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ABSTRACT

Jenny Yang: Graphical Models for High Dimensional Data with Genomic Applications
(Under the direction of Wei Sun)

Many previous studies have demonstrated that gene expression or other types of

-omic features collected from patients can help disease diagnosis or treatment selection.

For example, a few recent studies demonstrated that gene expression data collected

from cancer cell lines are highly informative to predict cancer drug sensitivity (Garnett

et al. 2012, Barretina et al. 2012, Chen et al. 2016b). This is partly because many cancer

drugs are targeted drugs that perturb a particular mutated gene or protein, and thus

having that mutation, or observing the consequence of such mutation in gene expression

data, is highly informative for drug sensitivity prediction. Such systematic studies of

drug sensitivities require giving different drugs in a series of doses to the same cell line,

which is obviously not possible for the human studies. More sophisticated methods

are needed to estimate potential effects of cancer drugs based on observational data.

Since the effect of a targeted cancer drug can be considered as an intervention to the

molecular system of cancer cells, a directed graphical model for gene-gene associations

is a natural choice to model the molecular system and to study the consequence of such

interventions.

In this dissertation, we develop new statistical methods to estimate DAGs using

high dimensional -omic data under two scenarios: i) with a model-free approach and

ii) single cell RNA-seq data (scRNAseq). In the 1st chapter, we will give a brief in-

troduction to graphical models, the various statistical characterizations of graphical

models and the most current approaches to estimate graph structures. Then, we will
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review the scRNAseq data and current approaches to analyze scRNAseq data. Next,

in Chapter 2, we propose a model-free method to estimate graphical models in two

steps. The first step uses a model-free variable selection method based on the prin-

ciples of sufficient dimension reduction. Then, the second step uses a non-parametric

conditional independence testing method which utilizes embeddings of the conditional

spaces into reproducing kernel Hilbert spaces. We will review some theoretical back-

ground in order to establish the asymptotic graphical model estimation consistency of

this two-step approach. We examine its performance in simulations and TCGA breast

cancer data, where we find significant improvements from current methods that require

strong model assumptions. In Chapter 3, we propose a graphical model algorithm

to analyze scRNAseq data. Similar to the previous algorithm, we create a two-step

estimation method which utilizes a joint penalized zero-inflation model. We assess its

performance and drawbacks in simulations. Then, we examined its utility when applied

after clustering to a sample of 68k peripheral blood mononuclear cells with multiple

subpopulations.
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CHAPTER 1: LITERATURE REVIEW

1.1 Graphical Models

Directed acyclic graphs (DAGs) are directed graphical models describing the con-

ditional independence amongst a number of random variables [Pearl (2009)]. The

“acyclic” part of the name refers to the constraint that there is no directed cycle (or

loop) in the graph. This constraint is necessary for causal inference [Pearl (2009),

Spirtes et al. (2000)]. Consider a set of p random variables, X := {X1, ..., Xp} with

true DAG structure of G(0) := (V,E(0)) – where V := {X1, ..., Xp} is the set of vertices

corresponding to X and E(0) is the set of directed edges. The skeleton of a DAG is

defined as an undirected graph, obtained by removing the directions of all the edges

in a DAG. A v-structure is a structure of X1 → X2 ← X3, where X1 and X3 are not

directly connected. The DAGs that share the same skeleton and the same set of v-

structures form a Markov equivalence class, and all the DAGs within the same Markov

Equivalence class encode the same set of conditional independence relations of the p

random variables.

For the purposes of this proposal, we focus on the problem of estimating a DAG from

high dimensional observational data. Without randomized interventions, a popular

assumption used in graphical model estimation is that of ordering. This is where we

assume that for vertices X1, ..., Xp, a vertex with a smaller subscript will always be

of an earlier generation. However, such knowledge of natural ordering is often not

available, especially in high dimensional settings. Without any additional information,

one cannot estimate the individual DAG from observational data but can estimate the
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most likely Markov Equivalence class.

Without knowing edge directions it is impossible to separate the parents of a node

from its children, making estimation based on independence tests conditional on Xpa
i

impossible. An alternative is to define the edge between Xi and Xj by Ei,j = I{Xi ⊥

Xj|X−(i,j)}, which allows us to do conditional independence testing based on observa-

tional data. Following this edge definition, we can recover the moral graph, which is

constructed by connecting the co-parents of v-structures of a DAG skeleton. Then, one

way to estimate the skeleton of a DAG is to use a two-step process; first, estimating

the moral graph, then removing the connection between co-parents of v-structures. In

addition, even with observational data, we can orient a limited number of edges in the

skeleton corresponding to v-structures. Such a partially directed graph can be used to

make useful causal inference [Maathuis et al. (2009)]. This is the basic procedure we

will propose.

1.1.1 Undirected Graphical Model Estimation

The most intensely studied area for estimating these moral graphs are concentrated

on Gaussian Graphical Models (GGM) or the extended family of nonparanormal mod-

els as dubbed by [Liu et al. (2009)].

Gaussian Graphical Models

GGMâĂŹs are graphical models with the underlying assumption that X ∼ Np(µ,Σ).

The edge set, E(0), is usually estimated by the non-zero entries of the precision matrix

Σ−1 where Ei,j = I(Σ−1
i,j 6= 0).

For p < n problems, one approach to estimate Gaussian Graphical Models is to use

a greedy stepwise forward-selection or backward-selection. [Drton and Perlman (2004)]
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introduced a method to produce and utilize simultaneous p-values corresponding to

partial correlations allowing for model selection in a single step, which they improved

upon a few years later [Drton and Perlman (2007)]. For p � n problems, machine

learning techniques such as penalized regression or penalized maximum likelihood esti-

mate have be utilized. For example, [Meinshausen and BÃĳhlmann (2006)] proposed

the neighborhood selection approach, where the neighborhood of each node is estimated

using penalized regression with the L1 penalty. Combining the results of neighborhood

selection of all the p nodes provided the structure of the GGM. While this neighbor-

hood selection method gives consistent estimates of sparse high dimensional graphical

models, its estimation of precision matrix is not consistent. Several penalized likelihood

algorithms have been developed to directly estimate the precision matrix by placing an

L1 penalty on the off-diagonal entries of the precision matrix [Yuan and Lin (2006),

Friedman et al. (2008)]. These penalized estimation methods use some tuning param-

eters to tune the strength of the penalty. The optimal tuning parameters are often

selected by scoring a series of models estimated from a pre-defined tuning parameter

grid. For example, BIC was often used as the scoring function [Lam and Fan (2009)].

[Liu et al. (2009)] developed a graphical model estimation method that can be

applied for a class of distributions they termed nonparanormal distribution, which

includes any distribution that can be transformed into a multivariate Gaussian distri-

bution. Therefore, their method allows for the edges of the graphical model to be coded

by a precision matrix of transformed data [Liu et al. (2009)]. They developed a non-

parametric method using additive models to estimate the transformed Gaussian data

and used an L1 penalty in order to extend the method to high dimensional settings. In

2012, they improve upon the method and show that it has the same convergence rates

as the state of the art Gaussian Graphical Models [Liu et al. (2012)].
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1.1.2 Directed Acyclic Model Estimation

There are two basic approaches that have been developed for estimating DAGs or

DAG skeletons: search-and-score based algorithms and conditional independence test-

ing algorithms. Search-and-score based algorithms generate scores (i.e. AIC, BIC,

log likelihood, Bayesian Dirichlet probability or Kullback-Leibler divergence) for DAGs

and selects the one with the best score [Chickering (2003), De Campos and Ji (2011)].

This approach is computationally infeasible for high dimension problems with p � n,

where p is the number of variables and n is sample size. In contrast, the conditional

independence testing algorithm is computationally much more efficient and can give

consistent estimate of DAG skeletons in high dimensional settings [Ha et al. (2016a)].

Thus, for the purpose of this paper we chose to focus on conditional independence

testing algorithms. First, we introduce some definitions.

Definition 1 from [Pearl (2009)] (d-separation)

A path p is said to be d-separated (or blocked) by a set of nodes Z if and only if:

(1) p contains a chain i→ m→ j or a fork i← m→ j such that the middle node m

is in Z, or

(2) p contains an inverted fork (or collider) i→ m← j such that the middle node m

is not in Z and such that no descendant of m is in Z.

A set Z is said to be d-separate X from Y if and only if Z blocks every path from

a node in X to a node in Y .

Definition 2 from [Spirtes et al. (2000)] (Markov)

The distribution of V is Markov to G := (V,E) if and only if each variable Xj ∈ V,

is conditionally independent of its non-effects (non-descendants) given its direct causes
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(parents).

Definition 3 from [Spirtes et al. (2000), Kalisch and BÃĳhlmann (2007)] (Faithfulness)

A probability distribution P on Rp is said to be faithful with respect to a graph

G if conditional dependencies of the distribution can be inferred from so-called d-

separation in the graph G and vice versa. More precisely: consider p random variables

X = {X1, ..., Xp} ∼ P. Faithfulness of P with respect to G means: for any i, j ∈ V with

i 6= j and any set s ⊆ V, Xi and Xj are conditionally independent given {Xr; r ∈ s} ⇔

vertex i and vertex j are d-separated by the set s.

Faithfulness was originally defined by [Spirtes et al. (2000)] as when the only condi-

tional independencies in P are those found by the Markov condition on G. It is apparent

then that the assumption of faithfulness is required to be able to use conditional inde-

pendence testing graph estimation. This body of work is largely built on the following

central theorem:

The PC-Algorithm and its Relatives

The PC algorithm was named after the first names of its two authors (Peter Spirtes

and Clark Glymour). It assesses the existence of each edge in a graphical model by

conditional independence testing. The following theorem provides some theoretical jus-

tification for such testing.

Theorem 1 from [Spirtes et al. (2000)] If P is faithful to some directed acyclic

graph, then P is faithful to G if and only if:

(1) For all vertices, X, Y of G, X and Y are adjacent if and only if X and Y are

dependent conditional on every set of vertices of G that does not include X or Y ;

and
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(2) For all vertices X, Y, and Z such that X is adjacent to Y and Y is adjacent to Z

and X and Z are not adjacent, X → Y ← Z is a subgraph of G if and only if X

and Z are dependent conditional on every set containing Y but not X or Z.

