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ABSTRACT

JU-HYUN PARK: Bayesian Density Regression and Predictor-Dependent
Clustering.

(Under the direction of Dr. David Dunson.)

Mixture models are widely used in many application areas, with finite mixtures of Gaus-

sian distributions applied routinely in clustering and density estimation. With the increasing

need for a flexible model for predictor-dependent clustering and conditional density estimation,

mixture models are generalized to incorporate predictors with infinitely many components in

the semiparametric Bayesian perspective. Much of the recent work in the nonparametric Bayes

literature focuses on introducing predictor-dependence into the probability weights.

In this dissertation we propose three semiparametric Bayesian methods, with a focus on the

applications of predictor-dependent clustering and condition density estimation. We first derive

a generalized product partition model (GPPM), starting with a Dirichlet process (DP) mixture

model. The GPPM results in a generalized Pólya urn scheme. Next, we consider the problem

of density estimation in cases where predictors are not directly measured. We propose a model

that relies on Bayesian approaches to modeling of the unknown distribution of latent predictors

and of the conditional distribution of responses given latent predictors. Finally, we develop a

semiparametric Bayesian model for density regression in cases with many predictors. To reduce

dimensionality of data, our model is based on factor analysis models with the number of latent

variables unknown. A nonparametric prior for infinite factors is defined.
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CHAPTER 1

INTRODUCTION AND

LITERATURE REVIEW

1.1 Introduction

Mixture models are widely used in many application areas, with finite mixtures of Gaussian

distributions applied routinely in clustering (Day, 1969; Binder, 1978; Symons, 1981) and density

estimation (Roeder and Wasserman, 1997; Richardson and Green, 1997). A recent review of the

use of mixture models in clustering and density estimation can be found in Fraley and Raftery

(2002).

In recent years, there has been an increasing need for flexible models for predictor-dependent

clustering and conditional density estimation. For example, in microarray analysis for disease

diagnosis in clinical research, an interest focuses on identifying differentially expressed genes

accounting for experimental design information, such as disease status and other interesting

covariates. The scientific interest is extended to group genes that have similarities in the expres-

sion levels and the relationship to the covariates (Qin and Self, 2006). Another example of this

need has applications to epidemiology, where response to treatment differs due to unmeasured

risk factors, causing the distribution of a health outcome to vary with dose of a drug or chemical

(Dunson, 2007).



Motivated by such research problems and the successful use of mixture models characteriz-

ing univariate and multivariate distributions, several attempts have been made to generalize the

mixture models to incorporate predictors. A finite mixture of linear regressions has been the

most widely used, with the probability weights assigned to components being either fixed (Viele

and Tong, 2002) or modeled by a parametric regression model, commonly polytomous logistic

regression. Hierarchical mixtures-of-experts models (Jordan and Jacob, 1994) in the machine

learning literature instead use a probabilistic decision tree to model the probability weights. An

alternative is a mixture of multivariate normals, which induces a conditional response distribu-

tion given predictors as a locally weighted mixture of normal regression models, as in Müller

et al. (1996).

There is a potential criticism on limited flexibility of a finite mixture of linear regression

models due to its formulation. In finite mixture models, some a priori knowledge on the number

of components is necessary and subjects are assigned to one of the preselected number of com-

ponents. In this sense, the semiparametric Bayesian approach has been considered to provide a

flexible mixture model that incorporates prior information but is free of the restriction on the

number of components. From the Bayesian formulation, infinite mixture models can be obtained

by assuming the mixture distribution to be generated from a stick-breaking prior, commonly

the Dirichlet process (DP) (Ferguson, 1973; 1974) prior. With a remarkable advance in devel-

oping Monte Carlo Markov chain (MCMC) methods, rich literature has been contributed to the

Dirichlet process mixture (DPM) models (Lo, 1984; Escobar, 1994; Escobar and West, 1995).

Despite its flexibility in incorporating infinite number of linear regression models, a DPM

of linear regressions itself is not appropriate for predictor-dependent clustering and conditional

density estimation. Under the model, the probability weights are fixed and constant over the

predictor space, implying that subjects are interchangeable and predictors are not informative

about the clustering. The fixed probability weights also restrict a conditional response mean to

be linear.

In the nonparametric Bayesian literature, several methods have been proposed to introduce

predictor-dependence in the probability weights. Griffin and Steel (2006) defined an order-
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based dependent Dirichlet process, where the ordering of beta variates in the stick-breaking

construction depends on predictors. As an alternative, Dunson et al. (2007) proposed a kernel-

weighted mixture of DPs (WMDP), where the weights are proportional to the product of spatial

closeness in the predictor space measured through a kernel and random weights assigned at the

predictor values observed in the sample. Dunson and Park (2008) defined the kernel-stick

breaking process (KSBP) by introducing independent random probability measures and beta-

distributed random weights at each of infinite sequence of random locations. The probability

weights are sequentially allocated by randomly breaking a probability stick (starting with a stick

of length 1) and allocating the probability broken off to a basis location, with the length of each

break being proportional to the product of a kernel and the assigned random weight. In addition,

the latter two approaches have a desirable sparsity-favoring structure in which the introduction

of additional mixture components is automatically penalized and the base parametric model is

used to interpolate across sparse data regions.

Although the WMDP and KSBP are very flexible and can be implemented with a straightfor-

ward Markov chain Monte Carlo (MCMC) algorithm, a potential criticism is expensive computa-

tion in posterior sampling. There are many unknown parameters needed in defining such priors,

including smoothing parameters in a kernel. The number of smoothing parameters increases as

there are more predictors, resulting in the computational burden. In Dirichlet process mixture

models, a common strategy to reduce expensive computation is to rely on a marginalized model

that integrates out the infinitely-many parameters characterizing the process to induce a finite

parameter sampling distribution through a random partition of subjects into clusters (Quintana

and Iglesias, 2003; Quintana, 2006). A similar approach has yet to be developed that allows

predictor-dependence in partitioning.

With a focus on the applications of predictor-dependent clustering and conditional density

estimation, this dissertation proposes three semiparametric Bayesian methods, which greatly re-

duce computational burden while facilitating simpler interpretations through the use of predictor-

dependent partition models induced through marginalizing joint nonparametric process models.

The first method focuses on generalizing the product partition model (Hartigan, 1990; Barry

3



and Hartigan, 1992) to incorporate predictors in its clustering process. The underlying idea is

based on marginalizing out the parameters characterizing the predictor-component of the joint

modeling approach of Müller et al. (1996). This allows us to obtain a generalized Pólya urn

scheme, which incorporates predictor-dependent weights in a simple and intuitive manner. The

development of this urn scheme is the main theoretical contribution of the thesis, with the re-

mainder of the thesis focusing on using the result to obtain methods that allow latent variable

distributions in hierarchical models to be unknown and predictor-dependent.

Latent variable models (LVMs) including factor analysis and structural equation models

(Bollen, 1989; Sánchez et al., 2005) provide a flexible modeling framework for characterizing

dependence in observed multivariate variables having a variety of measurement scales. LVMs

are very widely used in the social sciences and increasingly in biomedical applications in which

one is interested in relationships among latent variables or wishes to apply a flexible framework

for modeling mixed scale data in a parsimonious manner. A concern in many applications is

sensitivity to the assumptions of normality and linearity in describing the joint distributions

of the latent variables. Using our nonparametric Bayes methods, we develop a flexible class of

semiparametric Bayes models that avoid these assumptions, while favoring a sparse structure

that allows one to collapse on the base parametric model when limited information is available in

the data about the latent variable distributions. Motivated by the problem of uncertainty in the

number of latent variables, we will also consider alternative latent variable specifications that

avoid assuming that each subject has a fixed, finite number of latent traits. Instead, decomposing

latent traits into their occurrences and scores, we allow each subject to have different traits, with

only some of the traits shared across subjects. This paradigm, which is related to the Indian

Buffet process (IBP) (Griffiths and Ghahramani, 2005; Ghahramani et al., 2007), is seemingly

more realistic in many applications and also directly allows uncertainty in the number of factors.

4



1.2 Literature Review

1.2.1 Nonparametric Bayes

In statistical modeling, one of the commonly-faced problems is how to model an unknown

probability distribution for response y. The easiest way to do this is to find a class of distributions

in a parametric family, which usually provide us with ease of implementation and interpretation

of a statistical model. In analyzing real data, however, it is quite common to have a belief that

observed data don’t follow any known parametric distribution. This leads to modeling with an

inadequate parametric assumption, often resulting in unreasonable inference. For this reason

research interest has been taken to nonparametric methods as a way of getting very flexible

models, typically defined by removing the parametric assumption.

Much of work on nonparametric inference has been achieved in the frequentist perspective.

However, there are some attractive advantages of the Bayes formulation. First, it provides

a full probabilistic characterization of the problem, which automatically allows for estimation

uncertainty. It also provides a natural framework for inclusion of prior information allowing for

shrinkage and centering on parametric models, limiting the curse of dimensionality. Finally, it

allows embedding in larger hierarchical models, so that one can easily account for complicating

features of the analysis, such as missing data, censoring, and model uncertainty. In this respect,

nonparametric Bayesian inference is accomplished by defining probability models with infinite-

dimensional parameters (Bernardo and Smith, 1994; Müller and Quintana, 2004). A collection

of nonparametric Bayesian papers can be found in Ghosh and Ramamoorthi (2003). For a recent

review on nonparametric inferences, refer to Müller and Quintana (2004).

1.2.2 Random Probability Measure

In the nonparametric Bayesian formulation, one can allow an unknown distribution by defin-

ing a probability measure on a collection of distribution functions. More formally, a prior can

be induced on a distribution by defining a random probability measure (RPM). According to
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Ferguson (1973) and Antoniak (1974), there are two desirable properties of RPMs: (I) the prior

distribution should have large support; (II) given a sample of observations, posterior distribution

should be analytically manageable. In addition to the desirable properties mentioned in these

earlier papers, there are a number of other properties considered in more recent work, such as

posterior consistency (Ghosal et al., 1999; Lijoi et al., 2005; Walker et al., 2007) and existence

of Bernstein von Mises theorems (Freedman, 1999).

1.2.2.1 Dirichlet Process

The Dirichlet process (DP) (Ferguson, 1973; 1974) has been most popular and playing a key

role in the nonparametric Bayesian literature. Let Y be a space and A a σ-field of subsets, and

let F0 be a finite non-null measure on (Y ,A). Suppose that y = (y1, . . . , yn) follow the following

model:

yi
iid∼ F, F ∼ DP (αF0), (1.1)

where DP (αF0) denotes a DP with precision α and base measure F0. RPM F is said to

follow a DP prior, DP (αF0), if for any measurable partition (A1, . . . , Ak) of Y , the vector of

(F (A1), . . . , F (Ak)) follows a Dirichlet distribution, D(αF0(A1), . . . , αF0(Ak)). For A ∈ A, the

DPP has the following properties:

1) E(F (A)) = F0(A) and V (F (A)) = F0(A)(1− F0(A))/(1 + α)

2) F |y ∼ DP (α∗F ∗
0 ), where α∗ = α + n and F ∗

0 = (F0 +
∑n

i=1 δyi
)

These properties imply that precision α controls the concentration on base measure F0 with a

large value expressing confidence that F0 provides a good approximation, so that there is a high

degree of shrinkage toward F0 in the posterior, which has a conjugate form being also a DP.

One of the notable features of the DP is that the DP induces a partitioning among subjects

according to their response values. From the DP prediction rule, also known as Blackwell and
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MacQueen (1973) Pólya urn scheme, obtained upon marginalizing over the prior over F :

P (y1 ∈ ·) = F0(·),

P (yi ∈ ·|y1, . . . , yi−1) =

(
α

α + i− 1

)
F0(·) +

i−1∑
j=1

(
1

α + i− 1

)
δyj

(·), (1.2)

it is obvious that the response yi for subject i either takes a value newly generated from

nonatomic base measure F0 with probability α/(α + i − 1) or is set equal to one of the ex-

isting values (y1, . . . , yi−1) chosen by sampling from a discrete uniform. This induced clustering

process is also known as the CRP (Chinese Restaurant Process) (Aldous, 1985), the name of

which originates from a sequential seating arrangement in a Chinese restaurant: customers

sequentially enter a restaurant which have an infinite number of tables capable of having an

unlimited number of customers, the first customer is seated at an empty table, and the ith cus-

tomer can be seated either at a new table with probability α/(α + i− 1) or at one of the tables

occupied by the first i− 1 customers with probability proportional to the number of customers

seated at that table.

The DP can be alternatively constructed, based on Sethuraman’s (1994) stick-breaking rep-

resentation. RPM F in expression (1.1) can be equivalently expressed as

F =
∞∑

h=1

πhδy∗h , πh = Vh

h−1∏

l=1

(1− Vl), Vh
iid∼ beta(1, α), y∗h

iid∼ F0. (1.3)

and from this expression, it follows that the DP is discrete with probability one.

1.2.2.2 Other RPMs

There have been many RPMs in the literature, which have a more general form than that of

the DP, but we focus ourselves on a few most popular ones.

In expression (1.1), one can have a RPM associated with a species sampling model (SSM)

(Pitman, 1996) by replacing the DPP with a random distribution, which has a functional form

7



as

F =
∞∑

h=1

whδy∗h +

(
1−

∞∑

h=1

wh

)
F0, (1.4)

where atoms {y∗h}∞h=1 are sampled from base measure F0 independent of weights {wh}∞h=1, with

P (
∑∞

h=1 wh ≤ 1) = 1 and wh being interpreted as the relative frequency of the hth species with

tag equal to y∗h in a certain large population of various species. If P (
∑∞

h=1 wh = 1) = 1 and F0

is nonatomic, then the distribution in expression (1.4) is discrete. SSMs are flexible and rich,

including finite-dimensional Dirichlet-multinomial process (Muliere and Secchi, 1995), the DP,

its two-parameter extension, the two-parameters Poisson-Dirichlet process (Pitman and Yor,

1997), and the beta two-parameter process (Ishwaran and Zarepour, 2000) as special cases.

Another important class of RPMs is stick-breaking priors (Muliere and Tardella, 1998; Ish-

waran and James, 2001), which can be also seen as a special case of expression (1.4). According

to their definition, a stick-breaking prior has a form of

F =
N∑

h=1

whδy∗h ,

where for 1 ≤ N ≤ ∞, {y∗h}N
h=1 are independent and identically distributed draws from F0,

{wh}N
h=1 are probability weights with wh = Vh

∏
l<h(1 − Vl), where Vh

ind∼ Beta(ah, bh). Some

notable examples of stick-breaking priors are the two-parameters Poisson-Dirichlet process (with

parameters ah = 1−a and bh = b+ka), the beta two-parameter process (with parameters ah = a

and bh = b), and the DP (with parameters ah = 1 and bh = α) for N →∞.

The last, but not least, RPM we consider is the Pólya tree (PT) (Lavine, 1992; 1994), which

is a generalization of the DP. The PT is defined by a set Π = {πl, l = 1, 2, . . . } of nested binary

partitions of the sample space Y . The PT is initiated by splitting the space Y into two disjoint

subsets π1 = {B0, B1} and continues to partition the subsets, with the partition at level l being

represented as πl = {Bε, ε = ε1 . . . εl}, where ε is a binary string of length l with εj ∈ {0, 1}.
It is said that a RPM F follows a PT prior, denoted by PT (Π, C), if there is a sequence of

8



nonnegative numbers C = {cε} and random variables Z = {Zε} with Zε
ind∼ Beta(cε0, cε1) and

for every l = 1, 2, . . . and every ε = ε1 . . . εl,

F (Bε1...εl
) =

( l∏
j=1;εj=0

Zε1...εj−1

)( l∏
j=1;εj=1

(1− Zε1...εj−1
)

)
.

The PT has the following properties: 1) Different from the other RPMs we considered in this

subsection, continuous distributions can be generated from the PT with a certain choice of

parameters, such as cε1...εl
= l2; 2) The PT is a conjugate prior, F |y ∼ PT (Π, C∗), where

C∗ = cε + nε and nε is the number of observations in Bε (Ferguson, 1974; Lavine, 1994) The DP

is a special case of the PT with cε = cε0 + cε1.

