X1, X

∗
1 )qn(H−1

0 (Z1e
βT
0 X1−βT

0 X∗
1 ; X∗

1 ), X∗
1 , Y0, X0)

]

and

E [σ3(Y1, X1)qn(Y1, X1, Y0, X0)]

converges uniformly in (Y0, X0) and they have bounded total variation in Y0 uniformly

in X0 and are Lipschitz continuous in X0. The latter implies the entropy condition in

Theorem 2.11.23. Therefore, combined the above results and the non-singularity of σ1

in (3.13), we obtain the asymptotic normality of β̂.

Remark A.1. When X’s take discrete values, the proof can be much simplified. Par-

ticulary, we can set an = 1/n and Kan(x) = I(x = 0) in the above arguments.
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Remark A.2. From the proof, it is clear that the asymptotic variance for β̂ is the

summation of two sources of variations: one is that the variability, denoted by V1, in

the log-rank estimation conditional on the non-diseased data; the other one, denote by

V2, is due to estimating S0(y; x) using the non-diseased data. Therefore, to estimate

the asymptotic variance of β̂, we can estimate these two source of variation separately.

Specifically, we estimate V1 using the log-rank estimation procedure as given in Zeng and

Lin (2008). While, we estimate V2 using the following resampling method: according

to the expansion in Zeng (2004), we generate G1, ..., Gn0 from N(0, 1) and define

H̃0(y, x) = Ĥ0(y, x) + n−1
0

n0∑
j=1

Gj

[
∆jI(Yj0 ≤ y)Kan(Xj0 − x)∑n0

k=1 I(Yk0 ≥ Yj0)Kan(Xk0 − x)

]

−n−1
0

n0∑
j=1

Gj

n0∑
s=1

[
∆s0I(Yj0 ≥ Ys0)Kan(Xs0 − x)

(
∑n0

k=1 I(Yk0 ≥ Ys0)Kan(Xk0 − x))2

]
.

We then replace Ẑ1i by H̃0(Y1i; X1i) and re-estimate β. Then V2 can be estimated as the

sample variance of β’s by repeating this procedure for a number of times. The validity

of such a resampling method can be justified using the procedure as in the previous

proof.

Remark A.3. When S0(y|x) is estimated by the Cox model, the only difference is in

the expressions of Ĥ0(y; x) − H0(y, x); the influence function qn(y, x, Y0, X0) is given

by the influence function of exp[−Λ̂(y)exp(γ̂T x)], where (Λ̂, γ̂) is the nonparametric

maximum likelihood estimator in the Cox model.
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3.7.3 Proof of Theorem 3.3

The asymptotic property of Ĝ(t) follows the same expansion as the proof of Theorem

3.2 but we utilize the differentiability of the product-limit function. Let SW denote the

survival function for W1 and HW denote the cumulative hazard function of W1. We

have

Ĝ(t)−G0(t) = −G0(t)(Pn1−P1)

[
∆1I(W1 ≤ −t)

E∗[I(W ∗
1 ≥ W1)]

− E∗
{

I(W1 ≥ W ∗
1 )∆∗

1I(W ∗
1 ≤ −t)

SW (W ∗
1 )2

}]

−G0(t)

{
E

[
∆1I(Ŵ1 ≤ −t)

E∗[I(Ŵ ∗
1 ≥ Ŵ1)]

]
−HW (t)

}
+ op(n

−1/2).

We further expand the second term in the right-hand side as in the previous section to

obtain

σ̃1(β̂ − β0) + E
[
σ̃2(Z1, X1, X

∗
1 )

(
Ĥ0(H

−1
0 (Z1e

βT
0 X1−βT

0 X∗
1 ; X∗

1 ); X∗
1 )

−H0(H
−1
0 (−Z1e

βT
0 X1−βT

0 X∗
1 ; X∗

1 )
)]

+
√

n1E
[
σ̃3(Y1, X1)

(
Ĥ0(Y1; X1)−H0(Y1; X1)

)]
+ op(n

−1/2).

Hence, the asymptotic distribution of Ĝ(t) follows from the same arguments as in

Theorem 3.2.
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Chapter 4

Comparing Areas under ROC

Curves in a Paired-Patient,

Paired-Reader Design

4.1 Introduction

The Receiver Operating Characteristic (ROC) curve is widely used to evaluate the

performance of a diagnostic test when test results are based on a continuous or ordinal

variable (Metz, 1978; Hanly and McNeil, 1982; Swets and Pickett, 1982). In an ROC

curve, the true positive rate is plotted in function of the false positive rate across all

possible cutpoints. The area under the receiver operating characteristic curve (AUC)

is a commonly used summary measure to evaluate the accuracy of a diagnostic test and

relative accuracies of diagnostic tests can be compared by their corresponding areas

under the ROC curves.

Diagnostic test results often depend on a reader’s subjective interpretation, exper-

tise, or experience. Because of the variability in readers’ accuracy, studies of such

diagnostic tests usually involve several readers. The most popular design for such a



multi-reader study is the paired-patient, paired-reader design (Obuchowski and Rock-

ette, 1995), in which multiple readers interpret all test results of a sample of patients

who undergoes multiple diagnostic tests. This design is most likely to occur in a radi-

ology setting and is most efficient for comparing tests because it requires the smallest

number of subjects. In addition, it demands one of the smallest reader samples and one

of the fewest number of interpretations per reader compared with other study design

(Zhou et al., 2002).

The AUCs of diagnostic tests are correlated since diagnostic tests are based on the

same patients or from the same readers. Therefore, the correlated structure of data

must be taken into account in the analysis to avoid the inflation of testing powers. For

the correlated ROC curves, nonparametric approaches have been proposed to estimate

the AUCs. Especially, DeLong et al. (1988) developed a fully nonparametric approach

to the comparison of correlated ROC curves by using the theory on U-statistics. This

method, however, is applicable to the cases when each patient is examined by multiple

tests or repeatedly examined using a single test. Obuchowski (1997) extended Delong

et al. (1988)’s method and proposed a method for comparing the AUCs when there are

multiple test results per subject. Under this data structure, test results from different

patients are assumed to be independent although test results from the same patients

are correlated. This method is not appropriate for the paired-patient, paired-reader

design since, in this design, test results from different patients are correlated if they are

read by a same reader. In addition, these two nonparametric methods do not consider

the reader-variability caused by differences in interpretations.

On the other hand, several methods have been developed using the mixed-effects

analysis of variance (ANOVA) models for the analysis of multi-reader ROC studies with

multiple tests (Dorfman et al., 1992; Obuchowski and Rockette, 1995; Beiden et al.,

2000). Dorfman et al. (1992) proposed a mixed-effects ANOVA model on the jackknife
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pseudovalues of the summary measures of ROC curve. Obuchowski and Rockette (1995)

applied a mixed-effects ANOVA model to the estimated summary measures of the ROC

curve for each combination of patients, readers and tests. They developed the adjusted

the ANOVA F-test in order to test differences in diagnostic accuracies. However, the

validity of these methods depends heavily on assumptions on the underlying distribution

of the random variables.

In this chapter, we introduce a latent model to estimate and compare correlated

AUCs in a paired-patient, paired-reader design. We assume diagnostic test results come

from some unknown and monotone functions of continuous latent variables and further

assume reader variability is characterized by random effects due to a specific reader

from a given diagnostic test. In Section 4.2, we estimate the AUCs nonparametrically

based on the ranks of test results and suggest inference procedure to account for com-

plicated correlated structures of test results. We also provide the asymptotic normality

of the AUC estimates in Section 4.2. Since, it is common that disease status may be

misclassified, in Section 4.3, we present a method for comparing correlated AUCs when

an imperfect gold standard bias is presented. A sample size formula is presented in

Section 4.4. In Section 4.5, we conduct simulation studies to investigate the perfor-

mance of the correlated AUC differences for two diagnostic tests and to evaluate power

by varying the number of patients and readers. In Section 4.6, we present an example

from a breast cancer study. A discussion is followed in Section 4.7 and all proofs are

provided in Section 4.8.

