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ABSTRACT 

DANIELA TARYN SOTRES-ALVAREZ: Latent Class Models and Latent Transition Models 

for Dietary Pattern Analysis 

(Under the direction of Dr. Amy H. Herring) 

 

  Dietary patterns (DP) are used to study the effects of overall diet on health outcomes 

as opposed to the effects of individual nutrients or foods. DP are empirically derived mostly 

using factor and cluster analysis. Latent class models (LCM) have been shown empirically to 

be more appropriate to derive DP than cluster analysis, but they have not been compared 

yet to those derived by factor analysis. We derive DP using LCM and factor analysis on 

food-items, test how well the resulting classes are characterized by the factor scores, and 

compare subjects’ direct classification from LCM versus two a posteriori classifications from 

factor scores: one possible classification using tertiles and a two-step classification using 

LCM on previously derived factor scores. 

  In order to study changes in dietary patterns over time, we propose using latent 

transition models to study change as characterized by the movement between discrete 

dietary patterns. Latent transition models directly classify subjects into mutually exclusive 

DP at each time point and allow predictors for class membership and for probabilities of 

changing classes over time. There are several challenges particular to DP analysis: a large 

(≥80) number of food-items, non-standard mixture distributions (continuous with a mass 

point at zero for non-consumption), and typical assumptions (conditional independence 

given the class and time point, time-invariant conditional responses, and invariant transition 
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probabilities) may not be realistic. We compare performance, capabilities and flexibility 

between two software packages (Mplus and a user’s derived procedure in SAS) that allow 

fitting latent transition models.  

 A key decision involved when deriving DP is whether or not to collapse the primary 

dietary data into a smaller number of items called food groups. Advantages for collapsing 

include dimension reduction and decreasing the number of non-consumers to reduce the 

mass-point at zero. However, not collapsing helps our understanding of which combinations 

of specific foods are consumed. Further, food-grouping may have an impact on the 

association between DP and health outcomes. We explore via a Monte Carlo simulation 

study whether food-grouping makes a difference when deriving DP using LCM. Methods are 

illustrated using data from the Pregnancy, Infection and Nutrition (PIN) Study. 
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CHAPTER 1                                                                 

Literature Review 

 

1.1 Dietary patterns analysis 

 
In the last two decades, dietary patterns (DP) have increasingly been used to study 

the effects of overall diet on health outcomes (Newby and Tucker, 2004; Kant, 2004) 

because it is well-recognized that the single nutrient approach in nutritional epidemiology 

has conceptual and methodological limitations (Hu 2002; Newby and Tucker, 2004; Kant, 

2004; Schulze and Hoffmann, 2006). First, people do not eat isolated nutrients but rather eat 

meals consisting of a variety of foods with complex combinations of nutrients that are likely 

to interact. Second, the single nutrient approach fails to account for interactions and/or high 

intercorrelations between food components or foods, and is unable to detect small effects 

from single nutrients. By contrast, dietary patterns account for cumulative and interactive 

effects (Schulze and Hoffmann, 2006), for effects of physical characteristics and unknown 

components (van Dam, 2005), and may be particularly suitable when traditional nutrient 

analyses have identified few dietary associations for the disease (e.g. breast cancer), when 

many dietary components are relevant to the health outcome, when interest is in the effect 

of overall diet, or to evaluate dietary guidelines (Hu, 2002).  

However, dietary patterns do have limitations. The correlated measurement error in 

assessing foods may distort the definition of a dietary pattern, and DP do not provide clear 
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answers about which elements of the dietary pattern are responsible for the observed effect 

(Schulze and Hoffmann, 2006).  Another limitation is that dietary pattern analysis does not 

deduce the biological mechanisms of the effect of diet on health outcomes but, from a public 

health perspective this is not necessary to promote healthier diets (Kant, 2004). 

Nutritional epidemiologists (Hu, 2002; Newby and Tucker, 2004; Schulze and 

Hoffmann, 2006) recognize that dietary pattern analysis is complementary to the traditional 

single nutrient approach to better understand the complexity of dietary intake in relation to 

health outcomes. Further, some agree (Newby and Tucker, 2004; Jacobs and Steffen, 

2003) that dietary patterns can even help generate or refine new diet-disease hypotheses, 

thought others (Kant, 2004) do not.  

Dietary patterns are derived for the most part because of the interest in examining 

diet as a multidimensional exposure for health outcomes. The most updated literature 

reviews on dietary patterns (Newby and Tucker, 2004; Kant, 2004; Schulze and Hoffmann, 

2006) illustrate the variety of health outcomes that have been considered, including 

indicators of cardiovascular or coronary heart disease, anthropometric measures, many 

different cancers, all-cause mortality, bone mineral density, dental caries, and birth weight, 

among others. However, dietary patterns have also been derived to be studied in their own 

interest. For example, they have been derived as a proxy to dietary behavior, to evaluate 

adherence to dietary guidelines, to assess nutritional adequacy, and to study their predictors 

(e.g. genetic, demographic, lifestyle, environmental). In general, dietary patterns do differ in 

nutrition composition, are associated with personal characteristics (e.g. sex, age, and 

socioeconomic status) and other health behaviors (e.g. smoking, drinking, and exercise) 

(Newby and Tucker, 2004; Kant, 2004; Schulze and Hoffmann, 2006).  
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1.1.1 Statistical methods to derive dietary pattern s 

 
Because dietary patterns cannot be measured directly, statistical methods are used 

to derive them. The first studies to examine dietary patterns and health in the early 80s 

defined food eating patterns as “foods as they are actually consumed in various 

characteristic combinations” (Schwerin et al, 1981, 1982) and were derived empirically using 

factor analysis. Since then, most of the literature has used two different approaches to 

derive dietary patterns (also referred to as food or eating patterns). The first is a theoretical 

(hypothesis-oriented) approach (aka a priori approach) that uses prevailing hypotheses and 

guidance from current dietary recommendations to derive the dietary patterns. One example 

is the Diet Quality Index-Revised DQI-R1 (Haines et al, 1999), which measures diet quality 

relative to the Dietary Guidelines for Americans, and focuses on four major aspects of a 

high-quality diet: macronutrient distribution, moderation, variety and proportionality. The 

second approach to define dietary patterns is an empirical approach (aka a posteriori 

approach) in which DP are derived from the data. The predominant methods to derive 

dietary patterns empirically are factor analysis (either principal components or common 

factor analysis) and cluster analysis (Newby and Tucker, 2004; Kant, 2004; Schulze and 

Hoffmann, 2006). 

Both theoretical and empirical approaches have strengths and weaknesses. One 

weakness of the theoretical approach is that “the index/scores focus on selected aspects of 

the diet and do not consider the correlation structure of food and nutrients; consequently, 

they do not reflect the overall effect of diet in general but only the formal sum of not-adjusted 

single effects” (Hoffmann et al, 2004). Another disadvantage of index/scores is that they 

                                                 
1The Diet Quality Index (Revised) Score is on a 100 point scale. It is created from the addition of the following 
ten scores: Energy from fat score, Energy from saturated fat score, cholesterol score, DQI total grains score, DQI 
total fruits score, DQI total vegetables and soy score, % AI calcium score, % RDA iron score, Diet Variety 
(weighted) score, Moderation score. 
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reflect the degree to which a person’s diet conforms to a dietary pattern that was defined a 

priori, whereas the empirically derived dietary patterns represent real-world dietary behavior. 

Hence, the latter can help the conceptual understanding of human dietary practice and 

provide guidance for setting priorities for nutrition intervention and education (Hu, 2002; van 

Dam, 2005). Some weaknesses of empirically derived dietary patterns include the complete 

ignorance of prior knowledge and that by nature they are population-specific.  

In 2004, reduced rank regression was proposed (Hoffmann et al, 2004) as one way 

to combine prior information (any continuous variables that are affected by diet and are 

predictive for the disease) and the data from the study. This approach is limited to studies 

for which knowledge about important intermediate variables exists, and when the main 

interest is the diet and health outcome association, but not when the main interest is the 

study of dietary patterns per se. Another option to incorporate prior information is to impose 

structure and/or adding covariates in a confirmatory factor model or structural equations 

model (SEM). 

 

1.1.1.1 Empirical methods 

 
The most common methods to derive dietary patterns empirically are principal 

components analysis (PCA), factor analysis (FA) and cluster analysis. PCA and FA have 

great appeal in nutritional epidemiology as a way to handle multicollinearity between food 

components and to use the principal components or the factors to define the dietary 

patterns. On the other hand cluster analysis provides a classification of the subjects. 

Regardless of the statistical method used, there are several nutritional methodological 

issues involved in dietary pattern analysis. For example, whether or not to collapse the 

primary dietary data (which ranges from 25 to 250 food items depending on the dietary 



 5

assessment tool used) into a smaller number of items (called food groups), how to group the 

data if collapse is done, quantification of the food items (weight, frequency or percent energy 

contribution, etc.), the number of patterns to extract, which patterns should be reported or 

analyzed, and how the patterns should be named (Newby and Tucker, 2004; Schulze and 

Hoffman, 2006). 

 

Principal Components Analysis 

 
 Principal component analysis (PCA) is a multivariate reduction method that reduces a 

set of p correlated variables to a smaller set of m uncorrelated linear combinations of the 

original variables, which explain a large proportion of the total variance (Mardia et al, 1979). 

One disadvantage of the principal components is that they are not scale invariant, and 

variables with larger variances can dominate the results. Hence, observed variables are 

usually standardized first. Let 1,2, ,i i n=Y K  be a random sample of a p-dimensional 

vector of continuous random variables, and let it be standardized. The -r th  principal 

component is defined as the linear combination of the p observed variables given by 

1

a 1,2, ,
p

T
ir rj ij r i

j

Z Y r p
=

= = =∑ a Y K  

where ra  is the -r th  normalized eigenvector of the sample correlation matrix R , and their 

corresponding eigenvalues are ordered as 1 2 0pl l l≥ ≥ ≥ ≥K . These linear combinations 

are optimal in the sense that 1Z  has the largest variance over all possible linear 

combinations of the observed variables, 2Z  has the next largest variance under the 

restriction that 1Z  and 2Z  are uncorrelated, and so on. In matrix notation, the p principal 

components are given by 
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1 1

T
i i

p p p× × ×

=Z A Y  

and their covariance matrix is { }1 2, , , pDiag l l l≡L K  by the spectral decomposition of the 

sample correlation matrix of iY , 
T=R A LA. The matrix 1/ 2AL  is called the initial loading 

matrix, and its components are the correlations between the principal components and the 

observed variables because their covariance is a jr rl  from 

cov( ) T T T T T T TE E   = = = = =   Z, Y A YY A YY A R A A LA LA  

In other words, the principal components are linear transformations of the original 

variables, uncorrelated with one another and with decreasing variance. Further, the sum of 

the variances (total variance) of all the principal components is equal to the total variance of 

the original standardized variables, which is p. In practice the first m principal components 

are retained in order to reduce the dimension, and the proportion of the total variance 

explained is 
1

1 m

j
j

l
p =
∑ . There is no single best way to select the number of principal 

components to retain and hence, reduce data dimension. Some options are retaining the 

first m components that accumulate certain percent of total variation, keeping those for 

which their eigenvalues are above the average, which is one (known as Kaiser’s rule), or 

based on the Cattell’s Scree plot (eigenvalues vs. number of components). However, 

regardless of the number of principal components retained the scores for those retained are 

the same, which is not the case in factor analysis.  The DP literature most often uses 

Kaiser’s rule, and the percent of explained variance has ranged from 15% to 93% (Newby 

and Tucker, 2004). 

In some applications, such as in dietary pattern analysis, there is interest in 

interpreting the principal components. However, usually the initial loading matrix is difficult to 

interpret because the components are an average of all the variables. Hence, for 
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interpretation purposes the principal components are transformed (rotated) so that the 

rotated components have high loadings on a small set of variables and are close to zero for 

the rest. Some examples of orthogonal transformations are Varimax and Quartimax, which 

attempt to achieve a simple structure of the columns and rows respectively of the initial 

loading matrix. Examples of non-orthogonal (oblique) transformations are Promax and 

Quartimin. With an orthogonal transformation the components are uncorrelated whereas 

with an oblique rotation they are correlated. After rotation, the total variance explained by 

the m components remains the same, but the variance of each component is more evenly 

distributed.  

 

Factor Analysis  

 
In contrast to PCA, factor analysis (FA) is a multivariate method which postulates a 

statistical model that attempts to explain the correlations between many observed variables 

by few underlying but unobservable (latent) variables called factors (Mardia et al, 1979; 

Bollen, 1989). The m-factor model  is formulated in terms of the p-dimensional vector of 

continuous random variables iY  for subject 1,2, ,i n= K  as: 

i i i= + +Y ν Λη ε  

[ ] ( ) ( ) [ ] ( ) ( )var var cov ,i i i i i iE Diag E= ≡ = = = =ε 0 ε Θ θ η 0 η I ε η 0 

where 1,p p m× ×ν Λ are parameter matrices (the elements of Λ  are called factor loadings), iη  

is an m-dimensional vector of latent variables (factors), and iε  is a p-dimensional vector of 

residuals. Generally, the outcomes are centered since the interest relies on the covariance 

structure and hence, intercepts, ν , are not estimated. The m-factor model can be 

equivalently expressed as  

( )var T≡ = +Σ Y ΛΛ Θ   (1) 
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which highlights that the sample correlation matrix can be decomposed into two sources: the 

variance of iY  that is explained by the factors and the residual variance. 

There are many methods to estimate the parameters ( ) and Λ Θ , but in DP analysis 

the principal components method is the most widely used (Newby and Tucker, 2004) 

because it does not require specifying the distribution of the observed variables. This 

method estimates p m×Λ  with the first m columns of the initial loading matrix p m×L  from 

principal components and the variances of the residuals by ˆ ˆ T −ΛΛ R  from equation (1). 

However, it is important to highlight that PCA is not the same as FA using the principal 

component method of estimation. The principal components are linear combinations of the 

observed variables and there are no underlying unmeasurable factors, whereas the factors 

scores are predicted values of the unobservable (latent) factors. Unlike principal 

components, factor analysis is scale invariant but similarly to PCA factor loadings are not 

unique and indeterminacy is usually resolved by making them satisfy a constraint. Also, note 

that PCA alone does not allow data dimension reduction unless a few principal components 

are retained (i.e. ad hoc two step approach), whereas FA does reduce the dimension 

directly. The other two most used methods of estimation are common factor2 and maximum 

likelihood (ML) under multivariate normality assumption.  

There are two general approaches to factor analysis: exploratory factor analysis 

(EFA) and confirmatory factor analysis (CFA). In EFA the relationship between the observed 

and the latent factors is not specified in advance. In confirmatory factor analysis (CFA) the 

model is specified a priori and hence, some parameters of the m-factor model are restricted 

to certain values, typically zero. Because latent variables are unobservable their location 

and scale parameters are not identifiable (i.e. unique), and hence their parameters have to 

                                                 
2Common factor analysis is an ad hoc two step method of estimation. First, the diagonal of the correlation matrix 
is replaced by the estimated residuals, and using this correlation matrix (known as reduced correlation matrix) 
the m-factor model is estimated (Mardia et al, 1979). 
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be restricted. A common practice is to restrict their mean to zero, and their scale is either set 

to the scale of one of the observed variables (aka indicators) by restricting the factor loading 

to one (referred as anchoring) or set to standardized units by fixing its variance to one. The 

scale parameterizations yield equivalent models, but anchoring is preferred because it 

guarantees factor invariance (Skrondal and Rabe-Hesketh, 2004). One sufficient but not 

necessary rule for the m-factor model to be identified requires the following three conditions: 

at least three indicators per factor, each indicator loading in one and only one factor, and 

independent residuals ( )( ). .i e Diag=Θ θ  (Bollen, 1989). If there is more than one indicator 

per factor and/or residuals are not independent, then other parameter restrictions are 

needed in order to identify the model. One example of an identified two-factor model, with 

seven continuous outcomes (centered) is represented in a path diagram3 in Figure 1.1.  

Most empirical dietary patterns are derived from exploratory factor analysis using the 

principal components method of estimation (Newby and Tucker, 2004; Kant, 2004) to 

provide a unique factor score solution, and the Varimax method of orthogonal rotation to 

facilitate interpretability. Orthogonal rotation also simplifies future analyses, such as avoiding 

collinearity when using factor scores as covariates in regression models or allowing 

analyzing them as independent outcomes.  

In general, most applications of FA involve two steps: 1) identification of the factors 

and 2) computation of factors scores to use them in following analyses. In such analyses, 

factor scores are generally then treated as known. For instance, factors are used as 

predictors to study association between diet and health outcomes. In nutritional 

epidemiology two approaches have been used to compute (predict) the factor score for each 

dietary pattern. The first one combines the standardized food variables with weights that are 

                                                 
3By convention, in path diagrams circles represent latent variables, squares observed variables, straight one-
headed arrows ‘causal’ relationships, curved two-headed arrows correlations, and small one-headed arrows 
random error. 
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proportionate to their factor loadings (best linear unbiased predictor or BLUP, aka 

regression method). This approach has been used by Newby et al (2006) and Weismayer et 

al (2006). The second approach known as simplified dietary pattern score combines with 

equal weight only those standardized variables that showed high factor loadings (e.g. ≥0.25) 

(Schulze et al, 2003). Some examples are Mishra et al (2006) and McNaughton et al (2007). 

Using CFA on the explored DP to derive the factor scores is similar to the simplified dietary 

pattern score in the sense that both approaches only add foods which score highly, because 

the former imposes the restriction of zero loadings to foods that scored low using EFA. 

However, DP scores from CFA weights the foods by their factor loadings whereas the 

simplified dietary pattern score does not. 

 

Cluster Analysis 

 
Cluster analysis is another multivariate method that is appealing to derive DP 

empirically because it classifies individuals in groups (unknown a priori) such that within 

groups they are similar (have similar diet), and groups are different from each other. In order 

to interpret the DP, it is necessary to compare dietary intake (e.g. nutrient intake) between 

clusters. Both agglomerative hierarchical and nonhierarchical (aka optimization method) 

methods have been used to derive DP (Newby and Tucker, 2004). Among the advantages 

of hierarchical methods are: no need to specify the number of clusters in advance, allows 

categorical and/or continuous variables because the methods operate on a n n×  matrix of 

pairwise distances (similarities or dissimilarities) between subjects, the tree structure (best 

suited for biological and zoological applications), the dendrogram, and being a non-

parametric method. However, some disadvantages are: subjects (or clusters) clustered 

together can’t be separated, sensitive to outliers, and not practical for very large datasets 

because time complexity varies as the square or cube of the sample size. In particular, in 
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nutritional epidemiology the most common agglomerative hierarchical method used is 

Ward’s minimum variance (Ward, 1963) (aka incremental sum of squares approach) which  

joins the two clusters that produce the least loss of cluster homogeneity (squared Euclidian 

distance from the observations to the corresponding cluster mean).  

In contrast to hierarchical methods, nonhierarchical methods require fixing the 

number of clusters from start, and clusters do not form a hierarchical structure. These 

methods produce a partition of the subjects by optimizing certain criterion. Because all 

possible enumerations of partitions of n observations in K clusters is practically impossible 

there are different algorithms for an optimum non exhaustive search procedure. The k-

means algorithm can be derived from considering a likelihood approach or as a mixture of 

density functions (Magidson and Vermunt, 2004). Cluster analysis is highly sensitive to 

starting values because there could be several local maxima so to be more confident of 

reaching the global maximum several sets of starting values should be used. 

In summary, the cluster and factor solutions generate patterns that differ in food 

composition because they are statistically different procedures (Newby and Tucker, 2004). 

Factor analysis groups input variables (food intake) according to the degree to which they 

are correlated to each other, whereas cluster analysis groups subjects into mutually 

exclusive categories. There are no clear advantages between factor and cluster analyses to 

derive dietary patterns, and it has been a matter of preference, which statistical method to 

use. One disadvantage of FA is the overlap in factor scores which may explain inconsistent 

results when comparing factors across studies (Newby and Tucker, 2004). By contrast, 

cluster analysis provides a direct classification of subjects, and findings are easier to 

interpret because subjects belong to one cluster only.  

 

 

 



 12 

Latent class analysis 

 
Despite that latent variable models and SEM were recognized as useful methods to 

reflect complex relations between diet and disease at the international workshop on dietary 

patterns in 2000 (Hoffmann et al, 2002) these models have been rarely been used in 

nutritional epidemiology. Latent class models (LCM) share the same goal as cluster 

analysis: to classify subjects into classes (unknown a priori) such that within class they are 

similar (have similar diet), and classes are different from each other. LCM will be discussed 

in chapter 1.2, but here I briefly review the only three studies that have used them to study 

diet. The first study (Patterson et al, 2002) extended the traditional LCM to complex sample 

survey data and used dietary data as an application. In particular, using a 2-class LCM they 

estimated the proportion of the population that regularly consumed vegetables (class 1) by 

using four repeated measurements of an indicator variable for consuming at least one 

vegetable in the 24hrs recall. The other two studies (Padmadas et al, 2006; Fahey et al, 

2007) used LCM specifically to empirically derive DP.  Padmadas et al (2006) used the 

National Family Health Survey in India (90,180 women) to fit a 5-class traditional LCM using 

seven food groups each with four categories (frequency of intake).  The article by Fahey et 

al (2007) used a generalized latent class model to derive the DP using the 2000-2001 

National Diet and Nutrition Survey for British adults (766 men and 958 women). In particular, 

they derived the DP by gender from 25 food groups (20 measured on a continuous scale, 

and 5 binary indicators of food-consumption), two covariates predicting class membership 

(age and energy intake), and specified different types of covariance matrix (identity, and 

diagonal and compound symmetric by class). They illustrated that the use of LCM to derive 

DP is more flexible than the traditional methods used in the past and offers the possibility of 

studying more complex models, which may provide interesting insights into dietary 

patterning. 
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1.1.1.2 Reproducibility 

 
Despite the increased interest in studying dietary patterns, there are few studies to 

date that have examined the reproducibility and validity of the statistical methods. With 

respect to reproducibility of dietary patterns, it has been distinguished between 

reproducibility within a population (stability over time) and reproducibility between 

populations. Although it is reasonable to expect that dietary patterns will differ between 

populations, Newby and Tucker (2004) argue that some dietary patterns are more likely to 

be identified in several populations (reproducibility between populations). This represents a 

challenge because comparisons among studies are not that simple because even though 

patterns might be called similar they might be very different in food and nutrient composition. 

 

1.1.1.3 Software 

 
Cluster analysis, exploratory and confirmatory FA for continuous symmetric data can 

be fitted using general purpose statistical software such as SAS, STATA, and SPSS. CFA 

for binary or categorical outcomes requires using specialized software such as Mplus or 

AMOS. Some LCM can be fitted using general purpose statistical software while others 

require specialized software (Table 1.1). Reduced rank regression can be fitted in SAS. 

 

1.1.2 Dietary patterns over time 

 
 In the last five years, there has been an increased interest among nutritional 

epidemiologists to study empirical dietary patterns over time. The initial motivation was to 
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study stability (reproducibility) of DP over time to test the assumption that dietary behavior 

was the same throughout the follow-up period. The main challenge is measuring change in 

variables that are not directly observed. Also, empirical DP are population and time-specific 

because they are data-driven and, therefore comparisons over time are not straightforward.  

Literature studying dietary behavior over time, as measured by empirically derived 

DP, can be classified according to two aims (Table 1.2). The first aim is concerned with 

testing stability of DP; the researcher’s hypothesis is that over time the same DP can be 

identified (i.e. same DP structure) and that DP scores (or subject’s classification) are similar. 

For example, in a population of interest DP might be considered stable if there are always 

these three DP: ‘Healthy’, ‘Western’ and ‘Southern’, and subjects score similarly in the three 

DP every time.  By contrast, the second aim is interested in within-subject change in DP 

over time, where researchers hypothesize the structure in the DP to be the same over time 

though subjects may score differently. Both aims require first evaluating if the structure of 

the dietary patterns is the same over time (i.e. same foods and same importance) and if so, 

measuring within-subject’s change in DP. Obviously, the study of change in DP depends if 

the DP are treated as continuous (as in PCA and FA) or as categorical (as in cluster 

analysis and LCA). All these longitudinal studies have used FA to empirically derive the DP, 

except for one study (Greenwood et al, 2003) that used cluster analysis. Regardless of the 

aim, investigators using continuous DP followed three steps to study them over time: identify 

the DP, compute DP scores at each measurement, and compare DP scores over time.  

In order to identify the DP investigators derived them separately for each time point 

using EFA and just by visual inspection decided whether the DP were the same (i.e. same 

number of factors and similar factor loadings over time). Some (Newby et al, 2006 (Vol. 3 

and 10); Weismayer et al, 2006) used CFA (on DP previously identified by EFA) separately 

by time point and hence could not compare the factor loadings over time statistically. One 

exception is the study by Togo et al (2004) who used simultaneously both time points in a 
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mean-structure FA while keeping the loadings on the factors equal. In other words, they 

assumed the DP loadings were the same over time without testing if the loadings were 

equal or not.  