1.2.3 Mixture models

1.2.3.1 Finite mixture models

Suppose that the response Yi follows one of k (usually < ∞) group-specific densities fh(·) =

fh(θh), characterized by finite dimensional parameter θh ∈ Ψ (often Ψ = Rd) in a parametric

family, with probability ph, and then a (parametric) mixture model for Yi is defined as

p(yi) =
k∑

h=1

phfh(yi|θh). (1.5)

By introducing an unobservable (latent) variable Si, with Si = h denoting that subject i belongs

to the hth mixture component, expression (1.5) can be equivalently expressed in hierarchial form

as

Yi|Si ∼ f(θSi
)

Si ∼ Multinomial({1, . . . , k};p), (1.6)
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where p = (p1, . . . , pk), and thus S = (S1, . . . , Sn) completely determines a partition of n

subjects into k ≤ n clusters. With respect to the interpretation of these models, the former can

be viewed as a semiparametric construction as an alternative to nonparametric models, whereas

the latter is the missing data formulation (Jasra et al., 2005). For a recent review of the use of

finite mixture models in various applications, refer to Fraley and Raftery (2002).

In order to generalize (1.5) to incorporate predictors x = (x1, . . . , xp), one can model predic-

tor dependence in π = (π1, . . . , πk)
′ and/or f(θh), h = 1, . . . , k, as follows:

f(y |x) =
k∑

h=1

πh(x) fh(y | θh,x).

For example, hierarchical mixtures-of-experts models (Jordan and Jacobs, 1994) character-

ize πh(x) using a probabilistic decision tree, while letting f(y | θh) = N(y;x′βh, τ
−1
h ) with

θh = (β′h, τh)
′ correspond to the conditional density for a normal linear model. The term “ex-

pert” corresponds to the choice of f(y | θh,x), as different experts in a field may have different

parametric models for the conditional distribution. A number of authors have considered alter-

native choices of regression models for the weights and experts (e.g., Jiang and Tanner, 1999).

For recent articles, refer to Carvalho and Tanner (2005), Ge and Jiang (2006), and Geweke and

Keane (2007).

1.2.3.2 Mixture Models with RPMs

Due to the discrete feature of the RPMs in section 1.2.2, they are not suitable for use as a

prior on continuous densities. To avoid this constraint, discrete RPMs are often used as a mixing

distribution in the mixture model framework, and the model can be expressed in hierarchical

form as

yi|φi
ind∼ f(φi)

φi
iid∼ G

G ∼ RPM, (1.7)
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often resulting in an infinite mixture model. For example, using Sethuraman’s (1994) stick-

breaking representation of the DP in (1.3), the mixture model with a choice of G ∼ DP (αG0)

in expression (1.7), can be expressed as

p(yi) =
∞∑

h=1

πhfh(yi|θh), (1.8)

where πh and Vh are the same as in expression (1.3), but {θh}∞h=1 are an iid sample from base

measure G0, and this model is often referred to as the Dirichlet process mixture (DPM) models

(Lo, 1984; Escobar and West, 1995). For mixture models with other RPMs, refer to the following

papers: Ishwaran and Jaems (2003) and Navarrete et al. (2008) (for the RPM associated with

the SSM), Ishwaran and James (2001) (for the stick-breaking prior), and Hanson and Johnson

(2002), Paddock et al. (2003), and Hanson (2006) (for the PT).

With a focuss on the DPM models, there have been rich contributions to developing algo-

rithms for posterior computation, and most of algorithms follows one of the three main ap-

proaches: the marginal approach, the conditional approach, and the split-merge approach. In

order to avoid the need for expensive computation for the infinite-dimensional G, the marginal

approach is to marginalize over the Dirichlet process, resulting in the Pólya urn scheme (Black-

well and MacQueen, 1973), which plays a key role in the Gibbs sampling methods (Escobar,

1994). Based on expression (1.2), the Gibbs sampling proceeds by sequentially sampling φi from

its full conditional distribution

(φi |φ(i),y, α) ∼ qi0Gi,0 +
k(i)∑

h=1

qihδθ
(i)
h

, (1.9)

where θ(i) = (θ
(i)
1 , . . . , θ

(i)

k(i)) is the k(i) unique values of φ(i) = (φ1, . . . , φi−1, φi+1, . . . , φn), the

posterior Gi,0(φ) is

Gi,0(φ) =
G0(φ)f(yi|φ)∫
f(yi|φ)dG0(φ)

=
G0(φ)f(yi|φ)

hi(yi)
,
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qi0 = cwi0 hi(yi), qih = cwih f(yi|θh), and c is a normalizing constant. Due to a possibility of slow

mixing, Bush and MacEachern (1996) modified the Gibbs sampling algorithm by updating the

cluster specific parameters θ separately from the cluster membership indicators S = (S1, . . . , Sn),

with Si = h if φi = θh. Jain and Neal (2004) mentioned that in a case where mixture components

are similar in terms of parameter values, the Gibbs sampler can become trapped in local modes,

resulting in inefficient sampling and an inappropriate clustering. The authors suggested a split-

merge MCMC method based on a Metropolis-Hastings procedure as a remedy for such problem.

One disadvantage of using the Pólya urn Gibbs sampler is that one cannot directly sample

from the posterior of the DP, which is a motivation of the conditional approach. Ishwaran and

Zarepour (2000) proposed a MCMC algorithm for a truncation approximation to the DP in the

DPM model in (1.8), and the truncation approximation is alleviated by Papaspiliopoulos and

Roberts’s (2007) retrospective algorithm and Walker’s (2007) slice sampling approach. Dunson

and Park (2008) used both marginal and conditional approaches to posterior computation for

kernel stick-breaking process models.

Parallel to the attempt to incorporate predictors within the finite mixture model frame-

work, there has been considerable recent interest in the Bayesian nonparametric literature on

developing priors for predictor-dependent collections of random probability measures. Start-

ing with the Sethuraman (1994) stick-breaking representation of the DP, MacEachern (1999;

2001) proposed a class of dependent DP (DDP) priors, which is defined with common fixed

weights πh, but with atoms θh varying with predictors x in a stochastic process. DDP priors

have been successfully implemented in ANOVA modeling (De Iorio et al., 2004), spatial data

analysis (Gelfand et al., 2005), time series (Caron et al., 2006) and stochastic ordering (Dunson

and Peddada, 2008) applications. Noting limited flexibility due to the fixed weight assumption,

Griffin and Steel (2006) proposed an order-based DDP, where the ordering of the beta variates

in the stick-breaking construction depends on x.
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1.2.4 Applications of Mixture Models

1.2.4.1 Density Regression

Conditional density estimation has had an increasing attention in the frequentist literature

with an attempt to provide information on the relationship between a response Y and predictors

X = (X1, . . . , Xn). Since pioneered by Rosenblatt (1969), kernel-based estimation methods

with a basis on iid observations have played a key role in nonparametric conditional density

estimation, having a similar functional form to expression (1.5). Hyndman et al. (1996) modified

Rasenblatt’s estimator using Nadaraya-Watson kernel regression, showing the properties of their

estimator. An alternative approach was proposed by Fan et al. (1996), where local polynomial

regression is instead used to generalize the Rasenblatt’s estimator, later further improved by

Hyndman and Yao (1998). Hall et al. (1999) proposed two improved methods, one based on a

local logistic model and the other modifying the Nadaraya-Watson estimator. Bashtannyk and

Hyndman (2001) and Fan and Yim (2004) handled the bandwidth selection problem in kernel

conditional density estimation. For a summary of current methods on error criteria, kernel

functions, and a bandwidth selection in general kernel density estimation, refer to Ahmad and

Ran (2004) and references therein.

As opposed to rich literature on conditional density estimation, the Bayesian literature on the

topic of conditional density estimation, referred to as density regression (Dunson, 2007; Dunson

et al., 2007), is sparse. In the Bayesian literature, most of attentions have been focussed on

density estimation (Ferguson, 1973; Lo, 1984; West, 1992; Escobar and West, 1995; Roeder

and Wasserman, 1997; Richardson and Green, 1997; Ker and Ergün, 2005). A difficulty in

density regression arises from the need of defining a prior for a collection of dependent random

probability measures, referred to as a RPM field (RPMF). Starting from a DPM of normals for

the joint distribution of Y and X, Müller et al. (1996) expressed the conditional distribution

of Y given X as a locally weighted mixture of normal regression models. Recently, Dunson

et al. (2007) proposed a kernel-weighted mixture of independent DPs (WMDP) by placing a

DP at each sampled predictor values, which resulted in a nonparametric mixture of regression
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models for the conditional distribution of Y given X, with the mixture distribution varying with

predictors. Motivated by a generalized urn scheme implied by the WMDP, Dunson (2007) dealt

with the density regression problem in the empirical Bayesian approach, where hyperparameters

were estimated by generalized maximum likelihood estimation. Noting a limited flexibility due

to sample dependency of the WMDP prior, Dunson and Park (2008) proposed the kernel-

stick breaking processes (KSBP), which is conceptually similar to WMDP, but differs in that

independent RPMs and beta-distributed random weights are assigned to each of infinite sequence

of random locations and the stick-breaking probability weights are expressed as a multiplication

of a kernel by the beta weights.

With respect to density regression, the posterior consistency, asymptotic behavior of esti-

mated densities to the true density, is a unrevealed research area, whereas Ghosal et al. (1999),

Lijoi et al. (2005), and Walker et al. (2007) considered the property in density estimation.

However, the results of Rodrigues et al. (2007) suggest that using the Müller et al. (1996)

approach to induce a model for the conditional distributions does result in consistent estimates

under some regularity conditions.

1.2.4.2 Clustering

As opposed to rich literature on conditional density estimation in both the frequentist and the

Bayesian perspective, there is not much literature contributed to predictor-dependent clustering.

Most of recent work focuses on clustering without predictors being involved.

Clustering based on mixture model in (1.5) is also known as Model-based clustering (MBC)

(Murtagh and Raftery, 1984; Banfield and Raftery, 1993). A mixture model with fh(yi|θh) being

multivariate Gaussian with a mean vector µh and a covariance matrix Σh has been successfully

used in a broad variety of application areas (Murtagh and Raftery, 1984; Banfield and Raftery,

1993; Dasgupta and Raftery, 1998; Campbell et al., 1997; Celeux and Govaert, 1995; Mukerjee

et al., 1998; Yeung et al., 2001). Banfield and Raftery (1993) further improved this model by

parameterizing the covariance matrix Σh, determining the shape, volume, and orientation of

the clusters, through eigenvalue decomposition, and showed that this general approach includes
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earlier methods based on Gaussian mixtures as special cases, such as the sum of squares criterion,

as known as a heuristic (Ward, 1963), Friedman and Rubin (1967), Scott and Symons (1971),

and Murtagh and Raftery (1984). For the detailed discussion concerning a class of models within

this method, refer to Celeux and Govaert (1995).

With respect to implementing mixture models for clustering, there are two strategies: an

agglomerative hierarchical approach based on the classification likelihood (Murtagh and Raftery,

1984; Banfield and Raftery, 1993) and an iterative relocation approach through the expectation-

maximization (EM) algorithm for maximum likelihood estimation (methods based on likeli-

hood ratio criteria, ; Celeux and Govaert, 1995). Dasgupta and Raftery (1998) and Fraley and

Raftery (1998) showed good performance of the model through the EM algorithm, together with

the Bayesian Information Criterion (BIC) approximation to determine the number of clusters.

Refer to Fraley and Raftery (2002) for a recent review of the use of finite mixture models in

clustering. For some other model selection criteria for mixture models, refer to Spiegelhalter

et al. (2002) and Naik et al. (2007).

As an alternative model-based approach, Hartigan (1990) and Barry and Hartigan (1992)

proposed the product partition models (PPMs), where the prior probability of the partition of

{1, . . . , n} formed by S in expression (1.6) has a product form and the observations in group h are

sampled from a common density fh(θh), independently of other observations in different groups.

The authors designated and successfully applied the model to address change point problems in

time series and Crowley (1997) considered the model to obtain the product estimates of normal

means. Recently Quintana and Iglesias (2003) showed that the DP is a special case of a PPM

by recognizing that the DP induced marginal prior distribution on partitions is in the form of

PPMs, and this relationship is further generalized by Quintana (2006) in that PPMs and the

species sampling models (SSMs) (Pitman, 1996; Ishwaran and Jaems, 2003) induces the same

partition probability model under exchangeability.

Using nonparametric Bayesian methods, clustering is formed by a prediction rule, which

is obtained upon marginalizing over a random probability measure. As mentioned in Section

1.2.2.1, the DP induces clustering through Blackwell and MacQueen (1973) Pólya urn scheme.
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Dunson et al. (2007) and Dunson and Park (2008) obtained a predictor dependent prediction rule

for the WMDP and the KSBP, respectively. However, these urn schemes are not immediately

useful for posterior computation.

Clustering and estimation for component-specific parameters based on the MCMC simulated

samples is sensitive to the component labeling, on which density regression does not depend.

This problem is known as the ”label switching” problem (Redner and Walker, 1984), caused

by the symmetric prior on the parameters a of mixture model, which leads to the symmetric

posterior distribution invariant to relabeling of the parameters. A common solution to this

problem is artificial identifiability constraints (ICs) (Diebolt and Robert, 1994). Noting that

in certain cases, ICs fail to remove the symmetry in the posterior distribution, Stephens(1997,

2000) and Celeux (1998) proposed “relabeling algorithms” to minimize the posterior expectation

of some loss function. Celeux et al. (2000) dealt with label switching in the decision theoretic

perspective. For a recent review on these algorithms, refer to Jasra et al. (2005).

1.3 Overview of Research

The focus of this dissertation is on developing flexible models for density regression and

predictor-dependent clusterings. In each chapter, we handle different types of data structure,

which researchers can frequently encounter. The methods described in Chapters 2 and 3 are

applied to the data from the Collaborative Perinatal Project, where scientific interest lies in the

effects of DDT (Dichlorodiphenyltrichloroethane) on health outcomes of children. Chapter 2 is

a self-contained article proposing a class of nonparametric clustering models that incorporates

predictors and illustrating it for density regression and predictor-dependent clustering. Chapter

3 is also a self-contained article, where a flexible model is derived, based on a joint modeling

strategy using nonparametric Bayes approaches in cases, in which predictors are not directly

measured. Chapter 4 describes extension of factor analysis to allow number of factors to vary,

with applications to dimensionality reduction in predictive modeling. Chapter 5 discuss possible

extension of the proposed methodologies and areas of future research.
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CHAPTER 2

BAYESIAN GENERALIZED

PRODUCT PARTITION MODEL

2.1 Introduction

With the increasing need for flexible tools for clustering, density estimation, dimensionality

reduction and discovery of latent structure in high dimensional data, mixture models are now

used routinely in a wide variety of application areas ranging from genomics to machine learning.

Much of this work has focused on finite mixture models of the form:

f(y) =
k∑

h=1

πh fh(y | θh), (2.1)

where k is the number of mixture components, πh is the probability weight assigned to component

h, and fh(· | θh) is a distribution in a parametric family characterized by the finite-dimensional

θh, for h = 1, . . . , k. For a review of the use of (2.1) in clustering and density estimation, refer

to Fraley and Raftery (2002).

In order to generalize (2.1) to incorporate predictors x, one can model predictor dependence



in π = (π1, . . . , πk)
′ and/or fh(θh), h = 1, . . . , k, as follows:

f(y |x) =
k∑

h=1

πh(x) fh(y |x, θh). (2.2)

For example, hierarchical mixtures-of-experts models (Jordan and Jacob, 1994) characterize

πh(x) using a probabilistic decision tree, while letting fh(y |x, θh) = N(y;x′βh, τ
−1
h ) correspond

to the conditional density for a normal linear model. The term “expert” corresponds to the

choice of fh(y |x, θh), as different experts in a field may have different parametric models for the

conditional distribution. A number of authors have considered alternative choices of regression

models for the weights and experts (e.g., Jiang and Tanner, 1999). For recent articles, refer to

Carvalho and Tanner (2005) and Ge and Jiang (2006).

In this article, our goal is to develop a flexible semiparametric Bayes framework for predictor-

dependent clustering and conditional distribution modeling. Potentially, we could simply rely

on (2.2), as predictor-dependent clustering will naturally arise through the allocation of subjects

sampled from (2.2) to experts. However, a concern is the sensitivity to the choice of the number of

experts, k. A common strategy is to fit mixture models having different numbers of components,

with the AIC or BIC used to select the model with the best fit penalized for model complexity.

Unfortunately, these criteria are not appropriate for mixture models and other hierarchical

models in which the number of parameters is unclear. For this reason, there has been recent

interest in defining new model selection criteria that are appropriate for mixture models. Some

examples include the DIC (Spiegelhalter et al., 2002) and the MRC (Naik et al., 2007).

