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ABSTRACT 

 

ANNE M. HAKENEWERTH: Joint effects of alcohol consumption and  
polymorphisms in alcohol and oxidative stress metabolism genes  

on risk and survival from head and neck cancer 
(Under the direction of Dr. Andrew Olshan) 

 

Heavy drinking of alcoholic beverages increases risk of developing squamous cell 

carcinoma of the head and neck (SCCHN; oral, pharyngeal and laryngeal cancer). This 

study hypothesized that genetic variation in the ethanol metabolism and oxidative stress 

pathways may influence the occurrence of and survival from SCCHN.  

Interview and genotyping data were obtained from 1227 SCCHN cases and 1325 

controls from the Carolina Head and Neck Cancer Epidemiology study, a population-based 

case-control study of head and neck cancer conducted in North Carolina from 2002-2006. 

Vital status through 2008 was obtained from the National Death Index. A panel of 45 single 

nucleotide polymorphisms (SNPs) in the ethanol and 19 SNPs in the oxidative stress 

metabolism pathways were evaluated in relation to the risk of SCCHN using logistic 

regression and in relation to all-cause and cancer-specific survival using Cox regression. 

Bonferroni- corrected p-values were also estimated.  

Two SNPs were associated with SCCHN risk: ADH1B rs1229984 A allele [odds ratio 

(OR)=0.7, 95% confidence interval (CI)=0.6-0.9)] and ALDH2 rs2238151 C allele (OR=1.2, 

95% CI=1.1-1.4). Three SNPs were associated with cancer risk in anatomic sub-sites: 

ADH1B rs17028834 C allele (larynx, OR=1.5, 95% CI=1.1-2.0), SOD2 rs4342445 A allele 

(oral cavity, OR=1.3, 95% CI=1.1-1.6), and SOD2 rs5746134 T allele (hypopharynx, 
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OR=2.1, 95% CI=1.2-3.7). Four SNPs in alcohol metabolism genes interacted with level of 

alcohol consumption: ALDH2 rs2238151, ADH1B rs1159918, ADH7 rs1154460, and 

CYP2E1 rs2249695. No interactions with alcohol were found for oxidative stress pathway 

SNPs.  

Minor alleles of two SNPs in CYP2E1 – the ‘C’ allele of both rs3813865 and 

rs8192772 – were associated with increased hazard of cancer-specific death [hazard ratio 

(HR)=2.09,  95%CI=1.38‐3.18; HR=1.71, 95% CI=1.23‐2.37, respectively]. No associations 

with survival were found for SNPs in ADH1B, ADH1C, ADH4, ADH7, ALDH2, GPx2, GPx4, 

and CAT.  

Previously unreported associations of SNPs in ALDH2, CYP2E1, GPX2, SOD1, and 

SOD2 with tumor incidence, and in CYP2E1 with cancer-specific survival, warrant further 

investigation. Associations with cancer incidence provide evidence that genetic variation in 

alcohol and oxidative stress pathways influence SCCHN carcinogenesis.  
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CHAPTER 1   

BACKGROUND AND REVIEW OF LITERATURE 

1.1 INTRODUCTION 

Head and neck cancers and their treatment differ from other human cancers in 

important ways. Not only do organs in the head and neck provide speaking ability, they also 

provide four of the five senses -- sight, hearing, taste, and smell -- as well as enable the 

essential life functions of breathing and eating. We interact with our environment primarily 

through the head and neck. Since cancers occurring in this region and their treatment may 

therefore result in deficits in any of these organs and their corresponding function, quality of 

life for people with head and neck cancer is more negatively impacted than for people with 

most other cancers. Pain, noticeable disfigurement and disability, and depression are 

common sequelae. Consequently, people with head and neck cancer require more 

rehabilitation and emotional support compared to those with most other cancers.  

1.2 TUMOR CHARACTERISTICS AND DESCRIPTIVE EPIDEMIOLOGY     

1.2.1 Tumor characteristics 

Cancers of the head and neck are defined by location, histology, and the fact that 

most are associated with use of tobacco and alcoholic beverages. Cancers of the head and 

neck (or upper aerodigestive tract/UADT) usually include cancers of the oral cavity (lip, 

tongue, gum, floor of mouth, other mouth, salivary glands); pharyngeal cancer 

(nasopharynx, hypopharynx, oropharynx, pharynx NOS); cancers of the nose, nasal cavity 
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and nasal sinuses; and laryngeal cancer. More than 90% of these cancers are squamous 

cell carcinoma (SCC). Excluded from the group are cancers of the skin, bone, pituitary 

gland, pineal gland, thyroid, eye, ear, brain, and meninges.  

Nasopharyngeal cancer and cancer of the nose, nasal cavity and nasal sinuses are 

rare in comparison to cancers of the other upper aerodigestive sites, and are inconsistently 

associated with tobacco and alcohol use. In addition, non-squamous cell cancers may well 

have a different etiology and risk factors than SCCs. Therefore these cancers are not 

included in this study.  

This dissertation analyzed case-control data from CHANCE, the Carolina Head and 

Neck Cancer Epidemiologic study. CHANCE enrolled cases of invasive squamous cell 

carcinomas of the head and neck (SCCHN), encompassing cancers of the oral cavity 

including lip, tongue, gum, floor of mouth, and other mouth; cancers of the pharynx including 

oropharynx, hypopharynx, and pharynx NOS; and laryngeal cancers. It excluded patients 

with nasopharyngeal cancer and cancers of the nose, nasal cavity, and nasal sinuses. 

CHANCE enrolled a small number of cases with lip cancer (n=21) and included them in its 

definition of SCCHN; however, this dissertation project excluded lip cancers from final 

analyses because the etiology of lip cancer (sunlight exposure in addition to alcohol and 

tobacco) differs from other SCCHNs. 

1.2.1.1 Anatomic distribution 

In the United States, the age-adjusted incidence rate of cancer of the oral cavity, 

larynx, and pharynx (excluding salivary gland and nasopharynx), averaged from 2002-2006, 

was 12.0 cases per 100,000. Slightly more than half of these occurred in the larynx and 

tongue, and over 80% occurred in the larynx, tongue, oropharynx, tonsil, gum and other 

mouth (Table 1).  
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Table 1. Anatomic distribution of head and neck cancers included in 
this study, United States 2002-2006 

Anatomic Location Annualized age-adjusted 
incidence rate per 100,000 (%)* 

Cumulative 
% 
 

Larynx 3.5 (29.2) 29.2 
Tongue 2.8 (23.3) 52.5 
Oropharynx and tonsil 1.9 (15.8) 68.3 
Gum and other mouth 1.5 (12.5) 80.8 
Lip 0.8 (6.7) 87.5 
Hypopharynx 0.7 (5.8) 93.3 
Floor of mouth 0.6 (5.0) 98.3 
Other oral cavity and pharynx 0.2 (1.7) 100.0 
ALL SITES COMBINED 12.0 (100)  

*SEER incidence data used in calculating the rates are from the 17 SEER areas (San 
Francisco, Connecticut, Detroit, Hawaii, Iowa,   New Mexico, Seattle, Utah, Atlanta, San 
Jose-Monterey, Los Angeles, Alaska Native Registry, Rural Georgia,   California). Rates 
are age-adjusted to the 2000 US Std Population (19 age groups - Census P25-1130).   

 

1.2.1.2 Pathogenesis and premalignant lesions 

Oral and many pharyngeal cancers are often clinically preceded by precursor lesions 

and conditions. The best-characterized such lesions include oral leukoplakia, erythroplakia, 

and oral submucous fibrosis. Oral leukoplakia and erythroplakia are diagnoses of exclusion; 

they are defined as adherent white (leukoplakia) or red (erythroplakia) patches on the 

mucous membranes of the oral cavity that cannot be defined as another type of lesion. Oral 

submucous fibrosis is a chronic debilitating disease characterized by inflammation and 

progressive fibrosis of submucosal tissues, resulting in stiffness of the mucosa.  

Erythroplakia is much more likely than leukoplakia to contain epithelial dysplasia, 

thus resulting in higher risk of eventual progression to cancer. Most oral lesions are found to 

be leukoplakia, in which 4 to 18% have been found to progress to cancer (1). Similarly, an 

Indian study reported that about 8% of oral submucous fibrosis cases eventually progress to 

cancer (2). In contrast, although much less common than leukoplakia, almost all 

erythroplakia lesions are found to be dysplastic or already-cancerous at the time of 
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diagnosis (1). Oropharyngeal tumors associated with human papillomavirus (HPV) infection 

almost exclusively occur in tonsillar crypts, where even small tumors often first present as 

regionally metastasized, with little evidence of precursor lesions. 

Laryngeal cancers are associated with a sequence of changes in the laryngeal 

epithelial mucosa that often includes laryngeal keratosis. These usually white, sometimes 

red, plaques appear similar to oral leukoplakia, and may present with or without atypia. They 

are often found near tumors and have a high transformation rate of from 1 to 40% (3) that is 

correlated with the amount of atypia. However, a significant percentage of laryngeal cancers 

present at an advanced stage without evidence of precursor lesions.  

1.2.1.3 Molecular characteristics 

SCCHN has traditionally been regarded as a homogeneous disease requiring a 

relatively common therapeutic regimen. However, differences in epidemiological risk factors 

and incidence and mortality trends among SCCHNs arising from different anatomic sites 

have supported the view that head and neck cancers form a heterogeneous group with 

distinct etiologies and prognoses that may require distinct treatments.  

 Tobacco smoking is the most well characterized risk factor for SCCHN. Although 

heavy alcohol consumption is a documented risk factor in its own right, its effects are usually 

manifested in its ability to synergistically enhance the effects of tobacco smoking. The risk of 

cancer development is much higher for those who heavily drink and smoke than would be 

expected by examining the risks for smoking and drinking alone (4). Although tobacco and 

alcohol exposure are responsible for the large majority of SCCHNs in the oral cavity, larynx, 

and hypopharynx, their role in carcinogenesis in the oropharynx is much reduced. 

Oncogenic HPV infection, especially type 16, has been identified as a causal agent in about 

70% of oropharyngeal SCCHN, and in HPV-associated cases, alcohol and tobacco are not 

associated as risk factors (5). 



 

 5 

 

Much research has investigated the relative order of genetic and epigenetic changes 

that occur during carcinogenesis. An understanding of the type and order of such changes 

may provide insight into the carcinogenetic process ending in SCCHN. Early changes may 

be most common and therefore might be suitable targets for early therapeutic intervention, 

while later alterations may be less common but might serve as prognostic factors and 

therapeutic targets for certain subsets of tumors. Clinical and histologic progression from 

squamous hyperplasia to dysplasia, carcinoma in situ, and eventually invasive carcinoma 

are driven by progressive accretion of chromosomal genetic alterations (Figure 1). The 

transition from normal mucosa to hyperplasia is driven by loss of heterozygosity (LOH) at 

chromosome 9p21, which inactivates p16 (CDKN2A), a cell cycle negative regulator. The 

transition from hyperplasia to dysplasia is accompanied by LOH at 3p21 and 17p13, causing 

p53 mutation and/or up-regulation. Transition from dysplasia to carcinoma in situ is 

facilitated by LOH at 11q13, 13q21, and 14q32, resulting in Cyclin D1 amplification. Cyclin 

D1 functions as a regulatory subunit of CDK4 and CDK6, whose activity is required for cell 

cycle G1/S transition; it has been shown to be positively regulated by interaction with 

retinoblastoma (Rb) protein. The final transformation to frank carcinoma is mediated by 

additional LOH at 6p, 8, 4q27, and 10q23, which inactivates the PTEN tumor suppressor 

gene (5).  

In almost all SCCHNs, the tumor-protein p53 (TP53) and Rb gene pathways are 

disrupted. TP53 regulates the cell cycle and is a tumor suppressor; over 50% of SCCHN 

tumors contain inactivating TP53 mutations or chromosomal loss at 17p where the TP53 

gene resides (5). The most common mutation in the Rb pathway is the p16INK4A tumor 

suppressor gene. Lippman et al. demonstrated a wide range of p53 protein expression in 

90% of SCCHN tumors, compared with no expression in any normal oral cavity epithelium 

(6). Boyle et al. demonstrated that mutation in the TP53 gene occurred in 19% of  
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non-invasive lesions (severe dysplasias and carcinoma 

in situ), increasing to 43% of invasive carcinomas (7). 

Such studies indicate abnormal increases in p53 

expression may occur early in carcinogenesis, but that 

p53 mutations may occur later in the process. TP53 

mutations have been found to occur more frequently in 

smokers than in non-smokers (8), though not uniformly 

so. The pattern of base pair changes in TP53 is 

different between smokers and non-smokers, with 

significantly more mutations occurring in CpG islands in 

the nonsmokers than in smokers (8). 

Although HPV-related SCCHNs also display 

abnormal amounts of p53 and Rb, they most often do 

not contain TP53 or Rb mutations, thus implying the 

presence of alternative (to mutation) oncogenic 

mechanisms. In most of these tumors, p53 and Rb 

proteins are bound and degraded by the viral 

oncoproteins E6 and E7, respectively, rendering 

upstream mutation of the gene unnecessary to the 

oncogenic process. (5) 

Subsequent tumors, in people with primary 

SCCHN tumors that were completely surgically removed, are often fatal and develop not 

only in the head and neck but also in the lungs or esophagus. Ten to forty percent of 

patients experience such a secondary tumor (9-11). This observation led to the 1953 field 

cancerization theory of Slaughter (12) which postulates that large portions of the epithelial 

Figure 1. Genetic progression 
model of SCCHN 
tumorigenesis* 

 

 

Clinical and histologic progression from 
squamous hyperplasia through 
progressively more advanced stages of 
dysplasia, resulting eventually in 
invasive SCCHN, are driven by 
progressive accumulation of genetic and 
epigenetic transformations.  
* adapted from Pai and Westra (5). 



 

 7 

surface of the respiratory tract are damaged simultaneously (although not identically) by 

carcinogen exposure. According to this theory, multiple lesions are thought to develop 

independently of each other, and therefore would most likely have non-identical mutations. 

Recent research (13) supports the field cancerization theory: nearby secondary SCCHN 

tumors often have genetically identical mutations, while more distant secondary tumors 

almost always have different mutations than the original lesion. The realization that the 

pathologist or surgeon cannot accurately identify all damaged sections of epithelium that 

should be removed is fueling a search for biomarkers that could be used in diagnosis and 

treatment planning.(5) 

1.2.2 Descriptive epidemiology 

1.2.2.1 Incidence and mortality in the United States  

SCCHN is one of the ten most frequently diagnosed cancers in men in the United 

States; three-quarters of incident cases and deaths occur in men. There were estimated to 

be 52,140 new cases of oropharyngeal and laryngeal cancer and 11,460 deaths in the U.S. 

in 2011 (14). SCCHN patients have a relatively poor prognosis compared to those 

diagnosed with other cancers and experience significant morbidity, including disfigurement 

and psychosocial sequelae, related to the cancer and its treatment (15, 16). SCCHN 

incidence increases with age and is more common in all races for men than women by a 

factor of 2 to 3 for oropharyngeal cancers, and by a factor of 5 to 9 for laryngeal cancers 

(Table 2). Incidence rates of oropharyngeal cancer are about the same in African-Americans 

and in whites, while rates of laryngeal cancer are much higher in African-Americans than 

whites. Compared to both African-Americans and whites, the lowest incidence and mortality 

rates of SCCHN in both men and women occur in Hispanics, Asian/Pacific Islanders, and 

Native Americans. Five-year relative survival rate and median survival time for both 
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oropharyngeal and laryngeal cancers are both lower among African-Americans compared to 

whites (5-year survival, African-Americans versus whites: 41% vs. 61% for oropharyngeal 

and 51% vs. 64% for laryngeal cancer) (15). 

1.2.2.2 Time trends in the United States  

In the U.S., between 1984-86 and 1999-01, age-adjusted incidence rates of all first 

primary tumors of the upper aerodigestive tract (UADT) declined from 13.0 (12.7-13.3) to 

10.2 (10.0-10.4). However, there was no significant change in incidence of cancer of the 

oropharynx (including the tonsils, base of the tongue, and surrounding epithelium); in fact 

there was an increased incidence in white men younger than 60. During the same time, 5-

year relative survival rates for UADT increased from 48.1% to 52.4% in the U.S., driven 

largely by a dramatic increase in relative survival for cancers of the oropharynx, from 35.3% 

Table 2. SCCHN incidence and mortality rates by anatomic location, sex and race, 
United States 2002-2006 (15) 

Sex and race 

Incidence rate* Mortality rate** 

Oral cavity 
& pharynx Laryngeal 

SCCHN 
(combined)# 

Oral 
cavity & 
pharynx Laryngeal 

 
 

SCCHN 
(combined)# 

Men – All races 15.4 6.2 21.6 3.9 2.3 6.2 
     White 15.6 6.2 21.8 3.7 2.1 5.8 
     Black 16.7 10.5 27.2 6.5 4.7 11.2 
     Asian/Pacific Islander  10.8 2.7 13.5 3.2 0.7 3.9 
     Native Americans 9.2 2.4 11.6 3.6 1.9 5.5 
     Hispanic 9.0 4.9 13.9 2.5 1.9 4.4 
Women – All races 6.1 1.3 7.4 1.5 0.5 2.0 
     White 6.1 1.3 7.4 1.4 0.5 1.9 
     Black 5.8 2.0 7.8 1.6 0.7 2.3 
     Asian/Pacific Islander  5.4 0.3 5.7 1.3 0.1 1.4 
     Native Americans 5.1 --- 5.1 1.5 --- 1.5 
     Hispanic 3.5 0.6 4.1 0.8 0.2 1.0 
 
*SEER incidence data used in calculating the rates are from the 17 SEER areas (San Francisco, Connecticut, Detroit, Hawaii, 
Iowa, New Mexico, Seattle, Utah, Atlanta, San Jose-Monterey, Los Angeles, Alaska Native Registry, Rural Georgia, California). 
Rates are annualized per 100,000 population and age-adjusted to the 2000 US Std Population (19 age groups - Census P25-
1130).   
**US Mortality Files, National Center for Health Statistics, Centers for Disease Control and Prevention. Rates are per 100,000 
population and age-adjusted to the 2000 US Std Population (19 age groups - Census P25-1130).   
#SCCHN rates are computed by adding separate rates for oral cavity and pharynx cancers, and laryngeal cancers. 
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to 51.0%.(17) Small increases in relative survival were also observed for cancers of the oral 

cavity and hypopharynx, but not for laryngeal cancer. These trends are consistent with the 

hypothesis that that there has been a change in the etiology of oropharyngeal cancer in the 

U.S. especially in younger men, related to a rise in pharyngeal HPV infection and that 

accompanies a change in its response to therapy (17).  

Ninety-six percent of the population in North Carolina self-declares their 

race/ethnicity as Black (African-American) or White (European-American), with other race-

ethnicities (4% total) each comprising less than 2% of the population. The proportion of the 

population in North Carolina that is African-American (21.6%) is much larger than in the U.S. 

as a whole (12.8%), so health disparities that negatively affect African-Americans have a 

proportionately larger effect in North Carolina. For cancers of the tongue, mouth floor, 

gum/other, tonsils, oropharynx, hypopharynx, other oral cavity and pharynx, and larynx, 

incidence rates among African-American men in the U.S. have, since 1973, been much 

higher than rates in white men and all women (see Figure 2), while rates in white women are 

lowest. Rates in African-American men climbed steeply from 1973 to the 1980s, then began 

a sharp decline continuing through the 1990s to the present. This is thought to be related 

mostly to changing rates of smoking. In contrast, white men experienced a small increase 

from 1973 to a peak in 1981, after which rates declined consistently until 2000, and 

remained stable thereafter. Rates in both African-American and white women were much 

lower than in men from 1973-2005; African-American women experienced higher rates than 

white women during the 1980s but since then have experienced a slow decline, and 

currently experience about the same rate as white women.  
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Figure 2. Time trends of incidence of oropharynx and larynx cancers, U.S., 1973-2005* 

 

* Data from: Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) SEER*Stat Database: 
Incidence - SEER 9 Regs Limited-Use, Nov 2008 Sub (1973-2006) , National Cancer Institute, DCCPS, Surveillance Research 
Program, Cancer Statistics Branch, released April 2009, based on the November 2008 submission. Oropharyngeal cancer is 
defined as cancer of the tongue, mouth floor, gum/other, tonsils, oropharynx, hypopharynx, other oral cavity and pharynx, and 
larynx. Rates are age-adjusted and standardized to the 2000 U.S. population. 
 

1.2.2.3 International incidence rates and trends 

Internationally, in both men and women, incidence rates are higher in more 

developed than in less developed regions. For example, the age standardized rates (world) 

in men living in more developed regions are 7.9 per 100,000 for oral cavity cancer and 6.9 

for laryngeal cancer, compared to 5.7 and 4.3, respectively, in less developed regions. In 

women, rates are much lower than in men (e.g. 7.9 for men in more developed countries 

versus 2.4 for women in the same countries) and there are no consistent differences 

between women living in more and less developed countries. In men, mortality rates are 

also higher in more developed regions, but in women the reverse is true (18).  
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Between 1975 and 1995, laryngeal cancer incidence rates declined in both men and 

women in almost all countries with the exception of Japan. Although incidence rates for 

pharyngeal, oral cavity, and lip cancers have generally declined in both men and women 

over the same time period, there have been plateaus or increases in oropharyngeal cancer 

in the region of the base of the tongue and the tonsils in younger men (age 20-44 years) in 

the U.S. (19) and many parts of Europe (20). The tongue and tonsils have been shown to be 

the predominant region of oropharyngeal HPV infection that progresses to cancer (21).  

1.3 RISK FACTORS      

1.3.1  Heredity 

Epidemiologic studies of familial clustering of SCCHN cases provide suggestive 

evidence for genetic predisposition. Such evidence implies shared genes, shared exposure, 

or both. In a Brazilian case-control study of 754 cases of SCCHN and 1,507 age- and 

gender-matched hospital-based controls with non-malignant diseases (22), investigators 

found that the relative risk (RR) for developing SCCHN was doubled in cases who had a 

first-degree relative with any cancer, 3.65 (95%CI=1.97-6.76) if the first-degree relative had 

head and neck cancer, and 8.57 (95% CI=2.72-27.04) if the first-degree relative with head 

and neck cancer was a sibling. The same authors reported a similar increased risk for 

developing SCCHN (OR=3.79; 95% CI=1.11-13.0) in a Canadian population if first-degree 

relatives also had SCCHN (23). A comparable study in Puerto Rico on 342 cases with oral 

cavity or pharyngeal cancer and 521 controls found an increased OR of 2.6 (95% CI=1.4-

4.8) in cases with first-degree relatives with any upper aerodigestive tract (UADT) tumor 

(24). Ankathil et al. (25) created a detailed pedigree analysis for each of their Indian oral 

cancer patients, based on a questionnaire eliciting information about family history of cancer 

and especially SCCHN. They observed, as with other familial cancers, that a family history 
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of SCCHN was associated with an early age of onset. In addition, family members who did 

not use tobacco products or smoke were also affected. Such familial aggregation was 

observed in 1% of their oral cancer cases. The authors therefore postulate the existence of 

an oral cancer susceptibility gene. Morita et al. (26) compared family cancer history in 167 

patients with hypopharyngeal or cervical esophageal cancers versus 167 controls with 

benign diseases. The odds ratio for cases with family history of UADT tumors in relation to 

controls was 2.6 (95% CI=1.1-6.3), and these cases were significantly younger than cases 

whose relatives had another type of cancer or no cancer. In contrast, a study by Goldstein et 

al. (27) found only non-significant excess risk among those with a family history of 

oropharyngeal tumors (OR=1.2, 95% CI=0.7-2.3) or esophageal/laryngeal cancers (OR=1.6, 

95% CI=0.7-3.8). They found that excess familial risk of oropharyngeal cancers was 

associated with smoking-related cancers among male but not female relatives, and 

conclude that it is likely that environmental factors such as smoking and drinking contribute 

to the familial tendencies they observed; they were unable to discriminate genetic from 

environmental factors in their study. A recent pooled analysis of 8,967 head and neck 

cancer (HNC) cases and 13,627 controls from 12 case-control studies found that a family 

history of HNC in first degree relatives increased the risk of HNC (OR=1.7; 95% CI: 1.2-2.3) 

(28). The risk was higher when the affected relative was a sibling (OR=2.2, 95% CI: 1.6-3.1) 

rather than a parent (OR=1.5, 95% CI=1.1-1.8). The OR was also higher in subjects 

exposed to tobacco, and rose to 7.2 (95% CI=5.5-9.5) in subjects with family history who 

also used alcohol and tobacco. Interestingly, the study found a small but significant 

association (OR=1.1, 95% CI=1.0-1.2) with family history of other tobacco-related cancers, 

particularly with laryngeal cancer (OR=1.3; 95% CI=1.1-1.5). No association was found 

between family history of non-tobacco-related tumors and risk of HNC.  

The Swedish Family-Cancer Database was used to investigate familial clustering of 

cancers at HPV-associated sites, including cervical, anogenital, UADT and skin (29). 
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Investigators calculated standard incidence ratios (SIR) for offspring site-specific cancer 

risks according to site-specific cancers in sibling and parental probands. Risk of UADT 

cancers in offspring were increased by having a parent or sibling with certain cancers; for 

women, risk was increased by having a sister with cervical SCC (SIR=1.37; 95% CI=1.03-

1.79), a mother with skin SCC (SIR=1.50; 95% CI=1.00-2.18), or a father with UADT SCC 

(SIR=1.92; 95% CI=1.09-3.12); for men, risk was increased by having a sibling or father with 

UADT SCC (SIRs=2.36, 1.66) or a mother with vulvar SCC (SIR=2.47; 95% CI=1.41-4.02).  

1.3.2  Primary environmental exposures 

1.3.2.1 Tobacco  

Two International Agency for Research on Cancer (IARC) Working Groups stated 

that there was sufficient evidence to conclude that tobacco is carcinogenic to humans and 

that the occurrence of malignant tumors of the respiratory and upper digestive tract is 

causally related to the smoking of different forms of tobacco (cigarettes, cigars, pipes, bidis, 

etc.) (30, 31). It is estimated that tobacco smoking confers an increased risk of 4 to 5 times 

for oral cavity, oropharyngeal, and hypopharyngeal cancers, and 10 times for laryngeal 

cancers (32).  

Tobacco smoke. An increased risk of head and neck cancer in tobacco smokers was 

reported in the first IARC tobacco monograph in 1986 (30), and reiterated in the updated 

report issued in 2004 (31). The 2004 monograph reported that from 1987 to 2002 numerous 

studies measured the association between tobacco smoking and head and neck cancers in 

various regions of the world including North and South America, Europe, and Asia: three 

cohort and 16 case-control studies on oral cavity cancer; three cohort and 12 case-control 

studies on oropharyngeal, hypopharyngeal, or pharyngeal cancers in general; and five 

cohort and 26 case-control studies on laryngeal cancer. Most studies reported dose-
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response relationships between cancer risk and frequency (e.g. cigarettes per day), duration 

(years), and lifetime consumption (e.g. pack-years).  

In an attempt to distinguish the often-correlated effects of lifetime consumption and 

exposure rate, Lubin et al. (33) used pooled data from 15 case-control studies to compare 

excess odds ratios (EOR) for lifetime tobacco (smoking) consumption accumulated at high 

frequency but short duration, with the same lifetime consumption accumulated at lower 

frequency and longer duration. Above 15 cigarettes per day, the EOR per pack-year 

decreased, suggesting that more cigarettes per day for shorter duration was less hazardous 

than fewer cigarettes per day for longer duration. Estimates of EOR per pack-year were 

similar for oral cavity, pharyngeal and laryngeal cancers, but the effects of cigarettes per day 

differed and were higher for laryngeal cancers, indicating that increased risk of laryngeal 

cancer is more affected by cigarettes per day effects rather than pack-years.  

While all types of tobacco smoking increase SCCHN risk, smokers of black tobacco 

experience a higher cancer risk than smokers of blond tobacco, and hand-rolled cigarettes 

confer a higher risk than manufactured cigarettes (31). Other types of smoked tobacco, 

including cigars and pipes, also confer increased risk of head and neck cancer, but it hasn’t 

been possible to precisely quantify differences in risk between types of smoked tobacco 

because of the small number of people who smoke only cigars or pipes. The few studies to 

examine this question among exclusive users of cigars or pipes did not observe differences 

in their risk compared to the risk among cigarette smokers (31). Another type of commonly 

smoked tobacco product in Southeast Asia is bidi. A meta-analysis of 12 case-control 

studies reported approximately triple the risk of head and neck cancer among bidi users 

compared to never smokers (34). A multi-center case-control study from India reported that 

bidi smoking was a stronger risk factor than cigarette smoking for cancers of the 

hypopharynx (OR 6.80 versus OR 3.82) and supraglottis (OR 7.53 versus OR 2.14) but 

about the same for cancer of the glottis (35).  
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The primary hypothesis explaining the risk difference between smokers of black and 

blond tobacco is that smokers of black tobacco are exposed to more N-nitrosamines and 

aromatic amines. These compounds require metabolic activation by N-acetylation and O-

acetylation to form acetoxy intermediates which can form DNA adducts. Genes coding for N-

acetyltransferase enzymes (NAT1 and NAT2), which are active in both N- and O-acetylation, 

are highly polymorphic, with different variants having strikingly different rates of enzyme 

activity. Fast acetylators are hypothesized to incur higher SCCHN risk. Although NAT1 and 

NAT2 polymorphisms have been definitely implicated as increasing risk for bladder cancers, 

studies examining their role in head and neck cancer have not consistently shown increased 

risk for SCCHN (36). 

Age at which smoking began appears to be associated with risk of head and neck 

cancer, if frequency and duration aren’t taken into account (37-40). This association may 

appear because smoking of longer duration is probably associated with age at start of 

smoking. However, studies that investigated age at start and cancer risk, and adjusted 

estimates for tobacco smoking habits, have shown inconsistent results. For example, a 

Cuban study that adjusted for tobacco smoking habits reported higher risk among those who 

began smoking when <17 years of age compared to those who began smoking when older 

(41), while studies in France (42) and India (43) reported no difference in cancer risk based 

upon age at start.  

Cessation of tobacco smoking has been consistently shown to reduce the risk of 

many types of head and neck cancer, such that former smokers have consistently lower 

relative risks compared to current smokers. The 2004 IARC monograph summarized one 

cohort study and eight case-control studies of oral cancer that reported lower risk for former 

compared to current smokers (31). Seven of the case-control studies reported a negative 

trend for risk of oral cancer with time since quitting, and a rapid decline in relative risks 

compared to nonsmokers after 10 or more years. A similar reduction in risk of pharyngeal 
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cancer was reported by one cohort study and two case-control studies. A pooled analysis by 

the International Head and Neck Cancer Epidemiology (INHANCE) Consortium showed that 

cancer risk 1-4 years after quitting was reduced to 70% of that experienced by current 

smokers (OR=0.70; 95% CI: 0.61-0.81) with complete risk reduction down to that of 

nonsmokers after 20 or more years of not smoking (OR=0.23; 95% CI: 0.18-0.31) (44). 

Environmental tobacco smoke. In a 2008 pooled analysis of 542 cases and 2,197 

controls who reported never using tobacco, no effect of environmental tobacco smoke (ETS) 

was found for those ever-exposed (45). However, risk increased significantly for those who 

reported more than 15 years of exposure at home (OR=1.60; 95% CI=1.12-2.28) or at work 

(OR=1.55; 95% CI=1.04-2.30). The effect of duration of ETS exposure at home was 

stronger for pharyngeal and laryngeal cancers compared to other sites. Increased risk of 

similar magnitude also occurred in those who reported using neither tobacco nor alcohol but 

were exposed to ETS for more than 15 years. A larger 2009 study of 2103 UADT cases and 

2221 controls (46) reported increased risk for ever-exposure only at home (OR=1.49; 95% 

CI=0.90-2.48), only at work (OR=1.79; 95% CI=1.03-3.13, and both home and work 

(OR=1.68; 95% CI=1.00-2.83). 

Smokeless tobacco. Smokeless tobacco products are ingested without burning. Oral 

products are placed in the mouth, cheek or lip and are sucked (“dipped”) or chewed. In the 

United States, most oral tobacco products can be classified as loose leaf (air cured and 

sweetened), plug (heavier tobacco leaves, sweetened and compressed), twist (air- or fire-

cured leaves, flavored and twisted), and snuff (finely cut or powdered tobacco; moist snuff 

contains water, while dry does not). In 2000, 4.4% of US men and 0.3% of women used 

snuff or chewing tobacco (47). Worldwide a variety of products are used; for example 

tobacco pastes or powders which are applied to gums or teeth, and products which contain 

tobacco as one ingredient (e.g. snus; some betel quid products). Use varies widely between 

countries and within countries based on age, sex, ethnicity, and socioeconomic status. 
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Epidemiologic data from the United States and Asia report an increased risk of oral 

cancer (RR=2.6; 95% CI=1.3-5.2), while northern European studies reported no increased 

risk (RR=1.0; 95% CI=0.7-1.3) (48). In India, more than half of oral cancers are estimated to 

be attributable to smokeless tobacco products, while in the United States 6.6% of oral 

cancers in men are estimated to be attributable to such products (48). SCCHN risk of 

smokeless tobacco users lies between the rates of non-tobacco users and smokers. 

Population attributable risk. The INHANCE Consortium analyzed individual-level 

pooled data from 17 European and American case-control studies (11,221 cases and 

16,168 controls). They estimated that the population attributable risk for tobacco alone was 

33% (49).  

1.3.2.2 Alcohol 

The International Agency for Research on Cancer (IARC) concluded in 1988 that there 

was sufficient evidence of the carcinogenicity of alcohol for cancers of the oral cavity, 

pharynx, and larynx, as well as esophagus and liver (50). Evidence from many studies of 

various design and in different international populations has consistently demonstrated that 

daily consumption of about 50 grams of ethanol increases the risk for oral cavity and 

pharyngeal cancer three-fold, and the risk for laryngeal cancer two-fold. For these cancers, 

the effects of drinking and smoking are multiplicative (51). 

Independent effect. Due to the small number of alcohol-drinking non-smokers in 

most populations, estimates from smaller studies of the independent effect of alcohol on risk 

of head and neck cancer have been difficult to measure precisely. Therefore, in order to 

estimate the effect of alcohol drinking apart from smoking, the risk of developing head and 

neck cancer in alcohol drinkers who had never smoked was investigated by the INHANCE 

Consortium (52). This study pooled individual-level data from 15 case-control studies that 

included 10,244 head and neck cancer cases and 15,227 controls; of these, 1,072 cases 
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and 5,775 controls were never-users of tobacco. Their results (Table 3) suggest that the 

association between alcohol consumption and the risk of head and neck cancer is weak for 

low frequency drinking (<3 alcoholic drinks per day) and is apparent only at higher frequency 

and only for pharyngeal and laryngeal cancers. The dose-response trend for frequency of 

alcohol drinking was strongest for cancers of the pharynx and larynx and weakest for oral 

cancers. The results of two smaller studies (that were not included in their analysis) also 

suggested an increased head and neck cancer risk at high frequency of alcohol intake in 

never smokers (53, 54).   

Dose-response. The 2008 IARC monograph on alcohol (55) reported that between 

1988 (the publication date of the previous IARC monograph on alcohol) and 2007, 58 

epidemiologic studies of head and neck cancer were published in the literature: 5 cohort 

studies on oral cavity and pharyngeal cancers, and 53 case-control studies (8 on oral cavity 

cancer, 9 on pharyngeal cancer, 18 on oral cavity and pharyngeal cancers combined, and 

18 on laryngeal cancer). The study populations included Europeans, North and Latin 

Americans, and Asians. Most adjusted for tobacco smoking and consistently reported a 

strong dose-response relationship between frequency of drinking (i.e. drinks per day or per 

week) and risk of head and neck cancer. Hashibe et al. (52), using data from the INHANCE 

Consortium on never-smokers, found no dose-response relationship between duration of 

alcohol drinking and risk of oral cavity, pharyngeal, and laryngeal cancers (52). Lubin et al. 

(33) examined total alcohol exposure (drink-years) and exposure rate (drinks per day) and 

the risk of head and neck cancer in the INHANCE pooled data. Their analyses suggest that 

for participants who drank fewer than 10 drinks per day, at fixed total alcohol exposures, 

exposure to higher frequency of drinking (drinks per day) brought higher risk of head and 

neck cancer than exposure to lower frequency of drinking over longer duration. There were 

few participants who reported drinking more than 10 drinks per day, so no conclusions could 

be drawn about such exposure frequencies. The association of alcohol drinking with greater 
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risk of oral cavity and pharyngeal cancers than of laryngeal cancer was confirmed in their 

study, and results suggested that these risk differences by site were more attributable to 

cumulative alcohol consumption (drink-years) rather than frequency (drinks per day).  

Age at start of alcohol drinking. Only a few studies have reported on the association 

between age at start of drinking alcoholic drinks and risk of head and neck cancers. Two 

early studies which didn’t control for smoking or drinking habits reported that starting age 

wasn’t associated with head and neck cancer risk (40, 56). One study which adjusted for 

tobacco smoking also showed no effect of age when drinking began on head and neck 

cancer risk (57). Two studies that adjusted for both tobacco and alcohol habits reported the 

same lack of effect (41, 43).  

Cessation of alcohol drinking. There are few published studies on the risk of head 

and neck cancer associated with discontinuance of alcohol drinking. Such studies may be 

confounded by indication because pre-cancerous and early lesions of the oral cavity and 

pharynx could themselves cause alcohol cessation. To summarize four studies from 1988 to 

2004, for recent quitters, risk for oral and pharyngeal cancers rises above current drinkers; 

as the number of years increases, the risk slowly drops below the risk of current drinkers 

and approaches the levels of non-drinkers after 10-20 years (55). In the INHANCE pooled 

analysis, a beneficial effect on the risk of head and neck cancer compared with current 

drinkers was only observed after 20 or more years of quitting alcohol (OR=0.60, CI=0.40–

0.89), when the risk was reduced to the level of never drinkers (44). This is in contrast to the 

benefit for quitting smoking, which is observed as early as 1 to 4 years after quitting.  
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Table 3. Alcohol drinking frequency and risk of head and neck cancer, overall and by 
anatomic sub-site, among never-users of tobacco* 
Drinking 
variable 

All sites‡ Oral cavity€ Oropharynx and 
hypopharynx‡ 

Oral cavity and 
pharynx€ 

Larynx€ 

 # cases / 
# controls 

OR  
(95% CI) 

# cases / 
# controls 

OR  
(95% CI) 

# cases / 
# controls 

OR  
(95% CI) 

# cases / 
# controls 

OR  
(95% CI) 

# cases / 
# controls 

OR  
(95% CI) 

Frequency, drinks/day 
 Never 541/2482 1.00 (ref) 243/2482 1.00 (ref) 153/2482 1.00 (ref) 80/1982 1.00 (ref) 40/1788 1.00 (ref) 

 <1 164/899 1.04  
(0.79-1.38) 

44/899 1.14  
(0.8-1.63) 

73/899 1.39  
(0.99-1.96) 

25/834 1.08  
(0.67-1.75) 

15/724 0.92  
(0.5-1.69) 

 1-2 202/1324 1.30  
(0.94-1.80) 

60/1324 1.64  
(1.19-2.25) 

83/1324 1.66  
(1.18-2.34) 

26/1171 1.24  
(0.77-1.99) 

28/1155 1.26  
(0.77-2.07) 

 3-4 59/536 1.82  
(1.10-2.99) 

10.536 1.11  
(0.57-2.15) 

24/536 2.33  
(1.37-3.98) 

13/495 2.32  
(1.24-4.34) 

11/480 1.24  
(0.62-2.45) 

 ≥5 65/389 2.81  
(1.49-5.27) 

8/389 1.23  
(0.59-2.57) 

29/389 5.50  
(2.26-13.36) 

4/382 0.77  
(0.27-2.18) 

22/349 2.98  
(1.72-5.17) 

 Ptrend  0.001  0.032  <0.001  0.891  <0.001 

 Phet†  <0.001  0.913  <0.001  0.202  0.006 

*reported by Hashibe et al. (2007) (52) 
†Two-sided test for heterogeneity between studies 
‡Random-effects model. Study-specific ORs adjusted for age, sex, race/ethnicity, and education level.  
€ Fixed-effects model, adjusted for age, sex, race/ethnicity, education level, and study center. 

 

Types of alcohol beverages. Nine studies conducted between 1988 and 2007 

examined differences in risk by type of alcoholic beverage, including wine, beer, and liquor 

(55). Highest risks were observed for beer in North America, wine in Europe, and hard 

liquors in Latin America. The consensus is that the most common alcoholic beverage in the 

region studied produced the greatest risk. Because most drinkers consume more than one 

type of beverage, it is difficult to separate their effects; to overcome this, a recent INHANCE 

Consortium analysis studied risk in each beverage type among individuals who drank only 

one type (58). Risk of head and neck cancer was doubled over that of non-drinkers for those 

who drank 16-30 beer or liquor beverages per week, while risk for drinkers of 16-30 glasses 

of wine per week was not significantly increased. However, above 30 drinks per week, all 

alcoholic beverages were associated with increased risk: odds ratios were about 4 for liquor, 

5 for beer, and 6 for wine. Confidence intervals overlapped, suggesting no significant 

differences. Risk estimates by geographic region (North America, Latin America, Europe) for 

those drinking more than 15 drinks per week suggested somewhat higher risk for beer in 

North America and Europe, higher risk for liquor in North and Latin America, and higher risk 

for wine in Europe. Odds ratios were stronger for oral and pharyngeal cancer than for 
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laryngeal cancer and among smokers compared with never smokers. The pattern of 

associations across beverage types did not change with anatomic site or smoking status 

(58). 

Alcohol and tobacco interaction. Between 1988 and 2007, two prospective cohort 

and 15 case-control studies in the United States, Europe, Asia, and Australia described and 

estimated the joint effects of alcohol drinking and tobacco smoking on risk of oropharyngeal 

cancer. The studies differed in their method of assessing effect measure modification, 

ranging from descriptive to estimation of interaction coefficients in multivariate regression 

models (55). All of the studies found that alcohol ingestion and tobacco smoking have a 

synergistic effect on risk of oropharyngeal cancer. The large majority of studies (n=14) 

demonstrated greater than multiplicative interaction, while a few (n=3) found greater than 

additive but less than multiplicative interaction (55). The largest of the case control studies 

(1560 cases and 2948 hospital controls) had the most precise estimates; the OR for the 

highest frequency of smoking in non-drinking or occasional-drinking men was 2.0 (95% 

CI=1.1-3.6), OR for highest frequency of drinking in men who never smoked was 2.9 (95% 

CI: 1.1-8.1), and OR for the highest frequencies of both smoking and drinking in men was 

20.1 (95% CI: 12.9-31.5), much higher than multiplicative (59). Results in women were 

similar. The second-largest study (1,114 cases and 1,268 population controls) categorized 

alcohol intake by frequency and cigarette smoking by frequency only in those who had 

smoked for 20 or more years; the OR for the highest alcohol intake in non-smokers was 5.8, 

OR for the highest smoking frequency was 7.4, and OR for the highest frequencies of both 

smoking and drinking in men was 37.7, or approximately multiplicative (56). One study in 

India of 591 cases of oral cancer and 582 controls reported no interaction between tobacco 

(in paan) chewing (as opposed to smoking) in never/current users of alcohol: OR for oral 

cavity cancer for current drinkers who didn’t chew paan was 2.83 (95% CI: 1.58-5.09), OR 
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for current paan chewers who never drank was 7.31 (95% CI: 3.79-14.10); and OR for 

current drinkers and paan users was 8.62 (95% CI: 4.12-18.06) (43).  

For laryngeal cancer, 16 studies published from 1982 through 2002 computed risk 

estimates for the highest level of consumption of both tobacco smoking and alcoholic 

beverage drinking, and concluded that a multiplicative risk model best fit the data (55). For 

example, Talamini et al. reported in 2002 that the OR for non-smokers in the highest 

drinking category was 8.5 (95% CI: 2.4-30.2), the OR for non-drinkers in the highest 

smoking category was 18.9 (95% CI: 5.7-62.7), and the OR for the highest frequencies of 

both smoking and drinking was 177.2 (95% CI: 65.0-483.3), or approximately multiplicative 

(4).  