SGS algorithm is an early conditional independence testing algorithm for graphical

model estimation [Spirtes et al. (2000)]. It is essentially a brute force method that starts

with a fully linked undirected graph and then seeks to remove edges by evaluating all

possible conditional independence tests. The application of SGS algorithm is limited

by its high computational cost. The PC algorithm seeks to improve upon the SGS

by testing as few d -separation relationships as possible. It takes the same fully linked

undirected graph input and then thins the edges by first using marginal independence

testing, then conditional testing based on subsets of adjacent variables of size one, size

two, and so on.

Extensive work has been done to improve upon the various limitations of the PC

algorithm including its order dependency (PC-stable [Colombo and Maathuis (2014)])

and error accumulation from “unfaithfulness” (Conservative-PC [Lemeire et al. (2010)]),

as well as to extend its statistical properties to non-paranormal graphical models [Har-

ris and Drton (2013)]. While the PC algorithm and its derivatives have worst case

computation time bounded by O(pd), their expected computation time is of the order

O(n2 ¯(p
d

)
), where d is the degree of vertices in the true DAG and ¯(p

d

)
is the average of(

p
d

)
over all vertices.

The Independence Graph (IG) Algorithm is a variation of the PC algorithm, which

starts with the estimated moral graph instead of the fully linked undirected graph

[Spirtes et al. (2000)]. A moral graph of a DAG is defined by connecting any two par-

ent nodes of a v-structure in the DAG. Recently, [Ha et al. (2016a)] proposed PenPC,

which is a combination of moral graph estimation by penalized regression and a modi-

fied PC algorithm. More specifically, PenPC uses penalized regression with log penalty
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to obtain a more accurate estimate of moral graph. Then the edges within the moral

graph is further thinned by a modified PC algorithm, which searches across candidate

d -separation sets based on the original input moral graph. PenPC has better perfor-

mance than the PC algorithm and is computationally more efficient in high dimensional

settings. All of these existing methods rely on the assumption that the data follow mul-

tivariate Gaussian distribution or the data can be transformed to follow multivariate

Gaussian distribution for conditional independence testing. Furthermore, the penalized

estimation of moral graph requires the assumption that one variable is associated with

other variables through a linear regression model. In this dissertation, we proposed a

new method that does not require these potentially restrictive assumptions.

1.1.3 Considering Model-Free Settings

Without the assumption that the data arises from either a multivariate normal dis-

tribution or a multivariate Gaussian copula, constructing a graphical model becomes

much more complicated. This is because multivariate normality provides a very conve-

nient property which allows graphical structure to commute under convolution. Under

the model-free setting we do not place distributional assumptions (e.g. Gaussian) or

relationship assumptions (e.g. homoscedastic linearity) on the data. Therefore, the

covariance of the data usually does not provide the graphical structure [Loh and Wain-

wright (2013)]. Instead, we consider that under the assumption of a positive and

continuous density for y, the local Markov property infers global and pairwise Markov

properties. Hence, we use node-wise conditional independence inference with neigh-

borhood selection in order to obtain the global Markov random field. Once we obtain

the global Markov random field, it becomes a question of removing v-structures using

conditional independence testing in order to obtain the final undirected skeleton.

Testing conditional independence of continuous variables with a large conditioning
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space is a particularly challenging problem in the model-free setting. We examined the

body of available methods which fall into the following categories: i) distance based

with explicit estimation of conditional densities [Su and White (2007)], ii) discretizing

the conditioning set and performing the independence testing within each bin [Huang

(2010)], iii) testing for independence against some set of transformed conditioning space

[Song et al. (2009)], and iv) tests which examine the embeddings of probability distri-

butions into reproducing kernel Hilbert spaces (RKHS) [Zhang et al. (2012)].

Tests of type i) are difficult to utilize over a wide variety of conditioning spaces

as explicit estimation of the conditional densities becomes very complex, especially

as the conditioning space increases. For example, [Su and White (2007)] proposes a

test which measures the distance between the conditional characteristic functions and

requires explicit estimation involving multiple applications of the Nadaraya-Watson

leave-one-out kernel regression technique. Tests of type ii) cannot be used effectively

in cases of low sample size as discretizing the conditioning space means even lower

sample size for each unconditioned test per bin. Tests of type iii) are actually weaker

than testing strictly for nonparametric conditional independence. For example, [Song

et al. (2009)] proposes a method which tests for whether there exists some function h

and parameter θ0 such that the variables are independent given a single index function

λθ0(Z) = h(Z>θ0) of Z. This is a weaker condition than conditional independence.

For example, if X and Y depend on two different subsets of Z which have overlap,

then even for X ⊥ Y |Z we cannot find a λθ0(Z) for which X and Y are conditionally

independent.

Tests of type iv) have been found to be equivalent to tests based on energy dis-

tances or distance covariances [Sejdinovic et al. (2013), SzÃľkely and Rizzo (2012)].

They use a characterization of conditional independence by covariance operators in
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the RKHS from [Fukumizu et al. (2004)]. For some random vector (X, Y ) on do-

main X × Y , let HX and HY be the RKHS on X and Y , with kernel functions kX

and kY , respectively. The cross-covariance operator from HX to HY is defined by

the relation: 〈g,
∑

Y X f〉 = EXY [f(X)g(Y )] − EX [f(X)]EY [g(Y )] for all f ∈ HX and

g ∈ HY . The conditional cross covariance operator of (X, Y ) given Z is then defined as

ΣY X|Z = ΣY X − ΣY ZΣ−1
ZZΣZX . We can view this conditional cross covariance operator

as the partial covariance between any two functions belonging to HX and HY given any

function belonging to HZ . [Fukumizu et al. (2004)] shows that this cross-covariance

operator is related to the conditional independence if characteristic kernels are used,

based on the following lemma:

Lemma 1 from [Fukumizu et al. (2007)]

Denote Ẍ ≡ (X,Z), kẌ ≡ kXkZ , and HẌ the RKHS corresponding to kẌ . Let the

space of square integrable functions of X be denoted L2
X , and similarly define L2

Y and

L2
Z . Assume HX ⊂ L2

X , HY ⊂ L2
Y , HZ ⊂ L2

Z and that kẌkŸ is a characteristic kernel

on (X × Y) × Z. The characteristic kernel ensures that the statistical features of the

data distribution are preserved by the kernel embedding in the RKHS space. Further,

assume that HZ + R is dense in L2(PZ). Then

ΣẌY |Z = 0⇔ X ⊥ Y |Z (1.1)

1.2 Single-Cell RNA-Seq Data

A typical human cell has 6 billion base pairs of DNA and 600 million bases of

mRNA [Eberwine et al. (2014)] and all diseases show some level of heterogeneity be-

tween individual cells in their pathology. This is especially apparent in cancer, a set of

heterogeneous diseases stemming from the accumulation of somatic mutations. Within

the same type of cancer (e.g., breast cancer or colon cancer), there is a considerable
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degree of inter-patient heterogeneity, both in terms of molecular features (e.g., somatic

mutations, gene expression) and a patient’s response to treatments [Garnett et al.

(2012), Barretina et al. (2012)]. Even within the tumor tissue of one patient, the tu-

mor cells may have different somatic mutations, which is referred to as intra-tumor

heterogeneity [Yap et al. (2012), Patel et al. (2014)].

RNA sequencing has traditionally been done on bulk tissue samples and thus a large

number of cells at once (bulk RNA-seq). Analyses of this data would operate on the

measure of mean values of signals from individual cells, overlooking internal interactions

and heterogeneity within the cell population [Kolodziejczyk et al. (2015)]. However,

advances in Next Generation Sequencing (NGS) now allow deep sequencing of a single

cell. This paves the way to a variety of applications including understanding why some

cells may be drug responsive but others are not and determining molecular states which

may be specific to a disease for drug targeting; as well as new research techniques, such

as cell level perturbations to dynamically probe cell function [Eberwine et al. (2014)].

Obtaining estimates for homogeneous subclusters of cells within a cancer promise a

path towards precision medicine: medical practice tailored to the unique profile of a

patient’s cancer. Graphical models, such as the directed acyclic graph (DAG), are

among the most promising solutions.

1.2.1 Data Generation

The workflow for obtaining scRNA-seq data involves four general steps. First, in-

dividual cells need to be isolated. This can be done using either microfluidics like

Fluidigm C1 [Pollen et al. (2014)], or microtiter plates like Smart-seq2 [Picelli et al.

(2014)], or droplet-based technologies like inDrop [Klein et al. (2015)]. Then, the cell

needs to be lysed to allow access to the nucleic acids. There are currently no techniques

to sequence mRNA itself, so cDNA needs to be obtained for sequencing using reverse
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transcription. Finally, the cDNA needs to be amplified for sequencing using PCR [Tang

et al. (2009), Stegle et al. (2015)]. Sequencing itself is done by applying NGS, such as

the Illumina sequencing solutions.

After obtaining the raw sequence data, bulk RNA-seq techniques can be applied for

sequence alignment in order to summarize the sequences and finally obtain the total

read counts (TReC) of each mRNA sequence [Love et al. (2015), Chen et al. (2016b)].

Due to the small amount of starting material, a large amount of amplification needs to

be done. Since amplification efficiency can vary between cells simply due to technical

variability, it is recommended to use extrinsic spike-ins or unique molecular identifiers

(UMIs) to facilitate normalization across cells [Stegle et al. (2015)]. Extrinsic spike-

ins are tagged RNA mixes with known sequences and quantities which are added to

the cell prior to amplification, in order to produce normalization factors to adjust for

amplification bias. Alternatively, UMIs operate like barcodes and allow read counts

enumeration that are independent of amplification bias. In the ideal setting, full cover-

age UMIs would provide data most free of technical variability, however there are many

non-UMI-based protocols currently utilized.

