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ABSTRACT

CHAO DENG: Optimal Design and Control of Finite-Population Queueing Systems
(Under the direction of Professor Nilay Tanık Argon and Professor Vidyadhar G. Kulkarni)

We consider a service system with a finite population of customers (or jobs) and a service

resource with finite capacity. We model this finite-population queueing system by a closed

queueing network with two stages. The first stage, which represents the arrivals of customers

for service, consists of an automated station with ample capacity. The second stage, which

represents the service for customers, consists of multiple service stations which share the

finite service resource. We consider both discrete and continuous service resources. We are

interested in static or dynamic allocation of the service resource to the service stations in the

second stage in order to optimize a given system measure. Specifically, a static allocation

refers to a design problem, while a dynamic allocation refers to a control problem. In this

thesis, we study both.

For control problems, we specify a parallel-series structure for service stations. We first

consider dynamically allocating a single flexible server under both preemptive and non-

preemptive policies. We characterize the optimal policies of dynamically scheduling this

single server in order to maximize the long-run average throughput of the system. In the

special case of a series system, we show that the optimal policy is a sequential policy where

each customer is served by the single server sequentially from the first station until the

last one. For a parallel system, we show that there exists an optimal policy which gives

the highest priority to the station that has the largest service rate. We also propose an

index policy heuristic for the general parallel-series system and compare its performance

as opposed to the optimal policy by a numerical study. Finally, we study dynamically

allocating a finite amount of continuous service resource for the parallel system.

For design problems, we consider allocating a finite amount of service resource which

is continuously divisible and can be used at any of the service stations. Suppose that



service times at a service station are exponentially distributed and their mean is a strictly

increasing and concave function of the allocated service resource. We characterize the

optimal allocation of the continuous resource in order to maximize the long-run average

throughput of the system. We first show that the system throughput is non-decreasing in

the number of customers. Then, we study the optimization problem in three cases depending

on the population size of customers in the system. First, when there is a single customer,

we show that the optimal allocation is given by a set of optimality equations. Secondly,

when the number of customers approaches infinity, we show that the optimal allocation

approaches to a limit. Finally, for any finite number of customers, we show that the system

throughput is bounded up by a limit. Moreover, under a certain condition, we show that

the system throughput function is Schur-concave.

Keywords: finite-population queueing systems, dynamic control, static design.
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Chapter 1

INTRODUCTION

A finite-population queueing system, or sometimes called a finite-source queueing sys-

tem, is a queueing system in which requests for service are generated by a finite number

of customers (sources) and the requests are handled by a single or multiple server(s). The

service times of the requests generated by the customers are random variables. It is as-

sumed that the server can handle only one request at a time and uses a specified service

discipline. A customer can be idle, waiting for service, or in service. An idle customer

generates a request for service after a random amount of time independent of the states of

the other customers. Once the service is completed, the customer becomes idle again, and

the process repeats. In this thesis, we consider identical customers whose idle periods follow

an independent and identically distributed (i.i.d.) exponential distribution.

Two widely known applications of finite-population queueing systems are machine inter-

ference problems (or alternatively machine repairman problems) and computer-communication

systems. In the machine interference problems, the customers are machines. A machine op-

erates for a random period of time, then breaks down and requests service from workers.

While the worker resource is scarce, the service facility needs to make two decisions: which

worker will serve each machine and in what order the machines will be served. There is

a rich literature studying the machine interference problems. For a complete review of

research in this area, see the survey paper by Haque and Armstrong [7].

Many computer and communication systems can be modeled as finite-population queue-

ing systems. For example, in a computer-communication system, N terminals request to

use a computer (server) to process transactions. Each of the terminals takes a random time

to generate a request for the computer. The computer works on each of the transactions

and responds to the user at the terminal once the transaction is completed. The through-

put rate at which transactions are processed, or equivalently, generated in steady-state is

one of the most important performance measures showing the system’s processing power.



See Sztrik [30] for a complete review of finite-population queueing systems applications and

bibliography of related papers.

Finite-population queueing models can be also useful in developing effective policies in

healthcare. Green [5] provides an overview of using queueing analysis to improve service in

healthcare. For example, the finite-population queueing systems can be applied to the nurse

staffing problems in hospital wards. For the hospitals with high demands and constrained

resources, it is reasonable to assume that the number of patients staying is constant. Patients

stay in a bed for a random period of time, then request service from nurses. For a given

objective, for example, to maximize the steady-state processing rate of service requests, the

hospital managers need to determine service policies which optimally assign the nurses to

each of the requests.

Figure 1.1: A closed queueing system with two stages of stations.

In this thesis, we are interested in optimal allocation of the resource capacity to stations

in a finite-population queueing system. We consider two management paradigms: dynamic

and static. Under the dynamic paradigm, we are allowed to change resource allocation

whenever the system changes its state. For the dynamic problems, we consider only non-

idling policies, i.e., a server cannot be idle if there is any service request waiting. Under the

static paradigm, allocation decisions are made before the system starts to operate. When

the system is under operation, we are not allowed to adjust resource allocation any more.

We also consider two types of service resource: continuous and discrete. For the first
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case, we assume that a finite amount of continuous service capacity can be used at any of

the service stations in the second stage. For the discrete case, we assume that there is a

single flexible server who is able to work at any of the service stations.

We model the finite-population service system by a closed queueing network with K+ 1

(2 ≤ K < ∞) stations (labeled as station 0, 1, 2, . . . ,K) and a fixed population size of B

(1 ≤ B <∞). These K + 1 stations form the two stages of service, as shown in Figure 1.1,

where B jobs circulate between the two stages. The first stage consists of the automated

station, which is labeled as station 0, where B servers are dedicated to this station. A

customer receives service by one of the servers at station 0 immediately after she arrives

at this automated station. Assume that service times at station 0 are independent and

identically distributed with an exponential distribution and mean 1/µ0. The second stage

consists of the remaining K service stations, i.e., stations 1, 2, . . . ,K. We refer to these K

stations in the second stage as service stations and to station 0 as an automated station.

Suppose that a fixed amount of resource is available to be used by service stations. The

decision is how to allocate the resource (statically or dynamically) to each of the service

stations in order to optimize a given system measure.

In this thesis, we mainly consider the objective of maximizing the long-run average

reward (throughput) of the system. We also conduct a brief study on dynamic control of

finite-population queueing systems under the objective of waiting cost minimization.

The organization of this thesis is given as follows. In Chapter 2, we provide a litera-

ture review on optimal control and design for finite-population queueing system and closed

queueing systems. In Chapter 3 and 4, we study the dynamic control problems and the

static design problems, respectively, under the reward (throughput) maximization objec-

tive. In Chapter 5, we present our work on dynamic control problems with the objective of

waiting cost minimization. Finally, we provide future research directions in Chapter 6.
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Chapter 2

LITERATURE REVIEW

Optimal design and control of queueing networks have been an important research sub-

ject of Operations Research for decades. In this chapter, we review the literature that is

most relevant to our work. We focus on the papers that study design and control problems

for closed queueing networks where finite-population service systems fit best. We also briefly

review the literature studying open queueing networks whose methodologies on design and

control problems are relevant to our work. In the review of each paper, we indicate the

following main features of the model considered by that paper:

1. Resource type (continuous, discrete single-server, or discrete multiple-server);

2. Objective function (e.g., throughput maximization or waiting cost minimization);

3. Policy constraints (e.g., preemption or non-preemption);

4. Structure of the queueing network (e.g., parallel or series);

5. The Results.

2.1 Dynamic Control

2.1.1 Finite-Population and Closed Queueing Systems

There is a rich literature that studies finite-population queueing systems and one of its

major applications, namely, the machine interference problem. A research survey on the

machine interference problem up to 1985 is provided by Stecke and Aronson [27]. Haque

and Armstrong [7] extensively extend this survey on this area until 2007. For a complete

literature review on finite-population queueing systems up to 2001, see Sztrik [30]. We here

review only the work that is most relevant to this study.



Palesano and Chandra [21] study a machine interference problem with multiple types

of failures. A single server is available to work on all types of failures. A machine stays

functioning for a random time, then breaks down and requests service from the repairman.

The type of failures is random. This paper studies the system performance under different

service priorities by a numerical study and compares them. They do not prove any optimal-

ity results. They find that the mean number of machines waiting for repair increases when

the failure types with higher mean service times are given a high priority. This observation

is consistent with our work, in which we prove that the optimal policy that maximizes the

long-run system throughput rate gives priority to the stations with higher service rates.

Both Iravani and Kolfal [10] and Iravani, Krishnamurthy, and Chao [12] study a single-

server machine repairman problem with multiple classes of machines. The single server is

available to serve all machine classes. Iravani and Kolfal [10] consider preemptive policies.

Cost is incurred when a machine is waiting for service. The authors observe that in a finite-

population queueing system, ignoring customers’ arrival rate and applying the cµ rule is not

always optimal to minimize the long-run average cost of the system. They find the conditions

under which static-priority rules, e.g. the cµ rule, are optimal independent of customer

arrival rate and customer population size. Iravani, Krishnamurthy, and Chao [12] consider

the non-preemptive case. Cost is incurred when a machine is down. The authors investigate

the dynamic assignment policies that minimize the total average customer waiting cost. The

authors show that the optimal service policy may never serve some classes of machines. For

those classes that are served, the paper shows that a static priority policy is optimal, and

derives sufficient conditions that determines the optimal priority sequence.

Iravani and Krishnamurthy [11] study a machine repairman problem with partially cross-

trained servers, i.e., each server is able to repair a set of machines. Cost is incurred when a

machine is down and waiting for repair. The objective is to obtain the optimal policy that

dynamically allocates servers to minimize the long-run average cost. The paper shows that

static machine priority rules are effective in minimizing the waiting cost rate.

Many papers study production systems by modeling them as closed serial queueing

networks. Koole and Righter [15] study a tandem manufacturing system with multiple

flexible servers. The tandem stations can be divided into several non-overlapping sets of

adjacent stations. Each server is able to work on one set of stations. The paper looks
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for optimal policies of dynamically assigning the server to work within his set of stations.

The objective is to maximize the departure process stochastically. They consider two cases

where either preemption and idling are permitted or preemption and idling are not allowed.

For both cases, they show that the optimal policy assigns each server to work at his last

nonempty station.

Hopp, Iravani, Shou and Lien [9] study a manufacturing system with a mix of manual and

automated equipment. The system operates under a constant work-in-process (CONWIP)

protocol, and is staffed by a single cross-trained worker. The system is modeled by a

tandem queueing network with three stations. The first station is an automated station

with automatic processing times but requiring a manual loading time. The other two

stations are manual stations requiring manual processing times. The single flexible server is

able to work at all stations. The paper investigates the optimal control policy to maximize

the average throughput rate. They show that the optimal control policy is a static priority

policy.

All papers reviewed in this section study dynamic control problems with a single server

or multiple servers. In other words, they consider discrete service resources in their models.

In this study, we consider both continuous and discrete service resources for our problems.

For the continuous resources, we assume that there is a fixed job processing capacity that

can be divided continuously among the K service stations in the second stage. For the

discrete resources, we assume that a single server or multiple servers are available to be

allocated among the K service stations.

2.1.2 Open Queueing Systems

There is a rich literature that studies design and control problems for open queueing net-

works. In this thesis, we only review those papers that are most relevant to our work. It is

important to point out that our focus is not open queueing networks but finite-population

and closed queueing networks.

Klimov [13] is a pioneering study on service priorities of open queueing networks. Klimov

[13] studies a dynamic control problem for an open queueing network with a finite number

of nodes and a single server. Jobs arrive according to a Poisson process at all nodes, and

service times are generally distributed at each node. Cost is incurred when a job is waiting
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in a queue. Interruption of service is not allowed. The paper proves that a priority index

policy is optimal in order to minimize the long-run average waiting cost. In a subsequent

paper, Klimov [14] provides a simple and efficient algorithm to compute such a priority

index for queueing networks with a forest structure.

Harrison [8] is another pioneering work on studying service priorities of open queueing

networks. Harrison [8] considers a single-server queue with multiple customer classes. He

assumes independent Poisson arrival processes. Service times have general distribution

which depend only on customer classes. Cost is incurred when a customer is waiting in

the system. A reward is gained when a customer is served. The objective is to maximize

the discounted total profit over an infinite planning horizon. A priority index policy called

modified static policy is shown to be optimal.

Van Oyen et al. [33] study a serial production system with flexible workers. Service

times are generally distributed and depend only on stations. The paper considers both

collaborative (servers are able to work together on one job) and non-collaborative (servers

are not allowed to work together on one job) cases. Under the collaborative case, they

show that the so-called expedite policy is optimal to minimize the cycle time for each

job. The expedite policy places all the servers successively on a given job. Under the

non-collaborative case, no optimal policy is found. However, they propose a so-called pick-

and-run policy and demonstrate that it is near-optimal. The paper also extends some their

insights to a capacity-constrained environment with a constant work-in-process protocol.

Andradottir et al. [2] consider dynamic control problems for multiple-server queueing

systems. Their objective is to find optimal dynamic allocation policies to maximize the

long-run average throughput. Travel times of servers between stations are negligible. They

show that all non-idling policies are optimal when service rates depend only on either servers

or stations. For a special two-station tandem queueing system with two flexible servers and

finite number of buffers between the two stations, the paper shows that the optimal policy

assigns one server to each station unless the first station is starved or the second station is

blocked. Andradottir and Ayhan [1] later extend this result to the case with three servers.

Yankovic and Green [35] explore the appropriate nurse-to-patient levels to minimize

the probability that a patient’s service request is delayed. They use a two-dimensional

open queueing system rather than finite-population queueing system to model the hospital
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system. However, this nurse staffing problem can also be another application for finite-

population queueing systems. We consider a finite-population queueing system with four

service stations representing patients’ admission, patients’ stay in beds, patients’ caring

requests and patients’ discharge. While this paper seeks an appropriate nurse-to-patient

level for hospitals, we are interested in obtaining priority policies that optimally assign the

nurses to each of the patient requests in order to achieve a given objective. Finite-population

queueing systems can be used to model the hospital systems if we assume that the number

of patients staying in the hospitals is constant.

2.2 Static Design

In this section, we review articles that study static workload or server allocation problems

of closed queueing systems. Stecke and Morin [28] investigate optimality of balancing work-

loads in closed queueing systems. They consider a central server closed queueing network

where stations are parallel to each other. They are interested in obtaining optimal policies

for allocating workload in order to maximize the system throughput. The paper proves that

the throughput of this system is a quasi-concave function of workloads, and shows that a

balanced allocation of workloads maximizes the expected throughput of the system.

Stecke [26] studies the non-concavity property of throughput function in closed queueing

networks. For a general-structured closed queueing network with multiple customers, she

shows that the throughput function is not concave in workload. When the closed queueing

network includes two single server stations, the paper proves that the throughput function is

concave when there are two customers, and the throughput function is quasi-concave when

there are more than two customers.

Yao [36] considers a closed queueing network with single-server stations and exponential

service times. He investigates the concavity property of the long-run average throughput

of the system. He proves that the system throughput as a function of loading is Schur-

concave. As a consequence, the paper shows that, when the total loading of the system is

a constant, the balanced (or equal) loading maximizes the system throughput based on the

majorization property.

Shanthikumar and Yao [25] study the static allocation problem of a multiple-server

closed queueing network. Their objective is to find optimal policies for allocating servers
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to maximize throughput. The paper shows that the throughput of the system has a mono-

tonicity property, which means that an optimal policy allocates more servers to a station

with a higher workload. They provide a search algorithm to obtain an optimal policy within

a small number of allocations satisfying the monotonicity property.

Lee, Srinivasan, and Yano [17] consider the problem of allocating workload in a closed

queueing network with multi-server stations. Their objective is to maximize the long-

run average throughput of the system. The paper assumes that the system throughput is

product-form and there is a single class of customers. The paper proves that the throughput

function is quasi-concave in workload for a single-server closed queueing network and a multi-

server closed queueing network with two customers. For the general model, the authors

develop two heuristic algorithms to search the optimal workload allocation.

