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ABSTRACT

Han Ye: DATA-DRIVEN SERVICE OPERATIONS MANAGEMENT
(Under the direction of Haipeng Shen)

This dissertation concerns data driven service operations management and in-

cludes three projects. An important aim of this work is to integrate the use of

rigorous and robust statistical methods into the development and analysis of service

operations management problems. We develop methods that take into account de-

mand arrival rate uncertainty and workforce operational heterogeneity. We consider

the particular application of call centers, which have become a major communica-

tion channel between modern commerce and its customers. The developed tools and

lessons learned have general appeal to other labor-intensive services such as health-

care.

The first project concerns forecasting and scheduling with a single uncertain ar-

rival customer stream, which can be handled by parametric stochastic programming

models. Theoretical properties of parametric stochastic programming models with

and without recourse actions are proved, that optimal solutions to the relaxed pro-

grams are stable under perturbations of the stochastic model parameters. We prove

that the parametric stochastic programming approach meets the quality of service

constraints and minimizes staffing costs in the long-run.

The second project considers forecasting and staffing call centers with multi-

ple interdependent uncertain arrival streams. We first develop general statistical

models that can simultaneously forecast multiple-stream arrival rates that exhibit

inter-stream dependence. The models take into account several types of inter-stream

dependence. With distributional forecasts, we then implement a chance-constraint

iii



staffing algorithm to generate staffing vectors and further assess the operational ef-

fects of incorporating such inter-stream dependence, considering several system de-

signs. Experiments using real call center data demonstrate practical applicability of

our proposed approach under different staffing designs. An extensive set of simula-

tions is performed to further investigate how the forecasting and operational benefits

of the multiple-stream approach vary by the type, direction, and strength of inter-

stream dependence, as well as system design. Managerial insights are discussed re-

garding how and when to take operational advantage of the inter-stream dependence.

The third project of this dissertation studies operational heterogeneity of call

center agents with regard to service efficiency and service quality. The proxies con-

sidered for agent service efficiency and service quality are agents’ service times and

issue resolution probabilities, respectively. Detailed analysis of agents’ learning curves

of service times are provided. We develop a new method to rank agents’ first call

resolution probabilities based on customer call-back rates. The ranking accuracy is

studied and the comparison with traditional survey-driven methods is discussed.
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1 Introduction

In recent years, call centers have shared a vast industry and are experiencing

dramatic growth. It was estimated in 1999 that the U.S. had 1.55 million call center

agents (Gans et al. (2003)). In 2008, the number of call centers in the U.S. was

estimated to be 47,000 with 2.7 million employees (Aksin et al. (2007)). As a primary

customer-facing communication channel, call centers have become an integral part of

many businesses and are playing an increasingly significant role in bridging service

providers to their customers. It’s estimated that more than 70% of all customer-

business interactions are handled through call centers (Brown et al. (2005)).

The essential challenge for call center managers is to develop efficient staffing and

scheduling strategies to achieve both desired levels of service quality and operating

expenses. The staffing and scheduling process usually begins with forecasting arrival

demand volumes over a planning horizon, which ranges from a day to several weeks.

Call centers also need to evaluate the service quality and efficiency of their agents

during the planning horizon. With the demand forecasts and service evaluation, call

centers then determine the staffing and scheduling plan for short intervals (varying

from 15-min to 1-hour) within the horizon, which minimizes the operational costs

subject to a pre-specified Quality of Service (QoS) level. The final step is rostering

where agents are assigned to the planned schedules.

Traditionally, call centers assume that the arrival rate forecasts are accurate, and

use point forecasts of the arrival rates to derive the staffing and scheduling plans.

However, very often the rate forecasts and the realized arrival rates do not match

perfectly, and the use of inaccurate rate forecasts would result in improper staffing
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levels, and further causes the system performance to diverge from operational tar-

get. Recently, people in both statistics and operations management/research have

become aware of the arrival rate uncertainty and have begun to deal with the prob-

lem of the discrepancy between forecasts and realizations. Statistical papers try to

develop more accurate point forecasts and at the same time carefully characterize

the arrival rate forecasting distribution. On the other hand, operations manage-

ment researchers incorporate arrival rate uncertainty into the staffing and scheduling

methodologies. Papers are rare that integrate statistical forecasting process and op-

erational staffing/scheduling process to jointly cope with the arrival rate uncertainty

problem. The first two projects of the thesis aim to bridge the gap between existing

statistical and operational research. The first project concerns call centers with a

single arrival stream while the second one concerns call centers with multiple arrival

streams and investigates the benefits of incorporating inter-stream dependence.

For a single stream and a single pool of agents, Gans et al. (2012) developed

and tested a combined forecasting and parametric stochastic programming approach

which takes into account arrival rate uncertainty with inter-day and intra-day depen-

dence. Chapter 2 of this thesis extends their work, and performs theoretical stability

analysis of the stochastic programming models with and without recourse actions.

In particular, we prove that there exist optimal solutions for the parametric stochas-

tic model relaxation, and the optimal solutions are continuous with respect to small

perturbations of the model parameters.

Under the context of multiple-stream arrivals, Ibrahim and L’Ecuyer (2012) built

linear mixed models to jointly forecast the arrival counts for two different call types

handled at a single call center. Operations management papers utilize skill-based

routing strategies to deal with multiple-stream staffing/scheduling problem. A recent

work by Gurvich et al. (2010) proposed a chance-constraint optimization approach

2



to staff multiple-stream call centers in the short run.

In Chapter 3, we consider both forecasting and staffing together to solve a com-

plete multiple-stream call center staffing problem with uncertain arrival demands.

We evaluate our approach on a real call center data set. We also provide theoretical

assessment and simulation tests of our approach under various scenarios. Our study

demonstrates the importance of incorporating dependence structure among arrival

streams in both forecasting and staffing stages. We also show how the performance

of our multiple-stream approach varies by type and strength of dependence among

the streams. Our efforts naturally extend the work of Gans et al. (2012)., Ibrahim

and L’Ecuyer (2012) and Gurvich et al. (2010).

More specifically, we conduct the following analyses.

• We develop statistical methods to generate simultaneous distributional fore-

casts of multiple arrival streams. In particular, we decompose within-day ar-

rival volumes of each stream into the product of daily-total rate and within-day

proportion profile. We then apply vector time series models to jointly forecast

multiple-stream daily-total arrival rates. Compared with the linear mixed ef-

fect models in Ibrahim and L’Ecuyer (2012), our method is more attractive in

two ways: it models the inter-stream and within-stream dependence in a more

general form; it’s more practicable and faster in computation.

• We theoretically evaluate the forecasting benefits of incorporating dependence

among the streams under different type and strength of dependence. In partic-

ular, we derive the forecasting variance reduction of the multiple-stream fore-

casting method over the single-stream forecasting method, as a function of

inter-stream and within-stream correlations.

• To evaluate the operational effects of incorporating dependence among the
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streams, we implement the chance-constraint staffing approach with the sample

based approximation of Gurvich et al. (2010). We demonstrate how the per-

formance of this algorithm varies by the direction and strength of dependence

among the streams.

• We integrate our forecasting method and the chance-constraint staffing ap-

proach as an entire solution to staffing call centers with multiple uncertain

demand streams. We test our approach on a real call center data set. Re-

sults suggest that the multiple-stream approach provides more accurate dis-

tributional forecasts and the follow-up staffing algorithm is closer to meet the

quality-of-service constraint, compared with the single-stream approach which

ignores the inter-stream dependence. We also test our approach under 125

simulated scenarios of different type and strength of inter-stream dependence.

Our results show that: the stronger the dependence on the other streams’ past

information, the better the forecasting performance of the multiple-stream ap-

proach; for negatively correlated streams, the multiple-stream approach saves

money while at the same time provides the same service quality.

In the third project of the thesis (Chapter 4), we consider agent heterogeneity in

terms of service efficiency and service quality. Service time is a basic measurement

of service efficiency. In classical queuing models such as Erlang-C ( M/M/N) and

Erlang-A (Garnett et al. (2002), which allows the customer to abandon), agent ser-

vice times are assumed independent and identically distributed (iid) according to an

exponential distribution. Thus agents are assumed to be homogeneous in 2 ways:

• exponentiality in service times,

• time stationarity in service time attributes.
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Such assumptions are imposed mainly for mathematical tractability. However they

rarely prevail in practice. The empirical analysis of Brown et al. (2005) reveals that

service-times are log-normally distributed (as opposed to being exponential). We

then perform a detailed analysis of agents’ learning-curves, and show various learning

patterns of agents.

Regarding agent heterogeneity in service quality, we consider issue resolution prob-

ability as the proxy, since it is directly related to customers’ demands and percep-

tion of the call service. Issue resolution probability, by definition, is the probabil-

ity that a customer’s issue is resolved by the end of the call. Traditionally, most

staffing/scheduling methods assume the issue resolution probability to be one, i.e.,

all the problems given to the agents are solved by the end of the call. However,

agents’ capability of solving customers’ problems has been empirically observed to

be noticeably different, and customers with unsolved problems may call back, which

increases system load and wastes the recourse (de Vericourt and Zhou (2005)). Con-

ventionally, issue resolution probability is estimated via customer surveys, which may

require extra agent endeavor to call back and suffer from extremely high non-response

rate. Thus the evaluations obtained are limited, unreliable and very likely biased.

We propose an innovative estimate for issue resolution probability, which requires no

extra agent efforts other than historical operational data. We also discuss factors

that affect issue resolution probability such as agents intentionally hanging up on

customers.
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2 Stability Analysis on Stochastic Programming Models

In this chapter we concern forecasting and staffing call centers with a single un-

certain arrival stream, regarding which Gans et al. (2012) developed and tested a

combined forecasting and parametric stochastic programming approach which takes

into account arrival rate uncertainty with inter-day and intra-day dependence. Our

work is an extension of Gans et al. (2012). More specifically, we conduct theoretical

analyses on their parametric stochastic programming models.

2.1 Background and Motivation

In this section, we first briefly review the forecasting and stochastic programming

scheduling approach by Gans et al. (2012) and then highlight our motivation.

In their paper, they first derived parametric forecasts for call centers, then demon-

strated that the parametric forecasts can be used to drive stochastic programming

models whose results are stable with a relatively small number of scenarios. They

then developed a Bayesian procedure to update the forecast distribution during the

later stage and extended their stochastic models to be suitable for recourse action

given the forecast updates.

Regarding the model performance: on one hand, they conducted a numerical

study which shows that the inclusion of multiple arrival-rate scenarios allows the call

centers to meet long-run average QoS targets, while the use of recourse actions help

them to lower long-run average costs; on the other hand, theoretical properties of

the integrated forecasting and scheduling models have not been discussed yet. In
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particular, the main question of interest is: do their models minimize scheduling cost

and satisfy the QoS constraint in the long-run, theoretically? This big question can

be decomposed into three sub-problems:

• P1) to show the consistency of the statistical parametric forecasts with or with-

out later stage Bayesian updates.

• P2) to show the stability of the parametric stochastic programming models in

terms of small perturbations of the model parameters (statistical forecasts).

Since the parametric stochastic programming models are formulated as Integer

Programs (IP), the problem P2) is further decomposed to the following two

problems:

– P2.1) to show the stability of the model IP’s in terms of relaxation to

Linear Programs (LP).

– P2.2) to show the stability of the relaxed LP’s in terms of small perturba-

tions of the LP parameters (statistical forecasts).

This chapter provides detailed analyses to address problem P2.2).

In the following is a summary of the three parametric stochastic models proposed

in Gans et al. (2012). Regarding problem P2.2), we consider the LP relaxations to

the following three IP’s.

• Integer Program (IP) (6) in Gans et al. (2012), that solves to get optimal sched-

ules for the planning horizon given the parametric forecasts for the horizon,

subject to the QoS constraint that expected abandonment rate in the planning

horizon less than a threshold.

• IP (10) in Gans et al. (2012), that solves to get optimal recourse actions for the

later stage in the planning horizon given the early stage schedule and forecast

7



updates, subject to the QoS constraint that expected later stage abandonment

rate less than a threshold.

• IP (12) in Gans et al. (2012), that solves to get optimal schedules for the

planning horizon with recourse given the parametric forecasts for the horizon,

subject to the QoS constraint that expected abandonment rate in the planning

horizon less than a threshold. This model provides optimal schedule before the

planning horizon, consolidating all possible recourse actions for the later stage

before the early stage is observed, compared to (6) and (10) in Gans et al.

(2012).

All the LP relaxations to the above IP’s are driven by the arrival forecasts, in

particular the discretized forecasting distribution. It is non-trivial to substantiate the

existence of optimal solutions to the LP relaxations and that the optimal solutions

are stable with respect to small perturbations of the discretized forecast distribution,

as well as the way it’s discretized. We then address this problem in next section by

providing theoretical stability analysis for the LP relaxations of the above IP’s.

2.2 Model Stability Analysis

Our analysis is based on the findings of Williams (1963) and Robinson (1977).

In particular, Robinson (1977) proves that a necessary and sufficient condition for

the primal and dual optimal solution sets of a solvable, finite-dimensional linear

programming problem to be stable under small but arbitrary perturbations in the

parameters of the problem is that both of these sets are bounded.

With a slight abuse of notation, denote the primal LP as (P): max{cx | Ax ≤
b; x ≥ 0}, and its corresponding dual as (D): min{πb | πA ≥ c}. Then we would like

to recall the theorem:
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Theorem 1 (Robinson (1977), p.440) The following are equivalent:

(a) The sets SP and SD of optimal solutions of (P) and (D) respectively, are

nonempty and bounded. Or equivalently, the conditions R1) and R2) are satisfied:

R1) for every vector y �= 0, y ≥ 0, Ay ≤ 0 =⇒ cy < 0, and

R2) for every vector ρ �= 0, ρ ≥ 0, ρA ≥ 0 =⇒ ρb > 0.

(b) There exists an ε0 > 0 such that for any A′, b′ and c′ with

ε′ ≡ max {||A′ − A||, ||b′ − b||, ||c′ − c||} < ε0,

the two dual problems (P′): max{c′x | A′x ≤ b′; x ≥ 0} and (D′): min{πb′ | πA′ ≥ c′}
are solvable.

If these conditions are satisfied, then there exist constants ε1 ∈ (0, ε0] and γ such

that for any A′, b′ and c′ with ε′ < ε1, any optimal solutions x′ solving (P ′) and u′

solving (D′), one has d[(x′, u′), SP × SD] ≤ γε′.

2.2.1 Simple Stochastic Program

Here’s a version of the IP (6) from Gans et al. (2012). It is a bit different from (6)

in that it introduces an extra set of constraints and an intermediate set of variables,
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αk’s, that will be useful in our analysis.

min
∑

j∈J cjxj

subject to

(
∑

j∈J aijxj)mikn + bikn ≤ αik i ∈ I, k ∈ K, n ∈ Ni∑
i∈I αik ≤ αk k ∈ K∑
k∈K pkαk ≤ α∗λ̄

xj ∈ Z
+ j ∈ J

αik ≥ 0 i ∈ I, k ∈ K
αk ≥ 0 k ∈ K.

(2.1)

Note that, by construction, mikn < 0 and bikn > 0 for all i, k, and n. To avoid

technical distractions, we’ll assume that cj > 0 for all j ∈ J , λik > 0 for all i ∈
I, k ∈ K and that pk > 0 for all k ∈ K. That is, the cost of people working on any

schedule is strictly positive, as is the expected number of arrivals under any of the

problem’s scenarios and their probabilities.

We would like to prove the following proposition so that that the objective value

and αk’s obtained by the optimal solution to the above IP are continuous with respect

to perturbations of the parametric forecasts pk’s and λik’s.

Proposition 2.1 There exist optimal solutions for the LP relaxation of 2.1 and these

optimal solutions are continuous with respect to small but arbitrary perturbations of

the LP relaxation of 2.1.

Proof

We apply Theorem 1 in our proof. To do so, we first massage the LP relaxation into
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a standard form:

min
∑

j∈J cjxj

subject to

(
∑

j∈J aijxj)mikn − αik ≤ −bikn i ∈ I, k ∈ K, n ∈ Ni∑
i∈I αik − αk ≤ 0 k ∈ K∑
k∈K pkαk ≤ α∗λ̄

xj ≥ 0 j ∈ J
αik ≥ 0 i ∈ I, k ∈ K
αk ≥ 0 k ∈ K.

(2.2)

Here’s the vector-matrix form of the above LP

max−cx + 0α1 + 0α2

subject to⎡
⎢⎢⎢⎢⎣
A11 A12 A13

A21 A22 A23

A31 A32 A33

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

x

α1

α2

⎤
⎥⎥⎥⎥⎦ ≤

⎡
⎢⎢⎢⎢⎣

−b
0

α∗λ̄

⎤
⎥⎥⎥⎥⎦

x, α1, α2 ≥ 0.

(2.3)

The decision variables are as follows:

• x, a |J |-vector;

• α1, a |I| · |K|-vector of the αik’s; and

• α2, a |K|-vector of the αk’s.

The right-hand-side has three parts:

• −b, a (
∑

i∈I |Ni|) · |K|-vector, and

• 0, a |K|-vector; and

11



• α∗λ̄, a scalar

and the constraint matrix is made up of the following submatrices, each with di-

mensions that match the corresponding segments of the right-hand side and decision

variables:

1) A11, a matrix of 0’s and mikn’s, where each slope mikn < 0;

2) A12, a matrix of −1’s and 0’s;

3) A13, a matrix of 0’s;

4) A21, a matrix of 0’s;

5) A22, a matrix of 1’s and 0’s;

6) A23 = −I, the negative of the identity matrix;

7) A31, a row vector of 0’s;

8) A32, a row vector of 0’s; and

9) A33, a row vector of pk’s.

For condition R1, we let y = (x, α1, α2) be such that y �= 0 and y ≥ 0. We note

that only α2 = 0 ensures that the left-hand side of the constraint
∑

k∈K pkαk ≤ α∗λ̄ is

not positive. In turn, given α2 = 0 only α1 = 0 ensures that the left-hand sides of the

constraints
∑

i∈I αik − αk ≤ 0 (for all k ∈ K) are not positive. Thus if y �= 0, there

must be an xj > 0 so that −cjxj < 0. Thus cy < 0, and y satisfies the conditions of

R1.

For condition R2, let the sub-vectors of the (row vector) dual variable ρ =

(ρ1, ρ2, ρ3) have the dimensions of the right-hand side b = (−b, 0, α∗λ̄)′ and assume

ρ �= 0, ρ ≥ 0. First we note that, if there is an element ρ1ikn > 0, then

(ρ1, ρ2, ρ3)

⎡
⎢⎢⎢⎢⎣
A11

A21

A31

⎤
⎥⎥⎥⎥⎦ < 0
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since there will be an element mikn < 0 of A11 that is multiplied with ρ1ikn and both

A21 and A31 have all zeros. In this case, R2 is trivially satisfied. If ρ1 = 0 and ρ3 > 0,

then ρ3α∗λ̄ > 0 implies that (ρ1, ρ2, ρ3)(−b, 0, α∗λ̄)′ > 0 and again R2 is satisfied. If

ρ1 = 0 and ρ3 = 0, then there must be a ρ2k > 0, and in this case

(ρ1, ρ2, ρ3)

⎡
⎢⎢⎢⎢⎣
A13

A23

A33

⎤
⎥⎥⎥⎥⎦ < 0

since the kth column of A13 is all 0’s, and the kth column of A23 has a −1’s in the

kth row and 0’s elsewhere. Again, R2 is trivially satisfied in this case.