4.2 Inference for Correlated AUCs

Suppose a total of h tests are performed on a sample of N patients (m diseased, n

non-diseased, N = m+n) where r readers independently examine the test results from

N patients. Let X l
ik be the test result of diseased subject i obtained from reader k with
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diagnostic test l (i = 1, · · · , m; k = 1, · · · , r; l = 1, · · · , h). Likewise, let Y l
jk be the test

result of non-diseased subject j from reader k with diagnostic test l (j = 1, · · · , n; k =

1, · · · , r; l = 1, · · · , h). The test results can be based on either continuous or ordinal

random variables. Without loss of generality, we assume that higher values of test

results are more indicative of disease. Suppose X l
ik and Y l

jk come from distributions of

f(W l
ik) and f(W l

jk) for an unknown increasing function f. W l
ik and W l

jk denote unobserved

continuous latent variables of X l
ik and Y l

jk, respectively.

W l
ik = bl

k + εl
ik

W l
jk = bl

k + ε̃l
jk,

(4.1)

where bl
k is a random effect due to reader k of diagnostic test l, εi = (εl

ik)k=1,··· ,r; l=1,··· ,h

is a random error of diseased subject i, and ε̃j = (εl
jk)k=1,··· ,r; l=1,··· ,h is a random error

of non-diseased subject j. It is assumed that εl
i’s (or ε̃l

j’s) are iid for a fixed l, and bl
k,

εl
ik, and ε̃l

jk are independent.

Let θl
k denote the AUC of diagnostic test l by reader k. When the AUC is calculated

by the trapezoidal rule, θl
k is equal to Pr(X l

k > Y l
k)+

1

2
Pr(X l

k = Y l
k) by Bamber(1975)’s

formula. The empirical AUC of θl
k applying the Mann-Whitney U statistic is given by

θ̂l
k =

1

mn

m∑
i=1

n∑
j=1

φ(X l
ik, Y

l
jk),

with

φ(X,Y ) =





1 if X > Y ,

1/2 if X = Y ,

0 if X < Y .

E(θ̂l
k) = Pr(X l

k > Y l
k) +

1

2
Pr(X l

k = Y l
k) = θl

k with Pr(X l
k = Y l

k) = 0 for continuous
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test results. Since X l
ik and Y l

jk are assumed to follow underlying distributions of W l
ik

and W l
jk from (4.1), φ(X l

ik, Y
l
jk) is equal to φ(W l

ik,W
l
jk) and φ(εl

ik, ε̃
l
jk). Let θ̂l be the

empirical AUC of diagnostic test l. The accuracy of diagnostic test l is described by

the average of the reader specific AUCs from diagnostic test l.

θ̂l =
1

r

r∑

k=1

θ̂l
k =

1

mnr

m∑
i=1

n∑
j=1

r∑

k=1

φ(X l
ik, Y

l
jk)

=
1

mnr

m∑
i=1

n∑
j=1

r∑

k=1

φ(εl
ik, ε̃

l
jk),

where E(θ̂l) =
1

r

∑r
k=1 θl

k(= let θl).

Let θ̂ = (θ̂l
k)k=1,··· ,r;l=1,··· ,h. θ̂l

k’s are correlated each other because of having same

patients or same readers. We consider three different types of correlations among

φ(εl
ik, ε̃

l
jk) values.

ρ1((k,l),(k′,l′)) = Corr[φ(εl
ik, ε̃

l
jk), φ(εl′

ik′ , ε̃
l′
j′k′)], j 6= j′

ρ2((k,l),(k′,l′)) = Corr[φ(εl
ik, ε̃

l
jk), φ(εl′

i′k′ , ε̃
l′
jk′)], i 6= i′

ρ3((k,l),(k′,l′)) = Corr[φ(εl
ik, ε̃

l
jk), φ(εl′

ik′ , ε̃
l′
jk′)].

(4.2)

ρ1((k,l),(k′,l′)) denotes the correlation due to same diseased subjects with two different

non-diseased subjects; ρ2((k,l),(k′,l′)), the correlation due to same non-diseased subjects

with two different diseased subjects; and ρ3((k,l),(k′,l′)), the correlation due to same dis-

eased and non-diseased subjects.

The asymptotic normality is derived from the theory of U-statistics by Hoeffding

(1948).

Theorem 4.1. Let θ̂ = (θ̂l
k)k=1,··· ,r;l=1,··· ,h and θ = (θl

k)k=1,··· ,r;l=1,··· ,h. If limN→∞ m/N =

λ and limN→∞ n/N = 1−λ with 0 < λ < 1, and if E[φ2(εl
ik, ε̃

l
jk)] < ∞, then

√
N(θ̂−θ)

is asymptotically normal with zero mean vector and covariance matrix Σ = (σ((k,l),(k′,l′)))
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where

σ((k,l),(k′,l′)) =

[
1

λ
ξ

((k,l),(k′,l′))
10 +

1

(1− λ)
ξ

((k,l),(k′,l′))
01

]

and

ξ
((k,l),(k′,l′))
10 = Cov[φ(εl

ik, ε̃
l
jk), φ(εl′

ik′ , ε̃
l′
j′k′)|Di = 1, Dj = 0, Dj′ = 0], j 6= j′

ξ
((k,l),(k′,l′))
01 = Cov[φ(εl

ik, ε̃
l
jk), φ(εl′

i′k′ , ε̃
l′
jk′)|Di = 1, Dj = 0, Di′ = 1], i 6= i′.

To assess statistical significance, we use the test statistic
√

N(θ̂ − θ) → N(0, Σ̂),

with Σ̂ = (σ̂((k,l),(k′,l′))) =

[
1

λ
ξ̂

((k,l),(k′,l′))
10 +

1

(1− λ)
ξ̂

((k,l),(k′,l′))
01

]
. Σ can be estimated by

the method of structural components developed by Sen (1960).

Corollary 4.2. Under the above assumptions and if the number of readers r is bounded,

for any two correlated empirical ROC areas θ̂l and θ̂l′,
√

N((θ̂l − θ̂l′) − (θl − θl′)) is

asymptotically normal with mean zero and variance σl,l′, where

σl,l′ =
1

r2

∑

t=l,l′

[
r∑

k=1

(1

λ
ξ

((k,t),(k,t))
10 +

1

(1− λ)
ξ

((k,t),(k,t))
01

)
+

∑

k 6=k′

(1

λ
ξ

((k,t),(k′,t))
10

+
1

(1− λ)
ξ

((k,t),(k′,t))
01

)]
− 2

r2

[
r∑

k=1

(1

λ
ξ

((k,l),(k,l′))
10 +

1

(1− λ)
ξ

((k,l),(k,l′))
01

)

+
∑

k 6=k′

(1

λ
ξ

((k,l),(k′,l′))
10 +

1

(1− λ)
ξ

((k,l),(k′,l′))
01

)]
.