These papers study static allocation problems of closed queueing networks where all

stations are included for allocation decisions. In this study, we consider a two-stage queueing

system where the first stage is a special automated station. Allocation decisions are made

only for the service stations in the second stage. Furthermore, except for Shanthikumar

and Yao’s paper [25], the other papers consider allocating the workload in the system. In

this thesis, we consider allocating a fixed amount of service resource, and we study both

discrete and continuous resources.
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Chapter 3

OPTIMAL DYNAMIC CONTROL OF
FINITE-POPULATION QUEUEING SYSTEMS: REWARD

MAXIMIZATION

In this chapter, we study dynamic control problems, i.e., we are allowed to change

resource allocation when the system changes its state. We consider both preemptive and

non-preemptive policies. Let ΠP and ΠNP denote the set of preemptive policies and non-

preemptive policies, respectively. For preemptive policies, the server is allowed to make

service decisions whenever a service at the automated station or the service stations is

completed. Under non-preemptive policies, the server is allowed to switch to work at other

stations only when it completes service. In this chapter, we only consider non-idling policies,

i.e., the server (or service capacity) is not allowed to be idle whenever job(s) are available

at the service stations.

We formulate the dynamic control problem in Section 3.1. In Sections 3.2 and 3.3, we

consider the case where the service resource is discrete and a single server is available to

work at K service stations. We study preemptive and non-preemptive policies in Section

3.2 and 3.3, respectively. In Section 3.4, we consider the problem with continuous resource

constraint.

3.1 Model Formulation

We consider a special case of the general finite-population queueing system, called a parallel-

series system, as shown in Figure 3.1. The second stage in this system consists of M

parallel branches, where the m-th branch consists of im service stations in series. We use

an M -dimensional vector (i1, i2, . . . , iM ) to denote the parallel-series system which has M

service types (branches) and im tasks on its m-th branch (m = 1, 2, . . . ,M), satisfying∑M
m=1 im = K. For example, a system with M = 1 and i1 = K represents a tandem

queueing network with K service stations, while a system with i1 = i2 = · · · = iM = 1



represents a parallel queueing network with M service stations. Such a parallel-series system

arises where the service needs can be classified into M types. The m-th service type consists

of a series of im tasks, each taking a random amount of time.

Figure 3.1: A closed queueing system with parallel-series service stations.

We denote the ith node in the m-th branch as node (i,m). A customer stays in node

0 for a random amount of time and then moves to node (1,m) with probability pm > 0

(1 ≤ m ≤ M), where
∑M

m=1 pm = 1. A customer stays in node (i,m) until she receives

service from the server, then moves to node (i + 1,m) if i < im, and to node 0 if i = im.

This process repeats forever. Let Sj,m represent the random service time performed by the

server in node (j,m) (1 ≤ j ≤ im, 1 ≤ m ≤ M). We assume that all service times are

independent of each other.

Let Dπ
0 (t) and Dπ

(i,m)(t) denote the number of service completions in node 0 and in node

(i,m) (1 ≤ i ≤ im, 1 ≤ m ≤M), respectively during [0, t] under policy π, where π is either

in ΠP or ΠNP . Suppose that a finite reward R(i,m) is gained when service is completed in

node (i,m) (1 ≤ i ≤ im, 1 ≤ m ≤M). We define

Rπ ≡ lim inf
t→∞

M∑
m=1

im∑
i=1

R(i,m)D
π
(i,m)(t)

t
, (3.1.1)

which denotes the long-run average reward of the system under policy π.
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Let THπ
0 denote the long-run average throughput of station 0 under policy π, i.e.,

THπ
0 ≡ lim inf

t→∞

Dπ
0 (t)

t
. (3.1.2)

Throughout the paper, we will refer to THπ
0 as the system throughput. We first show

that maximizing the long-run average reward of the system is equivalent to maximizing the

long-run average throughput of the system.

Theorem 3.1.1. For the parallel-series system, maximizing the long-run average reward of

the system is equivalent to maximizing the long-run average throughput of the system.

Proof of Theorem 3.1.1. We define THπ
(i,m) as the long-run average throughput from

node (i,m), i.e.,

THπ
(i,m) ≡ lim inf

t→∞

Dπ
(i,m)(t)

t
.

We first show that the long-run average throughput at any two consecutive nodes are equal,

i.e., THπ
(i,m) = THπ

(i+1,m) (1 ≤ i ≤ im − 1, 1 ≤ m ≤ M). Let Cπ(i,m)(t) denote the number

of customers in node (i,m) at time t (1 ≤ i ≤ im and 1 ≤ m ≤M). Then, we have

Cπ(i+1,m)(t) = Cπ(i+1,m)(0) +Dπ
(i,m)(t)−D

π
(i+1,m)(t), for 1 ≤ i ≤ im − 1 and 1 ≤ m ≤M,

which implies

lim inf
t→∞

Dπ
(i,m)(t)

t
= lim inf

t→∞

Dπ
(i+1,m)(t)

t
+ lim inf

t→∞

Cπ(i+1,m)(t)

t
− lim inf

t→∞

Cπ(i+1,m)(0)

t
. (3.1.3)

Since Cπ(i+1,m)(t) ≤ B < ∞ for all t ≥ 0, the last two terms in (3.1.3) are equal to 0.

Hence,

THπ
(i,m) = THπ

(i+1,m), for 1 ≤ i ≤ im − 1 and 1 ≤ m ≤M. (3.1.4)

Now, let Dπ
0,m(t) be the number of customers who request an m-th type of service after

leaving node 0 during [0, t] under policy π, and hence
∑M

m=1D
π
0,m(t) = Dπ

0 (t). A similar

argument as above leads to

lim inf
t→∞

Dπ
0,m(t)

t
= lim inf

t→∞

Dπ
(1,m)(t)

t
.

By the law of large numbers, we know that

lim inf
t→∞

Dπ
0,m(t)

Dπ
0 (t)

= pm,
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and hence using (3.1) we have

THπ
(1,m) = pmTH

π
0 . (3.1.5)

By (3.1.4) and (3.1.5), we can show that

Rπ = lim inf
t→∞

M∑
m=1

im∑
i=1

R(i,m)D
π
(i,m)(t)

t

=
M∑
m=1

im∑
i=1

R(i,m)TH
π
(i,m)

=
M∑
m=1

THπ
(1,m)

im∑
i=1

R(i,m)

= THπ
0

M∑
m=1

pm

im∑
i=1

R(i,m).

Since
∑M

m=1 pm
∑im

i=1R(i,m) is a constant for given R(i,m) and pm (1 ≤ i ≤ im, 1 ≤ m ≤M),

maximizing Rπ is equivalent to maximizing THπ
0 .

In the following discussions, our objective is to solve the following two optimization

problems in order to maximize the long-run average throughput of the system:

max
π∈ΠP

THπ
0

and

max
π∈ΠNP

THπ
0 .

3.2 Discrete Resource Constraint with a Single Server: Preemption

In this section, we consider allocating a single flexible server under preemptive policies.

Assume that service times at station k are exponentially distributed with rate µk where

0 < µk <∞.

3.2.1 Series System

We first study a series system as shown in Figure 3.2. We formulate the optimization

problem as a Markov decision process. Let n = (n1, n2, . . . , nK) denote the state of the

system, where nk ≥ 0 represents the number of jobs at station k (1 ≤ k ≤ K, 0 ≤
∑K

j=1 nj ≤

B). Let n =
∑K

k=1 nk denote the total number of jobs at the service stations in state n. Let

13



In ⊆ {1, 2, . . . ,K} denote the set of service stations that are non-empty in state n. Also,

let ei denote a K-dimensional row vector with all elements 0 except where the ith element

is equal to 1, and denote by 0 a K-dimensional row vector with all elements equal to 0.

Define V (n) as the bias of state n, and g as the long-run average throughput of the system.

Figure 3.2: A closed queueing system with an automated station and K tandem service
stations.

Because both the state space and the action space are finite and the transition matrix

consists of a single recurrent class for every deterministic stationary policy, the MDP under

study is unichain. Hence, we know that there exists a stationary average optimal policy

and hence g exists (see, e.g., Theorem 8.4.5 in Puterman [22]). Define Λ = Bµ0 +
∑K

k=1 µk

as the uniformization constant. Without loss of generality, we assume that Λ = 1. Then,

the optimality equation can be expressed as follows:

g + V (n) = (B − n)µ0V (n+ e1) + nµ0V (n) + f(n), for 0 ≤ n ≤ B, (3.2.1)

where

f(n) =

K∑
k=1

µkV (n) +


0, if n = 0

maxi∈In

{
µi[V (n− ei + ei+1)− V (n)]1{i 6=K},

µK [V (n− eK) + 1− V (n)]1{i=K}

}
, otherwise,

where 1{A} is an indicator function with value of 1 if A holds or value of 0 otherwise. Here,

we use the fact that the throughput from each station in a tandem line is the same (see the

proof of Theorem 3.1.1). We provide a complete characterization of the optimal policy in

Theorem 3.2.1.

Theorem 3.2.1. The policy that gives priority to the non-empty station with the largest in-

dex maximizes the long-run average throughput of the system within the set of all preemptive

policies ΠP .
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Proof of Theorem 3.2.1. In order to prove Theorem 3.2.1, we first show that the result

holds for a similar finite horizon problem given by (3.2.2) with m periods for all m ≥ 0. Let

Nk denote the state of the system at period k and dk(Nk) the decision rule at period k in

state Nk under policy π. Let r(N , d) denote the gained throughput when the system is in

state N and the action d is taken. We define Vm(π,n) as the m-period expected throughput

under policy π when the initial state is n, i.e.,

Vm(π,n) ≡ E

[
m−1∑
k=0

r(Nk, dk(Nk))

]
.

Then, the optimal m-period expected total throughput is

V ∗m(n) ≡ sup
π∈ΠP

Vm(π,n). (3.2.2)

We let g(π,n) be the long-run average throughput under policy π, given that the initial

state of the system is n, i.e.,

g(π,n) ≡ lim inf
m→∞

1

m
Vm(π,n).

Let µ ≡
∑K

k=1 µk. Then, the optimality equation for the finite-period problem can be

expressed as follows. For all m ≥ 0,

Vm+1(n) = (B − n)µ0Vm(n+ e1) + nµ0Vm(n) + fm(n), for 0 ≤ n ≤ B, (3.2.3)

where

fm(n) = µVm(n) +


0, if n = 0

maxi∈In

{
[µiVm(n− ei + ei+1)− µiVm(n)]1{i 6=K},

[µK(Vm(n− eK) + 1)− µKVm(n)]1{i=K}

}
, otherwise.

We assume that V0(n) = 0 for all n. For system state n, where 2 ≤ n ≤ B, let l1(n) ≡

max{k : k ∈ In} and l2(n) ≡ max{k : k ∈ In−el1(n)}. We will show that, for all m ≥ 0,

2 ≤ n ≤ B, and j ∈ In−el1(n) ,

i. if l1(n) < K,

µl1(n)Vm(n− el1(n) + el1(n)+1)− µjVm(n− ej + ej+1) + (µj − µl1(n))Vm(n) ≥ 0;

(3.2.4)
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ii. if l1(n) = K,

µKVm(n− eK)− µjVm(n− ej + ej+1) + (µj − µK)Vm(n) ≥ −µK ; (3.2.5)

iii.

Vm(n+ e1)− Vm(n) ≥ 0. (3.2.6)

We will use induction on m. Because V0(n) = 0 for all n, the inequalities automatically

hold at period 0. Assume that the inequalities hold at period m. We will show that they

also hold at period m + 1. In the remainder of this proof, we will let i = l1(n) for ease of

notation whenever it does not cause any ambiguity.

Proof of (3.2.4): We will consider two cases.

(a) Suppose that l1(n) < K − 1. Using equation (3.2.3), we have

µiVm+1(n− ei + ei+1)− µjVm+1(n− ej + ej+1) + (µj − µi)Vm+1(n)

=(B − n)µ0[µiVm(n− ei + ei+1 + e1)− µjVm(n− ej + ej+1 + e1) + (µj − µi)Vm(n+ e1)]

+ nµ0[µiVm(n− ei + ei+1)− µjVm(n− ej + ej+1) + (µj − µi)Vm(n)]

+ µi+1µiVm(n− ei + ei+2)− µiµjVm(n− ej + ej+1 − ei + ei+1)

+ µi(µj − µi)Vm(n− ei + ei+1)

+ (µ− µi+1)µiVm(n− ei + ei+1)− (µ− µi)µjVm(n− ej + ej+1)

+ (µ− µi)(µj − µi)Vm(n)

=(B − n)µ0[µiVm(n− ei + ei+1 + e1)− µjVm(n− ej + ej+1 + e1) + (µj − µi)Vm(n+ e1)]

+ µi[µi+1Vm(n− ei + ei+2)− µjVm(n− ej + ej+1 − ei + ei+1)

+ (µj − µi+1)Vm(n− ei + ei+1)]

+ (nµ0 + µ− µi)[µiVm(n− ei + ei+1)− µjVm(n− ej + ej+1) + (µj − µi)Vm(n)],

which is non-negative by the inductive hypothesis for (3.2.4) at period m, the facts

that l1(n + e1) = l1(n) and l1(n − ei + ei+1) = i + 1, and the assumption that

Bµ0 + µ=1.
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(b) Suppose that l1(n) = K − 1. Using equation (3.2.3), we have

µK−1Vm+1(n− eK−1 + eK)− µjVm+1(n− ej + ej+1) + (µj − µK−1)Vm+1(n)

=(B − n)µ0[µK−1Vm(n− eK−1 + eK + e1)− µjVm(n− ej + ej+1 + e1)

+ (µj − µK−1)Vm(n+ e1)]

+ nµ0[µK−1Vm(n− eK−1 + eK)− µjVm(n− ej + ej+1) + (µj − µK−1)Vm(n)]

+ µKµK−1[Vm(n− eK−1) + 1]− µK−1µjVm(n− ej + ej+1 − eK−1 + eK)

+ µK−1(µj − µK−1)Vm(n− eK−1 + eK)

+ (µ− µK)µK−1Vm(n− eK−1 + eK)− (µ− µK−1)µjVm(n− ej + ej+1)

+ (µ− µK−1)(µj − µK−1)Vm(n)

=(B − n)µ0[µK−1Vm(n− eK−1 + eK + e1)− µjVm(n− ej + ej+1 + e1)

+ (µj − µK−1)Vm(n+ e1)]

+ µK−1[µKVm(n− eK−1)− µjVm(n− ej + ej+1 − eK−1 + eK)

+ (µj − µK)Vm(n− eK−1 + eK) + µK ]

+ (nµ0 + µ− µK−1)[µK−1Vm(n− eK−1 + eK)− µjVm(n− ej + ej+1)

+ (µj − µK−1)Vm(n)],

which is non-negative by the inductive hypothesis for (3.2.4) and (3.2.5) at period m,

the facts that l1(n + e1) = K − 1 and l1(n − eK−1 + eK) = K, and the assumption

that Bµ0 + µ=1.

Proof of (3.2.5). We will consider two cases:
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(a) Suppose that l2(n) = K. Using equation (3.2.3), we have

µKVm+1(n− eK)− µjVm+1(n− ej + ej+1) + (µj − µK)Vm+1(n)

=(B − n+ 1)µ0µKVm(n− eK + e1)

+ (B − n)µ0[−µjVm(n− ej + ej+1 + e1)) + (µj − µK)Vm(n+ e1)]

+ (n− 1)µ0µKVm(n− eK) + nµ0[−µjVm(n− ej + ej+1) + (µj − µK)Vm(n)]

+ µKµK − µjµK + (µj − µK)µK

+ µK [µKVm(n− 2eK)− µjVm(n− ej + ej+1 − eK) + (µj − µK)Vm(n− eK)]

+ (µ− µK)[µKVm(n− eK)− µjVm(n− ej + ej+1) + (µj − µK)Vm(n)]

=(B − n)µ0[µKVm(n− eK + e1)− µjVm(n− ej + ej+1 + e1) + (µj − µK)Vm(n+ e1)]

+ µ0[µKVm(n− eK + e1)− µjVm(n− ej + ej+1) + (µj − µK)Vm(n)]

+ µK [µKVm(n− 2eK)− µjVm(n− ej + ej+1 − eK) + (µj − µK)Vm(n− eK)]

+ ((n− 1)µ0 + µ− µK)[µKVm(n− eK)− µjVm(n− ej + ej+1) + (µj − µK)Vm(n)],

which is greater than or equal to −µK by the inductive hypothesis for (3.2.5) and

(3.2.6) at period m, the facts that l1(n + e1) = K and l1(n − eK) = K, and the

assumption that Bµ0 + µ=1.