In order to estimate the extent of interaction between alcohol and tobacco exposures 

and the risk of head and neck cancer, as well as population attributable risk (PAR), the 

INHANCE Consortium analyzed individual-level pooled data from 17 European and 

American case-control studies (11,221 cases and 16,168 controls). They reported a greater 

than multiplicative joint effect between ever-use of both tobacco and alcohol: for oral, 

pharyngeal, and laryngeal cancers combined, the OR for the highest rate of tobacco use 

(>20 cigarettes/day) in alcohol abstainers was 4.2 (95% CI: 2.4-7.1), the OR for the highest 

rate of alcohol use (≥3 drinks/day) in never-smokers was 1.9 (95% CI: 1.3-2.9), and the OR 

for the highest category of use for both alcohol and tobacco was 14.2 (95% CI: 8.3-24.4) 

(49).  

Population attributable risk. The INHANCE Consortium study estimated that the 

population attributable risk for tobacco or alcohol at 72% (95% CI: 61-79%), of which 4% 

was due to alcohol alone, 33% to tobacco alone, and 35% to use of both alcohol and 

tobacco. Interestingly, the total population attributable risk differed by anatomic subsite of 

the cancer (64% for oral cavity, 72% for pharynx, 89% for larynx), by sex (74% for men, 57% 

for women), by age (33% for cases <45 years, 73% for cases >60 years), and by 
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geographic region (84% in Europe, 51% in North America, 83% in Latin America) (49). The 

researchers noted that a substantial fraction of head and neck cancers in certain sub-groups 

cannot be attributed to tobacco and alcohol use; in particular, their use does not explain 

one-third of oral cavity cancers, more than 40% of head and neck cancers in women, and 

two-thirds of young-onset cases.  

Mechanisms of carcinogenesis.  

Long-term alcohol intake is positively associated with cancer of the aerodigestive 

tract as well as cancers of the liver and breast. Numerous epidemiologic studies show that 

ingestion of all types of alcoholic beverages increases cancer risk, suggesting that ethanol is 

the common factor that causes this effect. The association with cancer strongly suggests 

that prolonged alcohol consumption somehow results in DNA mutations. Because there is 

no evidence that alcohol in and of itself is carcinogenic (55), mutagenic, or clastogenic (50), 

the mechanism must be indirect. Much persuasive research indicates that the primary 

means by which alcohol increases risk of head and neck cancer, as well as esophageal 

cancer, is related to the amount of acetaldehyde produced in the metabolism of alcohol (60-

62). Other byproducts of alcohol metabolism, including reactive oxygen species (ROS), are 

believed to act as additional components. In other organs where alcohol causes cancer, 

such as liver, colon, rectum, and breast, other mechanisms may become more important, 

such as changes in methionine and folate metabolism, repression of DNA methylation and 

DNA repair, changes in retinoid metabolism, suppressed immune function and induction of 

angiogenesis (61, 63-66).  

There are three paths by which ethanol is metabolized to acetaldehyde (Figure 3): 

(1) alcohol dehydrogenase (ADH), (2) cytochrome P450 2E1 (CYP2E1), and (3) catalase 

(CAT); afterward, acetaldehyde is converted to acetate by aldehyde dehydrogenase 

(ALDH). In addition to producing acetaldehyde, ADH-mediated ethanol catabolism 

generates reduced nicotinamide adenine dinucleotide (NADH), which is re-oxidized to NAD+ 
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in the mitochondria and in the process produces reactive oxygen species (ROS). ADHs are 

ubiquitous in bacteria and yeasts, so that these UADT organisms are also a significant 

source of acetaldehyde (50, 61) in the saliva in addition to that produced endogenously in 

humans. In fact, such organisms can be significant sources of local oxidation of ethanol and 

production of acetaldehyde in the lower gastrointestinal tract or wherever microbial 

overgrowth occurs (55). Several human isoforms of ADH and ALDH are genetically 

polymorphic, which can cause the rate of production and/or oxidation of acetaldehyde to 

differ between individuals. Likewise, CYP2E1-mediated ethanol catabolism generates a 

large volume of reactive oxygen species (ROS). CYP2E1 is also polymorphic with SNPs that 

affect enzyme activity, and most importantly, chronic ethanol exposure can induce it to 

produce functional enzyme product even in tissues where it is not constitutively expressed, 

such as UADT mucosal cells (67). Increased CYP2E1 activity leads not only to increased 

generation of damaging ROS, which can cause DNA breaks and oxidative base damage, 

but also to activation of other environmental pro-carcinogens present in tobacco smoke and 

certain foods that require CYP2E1 to be converted into carcinogens. Ethanol oxidation by 

CAT appears to be of quantitatively lesser importance, except in the fasted state, in 

diabetics, and persons eating a high-fat diet (68), although it has recently been shown to be 

inducible in the presence of alcohol when methyl donor supplements are added to the diet 

(69). 

Acetaldehyde. The first metabolite of ethanol is acetaldehyde, a highly reactive 

compound that can react with amino groups of proteins resulting in acetaldehyde-protein 

adducts. Acetaldehyde from alcohol beverages, along with ethanol in such beverages, has 

been classified by IARC as a Group 1 carcinogen (70). Acetaldehyde can be present in the 

alcoholic beverage itself (especially in dark liquors) besides being formed in vivo from 

ethanol metabolism (71). Acetaldehyde has been shown to cause laryngeal cancer in 

inhalation experiments and other UADT tumors in ingestion experiments with animals. 
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Based on epidemiological findings as well as on research with cell lines in vitro, 

experimental animals (55, 72), and human subjects, acetaldehyde is considered a mutagen 

(73) that can directly react with DNA to form adducts.  

 

Figure 3. Schematic of ethanol metabolism and its role in carcinogenesis  

 

Ethanol is converted to acetaldehyde by alcohol dehydrogenases (ADH),cytochrome P450 2E1 (CYP2E1), and 
catalase (CAT). Acetaldehyde is converted to acetate by aldehyde dehydrogenases (ALDH). Reactive oxygen 
species (ROS) produced during these reactions can genetically damage cells by forming DNA adducts. See text 
for detailed discussion.  
(modified from Seitz & Stickel, 2007 (60)) 
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One highly mutagenic adduct of acetaldehyde that has been studied is 1,N2-

propano-2’-deoxyguanosine (PdG). PdG adducts can exist in either a closed-ring or an open 

chain form, which may continuously interconvert during replication and transcription. The 

closed-ring form is more likely to exist in conjunction with single-stranded DNA where it is 

likely to be mutagenic because it interferes with replication and transcription. The open 

chain form is more likely to occur in a double-stranded DNA lesion, where the free aldehyde 

group permits formation of DNA-protein or DNA-DNA cross-links. Because acetaldehyde 

has been shown to increase chromosomal abnormalities and sister chromatid exchanges in 

human cells in vitro, and is also capable of forming DNA interstrand cross-links (ICLs) that 

are found in white blood cells of alcoholics but not controls, it has been suggested that ICLs 

may be the mechanism by which acetaldehyde causes chromosomal aberrations (73). 

Much data on acetaldehyde-DNA reactions comes from in vitro studies that have 

provided support for the hypothesis that alcohol-related UADT cancer risk is mediated by 

acetaldehyde. How this is related to what actually happens in vivo has been investigated in 

a number of studies. Acetaldehyde-fed rats developed severe hyper-regeneration of the 

upper gastrointestinal mucosa (62), very similar to structural changes that occur after 

chronic alcohol consumption in humans (74). However, these changes only occurred if the 

animals had intact salivary glands; after removal of the salivary glands the proliferation 

disappeared (74), thus supporting the theory that salivary acetaldehyde supports 

carcinogenesis. Besides being produced by ADH in epithelial cells, and by ADH in the liver 

where it is released into the bloodstream, acetaldehyde is also produced by oral bacteria. 

After ingestion of a moderate dose of alcohol, acetaldehyde can be detected in the saliva of 

healthy volunteers, where the levels are ten to twenty times higher than those in systemic 

blood, even at higher alcohol intake (61). Interestingly, salivary levels of acetaldehyde can 

be greatly reduced by using an antiseptic mouthwash before alcohol intake, thus 
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emphasizing the important role of oral bacteria in acetaldehyde production (61). It has been 

demonstrated that alcoholics with oropharyngeal cancer who also smoke have very high 

salivary acetaldehyde concentrations, which may be caused by a smoking-associated 

transition in bacterial flora from primarily gram-negative to gram-positive species (67). As a 

general rule, gram positive bacteria are capable of much higher acetaldehyde production 

than gram negative bacteria. In addition, Candida albicans, also frequently present in 

smokers, converts alcohol into acetaldehyde. Poor oral hygiene, which is common in heavy 

drinkers, is associated with bacterial overgrowth, periodontal disease, caries, and increased 

salivary acetaldehyde concentrations (75). Acetaldehyde in saliva would have to enter cells 

in the basal (regenerative) layer of the epithelium of the aerodigestive tract in order to initiate 

carcinogenesis. Research in rats that were fed alcohol over 6 months found enlarged nuclei 

in basal cells in the oral mucosa along with an increased proportion of cells in the S-phase 

and a reduction of the epithelial thickness indicating mucosal atrophy and hyperproliferation, 

as compared to controls (76). Finally, acetaldehyde would have to enter cell nuclei in order 

to damage nuclear DNA; a 1995 study (77) used a very sensitive 32P-postlabeling method to 

show that N2-ethyl-deoxyguanosine (a DNA adduct formed from acetaldehyde) becomes 

detectable in nuclear DNA of liver cells in mice treated for 6 weeks with 10% alcohol in their 

drinking water. The adduct was not detected in control mice that were not given alcohol. 

This demonstrates that acetaldehyde can enter cell nuclei in vivo to cause DNA lesions.  

Reactive oxygen species (ROS). Free radicals are atoms, molecules, or 

compounds that are chemically unstable due to their distribution of electrons; such entities 

react easily with other chemicals to produce stable compounds. A ROS is any free radical 

with at least one oxygen atom in its structure, mainly including superoxide anion radical  

(O2
.-), hydroxyl radical (.OH), and peroxide (O2

=). Peroxide normally exists in the cell as 

hydrogen peroxide (H2O2) and is considered a precursor of .OH. Superoxide, peroxide, and 
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the hydroxyl radical are considered the primary ROS. Reactions of molecular oxygen that 

produce ROS along the pathway to water can be summarized as follows (78): 

 
          e.                    e.                 2H+                 e., H+                            e., H+ 

 O2 -----> O2
-. -----> O2

= -----> H2O2 -----> H2O + .OH -----> H2O 
 
molecular oxygen → superoxide → peroxide → hydrogen peroxide → water + hydroxyl radical → water 

 
 (with enzymes, cofactors, and electrons and protons required along the pathway) 

 

ROS are produced from endogenous sources as by-products of usual and essential 

metabolic reactions, primarily mitochondrial energy production and detoxification reactions 

of the cytochrome P-450 enzyme system (which includes CYP2E1 and others). It has been 

estimated that only about 2-3% of the molecular oxygen consumed by the mitochondrial 

respiratory process is converted to ROS (78). At low to moderate concentrations ROS play 

an essential role, along with reactive nitrogen species, in cellular defense against infectious 

agents, functioning of many cell signaling pathways, and induction of cell division (79). In the 

amounts normally produced endogenously, several classes of cellular enzymes (described 

below) are able to chemically reduce most of the ROS to a stable, non-reactive form before 

they cause oxidative damage (80). 

In addition to endogenous sources, ROS can also come from exogenous sources 

such as cigarette smoke, excess alcohol consumption, and ionizing radiation. When ROS 

levels increase dramatically during occasions of environmental stress, the resulting oxidative 

stress can overwhelm the cellular defenses that would normally remove the ROS or repair 

ROS damage, resulting in significant damage to DNA and other cell structures. ROS can (1) 

cause permanent structural changes to DNA such as base-pair mutations, deletions, 

insertions, rearrangements, and amplification; (2) initiate lipid peroxidation; (3) activate 

cytoplasmic and nuclear signal transduction pathways; and (4) modulate activity of stress 

proteins and genes that regulate genes related to growth, differentiation, and cell death (80). 
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When human tissues are subjected to high concentrations of alcohol for a week or more, 

CYP2E1 is induced (via protein stabilization rather than transcription or translation (81)) and 

becomes active in processing ethanol to acetaldehyde. These CYP2E1-catalyzed reactions 

produce large amounts of ROS. Many studies of the effects of administering ethanol to 

CYP2E1-knockout mice (i.e., mice without CYP2E1 protein) have shown that ethanol-

induced oxidative stress and subsequent liver damage is completely prevented in these 

mice. CYP2E1 also activates many other toxicologically important chemicals besides 

ethanol, including carbon tetrachloride, acetaminophen, benzene and many halogenated 

substrates. Toxicity of all these compounds is enhanced after induction of CYP2E1 and 

reduced by inhibitors of CYP2E1. CYP2E1 is normally a minor pathway of ethanol oxidation, 

responsible for less than 10% of ethanol conversion to acetaldehyde in the liver. However, 

this percentage is increased after chronic ethanol exposure induces CYP2E1 protein 

stabilization (81). 

Cells normally protect themselves from ROS damage by three systems: those that 

suppress the generation of ROS in the first place; those that scavenge and remove ROS 

after they have been created but before they have damaged the cell; and those that repair 

damage caused by ROS. The systems that remove ROS after they have been created 

include the enzymes superoxide dismutase (SOD), glutathione peroxidase (GPx), and 

catalase (CAT) (78, 82, 83), which remove superoxide and hydrogen peroxide. (See below 

for detailed descriptions of these enzymes.) Levels of ROS in blood lymphocytes of oral and 

laryngeal cancer patients, as well as SOD and catalase activities, have been shown in small 

studies to be altered compared to healthy controls. In addition, SOD and catalase levels in 

cancerous oral and laryngeal tissues were shown to be altered compared to nearby non-

cancerous tissues as well as tissues from control subjects. Some effects appeared to 

increase along with stage. Direction of effect was inconsistent between studies, which may 

have been partly due to the low number of subjects as well as differences in measurement 
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protocols. (84-90) However, these studies do provide tantalizing evidence that anti-oxidant 

activities are altered during carcinogenesis in the aerodigestive tract.  

Summary. Epithelial tissues of the upper aerodigestive tract appear to express ADHs 

but have relatively low ALDH2 activity, which may make them more susceptible to toxicity 

mediated by acetaldehyde (either produced locally or from other sources such as saliva or 

microbes). Chronic drinking of alcoholic beverages induces CYP2E1 metabolism, most 

prominently in the liver but also at lower levels in the oropharynx and nasal mucosa, 

although the latter is not well characterized in humans. The relationship between oxidative-

stress-induced DNA damage and drinking of alcoholic beverages has not been well 

established. (51)  

Although the exact mechanisms that explain the carcinogenic effects of alcohol are 

not fully characterized, the direct and well-documented DNA damaging effects of 

acetaldehyde suggest that the enzymes controlling this reaction, primarily ADH, ALDH and 

CYP2E1, are excellent candidates for investigation as susceptibility factors for SCCHN. 

Because DNA-damaging ROS are also produced by these enzymes as by-products of 

alcohol metabolism, polymorphisms in the genes coding for SOD, GPx, and CAT are also of 

great interest, because these enzymes are the primary de-activators of ROS, and because 

there is evidence that their activity is altered in red blood cells and tumor tissue from people 

with oral and laryngeal cancers. Polymorphisms in any of these genes may affect levels of 

enzyme activity in UADT epithelial tissues, especially in conjunction with exposures such as 

alcohol and tobacco, which in turn may affect carcinogenesis and subsequent survival.  

1.3.2.3 Human papillomavirus 

HPV-associated SCCHNs occur more frequently in younger, male patients, and most 

often in the oropharynx. In fact, up to 70% of SCCHNs occurring in the oropharynx are 

associated with the presence of HPV DNA. The most common type is HPV 16, the same 
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type associated with cervical cancers. These tumors are generally more poorly 

differentiated, but, perhaps surprisingly, the patients have a better prognosis than those 

patients whose tumors are not associated with HPV (5, 21). HPV 16-related tumors are not 

associated with chronic alcohol or tobacco exposure (91).  

1.3.3 Other potential factors – nutrition and dental 

The association between diet and risk of SCCHN is among the strongest for any 

cancer. Many studies have found strong, consistent inverse associations between risk of 

SCCHN and fruit and vegetable consumption that are independent of the effects of alcohol 

and tobacco (92). In the IARC multinational case-control study of 1670 oral cancer cases, 

ever-drinkers with the highest quartile of fruit and vegetable intake experienced reduced 

cancer risk (OR=0.4, 95% CI=0.3-0.6) compared to those in the lowest quartile (93) . This 

protective effect was not observed among never-drinkers (OR=1.0; 95%CI=0.6-1.6). The 

authors conclude that vegetables and fruits may modify the carcinogenic effects of alcohol 

(as well as tobacco). The benefits of a diet high in fruits and vegetables are apparent 

regardless of the location of tumors in the oral cavity and oropharynx, age (stratified at 60 

years), and sex (92). Most studies suggest that diet is associated with risk of oral cancer 

only in the presence of at least some level of alcohol and tobacco consumption. In a related 

vein, studies examining the influence of BMI on risk of oral and oropharyngeal tumors 

suggest that low BMI is not an independent risk factor for SCCHN, but is probably a 

biomarker of chronic nutritional deficiencies, whether they be secondary to alcohol and 

tobacco use as they are in developed countries, or whether they be due to dietary 

insufficiency irrespective of alcohol and tobacco use as they are in less developed countries 

(92). 

Poor oral health is associated with multiple measures of oral hygiene, including 

frequency of toothbrushing and visits to a dental care provider. Clinical findings such as 
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mucosal irritation, cavities, and tartar are also associated with a two- to four-fold increased 

risk, but the strongest, most consistent risk factor is presence/absence of tooth loss as well 

as number of teeth lost. It appears most likely that poor oral health is an independent risk 

factor for SCCHN, probably due to type and number of oral bacteria, for which tooth loss 

serves as a surrogate measure. (92) 

1.4 EPIDEMIOLOGIC STUDIES OF GENETIC POLYMORPHISMS AND CANCER INCIDENCE 

1.4.1 Polymorphisms of alcohol metabolism genes 

1.4.1.1 Alcohol dehydrogenases (ADH) 

Human ADH is a dimeric protein consisting of two subunits with a molecular weight 

of 40kD each. It is actually a complex enzyme family and, in humans, five classes are 

categorized based on structural and kinetic properties. At least seven different genetic loci 

code for human ADH subunits that combine with other members in the same class as 

dimers, resulting in more than 20 known ADH isozymes. Such variation is unique to 

humans. The ADH1A, ADH1B, and ADH1C genes have several variants with different 

enzymatic activity that are distributed differently across racial groups (Table 4). Such 

variation was predicted to increase ethanol metabolic rates if the more active forms of the 

enzyme were present, but this has been hard to demonstrate because any one isozyme 

constitutes only a fraction of the total alcohol oxidizing capacity in any given tissue and 

because alcohol elimination rates are variable even among people with the same ADH 

genotype, or even twins. Increased blood levels of acetaldehyde in people with higher 

activity ADHs has only been demonstrated in those individuals who also have inactive 

ALDH2 (see below) (55). The ADH isozymes with high Km for ethanol, for example β3, π, 

and σ, are predicted to be more active when blood ethanol concentrations are high or in 

tissues of the UADT that are directly exposed to ethanol in alcoholic drinks, though this 
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hasn’t been tested directly in humans due to ethical concerns (55). The ADH family of 

enzymes metabolizes a wide variety of substrates besides ethanol, including retinol, other 

aliphatic alcohols, hydroxysteroids, and lipid peroxidation products. The liver expresses the 

highest levels of ADH classes I, II, and III, but many other tissues also express ADH, where 

it may play a role in the toxicity or carcinogenicity of alcohol and its catabolites. Little detail is 

known about expression of ADH outside the liver, except for gastric ADH, which is reduced 

with age, in women, and with heavy drinking according to some investigators (55). These 

variants have been shown to influence drinking levels and therefore the risk of developing 

alcohol abuse or addiction, and in fact these associations are the strongest and most widely 

replicated of any gene with risk of alcoholism (94). ADH expression can be induced at the 

mRNA level.  

The variant allele ADH1B*2 encodes a superactive subunit of ADH1B, whose 

homodimers have 40 times higher maximum velocity than heterodimers ADH1B*1/*2 (95). 

The enzyme encoded by ADH1B*1/*1 has only 1% or less of the oxidation capability of 

enzymes encoded by ADH1B*1/*2 and ADH1B*2/*2 (96). ADH1B*1 is the predominant 

allele in Europeans and Africans, with ADH1B*2 frequency not exceeding 15% (63, 97), but 

ADH1B*2 is common in Asian populations where its frequency varies from 10% to 90%.  

Most studies of ADH1B polymorphisms and alcohol exposure have examined the 

risks of esophageal cancer in Asians. Surprisingly, those studies found that significantly 

increased risk was associated with the ADH1B*1 (slow) allele in moderate to heavy drinkers, 

compared to moderate to heavy drinkers with the ADH1B*2 (fast) allele (98-102). Three of 

these studies reported 45% to 65% increased risk in those with the *1/*1 genotype 

compared to other genotypes (OR=1.56, 95% CI=1.01-2.39 (98); OR=1.65, 95% CI=1.02-

2.68 (101); OR=1.45, 95% CI=0.97-2.16 (100)); one reported that the *1/*1 genotype 

quadrupled cancer risk compared to other genotypes (OR=4.11; 95% CI=2.08-8.12 (102)); 
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and one reported that the *1/*1 genotype quadrupled the cancer risk of *2/*2 (OR=3.99; 95% 

CI=2.13-7.48 (99)).  

Two recent studies in European countries of UADT cancer, and one recent study in 

Brazil of SCCHN, found the reverse to be true: a protective effect (50% reduced risk) of the 

slow allele in drinkers compared with drinkers homozygous for the fast allele (103, 104) 

(Table 5). Two recent Japanese studies reported conflicting results: One reported a doubling 

in risk due to the fast allele (105), and the other reported a similar effect for the slow allele 

(106) (Table 5). Most studies of ADH1B *1 and *2 alleles report both a main effect of the 

gene on head and neck cancer, along with significant interaction with alcohol exposure 

(Tables 5 and 6); magnitude of interaction varied along the complete spectrum from greater 

than additive but less than multiplicative, to multiplicative, to greater than two times the 

expected multiplicative odds ratio. However, a 2003 study in Caucasian Germans found no 

significant association between ADH1B genotype and risk of laryngeal cancer (107).  

The results for ADH1B polymorphisms don’t consistently support the “acetaldehyde 

hypothesis,” which speculates that the much-less-active ADH1B*1 allele should decrease 

the risk of cancer in drinkers, because they would have less exposure to the carcinogenic 

and mutagenic acetaldehyde product. Some researchers have hypothesized that the higher 

risk for ADH1B*1/*1 homozygotes may be due to an absence of alcohol flushing (which is 

caused by acetaldehyde & is an uncomfortable sensation) so that the person is more likely 

to become a heavy drinker.  

The ADH1C gene has two alleles in most populations, ADH1C*1 and ADH1C*2. 

ADH1C*1 isoenzymes metabolize ethanol into acetaldehyde 2.5 times faster than the 

ADH1C*2 allele. In European Caucasians, the frequency of the ADH1C*1 (fast) allele is 

about 50%, but in Africans the frequency is 75-90% and in Asians even higher (63, 97). 

Individuals homozygous for the ADH1C*1 fast allele were found to have elevated salivary 

acetaldehyde levels, which is hypothesized to cause increased UADT cancer risk (108).  
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Eight small studies (each ncases<500), most conducted prior to 2006, mostly reported 

no main effect of ADH1C on head and neck cancer, although a few found an effect in heavy 

drinkers. (Table 5) Since 2006, three of four large studies in European Caucasians and Latin 

Americans, Brazilian Caucasians and Blacks and Mullatos, and Japanese populations (103-

105, 109) reported that genotypes containing the *2 slow allele increase the risk of cancer 

by 20 to 50%, and two reported greater risks in heavy drinkers (105, 109). Interaction with 

alcohol exposure was reported as greater than additive in the Japanese population and 

more than two times the expected multiplicative value in whites and African-Americans 

(Table 6). Overall, recent large studies on ADH1C polymorphisms and head and neck 

cancer risk have produced consistent evidence of increased risk associated with the slow 

allele, but a smaller effect than that of the ADH1B polymorphisms previously described.  

The largest and most comprehensive epidemiologic study to date on the 

relationships between multiple ADH genes and UADT cancers combined participant-level 

data from five smaller studies conducted in Europe and Latin America (104) (Tables 5 & 6: 

Hashibe et al. 2008). It found that UADT cancers are associated with rs1229984 ADH1B*2 

(fast) allele (OR=0.56; 95% CI=0.47-0.66) and rs1573496 variant G allele in ADH7 

(OR=0.68; 95% CI=0.60-0.78), but not with rs1984362 in ADH4 (104). It estimated greater 

than additive but less than multiplicative interaction. A recent case-control study in Japan 

(Tables 5 & 6: Oze et al. 2009) found significant independent associations of rs3737482 in 

ADH7 and rs4148887 in ADH4 on risk of UADT cancers, and possibly a small effect of 

rs1229984 in ADH1C that was not completely explained by linkage with ADH1B. It reported 

a suggestive increase in risk with increasing alcohol use related to the ADH4 SNP (105), 

and estimated greater than additive interaction.  
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1.4.1.2 Aldehyde dehydrogenase (ALDH) 

Two primary ALDH enzymes metabolize the acetaldehyde produced during ethanol 

oxidation. ALDH1A1 (old name ALDH1) is found in the cytosol, while ALDH2 is found in the 

mitochondria (Table 4). It is estimated that about 30% of total liver ALDH activity is from 

ALDH2 with the rest contributed by ALDH1A1, ALDH9A1 and possibly ALDH1B1 (55). Both 

ALDH1A1 and ALDH2 have similar structure with 13 exons, and the proteins they encode 

are 70% identical in sequence and have very similar structure. ALDH transcripts of all four 

types (Table 4) are found in almost every tissue of the body (55). Low levels of ALDH 

mRNAs have been found in placenta, brain, and pancreas; because these are target organs 

for alcoholic pathology, these data are consistent with the hypothesis that the presence of 

ALDHs is protective against acetaldehyde toxicity (55). A polymorphism of ALDH2 exists 

that has no enzymatic activity. ALDH2*1 is the active allele, and ALDH2*2 is the inactive 

allele. ALDH2*2/*2 homozygotes have no enzyme activity, while ALDH2*1/*2 heterozygotes 

have 6% residual activity. The ALDH2*2 mutant allele is prevalent in Asians up to a 

frequency as high as 40%, but its frequency in European and African populations is less 

than 5%. In an animal model mimicking the human ALDH2*2/*2 genotype, knock-out mice 

lacking ALDH2 activity have reduced alcohol preference, and when forcibly exposed to 

higher doses of ethanol, they exhibit elevated acetaldehyde in blood, liver, and brain (110). 

These mice have been used for toxicological studies of alcohol and acetaldehyde (55).  

For cancer of the UADT, many studies have reported increased risk of esophageal 

cancer in Asians with the ALDH2*2 (inactive) allele who were moderate or heavy drinkers 

(98-102, 111, 112). Two small studies of cancer (each ncases<250) of the UADT, oral cavity, 

or oropharynx in Asian populations found significant interaction between ALDH2*1/*2 

genotype and heavy or moderate/heavy alcohol intake (106, 113); in contrast, two other 

studies in Asians reported no interaction (111, 114). Only the largest of these four studies 
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(ncases=239) reported a significant main effect of the gene – i.e., a 66% increase in UADT 

cancer risk associated with the null phenotype. These results are consistent with the 

hypothesis that reduced ALDH2 activity exposes the body to more mutagenic acetaldehyde. 

In addition, people with ALDH2 deficiency have higher acetaldehyde levels in their serum 

and saliva than occur in people with the wild type genotype, and higher frequency of 

acetaldehyde adducts, sister chromatid exchanges, and micronuclei have been reported in 

Asian drinkers with the heterozygous genotype compared with the wild type (60).  

In central and eastern Europeans, in whom the ALDH2*2 inactive mutant allele is 

almost completely absent, one study of three other, previously unstudied, variants in ALDH2 

(103) reported 30% increased risk of UADT cancers as a main effect of the variant allele, 

and even higher risk in medium to heavy drinkers (defined as more than 2 drinks per week) 

(Tables 5&6: Hashibe et al. 2006 (103)). The GG genotype of rs886205 in the 5’ 

untranslated region was associated with increased UADT risk compared to the AA genotype 

(OR=1.29; CI=1.03-1.60), as was the CC genotype of rs440 in intron 6 compared to the TT 

genotype (OR=1.32; 95% CI=1.06-1.65), and the CC genotype of rs441 in intron 6 

compared to the TT genotype (OR=1.33; 95% CI=1.07-1.66). In medium/heavy drinkers, 

these risks were increased to ORs of 4.38 (95% CI=1.32-14.53), 5.79 (95% CI=1.49-22.52), 

and 5.79 (95% CI=1.49-22.49), respectively. Effect measure modification was estimated to 

be greater than multiplicative. Risk was higher for esophageal cancer than for oral cavity, 

pharynx, and larynx cancers. A second large 2009 study of European Caucasians (115) 

found no main effect of two additional SNPs in ALDH2, rs886205 in the 5’UTR and 

rs4646777 in intron 8, and no interactive effect with alcohol (Tables 5&6: Canova et al. 2009 

(115)), although a 2006 study of 436 cases with alcoholism and 365 controls in the U.S. 

(116) reported that these two SNPs are associated with alcoholism in both whites and 

African-Americans.  
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Table 4. Human ADH and ALDH isozymes (55, 68, 94, 117) 

Class  Official gene name  
(old name) 

Allele  
(old 
name) 

SNP 
(nucleotide) 

Chromo-
somal 
location 

Protein 
subunit 

Amino acid 
differences 
between 
alleles 

Km 
sub-
strate 
(mM) 

Vmax 
(min-1) 

Ethnic/ 
national 
distribution 

Human alcohol dehydrogenase (ADH) isozymes 

I ADH1A (ADH1) ADH1A  4q22 α  4 54 Europe, Africa 

 ADH1B (ADH2) 
ADH1B*1 
(ADH2*1) 
 

rs1229984 (A) 
rs2066702 (C) 4q22 β1 Arg48, 

Arg370 0.05 9 
Europe, Africa 

  ADH1B*2 
(ADH2*2) 

rs1229984 (G) 
rs2066702 (C)  β2 His48, 

Arg370 0.9 400 
Asia 

  ADH1B*3 
(ADH2*3) 

rs1229984 (A) 
rs2066702 (T)  β3 Arg48, 

Cys370 34 300 
Africa, Native 

American 

 ADH1C (ADH3) ADH1C*1 
(ADH3*1) 

rs1693482 (G) 
rs698 (A) 4q22 γ1 Arg272, 

Ile350 1.0 87 
All 

  ADH1C*2 
(ADH3*2) 

rs1693482 (A) 
rs698 (G)  γ2 Gln272, 

Val350 0.63 35 
Europe 

  ADH1C*3 rs35719513 (A)   Thr352*   Native 
A i  II ADH4 ADH4*1 rs1126671 (A) 4q21-25 π Ile309 34 40 All 

  ADH4*2 rs1126671 (G)   Val309   Sweden 

III ADH5   4q21-25 Χ  1000  All 

V ADH6   4q21-25 ADH6  30 ? All 

IV ADH7   4q23-24 σ,μ  20 1510 All 
Human aldehyde dehydrogenase (ALDH) isozymes 

 ALDH1A1 (ALDH1)   9q21.13   30  All 

 ALDH2 ALDH2*1 rs671 (G) 12q24.2  Glu504 1  All 

  ALDH2*2 rs671 (A)   Lys504   Asia 

   rs886205 (G)      All 

   rs886205 (A)      All 

   rs440 (C)      All 

   rs440 (T)      All 

   rs441 (C)      All 

   rs441 (T)      All 

 ALDH1B1 (ALDH5) ALDH1B1  9p11.1   ?   

 ALDH9A1 ALDH9A1  9q21.13   30  All 

*ADH1C*352Thr has been found in Native Americans as an additional variation on chromosomes that have the Val350 
characteristic of ADH1C*2. The protein has not been isolated for study. 
NOTE: Km indicates the concentration of substrate at which the enzyme works at 50% capacity. Vmax (turnover) indicates how 
many molecules of product are formed by the enzyme in 1 minute at saturating substrate concentrations.  

1.4.1.3 Cytochrome P450-2E1 (CYP2E1) 

Alcohol can be metabolized by cytochrome P450s, with CYP2E1 being the most 

active in this regard. CYP2E1 is associated with microsomes in the endoplasmic reticulum, 

where it reduces molecular oxygen to water as ethanol is oxidized to acetaldehyde. Its Km 

for ethanol is about 10mM (fairly high), and CYP2E1 probably assumes a larger role in 

metabolizing ethanol when blood alcohol levels are high. When metabolizing alcohol, 
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CYP2E1 generates a large number of ROS including hydroxyl radicals, superoxide anion, 

hydrogen peroxide, and hydroxyethyl radicals; therefore it is a major source of oxidative 

stress. (55) CYP2E1 enzyme production is induced by chronic drinking and also by fasting, 

diabetes, and a high-fat diet. It is expressed at highest concentrations in the liver but is also 

expressed in numerous other tissues, including esophageal and nasal mucosa among many 

others. One animal study found that after chronic alcohol feeding, CYP2E1 was found in 

squamous epithelial cells of the cheek mucosa, tongue, esophagus, and fore-stomach 

(118). Some individuals experience a very low extent of induction of CYP2E1 after alcohol 

ingestion, whereas others show a high extent (119); thus, variation in the extent of induction 

may modulate alcohol-associated carcinogenesis (67), although it is unknown whether these 

differences are affected by CYP2E1 polymorphisms. A recent study (69) found that, in mice, 

dietary supplementation with methyl donor supplements (which are associated with 

reduction in alcohol-induced liver injury) led to a 35% increase in blood alcohol elimination 

rate. While the supplements caused no difference in alcohol metabolism in the stomach, 

there was a tremendous effect in the liver: the catalase-dependent pathway of alcohol 

metabolism was induced, at the same time that CYP2E1 induction was blunted. This 

research is consistent with the hypothesis that CYP2E1 alcohol metabolism is responsible 

for much of the liver damage associated with alcoholism. Four major polymorphisms of 

CYP2E1 are the best characterized, but there exist numerous un- or little-studied 

polymorphisms:  

1.  the wild-type RsaI+ (c1) and the variant RsaI- (c2) located in the 5’-flanking region of 

the CYP2E1 gene in a region that interacts with HNF1 (also known as CYP2E1*5A 

and *5B, RsaI/PstI RFLP, rs2031920). The c2 (T) variant is associated with a 10 times 

higher transcriptional activity, elevated protein levels, and increased enzyme activity 

compared to the c1 (C) allele (120). The c2 variant is present in 2-8% of Caucasians 

and 25-36% of East Asians. A dozen small studies (Table 5), with number of cases 
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ranging from 75 to 408, in Brazil, China, India, Europe, the U.S., and Japan, have 

studied the effects of c2 on risk of head and neck cancer (111, 121-131). Eight of 

these studies reported no main effect or interaction with alcohol. Three studies, 

conducted in France, India, and Japan (125, 128, 131) reported significantly increased 

risk of head and neck cancer (ORs=2.6, 2.4, and 3.4 respectively), and the French and 

Indian studies also reported interactive effects with alcohol. (See Table 6 re: 

interactions.) The Indian study (125) reported greater than additive but less than 

multiplicative interaction, and the French study (128) reported more than 2x 

multiplicative interaction. A study conducted in Brazil (124) reported no main effect of 

the c2 polymorphism but did report greater than 2x multiplicative interaction with 

alcohol exposure. Yang et al. reported no main effect of this polymorphism on risk of 

esophageal cancer in an Asian population, and no interactive effect with alcohol (100). 

Several studies reported increased risk for gastric and rectal cancers. A meta-

analysis published in 2007 reported a possible increased risk of gastric cancer in 

Asians homozygous for the c2 allele (132). A Chinese study (133) found that the 

CYP2E1 c2/c2 genotype increases susceptibility to rectal (but not colon) cancer 

(OR=1.64; 95% CI=1.12-2.41) compared to c1 allele carriers, and gene-environment 

interactions between the CYP2E1 polymorphism and smoking or alcohol drinking were 

found to exist for colorectal neoplasia in general. 

2.  the DraI polymorphism located in intron 6 (also known as CYP2E1*6, DraI RFLP, 

T7632A SNP, and rs6413432), for which the variant is found in 10% of Caucasians 

and about half of East Asians. A study in the Caucasian French population (128) 

reported a two-fold increased risk of oral cavity/ pharyngeal cancer (OR=2.0; 95% 

CI=1.0-3.9) and laryngeal cancer (OR=1.8; 95% CI=1.0-3.5) in carriers of the T variant 

allele compared to AA individuals. (See Tables 5&6.) The highest risk of oral 

cavity/pharyngeal cancer was observed among the heaviest drinkers (oral 



 

 41 

cavity/pharyngeal cancer: OR=5.8, 95% CI=1.9-18.2; laryngeal cancer: OR=4.6, 95% 

CI=1.5-14.1), with the interactive effect being greater than 2x multiplicative. More 

precise estimates were not possible due to the rarity of the variant allele in the 

Caucasian French population. A 2009 Indian study (125) and a 2006 Japanese study 

(131) reported increased risk of head and neck cancer with the T risk allele (OR=1.55, 

2.28 respectively), but no interactive effects with alcohol. Two studies reported no 

main or interactive effects of DraI on risk of head and neck cancer (121, 126).   

3.  the -71G>T polymorphism located 5’ of the gene, which occurs in about 10% of 

Caucasians (also known as CYP2E1*7B, DdeI RFLP, G-71T SNP, and rs6413420). 

There are no studies of this polymorphism and risk of head and neck cancer.   

4.  a 96-bp insertion polymorphism located in the regulatory region, which is found in 15% 

of Asians and 2% of Caucasians. There are no studies of this polymorphism and risk 

of head and neck cancer.  

In summary, studies investigating the effects of these CYP2E1 polymorphisms on 

risk of alcoholic complications or cancer risk have small study populations and have 

produced inconsistent results (55). 

1.4.2 Polymorphisms of oxidative stress metabolism genes 

1.4.2.1 Catalase (CAT) 

CAT is expressed in almost all tissues, where it is primarily found in peroxisomes, 

and also by colonic microorganisms in the lower gastrointestinal tract, where it contributes to 

formation of acetaldehyde from ethanol. In peroxisomes it primarily catalyzes a reaction 

between hydrogen peroxide molecules, resulting in the formation of water and O2, but it can 

also facilitate the reaction of hydrogen peroxide with hydrogen donors so that the hydrogen 

peroxide is converted to one molecule of water and the reduced donor (e.g., ethanol) 
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becomes oxidized. It can be upregulated by oxidative stress (134). In a study using ADH-

deficient deermice, ethanol oxidation was highly sensitive to inhibition by a known catalase 

inhibitor (135). Some Asians do not have active CAT, and a number of SNP polymorphisms 

in the 5’ untranslated region and introns have been reported, but these have not been 

studied in terms of their influence on enzyme activity or on responses to ethanol (55). A 

common C/T polymorphism has been identified in the promoter region, and the variant 

affects transcriptional activity and CAT enzyme levels in red blood cells (136). Associations 

of CAT polymorphisms with risk of SCCHN have not been studied. Polymorphisms of CAT 

were not associated with lung cancer risk in a Chinese population (137), non-Hodgkin’s 

lymphoma in the United Kingdom (138), or prostate cancer in the United States (139).  

1.4.2.2 Superoxide dismutase (SOD) 

SOD enzymes serve an important antioxidant role by catalyzing the conversion of 

superoxide free radicals into oxygen and hydrogen peroxide. Humans have three forms of 

SOD, whose genes are located on different chromosomes, and which are active in different 

locations. The gene for SOD1, also known as copper-zinc superoxide dismutase, is located 

on chromosome 21; its isozyme is a soluble cytoplastmic and intra-membrane mitochondrial 

protein. The gene for SOD2, also known as manganese superoxide dismutase, is located on 

chromosome 6; its product is active in the mitochondrial matrix. The gene for SOD3 is 

located on chromosome 4; its product is a major extracellular antioxidant enzyme expressed 

in many tissues, especially blood vessels (140, 141). Most studies report no association 

between SOD1 polymorphisms and cancer. The only study of SOD polymorphisms and risk 

of head and neck cancer – a 2009 study in European Caucasians (115) – found no 

association between rs2758346 in SOD2 and cancer risk (Table 5, last entry). A variant non-

synonymous SNP polymorphism in exon 2 of SOD2 (rs1799725) has been independently 

associated with 20-30% elevated risk of prostate cancer in Caucasians (Val/Ala versus 



 

 43 

Val/Val: OR=1.17; 95% CI=0.97-1.42; Ala/Ala versus Val/Val: OR=1.28; 95% CI=1.03-1.60 

(142)). Another study (143) found that white women with the Ala allele were at increased 

risk of ovarian cancer (OR=2.1; 95% CI=1.1-4.0). And Wang et al. (144) reported that, in a 

U.S. study population, Ala homozygotes were at increased risk for B-cell lymphomas 

compared to other genotypes (OR=1.3; 95% CI=1.0-1.6). A 2007 study reported that SNPs 

in SOD3 were not associated with prostate cancer in a U.S. population (142).  

1.4.2.3 Glutathione peroxidases (GPx/GPX) 

GPX’s are a family of selenium-dependent enzymes that remove hydrogen peroxide. 

There are four isoenzymes characterized to date. GPX1 was the first identified and is widely 

expressed in the cytoplasm of human cells, protecting cells against oxidative damage by 

reducing hydrogen peroxide and other peroxides. The glutathione peroxidase system 

consists of several components, including the GPx enzyme, glutathione reductase and 

cofactors glutathione (GSH) and reduced nicotinamide adenine dinucleotide phosphate 

(NADPH). Associations of GPx polymorphisms with risk of SCCHN have not been studied. 

However, a SNP resulting in a non-synonymous amino acid substitution at codon 198 

(Pro198Leu) has been studied for other cancer associations by several different groups. 

Arsova-Sarafinovska et al. (145) reported an overall protective effect of the variant Leu allele 

on prostate cancer risk; heterozygous carriers of the variant Leu (T) allele had reduced risk 

of prostate cancer compared with homozygous wild-type (OR=0.38; 95% CI=0.20-0.75). In a 

Danish study (146), carriers of the Leu variant were at 1.43-fold higher risk of breast cancer 

compared with non-carriers (95% CI=1.07-1.92). In a lung cancer study also conducted in 

Denmark (147), the odds of developing lung cancer were reduced by 40% (OR=0.60; 95% 

CI=0.35-1.05) when homozygous carriers of the variant allele were compared with the 

homozygous carriers of the wild type. A Japanese study (148) found that the risk of bladder 

cancer more than doubled with the Pro/Leu genotype compared with the wild-type Pro/Pro 
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(OR=2.63; 95% CI=1.45-4.75). However, these results are not consistent in all populations 

(141). GPX2 (extracellular intestinal enzyme), GPX3 (extracellular and common in plasma), 

and GPX4 (which has high affinity for lipid hydroperoxides) have not been studied for their 

association with cancer.  

Table 5. Case control studies examining main effects of alcohol and oxidative 
metabolism genes on risk of SCCHN  
(studies examining the same gene polymorphism and effect direction are grouped together and 
shaded alike) 

Authors Year 

Subjects’ race 
# cases/# 
controls 

Gene 
tested** 

SNP, 
variant & referent 

groups OR (95% CI) 

Significant at 
α=0.05 for: 

Main 
effect 

of 
gene? 

Interaction 
of gene 

with 
alcohol 

exposure? 