Thus the LP relaxation (2.2) satisfies R1 and R2 and, and the optimal solutions

are continuous with small but arbitrary perturbations of the LP 2.2. �

2.2.2 Later Stage Recourse Program

Here is a version of the IP (10) in Gans et al. (2012). It is different from (12) in

that it keeps all scenarios in the formulation instead of using the certainty equivalent

formulation and that it introduces an extra set of constraints and intermediate set of

variables, αk’s.
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max − ∑
j∈J

∑
h∈Hj

djhzjh

subject to∑
j∈J

∑
h∈Hj

rijhmiknzjh − αik ≤ −bikn − (
∑
j∈J

aijxj)mikn i ∈ Il, k ∈ K′, n ∈ Ni

∑
i∈Il

αik − αk ≤ 0 k ∈ K′

∑
k∈K′

p′kαk ≤ α̃

∑
h∈Hj

zjh ≤ xj j ∈ J

zjh ∈ Z
+ j ∈ J , h ∈ Hj

αik ≥ 0 i ∈ Il, k ∈ K′

αk ≥ 0 k ∈ K′

(2.4)

Where α̃ =
∑
k∈K′

p′k
∑
i∈Il

(si ·miksi + biksi) is the expected abandonment rate of the

later stage that would have been achieved by the original scheduling policy, and

si ≡
∑
j∈J

aijxj denotes the early stage staffing levels. Without loss of generality, we

assume that xj > 0 for all j ∈ J , otherwise, we could reorganize the schedule set

J to exclude those j’s with xj = 0. Notice that f(λ′ik, μ, θ, n) is non-increasing and

convex in n and positive. Then we have

n∗ ·mikn + bikn ≤ n∗ ·mikn∗ + bikn∗ , for all i ∈ Il, k ∈ K′, n, n∗ ∈ Ni.

n ·mikn + bikn ≥ 0, for all i ∈ Il, k ∈ K′, n ∈ Ni.
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The LP relaxation of (2.4) is as follows,

max − ∑
j∈J

∑
h∈Hj

djhzjh

subject to∑
j∈J

∑
h∈Hj

rijhmiknzjh − αik ≤ −bikn − (
∑
j∈J

aijxj)mikn i ∈ Il, k ∈ K′, n ∈ Ni

∑
i∈Il

αik − αk ≤ 0 k ∈ K′

∑
k∈K′

p′kαk ≤ α̃

∑
h∈Hj

zjh ≤ xj j ∈ J

zjh ≥ 0 j ∈ J , h ∈ Hj

αik ≥ 0 i ∈ Il, k ∈ K′

αk ≥ 0 k ∈ K′

(2.5)

And we make an adjustment of (2.5) by increasing α̃ by an arbitrarily small

positive number δ, that is, to replace α̃ by α∗ = α̃+ δ. By making such adjustment,

we allow the QoS constraint to be violated for a little bit. Then we consider the
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modified LP of (2.5):

max − ∑
j∈J

∑
h∈Hj

djhzjh

subject to∑
j∈J

∑
h∈Hj

rijhmiknzjh − αik ≤ −bikn − (
∑
j∈J

aijxj)mikn i ∈ Il, k ∈ K′, n ∈ Ni

∑
i∈Il

αik − αk ≤ 0 k ∈ K
∑
k∈K′

p′kαk ≤ α∗

∑
h∈Hj

zjh ≤ xj j ∈ J

zjh ≥ 0 j ∈ J , h ∈ Hj

αik ≥ 0 i ∈ Il, k ∈ K′

αk ≥ 0 k ∈ K′,
(2.6)

and prove the stability of the optimal solution to the LP (2.6). We would like to

make the following proposition:

Proposition 2.2 There exist optimal solutions to the LP (2.6), and the optimal

solutions are stable under small perturbations of the LP (2.6).

Proof

We apply Theorem 1 in our proof. Specifically, we will show that R1) and R2) hold

for LP (2.6).
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Denote the matrix form of (2.6) by

max − dz

subject to ∑
j∈J

|Hj| |Il| × |K′| |K′|⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∑
i∈Il

|K′||Ni| (miknrijh)

−IK ⊗ 1N1

. . .

−IK ⊗ 1NIl

|K′| IK . . . IK −IK

1 p′1 . . . p′K

|J |
1T
H1

. . .

1T
HJ

⎡
⎢⎢⎢⎢⎣

z

α(1)

α(2)

⎤
⎥⎥⎥⎥⎦ ≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

g

0

α∗

x

z,α(1),α(2) ≥ 0

(2.7)

Where d = (d11, . . . , d1H1 , . . . , dJ 1, . . . , dJHJ ), z = (z11, . . . , z1H1 , . . . , zJ 1, . . . , zJHJ )
T ,

α(1) = (α11, . . . , α1K, . . . , αIl1, . . . , αIlK)
T , α(2) = (α1, . . . , αK)T . Further denote the

matrix form as

max − dz

subject to⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 A13

A21 A22 A23

A31 A32 A33

A41 A42 A43

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

z

α(1)

α(2)

⎤
⎥⎥⎥⎥⎦ ≤ b

z,α(1),α(2) ≥ 0.

(2.8)

And we will show that R1) and R2) holds for the above LP (2.8).
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For condition R1), let y =

⎡
⎢⎢⎢⎢⎣

z

α(1)

α(2)

⎤
⎥⎥⎥⎥⎦, and y ≥ 0.

(A41, A42, A43)y ≤ 0 ⇒ z = 0.

(A31, A32, A33)y ≤ 0 ⇒ α(2) = 0,

(A21, A22, A23)y ≤ 0 ⇒ α(1) = 0,

Then y = 0 and R1) holds.

For condition R2), the proof is more complex. Firstly LP (2.7) is feasible. In

particular, zjh = 0, αik = si ·miksi+biksi , αk =
∑
i∈Il

αik form a feasible solution to (2.7).

Let zjh, αik, and αk denote any feasible solutions to (2.7). Let ρ = (ρ(1),ρ(2), ρ(3),ρ(4))

such that ρ ≥ 0, ρ �= 0 and ρA ≥ 0. Notice that ρA ≥ 0 is equivalent to the following

three inequalities.

∑
ikn

ρ
(1)
iknmiknrijh + ρ

(4)
j ≥ 0, j ∈ J (2.9)

−
∑
n

ρ
(1)
ikn + ρ

(2)
k ≥ 0, i ∈ Il, k ∈ K′ (2.10)

−ρ(2)k + p′kρ
(3) ≥ 0, k ∈ K′. (2.11)

To show that R2) holds, we consider four situations:

1) ρ(1) = 0 and ρ(2) = 0.

There is an element in (ρ(3),ρ(4)) positive, then ρb = ρ(3)α∗ + ρ(4)x > 0.

2) ρ(1) = 0 and ρ(2) �= 0.

By (2.11) we have ρ(3) > 0. Then ρb ≥ ρ(3)α∗ > 0.

3) ρ(1) �= 0 and ρ(2) = 0.

Then (2.10) does not hold.
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4) ρ(1) �= 0 and ρ(2) �= 0.

Firstly, by (2.11) we have ρ(3) > 0.

Notice in the primal that xj ≥
∑
h

zjh, then

ρb =
∑
i

∑
k

∑
n

ρ
(1)
ikn

[
−bikn − (

∑
j

aijxj)mikn

]
+ ρ(3)α∗ +

∑
j

ρ
(4)
j xj

≥
∑
i

∑
k

∑
n

ρ
(1)
ikn

[
−bikn − (

∑
j

aijxj)mikn

]
+ ρ(3)α∗ +

∑
j

∑
h

ρ
(4)
j zjh,(2.12)

where equality holds if and only if ρ
(4)
j xj = ρ

(4)
j

∑
h

zjh, j ∈ J .

In the primal,

[∑
j

aijxj +
∑
j

∑
h

rijhzjh

]
mikn + bikn ≤ αik, then

(2.12) ≥
∑
i,k,n

ρ
(1)
ikn

[∑
j,h

rijhmiknzjh − αik

]
+ ρ(3)α∗ +

∑
j,h

ρ
(4)
j zjh, (2.13)

where equality holds if and only if

ρ
(1)
ikn

([∑
j

aijxj +
∑
j,h

rijhzjh

]
mikn + bikn

)
= ρ

(1)
iknαik, i ∈ Il, k ∈ K′, n ∈ Ni.

By (2.9), we have

(2.13) =
∑
j,h

zjh

[
ρ
(4)
j +

∑
i,k,n

ρ
(1)
iknmiknrijh

]
+ ρ(3)α∗ −

∑
i,k,n

ρ
(1)
iknαik

≥ ρ(3)α∗ −
∑
i,k,n

ρ
(1)
iknαik, (2.14)

where equality holds if and only if zjh

[
ρ
(4)
j +

∑
i,k,n

ρ
(1)
iknmiknrijh

]
= 0, j ∈ J , h ∈

Hj.

By the second and third constraints in the primal, we have

(2.14) ≥ ρ(3)
∑
k

p′kαk −
∑
i,k,n

ρ
(1)
iknαik

≥ ρ(3)
∑
k,i

p′kαik −
∑
i,k,n

ρ
(1)
iknαik (2.15)
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where equality holds if and only if α∗ =
∑
k

p′kαk and
∑
i

αik = αk, k ∈ K′.

By (2.10) and (2.11), we have

(2.15) ≥ 0,

where equality holds if and only if αkρ
(2)
k = αkp

′
kρ

(3), k ∈ K′ and αikρ
(2)
k =

αik

∑
n

ρ
(1)
ikn, i ∈ Il, k ∈ K′.

Hence, ρb ≥ 0 and equality holds if and only if the following equalities hold at

the same time.

ρ
(4)
j xj = ρ

(4)
j

∑
h

zjh, j ∈ J . (2.16)

ρ
(1)
ikn

([∑
j

aijxij +
∑
j,h

rijhzjh

]
mikn + bikn

)
= ρ

(1)
iknαik, i ∈ Il, k ∈ K′, n ∈ Ni.

(2.17)

zjh

[
ρ
(4)
j +

∑
ikn

ρ
(1)
iknmiknrijh

]
= 0, j ∈ J , h ∈ Hj

(2.18)∑
k

p′kαk = α∗. (2.19)

αk =
∑
i

αik, k ∈ K′. (2.20)

αikρ
(2)
k = αik

∑
n

ρ
(1)
ikn, i ∈ Il, k ∈ K. (2.21)

αkρ
(2)
k = αkp

′
kρ

(3), k ∈ K′. (2.22)
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Multiply both sides of (2.19) by ρ(3) which is positive:

ρ(3)α∗ (2.19)
= ρ(3)

∑
k

p′kαk

(2.22)
=

∑
k

ρ
(2)
k αk

(2.20)
=

∑
i,k

ρ
(2)
k αik

(2.21)
=

∑
i,k,n

ρ
(1)
iknαik

(2.17)
=

∑
i,k,n

ρ
(1)
ikn

[
(
∑
j

aijxj)mikn + bikn

]
+

∑
i,k,n

ρ
(1)
ikn

∑
j,h

rijhzjhmikn

(2.18)
=

∑
i,k,n

ρ
(1)
ikn

[
(
∑
j

aijxj)mikn + bikn

]
−

∑
j,h

zjhρ
(4)
j

(2.16)
=

∑
i,k,n

ρ
(1)
ikn

[
(
∑
j

aijxj)mikn + bikn

]
−

∑
j

ρ
(4)
j xj

≤
∑
ikn

ρ
(1)
ikn(simiksi + biksi)−

∑
j

ρ
(4)
j xj

≤
∑
ikn

ρ
(1)
ikn(simiksi + biksi)

(2.10)
≤

∑
i,k

(simiksi + biksi)ρ
(2)
k

(2.11)
≤ ρ(3)

∑
i,k

(simiksi + biksi)p
′
k.

= ρ(3)α̃

which contradicts the definition of α∗. Hence there must be

ρb > 0.

�

Remark 1 By the proof of Proposition (2.2), we have the following properties for

the LP (2.5) under perturbations of the arrival rate forecasts.

• For any perturbation of the arrival forecast distribution, the primal for LP (2.5)

is always feasible.

21



• For any perturbation of the arrival forecast distribution such that the p′k’s re-

main positive:

R1) holds. Then by Theorem 1 in Williams (1963), the dual is feasible. Apply-

ing Theorem 2 in Williams (1963), there exist optimal solutions to both the pri-

mal and dual. The optimal solution set of the primal is bounded and the optimal

solution set of the dual is unbounded. In particular, the ρ = (ρ(1),ρ(2), ρ(3),ρ(4))

defined as follows satisfies ρ ≥ 0, ρ �= 0 , ρA ≥ 0 and ρb = 0:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
(1)
ikn =

⎧⎪⎪⎨
⎪⎪⎩

p′k n = si,

0 n �= si,

i ∈ Il, k ∈ K′,

ρ
(2)
k = p′k, k ∈ K′,

ρ(3) = 1,

ρ
(4)
j = 0, j ∈ J .

2.2.3 Two-Stage Recourse Program

Here is a version of the IP (12) in the paper Gans et al. (2012). It keeps all

scenarios in the formulation instead of using the certainty equivalent formulation and

it introduces an extra set of constraints and intermediate set of variables, αk’s, which
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is useful in our analysis.

max −∑
j

cjxj −
∑
k

pk
∑
j,h

djhzjhk

subject to

(
∑
j

aijxj)mikn − αik ≤ −bikn, i ∈ Ie, n ∈ Ni

(
∑
j

aijxj +
∑
j,h

rijhzjkh)mikln − αikl ≤ −bikln, i ∈ Il, k ∈ K, l ∈ Lk, n ∈ Ni

∑
i∈Ie

αik +
∑
i∈Il

∑
l∈Lk

pklαikl − αk ≤ 0 k ∈ K
∑
k

pkαk ≤ α∗λ̄

∑
h

zjkh − xj ≤ 0 j ∈ J , k ∈ K

xj ∈ Z
+ j ∈ J

zjkh ∈ Z
+ j ∈ J , k ∈ K, h ∈ Hj

αik ≥ 0 i ∈ Ie, k ∈ K
αikl ≥ 0 i ∈ Il, k ∈ K, l ∈ Lk

αk ≥ 0 k ∈ K.
(2.23)

Notice that cj + djh > 0, j ∈ J , h ∈ Hj, which denotes the final cost for schedule j

when recourse action h ∈ Hj is taken. For any i, there is at least one j such that

aij = 1, which enables the program to staff interval i. Also notice that mikn < 0,

i ∈ Ie, k ∈ K, n ∈ Ni and mikln < 0, i ∈ Il, k ∈ K, l ∈ Lk, n ∈ Ni.
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Then consider the LP relaxation of (2.23)

max −∑
j

cjxj −
∑
k

pk
∑
j,h

djhzjhk

subject to

(
∑
j

aijxj)mikn − αik ≤ −bikn, i ∈ Ie, n ∈ Ni

(
∑
j

aijxj +
∑
j,h

rijhzjkh)mikln − αikl ≤ −bikln, i ∈ Il, k ∈ K, l ∈ Lk, n ∈ Ni

∑
i∈Ie

αik +
∑
i∈Il

∑
l∈Lk

pklαikl − αk ≤ 0 k ∈ K
∑
k

pkαk ≤ α∗λ̄

∑
h

zjkh − xj ≤ 0 j ∈ J , k ∈ K

xj ≥ 0 j ∈ J
zjkh ≥ 0 j ∈ J , k ∈ K, h ∈ Hj

αik ≥ 0 i ∈ Ie, k ∈ K
αikl ≥ 0 i ∈ Il, k ∈ K, l ∈ Lk

αk ≥ 0 k ∈ K.
(2.24)

We would like to make the following proposition for LP (2.24).

Proposition 2.3 The LP relaxation (2.24) is solvable. And the optimal solutions of

the primal and dual are stable under perturbations of this LP.

Proof
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The matrix form of (2.24)

max −∑
j

cjxj −
∑
k

pk
∑
jh

djhzjkh

subject to

|J | ∑
j∈J

|K| · |Hj| |Ie| · |K| |Il|
∑
k∈K

|Lk| |K|
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∑
i∈Ie

|K| · |Ni| A11 A12 A13 A14 A15

∑
i∈Il

(
∑
k∈K

|Lk|)|Ni| A21 A22 A23 A24 A25

|K| A31 A32 A33 A34 A35

1 A41 A42 A43 A44 A45

|J | · |K| A51 A52 A53 A54 A55

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x

z

α(1)

α(2)

α(3)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b(1)

b(2)

0

α∗λ̄

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x, z,α(1),α(2),α(3) ≥ 0.

(2.25)

where

• A11 = (aijmikn).

• A13 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−IK ⊗ 1N1

−IK ⊗ 1N2

. . .

−IK ⊗ 1NIe

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

• A21 = (aijmikln).

• A22 = (rijhmikln).

• A24 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−I K∑

k=1

Lk

⊗ 1N1

−I K∑

k=1

Lk

⊗ 1N2

. . .

−I K∑

k=1

Lk

⊗ 1NIl

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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• A33 = 1T
Ie ⊗ IK.

• A34 = 1T
Il⊗P, whereP =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p11 . . . p1L1

p21 . . . p2L2

. . .

pK1 . . . pKLk

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

• A35 = −IK.

• A45 = [p1, p2, . . . , pK].

• A51 = −IJ ⊗ 1K.

• A52 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

IK ⊗ 1T
H1

IK ⊗ 1T
H2

. . .

IK ⊗ 1T
HJ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

• The other Aij’s are all zero matrices.

For condition R1), let y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x

z

α(1)

α(2)

α(3)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, y ≥ 0, y �= 0.

[A41, A42, A43, A44, A45]y ≤ 0 ⇒ α(3) = 0.

[A31, A32, A33, A34, A35]y ≤ 0 and α(3) = 0 ⇒ α(1) = 0,α(2) = 0.

If z = 0, then there must be x �= 0 and cy = −∑
j

cjxj < 0, and R1 holds.

If z �= 0,

[A51, A52, A53, A54, A55]y ≤ 0 ⇒
∑
h∈Hj

zjkh ≤ xj, j ∈ J , k ∈ K.
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Then,

cy = −
∑
j

cjxj −
∑
k

pk
∑
j,h

djhzjkh

= −
∑
j

cj
∑
k

pkxj −
∑
k

pk
∑
j,h

djhzjkh

≤ −
∑
j

cj
∑
k

pk
∑
h

zjkh −
∑
k

pk
∑
j,h

djhzjkh

= −
∑
j,k,h

pkzjkh[cj + djh]

< 0,

and R1 holds.

For condition R2), let ρ = (ρ(1),ρ(2),ρ(3), ρ(4),ρ(5)), ρ ≥ 0.

ρ[AT
11, A

T
21, A

T
31, A

T
41, A

T
51]

T ≥ 0 ⇒ ρ(1) = 0,ρ(2) = 0,ρ(5) = 0.

If ρ(4) = 0,

ρ[AT
15, A

T
25, A

T
35, A

T
45, A

T
55]

T ≥ 0 ⇒ ρ(3) = 0,

then ρ = 0 and R2 automatically holds.

If ρ(4) �= 0, then ρb = ρ(4)α∗λ̄ > 0, and R2 holds.

�

2.2.4 A More Generalized Model for the Simple Stochastic Program

We now consider a more generalized format of the simple stochastic program and

derive the stability results.