(b) Suppose that l2(n) < K. Using equation (3.2.3), we have

µKVm+1(n− eK)− µjVm+1(n− ej + ej+1) + (µj − µK)Vm+1(n)

=(B − n+ 1)µ0µKVm(n− eK + e1)

+ (B − n)µ0[−µjVm(n− ej + ej+1 + e1)) + (µj − µK)Vm(n+ e1)]

+ (n− 1)µ0µKVm(n− eK) + nµ0[−µjVm(n− ej + ej+1) + (µj − µK)Vm(n)]

− µjµK + (µj − µK)µK

+ µKµl2(n)Vm(n− eK − el2(n) + el2(n)+1)− µjµKVm(n− ej + ej+1 − eK)

+ (µj − µK)µKVm(n− eK)

+ µK(µ− µl2(n))Vm(n− eK)− µj(µ− µK)Vm(n− ej + ej+1)

+ (µj − µK)(µ− µK)Vm(n)
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=(B − n)µ0[µKVm(n− eK + e1)− µjVm(n− ej + ej+1 + e1) + (µj − µK)Vm(n+ e1)]

+ µ0[µKVm(n− eK + e1)− µjVm(n− ej + ej+1) + (µj − µK)Vm(n)]

+ (n− 1)µ0[µKVm(n− eK)− µjVm(n− ej + ej+1) + (µj − µK)Vm(n)]

+ µK [µl2(n)Vm(n− eK − el2(n) + el2(n)+1)− µjVm(n− ej + ej+1 − eK)

+ (µj − µl2(n))Vm(n− eK)− µK ]

+ (µ− µK)[µKVm(n− eK)− µjVm(n− ej + ej+1) + (µj − µK)Vm(n)],

which is greater than or equal to −µK by the inductive hypothesis for (3.2.4), (3.2.5)

and (3.2.6) at period m, the facts that l1(n+ e1) = K and l1(n− eK) = l2(n) < K,

and the assumption that Bµ0 + µ=1.

Proof of (3.2.6). We will consider two cases:

(a) Suppose that l1(n) < K. Using equation (3.2.3), we have

Vm+1(n+ e1)− Vm+1(n)

=(B − n− 1)µ0Vm(n+ 2e1)− (B − n)µ0Vm(n+ e1)

+ (n+ 1)µ0Vm(n+ e1)− nµ0Vm(n)

+ µl1(n)[Vm(n+ e1 − el1(n) + el1(n)+1)− Vm(n− el1(n) + el1(n)+1)]

+ (µ− µl1(n))[Vm(n+ e1)− Vm(n)]

=(B − n− 1)µ0[Vm(n+ 2e1)− Vm(n+ e1)]

+ µl1(n)[Vm(n+ e1 − el1(n) + el1(n)+1)− Vm(n− el1(n) + el1(n)+1)]

+ (nµ0 + µ− µl1(n))[Vm(n+ e1)− Vm(n)],

which is non-negative by the inductive hypothesis for (3.2.6) at period m and the

assumption that Bµ0 + µ=1.
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(b) Suppose that l1(n) = K. Using equation (3.2.3), we have

Vm+1(n+ e1)− Vm+1(n)

=(B − n− 1)µ0Vm(n+ 2e1)− (B − n)µ0Vm(n+ e1)

+ (n+ 1)µ0Vm(n+ e1)− nµ0Vm(n)

+ µK [Vm(n+ e1 − eK)− Vm(n− eK)]

+ (µ− µK)[Vm(n+ e1)− Vm(n)]

=(B − n− 1)µ0[Vm(n+ 2e1)− Vm(n+ e1)]

+ µK [Vm(n+ e1 − eK)− Vm(n− eK)]

+ (nµ0 + µ− µK)[Vm(n+ e1)− Vm(n)],

which is non-negative by the inductive hypothesis for (3.2.6) at period m and the

assumption that Bµ0 + µ=1.

Let π∗ be the policy that gives priority to the non-empty station with the largest index

in the series system. By (3.2.4) and (3.2.5), we have

Vm(π∗,n) ≥ Vm(π,n) (3.2.7)

for all π ∈ ΠP and for all m ≥ 0. Dividing both sides of (3.2.7) by m and taking limits as

m approaches infinity the long-run average throughput result follows, i.e.,

g(π∗,n) ≥ g(π,n)

for all π ∈ ΠP . Hence, policy π∗ maximizes the long-run average throughput of the system.

Remarks. Theorem 3.2.1 shows that we should put the server to work at the station

which is as close to the entry into station 0 as possible when a job is available. The intuition

is that the earlier a job goes back to the automated station, the earlier this job leaves station

0 to request for service, which increases the utilization of the server and the throughput of

the system as well. Note that the optimal policy eventually becomes a policy under which

the server picks a job from the queue in front of station 1 and completes the service of this

job at all service stations 1, 2, . . . ,K before it starts working on another job waiting in front

of station 1. We call this policy a sequential policy.
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In the set of preemptive policies, the optimal policy for the series system shown in

Theorem 3.2.1 is actually non-preemptive. The server works on a job from the first station

to last station sequentially without being interrupted by new arrivals from station 0. Hence,

the sequential policy is also optimal within ΠNP under the Markovian case.

3.2.2 Parallel System

Next, we study a parallel system as shown in Figure 3.3. We formulate the optimization

problem as a Markov decision process (MDP). We use the same notation defined in Section

Figure 3.3: A closed queueing system with an automated station and K parallel service
stations.

3.2.1 unless otherwise stated. Following the same argument, we know that there exists a

stationary average optimal policy and hence g exists. Without loss of generality, we assume

that Λ = 1. Then, the optimality equation can be expressed as follows:

g + V (n) = (B − n)µ0

K∑
k=1

pkV (n+ ek) + nµ0V (n) + f(n), for 0 ≤ n ≤ B, (3.2.8)

where

f(n) =
K∑
k=1

µkV (n) +

 0 if n = 0,

maxi∈In{µi(V (n− ei) + 1)− µiV (n)} otherwise.

We provide a partial characterization of the optimal policy in Theorem 3.2.2.
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Theorem 3.2.2. Suppose that there exists a station i for which µi ≥ µj, for all j =

1, 2, . . . ,K and j 6= i. Then, there exists an optimal policy which gives the highest priority

to station i within the set of all preemptive policies ΠP .

Proof of Theorem 3.2.2. In order to prove Theorem 3.2.2 we show that the result holds

for the m-period expected total throughput problem defined by (3.2.2) for all m ≥ 0. Then,

the optimality equation for the finite-period problem can be expressed as follows. For all

m ≥ 0,

Vm+1(n) = (B − n)µ0

K∑
k=1

pkVm(n+ ek) + nµ0Vm(n) + fm(n), for 0 ≤ n ≤ B, (3.2.9)

where

fm(n) =
K∑
k=1

µkVm(n) +

 0 if n = 0,

maxi∈In{µi(Vm(n− ei) + 1)− µiVm(n)} otherwise.

We assume that V0(n) = 0 for all n.

Without loss of generality, we assume that µ1 ≥ µj , for all j = 2, 3, . . . ,K. For system

state n, where 2 ≤ n ≤ B, let l1(n) ≡ min{k : k ∈ In} and l2(n) ≡ min{k : k ∈ In−el1(n)}.

Let na = n + ea (1 ≤ a ≤ K). We will show that, for all m ≥ 0, 2 ≤ n ≤ B, n1 ≥ 1, and

1 ≤ a ≤ K,

µ1Vm(n− e1)− µjVm(n− ej) + (µj − µ1)Vm(n) ≥ µj − µ1, (3.2.10)

µ1Vm(na − e1)− µjVm(na − ej) + (µj − µ1)Vm(n) ≥ µj − µ1, (3.2.11)

where j 6= 1 and j ∈ In. We will use induction on m. Since V0(n) = 0 for all n, (3.2.10)

and (3.2.11) automatically hold at period 0. Assume that inequalities (3.2.10) and (3.2.11)

hold at period m. We will show that they also hold at period m+ 1.

Proof of (3.2.10): We will consider two cases.
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(a) Suppose that l2(n) = 1. Using equation (3.2.9), we have

µ1Vm+1(n− e1)− µjVm+1(n− ej) + (µj − µ1)Vm+1(n)

=(B − n+ 1)µ0

∑
k

pk[µ1Vm(n− e1 + ek)− µjVm(n− ej + ek))]

+ (B − n)µ0

∑
k

pk(µj − µ1)Vm(n+ ek)

+ (n− 1)µ0[µ1Vm(n− e1)− µjVm(n− ej)] + nµ0[(µj − µ1)Vm(n)]

+ µ1µ1 − µjµ1 + (µj − µ1)µ1 + µ1[µ1Vm(n− 2e1)− µjVm(n− ej − e1)

+ (µj − µ1)Vm(n− e1)]

+ (µ− µ1)[µ1Vm(n− e1)− µjVm(n− ej) + (µj − µ1)Vm(n)]

=(B − n)µ0

∑
k

pk[µ1Vm(n− e1 + ek)− µjVm(n− ej + ek) + (µj − µ1)Vm(n+ ek)]

+ µ0

∑
k

pk[µ1Vm(n− e1 + ek)− µjVm(n− ej + ek)) + (µj − µ1)Vm(n)]

+ µ1[µ1Vm(n− 2e1)− µjVm(n− ej − e1) + (µj − µ1)Vm(n− e1)]

+ ((n− 1)µ0 + µ− µ1)[µ1Vm(n− e1)− µjVm(n− ej) + (µj − µ1)Vm(n)],

which is greater than or equal to µj − µ1 by the inductive hypothesis for (3.2.10) and

(3.2.11) at period m, the fact that µ1 ≥ µj for all j ∈ In, and the assumption that

Bµ0 + µ = 1.

(b) Suppose that l2(n) > 1. Using equation (3.2.9), we have

µ1Vm+1(n− e1)− µjVm+1(n− ej) + (µj − µ1)Vm+1(n)

=(B − n+ 1)µ0

∑
k

pk[µ1Vm(n− e1 + ek)− µjVm(n− ej + ek))]

+ (B − n)µ0

∑
k

pk(µj − µ1)Vm(n+ ek)

+ (n− 1)µ0[µ1Vm(n− e1)− µjVm(n− ej)] + nµ0(µj − µ1)Vm(n)

+ µ1µl2(n) − µjµ1 + (µj − µ1)µ1

+ µ1µl2(n)Vm(n− e1 − el2(n))− µjµ1Vm(n− ej − e1) + (µj − µ1)µ1Vm(n− e1)

+ µ1(µ− µl2(n))Vm(n− e1)− µj(µ− µ1)Vm(n− ej) + (µj − µ1)(µ− µ1)Vm(n)
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=(B − n)µ0

∑
k

pk[µ1Vm(n− e1 + ek)− µjVm(n− ej + ek) + (µj − µ1)Vm(n+ ek)]

+ µ0

∑
k

pk[µ1Vm(n− e1 + ek)− µjVm(n− ej + ek)) + (µj − µ1)Vm(n)]

+ µ1[µl2(n)Vm(n− e1 − el2(n))− µjVm(n− ej − e1) + (µj − µl2(n))Vm(n− e1)

+ µl2(n) − µ1]

+ ((n− 1)µ0 + µ− µ1)[µ1Vm(n− e1)− µjVm(n− ej) + (µj − µ1)Vm(n)],

which is greater than or equal to µj − µ1 by the inductive hypothesis for (3.2.10) and

(3.2.11) at period m and l2(n) = l1(n− e1), the fact that µ1 ≥ µj for all j ∈ In, and

the assumption that Bµ0 + µ = 1.

Proof of (3.2.11). We will consider two cases:

(a) Suppose that l2(na) = 1. Using equation (3.2.9), we have

µ1Vm+1(na − e1)− µjVm+1(na − ej) + (µj − µ1)Vm+1(n)

=(B − n)µ0

∑
k

pk[µ1Vm(na − e1 + ek)− µjVm(na − ej + ek))]

+ (B − n)µ0

∑
k

pk[(µj − µ1)Vm(n+ ek)]

+ nµ0[µ1Vm(na − e1)− µjVm(na − ej)]

+ nµ0[(µj − µ1)Vm(n)]

+ µ1µ1 − µjµ1 + (µj − µ1)µ1

+ µ1µ1Vm(na − 2e1)− µjµiVm(na − ej − e1) + (µj − µ1)µ1Vm(n− e1)

+ µ1(µ− µ1)Vm(na − e1)− µj(µ− µi)Vm(na − ej) + (µj − µ1)(µ− µ1)Vm(n)

=(B − n)µ0

∑
k

pk[µ1Vm(na − e1 + ek)− µjVm(na − ej + ek) + (µj − µ1)Vm(n+ ek)]

+ nµ0[µ1Vm(na − e1)− µjVm(na − ej) + (µj − µ1)Vm(n)]

+ µ1[µ1Vm(na − 2e1)− µjVm(na − ej − e1) + (µj − µ1)Vm(n− e1)]

+ (µ− µ1)[µ1Vm(na − e1)− µjVm(na − ej) + (µj − µ1)Vm(n)],

which is greater than or equal to µj − µ1 by the inductive hypothesis for (3.2.11) at

period m, the fact that µ1 ≥ µj for all j ∈ In, and the assumption that Bµ0 + µ = 1.
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(b) Suppose that l2(na) > 1. Using equation (3.2.9), we have

µ1Vm+1(na − e1)− µjVm+1(na − ej) + (µj − µ1)Vm+1(n)

=(B − n)µ0

∑
k

pk[µ1Vm(na − e1 + ek)− µjVm(na − ej + ek))]

+ (B − n)µ0

∑
k

pk[(µj − µ1)Vm(n+ ek)]

+ nµ0[µ1Vm(na − e1)− µjVm(na − ej)] + nµ0[(µj − µ1)Vm(n)]

+ µ1µl2(na) − µjµ1 + (µj − µ1)µ1

+ µ1µl2(na)Vm(na − e1 − el2(na))− µjµ1Vm(na − ej − e1) + (µj − µ1)µ1Vm(n− e1)

+ µ1(µ− µl2(na))Vm(na − e1)− µj(µ− µ1)Vm(na − ej) + (µj − µ1)(µ− µ1)Vm(n)

=(B − n)µ0

∑
k

pk[µ1Vm(na − e1 + ek)− µjVm(na − ej + ek) + (µj − µ1)Vm(n+ ek)]

+ nµ0[µ1Vm(na − e1)− µjVm(na − ej) + (µj − µ1)Vm(n)]

+ µ1[µl2(na)Vm(na − e1 − el2(na))− µjVm(na − ej − e1) + (µj − µl2(na))Vm(n− e1)

+ µl2(na) − µ1]

+ (µ− µ1)[µ1Vm(na − e1)− µjVm(na − ej) + (µj − µ1)Vm(n)],

which is greater than or equal to µj − µ1 by the inductive hypothesis for (3.2.10) and

(3.2.11) at period m, the fact that µ1 ≥ µj for all j ∈ In, and the assumption that

Bµ0 + µ = 1.

Hence, we show that jobs at station 1 should be served ahead of jobs at station j

(j = 2, 3, . . . ,K) if jobs are available at both stations. In other words, we should give the

highest priority to station 1 in order to maximize the long-run average throughput of the

system.

Remarks. Theorem 3.2.2 says that we should give the highest priority to the service

station which has the fastest service rate among all service stations. This follows the same

intuition as in the series model where the optimal policy pushes jobs towards the automated

station as early as possible. Even though Theorem 3.2.2 only gives a partial characterization

of the optimal policy for K > 2, we believe that a complete characterization should follow

a similar intuition as we state in the following conjecture.
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Conjecture 3.2.1. The policy that gives priority to the non-empty station with the largest

service rate maximizes the long-run average throughput of the system within the set of all

preemptive policies ΠP .

A numerical study is conducted in Section 3.3.4 to support Conjecture 3.2.1.

3.3 Discrete Resource Constraint with a Single Server: Non-Preemption

In this section, we consider allocating a single flexible server under non-preemptive policies.

In Sections 3.3.1, 3.3.2, and 3.3.3, we study a series system, a parallel system, and a two-

branch three-station system, respectively. We characterize (either completely or partially)

optimal policies for each case. In Section 3.3.4, we propose an heuristic policy and provide

numerical results to compare the performance of the heuristic as opposed to the optimal

policy.

