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ABSTRACT
YICHAO WU: Probability Approximations with Applications in

Computational Finance and Computational Biology.
(Under the direction of Chuanshu Ji and Harry Hurd.)

In this work, certain probability approximation schemes are applied to two different

contexts: one under stochastic volatility models in financial econometrics and the other

about the hierarchical clustering of directional data on the unit (hyper)sphere. In both

cases, approximations play an important role in improving the computational efficiency.

In the first part, we study stochastic volatility models. As an indispensable part of

Bayesian inference using MCMC, we need to compute the option prices for each iteration

at each time. To facilitate the computation, an approximation scheme is proposed for

numerical computation of the option prices based on a central limit theorem, and some

error bounds for the approximations are obtained.

The second part of the work originates from studying microarray data. After pre-

processing the microarray data, each gene is represented by a unit vector. To study their

patterns, we adopt hierarchical clustering and introduce the idea of linking by the size of

a spherical cap. In this way, each cluster is represented by a spherical cap. By studying

the distribution of direction data on the unit (hyper)sphere, we can assess the significance

of observing a big cluster using Poisson approximations.
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Chapter 1

Introduction

In this work, certain probability approximation schemes are applied to two different con-

texts: one under stochastic volatility models in financial econometrics and the other about

the hierarchical clustering of directional data on the unit (hyper)sphere. In both cases,

approximations play an important role in improving the computational efficiency.

More explicitly, in Chapter 2 we study stochastic volatility models. As an indispens-

able part of Bayesian inference using MCMC, we need to compute the option prices for

each iteration at each time. To facilitate the computation, an approximation scheme is

proposed for numerical computation of the option prices based on a central limit theorem,

and some error bounds for the approximations are obtained.

The second part of this work originates from the study of microarray data. It is very

common for biologists to ask the following questions: how does a gene react to different

experimental conditions and what is the pattern? To answer these questions, in chapter

3 we study directional data on the unit (hyper)sphere, obtained from pre-processing the

microarray data. We introduce the idea of hierarchical clustering based on the size of a

spherical cap. Under this framework, each cluster is represented by a mean direction and

a central angle that defines the boundary of a spherical cap, and those genes falling into

the same cluster respond in a similar pattern to different experimental conditions. Hence,

by studying the distribution of directional data, we can assess the significance of observing



a big cluster. Here in order to calculate the p-value, we adopt the Poisson approximation

method.
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Chapter 2

Error Bounds for Gaussian

Approximations of Option Prices in

Stochastic Volatility Models

2.1 Introduction

Stochastic volatility (SV) models become an important model family that extend the

Black-Scholes (BS) theory in financial economics and adapt it to many applications in

more realistic financial markets, such as option pricing and risk management. See the

review paper by Ghysels, Harvey, and Renault (1996), and the references therein. The

success in this area depends on our capability of calibrating SV models using financial

data from two sources: underlying asset returns and option prices. Adding option data

to this scenario creates a significant challenge for the following reason. In a SV model, a

volatility time series consists of latent variables ht, t = 0, 1, . . . , T , where ht is a function

of the time-t volatility through a logarithmic or power transformation. Calibration of

the series {ht} and the parameter θ (often multidimensional) involved in a SV model

is an indirect inference problem, requiring some Monte Carlo based algorithms, such as

efficient methods of moments (EMM) or Markov chain Monte Carlo (MCMC). There is



an extensive literature in calibration of SV models using both returns and option data.

Here we only mention a few. See Chernov and Ghysels (2000), Pan (2002) for the EMM

approach, and Eraker (2004), Ge (2000), Jones (2003), Cheng, Gallant, Ji, and Lee (2005)

for the MCMC approach. Those algorithms yield updated values θ(m) and h
(m)
t , t =

0, 1, . . . , T in the mth iteration, m = 1, . . . , M . In particular, as an important part of the

mth iteration in fitting a SV model, an option price f
(m)
t is calculated by using a pricing

formula based on the SV model with the current parameter value θ(m−1) and volatility

value h
(m−1)
t , and compared to the observed option price Ct. The comparison will lead

to the adjustment of h
(m−1)
t to h

(m)
t , and also the updating of θ(m−1) to θ(m) based on

h
(m)
t , t = 0, 1, . . . , T . Notice that a general method of computing f

(m)
t is to perform high-

dimensional numerical integration — treated as a conditional expectation over the space

of sample paths of future volatility, and this has to be done for every t and every m in

the algorithm. The required computational time quickly adds up with large values of T

(several hundred days) and M (typically more than 100, 000 iterations). So far, there have

been basically two ways to handle the computation in practice. A basic strategy is to use

“brute force” simulation, i.e. to generate a large number of “additional” sample paths

of future volatility based on which the Monte Carlo integration yields an approximation

to f
(m)
t . An alternative approach relies on the availability of closed-form option pricing

formulas which can avoid the aforementioned brute force numerical integration. However,

Heston’s model [see Heston (1993)] appears to be the only case beyond the original BS

setting that enjoys a closed-form solution. The intractability of the brute force calculation

and the limitation with closed-form pricing formulas present an urgent need for developing

new efficient computational methodology.

In this work, we present an approximation scheme for numerical computation of the

option price based on a central limit theorem (CLT), and provide some error bounds for

the approximations. The proposed Gaussian approximations promote a significant dimen-

sion reduction for numerical integration, from the space of volatility sample paths (with

4



dimensionality of several hundreds) to the sample space of bivariate Gaussian vectors.

The basic framework and main result are presented in Section 2.2. Section 2.3 outlines

the method for proving the main result along with all lemmas and propositions. Section

2.4 concludes. Appendix contains technical proofs.

2.2 Basic framework and main results

This section describes the SV models under objective and risk-neutral measures respec-

tively, sets forth option pricing formulas, and states the result of Gaussian approximations

for the option price with related error bounds.

2.2.1 SV Models

Let S = {St} denote a continuous-time process that describes the evolution of an asset

price. We presume that its logarithm follows the SV model:

yt = log(St), (2.1)

dyt = µ dt + eht/2
(√

1− ρ2 dW1t + ρ dW2t

)
, (2.2)

dht = (α + βht) dt + σ dW2t, (2.3)

where µ is a deterministic drift and W = {Wt} = {(W1t,W2t)} is a standard 2D Wiener

process defined on a probability space (Ω,F , P ). Let {Ft : 0 ≤ t ≤ T} denote the filtration

generated by W . The parameter ρ is the correlation of the asset return and the volatility

factor. This model is analogous to the discrete-time logarithmic first order autoregressive

[AR(1)] SV model in Jacquier, Polson, and Rossi (2003).

Equivalent martingale measures

To price an option on S we follow a standard approach: We assume no arbitrage and

specify two risk premia processes. In doing so, we follow established convention [Pan
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(2002), Jones (2003), Polson and Stroud (2003), Eraker (2004), etc.] and specify the risk

premia such that stochastic differential equations (SDEs) describing the returns process

have the same functional form under the physical and risk neutral measures. These two

risk premia processes are

νt = ν1 + ν2ht, (2.4)

λt =
1√

1− ρ2

{
e−ht/2

[
(µ− r) + eht/2

]− ρνt

}
, (2.5)

where r is the short rate, presumed constant. Assuming E
[
exp

(∫ T

0
(λ2

u + ν2
u) du

)]
< ∞,

the risk neutral valuation principle as shown in Harrison and Kreps (1979) and Harrison

and Pliska (1981) implies that there exists an equivalent martingale measure Q such that

the time-t price of a contingent claim g(ST ) is expressed as EQ
[
e−r(T−t)g(ST ) |Ft

]
where

EQ(·) is the expectation operator under measure Q.

For the purpose of computing the above conditional expectation, the measure Q can

be expressed either as the Radon-Nikodým derivative with respect to the physical measure

P , which is

ξt =
dQ

dP

∣∣∣∣
Ft

= exp

(
−

∫ t

0

λu dW1u −
∫ t

0

νu dW2u − 1

2

∫ t

0

λ2
u du− 1

2

∫ t

0

ν2
u du

)
(2.6)

in this instance, or as SDEs representing the asset evolution under Q,

dSt = rSt dt + eht/2St

(√
1− ρ2 dWQ

1t + ρ dWQ
2t

)
, (2.7)

dht = [α− ν1σ + (β − ν2σ)ht] dt + σ dWQ
2t , (2.8)

where WQ = {(WQ
1t , W

Q
2t )} is a standard 2D Wiener process under Q, given by

WQ
1t = W1t +

∫ t

0

λudu (2.9)
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WQ
2t = W2t +

∫ t

0

νudu. (2.10)

2.2.2 European call options pricing formulas and their discrete

approximations

Let θ = {µ, α, β, σ, ρ} and ν = {ν1, ν2} denote the parameters of the SV model described in

(2.1)–(2.3) and (2.7)–(2.8). Following Romano and Touzi (1997), for maturity (expiration)

date T and strike price K, an European call option price can be expressed as

C(St, ht, θ, ν) = EQ
[
CBS

(
St eZt,T , V t,T , r,K, T − t

) |Ft

]
, (2.11)

Zt,T = ρ

∫ T

t

ehu/2 dWQ
2u −

1

2
ρ2

∫ T

t

ehu du, (2.12)

V t,T =
1− ρ2

T − t

∫ T

t

ehu du, (2.13)

where the integration is taken over future volatility and CBS(·) is the Black-Scholes call

option pricing formula with the expression

CBS (s, v, r, k, d) (2.14)

= sΦ

(
log (s/k) + (r + v2/2) d

v
√

d

)
− ke−rdΦ

(
log (s/k) + (r + v2/2) d

v
√

d
− v

√
d

)
,

where Φ is the standard normal cumulative distribution function. Notice that with a

constant volatility and ρ = 0, (2.11) returns to the original Black-Scholes call option

price. A put option can be priced using the parity relation between a put (Pt) and a call

(Ct), which is Pt = Ct − St + K e−r(T−t).

An obvious (and usual) approach to computing the integrals in (2.11)–(2.13) is to

discretize (2.7)–(2.8), generate sample paths according to the recursions implied by the
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discretization, evaluate (2.12)–(2.13) over each sample path, and average. Indeed, this is

how we check the accuracy of our proposed Gaussian approximations to (2.11). For most

purposes, this straightforward approach is too computationally intensive to be practicable.

Therefore, a Gaussian approximation scheme was proposed in Cheng, Gallant, Ji, and Lee

(2005) as a viable alternative approach.

Letting ∆ be a small time increment, the discretizion of the volatility process under

the risk-neutral measure Q, i.e. (2.8), by means of an Euler scheme [See Kloeden and

Platen (1992), p341] yields the recursion

ht+∆ = a + b ht + c εt+∆, (2.15)

where for each t, the innovation εt+∆ ∼ N(0, 1) is independent of the spot volatility

ht (which summarizes the past history up to time t due to the Markovian property),

and also independent of the three parameters: the intercept a = (α − ν1σ)∆, the slope

b = 1 + (β − ν2σ)∆, and the diffusion coefficient c =
√

∆σ. Notice that our notation

departs from convention because we have incorporated ∆ into the expressions for a, b,

and c in order to simplify later formulas. Let n = (T − t)∆−1. Our task is to derive the

asymptotic joint distribution of the two sums

Un =
n−1∑
j=0

eht+j∆ , (2.16)

Vn =
n−1∑
j=0

eht+j∆/2 εt+(j+1)∆, (2.17)

considering the approximations of the two integrals, Un ∆ ≈ ∫ T

t
ehu du and Vn

√
∆ ≈

∫ T

t
ehu/2 dWQ

2u, that appear in (2.12)–(2.13).

Before stating our main result, here is an outline for how the proposed Gaussian

approximation scheme works. The problem of interest is to compute the option price in

(2.11)–(2.13). Our proposed method includes several steps and various approximations.
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Step 1 Write

C(St, ht, θ, ν) = EQ
[
CBS

(
St eZt,T , V t,T , r,K, T − t

) |Ft

]

≈ Et G̃ (Un, Vn) (2.18)

for some function G̃, where “≈” reflects the approximation by Euler discretization

of the risk-neutral dynamics of (2.7)–(2.8) using small ∆.

Step 2 Write

Et G̃ (Un, Vn) ≈ Et G̃
(
(V artUn)1/2U + EtUn, (V artVn)1/2V + EtVn

)
, (2.19)

where “≈” denotes a practical use of the Gaussian approximations that should be

justified by Theorem 1 and Theorem 2 (in section 2.2.3) with fixed ∆ and large n.

Here “practical use” and “justification” are two related but different aspects. In

particular, the function G in Theorem 2 is bounded and its expression does not

depend on n, while the function G̃ need not be bounded and its expression does

involve n.

Step 3 Compute Et G̃
(
(V artUn)1/2U + EtUn, (V artVn)1/2V + EtVn

)
by simulating

the 2D Gaussian vector (U, V ) or using some numerical integration methods (not

Monte Carlo) such as Gaussian quadratures.

2.2.3 Main result

For completeness we quote Theorem 1 [from Cheng, Gallant, Ji, and Lee (2005)] which

concerns a CLT for (Un, Vn) and gives explicit expressions for the asymptotic conditional

means, variances and covariance. Theorem 2, as a refinement of Theorem 1, provides an

upper bound for the errors incurred when applying Theorem 1 to the calculation of the

9



European call option price C(St, ht, θ, ν).

For fixed t, let Et( · ), V art( · ) and Covt( · ) denote the conditional expectation,

variance and covariance operators respectively, given ht and under Q.