4.3 Inference with an Imperfect Gold Standard Bias

The imperfect gold standard bias refers to the misclassification of disease status in which

disease status based on a gold standard and true disease status are not consistent. A

perfect gold standard is often not available or too expensive to implement for many
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diseases, which leads investigators to use an imperfect gold standard. If an imperfect

gold standard is used, the estimated accuracy of the tests would be biased. In this

section, we present a method for comparing correlated AUCs when an imperfect gold

standard bias is presented. Let Z l
ik be the test result of subject i by reader k of

diagnostic test l (i = 1, · · · ,m + n; k = 1, · · · , r; l = 1, · · · , h). Di denotes disease

status of subject i based on a gold standard and D0
i denotes true disease status of

subject i in which Di and D0
i are assumed to be independent. Both of Di and D0

i have

1 for diseased and 0 for non-diseased. m and n are the number of diseased and non-

diseased subjects based on a gold standard. Z l
ik|Di = 1 and Z l

jk|Dj = 0 are assumed to

follow underlying distributions of W l
ik and W l

jk, respectively, where W l
ik = bl

k + εl
ik and

W l
jk = bl

k+ε̃l
jk. The assumptions for bl

k, εl
ik, and ε̃l

jk are described in section 4.2. Suppose

the probability of having disease based on a gold standard given that a subject is truly

non-diseased, Pr(Di = 1|D0
i = 0), equals p, the probability of having non-diseased

based on a gold standard given that a subject is truly diseased, Pr(Di = 0|D0
i = 1),

equals q, and the prevalence of truly diseased population, Pr(D0
i = 1), equals ω. In

addition, we assume that test results do not depend on observed disease status given

true disease status.

The area under the empirical ROC curve of diagnostic test l by reader k in the

presence of misclassification of disease status is

θ̂l
k =

1∑m+n
i=1 Di

∑m+n
j=1 (1−Dj)

m+n∑
i=1

m+n∑
j=1

φ(Z l
ik, Z

l
jk)Di(1−Dj) =

1

mn

m∑
i=1

n∑
j=1

φ(εl
ik, ε̃

l
jk),

where

φ(Z l
ik, Z

l
jk) =





1 if Z l
ik > Z l

jk,

1/2 if Z l
ik = Z l

jk,

0 if Z l
ik < Z l

jk.
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Similar to (4.2), three different types of correlations are considered.

ρ∗1((k,l),(k′,l′)) = Corr[φ(εl
ik, ε̃

l
jk), φ(εl′

ik′ , ε̃
l′
j′k′)|Di = 1, Dj = 0, Dj′ = 0], j 6= j′

ρ∗2((k,l),(k′,l′)) = Corr[φ(εl
ik, ε̃

l
jk), φ(εl′

i′k′ , ε̃
l′
jk′)|Di = 1, Dj = 0, Di′ = 1], i 6= i′

ρ∗3((k,l),(k′,l′)) = Corr[φ(εl
ik, ε̃

l
jk), φ(εl′

ik′ , ε̃
l′
jk′)|Di = 1, Dj = 0].

(4.3)

Theorem 4.3. The expectation and variance of an empirical AUC of diagnostic test l

by reader k.

i. E(θ̂l
k) = aθl

k + b with

a =
(1− p)(1− q)ω(1− ω)− pqω(1− ω)

(1− p)(1− q)ω(1− ω) + p(1− p)(1− ω)2 + pqω(1− ω) + q(1− q)ω2

b =
1
2
p(1− p)(1− ω)2 + pqω(1− ω) + 1

2
q(1− q)ω2

(1− p)(1− q)ω(1− ω) + p(1− p)(1− ω)2 + pqω(1− ω) + q(1− q)ω2
.

ii. V ar(θ̂l
k) =

V l∗
k

mn
[1 + (n− 1)ρ∗1((k,l),(k,l)) + (m− 1)ρ∗2((k,l),(k,l))], where

V l∗
k = V ar(φ(εl

ik, ε̃
l
jk)|Di = 1, Dj = 0)

= (aθl
k + b)− 1

4
Pr(εl

ik = ε̃l
jk|Di = 1, Dj = 0)− (aθl

k + b)2.

It is noted that the empirical AUC θ̂l
k is biased if imperfect gold standard bias is

present. Define θ̂l∗
k = (θ̂l

k − b)/a is the bias corrected AUC estimate of θ̂l
k. Then,

the bias corrected AUC estimate of diagnostic test l is defined by the average of θ̂l∗
k ’s

(k = 1, · · · , r).

θ̂l∗ =
1

r

r∑

k=1

θ̂l∗
k =

1

r

r∑

k=1

θ̂l
k − b

a
,
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and

V ar(θ̂l∗) = V ar

[
1

r

r∑

k=1

(
θ̂l

k − b

a

)]
=

1

a2r2

[
r∑

k=1

V ar(θ̂l
k) +

∑

k 6=k′
Cov(θ̂l

k, θ̂
l
k′)

]

=
1

mna2r2

[
r∑

k=1

V l∗
k (1 + (n− 1)ρ∗1((k,l),(k,l)) + (m− 1)ρ∗2((k,l),(k,l)))

+
∑

k 6=k′

√
V l∗

k

√
V l∗

k′ ((n− 1)ρ∗1((k,l),(k′,l)) + (m− 1)ρ∗2((k,l),(k′,l)) + ρ∗3((k,l),(k′,l)))

]
.

Theorem 4.4. Let θ̂∗ = (θ̂l∗
k )k=1,··· ,r;l=1,··· ,h and θ = (θl

k)k=1,··· ,r;l=1,··· ,h. If limN→∞ m/N =

λ and limN→∞ n/N = 1 − λ with 0 < λ < 1, and if E[φ2(εl
ik, ε̃

l
jk)] < ∞, then

√
N(θ̂∗ − θ) is asymptotically normal with zero mean vector and covariance matrix

Σ∗ = (σ∗((k,l),(k′,l′))) with

σ∗((k,l),(k′,l′)) =
1

a2

[
1

λ
ξ

((k,l),(k′,l′))
10 +

1

(1− λ)
ξ

((k,l),(k′,l′))
01

]
.

Corollary 4.5. If the conditions of Theorem 4.4 hold and the number of readers r is

bounded, for any two correlated empirical ROC areas θ̂l∗ and θ̂l′∗,
√

N((θ̂l∗ − θ̂l′∗) −
(θl − θl′)) is asymptotically normal with mean zero and variance σ∗l,l′ with

σ∗l,l′ =
1

a2r2

∑

t=l,l′

[
r∑

k=1

(1

λ
ξ

((k,t),(k,t))
10 +

1

(1− λ)
ξ

((k,t),(k,t))
01

)
+

∑

k 6=k′

(1

λ
ξ

((k,t),(k′,t))
10

+
1

(1− λ)
ξ

((k,t),(k′,t))
01

)]
− 2

a2r2

[
r∑

k=1

(1

λ
ξ

((k,l),(k,l′))
10 +

1

(1− λ)
ξ

((k,l),(k,l′))
01

)

+
r∑

k 6=k′

(1

λ
ξ

((k,l),(k′,l′))
10 +

1

(1− λ)
ξ

((k,l),(k′,l′))
01

)]
.
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4.4 Sample Size Calculation

There exists only one method for determining sample sizes for multi-reader studies in

the literature (Obuchowski, 1995a, 1995b). The method is based on a mixed-effects

ANOVA model for the summary measure of the ROC curve. Let θ̂ijq be the estimated

summary measure of the ROC curve for ith test by jth reader at the qth occasion. The

mixed effect linear model is defined by θ̂ijq = µ + µi + rj + (µr)ij + εijq, 1 ≤ i ≤ I, 1 ≤
j ≤ J, and 1 ≤ q ≤ Q. Here µ is overall mean, µi is a fixed effect corresponding to the

ith test, rj is a random effect due to the jth reader, (µr)ij is a random effect due to the

interaction between the ith test and jth reader, and εijq is a random error. Each of rj,

(µr)ij, and εijq is assumed to follow a normal distribution. For sample size calculations,

the diagnostic accuracies of the J readers of the two tests are assumed to follow a

multivariate normal distribution and an approximated F statistic with 1 and (J − 1)

degrees of freedom is used for testing the null hypothesis that the mean diagnostic

accuracies of the tests are equal (Zhou et al., 2002). However, sample sizes under this

approach are sensitive to the assumptions on variance components of the mixed model.

In addition, the response of the mixed model is fitted nonparametrically first and then

this nonparametric estimate is fitted again based on the model assumptions. This two-

stage sample size determination can be misleading because the nonparametric estimates

of the response are not considered in the second step of fitting a mixed model.