3.3.1 Series System

We first consider the series system as shown in Figure 3.2. Note that unlike in Section 3.2, we

here do not make any distributional assumptions on the service times at the service stations

1, 2, . . . ,K. We provide a complete characterization of the optimal policy in Theorem 3.3.1.

Theorem 3.3.1. The optimal policy gives priority to the station which has the largest index.

Proof of Theorem 3.3.1. We first show that the optimal policy gives the the highest

priority to station K. Suppose policy π is a policy under which there exists at least one

decision epoch where the highest priority is not given to station K. Specifically, let ε be the

first time policy π does not give priority to station K even if there is a job in station K.

Suppose {j1, . . . , jm} (j1, . . . , jm 6= K) gives the sequence of stations that the server visits

after time ε before it visits station K under policy π. We will next construct a new policy

γ which serves station K right before it serves the last job at station jm.

Let τ be the time under policy π that the server starts to work on a job at station jm

with service time Sj right before it moves to station K. Then after completing serving this

job, the server immediately switches to station K to serve a job there with service time SK .

We construct the new policy γ as follows: γ follows π during [0, τ) and then serves a job at
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station K with service time S′K , switches to station jm and serves a job with service time

S′j .

We directly couple the service times of all the jobs taken into service during [0,∞),

which yields S′K = SK and S′j = Sj . Let S0 be the service time at station 0 for the job

entering station 0 at time τ + Sj + SK under policy π and for the job entering station 0 at

time τ + S′K under policy γ. γ follows π during [τ + Sj + SK ,∞). This is possible because

same or more jobs are available to policy γ compared to policy π after time τ + Sj + SK .

The system states for the two policies will become identical after time τ + Sj + SK + S0.

The problem can be analyzed in three intervals as follows:

Dγ
0 (t) =


Dπ

0 (t), 0 ≤ t < τ + SK + S0,

Dπ
0 (t) + 1, τ + SK + S0 ≤ t < τ + Sj + SK + S0,

Dπ
0 (t), t ≥ τ + Sj + SK + S0.

Therefore,

Dγ
0 (t)−Dπ

0 (t) ≥ 0, for all t ≥ 0,

and

THγ
0 − TH

π
0 = lim inf

t→∞

1

t
[Dγ

0 (t)−Dπ
0 (t)] ≥ 0.

We have shown that a job at station K should be served ahead of a job at station jm if

jobs are available at both stations. Following the same argument iteratively, we can show

that a job at station K should be served ahead of the sequence of stations {j1, . . . , jm−1}.

In other words, the optimal policy which maximizes the throughput of the system gives the

highest priority to station K.

Next, we use an inductive argument to show that the optimal policy is a sequential

policy. Suppose that the optimal policy gives priority to station K, station K − 1, . . .,

station l + 1, then the other stations, in the given order. We will show that the optimal

policy gives (K + 1− l)-th priority to station l.

Suppose policy π is a policy which does not give (K + 1 − l)-th priority to station l.

Specifically, let ε be the first time policy π does not give priority to a job in station l, when

no jobs are available at stations l+1, . . . ,K. Suppose {j1, . . . , jm} (j1, . . . , jm < l) gives the

sequence of stations that the server visits after time ε before it visits station l under policy
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π. We will next construct a new policy γ which serves a job at station l before it serves the

last job at station jm.

Let τ be the time under policy π that the server starts to work on the last job at station

jm with service time Sj before it moves to station l. Then after completing serving this

job, the server immediately switches to station l to serve the station l job with service time

Sl, then serves this job at stations l + 1, l + 2, . . . ,K in the given order with service times

Sl+1, Sl+2, . . . , SK , respectively. (Note that we do not need to consider any other actions for

policy π due to the inductive argument on the priority order of stations l+ 1, l+ 2, . . . ,K.)

We construct the new policy γ as follows: γ follows π during [0, τ) and then serves the next

job at station l with service time S′l, then serves this job at stations l + 1, l + 2, . . . ,K in

the given order with service times S′l+1, S
′
l+2, . . . , S

′
K , respectively, then switches to station

jm and serves a job with service time S′j .

We directly couple the service times of all the jobs taken into service during [0,∞),

which yields S′l = Sl, S
′
l+1 = Sl+1, . . ., S′K = SK , and S′j = Sj . Let S0 be the service time at

station 0 for the job entering station 0 at time τ +Sj +Sl +Sl+1 + . . .+SK under policy π

and for the job entering station 0 at time τ +S′l +S′l+1 + . . .+S′K under policy γ. γ follows

π during [τ +Sj +
∑K

k=l Sk,∞). This is possible because same or more jobs are available to

policy γ compared to policy π after time τ + Sj +
∑K

k=l Sk. The system states for the two

policies will become identical after time τ + Sj +
∑K

k=l Sk + S0.

The problem can be analyzed in three intervals as below.

Dγ
0 (t) =


Dπ

0 (t), 0 ≤ t < τ +
∑K

k=l Sk + S0,

Dπ
0 (t) + 1, τ +

∑K
k=l Sk + S0 ≤ t < τ + Sj +

∑K
k=l Sk + S0,

Dπ
0 (t), t ≥ τ + Sj +

∑K
k=l Sk + S0.

Therefore,

Dγ
0 (t)−Dπ

0 (t) ≥ 0, for all t ≥ 0,

and

THγ
0 − TH

π
0 = lim inf

t→∞

1

t
[Dγ

0 (t)−Dπ
0 (t)] ≥ 0.

We have shown that a job at station l should be served ahead of a job at station jm, where

jm < l, if jobs are available at both stations. Following the same argument iteratively,

we can show that a job at station l should be served ahead of the sequence of stations

28



{j1, . . . , jm−1}. In other words, the optimal policy which maximizes the throughput of the

system gives (K + 1− l)-th priority to station l. Hence, an optimal policy that maximizes

the long-run average throughput of the system is a sequential policy, which gives priority

to station K, station K − 1, . . ., and station 1 in the given order.

Remarks. Theorem 3.3.1 shows that for the series system, the optimal policy under

non-preemptive policies suggests the same priority sequence among service stations as under

preemptive policies. The optimal policy under non-preemption is also a sequential policy. In

Section 3.2.1, we showed that the sequential policy is optimal within Πnp under Markovian

case. In this section, we show that the sequential policy is also optimal within Πnp even

when service times at the service stations are not exponentially distributed.

3.3.2 Parallel System

Next, we consider the parallel system shown in Figure 3.3. For ease of notation, we now

define Xk to be the random variable denoting the i.i.d. service time at station k (instead of

Sk,1) for k = 1, 2, . . . ,K. We give a partial characterization of the optimal policy for this

system in Theorem 3.3.2.

We first define a specific stochastic order that we will use frequently in this section. Let

X and Y be two continuous [or discrete] random variables with densities [or probability

mass functions] f(t) and g(t), respectively, so that

g (t)

f (t)
increases in t over the union of the supports of X and Y ,

or, equivalently,

f(x)g(y) ≥ f(y)g(x) for all x ≤ y.

In this case, X is said to be smaller than Y in the likelihood ratio order (denoted by

X ≤lr Y ). For more on stochastic orders, see, e.g., Shaked and Shanthikumar [24].

Theorem 3.3.2. Suppose that there exists a station i for which Xi ≤lr Xj, for all j =

1, 2, . . . ,K and j 6= i. Then, there exists an optimal policy which gives the highest priority

to station i.

Proof of Theorem 3.3.2. Without loss of generality, we assume that i = 1 and X1 ≤lr
Xj , where j 6= 1. Suppose policy π is a policy under which there exists at least one decision
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epoch where the highest priority is not given to station 1. Specifically, let ε be the first

time policy π does not give priority to station 1 even if there is a job in station 1. Suppose

{j1, . . . , jm} (j1, . . . , jm > 1) gives the sequence of stations that the server visits after time

ε before it visits station 1 under policy π. We will next construct a new policy γ which

serves a job at station 1 right before it serves the last job at station jm.

Let τ be the time under policy π that the server starts working on a job at station jm

with service time Sj right before it moves to station 1. Then after completing serving this

job, the server immediately switches to station 1 to serve a job there with service time S1.

We construct the new policy γ as follows: γ follows π during [0, τ) and then serves a job at

station 1 with service time S′1, switches to station jm and serves a job with service time S′j .

We directly couple the service times of all the jobs taken into service during [0, τ) and

we cross couple S1, Sj , S
′
1, S′j as follows. We first generate the minimum and maximum of

S1 and Sj , namely m and M , respectively, condition on their values, and use these values in

both systems. Let p = P (S1 = M |m,M) = P (Sj = m|m,M) and q = P (S1 = m|m,M) =

P (Sj = M |m,M) = 1 − p. By Lemma 13.D.1(i) of Shaked and Shanthikumar [23], p < q.

Thus, we can let

i. S1 = m, Sj = M , S′1 = M , S′j = m, with probability p,

ii. S1 = M , Sj = m, S′1 = m, S′j = M , with probability p,

iii. S1 = m, Sj = M , S′1 = m, S′j = M , with probability 1− 2p.

The coupling yields S′1 ≤ Sj (and S1 ≤ S′j) in all three cases. See Figure 3.4 for a visual

description of this coupling. In the first two cases all the arrival times to station 0 under

policies π and γ are identical. The system states for the two policies are identical after time

τ +m+M . Hence, policy γ can follow policy π thereafter. By directly coupling the service

times of all jobs taken into service after time τ + m + M , we find that Dγ
0 (t) = Dπ

0 (t) for

all t ≥ 0.

In the third case, let S0 be the service time at station 0 for the job entering station 0 at

time τ + Sj under policy π and for the job entering station 0 at time τ + S′1 under policy

γ. Consider the following two sub-cases.
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Figure 3.4: Sample path couplings for the parallel system.

1. 0 < S0 ≤ m. We directly couple the service times of all jobs taken into service after

τ + m + M . The system states for the two policies will become identical after time

τ +m+M . Hence, policy γ can follow policy π after τ +m+M .

2. S0 > m. We directly couple the service times of all jobs taken into service after

τ + m + M . The system states for the two policies will become identical after time

τ + M + S0. However, policy γ can follow π after τ + m + M because same jobs or

more will be available to policy γ compared to policy π.

In both sub-cases, the problem can be analyzed in three intervals as below.

Dγ
0 (t) =


Dπ

0 (t), 0 ≤ t < τ +m+ S0,

Dπ
0 (t) + 1, τ +m+ S0 ≤ t < τ +M + S0,

Dπ
0 (t), t ≥ τ +M + S0.

Therefore,

Dγ
0 (t)−Dπ

0 (t) ≥ 0, for all t ≥ 0,

and

THγ
0 − TH

π
0 = lim inf

t→∞

1

t
[Dγ

0 (t)−Dπ
0 (t)] ≥ 0.
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We have shown that jobs at station 1 should be served ahead of the jobs at station jm if

jobs are available at both stations. Following the same argument iteratively, we can show

that a job at station 1 should be served ahead of the sequence of stations {j1, . . . , jm−1}.

In other words, if X1 ≤lr Xj , j 6= 1, then jobs in station 1 should be prioritized in order to

maximize the long-run average throughput of the system.

Remarks. Theorem 3.3.2 says that we should give the highest priority to the service

station which has the shortest service times in likelihood ratio ordering among all service

stations. This follows the same intuition as in the series model where the optimal policy

pushes jobs towards the automated station as early as possible. Note that there is no

ordering condition required on the service times for the series system as opposed to the

parallel system. In Section 3.2.2, under preemptive policies and Markovian assumption, we

provide a complete characterization of the optimal policy. Under non-preemptive policies,

even though Theorem 3.3.2 only gives a partial characterization of the optimal policy for

K > 2, we believe that a complete characterization should follow a similar intuition as we

state in the following conjecture.

Conjecture 3.3.1. If the service times at the service stations follow a likelihood ratio

ordering, such as X1 ≤lr X2 ≤lr . . . ≤lr XK , then there exists an optimal policy which

maximizes the long-run average throughput and gives priority to the non-empty station with

the smallest index at any decision epoch.

A numerical study is conducted in Section 3.3.4 to support Conjecture 3.3.1.

3.3.3 Two-Branch Three-Station System

In this subsection, we study a system with two branches and three service stations as shown

in Figure 3.5. Stations 2 and 3 are in series and parallel to station 1 as a whole. A job after

being served at station 0 will join station 1 with probability p1 or station 2 with probability

p2. This queueing system is motivated by the nurse staffing problem studied in Yankovic

and Green [35]. We consider this closed queueing system as a hospital ward, where a patient

seeks admission (station 3), then stays at a bed (station 0), then requests nursing service

(station 1) and returns back to his/her bed after receiving service (this process may repeat

for several times), and at last seeks discharge (station 2). We assume that a new patient
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comes to the ward immediately after a patient is discharged. We define Xi to be the random

variable denoting the i.i.d. service time at station i for i = 1, 2, 3. We provide a partial

Figure 3.5: A closed queueing system with an automated station and three service stations.

characterization of the optimal policy that maximizes the long-run average throughput of

the system in Theorem 3.3.3.

Theorem 3.3.3. If X1[X3] ≤lr X3[X1], then there exists an optimal policy that gives the

highest priority to station 1[3].

Theorem 3.3.3 partically characterizes the optimal policy: the faster station between

the two stations which directly connect to the entry of the automated station should be

prioritized, if the service times at these two stations are ordered according to likelihood

ratio ordering.

Proof of Theorem 3.3.3. We show that if X1 ≤lr X3, then there exists an optimal policy

that gives the highest priority to station 1. The proof that an optimal policy gives the highest

priority to station 3 if X3 ≤lr X1 is similar.

Suppose policy π is a policy under which there exists at least one decision epoch where

the highest priority is not given to station 1. Specifically, let ε be the first time policy π

does not give priority to station 1 even if there is a job in station 1. Suppose {j1, . . . , jm}

(j1, . . . , jm ∈ {2, 3}) gives the sequence of stations that the server visits after time ε before

it visits station 1 under policy π. We will next construct a new policy γ which serves station

1 right before it serves the last job at station jm.

Case 1. (jm = 2)
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Let τ be the time under policy π that the server starts to work on a job at station 2

with service time S2 right before it moves to station 1. Then after completing serving this

job, the server immediately switches to station 1 to serve a job there with service time S1.

We construct the new policy γ as follows: γ follows π during [0, τ) and then serves a job at

station 1 with service time S′1, switches to station 2, and serves a job with service time S′2.

We directly couple the service times of all jobs taken into service during [0,∞), which

yields S′1 = S1 and S′2 = S2. Let S0 be the service time at station 0 for the job entering

station 0 at time τ +S2 +S1 under policy π and for the job entering station 0 at time τ +S′1

under policy γ. γ follows π during [τ + S1 + S2,∞). This is possible because same jobs or

more are available to policy γ compared to policy π. The system states for the two policies

will become identical after time τ + S2 + S1 + S0. The problem can be analyzed in three

intervals as follows:

Dγ
0 (t) =


Dπ

0 (t), 0 ≤ t < τ + S′1 + S0,

Dπ
0 (t) + 1, τ + S′1 + S0 ≤ t < τ + S2 + S1 + S0,

Dπ
0 (t), t ≥ τ + S2 + S1 + S0.

Therefore,

THγ
0 (t)− THπ

0 (t) = lim inf
t→∞

1

t
[Dγ

0 (t)−Dπ
0 (t)] ≥ 0, for all t ≥ 0.

Case 2. (jm = 3)

Let τ be the time under policy π that the server starts to work on a job at station 3

with service time S3 before it moves to station 1. Then after completing serving this job,

the server immediately switches to station 1 to serve a job there with service time S1. We

construct a new policy γ as follows: γ follows π during [0, τ) and then serves a job at station

1 with service time S′1, switches to station 3 and serves a job with service time S′3.