Let P (λ) be a probability distribution of λ = (λ1, . . . , λI) ∈ Λ := R
I
+. f(n, λ) is

the abandonment proportion function under staffing level n and arrival rate λ, where

n ∈ Z+ and λ ∈ R+. We extend the definition of f(., λ) onto R+ for any λ by linearly
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interpolating adjacent points in n ∈ Z+. And we refer to f(n, λ) as the interpolated

functions on R+ ×R+ from now on.

Our stochastic program is

min
∑
j

cjxj

subject to ∑
i

∫
λif(ni(x), λi)dP (λi) ≤ α∗ ∑

i

∫
λidP (λi),

x ∈ R
J
+.

where ni(x) =
∑
j

aijxj is the staffing level on the interval i under the schedule vector

x = (x1, . . . , xJ), aij = 1 if schedule j has an agent working on the interval i and

aij = 0 otherwise.

We rewrite the above formulation in a more general form as follows:

min

⎧⎨
⎩F0(x) : x ∈ X,

∫
Λ

F1(x, λ)dP (λ) ≤ 0

⎫⎬
⎭ , (2.26)

where

X = R
J
+,

F0(x) = F0(x, λ) =
∑
j

cjxj,

F1(x, λ) =
∑
i

λi[f(ni(x), λi)− α∗].

Denote the set of all Borel probability measures on Λ by P(Λ), the feasible set of

(2.26) by X (P ), the optimal value by ϑ(P ) and the solution set of (2.26) by X∗(P ),

i.e.,

X (P ) :=

{
x ∈ X :

∫
F1(x, λ)dP (λ) ≤ 0

}
,

ϑ(P ) := inf {F0(x) : x ∈ X (P )} ,

X∗(P ) := {x ∈ X (P ) : F0(x) = ϑ(P )} .
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For any nonempty and open subset U ⊂ R
J , consider the following sets,

FU := {Fj(x, .) : x ∈ X ∩ clU, j = 0, 1} ,

PFU
(Λ) := PFU

:= {Q ∈ P(Λ) : −∞ <

∫
Λ

inf
x∈X∩rB

Fj(x, λ)dQ(λ) for each r > 0

and sup
x∈X∩clU

∫
Λ

Fj(x, λ)dQ(λ) <∞ for j = 0, 1},

For any Q ∈ PFU
(Λ), denote

XU(Q) :=

⎧⎨
⎩x ∈ X ∩ clU :

∫
Λ

F1(x, λ)dQ(λ) ≤ 0

⎫⎬
⎭ ,

ϑU(Q) := inf {F0(x) : x ∈ XU(Q)} ,

X∗
U(Q) := {x ∈ XU(Q) : F0(x) = ϑU(Q)} .

Then we have the following theorem.

Theorem 2 Let P (λ) be a probability distribution of λ such that EP (λ) <∞. Then

X∗(P ) is non-empty and bounded. Let U be an open bounded neighborhood of X∗(P ).

Furthermore, assume that the sequence of probability distributions Pn(λ) satisfies

the following conditions:

1. Pn is weakly convergent to P .

2. sup
n

{∫
λ

(
∑
i

λi)
1+εdPn(λ)

}
is bounded for some ε > 0.

Then the sequence (ϑU(Pn)) converges to ϑ(P ), and

lim
n→∞

sup
x∈X∗

U (Pn)

d(x,X∗(P )) = 0.

Proof

We first show that f(., .) has the following properties:
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• f(n, λ) is continuous and strictly decreasing w.r.t. n for any λ > 0. f(n, λ) → 0,

as n→ ∞, f(0, λ) = 1 for any λ > 0.

• f(n, λ) is continuous w.r.t. λ for all n ∈ Z+ and λ > 0. Then f(n, λ) :=

(�n�− n)f(�n�, λ) + (n−�n�)f(�n�, λ) is continuous w.r.t. λ for all n ≥ 0 and

λ > 0.

• ∂f

∂+n
(n, λ) := f(�n+1�, λ)−f(�n�, λ) < 0 is continuous w.r.t. λ, and

∂f

∂−n
(n, λ) :=

f(�n�, λ)− f(�n− 1�, λ) < 0 is continuous w.r.t. λ, for all λ > 0, n ≥ 0.

We use Theorem 5 and Theorem 6 in Romisch (2003) to prove our theorem. In

the following, we verify that the conditions of Theorem 5 and Theorem 6 in Romisch

(2003) hold.

Our formulation (2.26) is of the same form as (1.1) in Romisch (2003), where X

is closed, Λ is a closed subset of RI . Next we show that the functions Fj are random

lower semicontinuous functions for j = 0, 1. Consider the epigraphical mapping

λ �→ epiFj(., λ) := {(x, r) : Fj(x, λ) ≤ r}. When j = 0, it is obvious that this

epigraphical mapping is closed-valued and measurable. When j = 1, F1(x, λ) is

continuous w.r.t. λ, so F1(x, .) is measurable for any fixed x. For any limit point (x̂, r̂)

of epiF1(., λ), there exists a sequence (xn, rn) ∈ epiF1(., λ) such that (xn, rn) → (x̂, r̂)

as n → ∞. Notice that F1(xn, λ) ≤ rn, and F1(., λ) is continuous w.r.t. x, then

F1(x̂, λ) ≤ r̂. So the limit point (x̂, r̂) ∈ epiF1(., λ), and epiF1(., λ) is closed. The

σ-filed on R
J
+ × R can be generated by the sets of the following form

[0, x′1]× . . .× [0, x′J ]× (−∞, r′].

Since F1(x, λ) is continuous and monotone w.r.t. xj, j = 1, . . . , J and λ,

([0, x′1]×· · ·×[0, x′J ]×(−∞, r′])−1 = ([0, x′1]×· · ·×[0, x′J ]×{r′})−1 = ({x′1}×· · ·×{x′J}×{r′})−1.

({x′1} × · · · × {x′J} × {r′})−1 is measurable because F1((x
′
1, . . . , x

′
J), .) is measurable.
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Then the epigraphical mapping is measurable when j = 1. Hence by definition, the

functions Fj are random lower semicontinuous functions for j = 0, 1.

We now verify the conditions of Theorem 5 in Romisch (2003).

For any open bounded set U , we have the followings

inf
x∈X∩rB

F0(x) > −∞, ∀r > 0.

∫
Λ

inf
x∈X∩rB

F1(x, λ)dP (λ) ≥
∫
Λ

∑
i

λi(−α∗)dP (λ) > −∞.

sup
x∈X∩clU

F0(x) = sup
x∈X∩clU

c · x <∞.

sup
x∈X∩clU

∫
Λ

F1(x, λ)dP (λ) ≤
∫
Λ

∑
i

λi[1− α∗]dP (λ),

then P ∈ PFU
.

Next we show that X∗(P ) is non-empty and bounded. Denote

g(x) :=

∫ ∑
i

λi[f(ni(x), λi)− α∗]dP (λ),

and g(x) is continuous w.r.t. x since f(, .λ) is continuous w.r.t. x and by dominated

convergence theorem. Furthermore,

lim
d→∞

g(d
−→
1 ) = −α∗

∫ ∑
λidP (λ) < 0,

by dominated convergence theorem. Then there exists some d′ such that g(d′
−→
1 ) < 0

and X(P ) is non-empty. In addition, X(P ) = {x : g(x) ≤ 0} is a closed set because

g(x) is continuous. If X(P ) has only one element, then X∗(P ) = X(P ) �= ∅. If X(P )

has two or more elements, then let x1, x2 ∈ X(P ), such that cx1 ≤ cx2.

X(P ) = [X(P ) ∩ {x : cx ≤ cx2}] ∪ [X(P ) ∩ {x : cx > cx2}]

:= X ′ ∪X ′′
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where X ′, X ′′ are disjoint, and X ′ is non-empty, closed, and bounded.

V(P ) := inf{cx : x ∈ X(P )} = inf{cx : x ∈ X ′}.

There exists some x ∈ X ′ such that cx = inf{cx : x ∈ X ′}. Then cx = V(P ) and

X∗(P ) is non-empty and bounded.

F0(x) = cx is a linear function about x, so it is Lipschitz continuous. So the

second condition of Theorem 5 in Romnisch (2003) is satisfied.

For the third condition in Theorem 5 in Romnisch (2003). Notice that g(x) is

continuous and non-increasing w.r.t. xj, j = 1, . . . , J .

g(0) =

∫ ∑
i

λi(1− α∗)dP (λ) = (1− α∗)
∑
i

E(λi) > 0.

lim
xj→∞,i∈J

g(x) =

∫ ∑
λi(0− α∗)dP (λ) = −α∗ ∑E(λi) < 0,

by dominated convergence theorem (because f(n, λ) → 0 as n → ∞). Denote c0 =

g(0) > 0, and c∞ = lim
xj→∞,i∈J

g(x) < 0. For any x0 ∈ X = R
J
+, define

hx0(d) :=

⎧⎪⎪⎨
⎪⎪⎩
g(d · x0), 0 ≤ d ≤ 1

g(x0 + (d− 1) · −→1 ), d ≥ 1,

where d ∈ [0,∞). Then hx0(d) is continuous, non-increasing w.r.t. d, and hx0(0) = c0

and hx0(∞) = c∞, for all x0 ∈ X. Let ε > 0, such that ε < min{|c0|, |c∞|}. There

exists dε > 1, such that

h0(dε) = −ε.

Notice that ni(x0 + (dε − 1)
−→
1 ) ≥ ni(

−→
0 + (dε − 1)

−→
1 ) for all x0 ∈ X, then we have

hx0(dε) ≤ h0(dε) = −ε, for all x0 ∈ X. Then

hx0([0, dε]) ⊇ h0([0, dε]) ⊇ [−ε, ε], ∀x0 ∈ X.
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For any x̄ ∈ X∗(P ), consider a set A := {x′ ∈ X : x′ = x + d
−→
1 ,where x ∈ X, ||x −

x̄|| ≤ ε, d ∈ [0, dε]}. The set A is bounded, then there exists n′ ∈ Z+ such that

ni(A) ⊂ [0, n′], i ∈ I.

Let λ′, λ′′ be such that 0 < λ′ < λ′′ <∞. Then
∂f

∂+n
(n, λ) < 0, and

∂f

∂−n
(n, λ) <

0, for all λ with λ′ ≤ λ ≤ λ′′, and for all n ∈ [0, n′]. Since
∂f

∂+n
and

∂f

∂−n
are

continuous w.r.t. λ for any fixed n, then

an := sup
λ∈[λ′,λ′′]

{
∂f

∂+n
(n, λ),

∂f

∂−n
(n, λ)

}
< 0, ∀n ∈ [0, n′].

Notice that f(n, λ) is the linear interpolated function w.r.t. n for any fixed λ, then

a := sup
n∈[0,n′],λ∈[λ′,λ′′]

{
∂f

∂+n
(n, λ),

∂f

∂−n
(n, λ)

}

= sup
n∈[0,n′]∩Z,λ∈[λ′,λ′′]

{
∂f

∂+n
(n, λ),

∂f

∂−n
(n, λ)

}
= max

n∈[0,n′]∩Z
{an}

< 0

Thus we have

f(n1, λ)− f(n2, λ) ≥ |a|(n2 − n1)

for all n1 ∈ [0, n′] and n2 ∈ [0, n′] such that n1 ≤ n2, and for all λ ∈ [λ′, λ′′].

For any x ∈ X and y with ||x− x̄|| < ε and |y| < ε, If g(x) ≤ y, then x ∈ Xy(P )

and d(x,Xy(P )) = 0. If g(x) > y, then there exists some d with 1 < d ≤ dε such that
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y = hx(d) = g(x+ (d− 1)
−→
1 ). Then

max{0,
∫
F1(x, λ)dP (λ)− y}

= g(x)− y

= g(x)− g(x+ (d− 1)
−→
1 )

=

∫ ∑
i

λi

[
f(ni(x), λi)− f(ni(x+ (d− 1)

−→
1 ), λi)

]
dP (λ)

≥
∫

{λ:λi∈[λ′,λ′′],i∈I}

∑
i

λi

[
f(ni(x), λi)− f(ni(x+ (d− 1)

−→
1 ), λi)

]
dP (λ)

≥
∫

{λ:λi∈[λ′,λ′′],i∈I}

∑
i

λi|a|[ni(x+ (d− 1)
−→
1 )− ni(x)]

=

∫
{λ:λi∈[λ′,λ′′],i∈I}

∑
i

λi|a|(d− 1)ni(
−→
1 )dP (λ)

:= a∗(d− 1)

= a∗(d− 1)
||−→1 ||
||−→1 ||

=
a∗

||−→1 ||
d(x, x+ (d− 1)

−→
1 ),

where

a∗ = |a| ·
∫

{λ:λi∈[λ′,λ′′],i∈I}

∑
i

λini(
−→
1 )dP (λ) > 0.

Thus we have

d(x, x+ (d− 1)
−→
1 ) ≤ ã ·max

{
0,

∫
F1(x, λ)dP (λ)− y

}
,

where ã =
||−→1 ||
a∗

only depends on ε. Also notice that

x+ (d− 1)
−→
1 ∈ Xy(P ),

then we have

d(x,Xy(P )) ≤ ã ·max

{
0,

∫
F1(x, λ)dP (λ)− y

}
.
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And the third condition of Theorem 5 is satisfied.

Next we show the condition in Theorem 6 that FR
U is a P-uniformity class for

large R > 0 ,is valid. Sufficient conditions for F being a P-uniformity class is that:

F is uniformly bounded and it holds that P({λ : F is not equicontinuous at λ}) = 0.

U is an open bounded neighborhood of X∗(P ). Then F0(x)|X∩clU =
∑
j

cjxj|X∩clU

is bounded. In addition,

∑
i

λi(−α∗) ≤ F1(x, λ) ≤
∑
i

λi(1− α∗), ∀x ∈ X.

Then the class of truncated functions FR
U = FU ||λ|≤R is uniformly bounded.

U is an open bounded set, then there exists n̄ ∈ Z such that ni(U) ⊆ [0, n̄], ∀i.
Let N̄ = [0, n̄] ∩ Z. Since f(n, .) is continuous with respect to λ, then for any

λ > 0, ε > 0, and n ∈ N̄ , there exists δn > 0, such that |f(n, λ′) − f(n, λ)| < ε

holds for any λ′ such that |λ′ − λ| < δn. Then |f(n, λ′) − f(n, λ)| < ε holds for

any λ′ such that |λ′ − λ| < δ := min
n∈N̄

{δn} and for all n ∈ N̄ . Since f(n, λ) is

the linear interpolation of f(n, λ)|{n∈Z+} for any fixed λ, then |f(n, λ′) − f(n, λ)| ≤
max{|f(�n�, λ′) − f(�n�, λ)|, |f(�n�, λ′) − f(�n�, λ)|} < ε holds for all λ′ such that

|λ′ − λ| < δ and for all n ∈ [0, n̄]. Hence we have showed that

{f(n, .) : n ∈ [0, n̄]}

is equicontinuous at all λ > 0. The identity function I(λ) = λ is continuous, so we

have

{I(.)f(n, .) : n ∈ [0, n̄]}

is equicontinuous at all λ > 0. Since ni(x) is a linear function about x and ni(U) ∈
[0, n̄], then

{I(.)f(ni(x), .) : x ∈ X ∩ clU, i ∈ I}
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is equicontinuous at all λ > 0. Since F1(x, λ) =
∑
i

I(λi)[f(n(x), λi)− α∗], then

{F1(x, .) : x ∈ X ∩ clU}

is equicontinuous at all λ > 0. Then FR
U is equicontinuous at all λ > 0, and we have

P{FR
U is not equicontinuous at λ} = 0.

We now verify the condition in Theorem 6 that FU is a uniformly integrable with

respect to {Pn : n ∈ N}. FU is uniformly integrable if the moment condition

sup
n∈N

sup
F∈FU

∫
|F (λ)|1+εdPn(λ) <∞

holds for some ε > 0.

FU = {F0(x) : x ∈ X ∩ clU} ∪ {F1(x, .) : x ∈ X ∩ clU}

where {F0(x) : x ∈ X ∩ clU} ⊆ FU is uniformly bounded by some R0. With the

assumption of our theorem,

sup
n

∫
(
∑

λi)
1+εdPn(λ)

is bounded by some R1 for some ε > 0 and notice that,

|F1(x, λ)|1+ε ≤ max{α∗, 1− α∗}1+ε(
∑
i

λi)
1+ε,

we have

sup
n

sup
F∈FU

∫
|F (λ)|1+εdPn(λ)

≤ sup
n

max

{
R0,max{α∗, 1− α∗}1+ε

∫
(
∑

λi)
1+εdPn(λ)

}
≤ R0 ∨ (max{α∗, 1− α∗}1+εR1)

< ∞
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Hence all the conditions in Theorem 5 and Theorem 6 hold, and we have proved

our theorem.

�

2.3 Discussion and Future Work

The current definition of α̃ in Section 2.2.2 is natural and straightforward, which

however does not ensure stability of the optimal solutions under arbitrary pertur-

bations of model parameters. The LP (2.5) is similar to the example of Robinson

(1977) (Page 443) in that the primal constraints are not regular although the dual con-

straints are. It’s demonstrated in Robinson (1977) that the LP with such constraints

can behave very badly indeed, even due to rounding parameters. Nevertheless, per-

turbations of the parametric forecasts actually are not “arbitrary” perturbations,

which at least guarantees the existence of optimal solutions. Thus the framework we

applied from Robinson (1977) can be too “general” in our concerned context.

Future work includes further exploring the stability features of LP (2.5), which

requires extra knowledge in math programming theories. And more generally, one

may also consider using other definitions of α̃.

Statistical features of the parametric forecasts are to be examined (Problem P1).

In particular, we are interested in proving consistency property of the parametric

forecasts with and without early stage updates. Meanwhile, the stability of IP’s with

respect to LP relaxations are to be analyzed (Problem P2.1).
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3 Forecasting and Staffing Call Centers with Multiple Arrival Streams

In this chapter we are concerned with forecasting and staffing call centers with

multiple uncertain arrival customer streams. In the statistical forecasting stage,

Ibrahim and L’Ecuyer (2012) built linear mixed models to jointly forecast the ar-

rival counts of two arrival streams. They performed numerical comparison between

their bi-stream models and single-stream models on real call center data, but failed to

explain the fact that their bi-stream models had no solid improvement over the single-

stream models, although there is significant dependence between the two streams. In

the staffing/scheduling stage, many operations research/management papers use skill

based routing to deal with multiple uncertain arrival stream problem, among which

Gurvich et al. (2010) proposed a chance-constraint approach.

In the following sections, we combine the statistical forecasting stage and the

operational staffing stage together to form a complete solution to the staffing problem

with multiple uncertain arrival streams. Our work is unique because:

• We are the first, to the best of our knowledge, to fill the gap between the fore-

casting stage and the staffing stage by completely solving the multiple arrival

stream staffing problem. In particular, the benefits of combining the two stages

include: we gain operational assessment of the statistical forecasting models

(traditional forecasting papers only provide statistical evaluations for the point

forecast accuracy), which is more informative in practice; we gain realistic as-

sessment of the staffing policy, which helps making the staffing policy suitable

for real life situations.
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• We provide theoretical and numerical analysis showing how the benefit of in-

corporating inter-stream dependence varies by the type and strength of the

inter-stream dependence, in both forecasting and staffing stages. The way we

consider the inter-stream dependence makes more general sense compared with

Ibrahim and L’Ecuyer (2012), and their numerical results are natural outcomes

of our findings.