Instead, we propose to make an inference under the asymptotic normality of the

empirical area under the ROC curves. Based on the test statistic ((θ̂l∗ − θ̂l′∗) − (θl −
θl′))/

√
V ar(θ̂l∗ − θ̂l′∗), which possesses approximately a standard normal distribution,

we determine the asymptotic power for a hypothesis test of the difference in accuracy:

H0 : δ0 = θl − θl′ = 0 H1 : δ1 = θl − θl′ 6= 0
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Corollary 4.6. The variance of difference between two correlated, bias corrected em-

pirical AUCs

V ar(θ̂l∗ − θ̂l′∗)

=
1

mna2r2

∑

t=l,l′

[
r∑

k=1

V t∗
k ((1 + (n− 1)ρ∗1((k,t),(k,t)) + (m− 1)ρ∗2((k,t),(k,t)))

+
∑

k 6=k′

√
V t∗

k

√
V t∗

k′ ((n− 1)ρ∗1((k,t),(k′,t)) + (m− 1)ρ∗2((k,t),(k′,t)) + ρ∗3((k,t),(k′,t)))

]

− 2

mna2r2

[
r∑

k=1

√
V l∗

k

√
V l′∗

k ((n− 1)ρ∗1((k,l),(k,l′)) + (m− 1)ρ∗2((k,l),(k,l′)) + ρ∗3((k,l),(k,l′)))

+
r∑

k 6=k′

√
V l∗

k

√
V l′∗

k′ ((n− 1)ρ∗1((k,l),(k′,l′)) + (m− 1)ρ∗2((k,l),(k′,l′)) + ρ∗3((k,l),(k′,l′)))

]
,

where V l∗
k = V ar(φ(εl

ik, ε̃
l
jk|Di = 1, Dj = 0)) = (aθl

k + b)− 1

4
Pr(εl

ik = ε̃l
jk|Di = 1, Dj =

0)− (aθl
k + b)2 from Theorem 4.3(ii).

For sample size determination, the followings are assumed:

a. Some of correlations defined in (4.3) are simplified as

ρ∗1((k,l),(k,l′)) = ρ∗2((k,l),(k,l′)) = ρa,

ρ∗1((k,l),(k′,l)) = ρ∗2((k,l),(k′,l)) = ρb,

ρ∗1((k,l),(k′,l′)) = ρ∗2((k,l),(k′,l′)) = ρc.

(4.4)

b. V l∗
k = V ar(φ(εl

ik, ε̃
l
jk|Di = 1, Dj = 0)) = (aθl

k + b) − 1

4
Pr(εl

ik = ε̃l
jk|Di = 1, Dj =

0) − (aθl
k + b)2 from Corollary 4.6 is simplified as V ∗ = (aθ̄ + b) − (aθ̄ + b)2

assuming that the variance of φ(εl
ik, ε̃

l
jk|Di = 1, Dj = 0) is same across readers

and modalities. Here θ̄ denotes average of two comparing AUCs and Pr(εl
ik =

ε̃l
jk|Di = 1, Dj = 0) is assumed to be zero.
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Then, the variance of the difference between two AUCs from corollary 4.6 is simplified

as

V ar(θ̂l∗ − θ̂l′∗) ≈ 2(m + n)V ∗

mna2r
[(1− ρa) + (r − 1)(ρb − ρc)], V ∗ = (aθ̄ + b)− (aθ̄ + b)2.

Under the above assumptions, the power at level α is

Power = Φ

(
−z1−α/2

√
2(m + n)V ∗((1− ρa) + (r − 1)(ρb − ρc))/mna2r + δ1√

2(m + n)V ∗((1− ρa) + (r − 1)(ρb − ρc))/mna2r

)

+Φ

(
−z1−α/2

√
2(m + n)V ∗((1− ρa) + (r − 1)(ρb − ρc))/mna2r − δ1√

2(m + n)V ∗((1− ρa) + (r − 1)(ρb − ρc))/mna2r

)

(4.5)

with V ∗ = (aθ̄ + b)− (aθ̄ + b)2.

4.5 Simulation Studies

4.5.1 Data Generation

Let m and n denote the number of diseased and non-diseased subjects and r de-

note the number of readers. X = (Xi)i=1,··· ,m denotes diseased results and Y =

(Yj)j=1,··· ,n denotes non-diseased results with Xi = ((X1
ik)k=1,··· ,r, (X2

ik)k=1,··· ,r)′ and

Yj = ((Y 1
jk)k=1,··· ,r, (Y 2

jk)k=1,··· ,r)′. X l
ik is the ith diseased subject’s test result by the

kth reader of the lth test and Y l
jk is the jth non-diseased subject’s test result by the

kth reader of the lth test. For the purpose of illustration, X and Y are assumed to be

independent. Regarding correlations among X l
ik’s (Y l

jk’s) for the ith (jth) subject with

varying k and l, we assume that the correlation when same subjects are evaluated by

different readers using a same test is 0.3, the correlation when same subjects are evalu-

ated by a same reader using different tests 0.8, and the correlation when same subjects
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are evaluated by different readers using different tests is 0.25 for both continuous and

ordinal data.

Continuous data

Xi’s and Yj’s (i = 1, · · · ,m; j = 1, · · · , n) are generated from multivariate normal

distributions; Xi ∼ N((µd11, µd21)′,Σ) and Yj ∼ N(0,Σ) where 1 = (1, · · · , 1)′r×1 and

Σ =




Σ11(r×r) Σ12(r×r)

Σ12(r×r) Σ11(r×r)


 with Σ11(i, i) = 1, Σ11(i, j) = 0.3, Σ12(i, i) = 0.8, and

Σ12(i, j) = 0.25 (i 6= j). The true AUC for diagnostic test l is given by

θl =
1

r

r∑

k=1

θl
k =

1

r

r∑

k=1

Pr(X l
k > Y l

k). (4.6)

µd1 and µd2 values are set to 1.465738 and 1.190232 since X1
ik ∼ N(1.465738, 1), Y 1

jk ∼
N(0, 1), X2

ik ∼ N(1.190232, 1) and Y 2
jk ∼ N(0, 1) give θ1

k = 0.85 and θ2
k = 0.8 for a fixed

k (k = 1, · · · , r). It follows that θ1
k = 0.85 and θ1

k = 0.8 by equation (4.6). Similarly,

we set µd1 = µd2 = 1.190232 to make θ1 = θ2 = 0.8.

Ordinal data

We generated ordinal data by making true AUCs as close as 0.85 or 0.8. We found the

following setup makes θ1 = 0.8502313 and θ2 = 0.8005894 which is used for the true

AUCs; First we generated continuous values from

X1 ∼ N(2.325216, 1.75) Y 1 ∼ N(0, 0.75)

X2 ∼ N(1.81, 1.75) Y 2 ∼ N(0, 0.75)

and categorized them as

-2 (X l
ik ≤ −2), -1 (−2 < X l

ik ≤ −1), 0 (−1 < X l
ik ≤ 0), 1 (0 < X l

ik ≤ 1), 2 (X l
ik > 1);
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-2 (Y l
jk ≤ −2), -1 (−2 < Y l

jk ≤ −1), 0 (−1 < Y l
jk ≤ 0), 1 (0 < Y l

jk ≤ 1), 2 (Y l
jk > 1).