1.2.2 Statistical Analysis Challenges

There are a number of differences between scRNA-seq data and bulk RNA-seq data

primarily attributable to the low amount of starting RNA in a single cell and the

inherent heterogeneity between individual cells. First, the amount of noise in scRNA-

seq data is greater, requiring a larger sample size for adequate power. This is not

especially problematic, as it is typically easier to separate a single tissue sample into a

larger number of individual cell samples than it is to harvest a large number of tissue

samples. Secondly, there is an increase to the incident of zero counts. While detection

limits have been suspected to play a part, evidence has shown that the limit of detection
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is essentially zero and the empirical distribution of data is different from what would be

expected from censoring. Instead, the current suspected culprit for zero-inflation ranges

from a variety of sources including drop out from amplification, inherent heterogeneity

of cell expression, and technical factors [Kolodziejczyk et al. (2015), McDavid et al.

(2016)]. Heterogeneity of cell size means that some cells may just have a larger amount

of total nucleic acids. This is often normalized for using the ratio of RNA reads to

spike-ins reads, termed the endogenous RNA size factor. A more general technique

uses relative expression counts instead of raw counts [Stegle et al. (2015)].

The heterogneity between individual cells is not confined to gene expression, but

also to cell health and function. The individual cells may be in varying states of

degradation or even apoptosis. In order to control for these confounding factors, bulk

RNA-seq quality control tools are often used to check the proportion of reads which

map back to the genome, the proportion of reads of RNA versus spike-ins, and the use

of PCA to cluster good quality cells from bad quality cells [Stegle et al. (2015)].

There are additional challenges more specific to graphical model estimation using

scRNA-seq data. It has been shown that the robustness of networks derived from

scRNA-seq data may be dependent upon composition of cell types [Mahata et al.

(2014)]. scRNA-seq data also may reveal less meaningful associations between genes.

For example, if two cells are in different phases of cell cycle, a large number of genes

may be associated due to the cell-cycle effect. Therefore it is crucial to remove the

effects of such confounding factors.

1.2.3 Current Approaches for Analyses

Current approaches to analyses scRNA-seq data largely fall under two umbrellas:

grouping or clustering cells by type or state and construction of gene regulatory net-

works.
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Clustering techniques used for bulk RNA-seq data, which were used to classify tis-

sues into separate types, can be applied to scRNA-seq data. These techniques fall under

either dimension reduction or hierarchical clustering techniques. They characterize a

sample by its composition of cell types, defined by the expression profile of each cell

cluster. Often, this is done in order to find a set of marker genes for easier identi-

fication of these clusters in future samples. The identification of these marker genes

are the subject of much study, and are usually found by either comparing differential

expression of genes between clusters or identifying highly variable genes (HVGs). For

scRNA-seq data, these techniques typically use either the Poisson or Negative Binomial

distributions in order to model the TReC, which allows confounding covariates to be

adjusted for and even account for spatial correlations using the well solved general-

ized linear model solutions [Anders and Huber (2010), Hardcastle and Kelly (2010),

Robinson et al. (2010)]. However, in the context of scRNA-seq data, it is difficult to

tease apart true differing clusters or variability due to confounding factors such as cell

cycle. Further, the idea of cell type within the same tissue is currently a poorly defined

biological concept, and it is unknown whether transcriptional differences represent true

subpopulations [Patel et al. (2014)].

Establishing gene-regulatory networks are often done in bulk RNA-seq data by

grouping genes which are considered to be ’co-regulated’. This used to be done using

correlations between genes or by using clustering techniques mentioned previously. A

more sophisticated technique fits regulatory networks into the framework of a GGM

by estimating the gene-gene precision matrix. Bayesian approaches have been used to

combine prior biological knowledge with gene expression data [Werhli and Husmeier

(2007)]. Clustering approaches were used to separate out clusters of genes first, and

then estimated individual DAGs within each cluster [Yavari et al. (2008)]. The SGS
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algorithm has been incorporated into the estimation to reduce computation time [Yang

et al. (2011)]. For even faster computation, the graphical lasso, a penalized Gaussian

covariance estimation method has been developed and used in a large number of network

reconstructions [Friedman et al. (2008)]. Within the context of scRNA-seq data, we

can take advantage of the variability of gene expression between cells as a natural

perturbation to infer gene-regulatory networks [Padovan-Merhar and Raj (2013), Segal

et al. (2003), PeâĂŹer et al. (2001)].

Currently, the only graphical model proposed specifically for scRNA-seq data has

come from [McDavid et al. (2016)]. They propose a penalized multivariate Hurdle model

based on the exponential family for neighborhood selection. Consider variable y with

its element-wise non-zero indicator variable vy. To fit this data into the multivariate

Hurdle model framework, they let f(y) have Normal density of mean ξ and precision

τ 2. Then, they excise zero from the support of f(y) and give it a density of f0(y) =

exp{vy[1/2 log(τ 2/(2π)) + log(p/(1− p))− ξ2τ 2/2] + yξτ 2− y2τ 2/2 + log(1− p)}. This

allows the full support of y to be modeled under the exponential family while modeling

the extraeneous zero expression. They simplify the form of the multivariate Hurdle

model and give the following likelihood:

log f(y; θ) = vy
>Gvy + vy

>Hy − 1

2
y>Ky − C(G,H,K) (1.2)

where G,H and K are interaction parameter matrices and C(G,H,K) is a constant.

Then each part of the likelihood pertains to the modeling of a specific contribution,

where G parameterizes the interaction of the binary process, K parameterizes the

interaction of the continuous process, and H parameterizes the interaction between

binary and continuous process.

For variable selection, they impose an L1 group penalty of the form λ
∑

a

√
θ>a Haaθa

where θa are the parameters of interest across G,H, and K corresponding to gene a.
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Typically this type of group penalty has been seen with Haa = I. However, this type

of group penalty, which causes all parameters in θa to vanish simultaneously, assumes

similar effect size and scale-equivariance across the parameters. This is distinctly not

true in this case due to the different underlying model distributions for the indicator

variable vy (binomial) and continuous variable y (Gaussian). The typical solution of

scaling the design matrix is not an option in this case due to the different distribution

assumption. Hence, the authors propose rescaling the estimated coefficients within

the penalty with the Fisher information under the null model of θa = 0 as Haa and

show that it is equivalent to a score test of the null hypothesis that θ = 0 versus the

alternative of θ 6= 0.

1.2.4 Summary

Forming regulatory networks with scRNA-seq allows for insights which are hidden

in bulk RNA-seq data. For example, if two independent transcription factors activate

a set of genes, in bulk RNA-seq data, this would look like they were co-expressed or

they regulate each other [Stegle et al. (2015)]. Currently, there has only been one

model developed specifically for scRNA-seq data and methods used for bulk RNA-

seq data have largely depended upon undirected gaussian graphical models. While

computationally efficient, they are not suitable for count data, and they do not take

into consideration aspects of scRNA-seq data such as zero-inflation, relying instead on

quality control protocols. The hurdle model by [McDavid et al. (2016)] assumes all

forms of zero expression comes from the same data-generating process and assumes the

non-zero gene expression data is Gaussian. Our proposal aims to address these issues

by developing a graphical model algorithm which uses a joint penalized zero-inflated

negative binomial model for neighborhood selection.
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CHAPTER 2: MODEL-FREE ESTIMATION

Recall that we denote a DAG skeleton by G = (V,E), where V = {X1, ..., Xp} and

E are the vertex set and the edge set, respectively. A moral graph GM = (V,EM) can

be derived from a skeleton G by connecting the co-parents in all the v-structures in

G. Our goal is to develop a model free and nonparametric method to estimate DAG

skeleton by a two step process. First, we estimate the moral graph using a penalized

model-free regression. Then, we further thin the edges of the estimated DAG skeleton

by removing false connections due to v-structures using the modified PC-algorithm with

nonparametric conditional independence testing. The overall structure of the algorithm

is presented below.

2.1 Algorithm

2.1.1 Step 1: Estimation of the Moral Graph

We employ a neighborhood selection approach to estimate the moral graph by es-

timating the neighbors of each vertex in the moral graph separately, and then consol-

idating the results. That is, we establish an edge Xi −Xj if either Xj is selected as a

neighbor of Xi or Xi is selected as a neighbor of Xj. All the neighbors of a vertex Xk in

the moral graph form its Markov Blanket. For neighborhood selection of Xk, we adopt

a model free variable selection method (multivariate group-wise adaptive penalization

or mGAP) for Xk against all the other variables, denoted by X−k [Sun and Li (2012)].

mGAP uses a transformation that expands the one dimensional response variable into

several dimensions, such as a spline transformation or a transformation resembling
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Sliced Inverse Regression (SIR) [Li (1991)]. Then, it performs variable selection and

parameter estimation by minimizing a weighted multivariate L2 loss function with an

adaptive group lasso penalty. Specifically, for response vertex Xk, it uses the following

objective function for some transformation function r(·) with h-dimension output:

argminB,κ,ω

{
h∑
s=1

‖r(Xk)s −X−kBs‖2

ωs
+ λ

p∑
j=1

‖bj‖+ τ

κj
+ λ

p∑
j=1

log(κj) + n

h∑
s=1

log(ωs)

}
,

(2.1)

where r(·)s is the sth dimension of r(·), Bs is the s-th column of coefficient matrix

B, which includes the p − 1 regression coefficients for the regression with r(Xk)s as

response variable, λ and τ are tuning parameters, and ‖bj‖ =
√

Σh
s=1B

2
j,s is the L2

norm for the h coefficients of the j-th covariate. ωs’s and κj’s are the weights for the

objective function and the penalty term, and the last two terms in equation (2.1) add

constraints on the sizes of ωs’s and κj’s. Then, the set of vertices associated with Xk

are {Xj ; ‖b̂j‖ > 0}. Estimation is done using a coordinate descent algorithm.

The pseudo-code of the algorithm for estimating the moral graph is then:
Algorithm 1: Moral Graph Estimation
Data: X

Result: GM = (V,E)

for j = 1 to p do
Let y = Xk and X = X−k.