There has been more variety among researchers on how to compute DP scores at 

each time point. Some (Newby et al, 2006 (Vol. 3 and 10); Weismayer et al, 2006; Cuco et 

al, 2006) have derived them by using the confirmed factor loadings at each time point. 

Others (Mishra et al, 2006; McNaughton et al, 2007) have used for all time points the same 

simplified dietary pattern score equation to make them less time-specific. The simplified 

dietary pattern score (Schulze et al, 2003) sums the unweighted food items which load most 

highly (e.g. ≥0.25) on the pattern derived using data only from one assessment. The 

advantage of using the simplified dietary pattern score is making them less time-specific, but 

it assumes that all foods with high loadings have the same contribution to the pattern, which 

often is not true. The study by Togo et al (2004) used the factor loadings that, by 

construction, were restricted to be equal for both time points. 

The comparison of DP scores over time depends on the study aim: stability of DP or 

within-subject change in DP. For example, long-term (>1 yr) stability of DP using FA has 

been studied in Swedish (Newby et al, J Nutr 136 (3), 2006; Weismayer et al, 2006) and 

British (Mishra et al, 2006) cohorts using from two to three assessments of dietary intake 

over 4 to 12 years of follow-up. To evaluate if DP were stable over time they used 

Spearman correlations between DP scores over time (Newby et al, 2006 (Vol. 3); 

Weismayer et al, 2006), and agreement (using weighted Kappa statistic) between quantiles 

of DP scores (Mishra et al, 2006). One study (Cuco et al, 2006) used congruence 

coefficients to assess stability of DP. In contrast, to estimate the within-subject change in DP 

over time some investigators have used the difference in DP scores between time points 

(Togo et al, 2004; Newby et al, 2006 (Vol. 10)), and others have categorized the DP scores 

in quintiles and classified participants according to change in quintiles (Schulze et al, 2005). 
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On the other hand, even after finding the same DP over time and DP scores highly 

correlated, DP could still be internally unstable (Weismayer et al, 2006). For instance, within 

each DP there could be differences in the food-items over time (e.g. correlations, means 

and SD). For example, using CFA they “tested the significance of changes in the covariance 

matrix between baseline and follow-up” and found the alcohol pattern was internally 

unstable after 6 years of follow up even though the alcohol pattern scores had a Spearman 

correlation of 0.7 between the two measurements. 

There is only one study (Greenwood et al, 2003) that looked at the stability of DP 

derived by cluster analysis. They performed cluster analysis separately at baseline and 5 

years later, and then used the Kappa statistic to test agreement between clusters (DP). 

Overall half the women maintained the same DP, and some patterns were more stable than 

others (κ=0.5 suggesting moderate stability). 

 

1.1.3 Dietary patterns during pregnancy and postpar tum 

  
  To date there are eight published papers that have studied dietary patterns during 

pregnancy from which two (Cuco et al 2006; Northstone and Emmet, 2007) have studied 

them longitudinally (Table 1.3 ). For brevity, details of the populations, dietary assessment, 

week of gestation, DP’s labels are summarized in Table 1.3 but not discussed. Except for 

one study (Crozier et al, 2008) that evaluated the impact of the dietary assessment method 

(FFQ vs. 4-day food diary) on the derived dietary patterns (i.e. DP’s validity), the rest were 

interested on identifying DP and examining their association mainly with nutrient intakes 

(absolute intake and/or energy-adjusted) and socio-demographic and lifestyle factors, and 

one (Knudsen et al, 2007) with fetal growth. All studies collapsed the food-items into food-

groups (range 21-52), used PCA on the food-groups’ correlation matrix to identify the DP, 
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and Varimax transformation to simplify their interpretation. The associations were mainly 

studied with continuous factor scores (DP) using Pearson’s correlations and linear 

regressions, except for two studies (Northstone et al, 2007; Knudsen et al (2007) that 

categorized each DP by its quintiles. Northstone et al (2007) used the quintiles of each DP 

score separately to assess for non-linearity, whereas Knudsen et al (2007) classified the 

women into mutually exclusive classes using the two DP jointly (by cross-tabulating the DP’s 

quintiles) to study the effect of the classes on the outcomes.  

  Both longitudinal studies (Cuco et al, 2006; Northstone and Emmett, 2007)  

assessed the stability and/or change of DP over time, and the former also studied their 

associations with predictors and other health behaviors. Cuco et al (2006) used 7-d dietary 

records on 80 women to identify the DP at each of the six timepoints (pre-pregnancy, four 

assessments during pregnancy, and one at 6 months postpartum) using EFA with PC 

method of estimation on 21 standardized food-groups (g/day). They identified two DP 

(‘Vegetables and meat’ and ‘Sweetened beverages and sugars’) at all timepoints except at 

postpartum where only the ‘Sweetened beverages and sugars’ was identified. They 

concluded that DP in their sample did not vary over time because the factorial structures of 

the two DP were similar and there were no mean differences over time in the defining foods 

of the DP. However, due to the small sample size the mean change was not significantly 

different from zero most likely due to lack of power. The study by Northstone and Emmett 

(2007) was methodologically oriented and examined the stability of DP from pregnancy to 

4yr postpartum with two different forms of calculating the DP scores at postpartum: 1) using 

the postpartum factor loadings and 2) using the pregnancy factor loadings. To assess 

dietary intake they used a 44-item FFQ at pregnancy which was slightly modified into a 52-

item FFQ at 47 months postpartum. At pregnancy, they derived five DP (‘Health conscious’, 

‘Traditional’, ‘Processed’, ‘Confectionery’, and ‘Vegetarian’) using PCA with Varimax rotation 

for two randomly split samples (n=8,935 women in total) to assess repeatability. At 
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postpartum, the ‘Traditional’ DP was not identified so they did not include it in any further 

analysis. In order to assess stability over time of each of the four common DP they did 

paired t-tests, Bland-Altman limits of agreement (Bland and Altman, 1986), and weighted 

Kappa-statistics for quintiles of DP scores. They found differences in the means and 

measures of agreement between the two different forms to calculate the DP scores at 

postpartum, and concluded that for their data it was inappropriate to apply the pregnancy 

factor loadings to calculate the postpartum DP scores primarily due to differences in FFQ 

between the two timepoints (8 additional food-items). 

 

1.2 Generalized latent variable models 

 
Depending on the discipline and the context, a latent variable is defined differently, 

but they all mean a variable that is not observed. More formally, Skrondal and Rabe-

Hesketh (2004) define a latent variable as “a random variable whose realizations are hidden 

for us”. The presence of latent variables is commonly recognized in the social sciences 

because of the difficulty in measuring key variables of theoretical or substantive interest 

(Clogg, 1992).  For example, the hypothetical construct (concept) intelligence is a latent 

variable because the intelligence of a person cannot be observed directly; instead an aspect 

of intelligence is measured in terms of a number of items using an intelligence test. Similarly, 

the eating behavior ‘healthy eating’ is a latent variable because it is a concept that is not 

directly observed but can be measured with a dietary intake instrument and empirically 

derived using statistical methods such as exploratory factor analysis (EFA). Other examples 

of latent variables in nutritional epidemiology are obesity and physical activity.  

However, latent variables are also present in statistics. Some have always been 

recognized as such, like factors in factor analysis, but others are not usually presented as 

latent variables, like random effects in linear mixed models. Continuous latent variables (as 
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the ones previously exemplified) are called factors but latent variables can also be 

categorical, and are referred as latent class variables. One example of a latent class 

variable is ‘stage of change’ used in health behavior where five classes (precontemplation, 

contemplation, preparation, action, and maintenance) are used to assess where a subject is 

located in the process of a specific behavioral change. Another example is dietary pattern 

where ‘high-fat’ and ‘low-fat’ classes are used to classify dietary behavior among a specific 

population. 

 

1.2.1 Classic latent variable models 

1.2.1.1 Continuous latent variables: Structural Equ ation Model (SEM) 

 
In the social sciences, there has been a long tradition in modeling the associations 

between latent and observed variables using structural equations model (SEMs). In 

mainstream statistics these models are also known as latent variable models or covariance 

structure models because the fundamental hypothesis is that the covariance matrix of the 

observed variables is a function of a set of unknown parameters ( )( )0. . :i e H =Σ Σ θ , 

although the mean can also be modeled. SEMs allow us, through a system of linear 

equations, to model jointly the measurement model of the observed data conditional on the 

latent variables, and the latent variable model (aka structural model) which summarizes the 

relationships between latent variables (Bollen, 1989). Originally, SEMs assumed the 

population was homogeneous (i.e. a single covariance matrix could be used to summarize 

the associations among variables), and only allowed observed variables (aka indicators) to 

be continuous. However, conventional SEM was extended to multiple-groups SEM 

(Joreskog, 1971), and to allow the indicators to have other scales (Muthén, 2002). A recent 

review of SEM literature with applications to epidemiology for a statistical audience is given 



 20 

by Sánchez et al (2005). In the Gaussian linear SEM and using the notation and 

parameterization by Muthén (2002), the measurement model for the i-th subject 1,2, ,i n= K  

is defined in terms of the p-dimensional vector of continuous outcome random variables iY  

and is given by 

i i i i= + + +Y ν Λη Kx ε  (2) 

 

where 1,p p m× ×ν Λ and p q×K are parameter matrices, iη  is an m-dimensional vector of latent 

variables, ix  is a q-dimensional vector of covariates, and iε  is a p-dimensional vector of 

residuals with multivariate normal distribution with mean zero-vector and covariance matrix 

p p×Θ . The continuous outcome is typically a multivariate outcome but it can also be 

repeated measures or a combination. The structural model defines the linear relationship 

among latent variables and covariates  

i i i i= + + +η α Bη Γx ζ  (3) 

where 1,m m m× ×α B  and m q×Γ are parameter matrices, and iζ  is an m-dimensional vector of 

residuals with multivariate normal distribution with mean zero-vector and covariance matrix 

m m×Ψ  that is assumed to be independent of iε . The parameter matrix m m×B  has zeros in the 

diagonal because latent variables can only be influenced by other latent variables and not 

themselves, and −I B  is assumed to be nonsingular. This parameterization of the model is 

equivalent to the well known LISREL model (Joreskog and Sorbom, 1989). Also, note that 

the m-factor model (section 1.1.1) is a special case of SEM. 

Substituting the structural part of the model in the measurement part gives 

( ) [ ]1

i i i i i

−
= + − + + + +Y ν Λ I B α Γx ζ Kx ε  
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from which it is immediate that |i iY x  has also a normal distribution because the residuals 

iζ  and iε are assumed normal. The full log-likelihood is given by 

( ) ( ) ( ) ( )( )( ) * * 1 * *
2 2 2; , log 2 log

Tn p q n n
FULL trπ+ − = − − − + − −  

θ Y x Σ Σ S V µ V µl     

where { } ( ) [ ] ( ) [ ]* *, , , , , , , , ( , ), , varT T T
i i i i ivech E= = ≡ ≡θ ν Λ K α B Γ Θ Ψ V Y x µ θ V Σ θ V  and 

1

1

( )( )
n

T
i in

i=

= − −∑S V V V V  is the sample covariance matrix. Maximizing the conditional (on 

the covariates) log-likelihood over θ  is equivalent to maximizing the full log-likelihood 

( ); ,FULL θ Y xl  because the marginal distribution of the covariates is constant with respect to 

θ  and can be factorized out. In the social sciences literature and SEM software instead of 

maximizing the likelihood they minimize the fitting function ( )MLF θ  which is mathematically 

equivalent. The fitting function is a real valued function that measures the discrepancy 

between the sample moment structure and the one implied by the model, and it is zero 

when there is perfect fit. In fact, the fitting function is the deviance. 

( )( )( ) { }
1 0

* * 1 * * 2
( ) log | | log | | ( )

T

ML H HF tr p q
n

− = + + − − − − + = −  
θ Σ Σ S V µ V µ S l l  

 

Extension to SEM: non-normal responses 

 
In SEM, non-normal responses can be modeled using a generalized linear model 

approach or a latent response approach. The latent response formulation treats the 

observed response variable Y  as a partial observation of the continuous latent response 

variable *Y  using threshold parameters. For example, an observed three-category ordinal 

response is defined using two thresholds 1τ  and 2τ  as 
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and iY  is replaced by *
iY  in the measurement model given in (2) with the assumption of 

conditional normality for *
iY  given ix . For many response types the generalized linear 

model and the one using the latent response formulation specify equivalent models. 

However, the latent response formulation allows not only responses with different scales 

(binary, ordinal, nominal, count, censored, semicontinuous and continuous), but to model 

responses with different scales simultaneously.  Further, conventional generalized linear 

mixed effects models can be formulated in the SEM framework, and then extended. For 

example the linear mixed effects model for longitudinal data is the latent curve model4 

(Bollen and Curran, 2006) in the SEM framework. However, some extensions that the latent 

curve model allows are: to regress random coefficients on each other, to estimate factor 

loadings (i.e. time scores) for models that are not linear in time, and to be combined with 

Markov models as in the autoregressive latent trajectory (ALT) model (Bollen and Curran, 

2004).  

  Another example of an extended model in the SEM framework is the two-part growth 

mixture model (Muthén, 2001) inspired from the two-part random-effects model for 

nonnegative continuous longitudinal data with excess of zeros (Olsen and Schafer, 2001; 

Berk and Lachenbruch, 2002) and a zero class in a 2-class mixture model (Carlin et al, 

2001). The excess of zeros can be due to structural zeros (“true zeros”) yielding a 

semicontinuous variable, and/or due to left-censored values (i.e. unobserved values from 

the continuous distribution). Two-part models estimate, separately or jointly, two models: 

one for the probability of nonzero values and one conditional model for the nonzero 

                                                 
4In the SEM literature the random effects are called growth factors. 
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continuous values. Usually the continuous part is skewed so it is previously transformed for 

the distribution to be approximately normal. Both Olsen and Schafer (2001) and Berk and 

Lachenbruch (2002) estimated two generalized linear mixed models (logistic and conditional 

mean log-response models) jointly by having the random intercepts correlated, but the latter 

integrated the random intercepts to obtain a marginalized model. Another difference is that 

the Olsen-Schafer model assumed zero values were only true zeros, whereas the Berk-

Lachenbruch model distinguished true zeros from censored zeros by adding a parameter for 

the probability of a left-censored value in the conditional mean model. The Berk-

Lachenbruch model could be useful to study food intake because often the intake’s 

distribution is a nonstandard mixture, a combination of a skewed continuous distribution and 

a one point mass at zero. These zeros can either be truly non-consumers or very-low-

consumers who did not consume the food-item during the reference period.  

 

Software 

 
Gaussian linear SEM can be estimated using specialized commands in general 

purpose statistical software such as SAS, STATA and R. SEM extensions can be estimated 

using specialized SEM software like Mplus (Muthén  and Muthén , 1998), LISREL (Jöreskog 

and Sörbom, 1989), and AMOS (Arbuckle, 2006).  

 

1.2.1.2 Categorical latent variables: Latent Class Model (LCM) 

 
Models involving only categorical latent variables were developed separately from 

SEMs, and have been used extensively and for a long time in the social sciences.  These 

models are an application of what in statistics is known as finite mixture models (McLachlan 

and Peel, 2000). The mixture density ( )if y can be written as: 
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( ) ( )
1

| 1;
K

i ik k i ik k
k

f f cπ
=

= =∑y y θ   (4) 

where ic  is a K-dimensional class-label vector where the k-th element ikc  is defined to be 

one or zero if the i-th subject belongs or not to the k-th component density, ( )Pr 1ik ikcπ ≡ =  

is the mixing proportion of the k-th component, and the mixing proportions add to one. The 

component densities are usually specified to belong to the same parametric family, and 

often assumed normal. Nowadays, a latent class model (LCM) is a generic term for models 

for which the outcome is assumed to be sampled from (4)  and hence, subjects are 

assumed to belong to one of K mutually exclusive classes but for which class membership is 

unknown. The original and traditional latent class model (Lazarsfeld, 1950) uses cross-

sectional data where all variables -latent and observed- are categorical, and assumes that 

the observed variables are conditionally independent given class-membership. The 

traditional LCM has been extended in cross-sectional designs to include covariates to model 

class probabilities and/or conditional response probabilities, allow continuous outcomes 

(latent profile analysis, LPA), and relax the conditional independence assumption (Skrondal 

and Rabe-Hesketh, 2004). Figure 1.2  shows the path diagram for a generalized LCM for 

dietary pattern analysis on 25 food groups (20 measured on a continuous scale, and 5 

binary indicators) and two covariates (age and energy intake) predicting class membership 

(Fahey et al, 2007). 

In particular, the measurement part of the LCM with categorical outcomes and 

covariates, assuming conditional independence, is specified as a finite mixture of conditional 

response probabilities given that the i-th subject belongs to class 1,2, ,k K= K  
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where iU  is a p-dimensional vector of categorical random variables, ( )Pr 1|ik ik icπ ≡ = x  is 

the probability to belong to class k given the covariates ix , ( )
1

1
K

ik i
k

π
=

=∑ x , 

and | Pr | 1ij k ij ij ikU u cρ  ≡ = =   is the conditional j-th response probability given class k. The 

class membership 
1

i
K×

c  is distributed according to a multinomial distribution, and it is modeled 

with a baseline-category logit model for nominal response (McCullagh and Nelder, 1989) 

with the particularity that ic  is not observed. In other words, the structural part of the LCM is 

given by 

( )
( 1) 1 ( 1) 1( 1) 1

logit i i
K K qK − × − × ×− ×

= +π α Γx  (6) 

where ( ) ( ) ( ) ( )( ), 11 2

( 1) 1

logit log , log , , log ,i Ki i

iK iK iK

T

i
K

ππ π
π π π

−

− ×

≡π K  and class K is the reference class. 

Note that the LCM with categorical outcomes estimates two sets of parameters: the 

regression coefficients predicting class membership and the conditional probabilities of the 

observed responses given the class. When the model does not include covariates then the 

latent class probabilities are estimated directly.  

With respect to longitudinal data, there have been several extensions to LCM. One 

extension is the group-based trajectory model (Nagin, 2005) that approximates the 

heterogeneity of trajectories of an outcome over time assuming there are a discrete number 

of classes that differentiate the trajectories. In contrast to the parametric approach of 



 26 

multilevel (Laird and Ware, 1982) and latent curve models (growth model in the SEM 

framework) (Bollen and Curran, 2006) where the between-subject heterogeneity is modeled 

assuming a multivariate normal distribution for the random effects, the group-based 

trajectory model takes a semi-parametric approach using groups to approximate this 

distribution. This analysis is also referred as latent class growth analysis (LCGA) (Muthén, 

2002). 

Another extension of the LCM to longitudinal data is the latent transition model (LTM) 

(Collins and Wugalter, 1992) where there are multiple categorical indicators of the latent 

class variable repeatedly measured over T equally spaced timepoints, and the main interest 

is to model transition between the latent classes. Note that the LTM assumes time is a 

discrete process whereas the group-based trajectory model assumes time is continuous. In 

addition, the LTM involves several categorical latent variables (one for each time point) 

whereas the group-based trajectory model involves only one latent class variable, the one 

that classifies the trajectories. On the other hand, note that whereas in transition models 

(Diggle et al, 2005) the conditional distribution of each response is modeled explicitly as a 

function of the previous responses and covariates, in latent transition models the latent class 

is the one modeled explicitly as a function of the previous latent classes and covariates 

(Figure 1.3 ). 

 

Latent transition models 

 
Latent transition models estimate three sets of parameters: 1) regression coefficients 

predicting class membership, 2) conditional probabilities of the observed responses given 

the latent class, and 3) transition probabilities of one latent class to another. Let the vector 

1 2
1 1 1 1

, , ,
T

i i i iT
pT p p p× × × ×

 
=  

 
U U U UK  represent the i-th subject’s outcomes to the p categorical variables 
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for all timepoints 1,2, ,t T= K , itc  a K-dimensional class-label vector at time t, and 

1,2, ,tk K= K  the latent class at time t. In contrast to LCM, the T latent classes 

( )1 2, , , Tc c cK  are not assumed independent, but similarly to LCM the p responses at time 

point t ( )1 2, , ,t t tpU U UK are typically assumed conditionally independent given class 

membership.  

The measurement part of the LTM with covariates is given by 

[ ]
}

1 1

conditional transitionlatent class response probabilitiesprobabilitiesprobability
at time 1

1 | |
1 1 2 1 1

Pr |
t t t

t

pT TT K

i i i i i k itk k itj k
t k t t j

π τ ρ
−

= = = = =

  
= = =   

  
∑∑ ∏ ∏∏U u X x

6 44 7 4 486 4 7 4 8

  (7) 

where 

1 1

1 1

1 1

| , 1,

|

Pr 1|

Pr 1 1,

Pr | 1

t t t t

t t

i k i k i i

itk k itk i t k i i

itj k itj itj itk

c

c c

U u c

π

τ

ρ

− −−

 ≡ = = 

 ≡ = = = 

 ≡ = = 

X x

X x  

The class membership at the first time point, 1c , is modeled with a baseline-category 

logit model for nominal response with the particularity that 1c  is not observed. Similarly, 

transition probabilities, 
1| 2, ,

t titk k t Tτ
−

= K , are modeled using a baseline-category logit 

model for nominal response. Choosing arbitrarily class K as the reference, the structural part 

of the LTM is given by 

( )

( )
1

1 1 1
( 1) 1 ( 1) 1( 1) 1

|
( 1) 1 ( 1) 1( 1) 1

logit

logit 2, ,
t

i i
K K qK

it k t t i
K K qK

t T
−

− × − × ×− ×

− × − × ×− ×

= +

= + =

π α Γ x

τ α Γ x K
   (8) 

where  



 28 

( )

( )

( ) ( ) ( ) ( )( )
( ) ( )

1 1 1 1

1, 111 12

1 1 1

1| 2|1 1

1 | 1

1 2
1

| 1| 2| |
1

1
( 1) 1

|

( 1) 1
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logit log , log , , log

logit log , log

t t t t

i Ki i

i K i K i K

it k it kt t

t itK k itKt

T

it it it itK
K

T

it k it k it k itK k
K

T

i
K

it k

K

t T

t T

ππ π
π π π

τ τ

τ τ

π π π

τ τ τ
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−

− −
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×

×

− ×

− ×

≡ =

≡ =

≡

≡

π

τ

π

τ

K K

K K

K

( ) ( )( ), 1| 1

| |1 1
, , log 2, ,it K kt

k itK kt t

T

t T
τ

τ
− −

− −
=K K

 

A common practice is to constraint the conditional response probabilities to be time-

invariant ( )| |. . 1,2, ,
t titj k ij ki e t Tρ ρ= = K because it simplifies interpretation of the transition 

probabilities (Reboussin et al, 1999), otherwise the characterization of the classes would 

change over time.  

 The LTM given in equation (7) without covariates is a special case of the multiple 

indicator hidden (latent) Markov model (HMM) (McLachlan and Peel, 2002) which is an 

extension of a finite mixture model to allow dependent data. Although most often LTM and 

HMM use discrete outcomes and first-order transition probabilities, other scales and higher-

order models can be accommodated. One difference between LTM and HMM is that the 

former is used when there are few time points whereas HMM can handle many time points 

(e.g. speech recognition applications). Another difference is that LTM allows explaining 

individual differences in the class and transition probabilities by using time-invariant 

covariates. By contrast, the latent mixed Markov model (Langeheine and Van de Pol, 2000) 

relaxes the homogeneity assumption (i.e. same transition probabilities for all subjects) by 

using a latent variable that unmixes the observed distribution into S  Markov chains. One 

example of this type of models is the mover-stayer LTM which is defined by two ( )2S =  

hidden Markov chains: one latent mover chain and one latent stayer chain.  
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Identifiability and estimation 

 
The LCM and LTM are not identified unless some constraints are imposed over the 

parameters. The LCM is identified when the number of distinct response patterns is larger 

than the number of free parameters (Reboussin et al, 1998). One way the LTM with three 

timepoints is identified is by restricting the transition probabilities to be the same over time 

( )
1 1| |. . , 2,3

t t t titk k ik ki e tτ τ
− −

= = . 