4.5.2 Simulation Results

We set the number of diseased and non-diseased subjects at 50, 100, and 200 (m = n =

50, 100, 200) and the number of readers at 2, 5, and 10 (r = 2, 5, 10). In each combina-

tion of subject and reader sample sizes, we used 5000 stimulations and accounted for

an imperfect gold standard bias (p = q = 0, 0.02, or 0.05). Correlations defined in (4.4)

are assumed to be ρa = 0.7 and ρb = ρc = 0. Tables 4.1 (continuous) and 4.3 (ordinal)

contain the results when there is no difference between the two AUCs. In each scenario

of sample sizes, the empirical power (when α=0.05) is very close to 0.05, and the cover-

age proportions of 90% and 95% confidence intervals based on the asymptotic normal

approximation are close to 0.9 or 0.95, respectively. Next, we tested to see if there is

a statistically significant difference between the two AUCs when the true difference is

0.05. Results are given in Table 4.2 (continuous) and Table 4.4 (ordinal). In Table 4.2,

when there is no imperfect gold standard bias (p = q = 0), empirical powers are greater

than 80% in all sample sizes except for m = n = 50 and k = 2. When p = q = 0.02

or 0.05, the empirical powers increase as the number of subjects or readers increase.

Similar results are shown in Table 4.4.

4.6 Application to Breast Cancer Data

We used mammographic images of 201 women with dense breast (Cole et al., 2005).

The goal of this study was to compare the diagnostic accuracy of digital mammography

with that of screen-film mammography in distinguishing breast cancer status (benign,

malignant).

There were a total of nine readers who participated in the reader study. The readers
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Table 4.1: Continuous data, θ1 = θ2 = 0.8

m,n k p, q CP
(1)
1 CP

(2)
2 emp.power(3)

50 2 0 0.911 0.954 0.046
0.02 0.907 0.95 0.047
0.05 0.906 0.951 0.049

5 0 0.901 0.950 0.050
0.02 0.903 0.950 0.050
0.05 0.905 0.955 0.045

10 0 0.895 0.947 0.053
0.02 0.902 0.954 0.046
0.05 0.900 0.953 0.047

100 2 0 0.899 0.953 0.047
0.02 0.896 0.949 0.051
0.05 0.892 0.947 0.053

5 0 0.899 0.952 0.048
0.02 0.896 0.948 0.052
0.05 0.899 0.950 0.050

10 0 0.902 0.954 0.046
0.02 0.894 0.945 0.055
0.05 0.897 0.953 0.047

200 2 0 0.891 0.947 0.053
0.02 0.897 0.949 0.051
0.05 0.896 0.948 0.052

5 0 0.900 0.949 0.051
0.02 0.899 0.951 0.050
0.05 0.906 0.954 0.046

10 0 0.900 0.949 0.051
0.02 0.892 0.947 0.053
0.05 0.899 0.949 0.051

(1) CP1: coverage proportion of 90% confidence interval based on normal approximation
(2) CP2: coverage proportion of 95% confidence interval based on normal approximation
(3) emp.power: Empirical power based on the significance level 0.05
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Table 4.2: Continuous data, θ1 = 0.85 and θ2 = 0.8

m,n k p, q CP
(1)
1 CP

(2)
2 emp.power(3)

50 2 0 0.894 0.943 0.590
0.02 0.906 0.957 0.365
0.05 0.902 0.955 0.203

5 0 0.896 0.953 0.837
0.02 0.897 0.946 0.551
0.05 0.905 0.949 0.298

10 0 0.898 0.949 0.921
0.02 0.896 0.947 0.652
0.05 0.897 0.950 0.385

100 2 0 0.899 0.950 0.892
0.02 0.905 0.957 0.641
0.05 0.891 0.944 0.377

5 0 0.914 0.956 0.991
0.02 0.892 0.951 0.851
0.05 0.894 0.948 0.542

10 0 0.892 0.944 0.997
0.02 0.890 0.947 0.918
0.05 0.897 0.949 0.646

200 2 0 0.905 0.953 0.996
0.02 0.900 0.954 0.920
0.05 0.887 0.944 0.646

5 0 0.901 0.952 1.000
0.02 0.895 0.950 0.989
0.05 0.896 0.947 0.843

10 0 0.899 0.954 1.000
0.02 0.892 0.947 0.997
0.05 0.903 0.952 0.915

(1) CP1: coverage proportion of 90% confidence interval based on normal approximation
(2) CP2: coverage proportion of 95% confidence interval based on normal approximation
(3) emp.power: Empirical power based on the significance level 0.05
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Table 4.3: Ordinal data, θ1 = θ2 = 0.8

m,n k p, q CP
(1)
1 CP

(2)
2 emp.power(3)

50 2 0 0.901 0.952 0.048
0.02 0.907 0.951 0.049
0.05 0.891 0.948 0.053

5 0 0.892 0.943 0.057
0.02 0.899 0.948 0.052
0.05 0.896 0.947 0.053

10 0 0.901 0.948 0.052
0.02 0.902 0.951 0.050
0.05 0.898 0.953 0.047

100 2 0 0.898 0.946 0.054
0.02 0.897 0.949 0.051
0.05 0.894 0.942 0.058

5 0 0.900 0.953 0.047
0.02 0.903 0.953 0.047
0.05 0.889 0.947 0.054

10 0 0.899 0.952 0.048
0.02 0.887 0.946 0.054
0.05 0.903 0.945 0.055

200 2 0 0.894 0.947 0.053
0.02 0.894 0.947 0.053
0.05 0.893 0.943 0.057

5 0 0.892 0.947 0.053
0.02 0.901 0.953 0.047
0.05 0.904 0.949 0.051

10 0 0.905 0.953 0.047
0.02 0.902 0.951 0.049
0.05 0.890 0.944 0.056

(1) CP1: coverage proportion of 90% confidence interval based on normal approximation
(2) CP2: coverage proportion of 95% confidence interval based on normal approximation
(3) emp.power: Empirical power based on the significance level 0.05
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Table 4.4: Ordinal data, θ1 = 0.85 and θ2 = 0.8

m,n k p, q CP
(1)
1 CP

(2)
2 emp.power(3)

50 2 0 0.892 0.947 0.857
0.02 0.896 0.950 0.543
0.05 0.896 0.946 0.280

5 0 0.871 0.937 0.988
0.02 0.877 0.934 0.780
0.05 0.880 0.942 0.457

10 0 0.857 0.924 0.999
0.02 0.869 0.932 0.900
0.05 0.887 0.939 0.556

100 2 0 0.870 0.934 0.991
0.02 0.876 0.937 0.835
0.05 0.884 0.942 0.501

5 0 0.828 0.900 1.000
0.02 0.862 0.926 0.975
0.05 0.882 0.936 0.744

10 0 0.795 0.882 1.000
0.02 0.845 0.918 0.995
0.05 0.872 0.934 0.854

200 2 0 0.808 0.892 1.000
0.02 0.851 0.917 0.983
0.05 0.872 0.932 0.784

5 0 0.732 0.836 1.000
0.02 0.815 0.894 1.000
0.05 0.863 0.923 0.955

10 0 0.683 0.790 1.000
0.02 0.797 0.883 1.000
0.05 0.851 0.924 0.985

(1) CP1: coverage proportion of 90% confidence interval based on normal approximation
(2) CP2: coverage proportion of 95% confidence interval based on normal approximation
(3) emp.power: Empirical power based on the significance level 0.05
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reported a probability of malignancy based on 5-point scale, with the scale defined as 1-

No Findings or definitely not, 2-Probably not, 3-Probably, 4- Possibly and 5-Definitely.

Due to a large number of missing test results across readers, we created three imputed

readers for each patient. The scores of the three readers were created by taking average

scores of the actual readers 1-3, 4-6, and 7-9, respectively, where the decimal points of

mean scores were rounded up. A total of 137 patients (benign 81, malignant 56) out

of 210 were used for the analysis after excluding patients with missing mean scores (64

patients) and with invalid cancer status (9 patients).

The reader averaged AUCs were 0.770 (SE 0.028) for the screen-film mammography

and 0.683 (SE 0.033) for the digital mammography. The estimated AUC difference

between the two modalities was 0.087 (SE 0.03) and the estimated AUC for the screen-

film was significantly larger than that of the digital (p-value 0.004). Therefore, we

concluded that screen-film mammography perform better than digital mammography

in discriminating benign and malignant breast tumors.