3.1 Literature Review

We now review the relevant literature on forecasting and staffing call centers.

Most important are good call center review articles including Gans et al. (2003) and

Aksin et al. (2007).

There are many papers related to forecasting call arrivals and arrival rate uncer-

tainty. Recent work includes Avramidis et al. (2004), Brown et al. (2005), Weinberg

et al. (2007) and Shen and Huang (2008). More relevantly, Aldor-Noiman et al.

(2010) proposed an additive Gaussian linear mixed effect model for a single arrival

stream. Ibrahim and L’Ecuyer (2012) consider a similar additive mixed effect model

and extend it to incorporate two arrival streams. In their models, the transformed

count is decomposed into the day-of-week effect, within-day time interval effect, the

interaction term, a random daily effect and a Gaussian error as follows:

X i
d,t = αi

wd
+ βi

t + τ iwd,t
+ γid + eid,t. (3.1)

They achieve the forecasts by modeling the random effect γd through an AR(1) time

series structure. In their additive model, all the time intervals in a forecast day

have the same random effect. The major difference between our multiplicative model

and their additive model is that in the multiplicative model, a time interval has a

random effect which is proportional to its arrival rate magnitude. In this way, the
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time intervals with fewer average arrivals would have a less random effect and vice

versa.

Ibrahim and L’Ecuyer (2012) consider two ways of modeling the dependence be-

tween two arrival streams. In their first model, they assume dependence on the

random daily effect. In particular, the random effect γid in model 3.1 only depends

on its own first order lag term γid−1, and the white noise of the time series γ1d and γ2d

are correlated. In their second model the dependence is modeled by the correlation

between the within day error term e1d,t and e2d,t. In our formulation, we model the

dependence in a more general form, which covers but not limited to, both the above

types of dependence. We also theoretically demonstrate that their first bivariate

model provides no benefits in point forecasts, which coheres their numerical results.

Recent papers in operations management account for uncertainty when mak-

ing workforce management decisions. Several papers use stochastic programming

(SP) Birge and Louveaux (1997) to account for arrival rate uncertainty when making

staffing and call-routing decisions, including Harrison and Zeevi (2005), Bassamboo

et al. (2006b,a), Bassamboo and Zeevi (2009), Bertsimas and Doan (2010), Gurvich

et al. (2010). More recent papers extend the SP formulation to scheduling, such

as Robbins and Harrison (2010), Robbins et al. (2010), Liao et al. (2012). To cope

with biased initial arrival-rate forecasts, Mehrotra et al. (2010) uses mid-day recourse

actions to adjust pre-scheduled staffing levels. Some of the above papers deal with

staffing/scheduling when there are multiple arrival streams. For example, Gurvich

et al. (2010) proposes a chance-constraint formulation to staff multiple-stream call

centers.

The above papers have made important progress addressing the problems caused

by arrival-rate uncertainty, although only partially. Statistical forecasting papers

have evaluated their methods using traditional forecasting accuracy measures based
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on realized arrival counts, while ignoring the operational effects the forecasting errors

might have on cost and QoS measures. On the other hand, OM papers have carefully

demonstrated the cost and QoS implications of their procedures, assuming that the

arrival rate distributions are given, although in practice they have to be estimated

from data. Gans et al. (2012) is the only paper that aims at solving the whole prob-

lem, integrating arrival rate forecasting with stochastic programming to illustrate

the operational effects of SP with or without recourse using arrival-rate distributions

forecasted and updated from real data. As in almost all the forecasting papers, Gans

et al. (2012) only considers a single arrival stream.

3.2 Statistical Methodology

In this section, we develop statistical models to forecast multiple-stream arrival

volumes. We consider a multiplicative format for the intra-day arrival volume profile.

Particularly, we use regression techniques to decompose the arrival volume profile of

each stream on a certain day into the product of daily total arrival rate and proportion

profile of the corresponding day-of-week. We then apply vector autoregressive time

series model to forecast the vector daily total arrival rates. Distributional forecasts

of both arrival rate and count is obtained. We discuss our estimation and forecasting

procedure. We also discuss and compare alternative models.

3.2.1 Forecasting Model

Denote the number of customer types (or arrival streams) as I. For each arrival

stream, say i, we observe the number of calls during time period t on day d, for

t = 1, . . . , T and d = 1, . . . , D. For example, the time period can be every quarter

hour or half hour during the business day. Denote the number of arrivals as N
(i)
d,t , for
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i = 1, . . . , I.

We model N
(i)
d,t as Poisson(λ

(i)
d,t) where the random arrival rate λ

(i)
d,t depends on

customer type i, time period of the day t and the day d (most likely through day of

the week, say wd).

To begin with, we apply the squareroot transformation to normalize the arrival

counts. By now, this transformation has become common in the call center forecasting

literature. Denote

X
(i)
d,t =

√
N

(i)
d,t +

1

4
∼ N

(√
λ
(i)
d,t, σ

2
(i)

)
.

We then consider the following forecasting model for the square-root-transformed

counts X
(i)
d,t :⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X
(i)
d,t =

√
λ
(i)
d,t + ε

(i)
d,t, εd,t = (ε

(1)
d,t , ε

(2)
d,t , . . . , ε

(I)
d,t )

T i.i.d.∼ N(0,Σ),

θ
(i)
d,t ≡

√
λ
(i)
d,t = u

(i)
d f

(i)
wd,t

,

ud − αwd
= A(ud−1 − αwd−1

) + zd, zd = (z
(1)
d , z

(2)
d , . . . , z

(I)
d )T

i.i.d.∼ N(0,Ω),

f
(i)
wd,t

≥ 0,
T∑
t=1

f
(i)
wd,t

= 1,

(3.2)

where wd is day-of-week of day d, ud = (u
(1)
d , u

(2)
d , . . . , u

(I)
d )T is the vector daily total ar-

rival rate of all customer streams (on the square-root scale), αwd
= (α

(1)
wd , α

(2)
wd , . . . , α

(I)
wd )

T

is the adjustment of daily total arrival rate (on the square-root scale) for the day of

week, A = (ai′j′)I×I is the auto-regressive coefficient matrix, f
(i)
wd,t

is the intraday

rate proportion for the tth time interval for customer type i that also depends on

the corresponding day of week, Ω = (Ωrl)I×I and Σ = (Σrl)I×I are the covariance

matrices.

Our model is the multivariate extension of the forecasting model in Noah et al..

It can be understood in the following way. The square-root transformed data ap-
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proximately follows multivariate Gaussian distribution (Brown et al. 2005). On the

square-root transformed scale, the arrival rate profile for any customer type i on day

d (θ
(i)
d ≡ (θ

(i)
d,1, θ

(i)
d,2, . . . , θ

(i)
d,T ) ≡ (

√
λ
(i)
d,1,

√
λ
(i)
d,2, . . . ,

√
λ
(i)
d,T )) is assumed to have a mul-

tiplicative format, which is the product of the daily total rate u
(i)
d and the intraday

proportion profile of the corresponding day-of-week (f
(i)
wd,1

, f
(i)
wd,2

, . . . , f
(i)
wd,T

). The vec-

tor daily total rate of all customer types ud follows a first-order vector autoregressive

time series model, after removal of the day-of-week effect αwd
.

We model the dependence among arrival streams via Σ, A and Ω in our formu-

lation. Next we specify a particular 2-dimension case for Model 3.2, that is when

I = 2, to explain how the dependence is modeled. The 2-d detailed equation is as

follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X
(i)
d,t =

√
λ
(i)
d,t + ε

(i)
d,t, i = 1, 2,⎛

⎜⎜⎝ ε
(1)
d,t

ε
(2)
d,t

⎞
⎟⎟⎠ i.i.d.∼ N

⎛
⎜⎜⎝
⎛
⎜⎜⎝ 0

0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝ Σ11 Σ12

Σ21 Σ22

⎞
⎟⎟⎠
⎞
⎟⎟⎠ ,

θ
(i)
d,t ≡

√
λ
(i)
d,t = u

(i)
d f

(i)
wd , i = 1, 2,

f
(i)
wd ≥ 0,

T∑
t=1

f
(i)
wd = 1,⎛

⎜⎜⎝ u
(1)
d − α

(1)
wd

u
(2)
d − α

(2)
wd

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝ a11 a12

a21 a22

⎞
⎟⎟⎠

⎛
⎜⎜⎝ u

(1)
d−1 − α

(1)
wd−1

u
(2)
d−1 − α

(2)
wd−1

⎞
⎟⎟⎠+

⎛
⎜⎜⎝ z

(1)
d

z
(2)
d

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝ z

(1)
d

z
(2)
d

⎞
⎟⎟⎠ i.i.d.∼ N

⎛
⎜⎜⎝
⎛
⎜⎜⎝ 0

0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝ Ω11 Ω12

Ω21 Ω22

⎞
⎟⎟⎠
⎞
⎟⎟⎠ .

(3.3)

In equation 3.3, there are three types of dependence between the two streams. For

example, the arrival stream of customer type 1 depends on the arrival stream of

customer type 2 in the following three ways:

• Type (a) dependence: the arrival count of customer type 1: X
(1)
d,t depends
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on the arrival count of customer type 2: X
(2)
d,t of the same day and the same

time interval. Particularly for our formulation, (X
(1)
d,t , X

(2)
d,t )

T follows a bivariate

normal distribution with a correlation r ≡ Σ12/
√
Σ11Σ22, given the arrival rate

(θ
(1)
d,t , θ

(2)
d,t )

T .

• Type (b) dependence: the daily total arrival rate of customer type 1: u
(1)
d

depends on the daily total arrival rate of customer type 2 of the previous day:

u
(2)
d−1. The direction and strength of the dependence is carried by a12.

• Type (c) dependence: the daily total arrival rate of customer type 1: u
(1)
d

depends on the daily total arrival rate of customer type 2 of the same day:

u
(2)
d . Particularly for our formulation, (u

(1)
d , u

(2)
d )T follows a bivariate Gaussian

distribution with a correlation ρ ≡ Ω12/
√
Ω11Ω22, given the daily total rate of

the previous day: (u
(1)
d−1, u

(2)
d−1)

T .

Ibrahim and L’Ecuyer (2012) used a different formulation (additive instead of

multiplicative), but we could still compare our model with theirs on how dependence

between the two streams is modeled. In their paper, they consider two types of

inter-stream dependence: correlation of the daily rate between two streams of the

same day, which coincides our Type (c) dependence; correlation of the count between

two streams of the same day and same time interval, which coincides our Type (a)

dependence. However, their paper did not consider Type (b) dependence, which is

crucial in reducing forecasting error as we’ll discuss about later.

3.2.2 Forecasting Error

Let y denote a random variable and let ξn, n = 1, 2, . . . , denote a series of

random variables. Let Γy = Var(y), Γn = Cov(y, ξn), Γ(n) = (Γ1,Γ2, . . . ,Γn)
T ,

ξ(n) = (ξ1, ξ2, . . . , ξn)
T , μ(n) = E(ξ(n)), ms,l = Cov(ξs, ξl), s, l = 1, 2, . . . , M(n) =
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Cov(ξ(n)) = (ms,l)n×n, m(n+1) = (m1,n+1,m2,n+1, . . . ,mn,n+1)
T . We assume M(n) is

non-singular, n = 1, 2, . . ..

To forecast y based on ξ(n), we consider the joint distribution of (y, ξT(n))
T and

assume it’s multivariate Gaussian as follows,⎛
⎜⎝ y

ξ(n)

⎞
⎟⎠ ∼ N

⎛
⎜⎝
⎛
⎜⎝ μy

μ(n)

⎞
⎟⎠ ,

⎛
⎜⎝ Γy ΓT

(n)

Γ(n) M(n)

⎞
⎟⎠
⎞
⎟⎠ .

Then given the vector ξ(n), y has the following distribution

y|ξ(n) ∼ N
(
μ̃n, Γ̃n

)
, n = 1, 2, . . . ,

where

μ̃n = μy + ΓT
(n)M

−1
(n)(ξ(n) − μ(n)),

Γ̃n = Γy − ΓT
(n)M

−1
(n)Γ(n).

Notice that

Var(ξn+1|ξ(n)) = mn+1,n+1 −mT
(n+1)M

−1
(n)m(n+1) ≥ 0.

And assume ξn+1 is non-redundant with ξ(n), then

Var(ξn+1|ξ(n)) = mn+1,n+1 −mT
(n+1)M

−1
(n)m(n+1) > 0.

Thus the forecasting variance reduced by introducing one more variable ξn+1 is given

by

Δn+1 := Γ̃n − Γ̃n+1

= −ΓT
(n)M

−1
(n)Γ(n) + ΓT

(n+1)M
−1
(n+1)Γ

T
(n+1)

= −ΓT
(n)M

−1
(n)Γ(n) + (ΓT

(n),Γn+1)

⎛
⎜⎝ M(n) mn+1

mT
n+1 mn+1,n+1

⎞
⎟⎠

−1 ⎛
⎜⎝ Γ(n)

Γn+1

⎞
⎟⎠

=
(Γn+1 − ΓT

(n)M
−1
(n)m(n+1))

2

mn+1,n+1 −mT
(n+1)M

−1
(n)m(n+1)

(3.4)

≥ 0.
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Then we discuss the forecasting variance reduced by introducing more arrival

streams in our forecasting model. In Model 3.2, we consider to forecast u
(1)
d based

on u
(1)
d−1, u

(2)
d−1, . . . , u

(I)
d−1. Equation 3.4 shows that including more streams in forecast

process will sometimes reduce the forecasting error. The benefits depends on many

factors. Under the autoregressive structure in Model 3.2, Δn is a function of A and

Ω, n = 2, 3, . . . , I.

For example, to compare the forecasting variance between bivariate method (when

I = 2) with univariate method (when I = 1), denote the joint normal distribution of

(u
(1)
d , u

(1)
d−1, u

(2)
d−1)

T as:⎛
⎜⎜⎜⎜⎝

u
(1)
d

u
(1)
d−1

u
(2)
d−1

⎞
⎟⎟⎟⎟⎠ ∼ N

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝

μ1

μ2

μ3

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

Γ11 Γ12 Γ13

Γ21 Γ22 Γ23

Γ31 Γ32 Γ33

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

where Γsl = Γls, s, l = 1, 2, 3, Γ11 = Γ22, μ1 = μ2. Let ρsl := Γsl/
√
ΓssΓll. By

equation 3.4 the variance reduction of bivariate method from univariate method is

Δ2 = Var(u
(1)
d |u(1)d−1)− Var(u

(1)
d |u(1)d−1, u

(2)
d−1)

= Γ11
(ρ13 − ρ12ρ23)

2

1− ρ223
≥ 0. (3.5)

A simplest situation is when a12 = a21 = 0 (that is, when there is no Type (b)

dependence), then Δ2 = 0, which means there is no need of considering bivariate

forecasting method to improve point forecast in such a case. When a21 �= 0 and

a12 �= 0, the expression of 3.5 is non-zero but has a very complicated form. We’ll

later on discuss this issue in a simulation study. Hence we see that considering Type

(b) dependence is essential in reducing point forecast error. The first bivariate model

in Ibrahim and L’Ecuyer (2012) did not provide substantial improvement in point

forecasting, and the reason might be that their model didn’t consider the Type(b)

dependence between two streams.
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3.2.3 Forecasting Procedure

The forecasting procedure is performed in two stages. First, we obtain the es-

timates of u
(i)
d , f

(i)
wd,t

and Σ for i = 1, . . . , I, t = 1, . . . , T, d = 1, . . . , D, through

iterations of General Least Square (GLS) regression with the following steps.

• Denote the estimates of u
(i)
d , f

(i)
wd,t

and Σ in the mth iteration by û
(i),(m)
d , f̂

(i),(m)
wd,t

and Σ̂(m), respectively.

• Before the iteration starts, initialize the estimates f̂
(i),(0)
wd,t

, û
(i),(0)
d and Σ̂(0) through

simple calculations and Ordinary Least Squares (OLS) regression. f̂
(i),(0)
wd,t

is es-

timated by taking the proportion of the transformed counts of time interval t

out of all transformed counts in the same day-of-week:

f̂
(i),(0)
wd,t

=

∑
d′:wd′=wd

X
(i)
d′,t∑

d′:wd′=wd

∑
t′
X

(i)
d′,t′

. (3.6)

Then fit OLS to get û
(i),(0)
d :

X
(i)
d,t = u

(i)
d f̂

(i),(0)
wd,t

+ ε
(i)
d,t, ε

(i)
d,t

i.i.d.∼ N(0, σ2), i = 1, 2, . . . , I, d = 1, 2, . . . ,D, t = 1, 2, . . . ,T.

As is assumed, εd,t = (ε
(1)
d,t , ε

(2)
d,t , . . . , ε

(I)
d,t )

i.i.d.∼ N(0,Σ), we calculate the model

residual to get Σ̂(0).

• In the mth iteration: fit the following GLS regression model with linear con-

straints to get the updating estimate f̂
(i),(m)
wd,t

:⎧⎪⎪⎨
⎪⎪⎩
X

(i)
d,t = û

(i),(m−1)
d f

(i)
wd,t

+ ε
(i)
d,t, εd,t = (ε

(1)
d,t , ε

(2)
d,t , . . . , ε

(I)
d,t )

i.i.d.∼ N(0, Σ̂(m−1)),

∑
t

f
(I)
wd,t

= 1.

Get the update of Σ̂(m) using the model residual covariance matrix. Then fit

the following GLS regression model to get the update û
(i),(m)
d :

X i
d,t = uid f̂

i,(m)
wd,t

+ εid,t, εd,t = (ε1d,t, ε
2
d,t, . . . , ε

I
d,t)

i.i.d.∼ N(0, Σ̂(m))
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Again, update Σ̂(m) by the model residual covariance matrix.

• The iteration process stops when f̂
(i),(m)
wd,t

converges in terms of m. Say, stop at

the Mth iteration such that√√√√√ T∑
t=1

(f̂
(i),(M−1)
wd,t

− f̂
(i),(M)
wd,t

)2

T
< 10−8, ∀wd, i.

û
(i),(M)
d and f̂

(i),(M)
wd,t

are the final estimates for u
(i)
d and f

(i)
wd,t

, respectively. Then

we use the residual covariance matrix to estimate Σ̂ width d.f. = DT − D −
w∗ · (T − 1), where w∗ is the number of working days in one week.

We refer to the above forecasting procedure as “GLS” method for later discussion.

Remarks: Fitting GLS regression model is very time-consuming. Alternatively

we consider fitting Ordinary Least Square (OLS) regression instead of GLS in the

iterations. The alternative process provides estimates that are quite close to that

of GLS method. On our call center data set, the relative difference on

√√√√∑
t

f
(i)
wd,t

T
is

around 0.02% between the two estimation methods. And using OLS is faster and

easier to program. The estimation procedure of OLS method follows these steps:

• Denote the estimates of u
(i)
d and f

(i)
wd,t

in themth iteration by û
(i),(m)
d and f

(i),(m)
wd,t

,

respectively.

• Before the iteration starts, initialize f̂
(i),(0)
wd,t

by Equation 3.6

• In the mth iteration, fit the following OLS model to get the update û
(i),(m)
d :

X
(i)
d,t = u

(i)
d f̂

(i),(m−1)
wd,t

+ ε
(i)
d,t, ε

(i)
d,t

i.i.d.∼ N(0, σ2).