We directly couple the service times of all jobs taken into service during [0, τ) and we

cross couple S1, S3, S′1, S′3 as in the proof of Theorem 3.3.2 by first generating the minimum

and maximum of S1 and S3, namely m and M , respectively, conditioning on their values

and using these values in both policies. We need to consider three couplings:

i. S1 = m, S3 = M , S′1 = M , S′3 = m,

ii. S1 = M , S3 = m, S′1 = m, S′3 = M ,
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iii. S1 = m, S3 = M , S′1 = m, S′3 = M ,

all of which yield S′1 ≤ S3 (and S1 ≤ S′3). In the first two cases all arrival times to station 0

for policies π and γ are identical. The system states for the two policies are identical after

time τ + m + M . Hence, policy γ can follow policy π thereafter. By directly coupling the

service times of all jobs taken into service after τ +m+M , we find that the throughput of

the system is the same for policy π and γ.

In the third case, let S0 be the service time at station 0 for the job entering station 0 at

time τ + S3 under policy π and for the job entering station 0 at time τ + S′1 under policy

γ. Consider the following two sub-cases:

1. 0 < S0 ≤ m. We directly couple the service times of all jobs taken into service after

τ + m + M . The system states for the two policies will become identical after time

τ +m+M . Hence, policy γ can follow policy π after τ +m+M .

2. S0 > m. We directly couple the service times of all jobs taken into service after

τ + m + M . The system states for the two policies will become identical after time

τ + M + S0. However, policy γ can follow π after τ + m + M because same jobs or

more are available to policy γ compared to policy π.

In both sub-cases, the problem can be analyzed in three intervals as below.

Dγ
0 (t) =


Dπ

0 (t), 0 ≤ t < τ +m+ S0,

Dπ
0 (t) + 1, τ +m+ S0 ≤ t < τ +M + S0,

Dπ
0 (t), t ≥ τ +M + S0.

Therefore,

THγ
0 − TH

π
0 = lim inf

t→∞

1

t
[Dγ

0 (t)−Dπ
0 (t)] ≥ 0, for all t ≥ 0.

We have shown that a job at station 1 should be served ahead of a job at station 3 if jobs

are available at both stations.

If we follow the same argument iteratively for the two cases, we can show that a job at

station 1 should be served ahead of the sequence of jobs {j1, . . . , jm−1}. In other words, the

optimal policy which maximizes the throughput of the system gives the highest priority to

station 1.
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Furthermore, we provide a corollary to Theorem 3.3.3 when X3 ≤lr X1.

Corollary 3.3.1. Suppose that X3 ≤lr X1. If X1 ≤lr X2 +X3, then there exists an optimal

policy that gives priority to station 1 over station 2. If X1 ≥lr X2 + X3, then there exists

an optimal policy which gives priority to station 2 over station 1.

Proof. Since X3 ≤lr X1, Theorem 3.3.3 tells that we need to only consider policies that give

the highest priority to station 3 whenever a job visits that station. This implies that we

need to only consider policies that serve stations 2 and 3 sequentially, i.e., we can think of

stations 2 and 3 as single station with service time X2 +X3. Then, the result follows from

Theorem 3.3.2.

Corollary 3.3.1 gives conditions under which two priority policies are optimal: 1) If

X3 ≤lr X1 ≤lr X2 + X3, then the priority order is station 3, station 1 and station 2; 2) If

X3 ≤lr X1 and X2 +X3 ≤lr X1, then the priority order is station 3, station 2 and station 1.

3.3.4 An Heuristic Policy and Numerical Results

Finally, we propose an index policy, namely the shortest expected remaining service time

heuristic, for the general parallel-series system under non-preemptive policies. We compare

the performance of this heuristic along with the performance of the optimal policy by means

of a numerical study.

Define

Sim =

im∑
j=i

Sj,m, for i = 1, 2, . . . , im and m = 1, 2, . . . ,M,

which denotes the remaining service time to complete type m service starting from its ith

task. We describe the index policy as follows. Suppose at decision epoch t, N(t) customers

are in need of attention from the server. Let (jn, ln) be the station where the n-th customer

resides at time t, n = 1, 2, . . . , N(t). The heuristic policy ranks these N(t) jobs in increasing

order of E[Slnjn ] and serve the first of them. Since we consider non-preemptive policies, the

server is allowed to make a decision at service completion epoches.

We conduct a numerical study for the parallel system with three service stations and

the two-branch three-station system. The objective of the numerical study is to examine

the performance of the heuristic policy as opposed to the optimal policy. We would like to
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study many different scenarios with a wide range of system parameters. More specifically,

we generate the service time of each service station from an exponential distribution. We

fix the service rate of the automated station µ0 = 1 and vary the service rates of service

stations in several combinations. We have considered two subsets of experiments depending

on the number of jobs circuiting in the system B, namely, 5 and 10.

For the parallel model with three service stations, we let the service rate µi (i = 1, 2, 3)

take values from the set {0.5, 0.75, 1, 2, 5}. We consider four cases for [p1, p2, p3], namely

[0.2, 0.4, 0.4], [0.4, 0.3, 0.3], [0.6, 0.2, 0.2] and [0.8, 0.1, 0.1]. There are 1,000 scenarios in total.

We use the method of policy iteration to obtain the optimal policy for each scenario.

The numerical results show that the index policy is optimal for all 1,000 scenarios within the

set of the non-preemptive policies. In Sections 3.2.2 and 3.3.2, we are able to prove a partial

characterization of the optimal policy for the parallel system under preemptive and non-

preemptive policies, respectively. In Conjecture 3.2.1 and Conjecture 3.3.1, we characterize

the complete optimal policy which gives priority to the non-empty station with the largest

service rate and the shortest service times in likelihood ratio ordering, respectively. The

numerical results for the index policy are consistent with the partial results in Theorem 3.2.2

and Theorem 3.3.2 and support the conjectures.

For the two-branch three-station system, we let µ1 take values from the set {0.5, 0.75, 1, 2, 5},

µ2 take values from the set {0.5µ1, 1.5µ1, 3µ1}, and set µ3 = µ2. We consider three cases for

[p1, p2], namely [0.25, 0.75], [0.5, 0.5], and [0.75, 0.25]. There are 90 scenarios in total. For

each scenario, we computed the percentage deviation (P.D.) of the performance of the index

policy heuristic from that of the optimal policy as well as the optimal throughput (TH∗).

These results are presented in Table 3.1. From Table 3.1, it can be seen that the index

policy is not always optimal when the sum of the expected service times for the branch

with two service stations E[S2] + E[S3] is less than the expected service time of the other

single-station branch E[S1]. For example, consider the case where (µ1, µ2, µ3) = (1, 3, 3),

we have E[S2] + E[S3] = 2
3 which is less than E[S1] = 1. We can observe from the table

that the index policy is not optimal (positive P.D.) for all scenarios when we vary B and

[p1, p2]. The numerical results show that the index policy is optimal for 69 scenarios out

of 90 scenarios. Over all 90 scenarios, the average percentage deviation is 0.00072%, and

the maximum deviation is 0.01273%. Overall, the shortest expected remaining service time
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Table 3.1: Performance of the index policy for exponential service times under non-
preemptive policies (in terms of the percentage deviation (P.D.) from the optimal per-
formance).

heuristic is either optimal or near-optimal.

It is important to point out that for the two-branch three-station system, the likelihood-

ratio ordering on total remaining service times does not hold within this numerical study

with exponential service times. For example, again consider the case where (µ1, µ2, µ3) =

(1, 3, 3), even though E[S2] + E[S3] < E[S1], S2 + S3 <lr S1 does not hold. Hence, our

numerical study does not rule out the optimality of an index policy when the total remaining

service times can be ordered according to likelihood-ratio ordering.

3.4 Continuous Resource

In this section, we consider the parallel system shown in Figure 3.3 with a continuous

service resource. Suppose that the total available service rate is fixed and denoted by µ. All

service stations share this fixed resource and satisfy the constraint
∑K

k=1 µk = µ, where µk

is the service capacity allocated to station k. We assume that the amount of intrinsic work

required at all stations are i.i.d. exponentials. Hence, when service capacity µk is allocated

to station k, service times at station k will be exponentially distributed with mean 1/µk

(k = 1, 2, . . . ,K). We only consider preemptive policies. We are interested in dynamically

allocating the total service rate to the service stations (i.e., determine µk’s) over time in
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order to maximize the long-run average throughput of the system.

We formulate this problem as a Markov decision process. We use the same notation

defined in Section 3.2.1 unless otherwise stated. Because pk > 0 for k = 1, 2, . . . ,K, again

the transition matrix of the system consists of a single recurrent class for every deterministic

stationary policy. Hence, the MDP is recurrent and g exists. Define Λ = nµ0 + µ as the

uniformization constant. Without loss of generality, we assume that Λ = 1. Then, the

optimality equation can be expressed as follows. For 1 ≤ n ≤ B,

g + V (n) = (B − n)µ0

K∑
i=1

piV (n+ ei) + nµ0V (n) + f(n),

where

f(n) =

 µV (0) if n = 0,

maxµ∈M(n){
∑K

i=1 µi(1 + V (n− ei))} otherwise,

µ is the allocation vector, and M(n) = {(µ1, µ2, . . . , µK) :
∑K

i=1 µi = µ, µi ≥ 0 for i ∈

In and µi = 0 for i 6∈ In}. We characterize the optimal policy in Theorem 3.4.1.

Theorem 3.4.1. Any non-idling policy maximizes the long-run average throughput of the

system.

Proof of Theorem 3.4.1. Following the same argument as in the proof of Theorem 3.2.1,

we first show that the result holds for a finite horizon problem with m periods for all m ≥ 0.

We still use Vm(π,n) to denote the m-period expected throughput under policy π when the

initial state is n.

We will show that, for all m ≥ 0,

Vm(n− ei)− Vm(n− ej) = 0, (3.4.1)

where i, j ∈ In and i 6= j. We assume that V0(n) = 0 for all n.

We will use induction on m. Because V0(n) = 0 for all n, then (3.4.1) automatically

holds at period 0. Assume that (3.4.1) holds at period m. We will show that it also holds
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at period m+ 1. For 2 ≤ n ≤ B, we have

Vm+1(n− ei)− Vm+1(n− ej)

=(B − n+ 1)µ0

K∑
k=1

pk[Vm(n− ei + ek)− Vm(n− ej + ek)]

+ (n− 1)µ0[Vm(n− ei)− Vm(n− ej)]

+ µ[Vm(n− ei − ej)− Vm(n− ej − ei)]

The right-hand side of the equation is equal to 0 by the inductive hypothesis for (3.4.1) at

period m.

In Theorem 3.4.1, a non-idling policy means that the entire service capacity is allocated

when there is at least one job at service stations. The intuition behind the theorem is

that any non-idling policy utilizes all the available resource whenever there are job(s) at

service stations. The departure rate from service stations to the automated station is always

maximized for all non-idling policies.

3.5 Conclusion

In this chapter, we study the optimization problems of dynamically allocating a finite

amount of service capacity among service stations for a finite-population service system.

We focus on assigning a single flexible server, and briefly study a continuous resource prob-

lem in a parallel system. We consider a parallel-series system where the service stations

are connected in the parallel-series structure. The objective is to maximize the long-run

average reward of the system. We show that for the parallel-series system, maximizing the

long-run average reward is equivalent to maximizing the long-run average throughput.

For the discrete resource problems, we investigate the optimal assignment policy for a

single server in series, parallel and a two-branch three-station models. For the series model,

we show that the optimal policy is a sequential policy under both preemptive and non-

preemptive policies. For the parallel model, the optimal policy gives the highest priority to

the fastest station. For the two-branch three-station model, we provide a partial character-

ization of the optimal policy under non-preemptive policies. For each model, the optimal

policy tries to push jobs back to the automated station as early as possible so that these
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jobs will leave the automated station early and hence reduce the idling time of the server,

which would increase the system throughput.

We also propose an index policy which gives priority to the non-empty station with

the shortest expected remaining service time. The numerical results for the parallel model

with three service stations show that the index policy is optimal for all the scenarios in

our numerical study. This supports our conjecture on the complete characterization of the

optimal policy for the parallel model. The numerical results for the two-branch three-station

model show that the index policy gives a small percentage deviation on the performance

from the optimal policy, either on average or under the worst case.

For the continuous resource problem, we consider a parallel system. We show that any

non-idling policy maximizes the long-run average throughput of the system under Markovian

case.
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Chapter 4

OPTIMAL STATIC DESIGN OF FINITE-POPULATION
QUEUEING SYSTEMS: THROUGHPUT

MAXIMIZATION

In this chapter, we study a static design problem for the closed queueing system under

study, where allocation decisions are made before the system starts to operate. When the

system is under operation, we are not allowed to adjust the allocation of resources. A finite

amount of service resource U can be used at any of the K service stations in the second

stage. Suppose that U is fixed and continuously divisible. Let u ≡ [u1, u2, . . . , uK ] be

the allocation vector in which its k-th element uk is a decision variable denoting the units

of service resource allocated to station k for k = 1, . . . ,K, where
∑K

k=1 uk = U . Let U

denote the set of allocation vectors, i.e., U = {u :
∑K

k=1 uk = U}. Service times at station

k is exponentially distributed with mean 1/µk(uk), where µk(uk) is a function of uk. We

assume that µk(uk) is strictly increasing in uk and continuous on [0,∞), and µk(0) = 0,

for k = 1, . . . ,K. We want to characterize the optimal allocation u among the K service

stations in order to maximize the long-run average throughput of the system.

4.1 Model Formulation

We model the finite-population service system by a closed queueing network with K + 1

(2 ≤ K < ∞) stations and B (1 ≤ B < ∞) customers as shown in Figure 1.1. Assume

that service times at station 0 are i.i.d. exponential random variables with mean 1/µ0.

The second stage consists of the remaining K service stations, where each of the K service

stations is served by a single dedicated server.

We next introduce additional notation and recapitulate some known and relevant re-

sults for closed Jackson networks. Let Xi(t) be the number of customers at station i at

time t for i = 0, 1, . . . ,K and t ≥ 0. Then, the state of the system at time t is X(t) =

[X0(t), X1(t), . . . , XK(t)], and {X(t), t ≥ 0} is a continuous-time Markov Chain (CTMC)



representation of the closed Jackson network. The state space is S = {n = (n0, n1, . . . , nK) :∑K
i=0 ni = B and ni = 0, 1, . . . , B for i = 1, 2, . . . ,K}. Let rij denote the customer routing

probability from station i to station j. Suppose that the routing probability matrix R = [rij ]

is irreducible, so that {X(t), t ≥ 0} is an irreducible and positive recurrent CTMC with lim-

iting distribution P (n0, n1, . . . , nK) = limt→∞ P [X0(t) = n0, X1(t) = n1, . . . , XK(t) = nK ].

Define vi as the visiting ratio to station i for i = 0, 1, . . . ,K, satisfying the following equa-

tions:
K∑
i=0

virij = vj , j = 0, 1, . . . ,K.

We know that the stationary probability can be expressed as follows:

P (n0, n1, . . . , nK) =
1

C(B)

(µ0/v0)−n0

n0!

K∏
k=1

(
µk(uk)

vk

)−nk

,

where C(B) is the normalizing constant so that
∑
n∈S P (n) = 1. For more on closed

queueing networks, see, e.g., Gross and Harris [6]. Hence, we have

C(B) =
∑
n∈S

(µ0/v0)−n0

n0!

K∏
k=1

(
µk(uk)

vk

)−nk

=
B∑

n0=0

(µ0/v0)−n0

n0!

∑
n1+...+nK=B−n0

K∏
k=1

(
µk(uk)

vk

)−nk

(4.1.1)

=

B∑
n0=0

(µ0/v0)−n0

n0!
G(B − n0),

where G(·) is defined as

G(n) =
∑

n1+...+nK=n

K∏
k=1

(
µk(uk)

vk

)−nk

.

Let TH(B,u) denote the long-run average throughput of the system, which is a function

of B and u. TH(B,u) is defined as the long-run average throughput at station 0, and can

be computed as follows:

TH(B,u) =µ0

∑
n∈S

n0P (n0, n1, . . . , nK)

=µ0

∑
n∈S

n0(µ0/v0)−n0

n0!

∏K
k=1

(
µk(uk)
vk

)−nk

∑
n∈S

(µ0/v0)−n0

n0!

∏K
k=1

(
µk(uk)
vk

)−nk
. (4.1.2)
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With some algebra, we can show that

TH(B,u) = v0
C(B − 1)

C(B)
.

In the following discussion, we use TH(B) to denote TH(B,u) whenever it does not cause

ambiguity. Let TH∗(B) denote the maximum long-run average throughput of the system

when B customers circulate in the system, i.e.,

TH∗(B) ≡ max
u∈U

TH(B,u).