4.7 Discussion

The paired-patient, paired-reader design is most widely used in radiological studies

to compare different diagnostic techniques because it requires the smallest number of

subjects. Our method can be applied to compare correlated ROC curves of this design

and to a situation in which there is an imperfect gold standard bias. We propose to

make an inference under the asymptotic normality of the empirical AUCs and determine

the asymptotic power for a hypothesis test of the AUC differences. In seeking a formula

for sample size, we found that the theoretical powers are very conservative compared

to empirical powers, especially when the imperfect gold standard bias is present. A

more accurate sample size formula is needed.
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4.8 Appendix

Proof of Theorem 4.1 and Corollary 4.2. Since there exists no imperfect gold stan-

dard bias, Theorem 4.1 and Corollary 4.2 hold when p = Pr(D = 1|D0 = 0) = 0 and

q = Pr(D = 0|D0 = 1) = 0 from Theorem 4.4 and Corollary 4.5, respectively.

Proof of Theorem 4.3. The expectation and variance of the empirical AUC of di-

agnostic test l by reader k are given as follows.

E(θ̂l
k) = Pr(Z l

ik > Z l
jk|Di = 1, Dj = 0) +

1

2
Pr(Z l

ik = Z l
jk|Di = 1, Dj = 0)

=
[Pr(Z l

ik > Z l
jk, Di = 1, Dj = 0) + 1

2
Pr(Z l

ik = Z l
jk, Di = 1, Dj = 0)]

Pr(Di = 1, Dj = 0)
.

We define Pr(Di = 1|D0
i = 0) = p, Pr(Di = 0|D0

i = 1) = q, and Pr(D0
i = 1) = ω.

Furthermore, we assume that test results do not depend on observed disease status

given true disease status. Then, the numerator is computed as

Pr(Z l
ik > Z l

jk, Di = 1, Dj = 0) +
1

2
Pr(Z l

ik = Z l
jk, Di = 1, Dj = 0)

=
1∑

r=0

1∑
s=0

{
Pr(Z l

ik > Z l
jk|Di = 1, Dj = 0, D0

i = r,D0
j = s)Pr(Di = 1, Dj = 0|D0

i

= r,D0
j = s)Pr(D0

i = r,D0
j = s) +

1

2
Pr(Z l

ik = Z l
jk|Di = 1, Dj = 0, D0

i = r,

D0
j = s)Pr(Di = 1, Dj = 0|D0

i = r,D0
j = s)Pr(D0

i = r,D0
j = s)

}

=
1∑

r=0

1∑
s=0

{
Pr(Z l

ik > Z l
jk|D0

i = r,D0
j = s)Pr(Di = 1, Dj = 0|D0

i = r,D0
j = s)

Pr(D0
i = r,D0

j = s) +
1

2
Pr(Z l

ik = Z l
jk|D0

i = r,D0
j = s)Pr(Di = 1, Dj = 0|

D0
i = r,D0

j = s)Pr(D0
i = r,D0

j = s)
}
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=
1∑

r=0

1∑
s=0

{
(Pr(Z l

ik > Z l
jk|D0

i = r,D0
j = s) +

1

2
Pr(Z l

ik = Z l
jk|D0

i = r,D0
j = s)

}

Pr(Di = 1, Dj = 0|D0
i = r,D0

j = s)Pr(D0
i = r,D0

j = s)

=
1

2
p(1− p)(1− ω)2 + (1− θl

k)pqω(1− ω) + θl
k(1− p)(1− q)ω(1− ω) +

1

2
q(1− q)ω2

=
{1

2
p(1− p)(1− ω)2 + pqω(1− ω) +

1

2
q(1− q)ω2

}

+
{

(1− p)(1− q)ω(1− ω)− pqω(1− ω)
}

θl
k

where

Pr(Z l
ik > Z l

jk|D0
i = 0, D0

j = 0) +
1

2
Pr(Z l

ik = Z l
jk|D0

i = 0, D0
j = 0) = 1/2

Pr(Z l
ik > Z l

jk|D0
i = 1, D0

j = 1) +
1

2
Pr(Z l

ik = Z l
jk|D0

i = 1, D0
j = 1) = 1/2

Pr(Z l
ik > Z l

jk|D0
i = 1, D0

j = 0) +
1

2
Pr(Z l

ik = Z l
jk|D0

i = 1, D0
j = 0) = θl

k

Pr(Z l
ik > Z l

jk|D0
i = 0, D0

j = 1) +
1

2
Pr(Z l

ik = Z l
jk|D0

i = 0, D0
j = 1) = 1− θl

k

and the denominator Pr(Di = 1, Dj = 0) is given by

Pr(Di = 1, Dj = 0)

=
1∑

r=0

1∑
s=0

Pr(Di = 1, Dj = 0|D0
i = r,D0

j = s)Pr(D0
i = r,D0

j = s)

= (1− p)(1− q)ω(1− ω) + p(1− p)(1− ω)2 + pqω(1− ω) + q(1− q)ω2.

Thus

E(θ̂l
k) =

[
1
2
p(1− p)(1− ω)2 + pqω(1− ω) + 1

2
q(1− q)ω2

]

(1− p)(1− q)ω(1− ω) + p(1− p)(1− ω)2 + pqω(1− ω) + q(1− q)ω2

+

[
(1− p)(1− q)ω(1− ω)− pqω(1− ω)

]
θl

k

(1− p)(1− q)ω(1− ω) + p(1− p)(1− ω)2 + pqω(1− ω) + q(1− q)ω2

= aθl
k + b. (4.7)
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where

a =
(1− p)(1− q)ω(1− ω)− pqω(1− ω)

(1− p)(1− q)ω(1− ω) + p(1− p)(1− ω)2 + pqω(1− ω) + q(1− q)ω2
, (4.8)

b =
1
2
p(1− p)(1− ω)2 + pqω(1− ω) + 1

2
q(1− q)ω2

(1− p)(1− q)ω(1− ω) + p(1− p)(1− ω)2 + pqω(1− ω) + q(1− q)ω2
. (4.9)

Let V l∗
k denote V ar

(
φ(Z l

ik, Z
l
jk)|Di = 1, Dj = 0

)
for test l by reader k. Then V l∗

k is

computed as follows.

V l∗
k = V ar(φ(Z l

ik, Z
l
jk)|Di = 1, Dj = 0) = V ar(φ(εl

ik, ε̃
l
jk)|Di = 1, Dj = 0)

= E[φ2(εl
ik, ε̃

l
jk)|Di = 1, Dj = 0]− E2[φ(εl

ik, ε̃
l
jk)|Di = 1, Dj = 0]

= Pr(εl
ik > ε̃l

jk|Di = 1, Dj = 0) +
1

4
Pr(εl

ik = ε̃l
jk|Di = 1, Dj = 0)

−E2(θ̂l
k|Di = 1, Dj = 0)

= E(θ̂l
k|Di = 1, Dj = 0)− 1

4
Pr(εl

ik = ε̃l
jk|Di = 1, Dj = 0)− E2(θ̂l

k|Di = 1, Dj = 0)

= (aθl
k + b)− 1

4
Pr(εl

ik = ε̃l
jk|Di = 1, Dj = 0)− (aθl

k + b)2 (4.10)

using E(θ̂l
k) = Pr(εl

ik > ε̃l
jk|Di = 1, Dj = 0) +

1

2
Pr(εl

ik = ε̃l
jk|Di = 1, Dj = 0) and

E(θ̂l
k) = (aθl

k + b) from (4.7).

Finally, by using three types correlations in (4.3), the variance of the empirical ROC

curve for test l by reader k is expressed as below.