Maximum likelihood (ML) estimation  for finite mixture models is straightforward 

using the Expectation-Maximization (EM) algorithm (Dempster et al, 1977). The observed 

random sample | 1,2, ,i i i n=y x K  from the mixture distribution in (4) is viewed as 

incomplete because the class-label vectors 1 2, , , nc c cK  are not observed. This natural 

incomplete-data structure makes the EM algorithm an attractive approach for maximizing the 

observed-data log-likelihood: 

( ) ( ) ( ) ( )
1 1

; , log ; , log , ; | 1;
n K

obs obs ik i ik k
i k

L f cπ
= =

 
≡ = = 

 
∑ ∑Ψ y x Ψ y x α Γ x y θl  

where , and   y x Ψ are stacked vectors of outcomes, covariates, and parameters 

respectively. The complete-data log-likelihood is given by 

( ) ( ) ( )( ) ( )( ){ }
1 1

; , log ; , log , ; log | 1;
K n

c c ik ik i ik k
k i

L c f cπ
= =

≡ = + =∑∑Ψ y x Ψ y x α Γ x y θl  

and the conditional expectation (over the latent variables) of log cL  given the observed-data 

at the thl  iteration is 

( )( ) ( ) ( )( ) ( )( ){ }
1 1

; , , Pr 1| ; log , ; log 1;
K n

l l
ik i ik i ik k

k i

Q c f cπ
= =

 ≡ = + = ∑∑Ψ y x Ψ y Ψ α Γ x y θ        (9) 

For independent data, the effect of the E-step at the thl  iteration is to update the 

posterior probabilities of class membership, ( ) ( )Pr 1| ;l l
ik ik ip c ≡ = y Ψ  (McLachlan and 
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Peel, 2000). From equation (9) it can be seen that during the M-step the updated estimates 

for the class probabilities can be estimated independently from the updated estimates of the 

component densities’ parameters. Specifically for the LCM defined by equations (5) and (6) 

where the outcomes are nominal, the M-step involves two multinomial logistic regression 

optimizations: one to estimate the regression coefficients predicting class membership and 

another to estimate the intercepts (thresholds) for the conditional response probabilities. 

When the outcomes are continuous it is often assumed that, conditional on class, they have 

a multivariate normal distribution because for normal mixtures the solution for the 

optimization has a closed form (McLachlan and Peel, 2000). Furthermore, such model is a 

model-based clustering procedure which generalizes K-means clustering because it relaxes 

the strict assumptions of conditional independence and same error variance for all indicators 

and clusters. Similarly for dependent data, as is the case for LTM and HMM, the EM 

algorithm can be easily implemented to maximize the observed likelihood (McLachlan and 

Peel, 2000). The specification of the starting parameter values for the EM algorithm is of 

critical importance because in finite mixture modeling it has been well documented that they 

could lead to quite different solutions due to the presence of several local maxima 

(Titterington et al, 1985). In addition, a poor choice of starting values could exacerbate the 

slowness of the EM’s rate of convergence.  

For finite mixture models, the standard errors of the ML estimates obtained via the 

EM algorithm are estimated either from information-based methods or bootstrap. However, 

standard errors are inaccurate if the likelihood is not smooth and quadratic, and poor or 

unavailable when parameters are estimated at or near the boundary (e.g. when the 

conditional response probability is close to one) (Chung et al, 2004). As an alternative to ML 

a data augmentation approach with a Bayesian flavor has been proposed (Lanza et al, 

2005) to estimate parameters and standard errors for LCM and LTM. However data 

augmentation, being a family member of the Markov chain Monte Carlo (MCMC) algorithms, 
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adds the complication of label-switching, in which class labels change across iterations 

because labels are arbitrary since classes are unordered.  Moreover, unusual likelihood 

features and label-switching are exacerbated for small sample sizes. To overcome these 

issues in LTM Chung et al (2007) proposed a dynamic algorithm to pre-classify with 

certainty one or few individuals with high posterior probability of being in a specific class 

using a ‘dynamic data-dependant prior’. The advantage of this method is that it requires a 

simple modification of the MCMC, rather than monitoring constraints or post-processing 

techniques (Chung, 2004).   

First and second order generalized estimating equations (GEE and GEE-2) (Liang 

and Zeger, 1986; Liang et al, 1992) have also been used to estimate latent class models in 

order to avoid specifying the full likelihood which can be unfeasible for complex latent 

models. For instance, when there are a large number of latent classes, timepoints and/or 

indicators. GEE-2 uses the first and second moments which are necessary for identification 

of the latent class model parameters (Reboussin et al, 2001). In particular, Reboussin et al 

(2001) estimated a latent class marginal regression model for longitudinal data where the 

scientific interest was on the marginal latent class prevalences and not on the associations 

over time. Similarly, a two-stage estimation procedure was proposed (Reboussin et al, 1999) 

to estimate the LTM defined in equations (7) and (8) with binary indicators and time-

dependent covariates assuming time-invariant conditional response probabilities. 

Specifically, in the first stage they used a set of second order estimating equations (GEE-2), 

2 1
1 1

, , ,t K t
p p

U
× ×

 
 
 
ρ ρ πK , to estimate the conditional response probabilities | tj kρ  and the class 

probabilities 
ttkπ  at timepoints 1,2, ,t T= K . In the second stage, they used first-order 

estimating equations (GEE), ( )1
ˆ, ;U α Γ δ  where 1 1

1 1 1 1

ˆ ˆ ˆ ˆ ˆ, , , , ,K T
p p K K

vech
× × × ×

 
=  

 
δ ρ ρ π πK K , to estimate 

the regression coefficients of (8) for the transition probabilities which were the parameters of 
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interest. In contrast to the EM algorithm where standard errors are not a by product of 

optimization, this two-stage approach simplifies their calculation while making some 

assumptions about the correlation structure at each stage. For example, they did not include 

into the GEE-2 the cross-products of indicators more than one unit apart because of the 

computational burden. Their simulation study suggested that this estimation procedure has 

good finite sample properties and highlighted the importance of having strong indicators (in 

the sense of high conditional response probabilities, |0.75 1.0
tj kρ≤ ≤ ). Specifically, the 

degree of bias was low for both parameter estimates and robust standard errors even for 

small sample sizes (n=400) under strong measurement precision. However, weak indicators 

( |0.30 0.65
tj kρ≤ ≤ ) of the latent class variables increased the bias in the parameters 

estimates and the proportion of failure to reach convergence.  

 

Latent class prediction 

 
Latent class models use posterior probabilities of class membership to assign 

subjects to a specific class. Hence, each subject has a probability for belonging to each 

class. Posterior probabilities are calculated via the Bayes’ theorem  

[ ] [ ] ( )

[ ] ( )
1

Pr 1| | 1
Pr 1| ,

Pr 1| | 1

ik i i ik
ik ik i i K

il i i il
l

c f c
p c

c f c
=

= =
≡ = =

= =∑

x y
y x

x y
 

 When classification is the goal, subjects need to be assigned into a single class and, 

typically, they are classified into the class with the highest posterior probability of class 

membership. In practice these predicted classes are often used as a predictor variable in a 

second model, and frequently treated as fixed. This can bias the estimates and the 

efficiency of standard errors by not taking into account the error in prediction. Mixture SEM 

(Muthén and Shedden, 1999), which integrates continuous and categorical latent variables 
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both in the measurement and structural models, allows estimating simultaneously this ad 

hoc two-step model. 

 

Number of classes 

 
So far we have assumed the number of classes K is known. However in practice this 

is rarely the case, and currently there is no single accepted statistical test or fit-statistic to 

determine the number of classes (Nylund et al, 2007). Hence often it is decided using a 

combination of information criteria and substantive theory. The usual likelihood ratio test 

(LRT) cannot be used to compare nested latent class models because the regularity 

conditions required in classical maximum likelihood theory are violated and hence, its 

distribution is not chi-square. In particular, to compare a model with K classes vs. one with 

K-1 classes the reduced model is obtained by restricting the latent class probability to zero 

which is a value in the boundary of the parameter space. The Lo-Mendel-Rubin likelihood 

ratio test LMR-LRT (Lo et al, 2001) compares neighboring class models using an 

approximation of the LRT distribution under the assumption of within-class normality 

conditional on covariates. Another likelihood ratio test is based on parametric bootstrap (B-

LRT) to estimate its empirical distribution (McLachlan and Peel, 2000). A second option to 

compare models with different number of classes is to use information criteria, such as the 

Bayesian Information Criterion (BIC). The information criteria are based on the likelihood 

function so they reward models that reproduce the observed data and some, parsimony if 

the criteria penalizes for the number of parameters. A recent simulation study (Nylund et al, 

2007) showed that the bootstrap LRT performed better in identifying correctly the number of 

classes than the naïve LRT, the LMR-LRT and the BIC for the traditional LCM with either 

continuous or categorical outcomes using samples sizes of 200, 500 and 1000. However, 

some disadvantages of the B-LRT are increase in computation time (5 to 35 times greater), 
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and lack of robustness since misspecifications on distributional and model assumptions lead 

to incorrect replicated datasets and hence, incorrect p-values. A third option are 

classification-based information criterion (McLachlan and Peel, 2000) which reward models 

that produce well-separated classes, such as the normalized entropy criterion (NEC) or the 

integrated classification likelihood criterion (ICLC). Another option to asses whether the 

assumed model has the sufficient number of classes is to use Bayesian diagnostic graphical 

techniques (Wang et al, 2005; Garrett and Zeger, 2000), but these graphical methods are 

not available on commercial software.  Deciding on the number of classes is a difficult task 

and, it is important to address it correctly because as cautioned by Bauer and Curran (2003) 

spurious latent classes can be accommodating non-normality rather than discovering 

subpopulations. 

 

Software 

 
 Table 1.1  summarizes the most known procedures or software to fit latent class models. 

One of the most important differences is what observed outcomes’ scales are handled. Both 

commercial software (Mplus and Latent Gold) allow observed outcomes to be nominal, 

ordinal, count, and continuous (censored or truncated), but they are stand-alone software 

and not free. Although free procedures are more restricted in the type of observed outcomes 

allowed, models that can be estimated, and advanced capabilities (e.g. hierarchical data, 

complex survey data, graphics) they are very powerful and relatively easy to implement for 

various useful models.  For example, PROC LCA and PROC LTA are SAS procedures 

developed and supported by the Methodology Center at Penn State (Lanza et al, 2008; 

Collins and Lanza, 2010) to fit traditional latent class models and latent transition models on 

categorical outcomes. Another example is PROC TRAJ (Jones et al, 2001) which estimates 

group-based trajectory models, allowing up to a third-order polynomial in time, specifying 
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different order polynomials across the K trajectory classes. All procedures use maximum 

likelihood estimation implemented by the EM algorithm and Latent Gold can also estimate 

parameters with posterior mode, which penalizes solutions that are too close to the 

boundary space. Mplus is the only software that allows modeling categorical and continuous 

latent variables simultaneously.  

 

1.2.2 Integration of continuous and categorical lat ent variables: Structural Equation 

Mixture Modeling (SEMM) 

 
Muthén and Shedden (1999) proposed a general latent variable modeling framework 

that integrates continuous and categorical latent variables both in the measurement and 

structural models. In other words, the observed variables are related to each other through 

m factors (continuous latent variables) and K latent classes. This general framework is a 

synthesis and generalization of many latent variable models; it has also been referred as 2nd 

generation SEM (Muthén, 2001) or mixture SEM (Muthén, 2002), and as structural equation 

mixture model (SEMM) (Bauer and Curran, 2004). Among many other extensions, this 

framework allows a multiple-groups SEM with unobserved group membership (Figure 1.4 ) 

which has been of much interest in applied research.   

One particular model within this general framework is the heterogeneity model 

(Verbeke and Lesaffre, 1996) which extended the linear mixed model (Laird and Ware, 

1982) by allowing the random effects to be sampled from a mixture of normal distributions 

and hence, incorporated an underlying latent class variable. This mixture model in addition 

to allow a more flexible class of distributions for fitting non-normal distributions for the 

random effects allows classifying subjects based on trajectory profiles (Verbeke and 

Melenberghs, 2000). This possibility of uncovering unobserved heterogeneity and finding 

substantively meaningful groups has been very appealing in both health and social 
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sciences. For example, in the health sciences it has been used to characterize the course of 

low back pain (Dunn, 2006), assess patterns of physical activity (Metzger et al, 2008), and 

to classify subjects into prostate cancer risk classes (McCulloch et al, 2002). In the social 

sciences it has been popularized as the growth mixture model (GMM) (Muthén and 

Shedden, 1999), and has been applied to substance use and physical aggression. The 

group-based trajectory model (Nagin et al, 2005), introduced in section 1.2.1.2, is a special 

case where the covariance matrix of the random effects is constrained to be zero and, 

therefore there is no between-subject heterogeneity within classes. 

However, as cautioned by Bauer and Curran (2003) latent classes and latent 

trajectories should not be substantively over interpreted unless there is an underlying 

premise that subjects belong to distinct groups (classes). Empirical evidence (Bauer and 

Curran, 2003) shows that multiple latent trajectory classes can be estimated and fit the data 

well even when the data come from a single group with a non-normal distribution. 

Furthermore even when latent classes truly exist, misspecification of the model and/or the 

distributional and linearity assumptions can lead to spurious latent classes (Bauer and 

Curran, 2004). 

  In the psychometric and social sciences, historically and currently, there is debate 

between using categorical or continuous latent variables to represent certain constructs 

(Muthén, 2006). In the nutritional epidemiology literature the debate is to a less extent, and 

dietary patterns are treated as continuous or discrete depending on the research question 

and the multivariate statistical method preferred (see section 1.1.1). In general, 

epidemiologists agree that 1) factor analysis is very useful to understand which foods are 

eaten together (from the factor loadings), reduce dimension, and examine overall diet (using 

DP factor scores) and disease associations, whereas 2) cluster analysis is useful to classify 

subjects to estimate the risk of the outcome for each exposure class compared to a 
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reference class. However, even when DP are conceptualized and derived as continuous 

variables, often subjects are classified to simplify the interpretation.  

 

1.2.3 Model selection and goodness of fit 

 
Measures of goodness-of-ft involve the fitting function ( )F θ  because it measures the 

discrepancy between the sample moment structure and the one implied by the model. In 

Gaussian SEM the absolute fit for latent variable models can be evaluated using the 

likelihood ratio test statistic 2ˆ( 1) ( ) ( )T n F dfχ= − θ :  where df is the difference between the 

number of non redundant elements in { },V S  and the number of free parameters. The 

disadvantages of this test statistic are that the larger the sample size the more likely the 

models do not fit well, overparameterized models have better fit, and is sensitive to 

violations of normality. In the social sciences literature, many goodness-of-fit indices have 

been proposed using different rationales to derive them to overcome the problem of sample 

size in the chi-square test statistic. The main problem is that their distributions are not known 

and, hence, statistical inference is not possible. Therefore guidelines for lack of fit are given 

empirically by rules of thumb or some based on simulations. In addition, currently there are 

more than 25 indices proposed and reported in commercial software because there is no 

agreement among methodologists which ones are best. Three popular comparative fit 

indices are the Tucker-Lewis index (TLI; Tucker and Lewis, 1973), the incremental fit index 

IFI (Bollen, 1989), and the comparative fit index (CFI; Bentler, 1990). Comparative fit 

indexes compare the fitted model to the baseline model, and are constructed to range 

between 0 (lack of fit) and 1 (perfect fit). 
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One residual-based fit index that is becoming more accepted is the root mean 

square error of approximation (RMSEA; Steiger, 1990). The RMSEA tests the null 

hypothesis of ‘close fit’ rather than exact fit (Browne and Cudeck, 1993) because the chi-

square test of the null hypothesis of exact fit is an omnibus test which in practice is almost 

always rejected for large sample sizes. It is an estimate of the approximate fit in the 

population in the sense that it measures discrepancy between the true moment structure 

and the one implied by the approximating model. RMSEA takes values from 0 to 1 where 

values below 0.1 are acceptable and below 0.05 are considered a good fit (Browne and 

Cudeck, 1993). Confidence intervals for RMSEA can also be estimated (Browne and 

Cudeck, 1993). 

Model selection in latent variable models includes the Bayesian Information criterion 

(BIC), the Akaike’s information criterion (AIC), and the Deviance Information criterion (DIC). 

It is not clear which ‘n’ (total sample size or total number of independent units) must be used 

when computing the BIC for latent variable models. 
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FIGURE 1.1 Path diagram for a 2-factor model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1.2 Path diagram for a latent class model (LCM)
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FIGURE 1.3 Path diagram for a latent transition model (LTM) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 1.4 Path diagram for a factor mixture model
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TABLE 1.1 Software to estimate latent class models 

 Procedures † that can be accommodated on general purpose statis tical software   Stand-alone 

 
PROC LCA PROC LTA PROC TRAJ GLLAMM poLCA  WinLTA Mp lus Latent Gold 

Acronym Latent class 
analysis 

Latent transition 
analysis Trajectory 

Generalized Linear 
Latent And Mixed 

Models 

Polytomous 
Variable 

Latent Class 
Analysis  

Latent Class 
and Latent 
Transition 
Analysis     

Version 1.2.3 beta 1.2.3 beta - - 1.1  3.1 5.1 4.0 

Date of release Jan-10 Jan-10 Sep-05 Nov-06 Nov-07  May-02 Nov-07  

Authors 
Lanza ST, 

Lemmon DR, 
Schafer JL, 
Collins LM 

Lanza ST, 
Lemmon DR, 
Schafer JL, 
Collins LM 

Jones B,  
Nagin DS, 
Roeder K 

Rabe-Hesketh S, 
Skrondal A 

Linzer DA, 
Lewis J 

 

Lanza ST, 
Lemmon DR, 
Schafer JL, 
Collins LM, 
Flaherty BP 

Muthén LK, 
Muthén  BO 

Vermunt JK, 
Magidson J 

Institution 

The 
Methodology 
Center, Penn 

State University 

The 
Methodology 
Center, Penn 

State University 

Carnegie Mellon 
University 

Biostatistics, 
University of 
California at 

Berkeley 

Political 
Science, 
Emory 

University  
and UCLA 

 

The 
Methodology 
Center, Penn 

State University 

Muthén   
and Muthén  

Statistical 
Innovations 

Inc. 

Free‡ Y Y Y Y Y  Y N N 

Software SAS SAS SAS STATA R  - - - 

Outcome scale          

     Nominal  Y Y N Y Y  Y Y Y 
     Ordinal N N Only binary Y Y  N Y Y 

     Count N N 
Poisson and 
zero-inflated 

Poisson 
Y N  N 

Poisson and 
zero-inflated 

Poisson 

(truncated/ 
overdispersed) 

Poisson or 
Binomial 

     Continuous N N Multivariate and 
censored normal Y N  N 

Multivariate 
and censored 

normal 

Multivariate, 
censored and 

truncated 
normal 

     Different scale  
     types jointly N N N Y N  N Y Y 
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TABLE 1.1 Software to estimate latent class models (continued) 

 Procedures † that can be accommodated on general purpose statis tical software   Stand-alone  

 PROC LCA PROC LTA PROC TRAJ GLLAMM poLCA  WinLTA M plus Latent Gold 

Covariates To model class 
membership 

1) Class 
membership 
2) Transitions 
over time 

Y, time-stable Y Y, class 
membership  Y Y Y 

Allows 
continuous and 
categorical latent 
variables 
simultaneously 

N N N N N  N Y ? 

Parameter estimation                  

Maximum 
likelihood 
 using EM 

Newton-
Raphson 

Newton-
Raphson 

Quasi- 
Newton 

Newton-Raphson 
(uses STATA’s ml 
with d0 method to 

maximize the 
likelihood) 

Newton-
Raphson  

Newton-
Raphson and 
Quasi-Newton 

Newton-
Raphson 

and Quasi-
Newton 

Newton- 
Raphson 

Other N N N N N  Posterior mode WLS 

Posterior Mode 
using 

conjugate 
priors 

Parameter 
estimate 

standard errors  
Y Y 

Observed 
information 

matrix 

Observed 
information matrix 

Empirical 
observed 

information 
matrix 

 

Data 
Augmentation 
(with diffuse 

prior by default) 

Empirical 
observed 

information, 
observed 

information or 
robust. 

 

Missing data                  

Outcomes MAR MAR MAR MAR MAR  MAR MAR MAR 

Covariates Listwise deletion Listwise deletion Listwise deletion Listwise deletion 
Listwise 
deletion  

Listwise 
deletion 

Listwise 
deletion 

Listwise 
deletion 

Hierarchical data  N N N Y N  N Y Y 

Complex survey 
data N N N N N  N Y Y 

Multiple -group 
analysis Y Y Y Y Y  Y Y Y 
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TABLE 1.1 Software to estimate latent class models (continued) 

 Procedures † that can be accommodated on general purpose statis tical software  Stand-alone 

 PROC LCA PROC LTA PROC TRAJ GLLAMM poLCA  WinLTA M plus Latent Gold 

Constraints Y Y Y Y N  Y Y Y 

Starting values          

     By user Y Y Y Y Y  Must Y Y 

     Multiple sets Y Y N N Y  N Y Y 

Goodness-of-fit § N N AIC and BIC Log-likelihood 
AIC, BIC, 

Pearson and 
LR chi-square 

 

AIC, BIC, 
Pearson and LR 

chi-square, 
RMSEA, TLI, 
CFI, SRMR 

AIC, BIC, 
Pearson and 

LR chi-square, 
RMSEA, TLI, 
CFI, SRMR 

AIC, AIC3, 
CAIC, BIC, DI, 
Pearson, LR, 

and  
Cressie-Read  

chi-square 
statistics 

Generates 
simulated data N N N N Y  N Y N 

Statistical test to 
determine 
number of 
classes 

N N N N N  N 
Lo-Mendell-

Rubin LRT and 
Bootstrap LRT 

N 

† These procedures are macros developed, documented and maintained by users and are not part of the software. 
‡ However SAS and STATA software is not free. 
§ AIC Akaike Information Criterion; AIC Akaike Information Criterion 3; CAIC Consistent Akaike Information Criterion; BIC Bayesian Information Criterion; DI Dissimilarity Index; 
RMSEA Root Mean Square Error of Approximation; TLI Tucker-Lewis Index; CFI Comparative Fit Index. 
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TABLE 1.2 Articles that have studied dietary patterns over time 

Reference 
and Aim 

Population & 
sample size ‡ 

Dietary 
assessment Time points 1. Identification of DP 2. Computation of  

DP scores 3. Analysis of DP change 

Newby et al, J 
Nutr. (2006)  
136(3).  
 
Stability 

Swedish 
women 

 
n=33,840 

semi quant FFQ 
(past 6 mo) 

 
servings/day 

Two: 
1987: (67 foods 
→ 27 food 
groups) 
 
1997: (97 foods 
→ 32 food 
groups) 

At each time point: 
1. EFA (PCA-Varimax) 
2. CFA based on EFA 
(loadings>0.2 and knowledge). 
 
4 confirmed ‘food scores’: healthy, 
western, alcohol, sweets. 

Computed for each factor, 
method (EFA and CFA) at 
each time point.  
 
DP scores=standardized 
intakes weighted by their 
factor loadings and summed. 

Stability: Spearman correlation 
between timepoints, by factor (DP) 
and method (EFA and CFA)  
(Table 5). 
 

Weismayer et 
al, J Nutr. 
(2006) 136(6). 

 
Stability 
 

Swedish 
women 

 
4 subsamples 
(n=1000 each) 

 

semi quant FFQ 
(past 6 mo) 

 
67foods 

→ 25 f groups 
 

servings/day 

Two: Baseline 
and one follow-
up at either 
4,5,6,7 years  
apart 

At each time point: 
1. EFA(PCA-Varimax) 
2. CFA based on EFA 
(loadings>0.2 and knowledge). 
 
3 confirmed ‘food scores’: healthy, 
western, alcohol. 

Computed for each factor, 
method (EFA and CFA), and 
each time point.  
 
DP scores=standardized 
intakes weighted by their 
factor loadings and summed. 

Stability:  Spearman correlation 
between timepoints, by factor and 
method (Table 5). 
 
Internal stability : “Test the 
significance of changes in the 
covariance matrix between 
baseline and follow up”.  

Newby et al, J 
Nutr. (2006) 
136(10). 
 
Within-subject 
DP change 

Swedish 
women 

 
n=33,840 

semi quant FFQ 
(past 6 mo) 

 
servings/day 

Two: 
1987: (67 foods 
→ 27 food 
groups) 
 
1997: (97 foods 
→ 32 food 
groups)) 

At each time point: 
1. EFA(PCA-Varimax) 
2. CFA based on EFA 
(loadings>0.2 and knowledge). 
 
4 confirmed ‘food scores’: healthy, 
western, alcohol, sweets. 

At each time point: 
 
DP scores=standardized 
intakes weighted by their 
confirmatory factor loadings 
and summed. 

Exposure = Change in DP 
scores  (1997-1987), for each DP. 
 
Model of change in BMI: In the 
linear regression models, the 4 
changes in food patterns scores 
are used as covariates 
simultaneously.  

Mishra et al, 
British J Nutr. 
(2006) 96. 
 
 
Stability 
 

British cohort 
 

n=1,265 
(M & W 
stratified 

analyses ) 

5-day food diary 
 

126 binary food 
groups 

 
Three: 
 
1982 (36 y) 
1989 (43 y) 
1999 (53 y) 

EFA at 1999 to identify number of 
patterns and items that loaded 
highly. They said that “cross-
sectional analysis of DP at other 
two ages showed that similar DP 
existed at each time”. 
 