Scale y and X to standard deviation of 1 and center to 0.

yt ← r(y).

Obtain tuning parameter grid λ, τ from Algorithm 4 in Appendix A.

Select variables among X associated with y by mGAP, denoted by E .

Create edges Ek,j and Ej,k, where Xj ∈ E . Here Ek,j ≡ Ej,k for the

undirected graph.
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2.1.2 Step 2: Estimation of the Skeleton

The modified-PC algorithm attempts to further thin the estimated moral graph to

obtain an estimate for the skeleton by first testing for marginal independence then con-

ditional independence while conditioning on all possible candidate d-separation sets.

Testing is done only on connected pairs of the estimated moral graph. For a nonpara-

metric conditional independence test, we use a kernel conditional independence test

(KCI-test) proposed by [Zhang et al. (2012)]. First, we present the characterization of

conditional independence utilized by Zhang:

Notation and Set up

Consider vertex Xj with Markov Blanket XMB
j := adj(GM, Xj), where adj(GM, Xj)

denotes the neighbors of Xj in moral graph GM. Then consider the conditional inde-

pendence test of Xj and Xk ∈ XMB
j , conditioned on a subset of the variables of XMB

j ,

denoted by Xs. Let Ẍ := (Xj, Xs), Y := Xk, and Z := Xs. We denote the kernel func-

tions of the three variables by kẌ , kY , and kZ , and the corresponding reproducing kernel

Hilbert spaces (RKHS) by HẌ , HY , and HZ , respectively. A kernel function character-

izes the similarity of any two samples with respect to one variable (set). For example,

suppose there are n samples of Z, a Gaussian kernel defines the similarity between the

u-th and the v-th sample as kZ(zu, zv) = exp {−‖zu − zv‖2/(2σ2)}, where σ2 is the pre-

specified kernel width. A kernel matrix for n samples is an n×nmatrix, with the (u, v)th

entry being defined by the kernel function on the u-th and the v-th observations. We

denote the kernel matrices for these three variables as KẌ , KY , and KZ , respectively.

The centralized kernel matrix for Ẍ is defined by K̃Ẍ := (I − 1
n
JJᵀ)KẌ(I − 1

n
JJᵀ),

where I is the identity matrix and J is a vector of 1’s. Analogously, we can define the

centralized kernel matrices for Y and Z: K̃Y , K̃Z .
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Lemma 1 from [Daudin (1980)]

Denote the space of all square integrable functions of X (i.e., any f(x) such that
´∞
−∞ |f(x)|2dx <∞) by L2

X . Following the notation from [Zhang et al. (2012)], consider

the following constrained L2 spaces:

EẌZ := {f̃ | f̃ = f(Ẍ)− E[f |Z], f ∈ L2
ẌZ
},

E ′Y Z := {g̃′ | g̃′ = g′(Y )− E(g′|Z), g′ ∈ L2
Y }.

Then, the following conclusions are equivalent:

(1) X ⊥ Y |Z.

(2) E[f̃ g̃′] = 0 ∀ f̃ ∈ EẌZ and g̃′ ∈ E ′Y Z .

Here we use notation g′ instead of g to be consistent with the notation used by

[Zhang et al. (2012)]. Let h∗f (Z) ≡ E[f |Z], where h∗f (Z) ∈ L2
Z is the regression function

of f(Ẍ) on Z. h∗f (Z) can then be estimated with kernel ridge regression: h∗f (Z) =

K̃Z(K̃Z + εI)−1f(Ẍ), with some regularization parameter ε. Let h∗g′(Z) ≡ E(g′|Z).

Then h∗g′(Z) ∈ L2
Z can be estimated similarly: h∗g′(Z) = K̃Z(K̃Z + εI)−1g′(Z). Let

RZ = I − K̃Z(K̃Z + εI)−1 = ε(K̃Z + εI)−1. Then the centralized kernel matrices corre-

sponding to f̃(Ẍ) and g̃′ are K̃Ẍ|Z = RZK̃ẌRZ and K̃Y |Z = RZK̃Y RZ , respectively.

Let K̃Ẍ|Z = ψẍ|zψ
ᵀ
ẍ|z and K̃Y |Z = φy|zφ

ᵀ
y|z. More specifically, ψẍ|z (and simlarly φy|z)

can be derived by eigen-value decomposition of K̃Ẍ|Z = V ΛV ᵀ such as ψẍ|z = V Λ1/2.

Lemma 2 from Proposition 5 of [Zhang et al. (2012)]

Under the null hypothesis H0: X and Y are conditionally independent given Z, we

have that the statistic:

TCI :=
1

n
Tr(K̃Ẍ|ZK̃Y |Z) (2.2)
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has the same asymptotic distribution as:

ŤCI :=
1

n

n2∑
k=1

λk · z2
k, (2.3)

where λk are eigenvalues of w̌w̌ᵀ and w̌ = [w̌1, ..., w̌n], with the vector w̌t obtained by

stacking M̌t = ψᵀ
ẍ|z,tφy|z,t, where ψẍ|z,t and φy|z,t denote the t-th row of the correspond-

ing matrics.

The authors use a Monte Carlo simulation to approximate the null distribution.

Instead, we chose to use an exact method, [Imhof (1961)]. This is further expanded

upon in Section 3.4.4.

To evaluate the conditional independence of Xi and Xj, we do not need to search

across all possible conditional sets. Instead, we will follow the procedure used by PenPC

[Ha et al. (2016b)] to select conditional sets. For completeness, we briefly describe our

procedure below, starting by defining a few notations. Let G be an arbitrary Markov

graph.

• AG,i,j = adj(G, Xi)
⋃

adj(G, Xj)\{Xi, Xj}, i.e., the Markov Blanket of Xi and Xj.

Recall that adj(G, Xj) denotes the neighbors of Xj in graph G.

• BG,i,j = adj(G, Xi)
⋂

adj(G, Xj)\{Xi, Xj}, which includes all potential common

children of Xi and Xj.

• CG,i,j = AG,i,j
⋂

(BG,i,j
⋃
ConG(BG,i,j)), where ConG(BG,i,j) denotes the vertices

that are connected to BG,i,j. CG,i,j includes any possible common descendants of

Xi and Xj within the Markov Blanket of Xi and Xj.

• Πi,j = {DG,i,j : AG,i,j\C̃G,i,j, C̃G,i,j ⊆ CG,i,j}. At least one of the set in Πi,j includes

all common parents ofXi andXj, but excludes any common descendants. In other

words, if there is any d-separation set of Xi and Xj, it will be included in Πi,j.
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Before applying conditional independence testing, we perform marginal indepen-

dence testing for all connected nodes using Hoeffding’s test of independence. Ho-

effding’s test is a non-parametric test for bivariate independence. Denote the two

variables of interest by X and Y . Let FX,Y be the joint distribution of X and Y ,

and let FX and FY be their marginal distribution functions. The motivation be-

hind Hoeffding’s test starts with the notion that if and only if X and Y are inde-

pendent, then D(x, y) = FX,Y (x, y) − FX(x)FY (y) = 0. Then, across the full sample

the quantity is summarized as
´
D2(x, y)dF (x, y) which is estimated with the statis-

tic Dn = Q−2(n−2)R+(n−2)(n−3)S
n(n−1)(n−2)(n−3)(n−4)

; where Q = Σn
i=1(Ri − 1)(Ri − 2)(Si − 1)(Si − 2),

R = Σn
i=1(Ri − 2)(Si − 2)ci, and S = Σn

i=1(ci − 1)ci. Ri and Si are the ranks of

Xi and Yi respectively, and ci is is the number of bivariate observations smaller than

both Xi and Yi. [Hoeffding (1948), Wilding and Mudholkar (2008)]

Based on the aforementioned approach, the modified-PC algorithm estimates the

skeleton by performing conditional independence tests for each pair of connected vari-

ables Xi and Xj, conditioning any subset of Πi,j. Full pseudo-code of the algorithm is

then:
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Algorithm 2: Modified-PC Algorithm
Data: GM = (V,E), X

Result: G

foreach (Ei,j) ∈ E do

if Xi ⊥ Xj then ; /* Hoeffding’s test of independence. */

Remove Ei,j and Ej,i.
l = −1

repeat
l = l + 1

G̃ = G

foreach (i, j); |DG̃,i,j| ≥ l do

foreach [Γ; Γ ⊆ DG̃,i,j, |Γ| = l] do

if Xi ⊥ Xj|XΓ then ; /* KCI-test */

Remove Ei,j and Ej,i.

Exit while loop and move to next Ei,j in for each loop.

until maxi,j |DG̃,i,j| < l;

2.2 Theoretical Properties

Condition A (Causal Sufficiency) ∀Xj ∈ V, the set of all causes (or parents) of Xj

are also a subset of V.

Condition B (Faithfulness) Let the distribution of V be faithful to the associated graph

G = (V,E).

Condition A requires that all relevant parts of the model information be contained

in V. Condition B is a core component of identifiability for DAG skeleton estimation
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using conditional independence methods. These two conditions are needed for identifi-

ability of the problem. We argue that condition A is reasonable in our application on

gene expression studies because we analyze genome-wide gene expression data, which

gives a comprehensive molecular portrait of the underlying molecular system. The

faithfulness assumption is commonly used and we refer to [Zhang and Spirtes (2016)]

for more details.

Step 1 - mGAP Variable Selection

Condition 1.1

log(p) = O(nα) and d0 = O(nν) where 0 ≤ α < 1, 0 ≤ ν < 1
2
. This condition puts

bounds on the dimensionality (p) as well as the number of causal variables (d0). The

latter is effectively a condition of sparsity.

Condition 1.2

Denote dn as half of the smallest effect size for the regression coefficient matrix in

the model free penalized regression, given the regression coefficient is non-zero. Then

dn ≡ O(n−γ0(log n)
1
2 ) for some γ0 ∈ (ν, 1

2
).