In Lemma 4.1.1, we show that TH(B,u) is non-decreasing in B.

Lemma 4.1.1. TH(B,u) is non-decreasing in B, i.e., for any positive integer B, we have

C(B − 1)

C(B)
≥ C(B − 2)

C(B − 1)
≥ C(B − 3)

C(B − 2)
≥ · · · ≥ C(0)

C(1)
.

Proof of Lemma 4.1.1. The expected number of customers at station 0 is equal to v0
µ0

C(B−1)
C(B) ,

while the probability of having positive number of jobs at station i is that P (ni ≥ 1) =

vi
µi

C(B−1)
C(B) for i = 1, 2, . . . ,K. It suffices to show that as B increases, the number of cus-

tomers at station i increases stochastically. This proof follows the proof of Lemma 1 in Yao

[36].

Next, we show that the long-run average throughput of the system is bounded above,

and provide a set of equations to calculate the upper bound. Let u∗∗ = [u∗∗1 , u
∗∗
2 , . . . , u

∗∗
K ]

be the solution to the following equations:

v0

v1
µ1(u∗∗1 ) =

v0

v2
µ2(u∗∗2 ) = . . . =

v0

vK
µK(u∗∗K ). (4.1.3)

This system of equations has a unique solution if µk(·) (k = 0, 1, . . . ,K) is strictly increasing.

Theorem 4.1.1. The long-run average throughput of the system is bounded above by v0
vk
µk(u

∗∗
k )

where u∗∗k satisfies equations (4.1.3).
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Proof of Theorem 4.1.1. The throughput of the system is given by

TH(B) =µ0

∑
n0+n1+...+nK=B

n0P (n0, n1, . . . , nK)

=µ0

∑
n0+n1+...+nK=B

n0(µ0/v0)−n0

n0!

∏K
k=1(µk(uk)

vk
)−nk∑

n0+n1+...+nK=B
(µ0/v0)−n0

n0!

∏K
k=1(µk(uk)

vk
)−nk

=v0

∑
n0+n1+...+nK=B,n0>0

(µ0/v0)−(n0−1)

(n0−1)!

∏K
k=1(µk(uk)

vk
)−nk∑

n0+n1+...+nK=B
(µ0/v0)−n0

n0!

∏K
k=1(µk(uk)

vk
)−nk

=v0

∑
n0+n1+...+nK=B−1

(µ0/v0)−n0

n0!

∏K
k=1(µk(uk)

vk
)−nk∑

n0+n1+...+nK=B
(µ0/v0)−n0

n0!

∏K
k=1(µk(uk)

vk
)−nk

=v0
C(B − 1)

C(B)
,

and the long-run average throughput at station k for k = 1, 2, . . . ,K is known as

THk(B) = vk
C(B − 1)

C(B)
.

Then we have

TH(B) =
v0

vk
THk(B).

THk(B) is increasing in B and bounded by µk(uk) for k = 1, 2, . . . ,K. Then, the throughput

of the system is bounded by

TH(B) ≤ min{v0

v1
µ1(u1),

v0

v2
µ2(u2), . . . ,

v0

vK
µK(uK)}.,

Thus, the maximum throughput of the system bounded by

TH∗(B) ≤ max
u∈U

min{v0

v1
µ1(u1),

v0

v2
µ2(u2), . . . ,

v0

vK
µK(uK)}.

This max-min problem can be written as

max
u1,...,uK ,z

z

s.t. z − fk(uk) ≤ 0, k = 1, 2, . . . ,K,

K∑
k=1

uk ≤ U,

uk ≥ 0, k = 1, 2, . . . ,K,
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where fk(uk) = v0
vk
µk(uk) for k = 1, 2, . . . ,K. We first show that the given solution of u∗∗k s

satisfy the Karush-Kuhn-Tucker condition. Under the given solution, the first and second

set of constraints are binding.

1−
K∑
k=1

λk ≤0

λkf
′
k(uk)− λU ≤0, k = 1, . . . ,K

λk(z − fk(uk)) =0, k = 1, . . . ,K

λU (U −
K∑
k=1

uk) =0

[1−
K∑
k=1

λk]z =0

[λkf
′
k(uk)− λU ]uk =0, k = 1, . . . ,K

λk ≥0, k = 1, . . . ,K

λU ≥0

These exist λks and λU satisfying

1−
K∑
k=1

λk =0

λkf
′
k(uk)− λU =0, k = 1, . . . ,K

If not all fk(uk)s are equal, i.e., there is at least one constraint in the first or second constraint

sets is not binding, then there do not exist λks and λU satisfying the Karush-Kuhn-Tucker

condition.

Since the function µk(uk) (k = 1, . . . ,K) is monotonously increasing, the given solution

of u∗∗k s is the unique solution to the equations and therefore it is the optimal solution to the

max-min problem.

4.2 Characterization of Optimal Capacity Allocation

We study the optimal allocation problem in three cases depending on the number of cus-

tomers circulating in the system. First, we consider a simple case when a single customer

circulates in the system (B = 1). Secondly, we study the problem when the number of cus-
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tomers in the system approaches infinity (B →∞). Finally, we allow B to be any positive

integer number.

4.2.1 A Single Job

First, we study the problem when only one customer circulates in the system, i.e., B = 1.

Let µ′i(ui) denote the first-order derivative of µi(ui) over ui for k = 1, 2, . . . ,K. The main

result is given in Theorem 4.2.1

Theorem 4.2.1. If µk(·) is increasing and concave for k = 1, 2, . . . ,K, then the optimal

allocation vector u∗ = [u∗1, u
∗
2, . . . , u

∗
K ] satisfies the following equations:

v1µ
′
1(u∗1)

µ1(u∗1)2
=
v2µ
′
2(u∗2)

µ2(u∗2)2
= . . . =

vKµ
′
K(u∗K)

µK(u∗K)2
. (4.2.1)

Proof of Theorem 4.2.1. Following equations (4.1.1) and (4.1.2), we have

C(1) =
v0

µ0
+

v1

µ1(u1)
+

v2

µ2(u2)
+ . . .+

vK
µK(uK)

,

and

TH(1,u) =
v0

v0
µ0

+ v1
µ1(u1) + v2

µ2(u2) + . . .+ vK
µK(uK)

. (4.2.2)

Notice that maximizing (4.2.2) is equivalent to the following problem:

min
u1,...,uK

v1

µ1(u1)
+

v2

µ2(u2)
+ . . .+

vK
µK(uK)

s.t.
K∑
k=1

uk = U.

By applying the Lagrange Multiplier method, the optimization problem reduces to:

min
λ,u1,...,uK

Z =
v1

µ1(u1)
+

v2

µ2(u2)
+ . . .+

vK
µK(uK)

+ λ(

K∑
k=1

uk − U), (4.2.3)

where λ is the Lagrange multiplier. The second-order partial derivatives of function Z is

calculated by

∂2Z

∂u2
i

= 2viµi(ui)
−3[µ′i(ui)]

2 − viµi(ui)−2µ′′i (ui),
∂2Z

∂ui∂uj
= 0(i 6= j),

∂2Z

∂ui∂λ
= 1,

∂2Z

∂λ2
= 0.
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If µ′′i (ui) ≤ 0 or µi(ui) is increasing and concave for i = 1, 2, . . . ,K, we know that the

Hessian matrix of Z is positive definite, and then the minimizer of the program is given by

v1µ
′
1(u1)

µ1(u1)2
=
v2µ
′
2(u2)

µ2(u2)2
= . . . =

vKµ
′
K(uK)

µK(uK)2
,

K∑
k=1

uk = U.

Theorem 4.2.1 yields a closed-form solution for u∗ when µk(·) (k = 1, 2, . . . ,K) is linear

and strictly increasing, as shown in Corollary 4.2.1.

Corollary 4.2.1. If µk(uk) = akuk, where ak > 0 for k = 1, . . . ,K, then the optimal

allocation vector u∗ = [u∗1, u
∗
2, . . . , u

∗
K ] is given by

u∗k =
( vkak )

1
2∑K

i=1( viai )
1
2

U, k = 1, 2, . . . ,K.

Proof of Corollary 4.2.1. Following (4.2.3), we have the unconstrained program:

min
λ,u1,...,uK

Z =
v1

a1u1
+

v2

a2u2
+ . . .+

vK
aKuK

+ λ(

K∑
k=1

uk − U)

The second-order partial derivatives of function Z is calculated by

∂2Z

∂u2
i

=
2vi
aiu3

i

,
∂2Z

∂ui∂uj
= 0(i 6= j),

∂2Z

∂ui∂λ
= 1,

∂2Z

∂λ2
= 0.

We see that the Hessian matrix of Z is positive definite. Hence, by solving the first-order

derivative equations, we obtain the minimum of the program:

u∗k =
( vkak )

1
2∑K

i=1( viai )
1
2

U.

Remark. The optimal allocation u∗ = [u∗1, u
∗
2, . . . , u

∗
K ] is proportional to the square-

root of the ratio of visiting ratio vi and linear coefficient ai. The optimal allocation to a

station increases as its visiting ratio increases while keeping others intact. Similarly, the

optimal allocation to a station increases as its linear coefficient decreases while keeping

others intact.
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Example 4.2.1. Consider a series system as shown in Figure 3.2. A customer after being

served at station 0 receives service at station 1, 2, . . . ,K, in the given order, and then returns

to station 0 after being served at station K. Notice that all vks, the visiting ratio, are equal

for this series system. Then the optimal allocation is given by the solution to following

equations:

µ′1(u1)

µ1(u1)2
=

µ′2(u2)

µ2(u2)2
= . . . =

µ′K(uK)

µK(uK)2
,

K∑
k=1

uk = U.

If µk(uk) = akuk, where ak > 0 for k = 1, . . . ,K, then the optimal allocation reduces to

u∗k =
( 1
ak

)
1
2∑K

i=1( 1
ai

)
1
2

U.

Example 4.2.2. Consider a parallel system as shown in Figure 3.3. A customer after being

served at station 0 joins station k (k = 1, 2, . . . ,K) with probability pk > 0 (
∑K

k=1 pk = 1).

After a customer finishes its service at station k (k = 1, 2, . . . ,K), it returns to station 0.

Notice that vk = pk for k = 1, 2, . . . ,K if we set v0 = 1. Then the optimal allocation is

given by the solution to the following equations:

p1µ
′
1(u1)

µ1(u1)2
=
p2µ
′
2(u2)

µ2(u2)2
= . . . =

pKµ
′
K(uK)

µK(uK)2
,

K∑
k=1

uk = U.

If µk(uk) = akuk, where ak > 0 for k = 1, . . . ,K, then the optimal allocation is given by

u∗k =
( pkak )

1
2∑K

i=1( piai )
1
2

U.

4.2.2 When Population Size Approaches Infinity

Next, we consider characterizing the optimal allocation when the number of customers

circulating in the system approaches infinity.

Theorem 4.2.2. As the number of customers (B) increases to infinity, the optimal al-

location vector approaches u∗∗
k which satisfies (4.1.3), and the optimal long-run average

throughput of the system increases to v0
vk
µk(u

∗∗
k ). Moreover, there exists a unique solution

u∗∗
k if µk(uk) (k = 1, 2, . . . ,K) is strictly increasing.
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Proof of Theorem 4.2.2. Define ρ = v0
v1
µ1(u∗∗1 ) = . . . = v0

vK
µK(u∗∗K ). Then, the long-run

average throughput of the system for the given u∗∗ which satisfies (4.1.3) is given by

TH(B,u∗∗) =µ0

∑
n0+n1+...+nK=B

n0µ
−n0
0
n0!

∏K
k=1 ρ

−nk∑
n0+n1+...+nK=B

µ
−n0
0
n0!

∏K
k=1 ρ

−nk

=µ0

∑B
n0=1

∑
n1+...+nK=B−n0

µ
−n0
0

(n0−1)!ρ
−(n1+...+nK)∑B

n0=0

∑
n1+...+nK=B−n0

µ
−n0
0
n0! ρ

−(n1+...+nK)

=µ0

∑B−1
n0=0

∑
n1+...+nK=B−1−n0

µ
B−1−n0
0
n0! ρ−(B−1−n0)∑B

n0=0

∑
n1+...+nK=B−n0

µ
−n0
0
n0! ρ

−(B−n0)

=ρ

∑B−1
n0=0

(
B−n0+K−2

K−1

)µ−n0
0
n0! ρ

n0∑B
n0=0

(
B−n0+K−1

K−1

)µ−n0
0
n0! ρ

n0

=ρ

∑B−1
n0=0

(B−n0+K−2)!
(K−1)!(B−n0−1)!

µ
−n0
0
n0! ρ

n0∑B
n0=0

(B−n0+K−1)!
(K−1)!(B−n0)!

µ
−n0
0
n0! ρ

n0

.

Define

NR =
B−1∑
n0=0

(B − n0 +K − 2)!

(K − 1)!(B − n0 − 1)!

µ−n0
0

n0!
ρn0 ,

DR =
B∑

n0=0

(B − n0 +K − 1)!

(K − 1)!(B − n0)!

µ−n0
0

n0!
ρn0 .

Then, TH(B,u∗∗)/ρ can be written as follows.

TH(B,u∗∗)

ρ
=
NR

DR
= 1− DR−NR

DR
= 1− ∆

DR
,

where ∆ = DR−NR, and can be calculated by
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∆ =
B∑

n0=0

(B − n0 +K − 1)!

(K − 1)!(B − n0)!

µ−n0
0

n0!
ρn0 −

B−1∑
n0=0

(B − n0 +K − 2)!

(K − 1)!(B − n0 − 1)!

µ−n0
0

n0!
ρn0

=
B−1∑
n0=0

[(B − n0 +K − 1)!

(K − 1)!(B − n0)!
− (B − n0 +K − 2)!

(K − 1)!(B − n0 − 1)!

]µ−n0
0

n0!
ρn0 +

µ−B0

B!
ρB

=
B−1∑
n0=0

[(B − n0 +K − 1)− (B − n0)](B − n0 +K − 2)!

(K − 1)!(B − n0)!

µ−n0
0

n0!
ρn0 +

µ−B0

B!
ρB

=
B−1∑
n0=0

(B − n0 +K − 2)!

(K − 2)!(B − n0)!

µ−n0
0

n0!
ρn0 +

µ−B0

B!
ρB

=
B∑

n0=0

(B − n0 +K − 2)!

(K − 2)!(B − n0)!

µ−n0
0

n0!
ρn0 .

Define

f(B,n0,K) =
(B − n0 +K − 1)!

(K − 1)!(B − n0)!

µ−n0
0

n0!
ρn0 ,

g(B,n0,K) =
(B/2− n0 +K − 1)!

(K − 1)!(B/2− n0)!

µ
−B/2−n0

0

(B/2 + n0)!
ρB/2+n0 .

When B is an even number, we have

∆ =f(B, 0,K − 1) +

B/2∑
n0=1

f(B,n0,K − 1) +
B∑

n0=B/2+1

f(B,n0,K − 1)

=f(B, 0,K − 1) +

B/2∑
n0=1

[f(B,n0,K − 1) + g(B,n0,K − 1)],

DR =f(B, 0,K) +

B/2∑
n0=1

f(B,n0,K) +
B∑

n0=B/2+1

f(B,n0,K)

=f(B, 0,K) +

B/2∑
n0=1

[f(B,n0,K) + g(B,n0,K)].

We first show that g(B,n0,K)/f(B,n0,K) goes to 0 as B goes to infinity for n0 = 1, 2, . . . , B

and any positive integer K.
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lim
B→∞

g(B,n0,K)

f(B,n0,K)

= lim
B→∞

(B/2− n0 +K − 1)!(B − n0)!n0!(µ/µ0)B/2

(B − n0 +K − 1)!(B/2− n0)!(B/2 + n0)!

= lim
B→∞

(B/2− n0 + 1) · · · (B/2− n0 +K − 1)

(B − n0 + 1) · · · (B − n0 +K − 1)

(µ/µ0)B/2

(n0 + 1) · · · (B/2 + n0)

=(
1

2
)K−1 · 0 = 0.