Women: 3 DP (ethnic & alcohol, 
F&V&dairy, meat&potato&sweets). 
 
Men: 2 DP (ethnic & alcohol, 
mixed). 

Simplified DP score equation 
in 1999 (sum the unweighted 
food items which load most 
highly (≥0.25)). 
 
Exact same equation used in 
1982 and 1989. 
 
Note that because binary 
items the score is interpreted 
as number of items 
consumed rather than 
quantity consumed (i.e. DP 
reflect variety). 

Stability: Weighted Kappa statistic 
on tertiles of DP for every pair of 
time points by DP. 
 
Assoc between DP and risk 
factors: 
Linear mixed model 
Yijk=Simplified DP for subject i, 
dietary pattern j at time k 
 
NOTE: BMI is time-varying and 
Kappa and mixed model don’t 
agree. 
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TABLE 1.2 Articles that have studied dietary patterns over time (continued) 

Reference 
and Aim 

Population & 
sample size ‡ 

Dietary 
assessment Time points 1. Identification of DP 2. Computation of DP 

scores 3. Analysis of DP change 

McNaughton 
et al, J Nutr. 
(2007) 137(1). 

Same as Mishra et al, British J Nutr. (2006) 96 but using other risk factors. 

Temporality? “Risk factors for this 
group were measured in 1999 at 
age 53”: waist circumference, 
blood pressure,  blood sample red 
cell folate, glycated hemoglobin, 
total cholesterol, HDL,LDL). 

Schulze el al, 
Obesity (2006) 
14(4).   
 
Within-subject 
DP change 

Nurses’ II 
 

n=51,670 

semi quant FFQ 
(past year) 

 
133 foods → 

39 food groups 
 

g/day 

 
Three: 

 
1991 
1995 
1999 

At each time point: PCA-Varimax  
eigenvalues > 1. 
 
2 DP: Prudent and Western. 
 

DP scores = PC scores 
energy-adjusted using the 
residuals method. 
 

DP scores were categorized in 
quintiles and participants were 
classified according to change in 
category of DP score between 
pairs of years (low-low, high-high, 
low-high, high-low where low is 
lower two quintiles and high is 
upper two quintiles). 
 
Weight change model done 
separately by pairs of years and 
corresponding change in DP.  

Meyerhardt et 
al, JAMA 
(2007) 298(7). 
 
Within-subject 
DP change 

Stage III colon 
cancer 

receiving 
chemotherapy 

 
n=1,009 

semi quant FFQ 
(3 mo) 

 
131 foods → 

39 food groups 
 

g/day 

Two: 
1. In the middle 
of their adjuvant 
chemotherapy 
 
2. Six mo after 
the completion of 
their adjuvant 
chemotherapy 

EFA (PCA-Varimax) on updated 
dietary exposure (i.e. 
both FFQ were combined) 
Eigenvalues>1.5 and 
interpretability. 
 
2 DP: Prudent and Western. 

DP scores = PC scores 
For  each outcome and each DP: 
Cox proportional hazards 
regression. 

Cuco et al, Eur 
J Clin Nutr 
(2006) 60. 
 
Within-subject 
DP change 

Spanish 
women 

 
n=80 

7-day food diary 
 

21 food groups 
 

g/day 

Six: 
 
1 Pre-pregnancy 
4 Pregnancy 
{6,10,26,38 w} 
1 Post-partum 
6mo 

At each time point: PCA (no 
rotation); eigenvalues >1, Scree-
plot and interpretability. 
 
2 DP: (sweetened-beverages/ 
sugars, meat&veg) for every time 
point except postpartum 
(sweetened beverages/sugars). 

At each time point: 
 
Factor scores estimated by 
the regression method. 

Stability: Congruence coefficients 
and MANOVA for the standardized 
foods that defined the DP 
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TABLE 1.2 Articles that have studied dietary patterns over time (continued) 

Reference Population & 
sample size ‡ 

Dietary 
assessment Time points 1. Identification of DP 2. Computation of DP 

scores 3. Analysis of DP change 

Togo et al, Int. 
J. Obesity 
(2004) 28. 
 
Within-subject 
DP change 

Danish 
 

n=2,436 
(analyses  

stratified by 
gender) 

 
FFQ (past year) 
8 frequencies 

 
 

26 foods groups 
→ 

21 food groups 
(5 omitted 
because of 
skewness) 

 
Three: 

 
1982 
1987 
1993 

EFA at 1982 on a subsample of 
n=1,806 
 
Women: 2 DP (green, sweet-
traditional) 
 
Men: 3 DP (green, sweet, 
traditional) 
 
 
Prospective analysis. DP 
exposure is fixed at baseline and 
outcome is longitudinal. 
 
Longitudinal Analysis : DP 
change (exposure) and outcome is 
longitudinal. 

Two ways: 
1. For cross-sectional and 
prospective analyses: CFA 
based on EFA (loadings≥0.3) 
using full baseline (n=3,785) 
Factors are correlated. 
 
2. For longitudinal analysis:  
Mean-structure FA. Loadings 
on the factors and thresholds 
were kept equal at the two 
time points. 

Cross -sectional analysis 
(baseline): 
BMI = DP scores + covariates 
 
Prospective analysis: 
∆BMI = DP scores (baseline) + 
covariates 
 
Two separate models: 
∆BMI from 1982 to 1987 (5y) 
∆BMI from 1982 to 1993 (11y) 
 
Longitudinal Analysis :  
∆BMI= DP scores (baseline) + 
           ∆ DP scores + covariates 
 
∆BMI from 1987 to 1993 (6 y) 
∆DP scores from 1982 to 1987 

Northstone 
and Emmett, 
Br J Nutr 
(2007) 
 
Stability 

British women 
ALSPAC 

(Avon 
Longitudinal 

Study of 
Parents and 

Children) 
n=8,935 

Pregnancy:  
44-item FFQ  

 
Postpartum: 
52-item FFQ 

Two: 
 

32 wk gestation 
 

47 mo 
postpartum 

At each time point: PCA (Varimax 
rotation);  Scree-plot and 
interpretability. 
 

Two ways:  
 
1. Component scores at each 

timepoint 
 
2.  Applying the factor 

loadings obtained at 
pregnancy for both 
timepoints 

 

- Pearson’s correlation 
- Partial correlations adjusted by 
energy 
- Paired t-test 
- Bland-Altman limits of agreement 
-Weighted Kappa of quintiles of 
DP (pregnancy vs. postpartum) 
 

Greenwood 
DC et al, 
Proceedings 
Nutr Soc of 
London (2003) 
62. 
Stability 

UK Women’s 
Cohort Study 

 
n=1,938  

 
FFQ (past year) 
10 frequencies 

 
 

217 foods → 
74 food groups 

 

 
Two: 

Baseline: 1995 
to 1998 

 
Follow-up: 5 
years later 

 

k-means cluster analysis (variables 
were not standardized)  Not applicable 

1. “Participants were reclassified, 
using the same cluster definitions, 
based on their reported diet 5 
years later”.  
 
2. Kappa statistic to test 
agreement between clusters (DP). 
 

‡The sample size is the number of subjects used in the analysis.  
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TABLE 1.3 Articles that have studied dietary patterns during pregnancy and postpartum 

Reference Population & 
sample size ‡ 

Dietary 
assessment Design Identification of DP 

Computation of  
DP scores Analysis 

Northstone et 
al, Eur J Clin 
Nutr (2007) 

British women 
ALSPAC 

(Avon 
Longitudinal 

Study of 
Parents and 

Children) 
(1991-1992) 

n=12,053 

44-item FFQ  
 

Times per week 

Cross-sectional 
(at 32 weeks of 
gestational age) 

PCA (Varimax rotation); Scree-
plot and interpretability. 
Repeated in two randomly 
selected split samples to assess 
repeatability. 
 
5 DP: Health conscious; 
Traditional; Processed; 
Confectionery; Vegetarian. 
 

Component scores Linear regression 

Northstone at 
al, Br J Nutr 
(2007) 

Same as Northstone et al, Eur J Clin Nutr (2007) 

Two sets of analysis: 
1. Pearson’s correlations 
between DP and absolute 
nutrients intake and also partial 
correlations adjusting by energy 
intake 
2. Nutrients regressed on DP in 
quintiles and energy intake 

Northstone 
and Emmett, 
Br J Nutr 
(2007) 

British women 
ALSPAC 

(1991-1992) 
 

n=8,935 

Pregnancy:  
44-item FFQ  

 
Postpartum: 
52-item FFQ 

 
Times per week 

Longitudinal 
 

Two time points: 
32 wk gestation 

47 mo postpartum 

At each time point: PCA 
(Varimax rotation); Scree-plot 
and interpretability. 
 

Two ways:  
 
3. Component scores at 

each timepoint 
 
4.  Applying the factor 

loadings obtained at 
pregnancy for both 
timepoints 

 

- Pearson’s correlation 
- Partial correlations adjusted by 
energy 
- Paired t-test 
- Bland-Altman limits of agreement 
-Weighted Kappa of quintiles of 
DP (pregnancy vs. postpartum) 
 

Cuco et al, Eur 
J Clin Nutr 
(2006) 60. 

Spanish 
Women 

(1992-1996) 
 

n=80 

7-day food diary 
 

21 food groups 
(g/day) 

Longitudinal 
 

Six time points: 
1 Pre-pregnancy 

4 Pregnancy 
{6,10,26,38 w} 

1 Postpartum 6mo 

At each time point: PCA (no 
rotation); eigenvalues >1, 
Scree-plot and interpretability. 
 
2 DP: (sweetened-beverages/ 
sugars, meat&veg) for every 
time point except postpartum 
(sweetened beverages/sugars). 

At each time point: 
 
Factor scores estimated by 
the regression method. 

Stability: Congruence coefficients 
and MANOVA for the standardized 
foods that defined the DP 

 



 

 

48 

TABLE 1.3 Articles that have studied dietary patterns during pregnancy and postpartum (continued) 

Reference Population & 
sample size ‡ 

Dietary 
assessment Design Identification of DP 

Computation of  
DP scores Analysis 

Knudsen et al, 
Eur J Clin Nutr 
(2007) 

Danish 
women 

(1997-2002) 
 

n= 44,612 

360-item FFQ  
semiquantitative 
(previous month) 

 
36 food-groups 

(g/day) 

Cross-sectional 
(at 32 weeks of 
gestational age) 

EFA (Varimax rotation) 
eigenvalues, Scree-plot and 
interpretability. 
 
First they extracted 2 DP. Then 
they classified the women into 
mutually exclusive classes using 
the two DP jointly (by cross-
tabulating the DP’s quintiles) 

 
Factor scores estimated by 
the regression method. 

1-way ANOVA with Tukey’s 
correction for multiple tests 

Arkkola et al, 
Pub Health 
Nutr (2007) 

Finish women 
(1997-2002) 

 
n=3,730 

 

181-item FFQ 
semiquantitative 

 
Dietary intake was 

retrospectively 
assessed for the 

last month of 
pregnancy (women 

received FFQ at 
delivery and turned 
back at 3 months 

postpartum) 
 

52 food-groups 
(g/day) 

Cross-sectional 
 
 

PCA (Varimax) 
 
7 DP: Healthy; Fast foods; 
Traditional bread; traditional 
meat; low-fat foods; coffee; 
alcohol and butter 

Principal components 
scores 

- Pearson’s correlation 
 
- Linear regression 

Crozier et al, 
Br J Nutr 
(2008) 

British women 
(1991-1992) 

 
n=585 

100-item FFQ  
(3 mo) 

 
4-day diary after 

FFQ -> 100 foods 
 

49 food-groups 

Cross-sectional 
(early pregnancy; 
median gestation 

1`5.3 wk) 

PCA on standardized variables  
 
2 DP: Prudent and Western 

Principal components 
scores 

- Pearson’s correlation 
 
- For each DP, Bland-Altman plots 
for agreement between FFQ and 
diary scores 

‡The sample size is the number of subjects used in the analysis. 
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CHAPTER 2                                                               

Estimating Dietary Patterns: Comparing Factor Analy sis 

and Latent Class Analysis 

 

2.1 Abstract 

 
 Traditional methods to derive dietary patterns (DP) include factor and cluster analysis. 

Latent class analysis (LCA) classifies individuals into mutually exclusive groups such that 

within groups diets are similar. The aim was to derive DP using LCA on 105 food-items and 

compare them to those derived using factor analysis. We tested how well the resulting 

classes were characterized by the factor scores, and compared subjects’ direct classification 

from LCA on food-items versus two a posteriori classifications from factor scores: one 

possible classification using tertiles and a two-step classification using LCA on previously 

derived factor scores. Methods were illustrated using the Pregnancy, Infection and Nutrition 

Study, North Carolina, 2000-2005 (n=1,285 women). We found that food-items were 

grouped into four DP: ‘Prudent’, ‘Prudent with alcohol and coffee’, ‘Western’, and ‘Southern’. 

Women were classified into three classes of approximately the same size: ‘Prudent’, ‘Hard 

core Western’ and ‘Health conscious Western’. There was high agreement κ=0.70 (95% 

confidence interval 0.66, 0.73) between the direct classification from LCA on food-items and 

the one from the two-step LCA on factor scores. By contrast, there was poor agreement with 

the classification based on tertiles. The two-step classification which adds the benefit of 

having factor scores seems promising.  
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2.2 Introduction 

 
One goal of deriving dietary patterns (DP) is to study the effects of overall diet on 

health outcomes as opposed to the effects of individual nutrients or foods, which maybe 

highly correlated (Hu, FB, 2002). DP are latent variables; while not directly observed, they 

can be measured with a dietary intake instrument and empirically derived using statistical 

methods. The predominant methods to derive them are factor and cluster analysis (Newby, 

P.K., 2004). Fahey MT et al. (2007) showed empirically that generalized latent class models 

(LCM) could be more appropriate to derive DP than traditional cluster analysis by allowing 

different outcome distributions, correlated measurement errors, and adjustment for energy 

intake and other covariates. Few studies (Bailey,R.L. 2006; Costacou,T. 2003; McCann S.E. 

2001; Newby P.K. 2004; Velie E.M. 2005) have compared different methodologies using the 

same data.  Only one other study (Padmadas S.S. 2006) has used latent class models to 

derive DP, and none have compared them to traditional methods. The aim of this paper is to 

compare subjects’ classification into DP using factor and latent class analysis. Methods will 

be illustrated using data from the third cohort of the Pregnancy, Infection and Nutrition (PIN) 

Study.  

 

2.3 Methodological Decisions to Derive Dietary Patt erns 

  
  Nutritional epidemiologists have considered DP in both continuous and categorical 

scales. Principal components and exploratory factor analysis (EFA) are the predominant
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methods for deriving them in a continuous scale. Both methods group food-items according 

to the degree to which they are correlated with each other, and subjects have a score for 

each DP. By contrast, cluster and latent class analysis classify individuals into mutually 

exclusive groups (unknown a priori) such that within groups diets are similar. Even when DP 

are derived as continuous, usually investigators classify subjects based on joint 

classification of the factors to estimate the risk of the outcome for each group compared to a 

referent. In practice, factors are categorized by quantiles, and subjects are classified 

according to their cross-tabulation (Hu,F.B. 2002; Knudsen,V.K. 2007). Newby and Tucker 

(2004) review 93 studies that used principal components, factor or cluster analysis to derive 

dietary patterns. Here we summarize important statistical decisions relevant to FA and 

briefly describe LCA.  

  

2.3.1 Factor analysis 

 
  Factor analysis postulates a statistical model to explain the correlations between 

many observed variables by a few underlying but unobservable (latent) variables called 

factors (Bollen K.A. 1989). In exploratory factor analysis the relationship between the 

observed and the latent factors is not specified in advance; whereas in confirmatory factor 

analysis (CFA) the model is specified a priori. Some advantages for using CFA are the 

ability to account for correlated errors, test if factors are uncorrelated, adjust for covariates 

and assess goodness-of-fit. In practice, EFA is conducted first to suggest the number and 

characterization of the DP, and then CFA to test hypotheses and assess goodness-of-fit.  

Most empirical DP are derived using EFA with the principal components method of 

estimation to provide a unique factor score solution and using Varimax method of orthogonal 

rotation to facilitate interpretability by making factor loadings closer to 0 or ±1 rather than 

intermediate. Orthogonal rotation also simplifies future analyses, such as avoiding 
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collinearity when using factor scores as covariates in regression models or allowing analysis 

as independent outcomes. CFA for ordinal outcomes can be estimated using the user’s 

Stata program GLLAMM (Generalized Linear Latent and Mixed Models) (Rabe-Hesketh,S. 

2004) or Mplus (Muthen L.K. and Muthen B.O. 1998-2006).  

 

2.3.2 Latent class analysis 

 
  Latent class models (Rabe-Hesketh,S. 2007) classify subjects into unknown a priori 

classes such that within classes subjects are similar. LCM are specified as a finite mixture 

model (McLachlan G.J. 2000) of conditional densities given the class and are usually 

estimated using maximum likelihood via the Expectation-Maximization algorithm (Dempster 

A.P. 1977). A LCM for categorical outcomes and covariates estimates two sets of 

parameters: regression coefficients predicting class membership and conditional 

probabilities of the observed responses given the class. In contrast to cluster analysis, in 

LCM each subject has a predicted probability for belonging to each class. The most 

common way to classify subjects into a specific class is to assign them to the one with the 

highest probability of class membership.  

 

2.3.3 Number of dietary patterns 

 
There is no single best way to select the number of DP. When using EFA, the DP 

literature most often keeps the meaningful factors by visual inspecting the loadings in 

combination with eigenvalues above one (Kaiser’s rule), or those before the Cattell’s Scree 

plot (eigenvalues vs. number of factors) starts to flatten, indicating that there is no gain in 

explained variance by adding another factor. Similarly, in LCM there is no single accepted 

statistical test or fit-statistic to determine the number of latent classes. The usual likelihood 

ratio test (LRT) cannot be used to compare nested latent class models because the 
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regularity conditions required in classical maximum likelihood theory are violated and hence, 

its distribution is not chi-square. Two approximations to the LRT are the Lo-Mendell-Rubin 

LRT (LMR-LRT) (Lo et al, 2001) and the bootstrap LRT (B-LRT) (McLachlan, GJ. 2000). 

Another way to compare models with different number of classes is with the Bayesian 

Information Criterion (BIC). A recent simulation study (Nylund, K.L. 2007) showed that the B-

LRT performed better in identifying correctly the number of classes than the LMR-LRT and 

the BIC. However, some disadvantages of the B-LRT are requirement of large sample sizes, 

increase in computation time, and lack of robustness to model misspecification. Deciding on 

the number of classes does require care, because spurious latent classes can be 

accommodating non-normality rather than discovering subpopulations (Bauer DJ and 

Curran PJ, 2004). 

 

2.4 Analysis of Dietary Patterns for Women in PIN 
 
2.4.1 Study sample and dietary intake assessment 

 
  We used data from the third cohort of the Pregnancy, Infection and Nutrition (PIN) 

Study (December 2000 to June 2005). The study recruited pregnant women seeking 

services from prenatal clinics at University of North Carolina Hospitals. Study protocols were 

reviewed and approved by institutional review boards of the University of North Carolina. A 

total of 1,875 women (2,006 singleton pregnancies) were enrolled fulfilling the minimum age 

of 16 years and being less than 20 weeks’ gestation, from which 1,352 women (1,442 

pregnancies) had complete dietary data. For this analysis, only one pregnancy was 

randomly selected when a woman had several pregnancies with complete dietary 

assessments. The average age was 29.5 ± 5 years (range 16 to 47), 78.5% were married, 

17.8% had ≤12 years of education, half were nulliparous, 74.4% were white and 15.9% 

black. Based on the categories established by the Institute of Medicine guidelines and using 
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pregravid weight 14.3% were underweight (body mass index<19.8 kg/m2), 52.6% normal 

(19.8–26.0), 10.5% overweight (>26.0-29.0) and 22.6% obese (> 29.0).  

  Diet intake was assessed through a self-administered semiquantitative 119 food-item 

Block food frequency questionnaire (FFQ) (Block G, 1992) to measure usual intake in the 

past three months. It was administered at 26-29 weeks’ gestation to reflect diet during the 

second trimester. Dietsys+Plus version 5.6 with an updated food composition table based 

on nutrient values from the National Health and Nutrition Examination (NHANES) III and the 

United States Department of Agriculture (USDA) 1998 nutrient databases was used to 

calculate daily energy intake in kilocalories and grams/day. From the 1,352 women with 

complete dietary data, we excluded those with daily energy intakes below the 2.5th or above 

the 97.5th percentiles (1,000 and 4,765 kcal, respectively) as an attempt to exclude 

implausible energy intakes, leaving 1,285 women for the analysis.  

  The number of FFQ food-items to derive the DP was reduced from 119 to 105. Nine 

food-items (Table A1 ) were rarely consumed (<10% consumption). Alcoholic drinks (beer, 

spirits, wine) and low-fat milks (skim, 1% and 2%) were combined into two groups due to 

very small counts. Whole milk was excluded because the FFQ allowed selecting only one 

type of milk. Given that many food-items’ distributions were skewed and had a lump at zero 

due to non-consumers, the indicators were categorized (Table A1) . Most were categorized 

into a three-level variable: non-consumers (g/day = 0) and below or above the median of 

consumption among consumers (g/day>0) to distinguish “low” and “high” consumption. 

Eleven food-items, like water and green salad, were dichotomized as below or above the 

median because there were too few non-consumers. Nine food-items, like meat substitute or 

alcohol, were dichotomized as consumed or not because there were too few consumers. 
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2.4.2 Statistical methods  

 
  We derived continuous and categorical dietary patterns. For continuous DP we first 

conducted an EFA on 105 ordinal food-items. We estimated factor loadings using weighted 

least squares, and factors were derived orthogonal using Varimax rotation. We decided the 

number of DP from a combination of the Scree-plot and the interpretation of the factors. DP 

names were given according to the foods with higher loadings and also based on names 

previously used in the literature. Second, we performed CFA on the DP derived by EFA 

including only food-items with loadings in absolute value ≥ 0.25, allowing food-items to load 

on multiple factors. We specified correlated errors between coffee and cream and iced tea 

and sugar/honey because the FFQ asked specifically if these condiments were usually 

added to these drinks. We fitted a confirmatory factor model with correlated factors to test if 

after constraining some of the loadings to zero, factors were still orthogonal. We adjusted for 

energy intake, parity, smoking status, education, age and race, and assessed goodness-of-

fit with the root mean square error of approximation (Skrondal A, 2004). We studied 

associations between factor scores and nutrients with partial Spearman correlations 

adjusting for energy intake.  

  To determine mutually exclusive groupings, we used LCA to derive categorical DP 

including only ordinal food-items with EFA loadings ≥ 0.25. First, we determined the number 

of classes using the LMR-LRT. Next, the model was adjusted for energy intake and 

covariates. We interpreted and named the classes from the conditional probabilities of 

consumption. Finally, we compared nutrient intake between classes using the Mann-

Whitney test.  

  We used two approaches to compare DP derived by FA and LCA. The goal for the 

first approach was to describe how well resulting classes could be characterized on the 

basis of the factor scores. To do so, we compared factor score means among latent classes. 
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The second approach examined whether subjects’ direct classification into DP using LCA 

agreed with their classification using factor scores. Since FA does not classify subjects 

directly, we classified them a posteriori using a LCM on the four continuous factor scores. 

We assumed conditional independence given the class, and different factor means and 

variances by class. For this ad hoc two-step procedure we determined the same number of 

classes obtained directly from the LCM on food-items. For comparison purposes, we also 

classified women by cross-tabulating the four factor scores’ tertiles. Because DP 

membership is unknown, we cannot test which classification is best but only test whether 

the direct classification using LCA on food-items and the two a posteriori classifications from 

factors agree or not. Agreement was assessed with the weighted Kappa statistic.  

  Statistical analyses were performed using SAS/STAT software, Version 9.1 of the 

SAS System for Windows (SAS Institute Inc 2002-2003), the procedure PROC LCA (Lanza 

S.T., 2007), and Mplus, Version 5.1 (Muthen L.K. and Muthen B.O., 1998-2006). 