Fit OLS model to get the update f̂
(i),(m)
wd,t

:

X
(i)
d,t = û

(i),(m)
d f

(i)
wd,t

+ ε
(i)
d,t, ε

(i)
d,t

i.i.d.∼ N(0, σ̃2).

Normalize f̂
(i),(m)
wd,t

by a multiplier such that
∑
t

f̂
(i),(m)
wd,t

= 1.
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• The iteration process stops at the Mth iteration such that√√√√√ T∑
t=1

(f̂
(i),(M−1)
wd,t

− f̂
(i),(M)
wd,t

)2

T
< 10−8, ∀wd, i.

û
(i),(M)
d and f̂

(i),(M)
wd,t

are the final estimates for uid and f i
wd,t

. And we use the

residual covariance matrix in the last iteration to estimate Σ with d.f. = DT −
D − w∗(T − 1).

We refer the above estimation method as “OLS” method for later discussion.

Once we get the estimates of ûd, f̂
(i)
wd,t

and Σ̂, d = 1, 2, . . . , D, t = 1, . . . , T, i =

1, . . . , I, from the first stage multiplicative estimation procedure, we use the vector

time series model to obtain a distributional forecast for the daily total rates uD+h in

day h in the future , which is Gaussian. In particular, we first estimate the day-of-

week effect for the daily total rates:

α̂(i)
wd

=

∑
d′:wd′=wd

u
(i)
d′∑

d′:wd′=wd

1
.

Let α̂wd
= (α̂

(1)
wd , . . . , α̂

(I)
wd )

T . We then apply the vector time series model as follows:

ûd − α̂wd
= A · (ûd−1 − α̂wd

) + zd, zd
i.i.d.∼ N(0,Ω), d = 2, . . . , D. (3.7)

We fit model 3.7 in R using the function “ar” and denote the estimated coefficient

matrix and covariance matrix by Â and Ω̂, respectively. Then the point forecast for

the daily total rate on day D + h is given by

ûD+h = α̂wD+h
+ Âh · (ûD − α̂wD

), (3.8)

with the forecast error

h∑
h′=1

Âh′−1zD+h′ ,
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where zD+h′
i.i.d.∼ N(0, Ω̂). In particular, the covariance matrix of the forecast error of

ûD+h is

Ω̂(D+h) =
h−1∑
h′=0

Âh′
Ω̂Âh′

. (3.9)

3.2.4 Distributional Forecast

Given the mean in equation 3.8 and variance in equation 3.9, and under the

Gaussian assumption, the distributional forecast for daily arrival rate uD+h is

uD+h ∼ N
(
ûD+h, Ω̂

(D+h)
)
.

Let Ω̂(D+h) = (Ω̂
(D+h)
rl )I×I , F̂D+h,t := diag{f̂ (1)

wD+h,t
, . . . , f̂

(I)
wD+h,t

}, then the distribu-

tional forecast for the arrival rate vector θD+h,t := (θ
(1)
D+h,t, . . . , θ

(I)
D+h,t)

T = F̂D+h,tuD+h

is as follows:

θD+h,t ∼ N
(
F̂D+h,tûD+h, F̂D+h,tΩ̂

(D+h)F̂D+h,t

)
.

Particularly, the forecast mean for θ
(i)
D+h,t is f̂

(i)
wD+h,t ûD+h, i = 1, . . . , I, and the forecast

covariance between θ
(i)
D+h,t and θ

(i′)
D+h,t is f̂

(i)
wD+h,t f̂

(i′)
wD+h,tΩ̂

(D+h)
ii′ , i, i′ = 1, 2, . . . , I.

Let XD+h,t := (X
(1)
D+h,t, . . . , X

(I)
D+h,t)

T and εD+h,t := (ε
(1)
D+h,t, . . . , ε

(I)
D+h,t). Notice

that

XD+h,t = θD+h,t + εD+h,t.

And also notice that the estimated distribution for εD+h,t is

εD+h,t ∼ N(0, Σ̂).

Then the distributional forecast for the arrival count vector XD+h,t is

XD+h,t ∼ N(F̂D+h,tûD+h, F̂D+h,tΩ̂
(D+h)F̂D+h,t + Σ̂).
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In particular, the forecast mean ofX
(i)
D+h,t is f̂

(i)
wD+h,t ûD+h, i = 1, . . . , I, and the forecast

covariance between X
(i)
D+h,t and X

(i′)
D+h,t is f̂

(i)
wD+h,t f̂

(i′)
wD+h,tΩ̂

(D+h)
ii′ +Σ̂ii′ , i, i

′ = 1, 2, . . . , I.

3.2.5 Performance Measures

We consider two measures to evaluate the accuracy of the point forecasts. For any

single stream arrivals, let Nd,t denote the arrival counts in day d and time interval t,

and let N̂d,t denote the point forecast forNd,t. Suppose we are interested in forecasting

the arrival counts for one day. Then the Root Mean Squared Error(RMSE) and Mean

Relative Error (MRE) for day d are defined as follows:

RMSEd =

√
1

T

∑
t

(N̂d,t −Nd,t)2,

MREd =
100

T

∑
t

|N̂d,t −Nd,t|
Nd,t

.

To assess the distributional forecast, we define the coverage probability and the

width of the 95% confidence interval of day d as follows:

COVERd =
1

T

∑
t

I(N̂
(2.5)
d,t ≤ Nd,t ≤ N̂

(97.5)
d,t )

WIDTHd =
1

T

∑
t

(N̂
(97.5)
d,t − N̂

(2.5)
d,t ),

where N̂
(q)
d,t is the qth percentile of the distributional forecast for Nd,t, I(.) is the indi-

cator function. Good forecasting model is supposed to have the coverage probability

close to the nominal value (95%) and narrow confidence interval.

3.3 Staffing Algorithm

Multiple stream staffing problem could be dealt with skill-based routing strate-

gies, which assign the “most suitable” agent to an incoming call instead of simply
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choosing the next available agent. Recently, skill-based routing papers attempt to

account for the uncertain arrival rate while making staffing and scheduling policies.

Among those, Gurvich et al. (2010) proposed a multiple stream chance-constraint

optimization approach providing staffing levels that meets the uncertain demand in

a pre-chosen probability level. In their approach, they assume the existence of some

forecasting distributions for the arrival rates before the staffing planning process can

be taken. In this paper we adopt their method to explore the operational effect of

simultaneously modeling multiple arrival streams instead of independently modeling

each of them.

3.3.1 The Chance Constraint Formulation

Consider the call center with I customer classes have J server pools. Set I =

{1, . . . , I} and J = {1, . . . , J}. Servers in the same pool have the same skills in

terms of the set of customer classes they are capable of serving. Denote J(i) as the

set of server pools with skill i, and I(j) as the set of skills that server pool j has. The

staffing vector is denoted by N = (N1, N2, . . . , NJ)
T where Nj denotes the number

of agents on schedule from server pool j. We consider the call center as a parallel

server system, where customers go through a single stage of service before departing

from the system.

The staffing process is performed for one time interval and all the discussion

following is focused on an arbitrary time interval. During the time interval, class-

i customers arrive according to a stationary Poisson process with rate Λi, where

Λ = (Λ1, . . . ,ΛI) is a multivariate random variable following a certain distribution.

If there is no available agents upon the arrival of a customer, he is queued. Cus-

tomers are served in a First Come First Serve manner and we allow the customers
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to abandon the queue with an exponential patience rate φi for customer class i. Let

ai(λ,N, π) denote the long run fraction of class-i customers that abandon before be-

ing serviced when the arrival rate is λ, the staffing vector is N and the routing rule

is π.

Quality-of-service constraints: Given a risk level δ > 0, pre-specified thresh-

old proportion of abandonments ψi for customer type i, and a random arrival rate

Λ = (Λ1,Λ2, . . . ,ΛI), the QoS constraint is given by

P (Λ : ai(Λi, N, π) ≤ ψi, i ∈ I ) ≥ 1− δ.

The staffing problem: Assume that agents of pool j incur a cost cj, c =

(c1, . . . , cJ). Our objective is find the staffing vector that minimizes the staffing cost

subject to the QoS constraint. The optimization problem is given by:

min c ·N

s.t. P (Λ : ai(Λi, N, π) ≤ ψi, i ∈ I ) ≥ 1− δ.

N ∈ Z
J
+, π ∈ Π.

(3.10)

Analytical solution of the above optimization problem 3.10 might not be approach-

able. When the arrival rate is perfectly known, a static-planning problem (SPP) is

often used to provide first-order approximations for the optimization problem 3.10.

Particularly, given the arrival rate vector Λ = (Λ1,Λ2, . . . ,ΛI), the SPP is given by:

min c ·N

s.t.
∑
j∈J(i)

μijvij ≥ Λi(1− ψi), i ∈ I ,

∑
i∈I(j)

vij ≤ Nj, j ∈ J

N ∈ R
J
+, v ∈ R

I×J
+ .
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When the arrival rate is a random variable with a certain distribution, Gurvich et

al. use a random static-planning problem (RSPP) whose optimal solution provides a

lower bound of the optimal values of 3.10. The RSPP is given as follows:

min c ·N

s.t. P(Λ ∈ B(N)) ≥ 1− δ,

N ∈ R
J
+,

(3.11)

where

B(N) = {Λ ∈ R
I
+ : ∃v ∈ R

I×J
+ , with

∑
j∈J(i)

μijvij ≥ Λi(1− ψi), i ∈ I,
∑
i∈I(J)

vij ≤ Nj, j ∈ J }.

And they also proved any feasible staffing vector N for 3.11 is necessarily feasible for

3.10.

We should notice that the optimal solution of the RSPP 3.11 might not be feasible

for the original formulation 3.10. The output of the RSPP also provides a set of Λ

which has a probability measure of at least 1 − δ, and on which the QoS constraint

is met.

To solve the RSPP, they used a discrete approximation of the random arrival

rate Λ and formulated the RSPP as a mixed-integer program. They considered two

discretization methods (fix grid approximation and Monte Carlo sampling), among

which we use the Monte Carlo sampling approximation method in our paper. In

particular, independent samples of size K are generated from the distribution of Λ

and each sample point is assigned the same probability 1/K. Denote the kth sample

54



by Λ(k) = (Λ1(k), . . . ,ΛI(k))
T . Hence the sample based RSPP is given by:

min c ·N

s.t.
∑
j∈J(i)

μijv
k
ij ≥ ykΛi(k)(1− ψi), i ∈ I, k = 1, . . . , K,

∑
i∈I(j)

vkij ≤ Nj, j ∈ J , k = 1, . . . , K,

∑
k

yk ≥ K(1− δ),

N ∈ R
J
+, yk ∈ {0, 1}, vk ∈ R

I×J
+ , k = 1, . . . , K.

(3.12)

The optimal solution of 3.12 includes a staffing vector N̂ as well as a set of Λi(k)’s,

using which they generated a set of staffing frontier F . The support area of F defined

by M(F) ≡ ⋃
λ′∈F

{λ : λ ≤ λ′}, has a probability measure of at least 1− δ.

Then starting from the vector N̂ , they used a simulation based approach to search

feasible solutions for 3.10 on the staffing frontier F , which will give the final optimal

staffing vector N∗.

3.3.2 Sampling Process

Notice that we only observe the realized counts instead of the true arrival rate.

And also notice the fact that the first order approximation of the chance-constraint

is in essence that the number of customers to be served is less than the number

of customers that the system is capable of serving with a pre-specified confidence

probability. Thus we make use of the distributional forecast of the counts instead of

the arrival rates.
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3.3.3 Performance Measures

Given a distributional forecast of Λ = (Λ1, . . . ,ΛI)
T , a staffing vector N can

be obtained with the above algorithm. Given the realization of Λ, we are able to

evaluate the performance of the staffing vector and further the distributional forecast.

Let C = (C1, C2, . . . , CI)
T denote the realized Poisson count, and it’s assumed that

Ci ∼ Poisson(Λi), and Λ has a certain distributional forecast.

We consider the following performance measures. Denote v(C,N) as the violation

indicator function for the QoS constraint. v(C,N) = 1 indicates the QoS constraint

is violated when the realized count is C under the staffing vector N , and accord-

ingly v(C,N) = 0 indicates the QoS constraint is satisfied. Denote s(C,N) as the

magnitude of the violation if there is one, under realization C and staffing vector

N . Notice that s(C,N) = 0 when v(C,N) = 0 and s(C,N) > 0 when v(C,N) = 1.

Denote c(N) := c · N as the staffing cost under staffing vector N . Suppose we’ve

tested the performance of the staffing vector for T ′ intervals. Let C(t) and N (t) denote

the observed counts and staffing vector for the tth, respectively. Then the violation

probability is defined as

v.prob =
1

T ′

T∑
t=1

v(C(t), N (t)).

3.3.4 Operational Staffing Algorithm Setup

We first consider one operational set-up (M-design) for dealing with two arrival

streams: two pools of dedicated servers that only handle one customer type and one

pool of flexible servers that handles both types of customers.
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3.4 Simulation Study

In this section, we consider different scenarios of dependence among streams.

And we evaluate the benefits of using multiple-stream method under those different

scenarios. We focus on two streams, that is, I = 2.

3.4.1 Simulation Set-up

In our multiple stream formulation, the dependence between the two streams

is modeled through Σ, Ω and A. In particular, r ≡ Σ12√
Σ11Σ22

and ρ ≡ Ω12√
Ω11Ω22

depicts the daily-total correlation and time-interval correlation between the two types,

respectively. a12 and a21 sculpture the daily-total dependence on the other queue’s

past day information. We’re wondering how multiple-stream method performs when

the type of dependence changes, that is, under different values of r, ρ, a12 and a21.

Moreover, the effect of ρ on each time interval is very weak according to real data

estimates, because the variation of daily-totals Ω after distributed to each time inter-

val is considerably small, compared with Σ. So we deliberately omit the dependence

in Ω in our simulation.

With the above facts, we consider the following set-ups for generating scenarios:

• Use the real data estimates as f
(i)
wd,t

and αwd
.

• Set Ω = ((300, 0)T , (0, 120)T )T , Σ11 = 0.8, Σ22 = 0.6, a11 = 0.6, a22 = 0.4.

These numbers are chosen according to real data estimates.

• Vary the strength and direction of interval dependence r (that is, Type (a) de-

pendence described in Section 3.2.1). In particular, let r = −0.8,−0.4, 0, 0.4, 0.8.
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• Vary the strength and direction of past day dependence on the other queue a12

and a21 (that is, Type (b) dependence described in Section 3.2.1). In particular,

let a12 = −0.5,−0.25, 0, 0.25, 0.5 and a21 = −0.3,−0.15, 0, 0.15, 0.3.

Hence we have 5 × 5 × 5 = 125 different scenarios for the triple (r, a12, a21). In

each scenario, we simulate two-stream call arrivals according to model 3.2 for 300

days. We mainly want to see whether or how accounting for dependence between

two streams help improve forecasting and staffing performance. Hence we consider

the following two forecasting methods:

• MU1: fit Model 3.2 separately on each stream. That is, omit the dependence

between the two customer arrival streams and consider each queue as indepen-

dent. Then use the OLS estimation method.

• MU2: fit Model 3.2 on the two streams simultaneously and use the OLS esti-

mation method.

Notice that we need the estimation mechanism to be computationally efficient since

we have to perform the estimation process many times in the simulation study. Thus

we use the OLS estimation method instead of the GLS estimation method.

3.4.2 Forecasting Comparison

In this section, we compare the forecasting performance between MU2 and MU1.

In particular, we examine to what degree the multiple-stream method MU2 outper-

forms the single-stream method MU1 at each scenario.

With each method we perform the rolling forecast 200 times, in each rolling step

using the past 100 days information to fit the model and forecast the count profile.
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In each rolling step we record the performance measures such as RMSE and MRE for

the count. Since we also know true arrival rate, we could also calculate and record

the RMSE for the arrival rate at each rolling step. To compare the point forecast in

each scenario, we denote the mean count-RMSE of the 200 rolling forecasts for MU2

as RMSEMU2 and similarly denote the mean count-RMSE of the 200 rolling steps for

MU1 as RMSEMU1. We then calculate the relative mean count-RMSE reduction by

MU2 from MU1, as

ΔRMSE =
RMSEMU1 − RMSEMU2

RMSEMU1

.

Similarly, we are also able to calculate relative mean rate-RMSE reduction by MU2

from MU1, which we denote as Δ̃RMSE.

Figure 3.1 displays the count-RMSE reduction ΔRMSE for all the simulation sce-

narios. There are 5 × 2 = 10 plots in the figure. Each column corresponds to a

customer type, which we refer to as Type A and Type B in the figure. Each row

corresponds to a different value of r. In each plot, there are 25 lattices referring to

different pairs of (a12, a21), where a12 varies in horizontal direction and a21 varies in

vertical direction. Colors in lattices show which method performs better, where ma-

genta indicates MU2 is better and cyan indicates MU1 is better. The color intensity

indicates the magnitude of improvement on the other method. Figure 3.2 displays

the rate-RMSE reduction Δ̃RMSE for all the simulation scenarios. The results are

generalized in the following

• Larger value of a12 leads to larger improvement of multiple-stream method in

forecasting Type A. Or, stronger dependence on Type B’s past information

leads to better point forecasts for Type A in multiple-stream method.

• Larger value of a21 leads to larger improvement of multiple-stream method in

forecasting Type B. Or, stronger dependence on Type A’s past information
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leads to better point forecasts for Type B in multiple-stream method.

• There is no clear relationship between the magnitude/sign of r and the im-

provement of multiple-stream method in terms of the accuracy of point fore-

cast(RMSE).

• The magnitude of improvement on arrival rate is noticeably larger than that

on arrival counts.

Similar figures can be generated to display the relative improvement on MRE.

They exhibit the same patterns as that for RMSE and we omit to show them in the

paper.

3.4.3 Staffing Comparison

In this section, we compare the staffing effect between the multiple-stream method

and single-stream method under different scenarios. To assess the staffing effect of any

forecast distribution, we first input the forecast distribution to the staffing algorithm

and generate a staffing vector. We then use the true counts to evaluate the staffing

vector, and record the performance measure v(., .), s(., .) and c(.) as described in

section 3.3.3. Since it takes a while for the staffing program to generate the staffing

vectors for one day and to evaluate them, we pick only 10 from the 125 scenarios and

use the first 100 rolling forecasts in each scenario for the staffing test. In particular,

we choose scenarios in the upper right corner and in the lower left corner for each r

in figure 3.1.

To compare the staffing performance between MU2 and MU1, we calculate the

daily staffing cost and daily shortage for each rolling experiment and we perform

paired t test on those two measures. We also calculate the average violation proba-

bility for each method and the p-value for testing the proportion difference.
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Figure 3.1: Simulation comparison on the count RMSE between MU2 and MU1.
Warm color indicates the superior of MU2 in forecasting accuracy of the counts, and
cold color indicates the inferior of MU2 in forecasting accuracy of the counts.
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Figure 3.2: Simulation comparison on the rate RMSE between MU2 and MU1.
Warm color indicates the superior of MU2 in forecasting accuracy of the rates, and
cold color indicates the inferior of MU2 in forecasting accuracy of the rates.
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Table 3.1 displays the daily staffing comparison between the two methods under

each scenario. Our results confirm the conflict between lower staffing cost and better

service quality, as the method with lower violation probability or shortages cost more

and vice versa. When the two streams are positively correlated, that is, r > 0,

the multiple-stream method MU2 is closer to meet the chance-constraint while MU1

is under-staffing. When the two streams are negatively correlated, the results are

more complicated. When r = −0.8, MU1 is over-staffing and MU2 is under-staffing.