Theorem 1 Assume |b| < 1. Fix t and an arbitrary initial state ht. As n → ∞, the

limiting distribution of n−1/2 (Un − EtUn, Vn − EtVn) conditioning on ht is a bivariate

normal distribution with mean (0, 0) and covariance matrix A =




a11 a12

a21 a22


 provided

a11a22 > a2
12, with

a11 = lim
n→∞

n−1V art(Un),

a12 = a21 = lim
n→∞

n−1Covt(Un, Vn),

a22 = lim
n→∞

n−1V art(Vn);

where

EtUn =
n−1∑
i=0

exp

[
a(1− bi)

1− b
+ biht +

c2(1− b2i)

2(1− b2)

]
; (2.20)

EtVn = 0; (2.21)

V art(Un) =
n−1∑
i=0

V art(e
ht+i∆) + 2

n−2∑
i=0

n−1∑
j=i+1

Covt(e
ht+i∆ , eht+j∆); (2.22)

Covt(Un, Vn) =
n−1∑
i=1

i−1∑
j=0

c bi−j−1 exp

[(
bi + bj/2

)
ht +

a (3/2− bi − bj/2)

1− b
(2.23)

+
c2 (5/4− b2i − b2j/4 + bi−j − bi+j)

2(1− b2)

]
;

V art(Vn) = EtUn; (2.24)

with

10



V art(e
ht+i∆)

= exp

(
2biht +

2a(1− bi)

1− b
+

c2(1− b2i)

1− b2

)[
exp

(
c2(1− b2i)

1− b2

)
− 1

]
,

Covt(e
ht+i∆ , eht+j∆)

= exp

(
(bi + bj)ht +

a(2− bi − bj)

1− b
+

c2(2− b2i − b2j)

2(1− b2)

)

·
[
exp

(
c2(bj−i − bj+i)

1− b2

)
− 1

]
.

Note: Without loss of generality, we set t = 0 and define the normalized sums

U (0)
n = (V ar0Un)−1/2(Un − E0Un)

V (0)
n = (V ar0Vn)−1/2(Vn − E0Vn).

It is equivalent to Theorem 1 that
(
U

(0)
n , V

(0)
n

)
conditioning on h0 converges to (U, V ) in

distribution as n → ∞, where (U, V ) follows a bivariate normal distribution with mean

(0, 0) and covariance matrix




1 ρ0

ρ0 1


. Note that ρ0 ∈ [−1, 1] does not depend on the

initial state h0 since {ht} is an ergodic Markov chain. But h0 will affect the convergence

rate and error bounds given in the following theorem.

Theorem 2 Fix h0 and ∆, and assume |b| < 1. For any bounded C2 function G(·, ·) :

IR2 → IR, there exist constants B > 0, δ ∈ (0, 1) such that

∣∣E0G
(
U (0)

n , V (0)
n

) − E0G(U, V )
∣∣ ≤ B n−δ (2.25)

for all sufficiently large n.

11



Theorem 1 follows from a CLT for strong mixing sequences. The calculation needed

for the conditional means, variances and covariance, although tedious, is mostly straight-

forward. However, the argument required for Theorem 2 is much more challenging. In the

end, the upper bounds (represented by the coefficient B and exponent δ) we derived are

not desirably sharp. The numerical range of δ is determined by a number of constraints in

Lemma 3. Putting those constraints in a simple numerical optimization algorithm yields

δ ≈ 0.07 — an unsatisfactory small value. The limitation seems partly due to the method

for proving adopted in this work. See Section 2.3 for the discussion on related method

for proving. Nevertheless, the numerical studies conducted in Cheng, Gallant, Ji, and

Lee (2005) have demonstrated great promise with the proposed Gaussian approximation

scheme, i.e. the actual errors incurred by using the approximations are quite small, and

in the meantime, the computational intensity is significantly reduced.

2.3 Methods

To derive upper bounds for
∣∣∣E0G

(
U

(0)
n , V

(0)
n

)
− E0G(U, V )

∣∣∣ is a classical problem in

probability. The required method is dictated by the structure of (Un, Vn). In our case,

(Un, Vn) is represented as an additive functional of the AR(1) process h. Since h is an

ergodic Markov chain, a preferred method is to apply the spectral theory of Markov

transition operators (or infinitesimal operators), i.e. the spectral gap usually provides

sharp upper bounds for the convergence rates. For arbitrary u, v ∈ IR, write uUn + vVn =
∑n−1

j=0 ξj where ξj = uehj∆ + vehj∆/2ε(j+1)∆. The difficulty is that each additive term ξj

involves not just a single component hj∆, but a pair h
(2)
j = (hj∆, h(j+1)∆) which also

forms a Markov chain. However, the transition probability operator Lh(2) for h(2) =

{h(2)
j , j = 0, 1, 2, ...} is not a (strict) contraction. More specifically, let Lh be the transition

probability operator associated with h and π the stationary distribution of h [we also

12



denote the density for π simply by π(x)]. Consider

λ = sup
‖Lh g‖
‖g‖ , (2.26)

where the sup is over all complex-valued functions g on IR with Eπg = 0, and ‖ ‖ is the

L2(IR, π) norm:

‖g‖2 =

∫

IR

|g(x)|2π(x)dx.

Under the assumption |b| < 1 in (2.15), the operator Lh is a contraction because λ < 1

in (2.26). Note that the Markov chain h(2) has the following properties:

(i) The state space is IR2 but the transition density fh(2)(·|(x, y)) has a 1D support, i.e.

given (x, y) ∈ IR2,

fh(2)((x′, y′)|(x, y)) =





fh(y
′|y) if x′ = y,

0 if x′ 6= y,

where fh(·|x) is the transition density for h.

(ii) h(2) is ergodic and has the unique stationary distribution π(2) with density π(2)(x, y) =

π(x)fh(y|x).

(iii) The transition probability operator Lh(2) is not a contraction. To verify this, let g

be a nonconstant function such that Eπg = 0. Define g(2)(x, y) = g(x) then g(2) is

a nonconstant function on IR2 and

Eπ(2)

g(2) = Eπg = 0;

13



and

Lh(2) g(2)(x, y) =

∫

IR

g(2)(y, z) fh(2)((y, z)|(x, y)) dz

=

∫

IR

g(y) fh(z|y) dz

= g(y).

Hence

‖g(2)‖2 =

∫

IR2

|g(2)(x, y)|2π(x)fh(y|x) dxdy

=

∫

IR

|g(x)|2π(x) dx

=

∫

IR

|g(y)|2π(y) dy

=

∫

IR2

|g(y)|2π(x)fh(y|x) dxdy

=

∫

IR2

|Lh(2) g(2)(x, y)|2π(x)fh(y|x) dxdy

= ‖Lh(2) g(2)‖2.

Thus the function g(2) is orthogonal to all constant functions, and not strictly con-

tracted by the operator Lh(2) .

An alternative approach, also the one adopted in this work, is based on the strong

mixing property of AR(1) processes. There is an extensive literature in CLT and related

convergence rates for stationary processes with mixing properties. Since the option price

is represented as a conditional expectation given the present asset price and relevant

information, the underlying AR(1) process is a non-stationary process starting from a

fixed initial value. We first consider the stationary case. Using the classical splitting

technique [often referred to as the “big-block-small-block” (BBSB) method], we derive
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error bounds for characteristic functions in Gaussian approximations and convert them

to error bounds for approximating option prices as bounded functionals. This part is a

modification of the results in Bhattacharya and Rao (1976), and in Reznik (1968). To

obtain error bounds for the ultimate non-stationary case, we apply the coupling method to

link the AR(1) process starting from a fixed state (the non-stationary case) to the AR(1)

process starting from its stationary distribution π (the stationary case). The exponential

mixing rate for AR(1) processes implies an exponential tail probability for the coupling

time. The coupling time is defined rigorously for Ornstein-Uhlenbeck (O-U) processes

[see Øksendal (1995) for general definition] — a continuous-time counterpart of AR(1)

processes. The arguments in this part move back and forth between AR(1) processes and

O-U processes at our convenience. This approach often reduces the sharpness of error

bounds due to the limitation that the sizes of big/small blocks in the splitting technique

increase with n, which prevents us from utilizing detailed information within each block

in the asymptotics.

Here is a summary of lemmas and propositions that lead to Theorem 2.

• Lemma 1: an exponential mixing rate for AR(1) process

• Lemma 2: asymptotic first and second moments of (Un, Vn) (the stationary case)

• Lemma 3: an error bound for approximating the characteristic function of the stan-

dardized sums (U∗
n, V ∗

n ) (the stationary case)

• Proposition 1: an error bound for approximating the call option price expressed as an

expectation of bounded function of (U∗
n, V ∗

n ) (the stationary case)

• Lemma 4: an exponential tail probability of the crossing time (or coupling time) for

two AR(1) processes

• Theorem 2: an error bound for approximating the call option price expressed as an

expectation of bounded function of (U
(0)
n , V

(0)
n ) (the non-stationary case)
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Notation: Discretizing h with time increment ∆ and observing h only at t = k∆, k =

0, 1, ..., n, we simply write hk for hk∆, hence the AR(1) process (2.15) is expressed as

hk+1 = a + b hk + c εk+1, k = 0, 1, ..., n. (2.27)

Let σ(X) denote the σ-field generated by random variable (or random vector) X; fX(·)
the density of X; fY |X(·|x) the conditional density of Y given X = x; and f(x; µ, σ) the

normal density for N(µ, σ).

Recall the definition of strong mixing given in Bradley (1986). Let {Xi, i = 0, 1, 2, . . .}
be a (discrete time) stochastic process, and Fn

m the σ-algebra generated by Xi, m ≤ i ≤ n.

{Xi} is said to be strong mixing with rate αn if

αn = sup
t≥0

sup
A∈Ft

0, B∈F∞t+n

|P (A ∩B)− P (A)P (B)| −→ 0

as n →∞.

Lemma 1 Assume |b| < 1. Then the AR(1) process h in (2.27) is strong mixing with an

exponential mixing rate,

α(n) < c1 e−b1n (2.28)

for some constant c1 > 0, where b1 = − log |b| > 0.

The following lemma is the stationary counterpart of Theorem 1 in which the initial

state h0 follows the stationary distribution π for h.

Lemma 2 Assume h0 ∼ N
(

a
1−b

, c2

1−b2

)
and |b| < 1. Let

Un =
n−1∑
j=0

ehj ,

Vn =
n−1∑
j=0

ehj/2εj+1.
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Then we have

EUn = n exp

[
a

1− b
+

c2

2(1− b2)

]
; (2.29)

EVn = 0; (2.30)

V ar(Un) = exp

[
2a

1− b
+

c2

1− b2

]

[
n

(
exp(

c2

1− b2
)− 1

)
+ 2

n−1∑
j=1

(n− j)

(
exp(

c2bj

1− b2
)− 1

)]
;(2.31)

V ar(Vn) = EUn; (2.32)

Cov(Un, Vn) = exp

[
3a

2(1− b)
+

5c2

8(1− b2)

]

n−1∑
j=1

(n− j) c bj−1 exp

[
c2bj

2(1− b2)

]
. (2.33)

Hence

σ2
Un

= V ar(Un) = n σ2
U(1 + o(1)) = O(n), (2.34)

σ2
Vn

= V ar(Vn) = n σ2
V (1 + o(1)) = O(n), (2.35)

for some positive constants σU and σV as n →∞, and

lim
n→∞

corr (Un, Vn) = ρ0. (2.36)

Define the normalized sums

U∗
n = σ−1

Un

n−1∑
j=0

x′j, (2.37)

V ∗
n = σ−1

Vn

n−1∑
j=0

x′′j , (2.38)

where x′j = ehj − exp( a
1−b

+ c2

2(1−b2)
) and x′′j = ehj/2εj+1. The next lemma (Lemma 3)

concerns an error bound of the Gaussian approximation for the characteristic function of

(U∗
n, V ∗

n ) (with the Cramér-Wold device), which sets the stage for developing other error
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bounds that will eventually lead to the result of Theorem 2.

Lemma 3 Assume h0 ∼ N
(

a
1−b

, c2

1−b2

)
, |b| < 1 in (2.27). For

√
u2 + v2 ≤ n% with some

% ∈ (0, 1) and i =
√−1,

∣∣∣∣E exp[i (uU∗
n + vV ∗

n )]− exp

[−1

2
(u2 + 2ρ0uv + v2)

]∣∣∣∣

= O(kα(q)) + exp

[−1

2
(u2 + 2ρ0uv + v2)

]

·
[
(u2 + v2) O(n−ε) + (|u|+ |v|)3 O(n(1+2δ2)( 1

2
+ε)− 3

2
+ 1

2
−ε)

]

+
√

O(kα(q)) + O((u + v)2n−2ε) + O((u + v)3nδ3−2δ3ε−2ε−1/2), (2.39)

where ε ∈ (0, 1/2), δ2 ∈ (0, 1), δ3 ∈ (0, 1) and % ∈ (0, 1) satisfy

2% + 1/2 + ε− 1 < 0

3% + (1 + 2δ2)(1/2 + ε)− 3/2 < 0

2%− 1/2− ε < 0

3% + (1 + 2δ3)(1/2− ε)− 3/2 < 0.

To convert error bounds for characteristic functions to error bounds for bounded con-

tinuous functionals of cdf’s, we extend the arguments given in Bhattacharya and Rao

(1976) for the iid case to the case of strong mixing sequences.