 

2.5 Results 

2.5.1 Factor analysis 

 
  According to the Scree-plot from EFA, after the fourth factor, factors did not 

contribute much to explain the variance of the data (the first six eigenvalues were 10.22, 

8.66, 4.36, 3.19, 2.62 and 2.59). One factor loaded high (>0.25) in many fruits and 

vegetables, whole grains, yogurt, vegetable soup and beans; it was called ‘FA-Prudent’ 

(Table 2.1) . A second factor loaded high on processed meat, hamburger, French fries, soft 

drinks, and Southern foods like coleslaw, corn, collards, green beans, fried chicken and fish, 

pork, corn bread and iced tea; it was called ‘FA-Southern’. A third factor loaded on green 

salad and dressing, tomatoes, broccoli, spinach, fish not fried, whole grains, coffee and 

alcohol; it was called ‘FA-Prudent with coffee & alcohol’ . The fourth factor loaded high in 
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fast food (hamburger, French fries, pizza, cheese dish, burritos), salty snacks and sweets 

(doughnuts, cookies, cake); it was called ‘FA-Western’ . Most food-items loaded only on one 

factor, 12 loaded on two factors, and three (yogurt, whole-wheat bread, and Kool-Aid) 

loaded on three factors. Seven food-items (cheese, eggs, non-fortified cereal, pudding, 

orange juice, diet soft drinks, and butter) with EFA loadings <0.25 for all factors were 

excluded from CFA and LCA. 

The overall test for the correlations between the four factors being zero was 

significant (P value < 0.0001), and this model had a slightly better fit than the one with 

uncorrelated factors. The highest correlation (r=0.49) was between ‘FA-Southern’ and ‘FA-

Western’, and 0.38 between ‘FA-Prudent’ and ‘FA-Prudent with coffee & alcohol’. Although 

significant, the correlation between ‘FA-Prudent’ and ‘FA-Western’ was much smaller 

(r=0.17). The other correlations were not significant. The correlated errors between coffee 

and half & half, and iced tea and sugar/honey were significant. A simplified path diagram for 

the final model is presented in Figure 2.1 . Factor loadings from EFA and CFA were similar 

(Table 2.1, Table A2)  except for French fries and hamburger for ‘FA-Western’ and real fruit 

juice excluding orange juice for ‘FA-Southern’. The food-items that were better explained 

(R2>0.4) by the factors were: green salad, fried chicken, bacon, whole wheat bread, and 

meat substitutes.  

  The 4-factor model adjusted for energy intake, nulliparous, smoker, white, education 

and age was significantly better (P value < 0.0001) than the one without covariates. 

Nulliparous women scored significantly higher in ‘FA-Prudent’ compared to multiparous and 

lower in ‘FA-Southern’ and ‘FA-Western’ (Table A3 ). White and more educated women 

scored significantly higher in ‘FA-Prudent’ and significantly lower in ‘FA-Southern’. Older 

women scored higher in both ‘FA-Prudent’ scores. Overweight and obese women had 

significantly higher scores of ‘FA-Southern’ than normal weight women. ‘FA-Prudent’ and 

‘FA-Prudent with coffee & alcohol’ were positively correlated with fiber, iron, folate, calcium 
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and vitamins, and percent of calories from protein, but ‘FA-Prudent’ was negatively 

correlated with fat, saturated fat, cholesterol and percent of calories from sweets (Table A4 ). 

‘FA-Southern’ was positively associated with fat, saturated fat, cholesterol, and percent of 

sweets, and negatively correlated with fiber, iron, folate and vitamins. ‘FA-Western’ was 

highly associated with fat and percent of sweets.  

 

2.5.2 Latent class analysis 

  
We chose the latent class model with three classes (3-LCM) because it was 

significantly better (P value 0.0109) compared to the 2-LCM, and was not significantly 

different (P value 0.7475) from the 4-LCM. Figure 2.2 shows the conditional probabilities of 

consumption given the class membership for selected food-items with marked differences 

between classes, and Figure A1 for all 98 food-items. One class had higher probabilities of 

consuming more fruits and vegetables, whole grains, baked beans, nuts, fish and chicken 

(not fried), yogurt, water, and low-fat milk; it was called ‘LCA-Prudent’ . Women in this class 

had higher consumption of fiber, folate and vitamins (Table 2.2 ). The second class had high 

probabilities for consuming higher amounts of fast food, salty snacks and sweets, but also 

for fruits and vegetables. It was called ‘LCA-Western 1’ , and had significantly higher 

median percent of calories from fat and sweets compared to the ‘LCA-Prudent’ class, but 

the micronutrient intake was similar. A third class was less likely to eat fruits, vegetables, 

yogurt, low-fat milk, coffee, alcohol, nuts and beans and more likely to consume fried fish 

and chicken, sausages, white bread, and soft drinks. It was called ‘LCA-Western 2’  and 

had significantly lower micronutrient intake compared to the other two classes but fat intake 

similar to ‘LCA-Western 1’. With respect to Southern foods, the ‘LCA-Prudent’ class had 

higher percentages of non-consumers, and there were no differences between the two 
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‘LCA-Western’ classes. There were 32.6% women in ‘LCA-Prudent’, 32.8% in ‘LCA-Western 

1’, and 34.6% in ‘LCA-Western 2’. 

  White, older and more educated women were more likely to be in the ‘LCA-Prudent’ 

class than in ‘LCA-Western 2’ (Table 2.3 ). Heavier women were significantly less likely to be 

in ‘LCA-Prudent. Women with higher energy intake were two to three times more likely to be 

in ‘LCA-Western 1’ than in ‘LCA-Western 2’. 

 

2.5.3 Comparison between factor scores and latent c lasses 

 
  Figure 2.3  shows the first approach for comparing DP derived from FA and LCA, in 

which we focused on latent classes being characterized by the factor scores. The ‘LCA-

Prudent’ and ‘LCA-Western 1’ classes had significantly higher means for ‘FA-Prudent’ and 

‘FA-Prudent with alcohol & coffee’ factors compared to the ‘LCA-Western 2’ class. The 

‘LCA-Prudent’ class had significantly lower means for ‘FA-Southern’ and ‘FA-Western’ factor 

scores than the ‘LCA-Western 1’ class. The ‘LCA-Western 1’ class had a significantly higher 

‘FA-Western’ mean than the ‘LCA-Western 2’ class, and the ‘FA-Southern’ means were not 

significantly different.  

The second approach compared the direct classification into three DP using LCA on 

the food-items versus the a posteriori classification using LCA on the four factor scores. 

These latter classes were interpreted by comparing the means of the factors (Figure 2.4 ). 

We called one class ‘2-Step Prudent/Anti-Southern’  because it had means significantly 

higher to zero for ‘FA-Prudent’ and ‘FA-Prudent with coffee & alcohol’ factors and a negative 

mean for ‘FA-Southern’ factor. A second class had the highest ‘FA-Western’ mean but also 

had means significantly higher than zero for ‘FA-Prudent’ and ‘FA-Prudent with alcohol & 

coffee’; it was called ‘2-Step Western/Prudent’ . Finally, the third class had lower means for 

‘FA-Prudent’, ‘FA-Prudent with alcohol & coffee’, and a higher mean for the ‘FA-Western’ 
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factor; it was called ‘2-Step Western’. There were 33.0% women in the ‘2-Step 

Prudent/Anti-Southern’ class, 29.3% in the ‘2-Step Western/Prudent’, and 37.7% in the ‘2-

Step Western’. Mapping ‘2-Step Western’ to ‘LCA-Western 2’, ‘2-Step Western/Prudent’ to 

‘LCA-Western 1’, and ‘2-Step Prudent/Anti-Southern’ to ‘LCA-Prudent’, the percentages of 

correct classification (diagonal of the contingency table between the two classifications) 

were 77.6%, 80.2% and 76.4% respectively, and there was high agreement κ=0.70 (95% 

confidence interval (CI) 0.66, 0.73) between the two classifications.  

To illustrate what has been done previously in the literature to classify subjects into 

DP derived by FA, we categorized the four factor scores into tertiles. The total number of 

different combinations is 81, which is difficult to collapse into three groups without making 

any strong subjective decisions. We subjectively collapsed them into the same three groups 

obtained by the direct classification from LCA: ‘Prudent’, ‘Western 1’ and ‘Western 2’. We 

classified as ‘Prudent’ those with high or medium tertiles for ‘FA-Prudent’ and ‘FA-Prudent 

with alcohol & coffee’, and low tertiles for both ‘FA-Southern’ and ‘FA-Western’. The group 

‘Western 2’ was defined as those with high or medium tertiles ‘FA-Western’, and low tertiles 

for both ‘FA-Prudent’ and ‘FA-Prudent with alcohol & coffee’.  The remaining 72 

combinations were considered ‘Western 1’. The agreement between the 3-LCM on 98 food-

items and this particular classification was κ=0.29 (95% CI 0.26, 0.33). The percentages of 

correct classification were 91.6% (109 of 119), 40.8% (413 of 1,013) and 98.9% (86 of 87) 

for ‘Western 2’, ‘Western 1’, and ‘Prudent’ respectively. 

 

2.6 Discussion 

 
  We found that food-items were grouped into three distinctive dietary patterns among 

pregnant women from PIN: ‘Prudent’, ‘Western’, and ‘Southern’. In addition, a fourth dietary 

pattern grouped alcohol and coffee with food-items also considered in a ‘Prudent’ DP. 
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Further, women were grouped into three classes of approximately the same size, ‘Prudent’ 

and two types of ‘Western’ diets: a ‘Hard core Western’ and a ‘Health conscious Western’. It 

seems like there is a group of women commonly in the ‘Western’ DP who because they are 

pregnant might be making extra efforts to eat fruits and vegetables. They have a high caloric 

diet with high percent of calories from fat and sweets, but they have a similar micronutrient 

intake compared to the ‘Prudent’ class.  ‘Prudent’ and ‘Western’ patterns have been 

consistently derived in other populations (Newby P.K., 2004; Kant A.K., 2004), and the 

‘Southern’ DP has been reported using the NHANES Survey (Tseng M., 2004). One 

possible reason for obtaining a ‘Prudent with alcohol and coffee’ DP among pregnant 

women is that other DP may have underreported alcohol and coffee consumption due to 

social desirability bias. Another reason is that women in the ‘Prudent’ DP were highly 

educated, and they could be more aware than women in ‘Southern’ and ‘Western’ DP that 

occasional and low consumption of alcohol and coffee has not been shown to be harmful to 

the fetus. 

  Factor and latent class analysis may derive DP differing in food composition because 

the former groups food-items that are correlated among each other whereas the latter 

groups subjects with similar food-items’ intake (Newby P.K., 2004). However, in this 

population, the DP derived from grouping women into latent classes were well characterized 

by the DP derived from factor analysis, although the correspondence was not perfect.  For 

instance, we did not find a ‘Southern’ class even though we identified a ‘Southern’ factor. 

However, people rarely have an exclusive “pure” dietary pattern but rather a combination of 

different dietary patterns. Indeed, the ‘LCA-Prudent’ class was characterized by a low ‘FA-

Southern’ mean and high ‘FA-Prudent’ mean. It was also identified as the ‘Prudent/Anti-

Southern’ class from the 2-step a posteriori classification. The ’Hard core Western’ and 

’Health conscious Western’ classes, had significantly different ‘Prudent’ and ‘Western’ 

means, but ‘Southern’ means were not significantly different. Similarly, Costacou et al. 
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(2003) found one cluster averaging very high on two principal components and the other 

very low, with no mean differences for other two principal components.  

  Even though factors were initially derived to be uncorrelated using EFA, in CFA we 

found moderate correlations between ‘Southern’ and ‘Western’, ‘Prudent’ and ‘Prudent with 

coffee & alcohol’, and a low one between ‘Prudent’ and ‘Western’.  Factors can be 

correlated because many of the factor loadings in the model were restricted to zero. Testing 

if they are correlated is important when factors will be used in subsequent analyses to 

characterize DP or when they will be derived and used in the same population repeatedly 

over time. When the factors are to be jointly categorized to derive mutually exclusive DP 

before further analysis, lack of independence is less of a concern. 

  The main advantage for using LCM over CFA is classifying subjects into mutually 

exclusive DP directly as opposed from the joint classification of the factors. When there are 

only two factors an easy way to classify subjects is to cross-classify the factor scores’ 

quantiles. However, when there are more factors, LCA avoids making strong subjective 

decisions for collapsing all possible combinations. We found that there was high agreement 

between the direct classification from LCA on all 98 food-items and the a posteriori one from 

the two-step LCA on the four factors scores. By contrast, there was a poor agreement with 

the subjective classification due to the ‘LCA-Western 1’ group, which collapsed all the non-

extreme combinations. Our experience suggests that with more than two factors, a 

subsequent LCM may be superior to “eyeballing” the cross-classification, which may be very 

time consuming and may not identify the best classification. 

  The advantage for using the two-step a posteriori procedure to classify subjects into 

DP instead of using LCA directly on the food-items is obtaining also the subject’s factor 

scores. However, the two-step a posteriori classification procedure uses predicted factor 

scores as outcomes and not fixed variables. This could bias the estimates and the efficiency 

of standard errors by not taking into account the error in prediction. Potentially we could fit a 
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latent class mixture model (Muthen B. 1999, 2002, 2006) to estimate the factor scores and 

latent classes simultaneously. This approach also would allow within-class heterogeneity. 

However, this adds the challenge of determining simultaneously the number of latent 

classes and factors, and modeling is computational intensive.   

  Results from this data illustrate that using factor and latent class analysis are 

complementary. Finding similar dietary patterns provides more confidence that they are 

robust and enhance their interpretation. The advantage for using FA is finding which foods 

are eaten in combination, whereas for LCA is classifying the subjects. Ideally we could fit a 

latent class mixture model to estimate the factor scores and latent classes simultaneously, 

but fitting the model might not be feasible because of computing time and hence, not yet 

useful in practice. The proposed ad hoc two-step classification using a latent class model on 

the previously derived factor scores from FA combines both advantages and seems 

promising. 
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FIGURE 2.1 Simplified path diagram for confirmatory factor model for dietary patterns, PIN 

Study 
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FIGURE 2.2 Probabilities of consumption for selected food-items by latent class, PIN Study 
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FIGURE 2.3 Factor score means by latent class from 3-LCA on 98 ordinal food-items, PIN 

Study 
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FIGURE 2.4 Factor score means by latent class from 3-LCA on 4 factor scores, PIN Study 
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TABLE 2.1 Selected exploratory and confirmatory factor loadings for 4-factor model, PIN 

Study 

Food item a 
FA-Prudent   FA-Southern   FA-Western    

FA-Prudent coffee 
& alcohol   R2 

EFA CFAb  EFA CFAb   EFA CFAb   EFA CFAb   
Oranges, tangerines 0.47 0.49           0.23 
Apples or pears 0.45 0.51           0.24 
Coleslaw, cabbage    0.50 0.46        0.20 
Greens like collards    0.51 0.41  -0.31 -0.19     0.14 
Raw tomatoes          0.54 0.65  0.37 
Spinach (cooked) 0.36 0.25        0.50 0.47  0.35 
Carrots 0.41 0.40        0.37 0.26  0.30 
Green salad          0.66 0.70  0.42 
Salad dressing          0.53 0.52  0.25 
Yogurt 0.36 0.36  -0.31 -0.25     0.38 0.29  0.36 
Low fat milk    -0.41 -0.27        0.07 
Baked beans, blackeye p, pintos 0.40 0.43           0.18 
Vegetable stew 0.50 0.51           0.24 
Beef (roast, steak, sandwiches)    0.46 0.61        0.33 
Pork chops, roasts, dinner ham    0.50 0.63        0.34 
Ribs, spareribs    0.58 0.62        0.33 
Fried chicken    0.63 0.73        0.44 
Fried fish    0.48 0.46        0.20 
Chicken not fried          0.36 0.29  0.08 
Fish not fried          0.56 0.67  0.39 
Hot dogs or dinner sausage    0.55 0.66        0.37 
Bacon    0.53 0.69        0.40 
Breakfast sausage    0.56 0.65        0.36 
Meat substitutes (not just soy) 0.40 0.56  -0.52 -0.54        0.53 
White bread, French, Ital.,etc    0.40 0.48        0.21 
Bagels, Eng. muffins, buns       0.44 0.35     0.12 
Dark bread, whole wheat, rye 0.33 0.35  -0.42 -0.36     0.43 0.29  0.40 
High fiber cereals 0.30 0.40           0.15 
Salty snacks (chips, popcorn)       0.44 0.35     0.12 
Ice cream       0.41 0.37     0.13 
Doughnuts, pastry       0.43 0.60     0.31 
Cake – regular       0.39 0.54     0.26 
Coffee          0.36 0.30  0.09 
Alcohol          0.32 0.20  0.04 
KoolAid, Hi-C,Vit.C-rich drinks    0.53 0.40     -0.38 -0.19  0.19 
Drinks w. some juice, Sunny D    0.47 0.46        0.20 
French fries, fried potatoes    0.40 0.40  0.34 0.12     0.20 
Hamburger, cheeseburger    0.50 0.67  0.34 0.03     0.39 
Pizza       0.48 0.38     0.14 
Cheese dish like macaroni/cheese       0.41 0.44     0.18 
Tacos or burritos            0.49 0.52         0.25 

Abbreviations: CFA, confirmatory factor analysis; EFA, exploratory factor analysis; FA, factor analysis. 
a The full table with all 105 food items included in EFA is available as a supplementary table in appendix A. 
b The confirmatory 4-factor model was adjusted for energy intake, nulliparous, smoker, white, education and age. It 
included correlated errors between coffee and half & half, and iced tea and sugar/honey. Some factors were correlated; 
r=0.49 between ‘FA-Southern’ and ‘FA-Western’, 0.38 between ‘FA-Prudent’ and ‘FA-Prudent with coffee & alcohol’ and 
r=0.17 between ‘FA-Prudent’ and ‘FA-Western’.  
c Sample size was 1,285 women for EFA and 1,219 women for CFA due to missing values in some covariates. 
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TABLE 2.2 Median nutrient dietary intake by latent class, PIN Study 

  
LCA-

Prudent 
LCA-

Western 1  
LCA-

Western 2  Overall  

Frequency 400 422 397 1,219
Prevalence 32.8% 34.6% 32.6% 100.0%
  
Total energy, kcal 1,865.2A 2,186.7 2,011.5A 2,014.80
Fat, g 65.4 79.6 72.1 72.3
Saturated fat, g 21.8 26.3A 24.5A 24.0
Cholesterol, mg 177.8 230.4A 220.9A 210.1
Omega-3 fatty acids 1.8A 2.0 1.7A 1.8
Fiber, g 19.6 18.2 13.5 17.3
Iron, mg 14.9A 15.4A 13.4 14.6
Folate, mcg 424.5A 406.3A 342.6 393.1
Calcium, mg 1,060.4A 984.2A 848.8 970
Vitamin D, mg 199.4A 189.4A,B 155.9B 180.8
Vitamin A, IU 10,763.7 9,401.8 5,929.2 8,620.1
Vitamin E 9.9A 10.3A 7.6 9.3
Zinc, mg 11.0A 11.7A 9.1 10.6
Alpha-carotene 660.7A 595.1A 322.5 538.4
Beta carotene 3,681.1A 3,341.9A 1,917.2 3,045.8
% calories from fat 31.6 33.6A 33.3A 32.9
% calories from protein 15.2 14.1 13.0 14.2
% calories from carbohydrates 55.8A 54.3B 55.2A,B 55.1
% calories from sweets 8.5 11.3A 11.3A 10.2
Number of foods consumed 68 81 64 72
Abbreviation: LCA, latent class analysis. 
a The latent class model was adjusted for energy intake, nulliparous, smoker, white, education 
and age. It included correlated errors between coffee and half & half, and iced tea and 
sugar/honey. Sample size was 1,219 women due to missing values in some covariates. 
Classes sharing same upper case letter are not significantly different at 0.0025 level (Bonferroni 
correction for 20 multiple comparisons within class). 
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TABLE 2.3 Odds ratios for covariates of 3-LCM on 98 food-items, PIN Study 

Covariate 
LCA-Prudent  LCA-Western 1 

Odds Ratio  P value   Odds Ratio  P value  

Nulliparous 1.7 0.011  1.2 0.287 

Smoker 0.4 0.053  0.8 0.356 

White 3.3 < 0.0001  2.4 0.001 

Age, years      

   25-29 2.7 0.016  2.3 0.005 

   30-34 8.7 < 0.0001  4.7 < 0.0001 

   35-47 9.1 < 0.0001  5.7 < 0.0001 

Education      

   Grades 13-16 3.9 0.003  1.8 0.027 

   >= Grade 17 11.6 < 0.0001  3.2 0.002 

Pregravid BMI      

   Low weight 2.1 0.013  1.6 0.117 

   Over weight 0.4 0.011  0.9 0.706 

   Obese 0.2 < 0.0001  0.7 0.198 

Energy intake      

   2nd quartile 1.1 0.687  2.1 0.013 

   3rd quartile 1.2 0.500  3.4 < 0.0001 

   4th quartile 0.7 0.386   3.4 0.003 
Abbreviations: BMI, body mass index; LCA, latent class analysis. 

The reference class is 'LCA-Western 2'. 
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CHAPTER 3                                                                       

Latent transition models to study change in dietary  

patterns over time 

 

3.1 Abstract 

 
 Latent class models (LCM) have been shown empirically to be more appropriate to 

derive dietary patterns (DP) than cluster analysis since they allow different outcome 

distributions, correlated measurement errors, and adjustment for energy intake and other 

covariates. The latent transition model, which is an extension of the LCM to longitudinal 

data, might be useful to study change as characterized by the movement between discrete 

DP. Our goal was to identify DP during pregnancy and postpartum, estimate their 

prevalences, and model the transition probabilities between DP as a function of covariates. 

Women in the Pregnancy, Infection and Nutrition Study were followed for one year 

postpartum and diet was assessed in the 2nd trimester, 3 and 12 months postpartum using 

a 119-item semiquantitative food frequency questionnaire (n=519, 484 and 374, 

respectively). Foods were aggregated into 29 food-groups (g/day) and categorized into three 

levels (zero or very low consumption, < median or ≥median). Adjusting for parity and energy 

intake, three dietary patterns were identified at pregnancy and postpartum: ‘Prudent’, ‘Health 

Conscious Western’ and ‘Hard Core Western’. Prevalences depend on parity, smoking 

status, being white and education. First time moms were 4.5 and 2.8 more likely to be in 
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‘Prudent’ than in ‘Health Conscious Western’ or ‘Hard Core Western’ respectively, and 

smokers were 2.9 times more likely to be in ‘Hard Core Western’ than in ‘Prudent’. 

Transition probabilities from one dietary pattern to another were not significantly different 

between primiparous and not primiparous. Neither the transition probabilities from 

pregnancy to three months post partum and from three to twelve months post partum were 

different. The three dietary patterns were very stable; the probability of staying on the same 

dietary pattern at 3 and 12 months post partum was 0.89, 0.85 and 0.96, for ‘Prudent’, 

‘Health Conscious Western’ and ‘Hard Core Western’ respectively. Understanding the 

different DP during pregnancy and postpartum, and what determines transition among DP, 

may be important in developing interventions to improve health outcomes. 

 

3.2 Introduction 

 
  Literature studying dietary behavior over time, as measured by empirically derived 

dietary patterns (DP), can be classified according to two goals. The first one is concerned 

with testing stability of DP because some studies require long periods of follow-up. One 

hypothesis is that over time the same DP structure can be identified and that DP scores (or 

subject’s classification) are similar. By contrast, the second goal is quantifying subjects’ 

changes in DP over time. Some of the challenges when studying DP over time are 

measuring change in variables that are not directly observed, determining the number of DP 

and their characterization, and emerging/disappearing DP.  

  Few studies have studied changes in DP (Newby et al, 2006; Schulze et al, 2006; 

Meyerrhardt et al, 2007; Togo et al, 2004; Cuco et al, 2006). Only one study (Schulze et al, 

2006) studied change in DP in a categorical scale, though they derived DP in a continuous 

scale and later categorized them using quintiles. Schulze et al (2006) estimated within-

subject change in DP by classifying participants according to the cross-tabulation of quintiles 
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of scores at each time point. An alternative approach would be to use a latent transition 

model to directly classify subjects into mutually exclusive DP at each time point and to 

estimate the probabilities of changing classes over time. 

  The latent transition model (LTM) (Collins & Wugalter; 1992, Chung et al, 2007) is 

one extension of latent class models (LCM) (Rabe-Hesketh et al, 2007; Fahey et al, 2007) to 

longitudinal data in which multiple categorical indicators of the latent class variable (e.g. 

dietary pattern) are repeatedly measured over T equally spaced time points, and the main 

interest is to model transition probabilities between latent classes. Traditional LTM involves 

categorical outcomes and typical assumptions are: 1) responses at each time point are 

conditionally independent given the class, 2) conditional response probabilities are time-

invariant so the characterization of the classes do not change over time, and 3) transition 

probabilities might need to be time-invariant for model identification. These assumptions 

may not be realistic when studying dietary patterns from pregnancy to postpartum. For some 

food-items, the conditional response probabilities (e.g. probability of consuming raw fish 

given that the women belongs to the ‘Health conscious’ DP) are not time-invariant because 

during pregnancy certain foods are craved (desserts and beverages), encouraged (those 

rich in calcium, iron and folate) or restricted (raw fish, alcohol and caffeine). Second, the 

probability of switching DP from pregnancy to 3 months postpartum might not be the same 

that from 3 to 12 month postpartum but may depend on factors such as parity, breastfeeding 

practices, and weight gain. Lastly, the conditional independence assumption might not be 

true because correlated errors are expected among foods due to the nature of the food 

frequency questionnaire (e.g. multi-pass probing and foods organized in sections of food-

groups and meal patterns) and due to self-report bias for groups of foods that are perceived 

as healthy (Kipnis et al, 1999). To date, change as characterized by the movement between 

discrete dietary patterns over time has not been studied using latent transition models. In 

this paper we review the LTM and illustrate a model selection strategy using data from 
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women in the Pregnancy, Infection and Nutrition (PIN) Study who were followed after 

delivery.  