In a general problem with arbitrary penalty, there are additional conditions imposed

on the penalty function. These conditions are satisfied by the penalty function that we

use for mGAP. We defer the details to the proof for Theorem 2 in the Appendix.

For the consistency of Step 2 - Conditional Independence Testing, we need conditions

A and B, as well as the following condition on minimum effect size:
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Condition 2.1

If Xi 6⊥ Xj|Xs, we assume a lower bound on the expectation of the test-statistic:

infi,j|sE(TCI) ≥ cn, where cn = O(n
1
2
−d) and 0 < d < 1/2.

Theorem 2. Given conditions 1.1 to 1.3, with probability at least

Pconverge = 1−2 [d0n
−1 + (p− d0) exp (−nα log n)] , there exists an estimator to min-

imize the penalized objective function B̂ = (B̂1, ..., B̂h). For each B̂s, with s = 1, ...,

h, we can partition the coefficients into two parts, B̂s = (B̂ᵀ
1,s, B̂

ᵀ
2,s)

ᵀ, where the true

values of B̂1,s are non-zero and the true values of B̂2,s are 0.

(1) Sparsity: P (B̂2,s = 0)→ 1 ∀ s

(2) L∞ loss: ‖B̂1,s −B1(0),s‖∞ = op(n
−γ0
√

log n) ∀ s.

Corollary 1. Joint variables found by Step 1 of the algorithm contains the true

Markov blanket of a vertex with probability of at least P = 1 − 2[d0n
−1 + (p −

d0) exp (−nαlogn)].

This follows directly from the results of Theorem 2.

Lemma 4.

(1) Recall that G denotes the skeleton of a DAG, and GM denotes corresponding

moral graph. The set of edges EM of GM includes all the edges E of G plus the

edges between co-parents of v-structures. If Xi − Xj ∈ EM but Xi − Xj /∈ E,

then there exists a subset of AG,i,j which d-separates vertices Xi and Xj in G.

(2) Πi,j = {AG,i,j\DG,i,j, DG,i,j ⊆ CG,i,j} contains at least one such subset.
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Lemma 4 follows from Conditions A and B, as well as the way that Πi,j is con-

structed. The following Lemma 4 is a technical condition needed to prove the consis-

tency of conditional independence testing.

Lemma 8. For any γ > 0, supi,j,s∈Πi,j
P [|TCI − E(TCI)| > γ] ≤ exp(−2nγ2/R4),

where R2 is the largest possible element of K̃Xi,s|XsK̃Xj |Xs .

Proof can be found in the Appendix.

Theorem 4. Assume a perfect estimation of GM in Step 1 as well as conditions

(1.1) and (2.3). Let the estimate from Step 2 be Ĝαnskel,n, where αn is the significance

level used in the conditional independence testing for Step 2. Then, there exists an

αn →n→∞ 0 such that:

P[Ĝskel,n(αn) = Gskel,n] = 1−O
(
exp(nα − C(n2(1−d))

)
→n→∞ 1

for some constant C > 0.

Corollary 2. With sample estimation of GM and conditional independence test

statistic convergence of O(n) with p-value threshold αn, the combined error rate of

Step 1 and 2 converged to 0 as n→∞.

2.3 Implementation Considerations

2.3.1 mGAP

There are two tuning parameters for mGAP estimation: λ and τ . We need to

establish the grid to search for (λ, τ). The grid is selected so that it covers the situation

from no penalization (all variables selected) to full penalization (no variables selected).

Larger λ and smaller τ leads to a stronger penalty and smaller λ and larger τ leads to
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a weaker penalty. Following [Sun and Li (2012)], we set the range of τ as 10−6 ≤ τ ≤ 1,

and then set the range of λ to be 0 ≤ λ ≤ max
(
λ

(max)
1 , ..., λ

(max)
p

)
, where λ(max)

j =∥∥∥[ (2τ(Xᵀ
jXj)

−1Xᵀ
j T1)

‖T1‖2/(n‖Xj‖2)
, ...,

(2τ(Xᵀ
jXj)

−1Xᵀ
j Th)

‖Th‖2/(n‖Xj‖2)

]ᵀ∥∥∥2

, and Ts denotes the s-th transformation of

the response variable. In all the simulations and real data studies of this dissertation, we

employ the cubic spline with one inner knot, which has been shown to have comparable

or better performance than other transformations [Sun and Li (2012)].

Depending on the degree of penalty from the tuning parameters, a range of models

from size 0 to size p− 1 is selected. To be able to find the best fitting model, we use a

pre-defined scoring function. [Sun and Li (2012)] use the traditional BIC. However, it

has been shown that traditional BIC tend to select models with a large number of false

positives in high dimensional settings. We found this to be the case in our simulation

studies and thus we explore two forms of the extended BIC in Section 2.4. Algorithm

pseudo-code can be found in Supplementary Materials Algorithm 1.

2.3.2 Estimation of Null Distribution for KCI-test

In the original formulation of KCI-test, [Zhang et al. (2012)] use a Monte Carlo

simulation to find the null distribution of the test statistic, which is distributed as

the weighted summation of central χ2
1 random variables. To improve accuracy as well

as computational efficiency, we choose to use Imhof’s exact method [Imhof (1961)] to

quantify null distribution. We compared Imhof’s exact method with the Monte Carlo

by simulating two sets of 500 variable pairs (X, Y ). In the first set, X and Y are

correlated but are conditionally independent given one-dimensional variable Z; in the

second set, X and Y are correlated and conditionally dependent given one-dimensional

variable Z. For each pair, we estimated the p-value for KCI-test using Imhof’s exact

method with an error bound of 2.22× 10−16 and Monte Carlo then terminating at 100,

1000, 5000, 10000 iterations. In addition, we benchmarked the performance of each
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estimate 75 times.

For the correlated pairs, we found that on average the median runtime for a single

test was 30.3ms when using Imhof’s exact method, which fell between the median run-

times of the Monte Carlo method between 1000 iterations (12.6ms) and 5000 iterations

(58.8ms). Similarly, for independent pairs, the average median runtime of Imhof’s exact

method was 17.9ms, which fell between the median runtimes of the Monte Carlo method

between 1000 iterations (11.4ms) and 5000 iterations (56.3ms). Overall, Imhof’s exact

method had much smaller ranges for runtimes (e.g. between 30.0ms and 32.1ms for

correlated pairs) while Monte Carlo’s ranges were much wider (e.g. between 58.1ms

and 188.5ms for correlated pairs at 5000 iterations). Figure F2 illustrates the differ-

ence in − log10(P-Values) between the two methods at each iteration range. While

conditionally independent pairs show very little difference between the two methods,

conditionally dependent pairs show that large deviations may be found when we’re

dealing with the tail-end of the distribution even at 5000 iterations of the Monte Carlo.

Therefore, we choose to use Imhof’s method because it has advantages in terms of both

accuracy and computational efficiency than the Monte Carlo method.

2.4 Simulation

The simulations aimed to evaluate the performance of our model free algorithm

versus PenPC, which assumes multivariate Gaussian distribution. PenPC was applied

using the R package PenPC. Similarly to [Kalisch and BÃĳhlmann (2007)] and [Ha et al.

(2016b)], we simulated the base graph structure using the Erdős and Rényi (ER) model

where we connect the vertices randomly with equal probability [ErdËİos and RÂťenyi

(1959)]. Specifically, the probability that any two vertices are connected is pE = d0/p.

Then, all graphs with p vertices and d0 edges have probability of pd0E (1 − pE)(
p
2)−d0 to

be generated. For these particular simulations, we used n = 100, p = 100, and d0 = 1.
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Table 2.1: Simulation Results using (2.4) with Effect Size 1

h(x) Method GM Estimate G Estimate
FDR FRR FDR Type 1 Error Power H Dist

x PenPC 0.3264 0.0001 0.1184 0.0014 0.9880 14.78
ModelFree 0.1131 0.0002 0.0415 0.0004 0.9706 7.38
PenPC GG 0.0026 0.0002 0.0010 0.0000 0.9851 1.68
ModelFree GG 0.0180 0.0004 0.0064 0.0001 0.9618 4.68

x2 PenPC 0.7599 0.0154 0.6611 0.0050 0.2425 126.02
ModelFree 0.3934 0.0047 0.1616 0.0008 0.3813 71.34
PenPC GG 0.4999 0.0166 0.4677 0.0019 0.2042 99.66
ModelFree GG 0.3423 0.0054 0.1087 0.0005 0.3961 67.22

x3 PenPC 0.5476 0.0068 0.3870 0.0042 0.6286 78.96
ModelFree 0.3891 0.0033 0.0452 0.0003 0.6259 41.88
PenPC GG 0.3478 0.0073 0.2830 0.0026 0.6153 64.68
ModelFree GG 0.3556 0.0034 0.0306 0.0002 0.6251 41.02

ex PenPC 0.5133 0.0049 0.3229 0.0036 0.7219 63.94
ModelFree 0.3948 0.0015 0.0564 0.0005 0.8227 23.50
PenPC GG 0.2673 0.0063 0.2102 0.0019 0.6760 51.92
ModelFree GG 0.3518 0.0016 0.0436 0.0004 0.8223 22.30

FDR = False Discovery Rate; FRR = False Recovery Rate; H Dist = Hamming’s
Distance.
GG = Indicates the use of the Gaussian Graphical Extended BIC.
Note: Step 1 FDR is calculated against the moral graph and Final FDR is calculated
against the true graph.