Garcia et al.(123) 2010 
Brazilian 

Caucasians, 
Blacks, Mulattos 

207/244 

ADH1B 
rs2066702 *3 allele 

TT+TC (also fast) 
versus CC 

0.60 (0.27-1.32)   

Canova et al.(115) 2009 
European 

Caucasians 
1511/1457 

ADH1B rs17033 A>G 
GG versus AA 1.35 (0.46-3.94)   

Hashibe et al.(104) 2008 
European 

Caucasians & 
Latin Americans  

3449/5278 
ADH1B rs6413413 

TT+TA versus AA 1.07 (0.70-1.63)   

Garcia et al.(123) 2010 
Brazilian 

Caucasians, 
Blacks, Mulattos 

207/244 
ADH1B 

rs1229984  
GG+GA (fast) versus 

AA 
0.42 (0.21-0.85)   

Oze et al. (105) 2009 Japanese 
585/1170 ADH1B 

rs1229984  
GG+GA (fast) versus 

AA 
2.20 (1.46-3.32)   

Hashibe et al.(103) 2006 
European 

Caucasians 
811/1083 

ADH1B 
rs1229984 

AA+GA (fast) versus 
GG 

0.47 (0.32-0.70)   

Risch et al.(107) 2003 
German 

Caucasians 
245/251 

ADH1B rs1229984 
GA (fast) versus AA 0.86 (0.41-1.82)   

McKay et al.(149) 2011 

Europeans, Latin 
& North Americans 

of European 
descent, African-

Americans 
8527/11653 

ADH1B 
rs1229984 

log-additive model, 
additional risk for 

each A allele 

0.62 (0.56-0.68)   

Hashibe et al.(104) 2008 
European 

Caucasians & 
Latin Americans  

3449/5278 
ADH1B 

rs1229984 
AA+GA (slow) versus 

GG (fast) 
0.56 (0.47-0.66)   

Asakage et al.(113) 2007 Japanese 
96/642 ADH1B 

rs1229984 
AA+AG (slow) versus 

GG 
Not stated; NS   

Hiraki et al.(106) 2007 Japanese 
239/716 ADH1B rs1229984 

AA (slow) versus GG 2.67 (1.51-4.75)   

McKay et al.(149) 2011 

Europeans, Latin 
& North Americans 

of European 
descent, African-

Americans 
7890/10938 

ADH1C 
rs698 

log-additive model, 
additional risk from 

each G allele 

1.10 (1.05-1.15)   

Garcia et al.(123) 2010 
Brazilian 

Caucasians, 
Blacks, Mulattos 

207/244 

ADH1C 
rs698  

GG+GA (slow) 
versus AA 

1.37 (0.95-1.99)   
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Table 5. Case control studies examining main effects of alcohol and oxidative 
metabolism genes on risk of SCCHN  
(studies examining the same gene polymorphism and effect direction are grouped together and 
shaded alike) 

Authors Year 

Subjects’ race 
# cases/# 
controls 

Gene 
tested** 

SNP, 
variant & referent 

groups OR (95% CI) 

Significant at 
α=0.05 for: 

Main 
effect 

of 
gene? 

Interaction 
of gene 

with 
alcohol 

exposure? 

Oze et al. (105) 2009 Japanese 
585/1170 ADH1C rs698  

each G (slow) allele 1.38 (1.02-1.87)   

Hashibe et al.(104) 2008 
European 

Caucasians & 
Latin Americans  

3449/5278 
ADH1C 

rs698 
GG+GA (slow) 

versus AA 
1.16 (1.05-1.29)   

Hashibe et al.(103) 2006 
European 

Caucasians 
811/1083 

ADH1C rs698 
GG (slow) versus AA 1.38 (1.01-1.88)   

Oze et al. (105) 2009 Japanese 
585/1170 ADH1C rs1693482  

Allelic model (A vs G) 1.37 (1.01-1.85)   

Hashibe et al.(104) 2008 
European 

Caucasians & 
Latin Americans  

3449/5278 
ADH1C 

rs1693482 
AA+AG (slow) versus 

GG 
1.20 (1.08-1.32)   

Asakage et al.(113) 2007 Japanese 
96/642 ADH1C 

rs1693482 
AA+AG (slow) versus 

GG 
Not stated; NS   

Hashibe et al.(103) 2006 
European 

Caucasians 
811/1083 

ADH1C rs1693482 
AA (slow) versus GG 1.49 (1.08-2.05)   

Peters et al.(109) 2005 EA*, AA* (4%) 
521/599 ADH1C *2/*2 (slow) versus  

*1/*2 & *1/*1 Not stated; NS   

Wang et al.(150) 2005 EA*, Other (4%) 
348/330 ADH1C *1/*1 (fast) and *1/*2 

versus *2/*2 Not stated; NS   

Risch et al.(107) 2003 
German 

Caucasians 
245/251 

ADH1C *1/*1 (fast) versus  
*1/*2 and *2/*2 1.06 (0.70-1.62)   

Zavras et al.(151) 2002 Greeks 
93/99 ADH1C *1/*1 (fast) versus  

*2/*2 0.9 (0.3-2.5)   

Olshan et al.(152) 2001 EA*, AA* (24%) 
182/202 ADH1C *1/*1 (fast) versus  

*2/*2 0.9 (0.4-1.9)   

Schwartz et al.(153) 2001 EA*, AA* (6%) 
333/541 ADH1C 

(1) *1/*1 (fast) vs 
*2/*2 

(2) *1/*2 vs *2/*2 

(1) 1.0 (0.7-1.5) 
(2) 1.3 (1.0-1.8) 

 
 

 
 

Bouchardy et al.(128) 2000 
French 

Caucasians 
250/172 

ADH1C  *1/*1 (fast) versus  
*1/*2 and *2/*2 

OC/pharynx: 1.4 (0.8-
2.3) 

larynx: 0.7 (0.4-1.3)   

Canova et al.(115) 2009 
European 

Caucasians 
1511/1457 

ADH1C rs1662058 A>G 
GG versus AA 1.12 (0.88-1.42)   

Canova et al.(115) 2009 
European 

Caucasians 
1511/1457 

ADH1C rs2241894 A>G 
GG versus AA 1.01 (0.72-1.42)   

Oze et al. (105) 2009 Japanese 
585/1170 ADH4 rs4148887 

TT+TC versus CC 1.96 (1.34-2.87)   

Hashibe et al.(104) 2008 
Europeans & Latin 

Americans  
3449/5278 

ADH4 rs1984362 
TT+TC versus CC 1.03 (0.94-1.14)   

Oze et al. (105) 2009 Japanese 
585/1170 ADH7 rs3737482 

CC+CT versus TT 1.62 (1.18-2.24)   

McKay et al.(149) 2011 

Europeans, Latin 
& North Americans 

of European 
descent, African-

Americans 
8545/11657 

ADH7 
rs1573496 

log-additive model, 
additional risk for 

each C allele 

0.74 (0.69-0.80)   

Hashibe et al.(104) 2008 
Europeans & Latin 

Americans 
3449/5278  

ADH7 rs1573496 
CC+CG versus GG 0.68 (0.60-0.78)   
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Table 5. Case control studies examining main effects of alcohol and oxidative 
metabolism genes on risk of SCCHN  
(studies examining the same gene polymorphism and effect direction are grouped together and 
shaded alike) 

Authors Year 

Subjects’ race 
# cases/# 
controls 

Gene 
tested** 

SNP, 
variant & referent 

groups OR (95% CI) 

Significant at 
α=0.05 for: 

Main 
effect 

of 
gene? 

Interaction 
of gene 

with 
alcohol 

exposure? 

Canova et al.(115) 2009 
European 

Caucasians 
1511/1457 

ALDH2 rs886205 (+82A>G) 
GG versus AA 1.09 (0.72-1.67)   

Hashibe et al.(103) 2006 
European 

Caucasians 
811/1083 

ALDH2 rs886205 (+82A>G) 
GG+GA versus AA 1.29 (1.03-1.60)   

Hiraki et al.(106) 2007 Japanese 
239/716 ALDH2 rs671 

AG (null) versus GG 1.66 (1.20-2.31)   

Asakage et al.(113) 2007 Japanese 
96/642 ALDH2 rs671 

AA (null) versus GG Not stated; NS   

Hashimoto et al.(114) 2006 Japanese 
192/192 ALDH2 

rs671 
AA+AG (null) versus 

GG 
Not stated; NS   

Katoh et al.(111)  1999 Japanese 
92/147 ALDH2  

rs671 
AA+AG (null) versus 

AA 
1.10 (0.61-1.99)   

McKay et al.(149) 2011 

Europeans, Latin 
& North Americans 

of European 
descent, African-

Americans 
8232/11064 

ALDH2 
rs4767364 

log-additive model, 
additional risk for 

each A allele 

1.12 (1.07-1.17)   

Canova et al.(115) 2009 
European 

Caucasians 
1511/1457 

ALDH2 rs4646777 G>A 
AA versus GG 1.08 (0.71-1.63)   

Hashibe et al.(103) 2006 
European 

Caucasians 
811/1083 

ALDH2 rs441 
CC+CT versus TT 1.33 (1.07-1.66)   

Hashibe et al.(103) 2006 
European 

Caucasians 
811/1083 

ALDH2 rs440 
CC+CT versus TT 1.32 (1.06-1.65)   

Ruwali et al.(125) 2009 Indians 
350/350 CYP2E1 rs6413432 (DraI) 

TT+TA versus AA 1.55 (1.08-2.22)   

Boccia et al.(121) 2008 
European 

Caucasians 
210/245 

CYP2E1 rs6413432 (DraI) 
TT+TA versus AA 0.87 (0.43-1.76)   

Soya et al.(126) 2008 Indians 
408/220 CYP2E1 rs6413432 (DraI) 

TT versus AA 0.94 (0.36-2.46)   

Sugimura et al.(131)  2006 Japanese 
122/241 CYP2E1 rs6413432 (DraI) 

TT versus AA 2.28 (1.06-4.91)   

Bouchardy et al.(128) 2000 
French 

Caucasians 
250/172 

CYP2E1 rs6413432 (DraI) 
TT+TA versus AA 

OC/pharynx: 2.0 (1.0-
3.9) 

larynx: 1.8 (1.0-3.5) 

 
 

 
 

Garcia et al.(123) 2010 
Brazilian 

Caucasians, 
Blacks, Mulattos 

207/244 

CYP2E1 rs2031920 (RsaI) 
TC (fast) versus CC 1.53 (0.76-3.09)   

Tai et al.(127) 2010 Chinese 
278/278 CYP2E1 rs2031920 (RsaI) 

TC (fast) versus CC 0.97 (0.66-1.43)   

Olivieri et al.(124) 2009 
Brazilian 

Caucasians, 
Blacks, Mulattos 

153/145 

CYP2E1 
rs2031920 (RsaI) 

TT (fast) +TC versus 
CC 

Not given   

Ruwali et al.(125) 2009 Indian 
350/350 CYP2E1 

rs2031920 (RsaI) 
TT (fast) +TC versus 

CC 
2.40 (0.98-5.85)   

Boccia et al.(121) 2008 
European 

Caucasians 
210/245 

CYP2E1 
rs2031920 (RsaI) 

TT (fast) +TC versus 
CC 

0.72 (0.33-1.63)   

Buch et al.(122) 2008 EA* 
197/416 CYP2E1 

rs2031920 (RsaI) 
TT (fast) +TC versus 

CC 
Not given   
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Table 5. Case control studies examining main effects of alcohol and oxidative 
metabolism genes on risk of SCCHN  
(studies examining the same gene polymorphism and effect direction are grouped together and 
shaded alike) 

Authors Year 

Subjects’ race 
# cases/# 
controls 

Gene 
tested** 

SNP, 
variant & referent 

groups OR (95% CI) 

Significant at 
α=0.05 for: 

Main 
effect 

of 
gene? 

Interaction 
of gene 

with 
alcohol 

exposure? 

Soya et al.(126) 2008 Indians 
408/220 CYP2E1 

rs2031920 (RsaI) 
TT (fast) +TC versus 

CC 
1.03 (0.36-2.94)   

Sugimura et al.(131)  2006 Japanese 
122/241 CYP2E1 rs2031920 (RsaI) 

TT (fast) versus CC 3.38 (1.22-9.36)   

Bouchardy et al.(128) 2000 
French 

Caucasians 
250/172 

CYP2E1 
rs2031920 (RsaI) 

TT (fast) + TC versus 
CC 

OC/pharynx: 2.6 (1.0-
6.6) 

larynx: 1.4 (0.5-4.0) 

 
 

 
 

Katoh et al.(111)  1999 Japanese 
92/147 CYP2E1 

rs2031920 (RsaI) 
TT (fast) + TC versus 

CC 
1.45 (0.80-2.62)   

Morita et al.(130) 1999 Japanese 
145/164 CYP2E1 

rs2031920 (RsaI) 
TT (fast) + TC versus 

CC 
Not stated; NS   

Gonzalez et al.(129) 1998 
Spanish 

Caucasians 
75/200  

CYP2E1 
rs2031920 (RsaI) 

TT (fast) + TC versus 
CC 

Not stated; NS   

Soya et al.(126) 2008 Indians 
408/220 CYP2E1 *1B 

A1A1 versus A2A2 0.52 (0.16-1.66)   

Canova et al.(115) 2009 
European 

Caucasians 
1511/1457 

SOD2 rs2758346 G>A 
AA versus GG 0.98 (0.78-1.22)   

* AA=African American, EA=European American/white 
** This column lists only those genes also being tested in this study (ADH, ALDH, CYP2E1, SOD, GPX, CAT) 
 

Table 6. Case control studies examining interaction between alcohol and oxidative 
metabolism genes and alcohol in production of SCCHN 
 

Authors Year Subjects’ race 
Genes 

tested** 
Evidence of 

interaction found 
Case/control 

source 
# cases/ 

# controls 

McKay et al.(149) 2011 

Europeans, Latin & 
North Americans of 
European descent, 
African-Americans 

ADH1B, 
ADH1C, 
ADH7, 
ALDH2 

rs1229984 in ADH1B 
protective in drinkers 

15 UADT studies: 
11 hospital-based, 
4 population-based 

8744/11982 

Garcia et al.(123) 2010 
Brazilian 

Caucasians, 
Blacks, Mulattos 

ADH 

rs1229984 in ADH1B ↑ 
HNC risk in heavy 
alcohol drinkers 
(>additive, 2x 
multiplicative) 

hospital/clinic 207/244 

Tai et al.(127) 2010 Chinese CYP2E1 none hospital/clinic 278/278 

Oze et al. (105) 2009 Japanese ADH 

1 in ADH1B, 2 SNPs in 
ADH4, 1 in ADH7 ↑ risk 

of UADT; greater 
magnitude in heavy 

drinkers (>multiplicative) 

hospital/clinic 585/1170 

Olivieri et al.(124) 2009 
Brazilian 

Caucasians, 
Blacks, Mulattos 

CYP2E1 
rs2031920/*5B/RsaI  

↑risk in alcoholics versus 
non-alcoholics (2x 

multiplicative) 

hospital/hospital 153/145 

Ruwali et al.(125) 2009 Indian CYP2E1 

* rs2031920/*5B/RsaI 
/rs6413432*6/DraI  
↑ risk in alcoholics 

versus non-alcoholics 
(>additive, < 
multiplicative) 

hospital/hospital 350/350 
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Table 6. Case control studies examining interaction between alcohol and oxidative 
metabolism genes and alcohol in production of SCCHN 
 

Authors Year Subjects’ race 
Genes 

tested** 
Evidence of 

interaction found 
Case/control 

source 
# cases/ 

# controls 
Boccia et al.(121) 2008 Caucasian CYP2E1 none hospital/hospital 210/245 

Buch et al.(122) 2008 Caucasian CYP2E1 none hospital/population 197/416 

Hashibe et 
al.(104) 

2008 European & Latin 
American  ADH 

rs1229984 in ADH1B 
>additive, <multiplicative 

rs1573496 in ADH7  
heterogeneous effect but 

can’t evaluate additive 
interaction 

hospital/hospital 3449/5278 

Soya et al.(126) 2008 Indian CYP2E1 
*1B variant homozygote 

↑ risk only in regular 
alcohol users (>additive, 

<multiplicative) 

hospital/hospital 408/220 

Asakage et 
al.(113) 2007 Japanese ADH, 

ALDH 
ADH1B rs1229984 

> additive hospital/clinic 96/642 

Hiraki et al.(106) 2007 Japanese ADH, 
ALDH 

ADH1B Arg/Arg, ALDH2 
Glu/Lys ↑ risk in heavier 

drinkers (>additive, 
<multiplicative for both) 

hospital/clinic 239/716 

Hashibe et al. 
(103) 

2006 European 
Caucasian 

ADH, 
ALDH 

ADH1B*2 ↓ risk in 
heavier drinkers 

(>additive, 
<multiplicative), 3 ALDH 
polymorphisms ↑ risk in 
heavier drinkers (>2x 

multiplicative) 

hospital & 
clinic/hospital & 

clinic 
811/1083 

Hashimoto et 
al.(114) 

2006 Japanese ALDH none hospital/mixed 192/192 

Sugimura et 
al.(131)  2006 Japanese CYP2E1 none hospital/hospital 122/241 

Peters et al.(109) 2005 EA*; AA* (4%) ADH 
ADH1C*2-2 homozygote 
↑ risk in heavy drinkers 

(>additive, >2x 
multiplicative) 

hospital/population 521/599 

Wang et al.(150) 2005 EA*; Other (4%) ADH1C none hospital/clinic 348/330 

Risch et al.(107) 2003 German 
Caucasian  

ADH1B, 
ADH1C none population 

recruits/population 245/251 

Zavras et al.(151) 2002 Greek ADH 

ADH1C*2-2 homozygote 
↑ risk as alcohol 
consumption ↑ 
(>additive, >2x 
multiplicative) 

hospital/hospital 93/99 

Olshan et al.(152) 2001 EA*; AA* (24%) ADH1C none hospital/hospital 182/202 

Schwartz et 
al.(153) 

2001 EA*; AA* (6%) ADH 

ADH1C*2-2 homozygote 
↑ risk as alcohol 
consumption ↑ 

(>additive, 
>multiplicative) 

population/ 
population 333/541 

Bouchardy et 
al.(128) 

2000 French Caucasian ADH, 
CYP2E1 

ADH1C - none 
CYP2E1 Dral C allele, 

Rsal c2 allele both ↑ risk 
in heaviest drinkers (>2x 

multiplicative) 

hospital/hospital 250/172 

Katoh et al.(111)  1999 Japanese ALDH 
CYP2E1 none hospital/hospital 92/147 

Morita et al.(130) 1999 Japanese CYP2E1 none unknown/clinic 145/164 
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Table 6. Case control studies examining interaction between alcohol and oxidative 
metabolism genes and alcohol in production of SCCHN 
 

Authors Year Subjects’ race 
Genes 

tested** 
Evidence of 

interaction found 
Case/control 

source 
# cases/ 

# controls 
Gonzalez et 
al.(129) 

1998 Caucasian CYP2E1 none hospital/blood 
donors 75/200 

* AA=African American/black; EA=European American/white 
** This column lists only those genes also being tested in this study (ADH, ALDH, CYP2E1, SOD, GPX, CAT) 
 

1.5 EPIDEMIOLOGIC STUDIES OF GENETIC POLYMORPHISMS AND SURVIVAL AFTER SCCHN 

DIAGNOSIS 

Of all the ADH genes, only ADH1C polymorphisms have been studied for effect on 

survival. Wang et al.(150) found higher recurrence and poorer overall and disease-specific 

survival among homozygotes for both the fast (*1) and slow (*2) alleles of ADH1C, as 

compared to *1/*2 heterozygotes. Overall and disease-specific hazard of survival in *1 

homozygotes was 30% of that observed in heterozygotes (HRoverall=0.3, 95% CI=0.2-0.6; 

HRdisease-specific=0.3, 95% CI=0.1-0.8), and overall and disease-specific hazard of survival in 

*2 homozygotes was 40% of that of heterozygotes (HRoverall=0.4, 95% CI=0.2-0.9; HRdisease-

specific=0.4, 95% CI=0.2-1.1).  

Olivieri et al.(124) reported that, in addition to being present more frequently in 

alcohol users in cases than alcohol users in controls, the CYP2E1*5B c2 (highly active) 

variant was significantly associated with advanced clinical stage (T3 and T4) at diagnosis.  

Although many studies (154-165) have analyzed and discussed the significance of 

somatic mutations and variant protein expression in tumor cells, no studies have tested the 

germline ALDH, CYP2E1, SOD, GPx, and CAT genes for possible survival differences.



 

 

 

CHAPTER 2   

AIMS AND METHODS  

2.1 SPECIFIC AIMS 

The overall goal of this dissertation project was to evaluate the relationship between 

polymorphisms of genes that, in combination with exposure to alcohol, may modify the risk 

of developing SCCHN or survival after diagnosis. The genes were selected on the basis of 

their potential functional importance related to alcohol metabolism, alcohol-induced 

carcinogenesis and previous epidemiologic literature on these genes and the risk of 

SCCHN.  

The Carolina Head and Neck Cancer Epidemiologic study (CHANCE), a large 

population-based case-control study (n=1389 cases and 1396 controls), is the parent study 

upon which this research is based. It was designed to assess modifications of cancer risk 

due to genes in specific metabolic pathways that have been shown to affect cancer risk in 

prior studies of head and neck cancer and/or other types of cancer. Such candidate gene 

studies are designed to estimate the effect of genetic variants on population risk, in contrast 

to genome-wide association studies that attempt to identify chromosomal regions that are 

linked to the disease by ranking p-values, and do not estimate risk alterations. This 

dissertation project evaluated variants of the major genes that are active in metabolizing 

alcohol in the mouth, pharynx, and larynx in terms of their effect on SCCHN risk and 

survival: (1) alcohol dehydrogenase (ADH) genes; (2) acetaldehyde dehydrogenase (ALDH) 

genes; and (3) the cytochrome P450 gene CYP2E1. In addition, I examined variants of the 

primary oxidative stress genes and their effect on SCCHN risk and survival, including 
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glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT). These 

genes encode enzyme products that process carcinogenic oxygen free radicals produced 

primarily in the course of reactions catalyzed by CYP2E1 (166, 167). The prevalence of 

variants in these genes was compared between case and control groups to determine the 

risk of SCCHN. In addition, I obtained vital status of all CHANCE case participants from the 

National Death Index (NDI) in order to compare all-cause and cancer-specific death rates 

among patients by different polymorphisms of the aforementioned genes.  

The primary specific aims of this study were as follows: 

1. Estimate the main effects of each genetic polymorphism (SNPs and haplotypes) on the 

risk of developing SCCHN. My hypothesis: The polymorphisms are not associated with 

SCCHN risk in non-drinkers and light drinkers. If, however, some polymorphisms are 

found to be independently associated with risk in the absence of alcohol exposure, one 

may conclude either that study subjects misreported their drinking to be lower than it 

really is, and/or that a mechanism other than mutagenic alcohol metabolites is affecting 

cancer risk.  

2. Estimate the interactive effect of alcohol exposure with each polymorphism on the risk of 

developing SCCHN. My hypothesis: Some polymorphisms will be associated with 

SCCHN risk in the presence of alcohol exposure. If, however, no polymorphism*alcohol 

interaction is found, one may conclude that either my study was under-powered to detect 

interactions, my study did not identify the important polymorphisms using the SNPs we 

genotyped, and/or that alcohol does not interact with the major gene polymorphisms that 

are present in whites and African-Americans.  

3. Compare death rates of cases with different gene polymorphisms in order to identify 

survival differences associated with particular polymorphisms. My hypothesis: 

Polymorphisms associated with SCCHN risk in heavy drinkers at baseline will also be 

associated with their survival. If, however, this is found not to be the case, one may 
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conclude either that the lack of complete follow-up measures of alcohol intake in 

participants who were heavy drinkers before their cancer diagnosis prevents us from 

discovering whether behaviors after prognosis are associated with survival, or that the 

mechanisms that affect cancer incidence are not the same as those that affect mortality 

once cancer has occurred.  

Knowledge of higher-risk genotypes provides new insights about disease 

mechanisms, which can suggest new strategies for prevention, screening, diagnosis, and 

treatment. This may be especially useful for African-American men, who develop and die 

from SCCHN at much higher rates than white men, and women of both races.  

2.2 STUDY POPULATION 

Study area. The CHANCE geographic area (Figure 4) includes a population that is 

about one-third African American and two-thirds white, and a mix of rural and urban areas. 

Since head and neck cancers disproportionately afflict African Americans, and existing 

studies (Table 6) don’t include enough African Americans to enable precise measurement of 

odds ratios, the CHANCE study population provides valuable information on an under-

studied population (168). 
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Figure 4. Forty-six North Carolina counties from which CHANCE participants were 
enrolled. Participating counties are highlighted in white. 

 

Examination of data on county of residence compared to county of diagnosis or treatment showed a 
total of only 5 cases (0.3%) resident in the entire 46-county study area that were diagnosed outside 
the study area in a single year; therefore almost all cases occurring in the study area during the study 
enrollment period were identified as eligible for enrollment, rendering the cases population-based. 
North Carolina incidence and mortality for oral cavity and pharyngeal cancer are higher than the 
national average (15, 169, 170), such that a sufficient number of cases (>1500) were expected to 
occur in the 46 counties over the four years of the study.  

 

Cases. Cases were adults aged 20-80 with a newly diagnosed first primary invasive 

squamous cell carcinoma of the head and neck (pharynx, larynx, oral cavity) between 

January 1, 2002 and February 28, 2006. To be eligible, cases had to be residents of a 46-

county region in North Carolina. People with carcinomas of other histologies or carcinomas 

at other head and neck sites, or a history of recurrent or second primary tumors, were not 

eligible. 

Specifically included were oral cavity, including lip (mucosa) and pharynx (ICD-O-3 

topography codes CO.OO to C14.8), and larynx (C32.0 to C32.9). Excluded were tumors of 

the salivary glands (C07.9, C08.0 to C08.9), nasopharynx (C11 .0 to C11.9), nasal cavity 

(C30.0), and nasal sinuses (C31.0 to C31 .9). Tumors with the following histologies were 

included (ICD-O-3 morphology codes): 8010/3 (epithelial neoplasm, carcinoma, NOS); 
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8051/3 (verrucous carcinoma, NOS); 8070/3 (SCC, NOS); 8083/3 (basaloid SCC); 8071/3 

(SCC, keratinizing, NOS); 8072/3 (SCC, large cell, nonkeratinizing, NOS); 8073/3 (SCC, 

small cell, nonkeratinizing); 8074/3 (SCC, spindle cell); and 8076/3 (SCC, microinvasive). 

Excluded histologies included: 8010/0 (epithelial tumor, benign); 8010/2 (carcinoma, in situ, 

NOS); 8050/0-3 (papillary carcinoma); 8052/0-3 (papillary carcinoma); and 8075/3 (SCC, 

adenoid). 

To minimize recall bias and to include later stage and terminally ill subjects in the 

study, rapid identification of newly-diagnosed cancer cases was conducted by the North 

Carolina Central Cancer Registry (CCR) to ensure that pathology reports were sent from 

hospitals to the CCR more rapidly than usual. The CCR team contacted the cancer 

registrars of 54 hospitals in the study area on a monthly basis to identify potentially eligible 

head and neck cancer cases. Pathology reports were usually sent to the CCR within four 

weeks of diagnosis. Staff entered basic data on age, pathology, tumor site, and physician 

name from each report into a database, and the information was then downloaded and 

delivered to the study office at the University of North Carolina at Chapel Hill.  

Patient physicians were then notified by mail of their patient’s eligibility for the study, 

and physicians were given the opportunity to refuse to give permission to the investigators 

to contact their patient. (To promote physician cooperation, all physicians practicing in the 

study area who were listed as head and neck or ENT surgeons in the North Carolina 

Medical Society and Medical Board lists were mailed a letter and brochure at the start of the 

study describing the study and soliciting their support.) After physician notification, 

potentially eligible cases were mailed a brochure with answers to commonly asked 

questions about the study, and a letter from the CCR describing the purpose of the Cancer 

Registry and the CCR’s mission to work with researchers seeking to improve the health of 

North Carolina residents. The introduction letter explained the study purpose, the 

questionnaire, and biologic specimen collection (blood and/or mouth rinse). The letter 



 

 55 

indicated that the study was completely voluntary, that participants would be paid $50 for 

completing the questionnaire, and that a study nurse would contact them by telephone to 

answer questions and schedule an appointment. Nurse-interviewers subsequently contacted 

the subjects to verify eligibility and schedule an interview in the subject’s home or other 

convenient location. Written informed consent for the interview, collection of biologic 

specimens, and collection of cases’ medical records were obtained prior to conducting the 

interview. Medical records were reviewed to verify that potential cases did indeed have one 

of the specified head and neck cancer histological types. 

Of 1827 eligible SCCHN cases, 1337 (73%) personally completed the interview, and 

of these, 1313 (96%) also provided a biological sample with sufficient DNA for analysis 

(Figure 5). 

Controls. Potentially eligible controls from the same counties as cases were 

identified through North Carolina Department of Motor Vehicles (DMV) records. Controls 

were frequency-matched to cases using random sampling with stratification on age, race, 

and sex to obtain comparability to the expected case distribution on these factors. Of 3035 

potential controls with whom contact was attempted, 1379 (45%) personally completed the 

interview (Table 7), and of these, 1368 (99%) also provided a biologic sample with sufficient 

DNA for analysis (Figure 5). 

The CHANCE study was very successful in locating eligible cases (97% located) and 

obtaining their cooperation (81%), yielding an excellent 79% case response rate of self-

completion of an interview. As with most recent population-based case-control studies, 

locating and recruiting controls was more difficult. Among potentially eligible controls, 22% 

could not be located despite intensive tracing. About 37% of eligible and located controls 

refused to participate, compared to 17% of cases, which resulted in an adequate contact 

rate of 78% and cooperation rate of 61% but an overall response rate of 47%. The overall 
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response rate for African-American controls (36% versus 51% for whites) was lower largely 

due to the greater number of unlocatable subjects. (Table 7) 

The few living participants who only completed the questionnaire without providing 

DNA (less than 1% of both cases and controls) did not differ significantly in terms of 

demographics or major risk factors (alcohol, smoking) from those who provided both 

questionnaire and DNA data. The 4% of cases (compared to 1% of controls) who died 

before they could complete the questionnaire and provide a DNA sample are also a small 

portion of the study participants; however, if survival is associated with gene variants as 

hypothesized, the associations measured in this study may be attenuated due to missing 

genotyping data for the mostly rapidly fatal cases. Therefore the source population for this 

proposed study is very similar, though not identical, to the CHANCE study population, and 

differs mainly because (1) 21 cases of lip cancer were excluded; (2) 46 cases of other race-

ethnicity were excluded; and (3) genotype data on a small percentage of rapidly fatal cases 

are not available. (Reasons for excluding lip cancer and those of “other” race-ethnicity are 

explained later in this chapter.) 

Institutional Review Board. Written informed consent was obtained from all subjects. 

The CHANCE parent study and this study were approved by the Biomedical Institutional 

Review Board at the University of North Carolina at Chapel Hill.  
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Table 7. CHANCE response rates by race  

Study subject 
status 

Total Whites African-
Americans 

Other1 Unknown 

N % N % N % N % N % 
CASES           
 Sampled 2135  1524  546  39  26  
 Ineligible 268 (12.6) 184 (12.0) 69 (12.8) 7 (17.9) 9 (34.6) 

 Physician refusal 39 (1.8) 29 (1.9) 9 (1.6) 1 (2.6) 0 - 

 Eligible (A) 1827  1311  468  31  17  
  Unlocatable (B) 50 (2.7) 27 (2.1) 19 (4.1) 1 (3.2) 3 (17.6) 
  Subject refusal 311 (17.0) 224 (17.1) 75 (16.0) 2 (6.5) 10 (58.8) 

  Deceased, no proxy 77 (4.2) 50 (3.8) 23 (5.0) 0 - 4 (23.5) 

 Eligible (A’)2 1698  1231  424  30  13  
  Completed interview – self (C’) 1337  980  330  27  0  
  Completed interview – proxy 52  30  21  1  0  

  Total interviews (C) 1389  1011  351  28  0  

 Contact rate = (A’-B)/A’ (self) 0.971  0.978  0.955  0.967  0.769  
 Cooperation rate = C’/(A’-B) (self) 0.811  0.814  0.815  0.931  -  
 Response rate = C’/A’ (self) 0.788  0.796  0.778  0.900  -  
 Response rate = C/A (self+proxy) 0.760  0.770  0.750  0.903  -  
CONTROLS           
 Sampled 4049  2803  1170  76  0  
 Ineligible 234 (5.8) 165 (5.9) 57 (4.9) 12 (15.8) 0 - 

 Not initiated 780 (19.3) 406 (14.5) 349 (29.8) 25 (32.9) 0 - 

 Eligible (A) 3035  2232  764  39  0  
  Unlocatable (B) 655 (21.6) 369 (16.5) 272 (35.6) 14 (35.9) 0 - 
  Subject refusal 875 (28.8) 672 (30.1) 196 (25.7) 7 (17.9) 0 - 

  Deceased, no proxy 109 (3.6) 77 (3.4) 32 (4.2) 0 - 0 - 

 Eligible (A’) 2909  2141  729  39  0  
  Completed interview – self (C’) 1379  1100  261  18  0  
  Completed interview – proxy 17  14  3  0  0  

  Total interviews (C) 1396  1114  264  18  0  

 Contact rate = (A’-B)/A’ (self) 0.775  0.828  0.627  0.641  -  
 Cooperation rate = C’/(A’-B) (self) 0.612  0.621  0.571  0.720  -  
 Response rate = C’/A’ (self) 0.474  0.514  0.358  0.462  -  
 Response rate = C/A (self+proxy) 0.460  0.499  0.346  0.462  -  
1 American Indian, Asian/Pacific Islander, and Other 
2 A’ is the sum of self-completed interview (C’), unlocatable (B), and number of subjects who refused to enroll. 
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Figure 5. Flowchart of biological sample processing in CHANCE cases and controls 

  

 

2.3 MEASUREMENTS 

2.3.1 Outcomes 

2.3.1.1 Incidence of head and neck cancer 

See the “Cases” portion of Section 2.2 (Study population), above.  

2.3.1.2 Mortality 

In May 2011, determination of whether death had occurred in study participants by 

December 31, 2008, and, if so, the time and cause, was obtained from the National Death 

Index (NDI), a national file of identified death record information compiled from computer 

files submitted by State vital statistics offices. The NDI is considered the gold standard for 

identifying U.S. deaths; it demonstrated the highest sensitivity ratings, as compared to other 

databases of death information, in a 2002 study (171). Currently, it is also the only source at 

the national level with a cause of death field useful for research purposes; the discrepancy 
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rate between coded cause of death in the NDI and specialist-verified coded cause of death 

is estimated to be about 4%.(171) Death records are added to the NDI file annually, 

approximately 12 months after the end of a particular calendar year. The CHANCE study 

collected excellent matching data in multiple fields: social security number (SSN), date of 

birth (DOB), sex, race, state of residence, and name. Therefore there was a high proportion 

(75%) of perfect/very close to perfect matches on SSN, DOB, and sex. A small number of 

partial matches (e.g. a few SSN digits, parts of DOB) were examined case-by-case and a 

determination was made whether to accept or not. Using NDI vital status as of December 

31, 2008, the follow-up time on CHANCE participants ranged from 2.8 to 7 years.  

2.3.2 Main exposures 

2.3.2.1 Alcohol drinking  

Alcohol drinking exposure was measured in CHANCE by self-report answers to 

questions asked on the in-person nurse-administered questionnaire (Appendix B). 

Questions about alcohol use were based on previous questionnaires used in head and neck 

cancer studies and other cancer epidemiology and nutrition studies conducted at UNC. The 

questions were designed to estimate lifetime history of alcohol consumption prior to the year 

before diagnosis, and also asked about usual consumption prior to diagnosis of SCCHN. 

The questionnaire asked about beer, wine, and hard liquor separately. For each, it asked: 

(1) Did you drink [beer/wine/hard liquor]?  

(2) At what age did you start?  

(3) At what age did you stop?  

(4) For how many years did you drink [beer/wine/hard liquor] during this period?  

(5) How much [beer/wine/hard liquor] did you usually drink?  

Per day/week/month/year?  
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(6) What size did you usually drink?  

CHANCE participants include a high number and percentage of never-drinkers (416 

or 16%), which enabled precise risk estimates because never-drinkers were used as the 

referent category. The number and percentage of drinkers of only one type of alcoholic 

beverage were small (Table 8), and the resulting imprecision of estimates rendered it difficult 

to compare risks between beverage types. Drinking rate categories have large numbers in 

each class (Table 8), with the largest numbers in the light category (<3 drinks per day). 

When comparing cases to controls (Table 8), cases include a higher proportion of past 

drinkers and a lower proportion of never-drinkers than do controls (though, interestingly, the 

proportion of current drinkers among cases and controls is about the same). Cases also 

include a much smaller percentage of wine-only drinkers (1.2% of cases versus 5.3% of 

controls), and a much higher percentage of moderate and heavy drinkers (53% of cases 

versus 18% of controls).  

In the United States, the typical alcoholic drink (12 ounces of beer, 4 ounces of wine, 

1-1.5 ounces of liquor) contains about 12-14 grams of ethanol. By this measure, 5 drinks per 

day contain about 60-70 grams of ethanol, and 6-7 drinks per day contain about 80 grams of 

ethanol. Other countries consume different types of alcoholic drinks with different amounts 

of ethanol; for example, one “go” of sake (180 ml) contains about 27 grams of ethanol, while 

one beer (half-pint) in the United Kingdom contains about 8 grams (172). For each CHANCE 

subject, I used U.S. average estimates of ethanol volume in each type of beverage (beer, 

wine, liquor) to convert number of drinks per week of each type to milliliters of ethanol, and 

combined that information with duration of drinking to estimate the lifetime total of 
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Table 8. Distribution of alcohol-drinking behaviors in cases and controls 

Category All study participants 
(n=2657) 
#  (%)* 

Cases  
(n=1290) 

# (%)* 

Controls  
(n=1367) 

# (%)* 

Timing  
(# of participants with complete data on timing: ntotal=2641, ncases=1281, ncontrols=1360) 
     Never-drinkers 416 (15.8%) 124 (9.7%) 292 (21.5%) 
     Past drinkers 749 (28.4%) 434 (33.9%) 315 (23.2%) 
     Current drinkers 1476 (55.9%) 723 (56.4%) 753 (55.4%) 
Type of alcoholic drink  
(# of participants with complete data on type of drink: ntotal=2641, ncases=1281, ncontrols=1360) 
     N/A (never drinker) 416 (15.8%) 124 (9.7%) 292 (21.5%) 
     Beer only 169 (6.4%) 100 (7.8%) 69 (5.1%) 
     Liquor only 93 (3.5%) 48 (3.7%) 45 (3.3%) 
     Wine only 88 (3.3%) 16 (1.2%) 72 (5.3%) 
     Multiple types 1875 (71.0%) 993 (77.5%) 882 (64.9%) 
Drinking rate (past or current)  
(# of participants with complete data on maximum drinking rate: ntotal=2648, ncases=1283, ncontrols=1365) 
     N/A (never drinker) 416 (15.7%) 124 (9.7%) 292 (21.4%) 
     Light (≤ 2/day) 1313 (49.6%) 483 (37.6%) 830 (60.8%) 
     Moderate (3-5/day) 396 (15.0%) 248 (19.3%) 148 (10.8%) 
     Heavy (≥ 6/day) 523 (19.8%) 428 (33.4%) 95 (7.0%) 
*Numbers may not add to total n in column header due to missing data for some participants. Percentages are calculated with 
a denominator equal to the number of participants with data (excluding those with missing data). Percentages in each category 
may not total exactly 100 due to rounding. 

ethanol consumed for each beverage. I then summed the lifetime total for each beverage 

type to construct an estimate of lifetime ethanol consumption from all alcoholic beverage 

types. For purposes of comparing CHANCE risk-by-drinking-frequency estimates to those of 

INHANCE, I standardized CHANCE drink frequencies to the INHANCE definition of 15.6 ml 

ethanol per drink (of beer, wine, or liquor).  

Alcohol variable selection and construction. Based on literature review as 

summarized by IARC (51) that concluded that frequency of drinking alcoholic beverages is 

more consistently associated with risk of SCCHN than duration of smoking, it would have 

been most desirable to construct a single drinking frequency variable for CHANCE subjects 

that integrates frequency of drinking beer, wine, and liquor. Although this was not possible 

due to the way the questions were worded, it was possible to estimate lifetime ethanol 
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consumption in milliliters. Because this variable is not standard in the literature on gene-

ethanol interaction, I (a) examined smoothed splines of SCCHN odds versus duration, 

frequency, and lifetime intake of each alcoholic beverage, to determine general patterns; (b) 

calculated the correlation between drink frequencies for individual beverages and the 

lifetime ethanol intake for all beverages combined; and (c) examined smoothed splines of 

SCCHN odds versus lifetime intake of all beverages combined for purposes of determining a 

classification scheme that would best capture the odds pattern in CHANCE data.  

Splines examined in (a) (Figure 6) indicated that the odds of getting cancer 

increased monotonically as frequency increased from 0 to 100 drinks per week, while the 

pattern for increasing duration was not consistently monotonic for each beverage type. 

When excluding subjects within the top 5% of lifetime alcohol consumption, cancer odds 

increased monotonically as lifetime consumption (of all beverage types combined) increased 

(Figure 7). I concluded that lifetime intake in milliliters of all beverage types combined is a 

reasonable substitute measure for the frequency of drinking, in terms of its effect on cancer 

odds.  
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Figure 6. Splines of log-odds of SCCHN cancer in CHANCE, versus frequency and 
duration, separately for each beverage (excluding never-drinkers) 
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Figure 7. Splines of log-odds of SCCHN cancer in CHANCE, for lifetime intake 
(excluding never-drinkers and 5% of subjects whose lifetime intake was > 400 drink-
years) 

 

 

 

Correlations (b) indicated that the frequency of drinking each type of beverage is 

most highly correlated with the lifetime total consumed of that beverage (0.87 for liquor, 0.91 

for beer, 0.93 for wine), while duration variables have very low correlation (0.28 for liquor, 

0.36 for beer, 0.23 for wine), indicating that frequency contributes more significantly to the 

lifetime total variables than duration. In addition, the correlation between each frequency 

variable and lifetime intake in milliliters (summed over all types) is also relatively high (0.81 

for liquor, 0.64 for beer, 0.53 for wine), and is much higher than for duration variables. Thus 
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the metric available in CHANCE -- overall lifetime ethanol intake -- is highly correlated with 

the preferred metric of drink frequency.  

Finally, in an effort (c) to capture the risk profile for lifetime ethanol intake yet 

maintain a practical number of categories for estimating interaction with genetic 

polymorphisms, I explored various categorization schemes, finally settling on non-drinkers 

plus tertiles of lifetime drinking. It describes the risk profile observed in the splines 

reasonably well, and the average drink frequency of beer and liquor differs widely between 

categories (about 2 drinks/week, 7 drinks/week, and 40 drinks/week), thus mimicking 

frequency categories for which the literature has described very different risks.  

Follow-up questions about alcohol use. CHANCE nurse-interviewers attempted to 

contact all cases about six months after their initial questionnaire, to ask questions about 

alcohol use that occurred after diagnosis. For each type of alcoholic beverage (beer, wine, 

liquor), participants were asked if they drank it after being diagnosed with SCCHN, and if so, 

the duration (days, weeks, months), frequency (number of drinks per day/week/month), and 

portion size they usually drank. The follow-up survey was administered to 711 of our 1227 

cases (58%), but only 392 answered the alcohol questions; i.e. only 26% of cases answered 

questions about their post-diagnosis alcohol use. Because of the high rate of missingness 

and lack of understanding about who was interviewed post-diagnosis, when they were 

interviewed, and why so many did not answer the alcohol questions, I did not use these data 

in survival analyses.  

2.3.2.2 Genetic polymorphisms 

Biological sample collection. During the in-person visit by the research nurse-

interviewers, who were trained in phlebotomy, biologic samples were obtained with the 

consent of the subjects. Two 10 ml yellow-topped vacutainer tubes (containing acid citrate 

dextrose) and one red-topped tube of whole blood (no additives) were obtained by 
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venipuncture. One yellow-topped tube was used for plasma and collection of mononuclear 

cells for subsequent DNA extraction. The other yellow-topped tube was used for plasma, 

buffy coat and packed red blood cell separation. The buffy coat was stored frozen for 

subsequent DNA extraction. The red-topped tube was used to collect serum that was stored 

for potential use in future assays. The interviewers transported the blood samples back to 

the laboratory in coolers, usually within 12 hours. In most cases, specimens were processed 

within 12-72 hours of collection. If the subject was not willing or able to consent to the blood 

draw, they were asked to contribute a non-invasive sample of buccal cells by swishing 

vigorously with 1.5 ounces of mouthwash or saline for 30 seconds, spitting the solution into 

a container, and repeating. The sealed container was then put in a plastic bag and stored in 

a cooler.  