Even if an appropriate criteria is defined, it is not clear that a finite mixture model can

provide an accurate characterization of the data. For example, suppose that there are k mixture

components represented in a current data set having n subjects and one performs model selection

based on this data set. Then the assumption is that future subjects will belong to one of

these k mixture components. It seems much more realistic to suppose that there are infinitely

many components, or latent attributes, in the general population, with finitely many of these

components represented in the current data set. Such infinite mixture models would allow a
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new subject to have a new attribute that is not yet represented, allowing discovery of new

components as observations are added.

There is a rich Bayesian literature on infinite mixture models, which let k →∞ in expression

(2.1). This is accomplished by letting yi ∼ f(φi), with φi ∼ G, where G =
∑∞

h=1 πhδθh
, with

π = {πh}∞h=1 an infinite sequence of probability weights, δθ a probability measure concentrated

at θ, and θ = {θh}∞h=1 an infinite sequence of atoms. A wide variety of priors have been proposed

for G, with the most common choice being the Dirichlet process (DP) prior (Ferguson, 1973;

1974). When a DP prior is used for the mixture distribution, G, one obtains a DP mixture

(DPM) model (Lo, 1984; Escobar and West, 1995).

In marginalizing out G, one induces a prior on the partition of subjects {1, . . . , n} into

clusters, with the cluster-specific parameters consisting of independent draws from G0, the base

distribution in the DP. As noted by Quintana and Iglesias (2003), this induced prior is a type of

product partition model (PPM) (Hartigan, 1990; Barry and Hartigan, 1992). When the focus is

on clustering or generating a flexible partition model for prediction, as in Holmes et al. (2005), it

is appealing to marginalize out G in order to simplify computation and interpretation. The DP

induces a particular prior on the partition and one can develop alternative classes of PPMs by

replacing the DP prior on G with an alternative choice. Quintana (2006) applied this strategy

for species sampling models (SSMs) (Pitman, 1996; Ishwaran and Jaems, 2003), which are a

very broad class of nonparametric priors that include the DP as a special case.

Our focus is on further generalizing PPMs to include predictor-dependence by starting with

(2.2) in the k = ∞ case, and attempting to obtain a prior which results in a PPM upon marginal-

ization. There has been considerable recent interest in the Bayesian nonparametric literature

on developing priors for predictor-dependent collections of random probability measures. Start-

ing with the Sethuraman (1994) stick-breaking representation of the DP, MacEachern (1999,

2001) proposed a class of dependent DP (DDP) priors. In the fixed π case, DDP priors have

been successfully implemented in ANOVA modeling (De Iorio et al., 2004), spatial data analysis

(Gelfand et al., 2005), time series (Caron et al., 2006) and stochastic ordering (Dunson and Ped-

dada, 2008) applications. Unfortunately, the fixed π case does not allow predictor-dependent
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clustering, motivating articles on order-based DDPs (Griffin and Steel, 2006), weighted mixtures

of DPs (Dunson et al., 2007) and kernel stick-breaking processes (Dunson and Park, 2008).

In order to avoid the need for computation of the very many parameters characterizing these

nonparametric priors, we focus instead on obtaining a generalized product partition model

(GPPM) through relying on a related specification to Müller et al. (1996). Section 2.2 reviews

the PPM and its relationship with the DP. Section 2.3 induces predictor-dependence in the PPM

through a carefully-specified joint DPM model. Section 2.4 describes a simple and efficient Gibbs

sampler for posterior computation. Section 2.5 contains an application, and Section 2.6 discusses

the results.

2.2 Product Partition Models and Dirichlet Process Mix-

tures

Let S∗ = (S∗1, . . . ,S
∗
k) denote a partition of {1, . . . , n}, with the elements of S∗h corresponding

to the ids of those subjects in cluster h. Letting yh = {yi : i ∈ S∗h} denote the data for subjects

in cluster h, for h = 1, . . . , k, PPMs are defined as follows:

f(y|S∗) =
k∏

h=1

fh(yh), π(S∗) = c0

k∏

h=1

c(S∗h), (2.3)

where fh(yh) =
∫ ∏

i∈S∗h
f(yi | θh)dG0(θh), f(· | θ) is a likelihood characterized by θ, the elements

of θ = (θ1, . . . , θk)
′ are independently and identically distributed with prior G0, c(S∗h) is a non-

negative cohesion, and c0 is a normalizing constant. The posterior distribution of the partition

S∗ given y also has a PPM form, but with the posterior cohesion c(S∗h)fh(yh).

Note that a PPM can be induced through the hierarchical specification:

yi |θ,S
ind∼ f(θSi

),

Si
iid∼

k∑

h=1

πhδh, θh
iid∼ G0, (2.4)
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where Si = h if i ∈ S∗h indexes membership of subject i in cluster h, with S = (S1, . . . , Sn)′,

π = (π1, . . . , πk)
′ are probability weights, and taking k → ∞ induces a nonparametric PPM.

Equivalently, one can let yi ∼ f(φi) with φi ∼ G and G =
∑k

h=1 πhδθh
. A prior on the weights

π induces a particular form for π(S∗), and hence the cohesion c(·).
As motivated by Quintana and Iglesias (2003), a convenient choice corresponds to the Dirich-

let process prior, G ∼ DP (αG0), with α a precision parameter and G0 a non-atomic base mea-

sure. By the Dirichlet process prediction rule (Blackwell and MacQueen, 1973), the conditional

prior of φi given φ(i) = (φ1, . . . , φi−1, φi+1, . . . , φn)′ and marginalizing out G is

(
φi |φ(i)

) ∼
(

α

α + n− 1

)
G0(φi) +

(
1

α + n− 1

) ∑

j 6=i

δφj
(φi), (2.5)

which generates new values from G0 with probability α/(α + n− 1) and otherwise sets φi equal

to one of the existing values φ(i) chosen by sampling from a discrete uniform. Hence, the joint

distribution of φ = (φ1, . . . , φn)′ is obtained as

π(φ) =
n∏

i=1

{
αG0(φi) +

∑
j<i δφj

(φi)

α + i− 1

}
. (2.6)

Let k = n(S∗) denote the number of partition sets, with kh = n(S∗h) the cardinality of S∗h.

Letting φh = {φi : i ∈ S∗h}, with φh,l being the parameter for the lth subject, ordered by the

ids, in cluster h, Quintana and Iglesias (2003) show that (2.6) is equivalent to

π(φ) =
∑
S∗∈P

1∏n
l=1(α + l − 1)

k∏

h=1

α(kh − 1)!G0(φh,1)

kh∏
j=2

δφh,1
(φh,j)

= c0

∑
S∗∈P

k∏

h=1

c(S∗h)πh(φh), (2.7)

where P is the set of all partitions of {1, . . . , n}, c0 =
∏n

l=1(α + l − 1)−1, c(S∗h) = α(kh − 1)!,
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and πh(φh) is the prior on φh. The marginal likelihood of y is then obtained as

f(y) = c0

∑
S∗∈P

k∏

h=1

c(S∗h)
∫ ∏

i∈S∗h

f(yi|θ)dG0(θ), (2.8)

which is a special case of the form implied by (2.3) corresponding to a PPM with cohesion

c(S∗h) = α(n(S∗h) − 1)!. This implies that simple and efficient Markov Chain Monte Carlo

(MCMC) algorithms developed for DPMs can be used for posterior computation in PPMs.

However, the class of PPMs induced by the DPM specification above assumes that the subjects

are exchangeable, and does not allow for the incorporation of predictors.

2.3 Predictor Dependent Product Partition Models

2.3.1 Proposed formulation

Our goal is to incorporate predictor values X = (x1, . . . ,xn)′ into a class of PPMs, so that

the prior on the partition S∗ has the form

π(S∗|X) ∝
k∏

h=1

c(S∗h, Xh), (2.9)

where Xh = {xi : i ∈ S∗h}, for h = 1, . . . , k, and the cohesion c(·) depends on the subjects

predictor values. Expression (2.9) has two appealing properties. First, the posterior distribution

of the partition S∗ updated with the likelihood of response y = (y1, . . . , yn)′ is still in a class

of PPMs, but with updated cohesion c(S∗h,Xh)fh(yh). Secondly, there is a direct influence of

predictors X on the partition process. Previous incorporation of predictors in PPMs instead

relies on replacing f(yi | θh) with f(yi |xi, θh) in expression (2.3), which allows the predictor

effect to vary across clusters but does not allow the clustering process itself to be predictor

dependent.

To specify cohesion c(S∗h,Xh), we exploit the connection between PPM and DPMs. For

simplicity of notation, we focus on univariate response y, though multivariate generalizations
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are straightforward. Suppose zi = (yi,x
′
i)
′ follows the hierarchical model:

f(zi |φi) = f(yi,xi|ϕi, γi) = f1(yi|xi, ϕi)f2(xi|γi),

φi ∼ G, G ∼ DP (αG0), (2.10)

where G0 = G0ϕ

⊗
G0γ is the product measure of G0ϕ and G0γ, components inducing a base

prior for ϕi and γi, respectively. This DPM model will induce partitioning of the subjects

{1, . . . , n} into k ≤ n clusters, with i ∈ S∗h denoting that subject i belongs to cluster h, which

implies that ϕi = ϕ∗h and γi = γ∗h, where γ∗ = (γ∗1 , . . . , γ
∗
k)
′ and ϕ∗ = (ϕ∗1, . . . , ϕ

∗
k)
′ denote the

unique values of γ = (γ1, . . . , γn)′ and ϕ = (ϕ1, . . . , ϕn)′, respectively.

Under (2.10), we can obtain a joint distribution of φ = (ϕ, γ) using the same approach used

in deriving expression (2.7). If we then multiply by the conditional likelihood
∏n

i=1 f2(xi|γi) and

marginalize out γ, the joint distribution of ϕ and X is given by

π(ϕ,X) =
∑
S∗∈P

c0

k∏

h=1

α(kh − 1)!

{ ∫ ∏

i∈S∗h

f2(xi|γ∗h)dG0γ(γ
∗
h)

}
G0ϕ(ϕh,1)

kh∏
j=2

δϕh,1
(ϕh,j), (2.11)

where ϕh,l is the parameter for the response y of the lth subject, ordered by the ids, in cluster

h, and therefore the conditional distribution of ϕ given X is

π(ϕ|X) = c∗0
∑
S∗∈P

k∏

h=1

α(kh − 1)!

{∫ ∏

i∈S∗h

f2(xi|γ∗h)dG0γ(γ
∗
h)

}
G0ϕ(ϕh,1)

kh∏
j=2

δϕh,1
(ϕh,j)

= c∗0
∑
S∗∈P

k∏

h=1

c(S∗h,Xh)πh(ϕh), (2.12)

where c∗0 is a normalizing constant, so that the sum over P is unity, c(S∗h,xh) = α(kh −
1)!

∫ ∏
i∈S∗h

f2(xi|γ)dG0γ(γ), and πh(ϕh) is a prior on partitioned set ϕh. Hence, we have induced

a generalized PPM (GPPM) of the form shown in (2.9) starting with a joint DPM model for the

response and predictors related to that proposed by Müller et al. (1996). A related idea was

independently developed by Fernando Quintana and collaborators in recent work (unpublished
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communication), though our subsequent development differs from theirs.

2.3.2 Generalized Pòlya Urn Scheme

It is not obvious from expression (2.12) how the predictor and hyperparameter values impact

clustering. However, as shown in Theorem 1, we can show that the proposed GPPM induces

a simple predictor-dependent generalization of the Blackwell and MacQueen (1973) Pólya urn

scheme, which should be useful both in interpretation and posterior computation.

Theorem 2.3.1. Let superscript (i) on any matrix or vector indicate that the contribution of

subject i has been removed. The full conditional prior of ϕi given α, ϕ(i), and X, or equivalently

given α, ϕ∗(i), S(i), and X, has the form

(
ϕi |α, ϕ∗(i),S(i),X

) ∼ w0(xi)G0ϕ +
k(i)∑

h=1

wh({xi,X
(i)
h })δϕ

∗(i)
h

, (2.13)

with the probability weights

w0(xi) = cα

∫
f2(xi|γ)dG0γ(γ), wh({xi,X

(i)
h }) = ck

(i)
h

∫
f2(xi|γ)dG∗

0γ(γ|X(i)
h ),

where c is a normalizing constant and G∗
0γ(·|X(i)

h ) is the posterior distribution updated with the

likelihood of predictor cluster h excluding the contribution from the ith subject.

The proof is in Appendix A. Theorem 2.3.1 implies that subject i is assigned to either a

new generated value (creating a new cluster) or one of the existing unique values, with the

probability weights being proportional to a product of the DP probability weights and the

marginal likelihoods at its predictor value varying across clusters. Therefore, subject i is more

likely to be grouped into cluster h if the predictor value of subject i, xi, is close to those of

other subjects in the hth cluster, Xh, with the measure of closeness depending on the scale of

the data through the choice of f2(·).
Conceptually, this idea is related to the Bayesian partition model (BPM) of Holmes et al.

(2005) in that subjects close together in the predictor space will tend to have similar response
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distributions. However, instead of measuring closeness through assuming a particular distance

metric, our specification automatically induces a distance metric through a flexible nonpara-

metric model for the joint distribution of the predictors. This allows the measure of close-

ness to be adaptive depending on location in the predictor space, automatically producing

spatially-adaptive bandwidth selection. In the special case of a degenerate distribution for x,

f2(x|γ) = δγ(x), formulation (2.13) reduces to the Blackwell and MacQueen Pòlya urn scheme

of expression (2.5).

An apparent disadvantage of our formulation is that by inducing a prior for the conditional

distribution of yi given xi through a prior for the joint distribution of yi and xi, we are implicitly

assuming that the predictors are random variables. In fact, in many applications one or more

of the predictors may be fixed by design, representing spatial location, time of observation or

an experimental condition. The predictor-dependent urn scheme shown in Theorem 2.3.1 is still

useful and coherent in such cases, as this urn scheme is defined conditionally on the predictor

values. This urn scheme clearly results in a coherent joint prior for ϕ conditionally on X, which

is invariant to permutations in the ordering of the subjects. It is in general very difficult to

define a predictor-dependent urn scheme, which satisfies these conditions.

The use of the conjugacy simplifies the weights in (2.13), resulting in a closed and simple

form for computation. Among many choices, we focus on two special cases: a normal-Wishart

prior and a Poisson-gamma prior. Suppose that a normal-Wishart distribution is assumed for

continuous p× 1 predictors x and parameter γ = (µx,Σx)
′:

x|µx, cx,Σx ∼ N(µx, c
−1
x Σx),

µx|µx, cµ,Σ0x ∼ N(µ0x, c
−1
µ Σx)

Σ−1
x |νx,Σ0x ∼ W(Σ−1

0x , νx), (2.14)

where c−1
x and c−1

µ are multiplicative constants, and W(Σ−1
0x , νx) is a Wishart with degrees of

freedom νx and expectation νxΣ
−1
0x . Then the marginal likelihood of xi in probability weight

w0(xi) in (2.13) is a noncentral multivariate t-distribution with degrees of freedom ν = νx−p+1,
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mean µ = µ0x, and scale Σ = (cx + cµ)/(νcxcµ)Σ0x:

f(x|µ, ν,Σ) =
Γ((ν + p)/2)

(πν)p/2Γ(ν/2)|Σ|1/2

(
1 +

1

ν
(x− µ)′Σ−1(x− µ)

)−(ν+p)/2

, (2.15)

while that in probability weight wh({xi,X
(i)}), for h = 1, . . . , k(i) is also a noncentral multivari-

ate t-distribution, but with updated hyperparameters:

µ∗
0x =

cµµ0x + cxk
(i)
h x̄

(i)
h

cµ + cxk
(i)
h

, c∗µ = cµ + cxk
(i)
h , ν∗x = νx + k

(i)
h

Σ∗
0x =

{
Σ−1

0x + k
(i)
h

∑

j:S
(i)
j =h

(xj − x̄
(i)
h )(xj − x̄

(i)
h )′ +

k
(i)
h cxcµ

cµ + cxk
(i)
h

(x̄
(i)
h − µ0x)(x̄

(i)
h − µ0x)

′
}−1

,

where x̄
(i)
h =

∑
j:S

(i)
j =h

xj/k
(i)
h . Note that the structure in expression (2.14) is slightly different

from a commonly used normal-Wishart prior in that a multiplicative constant is multiplied not

only to the variance of the expectation of x but also to the variance of x. The reasoning for this

is to induce local clustering by making the distribution of x denser around its expected value,

while the expected value can be drawn over the range of x, with c−1
x restricted to be in (0, 1]

and c−1
µ = 1. Allowing cx to vary across clusters gives us additional flexibility.