V ar(θ̂l
k) = V ar

[
1

mn

m∑
i=1

n∑
j=1

φ(Z l
ik, Z

l
jk)|Di = 1, Dj = 0

]

= V ar

[
1

mn

m∑
i=1

n∑
j=1

φ(εl
ik, ε̃

l
jk)|Di = 1, Dj = 0

]
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=
1

m2n2

[
m∑

i=1

n∑
j=1

V ar(φ(εl
ik, ε̃

l
jk)|Di = 1, Dj = 0)

+
m∑
i

n∑

j 6=j′
Cov(φ(εl

ik, ε̃
l
jk), φ(εl

ik, ε̃
l
j′k)|Di = 1, Dj = 0, Dj′ = 0)

+
m∑

i 6=i′

n∑
j

Cov(φ(εl
ik, ε̃

l
jk), φ(εl

i′k, ε̃
l
jk)|Di = 1, Dj = 0, Di′ = 1)

]

=
1

m2n2

[
mnV l∗

k + mn(n− 1)ρ∗1((k,l),(k,l))V
l∗
k + mn(m− 1)ρ∗2((k,l),(k,l))V

l∗
k

]

=
V l∗

k

mn

[
1 + (n− 1)ρ∗1((k,l),(k,l)) + (m− 1)ρ∗2((k,l),(k,l))

]
(4.11)

Proof of Theorem 4.4. Let θ̂ = (θ̂l
k)k=1,··· ,r;l=1,··· ,h and θ = (θl

k)k=1,··· ,r;l=1,··· ,h. If

we denote Ui = (εl
ik)k=1,··· ,r;l=1,··· ,h and Vj = (ε̃l

jk)k=1,··· ,r;l=1,··· ,h, θ̂ can be expressed as

θ̂ =
1

mn

∑m
i=1

∑n
j=1 h(Ui, Vj). If limN→∞ m/N = λ and limN→∞ n/N = 1 − λ with

0 < λ < 1, and if E[φ2(εl
ik, ε̃

l
jk)] < ∞, by the central limit theorem for U statistics,

√
N(θ̂ − (aθ + b1)) converges in distribution to a multivariate normal with zero mean

vector and covariance matrix Σ = (σ((k,l),(k′,l′))) where

σ((k,l),(k′,l′)) =

[
1

λ
ξ

((k,l),(k′,l′))
10 +

1

(1− λ)
ξ

((k,l),(k′,l′))
01

]

and

ξ
((k,l),(k′,l′))
10 = Cov[φ(εl

ik, ε̃
l
jk), φ(εl′

ik′ , ε̃
l′
j′k′)|Di = 1, Dj = 0, Dj′ = 0], j 6= j′

ξ
((k,l),(k′,l′))
01 = Cov[φ(εl

ik, ε̃
l
jk), φ(εl′

i′k′ , ε̃
l′
jk′)|Di = 1, Dj = 0, Di′ = 1], i 6= i′.

Let θ̂∗ = (θ̂l∗
k )k=1,··· ,r;l=1,··· ,h with θ̂l∗

k =
1

a
(θ̂l

k−b). θ̂∗ =
1

a
(θ̂−b1), 1 = (1, 1, · · · , 1)T

rh×1

denotes the bias corrected AUC estimates of θ̂. Then, it follows
√

N(θ̂∗−θ) is asymp-

totically normally distributed with zero mean vector and covariance matrix Σ∗ where

Σ∗ =
1

a2
Σ.
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Proof of Corollary 4.5. θ̂∗ = (θ̂l∗
k )k=1,··· ,r;l=1,··· ,h. The bias corrected empirical AUC

for diagnostic test l is θ̂l∗ =
1

r

∑r
k=1 θ̂l∗

k under the condition that the number of readers

r is bounded. Without loss of generality, we assume that θ̂l∗ and θ̂l′∗ correspond to

averages of first and second r elements of θ̂∗, respectively. Let g be a linear func-

tion of θ̂∗ that has bounded second derivatives in a neighborhood of θ. If the same

conditions of Theorem 4.4 hold,
√

N(g(θ̂∗) − g(θ)) is asymptotically normally dis-

tributed with mean zero and variance σ∗l,l′ . In this case, g(θ̂∗) = L′θ̂∗ = θ̂l∗ − θ̂l′∗ and

L = (
1

r
1r×1,−1

r
1r×1,0(h−2)r×1)

T . Note that E[g(θ̂∗)] = g(θ) = L′θ =
1

r

∑r
k=1 θl

k −
1

r

∑r
k=1 θl′

k = let (θl − θl′) and

σ∗l,l′ =
1

a2r2

∑

t=l,l′

[
r∑

k=1

(1

λ
ξ

((k,t),(k,t))
10 +

1

(1− λ)
ξ

((k,t),(k,t))
01

)
+

∑

k 6=k′

(1

λ
ξ

((k,t),(k′,t))
10

+
1

(1− λ)
ξ

((k,t),(k′,t))
01

)]
− 2

a2r2

[
r∑

k=1

(1

λ
ξ

((k,l),(k,l′))
10 +

1

(1− λ)
ξ

((k,l),(k,l′))
01

)

+
r∑

k 6=k′

(1

λ
ξ

((k,l),(k′,l′))
10 +

1

(1− λ)
ξ

((k,l),(k′,l′))
01

)]
.

Proof of Corollary 4.6. First V ar(θ̂l
k) =

V l∗
k

mn

[
1+(n−1)ρ∗1((k,l),(k,l))+(m−1)ρ∗2((k,l),(k,l))

]

from (4.11) and similarly, Cov(θ̂l∗
k , θ̂l′∗

k′ ) =
V l∗

k

mn

[
(n−1)ρ∗1((k,l),(k′,l′))+(m−1)ρ∗2((k,l),(k′,l′))+

ρ∗3((k,l),(k′,l′))

]
(k 6= k′ or l 6= l′).

Using V ar(θ̂l∗ − θ̂l′∗) = V ar(θ̂l∗) + V ar(θ̂l′∗) − 2Cov(θ̂l∗, θ̂l′∗) and the above two

equations,

V ar(θ̂l∗) = V ar

[
1

r

r∑

k=1

(
θ̂l

k − b

a

)]
=

1

a2r2

[
r∑

k=1

V ar(θ̂l
k) +

∑

k 6=k′
Cov(θ̂l

k, θ̂
l
k′)

]

=
1

mna2r2

[
r∑

k=1

V l∗
k (1 + (n− 1)ρ∗1((k,l),(k,l)) + (m− 1)ρ∗2((k,l),(k,l)))

+
∑

k 6=k′

√
V l∗

k

√
V l∗

k′ ((n− 1)ρ∗1((k,l),(k′,l)) + (m− 1)ρ∗2((k,l),(k′,l)) + ρ∗3((k,l),(k′,l)))

]
.
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Similarly, for diagnostic test l′,

V ar(θ̂l′∗) =
1

mna2r2

[
r∑

k=1

V l′∗
k (1 + (n− 1)ρ∗1((k,l′),(k,l′)) + (m− 1)ρ∗2((k,l′),(k,l′)))

+
∑

k 6=k′

√
V l′∗

k

√
V l′∗

k′ ((n− 1)ρ∗1((k,l′),(k′,l′)) + (m− 1)ρ∗2((k,l′),(k′,l′)) + ρ∗3((k,l′),(k′,l′)))

]
.

Cov(θ̂l∗, θ̂l′∗)

= Cov

[
1

r

r∑

k=1

θ̂l
k − b

a
,
1

r

r∑

k=1

θ̂l′
k − b

a

]

=
1

a2r2

[
r∑

k=1

Cov(θ̂l
k, θ̂

l′
k ) +

∑

k 6=k′
Cov(θ̂l

k, θ̂
l′
k′)

]

=
1

mna2r2

[
r∑

k=1

√
V l∗

k

√
V l′∗

k ((n− 1)ρ∗1((k,l),(k,l′)) + (m− 1)ρ∗2((k,l),(k,l′)) + ρ∗3((k,l),(k,l′)))

+
r∑

k 6=k′

√
V l∗

k

√
V l′∗

k′ ((n− 1)ρ∗1((k,l),(k′,l′)) + (m− 1)ρ∗2((k,l),(k′,l′)) + ρ∗3((k,l),(k′,l′)))

]
.