DNA extraction. DNA was extracted from either the fresh blood specimen from one 

yellow-topped tube or from buccal cells pelleted and frozen at -80°C using a modified salt 

procedure with Puregene chemistries. DNA samples were quantified in multi-spectral optical 

density spectrophotometers. The 260/280 ratio was used to assess sample quality. Ratios of 

>1.7 for DNA extracted from blood or >1.6 for buccal rinse samples were considered to be 

quality samples. In addition, each DNA sample was subjected to 0.4% agarose gel 

electrophoresis to assess DNA size. Greater than 96% of the blood samples’ genomic DNA 

was of high quality as demonstrated by a single large band of DNA with a size greater than 

25kb. DNA from some buccal samples was of insufficient quantity for genotyping. DNA was 

aliquotted into multiple vials which were stored at -80°C for long-term storage.  

SNP selection strategies. SNPs tested in CHANCE were from candidate genes 

identified in the literature as being part of alcohol and oxidative stress metabolic pathways. 

First, tag SNPs in these candidate genes were chosen using the Genome Variation Server 

(GVS) (accessed between 2/22/08 and 4/25/08), a local database hosted by the 

SeattleSNPs Program for Genomic Applications (PGA), with the following parameters: allele 
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frequency cutoff was set to 10% and monomorphic sites were excluded; the R2 threshold 

was set to 0.8; data coverage percent for tag SNPs was set to the default 85%; and data 

coverage percent for clustering was set to the default 70%. The data merge option selected 

was “combined samples with common variations.” The populations used were primarily the 

HapMap-Ceu (unrelated only) and HapMap-YRI (unrelated only), Release 2.  

For this dissertation project, 75 SNPs were selected in 12 genes: ADH1B, ADH1C, 

ADH4, ADH7, ALDH2, CYP2E1, SOD1, SOD2, GPX1, GPX2, GPX4, and CAT. Sixty-nine 

(92%) were selected as tag SNPs for candidate genes from the GVS, and the remaining six 

were not tag SNPs but were forced in because prior research found high association 

between the SNP and either the development of aerodigestive cancer, survival from breast 

cancer, alcohol dependence, or interaction with genes in the proposed carcinogenic 

pathway for vinyl chloride. In addition, 157 ancestry informative markers selected by J. 

Barnholtz-Sloan of Case Comprehensive Cancer Center at Case Western Reserve 

University were genotyped to permit adjustment for percent African ancestry; see details 

below in the “Genetic ancestry” sub-section under section “2.3.3 Covariates.” Genotyping of 

gene-related SNPs and tag SNPs was done on the same plates in the same laboratory, thus 

eliminating errors due to differences in laboratories and techniques.   

Genotyping and quality control. Exposure to selected gene polymorphisms was 

determined by genotyping of 75 SNPs located in exon, intron, untranslated (UTR) and 

nearby regions of the ADH1B, ADH1C, ADH4, ADH7, ALDH2, CYP2E1, SOD1, SOD2, 

GPX1, GPX2, GPX4, and CAT genes (see Table 9). Genotyping was done by the University 

of North Carolina at Chapel Hill, Mammalian Genotyping Core Facility, using the Illumina 

GoldenGate genotyping assay with Sentrix Array Matrix and 96-well standard microtiter 

plates (173),  a multiplexing technique that tests for 1,536  SNPs simultaneously. The SNPs 

in Table 9 that were analyzed in this dissertation project were genotyped as part of a larger 

panel of 1,536 SNPs.  
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The Illumina GoldenGate technology has been widely used, for example in phase I of 

the International HapMap Project (174). Locus specificity is attained by a two-step 

recognition that includes annealing of both upstream and downstream oligonucleotides to 

the SNP site, followed by enzymatic mismatch discrimination to attain additional genomic 

specificity and selectivity for a particular allele. This is followed by allele-specific primer 

extension and ligation, assay amplification, and hybridization of multiplex PCR amplification 

products to a universal array of address sequences. Strict washing protocols remove excess 

and incorrectly hybridized probes. When CHANCE samples were genotyped, technicians 

were blinded to case/control status of the samples, and samples from both cases and 

controls were tested on each plate, along with DNA controls and random sample duplicates. 

Assay intensity data and genotype cluster images for all SNPs were individually 

reviewed; as a result, 14 SNPs (including 12 AIMs) from this study were excluded from the 

dataset (6%) due to inadequate signal intensity or inability to distinguish genotype clusters. 

All specimens had less than 4% missing SNP results. Blind duplicates of 109 samples were 

genotyped to verify reliability of genotype calls. Among the 109 samples’ paired results, 

145,568 non-missing pairs of SNPs were examined for agreement; of these, five pairs 

(0.003%) were discrepant, but not for any of the SNPs and AIMs to be used in my analyses. 

Tests of Hardy-Weinberg equilibrium (HWE) were conducted in controls stratified by race; 

35 SNPs were judged to be out of HWE due to p-value less than 0.001, including one tag 

SNP each in ADH1C and ADH4 that were to be analyzed in this dissertation project (Table 

9). These two SNPs were excluded from all analyses.  
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Table 9. List of SNPs genotyped in or near metabolic genes, by gene, in 
ascending position order 
 

 

Gene SNP ID Alleles 
(ancestral/
variant) 

Average 
heterozygosity 
(140) 

Functional location 
within gene 

SNP 
selection 
method 

 

ADH1B (ADH1B alcohol dehydrogenase 1B (class I), beta polypeptide [ Homo sapiens ])  
Location: 4q21-q23 

 

 rs12507573 A/C 0.420 vicinity of gene GVS-tag  
 rs1042026 A/G 0.493 exon 9 (3’ UTR) GVS-tag  
 rs170333 A/G 0.190 exon 9 (3’ UTR) GVS-tag  
 rs7673353 C/T 0.104 intron 8 GVS-tag  
 rs17028834 C/T 0.082 intron 7 GVS-tag  
 rs1693457 C/T 0.237 intron 5 GVS-tag  
 rs41475363 G/T 0.344 intron 3 GVS-tag  
 rs1229984 A/G 0.397 missense (104)  
 rs13536213 A/G 0.302 intron 1 GVS-tag  
 rs1159918 G/T 0.484 3’ near gene GVS-tag  
 rs1229982 G/T 0.346 3’ near gene GVS-tag  
ADH1C (alcohol dehydrogenase 1C (class I), gamma polypeptide [ Homo sapiens ]) 
Location: 4q21-q23 

 

 rs2298753 C/T 0.102 exon 9 (3’ UTR) GVS-tag  
 rs1614972 C/T 0.495 intron 8 GVS-tag  
 rs1391088 A/C 0.073 intron 8 GVS-tag  
 rs6983 A/(G/T) 0.389 exon 8 (both missense) (116)  
 rs1693482 G/A 0.366 exon 6 (missense) GVS-tag 

(116, 175-177) 
 

 rs1631460 C/G 0.239 intron 5 GVS-tag  
 rs22418943 A/G 0.487 exon 5 (synonymous) GVS-tag  
 rs37628961 C/T 0.496 intron 3 GVS-tag  
 rs11936869 C/G 0.478 intron 1 GVS-tag  
ADH4 (alcohol dehydrogenase 4 (class II), pi polypeptide [ Homo sapiens ]) 
Location: 4q21-q24; 4q22 

 

 rs29001227 A/T 0.083 intron 8 GVS-tag   
 rs1126672 C/T,A,G 0.214 exon 8 (T synonymous; 

A,G missense) 
GVS-tag  

 rs4699710 C/T 0.325 intron 6 GVS-tag  
 rs10017466 C/T 0.309 intron 5 GVS-tag  
 rs1800759 A/C 0.499 5’ near gene GVS-tag  
 rs1800761 A/G/T 0.435 5’ near gene GVS-tag   
 rs3762894 C/T 0.471 5’ near gene GVS-tag  
 rs41488843 A/G 0.347 5’ near gene GVS-tag  
ADH7 (alcohol dehydrogenase 7 (class IV), mu or sigma polypeptide [Homo sapiens]) 
Location: 4q23-q24 

 

 rs284787 C/T 0.435 exon 9 (3’ UTR) GVS-tag  
 rs894369 C/G 0.325 exon 9 (3’ UTR) GVS-tag  
 rs17588403 A/T 0.178 intron 8 GVS-tag  
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Table 9. List of SNPs genotyped in or near metabolic genes, by gene, in 
ascending position order 
 

 

Gene SNP ID Alleles 
(ancestral/
variant) 

Average 
heterozygosity 
(140) 

Functional location 
within gene 

SNP 
selection 
method 

 

 rs1154454 C/T 0.315 intron 7 GVS-tag  
 rs1154456 C/T 0.347 intron 7 GVS-tag  
 rs1154460 A/G 0.485 intron 6 GVS-tag  
 rs971074 G/A 0.221 exon 6 (synonymous) GVS-tag  
 rs1573496 G/C 0.172 exon 3 (missense) (104)  

ALDH2 (aldehyde dehydrogenase 2 family (mitochondrial) [Homo sapiens]) 
Location: 12q24.2 

 

 rs4767939 A/G 0.487 intron 1 GVS-tag  
 rs2238151 C/T 0.377 intron 1 GVS-tag  
 rs7312055 A/G 0.164 intron 2 GVS-tag  
 rs2158029 A/G 0.411 intron 12 GVS-tag  
 rs16941667 C/T 0.134 intron 12 GVS-tag  
 rs16941669 G/T 0.165 intron 12 GVS-tag  
CYP2E1 (cytochrome P450, family 2, subfamily E, polypeptide 1 [Homo sapiens]) 
Location: 10q24.3-qter 

 

 rs3813865 C/G 0.256 5’ near gene GVS-tag  
 rs3813867 C/G 0.153 5’ near gene (123, 178, 179)  

 rs9159063 C/T 0.469 intron 2 GVS-tag  
 rs8192772 C/T 0.269 intron 2 GVS-tag  
 rs64134191 G/A 0.101 exon 4 (missense) GVS-tag  
 rs915908 A/G 0.235 intron 5 GVS-tag  
 rs915909 C/T 0.064 exon 6 (synonymous) GVS-tag  
 rs7092584 C/T 0.416 intron 6 GVS-tag  
 rs743535 C/T 0.353 intron 6 GVS-tag  
 rs25156413 C/T 0.404 exon 8 (synonymous) GVS-tag  
 rs2249695 C/T 0.494 intron 8 GVS-tag  
 rs28969387 A/T 0.031 exon 9 (missense) GVS-tag  
 rs11101812 C/T 0.041 exon 9 (3’ UTR) GVS-tag  
SOD1 (superoxide dismutase 1, soluble [Homo sapiens]) 
Location: 21q22.11 

 

 rs11910115 A/C 0.070 5’ near gene GVS-tag  
 rs4998557 A/G 0.456 intron 1 GVS-tag  
 rs10432782 G/T 0.409 intron 2 GVS-tag  
 rs2070424 A/G 0.377 intron 3 GVS-tag  
 rs1041740 C/T 0.370 intron 4 GVS-tag  
SOD2 (superoxide dismutase 2, mitochondrial [ Homo sapiens ]) 
Location: 6q25.3 

 

 rs4342445 A/G 0.390 vicinity of SOD2 GVS-tag  
 rs2842980 A/T 0.471 3’ near gene GVS-tag  
 rs8031 A/T 0.380 intron 5 GVS-tag  
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Table 9. List of SNPs genotyped in or near metabolic genes, by gene, in 
ascending position order 
 

 

Gene SNP ID Alleles 
(ancestral/
variant) 

Average 
heterozygosity 
(140) 

Functional location 
within gene 

SNP 
selection 
method 

 

 rs5746134 C/T 0.104 intron 5 GVS-tag  
 rs2758331 A/C 0.393 intron 4 GVS-tag  
 rs48803 C/T 0.460 vicinity of SOD2 GVS-tag  
GPX1 (glutathione peroxidase 1 [Homo sapiens])  
Location: 3p21.3 

 

 rs8179172 A/T 0.070 vicinity of GPX1 GVS-tag  
 rs1800668 C/T 0.274 exon 1 (5’ UTR) GVS-tag  
 rs3811699 A/G 0.302 5’ near gene GVS-tag  
 rs3448 C/T 0.316 exon 5 (3’ UTR) GVS-tag  
GPX2 (glutathione peroxidase 2 (gastrointestinal) [Homo sapiens]) 
Location: 14q24.1 

 

 rs11623705 G/T 0.136 3’ near gene GVS-tag  
 rs2412065 C/G 0.367 intron 1 GVS-tag  
 rs2737844 C/T 0.474 intron 1 GVS-tag  
GPX4 (glutathione peroxidase 4 (phospholipid hydroperoxidase) [ Homo sapiens ]) 
Location: 19p13.3 

 

 rs757229 C/G 0.493 5’ near gene (180)  
CAT (catalase [Homo sapiens]) 
Location: 11p13 

 

 rs1049982 C/T 0.357 exon 1 (5’ UTR) (181) (2)   
1Genotype results questionable due to being out of Hardy-Weinberg equilibrium at the exact p<0.001 
level.  
2Also selected due to unpublished finding from the Carolina Breast Cancer Study.  
3Genotyping failed. 

 

 

Cross-checking of genetic data for inconsistencies was accomplished using 

computerized algorithms implemented in SAS. The algorithms checked that genetic sex 

determination matched the study sex variable; one sample was discrepant on sex so its 

genotyping results were discarded. In addition, genotyping of controls that was performed 

on each plate was determined to be accurate, and there were no identical genotypes among 

unique samples. Analysts also looked for patterns among samples that were unsuccessful, 

such as plate location, DNA concentration, volume, or total DNA amount. SNP 
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inconsistencies and plate problems were resolved, either by re-testing and calling, else 

being set to missing. 

As part of this dissertation project, statistical tests for Hardy-Weinberg equilibrium 

(HWE) of each SNP’s genotype distribution were conducted separately for each race in the 

control population, to verify previous HWE tests. DNA samples were not available from 52 

cases and 17 controls because they had died before they could be interviewed (their 

questionnaires were completed by a proxy). This represents 4% of all cases interviewed and 

1% of all controls interviewed, and therefore would have only a small effect on effect 

estimates.  

2.3.3 Covariates: potential confounders and effect measure modifiers 

A causal diagram for development of SCCHN is shown in Figure 8. There are known bi-

directional associations between ethanol/tobacco use and gene expression, ethanol/tobacco 

use and diet, and oral health and diet. Because all of the factors listed can conceivably 

affect both gene expression and cancer outcome, I included all these variables in the initial 

models, using a 10% (0.1) change in log-odds estimate from the full model as the criterion 

for final variable selection, and used the reduced model in regression analyses (182). 
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Figure 8. Causal diagram for development of SCCHN 

 

Dotted line indicates hypothesized causal connection between main exposure, gene 
sequence/expression, and SCCHN incidence. Note bi-directional, mutual effects of (1) ethanol 
ingestion and gene expression, (2) tobacco use and ethanol ingestion, (3) tobacco use and diet, (4) 
ethanol ingestion and diet, and (5) oral health and diet.  

 

Genetic ancestry. Case-control studies assume that, barring confounding effects, 

differences in allele frequency between cases and controls are related directly to the trait of 

interest. However, differences in allele frequency between cases and controls may be due to 

systematic differences in ancestry (i.e. population stratification) rather than the association 

of genes with disease, making ancestry a potential confounder of any association between 

gene and disease. Population stratification is present in recently admixed populations such 

as African Americans and Latinos, but also in European Americans and even in historically 

isolated populations such as Tibeto-Burmese and Icelanders (183). Most residents of North 

Carolina are of European and African ancestry, with only a small percentage reporting 

American Indian and Asian ancestry. Because this study excluded the small number of 
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those reporting “other” race-ethnicity (n=46), all remaining study participants are self-

identified as either African American or white. Therefore the appropriate ancestral 

populations for CHANCE participants are European and West African, whose genetic 

variations have been measured in the CEU and YRI HapMap populations, respectively.  

For population stratification to exist, both (1) the frequency of the SNP allele and (2) 

the background disease prevalence must vary significantly by race-ethnicity. First, SCCHN 

disproportionately affects a higher percentage of African-Americans than whites. Second, of 

the six non-synonymous candidate gene SNPs genotyped in CHANCE for this study, three 

have very different allele frequencies in HapMap CEU and YRI populations (HapMap Data 

Rel 27 Phase II+III, Feb09, on NCBI B36 assembly, dbSNP b126): 

1. rs1693482 (ADH1C): 48% of the CEU population carries the variant T allele, 

compared to only 5% of the YRI population;  

2. rs698 (ADH1C): 47% of the CEU population carries the variant C allele for compared 

to 6% of YRI;  

3. rs6413419 (CYP2E1): 2% of the CEU population carries the variant A allele 

compared to 30% of YRI.  

4. rs1573496 (ADH7): 9% of the CEU population carries the variant G allele compared 

to 0% of YRI 

5. rs28969387 (CYP2E1):  0% of the CEU population carries the variant T allele 

compared to 4% of YRI 

Therefore it is possible that genetic ancestry is a confounder in the CHANCE study 

population.  

Sometimes stratifying effect estimates by self-reported race-ethnicity may be 

sufficient to control for ancestry, but populations in the United States are recently admixed, 

causing increased inter-individual variation in ancestry. In the United States and many other 

countries, in addition to genetic ancestry, cultural and behavioral factors influence 
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individuals’ self-identified race-ethnicity, such that race-ethnicity should be recognized as a 

complex composite construct of genetic and environmental/social factors rather than a 

simple marker of genetic ancestry. One case-control study conducted in Detroit, Michigan, a 

highly admixed population with German, Polish, and African origins, reported that adjusting 

for ancestry provided better control of confounding by ancestry than adjusting for self-

reported race (184). Another study (not case-control) analyzed frequency of risk genotypes 

in six drug metabolizing genes in individuals from eight international populations (including 

Africans, Europeans, Ashkenazi Jews, Chinese, Pacific Islanders, and Afro-Caribbeans), 

and found not only that they varied by ancestral group, but that self-reported race was an 

inaccurate and insufficient marker of these ancestral clusters (185). 

Correcting for inter-individual differences in ancestry in the CHANCE study required 

genotyping additional SNPs. Genomic control (GC) was the first method described in the 

literature to adjust for potential population stratification. GC uses random genomic SNPs 

across the genome and calculates a single numeric adjustment to be applied to all 

association tests. A separate adjustment can be calculated for each race-ethnicity. It 

considers group-level stratification only (as defined by self-reported race-ethnicity), and 

controls for Type I error but not Type II. Although ancestry informative markers (AIMs), 

markers that have large allele frequency differences between ancestral populations, can 

also be used in genomic control methods, it is not recommended since additional Type I 

errors will result because the method will over-correct for the large differences in AIM 

frequencies between different populations.  

Because estimating individual ancestry has been shown to provide better control of 

confounding by ancestry than genomic control, CHANCE genotyped 157 SNP AIMs 

(Appendix A) on each participant. In order to obtain robust individual ancestry estimates, 

ideal AIMs would have one fixed, unique allele in each ancestral European and African 

population. It has been estimated that at least 72 ideal markers would be required to obtain 
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ancestry estimates with acceptable confidence limits (186). Since ideal markers are 

relatively rare in the genome, researchers must select the most informative markers from the 

remaining suboptimal markers (187). Both Bayesian and maximum likelihood estimation 

(MLE) methods can be used to calculate ancestry using the AIMs, and both methods 

produce similar results in information-rich scenarios (i.e. markers are informative and 

ancestral groups are large and accurate), but MLE is computationally much less intensive 

and does not require inclusion of genotype information from ancestral groups as the 

Bayesian methods do for estimation stability (188). In addition, interpretation of the results 

from the Bayesian methods can sometimes be confusing as it is not necessarily readily 

apparent which of the estimated clusters is related to which ancestral group. Therefore MLE 

was chosen to estimate ancestry in CHANCE participants.  

One disadvantage of MLE methods is that they cannot easily estimate percent 

ancestry of more than two ancestral groups, though this should not be a major problem in 

CHANCE. And our AIMs in particular were not selected to identify Asian or Native American 

ancestry, so that study subjects self-reporting their race as “Other” could not be included in 

analyses of all participants even if that analysis should be desired.  

Jill Barnholtz-Sloan, a CHANCE collaborator at Case-Western Reserve University, 

selected the CHANCE SNP AIMs to maximize (1) the difference in allele frequencies (delta) 

between European and African populations in the HapMap data (CEU versus YRI), and (2) 

the Fisher’s information criterion (FIC) which is the inverse of the maximum likelihood 

estimation (MLE) of the ancestral proportion and therefore is directly related to the precision 

of the ancestry estimate (187). FIC is calculated using the allele frequencies and the 

estimated proportions of mixture of the two populations. AIMs were prioritized based on 

having the highest delta values and the highest FIC values in the following order: 90% 

European/10% African, 10% European/90% African, and 50% European/50% African. This 
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prioritization scheme allowed AIMs to be chosen to represent the whole expected ancestral 

distribution of this population. Individual estimates of African ancestry were calculated from 

141 successfully genotyped AIMs using maximum likelihood estimation methods previously 

described by Barnholtz-Sloan (184, 189). MLEs were calculated using customized software 

written by Barnholtz-Sloan and her team; other software that also estimates individual 

ancestry using MLE, such as FRAPPE (188), could also have been used. AIMs were 

chosen to differentiate between African and European ancestry only, so individual ancestry 

proportions for the two groups sum to 1.0. Percent African ancestry of each participant was 

included as a continuous covariate in full/initial logistic and proportional hazard regression 

models using the entire study population. 

Demographics. Controls were matched to cases on age group, self-reported race, 

and sex, so were included as stratification variables in conditional logistic regression 

analyses. As another measure of the sociodemographic factors for which self-reported race-

ethnicity is a marker, CHANCE collected information on education level (less than high 

school, high school or above) and income (either above or below the federal poverty level, 

based on income and the number of people supported). I included both in full/initial 

regression models.  

Tobacco Use. Because tobacco use is known to be an important risk factor for 

SCCHN, CHANCE collected detailed self-reported information about each participant’s 

history of cigarette, cigar, pipe, snuff and chewing tobacco use. Subjects were asked the 

age they started using the specific form of tobacco, current status, if and when they stopped, 

years of use, and the number used. In addition, information about use of filter brand 

cigarettes, size of chewing tobacco and snuff packages, and time to completely use a 

container were obtained. Subjects were asked about smoking among other family members 

and individuals living in the same household to quantify potential environmental tobacco 
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smoke (ETS) exposures. With this information, indices of tobacco use were constructed, 

including average number of cigarettes smoked per week, years of smoking, and pack-

years. Based on current consensus in the literature, I adjusted for cigarette smoking by 

including duration of smoking in regression models. Exposure to environmental tobacco 

smoke (ETS) at home and at work was included in initial models as two separate 

dichotomous covariates. Smoking variables that changed the main effect estimate by 10% 

or more were retained in all subsequent models.  

Diet. Because fruit and vegetable intake is the major dietary influence on SCCHN, 

and intake patterns are altered among heavy drinkers (and ADH, ALDH, and possibly 

CYP2E1 are associated with alcoholism), the CHANCE diet questions focused primarily on 

fruit and vegetable consumption. However, in order to explore associations between other 

dietary components that may be related to SCCHN, CHANCE used an assessment that 

captures total diet. Dietary intake was measured using the 60-item version of a validated 

food frequency instrument (FFQ), the NCI Health Habits and History Questionnaire (190). 

This instrument assesses respondents' frequency of consumption and usual serving size for 

60 foods. It has been validated with various populations including low income and African-

American populations (191). A software package available from the National Cancer 

Institute, the Dietary Analysis Personal Computer System (DIETSYS.V30), uses this 

information and an updated database to compute nutrient intake based on nutrient content 

of each food and serving. Initially I intended to adjust separately for dietary intake of fruits 

and vegetables using a quintile-based categorization of number of fruits and vegetables 

eaten daily. However a large percentage of subjects were missing information on fruit and 

vegetable intake, and those missing the information were often at the high extreme of total 

caloric intake. I concluded that including these variables would inordinately bias effect 

estimates, so these variables were excluded from regression analyses.  
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Anatomic location and clinical factors. I included tumor location in five categories 

(oral cavity; oropharynx; hypopharynx; larynx; oral cavity, oropharynx, hypopharynx cancer 

NOS) as recommended by INHANCE (52) in logistic and Cox regression analyses having 

any SCCHN as the outcome. In secondary analyses, to explore risk factor differences by 

anatomic location of tumor, I stratified analyses by these five anatomic sub-sites.   

Survival analyses took into account TNM stage that was abstracted from patients’ 

medical records, which I divided into three ordinal variables (tumor, node, and metastasis 

stages). Cancer summary stage was abstracted from TNM staging that was obtained from 

patients’ medical records and was entered into models as an ordinal variable. Recent 

survival studies on head and neck cancer have usually controlled Cox regression analyses 

for stage using separate tumor and node variables, only including metastasis if any of their 

patients were diagnosed with metastatic disease. I included separate T, N, and M variables 

in my Cox proportional hazards models, but also ran analyses using the single ordinal 

summary stage variable, and results were similar.  

Treatment types were recorded as surgery, radiation, and chemotherapy, which I 

included in models as three dichotomous variables. Additional clinical information on 

presence of angiolymphatic invasion was included in Cox regression models as a 

dichotomous variable. Margin status, although available, was eliminated by backwards 

elimination and therefore excluded from final models. Information on extracapsular 

extension was available on less than 15% of subjects, so was excluded from all models.  

Four dichotomous variables representing selected co-morbid diseases were included 

in full/initial Cox models: liver disease and/or hepatitis, cardiovascular and/or lung disease, 

renal disease and/or diabetes, and other cancer. A numeric variable counting the number of 

co-morbid diseases was also included in initial logistic and Cox regression models, but did 

not change effect estimates and was excluded from final models.  
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Other Factors. Other factors for which CHANCE collected data are oral health and 

mouthwash use; medical history; and family history of cancer in first degree relatives.  

A recent study analyzing CHANCE data to investigate the association between oral 

health factors and incidence of SCCHN provided support for a modest association of 

SCCHN with periodontal disease, as measured by self-reported tooth loss indicators (such 

as tooth mobility, dichotomous, yes or no; having had one or more routine dental visits 

during the 10 years prior to SCCHN diagnosis, dichotomous, yes or no). However, there was 

no association between SCCHN and number of natural teeth lost excluding third molars and 

teeth extracted for orthodontic reasons (coded as a 3-level indicator variable for number of 

lost teeth: 0-5 (referent), 6-15, and 16-28). Consistent use of mouthwash (dichotomous, yes 

or no) showed evidence of a protective effect only for pharyngeal cancer (192). In addition, 

oral health factors are probably altered among heavy drinkers (and heavy drinking is 

associated with ADH and ALDH polymorphisms, and possibly CYP2E1 polymorphisms as 

well). Therefore I included, as dichotomous variables (yes/no), tooth mobility, routine dental 

visits, and mouthwash use in initial models, retaining them in all subsequent models if they 

change effect estimates by >10%. None of these variables were important in SCCHN 

incidence models, but routine dental visits and tooth mobility variables were retained in 

some survival models.  

Family history of cancer in first degree relatives, especially head and neck cancer, 

has been shown to increase risk of head and neck cancer in probands (see above, section 

1.3.1 “Heredity”) and may well be associated with the genetic polymorphisms under study. 

Therefore I included in initial models one dichotomous (yes/no) variable for having had any 

first degree relatives with head and neck cancer. However, this variable did not change 

effect estimates and was excluded in all final models.  
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2.4 STATISTICAL POWER 

Specific Aim 1: Main effects of genotype exposure on power of logistic regression 

analyses:  

(Refer to Table 10 for power estimates based on genotype prevalence and size of 

study.) At an α level of 0.05, for calculating the main effect of a binary genotype exposure 

(any minor allele versus none) occurring at a frequency of 0.10 to 0.30 in the entire study 

population, this study had insufficient power (defined as less than 80%) to detect an OR of 

1.2 but sufficient power to detect higher ORs. As it turned out, the minor allele of 80% of our 

SNPs had population prevalence >10%, so we had power to detect ORs of about 1.4 or 

higher for most SNPs. Power to detect main effects of genotype in the African-American 

participants was insufficient for genotype prevalence ≤20% when the OR is less than 2.0, 

but the study should have been able to detect main effects in the African-American 

population if the genotype prevalence is >20% (which occurred in 78% of SNPs in African-

American subjects) and the OR >=1.8. 

(Refer to Table 5 for estimates of main gene effects.) For genotype prevalence of 

10% in all study subjects combined, there was sufficient power to detect effects of 5 of 8 

SNPs in ADH1B, for which previously estimated protective effects ranged from 0.42 to 0.56 

and risk effects ranged from 2.20 to 2.67. There was marginal (70-80%) power to detect 

effects of ADH1C, for which previously measured risk effects ranged from 1.20 to 1.49 with 

one imprecise outlier of 7.39. The study had sufficient power to detect effects of SNPs in 

ADH4 and ADH7 with previously measured protective estimates of about 0.68 and risk 

estimates ranging from 1.62 to 1.96. The study had sufficient power to detect ORs of 1.30 

for ALDH2 polymorphisms common in European Caucasians, and ORs of 1.8 to 2.6 for 

CYP2E1 SNPs common in European Caucasians. Power estimates in whites should be 

similar to those of the entire group, though power was not sufficient to detect main effects of 
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ADH1C if OR<1.4. It should be noted that <10% minor allele prevalence occurred in one-

third of our ADH1B SNPs and half our CYP2E1 SNPs, so we had insufficient power to 

detect any effects of those SNPs.  

Because essentially no previous studies have measured gene effects in African and 

African-American populations, effect estimates were unknown in this population prior to this 

study. Assuming that effect estimates in European Caucasians and European Americans 

also apply generally to African-Americans, this study would have had insufficient power to 

detect effect estimates less than 2.0 in African-Americans (e.g. ADH1C, ADH4, ADH7, and 

ALDH2), but sufficient power to detect previously reported effects of some ADH1B and 

CYP2E1 polymorphisms. Power was insufficient to detect effects of ADH4 and ADH7 

polymorphisms except those that were present in 30% or more of the African-American 

population, which was the case for about half of ADH4 and ADH7 SNPs.  

For oxidative stress genes (CAT, SOD1, SOD2, GPX1, GPX2, and GPX4) this study 

had insufficient power to detect main effect ORs of 1.2 to 1.3 in the entire study population 

and in African-Americans and whites separately. ORs would have to be higher than that 

reported for most polymorphisms (at least 1.4) to detect a main effect in the entire study 

population, and at least 1.8 in the African-American participants. 
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Table 10. Study power for main gene effects  
 

Genotype 
prevalence 

 
Odds ratio 

 
Study power, all 

participants 
(ncases=1274, 
ncontrols=1343) 

 
Study Power,  

white 
participants 
(ncases=952, 

ncontrols=1089) 

 
Study Power, 

African-American 
participants 
(ncases=322, 
ncontrols=254) 

10% 1.2 30% 25% 8% 
 1.5 92% 84% 27% 
 1.8 >99% >99% 53% 
 2.0 >99% >99% 70% 

20% 1.2 48% 39% 12% 
 1.5 99% 97% 43% 
 1.8 >99% >99% 76% 
 2.0 >99% >99% 90% 

30% 1.2 58% 48% 14% 
 1.5 >99% >99% 52% 
 1.8 >99% >99% 85% 
 2.0 >99% >99% 95% 

 
Calculations were done in Episheet.xls as described in Rothman & Boice (193).  
Assumptions: α=0.05 and case/control ratio=1.054 

 

Specific Aim 2: Interactive effects of genotype and alcohol exposure on power of logistic 

regression analyses:  

Table 11 contains estimates of study power for detecting alcohol-SCCHN 

multiplicative interaction. At an α level of 0.05 the study would have >90% power to detect 

2X gene-alcohol multiplicative interactions, assuming:  

1. The prevalence of heavy drinking at 1 year prior to diagnosis for cases, and 

reference date for controls, defined as ≥6 drinks per day, is 19.8% (as shown in 

Table 8). 

2. The prevalence of SCCHN in low drinkers (<6 drinks per day) is 0.1%.  

3. An OR of 1.5 to 3.0 was assumed for the independent effect of heavy drinking on 

SCCHN risk, based on the literature review of risk in non-smokers (Table 3).  

4. The at-risk genotype had a prevalence of 20% or greater. There would be 

inadequate power (<80%) when prevalence is 10% or less.  
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When designing this study I had planned to test for departures from multiplicative 

interaction, but during the analysis phase, decided to test for departures from additive 

interaction instead, as it is thought to be more biologically relevant. At that time I re-

calculated our power for additive interaction, using the characteristics of my CHANCE-

derived study population to set parameters. 

Table 12 contains estimates of study power for detecting alcohol-SCCHN additive 

interaction. At an α level of 0.05 the study would have >80% power to detect 2.5X gene-

alcohol additive interactions in 1227 cases and 1325 controls, assuming: 

1. The prevalence of non-drinkers was 16%, and the proportion of drinkers in each 

category of lifetime drinking was about 28%.  

2. The minimum excess OR to be detected was set to 2.5. For additive interaction, 

this is equal to: (OR11-1) / (OR10-1 + OR01-1). 

We had sufficient power to detect 2.5x additive interactions only when the genotype 

distribution was either 50/50 or 40/60. This was true for 39 of our 64 SNPs (60%), including 

all but one of our ALDH2 SNPs and all our CYP2E1 SNPs. As a result we were not able to 

detect additive interaction, even if present, for most of our SNPs, unless the excess OR was 

larger than 2.5.  

(Refer to Table 6 for a list of studies that investigated gene-alcohol interaction.) 

Seven studies reported ADH1B interaction with alcohol exposure; two reported greater than 

multiplicative interaction, four reported interactions greater than additive though less than 

multiplicative, and one reported interaction with no information on type. Only one study 

reported no interaction of ADH1B with alcohol. Three studies reported ADH1C interaction 

with alcohol exposure; all indicated greater than both additive and multiplicative interaction. 

However four studies reported no interaction of ADH1C with alcohol. Four studies reporting 

CYP2E1 interactions with alcohol exposure reported greater than 2x multiplicative (1 study), 
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2x multiplicative (1 study), and greater than additive, less than multiplicative (one study), but 

seven studies reported no interaction with alcohol. It was often difficult to determine the type 

of gene-alcohol interaction (greater than additive, greater than multiplicative, or somewhere 

in between) because often the main effect OR for alcohol exposure was not provided. Our 

study had sufficient power to detect 2x multiplicative interaction when the variant genotype 

is present in at least 15% of participants, and sufficient power to detect 2.5x additive 

interaction when the variant genotype is present in at least 40% of participants. 

 

Table 11. Study power for detecting gene-alcohol multiplicative interactions 

Genotype 
prevalence 

Exposure 
prevalence  

Exposure OR Genotype OR 2x 
Interaction OR 
(in the doubly 

exposed) 

Study power 

30% 19.8% 3.0 1.5 9.0 96% 
  2.5  7.5 96% 
  2.0  6.0 96% 
  1.5  4.5 96% 

20% 19.8% 3.0 1.5 9.0 92% 
  2.5  7.5 92% 
  2.0  6.0 92% 
  1.5  4.5 91% 

10% 19.8% 3.0 1.5 9.0 74% 
  2.5  7.5 74% 
  2.0  6.0 74% 
  1.5  4.5 73% 

Calculations were done in POWER version 3.0 from the National Cancer Institute (194).  
Assumptions: α=0.05, case/control ratio=1.054 
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Table 12. Study power for detecting gene-alcohol additive interactions 

Genotype 
prevalence 

OR01 (only exposed to alcohol, not minor 
allele) = 2.0 

OR10 (only exposed to minor allele, non-
drinker) = 1.0 

 
OR01 (only exposed to alcohol, not minor 

allele) = 2.0 
OR10 (only exposed to minor allele, non-

drinker) = 0.6 

50% 0.94 0.81 

40% 0.92 0.78 

30% 0.87 0.73 

20% 0.76 0.61 

10% 0.49 0.39 

Calculations were done in POWER version 3.0 from the National Cancer Institute (194).  
Assumptions: α=0.05, case/control ratio=1.08 
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Specific Aim 3: Main effects of genotype exposure on power of survival analysis using 

cases only (195, 196) 

At an α level of 0.05, assuming frequency of all-cause deaths at 0.394 (based on the 

actual number of deaths in my study through 2008 from any cause), the study had sufficient 

power to detect a hazard ratio (HR) of 1.3 or greater for death from any cause (Table 13). 

Because the frequency of deaths from head and neck cancer is lower – 17.5% – we would 

have sufficient power to detect a hazard ratio of 1.5 or greater for cancer-specific death.  

The only study that has investigated overall and disease-specific hazard of survival 

in SCCHN patients (150) reported “hazard of survival” ratios of 0.3 to 0.4 which would 

correspond to a greater than 3.0 “hazard of death” ratio. This study would have good power 

to detect HRs of 2.0 to 3.0.  

 

Table 13. Study power for main gene 
effects on survival 
 

Hazard ratio Death rate = 
0.394 (death 

from any 
cause) 

Death rate = 
.175 (death 

from head and 
neck cancer) 

1.2 48% 24% 
1.3 78% 45% 
1.4 94% 65% 
1.5 99% 81% 
2.0 100% 100% 

 
Calculations were done in PASS 11 (195) 
Assumptions: α=0.05, number of cases=1227 
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2.5 ANALYSIS PLAN  

2.5.1 Issues for all analyses 

For use in all regression models, individual estimates of African ancestry were 

calculated from 157 AIMs using maximum likelihood methods (as described in (184, 189)). 

AIMs were selected to differentiate only between African and European ancestry, so 

participants with “Other” race-ethnicity were excluded from the primary analysis. Allele and 

genotype frequencies, and tests of HWE, were calculated using SAS Genetics (197). To 

identify ancestry outliers in the populations, I used a box test on the ancestry estimates 

(198). For application of this method the upper and lower fourth of the ordered observations 

are determined. Outliers are those values that exceed the upper or lower fourth by more 

than 1.5fs, where fs is the upper fourth minus the lower fourth (75% #–25% #). When testing 

the ancestry variable during backwards elimination from a full model, ancestry was not 

important to any of the SNP models, regardless of whether I used all calculated ancestry 

values or discarded the outliers identified by this method.  

Haplotypes have some advantages over single SNP tests of association, in that they 

can capture information about multiple causal/interacting cis-mutations in the same gene 

that are relevant to disease risk or survival. Although some authors have suggested that 

haplotype analysis is much less powerful than single SNP analysis when looking for gene-

disease association (199, 200), others (e.g. (201, 202)) suggest that haplotype analysis can 

be more powerful when the true causal SNPs are not typed (as in this study, since most are 

tag SNPs) and when there are multiple disease-causing alleles or even interactions. 

Because haplotyping can only be done on SNPs that are in high linkage disequilibrium (LD), 

I verified that the SNPs for each gene are indeed highly correlated using HaploView 4.2 

(203)  to make LD plots in African-American and white controls.  
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There are two main classes of statistical methods currently used for estimating 

haplotypes: expectation maximization (EM) based on likelihood theory, and Bayesian 

estimators (204). For this research I employed Haplo.stats (205), a widely used EM method 

implemented in S-Plus/R, to estimate haplotypes and test their association with SCCHN risk 

and survival. Haplo.stats assumes that all subjects are unrelated and that ambiguous 

haplotypes exist due to unknown linkage phase of genetic markers. It permits inclusion of 

environmental covariates and specification of haplotype effects as codominant, additive, 

dominant, or recessive, and compares each haplotype to a common referent. Haplo.stats 

also provides general linear models functionality for regression of the outcome on 

haplotypes, and can easily include covariates and interactions in the models.  

Correction for multiple statistical tests with highly correlated exposures. Both 

Bonferroni correction and controlling for false discovery rate (FDR) (206) assume 

independent test statistics, and although this assumption is false when testing multiple tag 

SNPs located in the same gene, many researchers use these techniques in an attempt to 

control Type I error. It has been noted that in settings involving a few tests (e.g. 10-20) up to 

a few hundred tests, Bonferroni correction is often robust in spite of linkage disequilibrium 

between some of the markers (207). But in settings with more tests, a Bonferroni correction 

can be too conservative, thereby causing the false negative rate to be too high. In order to 

better balance risk of Type I and Type II errors and avoid the extreme conservatism of the 

Bonferroni and related Family-wise error (FWE) correction methods, some researchers 

prefer controlling the False Discovery Rate (FDR) (206). The interpretation of p=0.05 in FDR 

correction means that 5% of the genes considered statistically significant after correction are 

false positives. FDR can be estimated by PROC MULTTEST in SAS®. In this method (208), 

the p-values of each SNP are ranked from smallest to largest, and all except the largest p-

value are corrected by multiplying by the total number of polymorphisms being tested 

divided by the p-value’s rank; thus the FDR correction becomes more stringent as the p-
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value decreases. In contrast to FWE and FDR error correction methods that assume 

independence of the tests, simulation-based resampling techniques attempt to control for 

multiple statistical tests by comparing observed p-values with p-values calculated from 

simple repeated perturbations of the data; of these methods, the permutation test is the 

most widely used (207). However, permutation methods can’t easily incorporate covariates. 

One recent (2007) study reported a method of computing p-values adjusted for correlated 

tests that gives similar results to permutation methods with much less computation time and 

more ease in including covariates (209). Interestingly, haplotyping is also sometimes used to 

reduce the number of tests performed, although it was not used primarily for that purpose in 

this project. Recently, several Bayesian methods have been proposed for appropriately 

controlling Type I error when handling highly correlated exposure data: the false positive 

report probability (FPRP) by Wacholder et al. in 2004 (210), and an extension of this method 

referred to by the author as Bayesian false-discovery probability (BFDP) proposed by 

Wakefield in 2007 (211). FPRP allows the prior probability of the hypothesis, study power, 

tolerance for a false-positive decision, as well as the p-value, to affect decisions about which 

findings are noteworthy, and unlike most Bayesian methods, dichotomizes findings into 

noteworthy and non-noteworthy categories. The BFDP extension of FPRP is designed to 

reduce Type I errors even further than FPRP and was designed especially for genome-wide 

association studies with multiple stages, substituting its Bayes factor for p-values in 

determining which SNPs to select for replication analysis.  

For this dissertation project, because the number of statistical tests is in the middle 

ground where FEW and FDR error corrections might be robust, I compared results of 

Bonferroni, FDR, and the Bayesian FPRP method, and planned to discuss any differences. 

Because the results and conclusions were essentially the same for all three methods, I have 

reported only Bonferroni-corrected p-values for this research.     
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Bias in measuring alcohol consumption. Reviews on the topic of validity of self-

reported alcohol consumption report a confusing set of results (212, 213). This results 

largely from the fact that there is no “gold standard” to which to compare self-reported 

alcohol consumption. Researchers investigating self-report of addictive behaviors have 

concluded that validity is increased if sensitivity of the information desired is minimal, the 

questionnaire is methodologically sophisticated, the interviewer is skilled at minimizing 

negative task characteristics (214, 215), and the recall period is sufficiently long (216). 

Personal characteristics of the respondent are felt to be less important than these factors 

(216). 

Because CHANCE used trained nurse interviewers to ask a standardized script of 

questions about legal behaviors (smoking and drinking) over a long period of time (lifetime), 

and because our classifications were quite broad (tertiles of lifetime alcoholic beverage 

consumption; number of years the subject smoked cigarettes) I believe our measures of 

smoking and drinking did not significantly bias our effect estimates.  

2.5.2 Analyses for specific aims  

Specific Aim 1: “Estimate the main effects of each genetic polymorphism (SNPs and 

haplotypes) on the risk of developing SCCHN.”  

Single SNP associations with SCCHN risk, and risk of each of the five sub-sites, 

were modeled in SAS® using conditional logistic regression. Unconditional logistic 

regression models, containing the frequency matched variables of age category, sex, race, 

and their two- and three-way interactions, often did not converge; therefore I used 

conditional logistic regression models instead. 