  

3.3 The latent transition model (LTM)  

 
  The latent transition model (LTM) (Collins & Wugalter, 1992; Chung et al, 2007) is 

one extension of finite mixture models to longitudinal data in which multiple categorical 

indicators of the latent class variable are repeatedly measured over T equally spaced time 

points, and the main interest is in modeling transition probabilities between latent classes. 

LTMs assume time is a discrete process and involve one categorical latent variable for each 

time point. Whereas in transition models (Diggle et al, 2005) the conditional distribution of 

each response is modeled explicitly as a function of the previous responses and covariates, 

in latent transition models the latent class is the one modeled explicitly as a function of the 

previous latent classes and covariates. Figure 3.1  shows a simplified path diagram5 of a 

latent transition model for the PIN Study. 

  Let iU  be a pT − dimensional vector of the i-th subject’s p categorical outcomes for 

all T time points, itc  a K-dimensional class-label vector at time 1,2, ,t T= K , and 

1,2, ,tk K= K  the latent class at time t. In contrast to LCM, the T latent classes 

( )1 2, , , Tc c cK  are not assumed independent, but similarly to LCM the p responses at time 

point t are typically assumed conditionally independent given class membership. The 

measurement part of the LTM with covariates is given by 

[ ]
}

1 1

conditional transitionlatent class response probabilitiesprobabilitiesprobability
at time 1

1 | |
1 1 2 1 1

Pr |
t t t

t

pT TT K

i i i i i k itk k itj k
t k t t j

π τ ρ
−

= = = = =

  
= = =   
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6 44 7 4 486 4 7 4 8

 

                                                 
5 By convention, in path diagrams circles represent latent variables, squares observed variables, straight one-
headed arrows ‘causal’ relationships, curved two-headed arrows correlations, and small one-headed arrows 
random error. 
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  The class membership at the first time point, 1c , is modeled with a baseline-category 

logit model for nominal response with the particularity that 1c  is not observed. Similarly, 

transition probabilities, 
1| 2, ,

t titk k t Tτ
−

= K , are modeled using a baseline-category logit 

model for nominal response. Choosing arbitrarily class K as the reference, the structural part 

of the LTM is given by 
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≡ =
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  In summary, latent transition models estimate three sets of parameters: 1) regression 

coefficients predicting class membership at the first time point, 2) conditional probabilities of 

the observed responses given the latent class, and 3) regression coefficients predicting 

transition probabilities of one latent class to another. Model selection in latent transition 

models requires determining the number of latent classes and their characterization (i.e. 

testing whether item-response probabilities are time-invariant), adjusting the latent class 

membership and transition probabilities for covariates as needed, and testing measurement 
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invariance of transition probabilities. The order of decisions might have an impact on the 

results, even if the number of classes is predetermined. In addition, identification might be 

an issue.  

 

3.4 Analysis of the third cohort of the Pregnancy, Infection and Nutrition (PIN) Study 

3.4.1 Study sample, dietary assessment and food gro ups 

 
  The data analyzed are from women from the third cohort of the Pregnancy, Infection 

and Nutrition (PIN) Study who were followed after delivery. Between 2000 and 2005, 

pregnant women seeking services from prenatal clinics at University of North Carolina 

Hospitals were recruited for enrolment. From a total of 2,006 pregnancies (1875 women) 

enrolled for PIN, 1169 women were eligible for the postpartum recruitment, 938 women 

were asked to participate, and 688 (73.3%) agreed to participate and completed a three-

month home interview. There were no significant differences (P value < 0.05) between the 

women who completed the 3-month interview and those that were excluded or refused, as 

well as pregravid BMI, parity, bed rest, general health, and total physical activity. There were 

571, 545 and 424 pregnancies with complete dietary assessment at pregnancy, three and 

twelve months postpartum, respectively.  

Dietary intake was assessed through a self-administered semiquantitative 119 food-

item Block Food Frequency Questionnaire (FFQ) (Block, 1992) to measure usual intake in 

the past three months. The same dietary instrument was administered at 26-29 weeks’ 

gestation, and at three and twelve months postpartum. Dietsys+Plus version 5.6 with an 

updated food composition table based on nutrient values from NHANES III and USDA’s 

1998 nutrient databases was used to calculate daily energy intake in kilocalories, nutrients 

and grams per day. Pregnancies with daily energy intakes below the 2.5th or above the 

97.5th percentiles were dropped as an attempt to exclude implausible energy intakes. For 
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this analysis only one pregnancy per woman was selected based on keeping the pregnancy 

with the greatest number of completed FFQs. The final sample size was 519, 484 and 374 

women at pregnancy, three and twelve months postpartum respectively.    

Because the sample size was small relative to the number of outcomes being 

studied, 104 foods-items were aggregated a priori into 29 food-groups according to nutrient 

content and culinary usage (Table B1 ). From the 119 food-items assessed in the FFQ, 

fifteen were excluded due to very low consumption (Table A1 ). Given that many food-

groups’ distributions (g/day) were skewed and had a lump at zero due to non-consumers, 

the indicators were categorized into three-level variables: non-consumers (g/day below the 

5th percentile) and below or above the median of consumption among consumers (g/day>0) 

to distinguish “low” and “high” consumption. We used the same percentiles for all three time 

points to make the levels comparable across time, selecting dietary intake at twelve months 

postpartum (Table 3.1) to estimate these cut points because that time point more likely to 

represent ‘typical diet’.  

  Maternal weight, height, age, education level, race, smoking behavior during 

pregnancy, and parity were assessed at enrollment through a self-reported questionnaire.  

 

3.4.2 Model selection 

 
  In this paper we do not focus on determining the number of latent classes. Instead, 

we considered the number of classes as ‘known’ because the sample size was too small 

(n=519) relative to the number of outcomes being studied (p=29) for comparing latent 

transition models with more than three classes. We chose three classes based on the 

results on latent class models to derive dietary patterns using the complete sample of 

pregnant women in PIN (n=1,285) (chapter 2).  
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  We followed three general steps in order to select the “best” latent transition model. 

First, we tested measurement invariance across time for certain food-groups, adjusting by 

energy intake. This tests whether the conditional response probabilities for these groups 

changed over time. We guided our selection of groups to test by choosing food-groups that 

were significantly different over time using the correlation statistic test on the categorical 

variables which accounts for both outcome and time being ordinal, and adjusting for multiple 

comparisons by Bonferroni’s method. Next, we adjusted the model for class membership at 

pregnancy by energy intake and covariates (maternal age, education level, race, and 

smoking behavior during pregnancy). Third, we added covariates to model latent transition 

probabilities and tested if they were time-invariant. Before adding covariates to the transition 

model, we constrained to zero some transition probabilities that were negligible (< 0.05) 

(Lanza et al, 2007). 

 

 

3.5 Results 

3.5.1 Identification of dietary patterns 

 
  The distributions of the following eight food groups changed significantly (P value < 

0.002) from pregnancy to postpartum: vitamin C fruits, other fruits, 100% juice, coffee, 

alcohol, diet soft drinks, water and fish not fried. During pregnancy, women consumed 

greater amounts of fruits, 100% juice and water, and less alcohol, coffee, diet soft drinks 

and non-fried fish. Hence, we first assessed measurement invariance over time. Table 3.2  

presents the models that were compared for model selection. The reduced model with only 

alcohol and coffee changing over time was preferred by the BIC over the model with eight 

food-groups changing. However, the omnibus test was highly significant (P value = 0.001), 

despite the women’s classification being almost identical. In light of these conflicting criteria, 
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we chose the most parsimonious model. We examined visually the conditional response 

probabilities to interpret the dietary patterns and found that the three classes were 

meaningful (Figure B1). One class had higher probabilities of consuming more fruits and 

vegetables, whole grains, beans, nuts, fish and chicken (not fried), water, and low-fat dairy; 

it was called ‘Prudent’. A second class had high probabilities for consuming higher amounts 

of fast food, salty snacks and sweets, but also for fruits and vegetables. It was called ‘Health 

Conscious Western’. A third class was less likely to eat fruits, vegetables, and more likely to 

consume fried fish and chicken, and soft drinks. It was called ‘Hard Core Western’.  

  First time moms were 4.5 and 2.8 more likely to be in ‘Prudent’ than in ‘Health 

Conscious Western’ or ‘Hard Core Western’ respectively (Table 3.3 ). Smokers were 2.9 

times more likely to be in ‘Hard Core Western’ than in ‘Prudent’. White and more educated 

women were more likely to be in ‘Prudent’ than in ‘Hard Core Western’. Women with higher 

energy intake were more likely to be in ‘Health Conscious Western’ than ‘Prudent’. Overall, 

the percent of women in each of the three dietary patterns was approximately one third 

(Figure 3.2 ). However, the prevalence depends on parity, smoking status, being white and 

education.  

 

3.5.2 Transition probabilities 

 
 Transition probabilities were not significantly different between primiparous and 

multiparous women (P value = 0.1690). Furthermore, transition probabilities from pregnancy 

to three months post partum and from three to twelve months post partum were not 

significantly different (P value = 0.7253) (Table 3.4 ). The three dietary patterns were 

generally very stable, with probabilities less than 0.1 of switching dietary patterns from one 

period to the next (Figure 3.2 ). The ‘Hard Core Western’ was the most stable pattern, with a 

probability of women staying on the same dietary pattern of 0.96 at any given time. The 
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least stable dietary pattern was ‘Health Conscious Western’ with a probability of 0.85 of 

remaining in that pattern.  

 

3.6 Discussion  

 
  In this paper we studied how latent transition models might be useful to study 

movement between discrete dietary patterns. In particular, using latent transition models, 

women from the PIN study were classified into three dietary patterns: ‘Prudent’, ‘Health 

Conscious Western’ and ‘Hard Core Western’ at pregnancy, 3 and 12 months postpartum. 

Prevalences depend on parity, smoking status, being white and education. Transition 

probabilities from one dietary pattern to another were not significantly different between 

primiparous and not primiparous. Neither the transition probabilities from pregnancy to three 

months post partum and from three to twelve months post partum were different. The three 

dietary patterns were very stable; the probability of staying on the same dietary pattern at 3 

and 12 months post partum was 0.89, 0.85 and 0.96, for ‘Prudent’, ‘Health Conscious 

Western’ and ‘Hard Core Western’ respectively. In contrast, in the only study (Greenwood et 

al, 2003) that has directly classified subjects to study stability of DP, half the women 

maintained the same DP, and some patterns were more stable than others (κ=0.5 

suggesting moderate stability). However, they performed cluster analysis separately at 

baseline and 5 years later. 

  Most of the studies concerned on studying changes in dietary patterns over time 

have used DP in a continuous scale derived using principal components or factor analysis, 

and have followed three steps: identify the DP, compute DP scores at each time point, and 

compare DP scores over time. DP are often identified separately at each time point and 

verified by visual inspection if they have the same number of factors and similar factor 

loadings over time. Next, DP scores are calculated at each time point either using the time-
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specific factor loadings (Newby et al, 2006 (Vol. 3 and 10); Weismayer et al, 2006; Cuco et 

al, 2006) or the same factor loadings for all time points (Togo et al, 2004; Mishra et al, 2006; 

McNaughton et al, 2007; Northstone and Emmett, 2007). When the goal is to study DP 

stability, associations between factors over time using time-specific loadings is appropriate. 

However, when the goal is to study a subject’s changes in DP, using time-specific loadings 

is not correct because the dietary patterns would not be equally measured over time. 

Similarly, when dietary patterns are considered in a categorical scale they have to be also 

derived (measured) time-invariant. 

  Two studies (Cuco et al, 2006; Northstone and Emmett, 2007) have studied dietary 

patterns longitudinally during pregnancy and postpartum to assess stability of DP and to 

study their associations with predictors and other health behaviors. Both studies derived the 

DP separately at each time point using principal component analysis, decided by visual 

inspection that for some dietary patterns the structure was similar, and found one dietary 

pattern fewer at postpartum. Specifically, Cuco et al (2006) identified two DP: ‘Sweetened 

beverages and sugars’ and ‘Vegetables and meat’ at preconception and pregnancy (four 

time points), but only ‘Sweetened beverages and sugars’ at six months postpartum. 

Northstone and Emmett (2007) found both at pregnancy and at four years postpartum the 

following four DP: ‘Health conscious’, ‘Processed’, Confectionery’ and ‘Vegetarian’, but the 

‘Traditional’ DP only at pregnancy. In contrast to our approach, in which women were 

directly classified into mutually exclusive dietary patterns, these two studies did not 

investigate the subject’s overall dietary pattern as a combination of the derived factors.  

  There are several advantages of using LTM to study dietary patterns over time. First, 

LTMs provide a direct classification of the subjects into mutually exclusive DP and by 

constraining for measurement invariance it guarantees that the same dietary patterns are 

measured over time. Second, it allows not only estimation of the transition probabilities but 

also testing what factors determine the transitions over time. One limitation for studying 
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dietary patterns using latent class models is a relatively large sample size required because 

for each class there are a large number of parameters being estimated for the item 

response probabilities (food-items). For example, in this application with 27 time-invariant 

three-level ordinal outcomes and two non-invariant over three time points there were 66 

parameters per class (two thresholds for 27 outcomes plus six thresholds for the two non-

invariant outcomes). The large number of parameters being estimated could contribute to 

poor power for testing whether the transition probabilities were different by primiparous 

(model 6 vs. model 5) and whether the transition probabilities were the same over time 

(model 7 vs. model 5).  

  DP can change over time for different reasons such as nutritional advice, changes in 

food supply or major life events like pregnancy and motherhood. Understanding the different 

dietary patterns during pregnancy and the first year postpartum, and what determines 

transition among dietary patterns, could help create more effective interventions during 

pregnancy, which could be an excellent period to modify or improve health behaviors that 

should be maintained over time.  
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FIGURE 3.1 Path diagram for latent transition model, PIN Study 
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FIGURE 3.2 Dietary patterns' distribution by time and transition probabilities, PIN Study 
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TABLE 3.1 Food-group median consumption among consumers                                             

at twelve months postpartum, PIN Study 

Food group Freq 
Median 
g/day 

Vitamin C fruits 247 10.1 
Other fruits 373 97.6 
Vegetables 373 82.5 
High caratenoid vegetables 371 50.4 
High fat dairy 366 18.2 
Low fat dairy  350 232.2 
Nuts 329 9.7 
Beans 336 13.7 
Mixed dish w/meat 372 93.3 
Eggs 351 7.7 
Beef 272 6.5 
Pork 278 8.2 
Fried chicken or fried fish 222 8.5 
Chicken NOT fried 338 10.8 
Fish NOT fried 334 11.9 
Processed meat 348 14.9 
Refined grains 374 83.6 
Whole grains 322 24.3 
Salty snacks 360 9.0 
Sweets 372 41.9 
Real 100% fruit juice 339 240.5 
Coffee 236 300.0 
Alcohol 249 148.0 
Soft drinks 365 495.4 
Diet soft drinks 186 284.0 
Fast food 373 59.0 
Condiments with fat 359 5.4 
Salad dressing 350 9.1 
Water 365 720.0 
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TABLE 3.2 Model selection for 3-class latent transition model, PIN Study 

  
Model description 

Class 
membership 

model 

Transition 
probabilities 

model 

# 
Parame- 

ters 
BIC 

log 
likelihood 

Models 
compared 

P value 

I. Food-groups changing over time 
M0 None KCAL€ TIME 194 73,534.5 -36,160.8   

M1 Eight£ KCAL TIME 290 73,378.4 -35,782.7 M1 vs M0 <0.0001 

M2 Coffee and alcohol KCAL TIME 218 73,158.4 -35,897.8 M2 vs M1 0.0010 

II. Predictors of class membership  

M3 All 
KCAL + 

COVARIATES 
TIME 238 70,962.2 -34,740.8 M3 vs M2 0.0000 

M4 Only significant 
KCAL + 

COVARIATES 
TIME 226 71,028.0 -34,811.1 M4 vs M2 0.0000 

III. Predictors of transition probabilities 
M5 Restrict 4 

negligible 
transitions  (τ = 0) 

KCAL + 
COVARIATES 

TIME& 222 71,014.1 -34,816.5 M5 vs M4 0.2415 

M6 Different transitions 
over time 

KCAL + 
COVARIATES 

TIME& | 
NULLIPAR 

230 71,040.6 -34,804.9 M6 vs M5 0.1690 

M7 Same transitions 
over time 

KCAL + 
COVARIATES 

Intercept 216 70,984.0 -34,820.2 M7 vs M5 0.7253 

£ Vit C fruits, other fruits, fish not fried, 100% juice, coffee, alcohol, diet soft drinks, and water. 
N = 519, 484, 374 at pregnancy, 3 and 12 months postpartum. 
€ Energy (Kcal/day) was coded as three dummy variables for the three upper quartiles of energy intake. 
Covariates were dummy variables for BMI categories, groups of age, education level, white, smoking behavior during pregnancy, 
and primiparous.  
ŧ BIC from these models cannot be compared to the rest because observations are a subsample due to missing values in 
covariates. 
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TABLE 3.3 Odds ratios and 95% CI for predictors of class membership at pregnancy, 3-

class latent transition model, PIN Study 

Covariate Prudent 
Health 

conscious 
Western 

Hard core 
Western  

(soft drinks & 
low F&V) 

 
Change in 

 2 log 
likelihood 

df P value 

  OR  OR      
Nulliparous 1 0.22  0.36   27.7 2 < 0.0001 

Smoker 1 1.4  2.9   7.8 2 0.0207 

White 1 0.7  0.2   25.5 2 < 0.0001 

≥ Grade 17 1 1.0  0.2   33.4 2 0.0496 
2nd quartile Kcal at 
pregnancy 

1 3.6  1.0   9.9 2 0.0070 

3rd quartile Kcal at 
pregnancy 

1 11.6  1.0   57.0 2 < 0.0001 

4th quartile Kcal at 
pregnancy 1 31.7  1.3   98.7 2 < 0.0001 

€ Model 6: Alcohol and coffee distribution allowed to change over time, different transition probabilities over time 
and some constrained to zero. 
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TABLE 3.4 Class prevalences and transition probabilities from 3-class latent transition 

model, PIN Study 

  Class prevalence  Transition probabilities 

 
Dietary  Postpartum  Pregnancy to 3 mo 

postpartum 
 3 to 12 mo postpartum 

 

pattern 
Preg-
nancy 

3  
mo 

12 
mo 

 
Prud-
ent 

Health 
conscious 
Western 

Hard core 
Westernŧ  

 
Pru-
dent 

Health 
conscious 
Western 

Hard core 
Westernŧ 

M6 Different transitions over time   

 
Prudent 31.8 30.4 28.6  0.913 0.087 0&  0.893 0.107 0& 

 
Health conscious 
Western 

35.8 34.7 34.3  0.039 0.847 0.114  0.042 0.897 0.062 

 
Hard core Western 
(soft drinks & low F&V) 

32.4 34.9 37.1  0& 0.048 0.952  0& 0.000 1.000 

M7 Same transitions over time  

 Prudent 32.1 30.0 28.1  0.890 0.110 0&  0.890 0.110 0& 

 
Health conscious 
Western 

36.0 35.4 34.7  0.040 0.845 0.115  0.040 0.845 0.115 

 
Hard core Western 
(soft drinks & low F&V) 31.9 34.7 37.2  0& 0.044 0.955  0& 0.044 0.955 

€ Alcohol and coffee distribution allowed to change over time, some transition probabilities constrained to zero. 
ŧ Hard core Western (high soft drinks and low fruits and vegetables). 

& Constrained to zero. 
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CHAPTER 4                                                              

Does food-grouping makes a difference when deriving  

dietary patterns  using Latent Class Models?                        

A Monte Carlo Simulation Study 

 

4.1 Abstract 

 
  A key decision involved when deriving dietary patterns is whether or not to collapse 

the primary dietary, which ranges from 25 to 250 food items depending on the dietary 

assessment tool, into a smaller number of items (called food groups). One advantage for 

collapsing is dimension reduction. Another is decreasing the number of non-consumers, as 

non-consumption leads to a semicontinuous distribution of quantity consumed due to the 

mass-point at zero for non-consumers. However, one advantage of not collapsing the food 

items a priori is the ability to derive dietary patterns as a proxy to dietary behavior in order to 

better understand which combinations of specific foods are consumed. Also, there is some 

evidence that food grouping can have an impact on the association between DP and health 

outcomes showing that greater dietary detail maybe be important. The goal of this paper is 

to explore via a Monte Carlo simulation study whether food-grouping makes a difference 

when deriving dietary patterns using Latent Class Models.  
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4.2 Introduction 

 
  Dietary patterns (DP) are commonly derived to study the effects of overall diet on 

health outcomes as opposed to the effects of individual nutrients or foods (Hu, F.B. 2002). 

To date, principal components and exploratory factor analysis are the predominant methods 

for deriving them in a continuous scale. By contrast, latent class models (LCM) have been 

rarely used (Padmadas et al, 2006; Fahey et al, 2007) despite that they were recognized as 

useful methods to reflect complex relations between diet and disease at the international 

workshop on dietary patterns in 2000 (Hoffmann et al, 2002). Similar to cluster analysis, 

latent class models classify subjects into classes such that within class they have similar 

diet, and classes are different from each other.  

  Regardless of the statistical method used, there are several nutritional 

methodological issues involved in dietary pattern analysis. For example, whether or not to 

collapse the primary dietary data, which are measured with 25 to 250 food items depending 

on the dietary assessment tool, into a smaller number of items (called food groups), how to 

group the data if collapse is done, and deciding on the number of dietary patterns (Newby 

and Tucker, 2004). 

  The main advantage for collapsing is dimension reduction. Another is decreasing the 

number of non-consumers, as non-consumption leads to a semicontinuous distribution of 

quantity consumed due to the mass-point at zero for non-consumers. The proportion of 

habitual non-consumers is naturally greater when working with food-items than with food-

groups because after collapsing there is usually a much lower percentage of subjects not 

consuming any food from the food group. However, one advantage of not collapsing the 

food items a priori is the ability to derive dietary patterns as a proxy to dietary behavior in 

order to better understand which combinations of specific foods are consumed. Also, there 

is some evidence (McCann et al, 2001) that food grouping can have an impact on the
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association between DP and health outcomes, showing that greater dietary detail maybe be 

important. Unfortunately, there are not many studies that have compared the performance 

and effect of deriving dietary patterns with food items and food groups.  

  Deciding on the number of latent classes is a difficult task. The usual likelihood ratio 

test (LRT) cannot be used to compare nested latent class models because the regularity 

conditions required in classical maximum likelihood theory are violated and hence, its 

distribution is not chi-square. In particular, to compare a model with K classes vs. one with 

K-1 classes, the reduced model is obtained by restricting the latent class probability to zero, 

which is a value in the boundary of the parameter space. The Lo-Mendel-Rubin likelihood 

ratio test (LMR-LRT) (Lo et al, 2001) compares neighboring class models using an 

approximation of the LRT distribution under the assumption of within-class normality 

conditional on covariates. Another likelihood ratio test is based on the parametric bootstrap 

to estimate its empirical distribution (McLachlan and Peel, 2000) but is very computationally 

intensive. A second option to compare models with different number of classes is to use 

information criteria, such as the Bayesian Information Criterion (BIC). Information criteria are 

based on the likelihood function, so they reward models that reproduce the observed data, 

and they usually incorporate a penalty for the number of parameters. The BIC is widely used 

due to its relatively strong penalty on the number of parameters relative to that of the Akaike 

Information Criterion (AIC). A recent simulation study (Nylund et al, 2007) showed that the 

bootstrap LRT performed better in identifying correctly the number of classes than the naïve 

LRT, the LMR-LRT and the BIC for the traditional LCM with few outcomes (8 and 15) with 

either continuous or categorical outcomes using samples sizes of 200, 500 and 1000. A 

third option is classification-based information criterion (McLachlan and Peel, 2000) which 

reward models that produce well-separated classes. For example, the classification 

likelihood criterion (CLC) uses the estimated entropy to penalize the model for its 

complexity. The entropy is the directed divergence between the multinomial distribution with 
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posterior probabilities of component membership and the one with equal probabilities (1/k). 