First, we state a basic result in Fourier analysis. For any f ∈ L1(IR2), denote its

Fourier transform by

f̂(u, v) =

∫

IR2

ei(ux1+vx2)f(x1, x2) dx1dx2, (u, v) ∈ IR2.

Let K(·) be a probability measure on IR2 whose density k(·) is given by

k(x) = ga′,4(x1) ga′,4(x2), (2.40)
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where x = (x1, x2), a′ = 2π−1/325/6 and ga′,4(y) = 3a′
2π

( sin a′y
a′y )4 with y ∈ IR. Note that

K̂(u, v) = ĝa′,4(u) ĝa′,4(v) = 0

if (u, v) /∈ [−4a′, 4a′]2 = {(u, v) : |u| ≤ 4a′, |v| ≤ 4a′},

where (u, v) ∈ IR2. And

K({x : |x| ≥ 1}) ≤ 6a′

π

∫ ∞

√
2/2

(
sin a′y

a′y

)4

dy ≤ 1/8.

Hence

K({x : |x| < 1}) ≥ 7/8. (2.41)

For function g and ε > 0, define

ωg(A) = sup{|g(x)− g(y)| : x, y ∈ A} where A ⊂ IR2,

ω̄g(ε : µ) =

∫
ωg(B(x, ε))µ(dx) where B(x, ε) = {y : |y − x| ≤ ε},

ω∗g(ε : µ) = sup{ω̄gy(ε : µ) : y ∈ IR2}

where µ is a finite measure and gy(x) = g(y + x).

Proposition 1 Assume h0 ∼ N
(

a
1−b

, c2

1−b2

)
, |b| < 1 in (2.27), and g(·, ·) : IR2 → IR

is a bounded C2 function with bounded first-order derivatives. Let Qn denote the cdf for

(U∗
n, V ∗

n ) and Φ(2) the (limiting) cdf for (U, V ). Then we have

|Eg(U∗
n, V ∗

n )− Eg(U, V )|

=

∣∣∣∣
∫

IR2

g d(Qn − Φ(2))

∣∣∣∣
≤ O(n4%−ε) + O(n2%+(1+2δ2)( 1

2
+ε)− 3

2
+ 1

2
−ε)

+ O(n7%/2+(δ3−2δ3ε−2ε−1/2)/2) + O(n−γ2) + O(n−%) + ω∗g(8
√

2a′n−% : Φ(2)) (2.42)
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where a′ = 2π−1/325/6, ε ∈ (0, 1/2), δ2 ∈ (0, 1), δ3 ∈ (0, 1), % ∈ (0, 1) and γ2 ∈ (0, 1)

[taken from Lemma 1 in Reznik (1968)] satisfy

2% + 1/2 + ε− 1 < 0

3% + (1 + 2δ2)(1/2 + ε)− 3/2 < 0

2%− 1/2− ε < 0

3% + (1 + 2δ3)(1/2− ε)− 3/2 < 0.

Having obtained the error bounds for the stationary case, we will consider the non-

stationary case in which the initial state h0 in h is arbitrarily given. The method of

coupling will allow us to make connections between the two cases. For convenience, we

will move back and forth between AR(1) time series and their continuous-time counterpart

— O-U processes. Note that the solution of SDE (2.8) is an O-U process. We assume

β − ν2σ < 0 which is consistent with the assumption |b| < 1 in the discrete-time AR(1)

model (2.15) or (2.27).

Lemma 4 Suppose both h(1) and h(π) are embedded in the same (enlarged) probability

space. They follow the same dynamics (2.15), driven by two independent innovation

processes [both consisting of iid N(0, 1) components]. Let h(1) start from an arbitrary

initial value h
(1)
0 = z1, while h

(π)
0 ∼ π, where π is the stationary distribution N

(
a

1−b
, c2

1−b2

)
.

Define the crossing time of these two chains by

τ(z1) = inf{k ≥ 1 : sign(h
(π)
k − h

(1)
k ) 6= sign(h

(π)
0 − z1)}. (2.43)

Then for sufficiently large n, we have

P (τ(z1) > n) ≤ c1 exp(−c2n
1/2−δ1) (2.44)
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where c2 = − log(min(|b| , Φ(1))), Φ is the cdf of N(0, 1), c1, δ1 are some positive con-

stants, and δ1 can be arbitrarily small.

Using the same notation with subscript t ≥ 0, let {h(1)
t } and {h(π)

t } be two independent

(continuous-time) O-U processes that satisfy the same SDE (2.8) but have different initial

states: h
(1)
0 = z1, and h

(π)
0 ∼ N

(
a

1−b
, c2

1−b2

)
.

Definition 1 Define the coupling time

Tc(h
(1), h(π)) = inf{t ≥ 0 : h

(1)
t = h

(π)
t }; (2.45)

and the coupled process h
(c)
t (the superscript “c” stands for coupling)

h
(c)
t =





h
(1)
t t < Tc(h

(1), h(π))

h
(π)
t t ≥ Tc(h

(1), h(π)).

The following connection between the coupling time Tc(h
(1), h(π)) and the crossing time

τ(h
(1)
0 ) is obvious:

Tc(h
(1), h(π)) ≤ τ(h

(1)
0 ) ∆. (2.46)

Note that {h(c)
t } and {h(1)

t } have the same distribution, so do their discretized versions.

In fact, {h(c)
t } and {h(1)

t } can be considered versions of the same process in the enlarged

probability space. See appendix for proofs.

2.4 Conclusion

In this chapter, we have obtained an upper bound for polynomial convergence rates of the

proposed Gaussian approximation scheme. The argument we adopted limits the sharpness

of the derived bound. More specifically, the discrete sums used to approximate the option

price integrals involve a two-step Markov chain whose spectral gap is zero. Hence the

21



preferred method of spectral analysis for the Markov transition probability operator does

not apply. Instead, we resort to the “big-block-small-block” splitting technique to deal

with functionals of the underlying strong mixing processes.
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Chapter 3

Clustering of Directional Data (with

application to microarray data)

3.1 Microarrays and clustering

Humans have 20,000 to 25,000 genes (see Stein (2004)), each of which consists of a se-

quence of bases. These bases are the building blocks of DNA, which is often referred to as

the molecule of heredity as it is responsible for the genetic propagation of most inherited

traits. There are many techniques to study DNA. Among these, one of the most advanced

techniques is the gene microarray, which measures the degree to which various genes are

“expressed” in a sample. Recently, we have seen explosive use of DNA microarray in

biological and medical research. Its application includes studying complex disease at the

molecular level, detecting genes responsible for some clinical outcomes and many others.

By analyzing the changes in gene expression, scientists can study how cells respond to

a disease or some external environmental challenge. But it is well known that microarrays

produce overwhelming multivariate data. For example, the Affymetrix HGU133plus array

contains 54,675 probe sets, representing 24,192 genes. Due to the size of the data, its

analysis can be very complicated and thereby statistics plays an important role. The

exact method that the analyst adopts depends much on the design of the experiment



being analyzed. Fold change (studying the ratio of expression of treatment condition over

control) and relatively straightforward statistical analysis are appropriate in the case that

there are only two samples (control and experiment) being compared. The analysis can

get much more complex when there are more than two conditions. In this case, the same

approach can be adopted pairwise, but more advanced multivariate analysis, clustering,

can give more information.

For the huge datasets produced by DNA microarray, it is desirable to perform some

sort of exploratory data analysis to study the responde pattern of gens with respect to

experimental conditions. Clustering, one of the most important unsupervised learning

methods, is very appropriate for this purpose. Its ultimate goal is to find a structure (not

known a priori) in a set of unlabeled objects (sometimes called individuals, cases, data

rows or observations) by forming clusters. These clusters are formed in such a way that

the objects within a cluster are more similar to each other than objects assigned to other

clusters. Hence clustering microarray data can help us to identify groups of genes that

respond in a similar pattern to the assorted experimental conditions, see Eisen, Spellman,

Brown, and Botstein (1998).

3.2 Introduction to clustering

Typically, in the clustering setting, we have n objects xi, i = 1, 2, · · · , n and each object

xi can be represented by a row vector in Rp, i.e. xi = (xi1, xi2, · · · , xip). Putting all

together, we have a data matrix X of size n × p, each row corresponding to an object.

As an unsupervised learning, clustering aims at partitioning the objects into homogenous

groups. In fact, there are many clustering methods, and they can be classified as either

partitioning methods or hierarchical methods.

In partitioning methods, we assume that there are a fixed number of clusters and

want to assign each object into a cluster according to some criteria (say to minimize the
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total within-cluster dissimilarity). They include K-means MacQueen (1967), K-medoids

Kaufman and Rousseeuw (1990), and Self-organizing maps Kohonen (1990). On the other

hand, hierarchical clustering does not assign all the objects into clusters together in a

single step. Instead, it proceeds stagewise producing a nested sequence of partitions, each

of which corresponds to a different number of clusters. Technically, hierarchical clustering

can be further divided into “agglomerative” (also known as bottom-up method), meaning

that clusters are merged, and “divisive” (top-down method), in which each stage involves

splitting one or more groups. Here we are going to focus on more popular agglomerative

hierarchical clustering.

Agglomerative hierarchical clustering produces a nested sequence of partitions of the

objects: Pn, Pn−1, · · · , P1. In particular, the first partition Pn, at the beginning, consists

of n single-object clusters, and the last one P1, in the end, is exactly a single cluster

containing all the n objects. At each stage, the method merges together the two clusters

which are closest together or most similar to each other. It is the so called linkage method.

Next, to measure the closeness between object(s) and cluster(s), we introduce dissimi-

larity distance and linkage. They are two of the most fundamental concepts in hierarchical

clustering.

3.2.1 Dissimilarity Measure

There are many measures of dissimilarity appropriate for clustering. Here we give a brief

list of the most commonly used ones. (Remark that any (semi-)metric d(x,y) can serve

as a dissimilarity measure.)

• Euclidean distance

d(xi,xj) =‖ xi − xj ‖,

where ‖ x ‖= √∑p
k=1 x2

k denotes the usual norm of the vector x = (x1, x2, · · · , xp).
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• Chebychev distance

d(xi,xj) = max{|xik − xjk| , k = 1, 2, · · · , p}.

• City block or Manhattan distance

d(xi,xj) =

p∑

k=1

|xik − xjk| .

• Cosine distance

d(xi,xj) = 1− 〈xi,xj〉
‖ xi ‖‖ xj ‖ ,

where 〈xi,xj〉 =

p∑

k=1

xikxjk denotes the inner product of two vectors xi and xj, and

‖ xi ‖=
√
〈xi,xi〉. Here it is worthwhile to point out that the cosine distance is a

scale invariant distance measure, i.e., d(axi, bxj) = d(xi,xj), for any a, b > 0. More

on this later.

• Correlation distance

d(xi,xj) = 1− 〈xi − x̄i,xj − x̄j〉
‖ xi − x̄i ‖‖ xj − x̄j ‖ ,

where x̄i = (1
p

p∑

k=1

xik,
1

p

p∑

k=1

xik, · · · ,
1

p

p∑

k=1

xik) is referred as the mean vector of xi.

We can easily see that the correlation distance is also scale invariant.

3.2.2 Linkage

Linkage is referred to as the method used to define the dissimilarity distance of two clusters

and it includes:

• Single linkage or nearest-neighbor method
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Figure 3.1: Assorted linking methods

Single linkage is one of the simplest methods to define the linking distance of two

clusters. It defines the dissimilarity distance between two clusters r and s as follows,

D(r, s) = min{d(xi,xj) : object i ∈ r and object j ∈ s}, (3.1)

which is exactly the distance between the closest pair of objects, where only pairs

consisting of one object from each cluster are considered.

• Complete linkage or farthest-neighbor method Opposite of the single linkage,

the complete linkage defines inter-cluster distance as the distance between the far-

thest pair of objects (one from each cluster). Mathematically, it means as follows:
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(and see the top-right panel of Figure 3.1 for illustration.)

D(r, s) = max{d(xi,xj) : object i ∈ r and object j ∈ s}. (3.2)

• Average linkage In average linkage clustering, the dissimilarity distance between

clusters is defined to be the average distance between each pair of objects (one from

each cluster). See left-bottom panel of Figure 3.1 for explanation.

D(r, s) = Average{d(xi,xj) : object i ∈ r and object j ∈ s}. (3.3)

• Centroid linkage Centroid linkage defines the inter-cluster distance to be the

distance between the centroids of the two clusters.

D(r, s) = d(x̄r, x̄s), (3.4)

where nr denotes the number of objects in the cluster r = {r1, r2, · · · , rnr} and

x̄r = 1
nr

∑nr

k=1 xrk
denotes the centroid of cluster r. It is illustrated in the right-

bottom panel of Figure 3.1.

In the sequel, hierarchical clustering in this manuscript would by default mean ag-

glomerative hierarchical clustering.

3.2.3 Process of hierarchical clustering

With the preceding terminology for dissimilarity distance and linkage method, we are

ready to introduce the detailed technique of hierarchical clustering. We begin with data

matrix X of size n× p and there are n individual simple clusters, here by simple we mean

that each cluster contains one and exactly one object. The dissimilarity distance measure

and linking method are now fixed. At each stage of hierarchical clustering, we compare
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the pairwise inter-cluster dissimilarity distance D(·, ·) among all current clusters, and find

the minimizer pair, say the pair of clusters r and s minimizes D(·, ·). Then we merge the

clusters r and s into one new cluster, hence the number of current clusters decreases by

1. This process is repeated until there is only one cluster left which includes all the n

objects. This is summarized in the following algorithm. See Johnson (1967).