We next show that [f(B,n0,K − 1) + g(B,n0,K − 1)]/[f(B,n0,K) + g(B,n0,K)] goes to

0 as B goes to infinity for n0 = 1, 2, . . . , B and any positive integer K > 2. We have shown

that for every real number ε1 > 0, there exists an even number B1 such that for any B > B1,

g(B,n0,K)
f(B,n0,K) < ε1. Then for every real number ε0 > 0, there exists an even number B0 > B1

satisfying K−1
B0/2+K−1 <

ε0
1+ε1

such that for any B > B0,

f(B,n0,K − 1) + g(B,n0,K − 1)

f(B,n0,K) + g(B,n0,K)
<
f(B,n0,K − 1)(1 + ε1)

f(B,n0,K)

=
K − 1

B − n0 +K − 1
(1 + ε1)

<
ε0

1 + ε1
· (1 + ε1) = ε0

for n0 = 1, 2, . . . , B/2, and it’s easy to show that

f(B, 0,K − 1)

f(B, 0,K)
=

K − 1

B +K − 1
<

ε0
1 + ε1

< ε0,

when n0 = 0. Therefore, we can show that for every real number ε0 > 0, there exists an

even number B0 > B1 satisfying K−1
B0/2+K−1 <

ε0
1+ε1

such that for any B > B0,

∆

DR
=
f(B, 0,K − 1) +

∑B/2
n0=1[f(B,n0,K − 1) + g(B,n0,K − 1)]

f(B, 0,K) +
∑B/2

n0=1[f(B,n0,K) + g(B,n0,K)]
< ε0.

Hence, we have

lim
B→∞

∆

DR
= 0,

lim
B→∞

TH

ρ
= 1.

In Theorem 4.1.1, we show that ρ is the upper-bound on the throughput of the system.

Hence the allocation of u∗∗k at station k for k = 1, 2, . . . ,K maximizes the long-run through-

put of the system when the number of customers circulating in the system goes to infin-

ity.
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Theorem 4.2.2 yields a closed-form solution of u∗∗ to (4.1.3) when µk(uk) (k = 1, . . . ,K)

is linear and strictly increasing, as shown in Corollary 4.2.2.

Corollary 4.2.2. If µk(uk) = akuk where ak > 0 for k = 1, . . . ,K, the optimal allocation

vector u∗∗ = [u∗∗1 , u
∗∗
2 , . . . , u

∗∗
K ] satisfying (4.1.3) is given by

u∗∗k =

vk
ak∑K
i=1

vi
ai

U, k = 1, 2, . . . ,K.

And the optimal long-run average throughput of the system is equal to v0U∑K
i=1

vi
ai

.

Remark. The optimal allocation u∗∗ = [u∗∗1 , u
∗∗
2 , . . . , u

∗∗
K ] is proportional to the ratio

of visiting ratio vi and linear coefficient ai, as opposed to the square-root of the ratio for

the case where a single server circulates in the system.

Example 4.2.3. Consider the series system as shown in Figure 3.2. Then the optimal

allocation are the solutions to the following equations:

µ1(u1) = µ2(u2) = . . . = µK(uK),

K∑
j=1

uk = U.

If µk(uk) = akuk where ak > 0 for k = 1, . . . ,K, then the optimal allocation is given by

u∗∗k =

1
ak∑K

i=1( 1
ai

)
U.

Example 4.2.4. Consider the parallel system as shown in Figure 3.3. Then the optimal

allocation are the solutions to the following equations:

µ1(u1)

p1
=
µ2(u2)

p2
= . . . =

µK(uK)

pK
,

K∑
j=1

uk = U.

If µk(uk) = akuk where ak > 0 for k = 1, . . . ,K, then the optimal allocation is given by

u∗∗k =

pk
ak∑K

i=1( piai )
U.

4.2.3 Finite Population Size (1 < B <∞)

In this section, we study the optimal allocation problem when B can be any positive integer

number. In Theorem 4.2.3, we show that the maximum long-run average throughput of the

system is non-decreasing in the number of customers circulating in the system.
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Theorem 4.2.3. The optimal long-run average throughput of the system is non-decreasing

in B, i.e., for any positive integer B, we have

TH∗(1) ≤ TH∗(2) ≤ · · · ≤ TH∗(B).

Proof of Theorem 4.2.3. Let u∗
B be the optimal allocation when B customers circulate

in the system. By Lemma 4.1.1, for any positive integer B, we have

TH∗(B) = TH(B,u∗
B) ≤ TH(B + 1,u∗

B).

Also, we know that

TH(B + 1,u∗
B) ≤ TH∗(B + 1).

Hence, the result TH∗(B) ≤ TH∗(B + 1) follows.

Remark. Yao [36] studies the properties of the throughput function for closed queueing

networks and shows that the optimal loading and server-assignment policy is balanced. In

our model, two major differences from Yao [36] are (1) we do not make allocation decisions

over the automated station (station 0); (2) we consider allocating constant service resource

U rather than constant loading.

For the remaining of this section, we assume that µ1(u)
v1

= µ2(u)
v2

= . . . = µK(u)
vK

for 0 ≤

u ≤ U . Denote ρ(u) = µk(u)
vk

(k = 1, 2, . . . ,K). The main result is given in Theorem 4.2.4.

Lemma 4.2.1.

C ′uk(B) = −ρ′(uk)
B−1∑
n=0

C(B − 1− n)ρ(uk)
−n−2.

Proof of Lemma 4.2.1. C(B) can be written as follows:

C(B) =

B∑
n0=0

µ−n0
0

n0!

B−n0∑
n=0

Gk(B − n0 − n)ρ(uk)
−n.
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Therefore,

C ′uk(B) =
B−1∑
n0=0

µ−n0
0

n0!

B−n0∑
n=1

(−n)Gk(B − n0 − n)ρ(uk)
−n−1ρ′(uk)

=

B−1∑
n0=0

µ−n0
0

n0!

B−n0−1∑
n=0

(−n− 1)Gk(B − n0 − n− 1)ρ(uk)
−n−2ρ′(uk)

=ρ(uk)
−1

B−2∑
n0=0

µ−n0
0

n0!

B−n0−1∑
n=1

(−n)Gk(B − n0 − n− 1)ρ(uk)
−n−1ρ′(uk)

− µ−2
i ρ′(uk)

B−1∑
n0=0

µ−n0
0

n0!

B−n0−1∑
n=0

Gk(B − n0 − n− 1)ρ(uk)
−n

=ρ(uk)
−1C ′uk(B − 1)− ρ(uk)

−2ρ′(uk)C(B − 1).

The equation then follows from recursion on B.

Theorem 4.2.4. If ρ′(u)
ρ(u)2

is non-increasing in u, then TH(B,µ) is a Schur-concave function

of u.

Proof of Theorem 4.2.4.

∂

∂u1
TH(B,u) =C−2(B)[C ′u1(B − 1)C(B)− C(B − 1)C ′u1(B)]

=C−2(B)[−C(B)ρ′(u1)
B−2∑
n=0

C(B − 2− n)ρ(u1)−n−2

+ C(B − 1)ρ′(u1)
B−1∑
n=0

C(B − 1− n)ρ(u1)−n−2]

=C−2(B)
{B−2∑
n=0

ρ′(u1)

ρ(u1)n+2
[−C(B)C(B − n− 2) + C(B − 1)C(B − n− 1)]

+
ρ′(u1)

ρ(u1)B+1
C(B − 1)

}
.

By symmetry, we immediately have

(
∂

∂u1
− ∂

∂u2
)TH(B,u) =C−2(B)

{B−2∑
n=0

(
ρ′(u1)

ρ(u1)n+2
− ρ′(u2)

ρ(u2)n+2
)[C(B − 1)C(B − n− 1)

− C(B)C(B − n− 2)] + (
ρ′(u1)

ρ(u1)B+1
− ρ′(u2)

ρ(u2)B+1
)C(B − 1)

}
.

The quantity in the ‘[ ]’ of the above expression is nonnegative. Therefore we have (u1 −

u2)( ∂
∂u1
− ∂

∂u2
)TH(B,u) ≤ 0.
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Remarks. If µk(uk) (k = 1, 2, . . . ,K) is increasing and concave, then ρ(u) is increasing

and concave so that the above condition automatically holds.

Corollary 4.2.3. If ρ(u) is increasing and concave, the optimal allocation assigns equal

service resource to each of the service stations. That is, TH(B,u) ≤ TH(B,u∗) for all u,

where u∗ is a vector with equal elements, i.e., uk = U/K for all k.

Proof of Corollary 4.2.3. Since u∗ ≤m u for all u with
∑K

k=1 = U .

Example 4.2.5. Consider the series system as shown in Figure 3.2. Assume that µ1(u) =

µ2(u) = . . . = µK(u). We know that all vis (i = 0, 1, . . . ,K) are equal for the series system,

then we have µ1(u)
v1

= µ2(u)
v2

= . . . = µK(u)
vK

. By Corollary 4.2.3, the optimal allocation is

given by u∗ = [U/K,U/K, . . . , U/K].

4.3 Conclusion

In this chapter, we consider allocating a finite amount of service resource which is contin-

uously divisible and can be used by any of the service stations. Service times at a service

station are exponentially distributed and their mean is a strictly increasing and concave

function of the allocated service resource. We first show that system throughput is non-

decreasing in the number of customers. Then, we study the optimization problem in three

cases depending on the number of customers circulating in the system.

First, when there is a single customer in the system, we show that the optimal allocation

is given by a set of optimization equations. In a special case when the service rate function is

linear, we show that the optimal allocation of service resource to a station is proportional to

the square-root of the ratio of its visiting ratio and its linear coefficient. Secondly, when the

number of customers in the system increases to infinity, we show that the optimal allocation

approaches to a limit which is given by a set of equations provided in Theorem 4.2.2. In a

special case when the service rate function is linear, we show that the optimal allocation of

service resource to a station is proportional to the ratio of its visiting ratio and its linear

coefficient. Finally, for any positive number of customers in the system, we show that

the system throughput as a function of service resource is Schur-concave when a certain

condition is satisfied.
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Chapter 5

OPTIMAL DYNAMIC CONTROL OF
FINITE-POPULATION QUEUEING SYSTEMS: WAITING

COST MINIMIZATION

In Chapter 3 and 4, we study the optimization problems with the objective of maxi-

mizing the long-run average throughput of the system. In this chapter, we study two cost

minimization problems on optimal control.

5.1 A Parallel System with A Single Server

In this section, we consider the closed queueing system with K parallel service stations as

shown in Figure 3.3. A single server is able to work at each of the K service stations. Let

µk denote the rate of exponential service times at station k for k = 1, 2, . . . ,K. Preemption

is allowed. Let ck denote the cost incurred by a job waiting at station k for unit time

for k = 1, 2, . . . ,K. We consider non-idling policies, i.e., the server is not allowed to be

idle whenever there is available job(s) at service stations. We formulate this problem as a

Markov decision process. We use the same notation defined in Section 3.2.1 unless otherwise

stated. Define V (n) as the bias of state n, and h as the long-run average waiting cost of

the system. Since every state is accessible from another state, the transition matrix consists

of a single recurrent class for every deterministic stationary policy. Hence, the MDP is

recurrent and h exists. Define Λ = Bµ0 +
∑K

k=1 µk as the uniformization constant. Without

loss of generality, we assume that Λ = 1. Then, the optimality equation can be expressed

as follows. For 0 ≤ n ≤ B,

h+ V (n) =
K∑
k=1

cknk + (B − n)µ0

K∑
k=1

pkV (n+ ek) + nµ0V (n) + f(n), (5.1.1)

where

f(n) =
K∑
k=1

µkV (n) +

 0 if n = 0,

mini∈In{µiV (n− ei)− µiV (n)} otherwise.



We provide a partial characterization of the optimal policy in Theorem 5.1.1.

Theorem 5.1.1. Suppose that there exists a station i for which ciµi ≥ cjµj and µi(ci−ca) ≥

µj(cj − ca) for all j = 1, 2, . . . ,K and j 6= i, and 1 ≤ a ≤ K. Then, there exists an optimal

policy which gives the highest priority to station i within the set of all preemptive policies

ΠP .

It is important to point out that Iravani and Kolfal [10] study a similar problem. They

consider a finite-population queueing system with multiple service stations and a single

flexible server, under preemptive policies, where cost is incurred when a customer is wait-

ing for service. They consider multiple classes of customers, and each class of customers

generates one type of service requests. The authors investigate that applying the cµ rule

in their finite-population queueing system is not always optimal to minimize the long-run

average cost of the system (see Van Mieghem [32] for a brief review of literature on the cµ

rule). They find the conditions under which static-priority rules are optimal independent of

customer arrival rate and customer population size. In contrast, in our model, we consider

identical customers, and a customer requests for one of the K types of service with a certain

probability. We show that a stronger condition than the simple cµ rule is required so that

a static-priority policy is optimal.

Proof of Theorem 5.1.1. In order to prove Theorem 5.1.1 we show that the result holds

for the m-period expected total waiting cost problem defined by (5.1.2) for all m ≥ 0. Let

Nk denote the state of the system at period k and dk(Nk) the decision rule at period k in

state Nk under policy π. Let c(N , d) denote the waiting cost incurred when the system is

in state N and the action d is taken. We define Vm(π,n) as the m-period expected waiting

cost under policy π when the initial state is n, i.e.,

Vm(π,n) ≡ E

[
m−1∑
k=0

c(Nk, dk(Nk))

]
.

Then, the optimal m-period expected waiting cost is

V ∗m(n) ≡ inf
π∈ΠP

Vm(π,n). (5.1.2)

We let h(π,n) be the long-run average waiting cost under policy π, given that the initial
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state of the system is n, i.e.,

h(π,n) ≡ lim inf
m→∞

1

m
Vm(π,n).

Let µ ≡
∑K

k=1 µk. Then, the optimality equation for the finite-period problem can be

expressed as follows. For all m ≥ 0,

Vm+1(n) =
K∑
k=1

cknk + (B − n)µ0

K∑
k=1

pkVm(n+ ek) + nµ0Vm(n) + fm(n), for 0 ≤ n ≤ B,

(5.1.3)

where

fm(n) = µVm(n) +

 0 if n = 0,

mini∈In{µiVm(n− ei)− µiVm(n)} otherwise.

We assume that V0(n) = 0 for all n.

Without loss of generality, we assume that c1µ1 ≥ cjµj and µ1(c1 − ca) ≥ µj(cj − ca)

for all j = 2, 3, . . . ,K, and 1 ≤ a ≤ K. For system state n, where 2 ≤ n ≤ B, let

l1(n) ≡ min{k : k ∈ In} and l2(n) ≡ min{k : k ∈ In−el1(n)}. Let na = n+ea (1 ≤ a ≤ K).

We will show that, for all m ≥ 0, 2 ≤ n ≤ B, n1 ≥ 1, and 1 ≤ a ≤ K

µ1Vm(n− e1)− µjVm(n− ej) + (µj − µ1)Vm(n) ≤ 0, (5.1.4)

µ1Vm(na − e1)− µjVm(na − ej) + (µj − µ1)Vm(n) ≤ 0. (5.1.5)

where j 6= 1 and j ∈ In. We will use induction on m. Since V0(n) = 0 for all n, then

the inequalities automatically hold at period 0. Assume that inequalities (5.1.4) and (5.1.5)

hold at period m. We will show that they also hold at period m+ 1.

Proof of (5.1.4): We will consider two cases.
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(a) Suppose that l2(n) = 1. Using equation (5.1.3), we have

µ1Vm+1(n− e1)− µjVm+1(n− ej) + (µj − µ1)Vm+1(n)

=− c1µ1 + cjµj + (B − n+ 1)µ0

∑
k

pk[µ1Vm(n− e1 + ek)− µjVm(n− ej + ek))]

+ (B − n)µ0

∑
k

pk[(µj − µ1)Vm(n+ ek)]

+ (n− 1)µ0[µ1Vm(n− e1)− µjVm(n− ej)] + nµ0[(µj − µ1)Vm(n)]

+ µ1[µ1Vm(n− 2e1)− µjVm(n− ej − e1) + (µj − µ1)Vm(n− e1)]

+ (µ− µ1)[µ1Vm(n− e1)− µjVm(n− ej) + (µj − µ1)Vm(n)]

=− c1µ1 + cjµj

+ (B − n)µ0

∑
k

pk[µ1Vm(n− e1 + ek)− µjVm(n− ej + ek) + (µj − µ1)Vm(n+ ek)]

+ µ0

∑
k

pk[µ1Vm(n− e1 + ek)− µjVm(n− ej + ek)) + (µj − µ1)Vm(n)]

+ µ1[µ1Vm(n− 2e1)− µjVm(n− ej − e1) + (µj − µ1)Vm(n− e1)]

+ ((n− 1)µ0 + µ− µ1)[µ1Vm(n− e1)− µjVm(n− ej) + (µj − µ1)Vm(n)],

which is non-positive by the inductive hypothesis for (5.1.4) and (5.1.5) at period

m, the condition that c1µ1 ≥ cjµj for all j = 2, 3, . . . ,K, and the assumption that

Bµ0 + µ = 1.