The estimated entropy cannot be used directly to select the number of classes because it is 

an increasing function of the number of classes.  

  The goal of this paper is to explore via Monte Carlo simulation study whether food-

grouping makes a difference when deriving dietary patterns using latent class models. In 

particular, we will compare between deriving dietary patterns using a large number of 

outcomes (from 80 to 120 food-items) and a medium size number (from 25 to 60) of food-

groups in terms of: 

1) number of classes (dietary patterns) chosen. We will use two information criteria 

(BIC and AIC), a statistical test (Lo-Mendell-Rubin likelihood ratio test) and a 

summary measure of classification (CLC). 

2) characterization of the classes (dietary patterns).   

3) performance of the estimates. We will assess the parameter bias, standard error bias 

and parameter coverage. 

4) true classification of the subjects. We will predict latent class and compare it to the 

true class using the weighted Kappa statistic. 

 

4.3 Latent class model considered   

 
  The LCM with categorical outcomes and covariates  is specified as a finite 

mixture (McLachlan and Peel, 2000) of conditional response probabilities given that the i-th 

subject belongs to class 1,2, ,k K= K . The contribution to the likelihood by subject i  is 

given by 
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where iU  is a p-dimensional vector of categorical random variables (food-items), 

( ) ( )Pr 1|ik i ik icπ ≡ =x x  is the probability to belong to class k given the covariates ix , and 

they add to one, ic  is a K-dimensional class-label vector where the k-th element ikc  is 

defined to be one or zero if the i-th subject belongs or not to the k-th class, and 

| Pr | 1ij k ij ij ikU u cρ  ≡ = =   is the conditional j-th response probability given class k. The 

number of levels for each outcome is jr . The class membership 
1

i
K×

c  is distributed according 

to a multinomial distribution, and it is modeled with a baseline-category logit model for 

nominal response (Agresti, 2002) with the particularity that ic  is not observed. 

Mathematically, 

( )
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K

ππ π
π π π

−

− ×

≡π K with class K as the reference class. In 

summary, two sets of parameters are estimated: regression coefficients predicting class 

membership and conditional probabilities of the observed responses given the class. We 

estimated the LCM with Mplus (Muthen L.K., Muthen B, 2006), which uses maximum 

likelihood via the Expectation-Maximization (EM) algorithm (Dempster et al, 1977). During 

the E-step the posterior probabilities of class membership are updated. The M-step involves 

two multinomial logistic regression optimizations: one to estimate the regression coefficients 

predicting class membership and another to estimate the intercepts (thresholds) for the 

conditional response probabilities. Posterior probabilities of class membership were 

calculated via the Bayes’ theorem, and subjects were classified into the class with the 

highest posterior probability. 
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4.4 Model selection 

 
To determine the number of classes we used the Lo-Mendel-Rubin likelihood ratio 

test LMR-LRT (Lo et al, 2001), the Akaike Information Criterion (AIC), the Bayesian 

Information Criterion (BIC), a sample-size adjusted BIC (Sclove, 1987) and the classification 

likelihood criterion (CLC). They are defined as: 

( )

2log 2

2log log

ˆ ˆln
2 log 2    where  1

ln
ik iki k

AIC L r

BIC L r n

p p
CLC L Entropy Entropy

n K

= − +

= − +

−
= − + = −

∑ ∑
 

where r is the number of free parameters, n the number of independent observations and 

ˆ ikp  the posterior probability of subject i in class k. The sample-size adjusted BIC replaces n 

by * ( 2) / 24n n= + . Models with smaller values for the information criteria are preferred. 

Entropy ranges from zero to one with values closer to one indicating better classification. 

 

4.5 Monte Carlo Simulation Study 

4.5.1 Data generation 

 
  We generated 1,000 replications for each of four total sample sizes: n=1000, 2000, 

5000 and 10000. To generate the data we used as parameters the sample moments for 98 

food-items (g/day) from the Pregnancy, Infection and Nutrition (PIN) Study. Because latent 

class models rely on the assumption of conditional independence given the latent class we 

generated the data independently given the class. We assumed the true number of latent 

classes was K=3 and we randomly divided each sample into three classes with equal 

proportion of belonging to each class (i.e. 0.33). Then given a class, for each subject and 

food-item we first generated a pseudo-random number from a uniform distribution over the 

interval 0 to 1 to determine whether the subject consumed the food-item or not. If the food-
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item was consumed we then generated a pseudo-random number from a Normal 

distribution with mean and variance of log-transformed g/day, and then transformed back to 

a log-normal in order to simulate skewed distributions. Hence, every subject belonged to a 

class and had for each food-item zero grams if not consumed and g/day if consumed. Total 

amount consumed (g/day) was created by adding all food-items. 

 Once the food-items were simulated they were aggregated by adding the g/day into 

food-groups according to nutrient content and culinary usage. We considered different ways 

of grouping the food-items in order to vary the amount of detail. For example, we could 

aggregate or not high-caratenoid vegetables with the rest of the vegetables.  

  Given that many food-items’ distributions were intentionally skewed and had a lump 

at zero due to non-consumers the indicators were categorized, as it is often done in 

practice. Food-items were categorized into a three-level variable: non-consumers (g/day = 

0) and below or above the median of consumption among consumers (g/day>0) to 

distinguish from “low” and “high” consumption. Food-groups were also categorized into 

three-level variables, but the level for non-consumers also included those with very low 

consumption (below the 5th percentile) because for most food-groups there was a very low 

percent of not consuming the food group after collapsing. Data generation was performed 

using SAS/STAT software, Version 9.1 of the SAS System for Windows (SAS, 2002-2003). 

 

4.5.2 Data Analysis 

 
  For each of the four sample sizes, replication and food-grouping we fitted latent class 

models with K = 2, 3, and 4 classes using the Monte Carlo facility in Mplus. For all models, 

we included total amount consumed (g/day) as predictor of class membership using three 

dummy variables for the 4-level categorical variable created from the quartiles of total g/day. 

Given that latent class models are sensitive to starting values because there could be 
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several local maxima, we used ten sets of starting values in order to be more confident of 

reaching the global maximum. Furthermore, in Mplus maximum likelihood optimization was 

first done over ten random sets of starting values, and then two optimizations were done 

using as starting values the ending values with the highest log likelihoods from the first 

optimizations. 

 

4.6 An application to the Pregnancy, Infection and Nutrition (PIN) Study 

 
To compare the dietary patterns derived using all the food-items individually to those 

derived using food-groups instead we used data from women of the third cohort of the 

Pregnancy, Infection and Nutrition (PIN) Study. Diet intake was assessed through a self-

administered semiquantitative 119 food-item Block food frequency questionnaire (FFQ) 

(Block et al, 1992) to measure usual intake in the past three months. For this analysis we 

used 1,285 women and 98 food-items; details of the study sample and the rationale for 

selecting these particular food-items has been described previously (chapter 2). In that 

paper, we derived three dietary patterns using a latent class model on 98 categorical food-

items. The ‘Prudent’ class had higher probabilities of consuming more fruits and vegetables, 

whole grains, beans, nuts, fish and chicken (not fried), water, and low-fat dairy. The ‘Health 

Conscious Western’ class had high probabilities for consuming higher amounts of fast food, 

salty snacks and sweets, but also for fruits and vegetables. It was called. The ‘Hard Core 

Western’ class was less likely to eat fruits, vegetables, and more likely to consume fried fish 

and chicken, and soft drinks. 

Food-items (g/day) were aggregated a priori into 26 food-groups and the latter 

categorized into three-level variables: non-consumers (g/day below the 5th percentile) and 

below or above the median of consumption among consumers (g/day>0) to distinguish “low” 

and “high” consumption. We fitted a latent class model with 3 classes on the 26 categorical 
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food-groups. By comparing the conditional response probabilities, we found that the classes 

could be interpreted similarly to those derived using all food-items individually. However, 

there was only moderate agreement κ=0.48 (95% CI: 0.44, 0.53) between classifying 

women using 3-LCA on 98 food-items and 3-LCA on 26 food-groups. The percentages of 

agreement on classification (diagonal of the contingency table between the two 

classifications) were 63.1%, 77.5% and 62.8% for Prudent, Health Conscious Western and 

Hard Core Western respectively (Table 4.3 ). 

 

4.7 Discussion 

  

 In this paper we explored via Monte Carlo simulation whether food-grouping makes a 

difference when deriving dietary patterns using latent class models. In particular, for a 

scenario of 98 food-items aggregated into 26 food-groups, we compared the effect of 

sample size for selecting the number of classes using two information criteria (AIC and BIC) 

and a modified likelihood ratio test (Lo-Mendell-Rubin LRT). Either using food-items or food-

groups, for all criteria the percentage of times each selected the true number of classes 

decreased as sample size increased (Table 4.1 ). In all cases, this decrement was because 

the criteria selected models with at least one extra class. In general, BIC performed better 

than AIC and adjusted BIC, but slightly worst than the LMR-LRT. The only exception was 

when using food-groups for smaller sample sizes (n= 1,000 or 2,000), when BIC performed 

better than the LMR-LRT. Because the data were simulated at the food-item level, the 

percentages of times the true number of classes is chosen were obviously much larger than 

those at the food-group level. The power of the LMR-LRT (i.e. the probability of rejecting a 

LCM with K-1 classes when the true model has K classes) was very high both when using 

food-items and food-groups (Table 4.2 ). By contrast, the type I error for the LMR-LRT (i.e. 

probability of rejecting a K-LCM given that the true number of classes is K) was 
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outrageously large when using food-groups, indicating the preference of LMR-LRT for 

models with at least one extra class. 

 

 Results from this simulation, particularly that the percentage of times each criteria 

selected the true number of classes decreased as sample size increased, are surprising and 

go on opposite direction as those found by a recent simulation study (Nylund et al, 2007). 

Both studies simulated the data conditionally independent of the class and considered a 

complex structure for the outcomes, where none of the outcomes had particularly high or 

low probabilities for a specific class. However, Nylund et al considered a small number of 

outcomes (ten binary outcomes) and sample sizes of n=200, 500 and 1000 and hence, the 

ratio of subjects per parameter were much higher than the ones we had.  
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TABLE 4.1 Percentage of times each latent class model is chosen 

 Successful 
replications 

for K=4 / 
Requested 

 AIC  Adj BIC  BIC  LMR-LRT€ 
n  Classes (K)  Classes (K)  Classes (K)  Classes (K) 

    2 3 4   2 3 4   2 3 4  1 2 3 > 4 
98 food-items                  
1,000ŧ    1 / 1,000  0.0 100.0 NC  0.0 100.0 NC  0.0 100.0 NC  0.0 0.0 100.0 NC 
2,000ŧ  0 / 100  0.0 100.0 NC  0.0 100.0 NC  0.0 100.0 NC  0.0 0.0 100.0 NC 
5,000 71 / 100  0.0 67.6 32.4  0.0 87.3 12.7  0.0 97.2 2.8  0.0 0.0 98.6 1.7 
10,000 70 / 100   0.0 64.3 35.7   0.0 77.1 22.9   0.0 84.3 15.7   0.0 0.0 100.0 0.0 
26 food-groups                  
1,000 994 / 1,000  0.0 25.9 74.1  0.0 50.5 49.5  0.0 87.0 13.0  4.1 0.1 44.0 51.8 
2,000 721 / 1,000  0.0 14.2 85.9  0.0 33.6 66.4  0.0 62.1 37.9  1.7 0.0 40.9 57.4 
5,000 995 / 1,000  0.0 3.5 96.5  0.0 10.1 90.0  0.0 20.3 79.7  0.0 0.0 33.5 66.5 
10,000   100 / 100       0.0 0.0 100.0   0.0 0.0 100.0   0.0 0.0 100.0   0.0 0.0 25.0 75.0 
Columns in bold highlight the true number of classes for the latent class model. 
ŧ These percentages were calculated including ONLY models with 2 and 3 classes since none of the replications were 
completed for models with 4 classes. 
NC The replications were not completed because "THE MODEL ESTIMATION DID NOT TERMINATE NORMALLY DUE TO 
AN ILL-CONDITIONED FISHER INFORMATION MATRIX." 

€ The LMR-LRT compares a model with K classes vs. a model with one class less. Thus the range of models is from 1 class 
to 4 classes. We selected the model based on the occurrence of the first non significant p value from the LMR-LRT. 

 

 

 

TABLE 4.2 Type I error and power for the Lo-Mendell-Rubin LRT test 

  Type I error  Power 

  
N 

Ho: 3-LCA (true) 
vs. H1:4-LCA 

 
Ho: 2-LCA vs. H1: 3-LCA 

(true) 

98 food-items    
 1,000 NC  1.00 

 2,000 NC  1.00 
 5,000 0.01  1.00 
 10,000 0.00  1.00 

  # parameters 796   596 
26 food-groups    
 1,000 0.54  99.9 

 2,000 0.59  1.00 
 5,000 0.67  1.00 

 10,000 0.75  1.00 
  # parameters 220   164 
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TABLE 4.3 Cross-classification between 3-LCA on 98 food-items and 3-LCA on 26 food-

groups, PIN Study 

 3-LCA from 26 food-groups  

3-LCA from 98 food-groups Prudent Health conscious 
Western 

Hard core 
Western 

Total 

Prudent 294 116 56 466 

Health conscious Western 77 303 11 391 

Hard core Western 113 47 268 428 

Total 484 466 335 1285 
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CHAPTER 5                                                                         

Conclusions and Future Directions 

 

  It has been a matter of preference among epidemiologists whether empirical dietary 

patterns (DP) are conceptualized, and derived, as continuous (as in principal components or 

common factor analysis) or as categorical (as in cluster or latent class analysis). The scale 

of the underlying latent variable (dietary pattern) makes them differ in food composition 

because they are derived using two different statistical methods. Factor analysis is useful to 

understand which foods are eaten together, and reduce dimension whereas cluster and 

latent class analysis are useful to classify subjects in order to estimate the risk of the 

outcome for each exposure class compared to a reference class. Even when dietary 

patterns are derived as continuous, usually investigators want to classify the subjects based 

on the joint classification of the factors. When there are only two factors an easy way to 

classify subjects is to cross-classify the factor scores’ quantiles, as is often done in practice. 

However, when there are more than two factors, the number of different combinations 

increases substantially, making it difficult to collapse into K groups without taking any strong 

subjective decisions. Instead, in paper 1 we propose a two-step method in which we first 

derive the dietary patterns using factor analysis and then use latent class models (LCM) on 

the previously derived factor scores to classify the subjects.  We found that there was high 

agreement between the direct classification using LCM on all food-items and the a posteriori 

one from the two-step LCM on the previously derived factor scores. By contrast, there was a 

poor agreement with the subjective classification due to collapsing all the non-extreme 
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combinations. Hence, we recommend that with more than two factors, a subsequent LCM 

may be superior to “eyeballing” the cross-classification, which may be very time consuming 

and may not identify the best classification. The advantage for using the two-step a 

posteriori procedure to classify subjects into dietary patterns instead of using LCM directly 

on the food-items is obtaining also the subject’s factor scores.  

  In paper 2, we propose using latent transition models (LTM) to study change as 

characterized by the movement between discrete dietary patterns. There are several 

advantages of using LTM to study dietary patterns over time. First, LTMs provide a direct 

classification of the subjects into mutually exclusive dietary patterns and by constraining for 

measurement invariance it guarantees that the same dietary patterns are measured over 

time. Second, it allows not only estimation of the transition probabilities but also testing of 

what factors determine the transitions over time. However, one limitation for studying dietary 

patterns using latent class models is the relatively large sample size required because for 

each class there are a large number of parameters being estimated for the item response 

probabilities (food-items). Dietary patterns can change over time for different reasons such 

as nutritional advice, changes in food supply, or major life events like pregnancy and 

motherhood. Understanding the different dietary patterns during pregnancy and the first year 

postpartum, and what determines transitions among dietary patterns, could help create 

more effective interventions during pregnancy, which could be an excellent period to modify 

or improve health behaviors that should be maintained over time.  

  Because a key decision involved when deriving dietary patterns is whether or not to 

collapse the primary dietary data, in paper 3 we explore via a Monte Carlo simulation study 

whether food-grouping makes a difference when deriving dietary patterns using latent class 

models. We compare the effect of sample size for selecting the number of classes using 

information criteria (AIC, BIC and CLC) and a modified likelihood ratio test (Lo-Mendell-

Rubin LRT).  



 

 113 

 Future research for paper 1 includes fitting a latent class mixture model to estimate 

the factor scores and latent classes simultaneously. This approach also would allow within-

class heterogeneity. However, this adds the challenge of determining simultaneously the 

number of latent classes and factors, and modeling is computational intensive.  Future 

research for paper 2 includes writing a tutorial for a biostatistics audience on latent transition 

models with a simple example using ordinal outcomes comparing MPLUS and PROC LTM. 

In addition, we will perform a Monte Carlo simulation on LTM with small sample sizes to 

study convergence, stability and power for testing group effect (e.g. parity) and/or predictors 

for transition probabilities. Future research for paper 3 includes considering different ways of 

grouping the food-items in order to vary the amount of detail. Also, we will compare the 

effect of the food-groupings in the characterization of the classes (dietary patterns), the 

performance of the estimates (parameter bias, standard error bias and parameter coverage) 

and in their classification of the subjects.  
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APPENDIX A                                                      

Supplementary Tables and Figures for Chapter 2 

 

TABLE A1. Food item's distribution, PIN Study 

  
Food item No 

consumption  ≤ Median> Median

Vitamin C fruits    
 Oranges, tangerines 27.2 44.4 28.5 
 Grapefruita 73.5   
Other fruits    
 Apples or pears 12.8 44.2 43.0 
 Bananas 13.2 55.6 31.2 
 Peaches, apricots, fresh 42.9 36.6 20.5 
 Cantaloupe (year round) 35.9 32.1 32.0 
 Watermelon 53.4 26.5 20.2 
 Canned fruit, applesauce, etc. 28.4 46.4 25.2 
 Strawberries 20.5 46.0 33.5 
 Other fruits 11.1 48.1 40.8 
Vegetables    
 Green beans or peas 8.9 56.5 34.6 
 Corn, fresh, frozen or canned 9.2 47.3 43.5 
 Coleslaw, cabbage 41.2 33.0 25.8 
 Green saladb  57.7 42.3 
 White potatoes baked, mashedb  61.6 38.4 
 Other vegetables 26.4 45.1 28.5 
High-caratenoid vegetables    
 Raw tomatoes 20.9 40.6 38.5 
 Broccoli 14.2 43.9 41.9 
 Spinach (cooked) 41.6 33.2 25.2 
 Greens like collards 65.9 17.5 16.6 
 Carrots 14.6 43.3 42.0 
 Sweet potatoes 57.7 21.9 20.4 
Dairy    
 Cheese and cheese spreadsb  54.2 45.8 
 Yogurt 29.6 42.6 27.8 
 Frozen yogurt/regular 65.8 19.0 15.3 
 Low fat milk 26.5 36.8 36.7 
 Soy milkc 0.98   
 Rice milkc 1.00   
Nuts and beans    
 Peanut butter 22.4 43.7 33.9 



 

 115 

 Peanuts, other nuts & seeds 27.2 40.5 32.3 
 Baked beans, blackeye p, pintos 29.1 46.5 24.4 
 Chili with beans 53.5 29.3 17.2 
 Refried beans, bean burritos 43.0 29.2 27.8 
Mixed dish w/meat    
 Vegetable stew 63.5 19.8 16.7 
 Spaghetti w/tomato sauce and meatb  63.8 36.2 
 Vegetable soup 31.0 36.1 32.9 
 Other soups like chicken noodle 30.3 36.1 33.6 
 Mixed dishes with beef or pork 51.5 24.4 24.0 
 Pasta salad, other pasta dish 6.8 47.0 46.1 
 Chicken stew, pot pie 19.6 40.9 39.5 
Eggs and meat    
 Eggs or egg biscuitsb  64.4 35.6 
 Beef (roast, steak, sandwiches) 24.9 41.2 33.9 
 Liver, liverwurstc 0.92   
 Pork chops, roasts, dinner ham 28.6 47.9 23.5 
 Ribs, spareribs 67.7 18.8 13.5 
 Gizzard, neckbones, chitlinsc 0.94   
 Fried chicken 40.9 30.3 28.9 
 Chicken not fried 10.5 45.4 44.0 
 Fried fish 61.6 19.4 19.0 
 Fish not fried 56.3 26.1 17.5 
 Tuna casserole, tuna sandwich 47.9 26.5 25.5 
 Shellfish (shrimp, crab, etc.) 32.1 38.4 29.4 
 Oystersc 0.92   
Processed meat    
 Hot dogs or dinner sausage 30.7 38.7 30.6 
 Ham, boloney, lunch meats 18.8 49.6 31.5 
 Bacon 24.4 40.4 35.2 
 Breakfast sausage 46.4 27.2 26.5 
 Rice or dishes with rice 8.0 50.0 41.9 
Refined grains    
 White bread, French, Ital.,etc 14.8 43.2 42.0 
 Cornbread or hush puppies 58.0 23.8 18.2 
 Cereal excl. fiber or fortified 21.7 46.2 32.1 
 Cooked cereal or grits 36.7 38.4 25.0 
 Bagels, Eng.muffins, bunsb  54.2 45.8 
 Biscuits, muffins 11.7 53.9 34.4 
 Pancakes, waffles, Pop Tarts 16.7 47.7 35.6 
 Tortillas - Corn or flour 31.7 34.8 33.5 
Whole grains    
 Dark bread, whole wheat, rye 29.8 40.2 30.0 
 High fiber cereals 51.8 24.2 24.0 
 Product 19, Total, Just Righta 85.9   
Salty snacks and sweets    
 Salty snacks (chips, popcorn)b  58.3 41.7 
 Crackers 14.2 45.0 40.8 
 Ice creamb  59.6 40.4 
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 Doughnuts, pastry 30.5 37.6 31.9 
 Pumpkin pie, sweet potato piea 81.9   
 Pie or cobbler 53.5 33.2 13.4 
 Chocolate candy, candy bars 13.5 50.1 36.3 
 Candy (not chocolate) 31.8 35.9 32.4 
 Pudding 62.4 20.2 17.4 
 Cookies, regular 10.5 51.2 38.3 
 Cake - regular 22.5 40.9 36.7 
 Jelly, jam, syrup 16.4 42.0 41.6 
Beverages    
 Orange juice, grapefruit juice 8.3 46.8 44.8 
 Tomato juice, V-8 juicea 81.1   
 Real frt juice excl orange,grft 18.8 40.8 40.4 
 Coffee 49.9 25.8 24.3 
 Alcohola 90.5   
 Light beerc 0.99   
 Non-alcoholic beerc 0.93   
 Drinks w. some juice, Sunny Da 73.5   
 KoolAid, Hi-C,Vit.C-rich drinks 56.2 23.6 20.2 
 Soft drinks or Snapple not diet 24.4 40.2 35.4 
 Tea or iced tea (not herb tea) 33.3 34.9 31.8 
 Cranberry juice cocktail 54.6 23.0 22.3 
 Diet soft drinksa 69.1   
 Breakfast or diet shakesc 0.91   
 Waterb  57.4 42.6 
Fast food    
 French fries, fried potatoesb  58.3 41.7 
 Hamburger, cheeseburger 10.4 45.2 44.4 
 Pizzab  62.4 37.6 
 Cheese dish like macaroni/cheese 15.9 43.7 40.5 
 Chinese dishes 22.6 38.8 38.5 
 Tacos or burritos 21.1 44.3 34.6 
Condiments and other food items    
 Butter 34.6 39.5 25.9 
 Margarine 39.5 33.3 27.2 
 Gravy 53.9 25.4 20.8 
 Mayonnaise, sandwich spreads 24.2 48.1 27.7 
 Salad dressing 7.9 56.2 36.0 
 Salsa, ketchup, taco sauce 15.2 47.2 37.6 
 Mustard, BBQ sauce, other sauce 13.7 44.0 42.3 
 Cream or half & halfa 80.3   
 Non dairy creamerc 0.94   
 Sugar or honey in coffee/tea 43.2 28.7 28.1 
 Breakfast bars, Power bars 46.3 28.5 25.2 
  Meat substitutes (not just soy)a 76.7     
CFA, confirmatory factor analysis; EFA, exploratory factor analysis; LCA, latent class analysis. 
a Food-items were dichotomized as consumed or not because there were too few consumers; 
only percent of non consumers shown. 
b Food-items were dichotomized as below or above the median because there were too few non 
consumers.  
c Food-items were rarely consumed (<10% consumption) and were not included in EFA, CFA and 
LCA because they did not add any useful information. 
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TABLE A2. Exploratory and confirmatory factor loadings for 4-factor model, PIN Study 

Food item 
FA-Prudent  

 
FA-Southern  

 
FA-Western

  