Algorithm A: Algorithm of general hierarchical clustering

1. Begin with all the single clusters, and set the sequence number m = 0.

2. Find the least dissimilar pair of clusters among all the current clusters, say a pair

of clusters r and s which minimize D(·, ·) over all pairs of current clusters.

3. Increase the sequence number by 1: m = m + 1. Merge clusters r and s to form a

new cluster. Set the level of this clustering as: L(m) = D(r, s).

4. Update the dissimilarity matrix MD, by deleting the rows and columns correspond-

ing to cluster r and s, and adding a row and a column corresponding to the newly

formed cluster. The dissimilarity distance between the new cluster and any other

existing cluster is computed using the adopted linking method and hence the dis-

similarity matrix MD is updated correspondingly.

5. The algorithm terminates if all objects are in one cluster. Otherwise, go to step 2.

3.2.4 Dendrogram

When there are a moderate number of objects, it is desirable to visualize the implication

of the clusters. A graphical tree diagram, called dendrogram, displays the results of

clustering (or of the linking). It shows the objects, the sequence of the clusters, and

the linking distance between the clusters. In a dendrogram, the horizontal axis displays

the indices of the objects, while the vertical axis shows the linking distance between

the clusters. Each leaf in the dendrogram tree represents one object, and each branch
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Figure 3.2: 100 points are uniformly distributed on unit square [0, 1]× [0, 1]. Hierarchical
cluster with Euclidean distance and average linkage is performed. The left panel is the
resulting dendrogram with a cutting horizontal line at d = 0.025, and the right panel
plots the 100 points and formed clusters in blue circles at this linking level.

denotes a cluster. If two clusters are connected, the height at which they merge is their

linking dissimilarity distance. The lower (higher) two clusters are connected, the more

(less) similar they are. Because of this special structure of dendrogram, we can study the

behavior of the objects locally by cutting the dendrogram at a desirable level. After the

cutting, we see many branches below the horizontal line corresponding to the cutting level,

each representing a cluster. Some of these branches may degenerate to leaves, one-object

clusters. All these branches together form a partition of all the objects.

Example 1: To give a better illustration, we simulate 100 data points uniformly

distributed in the unit square [0, 1] × [0, 1]. On this data set, we apply the hierarchical

clustering using Euclidean distance and average linkage. The resultant dendrogram is

plotted in the left panel of Figure 3.2. Further, we cut the dendrogram at the level of

linking distance d = 0.025; the colorful branches denote the non-simple clusters (those

with at least 2 points). The right panel of Figure 3.2 plots the 100 data points (each

represented by a red cross sign) and the blue circles represents the non-simple clusters

obtained by cutting the dendrogram at d = 0.025.
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3.3 Clustering of directional data

3.3.1 Directional data from microarray data

In microarray experiments, we observe the expression value of each gene under each

condition. In this case, each gene corresponds to an object and its corresponding vector is

composed of the expression values of this gene under the assorted experimental conditions.

Sometimes there may be more than one replicate for some condition(s). In this case,

the corresponding entry in the data matrix is the mean expression value among all the

replicates. One remarkable observation of the microarray data is that genes have a wide

range of expression values. Figure 3.3 plots the kernel smooth density of the binary

logarithms of the HG-U133plus gene expression for one experiment. We can see that it

ranges from almost zero to as large as 16 after taking logarithm with base 2. Although

the magnitude of expression differs a lot for different genes, it does not matter much for

biological study because biologists are more interested in studying the relative changes

from one condition to another. More precisely, they want to study the pattern of gene

expressions across all the conditions, and thus identify groups of genes that respond in

a similar way to these experimental conditions. Say, there are two genes: i and j; their

expressions are proportional to each other, i.e. xi = cxj, for some c > 0. It is not

hard for us to understand that they are similar in some way. For this consideration, it is

unreasonable to use the Euclidean distance since they may be very far away from each

other if c > 0 is large.

For the above reason and to study the pattern of gene expression, it is very natural

to choose the correlation distance as follows,

γ(xi,xj) = 1− 〈xi − x̄i,xj − x̄j〉
‖ xi − x̄i ‖‖ xj − x̄j ‖ = 1−

〈
xi − x̄i

‖ xi − x̄i ‖ ,
xj − x̄j

‖ xj − x̄j ‖
〉

(3.5)
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Figure 3.3: One typical kernel smooth density of HG-U133plus gene expression.

where x̄i = (1
p

p∑

k=1

xik,
1

p

p∑

k=1

xik, · · · ,
1

p

p∑

k=1

xik) is the mean direction of xi.

Motivated by (3.5), we define standardizing as subtracting the mean vector and then

normalizing to make the Euclidean length of the vector equal to one. That is, the stan-

dardized vector x̃∗i of xi is

x̃∗i =
xi − x̄i

‖ xi − x̄i ‖ . (3.6)

Then with this notation, γ(xi,xj) can be expressed as 1 − 〈
x̃∗i , x̃

∗
j

〉
. We can easily see

that each x̃∗i is nothing but a unit vector on the unit p-sphere surface embedded in p-

dimensional space, and hence are called directional data. In addition, because we subtract

the mean direction x̄i here, x̃∗i is orthogonal to direction (1, 1, · · · , 1) and thus in a man-

ifold of dimension p − 1. That is, choose a orthogonal transformation matrix M , whose

last column corresponds to 1√
p
(1, 1, · · · , 1)T , then the last entry of x̃∗i M is always zero.

And denote the vector of the first p− 1 elements of x̃∗i M by x̃i. Hence x̃i is on the unit

(p− 1)-sphere. Using this new notation, we can see that the correlation distance between

two vectors xi and xj is exactly one minus the inner product of the corresponding vectors

x̃i and x̃j, and thus exactly the cosine distance between these two vectors.

γ(xi,xj) = 1− 〈x̃i, x̃j〉 = dcos(x̃i, x̃j).
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So from now on, we are going to focus on directional data X̃ by projecting each row X

to the hyperplane orthogonal to direction (1, 1, · · · , 1), and then followed by standardizing.

It deserves to point out that X̃ is of size n× (p− 1) if X is n× p.

3.3.2 Transformation from spherical polar coordinates to carte-

sian coordinates

Each directional data on the unit p-sphere can be expressed using the spherical polar

coordinates: θ = (θ1, θ2, · · · , θp−1), 0 ≤ θi ≤ π, i = 1, 2, · · · , p − 2, 0 ≤ θp−1 < 2π, (here

we do not have radius because each vector on the unit p − 1-sphere has radius one) via

the following transformation

x = u(θ),

where ui(θ) = cos θi

∏i−1
j=0 sin θj, i = 1, 2, · · · , p, sin θ0 = cos θp = 1.

If we denote the infinitesimal probability of directional data on the unit p-sphere Sp

by dSp, then we have

dSp = ap(θ)dθ,

where

ap(θ) =

p−1∏
j=2

sinp−j θj−1, for p > 2, and a2(θ) = 1.

To facilitate later simulation, here we introduce some methods to generate uniform

directional data on the unit p-sphere. So far we have two methods to generate uniform

distribution on the unit p-sphere.

1. Generate p-vector from a rotationally invariant distribution, such as N(0, Ip), and

normalize it to have unit length, where Ip is the p× p identity matrix.

2. Independently generate θi, i = 1, 2, · · · , p− 2, according to the following densities,

f(θi) ∝ sinp−i θi−1, 0 ≤ θi ≤ π,

33



and θp−1 from Uniform [0, 2π). Then using above transformation x = u(θ), we get

directional data x uniformly distributed on the unit p-sphere.

3.3.3 Linking by size of spherical cap

Usually linking is done according to a dissimilarity distance between clusters r and s.

Here we propose to link based on the size of the union of r and s, where the size is defined

as follows,

Ds(r, s) = min
x0∈Sp

max
i∈r∪s

γ(xi,x0), (3.7)

where

Sp = {z ∈ Rp :‖ z ‖= 1}

denotes the unit p-sphere in p-dimensional space. In the meanwhile, for x0 ∈ Sp, we also

define a spherical cap centered at x0 with central angle θ as follows

Sp,θ(x0) =

{
z ∈ Sp : cos θ ≤ 〈z,x0〉

‖ z ‖‖ x0 ‖ ≤ 1

}
(3.8)

Since the cosine distance is related to the central angle of spherical cap, the linking

size can be defined in terms of the central angle of the smallest spherical cap to cover all

the objects in the two clusters r and s, that is,

Θ(r, s) = min
x0∈Sp

{min
θ
{θ : xi ∈ Sp,θ(x0),∀i ∈ r ∪ s}} . (3.9)

One benefit of linking by size is that the linking value can tell us something about the

probability assigned to a cap of this size.

With this special linkage (linking by size), we can apply Algorithm A to do hierar-

chical clustering on directional data. In this case, if we cut the dendrogram at certain

dissimilarity distance level, each of the obtained clusters is represented by a spherical
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cap. (But things can go wrong if you cut the dendrogram at a very high level because

the obtained spherical caps may overlap.)

3.3.4 Probability related to spherical cap assuming uniformity

Suppose x0 is some arbitrary fixed vector on the unit p-sphere and x is random and

uniformly distributed on Sp. Then the probability that x will be in the spherical cap

Sp,θ(x0) is just the area of the cap relative to that of the whole unit sphere. That is,

Pr[x ∈ Sp,θ(x0)] = Pr[〈x,x0〉 > cos θ] =
Area{Sp,θ(x0)}

Area{Sp} (3.10)

∆
= π(θ), (3.11)

where the last line just explicitly states that the probability is invariant with respect to

x0 because x is uniformly distributed. By taking this one step further, assuming that x0

is random too, uniformly distributed on the unit p-sphere but independent of x, we have

Proposition 2 If the random vectors x, y in Sp are independent and both uniformly

distributed on Sp, then

Pr[〈x,y〉 > cos θ] = π(θ). (3.12)

Proof: Let µ be the uniform measure on the Borel sets of Sp.

Pr[〈x,y〉 > cos θ] =

∫
Pr[〈x,y〉 > cos θ|y]µ(dy)

=

∫
π(θ)µ(dy)

= π(θ).
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3.4 Tests for uniformity

Here we seek to determine whether the observed clustering result is significant in some

sense. A simple and natural one is to test whether the point pattern follows a homogeneous

Poisson point process on the unit sphere, which is the same as to test whether the objects

are uniformly distributed when the total number of points on the unit sphere is fixed.

H0 : xi’s are uniformly distributed

Ha : xi’s are not uniformly distributed

As pointed out earlier, cutting the dendrogram at a certain level generates a partition

of the objects, which are a set of clusters each represented by a spherical cap. We can

carry out this test by studying the resulting clusters. Say the largest number of points in

these clusters is n0, that is, there is at least one cluster containing n0 points. Using the

clumping heuristics in Aldous (1989), we can approximate the probability of observing

such a large (or larger) cluster at this linking level under the null hypothesis. More

precisely, we determine the probability that there exists some spherical cap containing at

least n0 points if there are n points uniformly distributed on the unit sphere Sp randomly.

Under the null hypothesis H0, data points {x1,x2, · · · ,xn} on the unit p-sphere Sp

follow a homogeneous Poisson process with estimated intensity λ = n
Area(Sp)

. Let θK

denote the central angle of the smallest spherical cap on Sp that contains K points. Then

θK ≤ θ if and only if there exists a cluster of K or more points with cut 1− cos θ in the

dendrogram representation. Hence P (θK ≤ θ) can be considered as p-values for testing

the null hypothesis H0 of homogeneous Poisson. Aldous (1989) provides a guideline for

approximating P (θK ≤ θ) under the assumption of small θ. Aldous (1989) only considers

discs in R2, here we are going to generalize Aldous’s argument to spherical caps in Sp to

derive an approximation formula for P (θK ≤ θ). Fix a point y0 ∈ Sp (say the “north pole”
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xnp = (1, 0, · · · , 0)). Suppose there exist K points y1,y2, · · · ,yK in the cap centered at

y0 with central angle θ. Let

ζθ,K = ∩K
k=1Sp,θ(yk). (3.13)

Let a(p, θ) denote the surface area of a spherical cap in Sp with central angle θ. We

have

Pr(θK > θ) ≈ exp

{
−E

[
1

Area(ζθ,K)

]
e−[λa(p,θ)] [λa(p, θ)]K

K!

}
, (3.14)

where E
[

1
Area(ζθ,K)

]
can be computed using Monte Carlo simulation.

To simulate E
[

1
Area(ζθ,K)

]
, first we generate a large number of points (denoted by

Z) uniformly in Sp,2θ(y0), i.e. inside the spherical cap with central angle 2θ centered

at y0. Then each time we generate K points y1,y2, · · · ,yK uniformly within Sp,θ(y0),

and calculate the fraction of the points Z falling inside the intersection of Sp,θ(yi)’s,

i = 1, 2, · · · , K. Note that this fraction is approximately equal to Area(ζθ,K)/a(p, 2θ).

Hence we can estimate E
[

1
Area(ζθ,K)

]
by the empirical average of 1

Area(ζθ,K)
over many

repetitions.