In the case of discrete predictors, we can also obtain a closed form marginal likelihood of x.

In order to simplify calculations in the discrete case, we assume a priori independence for the

different predictors. Suppose that xj for j = 1, . . . , p follow a Poisson distribution with mean

Γj, which is assigned a Gamma prior with mean aj/bj, G(aj, bj), as the base measure G0γ. The

marginal distribution of x in w0 is a product of negative binomials with the number of successes

rj = aj and success probability pj = bj/(1 + bj):

Pr(Xj = k) =
Γ(rj + k)

k!Γ(rj)
p

rj

j (1− pj)
k j = 1, . . . , p. (2.16)

The marginal distribution in wh, for h = 1, . . . , k(i), is also a product of negative binomials, but
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with hyperparameters a∗j = aj +
∑

j:S
(i)
j =h

xj and b∗j = bj +k
(i)
h . For bounded discrete predictors,

we can instead use a multinomial likelihood with a Dirichlet prior for the category probabilities.

The case of mixed discrete and continuous predictors can also be dealt with easily.

2.4 Posterior Computation

One of the appealing features of our predictor-dependent urn scheme is that we can rely on

efficient Pólya urn Gibbs sampling algorithms developed for computation in marginalized DPMs

(Bush and MacEachern, 1996) with minimal modifications. In addition, although we focus here

on posterior computation through MCMC, our predictor-dependent urn scheme could similarly

be used to develop sequential importance sampling (SIS) algorithms (MacEachern et al., 1999;

Quintana and Newton, 2000), modified weighted Chinese restaurant (WCR) sampling algorithms

(Ishwaran and Jaems, 2003), as well as fast variational Bayes approximations (Kurihara et al.,

2006).

Following Bush and MacEachern (1996), our algorithm updates the cluster specific param-

eters ϕ∗ separately from the cluster membership indicators S. From Theorem 2.3.1, the full

conditional posterior distribution of ϕi can be derived as follows:

(
ϕi |α, ϕ∗(i),S(i),X,y

)
,∼ qi,0G0ϕ,i +

k(i)∑

h=1

qi,hδϕ
∗(i)
h

, (2.17)

where the posterior obtained by updating the prior G0ϕ with the likelihood of yi is

G0ϕ,i(ϕi) =
G0ϕ(ϕi)f1(yi|xi, ϕi)∫
f1(yi|xi, ϕi)dG0ϕ(ϕi)

=
G0ϕ(ϕi)f1(yi|xi, ϕi)

hi(yi|xi)
,

qi,0 = cw0(xi)hi(yi|xi), qi,h = cwh({xi,X
(i)})f1(yi|xi, ϕ

∗(i)
h ), and c is a normalizing constant.

Instead of sampling directly from expression (2.17) in implementing the Gibbs sampling, we

first sample Si, for i = 1, . . . , n, from its multinomial conditional posterior distribution with:

Pr(Si = h|ϕ∗(i),S(i),X,y) = qi,h, h = 0, 1, . . . , k(i), (2.18)
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and when Si = 0, ϕi is set to a new value generated from G0ϕ,i. As a result of updating S, the

number of clusters, k is automatically updated. As a next step, we update ϕ∗ conditional on S

and k from

(
ϕh|ϕ∗(h),S, k,y,X

) ∝
{ ∏

i:Si=h

f1(yi|xi, ϕh)

}
G0ϕ(ϕh). (2.19)

In a case that there are some unknown parameters ψ characterizing the base measure G0ϕ, we

include an additional step for updating ψ based on the full conditional posterior distribution

(
ψ|ϕ,y,x

) ∝ π(ψ)

{ k∏

h=1

G0ϕ(ϕ∗h|ψ)

}
. (2.20)

We have found this algorithm to be both simple to implement and efficient in cases we have

considered, as will be described in the subsequent sections.

2.5 Simulation Examples

2.5.1 Model specification

In this section, we illustrate the proposed method with simulations focusing on conditional

density regression. We consider the following infinite mixture model:

f(yi|x∗i ) =
∞∑

h=1

πh(x
∗
i ) f1(yi |x∗i , ϕ∗h), (2.21)

where x∗i = (1,x′i)
′ = (1, xi1, . . . , xip)

′ and f1(yi|x∗i , ϕ∗h) = N(yi; µh, σ
2
y,h) with ϕ∗h = (µh, σ

2
y,h)

′

for the first simulation and f1(yi|x∗i , ϕ∗h) = N(yi;x
∗
i
′βh, σ

2
y) with ϕ∗h = (βh, σ

2
y,h)

′ for the second

simulation. The GPPM proposed in Section 3 is used to place a prior on the partition S∗

and atoms ϕ∗. Although there are k ≤ n mixture components represented in the sample of n

subjects under the GPPM, there are conceptually infinitely many components, since the number

of components increases stochastically as subjects are added.
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In the absence of prior knowledge about the scale, it is recommended that continuous pre-

dictors be standardized to simplify prior elicitation. We require G0 to correspond to a proper

distribution, since marginal likelihoods will be used in calculating conditional posterior proba-

bilities for partitioning. To simplify updating of the scale parameter, cx, we assume a discrete

uniform prior on (0, 1]. For discrete predictors, we fix aj = bj = 1, for j = 1, . . . , p − 1. In

addition, let σ−2
y,h ∼ G(ay, by), µh ∼ N(µ, κ−1σ2

y,h), βh ∼ N(β, σ2
y,hV) with V = κ−1n(X∗′X∗)−1

and X∗ = (x∗1, . . . ,x
∗
n)′, µ ∼ N(µ0, κ

−1σ2
µ), β ∼ N(β0, κ

−1V0), and κ ∼ G(aκ, bκ). The last

three prior distributions on ψ = (µ, κ)′ or ψ = (β, κ)′ are for additional flexibility. In the im-

plementation, we let α = 1, µ0x = 0, Σ−1
0x = 4Ip×p, νx = p, µ0 = 0, β0 = 0, V0 = n(X∗′X∗)−1,

and ay = by = aκ = bκ = 1. Other choices of these parameters are also considered to check

sensitivity of models to our primary choice.

2.5.2 Implementation and Results

We consider two cases in which n = 500, p = 1, and xi1 is generated from a uniform

distribution over (0, 1). We first simulated data from a normal distribution with mean x2
i1 and

variance 0.04, N(yi; x
2
i1, 0.04). The data were analyzed using a mixture of normals with the prior

specification of Section 2.5.1, and with the MCMC algorithm of Section 2.4 implemented for

10,000 iterations, discarding the initial 1,000 iterations as a burn-in. Figure 2.1 shows selected

results. The algorithm converged rapidly and mixing was good based on trace plots of µ, the

number of clusters, and f(y = 1.5|x∗ = (1 0.25)′), where the data point for y is randomly selected

among possible values (the left panel of Figure 2.1). As shown in the right panel of Figure 2.1,

the predictive densities and mean function of y (solid lines) well approximate the true values

(dotted lines), which are completely embedded within pointwise 99% credible intervals (dashed

lines). The posterior mean of the number of clusters was 2.4 with a 95% credible interval of

[2, 4] and the estimated normal means were almost equally spaced over (0, 1).

As a more challenging second simulation case, we simulated data to approximately mimic

the data in the reproductive epidemiology study considered in Section 2.6. In particular, we
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FIGURE 2.1: Results for the first simulation example. The left column provides trace plots
for representative quantities, while the right panel shows the conditional distributions for two
different values of x, as well as the mean function estimation along with the raw data. Posterior
means are solid lines, pointwise 99% credible intervals are dashed lines, and true values are
dotted lines.

generated data from the following mixture of two linear models:

f(yi|xi) = (1− x4
i1)N(yi; 1, 0.04) + x4

i1N(yi; , 1− x2
i1, 0.01),

where a secondary peak appears in the left tail of the response distribution, moving closer to

zero as xi1 increases. This behavior in which the tail of the distribution, corresponding to those

subjects with the most extreme response, is particularly sensitive to changes in an exposure

variable is common in toxicology and epidemiology studies. We analyzed the data using a

mixture of regression models with the GPPM approach specified in Section 2.5.1, and also using
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FIGURE 2.2: Estimated predictive densities from the PPM (left panel) and the GPPM (right
panel) at the 10th, 50th and 90th percentiles of the empirical distribution of x: posterior means
(solid lines), pointwise 99% credible intervals (dashed lines), and true values (dotted lines).

the DPM-based PPM described in Section 2.2. These two approaches result in mixtures of

normal linear regressions, but the first approach allows the mixture weights to be predictor-

dependent, while the second doesn’t. The precision parameter α and base measure G0 for the

DPM-based PPM were set to be the same as those used in the GPPM approach. Both analyses

were run for 30,000 iterations with a 10,000 iteration burn-in, with good mixing and convergence

rates in both cases based on examination of trace plots and diagnostics.

From Figure 2.2, it is clear that the proposed approach provides a more flexible model

capturing the rapid changes in the distribution across local regions of the predictor space even

for the somewhat small sample size of n = 500. We also repeated the analysis of the second
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simulation including a discrete predictor, which was obtained by truncating the continuous

predictor into l groups. It was observed that the proposed method worked well for a variety

choices of l (results are not shown).

2.6 Epidemiologic Application

We apply the proposed method to the data used in Longnecker et al. (2001) and Dunson and

Park (2008). DDT has been widely used and shown to be effective against malaria-transmitting

mosquitoes, but several health-threatening effects of DDT have been also reported. Longnecker

et al. (2001) used the data from the US Collaborative Perinatal Project to investigate the

association between DDT and preterm birth, defined as delivery before 37 weeks of complete

gestation. The authors showed that adjusted for other covariates, increasing concentrations

of maternal serum DDE, a persistent metabolite of DDT, led to high rate of preterm birth by

fitting a logistic regression model with categorized DDE levels. Dunson and Park (2008) applied

a kernel stick-breaking process mixture of linear regression models to the same data with a focus

on the predictive density of gestational age at delivery (GAD), concluding strong evidence of a

steadily increasing left tail with DDE dose. For more information on the study design and data

structure, refer to Longnecker et al. (2001).

We let xi1 and xi2 be the DDE dose for child i and the mother’s age after normalization,

respectively. There were 2, 313 children left in the study after removing children with GAD > 45

weeks, which are suspected as unrealistic values in reproductive epidemiology. By running the

algorithm of the GPPM approach applied to the first simulation example for 30,000 iterations

with a 10,000 iteration burn-in, we obtained the estimated predictive densities of GAD at

selected percentiles (10, 30, 70, 90) of the empirical distribution of DDE (Figure 2.3) with the

maternal age being fixed at its mean. The shape and location of the estimated densities do not

change much at different values of the maternal age. The results also show that the left tail

of the distribution increases for high DDE dose with the credible intervals wider at high DDE

values due to the relatively few observations in this region. It is observed in Figure 2.4 that
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FIGURE 2.3: Estimated predictive densities (solid lines) for gestational age at delivery at
preselected values of DDE with 99% pointwise credible intervals (dashed lines).

the conditional predictive mean of GAD had a slightly decreasing nonlinear trend over DDE

level, while the maternal age was fixed at its mean. In using the GPPM for conditional density

estimation and quantile regression estimation, the predictor-dependent partitioning is used as a

tool for flexibly modeling of the conditional response distribution given the predictors through

Theorem 2.3.1. However, in some cases, there may be interest in using the methodology for

identifying clusters of subjects. Because the meaning of the clusters varies across the MCMC

iterations, which is known as the label switching problem, there have been some contributions

on post-processing approaches for clustering (Celeux et al., 2000; Stephens, 2000; Dahl, 2006;

Lau and Green, 2007). We followed Lau and Green (2007) approach to estimate an optimal

partition.

Figure 2.5 contains a symmetric heatmap presenting the pairwise marginal probabilities of

being grouped with another subject in the given data. There were 13 clusters as a result of the

obtained optimal partition, and some summary statistics within these clusters are arranged in

Table 2.1. All the preterm births except one were grouped into 4 clusters. Most of the preterm
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FIGURE 2.4: The conditional predictive mean of gestational age at delivery (solid line) with
99% pointwise credible intervals (dotted lines).

births were assigned to cluster 6, the mean DDE level of which was about the 80th percentile

of observed DDE values. Preterm births in cluster 2 were characterized by both high DDE dose

and old maternal age, while those in clusters 11 and 13 had extreme DDE levels beyond the

98th and 99th percentiles, respectively. It is observed that most of normal births in these 4

clusters had GAD values close to 37 weeks. Hence, the clustering result also strongly supports

that preterm births were more likely to be observed with high DDE dose. Note that the order

of clusters is arbitrary and that some of clusters have similar mean values of GAD, but they are

separately grouped due to different predictor values.

Although the results of the analysis for conditional density estimation were similar to Dun-

son and Park (2008), the proposed computational algorithm was considerably less complex

and simpler to implement. The kernel stick-breaking process (KSBP) proposed by Dunson

and Park (2008) relied on a retrospective MCMC algorithm (Papaspiliopoulos and Roberts,

2007), which involved updating of random basis locations, stick-breaking weights, atoms and

kernel parameters. In contrast, by using the GPPM proposed in the present paper, we bypass
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FIGURE 2.5: Pairwise marginal probabilities of being grouped with another subject in the CPP
data.

the need to perform computation for the very many unknowns characterizing the collection of

predictor-dependent mixture distributions. Instead through marginalization relying on the sim-

ple predictor-dependent urn scheme shown in Theorem 2.3.1, we obtain a simple and efficient

Gibbs sampling algorithm. We found the mixing and convergence rates to be similar to those

for the MCMC algorithm of the KSBP, but the computational time was substantially reduced,

as fewer computations were needed at each step of the MCMC algorithm.

For predictive purposes, the KSBP may be more efficient in introducing only those clusters

that are needed to flexibly characterize changes with predictors in the response distribution.

However, in utilizing information in the predictor distribution, the GPPM may be particularly

useful in semi-supervised learning settings, when there are missing predictors, and when interest

focuses on inverse regression problems. Also, in many clustering applications, one would prefer

to have subjects with very different predictor values but the same response allocated to different

clusters.
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TABLE 2.1: Summary statistics by clusters

GAD1 DDE AGE
Cluster n2 mean (SD3) mean (SD3) mean (SD3)

1 985 (1) 39.7 (1.21) 26.8 (14.49) 24.0 (5.72)
2 185 (0) 40.2 (1.04) 26.6 (14.05) 23.5 (5.57)
3 306 (0) 39.2 (1.10) 28.1 (13.78) 25.7 (6.19)
4 156 (0) 41.1 (1.21) 25.5 (13.80) 24.1 (4.85)
5 212 (0) 43.3 (0.78) 26.8 (14.89) 22.9 (5.37)
6 339 (309) 34.8 (1.94) 32.4 (16.55) 22.3 (5.09)
7 16 (0) 40.1 (0.91) 30.8 (18.13) 42.3 (1.53)
8 38 (30) 35.3 (2.05) 33.2 (14.93) 38.8 (2.69)
9 4 (0) 43.4 (0.88) 39.7 (14.39) 40.8 (0.50)
10 31 (0) 40.7 (1.53) 93.1 (9.62) 23.7 (5.20)
11 33 (19) 36.2 (2.38) 101.4 (13.95) 24.2 (6.65)
12 6 (0) 39.4 (1.03) 148.0 (13.88) 23.5 (4.51)
13 2 (2) 32.5 (2.53) 161.5 (23.48) 25.0 (1.41)

1in weeks, 2preterm births in parenthesis, 3SD=standard deviation

2.7 Discussion

There has been increasing interest in the use of partitioning to generate flexible classes of

models and to identify interesting clusters of observations for further exploration. Much of the

recent literature has relied on Dirichlet process-based clustering, an approach closely related

to product partition models (PPMs). Our contribution is to develop a simple modification to

PPMs to allow predictor dependent clustering, while bypassing the need for consideration of

complex nonparametric Bayes methods for collections of predictor-dependent random probabil-

ity measures. The resulting class of generalized PPMs (GPPMs) should be widely useful as a

tool for generating new classes of models and for efficient computation in existing models, such

as hierarchical mixtures-of-experts models.