Almost nothing is known about the genetic models that govern the effects of these 

SNPs, so I began analysis using a co-dominant genetic model since it provides the most 

information about inheritance patterns. However, because so many of the SNPs had 
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insufficient numbers of subjects who were homozygous for the minor allele, which precluded 

calculation of precise effect estimates, I used instead a dominant genetic model in all 

regression analyses of SNP effects. These models compared cancer odds in carriers of any 

minor allele (either 1 or 2 copies) versus those homozygous for the major allele.  

A Bonferroni correction for 64 statistical tests (one for each SNP) was applied to the 

single-test alpha level of 0.05 (see more details, below). Initial/full models included tobacco 

exposure, proportion of African ancestry, and other potential socioeconomic, health, and 

exposures as described above. However main effects models for SNPs did not include 

alcohol consumption, because it may be in the causal pathway between SNP and cancer 

outcome.  

Haplotypes were constructed separately for whites and African-Americans using 

default D’ blocks created in Haploview 4.2 from the study genotyping data. The algorithm 

(217) constructs 95% confidence limits on D’ and each comparison is defined as either 

“strong LD”, “inconclusive” or “strong recombination”. A block is created if 95% of informative 

comparisons are in “strong LD”. The method ignores markers with minor allele frequency 

less than 5%. Assignment of most likely haplotype for individuals with ambiguous haplotype 

was done using an EM algorithm in haplo.stats (205), with minimum counts set to 10. 

Estimation of odds ratios and confidence intervals was accomplished using general linear 

methods implemented in haplo.stats 1.4.4. Bonferroni correction for multiple statistical tests 

was applied to beta coefficient p-values (13 tests – for 13 haplotypes -- for whites, 12 tests 

for African-Americans).  

 

Specific Aim 2: “Estimate the interactive effect of alcohol exposure with each polymorphism 

on the risk of developing SCCHN.” 

I had originally planned to test for both additive and multiplicative interaction between 

SNPs and alcohol consumption, but because additive interaction is believed to be more 
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relevant to biological mechanisms, I decided to calculate and report only measures of 

additive interaction.  

Departures from additive interaction were evaluated by computing interaction 

contrast ratios (ICRs), confidence intervals, and Bonferroni-corrected p-values. ICRs were 

calculated using cancer odds ratios of subjects in three categories: (1) the highest drinking 

category and no minor allele (i.e., those singly exposed to drinking only – OR01); (2) never-

drinkers with at least one minor allele (i.e., those singly exposed to only the variant allele – 

OR10); and (3) subjects in the highest drinking category and at least one minor allele (i.e., 

those doubly exposed to both alcohol and the variant allele – OR11), compared to never-

drinkers homozygous for the major allele (i.e., the referent group that was not exposed to 

either the variant allele or to drinking – OR00 = 1.0). ICR is calculated as follows: ICR=OR11 - 

OR01 - OR10 + 1. ICRs significantly different from zero indicate departure from additive 

interaction.  

This study’s power to detect interactions was marginal even when using the entire 

study population. Because haplotypes were constructed and analyzed separately for each 

race, there was insufficient statistical power to detect within-race interactions, so I did not 

test haplotypes for interaction with lifetime alcohol consumption.  

 

Specific Aim 3. “Compare death rates of cases with different gene polymorphisms in order to 

identify survival differences associated with particular polymorphisms.” 

All deaths that occurred in CHANCE subjects on or before December 31, 2008 were 

classified as all-cause events. If the initial three digits of the first-listed NDI cause of death 

code were head and neck cancers (C01-C06, C09, C10, C12-C14, or C32), the death was 

further classified as a cancer-specific death. For all-cause death, months of survival were 

calculated by subtracting the date of diagnosis from the date of death, and subjects who 

were still alive on 12/31/2008 were censored on that date. For cancer-specific death, 
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months of survival were calculated by subtracting the date of diagnosis from the date of 

cancer death, while subjects who died of another cause were censored as of the date of 

death; subjects who were still alive on 12/31/2008 were censored on that date.  

To ascertain SNP effects on all-cause and cancer-specific survival after SCCHN 

diagnosis, I used a dominant genetic model in SAS® 9.2 to calculate Kaplan-Meier survival 

curves with log-rank tests, and hazard ratios from Cox proportional hazards models (218). 

Tumor, node, and metastasis stage at diagnosis, presence/absence of angiolymphatic 

invasion and selected co-morbid diseases, dichotomous treatment variables (surgery, 

chemotherapy, and radiation), age, sex, self-reported race, percent African ancestry, 

tobacco exposure, and socioeconomic and health variables were entered into initial models, 

and covariates were tested and backwards-eliminated from full models by the 10% change 

rule as described above. Including TNM summary stage as an ordinal variable to control for 

stage, instead of separate T, N, and M stages, did not substantially change effect estimates. 

Alcohol consumption was not included in these main effects models because it may be in 

the causal pathway between SNP and cancer. I also did the same tests separately for 

whites and African-Americans to determine whether effect estimates were similar for the two 

races.  

2.6 STRENGTHS AND LIMITATIONS 

A major advantage of CHANCE is that both cases and controls were drawn from a 

large population at risk for SCCHN. This improves the generalizability of risk estimates 

associated with polymorphisms in alcohol-processing and oxidative metabolism genes. The 

large sample size permitted examination of gene-environment interactions in the overall 

study with sufficient statistical power for common genotypes. The study gathered extensive 

questionnaire and clinical data on all major risk factors for SCCHN, and genotyped more 

than 95% of study participants for polymorphisms in genes that may be related to disease 
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incidence and survival. Sufficient tag SNPs were genotyped in most of the genes such that 

haplotype analysis to comprehensively assess common variation over the entirety of each 

gene can be performed, with the goal of identifying risk haplotypes. Outcome, stage at 

diagnosis, and treatments were verified with medical records to reduce misclassification of 

outcome and clinical covariates. African Americans, an under-studied population, make up 

22% (615/2785 questionnaires) of participants.  

Limitations included low response rate of potential controls, and different response 

rates between white and African-American controls (50% versus 35%, respectively). The 

result was fewer African-American controls than there were African-American cases. 

Because response rate of cases was much higher than that of controls (76% versus 46%, 

respectively), participation bias may be present, and it is difficult to estimate how that might 

affect frequency of genotypes. Also, this study excluded enrolled cases who died without 

personally completing the questionnaire and providing a biological sample, thus eliminating 

the most rapidly fatal cases. If incidence and survival effects due to SNP polymorphisms are 

more pronounced in subjects with rapidly-fatal disease, this selection bias would tend to 

skew our effect estimates toward the null. 

A second limitation is that most covariates were measured by self-report at baseline, 

which can introduce misclassification of risk factors. However, nurse interviewers received 

extensive training to ask questions in a consistent manner of each subject, in order to 

reduce errors introduced by the way in which questions were phrased. Also, CHANCE did 

not measure alcohol and tobacco use after baseline, so could not address whether changing 

these behaviors after diagnosis improves survival.  

Finally, genotyping only tag SNPs, although less expensive than typing other 

variants, is likely to miss rare variants.  



 

 
 
 
 
 
 

CHAPTER 3   
 

JOINT EFFECTS OF ALCOHOL CONSUMPTION AND  
POLYMORPHISMS IN ALCOHOL AND OXIDATIVE STRESS METABOLISM  

GENES ON RISK OF HEAD AND NECK CANCER 
 

3.1 ABSTRACT 

Single nucleotide polymorphisms (SNPs) in alcohol metabolism genes are 

associated with squamous cell carcinoma of the head and neck (SCCHN), and may 

influence cancer risk in conjunction with alcohol. Genetic variation in the oxidative stress 

pathway may impact the carcinogenic effect of reactive oxygen species produced by ethanol 

metabolism. We hypothesized that alcohol interacts with these pathways to affect SCCHN 

incidence. 

 Interview and SNP genotyping data were obtained from 2552 white and African-

American subjects (1227 cases, 1325 controls) from the Carolina Head and Neck Cancer 

Epidemiology study, a population-based case-control study of SCCHN conducted in North 

Carolina from 2002-2006. We estimated odds ratios and 95% confidence intervals, adjusting 

for matching variables (age, sex, race) and duration of cigarette smoking. 

 Two SNPs were associated with altered SCCHN risk: ADH1B rs1229984 A allele 

(OR=0.7, 95% CI=0.6-0.9) and ALDH2 rs2238151 C allele (OR=1.2, 95% CI=1.1-1.4). Three 

were associated with sub-site tumors: ADH1B rs17028834 C allele (larynx, OR=1.5, 95% 

CI=1.1-2.0), SOD2 rs4342445 A allele (oral cavity, OR=1.3, 95% CI=1.1-1.6), and SOD2 

rs5746134 T allele (hypopharynx, OR=2.1, 95% CI=1.2-3.7). Four SNPs in alcohol 

metabolism genes showed evidence of additive interaction with level of alcohol 
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consumption: ALDH2 rs2238151, ADH1B rs1159918, ADH7 rs1154460, and CYP2E1 

rs2249695. No alcohol interactions were found for oxidative stress pathway SNPs.  

Previously unreported associations of SNPs in ALDH2, CYP2E1, GPX2, SOD1, and 

SOD2 with SCCHN and sub-site tumors provide evidence that alterations in alcohol and 

oxidative stress pathways influence SCCHN carcinogenesis, and warrant further 

investigation.  

3.2 INTRODUCTION 

Head and neck cancers typically include tumors of the oral cavity, pharynx, larynx, 

nose, nasal cavity and sinuses, and esophagus. This study focuses specifically on 

squamous cell cancers of the oral cavity, pharynx, and larynx (SCCHN).  

There were an estimated 49,260 new cases and 11,480 deaths from oropharyngeal 

and laryngeal cancer in the U.S. in 2010 (219). Globally in 2008, oral cavity tumors were 

among the top 10 incident cancers in men world-wide, and among the top 10 fatal cancers 

in men in developing countries (220).  

SCCHN incidence is higher in men than women, and, in the U.S., in African-

Americans and those of low socioeconomic status. A large proportion of this disparity is due 

to the higher incidence of laryngeal tumors among African-American men (221). 

SCCHN is strongly associated with smoking tobacco products and drinking alcoholic 

beverages, and recently with human papillomavirus infection. It is estimated that 75% of 

oropharyngeal cancer in the US is due to cigarette smoking and alcohol consumption (56). 

The effect of these exposures varies by anatomic sub-site, with smoking more associated 

with laryngeal tumors, and drinking with oral cavity tumors. However only a small fraction of 

people exposed to these carcinogens will develop SCCHN, suggesting that other factors, 

including genetic, must be considered. Inherited genetic variation in the metabolism of 

alcohol has been suggested as a potentially important contributor to SCCHN risk. 
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Investigation of the association between single nucleotide polymorphisms (SNPs) and 

SCCHN may help to identify high-risk groups and clarify carcinogenesis pathways.  

Many previous studies of the major genes in the alcohol metabolism pathway (ADH 

family, ALDH2, CYP2E1) have been limited by sample size, and, with one exception (152), 

none have included a significant percentage of African-Americans. Further, few studies have 

examined the influence of genetic variation in oxidative stress pathways (e.g., SOD, GPx, 

CAT). We examined the association between SNPs and haplotypes of genes in the alcohol 

metabolism and oxidative stress pathways and SNP-alcohol interactions using data from a 

large North Carolina (N.C.) population-based case-control study of SCCHN, including 22% 

African-Americans.  

3.3 METHODS 

3.3.1 Subject enrollment 

The Carolina Head and Neck Cancer Epidemiology study (CHANCE) is a population-

based case-control study upon which these analyses are based (222). 

All cases of squamous cell carcinoma of the oral cavity, pharynx, and larynx 

diagnosed in 46 N.C. counties between 1/1/2002 through 2/28/2006 were eligible for 

enrollment. Rapid case identification was conducted by the N.C. Central Cancer Registry. 

CHANCE cases included ICD-O-3 topography codes C0.00-C14.8, and C32.0-C32.9, 

excluding salivary gland (C07.9, C08.0-C08.9), nasopharynx (C11.0-C11.9), nasal cavity 

(C30.0), and nasal sinuses (C31.0-C31.9). ICD-O-3 morphology codes included were 

8010/3, 8051/3, 8083/3, 8071/3, 8072/3, 8073/3, 8074/3, and 8076/3. Benign tumors, 

carcinomas in situ, papillary carcinomas, and adenoid carcinomas were excluded. This 

analysis further excluded 21 lip cancers (C00.3-C00.9, C14.2), 46 of “other” race, and 96 

without genotyping data, producing a study composition of 1227 cases and 1325 controls.  
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Potentially eligible controls from the same counties as cases were identified through 

N.C. Department of Motor Vehicles records. Controls were frequency-matched to cases 

using random sampling with stratification on age, race, and sex.  

Trained nurse-interviewers conducted an in-person interview with each subject. For 

this analysis only self-reported, non-proxy data were included. Questions were asked about 

demographics (age, sex, race-ethnicity, education, income, health insurance), tobacco use, 

drinking of alcoholic beverages, diet, oral health, medical history, and family history of 

cancer.  

Blood samples were obtained by nurse-interviewers trained in phlebotomy. If the 

subject was not willing or able to consent to the blood draw, they were asked to contribute a 

buccal cell sample via mouthrinse.  

Written informed consent was obtained from all subjects. The study was approved by 

the Biomedical Institutional Review Board at the University of North Carolina at Chapel Hill.  

3.3.2 Outcome, exposure, and covariate measurement 

Outcome. Case tumors were classified into anatomic sub-sites according to the 

following 5 ICD-O categories used by the International Head and Neck Cancer 

Epidemiology Consortium (52): (1) oral cavity: C02.0-C02.3, C03.0, C03.1, C03.9, C04.0, 

C04.1, C04.8, C04.9, C05.0, C06.0-C06.2, C06.8, and C06.9; (2) oropharynx: C01.9, C02.4, 

C05.1, C05.2, C09.0, C09.1, C09.8, C09.9, C10.0-C10.4, C10.8, and C10.9; (3) oral cavity-

oropharynx-hypopharynx NOS: C02.8, C02.9, C05.8, C05.9, C14.0, C14.2, and C14.8; (4) 

hypopharynx: C12.9, C13.0-C13.2, C13.8, and C13.9; and (5) larynx: C32.0-C32.3, and 

C32.8-C32.9.  

Alcohol and tobacco use. Questions about alcohol use were designed to estimate 

lifetime history of alcohol consumption, and usual consumption of each beverage type, prior 

to the year before diagnosis. Questions were asked about beer, wine, and hard liquor 

separately as follows: (1) Did you drink [beer/wine/hard liquor]? (2) At what age did you 
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start? (3) At what age did you stop? (4) For how many years did you drink [beer/wine/hard 

liquor] during this period? (5) How much [beer/wine/hard liquor] did you usually drink? Per 

day/week/month/year? (6) What size did you usually drink? 

To efficiently estimate odds ratios for the interactive effect of genotype and alcohol 

consumption, a single variable combining all three types of alcohol consumption was 

derived. As frequency of drinking has demonstrated stronger associations with SCCHN than 

duration (51), a single frequency measure that included all types of alcoholic beverages 

would have been optimal, although unavailable in CHANCE. We instead derived a lifetime 

measure of alcohol intake, in milliliters, for beer, wine, and liquor combined. Using splines, 

we confirmed that tertiles best represented the risk associated with alcohol intake.  

The primary tobacco exposure covariate selected was continuous duration of 

cigarette smoking rounded to whole years. Dichotomous variables representing additional 

potential tobacco confounders were: ever use of non-cigarette tobacco products, ever 

exposed to environmental tobacco smoke (ETS) at work, and ever exposed to ETS at home.  

SNPs. For this project, 75 SNPs (69 tag SNPs and 6 candidate SNPs found in prior 

studies to be associated with cancer incidence or survival, or alcohol dependence) were 

selected in 12 genes that are part of two metabolic pathways: ADH1B, ADH1C, ADH4, 

ADH7, ALDH2, and CYP2E1 in the alcohol metabolism pathway in the upper aerodigestive 

tract; and CAT, SOD1, SOD2, GPX1, GPX2, and GPX4 in the oxidative stress metabolic 

pathway. Tag SNPs, chosen to represent the genetic variation within each of the 12 

candidate genes (gene and 2000 bp upstream and downstream) were selected using the 

Genome Variation Server (223), using SNPs that were polymorphic in either CEU or YRI 

HapMap Release 2 (unrelated only), and with the following parameters: allele frequency 

cutoff 10%, 0.8 R2 threshold minimum for variations to belong to the same cluster, 85% 

minimum data coverage for tag SNPs, 70% minimal data coverage for a variation to be 

potentially clustered with others.  
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To control for potential population stratification, we selected 157 ancestry informative 

markers (AIMs) to maximize (1) the difference in allele frequencies (delta) between 

European and African populations in the HapMap data (CEU versus YRI), and (2) the 

Fisher’s information criterion (FIC). AIMs were prioritized based on having the highest delta 

and FIC values in the following order: 90% European/10% African, 10% European/90% 

African, and 50% European/50% African. This allowed AIMs to represent the entire 

expected ancestral distribution of the study population. Individual estimates of percentage 

African ancestry were calculated from 145 successfully genotyped AIMs using maximum 

likelihood estimation (MLE) methods previously described (184, 189, 224). AIMs were 

chosen to differentiate only between African and European ancestry, so we derived 

individual ancestry estimates for the two groups that summed to 1.0.  

DNA was extracted from blood or buccal samples collected at time of interview. 

Genotyping was done by the University of North Carolina at Chapel Hill, Mammalian 

Genotyping Core Facility, using the Illumina GoldenGate genotyping assay with Sentrix 

Array matrix and 96-well standard microtiter plates.  

Haplotypes using the study data were constructed separately for African-Americans 

and whites using default D’ blocks in Haploview 4.2. The algorithm (217) constructs 95% 

confidence limits on D’ and each comparison is defined as either “strong LD”, “inconclusive” 

or “strong recombination”. A block is created if 95% of informative comparisons are in 

“strong LD”. The method ignores markers with minor allele frequency less than 5%. 

Assignment of most likely haplotype for individuals with ambiguous haplotype was done 

using an EM algorithm in haplo.stats (205), with minimum counts set to 10. Estimation of 

odds ratios and confidence intervals was accomplished using unconditional logistic 

regression implemented in haplo.stats 1.4.4. 

SES, oral health: Dichotomous variables representing additional potential 

confounders were: covered by health insurance on reference date, ever had a routine dental 
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visit, ever had a loose permanent tooth due to disease, ever used mouthwash, family history 

of SCCHN, household poverty as defined by federal guidelines for both income and number 

of persons supported, and highest attained education level.  

3.3.3 Statistical analysis 

Odds ratios for the independent effects of SNPs and alcohol, and their interactive 

effects, were computed using conditional logistic regression methods implemented in SAS® 

9.2. Odds ratios for the main effects of haplotypes were computed using unconditional 

logistic regression methods implemented in haplo.stats 1.4.4. 

A dominant genetic model (at least one minor allele versus referent of no minor 

alleles) was used for SNPs instead of the general model because for many of the SNPs, the 

number of subjects homozygous for the minor allele was too small to permit estimation of 

precise effect estimates.  

Potential covariates were eliminated using step-wise backwards elimination, 

comparing each reduced model to the full model that included all covariates listed in Table 

14. Note that no collinearity was noted between any variables in the full model, with one 

exception as described below. If a covariate did not change the ln(OR) for any SNP by a 

difference of at least 0.10, it was eliminated from all models. The final models contained the 

genetic variant (single SNP or haplotype), coded for a dominant genetic model for SNPs, 

additive genetic model for haplotypes; categorized lifetime drinking variable; continuous 

smoking duration variable; and the SNP*drinking interaction term (for SNP genetic variants, 

but not for haplotypes). The conditional logistic regression used for SNPs by definition takes 

into account the matching variables of age category, sex, and race. The unconditional 

logistic regression models used for haplotypes (for each race separately) included, as 

covariates, sex, age, and their 2-way interaction. Ancestry was not important for the genetic 

variants studied, probably because self-reported race was already included (as a matching 
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variable). The ancestry variable also showed evidence of collinearity with race, so for these 

reasons and for parsimony’s sake, ancestry was not included in final models.  

A Bonferroni correction was used to adjust p-values to control for Type 1 error 

introduced by multiple statistical testing, for either 64 tests (for 64 SNPs) or for 12 or 13 tests 

(for haplotypes).  

Departures from additive interaction were evaluated by computing interaction 

contrast ratios (ICRs) and Bonferroni-corrected confidence intervals for 64 statistical tests. 

ICRs were calculated using cancer odds ratios of subjects in three categories: (1) the 

highest drinking category and no minor allele (i.e., those singly exposed to drinking only – 

OR01); (2) never-drinkers with at least one minor allele (i.e., those singly exposed to only the 

variant allele – OR10); and (3) subjects in the highest drinking category and at least one 

minor allele (i.e., those doubly exposed to both alcohol and the variant allele – OR11), 

compared to never-drinkers homozygous for the major allele (i.e., the referent group that 

was not exposed to either the variant allele or to drinking – OR00 = 1.0). ICR is calculated as 

follows: ICR=OR11 - OR01 - OR10 + 1. ICRs significantly different from zero indicate 

departure from additive interaction.  

3.4 RESULTS 

3.4.1 Description of study population 

Although controls were somewhat older and more likely to be female and white than 

cases (Table 14), the percentages of cases versus controls in each of the 28 age-sex-race 

cross-categories, as a proportion of the entire study population, differed by less than 2%. 

Compared to controls, cases smoked and drank more, and were poorer, less likely to have 

completed high school or have health insurance, less likely to have ever had a routine 

dental visit, and more likely to have lost a permanent tooth to disease. Cases were also 

more likely to have been exposed to ETS at home and work. Mean proportion of African 

ancestry was slightly higher in cases than controls.  
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The SNPs in Table 16 that were analyzed for this study were genotyped as part of a 

larger panel of 1,536 SNPs. Assay intensity data and genotype cluster images for all SNPs 

were individually reviewed; as a result, 9 tag/candidate SNPs and 12 AIMs (9% of SNPs) 

were excluded due to inadequate signal or inability to distinguish genotype clusters. Blind 

duplicates of 109 samples were genotyped to verify call reliability; none of the calls for SNPs 

analyzed in this study were discrepant. Two tag SNPs, judged to be out of HWE (SAS® 

PROC ALLELE) in both black and white controls due to an exact p-value <0.001, were 

eliminated from analysis.   

There were no large differences in allele frequencies between cases and controls, 

when stratified by race (Appendix C). However there are large allele frequency differences 

between African-Americans and whites.  

3.4.2 Cancer risk from alcohol consumption 

The odds of developing SCCHN increase monotonically as lifetime alcohol 

consumption increases (Table 15). Subjects with the lowest level of consumption (up to 

133,294 ml) experienced reduced SCCHN odds compared to non-drinkers (OR=0.8, 95% 

CI=0.6-1.0), a reduction which was driven by laryngeal and oral cavity tumors (OR=0.7, 95% 

CI=0.4-1.1 and OR=0.4, 95% CI=0.2-0.9, respectively).  

Successively higher levels of alcohol consumption were associated with increasing 

odds. The middle tertile of lifetime consumption (133,294 to 757,550 ml) was associated 

with 30% higher odds than never-drinkers (OR=1.3, 95% CI=1.0-1.8). The highest lifetime 

consumption (>=757,550 ml) was associated with tripled odds of SCCHN (OR=3.2, 95% 

CI=2.3-4.5). In the highest drinking category, all sub-sites were associated with significantly 

increased odds: doubled odds of laryngeal cancer, and tripled or greater odds for 

oropharyngeal, oral-cavity-oropharyngeal-hypopharyngeal-NOS cancers, and oral cavity 

tumors.  
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3.4.3 Cancer risk from genetic variants 

None of the SNP associations with SCCHN or any of the sub-site cancers had a 

significant Bonferroni-corrected p-value, although five SNPs in ADH1B, ALDH2, and SOD2 

showed evidence of reduced or increased cancer odds ratios overall and in oral cavity, 

laryngeal, and hypopharyngeal sub-sites (Table 16; remaining sub-site effects in Appendix 

D). In ADH1B, the rs1229984 A allele was associated with decreased SCCHN odds 

(OR=0.7, 95% CI=0.6-0.9), and the rs17028834 C allele with increased odds of laryngeal 

tumors (OR=1.5, 95% CI=1.1-2.0). In ALDH2, the rs2238151 C allele showed evidence of 

association with increased odds of SCCHN (OR=1.1, 95% CI=1.0-1.2), driven largely by an 

association with laryngeal tumors (OR=1.2, 95% CI=1.1-1.4). In SOD2, the rs4342445 A 

allele was associated with increased odds for oral cavity tumors (OR=1.3, 95% CI=1.1-1.6), 

and the rs5746134 T allele with odds for hypopharyngeal cancer (OR=2.1, 95% CI=1.2-3.7).  

Four haplotypes in ALDH2, CYP2E1, GPX2, and SOD1 were associated with 

SCCHN, either in whites or African-Americans, or both (Table 17). One GPX2 haplotype 

was significantly associated with decreased odds of SCCHN in whites (OR=0.7, 95% 

CI=0.5-0.9). Reduced SCCHN odds were found for an ALDH2 haplotype (OR=0.5, 95% 

CI=0.3-0.8) in African-Americans and a CYP2E1 haplotype in whites (OR=0.7, 95% CI=0.6-

0.9). The SOD1 AGGC haplotype was associated with increased odds in whites and 

reduced odds in African-Americans.  

3.4.4 Cancer risk from alcohol interaction with SNPs 

Four SNPs showed evidence of possible additive interaction with alcohol 

consumption (Table 18). All met the following two characteristics: (1) statistically significant 

or near-significant Bonferroni-corrected p-value (for 64 tests; p<0.0008) for departure from 

additive interaction, and (2) at least 10 cases and 10 controls in each of the three 

comparison groups OR01, OR10, OR11. For example, rs2238151 in ALDH2 showed 

statistically significant evidence of synergistic additive interaction (increased odds for 
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drinkers with the C allele). Also the T allele at rs1159918 in ADH1B, the A allele at 

rs1154460 in ADH7, and the T allele at rs2249695 in CYP2E1 showed some evidence for 

greater than additive interaction between alcohol consumption and SNP. (Evaluations of 

additive interaction with alcohol for remaining SNPs can be found in Appendix E.) 

No interactions with alcohol were detected for anatomic sub-sites.  

3.4.5 SNP effects by race 

SNP effect estimates were similar in whites and African-Americans, with the 

exception of two SNPs in SOD1 (rs10432782, rs2070424) that were associated with 

decreased odds of getting SCCHN in African-Americans and increased odds in whites. 

These SNPs were part of the SOD1 haplotype that we found to be associated with different 

direction of effect in African-Americans and whites. Direction of effect for carrying the minor 

allele of individual SNPs was consistent with the haplotype: OR (95% CI) for rs10432782 

was 0.65 (0.42-1.00) in African-Americans, 1.35 (1.07-1.71) in whites; OR (95% CI) for 

rs2070424 was 0.52 (0.33-0.83) in African-Americans, 1.47 (1.10-1.97) in whites. The 

magnitude of the joint effect for the four SNPs found to interact additively with alcohol 

exposure did not differ between races (data not shown).   

3.5 DISCUSSION 

Alcohol consumption. Most studies report a strong dose-response relationship 

between higher levels of drinking, both in lifetime frequency of drinking (e.g. drinks per day) 

and lifetime alcohol intake (e.g. milliliters of ethanol), and increased cancer risk. However, 

the type of alcohol beverage associated with cancer risk varies substantially by study. For 

example, some studies suggest that the most common alcoholic beverage in the study’s 

geographic region studied produces the highest cancer risk (58). There is some evidence 

that moderate levels of wine consumption produce lower risk than beer and liquor 

(comparing 16-30 ethanol-standardized drinks per week of each type), but above 30 drinks 

per week, all types are associated with increased risk (58).  
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We found a general pattern of association with alcohol intake that is consistent with 

previous studies (52), with monotonically increasing cancer risk as lifetime consumption 

increases. Beer and liquor accounted for about 90% of lifetime alcohol consumption in our 

study population, and those beverages were associated with higher cancer risk than wine 

consumption (data not shown). This is consistent with the hypothesis that the most 

commonly drunk alcoholic beverages are associated with the highest risk. We found 

suggestive evidence of reduced odds of SCCHN for drinkers in the lowest tertile compared 

to non-drinkers. 

Alcohol metabolism genes. Variant ADH and ALDH alleles coding for either 

superactive or inactive subunits of ADH and ALDH isozymes are common. Numerous 

studies in Asian populations have reported an association between several presumably 

functional variants in ADH1B, ADH1C, ADH4, ADH7, and ALDH2 and SCCHN incidence 

(105, 106, 111, 113, 114, 127, 130, 131). However, these studies lacked sufficient power to 

consistently detect interaction between gene and alcohol drinking. In recent years, these 

variants and others were investigated in larger studies of Europeans, Latin-Americans, and 

Indians with similar findings (103, 104, 107, 115, 121, 123-126, 128). However, only a few 

smaller studies examined risk in whites and African-Americans (109, 122, 150, 152, 153), 

and those included very small numbers of African-Americans.  

We discovered an association between rs1229984 in ADH1B and SCCHN odds 

(ORAA+AGvsGG=0.7, 95% CI=0.6-0.9). It is the same direction of effect for the A allele as 

reported in a Japanese study (105)(ORGG+GAvsAA=2.20, 95% CI=1.46-3.32) and in European 

Caucasians and Latin-Americans (104) (ORAA+GAvsGG=0.56, 95% CI=0.47-0.66), but is the 

reverse of the effect reported in a few other studies (103, 106, 123) (e.g. (103): 

ORGG+GAvsAA=0.36, 95% CI=0.17-0.77). A recent INHANCE GWAS (149) reported a 

replicated association of 5 SNPs with upper aerodigestive tract (UADT) cancer (i.e. SCCHN 

and esophageal cancer), including rs1229984, for which the A allele under a log-additive 
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genetic model was associated with reduced odds in both the discovery (OR=0.52, 95% 

CI=0.43-0.64) and the replication phases (OR=0.68, 95% CI=0.60-0.78). The GWAS 

replication sample included 2,027 CHANCE subjects as 10% of the replication sample.  

We found no effect on SCCHN risk of the rs1693482 “slow” allele in ADH1C 

(ORTT+TCvsCC=1.05, 95% CI=0.95-1.15). The two largest studies to date of this SNP and 

SCCHN in European-Caucasians (103) and European-Caucasians and Latin-Americans 

(104) found increased odds associated with this allele (OR=1.49, 95% CI=1.08-2.05; 

OR=1.20, 95% CI=1.08-1.32); respectively). Also, all four studies of rs698 “slow” or G allele 

in Brazilian, Japanese, European-American and Latin-American populations (103-105, 123) 

reported evidence of 16-38% increased odds. In CHANCE, rs1631460 is in high LD 

(r2=0.95) with rs698 in both CEU and YRI HapMap populations, but we found no association 

between it and SCCHN odds (OR=1.04, 95% CI=0.95-1.14).   

No ADH4 and ADH7 SNPs were associated with SCCHN, including the rs1573496 C 

allele in ADH7 (OR=1.0, 95% CI=0.9-1.1). This is in contrast to the one study that 

investigated this allele and found it to be associated with reduced odds in Europeans and 

Latin-Americans (OR=0.7, 95% CI=0.6-0.8) (104).  

No ALDH2 SNPs were associated with SCCHN, and a possible haplotype 

association was present only in African-Americans (OR=0.5, 95% CI=0.3-0.8). Previous 

studies of rs886205, a SNP that is polymorphic in Europeans, found conflicting results of no 

association and increased association for the G allele (103, 115).   

Gene interaction with alcohol. We discovered evidence of additive interaction with 

alcohol of several SNPs in alcohol metabolism pathway genes, although the SNPs we 

identified were different from those previously reported in the literature. Specifically, we 

found two SNPs in ADH1B and ADH7 – rs1159918 and rs1154460, respectively – that 

appear to interact with alcohol. We also found one previously unstudied ALDH2 SNP, 

rs2238151, that showed evidence of additive interaction (OR11actual=3.3 versus 
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OR11expected=1.4). Whereas previous studies reported that rs1229984 in ADH1B, rs4148887 

in ADH4, rs1573496 in ADH7, and rs886205, rs441 (both in high LD with our SNP 

rs4767939), and rs440 in ALDH2 interacted with alcohol drinking (103, 104, 106, 113, 123), 

we did not find evidence for an interaction with these SNPs, probably because we measured 

alcohol consumption using lifetime alcohol intake instead of drinking frequency.  

We also found evidence for greater than additive interaction for CYP2E1 rs2249695 

with alcohol. A recent linkage and association study (225) identified that SNP, among 

others, to be associated with “tipsiness,” or quick response to alcohol challenge. In 

CHANCE, the T allele (Table 18, last row) appeared to be protective in never-drinkers 

(OR10=0.6, 95% CI=0.4-0.9) but in the heaviest drinkers the odds of cancer for those with 

the T allele are 70% higher than expected.  

Oxidative stress genes. We found two previously unstudied SNPs in SOD2 to be 

associated with specific tumor sites: rs4342445 with oral cavity tumors, and rs5746134 with 

hypopharynx tumors. One SOD1 haplotype was associated with SCCHN risk in both races, 

albeit in different directions, likely related to the effect of three individual SNP effects that 

differed by race in that gene. Finally, we found a GPX2 haplotype to be associated with 

reduced SCCHN risk in whites only. This may indicate that the haplotype is in high LD with 

an unmeasured causal polymorphism in whites but not in African-Americans.  

Only one previous study examined effects on SCCHN incidence of any SNPs in 

oxidative stress pathways (115); it reported that rs2758346 in SOD2 (which we did not 

study) was not associated with SCCHN (ORAAvsGG=0.98, 95% CI=0.78-1.22).  

We found no evidence of interaction with alcohol consumption for any oxidative 

stress SNP.  
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3.6 CONCLUSIONS 

CHANCE is one of the largest studies of head and neck cancer conducted in both 

African-Americans and whites. This study examined genetic polymorphisms in genes in the 

alcohol metabolism and oxidative stress biological pathways, and estimated main effects of 

these polymorphisms along with their interaction with alcohol. We selected tag SNPs to 

capture most of the variation in the 12 genes studied, rather than studying only missense 

SNPs within the coding regions.  

An inherent limitation of genotyping common tag SNPs, as we did, is that the method 

is likely to miss rare variants. A second limitation is that, due to small numbers, we could not 

precisely estimate the interaction between SNPs and alcohol intake for allele frequencies 

<30% or in relation to anatomic site of tumor. 

Our study confirms findings of previous studies that the effects of many 

polymorphisms in alcohol metabolism pathways are modified by alcohol intake. However, 

most genetic variants in ALDH2 and CYP2E1 have been understudied and warrant 

additional investigation in light of the new associations that we report.  

Our analysis of tag SNPs in GPX2, SOD1, and SOD2 has identified several that are 

associated with SCCHN, hypopharyngeal, and oral cavity tumors. Confirmation of these 

findings in a variety of populations is warranted.  

  



Variable na (col %) na (col %)
Age (years)

20-49 239 19.5% 151 11.4% <0.0001
50-54 189 15.4% 156 11.8%
55-59 207 16.9% 199 15.0%
60-64 205 16.7% 202 15.2%
65-69 168 13.7% 237 17.9%
70-74 135 11.0% 216 16.3%
75-80 84 6.8% 164 12.4%

Sex
Male 938 76.4% 924 69.7% 0.0001
Female 289 23.6% 401 30.3%

Race
White 922 75.1% 1074 81.1% 0.0003
African-American 305 24.9% 251 18.9%

Drinking (lifetime ethanol intake in ml) <0.0001
never drinkers 117 9.5% 280 21.1%
>0 to <134,699 210 17.1% 467 35.2%
134,699 to 757,550 318 25.9% 360 27.2%
757,550+ 505 41.2% 173 13.1%
missing 77 6.3% 45 3.4%

Smoking (duration in years) <0.0001
0 160 13.0% 497 37.5%
1-19 104 8.5% 266 20.1%
20-39 435 35.5% 314 23.7%
40-49 295 24.0% 131 9.9%
50+ 155 12.6% 71 5.4%
Missing 78 6.4% 46 3.5%

Poverty group (at or above, or below, federal poverty guideline) <0.0001
>= poverty guideline 816 66.5% 1088 82.1%

<poverty guideline 356 29.0% 187 14.1%
Had a routine dental visit in past 10 years? <0.0001

Yes 781 63.7% 1115 84.2%
No 438 35.7% 210 15.8%

Drank alcoholic beverages in prior 20 years? 0.8851
No 24 2.0% 27 2.0%
Yes 1202 98.0% 1298 98.0%

Ever exposed to environmental tobacco smoke at work 0.0024
No 316 25.8% 414 31.2%
Yes 909 74.1% 911 68.8%

Ever exposed to environmental tobacco smoke at home <0.0001
No 399 32.5% 592 44.7%
Yes 827 67.4% 732 55.2%

Ever used non-cigarette tobacco products 0.1165
No 754 61.5% 854 64.5%
Yes 473 38.5% 471 35.5%

Had health insurance at reference date <0.0001
Yes 1068 87.0% 1250 94.3%
No 154 12.6% 74 5.6%

Highest education level attained <0.0001
>=high school 828 67.5% 1123 84.8%
<high school 399 32.5% 202 15.2%

Ever had loose permanent tooth due to disease <0.0001
No 765 62.3% 1018 76.8%
Yes 455 37.1% 305 23.0%

Ever regularly used mouthwash 0.8572
No 502 40.9% 549 41.4%
Yes 719 58.6% 775 58.5%

Family history of SCCHN among 1st degree relatives 0.3848
No 1206 98.3% 1296 97.8%
Yes 21 1.7% 29 2.2%

Mean % African ancestry 0.0008
23.8% 19.7%

Chi-square or t-
test, 

unadjusted p-
value

a Frequencies for all variables may not sum to the total number of cases and controls, due 
to missing values

Table 14. Distribution of non-genetic variables in cases and controls 

Cases (n=1227) Controls (n=1325)
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Table 17. Selected haplotype main effects on SCCHN risk, additive genetic model

Gene (haplotype definition) haplotype Race
prevalence 

(%) OR (95% CI)b

ACAGCT 26% 1.0 (ref)
ATGGCT 11% 0.5 (0.3-0.8)
GCCC White 65% 1.0 (ref)
GCCT 10% 0.7 (0.6-0.9) 
GGC White 70% 1.0 (ref)
GCT 9% 0.7 (0.5-0.9)
GTAC White 58% 1.0 (ref)
AGGC 6% 1.4 (1.1-1.9) 
GTAC 52% 1.0 (ref)
AGGC 6% 0.6 (0.4-0.9)

b Unconditional logistic regression models adjusted for matching variables sex, race, age category, and their interactions; and for 
continuous smoking duration rounded to whole years. The referent group for each OR was the most common haplotype.

a Criterion for selecting haplotypes for this table: ORs were statistically significant, or nearly so, after Bonferroni correction for multiple 
testing (13 for White, 12 for African-American). Statistically significant ORs are highlighted in bold.

ALDH2 
(rs4767939, rs2238151, rs7312055, rs2158029, rs16941667, rs16941669) 
CYP2E1 
(rs915908, rs7092584, rs743535, rs2249695) 
GPX2 
(rs11623705, rs2412065, rs2737844) 

SOD1 
(rs4998557, rs10432782, rs2070424, rs1041740)

African-
American

African-
American
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Table 18. Additive interactive effects of alcohol with selected SNPsa

Gene, SNP, major/minor alleles      
     lifetime ethanol (ml)

# cases/
controls

Adjusted OR 
(95% CI)b

# cases/
controls

Adjusted OR 
(95% CI)b

ICRc 

(Bonferroni-
corrected CI)

ALDH2 , rs2238151, T/C
    never-drinkers 50/95 1.0 (ref) 67/184 0.7 (0.4-1.1) 1.9 (0.1-3.80)
    >0 to <134,699 75/173 0.5 (0.3-0.9) 133/293 0.6 (0.4-1.0) 
    134,699 to <757,550 97/138 0.8 (0.5-1.3) 220/222 1.2 (0.8-1.9) 
     757,550+ 122/65 1.7 (1.0-2.8) 381/106 3.3 (2.0-5.3) 
ADH1B , rs1159918, G/T 
     never-drinkers 49/101 1.0 (ref) 68/179 0.9 (0.6-1.5) 1.0 (-0.9, 3.0)
    >0 to <134,699 80/168 0.7 (0.4-1.1) 129/298 0.7 (0.5-1.1)
    134,699 to <757,550 107/129 1.1 (0.7-1.8) 211/231 1.3 (0.8-2.0)
     757,550+ 140/58 2.4 (1.4-4.1) 365/115 3.3 (2.1-5.4) 
ADH7 , rs1154460, G/A 
     never-drinkers 35/65 1.0 (ref) 81/215 0.6 (0.4-1.1) 0.9 (-0.6, 2.4)
    >0 to <134,699 57/131 0.5 (0.3-0.9) 152/334 0.6 (0.3-0.9)
    134,699 to <757,550 88/111 0.8 (0.5-1.4) 229/249 1.0 (0.6-1.6)
     757,550+ 133/54 1.9 (1.1-3.5) 371/119 2.5 (1.5-4.2)
CYP2E1 , rs2249695, C/T 
     never-drinkers 73/136 1.0 (ref) 44/144 0.6 (0.4-0.9) 1.2 (-0.6, 3.0)
    >0 to <134,699 127/253 0.6 (0.4-0.9) 82/213 0.5 (0.3-0.8)
    134,699 to <757,550 160/178 1.1 (0.7-1.6) 158/181 1.0 (0.6-1.4)
     757,550+ 218/92 2.1 (1.4-3.3) 286/81 2.9 (1.8-4.6) 

homozygous for major 
allele

one or two copies of 
minor allele

b Conditional logistic regression models conditioned on sex, race, and age category, and adjusted for continuous smoking 
duration rounded to whole years
c ICRs were calculated using odds ratios that are highlighted in bold. Bonferroni correction of ICR confidence interval for 64 
statistical tests.

a Selected SNPs have (1) ICR confidence intervals that either don't include 0 or nearly so, after Bonferroni correction, and (2) 
genotype information on sufficient numbers of cases and controls (at least 10 each) for calculating each of the three ORs 
highlighted in bold for that SNP. If ICR confidence interval appeared significant but numbers of cases and controls were too 
sparse, SNP was judged to have insufficient evidence of interaction with alcohol, and was not included in this table.
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CHAPTER 4   
 

EFFECTS OF POLYMORPHISMS IN ALCOHOL METABOLISM AND OXIDATIVE  
STRESS GENES ON SURVIVAL FROM HEAD AND NECK CANCER 

 

4.1 ABSTRACT 

Heavy drinking of alcoholic beverages increases risk of developing squamous cell 

carcinoma of the head and neck (SCCHN). While the mechanisms of alcohol-induced 

carcinogenesis are complex, alcohol metabolism leads to generation of cytotoxic and 

mutagenic intermediates including acetaldehyde and reactive oxygen species (ROS). Single 

nucleotide polymorphisms (SNPs) in alcohol metabolism genes have been associated with 

SCCHN incidence, and genetic variation in the antioxidant pathways may impact ROS 

metabolism. We hypothesized that the genes involved in these pathways may influence 

survival after SCCHN diagnosis.  

 Interview and SNP genotyping data were obtained from 1227 white and African-

American cases from the Carolina Head and Neck Cancer Epidemiology study, a 

population-based case-control study of head and neck cancer conducted in North Carolina 

from 2002-2006. Vital status and date and cause of death through 2008 were obtained from 

the National Death Index. To identify survival differences between alleles of each SNP, we 

performed Kaplan-Meier log-rank tests and estimated both unadjusted and adjusted hazard 

ratios and 95% confidence intervals. 

 Minor alleles of two SNPs in CYP2E1 – the ‘C’ allele of both rs3813865 and 

rs8192772 – were associated with increased hazard of cancer-specific death in both 

adjusted and unadjusted analyses (HRadjusted, 95% CI = 2.09, 1.38-3.18; 1.71, 1.23-2.37), 
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respectively). Four additional SNPs in CYP2E1 and four in GPx1, SOD1, and SOD2 

displayed suggestive differences in allele hazards for all-cause and/or cancer death. No 

consistent associations with survival were found for SNPs in ADH1B, ADH1C, ADH4, ADH7, 

ALDH2, GPx2, GPx4, and CAT.  