(b) Suppose that l2(n) > 1. Using equation (5.1.3), we have

µ1Vm+1(n− e1)− µjVm+1(n− ej) + (µj − µ1)Vm+1(n)

=− c1µ1 + cjµj

+ (B − n+ 1)µ0

∑
k

pk[µ1Vm(n− e1 + ek)− µjVm(n− ej + ek))]

+ (B − n)µ0

∑
k

pk[(µj − µ1)Vm(n+ ek)]

+ (n− 1)µ0[µ1Vm(n− e1)− µjVm(n− ej)] + nµ0[(µj − µ1)Vm(n)]

+ µ1µl2(n)Vm(n− e1 − el2(n))− µjµ1Vm(n− ej − e1) + (µj − µ1)µ1Vm(n− e1)

+ µ1(µ− µl2(n))Vm(n− e1)− µj(µ− µ1)Vm(n− ej) + (µj − µ1)(µ− µ1)Vm(n)
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=− c1µ1 + cjµj

+ (B − n)µ0

∑
k

pk[µ1Vm(n− e1 + ek)− µjVm(n− ej + ek) + (µj − µ1)Vm(n+ ek)]

+ µ0

∑
k

pk[µ1Vm(n− e1 + ek)− µjVm(n− ej + ek)) + (µj − µ1)Vm(n)]

+ µ1[µl2(n)Vm(n− e1 − el2(n))− µjVm(n− ej − e1) + (µj − µl2(n))Vm(n− e1)]

+ ((n− 1)µ0 + µ− µ1)[µ1Vm(n− e1)− µjVm(n− ej) + (µj − µ1)Vm(n)],

which is non-positive by the inductive hypothesis for (5.1.4) and (5.1.5) at period m,

the fact that l2(n) = l1(n−e1), the condition that c1µ1 ≥ cjµj for all j = 2, 3, . . . ,K,

and the assumption that Bµ0 + µ = 1.

Proof of (5.1.5). We will consider two cases:

(a) Suppose that l2(na) = 1. Using equation (5.1.3), we have

µ1Vm+1(na − e1)− µjVm+1(na − ej) + (µj − µ1)Vm+1(n)

=− µ1(c1 − ca) + µj(cj − ca)

+ (B − n)µ0

∑
k

pk[µ1Vm(na − e1 + ek)− µjVm(na − ej + ek))]

+ (B − n)µ0

∑
k

pk[(µj − µ1)Vm(n+ ek)]

+ nµ0[µ1Vm(na − e1)− µjVm(na − ej)] + nµ0[(µj − µ1)Vm(n)]

+ µ1µiVm(na − e1 − ei)− µjµiVm(na − ej − ei) + (µj − µ1)µ1Vm(n− e1)

+ µ1(µ− µi)Vm(na − e1)− µj(µ− µi)Vm(na − ej) + (µj − µ1)(µ− µ1)Vm(n)

=− µ1(c1 − ca) + µj(cj − ca)

+ (B − n)µ0

∑
k

pk[µ1Vm(na − e1 + ek)− µjVm(na − ej + ek) + (µj − µ1)Vm(n+ ek)]

+ nµ0[µ1Vm(na − e1)− µjVm(na − ej) + (µj − µ1)Vm(n)]

+ µi[µ1Vm(na − e1 − ei)− µjVm(na − ej − ei) + (µj − µ1)Vm(n− e1)]

+ (µ− µi)[µ1Vm(na − e1)− µjVm(na − ej) + (µj − µ1)Vm(n)],

which is non-positive by the inductive hypothesis for (5.1.4) and (5.1.5) at period m,

the condition that µ1(c1 − ca) ≥ µj(cj − ca) for all j = 2, 3, . . . ,K, and 1 ≤ a ≤ K.,

and the assumption that Bµ0 + µ = 1.

61



(b) Suppose that a ≥ i and l2(na) > 1. Using equation (5.1.3), we have

µ1Vm+1(na − e1)− µjVm+1(na − ej) + (µj − µ1)Vm+1(n)

=− µ1(c1 − ca) + µj(cj − ca)

+ (B − n)µ0

∑
k

pk[µ1Vm(na − e1 + ek)− µjVm(na − ej + ek))]

+ (B − n)µ0

∑
k

pk[(µj − µ1)Vm(n+ ek)]

+ nµ0[µ1Vm(na − e1)− µjVm(na − ej)] + nµ0[(µj − µ1)Vm(n)]

+ µ1µl2(na)Vm(na − e1 − el2(na))− µjµ1Vm(na − ej − e1) + (µj − µ1)µ1Vm(n− e1)

+ µ1(µ− µl2(na))Vm(na − e1)− µj(µ− µ1)Vm(na − ej) + (µj − µ1)(µ− µ1)Vm(n)

=− µ1(c1 − ca) + µj(cj − ca)

+ (B − n)µ0

∑
k

pk[µ1Vm(na − e1 + ek)− µjVm(na − ej + ek) + (µj − µ1)Vm(n+ ek)]

+ nµ0[µ1Vm(na − e1)− µjVm(na − ej) + (µj − µ1)Vm(n)]

+ µ1[µl2(na)Vm(na − e1 − el2(na))− µjVm(na − ej − e1) + (µj − µl2(na))Vm(n− e1)

+ (µ− µ1)[µ1Vm(na − e1)− µjVm(na − ej) + (µj − µ1)Vm(n)],

which is non-positive by the inductive hypothesis for (5.1.4) and (5.1.5) at period m,

the condition that µ1(c1 − ca) ≥ µj(cj − ca) for all j = 2, 3, . . . ,K, and 1 ≤ a ≤ K,

and the assumption that Bµ0 + µ = 1.

Hence, we show that jobs at station 1 should be served ahead of jobs at station j

(j = 2, 3, . . . ,K) if jobs are available at both stations. In other words, we should give the

highest priority to station 1 in order to minimize the long-run average waiting cost of the

system.

Remarks. Theorem 5.1.1 partially characterizes the optimal policy for the waiting cost

minimization problem. It shows that for this finite-population queueing system, a stronger

condition than the simple cµ rule is required to characterize the optimal static-priority

policy. We conducted a brief numerical study for this system when K = 2. The numerical

result shows that c1µ1 ≥ c2µ2 on its own is not a sufficient condition for the optimal policy

that gives priority to station 1. For example, when we set the values for the parameters
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as [µ1, µ2] = [1.3, 1], [c1, c2] = [1, 1.1] and [p1, p2] = [0.6, 0.4], and allow the number of

customers in the system to be 3, 4 or 5, the optimal policy gives priority to station 2 when

there are jobs available in both service stations. In this scenario, we have c1µ1 > c2µ2,

but station 1 is not prioritized. Hence, for our finite-population queueing model, a stronger

condition than the simple cµ rule is required to be sufficient.

It is important to point out that when the system reduces to K = 2, Theorem 5.1.1 pro-

vides a complete characterization of the optimal policy, and the required sufficient condition

reduces to c1µ1 ≥ c2µ2 and c1 ≥ c2.

5.2 A Parallel System with Continuous Resource

In this section, we still consider the parallel system with K ≥ 2 single-server service as shown

in Figure 3.3. However, we will consider continuous service resource rather than discrete

server(s). Suppose that there is a finite amount of continuous service capacity µ which

can be used at any of the K service stations. Preemption is allowed. We are interested in

optimal policy of dynamically allocating the service capacity to each of the service stations

in order to minimize the long-run average waiting cost. All service stations share this fixed

resource and satisfy the constraint
∑K

k=1 µk = µ, where µk is the service capacity allocated

to station k. We assume that the amount of intrinsic work required at all stations are i.i.d.

exponentials with mean 1. Hence, when service capacity µk is allocated to station k, service

times at station k will be exponentially distributed with mean 1/µk (k = 1, 2, . . . ,K). Let

ck denote the cost incurred when a customer is waiting in station k (k = 1, 2, . . . ,K) per

unit time. We consider non-idling policies, i.e., the service capacity is completely allocated

whenever there is available job(s) at service stations.

We formulate this problem as a Markov decision process. We use the same notation

defined in Section 5.1 unless otherwise stated. Define V (n) as the bias of state n, and

h as the long-run average waiting cost of the system. Following the same argument, we

know that there exists a stationary average optimal policy and hence h exists. Define

Λ = Bµ0 +
∑K

k=1 µk as the uniformization constant. Without loss of generality, we assume

that Λ = 1. Then, the optimality equation can be expressed as follows. For 0 ≤ n ≤ B,

h+ V (n) =

K∑
i=1

cini + (B − n)µ0

K∑
i=1

piV (n+ ei) + nµ0V (n) + f(n),
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where

f(n) =

 µV (0) if n = 0,

minµ∈M(n){
∑K

i=1 µiV (n− ei)} otherwise,

µ is the allocation vector, and M(n) = {(µ1, µ2, . . . , µK) :
∑K

i=1 µi = µ, µi ≥ 0 for i ∈

In and µi = 0 for i 6∈ In}. We first partially characterize optimal policies in Theorem 5.2.1.

Theorem 5.2.1. There exists an optimal policy that assigns all service capacity to a single

station.

Proof of Theorem 5.2.1. The minimum in the optimality equations is

min
µ∈M(n)

K∑
i=1

{µiV (n− ei)}

Because the terms in the minimum operator are linear in µi (1 ≤ i ≤ K) for each state n,

the minimum must occur at the extreme points (i.e., µi = 0 or µ for 1 ≤ i ≤ K). Since we

consider non-idling policies, the result follows.

Theorem 5.2.1 says that the search of an optimal policy can be narrowed down to “bang-

bang” policies only. For bang-bang policies, we need to only consider discrete service rates

either at its minimum or maximum feasible levels for each non-empty service station. Then,

function f(n) can be expressed as follows:

f(n) =

 µV (0) if n = 0,

µmini∈In{V (n− ei)} otherwise.

We characterize the optimal policy in Theorem 5.2.2. Note that the optimization problem

is equivalent to (5.1.3) with a discrete service resource where µi = µ for K = 2.

Theorem 5.2.2. The optimal policy which minimizes the long-run average waiting cost

assigns all of the service rate to the service station which has the largest value of ck among

all non-empty service stations.

Proof of Theorem 5.2.2. For state n where n ≥ 2, suppose cir ’s are ordered as ci1 ≥

ci2 ≥ . . . ≥ ciR for all ir ∈ In and R is the number of elements of the set In. In order to

prove Theorem 5.2.2, we show that the result holds for the m-period expected waiting cost
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problem for all m ≥ 0. Then, the optimality equation for the finite-period problem can be

expressed as follows: For all m ≥ 0 and 0 ≤ n ≤ B,

Vm+1(n) =
K∑
i=1

cini + (B − n)µ0

K∑
i=1

piVm(n+ ei) + nµ0Vm(n) + fm(n), (5.2.1)

where

fm(n) =

 µVm(0) if n = 0,

µmini∈In{Vm(n− ei)} otherwise.

We assume that V0(n) = 0 for all n.

We will show that, for all m ≥ 0,

Vm(n− ei)− Vm(n− ej) ≤ 0, (5.2.2)

for i = i1 and j ∈ {i2, . . . , iR}, and ni, nj ≥ 1. We will use induction on m. Since V0(n) = 0

for all n, (5.2.2) automatically hold at period 0. Assume that (5.2.2) hold at period m. We

will show that they also hold at period m+ 1.

Proof of (5.2.2). We will consider two cases:

1. Suppose that ni > 1. Using equation (5.2.1), we have

Vm+1(n− ei)− Vm+1(n− ej)

=− ci + cj

+ (B − n+ 1)µ0

K∑
k=1

pk[Vm(n− ei + ek)− Vm(n− ej + ek)]

+ (n− 1)µ0[Vm(n− ei)− Vm(n− ej)]

+ µ[Vm(n− 2ei)− Vm(n− ej − ei)],

which is non-positive by the inductive hypothesis for (5.2.2) at period m, the condition

that ci ≤ cj , and the assumption that Λ = 1.
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2. Suppose that ni = 1. Using equation (5.2.1), we have

Vm+1(n− ei)− Vm+1(n− ej)

=− ci + cj

+ (B − n+ 1)µ0

K∑
k=1

pk[Vm(n− ei + ek)− Vm(n− ej + ek)]

+ (n− 1)µ0[Vm(n− ei)− Vm(n− ej)]

+ µ[Vm(n− ei − ei2)− Vm(n− ej − ei)]. (5.2.3)

Consider two cases where j = i2 or not. If j = i2, then the last term of (5.2.3) is zero;

otherwise, it is non-positive by the inductive hypothesis for state n − ei at period

m. Hence the right-hand side of equation (5.2.3) is non-positive by the inductive

argument at period m, the condition that ci ≤ cj , and the assumption that Λ = 1.

Let π∗ be the policy that gives priority to the non-empty station with the largest value of

ck. By (5.2.2), we have

Vm(π∗,n) ≤ Vm(π,n) (5.2.4)

for all π ∈ ΠP and for all m. Dividing both sides of (5.2.4) by m and taking limits as m

approaches infinity the long-run average waiting cost result follows, i.e.,

h(π∗,n) ≤ h(π,n)

for all π ∈ ΠP .

Remark. Theorem 5.2.2 shows that the service facility needs to put all of the resource

to the non-empty station that has the largest waiting cost rate in order to minimize the

long-run average waiting cost.

66



Chapter 6

FUTURE RESEARCH

In this chapter, we briefly discuss some possible extensions to our study for future

research. We first propose some possibilities for dynamic control problems.

Multiple servers: Consider the parallel-series queueing network which is described

in Chapter 3, as shown in Figure 3.1. In our work, we consider a single flexible server to

be able to work at any of the service stations. To extend this, we may consider allocating

multiple servers. Suppose that each server is allowed to work at any of the K service

stations. Service times at a service station follow a given distribution which depends only

on the service station. We may consider collaborative or non-collaborative servers.

Emergency v.s. non-emergency: Consider a system with an emergency station

and non-emergency stations. For example, in a hospital system, the emergency room is

usually given the top priority over other clinical units. We may model this system by a

parallel system as shown in Figure 3.3. Suppose that station 1 is an emergency station

which has absolute priority over other non-emergency stations (preemptive priority). A

single flexible server is assigned to work at the emergency and non-emergency stations.

Future work could investigate how to prioritize non-emergency stations to maximize the

long-run average throughput of the system.

Collaborative station: Consider a system with stations which require more than one

servers to process a request. We may use the parallel system with two service stations as

shown in Figure ?? to model it. Suppose there are two flexible servers working at station 1

and 2. The service operation at station 1 requires two servers, while the service operation

at station 2 needs only one server. Service times are random variables whose distributions

depend only on the service station. Suppose preemption is not allowed. Future work could

seek the optimal policy to maximize the long-run average throughput of the system.



Next, we provide some possible extensions to our static design problems.

Multiple servers: Consider the closed queueing network studied in Chapter 4. In our

work, we consider allocating a fixed amount of continuous service resource to the K service

stations. Another consideration can be allocating discrete service resource, i.e., multiple

servers. Suppose that each server is able to work at any of the K service stations. Service

times at a service station follow a given distribution which depends only on the service

station. We may consider either collaborative or non-collaborative servers.

Waiting cost minimization: In our work, we consider maximizing the long-run

average throughput of the system. We may consider waiting cost setup for the design

problems. Suppose cost is incurred when customers are waiting in the service stations at

the second stage, either waiting in the queue or being served. The cost rate depends only

on the service stations. Assume that a fixed amount of service resource is available to

be allocated to each of the K service stations. We are interested in looking for optimal

allocation in order to minimize the long-run average total waiting cost of the system. We

expect that the optimal allocation would assign more service resource to a service station

which has a higher cost rate.
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