Perhaps the most interesting and useful of our results is the proposed class of predictor-

dependent urn schemes, which generalize the Blackwell and MacQueen (1973) Pólya urn scheme

in a natural manner to include weights that depend on the distances between subjects predictor

values. The distance metric is induced through a flexible nonparametric joint model for the
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predictors. Although this approach may be viewed as unnatural when the predictors are not

random variables, the proposed class of predictor-dependent urn schemes are nonetheless useful

and are defined conditionally on the predictor values. In this sense, the use of a joint distribution

on the predictors in inducing the urn scheme can be viewed simply as a tool for proving that a

coherent joint prior exists in cases in which the predictors are not random.
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CHAPTER 3

BAYESIAN SEMIPARAMETRIC

DENSITY REGRESSION WITH

MEASUREMENT ERROR

3.1 Introduction

In many cases, a predictor X cannot be observed directly and one instead measures multiple

surrogates W = (W1, . . . , Wq)
′. There is a rich literature on latent variable and measurement

error models that allow inferences on the association between a predictor X and a response Y

based on data collected for W and Y . In addition to assumptions of conditional independence

of Y and W given X, which are necessary for identifiability, the literature in this area typically

relies on a number of parametric assumptions. For example, most approaches assume the latent

X is normally distributed and the models describing the conditional distributions of W and Y

given X have a parametric form. The focus of this article is on using semiparametric Bayes

methods to relax parametric assumptions to the extent possible given identifiability issues.

As a motivating application, we focus on data from the Longnecker et al. (2001) sub-study

of the Collaborative Perinatal Project, which measured levels of two DDT (Dichlorodiphenyl-

trichloroethane) products (DDT isomer p, p′-DDT and persistent DDT metabolite p, p′-DDE)



in maternal serum samples collected during pregnancy. Gestational age at delivery and birth

weight data were also available. From a public health perspective, the main question of interest

is how DDT exposure impacts the risk of adverse pregnancy outcomes, with “adverse” corre-

sponding to the left tail of the distribution of gestational age at delivery and to the left or right

tail of the birth weight distribution. As DDT exposure is only measured indirectly through its

products in the serum, the level of exposure is a latent variable. To avoid sensitivity to arbi-

trarily chosen cutoffs, it is of interest to assess the effect of latent DDT exposure on the joint

distribution of gestational age at delivery and birth weight. However, we find that the bivariate

normal distribution provides a poor fit even after transformation. Hence, it is appealing to

develop an approach that allows the joint distribution to change flexibly with exposure.

Although the vast majority of the literature on latent variable models has focused on normal

linear structures, there has been an increasing focus on more flexible approaches. Attias (1999)

used finite mixtures of Gaussians for latent variables in a factor analytic model, while Lee et al.

(2008) generalized this approach to structural equation models using a Bayesian approach to

model fitting and inference. Dunson et al. (2007) developed an alternative Bayes method, which

allows for the incorporation of mean and variance constraints on the latent factors. To account

for non-linearities within Gaussian latent variable models, Arminger and Muthén (1998) and

Lee and Song (2003) incorporated quadratic terms and interactions, while Fahrmeir and Raach

(2007) and Wang and Iyer (2007) used splines.

None of these approaches allow the conditional response distribution to vary nonparametri-

cally according to latent predictors. When both Y and X are observed directly, this problem has

been referred to as either density regression or conditional density estimation. For frequentist

references, refer to Fan et al. (1996), Hyndman et al. (1996) and Fan and Yim (2004). Dunson

et al. (2007) proposed an alternative approach for density regression, using predictor-dependent

mixtures of normal linear regressions. Dunson and Park (2008) later developed a fully Bayes al-

ternative based on kernel stick-breaking processes, while Park and Dunson (2007) instead relied

on a generalized product partition model motivated by the formulations of Müller et al. (1996)

and Quintana and Iglesias (2003). The order-based dependent Dirichlet process of Griffin and
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Steel (2006) can also be used for flexible Bayes density regression.

In this article, our focus is on developing related methods for the case in which X is latent.

Our proposed approach is based on a joint modeling strategy, which uses a Dirichlet process

prior for the distribution of X and kernel stick-breaking process mixtures for the conditional

distribution of Y given X. Our primary goal is to derive a simple but flexible mixture model

for the conditional distribution of Y given X. In this context, Bayesian approaches have the

advantage of allowing centering on a base parametric model, so that inferences can rely on the

parametric model when appropriate, while adding flexibility in the presence of information in

the data suggesting lack of fit.

Section 3.2 describes the general framework and discusses identifiability issues. Section 3.3

proposes a nonparametric Bayes formulation. Section 3.4 outlines an efficient Markov chain

Monte Carlo algorithm (MCMC) for posterior computation. In Section 3.5 and Section 3.6,

the proposed method is applied to a simulation example and reproductive epidemiologic data,

respectively. Section 3.7 discusses the results.

3.2 Model Formulation

3.2.1 Proposed model

For subject i (i = 1, . . . , n), the observed data consist of a p × 1 response vector yi =

(yi1, . . . , yip), a q×1 vector of error-prone measurements wi = (wi1, . . . , wiq)
′ of a latent predictor

xi, and covariate vectors vi = (vi1, . . . , vis)
′ and zi = (zi1, . . . , zir)

′. We focus on the case in

which yi ∈ <p and wi ∈ <q and there is a single latent variable xi, though extensions to

accommodate mixed categorical and continuous measurements and multiple latent variables are

straightforward.

We assume that the observed data likelihood can be expressed as

f(yi,wi |vi, zi) =

∫
f(yi |xi,vi)f(wi |xi, zi)f(xi)dxi, (3.1)
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where f(y | x,v) and f(x) will be treated as unknown using Bayesian nonparametric methods,

while f(wi |xi, zi) will be characterized using a simple normal linear measurement model as

follows:

wi = η + ∆zi + λxi + εi, (3.2)

where η is a q × 1 intercept vector, ∆ is a q × s matrix of regression coefficients, λ is a q × 1

vector of factor loadings, and εi is a q × 1 measurement error term with εi ∼ N(0,Σw).

For the conditional likelihood f(yi |xi,vi), we propose to use a flexible mixture of normal

linear measurement models as follows:

f(yi | xi,vi) =
∞∑

h=1

ωh(vi, xi)Np(yi; µ
∗
h + Ψ∗

hvi + β∗hxi,Σy), (3.3)

where ωh(vi, xi) is a probability weight on the hth mixture component specific to predictor

values including latent predictor value xi, and θ∗h = {µ∗
h,Ψ

∗
h,β

∗
h} are parameters specific to

component h, with µ∗
h a p× 1 intercept vector, Ψ∗

h a p× s matrix of regression coefficients, β∗h a

p× 1 coefficient vector, and Σy a p× p covariance matrix. By mixing over normal linear latent

factor models, we obtain a highly-flexible structure. To allow non-linear effects of the latent

predictor xi, it is necessary to allow the mixture weights to depend on xi.

We complete the model with a specification for f(xi), with the specific form chosen depending

on whether xi is treated as discrete or continuous. Unknown smooth continuous densities can

be accurately approximated by mixtures of Gaussian densities. However, we note that it is not

possible to assess based on the observed data whether the distribution of the latent predictor is

discrete or continuous without making unverifiable modeling assumptions. Hence, in order to

simplify computation and interpretation, we focus on the case in which xi is a discrete, with

xi ∼ G =
∞∑

h=1

πhδx∗h , (3.4)

where πh is the prior probability that xi = x∗h, so that individual i is allocated to the hth latent
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class, and δa denotes the measure that puts a unit point mass at a.

3.2.2 Identification

As for parametric latent variable models, identification is an important issue. Since the

conditional likelihood functions in (3.2) and (3.3) are invariant to orthogonal transformations

such as β̃h = β∗hp
′, x̃i = pxi, λ̂ = λq′, and x̂i = qxi, where p and q are any orthogonal vectors

(Lopez and West, 2004), it follows that constraints are needed for identifiability even in the

parametric case.

Bayesian inferences can be conducted even in models that are non-identifiable from a fre-

quentist perspective as long as informative priors are chosen. However, the resulting inferences

may be very sensitive to the prior, even in large samples. Hence, it is appealing to incorporate

identifiable constraints on parameters even in Bayesian models.

First, we assume the covariance matrix Σy of responses to be unstructured, while the co-

variance matrix Σw of the measurement error terms is forced to be diagonal. This is a standard

assumption, which implies that dependence in the elements of wi arises solely from shared de-

pendence on wi. Additional constraints are made on η and λ, with η1 = 0, λ1 = 1 and λj > 0,

for j = 2, . . . , q, to allow for unconstrained mean and variance of the latent variable, while

avoiding sign ambiguity. We avoid constraining the mean and variance of the latent variable

density, since this creates difficulties in nonparametric models.

3.3 Nonparametric Bayes Specification

Note that the framework proposed in Section 3.2 can be applied either from a frequentist

perspective, using maximum likelihood estimation implemented with the EM algorithm, or

from a Bayes perspective, using a nonparametric formulation implemented with MCMC. The

Bayes approach has advantages, which result from avoiding the selection of a finite number

of components with positive probabilities in (3.3) and (3.4). The frequentist method can be

implemented for different numbers of components, using the BIC for dimensionality selection as
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is often done in finite mixture models. However, the BIC is not fully justified theoretically in

this setting, and the resulting inferences and predictions would ignore uncertainty in estimating

the number of components. In this section, we complete the model formulation in Section 3.2

by characterizing the conditional likelihood of yi in (3.3) and the distribution of latent variable

xi in (3.4) using the nonparametric Bayes specifications.

First, a Dirichlet process (Ferguson, 1973; 1974) prior is used to allow the distribution G of

latent variables to be unknown. It can be expressed in a hierarchical form as

xi ∼ G, G ∼ DP (αG0), (3.5)

where DP (αG0) denotes a Dirichlet process prior centered on base measure G0 with precision

α, and under the Sethuraman’s (1994) stick-breaking representation of G,

G =
∞∑

h=1

Uh

∏

l<h

(1− Ul)δx∗h , Uh
iid∼ Beta(1, α), x∗h

iid∼ G0, (3.6)

where U = {Uh}∞h=1 are stick-breaking weights and x∗ = {x∗h}∞h=1 are atoms, expression (3.4) is

obtained with πh = Uh

∏
l<h(1− Ul). In addition, letting Si denote a latent variable indicating

what latent class subject i belongs to, it follows that xi = x∗Si
.

On the other hand, a specification of the conditional likelihood function of yi given vi and

xi in (3.3) begins with considering the following hierarchical model:

yi|ti, φi ∼ Np(yi; µi + Ψivi + βixi,Σy)

φi|Hti
∼ Hti

HT ∼ P , (3.7)

where φi is a set of the parameters characterizing the conditional distribution of yi given ti,

with φi = {µi,Ψi, βi} and ti = {vi, xi}, Hti
is an unknown distribution of φi which varies with

predictor values ti ∈ T , and P is the prior for the collection HT = {Ht : t ∈ T }. Although the
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most common choice for prior P in the nonparametric Bayes literature is a Dirichlet process with

Hti
≡ H, as in expression (3.5), it is not flexible enough to achieve our goal. The stick-breaking

representation of the DP in (3.6) implies that mixing weights πh are constant across predictors

ti and therefore together with the linear assumption for the model in (3.3), the conditional mean

of yi given ti still remains linear. To express the conditional mean of yi as a predictor-dependent

mixture of linear models, we focus on generalizing the DP by incorporating predictor values into

the stick-breaking structure of πh as

ωh(t) = VhK(t, Γh)
∏

l<h

{
1− VlKl(t, Γl)

}
, (3.8)

where stick-breaking random variables V = {Vh}∞h=1 and random locations Γ = {Γh}∞h=1 inde-

pendently and identically follow a beta distribution with parameters 1 and γ and a distribution

FΓ, respectively, and K(x, Γh) = exp(−ψh||x − Γh||2) is the Gaussian kernel function mapping

to [0, 1], and letting θ∗ = {θ∗h}∞h=1 denote an independent sample from a base measure H0, with

θ∗h assigned to the hth location Γh, the unknown distribution of Ht is formulated as

Ht =
∞∑

h=1

ωh(t)δθ∗h
, (3.9)

which is a special case of the kernel stick-breaking processes (KSBPs) (Dunson and Park, 2008),

with
∑∞

h=1 ωh(t) = 1. One of the appealing properties of expression (3.9) is that it works in

a similar way to the DP, but with probability weights ω = {ωh(t)}∞h=1 in (3.8) flexibly altered

by the distances between predictor value t and locations Γ, which range from 0 to 1, measured

through the kernel function K. Hence, an atom θ∗h is assigned higher weight, as its location

index h is lower and its corresponding location Γh is closer to predictor value t, resulting in a

sparse representation. Note that the DP is obtained as a special case with K(t, Γ) = 1 for any

(t, Γ). Additional flexibility is allowed by letting the kernel precision ψh vary across locations,

so that a few number of atoms are needed for sparse areas of T .

Letting Ri denote a latent variable indicating what location subject i is assigned to, the
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model in (3.7) can be reexpressed as

yi|vi, xi, Ri, θ,Σy ∼ Np(yi; µ∗
Ri

+ Ψ∗
Ri

vi + β∗Ri
xi,Σy)

Ri|xi,ω ∼
∞∑

h=1

ωh(ti)δh,

θ∗h
iid∼ H0 (3.10)

and therefore integrating out with respect to Ri results in the conditional distribution of yi

given ti in (3.3).

On the other hand, we obtain another important mixture structure as a result of our spec-

ification. Letting di = (y′i,w
′
i)
′, µ∗

i = {(µRi
+ BRi

vi)
′, (η + ∆zi)

′}′, λ∗i = (β′Ri
,λ′)′, and

ei ∼ N(0,Σe), where Σe = diag(Σy,Σw), two models in (3.2) and (3.3) conditional on Ri are

vertically stacked into one regression model as

di = µ∗
i + λ∗i xi + ei,

and, integrating out xi in (3.5) and (3.6) results in a Dirichlet process mixture (Lo, 1984; Escobar

and West, 1995) of normal linear measurement models,

f(di|µ∗
i , λ

∗
i ,U,x∗, Ri) =

∞∑

h=1

πhNp+q(di; µ
∗
i + λ∗i x

∗
h,Σe). (3.11)

The mixture models in (3.3) and (3.11) play an important role in posterior computation, which

is discussed in the next section.

3.4 Posterior Computation

Dunson and Park (2008) proposed a conditional approach to posterior computation for KSBP

mixture models, relying on a combined Markov chain Monte Carlo (MCMC) algorithm that uses

retrospective sampling (Papaspiliopoulos and Roberts, 2007) and generalized Pólya urn sampling
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(MacEachern, 1994; West et al., 1994) steps. However, since the slice sampler (Neal, 2003;

Walker, 2007) is simpler to implement than the retrospective sampler, we propose a MCMC

algorithm that relies on a slice sampler for both the KSBP and the DP priors.

3.4.1 Slice sampler

Suppose that we have the following mixture model for observed variable r:

f(r) =
∞∑

h=1

phf(r|θh), (3.12)

where f(·|θ) is a parametric density characterized by parameter θ and p = (p1, . . . , p∞) are

probability weights, with
∑∞

h=1 ph = 1. We introduce a latent variable u in expression (3.12),

such that the joint density of r and u is given by

f(r, u) =
∞∑

h=1

phU(u|0, ph)f(r|θh)

=
∞∑

h=1

1(u < ph)f(r|θh),

where U(·|a, b) is a uniform density ranging from a to b. It is obvious that the marginal density

of r in (3.12) can be obtained by integrating the above joint density with respect to u. Appealing

features of introducing latent variable u are that u is independent of r given weights p and that

the conditional density of r given u is expressed as a finite mixture model only with finite weights

such that {ph; u < ph} (Walker, 2007). Letting T denote another latent variable indexing which

mixture component variable r is sampled from, so that r = θT , the complete data likelihood of

an iid sample (r,u,T) = {ri, ui, Ti}n
i=1 is

L(r,u,T; p,θ) =
n∏

i=1

1(ui < pTi
)f(ri|θTi

), (3.13)
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and upon marginalizing out {ui}n
i=1, the complete data likelihood of {ri, Ti}n

i=1 is

L(r,T; p,θ) =
n∏

i=1

pTi
f(ri|θTi

). (3.14)

The likelihood function in expression (3.13) is used to derive a full conditional distribution of

the latent variables u and T , whereas that in expression (3.14) is used for component specific

parameters θ and mixture weights p. Then, letting q(ρ) be an appropriate prior density for

parameter ρ, a slice sampler proceeds in the following steps:

S1. Sample ui from U(ui; 0, pTi
), for i = 1, . . . , n.