Example 2: Before introducing another test, we look at one real data example us-

ing the above test. For Carla data, we choose 500 probes and average the expressions

based on 2 replicates for each condition, and standardize the expression vector of each

probe. Because the dimensionality of the data decreases by one when we subtract the

mean vector, we apply an orthogonal transformation to the data with the last column

corresponding to 1
2
(1, 1, 1, 1)′, which forces the last entry of the transformed vector to be

zero due to subtracting the mean vector. Hence we get 3-dimensional directional data

on the unit 3-sphere. Perform the clustering by the size of spherical cap. In this case, it

is hard to plot the dendrogram since there are too many objects. So we give the log-log

plot of the nodesize vs the linking distance (see Figure 3.4). Each dot in the figure rep-

resents a cluster, the x-axis and y-axis represent its corresponding linking distance and

nodesize. Here also we apply the same idea to cut the linking distance at d = 0.0022
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Figure 3.4: Log-Log plot of node size vs linking distance.

which is represented by the vertical red dash line, and the resultant non-simple clusters

are represented by red dots. At this level of linking, the largest cluster has 19 points.

Applying the above approximation, we get the corresponding p-value less than 10−6, i.e.

P (Θ19 < θobs) < 10−6 using (3.14). So the null hypothesis H0 is rejected and this means

that the directional data is not uniformly distributed on the unit sphere.

Test based on inter-event distance: Sometimes, objects are also called events. In

this case, each point on the unit sphere represents an event. When p = 3, the theoretical

cumulative distribution function (CDF) of inter-event distance is

P (Θ < θ) = (1− cos θ)/2, for 0 ≤ θ ≤ π. (3.15)

In the meantime, we can get the corresponding empirical CDF. Then we can plot the

empirical CDF vs theoretical CDF. If the data are really from a homogeneous Poisson

point process, we should expect to see a straight diagonal line. For Carla dataset, the

plot is displayed by the solid curve in Figure 3.5. We can see systematic deviation from

the diagonal dash line. Kolmogorov-Smirnov test for the empirical CDF and theoretical

CDF returns a p-value less than 10−6.
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Figure 3.5: Empirical CDF vs theoretical CDF of inter-event distance

3.5 Detection of significant clusters in presence of an

inhomogeneous Poisson background

An important problem in clustering of microarray data is that the normalized data is

not uniformly distributed on the p − 1 sphere, as shown in the previous section. This

motivates us to develop methods that permit the detection of significant clusters in the

presence of a non-uniform background.

Since our focus is one directional data, we use the von Mises-Fisher distribution as a

tool to study non-uniform distributions over the sphere.

von Mises-Fisher distribution: A random p-dimensional unit vector x = (x1, x2, · · · , xp)

(i.e. x ∈ Sp) is said to have a von Mises-Fisher distribution with mean direction of

unit vector µ = (µ1, µ2, · · · , µp) and concentration parameter κ > 0 (denoted as x ∼
vMF(µ, κ)) if its density is specified as follows,

fvMF (x; µ, κ) ∝ exp(κ 〈x, µ〉). (3.16)

In particular, when p = 3, this distribution is named as Fisher distribution F (µ, κ)
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and its density is

f(x) =
κ

2 sinh κ
exp(κµTx). (3.17)

This density can also be specified in polar coordinates as follows

f(θ, φ) =
κ

4π sinh κ
exp {κ [cos θ cos α + sin θ sin α cos(φ− β)]} sin θ, (3.18)

and denoted as fvMF ([θ, φ]; [α, β], κ) and [θ, φ] ∼ vMF ([α, β], κ) by abusing our notation.

This can be generalized to high dimensional cases.

Biologists ask questions such as “Is there any cluster with more genes than expected

that respond in a similar pattern?”. From the previous section, we know that the direc-

tional data obtained from preprocessing microarray data does not follow a homogeneous

process. So to address biologists’ question, we need to detect clusters (with more genes

than expected) when the data is from an inhomogeneous Poisson process. In practice,

we do not know the underlying density of the inhomogeneous Poisson process and need

to estimate this unknown density. In this study, we have considered the following three

methods. In the first two methods, the estimated density will be used as the intensity

function of the inhomogeneous Poisson process.

Method 1: Model observed data using a mixture of von Mises-Fisher dis-

tributions: Empirically, we can visualize several sub-groups of observations in our mi-

croarray directional data. This motivates us to postulate that the intensity function of

the inhomogeneous Poisson process corresponds to a mixture of von Mises-Fisher distri-

butions, i.e

f(x) =
K∑

j=1

pjfvMF (x; κj,µj), (3.19)

where
∑K

j=1 pj = 1 and K is the number of components. If the fitting succeeds, the esti-

mated density f̂(x) would be used as an inhomogeneous Poisson intensity for computing

p-values. Thus we try to fit the data with mixtures of type (3.19).
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We resort to WinBUGS to estimate the parameters in the mixture model (3.19).

WinBUGS is a Markov Chain Monte Carlo (MCMC) based Bayesian analysis package,

in which a prior distribution is needed for each parameter. Here we use non-informative

priors on each parameter: uniform prior on each concentration parameter κj, uniform prior

on each center direction parameter µj, and Dirichlet prior on pj’s. More importantly, we

need to specify the number of components in the mixture model. Through simulations,

we find that this WinBUGS estimation scheme is very sensitive to this specification.

More explicitly, when the data is really generated from a mixture of several von Mises-

Fisher components and you specify the correct number of components in the mixture, the

estimated parameters are very close to the true parameters. But the estimate can quickly

deteriorate when the data is contaminated by some additional data points from another

unknown component. This indicates that we may include the number of components as

an unknown parameters to be estimated. But this involves heavy computation and is

not addressed in our work. See Richardson and Green (1997) for discussion on reversible

jump MCMC.

To provide better understanding of the sensitivity in the WinBUGS parameter esti-

mation of a mixture of von Mises-Fisher distributions, we do the following experiments:

(1) Our data consists of 200 observations from vMF ((0,−1, 0), 10) and 100 observations

form vMF ((0, 1, 0), 20). The number of vMF components in WinBUGS codes is set

to be 2, which is correct according to our simulation.

(2) We add 30 observations from vMF ((1, 0, 0), 15) to the data set in (1), but still set

the number of vMF components in the WinBUGS code to be 2, which is wrong in

this case.

(3) We replace the 30 observations in (2) by 30 observations from vMF ((1, 0, 0), 0)

(uniform distribution over the sphere) and set the number of components in the

mixture to be 2 in WinBUGS.
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p1 κ1 µ1 p2 κ2 µ2

(1) 0.667 10.621 (-0.015, -0.999, 0.035) 0.333 22.939 (-0.025, 0.999, 0.0234)
(2) 0.696 4.933 (0.138, -0.989, 0.050) 0.304 22.409 (-0.023, 0.999, 0.023)
(3) 0.682 5.959 (-0.030, -0.999, 0.038) 0.318 17.585 (-0.047, 0.999, -0.019)

Table 3.1: WinBUGS estimator of mixture model

After discarding the first 5000 burn-in simulations from the posterior distribution,

we use the means of the next 5000 observations to estimate the parameters and they

are reported in Table 3.1. From this table, we can see that when we correctly specify

the number of components in the mixture model, the means µ1, µ2, κ1 and κ2 are very

close to the true values giving a very good estimation to the mixture model as in (1).

On the other hand, WinBUGS estimation scheme does very poorly when you mis-specify

the number of components. In (2) and (3), the concentration parameter κ1 of the first

vMF component (the one with smaller concentration parameter κ) deviates a lot from

the corresponding true parameter (4.933 and 5.959 compared to 10). One interpretation

of this is given as follows. Denote the spherical cap with highest density and containing

probability 0.9 under the von Mises-Fisher distribution with the correct κ = 10 by Ap=0.9.

The probability of Ap=0.9 under the von Mises-Fisher distribution with the estimated

κ = 4.933 is approximately 4.933
10

× 0.95, which is considered to have too much error.

Method 2: Estimate f(x) by non-parametric method:

Because of the sensitivity in method 1, we utilize another method to estimate f(x),

namely non-parametric estimation.

Suppose we observe a sample of size n: {xi}n
i=1, with each xi is directional data in R3.

Denote (αi, βi) = u−1(xi), the spherical representation of this i-th observation. Then the

non-parametric density estimator at point (θ, φ) = u−1(x) is given as follows

f̂([θ, φ]) =
1

n

n∑
i=1

κ

4π sinh κ
exp{κ[cos(θ) cos αi + sin θ sin αi cos(φ− βi)]} sin θ, (3.20)

where κ is a smoothing concentration parameter. Note that it can be generalized to use
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any other kernel on the unit hyper-sphere. In contrast to the usual smoothing parameter,

the estimated non-parametric density is smoother when κ is smaller.

The above non-parametric estimation scheme gives us an estimate of the underlying

density of the inhomogeneous Poisson process on the unit sphere, and this permits us to

compute p-values for clusters. Notice that we can represent any cluster by a spherical cap

(say with center x0 and central angle θ0) and the number of observations k0 it includes.

The probability of this spherical cap under the estimated density is given by

p0 =

∫ π

0

∫ 2π

0

f̂((θ, φ))I[dcos(x0,u((θ, φ))) < 1− cos θ0]dφdθ, (3.21)

where I(·) is an indicator function.

Hence the probability of observing this cluster in an inhomogeneous Poisson process

driven by density f̂ can be approximated by the probability that a Poisson random variable

with mean λ0 = n · p0 is larger than or equal to k0, i.e.

P [# observations in cap ≥ k0] =
∞∑

i=k0

exp(−λ0)λ
i
0

i!
. (3.22)

When we are assessing the significance of a “found” cluster, this probability is inter-

preted as a p-value.

Method 3: Local test based on area proportions

The above two methods attempt to estimate the density of the background coupled

with a Poisson approximation. Our third method is a local one. Given any cluster repre-

sented by a spherical cap having center x0, central angle θ0 and number of observations

k0, we can easily compute A0, the surface area of the spherical cap. Next we can check

another spherical cap with the same center but a larger surface area rA0 (r > 1) and

assume that it includes kr observations. Are the frequencies in the two spherical caps

consistent with area ratios? In this way, we can assess the significance of this cluster by a
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binomial approximation. Namely, imagine that we throw kr points uniformly in the larger

spherical cap. This is a binomial trial with kr repetitions and the probability of success

being 1
r
. The significance can be assessed by the probability that there are at least k0

points falling inside the smaller spherical cap and this probability is

P [#observations in cap ≥ k0] =
kr∑

j=k0




kr

j


 (

1

r
)k(1− 1

r
)kr−j. (3.23)

3.6 Simulation

We simulate a data set consisting of 550 observations: 500 from vMF ([π/2, π], 10) and 50

from vMF ([π/2, (1− γ)π], 100), where γ is a parameter controlling the distance between

the centers of these two vMF ’s. The contour plot of the true densities is given in Figure

3.6. In this simulation, we treat the big von Mises-Fisher component as the “background”,

and we want to detect the more concentrated but smaller von Mises-Fisher component in

the presence of the big one, and also diminish the significance of the clusters produced

from the background. Here we investigate four different cases: γ = 1, 0.5, 0.25, or 0.125.

As γ gets smaller, the two components in the mixture model moves closer to each other

and it becomes harder to distinguish . We test both method 2 with smoothing parameter

κ = 5, 10, 20, 30, or 40 and method 3 with area ratio r = 2, 4, 8, or 16.

For each case, we cut the dendrogram at linking distance d = 2−5. We only check

the resulting distinct clusters after cutting and excluding the clusters with less than 8

observations inside. Of these clusters, we divide them into two types: type 1 means

that all the observations in this cluster belong to the “background” (big von Mises-Fisher

component), and type 2 means that this cluster contains at least one observation from

the small von Mises-Fisher component. Note that we are interested in reducing the

significance (detection) of clusters of type 1 while continuing to detect clusters of type 2.

We observe that combining these two methods does a good job of meeting this objec-
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Figure 3.6: True density of simulation

tive. Here a cluster in the dendrogram is called significant when the corrected p-values

using both smoothing and local test are smaller than a pre-specified threshold value, for

which we use 0.01.

In particular, for γ = 1, we get the best result with smoothing parameter κ = 20 and

area ratio r = 4. In this case, after cutting the dendrogram and excluding the clusters

with less than 8 observations, there are 16 distinct clusters (14 type-1 clusters and 2

type-2 clusters). Out of the 14 type-1 clusters, the smoothing method with κ = 20 flags

7 significant and 7 non-significant; the local test with area ratio r = 4 flags 3 significant

and 11 non-significant. Intersect these two tests together, we only flag 1 of the 14 type-1

clusters significant. For the 2 type-2 clusters, both smoothing and local test methods call

them significant. This is reported in Table 3.2.

For the case that γ = 0.5, we have exactly the same result as the case γ = 1. When

κ becomes smaller, the job becomes much harder. The best parameters for γ = 0.25 are
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γ = 1
total clusters significant not significant

Cluster type 1 14 1 (7, 3) 13 (7, 11)
Cluster type 2 2 2 (2, 2) 0 (0, 0)

γ = 0.5
Cluster type 1 14 1 (7, 3) 13 (7, 11)
Cluster type 2 2 2 (2, 2) 0 (0, 0)

γ = 0.25
Cluster type 1 13 1 (8,1) 12 (5, 12)
Cluster type 2 3 2 (3,2) 1 (0, 1)

γ = 0.125
Cluster type 1 12 3 (9,3) 9 (3, 9)
Cluster type 2 4 3 (3,3) 1 (1, 1)

Table 3.2: Detection result of different cases. Here cluster type 1 means a cluster consisting
of observations only from the big vMF component; cluster type 2 means a cluster at least
containing some observations from the small vMF component. Each cell a(b, c) means
that the numbers of clusters called significant (or not significant) are a using both method,
b for smoothing, and c for local test repectively.