Once the graph structure is generated, the underlying data structure is assumed to

be one of two linear structural equation models:

X = Bᵀh(X) + e. (2.4)

X = h(BᵀX + e). (2.5)

where, e ∼ N(0, σ2In×n). Without loss of generality, let B be an upper triangular

matrix which implicitly enforces an ordering to the variables such that all parents have

a smaller index than their children. Finally, let h(·) be a transformation function

applied over each column of X.
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Table 2.2: Simulation Results using (2.5) with Effect Size 1

h(x) Method GM Estimate G Estimate
FDR FRR FDR Type 1 Error Power H Dist

x PenPC 0.3264 0.0001 0.1184 0.0014 0.9880 14.78
ModelFree 0.1131 0.0002 0.0415 0.0004 0.9706 7.38
PenPC GG 0.0026 0.0002 0.0010 0.0000 0.9851 1.68
ModelFree GG 0.0180 0.0004 0.0064 0.0001 0.9618 4.68

x2 PenPC 0.7653 0.0157 0.6629 0.0049 0.2352 125.86
ModelFree 0.4561 0.0043 0.0631 0.0003 0.4246 62.26
PenPC GG 0.5023 0.0166 0.4632 0.0019 0.2011 99.46
ModelFree GG 0.3627 0.0056 0.0344 0.0002 0.4322 60.18

x3 PenPC 0.5585 0.0069 0.3966 0.0043 0.6198 80.82
ModelFree 0.7030 0.0030 0.0295 0.0002 0.6196 41.56
PenPC GG 0.3618 0.0075 0.2907 0.0026 0.6039 66.18
ModelFree GG 0.5729 0.0036 0.0175 0.0001 0.6070 42.10

ex PenPC 0.5290 0.0060 0.3357 0.0036 0.6766 68.50
ModelFree 0.6575 0.0009 0.0472 0.0004 0.8181 23.14
PenPC GG 0.2720 0.0070 0.2186 0.0019 0.6359 55.92
ModelFree GG 0.5451 0.0013 0.0288 0.0003 0.8032 22.98

FDR = False Discovery Rate; FRR = False Recovery Rate; H Dist = Hamming’s
Distance
GG = Indicates the use of the Gaussian Graphical Extended BIC, rather than regular
BIC.
Note that Step 1 FDR is calculated against the moral graph and Final FDR is calculated
against the true graph.

Results for the simulation with 100 iterations and conditional independence testing

threshold α = 0.01 can be found in Table 2.1 through Table 2.4. Transformation

h(x) = x2 is a particular challenging case since it is not a monotone transformation.

We included it to show that Model Free still performs adequately in this case, with

substantial improvements in comparison to PenPC. Hamming’s Distance show a 30%

to 60% improvement when using Model Free over PenPC. Overall, if tuning parameters

are selected by Gaussian Graphical Extended BIC [Foygel and Drton (2010)], both

PenPC and Model Free performed better than their counterparts if we consider false

negatives and false positives equally, trading a substantially lower false discovery rate

(FDR) for a slight decrease in power. In Table 2.2, we can see that the change in
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Table 2.3: Simulation Results using (2.4) and Effect Size 0.5

h(x) Method GM Estimate G Estimate
FDR FRR FDR Type 1 Error Power H Dist

x PenPC 0.4308 0.0008 0.2360 0.0029 0.9015 38.62
ModelFree 0.1324 0.0066 0.0684 0.0005 0.6425 41.50
PenPC GG 0.0022 0.0125 0.0019 0.0000 0.4059 60.96
ModelFree GG 0.0285 0.0116 0.0188 0.0001 0.4381 58.50

x2 PenPC 0.7791 0.0166 0.7048 0.0048 0.1865 129.63
ModelFree 0.2878 0.0099 0.1938 0.0008 0.2970 80.00
PenPC GG 0.2524 0.0191 0.2287 0.0003 0.0903 96.53
ModelFree GG 0.1801 0.0111 0.1050 0.0004 0.3112 74.98

x3 PenPC 0.5109 0.0045 0.3129 0.0035 0.7346 61.80
ModelFree 0.3373 0.0030 0.0602 0.0004 0.6273 42.84
PenPC GG 0.2545 0.0062 0.2031 0.0018 0.6800 50.92
ModelFree GG 0.3039 0.0034 0.0400 0.0003 0.6199 42.10

ex PenPC 0.4918 0.0034 0.2837 0.0032 0.7759 54.60
ModelFree 0.3012 0.0024 0.0954 0.0008 0.7263 36.04
PenPC GG 0.1438 0.0067 0.1134 0.0009 0.6607 43.84
ModelFree GG 0.2410 0.0034 0.0667 0.0005 0.6963 36.44

FDR = False Discovery Rate; FRR = False Recovery Rate; H Dist = Hamming’s
Distance
GG = Indicates the use of the Gaussian Graphical Extended BIC, rather than regular
BIC.
Note that Step 1 FDR is calculated against the moral graph and Final FDR is calculated
against the true graph.

underlying data structure does not substantially effect the performance of Model-Free.

While Model Free performs better than PenPC in all cases in Tables 2.1 and 2.2,

we find that Model Free’s primary drawback is a large performance drop with low effect

sizes as can be seen in Tables 2.3 and 2.4. While for non-linear cases, Model Free still

does substantially better, by at least 20% in terms of Hamming’s Distance, in the linear

case PenPC has better performance.
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Table 2.4: Simulation Results using (2.5) and Effect Size 0.5

h(x) Method GM Estimate G Estimate
FDR FRR FDR Type 1 Error Power H Dist

x PenPC 0.4308 0.0008 0.2360 0.0029 0.9015 38.62
ModelFree 0.1324 0.0066 0.0684 0.0005 0.6425 41.50
PenPC GG 0.0022 0.0125 0.0019 0.0000 0.4059 60.96
ModelFree GG 0.0285 0.0116 0.0188 0.0001 0.4381 58.50

x2 PenPC 0.7671 0.0163 0.6843 0.0047 0.2007 126.85
ModelFree 0.2413 0.0076 0.1018 0.0004 0.3253 73.19
PenPC GG 0.2847 0.0182 0.2594 0.0005 0.1260 94.08
ModelFree GG 0.1450 0.0113 0.0396 0.0001 0.2943 73.76

x3 PenPC 0.5115 0.0047 0.3215 0.0036 0.7252 63.66
ModelFree 0.6713 0.0027 0.0469 0.0003 0.6243 42.20
PenPC GG 0.2623 0.0063 0.2125 0.0019 0.6721 52.64
ModelFree GG 0.5029 0.0038 0.0265 0.0002 0.5998 43.26

ex PenPC 0.4929 0.0045 0.3038 0.0033 0.7227 61.14
ModelFree 0.5797 0.0022 0.0745 0.0006 0.7192 34.91
PenPC GG 0.1775 0.0075 0.1443 0.0011 0.6178 50.48
ModelFree GG 0.4714 0.0046 0.0520 0.0004 0.6341 41.27

FDR = False Discovery Rate; FRR = False Recovery Rate; H Dist = Hamming’s
Distance
GG = Indicates the use of the Gaussian Graphical Extended BIC, rather than regular
BIC.
Note that Step 1 FDR is calculated against the moral graph and Final FDR is calculated
against the true graph.

2.5 Application to TCGA Data

2.5.1 Data Source

We obtained gene expression data from The Cancer Genome Atlas (TCGA) database

for 551 breast cancer patients and 18,827 genes. The RNA-seq bam files were down-

loaded from the TCGA data portal. We counted the number of RNA-seq reads per

gene and selected the 18,827 genes with at least 20 reads in 25% of samples. Then

the read count data were log-transformed after read depth correction. To identify ap-

propriate sets of genes to create graphical models from, we grouped genes based on

pathway annotation obtained from the Pathway Commons 2 API (cPath2). A total
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of 130 gene groups were found, ranging from membership numbers of 1 gene to 2,208

genes. We chose to run the analysis on three clinically interesting groups consisting of

p = 64 to 148 genes with a single random sample of n = 135 patients and cross-validate

against the remaining n = 416 patients. The selected gene groups belonged to path-

ways: (1) T-Cell Receptor Signaling Pathway (TCR), (2) B-Cell Receptor Signaling

Pathway (BCR), and (3) Angiogenesis Signaling Pathway (Angiogenesis).

2.5.2 Analysis Results

Table 2.5: Results for TCGA Breast Cancer Data

Gene Method # of Edges Connected Total % of Excl.
Group (Sample) Vertices Vertices Edges

TCR

PenPC 49 50 64 76%
PenPC (CV) 109 59 64 61%
Model Free 19 21 64 37%
Model Free (CV) 64 46 64 34%

BCR

PenPC 44 42 61 59%
PenPC (CV) 108 59 61 60%
Model Free 25 33 61 28%
Model Free (CV) 57 44 61 25%

Angiogenesis

PenPC 122 109 139 79%
PenPC (CV) 329 136 139 77%
Model Free 36 47 139 28%
Model Free (CV) 132 93 139 42%

Excl. Edges refer to edges found with one method but not the other.
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Figure 2.1: Estimated Graphs for TCGA Breast Cancer Data.

(a) TCR

PIK3CD

LCK

PIK3R3

BCL10

VAV3

PTPN22

PTPRC

UBE2D1

PTEN

TRAF6

PTPRJ

INPPL1

PAK1

CD4

ERBB3

ZMYM2

EVL

IGHV2−70

CSK

IGF1R

PLCG2

INPP5K

PIK3R6

PIK3R5

MALT1

CDC34

PIK3R2

VASP

ZAP70

PDK1

CD28

CTLA4

ICOS

INPP5D

PI3

KB−1027C11.4.1

BCR

INPP5J

TRAT1

NCK1

PIK3CB

PIK3CA

HES1

TEC

NFKB1

FYB

PIK3R1

SKP1

UBE2D2

ITK

C2

VEGFA

TAB2

PIK3CG

CUL1

LYN

KB−1208A12.3.1

KB−1460A1.5.1

KB−1562D12.1.1

KB−431C1.4.1

KB−1732A1.1.1

KB−1507C5.2.1

SYK

VAV2

● Nodes Connected by Original Sample Estimate
Edges found by Both Samples
Edges only found by Cross Validation Sample
Edges only found by Original Sample