Therefore,

V ar(θ̂l∗ − θ̂l′∗)

=
1

mna2r2

∑

t=l,l′

[
r∑

k=1

V t∗
k ((1 + (n− 1)ρ∗1((k,l),(k,l)) + (m− 1)ρ∗2((k,l),(k,l)))

+
∑

k 6=k′

√
V t∗

k

√
V t∗

k′ ((n− 1)ρ∗1((k,l),(k′,l)) + (m− 1)ρ∗2((k,l),(k′,l)) + ρ∗3((k,l),(k′,l)))

]

− 2

mna2r2

[
r∑

k=1

√
V l∗

k

√
V l′∗

k ((n− 1)ρ∗1((k,l),(k,l′)) + (m− 1)ρ∗2((k,l),(k,l′)) + ρ∗3((k,l),(k,l′)))

+
r∑

k 6=k′

√
V l∗

k

√
V l′∗

k′ ((n− 1)ρ∗1((k,l),(k′,l′)) + (m− 1)ρ∗2((k,l),(k′,l′)) + ρ∗3((k,l),(k′,l′)))

]
.

Proof of Equation (4.5). The asymptotic power for a hypothesis of the difference
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in accuracy.

H0 : δ0 = θl − θl′ = 0 H1 : δ1 = θl − θl′ 6= 0

Based on the test statistic ((θ̂l∗ − θ̂l′∗) − (θl − θl′))/

√
V ar(θ̂l∗ − θ̂l′∗), the power is

computed as below.

Rejection region =





∣∣∣∣∣
θ̂l∗ − θ̂l′∗ − 0√
V ar0(θ̂l∗ − θ̂l′∗)

∣∣∣∣∣ > Z1−α/2





which is same as

{(θ̂l∗ − θ̂l′∗) > z1−α/2

√
V ar0(θ̂l∗ − θ̂l′∗)} ∪ {(θ̂l∗ − θ̂l′∗) < −z1−α/2

√
V ar0(θ̂l∗ − θ̂l′∗)}.

Power = 1− β = Pr
(
(θ̂l∗ − θ̂l′∗) > z1−α/2

√
V ar0(θ̂l∗ − θ̂l′∗)

∣∣∣H1

)

+Pr
(
(θ̂l∗ − θ̂l′∗) < −z1−α/2

√
V ar0(θ̂l∗ − θ̂l′∗)

∣∣∣H1

)

= Φ


−z1−α/2

√
V ar0(θ̂l∗ − θ̂l′∗) + δ1√

V ar1(θ̂l∗ − θ̂l′∗)


 + Φ


−z1−α/2

√
V ar0(θ̂l∗ − θ̂l′∗)− δ1√

V ar1(θ̂l∗ − θ̂l′∗)




≈ Φ


−z1−α/2

√
V ar0(θ̂l∗ − θ̂l′∗) + δ1√

V ar0(θ̂l∗ − θ̂l′∗)


 + Φ


−z1−α/2

√
V ar0(θ̂l∗ − θ̂l′∗)− δ1√

V ar0(θ̂l∗ − θ̂l′∗)




= Φ

(
−z1−α/2

√
2(m + n)V ∗((1− ρa) + (r − 1)(ρb − ρc))/mna2r + δ1√

2(m + n)V ∗((1− ρa) + (r − 1)(ρb − ρc))/mna2r

)

+Φ

(
−z1−α/2

√
2(m + n)V ∗((1− ρa) + (r − 1)(ρb − ρc))/mna2r − δ1√

2(m + n)V ∗((1− ρa) + (r − 1)(ρb − ρc))/mna2r

)
,

with V ∗ = (aθ̄ + b)− (aθ̄ + b)2.

127



Chapter 5

Conclusions and Future Research

In this dissertation, we have proposed semiparametric and nonparametric methods for

evaluating biomarkers and diagnostic tests for a specific disease or conditions. We

utilized the ROC analysis as a framework for developing the methods.

In Chapter 2, we proposed a semiparametric transformation model to combine

multiple biomarkers in order to optimize diagnostic accuracy. The simulation stud-

ies and applications to the real data suggest that the proposed method performs well

in small-sample settings, and the obtained optimal AUC is comparable to those using

the nonparametric and logistic regression methods when biomarkers have a weak asso-

ciation, and is superior to the existing approaches for highly correlated biomarkers. As

mentioned in the discussion section of Chapter 2, the proposed transformation model

has several advantages over the methods that use the linear combinations of original

biomarkers in the previous work: First, we allow a completely unknown transforma-

tion, so the diagnostic rule is less sensitive to the extreme values of biomarkers. Second,

since our method is applied to the biomarkers characterized by left or right censoring

and accounts for the correlated structure of biomarkers by introducing random effects,

it handles practical data more properly and uses more data information for inference.

Third, in our method, finding the optimal linear combination of biomarkers is straight-

forward and the final result does not depend on any monotone transformation of the



biomarkers.

In Chapter 3, we focused on assessing the accuracy of biomarkers by adjusting

for covariates that could influence the performance of biomarkers. We developed an

accelerated ROC model by generalizing the usual accelerated failure time model in the

survival context to the ROC analysis. Our method models the covariate effects on the

ROC curves, so that the interpretation of model parameters pertains directly to the

rescaling of the ROC curves. Comparatively, the traditional model models such effects

as the location-shift of the ROC curves. Thus, our model provides a useful alternative

to the traditional method.

Finally, in Chapter 4, we developed a latent model to estimate and compare cor-

related AUCs in a paired-patient, paired-reader design. We assumed diagnostic test

results come from some unknown and monotone functions of continuous latent vari-

ables, and further assumed reader variability is characterized by random effects due to

a specific reader from a given diagnostic test. We also presented a method for correcting

an imperfect gold standard bias and sample size formula in this design.

High-throughput technologies such as microarrays allow researchers to gather tens

of thousands of genes simultaneously. Thus, there is a need for developing statistical

methods to select biomarkers from thousands of genes and construct a classification rule

of disease. Currently, few methods exist for evaluating high dimensional biomarkers

using ROC techniques. We will extend our transformation models in Chapter 2 and

will address biomarker selection as well as classification of disease.

Another application of our approach is to combine multiple biomarkers for diag-

nosing disease outcomes which may have more than two levels or even take ordinal

values. Moreover, we will develop methods to evaluate longitudinal or repeated mea-

sures of biomarkers for disease detection. For one example, we are considering methods

to combine multiple biomarkers in which different types of biomarkers are accumulated
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at different time points. Finally, the model proposed in Chapter 3 can be extended

to evaluate two or more biomarkers, so that one can evaluate the covariate effects on

multiple biomarkers simultaneously. Furthermore, since the parameter estimates of co-

variates based on the log-rank estimating equation may not be efficient, we will explore

other methods to attain the semiparametric efficiency.

The paired-patient and paired-reader design is the most popular and efficient to

compare diagnostic tests. In Section 4.4, we developed a sample size formula based

on the asymptotic normality of the AUC and by simplifying various correlations due

to same readers or tests. However, we found that the theoretical powers are very

conservative compared to empirical powers, especially when the imperfect gold standard

bias is present as discussed in Section 4.7. Moreover, currently available methods do not

accommodate this design properly for sample size calculations. The very next extension

to this research will be to develop a more accurate sample size formula in this design. In

broad perspective, we will develop statistical methods to assess and compare diagnostic

techniques accommodating a particular situation or a study design.
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