κ = 5 or 10 and r = 2; for case γ = 0.125 the parameters κ = 5 and r = 8 give the best

result. See Table 3.2 for their corresponding performance.

We now take a closer look at the case with γ = 0.5 with best parameter κ and r.

In Figure 3.7, the top left panel gives the dot plot of each cluster with more than 8

observations, where red means that this cluster is called significant using the smoothing

test. The corresponding result using the local test and both methods are shown in the top

right and the middle right panels respectively. Since this is based on simulation, we know

the detailed information of each cluster: in the middle left panel, the cluster represented

by a blue dot means that all the observations in this cluster are from the “background”

big vMF; red means all observations are from the small vMF; magenta means this cluster

is a mixture of observations from both the big vMF and the small vMF. After cutting

the dendrogram at linking distance d = 2−5 and excluding the clusters with less than 8

observations, there are only 16 distinct clusters left and they are plotted in the left bottom

panel in which magenta means the cluster is of type 2. For these 16 distinct clusters, their
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Figure 3.7: Significance test result for γ = 0.5

centers in polar coordinates are plotted in the bottom right panel with magenta meaning

type 2. The two cyan crosses denote the centers of the two von Mises-Fisher distributions.
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3.7 Summary

In this chapter, motivated by studying microarray data, we obtain directional data on the

unit sphere after pre-processing microarray data and propose the idea of linking by the

size of spherical cap to study clustering of directional data. In this way, the directional

data is on the unit sphere and we can define the probability of each cluster by assuming

a density over the unit sphere. Empirically we observe that the directional data obtained

from preprocessing microarray data is not uniformly distributed on the unit sphere. This

implies that the data follows an inhomogeneous Poisson process driven by some unknown

density and it poses a lot of difficulty for us. To estimate this unknown density, we

consider two methods: the mixture model and non-parametric estimation. According

to our simulation results, we find that combining the non-parametric method with a

local test helps us to reduce the significance of background clusters while detecting more

concentrated ones.
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Chapter 4

Summary of Dissertation

In chapter 2, we study the stochastic volatility model in mathematical finance. We have

obtained an upper bound for polynomial convergence rates of the proposed Gaussian

approximation scheme. The argument we adopted limits the sharpness of the derived

bound. More specifically, the discrete sums used to approximate the option price integrals

involve a two-step Markov chain whose spectral gap is zero. Hence the preferred method of

spectral analysis for the Markov transition probability operator does not apply. Instead,

we resort to the “big-block-small-block” splitting technique to deal with functionals of

the underlying strong mixing process.

In chapter 3, we study clustering directional data on the unit sphere. We propose to

link by the size of spherical cap in clustering directional data and to study the probability

of each cluster represented by a spherical cap. Empirically, the directional data obtained

from preprocessing microarray data is not uniformly distributed on the unit sphere. To

overcome this difficulty, we propose a method of combining a non-parametric estimation

with a local test to reduce the significance of background clusters while detecting more

concentrated ones.
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Appendix A

Proofs of Theorems and Lemmas

Proof of Lemma 1 : Let µ0 = a
1−b

, σ2
0 = c2

1−b2
; and for n = 1, 2, ..., let µn = a1−bn

1−b
+bnh0,

σ2
n = c2 1−b2n

1−b2
, χ1n = bn(h0 − a

1−b
) and χ2n = − c2b2n

1−b2
. Then µn = µ0 + χ1n, σ2

n = σ2
0 + χ2n,

and hn|h0 ∼ N(µn, σ
2
n). It follows from the Markov property of h that

α(n)

= sup
A∈σ(h0),B∈σ(hn)

|P (A ∩B)− P (A)P (B)|

= sup
A∈σ(h0),B∈σ(hn)

∣∣∣∣
∫

A

∫

B

fh0(x)fhn|h0(y|x)dydx−
∫

A

fh0(x)dx

∫

B

fhn(y)dy

∣∣∣∣

≤ sup
A∈σ(h0),B∈σ(hn)

∫

A

fh0(x)

∫

B

∣∣fhn|h0(y|x)− fhn(y)
∣∣ dydx

≤
∫ ∞

−∞
fh0(x)

∫ ∞

−∞

∣∣fhn|h0(y|x)− fhn(y)
∣∣ dydx

≤
∫ ∞

−∞
f(x; µ0, σ

2
0)

∫ ∞

−∞

∣∣f(y; µn, σ
2
n)− f(y; µ0, σ

2
0)

∣∣ dydx

=

∫ ∞

−∞
f(x; µ0, σ

2
0)

∫ ∞

−∞

∣∣∣∣∣
∫ 1

0

[
∂f

∂µ

∣∣∣∣
(y,µ0+tχ1n,σ2

0+tχ2n)

· χ1n

+
∂f

∂(σ2)

∣∣∣∣
(y,µ0+tχ1n,σ2

0+tχ2n)

· χ2n

]
dt

∣∣∣∣∣ dydx

≤
∫ ∞

−∞
f(x; µ0, σ

2
0)

∫ ∞

−∞

∫ 1

0

(∣∣∣∣∣
∂f

∂µ

∣∣∣∣
(y,µ0+tχ1n,σ2

0+tχ2n)

∣∣∣∣∣ · |χ1n|

+

∣∣∣∣∣
∂f

∂(σ2)

∣∣∣∣
(y,µ0+tχ1n,σ2

0+tχ2n)

∣∣∣∣∣ · |χ2n|
)

dtdydx
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= |b|n
∫ ∞

−∞
f(x; µ0, σ

2
0)

∫ ∞

−∞

∫ 1

0

∣∣∣∣∣
∂f

∂µ

∣∣∣∣
(y,µ0+tχ1n,σ2

0+tχ2n)

∣∣∣∣∣ ·
∣∣∣∣x−

a

1− b

∣∣∣∣ dtdydx

+ |b|2n

∫ ∞

−∞
f(x; µ0, σ

2
0)

∫ ∞

−∞

∫ 1

0

∣∣∣∣∣
∂f

∂(σ2)

∣∣∣∣
(y,µ0+tχ1n,σ2

0+tχ2n)

∣∣∣∣∣ ·
∣∣∣∣
−c2

1− b2

∣∣∣∣ dtdydx

= |b|n c2 + |b|2n c3 for some c2 > 0 and c3 > 0

≤ c1 |b|n for some c1 > 0. ¤

Proof of Lemma 2 : Direct calculation as in Lee, Cheng, and Ji (2004) immediately

proves (2.29) — (2.33). (2.34) follows from that for sufficiently large j,
∣∣∣exp( c2bj

1−b2
)− 1

∣∣∣ ≤
2 c2|b|j

1−b2
. In fact, we can obtain asymptotic upper bounds for the absolute values of differ-

ences between those moments and their limits respectively. For instance,

|corr(Un, Vn)− ρ0| ≤ c1/n, (A.1)

for some c1 > 0. ¤

Proof of Lemma 3 : For ε ∈ (0, 1/2), let

p = pn = [n
1
2
+ε], q = qn = [n

1
2
−ε], k = kn =

[
n

p + q

]
,

where [x] denotes the integer part of x ∈ IR. Note that kn = n
1
2
−ε(1 + o(1)) as n → ∞.

Without loss of generality, we can assume that n = p + q (mod 0), hence k = n
p+q

. For

m = 0, 1, ..., k − 1, define big blocks

ξU
m =

(m+1)p+mq−1∑

j=m(p+q)

x′j

ξV
m =

(m+1)p+mq−1∑

j=m(p+q)

x′′j
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and small blocks

ζU
m =

(m+1)(p+q)−1∑

j=(m+1)p+mq

x′j

ζV
m =

(m+1)(p+q)−1∑

j=(m+1)p+mq

x′′j .

Then

U∗
n = σ−1

Un
(ξU

0 + ξU
1 + · · ·+ ξU

k−1) + σ−1
Un

(ζU
0 + ζU

1 + · · ·+ ζU
k−1) , U

′
n + U

′′
n ,

V ∗
n = σ−1

Vn
(ξV

0 + ξV
1 + · · ·+ ξV

k−1) + σ−1
Vn

(ζV
0 + ζV

1 + · · ·+ ζV
k−1) , V

′
n + V

′′
n .

Let φ(u, v) = exp[−1
2
(u2+2ρ0uv+v2)] be the characteristic function of bivariate normal

distribution with mean (0, 0) and covariance matrix




1 ρ0

ρ0 1


. Triangle inequalities

imply that

|E exp[i (uU∗
n + vV ∗

n )]− φ(u, v)| ≤ I + II + III (A.2)

where

I =
∣∣∣E exp[i (uU∗

n + vV ∗
n )]− E exp[i (uU

′
n + vV

′
n)]

∣∣∣ ,

II =

∣∣∣∣∣E exp[i (uU
′
n + vV

′
n)]−

k−1∏
m=0

E exp

[
i

(
u

ξU
m

σUn

+ v
ξV
m

σVn

)]∣∣∣∣∣ ,

III =

∣∣∣∣∣
k−1∏
m=0

E exp

[
i

(
u

ξU
m

σUn

+ v
ξV
m

σVn

)]
− φ(u, v)

∣∣∣∣∣ .

We will obtain an upper bound for each part, in the order of parts II, III and I,

respectively.

Setting
∏m−1

j=m aj = 1 and
∑m−1

j=m aj = 0 for any m = 0, 1, ..., k − 1, we have
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II =

∣∣∣∣∣
k−1∑
m=0

[(
m−1∏
j=0

E exp

(
i

(
u

ξU
j

σUn

+ v
ξV
j

σVn

)))
E exp

(
i

k−1∑
j=m

(
u

ξU
j

σUn

+ v
ξV
j

σVn

))

−
(

m∏
j=0

E exp

(
i

(
u

ξU
j

σUn

+ v
ξV
j

σVn

)))
E exp

(
i

k−1∑
j=m+1

(
u

ξU
j

σUn

+ v
ξV
j

σVn

))]∣∣∣∣∣

≤
k−1∑
m=0

∣∣∣∣∣

(
m−1∏
j=0

E exp

(
i

(
u

ξU
j

σUn

+ v
ξV
j

σVn

)))
E exp

(
i

k−1∑
j=m

(
u

ξU
j

σUn

+ v
ξV
j

σVn

))

−
(

m∏
j=0

E exp

(
i

(
u

ξU
j

σUn

+ v
ξV
j

σVn

)))
E exp

(
i

k−1∑
j=m+1

(
u

ξU
j

σUn

+ v
ξV
j

σVn

))∣∣∣∣∣

≤
k−1∑
m=0

∣∣∣∣∣E exp

(
i

k−1∑
j=m

(
u

ξU
j

σUn

+ v
ξV
j

σVn

))

−E exp

(
i

(
u

ξU
m

σUn

+ v
ξV
m

σVn

))
E exp

(
i

k−1∑
j=m+1

(
u

ξU
j

σUn

+ v
ξV
j

σVn

))∣∣∣∣∣

≤ kα(q) ≤ CII n
1
2
−ε exp

(
−b1n

1
2
−ε

)
(A.3)

for some constant CII > 0.

For part III, we need to evaluate several moments asymptotically. First, it follows

from (2.31)–(2.36) that

E
[
(ξU

0 )2
]

= σ2
U p (1 + o(1)) = σ2

U n
1
2
+ε (1 + o(1)),

E
[
(ξV

0 )2
]

= σ2
V p (1 + o(1)) = σ2

V n
1
2
+ε (1 + o(1)),

E[ξU
0 ξV

0 ] = ρ0 σUσV p (1 + o(1)) = ρ0 σUσV n
1
2
+ε (1 + o(1)).

Next,

|E [
(ξU

0 )3
] | =

∣∣∣∣∣∣
E




(
p−1∑
j=0

x′j

)3



∣∣∣∣∣∣
=

∣∣∣∣∣
∑

0≤m,j,k≤p−1

E(x′mx′jx
′
k)

∣∣∣∣∣

≤ 6
∑

0≤m≤j≤k≤p−1

∣∣E(x′mx′jx
′
k)

∣∣ .
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For any 0 < l < p, there are no more than l2p terms for which max{j −m, k− j} ≤ l.

The remaining terms can be represented in the form
∣∣Ex′mx′jx

′
k

∣∣ = |Eϑς|, where either

ϑ = x′m, ς = x′jx
′
k, or ϑ = x′mx′j, ς = x′k, depending on whether j −m > l or k − j > l.

Following Lemma 1.3 in Ibragimov (1962), we have

|E(ϑς)| ≤ |Eϑ| |Eς|+ c0 (α(l))1/2

= c0 (α(l))1/2

for some c0 > 0. Setting l = O(pδ2) for some δ2 ∈ (0, 1) yields

E
[
(ξU

0 )3
]

= O((pδ2)2p) = O(n(1+2δ2)( 1
2
+ε)).

Similar arguments work for E
[
(ξU

0 )2ξV
0

]
, E

[
ξU
0 (ξV

0 )2
]

and E
[
(ξV

0 )3
]
.

Now the following Taylor expansions are in order.