 Polymorphisms in alcohol metabolism and ROS-detoxification genes influence 

survival in subjects with SCCHN. Previously unreported associations of SNPs in CYP2E1 

warrant further investigation, especially with regard to interaction with type of 

chemotherapeutic agent used for treatment.  

4.2 INTRODUCTION 

Head and neck cancers typically include cancers of the oral cavity, pharynx, larynx, 

nose, nasal cavity and sinuses, and esophagus. There were 49,260 new cases and 11,480 

deaths from oropharyngeal and laryngeal cancer in the U.S. in 2010 (219). Globally in 2008, 

oral cavity tumors were among the top 10 incident cancers in men world-wide, and among 

the top 10 fatal cancers in men in developing countries (220). Five-year relative survival for 

laryngeal and oropharyngeal cancer patients averages about 80% for localized cases, 50% 

for regional cases, and 33% for metastatic cases, with somewhat lower survival for laryngeal 

compared to oropharyngeal cancers (226). 

It is estimated that 75% of new cases of SCCHN in the United States are caused by 

tobacco use, especially cigarette smoking, and/or drinking of alcoholic beverages (56). In 

the past few decades the proportional incidence of oropharyngeal tumors associated with 

carcinogenic human papillomavirus sub-types has risen; such tumors appear to have better 

prognosis than non-HPV oropharyngeal tumors (227). Multiple studies have reported 

associations between SCCHN incidence and polymorphisms in alcohol metabolism genes, 

especially ADH1B, ADH1C, ADH4, ADH7, ALDH2, and CYP2E1 ((104, 105, 115, 121-127)). 

The primary biological mechanism responsible for this effect is hypothesized to be high 

levels of toxic and mutagenic acetaldehyde, the metabolic intermediate between ethanol 
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and acetate. Acetaldehyde, when associated with consumption of alcoholic beverages, is 

classified as a known human carcinogen by the International Agency for Research on 

Cancer (70). Also, alcohol metabolism through CYP2E1 is known to result in production of 

excess levels of reactive oxygen species (ROS) (228). The resulting DNA damage from 

these metabolic pathways may also influence cancer progression and, moreover, variation 

in pathway genes may modify progression and survival. Therefore, it is also of interest to 

know whether polymorphisms in genes encoding enzymes protective against oxidative 

stress (SOD, GPx, CAT) are associated with altered survival in SCCHN patients.  

In contrast to the multiple studies on genetic associations with SCCHN incidence, 

there have been few investigations of the effect of gene polymorphisms in alcohol 

metabolism and oxidative stress genes on survival of subjects with SCCHN. For example, 

only two studies investigated whether selected ADH1C and CYP2E1 polymorphisms 

influence prognosis, and they reported evidence of an association with advanced clinical 

stages or higher recurrence (124, 150). Further, no studies have examined the influence on 

post-diagnosis survival of genetic variation in the oxidative stress pathways.  

We examined the effect on survival of SNPs in genes in the alcohol metabolism and 

oxidative stress pathways, using exposure, genetic, clinical, and outcome data from cases 

included in a large North Carolina (NC) population-based case-control study of SCCHN.  

4.3 METHODS 

4.3.1 Study population 

Cases for this analysis were obtained from the Carolina Head and Neck Cancer 

Epidemiology study (CHANCE), a population-based case-control study (222). 

All cases of squamous cell carcinoma of the oral cavity, pharynx, and larynx 

diagnosed in 46 N.C. counties between January 1, 2002 and February 28, 2006 were 

eligible for enrollment. Rapid identification of cases was conducted by the N.C. Central 

Cancer Registry. CHANCE cases included ICD-O-3 topography codes C0.00 to C14.8, and 
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C32.0 to C32.9, excluding salivary gland tumors (C07.9, C08.0 to C08.9), nasopharynx 

(C11.0 to C11.9), nasal cavity (C30.0), and nasal sinuses (C31.0 to C31.9). ICD-O-3 

morphology codes included were 8010/3, 8051/3, 8083/3, 8071/3, 8072/3, 8073/3, 8074/3, 

and 8076/3. Benign tumors, carcinomas in situ, papillary carcinomas, and adenoid 

carcinomas were excluded. This analysis further excluded 21 lip cancers (C00.3-C00.9, 

C14.2), 26 cases of “other” race, and 115 without genotyping data, producing a study 

composition of 1227 cases, of which 922 were white/European-American and 305 were 

black/African-American.  

Case tumors were classified into anatomic sub-site according to the following 5 ICD-

O  categories that are also used by the International Head and Neck Cancer Epidemiology 

(INHANCE) Consortium (52): (1) oral cavity: C02.0-C02.3, C03.0, C03.1, C03.9, C04.0, 

C04.1, C04.8, C04.9, C05.0, C06.0-C06.2, C06.8, and C06.9; (2) oropharynx: C01.9, C02.4, 

C05.1, C05.2, C09.0, C09.1, C09.8, C09.9, C10.0-C10.4, C10.8, and C10.9; (3) oral cavity-

oropharynx-hypopharynx NOS: C02.8, C02.9, C05.8, C05.9, C14.0, C14.2, and C14.8; (4) 

hypopharynx: C12.9, C13.0-C13.2, C13.8, and C13.9; and (5) larynx: C32.0-C32.3, and 

C32.8-C32.9.  

Written informed consent was obtained from all subjects. The study was approved by 

the Biomedical Institutional Review Board at the University of North Carolina at Chapel Hill.  

4.3.2 Outcome assessment 

We determined whether death had occurred in study participants by December 31, 

2008, and, if so, the date and cause, through linkage with the National Death Index (NDI). 

The NDI is a national file of identified death record information compiled from computer files 

submitted by State vital statistics offices. CHANCE collected multiple matching data: social 

security number (SSN), date of birth (DOB), sex, race, state of residence, and name. 

Therefore there was a high proportion (76% for 2008 deaths) of perfect/very close to perfect 

matches on SSN, DOB, and sex. A small number of partial matches (e.g. a few SSN digits, 
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parts of DOB) were examined and a determination was made whether to accept or not. If 

the initial three digits of the first-listed cause of death code were C01-C06, C09, C10, C12-

C14, or C32, the cause of death was classified as head and neck cancer.  

4.3.3 SNP Selection and Genotyping 

Blood samples were obtained at the time of questionnaire administration by nurse-

interviewers trained in phlebotomy. If the subject was not willing or able to consent to the 

blood draw, they were asked to contribute a buccal cell sample via mouthrinse.  

For this project, 75 SNPs (69 tag SNPs and 6 candidate SNPs found in prior studies 

to be associated with cancer incidence or survival, or alcohol dependence) were selected in 

12 genes that are part of two metabolic pathways: ADH1B, ADH1C, ADH4, ADH7, ALDH2, 

and CYP2E1 in the alcohol metabolism pathway in the upper aerodigestive tract; and CAT, 

SOD1, SOD2, GPx1, GPx2, and GPx4 in the oxidative stress metabolic pathway. Tag 

SNPs, chosen to represent the genetic variation within each of the 12 candidate genes 

(gene and 2000 bp upstream and downstream) were selected using the Genome Variation 

Server (223), using SNPs that were polymorphic in either CEU or YRI HapMap Release 2 

(unrelated only), and with the following parameters: allele frequency cutoff 10%, 0.8 R2 

threshold minimum for variations to belong to the same cluster, 85% minimum data 

coverage for tag SNPs, 70% minimal data coverage for a variation to be potentially 

clustered with others. 

To control for potential population stratification, we selected 157 Ancestry Informative 

Markers (AIMs) to maximize (1) the difference in allele frequencies (delta) between 

European and African populations in the HapMap data (CEU versus YRI), and (2) the 

Fisher’s information criterion (FIC). AIMs were prioritized based on having the highest delta 

and FIC values in the following order: 90% European/10% African, 10% European/90% 

African, and 50% European/50% African. This allowed AIMs to represent the entire 

expected ancestral distribution of the study population. Individual estimates of percentage 
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African ancestry were calculated from 145 successfully genotyped AIMs using maximum 

likelihood estimation (MLE) methods previously described (184, 189, 224). AIMs were 

chosen to differentiate only between African and European ancestry, so we derived 

individual ancestry estimates for the two groups that summed to 1.0.  

Genotyping was done by the Mammalian Genotyping Core Facility, University of 

North Carolina at Chapel Hill, using the Illumina GoldenGate genotyping assay with Sentrix 

Array matrix and 96-well standard microtiter plates. Technicians were blinded to case/control 

status of samples, and samples from both cases and controls were tested on each plate, 

along with DNA controls and random sample duplicates. Assay intensity data and genotype 

cluster images for all SNPs were individually reviewed to identify those with inadequate 

signal intensity or indistinguishable genotype clusters. Blind duplicates of 109 samples were 

genotyped to verify reliability of genotype calls. Tests of Hardy-Weinberg equilibrium (HWE) 

were conducted in controls stratified by race, and those SNPs for which the p-value was 

<0.001 were judged to be out of HWE.  

4.3.4 Covariate measurement  

Trained nurse-interviewers conducted an in-person interview with each subject. For 

this analysis only self-reported, non-proxy data were included. Questions were asked about 

demographics (age, sex, race-ethnicity, education, income, health insurance), cigarette 

smoking, drinking of alcoholic beverages, diet, oral health, medical history, family history of 

cancer, and textual information on co-morbid conditions.  

We made an initial selection of covariates based on a priori knowledge regarding 

their potential association with survival. Covariates obtained from the interview included age, 

sex, race; duration of cigarette smoking; ever-use of non-cigarette tobacco products, ever 

exposure to environmental tobacco smoke (ETS) at work, ever exposure to ETS at home; 

whether the subject was covered by health insurance on diagnosis date, ever had a routine 

dental visit, ever had a loose permanent tooth due to disease, ever used mouthwash; family 
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history of SCCHN; household poverty as defined by federal guidelines for both income and 

number of persons supported, highest attained education level; and presence of selected 

co-morbid diseases: liver disease including hepatitis, cardiovascular and/or lung disease, 

renal disease and/or diabetes, and other cancers. Alcohol consumption, although measured, 

was not included in analyses because it may be an intermediate in the causal pathway 

between the SNPs and survival.  

Clinical information about the tumor and its treatment were abstracted from the 

subjects’ medical record. Pathology reports were reviewed by the study pathologist (WF) 

and a head and neck cancer surgeon (MW). Tumor and treatment characteristics obtained 

included TNM and summary stages, margin status, angiolymphatic invasion status, and 

cancer treatment (surgery, radiation, and/or chemotherapy).  

4.3.5 Statistical analysis 

For all-cause death, months of survival were calculated by subtracting the date of 

diagnosis from the date of death, and subjects who were still alive on 12/31/2008 were 

censored on that date. For head-and-neck-cancer-specific death (hereafter referred to as 

cancer death or cancer-specific death), months of survival were calculated by subtracting 

the date of diagnosis from the date of cancer death, while subjects who died of another 

cause were censored as of the date of death; subjects who were still alive on 12/31/2008 

were censored on that date. Kaplan-Meier survival plots, and hazard ratios for the 

independent effects of SNPs from Cox proportional hazards regression models, were 

implemented in SAS® 9.2.  

Kaplan-Meier plots and log-rank tests for all-cause and cancer-specific survival were 

constructed for the two alleles of each SNP. Kaplan-Meier plots and log-rank tests were also 

constructed for all-cause and cancer specific survival for the two races, for all head-and-

neck cancers combined as well as separately for each anatomic sub-site.  
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A dominant genetic model (at least one minor allele versus referent of no minor 

alleles) was implemented because, for many of the SNPs, the number of subjects 

homozygous for the minor allele was too small to permit estimation of precise effect 

estimates.  

Potential covariates were selected using a step-wise backwards elimination from a 

full model (which contained demographic, socioeconomic status (SES), tumor, clinical, co-

morbid diseases, oral health, and tobacco exposure variables, as listed in Table 20) and 

comparison of each reduced model to the full model. There was no collinearity between any 

of the explanatory variables except possibly between race and ancestry. If eliminating a set 

of covariates did not change the ln(HR) for any SNP by a difference of at least 0.10, those 

covariates were eliminated from subsequent models. The final Cox models for all-cause and 

cancer-specific death included the demographic, SES, tumor, clinical, co-morbid diseases, 

oral health, and tobacco exposure variables listed in Table 21 footnotes. With self-reported 

race included in the model the ancestry variable was not important to all-cause or cancer-

specific death for the genetic variants studied, so for parsimony, and because ancestry and 

race showed evidence of collinearity, ancestry was not included in final models.  

For head and neck cancer, clinicians consider local-regional-distant stage 

classification to be inadequate for predicting survival; for example, advanced nodal (N) 

stage is a worse prognosticator than advanced loci disease (229, 230). Therefore, recent 

studies of survival in head and neck cancer patients most often control for cancer stage in 

Cox regression models by including separate variables representing tumor (T), node (N), 

and metastasis (M) stages. In CHANCE, comparison of two sets of hazard ratios and 

confidence intervals from Cox regression models that included summary stage, versus 

models that included separate variables for T, N, and M stages, revealed similar estimates 

from both methods. Therefore I decided to control for stage using three separate variables. 
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The angiolymphatic invasion variable was missing in 13.5% of subjects and that, 

along with a small percent missing in other covariates, resulted in 18% of records being 

excluded from complete-case analyses. In order to include available information from all 

cases, and because the data were not missing in a monotone pattern, we used the Markov 

Chain Monte Carlo method implemented in SAS® 9.2 PROC MI and information about non-

missing values from all variables in full models to impute missing values for variables 

included in final models. This method imputes missing values for binary variables (such as 

angiolymphatic invasion) as continuous values from a normal distribution, which we did not 

round to 0 or 1 because the continuous values are less biased. Hazard ratios reported from 

those analyses are summaries of HRs from Cox regressions using 25 imputed datasets, 

calculated using SAS® 9.2 PROC MIANALYZE.  

Bonferroni correction for 64 statistical tests was used to adjust p-values to control for 

Type 1 error introduced by multiple statistical testing.  

4.4 RESULTS 

Mean survival in subjects with SCCHN was 45.5 months (Table 19). Mean/median 

survival for those with hypopharynx tumors was lower (35/30 months) than for those with 

other tumor sites (43-47/45-48 months). For subjects who died during the follow-up period, 

mean/median survival for all-cause death was 26.2/22.4 months, and for cancer-specific 

death, 22.3/18.7 months.   

Genotyping. DNA samples from 1266 CHANCE SCCHN cases of white or African-

American race were genotyped. Of these, 38 failed to genotype, and 1 was gender 

discrepant, leaving 1227 cases with genotyping data. Of the 75 tag and candidate SNPs for 

which genotyping was attempted, 8 tag SNPs and 1 candidate SNP were excluded from 

analyses due to inadequate signal intensity or inability to distinguish genotype clusters, and 

2 tag SNPs were excluded due to genotypes being out of HWE at the p<0.001 level, leaving 
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64 tag and candidate SNPs available for analyses. Genotype calls for blind duplicates were 

concordant for all SNPs. All 1227 cases had less than 4% missing SNP results. 

Descriptive analyses. Table 20 presents the frequency distributions and hazard 

ratios for the initial set of covariates within the study population. Eighty percent of the 

subjects were 50 years of age or older upon diagnosis, three-quarters were male, and 25% 

were African-American.  

For both all-cause and cancer-specific survival, more subjects with oropharynx 

cancer survived compared to those with oral cavity and hypopharynx tumors (Table 20). 

Increased survival was also associated with: lower Tumor and Node stages, absence of 

angiolymphatic invasion, having had surgical cancer treatment, absence of cardiovascular 

and lung disease, and shorter duration of smoking. In addition, having survived was also 

associated with being younger, richer, and more educated; absence of cardiovascular or 

lung disease; having had at least one routine dental visit in the last 10 years, and not having 

been exposed to environmental tobacco smoke (ETS) at home. Surprisingly, race was 

associated with all-cause death but not cancer-specific death in univariate analysis. 

Examination of univariate hazard ratios for all-cause and cancer-specific death 

calculated for each potential covariate in separate Cox regression models (without SNPs) 

(Table 20), indicates that, with only a few exceptions, the same variables that are associated 

with vital status (yes/no) are also associated with length of all-cause and cancer-specific 

survival.  

SNP hazard ratios and survival plots. Backwards elimination of potential covariates, 

from 64 full models each containing one SNP (of the 64 studied) and all covariates listed in 

Table 20, produced a Cox regression model for all-cause death containing the following 

covariates: SNP being analyzed (one per model), anatomic subsite, T stage, N stage, M 

stage, angiolymphatic invasion status, treatment (surgery, chemotherapy), co-morbid 

cardiovascular or lung disease, duration of cigarette smoking, and routine dental care. The 



 

 127 

final Cox regression model for cancer death contained all those variables, plus radiation 

treatment, co-morbid liver disease, sex, race, age category, federal poverty group, exposure 

to ETS at work, and tooth mobility due to disease. 

In unadjusted analyses, most SNPs were not associated with significantly increased 

hazard of all-cause or cancer death (Table 21). However, two SNPs in CYP2E1 – 

rs3813865 and rs8192772 – were statistically associated with increased hazard of cancer 

death after adjustment for confounders in complete-case analysis and Bonferroni correction 

of p-values, with a similar pattern noted after adjustment for confounders in multiple 

imputation analysis (Table 21). Carrying ‘C’ minor allele of rs3813865 was associated with 

more than double the hazard of cancer death compared to the ‘G’ allele. Similarly, carrying 

‘C’ allele of rs8192772 was associated with about 80% increased cancer death hazard 

compared to the ‘T’ allele. A non-significant increase in hazard of all-cause death was also 

noted for these SNPs. Separate analysis of deaths due to head and neck cancer versus 

deaths due to other causes indicates that there was no association of these SNPs with non-

cancer deaths, and the non-significant increase in hazard of all-cause death was caused by 

cancer deaths (data not shown). Figure 9 presents the Kaplan-Meier survival curves for 

these SNPs.  

There were no statistically significant differences in hazard ratios by race, because 

imprecise effect estimates precluded detailed study of this question. For example, carrying 

the CYP2E1 rs3813865 minor ‘C’ allele, present in 26% of African-Americans and 5% of 

whites, conferred an increased HR (95% CI) in all subjects of 2.1 (1.4-3.2), which was 2.8 

(1.5-5.2) in African-Americans, and 1.4 (0.7-2.9) in whites. Carrying the minor ‘C’ allele of 

rs8192772, present in 22% of African-Americans and 14% of whites, conferred similar 

increased risks in blacks and whites, with a HR (95% CI) of 1.7 (1.2-2.4) in all subjects, 2.1 

(1.1-4.3) in African-Americans, and 1.5 (1.0-2.3) in whites. Although no other SNP HRs 

achieved statistical significance in the adjusted Cox models, four additional SNPs in 
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CYP2E1 (rs7092584, rs743535, rs2249695, rs28969387), and four SNPs in the oxidative 

stress pathway (rs11623705 and rs2412065 in GPx2, rs2070424 in SOD1, and rs2842980 

in SOD2) displayed suggestive differences in allele hazards for either or both all-cause and 

cancer death from Kaplan-Meier and log-rank analysis (Table 22). 

To investigate the effect of including alcohol consumption and percent African 

ancestry variables to the final reduced models, hazard ratios were re-calculated with those 

variables included. Effect estimates changed very little, if at all (data not shown).  

 
4.5 DISCUSSION 

In this study we evaluated the association of SNPs in genes in alcohol metabolism 

and oxidative stress pathways with survival after SCCHN diagnosis. We found that the minor 

alleles of several SNPs in CYP2E1 were significantly associated with increased hazard for 

death from head and neck cancer.  

CYP2E1 is a member of the cytochrome P450 oxidative system that is involved in 

metabolism of xenobiotics, ethanol, and drugs (231). Although CYP2E1 enzymatically 

inactivates some substrates, it has also been shown to bioactivate many compounds that 

are possibly carcinogenic; for example, the tobacco carcinogen N-nitrosamines, 4-

(methylnitrosamino)-1-(3-pyridyl)-1-butanone (232). Indeed, the induction of alcohol 

metabolism, especially the CYP2E1 pathway, has been suggested as one of the key modes 

of alcohol-induced cancer (233). Laboratory studies have demonstrated that the most 

common chemotherapy drugs used to treat SCCHN – i.e., platinum-containing 

chemotherapeutic agents – increase in vivo CYP2E1 activity in mice, and in vitro CYP2E1 

activity in renal and liver cells and liver microsomes (234-237). Moreover, numerous studies 

report that increased CYP2E1 activity is cytotoxic to liver cells in vitro and in mouse models, 

and decreased activity is protective against liver damage (238). Thus it is plausible that 
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CYP2E1 polymorphisms may differentially affect CYP2E1 activity when exposed to 

platinum-containing chemotherapy drugs.  

The genes for Class I CYPs are highly conserved. Some polymorphisms have been 

found to be associated with cancer risk and survival. For example RsaI/rs2031920 and a 96-

bp insertion polymorphism have been associated with colorectal and esophageal cancer 

(232). It is thought that these effects are produced by CYP2E1 inducibility rather than 

enzyme function. One study suggested that CYP2E1 polymorphisms play a role in the 

metabolism of drugs used to treat non-Hodgkin lymphoma, with one allele of rs2070673 

associated with longer survival (239), and another reported a significant association 

between CYP2E1 rs2031920 wild-type C allele and improved survival from non-small cell 

lung cancer (240).  

Our findings provide evidence that CYP2E1 gene polymorphisms are associated with 

survival from head and neck cancer. Similar to other studies reporting that apparently non-

functional CYP2E1 SNPs influence cancer risk, the two SNPs we identified are also in 

typically non-coding regions of the genome – rs3813865 in the 5’ region near the gene, and 

rs8192772 in intron 2. Interestingly, some studies have suggested that upstream 5’ 

mutations in CYP2E1 may affect gene expression and inducibility by ethanol (241). If these 

SNPs are not causal, they may instead be in linkage disequilibrium with a causal 

polymorphism.  

Stratified analysis identified little difference in HR for the minor ‘C’ allele of 

rs3813865 in those who received chemotherapy (HR=2.0, 95% CI=1.0-3.8) and those who 

didn’t (HR=2.2, 95% CI=1.3-3.9), but there was a large difference in HR for rs8192772 for 

those who received chemotherapy (HR=1.2, 95% CI=0.7-2.0) versus those who didn’t 

(HR=2.1, 95% CI=1.4-3.2), indicating that some of the survival effects of CYP2E1 

polymorphisms may be mediated through either the differential effect of SNP alleles on the 
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metabolism of the chemotherapeutic agent and/or the differential effect of the 

chemotherapeutic agent on CYP2E1 activity.  

Although one previous study reported an association of CYP2E1 rs2031920 with 

advanced T stage SCCHN (124), ours is the first study to report the association of SNPs in 

CYP2E1 with survival after SCCHN diagnosis. Our results are compatible with the 

hypothesis that genetic predisposition affects cancer-specific survival after diagnosis, and 

that at least some of this effect may be mediated by interaction of chemotherapeutic agents 

with CYP2E1 polymorphisms. We did not, however, find any other SNPs in the alcohol 

metabolism pathway, or in the oxidative stress pathway, to be associated with survival, 

either cancer-specific or overall. We also did not have detailed information on the specific 

chemotherapeutic agents administered to our subjects; some drugs may interact with 

CYP2E1 to affect survival and others may not, which would confound our results.  

In conclusion, our study found multiple SNPs in CYP2E1 to be associated with 

cancer-specific survival. Some had different effects in those who received chemotherapy 

versus those who didn’t, while others had the same effect in both groups. Future genetic 

survival analyses of head and neck cancer should confirm the association with these SNPs 

and investigate potentially causal loci. Such research would improve understanding of 

differential treatment effects on head and neck tumor progression and metastasis.  

  



Table 19. Survival1 within study population

Variable Categories n (col %)
Vital status

Alive 744 60.6%
Dead 483 39.4%

Cause of death head and neck cancer?
No (other cause) 268 21.8%
Yes 215 17.5%
N/A (alive) 744 60.6%

n Mean Median Std dev
All subjects 1227 45.5 46.0 21.8

Oral cavity 172 43.0 44.7 22.6
Oropharynx 333 47.0 46.7 21.5
Hypopharynx 55 35.0 30.0 22.3

224 44.0 45.8 22.5
Larynx 443 47.3 47.7 20.7

Subjects who died of any cause 483 26.2 22.4 17.0
Subjects who died of head and neck cancer 215 22.3 18.7 14.1
1 Vital status as of 12/31/2008, as determined from NDI

Cases (n=1227)

Survival (months)

Oral cavity - oropharynx - hypopharynx NOS
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Table 20. Descriptives and univariate hazard ratios for non-SNP variables -- one explanatory variable per model
(complete case analysis)

Potential covariate (type) Covariate values
# (%) of total 

cases
# died/

# survived HR1 (95% CI)

 unadjusted p-
value (BOLD 

if <0.05)
# died/

# survived HR1 (95% CI)

 unadjusted p-
value (BOLD 

if <0.05)

DEMOGRAPHICS
Age category (ordinal) 20-49 years 239 (19.5%) 80/159 1.08 (1.03-1.13) 0.002 40/199 1.06 (0.99-1.14) 0.097

50-54 years 189 (15.4%) 75/114 30/159
55-59 years 207 (16.9%) 70/137 33/174
60-64 years 205 (16.7%) 79/126 36/169
65-69 years 168 (13.7%) 78/90 29/139
70-74 years 135 (11.0%) 58/77 26/109
75-80 years 84 (6.8%) 43/41 21/63

Sex (categorical) Female 289 (23.6%) 111/178 1.00 (ref) 57/232 1.00 (ref)
Male 938 (76.4%) 372/566 1.05 (0.85-1.30) 0.644 158/780 0.87 (0.64-1.18) 0.363

Race (categorical) White/European-American 922 (75.1%) 339/583 1.00 (ref) 160/762 1.00 (ref)
Black/African-American 305 (24.9%) 144/161 1.41 (1.16-1.72) 0.000 55/250 1.13 (0.83-1.54) 0.427

1227 1.63 (1.25-2.12) 0.000 1.18 (0.78-1.79) 0.435

TUMOR/TREATMENT CHARACTERISTICS
Anatomic subsite (categorical) oral cavity (referent) 172 (14.0%) 83/89 1.00 (ref) 38/134 1.00 (ref)

hypopharynx 55 (4.5%) 35/20 1.59 (1.07-2.36) 0.021 15/40 1.44 (0.79-2.62) 0.231
larynx 443 (36.1%) 169/274 0.71 (0.55-0.93) 0.012 70/373 0.65 (0.44-0.97) 0.033
oral cavity-oropharynx-
hypopharynx NOS 224 (18.3%) 83/141 0.75 (0.55-1.02) 0.065 41/183 0.81 (0.52-1.26) 0.359

oropharynx 333 (27.1%) 113/220 0.64 (0.48-0.85) 0.002 51/282 0.64 (0.42-0.97) 0.037
T stage (ordinal) T1, T1a, T1b 392 (31.9%) 105/287 1.43 (1.32-1.55) 0.000 31/361 1.64 (1.45-1.85) 0.000

T2 409 (33.3%) 151/258 69/340
T3 218 (17.8%) 108/110 53/165
T4, T4a, T4b 208 (17.0%) 119/89 62/146

N stage (ordinal) N0 657 (53.5%) 223/434 1.31 (1.20-1.43) 0.000 84/573 1.50 (1.31-1.71) 0.000
N1 156 (12.7%) 59/97 31/125
N2, N2a, N2b, N2c 366 (29.8%) 170/196 79/287
N3 48 (3.9%) 31/17 21/27

M stage (categorical) M0 1219 (99.3%) 476/743 1.00 (ref) 210/1009 1.00 (ref)

M1 8 (0.7%) 7/1 7.63 (3.60-16.17) 0.000 5/3 10.79 (4.41-26.40) 0.000
Margin status (categorical) Negative 396 (32.3%) 151/245 1.00 (ref) 64/332 1.00 (ref)

Positive 691 (56.3%) 284/407 1.13 (0.93-1.38) 0.225 128/563 1.19 (0.88-1.60) 0.263
Missing 140 (11.4%) 48/92 23/117

Angiolymphatic invasion Absent 954 (77.8%) 371/583 1.00 (ref) 162/792 1.00 (ref)
(categorical) Present 107 (8.7%) 52/55 1.47 (1.10-1.96) 0.010 26/81 1.64 (1.08-2.48) 0.020

Missing 166 (13.5%) 60/106 27/139
Surgical treatment (categorical) No 537 (43.8%) 243/294 1.00 (ref) 114/423 1.00 (ref)

Yes 690 (56.2%) 240/450 0.69 (0.58-0.83) 0.000 101/589 0.63 (0.48-0.83) 0.001
Radiation treatment (categorical) No 282 (23.0%) 92/190 1.00 (ref) 36/246 1.00 (ref)

Yes 945 (77.0%) 391/554 1.36 (1.08-1.71) 0.008 179/766 1.57 (1.10-2.24) 0.014
Chemotherapy treatment No 754 (61.5%) 287/467 1.00 (ref) 125/629 1.00 (ref)
(categorical) Yes 473 (38.5%) 196/277 1.17 (0.98-1.41) 0.088 90/383 1.22 (0.93-1.60) 0.157
COMORBID DISEASES
Comorbid liver disease and/or No 1113 (90.7%) 420/693 1.00 (ref) 187/926 1.00 (ref)
hepatitis (categorical) Yes 105 (8.6%) 57/48 1.63 (1.23-2.15) 0.001 24/81 1.49 (0.97-2.27) 0.068

Missing 9 (0.7%) 6/3 4/5
Comorbid cardiovascular and/or No 887 (72.3%) 302/585 1.00 (ref) 145/742 1.00 (ref)
lung disease (categorical) Yes 336 (27.4%) 158/178 1.45 (1.20-1.74) 0.000 68/268 1.29 (0.97-1.72) 0.085

Missing 4 (0.3%) 2/2 2/2
Comorbid renal disease and/or No 1053 (85.8%) 403/650 1.00 (ref) 186/867 1.00 (ref)
diabetes (categorical) Yes 167 (13.6%) 74/93 1.23 (0.96-1.58) 0.098 26/141 0.94 (0.62-1.42) 0.772

Missing 7 (0.6%) 6/1 3/4
Comorbid disease: other cancer No 1019 (83.0%) 395/624 1.00 (ref) 177/842 1.00 (ref)
(categorical) Yes 204 (16.6%) 85/119 1.08 (0.85-1.37) 0.521 35/169 0.98 (0.68-1.41) 0.918

Missing 4 (0.3%) 3/1 3/1
# comorbid conditions (continuous) (mean # in those who died) 1227 1.21 (1.11-1.32) 0.000 1.13 (0.99-1.28) 0.074
OTHER POTENTIAL CONFOUNDERS

1227 1.02 (1.02-1.03) 0.000 1.02 (1.01-1.03) 0.000

1.36 (1.23-1.52) 0.000 1.24 (1.07-1.44) 0.005

Federal poverty guideline At or above 816 (66.5%) 271/545 1.00 (ref) 126/690 1.00 (ref)
(categorical) Below 356 (29.0%) 188/168 1.87 (1.55-2.25) 0.000 76/280 1.59 (1.19-2.11) 0.002

Missing 55 (4.5%) 24/31 13/42
Routine dental visit in last 10 Yes 781 (63.7%) 240/541 1.00 (ref) 118/663 1.00 (ref)
years (categorical) No 438 (35.7%) 238/200 2.06 (1.72-2.46) 0.000 94/344 1.63 (1.24-2.14) 0.000

Missing 8 (0.7%) 5/3 3/5
Environmental tobacco smoke No 399 (32.5%) 128/271 1.00 (ref) 59/340 1.00 (ref)
exposure at home (categorical) Yes 827 (67.4%) 354/473 1.38 (1.13-1.69) 0.002 155/672 1.31 (0.97-1.76) 0.081

Missing 1 (0.1%) 1/0 1/0
Environmental tobacco smoke No 316 (25.8%) 134/182 1.00 (ref) 58/258 1.00 (ref)
exposure at work (categorical) Yes 909 (74.1%) 348/561 0.87 (0.71-1.06) 0.154 155/754 0.90 (0.66-1.21) 0.478

Missing 2 (0.2%) 1/1 1/1

Proportion African ancestry (continuous) (mean % in those who 
died)

Smoking duration, rounded to nearest whole year (continuous) 
(mean # years in those who died)

DEATH FROM ALL CAUSES 
(n=483)

DEATH FROM HEAD & NECK 
CANCER
(n=215)

Alcoholic beverages, lifetime consumption of ethanol in ml, 
never-users and tertiles of drinking (ordinal)
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Table 20. Descriptives and univariate hazard ratios for non-SNP variables -- one explanatory variable per model
(complete case analysis)

Potential covariate (type) Covariate values
# (%) of total 

cases
# died/

# survived HR1 (95% CI)

 unadjusted p-
value (BOLD 

if <0.05)
# died/

# survived HR1 (95% CI)

 unadjusted p-
value (BOLD 

if <0.05)

DEATH FROM ALL CAUSES 
(n=483)

DEATH FROM HEAD & NECK 
CANCER
(n=215)

Ever used non-cigarette tobacco No 754 (61.5%) 292/462
1.00 (ref)

129/625
1.00 (ref)

product (categorical) Yes 473 (38.5%) 191/282 1.06 (0.88-1.27) 0.552 86/387 1.08 (0.82-1.42) 0.590
Had health insurance on Yes 1068 (87.0%) 403/665 1.00 (ref) 177/891 1.00 (ref)
reference date (categorical) No 154 (12.6%) 76/78 1.50 (1.17-1.92) 0.001 36/118 1.58 (1.11-2.27) 0.012

Missing 5 (0.4%) 1/1 2/3
Highest education level attained High school or more 828 (67.5%) 286/542 1.00 (ref) 133/695 1.00 (ref)
(categorical) Less than high school 399 (32.5%) 197/202 1.57 (1.31-1.89) 0.000 82/317 1.39 (1.06-1.83) 0.019
Ever had loose permanent tooth No 765 (62.3%) 276/489 1.00 (ref) 138/627 1.00 (ref)
due to disease (categorical) Yes 455 (37.1%) 202/253 1.29 (1.08-1.55) 0.005 74/381 0.93 (0.70-1.24) 0.638

Missing 7 (0.6%) 5/2 3/4
Ever regularly used mouthwash No 502 (40.9%) 191/311 1.00 (ref) 82/420 1.00 (ref)
(categorical) Yes 719 (58.6%) 287/432 1.06 (0.89-1.28) 0.501 131/588 1.14 (0.86-1.50) 0.369

Missing 6 (0.5%) 5/1 2/4
Family history of H&N cancer in No 1206 (98.3%) 474/732 1.00 (ref) 210/996 1.00 (ref)
1st degree relatives (categorical) Yes 21 (1.7%) 9/12 1.13 (0.58-2.18) 0.722 5/16 1.39 (0.57-3.37) 0.466

1 For categorical variables, HRs are in comparison to referent category. For continuous and ordinal variables, HRs are per unit of measurement and are 
cumulative (e.g. HR per year of age, HR per each additional comorbid disease, HR per each higher stage category)
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Table 22. Hazard differences between alleles of selected SNPs

gene snp

major/
minor 
allele

 Adjusted HR1 

(95% CI) Unadjusted

Bonferroni-
corrected 
(64 tests)

 Adjusted HR2 

(95% CI) Unadjusted

Bonferroni-
corrected 
(64 tests)

CYP2E1 rs3813865 G/C 1.47 (1.12-1.92) 0.002 0.099 2.09 (1.38-3.18) 0.008 0.505
rs8192772 T/C 1.40 (1.12-1.76) 0.002 0.146 1.71 (1.23-2.37) 0.004 0.276
rs7092584 C/T 1.26 (1.02-1.55) 0.009 0.600 1.37 (1.01-1.86) 0.042 1.000
rs743535 C/T 1.23 (1.00-1.52) 0.006 0.390 1.55 (1.13-2.11) 0.005 0.309
rs2249695 C/T 1.07 (0.89-1.28) 0.002 0.159 1.33 (0.98-1.81) 0.021 1.000
rs28969387 A/T 1.12 (0.66-1.89) 0.031 1.000 1.43 (0.67-3.06) 0.035 1.000

GPX2 rs11623705 G/T 0.98 (0.77-1.24) 0.681 1.000 1.41 (1.02-1.97) 0.030 1.000
rs2412065 G/C 1.04 (0.87-1.25) 0.044 1.000 1.27 (0.96-1.69) 0.025 1.000

SOD1 rs2070424 A/G 1.12 (0.89-1.40) 0.036 1.000 1.31 (0.93-1.82) 0.040 1.000
SOD2 rs2842980 A/T 1.16 (0.97-1.39) 0.040 1.000 1.47 (1.11-1.94) 0.005 0.331

3 Kaplan-Meier log-rank test for differences between the survival curves for the two alleles of each SNP

2 Cox models used to calculate hazard ratios for cancer-specific death included snp coded for dominant model (any minor allele versus 
homozygous major allele) and all covariates listed above for all-cause death models, plus the following additional variables: radiation 
treatment, presence of comorbid liver disease or hepatitis, sex, race, age, federal poverty level, ever exposure to environmental tobacco 
smoke at work, ever loss of a tooth due to disease. 25 datasets were imputed, and results were summarized as a single HR.

1 Cox models used to calculate hazard ratios for all-cause death included snp coded for dominant model (any minor allele versus 
homozygous major allele), anatomical site, T stage, N stage, M stage, angiolymphatic invasion status, treatment (surgery, chemotherapy), 
presence of comorbid cardiovascular or lung disease, duration of smoking cigarettes (years), reception of at least one routine dental visit in 
past 10 years. 25 datasets were imputed, and results were summarized as a single HR.

ALL-CAUSE DEATH CANCER DEATH
p-values from Kaplan-
Meier log-rank tests3

p-values from Kaplan-
Meier log-rank tests3
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Figure 9. Kaplan-Meier survival plots for CYP2E1 rs3813865 and rs8192772 alleles 

 



 

 

 

 

CHAPTER 5   
 

SUMMARY AND CONCLUSIONS 

5.1 SPECIFIC AIMS 

This dissertation research investigating the association of genetic variation in the 

alcohol and oxidative stress metabolism pathways with head and neck cancer accomplished 

the following aims: to measure (1) main effects of genetic variation on risk of developing 

cancer; (2) interaction of genetic variations with ethanol consumption from alcoholic 

beverages; and (3) main effects of genetic variation on survival after cancer diagnosis. 

5.2 STUDY POPULATION AND DATA COLLECTION 

To accomplish these aims, data from a single study population, the Carolina Head 

and Neck Cancer Epidemiology study (CHANCE), were analyzed. CHANCE was a large 

population-based case-control study of squamous cell carcinoma of the head and neck 

conducted in North Carolina (United States) from 2002-2006. It included both white and 

African-American cases and controls, with controls being frequency matched to cases on 

sex, race, and age category. Rapid ascertainment techniques were used to identify cases in 

an effort to capture cases while they were still capable of personally answering the 

questionnaire and providing a biological sample.   

Nurse-administered questionnaires were used to gather self-report information. This 

study analyzed questionnaire data regarding demographics (sex, age, and race); duration, 

frequency, size, and type of alcoholic beverages consumed; duration and frequency of 

cigarette smoking; exposure to environmental tobacco smoke and non-cigarette tobacco 

products; socioeconomic variables of education, income, and health insurance; oral health; 

co-morbid disease; and family history of cancer.  
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Many previous case-control studies measured odds ratios for functional or presumed 

functional non-synonymous polymorphisms in candidate genes. Because synonymous 

SNPs and variations in introns and up- and down-stream regions can also affect enzyme 

function, I wanted to study greater genetic variation across each candidate gene (six genes 

in each pathway) rather than only non-synonymous SNPs. Therefore, for each gene, tag 

SNPs were selected that were in high linkage disequilibrium with other SNPs in the same 

gene, including an additional 2000 bp both up- and down-stream, with the goal of capturing 

80% of the genetic variation within and near each gene. This would allow us to also examine 

the effect of haplotypes on cancer risk. In addition to tag SNPs, six candidate SNPs 

examined in previous studies of head and neck or other cancers were also genotyped. DNA 

extracted from blood and buccal samples was genotyped for each SNP; the laboratory 

successfully genotyped 64 of 75 SNPs (85%), including 59 tag and 5 candidate SNPs.  

Because the study population included both whites and African-Americans, it was 

possible that population stratification could bias effect measure estimates. Self-reported 

race, which does not take admixture into account, might have been inadequate for purposes 

of controlling for population stratification in regression analyses. Therefore CHANCE 

investigators also genotyped ancestry informative markers (AIMs, 157 SNPs) that were 

selected to be highly divergent between African and European-American HapMap 

populations (YRI and CEU, respectively) for purposes of constructing an estimate of 

proportion of African ancestry. The laboratory successfully genotyped 145 of 157 AIMs 

(92%).  

For Aim 3, CHANCE physician investigators abstracted clinical information from 

subjects’ medical records about tumor location, stage, treatment, and other prognostic 

factors such as presence of angiolymphatic invasion and surgical margin status. Vital status 

and date and cause of death were obtained from linkage with the National Death Index as of 

12/31/2008. 
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5.3 FINDINGS 

5.3.1 Aim 1 

The minor allele of two SNPs was associated with altered SCCHN risk: the ‘A’ allele 

of ADH1B rs1229984 was associated with decreased odds and the ‘C’ allele of ALDH2 

rs2238151 with increased odds. In addition, minor alleles of three SNPs were associated 

with increased cancer odds in anatomic sub-sites: the ‘C’ allele of ADH1B rs17028834 with 

laryngeal cancer, the ‘A’ allele of SOD2 rs4342445 with oral cavity tumors, and the ‘T’ allele 

of SOD2 rs5746134 with hypopharyngeal cancer. Previous studies, including a recent 

genome-wide association study spearheaded by IARC, have also found decreased risk 

associated with the A allele of ADH1B rs1229984, but have not reported the associations I 

found between ADH1B rs17028834 and laryngeal cancer, or between ALDH2 rs2238151 

and SCCHN. No other studies have examined SNPs in SOD2 in regard to risk of SCCHN or 

any of its anatomic sub-sites. 

Most SNPs studied (59 of 64, or 92%) were not associated with altered cancer risk. 

No SNPs in ADH1C, ADH4, ADH7, CYP2E1, CAT, GPx1, GPx2, GPx4, and SOD1 were 

associated with risk of developing head and neck cancer. Though other studies have 

investigated SNPs in ADH1C, ADH4, ADH7, and CYP2E1, this is the first study to 

investigate the association of CAT, GPx1, GPx2, GPX4, and SOD1 with SCCHN.  

Because alcohol may be in the causal pathway between SNPs in these genes and 

SCCHN, I did not adjust for alcohol consumption when estimating odds ratios for SNPs. 

Sex, race, and age category were included in conditional logistic regression models 

because controls were frequency matched to cases on these variables. Although I included 

13 potential covariates in initial models, including measurements of tobacco exposure, 

socioeconomic status, health history, and percent African ancestry, the only variable that 

materially affected odds ratios was years of cigarette smoking. The fact that adjusting for 
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African ancestry did not change effect estimates provides evidence that self-reported race 

sufficiently controlled for population stratification in the CHANCE study population.  

5.3.2 Aim 2 

Many studies have investigated interaction between alcohol metabolism genes and 

alcoholic beverage consumption. The strongest associations were found in Asian 

populations, in which the highly prevalent null (non-functional) and 10% functional 

genotypes of ALDH2 are markedly associated with increased SCCHN risk in drinkers. 

Although the prevalence of the null ALDH2 genotype is very low (<5%) or non-existent in 

non-Asian populations, including CHANCE, studies in other populations have reported that a 

common polymorphism of another gene, ADH1B, in the alcohol metabolism pathway is 

associated with risk. The “slow” form of ADH1B, which is about 40 times slower at 

metabolizing ethanol than the fast form – is associated with reduced risk of SCCHN overall, 

and synergistically interacts with lifetime alcohol consumption. Conversely, the majority of 

studies of the fast versus slow form of ADH1C reported no main effect on SCCHN 

incidence, but some evidence of increased risk in drinkers. It is important to note that the 

ADH1C fast form is only 2 ½ times faster at processing ethanol than the slow form, which 

may explain why fewer effects on cancer incidence are noted for ADH1C compared to 

ADH1B. Although my findings were consistent with the literature for the slow form of ADH1B 

being associated with reduced SCCHN risk, in contrast to many other studies I found no 

evidence of its interaction with alcohol consumption. Consistent with most studies of the 

ADH1C fast allele, I found no main effect or interaction with alcohol for that polymorphism.   