FA-Prudent 
coffee & 
alcohol  

R2 EFA CFAa  EFA CFAa  EFA CFAa   EFA CFAa  

Oranges, tangerines 0.47 0.49           0.23 
Grapefruit 0.42 0.52           0.25 
Apples or pears 0.45 0.51           0.24 
Bananas 0.29 0.36           0.13 
Peaches, apricots, fresh          0.29 0.47  0.20 
Cantaloupe (year round)          0.32 0.44  0.19 
Watermelon          0.26 0.29  0.08 
Canned fruit, applesauce, etc. 0.43 0.39           0.15 
Strawberries          0.34 0.41  0.16 
Other fruits 0.33 0.24        0.32 0.33  0.23 
Green beans or peas 0.27 0.28  0.27 0.24        0.12 
Corn, fresh, frozen or canned    0.35 0.38        0.14 
Coleslaw, cabbage    0.50 0.46        0.20 
Green salad          0.66 0.70  0.42 
White potatoes baked, mashed    0.32 0.27  0.31 0.23     0.16 
Other vegetables 0.34 0.27        0.41 0.33  0.25 
Raw tomatoes          0.54 0.65  0.37 
Broccoli 0.35 0.30        0.40 0.35  0.29 
Spinach (cooked) 0.36 0.25        0.50 0.47  0.35 
Greens like collards    0.51 0.41  -0.31 -0.19     0.14 
Carrots 0.41 0.40        0.37 0.26  0.30 
Sweet potatoes 0.51 0.57           0.30 
Cheese and cheese spreadsc 0.13   -0.10   0.19   0.11    
Yogurt 0.36 0.36  -0.31 -0.25     0.38 0.29  0.36 
Frozen yogurt/regular 0.25 0.39           0.15 
Low fat milk    -0.41 -0.27        0.07 
Peanut butter       0.32 0.27     0.07 
Peanuts, other nuts & seeds 0.36 0.50           0.24 
Baked beans, blackeye p, pintos 0.40 0.43           0.18 
Chili with beans 0.41 0.46           0.20 
Refried beans, bean burritos 0.31 0.46           0.20 
Vegetable stew 0.50 0.51           0.24 
Spaghetti w/Tom. sauce + meat       0.30 0.23     0.05 
Vegetable soup 0.49 0.54           0.27 
Other soups like chicken noodle 0.41 0.43           0.18 
Mixed dishes with beef or pork    0.35 0.52        0.24 
Pasta salad, other pasta dish       0.45 0.39     0.14 
Chicken stew, pot pie       0.38 0.49     0.22 
Eggs or egg biscuitsc 0.09   0.22   -0.03   0.12    
Beef (roast, steak, sandwiches)    0.46 0.61        0.33 
Pork chops, roasts, dinner ham    0.50 0.63        0.34 
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Ribs, spareribs    0.58 0.62        0.33 
Fried chicken    0.63 0.73        0.44 
Fried fish    0.48 0.46        0.20 
Chicken not fried          0.36 0.29  0.08 
Tuna casserole, tuna sandwich          0.33 0.44  0.18 
Shellfish (shrimp, crab, etc.)          0.39 0.39  0.14 
Fish not fried          0.56 0.67  0.39 
Hot dogs or dinner sausage    0.55 0.66        0.37 
Ham, boloney, lunch meats    0.28 0.36        0.12 
Bacon    0.53 0.69        0.40 
Breakfast sausage    0.56 0.65        0.36 
Rice or dishes with rice          0.27 0.34  0.11 
White bread, French, Ital.,etc    0.40 0.48        0.21 
Cornbread or hush puppies 0.37 0.32  0.32 0.45        0.26 
Cereal excl. fiber or fortifiedc 0.06   0.05   0.23   -0.10    
Cooked cereal or grits 0.36 0.37           0.13 
Bagels, Eng.muffins, buns       0.44 0.35     0.12 
Biscuits, muffins       0.36 0.49     0.21 
Pancakes, waffles, Pop Tarts       0.31 0.41     0.16 
Tortillas - Corn or flour       0.41 0.35     0.11 
Dark bread, whole wheat, rye 0.33 0.35  -0.42 -0.36     0.43 0.29  0.40 
High fiber cereals 0.30 0.40           0.15 
Product 19, Total, Just Right 0.30 0.40           0.15 
Salty snacks (chips, popcorn)       0.44 0.35     0.12 
Crackers       0.38 0.34     0.11 
Ice cream       0.41 0.37     0.13 
Doughnuts, pastry       0.43 0.60     0.31 
Pumpkin pie, sweet potato pie 0.42 0.33           0.11 
Pie or cobbler       0.29 0.55     0.27 
Chocolate candy, candy bars       0.48 0.45     0.19 
Candy (not chocolate)       0.40 0.40     0.15 
Puddingc 0.23   0.16   0.24   -0.11    
Cookies, regular       0.45 0.39     0.14 
Cake - regular       0.39 0.54     0.26 
Jelly, jam, syrup       0.33 0.37     0.13 
Orange juice, grapefruit juicec 0.13   0.05   0.00   0.01    
Tomato juice, V-8 juice          0.25 0.38  0.14 
Real frt juice excl orange,grft    0.25 0.11        0.01 
Coffee          0.36 0.30  0.09 
Alcohol          0.32 0.20  0.04 
Drinks w. some juice, Sunny D    0.47 0.46        0.20 
KoolAid, Hi-C,Vit.C-rich drinks    0.53 0.40     -0.38 -0.19  0.19 
Soft drinks or Snapple not diet    0.26 0.25        0.06 
Tea or iced tea (not herb tea)    0.38 0.23        0.05 
Cranberry juice cocktail 0.26 0.27           0.07 
Diet soft drinksc -0.08   -0.11   0.11   0.20    
French fries, fried potatoes    0.40 0.40  0.34 0.12     0.20 
Hamburger, cheeseburger    0.50 0.67  0.34 0.03     0.39 
Pizza       0.48 0.38     0.14 
Cheese dish like macaroni/cheese       0.41 0.44     0.18 
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Chinese dishes          0.27 0.33  0.10 
Tacos or burritos       0.49 0.52     0.25 
Butterc 0.10   0.11   0.08   0.13    
Margarine    0.26 0.26  0.26 0.16     0.12 
Gravy    0.54 0.68        0.39 
Mayonnaise, sandwich spreads    0.34 0.28        0.08 
Salad dressing          0.53 0.52  0.25 
Water          0.27 0.36  0.13 
Salsa, ketchup, taco sauce       0.42 0.52     0.24 
Mustard, BBQ sauce, other sauce       0.38 0.47     0.20 
Cream or half & half          0.32 0.20  0.04 
Sugar or honey in coffee/tea    0.38 0.20        0.04 
Breakfast bars, Power bars 0.27 0.33           0.11 
Meat substitutes (not just soy) 0.40 0.56  -0.52 -0.54             0.53 
Abbreviations: CFA, confirmatory factor analysis; EFA, exploratory factor analysis; FA, factor analysis; LCA, latent class 
analysis. 
a The 4-factor model was adjusted for energy intake, nulliparous, smoker, white, education and age. It included correlated 
errors between coffee and half & half, and iced tea and sugar/honey. Some factors were correlated; r=0.49 between ‘FA-
Southern’ and ‘FA-Western’, 0.38 between ‘FA-Prudent’ and ‘FA-Prudent with coffee & alcohol’ and r=0.17 between ‘FA-
Prudent’ and ‘FA-Western’. 

b Sample size was 1,285 women for EFA and 1,219 women for CFA due to missing values in some covariates. 

c Food-items with EFA loadings < 0.25 for all factors were excluded from CFA and LCA. 
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TABLE A3. Regression coefficients for 4-factor model, PIN Study 

Covariate 

FA-Prudent  FA-Southern  FA-Western 
 

FA-Prudent with 
alcohol & coffee 

Estimate  P value   Estimate  P value    Estimate  P value    Estimate  P value  

Nulliparous 0.13 < 0.0001 -0.12 < 0.0001 -0.07 0.011  0.03 0.311 

Smoker -0.17 0.004 0.19 < 0.0001 -0.13 0.007  -0.07 0.135 

White 0.15 < 0.0001 -0.23 < 0.0001 0.37 < 0.0001  0.00 0.890 

Age, years          

   25-29 0.14 0.006 0.01 0.806 0.06 0.158  0.24 < 0.0001 

   30-34 0.21 < 0.0001 -0.06 0.116 0.04 0.356  0.37 < 0.0001 

   35-47 0.18 0.002 -0.03 0.492 -0.06 0.255  0.41 < 0.0001 

Education          

   Grades 13-16 0.12 0.020 -0.13 0.001 0.21 < 0.0001  0.20 < 0.0001 

   >= Grade 17 0.22 < 0.0001 -0.25 < 0.0001 0.16 0.002  0.36 < 0.0001 

Pregravid BMI          

   Low weight 0.07 0.105 -0.09 0.013 -0.07 0.067  -0.06 0.139 

   Over weight -0.13 0.011 0.11 0.015 0.02 0.649  -0.01 0.795 

   Obese -0.06 0.143 0.14 < 0.0001 -0.02 0.645  -0.13 < 0.0001 

Energy intake          
   Kcal 2nd 
quartile 0.18 < 0.0001 0.13 < 0.0001 0.30 < 0.0001  0.15 < 0.0001 
   Kcal 3rd 
quartile 0.31 < 0.0001 0.28 < 0.0001 0.51 < 0.0001  0.25 < 0.0001 
   Kcal 4th 
quartile 0.42 < 0.0001  0.44 < 0.0001  0.79 < 0.0001   0.33 < 0.0001 
Abbreviations: BMI, body mass index; FA, factor analysis. 
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TABLE A4. Partial Spearman correlations between factors and nutrients,                   

adjusted by energy intake, PIN Study 

Nutrient FA-PrudentFA-Southern
FA-Prudent 
with alcohol 

& coffee 
FA-Western

Fat, g -0.11 0.17 0.04 0.21 
Saturated fat, g -0.21 0.21 -0.09 0.11 
Cholesterol, mg -0.12 0.29 0.03 -0.04 
Omega-3 fatty acids 0.02 0.03 0.21 0.14 
Fiber, g 0.64 -0.46 0.52 0.01 
Iron, mg 0.27 -0.25 0.23 0.06 
Folate, mcg 0.47 -0.40 0.41 -0.01 
Calcium, mg 0.26 -0.39 0.21 -0.08 
Vitamin D, mg 0.09 -0.15 0.08 -0.12 
Vitamin A, IU 0.57 -0.30 0.54 -0.02 
Vitamin E, 0.39 -0.31 0.47 0.14 
Zinc, mg 0.35 -0.23 0.35 0.04 
Alpha-carotene 0.53 -0.23 0.40 0.03 
Beta carotene 0.55 -0.21 0.53 -0.03 
% calories from fat -0.13 0.18 0.03 0.20 
% calories from protein 0.26 -0.22 0.38 0.03 
% calories from carbohydrates 0.09 -0.12 -0.11 -0.17 
% calories from sweets -0.17 0.15 -0.20 0.20 
% calories from alcohol 0.04 -0.06 0.17 0.06 
Number of foods consumed 0.61 0.31 0.45 0.54 
Abbreviation: FA, factor analysis. 
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FIGURE A1. Probabilities of consumption by latent class                                                   

from LCA on 98 food-items, PIN Study 

 

Fruits

0.1 0.1

0.2

0.1
0.1

0.2

0.4

0.3

0.5

0.3
0.2

0.6 0.6

0.5

0.6

0.3

0.2

0.4

0.2
0.1

0.3
0.3

0.2

0.6
0.7

0.9

0.1
0.0

0.2

0.3

0.5

0.5

0.4

0.6

0.6
0.3

0.5

0.3

0.4
0.4

0.2
0.2

0.3

0.3

0.4
0.6

0.4

0.4

0.4

0.5

0.4

0.4
0.3

0.4 0.5

0.5

0.6

0.5

0.3

0.5

0.3

0.2

0.3
0.2

0.1

0.4 0.4

0.2
0.2

0.2
0.2

0.3 0.3
0.2

0.4
0.3

0.2

0.4
0.3

0.2

0.5
0.4

0.3

0.4

0.5

0.4

0.1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

LC
A

-P
ru

de
nt

LC
A

-W
es

te
rn

 1

LC
A

-W
es

te
rn

 2

LC
A

-P
ru

de
nt

LC
A

-W
es

te
rn

 1

LC
A

-W
es

te
rn

 2

LC
A

-P
ru

de
nt

LC
A

-W
es

te
rn

 1

LC
A

-W
es

te
rn

 2

LC
A

-P
ru

de
nt

LC
A

-W
es

te
rn

 1

LC
A

-W
es

te
rn

 2

LC
A

-P
ru

de
nt

LC
A

-W
es

te
rn

 1

LC
A

-W
es

te
rn

 2

LC
A

-P
ru

de
nt

LC
A

-W
es

te
rn

 1

LC
A

-W
es

te
rn

 2

LC
A

-P
ru

de
nt

LC
A

-W
es

te
rn

 1

LC
A

-W
es

te
rn

 2

LC
A

-P
ru

de
nt

LC
A

-W
es

te
rn

 1

LC
A

-W
es

te
rn

 2

LC
A

-P
ru

de
nt

LC
A

-W
es

te
rn

 1

LC
A

-W
es

te
rn

 2

LC
A

-P
ru

de
nt

LC
A

-W
es

te
rn

 1

LC
A

-W
es

te
rn

 2

Apples or
pears

Bananas Peaches Cantaloupe Watermelon Canned fruit Straw berries Oranges Grapefruit Other
fruits

No consumption < median > median

 

Vegetables

0.1
0.0

0.1 0.2

0.0
0.1

0.5

0.2

0.5
0.4

0.6

0.8 0.7

0.5
0.6

0.2

0.1

0.5

0.6

0.6

0.5
0.5

0.5 0.4

0.3

0.4

0.3

0.6

0.4

0.2 0.3

0.5
0.4

0.4
0.6

0.3

0.3

0.4 0.4
0.3

0.5 0.5

0.2

0.4

0.2

0.4
0.3

0.2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

LC
A

-P
ru

de
nt

LC
A

-W
es

te
rn

 1

LC
A

-W
es

te
rn

 2

LC
A

-P
ru

de
nt

LC
A

-W
es

te
rn

 1

LC
A

-W
es

te
rn

 2

LC
A

-P
ru

de
nt

LC
A

-W
es

te
rn

 1

LC
A

-W
es

te
rn

 2

LC
A

-P
ru

de
nt

LC
A

-W
es

te
rn

 1

LC
A

-W
es

te
rn

 2

LC
A

-P
ru

de
nt

LC
A

-W
es

te
rn

 1

LC
A

-W
es

te
rn

 2

LC
A

-P
ru

de
nt

LC
A

-W
es

te
rn

 1

LC
A

-W
es

te
rn

 2

Green beans or peas Corn Coleslaw , cabbage Green salad White potatoes Other vegetables

No consumption < median > median
 



 

 123 

 
 

 High-caratenoid vegetables

0.1
0.1

0.4

0.1
0.0

0.3

0.2

0.3

0.7 0.8

0.6 0.6

0.1 0.0

0.3

0.6

0.4

0.8

0.3
0.5

0.4

0.4
0.5

0.4

0.4

0.5

0.2 0.1

0.2 0.2

0.4
0.5

0.4

0.2

0.3

0.1

0.5

0.4

0.2

0.5

0.4

0.3

0.5

0.2

0.1

0.2
0.3

0.1

0.2

0.5

0.1
0.2 0.2

0.6

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

LC
A

-P
ru

de
nt

LC
A

-W
es

te
rn

 1

LC
A

-W
es

te
rn

 2

LC
A

-P
ru

de
nt

LC
A

-W
es

te
rn

 1

LC
A

-W
es

te
rn

 2

LC
A

-P
ru

de
nt

LC
A

-W
es

te
rn

 1

LC
A

-W
es

te
rn

 2

LC
A

-P
ru

de
nt

LC
A

-W
es

te
rn

 1

LC
A

-W
es

te
rn

 2

LC
A

-P
ru

de
nt

LC
A

-W
es

te
rn

 1

LC
A

-W
es

te
rn

 2

LC
A

-P
ru

de
nt

LC
A

-W
es

te
rn

 1

LC
A

-W
es

te
rn

 2

Raw  tomatoes Broccoli Spinach Greens like collards Carrots Sw eet potatoes
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Yogurt Frozen yogurt Low  fat milk Peanut butter Peanuts, other nuts
& seeds

Baked beans, black
eye, pintos

Chili w ith beans Refried
beans, bean

burritos

No consumption < median > median
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Mixed dishes and meat
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Poultry, fish and processed meat
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fried
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Shellf ish Fish not fried Hot dogs or
dinner

sausage

Ham, boloney,
lunch meats

Bacon Breakfast
sausage

No consumption < median > median
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Refined and whole grains
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French,
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w affles, Pop
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High fiber
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19, Total,
Just Right

No consumption < median > median  
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Salty snacks
(chips,

popcorn)

Crackers Ice cream Doughnuts,
pastry

Pumpkin pie,
sw eet potato

pie

Pie or cobbler Chocolate
candy, candy

bars

Candy (not
chocolate)

Cookies,
regular

Cake –
regular

Jelly, jam,
syrup

No consumption < median > median
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Fast food and condiments
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fries
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dish

Chinese
dishes

Tacos or
burritos

Margarine Gravy Mayonnaise Salad
dressing

Salsa,
ketchup,

taco
sauce

Cream or
half & half

Sugar or
honey in

coffee/tea

Mustard

No consumption < median > median
 

 

Beverages
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Tomato juice Real fruit juice
excl orange,

grapefruit

Water Coffee Alcohol Drinks w /some
juice

KoolAid, Hi-
C,Vit.C-rich

drinks

Soft drinks (not
diet)

Iced tea Cranberry
juice

cocktail

No consumption < median > median
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APPENDIX B                                                      

Supplementary Tables and Figures for Chapter 3 

 

TABLE B1. Food-items by food group, PIN Study 

Food group Food-item 

Code Name Code Name 

1 Vitamin C fruits 10 Oranges, tangerines 

1 Vitamin C fruits 12 Grapefruit 

2 Other fruits 1 Apples or pears 
2 Other fruits 2 Bananas 
2 Other fruits 4 Peaches, apricots, fresh 
2 Other fruits 6 Cantaloupe (year round) 
2 Other fruits 7 Watermelon 
2 Other fruits 8 Canned fruit, applesauce, etc. 
2 Other fruits 9 Strawberries 

2 Other fruits 15 Other fruits 

3 Vegetables 16 Green beans or peas 
3 Vegetables 19 Corn, fresh, frozen or canned 
3 Vegetables 29 Coleslaw, cabbage 
3 Vegetables 31 Green salad 
3 Vegetables 34 White potatoes baked, mashed 

3 Vegetables 36 Other vegetables 

4 High-caratenoid vegetables 22 Raw tomatoes 
4 High-caratenoid vegetables 24 Broccoli 
4 High-caratenoid vegetables 27 Spinach (cooked) 
4 High-caratenoid vegetables 28 Greens like collards 
4 High-caratenoid vegetables 30 Carrots 

4 High-caratenoid vegetables 33 Sweet potatoes 

5 Cheese & whole milk 81 Cheese and cheese spreads 

5 Cheese & whole milk 83 Whole milk 

6 Low fat dairy 82 Yogurt 
6 Low fat dairy 84 Reduced fat 2 % Milk 
6 Low fat dairy 85 Nonfat milk 
6 Low fat dairy 125 Frozen yogurt/regular 

6 Low fat dairy 156 Low-fat 1% milk 

7 Nuts 61 Peanut butter 

7 Nuts 170 Peanuts, other nuts & seeds 

8 Beans 18 Baked beans, black eye, pintos 
8 Beans 102 Chili with beans 

8 Beans 109 Refried beans, bean burritos 

9 Mixed dish w/meat 40 Vegetable stew 
9 Mixed dish w/meat 49 Spaghetti w/Tom. sauce + meat 
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TABLE B1. Food-items by food group, PIN Study (continued) 

Food group Food-item 

Code Name Code Name 

9 Mixed dish w/meat 55 Vegetable soup 
9 Mixed dish w/meat 56 Other soups like chicken noodle 
9 Mixed dish w/meat 104 Mixed dishes with beef or pork 
9 Mixed dish w/meat 180 Pasta salad, other pasta dish 

9 Mixed dish w/meat 187 Chicken stew, pot pie 

10 Eggs 71 Eggs or egg biscuits 

11 Beef 39 Beef (roast, steak, sandwiches) 

12 Pork 42 Pork chops, roasts, dinner ham 

12 Pork 143 Ribs, spareribs 

13 Fried chicken or fish 43 Fried chicken 

13 Fried chicken or fish 45 Fried fish 

14 Chicken not fried 44 Chicken not fried 

15 Fish not fried 46 Tuna casserole, tuna sandwich 
15 Fish not fried 47 Shellfish 

15 Fish not fried 48 Fish not fried 

16 Processed meat 53 Hot dogs or dinner sausage 

16 Processed meat 54 Ham, boloney, lunch meats 
16 Processed meat 72 Bacon 

16 Processed meat 73 Breakfast sausage 

17 Refined grains 35 Rice or dishes with rice 
17 Refined grains 57 White bread, French, Ital.,etc 
17 Refined grains 59 Cornbread or hush puppies 

17 Refined grains 68 Cereal excl. fiber or fortified 

17 Refined grains 69 Cooked cereal or grits 
17 Refined grains 119 Bagels, Eng.muffins, buns 
17 Refined grains 120 Biscuits, muffins 
17 Refined grains 121 Pancakes, waffles, Pop Tarts 

17 Refined grains 181 Tortillas - Corn or flour 

18 Whole grains 58 Dark bread, whole wheat, rye 
18 Whole grains 66 High fiber cereals 

18 Whole grains 67 Product 19, Total, Just Right 

19 Salty snacks 60 Salty snacks (chips, popcorn) 

19 Salty snacks 112 Crackers 

20 Sweets 74 Ice cream 
20 Sweets 75 Doughnuts, pastry 
20 Sweets 76 Pumpkin pie, sweet potato pie 
20 Sweets 77 Pie or cobbler 
20 Sweets 78 Chocolate candy, candy bars 
20 Sweets 79 Candy (not chocolate) 
20 Sweets 123 Pudding 
20 Sweets 133 Cookies, regular 
20 Sweets 178 Cake – regular 
20 Sweets 179 Jelly, jam, syrup 
21 Real 100% juice 11 Orange juice, grapefruit juice 
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TABLE B1. Food-items by food group, PIN Study (continued) 

Food group Food-item 

Code Name Code Name 
21 Real 100% juice 152 Tomato juice, V-8 juice 

21 Real 100% juice 160 Real fruit juice excl orange, grapefruit 

22 Coffee 92 Coffee 

23 Alcohol 88 Beer (regular) 

23 Alcohol 89 Wine or wine coolers 

23 Alcohol 90 Liquor or mixed drinks 

24 Soft drinks 13 Drinks w. some juice, Sunny D 

24 Soft drinks 14 KoolAid, Hi-C,Vit.C-rich drinks 
24 Soft drinks 86 Soft drinks or Snapple not diet 

24 Soft drinks 93 Tea or iced tea (not herb tea) 
24 Soft drinks 164 Cranberry juice cocktail 

25 Diet soft drinks 87 Diet soft drinks 

26 Fast food 32 French fries, fried potatoes 

26 Fast food 38 Hamburger, cheeseburger 
26 Fast food 50 Pizza 

26 Fast food 51 Cheese dish like macaroni/cheese 
26 Fast food 106 Chinese dishes 

26 Fast food 185 Tacos or burritos 

27 
Mayo, gravy, butter or 
margarine 62 Butter 

27 
Mayo, gravy, butter or 
margarine 63 Margarine 

27 
Mayo, gravy, butter or 
margarine 65 Gravy 

27 
Mayo, gravy, butter or 
margarine 198 Mayonnaise, sandwich spreads 

28 Salad dressing 64 Salad dressing 

29 Water 99 Water 
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FIGURE B1. Probabilities of consumption by latent class                                                   

from LTM on 29 food-groups, PIN Study 

Fruits and vegetables
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Vitamin C fruits Other fruits Vegetables High caratenoid vegetable Real 100% fruit juice

None < median > median

 

 

 

Grains, snacks and fast food
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Ref ined grains Whole grains Salty snacks Sw eets Fast food

None < median > median
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Beans and meat
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Beans Mixed dish w /meat Eggs Beef Pork

None < median > median

 

 

Chicken and fish
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Fried chicken or fried f ish Chicken NOT fried Fish NOT fried Processed meat

None < median > median
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Dairy, condiments and nuts
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High fat dairy
(cheese & whole

milk)

Low fat dairy (yogurt
& light milk)

Condiments with fat Salad dressing Nuts

None < median > median

 

 

Drinks
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Coffee Alcohol Soft drinks Diet soft drinks Water

None < median > median

 