ψ1n(u, v) , E exp

[
i

(
u

ξU
0

σUn

+ v
ξV
0

σVn

)]

= 1− 1

2

[
u2

σ2
Un

E(ξU
0 )2 + 2

uv

σUnσVn

EξU
0 ξV

0 +
v2

σ2
Vn

E(ξV
0 )2

]

+
Θ1

6

[
u3

σ3
Un

E(ξU
0 )3 + 3

u2v

σ2
Un

σVn

E(ξU
0 )2ξV

0

+ 3
uv2

σUnσ2
Vn

EξU
0 (ξV

0 )2 +
v3

σ3
Vn

E(ξV
0 )3

]
where |Θ1| ≤ 1

= 1 + O(n2%+ 1
2
+ε−1) + O(n3%+(1+2δ2)( 1

2
+ε)− 3

2 ). (A.4)

Apparently we need to impose the constraints

2% + 1/2 + ε− 1 < 0,

3% + (1 + 2δ2)(1/2 + ε)− 3/2 < 0.
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Therefore,

log ψ1n(u, v)

= −1

2

(
u2

σ2
Un

E(ξU
0 )2 + 2

uv

σUnσVn

EξU
0 ξV

0 +
v2

σ2
Vn

E(ξV
0 )2

)

+
Θ1

6

(
u3

σ3
Un

E(ξU
0 )3 + 3

u2v

σ2
Un

σVn

E(ξU
0 )2ξV

0 + 3
uv2

σUnσ2
Vn

EξU
0 (ξV

0 )2 +
v3

σ3
Vn

E(ξV
0 )3

)

+Θ2

[
−1

2

(
u2

σ2
Un

E(ξU
0 )2 + 2

uv

σUnσVn

EξU
0 ξV

0 +
v2

σ2
Vn

E(ξV
0 )2

)

+
Θ1

6

(
u3

σ3
Un

E(ξU
0 )3 + 3

u2v

σ2
Un

σVn

E(ξU
0 )2ξV

0

+3
uv2

σUnσ2
Vn

EξU
0 (ξV

0 )2 +
v3

σ3
Vn

E(ξV
0 )3

)]2

(where |Θ2| ≤ 1)

= −1

2

(
u2

σ2
Un

E(ξU
0 )2 + 2

uv

σUnσVn

EξU
0 ξV

0 +
v2

σ2
Vn

E(ξV
0 )2

)

+
Θ1

6

(
u3

σ3
Un

E(ξU
0 )3 + 3

u2v

σ2
Un

σVn

E(ξU
0 )2ξV

0 + 3
uv2

σUnσ2
Vn

EξU
0 (ξV

0 )2 +
v3

σ3
Vn

E(ξV
0 )3

)

+ higher order term, (A.5)

which implies that

log

{
k−1∏
m=0

E exp

[
i

(
u

ξU
m

σUn

+ v
ξV
m

σVn

)]}
− −1

2
(u2 + 2ρ0uv + v2)

= k log ψ1n(u, v) +
1

2
(u2 + 2ρ0uv + v2)

=
1

2
(u2 + 2ρ0uv + v2)− k

2

(
u2

σ2
Un

E(ξU
0 )2 + 2

uv

σUnσVn

EξU
0 ξV

0 +
v2

σ2
Vn

E(ξV
0 )2

)

+
kΘ1

6

(
u3

σ3
Un

E(ξU
0 )3 + 3

u2v

σ2
Un

σVn

E(ξU
0 )2ξV

0 + 3
uv2

σUnσ2
Vn

EξU
0 (ξV

0 )2 +
v3

σ3
Vn

E(ξV
0 )3

)

+ higher order term

=
1

2

[
u2

(
1− kE(ξU

0 )2

σ2
Un

)
+ 2uv

(
ρ0 − kEξU

0 ξV
0

σUnσVn

)
+ v2

(
1− kE(ξV

0 )2

σ2
Vn

)]

+
kΘ1

6

(
u3

σ3
Un

E(ξU
0 )3 + 3

u2v

σ2
Un

σVn

E(ξU
0 )2ξV

0 + 3
uv2

σUnσ2
Vn

EξU
0 (ξV

0 )2 +
v3

σ3
Vn

E(ξV
0 )3

)

+ higher order term (A.6)
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Asymptotic estimates of 1 − kE(ξU
0 )2

σ2
Un

, ρ0 − kEξU
0 ξV

0

σUnσVn
and 1 − kE(ξV

0 )2

σ2
Vn

are needed for the

completion of (A.6).

First note that

∣∣∣∣
E(ξU

0 + · · ·+ ξU
k−1)

2

σ2
Un

− 1

∣∣∣∣

=

∣∣∣∣
E(ξU

0 + · · ·+ ξU
k−1)

2

σ2
Un

− V arU∗
n

∣∣∣∣

=
∣∣∣V ar(U

′′
n )− 2 E(U∗

nU
′′
n )

∣∣∣

≤ V ar(U
′′
n ) + 2

√
E(U∗

n)2 E(U ′′
n )2

= V ar(U
′′
n ) + 2

√
V ar(U ′′

n )

= O(n−ε), (A.7)

since equation (1.5) in Ibragimov (1962) and (2.31) imply that

V ar(U
′′
n ) = O(k2 (α(p))1/2) + O

(
kn1/2−ε

n

)
= O(n−2ε).

Next, equation (1.5) in Ibragimov (1962) implies

EξU
0 ξU

m = O((α(mq + (m− 1)p))1/2)).

Since

E(ξU
0 + · · ·+ ξU

k−1)
2 = k E(ξU

0 )2 + 2
k−1∑
j=1

(k − j) EξU
0 ξU

j ,

we have

E(ξU
0 + · · ·+ ξU

k−1)
2

kE(ξU
0 )2

= 1 + O

(
k−1∑
j=1

(1− j/k)(α(jq + (j − 1)p))1/2

)

= 1 + O(exp(−n1/2−ε)). (A.8)
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Putting (A.7) and (A.8) together yields

∣∣∣∣
k E(ξU

0 )2

σ2
Un

− 1

∣∣∣∣ = O(n−ε).

The same argument yields

∣∣∣∣
kE(ξV

0 )2

σ2
Vn

− 1

∣∣∣∣ = O(n−ε).

A similar method leads to

E(ξU
0 + · · ·+ ξU

k−1)(ξ
V
0 + · · ·+ ξV

k−1)

kE(ξU
0 )(ξV

0 )
= 1 + O(exp(−n1/2−ε)).

For ρ0 − k EξU
0 ξV

0

σUnσVn
, we recall (A.1) and evaluate

E(ξU
0 + · · ·+ ξU

k−1)(ξ
V
0 + · · ·+ ξV

k−1)

E(U c
nV c

n )
− 1, (A.9)

where (the superscript “c” stands for “centered”)

U c
n =

n−1∑
j=0

x′j =
n−1∑
j=0

(
ehj − e

a
1−b

+ c2

2(1−b2)

)

V c
n =

n−1∑
j=0

x′′j =
n−1∑
j=0

(
ehj/2εj+1

)
.
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The estimation for (A.9) can be obtained as follows:

∣∣∣∣1−
E(ξU

0 + · · ·+ ξU
k−1)(ξ

V
0 + · · ·+ ξV

k−1)

EU c
nV

c
n

∣∣∣∣

=

∣∣∣∣
EU c

nV
c
n − E(ξU

0 + · · ·+ ξU
k−1)(ξ

V
0 + · · ·+ ξV

k−1)

EU c
nV

c
n

∣∣∣∣

=

∣∣∣∣∣
E(

∑k−1
j=0 ξU

j +
∑k−1

j=0 ζU
j )(

∑k−1
j=0 ξV

j +
∑k−1

j=0 ζV
j )− E(

∑k−1
j=0 ξU

0 )(
∑k−1

j=0 ξV
0 )

EU c
nV

c
n

∣∣∣∣∣

=

∣∣∣∣∣
E(

∑k−1
j=0 ξU

j )(
∑k−1

j=0 ζV
j ) + E(

∑k−1
j=0 ζU

j )(
∑k−1

j=0 ξV
j ) + E(

∑k−1
j=0 ζU

j )(
∑k−1

j=0 ζV
j )

EU c
nV c

n

∣∣∣∣∣

≤



√√√√E

(
k−1∑
j=0

ξU
j

)2

E

(
k−1∑
j=0

ζV
j

)2

+

√√√√E

(
k−1∑
j=0

ζU
j

)2

E

(
k−1∑
j=0

ξV
j

)2

+

√√√√E

(
k−1∑
j=0

ζU
j

)2

E

(
k−1∑
j=0

ζV
j

)2

 / (EU c

nV
c
n )

=

√
O(n) O(n1−2ε) +

√
O(n1−2ε) O(n) +

√
O(n1−2ε) O(n1−2ε)

O(n)

= O(n−ε),

hence ∣∣∣∣
k EξU

0 ξV
0

σUnσVn

− ρ0

∣∣∣∣ = O(n−ε).

Putting all the above rates into (A.6), we get

log
k−1∏
m=0

E exp

[
i

(
u

ξU
m

σUn

+ v
ξV
m

σVn

)]
− −1

2
(u2 + 2ρ0uv + v2)

= (u2 + v2) O(n−ε) + (|u|+ |v|)3 O(n(1+2δ2)( 1
2
+ε)− 3

2
+ 1

2
−ε). (A.10)

Since |es − 1| ≤ |s|e|s| ∀s ∈ IR,

∣∣∣∣∣
k−1∏
m=0

E exp

[
i

(
u

ξU
m

σUn

+ v
ξV
m

σVn

)]
exp

(
1

2
(u2 + 2ρ0uv + v2)

)
− 1

∣∣∣∣∣
= (u2 + v2) O(n−ε) + (|u|+ |v|)3 O(n(1+2δ2)( 1

2
+ε)− 3

2
+ 1

2
−ε).
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Therefore,

∣∣∣∣∣
k−1∏
m=0

E exp

[
i

(
u

ξU
m

σUn

+ v
ξV
m

σVn

)]
− exp

(−1

2
(u2 + 2ρ0uv + v2)

)∣∣∣∣∣

= exp

(
−1

2
(u2 + 2ρ0uv + v2)

)
[(u2 + v2) O(n−ε)

+(|u|+ |v|)3 O(n(1+2δ2)( 1
2
+ε)− 3

2
+ 1

2
−ε)]. (A.11)

Finally, we evaluate part I.

∣∣∣Eei(uU∗n+vV ∗n ) − Eei(uU
′
n+vV

′
n)

∣∣∣

=
∣∣∣E

[
ei(uU

′
n+vV

′
n)(ei(uU

′′
n +vV

′′
n ) − 1)

]∣∣∣

≤
√

E
∣∣ei(uU ′n+vV ′n)

∣∣2
√

E
∣∣ei(uU ′′n +vV ′′n ) − 1

∣∣2

=
√∣∣E (ei(uU ′′n +vV ′′n ) − 1)(e−i(uU ′′n +vV ′′n ) − 1)

∣∣

≤
√∣∣E(ei(uU ′′n +vV ′′n ) − 1)

∣∣ +
∣∣E(e−i(uU ′′n +vV ′′n ) − 1)

∣∣,

in which E(ei(uU
′′
n +vV

′′
n ) − 1) and E(e−i(uU

′′
n +vV

′′
n ) − 1) are essentially the same. It suffices

to observe that

∣∣∣Eei(uU
′′
n +vV

′′
n ) − 1

∣∣∣ ≤
∣∣∣∣∣Eei(uU

′′
n +vV

′′
n ) −

k−1∏
j=0

E exp

[
i

(
u

ζU
j

σUn

+ v
ζV
j

σVn

)]∣∣∣∣∣

+

∣∣∣∣∣
k−1∏
j=0

E exp

[
i

(
u

ζU
j

σUn

+ v
ζV
j

σVn

)]
− 1

∣∣∣∣∣
, I1 + I2.

Note that the same argument used in dealing with part II will lead to a similar (in fact,

sharper) upper bound for I1. Now we examine I2.
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Let

ϕ1n(u, v) = E exp

[
i

(
u

ζU
0

σUn

+ v
ζV
0

σVn

)]
,

ϕn(u, v) =
k−1∏
j=0

E exp

[
i

(
u

ζU
j

σUn

+ v
ζV
j

σVn

)]
.