This study found four tag SNPs in alcohol metabolism genes that showed evidence 

of additive interaction with the level of alcohol consumption, in the entire population and 

suggestively among whites and African-Americans separately: ADH1B rs1159918, ADH7 

rs1154460, ALDH2 rs2238151, and CYP2E1 rs2249695. These SNPs are different from 

those reported by previous studies of alcohol interaction and SCCHN incidence. The body of 
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literature supports the hypothesis that polymorphisms of ADH and ALDH genes produce 

enzymes that interact differentially with alcohol to affect SCCHN incidence, so it is not 

surprising that my tag SNPs, due to linkage disequilibrium with causal alleles, would also 

pick up signals of genetic interaction with alcohol. Evidence of CYP2E1 interaction with 

alcohol had been less compelling. However, a 2011 linkage study reported that, consistent 

with my finding, rs2249695 is associated with “tipsiness” and is a predictor of alcoholism 

risk.   

This is the only study to report having examined interactions of alcohol with SNPs in 

oxidative stress genes. I found no evidence of interaction for these genes and alcohol. 

Alcohol metabolism genes interact with alcohol by causing direct DNA damage via 

acetaldehyde and ROS, as well as discomfort or tipsiness mechanisms that influence the 

individual’s level of drinking. Discomfort mechanisms are unlikely to occur due to the action 

of oxidative stress genes, which are not known to affect how individuals feel upon drinking, 

so the effects of these genes on cancer incidence are likely due to direct DNA damage. 

5.3.3 Aim 3 

With the exception of one study examining a single SNP in SOD2, this is the only 

study to have examined survival associations of polymorphisms in the alcohol metabolism 

and oxidative stress pathways. 

Carrying the C allele for either of two SNPs in CYP2E1 is associated with increased 

hazard of head-and-neck-cancer-specific death in both adjusted and unadjusted analyses. 

Four additional SNPs in CYP2E1 and four in GPx1, SOD1, and SOD2 displayed suggestive 

differences in allele hazards for all-cause and/or cancer death. No consistent associations 

with survival were found for SNPs in ADH1B, ADH1C, ADH4, ADH7, ALDH2, GPx2, GPx4, 

and CAT.  
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Adjusting for self-reported race was sufficient to control for confounding by race in 

Cox proportional hazards models, and including percent African ancestry in models did not 

change hazard ratio estimates.  

Alcohol was excluded from main effects models because it may be in the causal 

pathway between SNPs and survival. In addition to the potential confounders tested for 

inclusion in the logistic regression models for odds of developing cancer, initial Cox models 

for survival included variables representing presence of selected co-morbid diseases (liver, 

cardiovascular/lung, renal/diabetes, other cancers), TNM stage, margin status, presence of 

angiolymphatic invasion, and treatment (surgery, radiation, and/or chemotherapy). As 

expected, both overall and cancer-specific survival were affected by smoking and many 

other factors, including TNM stage, angiolymphatic invasion, surgical cancer treatment, and 

co-morbid cardiovascular/lung disease, although margin status, believed to be clinically 

important, was not associated with survival in either univariate or adjusted analyses. 

Socioeconomic, health, and other variables that were not important to cancer incidence 

became important for survival after diagnosis, including income, education level, co-morbid 

cardiovascular/lung disease, exposure to environmental tobacco smoke at home, and 

whether or not the subject had at least one routine dental visit in the past 10 years. I find it 

very interesting that having had a routine dental visit is strongly associated with improved 

all-cause and cancer-specific survival. Is this a marker for having received preventive health 

care in general, or for oral health as an independent factor influencing survival? Having had 

routine dental care is partially correlated (Pearson’s correlation coefficients ranging from 

0.14 to 0.35) with race, lifetime alcohol drinking, duration of cigarette smoking, poverty level, 

highest attained education, having had tooth mobility due to disease,  and whether the 

person had health insurance at the time of diagnosis. It is therefore difficult to rule out 

residual confounding from socioeconomic factors as the source of oral health care’s 

importance in regression models.  
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Because CYP2E1 metabolizes the platinum-containing chemotherapeutic agents 

often used to treat SCCHN, and its metabolism of alcohol and xenobiotics is associated with 

liver damage and cancer in animal models, it is biologically plausible that polymorphisms in 

this gene might affect enzyme function, treatment efficacy, and thus survival. The two 

CYP2E1 SNPs most associated with cancer-specific survival in this study are located in the 

5’ region near the gene and in intron 2, three suggestively associated SNPs were in introns, 

and only one suggestively associated SNP was a missense variant. Although it is possible 

that some of the SNPs I investigated were functional, it is more likely that they are simply 

markers of other variants that are the true causal polymorphisms.  

Suggestive survival effects of SNPs in GPx1, SOD1 and SOD2 need to be 

investigated in other and larger studies, as my findings are not statistically significant.  

5.3.4 Across specific aims 

Polymorphisms in ADH1B, ALDH2, CYP2E1, and SOD2 were found to have multiple 

associations with incidence or survival, across more than one specific aim. These 

associations are summarized below.  

Carriers of the minor allele of two SNPs in ADH1B were found to have higher odds of 

developing SCCHN and laryngeal tumors (Aim 1), and a third SNP in this gene interacted 

with ethanol consumption to increase risk in heavy drinkers (Aim 2). However, no SNPs in 

ADH1B were associated with survival.  

Carriers of the minor allele of rs2238151 in ALDH2 had higher odds of developing 

SCCHN cancer, primarily due to increased risk of laryngeal tumors (Aim 1), and experienced 

increased risk if they were heavy drinkers (Aim 2). But this SNP had no effect on survival.   

CYP2E1, with its dual roles in both alcohol and drug metabolism, had a haplotype 

that was associated with reduced odds of developing SCCHN (Aim 1) and that included a 

SNP which interacted with alcohol to increase risk in heavier drinkers carrying the minor 



 

 145 

allele (Aim 2). The minor alleles of several CYP2E1 SNPs were also associated with worse 

cancer-specific survival (Aim 3). 

SOD2 contains two SNPs for which the minor allele was suggestively associated 

with higher odds of oral cavity and hypopharyngeal (Aim 1), and one SNP whose minor 

allele was associated with increased hazard of death (Aim 3). 

5.4 STRENGTHS AND LIMITATIONS 

5.4.1 For all study aims 

CHANCE is one of the largest studies of head and neck cancer conducted in the 

United States. Its population is drawn from a state with a large African-American population, 

and as a result it has the largest number of African-Americans ever enrolled in a molecular 

epidemiologic study of head and neck cancer. Even though population ancestry was 

determined to be unnecessary in regression models once self-reported race was included, it 

is an advantage of this study to be able to confirm that residual confounding due to ancestry 

admixture is probably not confounding the results.  

Because I studied mostly tag SNPs, I was able to study polymorphism associations 

with cancer with greater coverage across the gene. However, because they are selected to 

capture information about other SNPs with a minor allele frequency of at least 10%, they are 

likely to miss rare variants. This study was limited by the fact that 11 of the 75 tag SNPs 

were not successfully genotyped, thereby preventing effect estimation for the gene sections 

tagged by the missing SNPs. Genotyping failure most affected coverage in ADH1C (3 of 9 

SNPs failed), ADH1B (3 of 11), and CYP2E1 (3 of 13), and to a lesser extent ADH4 (1 of 8) 

and SOD2 (1 of 6), but did not affect coverage of the ADH7, ALDH2, SOD1, GPx family, and 

CAT genes. The laboratory was not able to genotype one of the six candidate (non-tag) 

SNPs, a missense SNP in ADH1C (rs698), because of its low Illumina design score, so I 

was not able to compare its effects in the CHANCE population to those reported in the 

literature.  
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There were a number of cases who died very soon after qualifying for enrollment in 

CHANCE, and who thereby neither personally responded to the questionnaire nor provided 

a biological sample. These cases were excluded from this study. If incidence and survival 

effects due to SNP polymorphisms are more pronounced in subjects with rapidly-fatal 

disease, this selection bias would tend to skew effect estimates toward the null. However, I 

found no evidence of SNP associations with T, N, or summary stage in our data. CHANCE 

also gathered no information on infection with carcinogenic types of human papillomavirus, 

an important cause of SCCHN especially in the oropharynx. This could alter effect estimates 

in similar fashion to what would happen if cigarette smoking, a significant cause of SCCHN, 

were excluded from models.  

As with all questionnaire-based studies, CHANCE was dependent on accuracy of 

subject recall for socially sensitive questionnaire variables such as smoking and drinking 

habits. Researchers investigating self-report of addictive behaviors have concluded that its 

validity varies with the sensitivity of the information desired, methodologic sophistication of 

the questionnaire and of the interviewer (including task characteristics), and personal 

characteristics of the subject, with the latter believed to be of relatively less importance than 

other factors (214, 215), The literature suggests that in the U.S., African-Americans under-

report all types of substance use, but these findings may not be generalizable (212, 242). It 

may be related to reduced trust, some of which is ameliorated by in-person interviews 

versus a more distance telephone interview (243). It is also believed that recall error is 

minimized when the recall period is sufficiently long (216). Many studies in a variety of 

populations have compared self-report smoking behavior with serum cotinine levels, with the 

consensus that self-reported smoking levels are highly correlated with biological 

assessment. CHANCE used trained nurse interviewers to ask, in person, a standardized 

script of questions about legal behaviors (smoking and drinking) over a long period of time 

(lifetime). For this reason and because we detected alcohol and tobacco associations with 
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SCCHN similar to those observed in other studies, I believe CHANCE measures of smoking 

and drinking are acceptable for my broad classifications of tertiles of lifetime alcoholic 

beverage consumption as a primary exposure, and lifetime duration of smoking as a 

confounder.  

Fruit and vegetable intake, in servings per day, was also measured by questionnaire. 

In addition to subjects who were truly missing this information, many cases reported such 

high caloric intake that they were considered outliers according to accepted nutrition 

research practice. Their fruit and vegetable intake variables were also set to missing. As a 

result, due to truly missing data and suspect outlier data, I felt that the CHANCE fruit and 

vegetable intake variables were missing in too many subjects, and not-at-random, such that 

including them in regression models would bias results in unpredictable ways. Therefore I 

did not include them in my logistic regression models. Because the oxidative stress 

metabolism genes I studied may well interact with the anti-oxidants in fruits and vegetables 

consumed, I may have residual confounding and biased effect estimates as a result.  

5.4.2 Aim 1 

The number of subjects was sufficient to detect SCCHN incidence odds ratios 

greater than about 1.3. I had sufficient power to detect larger associations with anatomic 

sub-site tumors, except for hypharyngeal tumors due to the small number of cases. Power to 

detect main effects in African-American participants was insufficient to detect main effects 

except when the prevalence of the minor allele was greater than 20% (which was true for 

78% of this study’s SNPs in African-Americans) and the OR was greater than 1.8; i.e. two-

fold effects or greater.  

5.4.3 Aim 2 

The wording of alcohol consumption questions on the questionnaire precluded 

construction of a drinking frequency variable that integrated all three beverage types. 

Instead, I used a lifetime consumption variable that combined information on both frequency 
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and duration of alcoholic beverage consumption. Based on results from numerous studies, 

IARC has concluded that drinking frequency is highly associated with SCCHN incidence 

while duration is only weakly associated; these conclusions were also borne out in CHANCE 

data. Beer and liquor accounted for 88% of lifetime volume of ethanol consumed by 

CHANCE subjects, and correlations between each beverage’s frequency variable and 

lifetime ethanol intake in milliliters (summed over all types) are relatively high (0.81 for liquor, 

0.64 for beer). Correlation between wine drinking frequency and lifetime ethanol intake is 

lower (0.53) but wine represented only 12% of average lifetime ethanol intake, making this a 

proportionally small source of error. Thus the metric available in CHANCE – overall lifetime 

ethanol intake – is highly correlated with the preferred metric of drink frequency.  

This study had low power to detect additive interactions except when the additive 

effect was quite large. Therefore I did not examine gene-gene interactions and may well 

have missed gene-alcohol interactions of moderate effect size. Due to even smaller 

numbers of cases within each of the five sub-sites, I could not assess interaction between 

SNPs and alcohol intake in relation to anatomic site of tumor.  

5.4.4 Aim 3 

CHANCE collected excellent information for matching participant records to the 

National Death Index (NDI), including first and last names, middle initial, social security 

number, and date of birth. The result was that about three-quarters of identified deaths 

matched perfectly with a single NDI record. By the end of 2008, 39.4% of cases had died of 

any cause and 17.5% had died of head and neck cancer. For polymorphisms present in at 

least 10% of subjects – which includes 36 of 45 SNPs studied in the alcohol metabolism 

pathway (including 6 of 10 CYP2E1 SNPs) and 16 of 19 SNPS studied in the oxidative 

stress pathway – I had at least 80% power to detect hazard ratios of 1.3 or greater for all-

cause death and 1.5 or greater for cancer-specific death.  
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A limitation of my study was that CHANCE collected no data on recurrence (relapse-

free survival) or second primary tumors, or on use of alcohol and tobacco after diagnosis. I 

found that drinking and smoking prior to diagnosis affect all-cause but not head-and-neck-

cancer-specific survival (244), and there is extensive literature associating continued 

smoking post-diagnosis with worse all-cause survival and increased number of second 

primary head and neck tumors. In contrast, there are very few studies examining whether 

continuing to drink after diagnosis affects all-cause and cancer-specific survival. Existing 

studies are small and examined all-cause survival (not head-and-neck-cancer-specific 

survival) or occurrence of second primary tumors, with conflicting results (245). In any case, 

lacking data on post-diagnosis drinking and smoking behavior, I was not able to address the 

question of whether quitting smoking or drinking improves cancer-specific survival.  

I had information on whether the subject received chemotherapy as treatment for 

their cancer, but not on the specific type of agent used. CYP2E1 is known to bio-activate 

platinum-containing agents, which are commonly used to treat head and neck cancers, but 

there are differences in CYP2E1 metabolism for different platinum-containing agents, and I 

could not investigate those.  

5.5  IMPLICATIONS AND CONCLUSIONS 

This study replicated, in a study population of mixed white and African-American 

ancestry, previous studies’ findings for Asian, European, Indian, and Latin American 

populations that some polymorphisms in the alcohol metabolism pathway interact with 

alcohol consumption to affect risk of head and neck cancer. This is the first study to report 

associations of polymorphisms in oxidative stress genes with SCCHN incidence, and that 

polymorphisms in CYP2E1 are associated with cancer-specific survival. Some associations 

may be causal, but most are probably due to linkage disequilibrium between the measured 

SNP and the causal polymorphism.  
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Elucidation of carcinogenesis pathways for head and neck cancers is not 

immediately useful for public health purposes, but may eventually lead to specific preventive 

measures and recommendations, and more effective ways of treating cancer patients. In 

particular, studies designed to explore possible genetic reasons for high incidence rates of 

laryngeal cancer in African-American men could result in targeted intervention in that 

population.   

Alcohol metabolism genes should continue to be studied in relation to head and neck 

cancer, in an effort to pinpoint the functional or regulatory polymorphisms that are 

responsible for observed effects on cancer incidence. Questions asking about alcohol 

consumption should be worded so that summary measures of drinking frequency (including 

all beverage types) can be computed. Measuring gene-alcohol interaction and effects of 

rarer variants will require the statistical power of large consortia and pooling studies such as 

INHANCE, which combine subjects from multiple smaller studies using similar design and 

protocols. This will eventually involve gene sequencing as well as enzyme expression and 

functionality studies, and will facilitate understanding of how these mechanisms influence 

carcinogenesis.  

As part of these investigations, CYP2E1 variation and its interaction with 

chemotherapy treatments should be investigated for effects on cancer-specific survival, to 

replicate my findings and to pinpoint the responsible polymorphisms. This line of 

investigation may eventually lead to improved treatments. Also, in light of the associations 

this study found in oxidative stress genes, I suggest that future genetic studies on SCCHN 

and other cancers include polymorphisms in these genes, to replicate my findings, to 

explore possible interaction with fruit and vegetable intake, and to further illuminate 

mechanisms of carcinogenesis.  

Finally, future studies of head and neck cancer should measure post-diagnosis 

drinking behavior, updated at specified intervals, as well as timing of recurrence and second 
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primary tumors, in order to address the public health question of whether reducing or 

eliminating drinking after diagnosis will improve all-cause and cancer-specific survival.  
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Appendix A 
 

List of 157 SNPs genotyped as ancestry informative markers (AIMs)  
by the method of C. Tian et al., 2006 (alphabetically ordered) 

 
rs100280571  
rs10041728  
rs10056388  
rs1011643  
rs10124991  
rs10195705  
rs10202705  
rs10254729  
rs10255169  
rs1043809  
rs10806263  
rs10842753  
rs109083121  
rs10952147  
rs109626121 
rs11000419  
rs11150219  
rs1117382  
rs11223503  
rs11252171  
rs11264110  
rs11607932  
rs11652805  
rs11901793  
rs12094678  
rs12129648  
rs1256197  
rs1257010  
rs12594483  
rs12612040  
rs12640848  
rs12676654  
rs12692701  

rs12900262  
rs12900552  
rs12926237  
rs12945601  
rs12997060  
rs1303629  
rs130803531  
rs13169284  
rs13173738  
rs13178470  
rs13261248  
rs13318432  
rs1335826  
rs1372115  
rs1372894  
rs1380014  
rs1412521  
rs1415723  
rs14266541  
rs1462309  
rs1470608  
rs1477921  
rs1490728  
rs1508061  
rs1554091  
rs16891982  
rs17049450  
rs17261772  
rs17269594  
rs1733731  
rs17520733  
rs1862819  
rs1870571  

rs18851671  
rs1911999  
rs1917028  
rs1982235  
rs1991818  
rs2075902  
rs2184033  
rs222674  
rs2246695  
rs228768  
rs2416791  
rs2426515  
rs2451563  
rs2488465  
rs2593595  
rs2596793  
rs2660769  
rs2687427  
rs2777804  
rs316598  
rs328744  
rs33957  
rs344454  
rs3755446  
rs3759171  
rs3791896  
rs385194  
rs3861709  
rs4143633  
rs4149436  
rs4350528  
rs4489979  
rs4506877  

rs4529792  
rs4602918  
rs4619931  
rs4659762  
rs4789070  
rs4792105  
rs4793237  
rs48116511  
rs4823460  
rs4859147  
rs4885162  
rs48967801  
rs4923940  
rs503677  
rs567357  
rs6023376  
rs6414248  
rs645510  
rs6491743  
rs6494466  
rs6535244  
rs6556352  
rs6666101  
rs6765491  
rs6820509  
rs6937164  
rs7021690  
rs7086  
rs710052  
rs7107482  
rs7111814  
rs7134682  
rs71611  

rs7187359  
rs7189172  
rs735480  
rs7424137  
rs7512316  
rs75751471  
rs7689609  
rs7788641  
rs7810554  
rs798443  
rs8113143  
rs833282  
rs857440  
rs870272  
rs897351  
rs9297712  
rs9306906  
rs9416026  
rs9416972  
rs9525462  
rs9530646  
rs9543532  
rs9806307  
rs9849733  
rs9923864 
 
1Genotyping 
failed 
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Appendix B 
Alcohol questions on nurse-administered questionnaire 

CHANCE study (p. 1 of 5) 
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Appendix B 

Alcohol questions on nurse-administered questionnaire 
CHANCE study (p. 2 of 5) 
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Appendix B 
Alcohol questions on nurse-administered questionnaire 

CHANCE study (p. 3 of 5) 
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Appendix B 
Alcohol questions on nurse-administered questionnaire 

CHANCE study (p. 4 of 5) 
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Appendix B 
Alcohol questions on nurse-administered questionnaire 

CHANCE study (p. 5 of 5) 

 

 



Gene SNP
Major/minor 

allele Genotype n (col %) n (col %) n (col %) n (col %)
ALCOHOL METABOLISM GENES
ADH1B rs12507573 C/A AA 188 20.4% 234 21.8% 56 18.4% 40 15.9%

AC 462 50.1% 536 49.9% 149 48.9% 127 50.6%
CC 272 29.5% 304 28.3% 100 32.8% 83 33.1%
missing 0 0.0% 0 0.0% 0 0.0% 1 0.4%

rs1042026 A/G GG 73 7.9% 81 7.5% 3 1.0% 5 2.0%
GA 382 41.4% 457 42.6% 54 17.7% 36 14.3%
AA 467 50.7% 536 49.9% 248 81.3% 210 83.7%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs7673353 C/T TT 0 0.0% 0 0.0% 7 2.3% 12 4.8%
TC 3 0.3% 6 0.6% 89 29.2% 65 25.9%
CC 919 99.7% 1068 99.4% 209 68.5% 174 69.3%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs17028834 T/C CC 1 0.1% 0 0.0% 2 0.7% 5 2.0%
CT 3 0.3% 2 0.2% 80 26.2% 50 19.9%
TT 918 99.6% 1072 99.8% 223 73.1% 196 78.1%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs1693457 T/C CC 27 2.9% 27 2.5% 9 3.0% 16 6.4%
CT 297 32.2% 333 31.0% 88 28.9% 86 34.3%
TT 597 64.8% 714 66.5% 208 68.2% 148 59.0%
missing 1 0.1% 0 0.0% 0 0.0% 1 0.4%

rs1229984 G/A AA 0 0.0% 3 0.3% 0 0.0% 0 0.0%
AG 30 3.3% 71 6.6% 1 0.3% 5 2.0%
GG 892 96.7% 1000 93.1% 304 99.7% 246 98.0%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs1159918 G/T TT 129 14.0% 138 12.8% 161 52.8% 140 55.8%
TG 419 45.4% 485 45.2% 116 38.0% 93 37.1%
GG 374 40.6% 451 42.0% 28 9.2% 18 7.2%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs1229982 G/T TT 30 3.3% 45 4.2% 69 22.6% 51 20.3%
TG 282 30.6% 327 30.4% 146 47.9% 125 49.8%
GG 610 66.2% 702 65.4% 90 29.5% 75 29.9%
missing 0.0% 0 0.0% 0 0.0% 0 0.0% 0.0%

ADH1C rs2298753 T/C CC 15 1.6% 15 1.4% 0 0.0% 0 0.0%
CT 186 20.2% 177 16.5% 20 6.6% 14 5.6%
TT 721 78.2% 882 82.1% 285 93.4% 237 94.4%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs1614972 C/T TT 73 7.9% 96 8.9% 67 22.0% 67 26.7%
TC 403 43.7% 446 41.5% 144 47.2% 129 51.4%
CC 446 48.4% 532 49.5% 94 30.8% 55 21.9%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs1391088 C/A AA 3 0.3% 4 0.4% 2 0.7% 2 0.8%
AC 118 12.8% 161 15.0% 55 18.0% 36 14.3%
CC 801 86.9% 909 84.6% 248 81.3% 213 84.9%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs1693482 C/T TT 158 17.1% 172 16.0% 6 2.0% 4 1.6%
TC 437 47.4% 497 46.3% 94 30.8% 64 25.5%
CC 325 35.2% 403 37.5% 205 67.2% 183 72.9%
missing 2 0.2% 2 0.2% 0 0.0% 0 0.0%

rs1631460 C/G GG 160 17.4% 173 16.1% 6 2.0% 4 1.6%
GC 443 48.0% 508 47.3% 95 31.1% 65 25.9%
CC 318 34.5% 393 36.6% 204 66.9% 182 72.5%
missing 1 0.1% 0 0.0% 0 0.0% 0 0.0%

rs11936869 C/G GG 64 6.9% 69 6.4% 53 17.4% 56 22.3%
GC 354 38.4% 430 40.0% 143 46.9% 122 48.6%
CC 504 54.7% 575 53.5% 109 35.7% 72 28.7%
missing 0 0.0% 0 0.0% 0 0.0% 1 0.4%

ADH4 rs29001227 A/T TT 1 0.1% 1 0.1% 8 2.6% 8 3.2%
TA 4 0.4% 1 0.1% 92 30.2% 59 23.5%
AA 917 99.5% 1072 99.8% 205 67.2% 184 73.3%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs1126672 C/T TT 53 5.7% 82 7.6% 6 2.0% 2 0.8%
TC 386 41.9% 434 40.4% 60 19.7% 46 18.3%
CC 483 52.4% 558 52.0% 239 78.4% 203 80.9%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs4699710 T/C CC 70 7.6% 98 9.1% 13 4.3% 5 2.0%
CT 412 44.7% 458 42.6% 90 29.5% 78 31.1%

APPENDIX C Distribution of SNP genotypes in cases and controls, by race
Whites African-Americans

Cases (n=922) Controls (n=1074) Cases (n=305) Controls (n=251)
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Gene SNP
Major/minor 

allele Genotype n (col %) n (col %) n (col %) n (col %)

APPENDIX C Distribution of SNP genotypes in cases and controls, by race
Whites African-Americans

Cases (n=922) Controls (n=1074) Cases (n=305) Controls (n=251)

TT 440 47.7% 518 48.2% 202 66.2% 168 66.9%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs10017466 T/C CC 72 7.8% 99 9.2% 40 13.1% 32 12.7%
CT 414 44.9% 459 42.7% 143 46.9% 101 40.2%
TT 436 47.3% 516 48.0% 121 39.7% 118 47.0%
missing 0 0.0% 0 0.0% 1 0.3% 0 0.0%

rs1800759 C/A AA 114 12.4% 150 14.0% 171 56.1% 152 60.6%
AC 472 51.2% 527 49.1% 113 37.0% 83 33.1%
CC 336 36.4% 397 37.0% 21 6.9% 16 6.4%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs1800761 G/A AA 31 3.4% 28 2.6% 26 8.5% 22 8.8%
AG 293 31.8% 343 31.9% 124 40.7% 100 39.8%
GG 598 64.9% 703 65.5% 155 50.8% 129 51.4%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs3762894 T/C CC 25 2.7% 20 1.9% 14 4.6% 17 6.8%
CT 247 26.8% 306 28.5% 99 32.5% 73 29.1%
TT 650 70.5% 748 69.6% 192 63.0% 161 64.1%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

ADH7 rs284787 C/T TT 61 6.6% 58 5.4% 6 2.0% 6 2.4%
TC 339 36.8% 384 35.8% 78 25.6% 57 22.7%
CC 522 56.6% 632 58.8% 221 72.5% 188 74.9%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs894369 C/G GG 32 3.5% 43 4.0% 7 2.3% 6 2.4%
GC 275 29.8% 356 33.1% 77 25.2% 68 27.1%
CC 615 66.7% 675 62.8% 221 72.5% 176 70.1%
missing 0 0.0% 0 0.0% 0 0.0% 1 0.4%

rs17588403 T/A AA 44 4.8% 31 2.9% 4 1.3% 3 1.2%
AT 274 29.7% 344 32.0% 66 21.6% 58 23.1%
TT 604 65.5% 699 65.1% 235 77.0% 190 75.7%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs1154454 T/C CC 24 2.6% 31 2.9% 49 16.1% 48 19.1%
CT 250 27.1% 309 28.8% 146 47.9% 128 51.0%
TT 648 70.3% 734 68.3% 110 36.1% 75 29.9%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs1154456 T/C CC 116 12.6% 127 11.8% 7 2.3% 7 2.8%
CT 438 47.5% 494 46.0% 87 28.5% 68 27.1%
TT 368 39.9% 453 42.2% 211 69.2% 176 70.1%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs1154460 G/A AA 194 21.0% 218 20.3% 66 21.6% 58 23.1%
AG 466 50.5% 544 50.7% 169 55.4% 127 50.6%
GG 259 28.1% 312 29.1% 70 23.0% 65 25.9%
missing 3 0.3% 0 0.0% 0 0.0% 1 0.4%

rs971074 G/A AA 7 0.8% 10 0.9% 8 2.6% 5 2.0%
AG 165 17.9% 210 19.6% 101 33.1% 70 27.9%
GG 750 81.3% 854 79.5% 196 64.3% 176 70.1%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs1573496 C/G GG 5 0.5% 9 0.8% 0 0.0% 0 0.0%
GC 154 16.7% 190 17.7% 7 2.3% 6 2.4%
CC 762 82.6% 875 81.5% 298 97.7% 245 97.6%
missing 1 0.1% 0 0.0% 0 0.0% 0 0.0%

ALDH2 rs4767939 A/G GG 35 3.8% 39 3.6% 52 17.0% 38 15.1%
GA 297 32.2% 315 29.3% 145 47.5% 125 49.8%
AA 589 63.9% 720 67.0% 108 35.4% 88 35.1%
missing 1 0.1% 0 0.0% 0 0.0% 0 0.0%

rs2238151 T/C CC 119 12.9% 125 11.6% 257 84.3% 179 71.3%
CT 436 47.3% 464 43.2% 46 15.1% 71 28.3%
TT 363 39.4% 482 44.9% 2 0.7% 1 0.4%
missing 4 0.4% 3 0.3% 0 0.0% 0 0.0%

rs7312055 G/A AA 0 0.0% 0 0.0% 28 9.2% 12 4.8%
AG 5 0.5% 8 0.7% 111 36.4% 101 40.2%
GG 917 99.5% 1066 99.3% 166 54.4% 138 55.0%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs2158029 G/A AA 0 0.0% 0 0.0% 6 2.0% 1 0.4%
AG 6 0.7% 11 1.0% 45 14.8% 41 16.3%
GG 916 99.3% 1063 99.0% 254 83.3% 209 83.3%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs16941667 C/T TT 6 0.7% 5 0.5% 6 2.0% 4 1.6%
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Gene SNP
Major/minor 

allele Genotype n (col %) n (col %) n (col %) n (col %)

APPENDIX C Distribution of SNP genotypes in cases and controls, by race
Whites African-Americans

Cases (n=922) Controls (n=1074) Cases (n=305) Controls (n=251)

TC 153 16.6% 158 14.7% 74 24.3% 58 23.1%
CC 763 82.8% 911 84.8% 225 73.8% 188 74.9%
missing 0 0.0% 0 0.0% 0 0.0% 1 0.4%

rs16941669 T/G GG 14 1.5% 11 1.0% 2 0.7% 0 0.0%
GT 174 18.9% 190 17.7% 50 16.4% 36 14.3%
TT 734 79.6% 872 81.2% 253 83.0% 214 85.3%
missing 0 0.0% 1 0.1% 0 0.0% 1 0.4%

CYP2E1 rs3813865 G/C CC 0 0.0% 1 0.1% 4 1.3% 3 1.2%
CG 45 4.9% 49 4.6% 76 24.9% 53 21.1%
GG 877 95.1% 1023 95.3% 225 73.8% 195 77.7%
missing 0 0.0% 1 0.1% 0 0.0% 0 0.0%

rs3813867 G/C CC 1 0.1% 0 0.0% 1 0.3% 1 0.4%
CG 51 5.5% 58 5.4% 30 9.8% 25 10.0%
GG 870 94.4% 1016 94.6% 273 89.5% 224 89.2%
missing 0 0.0% 0 0.0% 1 0.3% 1 0.4%

rs8192772 T/C CC 6 0.7% 7 0.7% 3 1.0% 2 0.8%
CT 127 13.8% 146 13.6% 64 21.0% 53 21.1%
TT 789 85.6% 921 85.8% 237 77.7% 196 78.1%
missing 0 0.0% 0 0.0% 1 0.3% 0 0.0%

rs915908 G/A AA 21 2.3% 27 2.5% 0 0.0% 1 0.4%
AG 211 22.9% 266 24.8% 18 5.9% 22 8.8%
GG 690 74.8% 781 72.7% 287 94.1% 228 90.8%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs915909 C/T TT 0 0.0% 0 0.0% 5 1.6% 2 0.8%
TC 1 0.1% 4 0.4% 53 17.4% 40 15.9%
CC 921 99.9% 1070 99.6% 246 80.7% 204 81.3%
missing 0 0.0% 0 0.0% 1 0.3% 5 2.0%

rs7092584 C/T TT 11 1.2% 9 0.8% 4 1.3% 5 2.0%
TC 168 18.2% 197 18.3% 80 26.2% 58 23.1%
CC 743 80.6% 868 80.8% 219 71.8% 187 74.5%
missing 0 0.0% 0 0.0% 2 0.7% 1 0.4%

rs743535 C/T TT 11 1.2% 6 0.6% 7 2.3% 4 1.6%
CT 149 16.2% 176 16.4% 82 26.9% 57 22.7%
CC 757 82.1% 886 82.5% 212 69.5% 188 74.9%
missing 5 0.5% 6 0.6% 4 1.3% 2 0.8%

rs2249695 C/T TT 34 3.7% 41 3.8% 28 9.2% 23 9.2%
"tipsy" SNP TC 292 31.7% 372 34.6% 124 40.7% 103 41.0%

CC 595 64.5% 661 61.5% 153 50.2% 124 49.4%
missing 1 0.1% 0 0.0% 0 0.0% 1 0.4%

rs28969387 A/T TT 0 0.0% 0 0.0% 0 0.0% 0 0.0%
TA 2 0.2% 0 0.0% 23 7.5% 20 8.0%
AA 920 99.8% 1074 100.0% 282 92.5% 231 92.0%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs11101812 T/C CC 0 0.0% 0 0.0% 2 0.7% 1 0.4%
CT 2 0.2% 1 0.1% 22 7.2% 18 7.2%
TT 919 99.7% 1073 99.9% 279 91.5% 230 91.6%
missing 1 0.1% 0 0.0% 2 0.7% 2 0.8%

OXIDATIVE STRESS METABOLISM GENES
CAT rs1049982 C/T TT 95 10.3% 106 9.9% 92 30.2% 76 30.3%

TC 396 43.0% 449 41.8% 147 48.2% 123 49.0%
CC 429 46.5% 514 47.9% 65 21.3% 50 19.9%
missing 2 0.2% 5 0.5% 1 0.3% 2 0.8%

GPX1 rs8179172 T/A AA 0 0.0% 0 0.0% 0 0.0% 1 0.4%
AT 1 0.1% 2 0.2% 50 16.4% 48 19.1%
TT 921 99.9% 1072 99.8% 255 83.6% 202 80.5%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs1800668 C/T TT 77 8.4% 101 9.4% 15 4.9% 19 7.6%
TC 381 41.3% 437 40.7% 115 37.7% 91 36.3%
CC 464 50.3% 533 49.6% 174 57.0% 140 55.8%
missing 0 0.0% 3 0.3% 1 0.3% 1 0.4%

rs3811699 A/G GG 79 8.6% 100 9.3% 23 7.5% 28 11.2%
GA 379 41.1% 442 41.2% 133 43.6% 105 41.8%
AA 464 50.3% 532 49.5% 149 48.9% 118 47.0%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs3448 C/T TT 84 9.1% 83 7.7% 29 9.5% 17 6.8%
TC 350 38.0% 397 37.0% 115 37.7% 96 38.2%
CC 488 52.9% 594 55.3% 161 52.8% 138 55.0%
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Gene SNP
Major/minor 

allele Genotype n (col %) n (col %) n (col %) n (col %)

APPENDIX C Distribution of SNP genotypes in cases and controls, by race
Whites African-Americans

Cases (n=922) Controls (n=1074) Cases (n=305) Controls (n=251)

missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%
GPX2 rs11623705 G/T TT 13 1.4% 15 1.4% 0 0.0% 0 0.0%

TG 199 21.6% 220 20.5% 15 4.9% 19 7.6%
GG 710 77.0% 839 78.1% 290 95.1% 232 92.4%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs2412065 G/C CC 37 4.0% 55 5.1% 48 15.7% 47 18.7%
CG 290 31.5% 369 34.4% 154 50.5% 119 47.4%
GG 595 64.5% 650 60.5% 103 33.8% 85 33.9%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs2737844 C/T TT 76 8.2% 109 10.1% 209 68.5% 162 64.5%
TC 361 39.2% 462 43.0% 82 26.9% 75 29.9%
CC 481 52.2% 498 46.4% 13 4.3% 14 5.6%
missing 4 0.4% 5 0.5% 1 0.3% 0 0.0%

GPX4 rs757229 G/C CC 192 20.8% 233 21.7% 104 34.1% 86 34.3%
CG 484 52.5% 522 48.6% 145 47.5% 123 49.0%
GG 246 26.7% 318 29.6% 55 18.0% 42 16.7%
missing 0 0.0% 1 0.1% 1 0.3% 0 0.0%

SOD1 rs11910115 A/C CC 0 0.0% 0 0.0% 2 0.7% 5 2.0%
CA 1 0.1% 1 0.1% 59 19.3% 59 23.5%
AA 921 99.9% 1073 99.9% 244 80.0% 187 74.5%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs4998557 G/A AA 12 1.3% 14 1.3% 41 13.4% 40 15.9%
AG 205 22.2% 195 18.2% 137 44.9% 111 44.2%
GG 704 76.4% 862 80.3% 127 41.6% 100 39.8%
missing 1 0.1% 3 0.3% 0 0.0% 0 0.0%

rs10432782 T/G GG 12 1.3% 14 1.3% 20 6.6% 20 8.0%
GT 205 22.2% 194 18.1% 113 37.0% 101 40.2%
TT 704 76.4% 865 80.5% 172 56.4% 130 51.8%
missing 1 0.1% 1 0.1% 0 0.0% 0 0.0%

rs2070424 A/G GG 6 0.7% 5 0.5% 6 2.0% 7 2.8%
AG 127 13.8% 113 10.5% 83 27.2% 77 30.7%
AA 789 85.6% 956 89.0% 216 70.8% 167 66.5%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs1041740 C/T TT 88 9.5% 101 9.4% 6 2.0% 3 1.2%
TC 387 42.0% 473 44.0% 62 20.3% 43 17.1%
CC 447 48.5% 500 46.6% 237 77.7% 205 81.7%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

SOD2 rs4342445 G/A AA 57 6.2% 56 5.2% 5 1.6% 4 1.6%
AG 340 36.9% 355 33.1% 71 23.3% 59 23.5%
GG 525 56.9% 663 61.7% 229 75.1% 188 74.9%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs2842980 A/T TT 42 4.6% 61 5.7% 30 9.8% 24 9.6%
TA 299 32.4% 338 31.5% 139 45.6% 92 36.7%
AA 581 63.0% 675 62.8% 136 44.6% 135 53.8%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs8031 T/A AA 206 22.3% 267 24.9% 31 10.2% 35 13.9%
AT 467 50.7% 534 49.7% 134 43.9% 107 42.6%
TT 249 27.0% 273 25.4% 140 45.9% 109 43.4%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs5746134 C/T TT 0 0.0% 0 0.0% 7 2.3% 3 1.2%
TC 0 0.0% 4 0.4% 93 30.5% 58 23.1%
CC 922 100.0% 1070 99.6% 205 67.2% 190 75.7%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%

rs2758331 C/A AA 204 22.1% 264 24.6% 18 5.9% 18 7.2%
AC 468 50.8% 537 50.0% 113 37.0% 87 34.7%
CC 250 27.1% 273 25.4% 174 57.0% 146 58.2%
missing 0 0.0% 0 0.0% 0 0.0% 0 0.0%
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Gene SNP
major/
minor 
alleles

homozygous 
for major 

allele

one or two 
copies of 

minor allele

Adjusted ORb 

(95% CI)
p-valuec

homozygous 
for major 

allele

one or two 
copies of 

minor allele

Adjusted ORb 

(95% CI)
p-valuec

ALCOHOL METABOLISM GENES
ADH1B rs12507573 C/A 71/386 152/935 0.94 (0.80-1.11) 1.00 91/386 241/935 1.02 (0.88-1.17) 1.00

rs1042026 A/G 125/744 98/578 1.04 (0.89-1.22) 1.00 193/744 139/578 0.97 (0.84-1.11) 1.00
rs7673353 C/T 204/1239 19/83 1.09 (0.79-1.50) 1.00 309/1239 23/83 0.97 (0.72-1.29) 1.00
rs17028834 T/C 211/1265 12/57 1.05 (0.72-1.53) 1.00 312/1265 20/57 1.29 (0.94-1.77) 1.00
rs1693457 T/C 136/860 86/461 1.13 (0.97-1.32) 1.00 223/860 109/461 1.02 (0.89-1.18) 1.00
rs1229984 G/A 219/1243 4/79 0.60 (0.36-1.01) 1.00 322/1243 10/79 0.74 (0.52-1.06) 1.00
rs1159918 G/T 65/468 158/854 1.16 (0.98-1.37) 1.00 109/468 223/854 1.12 (0.97-1.29) 1.00
rs1229982 G/T 129/775 94/547 0.99 (0.84-1.16) 1.00 197/775 135/547 0.98 (0.85-1.12) 1.00

ADH1C rs2298753 T/C 180/1117 43/205 1.18 (0.97-1.44) 1.00 270/1117 62/205 1.19 (1.00-1.41) 1.00
rs1614972 C/T 95/585 128/737 1.02 (0.87-1.19) 1.00 141/585 191/737 1.02 (0.89-1.16) 1.00
rs1391088 C/A 192/1119 31/203 0.98 (0.79-1.22) 1.00 280/1119 52/203 1.03 (0.86-1.24) 1.00
rs1693482 C/T 97/585 125/735 1.03 (0.88-1.20) 1.00 145/585 186/735 1.03 (0.90-1.18) 1.00
rs1631460 C/G 93/574 130/748 1.05 (0.90-1.23) 1.00 144/574 188/748 1.02 (0.89-1.17) 1.00
rs11936869 C/G 111/645 112/676 0.96 (0.83-1.12) 1.00 161/645 171/676 0.99 (0.87-1.13) 1.00

ADH4 rs29001227 A/T 208/1253 15/69 1.00 (0.70-1.42) 1.00 305/1253 27/69 1.33 (0.99-1.79) 1.00
rs1126672 C/T 131/758 92/564 1.02 (0.87-1.19) 1.00 201/758 131/564 0.96 (0.83-1.10) 1.00
rs4699710 T/C 120/684 103/638 0.98 (0.84-1.13) 1.00 179/684 153/638 0.96 (0.84-1.10) 1.00
rs10017466 T/C 106/632 117/690 1.00 (0.87-1.16) 1.00 157/632 174/690 1.02 (0.89-1.16) 1.00
rs1800759 C/A 75/412 148/910 0.93 (0.79-1.10) 1.00 101/412 231/910 1.00 (0.87-1.16) 1.00
rs1800761 G/A 134/830 89/492 1.01 (0.87-1.18) 1.00 193/830 139/492 1.07 (0.94-1.22) 1.00
rs3762894 T/C 150/906 73/416 1.00 (0.86-1.18) 1.00 218/906 114/416 1.04 (0.91-1.20) 1.00

ADH7 rs284787 C/T 126/817 97/505 1.14 (0.98-1.33) 1.00 208/817 124/505 1.01 (0.88-1.16) 1.00
rs894369 C/G 153/849 70/472 0.93 (0.80-1.09) 1.00 217/849 115/472 0.96 (0.84-1.10) 1.00
rs17588403 T/A 157/887 66/435 0.92 (0.78-1.08) 1.00 230/887 102/435 0.94 (0.81-1.08) 1.00
rs1154454 T/C 134/808 89/514 0.95 (0.81-1.11) 1.00 208/808 124/514 0.94 (0.82-1.09) 1.00
rs1154456 T/C 108/629 115/693 0.98 (0.84-1.14) 1.00 150/629 182/693 1.08 (0.94-1.24) 1.00
rs1154460 G/A 61/377 161/944 1.01 (0.86-1.20) 1.00 88/377 244/944 1.06 (0.91-1.23) 1.00
rs971074 G/A 168/1027 55/295 1.07 (0.90-1.27) 1.00 257/1027 75/295 0.95 (0.81-1.12) 1.00
rs1573496 C/G 186/1117 36/205 1.08 (0.88-1.33) 1.00 292/1117 40/205 0.84 (0.69-1.02) 1.00

ALDH2 rs4767939 A/G 135/806 88/516 0.99 (0.85-1.16) 1.00 191/806 140/516 1.08 (0.94-1.23) 1.00
rs2238151 T/C 66/482 156/837 1.13 (0.95-1.34) 1.00 114/482 217/837 1.02 (0.88-1.18) 1.00
rs7312055 G/A 196/1201 27/121 0.88 (0.65-1.20) 1.00 301/1201 31/121 0.83 (0.64-1.09) 1.00
rs2158029 G/A 216/1269 7/53 0.74 (0.47-1.14) 1.00 316/1269 16/53 1.06 (0.76-1.47) 1.00
rs16941667 C/T 189/1097 34/224 0.96 (0.78-1.18) 1.00 266/1097 66/224 1.11 (0.94-1.31) 1.00
rs16941669 T/G 175/1084 48/236 1.14 (0.95-1.37) 1.00 272/1084 60/236 0.98 (0.83-1.16) 1.00

CYP2E1 rs3813865 G/C 204/1215 19/106 1.02 (0.77-1.36) 1.00 298/1215 34/106 1.11 (0.88-1.40) 1.00
rs3813867 G/C 207/1237 16/84 1.02 (0.76-1.37) 1.00 316/1237 16/84 0.81 (0.60-1.09) 1.00
rs8192772 T/C 195/1114 28/208 0.92 (0.73-1.15) 1.00 279/1114 53/208 1.07 (0.90-1.28) 1.00
rs915908 G/A 164/1006 59/316 1.11 (0.93-1.32) 1.00 263/1006 69/316 0.89 (0.75-1.04) 1.00
rs915909 C/T 212/1271 11/46 1.11 (0.75-1.62) 1.00 317/1271 15/46 1.02 (0.72-1.45) 1.00
rs7092584 C/T 181/1052 42/269 0.98 (0.81-1.19) 1.00 262/1052 70/269 1.05 (0.89-1.23) 1.00
rs743535 C/T 182/1071 41/243 0.99 (0.82-1.20) 1.00 268/1071 60/243 1.00 (0.85-1.19) 1.00
rs2249695 C/T 108/682 115/639 1.01 (0.86-1.19) 1.00 180/682 152/639 0.90 (0.78-1.04) 1.00
rs28969387 A/T 219/1302 4/20 1.06 (0.59-1.90) 1.00 326/1302 6/20 0.93 (0.56-1.53) 1.00
rs11101812 T/C 219/1300 3/20 0.98 (0.52-1.85) 1.00 327/1300 4/20 0.92 (0.52-1.63) 1.00

OXIDATIVE STRESS METABOLISM GENES
CAT rs1049982 C/T 100/589 123/726 0.97 (0.831.13) 1.00 134/589 197/726 1.07 (0.94-1.22) 1.00
GPX1 rs8179172 T/A 212/1271 11/51 0.97 (0.661.44) 1.00 320/1271 12/51 0.90 (0.62-1.29) 1.00

rs1800668 C/T 113/672 110/646 1.06 (0.911.23) 1.00 172/672 160/646 1.02 (0.89-1.16) 1.00
rs3811699 A/G 109/649 114/673 1.06 (0.911.23) 1.00 167/649 165/673 1.01 (0.89-1.15) 1.00
rs3448 C/T 113/729 110/593 1.12 (0.971.31) 1.00 190/729 142/593 0.98 (0.86-1.12) 1.00

GPX2 rs11623705 G/T 185/1069 38/253 0.94 (0.771.14) 1.00 268/1069 64/253 1.02 (0.86-1.21) 1.00
rs2412065 G/C 122/733 101/589 0.98 (0.841.15) 1.00 193/733 139/589 0.94 (0.82-1.08) 1.00
rs2737844 C/T 88/511 134/806 0.95 (0.811.12) 1.00 136/511 194/806 0.93 (0.81-1.08) 1.00

GPX4 rs757229 G/C 60/358 162/963 0.98 (0.831.16) 1.00 85/358 247/963 1.02 (0.88-1.18) 1.00
SOD1 rs11910115 A/C 208/1257 15/65 1.01 (0.701.45) 1.00 319/1257 13/65 0.86 (0.60-1.22) 1.00

rs4998557 G/A 155/959 68/360 1.00 (0.841.20) 1.00 232/959 99/360 1.07 (0.92-1.25) 1.00
rs10432782 T/G 163/992 60/329 0.98 (0.821.17) 1.00 240/992 91/329 1.07 (0.92-1.25) 1.00
rs2070424 A/G 187/1120 36/202 0.95 (0.761.17) 1.00 274/1120 58/202 1.05 (0.88-1.26) 1.00
rs1041740 C/T 127/705 96/617 0.94 (0.801.10) 1.00 174/705 158/617 0.99 (0.87-1.14) 1.00

SOD2 rs4342445 G/A 145/850 78/472 1.01 (0.861.18) 1.00 202/850 130/472 1.08 (0.95-1.24) 1.00
rs2842980 A/T 129/807 94/515 1.06 (0.911.23) 1.00 189/807 143/515 1.09 (0.96-1.25) 1.00
rs8031 T/A 77/382 146/940 0.91 (0.771.07) 1.00 102/382 230/940 0.99 (0.86-1.14) 1.00
rs5746134 C/T 207/1257 16/65 1.20 (0.851.68) 1.00 304/1257 28/65 1.41 (1.05-1.89) 1.00
rs2758331 C/A 86/419 137/903 0.90 (0.771.06) 1.00 108/419 224/903 1.02 (0.88-1.17) 1.00

c Bonferroni-corrected for 64 statistical tests

APPENDIX D. SNP effects on odds of developing cancer (dominant genetic model)

b Conditional logistic regression models conditioned on sex, race, and age category, and adjusted for continuous duration of smoking in years (rounded to whole years). Odds 
ratios are for those with one or more copies of the minor allele versus the referent group of those homozygous for the major allele (dominant genetic model). 