S2. Sample θh, for h = 1, . . . ,∞ from the conditional posterior distribution

(θh|r,T) ∝ q(θh)
∏

i:Ti=h

f(ri|θh).

S3. Sample p from the conditional posterior distribution

(p|T) ∝ q(p)
n∏

i=1

pTi
.

S4. Sample Ti, for i = 1, . . . , n, from the conditional posterior distribution

Pr(Ti = h|r, ui,p) ∝ 1(h ∈ Ai(ui))f(ri|θh),

where Ai(ui) = {h; ph > ui} is a finite index subset defined by sampling ph, for h = 1, . . . , k,

with k being the smallest value satisfying

k∑

h=1

ph > (1− u∗),

where u∗ = mini{ui}.
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Note that the slice algorithm proposed in this article is different from Walker’s algorithm in

that our approach uses the likelihood function in expression (3.14) instead of that in expression

(3.13) to sample mixture weights p. It is observed that both algorithms performs well in terms

of mixing and convergence rate, but our algorithm provides an analytically simple conditional

posterior distribution for mixture weights in the KSBP.

3.4.2 Details of MCMC algorithm

For easy exposition of the posterior computation, we consider the following regression model:

yi = Xiβ
∗
i + εy

i , (3.15)

where a p × p(r + 2) matrix Xi = Ip ⊗ (1, r′i, xi), with ⊗ denoting the Kronecker product, a

p(r +2)× 1 vector β∗i = {(µi,1, row1(Ψi), βi,1), . . . , (µi,p, rowp(Ψi), βi,p)}′, with rowi(A) denoting

the ith row of matrix A, and a p × 1 residual term εy
i ∼ Np(0,Σy). Note that the regression

model in (3.15) corresponds to the normal linear measurement model in (3.7). For convenience

in elicitation and computation, we assume the following conjugate priors for the parameters and

latent variable to complete a Bayesian specification of the model: H0(β
∗
i ) = Np(r+2)(β

∗
i ; β0,Σβ),

G0(xi) = N1(xi; µx, σ
2
x), π(η) = Nq(η; η0,Ση), π(∆) =

∏q
j=1 Ns(rowj(∆); δ0,Σδ), π(λ) =

∏q
j=1 N+(λj; λ0, σ

2
λ), π(Σy) = W{Σy; (ν0Σ0)

−1, ν0}, π(τj) = G(τj; aτ , bτ ), and π(α) = G(α; aα, bα),

where τj, for j = 1, . . . , q, are the inverse of the diagonal elements of Σw and N+(·; a, b) denotes

a normal distribution with mean a and variance b, but truncated below at zero, W(·;C, c) a

Wishart distribution with mean cC and degrees of freedom c, and G(·; a, b) a Gamma distribu-

tion with mean a/b. Note that only unconstrained elements of η and λ except for η1 and λ1

will be updated. In addition, since we don’t know a priori how many classes we need for latent

variable x, we update the DP precision α, which controls the number of unique values among

{xi}n
i=1. Our MCMC algorithm then alternates the following steps:

1. Noting that expression (3.11) is equivalent to expression (3.12), we update the components

of the DP mixture and the latent variable xi using the slice sampler in Section 3.4.1 with
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ri = di, p = ω, θh = x∗h, ui = ux,i, and Ti = Si. The full conditional posterior distributions

of the relevant parameters can be expressed as follows:

x∗h ∼ N1(x
∗
h; x̂

∗
h, V̂x,h),

Uh ∼ Beta

(
1 + mh, α +

∑

l>h

ml

)
,

where V̂x,h = (σ−2
x +

∑
i:Si=h λ∗i

′Σ−1
e λ∗i )

−1, x̂∗h = V̂x,h{σ−1
x µx +

∑
i:Si=h λ∗i

′Σ−1
e (di − µ∗

i )},
and mh =

∑n
i=1 1(Si = h), for h = 1, . . . ,∞. In addition, as in West (1992), α is updated

by sequentially sampling from the full conditional distributions

ηα ∼ Beta(αx + 1, n)

α ∼ pG(aα + kx, bα − log(ηα)) + (1− p)G(aα + kx − 1, bα − log(ηα)),

where kx is the number of unique values among {xi}n
i=1 and weight p is defined by

p

1− p
=

(aα + kx − 1)

n(bα − log(ηα))
.

2. Also noting that expression (3.3) is equivalent to expression (3.12), we update the compo-

nents of the KSBP mixture and β∗i using the slice sampler by letting ri = yi, p = π(ti),

θh = θ∗h, ui = uy,i, and Ti = Ri. The full conditional posterior distributions of θ∗h is

θ∗h ∼ Np(r+2)(θ
∗
h; θ̂h, V̂θh

),

where V̂θh
= (Σ−1

β +
∑

i:Ri=h X′
iΣ

−1
y Xi)

−1 and θ̂h = V̂θh
(Σ−1

β β0 +
∑

i:Ri=h X′
iΣ

−1
y yi),

and β∗i = θ∗Ri
. In Step S3, we use a data augmentation approach to update Vh, for

h = 1, . . . , k, as in Dunson and Park (2008). For each h, let Aih and Bih indepen-

dently follow a Bernoulli distribution with probability Vh and K(x i, Γh), respectively, with
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Ri = min{h : Aih = Bih = 1}. Then, alternate between sampling (Aih, Bih) from their

joint conditional distribution given Ri and updating Vh by sampling from the conditional

posterior distribution

Beta

(
1 +

∑

i:Ri≥h

Aih, γ +
∑

i:Ri≥h

(1− Aih)

)
.

The random location Γh and kernel precision ψh, for h = 1, . . . , ky, can be updated by a

Metropolis-Hastings step or a Gibbs step if FΓ(·) =
∑T

l=1 alδΓ∗l (·), with Γ∗ = (Γ∗1, . . . , Γ
∗
T )′

a grid of potential locations.

3. Sample η, ∆, λ, Σy, and Σw = diag(τ−1
1 , . . . , τ−1

q ) from

η ∼ Nq

{
η; V̂η

(
Σ−1

η η0 +
n∑

i=1

Σ−1
w {wi − (∆zi + λxi)}

)
, V̂η

}
,

λj ∼ N+

{
λj; V̂λ

(
σ−2

λ λ0 +
n∑

i=1

τjxi{wi,j − (ηj + rowj(∆)zi)}
)

, V̂λ

}
,

rowj(∆)′ ∼ Ns

{
rowj(∆)′; V̂δ

(
Σ−1

δ δ0 +
n∑

i=1

ziτj{wi,j − (ηj + λjxi)}
)

, V̂δ

}
,

Σ−1
y ∼ W

(
Σ−1

y ;

{ n∑
i=1

(yi −Xiβ
∗
i )(yi −Xiβ

∗
i )
′ + ν0Σ0

}−1

, n + ν0

)
,

τj ∼ G
(

τj; aτ +
n

2
, bτ +

1

2

n∑
i=1

{
wi,j − (ηj + rowj(∆)zi + λjxi)

}2
)

,

where V̂η = (Σ−1
η + nΣw)−1, V̂λ = (σ−2

λ +
∑n

i=1 τjx
2
i )
−1, and V̂δ = (Σ−1

δ +
∑n

i=1 τjziz
′
i)
−1.

3.5 Simulation Study

In this section, we examine the performance of the proposed method for conditional density

estimation, using posterior samples from the MCMC algorithm. To implement the algorithm,

we let β0 = 0p(r+2), Σβ = Ip(r+2)×p(r+2), µx = 0, σ2
x = 1, η0 = 0q, Ση = Iq×q, δ0 = 0s, Σδ = Is×s,

λ0 = 0, σ2
λ = 1, ν0 = p + 1, Σ0 = Ip×p, aτ = bτ = 0.1, and aα = bα = 2, where 0a is a a × 1

vector of zeros and Ib is an identity matrix of dimension b. The potential locations for Γ are
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FIGURE 3.1: Trace plots of representative quantities.

taken from -3 to 3 with increment of 0.1, with T = 61 and al = 1/T . For more flexibility, we

also let each kernel precision ψh be unknown with a log normal prior with mean 0 and variance

4. All observed data are normalized prior to analysis.

After conducting some descriptive and graphical analysis of the reproductive data handled

in Section 3.6, we generated data of size 500 which are similarly distributed as the real data, as

follows:

1. Latent variable xi was sampled from U(xi; 0, 1).

2. Response vector yi with p = 2 was sampled from the mixture distribution

f(yi|xi) =
2(1− xi)

3
N

{
yi;




xi

−x3
i


 ,




1 0.5

0.5 1


 0.22

}
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+
1

3
N

{
yi;




0.5

0


 ,




1 0.8

0.8 1


 0.42

}

+
2xi

3
N

{
yi;




xi

0.1 + 2(xi − 0.5)2


 ,




1 0.2

0.2 1


 0.22

}
.

3. Error-prone predictor vector wi with q = 3 was sampled from the linear regression model

f(wi|xi) = N

{
wi;




0

−2

2




+




1

2

0.4




xi,




0.12 0 0

0 0.052 0

0 0 0.22




}
.

Since other predictors v and z are not considered in the simulated data, we analyzed the

data using the proposed semiparametric latent variable model without v and z and their cor-

responding parameters Ψ and ∆. The MCMC algorithm was run for 30,000 iterations with

the first 10,000 discarded as a burn-in period. Figure 3.1 shows trace plots of the DP precision

α, the intercept η3, factor loading λ2, precision τ1, variance for y1, and estimated conditional

density at y1 = 0.22 given x = 0.5. Based on examination of these plots, it can be said that

convergence occurred quickly showing good mixing rate. In Figure 3.2, the left panel depicts

the true marginal densities (dotted line), estimated predictive marginal densities (solid line)

of y1 , along with pointwise 99% credible intervals (dashed lines) at the 10th, 50th, and 90th

percentiles of the distribution of x, while the right panel does the same for y2. For both y1

and y2, the estimated densities are indistinguishable from the true densities. The pointwise

credible intervals are relatively wider in the area in which the true density deviates from the

normal density, implying that the KSBP with one atom at each location is still flexible enough

to characterize changes in distribution occurring within a narrow area. With the same plot

formatting as in Figure 3.2, the conditional predictive densities of y1 given y2 and x are plotted

in Figure 3.3. The selected y2 values are corresponding to ȳ2− 2Sy2 , ȳ2, and ȳ2 + 2Sy2 , where ȳ2

and Sy2 denotes the empirical mean and standard deviation of y2. In all cases, 99% pointwise
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FIGURE 3.2: Estimated predictive conditional densities of y1 (left) and y2 (right) at the 10th,
50th and 90th percentiles of x: posterior means (solid lines), pointwise 99% credible intervals
(dashed lines), and true values (dotted lines).

credible intervals completely embed the true conditional densities. Note that the intervals are

wider, when y2 and x are discordant, resulting in fewer observations. It was observed that as

the sample size increases, estimated conditional densities get closer to the true ones with much

narrower credible intervals (results not shown).

3.6 Application to Reproductive Epidemiology

3.6.1 Background

In this section, we return to the motivating reproductive study of DDT, briefly introduced in

Section 3.1. DDT has been widely used for malaria vector control, but several adverse effects of
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FIGURE 3.3: Estimated predictive conditional density of y1 given y2 at the 10th (left), 50th
(middle) and 90th (right) percentiles of x. The dotted, solid, and dashed lines represent the
true values, posterior means, and pointwise 99% credible intervals, respectively.

DDT have been reported not only in animals but also in human beings. Since it is not feasible to

directly measure the level of DDT bioaccumulated in a human body through food consumption,

it is common in the literature to measure p, p′-DDT and p, p′-DDE instead. Several animal

studies have demonstrated that p, p′-DDT and p, p′-DDE have negative effects on reproductive

factors, usually resulting in premature delivery and lower birth weight (Jusko et al., 2006).

Longnecker et al. (2001) examined the effects of DDT on preterm birth and small-for-

gestational-age (SGA), using p, p′-DDE measured from serum samples of pregnant women en-

rolled in the Collaborative Perinatal Project (CPP) between 1959 and 1966. The authors showed

that DDE had significant negative effects on both fetal outcomes. Dunson and Park (2008) an-

alyzed the CPP data using a KSBP mixture model for density regression with a focus on the

effect of DDE on preterm birth and drew a conclusion concordant to Longnecker et al. (2001)
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FIGURE 3.4: Plots of the 5th, 25th, 50th, 75th, and 95th percentiles of estimated conditional
GAD density over percentiles of DDT by smoking status and ethnic group. The solid lines are
the posterior means and the dashed lines are pointwise 99% credible intervals.

that high level concentration of DDE increased the risk of preterm birth.

3.6.2 Analysis and results

We analyzed the CPP data using the proposed semiparametric model with y = (BW, GAD)′

being a response vector of birth weight (BW) and gestational age at delivery (GAD), w =

(DDE, DDT)′ a error-prone predictor vector of maternal p, p′-DDE and p, p′-DDT, v = (TG, CHOL, RACE, SMOK)′

another predictor vector of serum triglycerides (TG), cholesterol (CHOL), infant ethnic origin

(RACE), and mother’s smoking status (SMOK), where RACE dichotomizes infant ethnicity

into black and other groups and SMOK divides mother’s smoking habit during pregnancy into

current and non-current smoker. Since serum lipids have an effect on concentration of serum
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FIGURE 3.5: Plots of the 5th, 25th, 50th, 75th, and 95th percentiles of estimated conditional
BW density over percentiles of DDT by smoking status and ethnic group. The solid lines are
the posterior means and the dashed lines are 99% credible intervals.

DDE and DDT, triglycerides and cholesterol were also considered in the measurement model

in (3.2), with z = (TG, CHOL)′. Data from the 2301 mothers and their children were used

for analysis, after 79 subjects were excluded for biologically unrealistic values in GAD (> 45

weeks). The specification of the hyperparameters to implement the MCMC algorithm is the

same as in the simulation example but with p = 2, q = 2, r = 4, and s = 2, and the chain was

run for 30, 000 iterations with a burn-in period of 15, 000. It was observed that both mixing and

convergence of the chain looked good (not shown).

Figures 3.4 and 3.5 show the 5th, 25th, 50th, 75th, and 95th percentiles of estimated density

of GAD and BW, respectively, over percentiles of the empirical DDT distribution by mother’s

smoking status and infant ethnicity. Since different parameterizations and constraints for iden-
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tifiability result in different values for the latent variable, making it difficult to interpret the

meaning of such values, we make inferences at percentiles of an empirical distribution of the

latent variable, which are invariant to different choices of parameterizations and identification

constraints. From Figure 3.4, it is obvious that GAD is not normally distributed, showing

left-skewness, and as the DDT level goes beyond its 60th percentile, the left tail of the GAD

densities gets heavier for all ethnic groups and smoking status. In contrast, BW is approxi-

mately normally-distributed and the location of the BW densities moves to a lower value for

higher DDT level, with no change in the shape of it (Figure 3.5). As in the simulation example,

wide credible intervals for the estimated density at high DDT level are also due to sparse data.

It is observed that all the percentiles of GAD and BW for smoking mothers and black babies

are rather lower than those for non-smokers and babies in the other ethnic group, respectively,

leading to a hypothetical question that percentiles of response densities are significantly differ-

ent by smoking status and ethnic group. To answer the question, a Bayesian hypothesis test

was conducted by comparing whether percentiles of estimated density for the non-smokers (the

other ethnic group) are bigger than that for the smokers (the black group) over percentiles of

DDT level, with the other continuous covariates fixed at their median values, at each MCMC

sample. Based on the results, such differences by smoking status (not shown) and ethnic group

(Figure 3.6) are highly significant for both BW and GAD, except at extremely low percentiles

of responses and/or at extremely high percentiles of DDT exposure.

Finally, the posterior mean of conditional densities of birth weight given different gestational

ages for black babies, whose mother smoked with the median DDT level, are profiled in Figure

3.7. Preterm births (solid line) result in a noticeable shift in the location of the conditional

density of BW to the left with more variability, supporting the biological fact that babies with

shorter gestation length tend to be smaller and weigh less, because they are delivered before fully

maturing. The profile pattern is observed to be similar for other ethnic and smoking groups,

with slight differences in locations.
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FIGURE 3.6: Heat plot of the marginal probability that the pth percentile of the conditional
density of BW (top) and GAD (bottom) for the black group is smaller than that for the other
group. Values range from 0 to 1, with 0 for black and 1 for white.