Then

ϕ1n(u, v)

= 1− 1

2

(
u2

σ2
Un

E(ζU
0 )2 + 2

uv

σUnσVn

EζU
0 ζV

0 +
v2

σ2
Vn

E(ζV
0 )2

)

+
Θ3

6

(
u3

σ3
Un

E(ζU
0 )3 + 3

u2v

σ2
Un

σVn

E(ζU
0 )2ζV

0

+3
uv2

σUnσ2
Vn

EζU
0 (ζV

0 )2 +
v3

σ3
Vn

E(ζV
0 )3

)

with |Θ3| ≤ 1. Using (2.31), (2.32) and the argument in part III, we have

E(ζU
0 )2 = O(n1/2−ε)

EζU
0 ζV

0 = O(n1/2−ε)

E(ζV
0 )2 = O(n1/2−ε)

E(ζU
0 )3 = O(n(1+2δ3)(1/2−ε))

E(ζU
0 )2ζV

0 = O(n(1+2δ3)(1/2−ε))

EζU
0 (ζV

0 )2 = O(n(1+2δ3)(1/2−ε))

E(ζV
0 )3 = O(n(1+2δ3)(1/2−ε)).

for some δ3 ∈ (0, 1). Hence

ϕ1n(u, v) = 1− (u + v)2 O(n−1/2−ε) + (u + v)3 O(n(1+2δ3)(1/2−ε)−3/2),
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log ϕ1n(u, v)

=
−1

2

(
u2

σ2
Un

E(ζU
0 )2 + 2

uv

σUnσVn

EζU
0 ζV

0 +
v2

σ2
Vn

E(ζV
0 )2

)

+
Θ3

6

(
u3

σ3
Un

E(ζU
0 )3 + 3

u2v

σ2
Un

σVn

E(ζU
0 )2ζV

0

+ 3
uv2

σUnσ2
Vn

EζU
0 (ζV

0 )2 +
v3

σ3
Vn

E(ζV
0 )3

)
+ higher order term

and

log ϕn(u, v)

= k log ϕ1n(u, v)

=
−k

2

(
u2

σ2
Un

E(ζU
0 )2 + 2

uv

σUnσVn

EζU
0 ζV

0 +
v2

σ2
Vn

E(ζV
0 )2

)

+
kΘ3

6

(
u3

σ3
Un

E(ζU
0 )3 + 3

u2v

σ2
Un

σVn

E(ζU
0 )2ζV

0

+ 3
uv2

σUnσ2
Vn

EζU
0 (ζV

0 )2 +
v3

σ3
Vn

E(ζV
0 )3

)

= O((u + v)2 n1/2−ε+1/2−ε−1) + O((u + v)3 n1/2−ε+(1+2δ3)(1/2−ε)−3/2)

= O((u + v)2 n−2ε) + O((u + v)3 nδ3−2δ3ε−2ε−1/2),

which implies that

|ϕn(u, v)− 1| = O((u + v)2n−2ε) + O((u + v)3nδ3−2δ3ε−2ε−1/2). (A.12)

The proof of Lemma 3 is completed by combining parts I, II and III. ¤

Proof of Proposition 1: Let Z denote a random vector with distribution K(·) [see

(2.40)]. For ε > 0, let Kε be a smooth kernel probability measure on IR2 such that

Kε(B) = K(ε−1B) for every measurable set B. By Corollary 11.5 in Bhattacharya and
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Rao (1976), we have

∣∣∣∣
∫

IR2

g d(Qn − Φ(2))

∣∣∣∣ ≤ ωg(IR
2) ‖ (Qn − Φ(2)) ∗Kε ‖ + 2 ω∗g(2ε : Φ(2)) (A.13)

for all ε > 0, where ‖ ‖ is the total variation norm. Choose

ε = 4a′
√

2n−%. (A.14)

Then

K̂ε(u, v) = 0 if u2 + v2 ≥ n2%. (A.15)

For every Borel set B and r ≥ 0, let

B1 = B ∩B(0, r),

B2 = B\B1.

Hence

∣∣(Qn − Φ(2))(B1)
∣∣ ≤ 1

(2π)2
|B1|

∫

IR2

∣∣∣(Q̂n − Φ̂(2))(u, v) K̂ε(u, v)
∣∣∣ dudv (A.16)

where |B1| represents the Lebesgue measure of set B1. It follows from Lemma 3 that

‖Q̂n − Φ̂(2)‖

= O(kα(q))

+ exp

(−1

2
(u2 + 2ρ0uv + v2)

)

· [(u2 + v2) O(n−ε) + (|u|+ |v|)3 O(n(1+2δ2)( 1
2
+ε)− 3

2
+ 1

2
−ε)]

+
√

O(kα(q)) + O((u + v)2 n−2ε) + O((u + v)3 nδ3−2δ3ε−2ε−1/2). (A.17)
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Therefore,

∫

IR2

∣∣∣(Q̂n − Φ̂(2))(t) K̂ε(t)
∣∣∣ dt

=

∫

|t|≤n%

∣∣∣(Q̂n − Φ̂(2))(t)
∣∣∣ dt

= n2%
[
O(kα(q)) + O(n−ε) + O(n(1+2δ2)( 1

2
+ε)− 3

2
+ 1

2
−ε)

]

+n2% O(
√

kα(q)) + O(n2%n−ε) + O(n3%/2 n(δ3−2δ3ε−2ε−1/2)/2)

= O(n4%−ε) + O(n2%+(1+2δ2)( 1
2
+ε)− 3

2
+ 1

2
−ε) + O(n7%/2+(δ3−2δ3ε−2ε−1/2)/2),

and

∣∣(Qn − Φ(2))(B1)
∣∣ ≤ 1

(2π)2
|B1|

∫

IR2

∣∣∣(Q̂n − Φ̂(2))(t) K̂ε(t)
∣∣∣ dt

= O(r2n4%−ε) + O(r2n2%+(1+2δ2)( 1
2
+ε)− 3

2
+ 1

2
−ε)

+O(r2n7%/2+(δ3−2δ3ε−2ε−1/2)/2).

Moreover,

∣∣[(Qn − Φ(2)) ∗Kε

]
(B2)

∣∣

≤ max{(Qn ∗Kε)(B2), (Φ(2) ∗Kε)(B2)}

≤ max

{
P

(
(U∗

n)2 + (V ∗
n )2 ≥ r2

4

)
,

∫

{|x|≥r/2}
φ(2)(x) dx

}

+P
(
|εZ| ≥ r

2

)
,

where φ(2) is the density for Φ(2). By the Berry-Esseen theorem [see Reznik (1968)],

P

(
(U∗

n)2 + (V ∗
n )2 ≥ r2

4

)
≤ P

(
|U∗

n| ≥
r

4

)
+ P

(
|V ∗

n | ≥
r

4

)
(A.18)

≤ 2

(
C n−γ2 +

23/2

√
2πr2

e−r2/18

) ∫

{|x|≥r/2}
φ(2)(x)dx

≤ 27/2(2π)−1/2r−1e−r2/16
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and

P
(
|εZ| ≥ r

2

)
≤ c3

πr3 n3%
(A.19)

for some c3 > 0. Setting r = 8 log n leads to

∣∣[(Qn − Φ(2)) ∗Kε](B2)
∣∣ = O(n−γ2) + O(n−%). (A.20)

Hence

‖ (Qn − Φ(2)) ∗Kε ‖

= O(n4%−ε) + O(n2%+(1+2δ2)( 1
2
+ε)− 3

2
+ 1

2
−ε)

+O(n7%/2+(δ3−2δ3ε−2ε−1/2)/2) + O(n−γ2) + O(n−%). ¤

Proof of Lemma 4 : Conditing on h
(π)
0 = z2, define

τ(z1, z2) = inf{k ≥ 1 : sign(h
(π)
k − h

(1)
k ) 6= sign(z2 − z1)}. (A.21)

Then

P (τ(z1) > n) =

∫ ∞

−∞
P (τ(z1, z2) > n) f(z2; µ0, σ

2
0) dz2. (A.22)

Suppose z2 < z1, consider the (difference) process h(d) defined by

h
(d)
k = h

(π)
k − h

(1)
k

and let

ε
(d)
k =

ε
(π)
k − ε

(1)
k√

2

where {ε(π)
k } and {ε(1)

k } are independent versions of the innovation process {εk} in (2.27)
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associated with h(π) and h(1) respectively. Hence

h
(d)
k+1 = b h

(d)
k +

√
2c ε

(d)
k+1 (A.23)

with h
(d)
0 = z2 − z1 < 0. τ(z1, z2) becomes the first passage time of h(d) at level 0, i.e.

τ(z1, z2) = T0(z2 − z1) , inf{k ≥ 1 : h
(d)
k ≥ 0} (A.24)

Notice that h
(d)
j |h(d)

0 ∼ N
(
bj(z2 − z1), 2c2 1−b2j

1−b2

)
. For any n (without loss of generality,

assume n = j2, for some integer j),

P (T0(z2 − z1) > n)

≤ P (h
(d)
k < 0, k = 1, · · · , n)

≤ P (h
(d)
jk < 0, k = 1, · · · , j)

≤
j∏

k=1

P (hd
jk < 0) + j α(j)

=

j∏

k=1

Φ

(
−bjk(z2 − z1)

/√
2c2

1− b2jk

1− b2

)
+ j α(j)

=

j∏

k=1

Φ

(
bjk(z1 − z2)

√
1− b2

√
2c2(1− b2jk)

)
+ j α(j)

≤
[
Φ

(
bj(z1 − z2)

√
1− b2

√
2c2(1− b2j)

)]j

+ j α(j)

≤
[
Φ

(
bj(z1 − z2)

√
1− b2

c

)]j

+ j α(j). (A.25)

Consider (A.25) in two cases:

Case 1: z1 − n ≤ z2 ≤ x1. For any sufficient large n (which is equivalent to large j),

66



bj(z1−z2)
√

1−b2

c
≤ 1 . Hence P (τ(z1, z2) > n) ≤ (Φ(1))j + jα(j), which implies

∫ z1

z1−n

P (τ(z1, z2) > n) f(z2; µ0, σ0) dz2 ≤ (Φ(1))j + j α(j)

Case 2: z2 < z1 − n. For sufficient large n,

∫ z1−n

−∞
P (τ(z1, z2) > n) f(z2; µ0, σ0) dz2

≤
∫ z1−n

−∞
f(z2; µ0, σ0) dz2

≤ d3 e−n (A.26)

for some d3 > 0.

A similar estimate can be obtained when z2 > z1. Putting the results together, (2.44)

will hold. ¤

Proof of Theorem 2:

The argument in proving Proposition 1 also applies to the non-stationary case, pro-

vided we have an error bound for the characteristic functions
∣∣∣Eei(uU

(0)
n +vV

(0)
n ) − φ(u, v)

∣∣∣
and a Berry-Esseen bound for the cdf of uU

(0)
n + vV

(0)
n .

Consider
∣∣∣Eei(uU

(0)
n +vV

(0)
n ) − φ(u, v)

∣∣∣. Based on Lemma 3 and the triangle inequality, it

suffices to have

∣∣∣Eei(uU
(0)
n +vV

(0)
n ) − Eei(uU∗n+vV ∗n )

∣∣∣

=
∣∣E {

ei(uU∗n+vV ∗n )
[
ei(uw1n+vw2n) − 1

]}∣∣

where w1n = U (0)
n − U∗

n, w2n = V (0)
n − V ∗

n

≤
√

E |ei(uU∗n+vV ∗n )|2
√

E |ei(uw1n+vw2n) − 1|2

=
√
|E (ei(uw1n+vw2n) − 1)(e−i(uw1n+vw2n) − 1)|

≤
√
|E(ei(uw1n+vw2n) − 1)|+ |E(e−i(uw1n+vw2n) − 1)|.
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With the two similar terms, we only need to bound
∣∣E(ei(uw1n+vw2n) − 1)

∣∣.

Observe that

U (0)
n = (V ar0U

(1)
n )−1/2[U (1)

n − EU (1)
n ]

V (0)
n = (V ar0V

(1)
n )−1/2[V (1)

n − EV (1)
n ]

U∗
n = σ−1

Un
[U (π)

n − EU (π)
n ]

V ∗
n = σ−1

Vn
[V (π)

n − EV (π)
n ].

Hence

w1n =
U

(1)
n − U

(π)
n√

V ar0Un

+
−E(U

(1)
n − U

(π)
n )√

V ar0Un

+ U∗
n

(
σUn√

V ar0Un

− 1

)
, (A.27)

w2n =
V

(1)
n − V

(π)
n√

V ar0Vn

+
−E(V

(1)
n − V

(π)
n )√

V ar0Vn

+ V ∗
n

(
σVn√

V ar0Vn

− 1

)
. (A.28)

Set n0 = b0 (log n)γ0 where b0 > 0 and γ0 > 2 are chosen such that the upper bound

in (2.44) c1 exp(−c2n
1/2−δ1
0 ) ≤ c1 n−1, hence P (τ(z1) > n0) ≤ c1 n−1. The coupling of h(1)

and h(π) implies that on the set {τ(z1) ≤ n0}, we have

U (1)
n − U (π)

n =

n0−1∑
j=0

(
eh

(1)
j − eh

(π)
j

)
, (A.29)

V (1)
n − V (π)

n =

n0−1∑
j=0

(
eh

(1)
j /2εj+1 − eh

(π)
j /2εj+1

)
. (A.30)

The same argument in the proof of Lemma 3 (see the estimate for part 1 there) along

with (A.27), (A.29) and Lemma 5 lead to the estimate

∣∣E [
(ei(uw1n+vw2n) − 1) I{τ(z1)≤n0}

]∣∣ ≤ O(n−γ′) (A.31)
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where γ′ ∈ (0, 1) can be arbitrarily close to 1.

Therefore, an error bound for the characteristic functions
∣∣∣Eei(uU

(0)
n +vV

(0)
n ) − φ(u, v)

∣∣∣
should have the same order as the bound for

∣∣Eei(uU∗n+vV ∗n ) − φ(u, v)
∣∣ obtained in Lemma

3.

Moreover, it follows from the estimates in (A.27), (A.29), Lemma 5 and the Chebyshev

inequality that for r = 8 log n,

P
(
|U (0)

n − U∗
n| ≥

r

8

)
≤ C1n

−γ′

P
(
|V (0)

n − V ∗
n | ≥

r

8

)
≤ C1n

−γ′

for some C1 > 0. Hence an estimate for P
(
(U

(0)
n )2 + (V

(0)
n )2 ≥ r2

4

)
similar to (A.18) can

be obtained via the triangle inequalities P
(
|U (0)

n | ≥ r
4

)
≤ P

(|U∗
n| ≥ r

8

)
+P

(
|U (0)

n − U∗
n| ≥ r

8

)

and P
(
|V (0)

n | ≥ r
4

)
≤ P

(|V ∗
n | ≥ r

8

)
+ P

(
|V (0)

n − V ∗
n | ≥ r

8

)
.

With these estimates related to the differences w1n and w2n, the argument in proving

Proposition 1 extends to Theorem 2. ¤
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