When r = −0.4, MU1 is closer to the target violation probability δ = 0.05. And

when r = 0, the performance of MU2 and MU1 are statistically same and both of

them are under-staffing.

r a12 a21 Mean Daily Cost Mean Daily Shortages Vio. Prob.
MU2 MU1 p MU2 MU1 p MU2 MU1 p

(-0.8, -0.5, -0.3) 20463 21236 0 9.283 5.710 0.0005 0.0774 0.0353 0
(-0.8, 0.5, 0.3) 20761 21495 0 8.707 6.566 0.0017 0.0641 0.0338 0
(-0.4, -0.5, -0.3) 20690 21101 0 10.22 7.717 0.0584 0.0691 0.0506 0.0006
(-0.4, 0.5, 0.3) 20618 20906 0 11.64 10.43 0.2197 0.0788 0.0650 0.0137

(0, -0.5, -0.3) 21253 21278 0.5004 9.478 10.82 0.0752 0.0612 0.0641 0.3084
(0, 0.5, 0.3) 21656 21697 0.1356 10.37 10.83 0.4314 0.0621 0.0603 0.3807

(0.4, -0.5, -0.3) 20947 20722 0 11.72 15.56 0 0.0644 0.0876 0
(0.4, 0.5, 0.3) 21025 20832 0 9.106 10.69 0.0012 0.0559 0.0632 0.1001
(0.8, -0.5, -0.3) 21699 21250 0 11.03 18.63 0 0.0635 0.0994 0
(0.8, 0.5, 0.3) 21856 21358 0 13.48 22.05 0 0.0697 0.1076 0

Table 3.1: Comparison of the staffing performance between MU1 and MU2.

Figure 3.3 and 3.4 compares the interval results of the staffing experiment between

the two methods. Each panel is a scatter plot of mean interval values of the two

methods. The first column plots the mean cost, the second column plots the mean

shortages and the third column plots the violation probability. Each row corresponds

to one of the 10 scenarios we pick. Similar messages go with Table 3.1.

In the above experiments, both the violation probability and the daily cost are

different between the two methods. Next we let the two methods have the same
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Figure 3.3: Staffing performance comparison. Each panel is the scatter plot of mean
interval values between MU1(vertical) and MU2(horizontal). Each row corresponds
to a specific scenario, determined by (r, a12, a21). Each column corresponds to a
performance measure (see column titles).
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Figure 3.4: Staffing performance comparison. Each panel is the scatter plot of mean
interval values between MU1(vertical) and MU2(horizontal). Each row corresponds
to a specific scenario, determined by (r, a12, a21). Each column corresponds to a
performance measure (see column titles).

violation probability and see whether multiple-stream method saves money in terms

of staffing cost. We choose the scenario with strong negative correlation and past

day dependence: (r = −8, a12 = −0.5, a21 = −0.3). By giving proper parameters

to the program, we get the staffing results from MU2 and MU1, whose violation

probability is 0.0485 and 0.0488 respectively. To test the proportion difference we

perform z-test. The p-value is 0.955 when testing the proportion difference between

the two methods. The p-value is 0.694 and 0.753 for MU2 and MU1 respectively,
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when testing the proportion difference with the target value 0.05. We see that MU2

and MU1 statistically have the same violation probability.

We conduct paired t-test for the daily staffing cost and daily staffing shortages.

Table 3.2 shows the t-tests results. We see that MU2 incurs less staffing cost and

also less staffing shortages.

Figure 3.5 shows the paired t-test results of staffing cost between MU2 and MU1

for each time interval. We see clearly that for each time interval, MU2 is saving

money.

Violation Probability
MU2 MU1 z-test p-value
p(2) p(1) p(2) �= 0.05 p(1) �= 0.05 p(2) �= p(1)

0.0485 0.0488 0.694 0.753 0.955

Daily Staffing Cost
Mean Paired t-test

MU2 MU1 p-value lower upper
20737 20964 0 -321.0 -132.1

Daily Service Quality Shortage
Mean Paired t-test

MU2 MU1 p-value lower upper
5.607 7.720 0.007 -3.648 -0.578

Table 3.2: Comparison between MU2 and MU1.

3.5 Real Call Center Data

3.5.1 Background of the Data

Our data were collected at an Israel telecom call center. There are several service

queues: Private customers, Business customers, Technical Support customers and

some other minor queues. Among those Private customers and Business customers

are the two main streams that take up 30% and 18% of the overall incoming calls,
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Figure 3.5: Upper: paired t-test C.I. between MU2 and MU1 for each interval.
Lower: paired t-test p-values.

respectively.

In this section, we apply our multiple-stream forecasting and staffing method on

this real call center data. And we focus our analysis on the two main streams Private

and Business, and keep in mind that our method can be applied to more streams.

Our data range from 06/19/2004 to 04/14/2005, which contains 300 days. For

both types of queues, the call center is open everyday and mainly operates from

7:00 am to midnight. Fridays and Saturdays have very low volume compared with

the other weekdays, so we focus on the weekdays from Monday to Thursday, which

includes 215 days. For each day we divide the 17 working hours into 34 half-hour

time intervals, and record the count of the arriving calls during each time interval.

Figure 3.6 plots the call center data for Private customers on the transformed

scale. The left panel displays the call volume profiles for each day. The middle
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shows average arrival volume for each day-of-week. And the right plots the daily-

total arrival volumes along the days. Similar plots for the Business customers are

displayed in Figure 3.7. The two arrival streams exhibit similar patterns in both

the within day profiles and daily total volumes. Both of the two streams have two

peaks in the with-day profile around 13:00 and 18:00 and Sunday has the highest

volume compared with other day-of-week’s. For daily totals, both of the streams

have an increasing trend in the first 80 days and then go down till around 150 days

and increase again. Hence we expect the two streams are dependent of each other.
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Figure 3.6: Plot for Private customers. Left: arrival volume profiles on transformed
scale. Middle: the mean arrival volumes for each day-of-week. Right: Daily total
arrivals on transformed scale.
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Figure 3.7: Plot for Business customers. Left: arrival volume profiles on trans-
formed scale. Middle: the mean arrival volumes for each day-of-week. Right: Daily
total arrivals on transformed scale.

Figure 3.8 displays the dependency between the two arrival streams. The left
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panel is the scatter plot of the daily total arrival volumes on the transformed scale

with day-of-week effect removed. The correlation between the two time series is

around 0.72 which is fairly strong. The right panel of Figure 3.8 is the scatter plot

for the interval call volumes between the two customer types after we remove both

the day-of-week effect and the interval effect. We also exclude 14 outliers to make

the plot, and observe a moderately strong correlation of 0.38.
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Figure 3.8: Dependence between Private and Business customers. Left: scatter
plot for daily totals on the transformed scale with day-of-week effect removed. Right:
scatter plot of interval residual volumes on the transformed scale with day-of-week
and interval effect removed.

We refer to the Private queue as customer type 1 and the business queue as

customer type 2, then fit Model 3.2 on our data where I = 2. Some estimates are

given in Table 3.3. We see that both the daily-total and interval dependence between

the two customer types is strong with the correlation around 0.67. The corresponding

closest scenario in the simulation study is (r = 0.8, a12 = 0, a21 = −0.15).
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Σ = (Σsl)2×2

Σ11 Σ22 Σ12 correlation
0.8114 0.6273 0.4759 0.6671

Ω = (Ωsl)2×2

Ω11 Ω22 Ω12 correlation
310.3 122.2 133.9 0.6875

A = (asl)2×2

a11 a12 a21 a22
0.6037 0.0922 -0.1018 0.4149

Table 3.3: Some estimates of Model 3.2 on real data.

3.5.2 Numerical Comparison

In this section we perform rolling forecast and staffing to compare the performance

between different forecasting methods. Besides MU1 and MU2 as stated in section

3.4.1, we also consider the following two forecasting methods:

• HA: use the historical average of the same day-of-week as the forecast. Details

are as follows.

X
(i)
dt = X̄

(i)
wdt

+ ε
(i)
dt , ε

(i)
dt

i.i.d.∼ N(0, σ2),

where

X̄
(i)
wdt

=
1

|{d′ : wd′ = wd}|
∑

d′:wd′=wd

X
(i)
d′t.

• MU2G: fit Model 3.2 on the two streams simultaneously and use the GLS

estimation method.

With each method, we use the first 100 continuous days to generate distributional

forecast of the arrival profiles for day 101 and record the RMSE, MRE, COVER and

WIDTH as described in section 3.2.5. Then we move our data window one day ahead,
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and repeat the forecasting process. The rolling experiment is performed 115 times,

thus we have for each method 115 records of performance measures including RMSE,

MRE, COVER and WIDTH.

Table 3.4 gives a summary of the four measures on point forecast from 115 rolling

experiment for each method. We see that all the other forecasting methods beat

the historical method (HA) in RMSE, MRE and WIDTH. And there is no strong

evidence for us to select a forecasting method which gives the “best” point forecast

since their performance varies on different measures and queues.

RMSE

Private Queue Business Queue

Method Min. Q1 Median Mean Q3 Max. Min. Q1 Median Mean Q3 Max.

HA 22.03 32.81 37.81 40.41 45.67 84.38 12.99 18.64 20.94 21.53 23.39 36.64

MU1 20.43 30.99 36.80 38.53 43.93 80.24 12.81 18.26 20.07 20.98 22.14 36.84

MU2 20.35 30.43 37.10 38.50 43.90 79.99 12.76 18.24 20.25 21.06 22.49 36.37

MU2G 20.33 30.45 37.14 38.47 43.87 80.05 12.76 18.23 20.11 21.04 22.48 36.42

MRE

Private Queue Business Queue

Method Min. Q1 Median Mean Q3 Max. Min. Q1 Median Mean Q3 Max.

HA 4.678 7.749 9.060 9.506 11.03 20.37 6.824 9.828 11.73 11.96 13.69 21.82

MU1 4.424 7.313 8.930 8.887 9.987 13.96 6.378 9.602 11.52 11.68 13.32 17.41

MU2 4.429 7.382 8.774 8.858 10.210 13.96 6.454 9.623 11.56 11.64 13.29 17.45

MU2G 4.425 7.365 8.747 8.849 10.170 13.97 6.453 9.624 11.53 11.63 13.26 17.36

Coverage Probability

Private Queue Business Queue

Method Min. Q1 Median Mean Q3 Max. Min. Q1 Median Mean Q3 Max.

HA 0.6765 0.9265 0.9706 0.9437 1 1 0.7353 0.9118 0.9706 0.9404 0.9706 1

MU1 0.7059 0.9265 0.9706 0.9435 1 1 0.7647 0.9118 0.9706 0.9425 0.9706 1

MU2 0.7059 0.9118 0.9706 0.9422 1 1 0.7647 0.9118 0.9706 0.9409 0.9706 1

MU2G 0.7059 0.9118 0.9706 0.9430 1 1 0.7647 0.9118 0.9706 0.9412 0.9706 1

95% Confidence Width

Private Queue Business Queue

Method Min. Q1 Median Mean Q3 Max. Min. Q1 Median Mean Q3 Max.

HA 135.8 143.4 162.3 160.7 174.9 188.8 77.05 81.80 85.27 84.79 87.62 92.97

MU1 130.2 139.3 150.3 152.0 165.1 178.2 76.68 80.61 83.09 83.02 85.27 91.24

MU2 130.2 139.3 150.1 151.7 164.5 178.1 76.59 80.62 82.64 82.64 84.43 90.81

MU2G 130.2 139.4 150.1 151.6 164.5 177.9 76.54 80.64 82.64 82.65 84.41 90.80

Table 3.4: Comparison of 115 rolling forecasts of RMSE, MRE, Coverage Probability
and Confidence Width.
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Next we conduct paired t-tests to compare the RMSE, MRE and WIDTH between

any two of the methods. Table 3.5 shows the p-values of the paired t-tests. The entry

in row r and column l is the p-value for paired t-test between the method of row r and

the method of column l, with the alternative hypothesis being “the value of method

in row r is less than the value of method in column l”. We see that the other three

methods are always better than HA. For most of the time, MU2G is better than

MU2. The confidence width of bivariate methods MU2 and MU2G are shorter than

that of univariate method MU1. There is no solid evidence to conclude that bivariate

method is more accurate in providing point forecast than univariate method.

RMSE
Private Queue Business Queue

HA MU1 MU2 MU2G HA MU1 MU2 MU2G
HA 0.9978 0.9974 0.9976 0.9982 0.9906 0.9929
MU1 0.0022 0.5899 0.7173 0.0018 0.1534 0.2066
MU2 0.0026 0.4101 0.9893 0.0094 0.8466 0.9855
MU2G 0.0024 0.2827 0.0107 0.0071 0.7934 0.0145

MRE
Private Queue Business Queue

HA MU1 MU2 MU2G HA MU1 MU2 MU2G
HA 0.9999 1.0000 1.0000 0.9952 0.9974 0.9980
MU1 0.0001 0.9142 0.9602 0.0048 0.8898 0.9391
MU2 0.0000 0.0858 0.9903 0.0026 0.1102 0.9640
MU2G 0.0000 0.0398 0.0097 0.0020 0.0609 0.0360

WIDTH
Private Queue Business Queue

HA MU1 MU2 MU2G HA MU1 MU2 MU2G
HA 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
MU1 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000
MU2 0.0000 0.0000 0.9999 0.0000 0.0000 0.0686
MU2G 0.0000 0.0000 0.0001 0.0000 0.0000 0.9314

Table 3.5: Paired t-test p-values.

Then we consider the distributional forecast among the above methods. HA, MU1

and AD consider all queues as independent of each other and they provide indepen-
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dent distributional forecast. MU2 and MU2G account for the dependence between

queues and provide a multivariate normal distribution as the forecast distribution for

XD+h,t.

Figure 3.9 displays the density of the forecasted correlation between X
(1)
D+h,t and

X
(2)
D+h,t in the 115 rolling experiment, using method MU2. We see that the two arrival

streams are strongly correlated so multiple-stream method provides a more accurate

distributional forecast. The method MU2G provides similar results since its estimates

are very close to those of MU2.
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Figure 3.9: Density plot of the forecasting count correlation between the two cus-
tomer types.

In the forecasting stage, the performance of multiple-stream methods and single

stream methods are close in providing point forecasts, while the multiple-stream

methods generate more accurate distributions. And as a result, the staffing policies

differ with different input distributions.

Next we compare the consequential operational effects between single-stream

method (MU1) and multiple-stream method (MU2) by implementing the chance-

constraint staffing algorithm. We set the violation probability δ to be 0.05 in the
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QoS constraint and use the set-ups described in section 3.3.4. At each rolling experi-

ment, we give the staffing algorithm the forecast distribution of the counts. Then we

produce a staffing vector and test how it works by recording the measures described

in section 3.3.3 for each time interval. For each time interval, we have 115 records of

v(., .), s(., .) and c(.). Then we are able to compare the mean of cost c(.), the mean

of shortage s(., .) and the violation probability between multiple-stream method and

single stream method for each time interval.

Figure 3.12 compares the staffing performance between single stream method

(MU1) and multiple stream method (MU2). In each plot, a point corresponds to a

time interval and the y-coordinate is the mean of the values of 100 rolling experiments.

The left plot compares the mean staffing cost, where we see that MU2 results in

higher cost. The middle plot compares the mean shortage, where we observe that

the shortage of single stream method is always larger than that of multiple-stream

method except for 3 intervals. And in the right panel we see that the violation

probability of single-stream method is always larger than that of multiple-stream

method. On average, the violation probability of MU1 is 0.0862 and the violation

probability of MU2 is 0.0698 which is closer to the target value 0.05. The p-value of

the difference between the two violation probabilities is 0.0069. Our results suggest

that with multiple-stream forecasts we are more likely to meet the service quality

constraint in staffing.

We also compare the daily staffing cost and daily shortages between MU1 and

MU2 via paired t-test. Table 3.6 lists the mean values of daily staffing cost and mean

values daily shortages, as well as p-values of the two-sided paired t-tests. We see that

MU2 leads to less quality shortages but costs more.
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Figure 3.10: Staffing performance comparison in rolling experiments. Left: Mean
of cost for each time interval. Middle: mean of shortage for each time interval. Right:
violation probability for each tme interval. Horizontal axis: multiple stream method.
Vertical axis: single-stream method.

Violation Probability
MU2 MU1 z-test p-value
p(2) p(1) p(2) �= 0.05 p(1) �= 0.05 p(2) �= p(1)

0.0698 0.0862 0 0 0.0069

Daily Cost
Mean paired t-test

MU2 MU1 p-value lower upper
21453 21000 0 427.6 478.4

Daily Shortage
Mean paired t-test

MU2 MU1 p-value lower upper
12.10 16.08 0 -5.787 -2.173

Table 3.6: Results of two-sided paired t-test on daily statistics between method
MU2 and MU1.

3.5.3 Effects of System Designs

Note that the staffing decision given by the chance-constraint program depends

on the specific structure of the staffing system and the corresponding parameters.

With two arrival streams, we consider three interesting system designs as shown in

Figure 3.11, which are referred as the I-design, (or the II-design in our case), the

M-design, and the X-design Gans et al. (2003). These staffing designs cover a wide
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range of system complexity and flexibility, as we now discuss:

• the II-design: there are two dedicated server pools, each one serving one cus-

tomer class.

• the M-design: there are two dedicated server pools, one for each customer

class. There is also a flexible server pool, that serves both arrival streams. In

comparison, the M-design adds a flexible server pool to the II-design.

• the X-design: there are two separate pools of cross-trained servers: the servers

in each pool primarily serve one particular customer class, although they can

serve the other customer class if needed. Compared with the II-design, the

X-design allows resource sharing between the two classes, for example, when

there are overloads in one or both classes Perry and Whitt (2009).

II-design M-design X-design

      

  

  

  

$  $  

   

  

  
  

  

      

$  $  $  

      

  

  

  

$  $  

  

Figure 3.11: Staffing designs.

We expect that the flexibility level of a staffing design interacts with the com-

parison between MU1 and MU2. A more flexible system shall be more capable of

taking advantage of the benefits from incorporating inter-stream dependence; hence

MU2 shall lead to more operational benefits in a more flexible system. In addition to
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the various design structures in Figure 3.11, we consider two more factors that affect

system flexibility level:

• salary of the servers who serve more than one customer classes, i.e. c2 of the

M-design in Figure 3.11;

• service rate of the cross-trained servers when they handle their non-primary

customer class, i.e. μ12 and μ21 of the X-design in Figure 3.11.

It is natural to consider these three factors. First, managers in large-scale call

centers often cross train servers to increase system flexibility, which results in a more

complex staffing structure. Second, cross-trained servers with more skills usually

get higher pay, which on the other hand makes the system less cost-efficient. Third,

cross-trained servers may be slower in serving their non-primary customers compared

with the dedicated servers, which to some degree reduces the system operational

efficiency. In summary, the system becomes more flexible, when one increases the

number of server pools, or decreases the cost for cross-trained servers, or increases

the non-primary service rate of cross-trained servers. Below we perform two numerical

comparisons to present the effects of these three factors on forecasting and staffing

performance. We then generalize some managerial insights from the two comparisons.