Oropharyngeal cancerOral cavity, oropharyngeal, 
hypopharyngeal cancer NOS

n cases/controls n cases/controls

a Cases and controls do not sum to 1227 and 1325, respectively, because 4 cases and 3 controls are missing information on duration of cigarette smoking, and because a few 
subjects lack genotype information for some SNPs
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Assessment of 
additive interaction 
between SNP and 

lifetime alcohol 
consumption

Gene SNP
major/ 
minor 
alleles

lifetime ethanol 
consumption (ml)

ICRc 

(bold if statistically 
significant after 

Bonferroni correction)

ALCOHOL METABOLISM GENES
ADH1B rs12507573 C/A never drinkers 40 / 72 1.00 (ref) 77 / 208 0.64 ( 0.39 - 1.06 ) -0.19

>0 to <134,699 68 / 142 0.62 ( 0.37 - 1.05 ) 141 / 323 0.52 ( 0.32 - 0.85 )
134,699 to <757,550 84 / 118 0.74 ( 0.44 - 1.27 ) 234 / 242 1.05 ( 0.65 - 1.69 )

757,550+ 160 / 47 2.75 ( 1.56 - 4.86 ) 345 / 126 2.21 ( 1.34 - 3.65 )
rs1042026 A/G never drinkers 59 / 157 1.00 (ref) 58 / 123 1.20 ( 0.75 - 1.93 ) -0.75

>0 to <134,699 112 / 253 0.80 ( 0.53 - 1.20 ) 97 / 213 0.85 ( 0.56 - 1.30 )
134,699 to <757,550 188 / 206 1.48 ( 0.99 - 2.22 ) 130 / 154 1.31 ( 0.86 - 2.01 )

757,550+ 312 / 98 3.75 ( 2.42 - 5.81 ) 193 / 75 3.20 ( 2.02 - 5.08 )
rs7673353 C/T never drinkers 115 / 261 1.00 (ref) 2 / 19 0.29 ( 0.06 - 1.35 ) 1.06

>0 to <134,699 199 / 438 0.72 ( 0.53 - 0.98 ) 10 / 28 0.71 ( 0.31 - 1.62 )
134,699 to <757,550 289 / 346 1.17 ( 0.85 - 1.60 ) 29 / 14 3.14 ( 1.44 - 6.84 )

757,550+ 453 / 159 3.10 ( 2.19 - 4.39 ) 52 / 14 3.44 ( 1.66 - 7.15 )
rs17028834 T/C never drinkers 113 / 272 1.00 (ref) 4 / 8 1.13 ( 0.28 - 4.49 ) 3.55

>0 to <134,699 201 / 447 0.75 ( 0.55 - 1.01 ) 8 / 19 1.01 ( 0.40 - 2.54 )
134,699 to <757,550 303 / 342 1.29 ( 0.95 - 1.77 ) 15 / 18 1.39 ( 0.61 - 3.16 )

757,550+ 453 / 163 3.06 ( 2.16 - 4.32 ) 52 / 10 6.73 ( 3.06 - 14.81 )
rs1693457 T/C never drinkers 78 / 177 1.00 (ref) 38 / 103 0.86 ( 0.52 - 1.41 ) 1.02

>0 to <134,699 146 / 295 0.77 ( 0.54 - 1.11 ) 63 / 170 0.64 ( 0.42 - 0.98 )
134,699 to <757,550 201 / 234 1.21 ( 0.84 - 1.75 ) 117 / 126 1.31 ( 0.87 - 1.98 )

757,550+ 327 / 122 2.85 ( 1.92 - 4.24 ) 178 / 51 3.72 ( 2.34 - 5.93 )
rs1229984 G/A never drinkers 109 / 268 1.00 (ref) 8 / 12 1.60 ( 0.59 - 4.32 ) -1.85
previously studied >0 to <134,699 206 / 427 0.83 ( 0.61 - 1.13 ) 3 / 39 0.15 ( 0.04 - 0.50 )

134,699 to <757,550 305 / 339 1.35 ( 0.98 - 1.85 ) 13 / 21 1.07 ( 0.48 - 2.37 )
757,550+ 499 / 169 3.36 ( 2.38 - 4.75 ) 6 / 4 2.11 ( 0.49 - 9.10 )

rs1159918 G/T never drinkers 49 / 101 1.00 (ref) 68 / 179 0.90 ( 0.55 - 1.46 ) 1.03
>0 to <134,699 80 / 168 0.67 ( 0.41 - 1.07 ) 129 / 298 0.73 ( 0.47 - 1.14 )

134,699 to <757,550 107 / 129 1.11 ( 0.68 - 1.80 ) 211 / 231 1.26 ( 0.81 - 1.97 )
757,550+ 140 / 58 2.42 ( 1.43 - 4.08 ) 365 / 115 3.34 ( 2.08 - 5.36 )

rs1229982 G/T never drinkers 72 / 168 1.00 (ref) 45 / 112 0.91 ( 0.56 - 1.47 ) 0.52
>0 to <134,699 131 / 270 0.79 ( 0.54 - 1.16 ) 78 / 196 0.64 ( 0.42 - 0.97 )

134,699 to <757,550 180 / 211 1.21 ( 0.83 - 1.79 ) 138 / 149 1.28 ( 0.85 - 1.93 )
757,550+ 274 / 98 2.91 ( 1.91 - 4.43 ) 231 / 75 3.34 ( 2.14 - 5.21 )

ADH1C rs2298753 T/C never drinkers 97 / 238 1.00 (ref) 20 / 42 1.19 ( 0.63 - 2.27 ) -0.56
>0 to <134,699 169 / 392 0.74 ( 0.53 - 1.03 ) 40 / 74 0.96 ( 0.59 - 1.57 )

134,699 to <757,550 246 / 303 1.22 ( 0.87 - 1.71 ) 72 / 57 1.84 ( 1.16 - 2.93 )
757,550+ 429 / 144 3.34 ( 2.32 - 4.81 ) 76 / 29 2.97 ( 1.71 - 5.16 )

rs1614972 C/T never drinkers 56 / 123 1.00 (ref) 61 / 157 0.84 ( 0.53 - 1.34 ) 0.02
>0 to <134,699 81 / 219 0.52 ( 0.33 - 0.82 ) 128 / 247 0.84 ( 0.55 - 1.28 )

134,699 to <757,550 155 / 152 1.33 ( 0.86 - 2.06 ) 163 / 208 1.05 ( 0.68 - 1.61 )
757,550+ 216 / 75 2.99 ( 1.86 - 4.79 ) 289 / 98 2.85 ( 1.80 - 4.50 )

rs1391088 C/A never drinkers 100 / 235 1.00 (ref) 17 / 45 0.95 ( 0.50 - 1.82 ) 0.12
>0 to <134,699 181 / 392 0.76 ( 0.55 - 1.06 ) 28 / 74 0.66 ( 0.39 - 1.12 )

134,699 to <757,550 270 / 315 1.24 ( 0.89 - 1.72 ) 48 / 45 1.59 ( 0.95 - 2.67 )
757,550+ 427 / 145 3.18 ( 2.21 - 4.57 ) 78 / 28 3.24 ( 1.87 - 5.62 )

rs1693482 C/T never drinkers 44 / 123 1.00 (ref) 73 / 157 1.24 ( 0.77 - 2.01 ) -0.24
previously studied >0 to <134,699 84 / 199 0.87 ( 0.54 - 1.38 ) 124 / 265 0.85 ( 0.55 - 1.33 )

134,699 to <757,550 135 / 164 1.37 ( 0.86 - 2.18 ) 182 / 196 1.54 ( 0.98 - 2.41 )
757,550+ 234 / 77 3.64 ( 2.22 - 5.96 ) 271 / 96 3.65 ( 2.26 - 5.88 )

rs1631460 C/G never drinkers 43 / 119 1.00 (ref) 74 / 161 1.23 ( 0.76 - 1.99 ) -0.17
>0 to <134,699 81 / 195 0.86 ( 0.53 - 1.37 ) 128 / 271 0.86 ( 0.55 - 1.34 )

134,699 to <757,550 134 / 162 1.38 ( 0.87 - 2.22 ) 184 / 198 1.53 ( 0.97 - 2.41 )
757,550+ 231 / 76 3.61 ( 2.19 - 5.93 ) 273 / 97 3.66 ( 2.26 - 5.93 )

rs11936869 C/G never drinkers 61 / 135 1.00 (ref) 56 / 145 0.90 ( 0.56 - 1.43 ) -0.17
>0 to <134,699 102 / 237 0.64 ( 0.42 - 0.98 ) 107 / 228 0.79 ( 0.52 - 1.20 )

134,699 to <757,550 170 / 174 1.37 ( 0.90 - 2.08 ) 148 / 186 1.08 ( 0.71 - 1.65 )
757,550+ 242 / 78 3.17 ( 2.00 - 5.02 ) 263 / 95 2.90 ( 1.85 - 4.54 )

ADH4 rs29001227 A/T never drinkers 113 / 271 1.00 (ref) 4 / 9 1.04 ( 0.27 - 4.02 ) 4.55
>0 to <134,699 199 / 445 0.74 ( 0.55 - 1.01 ) 10 / 21 0.98 ( 0.41 - 2.31 )

134,699 to <757,550 294 / 334 1.28 ( 0.94 - 1.76 ) 24 / 26 1.47 ( 0.74 - 2.93 )
757,550+ 445 / 163 3.02 ( 2.13 - 4.27 ) 60 / 10 7.61 ( 3.46 - 16.75 )

rs1126672 C/T never drinkers 58 / 152 1.00 (ref) 59 / 128 1.19 ( 0.74 - 1.92 ) -0.14
>0 to <134,699 120 / 263 0.84 ( 0.56 - 1.27 ) 89 / 203 0.79 ( 0.51 - 1.22 )

134,699 to <757,550 186 / 214 1.37 ( 0.91 - 2.06 ) 132 / 146 1.46 ( 0.95 - 2.24 )
757,550+ 310 / 107 3.47 ( 2.24 - 5.37 ) 195 / 66 3.53 ( 2.21 - 5.63 )

rs4699710 T/C never drinkers 49 / 142 1.00 (ref) 68 / 138 1.45 ( 0.90 - 2.32 ) 0.09
>0 to <134,699 108 / 239 0.93 ( 0.61 - 1.44 ) 101 / 227 0.91 ( 0.58 - 1.41 )

134,699 to <757,550 172 / 183 1.70 ( 1.10 - 2.63 ) 146 / 177 1.45 ( 0.93 - 2.24 )
757,550+ 272 / 100 3.69 ( 2.33 - 5.85 ) 233 / 73 4.23 ( 2.63 - 6.80 )

rs10017466 T/C never drinkers 45 / 134 1.00 (ref) 72 / 146 1.46 ( 0.91 - 2.35 ) 1.08
>0 to <134,699 100 / 224 0.93 ( 0.60 - 1.46 ) 109 / 242 0.93 ( 0.60 - 1.45 )

134,699 to <757,550 154 / 163 1.73 ( 1.11 - 2.72 ) 164 / 197 1.49 ( 0.96 - 2.31 )

APPENDIX E. Odds ratios for developing SCCHN for SNP genotypes, at varying levels of lifetime alcohol consumption

Odds ratios in comparison to common referent groupa
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757,550+ 223 / 93 3.26 ( 2.03 - 5.24 ) 281 / 80 4.80 ( 2.98 - 7.72 )
rs1800759 C/A never drinkers 35 / 93 1.00 (ref) 82 / 187 1.17 ( 0.70 - 1.95 ) 0.66

>0 to <134,699 70 / 153 0.80 ( 0.47 - 1.36 ) 139 / 313 0.86 ( 0.53 - 1.39 )
134,699 to <757,550 101 / 104 1.61 ( 0.95 - 2.73 ) 217 / 256 1.37 ( 0.85 - 2.22 )

757,550+ 132 / 55 3.02 ( 1.72 - 5.31 ) 373 / 118 3.85 ( 2.32 - 6.41 )
rs1800761 G/A never drinkers 68 / 167 1.00 (ref) 49 / 113 1.13 ( 0.70 - 1.81 ) -0.63

>0 to <134,699 121 / 300 0.70 ( 0.48 - 1.04 ) 88 / 166 0.95 ( 0.63 - 1.44 )
134,699 to <757,550 208 / 235 1.39 ( 0.95 - 2.04 ) 110 / 125 1.29 ( 0.84 - 1.98 )

757,550+ 310 / 101 3.57 ( 2.35 - 5.45 ) 195 / 72 3.07 ( 1.95 - 4.83 )
rs3762894 T/C never drinkers 82 / 178 1.00 (ref) 35 / 102 0.75 ( 0.45 - 1.23 ) -0.74

>0 to <134,699 135 / 328 0.62 ( 0.43 - 0.89 ) 74 / 138 0.83 ( 0.55 - 1.27 )
134,699 to <757,550 226 / 263 1.15 ( 0.80 - 1.65 ) 92 / 97 1.22 ( 0.79 - 1.88 )

757,550+ 348 / 108 3.28 ( 2.19 - 4.89 ) 157 / 65 2.29 ( 1.45 - 3.60 )
ADH7 rs284787 C/T never drinkers 67 / 166 1.00 (ref) 50 / 114 1.05 ( 0.65 - 1.68 ) 0.45

>0 to <134,699 127 / 299 0.74 ( 0.50 - 1.08 ) 82 / 167 0.83 ( 0.54 - 1.27 )
134,699 to <757,550 195 / 210 1.36 ( 0.92 - 2.01 ) 123 / 150 1.26 ( 0.83 - 1.92 )

757,550+ 308 / 112 3.11 ( 2.05 - 4.72 ) 197 / 61 3.61 ( 2.26 - 5.74 )
rs894369 C/G never drinkers 84 / 181 1.00 (ref) 33 / 99 0.71 ( 0.42 - 1.17 ) 0.80

>0 to <134,699 140 / 303 0.70 ( 0.48 - 1.00 ) 69 / 162 0.63 ( 0.42 - 0.96 )
134,699 to <757,550 207 / 214 1.26 ( 0.87 - 1.83 ) 111 / 146 1.00 ( 0.67 - 1.50 )

757,550+ 350 / 125 2.75 ( 1.85 - 4.07 ) 155 / 48 3.25 ( 2.02 - 5.22 )
rs17588403 T/A never drinkers 71 / 190 1.00 (ref) 46 / 90 1.35 ( 0.83 - 2.19 ) -1.33

>0 to <134,699 142 / 307 0.87 ( 0.60 - 1.25 ) 67 / 159 0.78 ( 0.51 - 1.21 )
134,699 to <757,550 226 / 251 1.49 ( 1.03 - 2.16 ) 92 / 109 1.32 ( 0.85 - 2.05 )

757,550+ 347 / 108 3.96 ( 2.63 - 5.96 ) 158 / 65 2.97 ( 1.88 - 4.69 )
rs1154454 T/C never drinkers 76 / 175 1.00 (ref) 41 / 105 0.85 ( 0.52 - 1.39 ) 0.13

>0 to <134,699 143 / 276 0.82 ( 0.57 - 1.19 ) 66 / 190 0.55 ( 0.36 - 0.84 )
134,699 to <757,550 191 / 227 1.16 ( 0.80 - 1.70 ) 127 / 133 1.31 ( 0.86 - 1.98 )

757,550+ 306 / 106 3.04 ( 2.02 - 4.58 ) 199 / 67 3.02 ( 1.91 - 4.77 )
rs1154456 T/C never drinkers 54 / 125 1.00 (ref) 63 / 155 0.77 ( 0.48 - 1.22 ) -0.03

>0 to <134,699 91 / 218 0.62 ( 0.40 - 0.96 ) 118 / 248 0.68 ( 0.44 - 1.04 )
134,699 to <757,550 149 / 181 1.03 ( 0.67 - 1.59 ) 169 / 179 1.20 ( 0.78 - 1.85 )

757,550+ 256 / 81 2.91 ( 1.82 - 4.65 ) 249 / 92 2.65 ( 1.67 - 4.20 )
rs1154460 G/A never drinkers 35 / 65 1.00 (ref) 81 / 215 0.63 ( 0.37 - 1.07 ) 0.92

>0 to <134,699 57 / 131 0.53 ( 0.30 - 0.92 ) 152 / 334 0.55 ( 0.34 - 0.90 )
134,699 to <757,550 88 / 111 0.83 ( 0.48 - 1.45 ) 229 / 249 0.97 ( 0.59 - 1.60 )

757,550+ 133 / 54 1.93 ( 1.07 - 3.46 ) 371 / 119 2.48 ( 1.47 - 4.20 )
rs971074 G/A never drinkers 91 / 219 1.00 (ref) 26 / 61 1.15 ( 0.65 - 2.03 ) 0.86

>0 to <134,699 166 / 357 0.79 ( 0.56 - 1.11 ) 43 / 109 0.73 ( 0.46 - 1.17 )
134,699 to <757,550 247 / 275 1.34 ( 0.95 - 1.89 ) 71 / 85 1.31 ( 0.84 - 2.05 )

757,550+ 380 / 140 3.13 ( 2.15 - 4.55 ) 125 / 33 4.14 ( 2.47 - 6.94 )
rs1573496 C/G never drinkers 98 / 236 1.00 (ref) 19 / 44 1.08 ( 0.57 - 2.05 ) 0.46
previously studied >0 to <134,699 175 / 386 0.76 ( 0.55 - 1.06 ) 34 / 80 0.76 ( 0.46 - 1.27 )

134,699 to <757,550 272 / 301 1.31 ( 0.94 - 1.83 ) 46 / 59 1.29 ( 0.78 - 2.13 )
757,550+ 446 / 155 3.20 ( 2.23 - 4.59 ) 58 / 18 3.73 ( 1.98 - 7.05 )

ALDH2 rs4767939 A/G never drinkers 76 / 174 1.00 (ref) 41 / 106 0.88 ( 0.54 - 1.44 ) 1.09
>0 to <134,699 120 / 289 0.65 ( 0.44 - 0.94 ) 89 / 177 0.84 ( 0.56 - 1.27 )

134,699 to <757,550 194 / 218 1.21 ( 0.83 - 1.77 ) 124 / 142 1.28 ( 0.85 - 1.93 )
757,550+ 261 / 103 2.69 ( 1.78 - 4.07 ) 243 / 70 3.66 ( 2.35 - 5.71 )

rs2238151 T/C never drinkers 50 / 95 1.00 (ref) 67 / 184 0.70 ( 0.43 - 1.14 ) 1.91
>0 to <134,699 75 / 173 0.54 ( 0.34 - 0.88 ) 133 / 293 0.64 ( 0.41 - 0.99 )

134,699 to <757,550 97 / 138 0.81 ( 0.50 - 1.31 ) 220 / 222 1.19 ( 0.76 - 1.86 )
757,550+ 122 / 65 1.66 ( 0.99 - 2.80 ) 381 / 106 3.27 ( 2.02 - 5.28 )

rs7312055 G/A never drinkers 111 / 254 1.00 (ref) 6 / 26 0.41 ( 0.15 - 1.12 ) 0.97
>0 to <134,699 201 / 427 0.74 ( 0.54 - 1.01 ) 8 / 39 0.32 ( 0.13 - 0.78 )

134,699 to <757,550 282 / 328 1.19 ( 0.87 - 1.64 ) 36 / 32 1.30 ( 0.69 - 2.46 )
757,550+ 422 / 152 2.93 ( 2.06 - 4.17 ) 83 / 21 3.31 ( 1.76 - 6.23 )

rs2158029 G/A never drinkers 116 / 270 1.00 (ref) 1 / 10 0.28 ( 0.03 - 2.30 ) 2.73
>0 to <134,699 207 / 443 0.77 ( 0.57 - 1.04 ) 2 / 23 0.13 ( 0.03 - 0.60 )

134,699 to <757,550 302 / 349 1.25 ( 0.91 - 1.70 ) 16 / 11 1.79 ( 0.72 - 4.45 )
757,550+ 470 / 166 3.09 ( 2.19 - 4.35 ) 35 / 7 5.10 ( 2.04 - 12.73 )

rs16941667 C/T never drinkers 98 / 233 1.00 (ref) 19 / 47 1.06 ( 0.57 - 1.99 ) 0.99
>0 to <134,699 163 / 390 0.70 ( 0.50 - 0.98 ) 46 / 75 1.11 ( 0.69 - 1.79 )

134,699 to <757,550 259 / 294 1.29 ( 0.92 - 1.80 ) 59 / 66 1.42 ( 0.89 - 2.29 )
757,550+ 405 / 148 3.12 ( 2.17 - 4.49 ) 100 / 25 4.17 ( 2.39 - 7.28 )

rs16941669 T/G never drinkers 97 / 218 1.00 (ref) 20 / 61 0.74 ( 0.41 - 1.34 ) 1.45
>0 to <134,699 162 / 380 0.67 ( 0.48 - 0.94 ) 47 / 86 0.88 ( 0.55 - 1.39 )

134,699 to <757,550 254 / 302 1.17 ( 0.84 - 1.64 ) 64 / 58 1.46 ( 0.90 - 2.35 )
757,550+ 415 / 149 2.90 ( 2.01 - 4.18 ) 90 / 23 4.09 ( 2.30 - 7.26 )

CYP2E1 rs3813865 G/C never drinkers 108 / 259 1.00 (ref) 9 / 20 1.24 ( 0.51 - 3.00 ) 1.95
>0 to <134,699 196 / 432 0.76 ( 0.56 - 1.04 ) 13 / 34 0.75 ( 0.37 - 1.54 )

134,699 to <757,550 289 / 324 1.32 ( 0.96 - 1.82 ) 29 / 36 1.27 ( 0.69 - 2.31 )
757,550+ 437 / 160 3.11 ( 2.19 - 4.42 ) 68 / 13 5.31 ( 2.65 - 10.65 )
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rs3813867 G/C never drinkers 110 / 263 1.00 (ref) 7 / 16 0.94 ( 0.35 - 2.47 ) 3.88
>0 to <134,699 197 / 441 0.74 ( 0.54 - 1.01 ) 12 / 25 0.80 ( 0.37 - 1.76 )

134,699 to <757,550 301 / 329 1.35 ( 0.98 - 1.85 ) 17 / 31 0.65 ( 0.33 - 1.28 )
757,550+ 460 / 165 3.00 ( 2.11 - 4.25 ) 44 / 8 6.82 ( 2.90 - 16.02 )

rs8192772 T/C never drinkers 99 / 237 1.00 (ref) 18 / 43 1.07 ( 0.55 - 2.05 ) 1.89
>0 to <134,699 179 / 394 0.75 ( 0.54 - 1.03 ) 30 / 72 0.84 ( 0.50 - 1.41 )

134,699 to <757,550 264 / 294 1.30 ( 0.94 - 1.81 ) 53 / 66 1.29 ( 0.80 - 2.08 )
757,550+ 413 / 152 3.02 ( 2.11 - 4.33 ) 92 / 21 4.97 ( 2.78 - 8.91 )

rs915908 G/A never drinkers 93 / 216 1.00 (ref) 24 / 64 1.04 ( 0.59 - 1.85 ) -1.29
>0 to <134,699 152 / 352 0.74 ( 0.53 - 1.04 ) 57 / 114 0.80 ( 0.52 - 1.24 )

134,699 to <757,550 254 / 277 1.35 ( 0.96 - 1.91 ) 64 / 83 1.12 ( 0.71 - 1.77 )
757,550+ 417 / 131 3.56 ( 2.45 - 5.17 ) 88 / 42 2.31 ( 1.39 - 3.82 )

rs915909 C/T never drinkers 115 / 270 1.00 (ref) 2 / 9 0.62 ( 0.12 - 3.24 ) 0.80
>0 to <134,699 206 / 449 0.76 ( 0.56 - 1.03 ) 3 / 15 0.35 ( 0.09 - 1.30 )

134,699 to <757,550 302 / 348 1.26 ( 0.92 - 1.71 ) 16 / 12 1.74 ( 0.71 - 4.24 )
757,550+ 468 / 163 3.15 ( 2.23 - 4.44 ) 36 / 9 3.56 ( 1.56 - 8.17 )

rs7092584 C/T never drinkers 92 / 223 1.00 (ref) 25 / 57 1.17 ( 0.66 - 2.07 ) 1.06
>0 to <134,699 167 / 375 0.75 ( 0.54 - 1.05 ) 42 / 91 0.89 ( 0.56 - 1.44 )

134,699 to <757,550 252 / 279 1.36 ( 0.97 - 1.92 ) 65 / 80 1.24 ( 0.79 - 1.94 )
757,550+ 384 / 142 3.10 ( 2.14 - 4.49 ) 120 / 31 4.33 ( 2.58 - 7.26 )

rs743535 C/T never drinkers 95 / 223 1.00 (ref) 22 / 53 0.93 ( 0.51 - 1.69 ) 2.26
>0 to <134,699 169 / 386 0.70 ( 0.50 - 0.98 ) 40 / 78 0.91 ( 0.56 - 1.49 )

134,699 to <757,550 252 / 279 1.29 ( 0.92 - 1.81 ) 60 / 80 1.04 ( 0.66 - 1.65 )
757,550+ 386 / 147 2.79 ( 1.93 - 4.04 ) 116 / 26 4.98 ( 2.89 - 8.59 )

rs2249695 C/T never drinkers 73 / 136 1.00 (ref) 44 / 144 0.56 ( 0.35 - 0.91 ) 1.21
"tipsy" SNP >0 to <134,699 127 / 253 0.63 ( 0.43 - 0.94 ) 82 / 213 0.52 ( 0.34 - 0.80 )

134,699 to <757,550 160 / 178 1.06 ( 0.71 - 1.59 ) 158 / 181 0.95 ( 0.63 - 1.43 )
757,550+ 218 / 92 2.12 ( 1.37 - 3.28 ) 286 / 81 2.89 ( 1.83 - 4.55 )

rs28969387 A/T never drinkers 115 / 275 1.00 (ref) 2 / 5 1.03 ( 0.16 - 6.58 ) 0.05
>0 to <134,699 206 / 464 0.75 ( 0.55 - 1.01 ) 3 / 2 2.25 ( 0.33 - 15.13 )

134,699 to <757,550 311 / 353 1.30 ( 0.95 - 1.77 ) 7 / 7 1.06 ( 0.33 - 3.38 )
757,550+ 493 / 170 3.22 ( 2.29 - 4.54 ) 12 / 3 3.30 ( 0.88 - 12.40 )

rs11101812 T/C never drinkers 115 / 275 1.00 (ref) 1 / 5 0.41 ( 0.04 - 3.90 ) 19.34
>0 to <134,699 205 / 463 0.74 ( 0.55 - 1.00 ) 4 / 3 2.70 ( 0.52 - 14.05 )

134,699 to <757,550 312 / 348 1.31 ( 0.96 - 1.79 ) 5 / 10 0.67 ( 0.20 - 2.23 )
757,550+ 489 / 172 3.10 ( 2.20 - 4.36 ) 15 / 1 21.85 ( 2.60 ##### )

OXIDATIVE STRESS METABOLISM GENES
CAT rs1049982 C/T never drinkers 60 / 137 1.00 (ref) 57 / 140 1.10 ( 0.69 - 1.77 ) -0.15

>0 to <134,699 95 / 216 0.75 ( 0.49 - 1.15 ) 114 / 247 0.81 ( 0.54 - 1.22 )
134,699 to <757,550 135 / 150 1.41 ( 0.92 - 2.16 ) 183 / 209 1.29 ( 0.85 - 1.94 )

757,550+ 200 / 71 3.33 ( 2.10 - 5.28 ) 303 / 102 3.28 ( 2.12 - 5.07 )
GPX1 rs8179172 T/A never drinkers 116 / 270 1.00 (ref) 1 / 10 0.14 ( 0.02 - 1.25 ) 0.16

>0 to <134,699 205 / 450 0.73 ( 0.54 - 0.99 ) 4 / 16 0.44 ( 0.13 - 1.46 )
134,699 to <757,550 305 / 349 1.21 ( 0.88 - 1.65 ) 13 / 11 2.15 ( 0.85 - 5.44 )

757,550+ 475 / 160 3.10 ( 2.19 - 4.38 ) 30 / 13 2.40 ( 1.10 - 5.27 )
rs1800668 C/T never drinkers 56 / 146 1.00 (ref) 61 / 132 1.16 ( 0.73 - 1.85 ) 0.37

>0 to <134,699 97 / 222 0.76 ( 0.50 - 1.16 ) 112 / 243 0.85 ( 0.56 - 1.29 )
134,699 to <757,550 178 / 185 1.43 ( 0.94 - 2.16 ) 140 / 175 1.33 ( 0.87 - 2.04 )

757,550+ 272 / 95 3.23 ( 2.07 - 5.05 ) 233 / 77 3.75 ( 2.37 - 5.95 )
rs3811699 A/G never drinkers 55 / 142 1.00 (ref) 62 / 138 1.14 ( 0.72 - 1.82 ) 0.37

>0 to <134,699 95 / 216 0.76 ( 0.50 - 1.17 ) 114 / 250 0.85 ( 0.56 - 1.29 )
134,699 to <757,550 171 / 176 1.45 ( 0.95 - 2.21 ) 147 / 184 1.31 ( 0.86 - 2.01 )

757,550+ 258 / 91 3.21 ( 2.04 - 5.04 ) 247 / 82 3.71 ( 2.35 - 5.88 )
rs3448 C/T never drinkers 60 / 158 1.00 (ref) 57 / 122 1.27 ( 0.80 - 2.03 ) 0.32

>0 to <134,699 116 / 256 0.84 ( 0.56 - 1.26 ) 93 / 210 0.84 ( 0.55 - 1.28 )
134,699 to <757,550 157 / 192 1.35 ( 0.89 - 2.03 ) 161 / 168 1.55 ( 1.03 - 2.34 )

757,550+ 273 / 105 3.34 ( 2.17 - 5.14 ) 232 / 68 3.93 ( 2.49 - 6.22 )
GPX2 rs11623705 G/T never drinkers 86 / 232 1.00 (ref) 31 / 48 1.58 ( 0.90 - 2.77 ) -0.76

>0 to <134,699 166 / 367 0.83 ( 0.59 - 1.17 ) 43 / 99 0.83 ( 0.52 - 1.32 )
134,699 to <757,550 263 / 292 1.47 ( 1.05 - 2.08 ) 55 / 68 1.24 ( 0.77 - 2.01 )

757,550+ 421 / 142 3.60 ( 2.47 - 5.24 ) 84 / 31 3.41 ( 2.00 - 5.84 )
rs2412065 G/C never drinkers 67 / 158 1.00 (ref) 50 / 122 1.00 ( 0.62 - 1.60 ) 0.06

>0 to <134,699 126 / 251 0.85 ( 0.57 - 1.26 ) 83 / 215 0.65 ( 0.43 - 0.99 )
134,699 to <757,550 186 / 204 1.32 ( 0.89 - 1.96 ) 132 / 156 1.25 ( 0.82 - 1.90 )

757,550+ 278 / 99 3.18 ( 2.07 - 4.88 ) 227 / 74 3.24 ( 2.06 - 5.10 )
rs2737844 C/T never drinkers 58 / 117 1.00 (ref) 59 / 161 0.76 ( 0.48 - 1.22 ) 0.03

>0 to <134,699 100 / 173 0.84 ( 0.54 - 1.30 ) 108 / 292 0.54 ( 0.35 - 0.82 )
134,699 to <757,550 129 / 147 1.09 ( 0.70 - 1.70 ) 188 / 211 1.12 ( 0.73 - 1.72 )

757,550+ 180 / 62 2.84 ( 1.73 - 4.65 ) 322 / 111 2.63 ( 1.66 - 4.16 )
GPX4 rs757229 G/C never drinkers 35 / 83 1.00 (ref) 82 / 197 0.92 ( 0.55 - 1.52 ) 0.09

>0 to <134,699 58 / 114 0.74 ( 0.43 - 1.28 ) 150 / 352 0.69 ( 0.43 - 1.12 )
134,699 to <757,550 67 / 109 0.90 ( 0.52 - 1.56 ) 251 / 251 1.34 ( 0.83 - 2.17 )
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757,550+ 116 / 40 3.05 ( 1.68 - 5.54 ) 389 / 132 3.05 ( 1.84 - 5.06 )
SOD1 rs11910115 A/C never drinkers 116 / 271 1.00 (ref) 1 / 9 0.31 ( 0.03 - 2.91 ) 2.22

>0 to <134,699 205 / 441 0.76 ( 0.56 - 1.04 ) 4 / 25 0.27 ( 0.08 - 0.92 )
134,699 to <757,550 299 / 340 1.27 ( 0.93 - 1.73 ) 19 / 20 1.33 ( 0.62 - 2.85 )

757,550+ 469 / 165 3.09 ( 2.19 - 4.35 ) 36 / 8 4.63 ( 1.94 - 11.06 )
rs4998557 G/A never drinkers 85 / 202 1.00 (ref) 32 / 78 0.91 ( 0.54 - 1.53 ) 1.51

>0 to <134,699 157 / 341 0.75 ( 0.53 - 1.07 ) 52 / 122 0.69 ( 0.44 - 1.09 )
134,699 to <757,550 208 / 258 1.15 ( 0.80 - 1.64 ) 110 / 102 1.53 ( 1.00 - 2.34 )

757,550+ 328 / 124 2.76 ( 1.87 - 4.08 ) 176 / 49 4.18 ( 2.60 - 6.72 )
rs10432782 T/G never drinkers 86 / 208 1.00 (ref) 31 / 72 0.95 ( 0.56 - 1.61 ) 1.15

>0 to <134,699 162 / 351 0.77 ( 0.55 - 1.09 ) 47 / 115 0.65 ( 0.41 - 1.04 )
134,699 to <757,550 222 / 267 1.20 ( 0.84 - 1.70 ) 96 / 93 1.48 ( 0.96 - 2.27 )

757,550+ 350 / 128 2.91 ( 1.98 - 4.27 ) 154 / 44 4.00 ( 2.48 - 6.46 )
rs2070424 A/G never drinkers 95 / 238 1.00 (ref) 22 / 42 1.17 ( 0.63 - 2.17 ) 0.01

>0 to <134,699 181 / 402 0.78 ( 0.56 - 1.08 ) 28 / 64 0.76 ( 0.44 - 1.30 )
134,699 to <757,550 260 / 302 1.31 ( 0.94 - 1.83 ) 58 / 58 1.41 ( 0.87 - 2.30 )

757,550+ 407 139 3.27 ( 2.27 - 4.72 ) 98 / 34 3.45 ( 2.06 - 5.79 )
rs1041740 C/T never drinkers 56 / 156 1.00 (ref) 61 / 124 1.43 ( 0.89 - 2.28 ) -1.09

>0 to <134,699 104 / 239 0.89 ( 0.59 - 1.35 ) 105 / 227 0.90 ( 0.59 - 1.37 )
134,699 to <757,550 193 / 191 1.71 ( 1.13 - 2.59 ) 125 / 169 1.33 ( 0.86 - 2.05 )

757,550+ 291 / 94 4.15 ( 2.65 - 6.49 ) 214 / 79 3.49 ( 2.21 - 5.52 )
SOD2 rs4342445 G/A never drinkers 55 / 177 1.00 (ref) 62 / 103 2.14 ( 1.33 - 3.44 ) 0.27

>0 to <134,699 135 / 296 1.10 ( 0.74 - 1.63 ) 74 / 170 0.96 ( 0.62 - 1.49 )
134,699 to <757,550 184 / 227 1.61 ( 1.07 - 2.40 ) 134 / 133 2.11 ( 1.38 - 3.24 )

757,550+ 331 / 123 4.04 ( 2.65 - 6.17 ) 174 / 50 5.45 ( 3.33 - 8.90 )
rs2842980 A/T never drinkers 74 / 169 1.00 (ref) 43 / 111 0.87 ( 0.54 - 1.41 ) 0.89

>0 to <134,699 121 / 282 0.69 ( 0.47 - 1.01 ) 88 / 184 0.76 ( 0.50 - 1.14 )
134,699 to <757,550 196 / 222 1.27 ( 0.87 - 1.87 ) 122 / 138 1.15 ( 0.76 - 1.74 )

757,550+ 291 / 108 2.77 ( 1.84 - 4.19 ) 214 / 65 3.54 ( 2.25 - 5.56 )
rs8031 T/A never drinkers 38 / 75 1.00 (ref) 79 / 205 0.84 ( 0.51 - 1.40 ) -0.97

>0 to <134,699 59 / 139 0.58 ( 0.34 - 0.98 ) 150 / 327 0.71 ( 0.44 - 1.15 )
134,699 to <757,550 101 / 113 1.14 ( 0.68 - 1.93 ) 217 / 247 1.15 ( 0.71 - 1.86 )

757,550+ 155 / 40 3.73 ( 2.08 - 6.71 ) 350 / 133 2.61 ( 1.59 - 4.30 )
rs5746134 C/T never drinkers 113 / 264 1.00 (ref) 4 / 16 0.55 ( 0.16 - 1.87 ) 4.29

>0 to <134,699 201 / 447 0.73 ( 0.54 - 0.99 ) 8 / 19 0.80 ( 0.31 - 2.08 )
134,699 to <757,550 299 / 342 1.25 ( 0.91 - 1.71 ) 19 / 18 1.47 ( 0.68 - 3.18 )

757,550+ 446 / 163 2.96 ( 2.09 - 4.19 ) 59 / 10 6.80 ( 3.03 - 15.26 )
rs2758331 C/A never drinkers 38 / 82 1.00 (ref) 79 / 198 0.92 ( 0.55 - 1.52 ) -1.51

>0 to <134,699 60 / 151 0.58 ( 0.34 - 0.98 ) 149 / 315 0.78 ( 0.48 - 1.24 )
134,699 to <757,550 108 / 127 1.14 ( 0.68 - 1.90 ) 210 / 233 1.26 ( 0.78 - 2.03 )

757,550+ 179 / 44 4.23 ( 2.39 - 7.50 ) 326 / 129 2.64 ( 1.61 - 4.34 )

c ICRs were calculated using cancer odds ratios of subjects in three categories: (1) the highest drinking category and no minor allele (i.e., those singly exposed to drinking only -- OR01); (2) never-
drinkers with at least one minor allele (i.e., those singly exposed to only the variant allele -- OR10); and (3) subjects in the highest drinking category and at least one minor allele (i.e., those doubly 
exposed to both alcohol and the variant allele -- OR11), compared to never-drinkers homozygous for the major allele (i.e., the referent group that was not exposed to either the variant allele or to 
drinking -- OR00 = 1.0). ICRs statistically different from 0 indicate departure from additive interaction. p-values for each ICR (not shown) were Bonferroni-adjusted for 64 statistical tests.

b Cases and controls do not sum to 1227 and 1325, respectively, because (1) 4 cases and 3 controls are missing information on duration of cigarette smoking, (2) 77 cases and 45 controls are 
missing information on lifetime alcohol consumption, and (3) a few subjects are missing genotype information for some SNPs

a Conditional logistic regression models conditioned on sex, race, and age category (age in years: 20-49, 50-54, 55-59, 60-64, 65-69, 70-74, 75-80), and adjusted for continous duration of smoking in 
years (rounded to nearest year)
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