(b) BCR

BCL10

BLNK
STIM1

CATSPER1

GAL

CACNA1C

PTPN6

CS

ATP2B1

ORAI1

CATSPERB

IGHV3−11

IGHV3−13

IGHV3−21

IGHV4−31

IGHV3−72

RASGRP1

PDPK1

CD19

COIL

CD79B

MALT1

GRP

VAV1

CD22

CATSPERG

CD79A
TRPM4

RASGRP3

IGKV1−9

IGKV3−11

IGKV1−12

IGKV1−16

IGKV1−17

IGKV6−21

IGKV2D−29

IGKV1D−16IGKV1D−13

IGKV1D−12

IGKV3D−11

PDK1

IGLV3−21
IGLV2−11

IGLV3−10

IGLV3−9

BCR

LARGE

MB

TRPC1

TEC

LARS

HLA−C

HLA−B

FYN

CACNA2D1

BLKLYN

CA2

SYK

SET

BTK

● Nodes Connected by Original Sample Estimate
Edges found by Both Samples
Edges only found by Cross Validation Sample
Edges only found by Original Sample

(c) Angiogenesis

DVL1

PRKCZ

PIK3CD

CASP9

EPHB2

PIK3R3

JUN

JAK1

F3

WNT2B

RHOC

NRAS

NOTCH2

SH2D2A

PLA2G4A

PIK3C2B

MAPKAPK2

AKT3

PRKCQ

MAPK8

TCF7L2

HRAS

PIK3C2A

ARHGAP1

LPXN

BAD

PAK1

PDGFD

CRYAB

ETS1

WNT5B

WNT10B

FRS2

PTPRB

PXN

EFNB2

F7

ANG

PRKD1

SOS2

PRKCH

HIF1A

FOS

JAG2

DLL4

PLA2G4B

MAP2K1

AXIN1

PRKCB

TGFB1I1

PLCG2

CRK

PLD2

DVL2

MAP2K4

GRAP

GRB7

STAT3

FZD2

PRKCA

SPHK1

BIRC5

PIK3C3

SHC2

APC2

MAP2K2

PIK3R2

AKT2

PRKD2

PLA2G4C

SPHK2RHOB

PRKD3

PRKCE

DOK1

NCK2

GRB14

STAT1

FZD5

WNT10A

JAG1

SRC

PLCG1

CRKL

PDGFB

PRR5

ARHGAP8

WNT7B

RAF1

CTNNB1

RHOA

MAPKAPK3

PRKCD

WNT5A

EPHA3

GSK3B

TF

EPHB1

PIK3CB

PRKCI

PLD1

DVL3

EPHB3PAK2

RBPJ

PDGFRA

KDR

PDGFC

MAP3K1

F2R

RASA1

APC

TCF7 FGF1

PDGFRB

DOK3

NOTCH4

MAPK14

FRS3

VEGFA

DLL1

PDGFA

HSPB1

FZD1

PIK3CG

WNT2

BRAF

NOS3

ANGPT2

DOK2

FZD3

FGFR1

ANGPT1

PTK2

TEK

NOTCH1

ARAF

EFNB1

PAK3

● Nodes Connected by Original Sample Estimate
Edges found by Both Samples
Edges only found by Cross Validation Sample
Edges only found by Original Sample

33



Table 2.6: Mean Results for Mardia’s Test of Multivariate Normality for Residuals of
Exclusive Pairs

Percentile Skew Stat Skew P Kurt. Stat Kurt. P Max Mah. Dis
PenPC 25% 0.226 0.260 9.134 0.099 15.176

50% 0.620 5.91e-03 10.412 4.59e-04 20.525
75% 1.241 8.29e-06 12.510 6.40e-11 30.381

Model 25% 0.473 0.031 9.655 0.016 17.582
Free 50% 1.071 7.628e-05 10.682 1.09e-04 25.164

75% 1.979 6.746e-09 13.233 6.505e-14 37.294
Max Mah. Dis refers to maximum Mahalanobis Distance.
Kurt. refers to kurtosis.
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Table 2.7: Similarity and Differences between Estimates from Original and Cross-Validated Sample

Method # Edges in Overlapping P-Value Pos Attr to Attr to Neg Attr to Attr to
Original Edges Discrep Sample Sample Discrep Sample Sample
Sample Total Space Size Total Space Size

TCR PenPC 49 27 4.41e-23 22 18% 77% 82 20% 2%
Model Free 19 10 3.75e-11 9 44% 44% 54 30% 31%

BCR PenPC 44 22 8.47e-16 22 23% 77% 86 28% 2%
Model Free 25 13 2.44e-14 12 42% 42% 44 55% 14%

Angio PenPC 122 64 8.15e-61 58 3% 83% 265 16% 0%
Model Free 36 22 2.12e-32 14 14% 43% 110 39% 16%

Neg Discrep refers to edges not found in the original sample but found in the cross-
validation sample.
Pos Discrep refers to edges found in the original sample but not found in the cross-
validation sample.
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Both PenPC and our Model Free approach were applied to the three different

gene sets using both sets of samples (termed: original and cross-validation). The

tuning parameters were selected by Gaussian Graphical extended BIC. Basic summary

of results can be found in Table 2.5. Similar to our simulation results, we see that PenPC

finds more edges than Model Free and accordingly has a larger set of connected vertices.

While 25-40% of the edges identified by Model Free are not found by PenPC, around

60-80% of the edges identified by PenPC are not found by Model Free approach. These

trends are consistent between samples. With a much larger sample size, we expect an

increase in power and true discovery rate, which agrees with the increased number of

edges found in the cross-validation sample for all gene groups across both methods.

Figure 2.1 gives a visualization of the estimated graphs for each gene group as well as

the agreement between the original and cross-validation sample. We found the amount

of overlap to be statistically significant for all three gene groups across both methods

(Table 2.7) against the null that the graphs estimated are independent. To compare

the discrepancies between the two sample estimates, we looked at positive discrepan-

cies (when the original sample found an edge that was not found in the cross-validation

sample) and negative discrepancies (when the original sample did not find an edge that

was found in the cross-validation sample). Within these categories, we split the dis-

crepancies that can be attributed to sample space and sample size. Discrepancies which

occurred when all other results were in agreement were attributed to the difference in

“sample size × method interaction” (for example, PenPC found an edge in the original

sample but Model Free did not find it in either sample and PenPC did not find it in

the cross-validation sample). Discrepancies which occurred between the original sam-

ple and the cross-validation sample for both methods were attributed to the difference

sample space (aka. what was feasible to find within that sample).

For both PenPC and Model Free methods, the vast majority of positive discrepancies
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can be attributed to either sample size × method interaction or sample space. Sample

size × method interaction is more often the reason for PenPC while two reasons split

more evenly for Model Free method. This indicates that the Model Free method is

more volatile across different samples. It also implies that the high false discovery rate

of PenPC can be mitigated with sample size. For negative discrepancies, PenPC can

attribute less than 30% to sample space, with nearly none attributed to sample size

× method interaction. Model Free attributes over 60% for either reasons and again is

similarly split.

The discrepancies between the two methods can largely be attributed to differences

in their model assumptions, namely linearity and multivariate normality. Most PenPC

exclusive edges have relatively smaller effect sizes (left panel of Figure F1a), which

suggest that PenPC has higher power for smaller effect sizes when linearity assumption

is correct. In contrast, Model Free-exclusive edges have more uniform distribution of

effect sizes (right panel of Figure F1a), suggesting that PenPC miss those edges because

of non-linear relationships rather than effect sizes. We see that this trend is even more

pronounced in the cross-validation sample based on Figure F1b. This is congruent with

our cross-validation comparison.

For multivariate normality, we looked at whether the residuals of each pair followed

bivariate normal distribution given the other variables that had been selected by mGAP.

This provides us a proxy for whether the original data followed a multivariate normal

distribution. To test for bivariate normality, we used Mardia’s Tests for multivariate

normality which tests for deviation of skew and kurtosis, as well as observations with

large Mahalanobis distance from the expected distribution [Mardia (1970)]. Full results

can be seen in Table 2.6. As expected, on average PenPC-exclusive pairs have smaller

deviation statistics in all three sets. We see similar trends for the cross-validation

sample (Table F1) with much smaller differences, which is congruent with the increase
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in sample size.

2.6 Discussion

The use of -omic data to guide disease prognosis, prevention, and treatment is

becoming a popular approach of precision medicine. The complexity and sheer number

of variables within these data sets have set some new statistical challenges. Low false

discovery rate is especially important to obtain meaningful results with a large number

of variables. In comparison to PenPC, we have shown that Model Free obtains much

lower false discovery rates at a relatively small cost to power when the relation among

variables is non-linear. As shown in our real data analysis, Model Free was able to better

capture associations that do not satisfy multivariate Gaussian assumption and/or have

non-linear relations. Further, Model Free’s lower false discovery rate is reflected in the

increased parsimony of the selected models lending to easier interpretability.

For application in denser graphical models, we may insert a dimension reduction

step between model free variable selection and conditional independence testing. This

would be particularly useful if the selected Markov Blanket is too large to be handled

effectively with KCI-test. We have explored the use of dimension reduction with sliced

inverse regression (SIR) [Li (1991)] and sliced average variance estimation (SAVE)

[Cook (2000)]. In Table 2.8, we compare the results obtained with or without dimension

reduction to 1-dimension, regardless of whether a suitable 1-dimension central subspace

has been found. In addition to KCI-test, we also include a conditional independence

test by [Song et al. (2009)] which requires that the condition set has a dimension of

one.