Comparison 1: “II” vs. “M”. We consider five M-designs, with different

flexible server costs. The parameter settings are presented in Table 3.7, where the

M-designs are arranged in the order of decreasing system flexibility. The violation

probability target δ is 0.05, the allowed abandonment proportion ψi is 0.04 for both

customer classes, and the service rate μij is 1 across all server pools and customer

classes. Each dedicated server costs 1, while the flexible server cost c2 ranges between

1.1 and 2.
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Design δ ψi μij cj Setting Index

M 0.05 ψ1 = ψ2 = 0.04 μ11 = μ12 = μ22 = μ23 = 1

c1 = c3 = 1, c2 = 1.1 M1.1
c1 = c3 = 1, c2 = 1.3 M1.3
c1 = c3 = 1, c2 = 1.5 M1.5
c1 = c3 = 1, c2 = 1.7 M1.7
c1 = c3 = 1, c2 = 2.0 M2.0

X 0.05 ψ1 = ψ2 = 0.04
μ11 = μ22 = 1, μ12 = μ21 = 0.8

c1 = c2 = 1
X0.8

μ11 = μ22 = 1, μ12 = μ21 = 0.6 X0.6
μ11 = μ22 = 1, μ12 = μ21 = 0.4 X0.4

II 0.05 ψ1 = ψ2 = 0.04 μ11 = μ22 = 1 c1 = c2 = 1 II

Table 3.7: System parameter settings for the II-design, M-design and X-design.

The various settings are chosen in a way so that the II-design can be viewed as

the limit of the various M-designs. More specifically, when a single flexible server

costs as much as two dedicated servers, the M2.0-design is basically the II-design.

Figure 3.12 displays the results of the staffing experiment under the various set-

tings. The left panel compares the daily mean of the realized violation probability,

obtained from averaging over the 115 out-of-sample forecasting days, while the right

panel compares the corresponding daily mean of the staffing cost between MU1 and

MU2. The following observations can be made:

• MU2 is more stable than MU1 in violation probability across all the settings;

MU1’s violation probability increases (more severe understaffing) when the sys-

tem becomes more flexible (that is, when the flexible server cost decreases). An

intuitive explanation is that MU1 pays more penalty for ignoring inter-stream

dependence in a more flexible system which is better at exploiting the bene-

fits of inter-stream dependence. More detailed comparison between MU2’s and

MU1’s violation probabilities is given in the bullet point below.

• Under the most flexible settings - M1.1 and M1.3, the violation probabilities

of MU2 are smaller and closer to the target value 0.05 than MU1’s. Under the

inflexible II-design, MU1 has a smaller violation probability than MU2, and the
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reason is as follows. When the design is inflexible with two separate queues, the

staffing decision is driven only by the marginal forecasting distributions instead

of the joint distribution of the two arrival streams. MU1 and MU2 perform

similarly regarding point forecast accuracy as shown in Table 3.4. However, we

observe that MU1 produces wider marginal confidence intervals than MU2 and

hence makes the staffing program account for a larger region of arrival rates.

Therefore, MU1 has a smaller violation probability under the II-design since

it generates similar point forecasts but wider marginal confidence intervals,

compared to MU2.

• For each forecasting method, the M2.0-design and the II-design have very sim-

ilar staffing performance, because these two designs are basically the same.

• When the system becomes more flexible (i.e. from II to M1.7 to M1.5, etc.),

the staffing cost of MU2 decreases with the violation probability staying stable,

indicating improved cost-efficiency of the service system after cross-training

with stable QoS performance.

Comparison 2: “II” vs. “X”. We consider three X-designs where the rate at

which an agent serves a non-primary customer class varies, and study how the vary-

ing cross-service rate affects the operational benefits of incorporating inter-stream

dependence using MU2. We use the II-design as the benchmark, because when the

cross-service rates are 0, the X-design reduces to the II-design. We choose to compare

the X-design with the II-design in this staffing experiment, since Perry and Whitt

(2009) have carefully studied the X-design as a potential remedy to unexpected over-

load under the II-design. Furthermore, note that Perry and Whitt (2009) consider

two independent arrival streams, while we are interested in the effects of inter-stream

dependence.
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The parameter settings for the various X-designs are listed in Table 3.7, in the

order of decreasing system flexibility. The values of δ, ψi, μii, cj are fixed across all

the X-designs, while only the cross-service rates μ12 = μ21 change from 0.8 to 0.6 to

0.4. It makes sense that the cross-service rates are less than the dedicated service

rates, which satisfy the strong inefficient-sharing condition Perry and Whitt (2009).
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Figure 3.12: Real data: daily staffing comparison among the II-design and various
M-designs with different flexible server costs.
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Figure 3.13: Real data: daily staffing comparison among the II-design and various
X-designs with different cross service rates.

Figure 3.13 presents the daily staffing comparison between MU2 and MU1 un-

der the X-design with varying cross-service rates. We can understand Figure 3.13

similarly as Figure 3.12: they present very analogous messages. Therefore, detailed
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explanations are omitted and instead we state the following two major messages:

• MU2’s violation probabilities are closer to the target δ = 0.05 across all the

X-designs. MU1 understaffs with violation probabilities greater than 0.05 in all

the X-designs.

• When the system becomes more flexible (i.e. from II-design to X0.4 to X0.6,

etc.), the staffing cost decreases and the violation probability also decreases for

MU2.

In light of the two comparisons reported above, the following managerial insights

are observed based on the particular call center data:

• When the service system is flexible: incorporating inter-stream dependence

ensures stable performance in QoS; ignoring the dependence results in under-

staffing due to the positive dependence between the two classes, and the severity

increases when the system becomes more flexible. When the service system is

inflexible with separate service queues: there is no benefit to account for inter-

stream dependence in regards to staffing performance.

• When the system becomes more flexible, the staffing cost associated with using

MU2 forecasts decreases while maintaining stable QoS performance, implying

potential benefits of cross-training. Based on the amount of staffing cost re-

duction, call center managers can make cross-training decisions that balance

between enhanced system cost-efficiency and training expense.

3.5.4 Comparison with Existing Bivariate Forecasting Models

To our best knowledge, Ibrahim and L’Ecuyer (2012) is the only other paper that

develops forecasting models for call centers with two arrival streams. In contrast, our
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models are applicable for call centers with any number of arrival streams; in addition,

we also study the downstream impact of incorporating inter-stream dependence on

staffing under various system designs.

Considering only two arrival streams, one major difference between their models

and ours is that they propose an additive structure to decompose the daily effect

and the interval effect while ours consider a multiplicative structure. Under the

additive structure, the forecasting variances of the interval counts within the same

day are identical, while under the multiplicative structure the forecasting variance

for one interval depends on its arrival volume. Since we observe heteroscedasticity

of the interval counts as shown in the left panels in Figures 3.6 and 3.7, we think a

multiplicative structure is more realistic. A similar preference has been stated in Shen

and Huang (2008) based on their numerical studies. Moreover, Ibrahim and L’Ecuyer

(2012) proposed two bivariate mixed effect models (BME1 and BME2), where BME1

takes into account the Type (c) dependence and BME2 takes into account the Type

(a) dependence respectively, while our model simultaneously accommodate the three

types of inter-stream dependence.

We now compare MU2, BME1 and BME2 using the real data, in terms of fore-

casting accuracy, operational performance, and computation time. (We obtained

codes from the authors to estimate BME1 and BME2.) For those two models, it can

take as long as 4.45 hours to forecast one day with a learning period of 100 days, so

we choose a shorter learning period of 30 days, when performing the rolling forecast

experiment. We encounter convergence problems to forecast Day 198 and Day 40

using the BME1 method; hence we finally focus on the results from forecasting Day

41 to Day 197. Similar challenges have been noted by the authors as well.

Our forecasting comparison shows that BME1 is the least accurate one among

the three methods, while MU2 and BME2 are comparable in terms of point forecast
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accuracy: MU2 tends to forecast the Business arrivals better while BME2 is better at

forecasting the Private arrivals. Hence we exclude BME1 from the follow-up staffing

and QoS comparison. In Section 3.5.3, we have shown that the multivariate methods

have more benefits in more flexible staffing systems, so we only consider the two most

flexible staffing settings: M1.1 and X0.8 in the current comparison. Table 3.8 shows

the achieved violation probabilities of MU2 and BME2 under the two staffing designs.

Under the M1.1 setting, MU2 and BME2 have similar violation probabilities, with a

p-value of 0.53 from the associated pairwise two-sample test. Under the X0.8 setting,

MU2’s violation probability is significantly smaller than BME2’s, with a p-value of

0.0008 in the pairwise test.

M1.1 design X0.8 design
MU2 0.086 0.065
BME2 0.083 0.084

Table 3.8: Staffing comparison in violation probability between MU2 and BME2.

Method Min. Q1 Median Mean Q3 Max.
MU2 0.030 0.040 0.050 0.056 0.070 0.150
BME1 205.6 590.0 725.6 805.5 933.1 2250
BME2 333.1 521.4 605.4 648.6 713.7 2306

Table 3.9: Computation time comparison in seconds.

Finally, we compare the computation time of the three methods. Table 3.9 gives

a summary of the time it takes to forecast one day using each of the three methods,

in the rolling forecast experiment with a learning lag of 30 days. We can see that

MU2 is clearly the fastest with computing time always shorter than 0.15 second. The

average computing time for BME1 is 13.43 minutes with a maximum of 37.5 minutes,

and the average computing time for BME2 is 10.81 minutes with a maximum of 38.43

minutes. As the learning period increases, the computing times of BME1 and BME2

increase dramatically. For example, it takes BME1 and BME2 more than 50 minutes
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to forecast Day 51 based on the data from Day 1 to Day 50, and it takes them more

than 4.3 hours to forecast Day 101 using the data from Day 1 to Day 100.

3.6 Discussion

3.6.1 Testing the Staffing Algorithm

In this section we test the staffing algorithm. We consider I = 2 and input true

distribution to the algorithm and see how it performs under different strengths of

inter-stream dependence. In particular, we set a bivariate Gaussian distribution for

each time interval of one day as the truth and simulate with-in day count profiles for

100 times from that particular distribution. Hence we have 100 days of simulated

within-day profile data as our realization. For each simulated day, we give the staffing

algorithm the true bivariate distribution along with the simulated within-day profile

as the realized counts to evaluate the staffing vector. In the meanwhile, we also

input only the marginal distribution to examine how the algorithm performs when

we deliberately omit the inter-stream dependence. Particularly, we use the following

set up to determine the true distribution:

• We only consider one day, thus d is fixed here. The daily total rate (u
(1)
d , u

(2)
d ),

within-day proportion profile f
(1)
wd,t

, f
(2)
wd,t

, t = 1, 2, . . . , 34 and the marginal vari-

ance Σ11,Σ22,Ω11,Ω22 are chosen based on real data estimates.

• Set δ = 0.05, ρ = 0.

• Vary the inter-stream correlation r from -0.9 to 0.9 with a resolution 0.225

Table 3.10 shows the violation probabilities and corresponding p-values of the

multi-stream input and independent input. We see how the violation probability

diverge from the target value 0.05 if we omit the dependence among queues. We

84



also see that the staffing algorithm performs more consistent when the correlation

is larger. Figure 3.14 consents the above point, which plots the violation probabil-

ities against the correlation for the true distributions. The correlation between the

violation probability and bivariate correlation is -0.705 with p-value = 0.034.

r v.prob p-value
Multi-Stream Single-Stream z-test p-value

p(2) p(1) p(2) �= 0.05 p(1) �= 0.05 p(2) �= p(1)
-0.900 0.0585 0.0256 0.0224 0 0
-0.675 0.0571 0.0294 0.0295 0 0
-0.450 0.0579 0.0424 0.0336 0.0408 0.0032
-0.225 0.0585 0.0494 0.0224 0.8749 0.0961

0 0.0576 0.0571 0.0407 0.0590 0.9169
0.225 0.0550 0.0612 0.0905 0.0014 0.1381
0.450 0.0582 0.0774 0.0275 0 0.0009
0.675 0.0556 0.0832 0.0674 0 0
0.900 0.0535 0.0929 0.3450 0 0

Table 3.10: Violation probability and corresponding p-values for true multi-stream
distribution input and independent single-stream input.
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Figure 3.14: Plot of violation probabilities against correlation for true distributions.

3.6.2 Alternative Estimation Method

Instead of splitting the forecasting process into two stages, we also considered

fitting a Gaussian mixed effect model to obtain the forecasts through an integrated
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procedure. Due to the multiplicative format, iterations are also required to achieve

the final forecasts. Specifically, the steps below can be followed:

• Initiate f̂
(i),(0)
d,t by Equation 3.6.

• In the mth iteration, fit linear mixed effect model⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

X i
d,t = γid f̂

i,(m−1)
wd,t

+ αi
wd,t

f̂
i,(m−1)
wd,t

+ εid,t

εdt ≡ (ε1dt, ε
2
dt, . . . , ε

I
dt)

T i.i.d.∼ N(0,Σ)

γd = Aγd−1 + zd, γd ≡ (γ1d , . . . , γ
I
d)

T , zd
i.i.d.∼ N(0,Ω).

This model provides the estimates γ̂
i,(m)
d , α̂

i,(m)
wd,t

, Â(m), Σ̂(m) and Ω̂(m) and thus

the distributional forecast for X i
D+h,t. Then update and normalize f̂

i,(m)
wd,t

.

• Terminate the iteration until f̂
i,(m)
wd,t

converges in terms of m.

We implement both the additive and multiplicative mixed effect models in SAS,

using the mixed procedure. However, solving the above linear mixed effect models is

very computationally intense. We perform 100 times rolling test of our model with

OLS estimation method and the mixed effect models on a real call center data set,

using historical data of previous 50 days in each rolling step. We then record the

RMSE, MRE, COVER and WIDTH for each rolling step. It takes minutes for the

additive linear mixed effect model to perform one rolling test while our model with

OLS estimation method requires less than a second. The multiplicative mixed effect

model does not converge. We then perform paired t-test on the performance measures

with the alternative hypothesis: the linear mixed effect model is performing better.

Table 3.11 lists the test p-values. And we see that our model with OLS estimation

method is no inferior to the linear mixed effect model.

We also tried the two-stage alternative model in Aldor-noiman et al. to save time

but convergence problem arises. Thus we didn’t adopt the mixed effect estimation
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RMSE MRE WIDTH
0.9491 0.3207 0.1357

Table 3.11: p-values of the paired t-tests. The alternative: additive linear mixed
model is better.

methods in our analysis due to its computational intensity.

3.7 Conclusion and Future Work

Our paper provided some insights on forecasting and staffing call centers with

multiple uncertain arrival streams. We developed statistical models to forecast mul-

tiple stream arrivals, which is reliable in forecasting accuracy and computationally

fast. We theoretically discussed the benefits of considering the dependence among

multiple streams.

We implemented and tested the chance-constraint optimization staffing approach

with sample based approximation by Gurvich et al. (2010). We showed there always

was deviation between achieved service quality and objective service quality using

this approach, and the deviation decreased as the correlation among different streams

increased.

We combined our forecasting method and the chance-constraint staffing approach

and formed an entire solution to forecast and staff call centers with multiple uncertain

arrival streams, in the presence of dependence among streams. We compared our

multiple-stream solution with an alternative single stream solution which ignored the

inter-stream dependence. We tested both solutions on a real call center data set and

showed accounting for dependence among streams provided more accurate forecast

and the following staffing vector better met the quality of service target. Simulation

experiments showed how benefits of the multiple stream solution varied by types and
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strength of dependence among streams. In particular, when two streams are positively

correlated, both multiple stream and single stream solutions are under-staffing while

multiple stream approach is closer to the QoS constraint. When two streams are

negatively correlated, multiple stream solution saves money while providing the same

service level.

A further research step is to develop more efficient and accurate estimation method

in the forecasting process. Notice that the GLS estimation method is providing more

accurate forecasts than the OLS estimation method in a very small degree, while

costing much more time. Also notice that our forecasting procedure includes two

stages. An undivided estimation process which produces estimates along with the

forecasts at the same time, and computationally practicable is desired.

Besides exploring the benefits of incorporating dependence among multiple arriv-

ing streams, it might also be interesting to study the benefits of cross train agents

in the multiple stream staffing context. We only tested the effects of considering de-

pendence in the arrival process, under one staffing set-up. Further research includes

exploiting the operational effects of cross training agents.

There are two other factors worth considering. One is to develop more scientific

approximation method to discretize arrival distribution. We showed that sample-

based approximation method in the staffing algorithm is not steady, especially when

the value of correlation is small. Possible explanations could lie in the randomness of

the discrete sample of the staffing algorithm, the chance fluctuation in the simulated

realizations and the shape of the distribution. The Gaussian quadrature method

whose samples match the original random variable for the first 2K−1 moments might

be useful for ruling out randomness. The other factor is to consider other staffing

algorithms rather than the chance constraint approach to test the operational effects

of incorporating inter-stream dependence.
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4 Agent Heterogeneity

In this chapter we consider agent heterogeneity in terms of service efficiency and

service quality. Traditional operations management papers often omit one or more

of the following facts about agent heterogeneity:

• service efficiency and service quality vary by different agent,

• service efficiency and service quality vary by time for the same agent,

• service attributes (such as service time) might have different configurations.

Failing to consider agent heterogeneity might lead to improper anticipation of system

performance, and further result in inefficient operational policies.

Some settings in recent operational programs can be suitable for taking into ac-

count agent heterogeneity. For example, the consideration of multiple agent pools al-

lows agents to have multiple service efficiency/quality levels, and short-run staffing/scheduling

algorithms allow agents’ service attributes to change over time. However, these pro-

grams have no adequate input to be applied in practice, because there are rare papers

providing methods for estimating or forecasting agent performance in the presence of

agent heterogeneity. In this chapter, we are aiming to provide some methodologies

to evaluate and forecast agent performance, and to address factors affecting agent

performance.

The proxies considered for agent performance are agent service time (correspond-

ing to service efficiency) and issue resolution probability (corresponding to service

quality), respectively. In the first section we will conduct detailed learning curve
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analysis on agent service times and in the second section we will develop an issue

resolution estimator and discuss some factors affecting issue resolution probability.

4.1 Heterogeneity in Service Times: Agent Learning Curve Modeling

Learning effects have been studied extensively in the past. See Yelle (1979) for a

literature review on this topic. Recent developments include Bailey (1989), Nembhard

and Uzumeri (2000), Shafer et al. (2001) and Nembhard and Osothsilp (2002), etc.

However, this literature focuses on worker learning in the manufacturing/production

context, while scarce literature has investigated agent learning in call centers. Our

work supplements their work by providing a comprehensive study on the learning

curves of a large group of call center agents. To the best of our knowledge, this work

is the first to do so.

We view agents as accumulating experience on a day-to-day basis. In this section,

we consider different learning-curve models and compare the performance of their in-

sample estimates, as well as the accuracy of their out-of-sample predictions.

4.1.1 Four Learning-Curve Models

We assume that service times of an agent follow lognormal distributions. For an

arbitrary agent, let yjk denote the service time of the kth call during the jth day over

this agent’s tenure, and nj be the total number of calls served by this agent during

the jth day. Define zjk = log(yjk).

We consider the following three parametric models and one nonparametric model

to capture the agent learning effect.
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Model 1

zjk = a+ b log(j) + εjk, εjk ∼ N(0, σ2
j );

Model 2

zjk = a+ b log(
j

j + γ
) + εjk, εjk ∼ N(0, σ2

j );

Model 3

zjk = a+ b
j

j + γ
+ εjk, εjk ∼ N(0, σ2

j );

Model 4

zjk = f(j) + εjk, f(·) is a smooth function, εjk ∼ N(0, σ2
j ).