3.7 Discussion

This article has proposed a semiparametric Bayesian latent variable model for density re-

gression, relying on a nonparametric mixture of normal linear measurement models. By taking

nonparametric Bayes approaches to modeling of the unknown distribution of latent variable X

and of the conditional distribution of Y given X, we successfully relax the two assumptions,

linearity and normality, of a typical latent variable model. The proposed method is in part

similar to Lee et al. (2008) in that the DP prior is used for the distribution of latent variables.

However, our approach differs from the authors in that we avoid a truncation to the DP by im-

plementing a slice sampling algorithm, and furthermore the main difference comes from our use

of a flexible mixture model for the conditional distribution of Y given X. In fact, the proposed

slice sampling algorithm can be thought of as a different version of Walker’s (2007) algorithm,
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FIGURE 3.7: Profile of estimated conditional densities of BW for different values of GAD, with
DDT level fixed at its median.

but provides more flexibility, so that it can be implemented for the KSBP prior with ease.

In cases in which there are more than one latent variables, it should be checked out whether

the number of latent variables is smaller than the number of manifest variables, guaranteeing

that the corresponding factor loading matrix is of full rank. Assuming a full-rank factor loading

matrix, we recommend to constrain the factor loading matrix to be a block lower triangle matrix

with diagonals being positive as in Lopez and West (2004). Although we have focused on density

regression, the proposed method can be also used for other applications such as prediction or

modeling of complex covariance structure.
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CHAPTER 4

BAYESIAN SEMIPARAMETRIC

DENSITY REGRESSION WITH

INFINITE LATENT FACTOR

MODELS

4.1 Introduction

There has been an increasing interest in developing approaches for predicting health responses

for a patient utilizing not only patient demographics, clinical information and behavioral data

but also a high-dimensional set of markers. These markers may consist of metabolite profiles,

gene expression, gene sequence or other information. The availability of massive numbers of

predictors for a patient, due to the development and streamlining of new biomedical tools,

has generated considerable excitement about possibilities in improving patient care through

personalized medicine. However, although the possibilities for enormous improvements in patient

health are clear, the challenges faced in building accurate predictive models based on massive

dimensional predictors are daunting. A fundamental challenge that arises is the well-known

large p, small n problem in which the number of predictors typically exceeds the sample size by



a substantial margin.

Although a number of strategies for dealing with this problem have been proposed, latent

factor approaches (West, 2003; Caron et al., 2006, among many others) are particularly promis-

ing. Latent factor methods assume that the massive-dimensional predictors are measurements

of a relatively small number of latent variables. In latent factor regression (West, 2003), one can

incorporate latent factors underlying the predictors, with these latent factors used as predictors

in a model for the health response instead of the measurement predictors. In gene expression

applications, such latent factors have been referred to as meta-gene expression levels, and can

be thought to have a biological interpretation as genes in a common pathway tend to co-express

(Potti et al., 2006)

However, the use of latent variable models as exploratory tools has been criticized in that

most of latent variable approaches assume that subjects are forced to have the fixed number of

latent variables, which are linearly related to observed variables and normally distributed. In

recent years, the literature has focused on relaxing the normality and linearity of latent variable

models. Attias (1999) considered a finite mixture of Gaussians for latent factors in factor

analysis. Lee et al. (2008) proposed a semiparametric Bayesian model in which latent variables

are modeled as a infinite mixture of Gaussians induced by using the Dirichlet process (Ferguson,

1973; 1974) in structural equation models. Alternatively, Dunson et al. (2007) proposed a class

of centered stick-breaking processes, which allows the distribution of latent variables to be

unknown, while its mean and variance are constrained, as for parametric approaches. Some

authors focused on non-linear latent variable models by adding quadratic or interaction terms

to linear models (Arminger and Muthén, 1998; Lee and Song, 2003) or by using spline models

(Fahrmeir and Raach, 2007;Wang and Iyer, 2007).

Although all these approaches are flexible in some sense, it is still assumed that the number of

latent variables are fixed. The problem of allowing uncertainty in the number of latent variables

is often considered as a model selection problem and there are a variety of model selection

methods. For details, refer to Kass and Raftery (1995), Godsill (2001), and Lopez and West

(2004). Alternatively, Ghahramani et al. (2007) accessed the problem in the nonparametric
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Bayes perspective by proposing the Indian buffet process (IBP) for unbounded number of latent

features.

This article focuses on proposing a semiparamtric Bayes method for conditional density

estimation, relying on factor analytic models with the number of factors unknown. There has

been increasing work in conditional density estimation (Fan et al., 1996; Hyndman et al., 1996;

Fan and Yim, 2004; Dunson et al., 2007; Dunson and Park, 2008). However, it is in doubt

whether these methods can produce reliable results accounting for many predictors effectively.

Assuming that there are infinitely many factors in the population with a few number of them

represented in data at hand, our method allows not only the number of latent factors to be

unknown but also the number of factors to vary across subjects.

Section 4.2 discusses about latent factor models and their usages. We propose a nonparamet-

ric prior for infinite factors in Section 4.3 and outline an efficient MCMC algorithm in Section

4.4. In Section 4.5, the proposed method is illustrated with simulated examples. The results

are discussed in Section 4.6.

4.2 Latent Factor Models

For subject i = 1, . . . , n, let zi = (yi,x
′
i)
′ be a (p+1)×1 vector of observed variables including

a response yi and p predictors xi = (xi1, . . . , xip)
′. Then, a latent factor model with k latent

factors can be expressed as follows:

zi = µ + Λfi + εi,

fi ∼ G (4.1)

where µ is the (p + 1) × 1 intercept vector, Λ = (λ1, . . . , λk) is a (p + 1) × k matrix of factor

loadings with λh being a (p + 1) × 1 factor loading vector corresponding to the hth factor,

fi = (fi1, . . . , fik)
′ is a k × 1 vector of latent factors, and εi is a (p + 1) × 1 residual vector

with εi ∼ Np+1(0p+1,Σε), where 0a is a a × 1 vector of zeros and Nb(c,B) denotes a b-variate
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normal distribution with mean c and covariance matrix B. It is assumed that all fi and εi are

mutually independent of each other. In the parametric approach, it is commonly assumed that

G corresponds to a multivariate normal distribution, Nk(f0,Σf ), and upon marginalizing out

the latent variables, the marginal distribution of zi is given by

zi ∼ N(p+1)(zi; µz,Σz), (4.2)

where µz = µ + Λf0 and Σz = Σε + ΛΣfΛ
′. Since the model in (4.2) is not identifiable,

some parameters are required to be constrained and the most commonly used choice is f0 = 0k,

Σf = Ik, and Σε = diag(τ−1
1 , . . . , τ−1

p+1), with Ib being a b × b identity matrix, implying that zi

are uncorrelated given latent factors fi. In addition to these constraints, noting that the above

model is invariant to a transformation of fi and Λ to f∗i = Pfi and Λ∗ = ΛP′ with any orthogonal

matrix P, as known as rotational ambiguity (Anderson, 1971; Lopez and West, 2004), factor

loadings Λ should be also appropriately constrained. Without loss of generality, it is further

assumed that µ = 0k in the remaining sections.

In fact, the model in (4.1) provides a flexible modeling framework, so that it can be used under

two different analytic purposes: confirmatory and exploratory analysis. The model specification

that we have discussed so far implicitly assume that all subjects in the study must have the same

number of factors that is known a priori and that a particular latent structure is specified through

constraints on factor loadings, in which one may incorporate prior knowledge about relationships

between observed and latent variables. These assumptions characterize the confirmatory use of

the latent factor model. Latent factor models can be also used to explore the underlying factor

structure in zi by introducing a sequence of latent factors, until there is no common variability

among zi. In this sense, it is reasonable to assume that there are infinitely many factors in

the population, with a subject having only a few of them, and that the factors represented by

subject i is not necessarily the same as those for subject j. To take these assumptions into
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account, the model in (4.1) is extended to

zi =
∞∑

h=1

λhfih + εi. (4.3)

On the other hand, from (4.2) the conditional distribution of yi given xi is given by

yi|xi ∼ Np(yi; µ1 + Σ12Σ
−1
22 (xi − µ2), Σ11 −Σ12Σ

−1
22 Σ21),

where corresponding to zi = (yi,x
′
i)
′, µz and Σz are partitioned into

µz =




µ1

µ2


 , Σz =




Σ11 Σ12

µ21 Σ22


 ,

so that one may directly use the model for conditional density estimation, although its use is

limited for non-normal cases. Noting that any unknown smooth density can be approximated

by a mixture of Gaussians, we want to express the conditional distribution of yi given xi as a

mixture of linear regression models upon integrating out latent variables.

4.3 A Nonparametric Prior for Infinite Factors

Noting that latent factors are all continuous, so that Pr(fih = 0) = 0, it is implicitly assumed

that all subjects have the same number of latent factors. To allow each subject to have different

number of latent factors, we decompose a latent factor fih into two latent components Sih

and Vih, as in Ghahramani et al. (2007), such that Sih controls the occurrence of the latent

variable and Vih represents the value that the latent variable takes on. It is further assumed

that independent priors are imposed on them, so that G(fih) = GS(Sih)GV (Vih).
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4.3.1 Proposed Formulation

In order to define a prior for Si = (Si1, . . . , Si∞), it is assumed that the latent factors are

ordered, so that factors with lower indices are more commonly represented in the population,

with the first factor occurring the most, and the probabilities of occurrence of factors stochas-

tically decrease in index h. To take it for account, we consider the following hierarchical model

for Si:

Sih|πh
iid∼ Bernoulli(πh)

πh| γh
ind∼ Beta(1, γh),

where Bernoulli(a) denotes a Bernoulli distribution with the success probability of a and Beta(b,c)

denotes a Beta distribution with mean b/(b + c), and upon marginalizing over the prior of πh,

the marginal probability model for Sih for h = 1, . . . ,∞ is

Pr(Sih = 1| γh) = ph =
1

1 + γh

, (4.4)

which is dramatically decreasing in index h by the constraint of γ1 < · · · < γ∞, resulting in a

sparse representation with a few latent factors.

On the other hand, we assign factor scores Vi = (V1, . . . , V∞) a Dirichlet process (Ferguson,

1973; 1974) prior, which can be expressed as

Vi ∼ GV , GV ∼ DP (αGV 0), (4.5)

where DP (αGV 0) denotes a Dirichlet process prior with base measure GV 0 and precision α, and

by the stick-breaking representation of the DP (Sethuraman, 1994), the unknown distribution
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GV can be expressed as

GV =
∞∑

h=1

Uh

∏

l<h

(1− Ul)δθh
, Uh

iid∼ Beta(1, α), θh
iid∼ GV 0.

Letting Ci = h denote a latent variable indicating what latent class subject i belongs to, ex-

pression (4.5) can be reexpressed as

Vi = θCi
, Ci ∼

∞∑

h=1

πh, θh
iid∼ GV 0,

which is a useful form in posterior computation.

Although we allow the distribution of latent factor scores to be unknown, it is still assumed

that the factors are uncorrelated and have the same mean and variance by specifying GV 0(Vi) =

∏∞
l=1 GV 0(Vil), so that E(Vil) = µV , V(Vil) = σ2

V , and Cov(Vil, Vim) = 0 for l = 1, . . . ,∞ and

l 6= m. Hence, marginalizing over the prior of V but given Si, we obtain a Dirichlet process

mixture (Lo, 1984; Escobar and West, 1995):

f(zi|Λ,Si, θ,U) =
∞∑

h=1

πhN(p+1)

(
zi;

∞∑

l=1

λlSilθhl,Σε

)
, (4.6)

where π = {πh}∞h=1, with πh = Uh

∏
l<h(1− Ul).

In addition, our prior specification results that the mean and covariance of zi conditional on

Λ are

E(zi|Λ) =
∞∑

l=1

λlE(SilVil) = µV

∞∑

l=1

λlpl,

V(zi|Λ,Σε) = Σε +
∞∑

l=1

λlλ
′
l{plσ

2
V + pl(1− pl)µV },

where the second equation is obtained by repeatedly using V(XY ) = E{V(XY |X)}+V{E(XY |X)}
for any random variables X and Y , and it implies that the marginal mean and covariance of zi

are finite, when 1) the factor loadings have independent priors but with the same finite mean
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and covariance, such that E(λl) = λ0 and V(λl) = Σλ, and 2) infinite series p = {p1, . . . , p∞}
is convergent.

4.3.2 Finite Truncations

In the nonparametric Bayes literature, finite truncations have been proposed for infinite

processes such as the DP and more generally stick-breaking random measures (Ishwaran and

James, 2001; 2002), resulting in more efficiency in computational algorithms, while producing

almost the same inferential results as the original processes. Since the prior for Si results in a

sparse representation with a few dominant latent factors, it is appealing to focus on the following

truncation approximation to (4.3):

zi =
T∑

h=1

λhfih + εi. (4.7)

Before investigating related properties of the truncated model, we let ST
i =

∑∞
h=T Sih denote

the number of represented latent factors, the index of which is greater than or equal to T , with

ST
i,−l corresponding to ST

i with Sil deleted. Then we obtain the following lemma.

Lemma 4.3.1. Let MT (t) denote the moment generating function (MGF) of ST
i and let MT,−l(t)

denote the MGF of ST
i,−l. Then, the MGF of ST

i is given by

MT (t) =
∞∏

h=T

{(1− ph) + ph exp(t)}

and the rth derivative of MT (t) is

M
(r)
T (t) =





∑∞
h=T ph exp(t)MT,−h(t) for r = 1

M
(r−1)
T (t) +

∑∞
h=T ph exp(t)

∑r−2
l=0

(
r−2

l

)
M

(l+1)
T,−h (t) for r > 1,

where the superscript in parenthesis indicates the order of the derivative.
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The proof of Lemma 4.3.1 is straightforward, using the fact that the exponential function

exp(t) has itself as its derivatives. From Lemma 4.3.1, the expected number of latent factors per

subject is
∑∞

h=1 ph. In addition, Lemma 4.3.1 implies that if the first moment of ST
i is finite, in

other words, the positive sequence pT = {pT , . . . , p∞} is convergent, then so is its rth moment.

Based on Lemma 4.3.1, the following theorem holds.

Theorem 4.3.1. Let ∆i(T ) =
∑∞

h=T+1 λhfih. If {λl}∞l=1 has independent priors with E(λl) = λ0

and V(λl) = Σλ and pT is convergent with E(ST
i ) being in the order of 1/T , then ∆T+1 converges

in probability to zero.

The proof is in Appendix B. Theorem 4.3.1 says that the truncated model in (4.7) can be

used with a moderate value of T instead of (4.3).

4.3.3 A Special Case

Noting that p should be convergent for our model to hold and the increasing infinite sequence

γ = {γj}∞j=1 control p in (4.4), it is an important part of our model specification how to model

γ, and we consider the following model:

γh = exp{ψ0 + ψ1(h− 1)}, h = 1, . . . ,∞,

which corresponds to a logistic regression model for factor occurrence, and a constraint of

ψ1 > 0 ensures that γ are strictly increasing in the index h. On the other hand, to increase the

efficiency of the truncated model in (4.7) in approximating the original model, it is expected that

the probabilities p of S quickly level off to zero, after introducing a sufficient number of latent

factors enough to explain the shared variability among data. Note that hyperparameter ψ1

characterizes how fast the probabilities p decreases in the index h, while ψ0 does the probability

of occurrence of the first factor. We treat ψ0 as unknown with a prior truncated above at zero

and ψ1 as fixed at some reasonable value, say 3, so that the probability of introducing the first

factor is at least 0.5 and p is convergent. This convergence is easy to show by using the fact
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that the reciprocals of squared integer numbers are a convergent series and that ph is bounded

above by h−2, for h = 1, . . . ,∞.

4.4 Posterior Computation

In this section, we propose a Monte Carlo Markov Chain (MCMC) algorithm for posterior

computation with a focus on a truncated model with T = 20 in (4.7). While considering a

truncation to factor occurrences for computational convenience, we avoid a truncation to a DP

prior for factor scores by using the slice sampler approach of Park and Dunson (2007). The key

idea of the slice sampler is to introduce a latent variable ui to reduce an infinite sum in (4.6) to

a finite sum given ui. For more details, refer to Walker (2007) and Park and Dunson (2007).

To complete a Bayesian specification of the model, we choose the following conjugate priors

: GV 0(Vi) =
∏∞

h=1 N(Vih; µV , σ2
V ), π(Λ) =

∏∞
h=1 N(λh; µλ,Σλ), π(ψ0) ∝ 1(ψ0 < 0), π(α) =

G(α; aα, bα), and π(τj) = G(τj; aτ , bτ ), for j = 1, . . . , p + 1, where 1(·) is an indicator function

and G(·; a, b) denotes a Gamma distribution with mean a/b. Note that for additional flexibility,

the DP precision is treated as unknown and updated. Then, parameters and latent factors of

interest are updated within the following steps of a Gibbs sampling algorithm:

1. Update ui, for i = 1, . . . , n, by sampling from a uniform distribution within [0, πT ],

2. Update θh, for h = 1, . . . ,∞ by sampling from the multivariate normal distribution

θh ∼ NT (θh; V̂θh
(σ−2

V µV 1T +
∑

i:Ci=h

∆′
iΣ

−1
ε zi), V̂θh

),

where V̂θh
= (σ−2

V IT +
∑

i:Ci=h ∆′
iΣ

−1
ε ∆i), ∆i = [Si1λ1, . . . , SiT λT ] is a (p + 1)× T matrix

, 1a is a a× 1 vector of ones, and Ib is an identity matrix of dimension b.

3. Update Uh, for h = 1, . . . ,∞, by sampling from the beta distribution

Uh ∼ Beta

(
1 + mh, α +

∑

l>h

ml

)
,
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where mh =
∑n

i=1 1(Ci = h), and then update πh by πh = Uh

∏
l<h(1 − Ul), for h =

1, . . . ,∞.

4. Update Ci, for i = 1, . . . , n, by sampling from the multinomial distribution

Pr(Ci = h) ∝ 1(h ∈ Ai(ui))N

{
zi;

T∑

l=1

λl(Silθhl),Σε

}

where Ai(ui) = {h; πh > ui} is a finite index subset defined by sampling πh, for h =

1, . . . , k, with k being the smallest value satisfying

k∑

h=1

ph > (1− u∗),

where u∗ = mini{ui}.

5. Update Sil, for l = 1, . . . , T by sampling from the binomial distribution

Pr(Sil = j) ∝ 1(j ∈ {0, 1})Np+1

{
zi;

T∑

h=1,h6=l

λh(SihθCi,h) + λl(jθCi,l),Σε

}
.

6. Update ψ0 by a Metropolis-Hastings step and α as in West (1992).

7. Update the rest parameters as follows: for l = 1, . . . , T and j = 1, . . . , p + 1,

λl ∼ N

[
λl; V̂λl

{
Σ−1

λ µλ +
n∑

i=1

SilθCi,lΣ
−2
ε

(
zi −

l−1∑

h=1

λhSihθCi,h

)}
, V̂λl

]
,

τj ∼ G
(

τj; aτ +
n

2
, bτ +

1

2

n∑
i=1

{
zij − (

T∑

l=1

λl,jSilθCi,l)

}2
)

,

where V̂λl
= {Σ−1

λ +
∑n

i=1(SilθCi,l)
2Σ−1

ε }.
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FIGURE 4.1: Trace plots of representative quantities in simulation case 1.

4.5 Simulation Examples

We consider two simulation examples to illustrate the proposed method, while assessing

the computational performance of the proposed MCMC algorithm, with a focus on conditional

density estimation and prediction. For the hyperparameters, we choose µV = 0, σ2
V = 1,

µλ = 0p+1, Σλ = Ip+1, aα = bα = 2, and aτ = bτ = 0.1. For each simulation example, the Gibbs

sampler was run for 30,000 iterations, discarding the first 10,000 iterations as burn-in. Since it

is assumed that µ = 0, all observed data are centered before analysis is conducted.

In our first simulation, we consider the case in which there are two latent variables w1 and
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FIGURE 4.2: True conditional density of y given x (dotted lines), posterior mean estimates
(solid lines) and 99% pointwise credible intervals (dashed lines) at the 20th, 40th, 60th, and
80th percentiles of the latent variable w in simulation case 1.

w2 and observed data are simulated from the following model with n = 500 and p = 120:

wj
iid∼ Uniform(0, 1), for j = 1, 2,

f(y) = N(y; 3w1 + 2w2, 0.1
2),

f(x) = N(x; β1w1 + β2w2, 0.22Ip) (4.8)

where β1 = (1.2, 0.8, 1.4,0′9)
′ ⊗ 110 and β2 = (0, 0, 0, 1, 1.2, 0.8,0′6)

′ ⊗ 110, with ⊗ denoting

the Kronecker product, so that the half of the predictors have no effect on the distribution of

y. Figure 4.1 depicts trace plots of selected quantities (ψ0, α, E(y), E(x1), V ar(y), V ar(x1))

showing rapid convergence and good mixing. Figure 4.2 shows the predictive density of a future

observation at predictor values that are randomly sampled from the 20th, 40th, 60th and 80th
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(b) Validation set (n=100)

FIGURE 4.3: Estimated conditional mean response (plotted with o) and 99% pointwise credible
intervals (plotted with *) along with a diagonal solid reference line in simulation case 1.

percentile of the distribution of x1 with x2 being fixed at its median. The true density function

(dotted line) is entirely embedded by 99% pointwise credible intervals (dashed lines), indicating

good performance of the proposed method for conditional density estimation. To assess the

proposed method in terms of prediction, conditional mean responses were estimated not only

at the predictor values of the training set (left panel) and but also at predictor values of a

validation set of n = 100, randomly sampled from the model in (4.8) (right panel), presented in

Figure 4. 3. For both sets, all estimated means (plotted with o) except a few well approximate

the true means, which are completely contained with 99% credible intervals (plotted with *).

As our second simulation, data were simulated from the following model with n = 500 and
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FIGURE 4.4: True conditional density of y given x (dotted lines), posterior mean estimates
(solid lines) and 99% pointwise credible intervals (dashed lines) at the 20th, 40th, 60th, and
80th percentiles of the latent variable w in simulation case 2.

p = 100,

w
iid∼ Uniform(0, 1)

f(y) = (1− w2)N(y; 0.5, 0.22) + w2N(y; (w + 0.5)3, 0.22),

f(x) = N(x; βw, 0.22Ip) (4.9)

where β = (1.2, 0.8, 1.4, 1, 0.9,05)
′⊗110 and response y is a non-linear function of latent variable

w, while predictors x are linearly related to w. The results from the second simulation are

plotted in Figures 4.4 and 4.5, that are respectively analogous to Figures 4.2 and 4.3, showing

that our approach successfully characterizes even a non-linear relationship between responses

and predictors. It was observed that the increase in either the sample size or the number of
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FIGURE 4.5: Estimated conditional mean response (plotted with o) and 99% pointwise credible
intervals (plotted with *) along with a diagonal solid reference line in simulation case 2.

predictors related to the response improved posterior inferences, resulting in narrower credible

intervals (results not shown).

4.6 Discussion

This article proposed a semiparametric Bayesian approach for conditional density estimation,

using factor analysis models as a dimensionality-reduction technique. To treat the number of

latent factors as unknown, we defined a prior for infinitely many factors by decomposing a

factor into factor occurrence and score and then assigning independent priors to them, and

upon marginalizing out over the prior we could obtain a sparse representation for the joint

distribution of a response and predictors. In fact, the factor decomposition was first considered
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by Ghahramani et al. (2007), but there are unique characteristics of our approach. First, our

prior model for factor occurrences orders latent factors by their frequency in the population,

so that we can avoid possible problems caused by exchangeability of factors, such as the label

switching problem (Celeux et al., 2000; Stephens, 2000). In addition, nonparametric modeling

of factor scores can result in fewer latent factors represented in data, while providing a good

characterization of the data.

Although the proposed method was illustrated only with simulation examples, it is expected

that it can have applications to many exploratory studies for different inferences. It is also

expected that with appropriate constraints on factor loadings, for example, block diagonal matrix

as in Lopez and Mike (2004), the method can be used for other inferences rather than conditional

density estimation and prediction.
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CHAPTER 5

SUMMARY AND FUTURE

RESEARCH

5.1 Summary

This dissertation has proposed semiparametric Bayesian methods for density regression and

predictor-dependent clustering. Our focus was on modeling the conditional distribution of a

response variable given predictors as an infinite mixture of regression models.

In Chapter 2, we derived a generalized product partition model (GPPM) by incorporating

predictors in DP clustering, resulting in a generalized Plya urn scheme. In the application

of conditional density estimation, the GPPM provides flexible semiparametric Bayes models

while avoiding expensive computation of large numbers of unknowns characterizing priors for

dependent collections of random probability measures. Another appealing feature of the GPPM

is that for it is easy to implement by modifying Markov chain Monte Carlo (MCMC) algorithms

commonly used for the Dirichlet process mixture.

Chapter 3 considered the problem of estimating conditional density estimation in cases,

where predictors are not directly observed and multiple surrogates are instead. We proposed a

flexible semiparametric Bayesian method that uses nonparametric Bayes approaches to modeling

of the unknown distribution of latent variables and of the conditional distribution of responses



given latent variables, resulting in relaxation of the normality and linearity. The proposed slice

sampler has more flexibility in implementation, so that it showed its good performance not only

for the DP prior but also for the KSBP prior. As in the data analysis, our method also allows

us to see changes in the conditional distribution of a response given the other responses and

latent variables.

Finally, we proposed a black-box type method for density estimation in cases, where there are

many predictors but a small number of subjects. Factor analysis models were used to model both

a response and predictors, with the number of latent factors unknown. Hence, the conditional

distribution of a response given predictors can be derived from the joint distribution, which is

obtained upon marginalizing over the prior of latent factors. It was shown that our truncated

model produced good results in two simulation examples.

5.2 Future Research

In recent years, there has been an increasing attention to density regression and predictor-

dependent clustering, but have not been much contributions in the literature. Hence, it would

be of interest to find the theoretical properties of predictor-dependent collections of random

probability measures and to develop much faster approaches to computation, so that these

methods can be implemented routinely in practice for problems involving complex, large bio-

logical data. In this section, we discuss some possible extensions of the proposed methods and

areas of future research.

First, as continuation of Chapter 2, we would generalize the use of the GPPM in analyses of

more complex data. For example, Quintana et al. (2007) analyzed data consisting of sequences

of indicators for loss of heterozygosity (LOH) with three nested levels of repetition: chromosomes

for a given patient, regions within chromosomes, and single nucleotide polymorphisms nested

within regions. A major draw-back of this approach is the use of fixed, pre-specified regions.

We could use a simple location-specific model (e.g., Bernoulli with location-specific probability

of LOH) but then cluster locations into regions using the GPPM. As we would be clustering
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based on both location and LOH probability, the result would be the identification of regions of

high and low LOH, which would be quite interesting.

In the situation of Chapter 3, we would alternatively propose to define a prior of an un-

countable collection of random probability measures by modifying the KSBP. In the KSBP,

conditional probabilities of being assigned to a random location given predictor values are spec-

ified directly by sequential products of beta-distributed random variables and a kernel. Instead,

the conditional probabilities can rely on the factorization, that is, the conditional probability of

being assigned to the hth location given predictor values x is proportional to the product of the

prior probability for the hth location and the likelihood of x given location h.
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APPENDIX A

Proof of Theorem 2.1.1

The Pólya urn scheme in expression (2.5) can be reexpressed with a vector of unique values θ(i)

and configuration S(i):

(
φi |φ(i)

) ∼
(

α

α + n− 1

)
G0(φi) +

(
1

α + n− 1

) k(i)∑

h=1

k
(i)
h δ

θ
(i)
h

(φi).

Then, using expression (2.7), the joint distribution of φ is

π(φ) = π(φi|φ(i))π(φ(i))

=
{(

α

α + n− 1

)
G0(φi) +

(
1

α + n− 1

) k(i)∑

h=1

k
(i)
h δ

θ
(i)
h

(φi)
}

×
{

1∏n−1
l=1 (α + l − 1)

k(i)∏

m=1

α(k(i)
m − 1)!G0(φ

(i)
m,1)

k
(i)
m∏

j=2

δ
φ(i)

m,1

(φ(i)
m,j)

}
,

= αc0G0(φi)
{ k(i)∏

m=1

c(S∗(i)m )G0(φ
(i)
m,1)

k
(i)
m∏

j=2

δ
φ(i)

m,1

(φ(i)
m,j)

}

+c0

k(i)∑

h=1

k
(i)
h

k(i)∏

m=1

c(S∗(i)m )G0(φ
(i)
m,1){δφ(i)

m,1

(φi)}1(m=h)
k
(i)
m∏

j=2

δ
φ(i)

m,1

(φ(i)
m,j),

where c0 =
∏n

i=1(α + l − 1)−1, c(S
∗(i)
h ) = α(k

(i)
h − 1)!, and 1(·) is an indicator function. By

setting φ = (γ, ϕ)′ and doing the same thing to obtain expression (2.11), we can obtain the joint

distribution of ϕ and X:
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π(ϕ,X)

= αc0G0ϕ(ϕi)
∫

f2(xi|γ)dG0γ(γ)

×
{ k(i)∏

m=1

c(S∗(i)m )
[ ∫ ∏

i∈S
∗(i)
m

f2(xi|γ)dG0γ(γ)
]
G0ϕ(ϕm,1)

k
(i)
m∏

j=2

δϕ(i)
m,1

(ϕ(i)
m,j)

}

+c0

k(i)∑

h=1

k
(i)
h δ

ϕ
∗(i)
h

(ϕi)

×
{ k(i)∏

m=1

c(S∗(i)m )
[ ∫

f2(xi|γ)1(m=h)
∏

l∈S
∗(i)
m

f2(xl|γ)dG0γ(γ)
]
G0ϕ(ϕm,1)

k
(i)
m∏

j=2

δϕ(i)
m,1

(ϕ(i)
m,j)

}
.

By Bayes rule the square bracket in the second term of the last equation can be reexpressed as

follows:

∫
f2(xi|γ)1(m=h)

∏

l∈S
∗(i)
m

f2(xl|γ)dG0γ(γ)

=

∫ ∏

l∈S
∗(i)
m

f2(xl|γ)dG0γ(γ)

∫
f2(xi|γ)1(m=h)

∏
l∈S

∗(i)
m

f2(xl|γ)∫ ∏
l∈S

∗(i)
m

f2(xl|γ)dG0γ(γ)
dG0γ(γ)

=

∫ ∏

l∈S
∗(i)
m

f2(xl|γ)dG0γ(γ)

∫
f2(xi|γ)1(m=h)dG∗

0γ(γ|X(i)
m ),

where X
(i)
m = {xi|i ∈ S

∗(i)
m } and G∗

0γ(γ|X(i)
m ) is the posterior distribution of γ updated with the

likelihood of X
(i)
m . Therefore, the joint distribution of ϕ and X is simplified as

π(ϕ,X) =

{
α

∫
f2(xi|γ)dG0γ(γ)G0ϕ(ϕi) +

k(i)∑

h=1

k
(i)
h

∫
f2(xi|γ)dG∗

0γ(γ|X(i)
m )δ

γ
(i)
y,h

(ϕi)

}

×c0

k(i)∏
m=1

c(S∗(i)m )

[ ∫ ∏

i∈S
∗(i)
m

f2(xi|γ)dG0γ(γ)

]
G0ϕ(ϕm,1)

k
(i)
m∏

j=2

δϕ(i)
m,1

(ϕ
(i)
m,j),

and marginalizing the above equation over ϕi and dividing it by π(ϕ(i),X) completes the proof.
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APPENDIX B

Proof of Theorem 4.3.1

By the Chebychev’s inequality for any real number ε > 0,

Pr(|∆i(T )| ≥ ε) ≤ 1

ε2
V(∆i(T ))

≤ 1

ε2
V

( ∞∑

l=T+1

λlSilVil

)

≤ 1

ε2

[ ∞∑

l=T+1

E(λlλ
′
l){plσ

2
V + pl(1− pl)µV }+

∞∑

l=T+1

V(λl)p
2
l µ

2
V

]

<
c

ε2(T + 1)
,

where c = E(λlλ
′
l)(σ

2
V + µV ) + V(λl)µ

2
V , and therefore limT→∞ Pr(|∆i(T )| ≥ ε) = 0.
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Lavine, M. (1992). Some aspects of pólya tree distributions for statistical modelling. Annals of
Statistics 20, 1161–1176.
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