The first model adapts the learning curve equation in Yelle (1979). Model 2 and

Model 3 have a common interesting feature: the mean log service time approaches

some limit as the training period approaches infinity. This feature conforms to the

conjecture that the service rate eventually stabilizes and will not improve further

after the agent has taken calls for a sufficiently long period of time. Unlike the first

three models, Model 4 is nonparametric and assumes the least amount of structure

on the underlying learning curve.

Below, we briefly discuss how we estimate the parameters for each model, using

our data. To keep the models parsimonious, we assume homoscedasticity: σ2
j = σ2.

For the nonparametric Model 4, we estimate the smooth function f(·) using the

smoothing spline technique Green and Silverman (1994), implemented via the func-

tion smooth.spline in the R package. For the three parametric models, we estimate

the model parameters using maximum likelihood.

In particular, we illustrate the estimation procedure using Model 3, as it involves

some constraints. Let z = {zjk} and θ = (a, b, γ, σ). Then the likelihood function
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L(θ|z) can be expressed as

L(θ|z) =
∏
j,k

1√
2πσ

e−
(zjk−a−bj/(j+γ))2

2σ2 .

Thus, the log likelihood is

log(L(θ|z)) =
∑
j,k

{
− log(

√
2π)− log(σ)− (zjk − a− b j

j+γ
)2

2σ2

}
, (4.1)

which is to be maximized with respect to (a, b, γ, σ). Note that one must have γ > −1,

since j ≥ 1. Equivalently, we solve the following optimization problem:

min
∑
j,k

{
log(σ) +

(zjk − a− b j
j+γ

)2

2σ2

}
+ (−γ − δ)+M. (4.2)

In the last term of (4.2), the constant δ is a number smaller than but very close

to 1, say 0.999, andM is a very large number, say 108. This term applies a very large

penalty to the optimization objective if γ ≤ −1 and does not affect the objective

otherwise, so it ensures that γ > −1. The criterion is then optimized numerically.

Model 2 can be fitted similarly. The last term in (4.2) is not needed for Model 1.

4.1.2 Learning Patterns of Agents

We fit the four learning models to a group of 129 agents, whose records suggest

that they are common agents with no previous work experience in the call center.

Remarkably, we find that there exists a variety of learning patterns among these

agents. They exhibit mainly the following three patterns: (1) always learn, (2) never

learn, and (3) learning and forgetting interwoven throughout the whole tenure. The

majority of the agents possess the third pattern. For ease of presentation, we name

these three learning patterns: the optimistic case, the pessimistic case and the

common case, respectively. To illustrate these behaviors, we select two agents from

each case and display their estimated learning curves below.
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The Optimistic Case: agents always learn

Figure 4.1 plots the learning curves for two agents: Agent 33156 and Agent 33235,

respectively. On both panels of the figure, the x-axis is the duration of the agent’s

working experience (in days), and the y-axis displays the mean log service time for

that day. The dots are the average log service times calculated from the data. More

precisely, for day j on the x-axis, the value of the corresponding dot on the y-axis is

calculated as

z̄j· =
1

nj

nj∑
k=1

zjk.

The four curves show the estimates for the mean log service time, given by the four

models that we considered. See the legend within each panel for a detailed description.
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Figure 4.1: Learning curves for the optimistic case

From Figure 4.1, we deduce that, throughout these two agents’ tenures, their

mean log service times are decreasing. This implies that they are always learning

and are getting faster on their jobs as they work longer. However, their learning

rates seem to be decreasing, and the learning curve becomes flatter, which suggests

that the purely log-log linear learning curve (Model 1) is too simple to capture the

underlying behavior.

The Pessimistic Case: agents never learn
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Not all agents learn during their working period, and in Figure 4.2, we show two

agents who never learn. As we see, Agent 74527 is getting slower as he works longer,

and Agent 76859 seems to maintain a stable service rate throughout her tenure.

From the plot of Agent 74527, one also observes that the nonparametric spline

model is more sensitive to the short-term trend of the service rate. In particular, this

agent’s mean service time has a significant leap around day 130, which is captured

nicely by the nonparametric model. The three parametric models are too rigid to fit

such a dramatic change.
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Figure 4.2: Learning curves for the pessimistic case

The Common Case: agents may learn as well as forget

We observe that most agents do not have a monotone learning curve: their log

mean service times are “zigzagging” throughout their working period; for such a

behavior, the nonparametric model captures much better the trend of the mean log

service time. Figure 4.3 depicts the learning curves of two such agents.

Agent 33146’s mean log service time is decreasing during his first 100 working

days and afterwards has two significant leaps. The first leap starts at around day

110 and reaches a peak at around day 150. After that, the log service time starts to

decrease. The second jump begins at about day 220 and arrives at the apex at about
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Figure 4.3: Learning curves for the common case

day 270, after which the log service time keeps decreasing until the end.

Agent 33147’s learning curve is similar. As we see in the right panel of Figure

4.3, her mean log service time first drops, then starts to jump at around day 100,

reaches its peak around day 130, then begins to decrease slowly until day 240, makes

a sharp drop between day 240 and day 280, and finally seems to stabilize, from day

280 onwards.

Based on the above results, we conclude that agents’ learning curves can differ

significantly. However, we note that the above analysis uses only the service times

of the calls; other factors may explain the leaps and bumps observed in the learning

curves; however, we do not have access to them.

4.1.3 Out-of-sample Prediction of Service Rate

As existing simulation results suggest, managers need statistical models that can

sensitively monitor the service rates of individual agents; otherwise, the call center

may end up being overstaffed or understaffed. The analysis in Section 4.1.2 compares

the in-sample performance of four learning models. In addition, we calculate below

the out-of-sample prediction errors of the service rate, using the four models.
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We incorporate a rolling-window prediction procedure. For a given agent, the

schematic algorithm of the out-of-sample prediction exercise is as follows:

Algorithm for Computing Prediction Errors

For j = 6 to n, with n being the length of the agent’s tenure (in days):

• Fit Model i using data from the 1st day to the (j − 1)th day, for i = 1, 2, 3, 4;

• Predict the mean log service time of the agent on the jth day, denoted as ẑij,

using the fitted learning model;

• Predict the mean service rate of the agent on the jth day as μ̂ij = e−(ẑij+σ̂2
i /2)

where σ̂i is the estimated standard deviation for the measurement error in

Model i;

• Estimate μj, the “true” mean service rate of the agent on the jth day, calculat-

ing it as the reciprocal of the mean service time of the calls answered on that

day;

• Calculate the prediction errors (PE) and relative prediction errors (RPE) of the

service rates on the jth day as

PEij = μ̂ij − μj, (4.3)

and

RPEij =
μ̂ij − μj

μj

× 100%. (4.4)

End For
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After reviewing the out-of-sample prediction performance of the models, we con-

clude that the nonparametric learning model is more sensitive and effective in moni-

toring the changes in agent service rate, no matter what the agent’s learning pattern.

Hence, among the four approaches tested, the nonparametric model is the most ro-

bust. To illustrate this observation, below we plot in Figures 4.4 and 4.5 the prediction

errors for Agent 33146 and 33147. As shown in Section 4.1.2, these two agents have

the most intricate learning patterns among the six agents plotted there.
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Figure 4.4: Prediction errors for Agent 33146

In each panel, the x-axis is the number of historical working days used to fit

the learning-curve models for the agent; the y-axis shows either the prediction error

or the relative prediction error. The curves for the four models are plotted using

different colors, as indicated in the panel legend. From these plots, we observe that,

over the full tenure of both agents, the performance of the nonparametric spline

model is the best and the most stable. In particular, from Figure 4.3, we observe
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Figure 4.5: Prediction errors for Agent 33147

that the mean log service time of Agent 33146 has a clear jump from day 110 to day

150. Correspondingly, in Figure 4.4, we see that the prediction errors of using the

spline model are much closer to zero during this time period. Similar observations

can be made for the periods between day 220 and day 270 for Agent 33146, and

between day 100 to day 130 for Agent 33147. In addition, the spline model is also

more sensitive to drops in mean log service time (i.e., service rate jumps), during the

period between day 240 to day 280 for Agent 33147. These observations imply that

the nonparametric model is the most sensitive one in capturing agent service-rate

changes.
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4.2 Heterogeneity in Service Quality: Issue Resolution Rate Analysis

This section is based on empirical analysis of nine million call by call data at a

U.S. telephone service call center. Selected results are shown in the following section.

4.2.1 Exploratory Data Analysis

Exploratory analysis of the nine million call-by-call data reveals the following

unusual phenomenons. Before going to the results, we define a term:

Definition 1 Agent-release Behavior: The interaction between the customer and the

call center is terminated by agent hanging up the call.

Many empirical studies suggest talk-time distribution follows log-normal distribu-

tion (Brown et al. (2005)). However, the talk-time distribution of agent-released calls

exhibits bi-modal pattern (Figure 4.6), indicating many calls are released by agents

at around 30 seconds, which is unusual.

Another unusual finding comes from the within-day agent-released call profile

(Figure 4.7). Commonly the count profile of the same day-of-the-week follows the

same pattern, as shown in the left plot in Figure 4.7. However, there are several spikes

in the count profile of agent-released calls (middle plot in Figure 4.7), indicating

agents hang up more calls than usual. The right plot in Figure 4.7 is the proportion

profile of agent-released calls. We also see several curves stands out with unusual

high agent release rate. We are interested in identifying those spikes(abnormal agent

behavior) and finding the factors triggering them.

The above results show unusual agent release behavior in terms of talk-time dis-

tribution and spikes. In next section we will demonstrate the impact of agent release
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agent-released calls: bi-modal customer-released calls: log normal
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Figure 4.6: Talk-time distribution. Left: agent-released calls (bimodal pattern is
unusual). Right: customer-released calls (expected pattern).
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Figure 4.7: Left: within-day profile of total arrivals. Middle: within-day profile of
agent-released calls. Right: within-day profile of agent-released rate.

behavior: lower issue resolution rate.

4.2.2 Issue Resolution Estimation

After noticing the abnormal agent release behavior, one may ask: are the problems

really solved when agents hang up calls? To answer this question, we look into Issue

Resolution Rate(IR).
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Definition 2 Issue Resolution Rate (IR): the probability that the customer’s problem

is solved by the end of the call.

IR is an important call center performance measure. Traditionally it’s obtained

by conducting customer survey which is expensive (additional agent effort) and not

reliable(non-response bias). In this section we derive an IR estimator from operational

data which is free and reliable and we compare the IR between agent-released calls

and customer released calls. We find the IR of agent-released calls is at least 10.72

percent point less than that of customer-released calls, which informs agent-release

behavior will negatively affect service quality.

Intuitively, the one-time-service customers would never call in again after their

problems are solved. So the IR should be correlated with the one-time call proportion,

which can be extracted from the operational data. We construct a graphic model

which reflects the whole service around a call to build up the dependency (Figure

4.8). Based on our model, the one-time call proportion is decomposed in the form

θ = q · p1 · p2 + (a− 1) · q · p21 + p1 − p1 · p2.

Then the IR is

q =
θ − p1 + p1p2

p1p2 − (1− a)p21
.

Next we compare IR between agent-released calls and customer released calls. We

assume p1 = p2 = p, meaning customers consistently care about their problem, then

q =
θ − p+ p2

ap2
.

Noticing that a and p are independent of agent, we have

q|c−released − q|a−released =
θ|c−released − θ|a−released

a · p2 .
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a probability(a relevant customer needs one-time service). Independent of
agent.

p1 probability(a customer will call in given he needs to solve a new problem).
Independent of agent.

p2 probability(a customer will call in given he needs to solve an exist-
ing&unfinished problem). Independent of agent.

q issue resolution rate, i.e. probability(the problem will be solved by the end
of the call). Depends on whether the call is released by agent.

θ one-time call rate, i.e. proportion of the calls made by one-time callers.

Figure 4.8: Graphic network model for estimating issue resolution rate.

Rewrite the above as:

δq =
δθ

a · p2 .

We obtain following estimates from the data:

δ̂θ = 3.96%, S.D.(δ̂θ) = 0.0577%

â = 36.93%, S.D.(â) = 0.0219%

Then

δ̂q =
δ̂θ

â · p2 =
10.72%

p2
.

Applying Delta method, we get

S.D.(δ̂q) ≈
√

σ̂2
1

â2
+

δ̂2θ σ̂
2
2

â4
− 2δ̂θσ̂1σ̂2

â3
· ρ

p2
=

√
2.445 · 10−6 − 1.987 · 10−7ρ

p2
� 0.1626%

p2
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where ρ
.
= Correlation(δ̂θ, â) ∈ [−1, 1].

Thus we come to the conclusion that the issue resolution rate of agent-released

calls is at least 10.72 percent points less than that of customer-released calls and the

estimate is statistically accurate.

We then look at agent heterogeneity in issue resolution. We use one-time call

proportion as an auxiliary estimator to rank agents’ issue resolution probabilities

and compare our estimates with survey-based estimates.
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Figure 4.9: Comparison between data-driven and survey-driven estimates.

Figure 4.9 plots our data-driven estimates against the survey driven estimates.

As some agents have only handled a small number of calls, we only keep those agents
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who have handled more than 5000 calls to insure that our estimates are accurate.

Totally there are 262 agents in the figure. Also keep in mind that our data-driven

estimates are relative IRP’s to compare between different agents. From the right

graph we see that our data-driven method provides different IRP estimates even if

the survey-estimates are all the same.

Take two agents for example: Agent-1 and Agent-2 that both have survey-IRP 1.

Based on our data-driven estimates, Agent-1 has a higher IRP compared to Agent-2

while the customer survey indicates that both of them have solved all their prob-

lems. We carefully examine all the calls they have handled and find that Agent-2

answered 7507 calls from Split 700 totally, among which 5444 calls are lastly han-

dled by him/her(not transferred to other agents). Agent-1 answered 5684 calls from

Split 700, among which 3983 are lastly handled by hime/her(not transferred to other

agents). For those calls lastly handled by them, 24.50% of them call back within an

hour for Agent-2, and 18.56% call back within an hour for Agent-1, which results

are consistent with our data-driven IRP estimates. As it’s very unlikely that all

the within-1hour callbacks are for a different problem to be solved and Agent-1 and

Agent-2 have different 1hour callback rate, the survey estimated IRP 1 for both of

them can be misleading.

4.2.3 Abnormality Detection for Agent Release Burst

As we have found out that agent release behavior leads to less issue resolution,

unusually frequent agent release behavior would bring down the system performance

in both service quality (customers’ problems are not well solved) and operational

efficiency (customers with unsolved problems will call in again requesting additional

resource). In this section we are to identify those unusual high agent-release rate

(spikes) in Figure 4.7 and explore factors triggering those spikes.
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Hubert et al. (2005) introduce a Robust Principle Component Analysis (R-PCA)

method which is able to deal with outlying observations and they also provide meth-

ods to classify the outliers. As the spike curve is one type of outliers, we borrow

strength from R-PCA to develop our spike detection method.

Our method follows four steps (Figure 4.10):

• Step 1: use the first robust principal component to de-trend the data.

• Step 2: calculate the robust standard deviation of de-trended data.

σj =
Median({|xi,j|}Di=1)

0.6745
(4.5)

• Step 3: smooth the standard deviation {σj}Jj=1 using local polynomial regression

σ̂j = f(j) (4.6)

• Step 4: use the threshold value to mark the spikes

Thr = 4σ̂j

raw data de-trended data threshold by Equa-
tion 4.5

threshold by Equa-
tion 4.6
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Figure 4.10: Illustration of our spike detection method.

We compare our method to other methods (not necessarily designed for spike

detection since to the best of our knowledge there is no existing spike detection
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method that handles functional data with background trend). As the spike is one

type of outlier, we may use the outlier identifying method in Hubert et al. (2005) as

the comparable methods to identify the spike. We consider the following methods:

• meth1: our method described above from Step 1 to Step 4

• meth2: same as meth1 instead of skipping Step 3 and using the threshold in

Equation 4.5

• rpca1: the outlier identifying method provided by Hubert et al. (2005) using

one principal component.

• rpca2: the outlier identifying method provided by Hubert et al. (2005) using

two principal components.

meth1 meth2 rpca1 rpca2
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Figure 4.11: Methods comparison.

We apply the above four methods on the call center agent-released rate data.

Figure 4.11 demonstrates the comparison results. The highlighted curves are the

identified outliers by the corresponding method. Red points are the detected spikes.
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We use METH1 as benchmark to compare with the other 3 methods. The left

2 plots in Figure 4.11 show the spikes detected by METH1. The next 3 column of

plots are the comparison between METH1 and the other 3 methods.

The black curves are the mutual findings from METH1 and the other method.

The pink curves are the outliers detected by METH1 but not detected by the other

method. The blue curves are the outliers detected by the other method but not

detected by METH1. We see that RPCA1 detects several non-spike curves and fails

to detect two spike curves compared with METH1 which indicates it does not work

well for the functional data. And for RPCA method, the more RPC’s used, the more

non-spike curves detected. Based on the comparison plots, we see that METH1 is

the most robust and accurate to identify the spikes.

With the spike curves identified we are able to study the factors triggering the

spikes. We dichotomize the spike curves identified by METH1 and use it as response

variable. Then we consider the exploratory variables listed in Table 4.1 and fit logistic

regression model. After variable selection by likelihood ratio test, the remaining

variables are listed in Table 4.2.

variable Name variable Description
RAV relative arrival volume/workload (the centered data by removing the

median arrival profile volume)
DIFF the difference of RAV between the current time interval and its pre-

vious time interval
DIFF.PREV the difference of RAV between previous time interval and one more

time interval ahead
SRAV the sign of RAV (whether the workload is above average)
SRAV.PREV the sign of the RAV of previous time interval
INT the index of the time interval
DIFF*SRAV.PREVthe interaction term of DIFF and SRAV.PREV

Table 4.1: Factors considered for the agent-release rate spikes

The chi=square test 1 − pchisq(103.99, 300) ≈ 1 indicates that our model is
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Coefficients Estimate Std.Error P-value
Intercept -3.6663 0.3911 <2e-16
RAV 0.3311 0.1303 0.01103
DIFF 0.4978 0.1722 0.00384
DIFF.PREV 0.4277 0.1543 0.00558
DIFF:I(SRAV.PREV==1) -0.5925 0.2538 0.01958
Null deviance: 136.92 on 305 degrees of freedom
Residual deviance: 103.99 on 301 degrees of freedom

Table 4.2: Significant variables after variable selection.

statistically plausible and 1 − pchisq(136.92 − 103.99, 305 − 301) ≈ 0 indicates that

our model is significantly better than the NULL model. Figure 4.12 displays the ROC

plot of the final logistic model. The area under the curve is 0.812, which demonstrates

a good fit.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ROC Plot (area=0.812)

False Alarm Rate

H
it 

R
at

e

●

●

●

●

●

●

●

0.1
0.2

0.3
0.4

0.6
0.8
0.9

Figure 4.12: ROC plot for the logistic regression model.

The regression model implies the following factors correlate with the occurrences

of a spike:
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• the relative workload of current time interval

• the increment of relative workload of the current time interval.

• the increment of relative workload of previous time interval.

• the increment of relative workload of the current time interval given that the

workload of previous time interval is below average.

In a word, our findings reveal that the agents are sensitive to the increasing workload.
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