As expected, with dimension reduction, there is an increase in FDR which is some-

times accompanied by a small increase in power. Hamming’s Distance shows that the

overall effect is negative, but also minor in most cases. In addition, the choice of
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Table 2.8: Dimension Reduction for Model-Free GG Simulation Results using (2.4)

h(x) CI DR GM Estimate G Final Estimate
Method Method FDR FRR FDR Type I Err Power H Dist

x Zhang None 0.018 0.000 0.012 0.000 0.978 3.58
Zhang SIR 0.018 0.000 0.011 0.000 0.869 14.86
Zhang SAVE 0.018 0.000 0.012 0.000 0.906 11.04
Song SIR 0.018 0.000 0.010 0.000 0.888 12.90
Song SAVE 0.018 0.000 0.010 0.000 0.929 8.72

x2 Zhang None 0.342 0.005 0.163 0.001 0.547 57.92
Zhang SIR 0.342 0.005 0.251 0.002 0.626 60.46
Zhang SAVE 0.342 0.005 0.234 0.002 0.684 54.84
Song SIR 0.342 0.005 0.356 0.002 0.344 87.12
Song SAVE 0.342 0.005 0.349 0.002 0.368 85.86

x3 Zhang None 0.356 0.003 0.072 0.001 0.682 38.68
Zhang SIR 0.356 0.003 0.092 0.001 0.636 44.70
Zhang SAVE 0.356 0.003 0.178 0.002 0.680 48.88
Song SIR 0.356 0.003 0.123 0.001 0.694 42.26
Song SAVE 0.356 0.003 0.214 0.002 0.765 46.42

exp(x) Zhang None 0.352 0.002 0.109 0.001 0.869 24.63
Zhang SIR 0.3518 0.002 0.141 0.001 0.755 38.50
Zhang SAVE 0.3518 0.002 0.199 0.002 0.823 39.90
Song SIR 0.3518 0.002 0.125 0.001 0.832 30.22
Song SAVE 0.3518 0.002 0.192 0.002 0.893 33.56

CI Method = Conditional Independence test used for Step 2
DR Method = Dimension Reduction method
FDR = False Discovery Rate; FRR = False Recovery Rate
H Dist = Hamming’s Distance

dimension reduction method and conditional independence testing method does not

make much difference outside of the quadratic case. SAVE performs better than SIR

with the quadratic transformation, which is known from earlier studies [Cook (2000)].

Overall, KCI-test has better performance than [Song et al. (2009)]’s method. Although

current results fail to show the advantage of this dimension reduction step, it remains

an opportunity for future research.

In this dissertation, we focused on the difference between PenPC and our model-

free based method. In practice, the results of these two methods complement each
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other. PenPC can identify weaker effects when multivariate Gaussian and linearity

assumptions are satisfied. Model free estimation has higher power when there is non-

linear relations. Therefore, we recommend the use of both methods in data analysis

and to combine their results for more accurate graphical model estimation in real world

data.
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CHAPTER 3: GRAPHICAL MODEL FOR SCRNA-SEQ DATA

Recall that we denote a DAG skeleton by G = (V,E), where V = {Y1, ..., Yp} is the

the vertex set, and E is the edge set. A moral graph GM = (V,EM) can be derived

from a skeleton G by connecting the co-parents in all the v-structures in G. The data

consists of total read count (TReC) from p genes across n single cells. Similar to the

work in the previous chapter, we aim to estimate a DAG skeleton for these p genes in

two steps. First construct a moral graph by neighborhood selection. Next remove false

edges in the moral graph by a modified PC-algorithm. The specific approaches in both

steps are designed to analyze single cell RNA-seq data, which are discrete counts with

inflation of zeros.

3.1 Overall Algorithm

Negative binomial distribution has been widely used to model read count data from

bulk tissue RNA sequencing. As mentioned in Chapter 1.2, a major difference between

bulk RNA-seq and single cell RNA-seq data is that the latter often have many zeros.

Therefore, we choose to model such single cell RNA-seq data by zero-inflated negative

binomial distribution (ZINB), which is a mixture distribution with one component being

0, and the other component being a negative binomial distribution. For the first step of

our algorithm, the neighborhood selection step, we allow both the zero inflation and the

negative binomial components to be associated with other genes, and perform jointly

penalized ZINB regression. For the second step of our algorithm, we use a likelihood

ratio test to assess conditional dependence. We first present the overall algorithm and
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give the details of each step in the following sections.

Denote the p genes by Y = {Y1, ..., Yp}. Recall that

• AG,i,j = adj(G, Yi)
⋃

adj(G, Yj)\{Yi, Yj}, i.e., the Markov Blanket of Yi and Yj.

Recall that adj(G, Yj) denotes the neighbors of Yj in graph G.

• BG,i,j = adj(G, Yi)
⋂

adj(G, Yj)\{Yi, Yj}, which include all potential common chil-

dren of Yi and Yj.

• CG,i,j = AG,i,j
⋂

(BG,i,j
⋃
ConG(BG,i,j)), where ConG(BG,i,j) denotes the vertices

that are connected to BG,i,j. CG,i,j includes any possible common descendants of

Yi and Yj within the Markov Blanket of Yi and Yj.

• Πi,j = {AG,i,j\C̃G,i,j, C̃G,i,j ⊆ CG,i,j}. At least one of the set in Πi,j includes all

common parents of Yi and Yj, but excludes any common descendants. In other

words, if there is any d-separation set of Yi and Yj, it will be included in Πi,j.

Algorithm 3: Moral Graph Estimation
Data: Y

Result: GM = (V,E)

for j = 1 to p do
Let y = Yk and X = Y−k.

Select variables among X associated with y by jointly penalized zero-inflated

negative binomial regression, denoted by E .

For any j such that Yj ∈ E , create edges Ek,j and Ej,k. Ek,j ≡ Ej,k for the

undirected graph.
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Algorithm 4: Modified-PC Algorithm
Data: GM = (V,E), X

Result: G

foreach (Ei,j) ∈ E do

if Xi ⊥ Xj then ; /* Likelihood Ratio Test */

Remove Ei,j and Ej,i.

l = −1 repeat
l = l + 1

G̃ = G, foreach (i, j); |CG̃,i,j| ≥ l do

foreach [Γ; Γ ⊆ CG̃,i,j, |Γ| = l] do

κ = AG̃,i,j\Γ if Xi ⊥ Xj|Xκ then ; /* Likelihood Ratio Test */

Remove Ei,j and Ej,i.

Exit while loop and move to next Ei,j in for each loop.

until maxi,j |CG̃,i,j| < l;

We refer to our algorithm for DAG skeleton estimation as scZINB, which stands for

single cell and Zero Inflated Negative Binomial distribution.

3.1.1 Step 1: Neighborhood selection

We apply our neighborhood selection method for each variable (i.e., a node in the

graph) separately. To select the neighborhood of the j-th variable, we model the ob-

served count data of the j-th variable by ZINB distribution, and use log-transformed

data of all the other variables as covariates. Since our neighborhood selection method

is a general variable selection method and it can be applied to other settings, we

use more generic notations in the following discussions. Let the observations of the

(count) response variable be y = (y1, ..., yn)T and the (continuous) covariate data be

X = (x1,x2, ...,xp), where xj = (xj1, ..., xjn)T , and x1 = (1, ..., 1)T is the intercept.
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Let Xi be the i-th row of matrix X. zi is an indicator that equals to 1 if yi arises

from the zeo-inflated component of the ZINB distribution, and 0 otherwise. Our ZINB

log-likelihood function is then:

` =
n∑
i=1

{log[πiI(yi = 0) + (1− πi)fNB(yi;µi, φ)]} , (3.1)

where fNB(yi;µi, φ) = Γ(yi+1/φ)
yi!Γ(1/φ)

(
1

1+φµi

)1/φ (
φµi

1+φµi

)yi
denotes a negative binomial distri-

bution with mean µi and over-dispersion parameter φ, and πi is the probability that

an observation arises from the zeo-inflated component. We associated both µi and πi

with the covariates by

µi = exp(Xiβ), and πi =
exp(Xiγ)

1 + exp(Xiγ)
. (3.2)

The complete data log likelihood for the i-th observation is

`(yi) =


log(πi) if zi = 1

log[(1− πi)fNB(yi;µi, φ)] if zi = 0

which can be written as

`(yi) = zi log(πi) + (1− zi) log[(1− πi)fNB(yi;µi, φ)]

= zi log

[
exp(Xiγ)

1 + exp(Xiγ)

]
− (1− zi) log[1 + exp(Xiγ)] + (1− zi) log[fNB(yi;µi, φ)]

= ziXiγ − log[1 + exp(Xiγ)] + (1− zi) log[fNB(yi;µi, φ)].

For our application of studying gene-gene co-expression, the dimension of the co-

variates p can be larger or much larger than sample size n, and thus we further impose

a penalty function for the regression coefficients. We adopt the log penalty for its
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desirable performance in high-dimensional settings (Chen et al. 2016a).

` =
n∑
i=1

{log[πiI(yi = 0) + (1− πi)fNB(yi;µi, φ)]}+

p∑
k=2

λ log(|βk|+ |γk|+ τ), (3.3)

where λ and τ are two tuning parameters of the log penalty. β1 and γ1 are not penalized

because they are coefficients for intercepts.

In the above equation, the form of the penalty βk and γk implicitly assumes they

are of the same scale, while it is not true because they are regression coefficients for

different types of model (negative binomial versus logistic regression) with different

types of response variables. Following the strategy used by McDavid et al. (2016), we

weight βk and γk in our penalty function by the inverse of their variance, hence the

weighted versions of βk and γk have the same variance. More specifically, let the weights

for βk and γk be w(β)
k and w(γ)

k , then the penalty term becomes
∑p

k=2 λ log(w
(β)
k |βk| +

w
(γ)
k |γk|+ τ), where

w
(β)
k = − ∂

2`

∂β2
k

∣∣∣∣
µ=µ0

, w
(γ)
k = − ∂

2`

∂γ2
k

∣∣∣∣
p=p0

,

and µ0 = exp(0) = 1, p0 = exp(0)
1+exp(0)

= 0.5. The derivation of the two 2nd derivatives

can be found in Appendix C.

Since this is a typical mixture distribution problem, we use an EM algorithm to

obtain maximum likelihood estimate (MLE) of the parameters. We describe the E-step

and M-step of our algorithm in the following sections.

Expectation

Since the complete data likelihood is a linear function of zi, the expectation given

current estimates of parameters (i.e., the Q function) can be simply computed by
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plugging in zi with its expectation.

ẑi = E[zi|yi] = P (zi = 1|yi) =
P (yi|zi = 1)P (zi = 1)

P (yi|zi = 1)P (zi = 1) + P (yi|zi = 0)P (zi = 0)

=
I(yi = 0)πi

I(yi = 0)πi + fNB(yi;µi, φ)(1− πi)
. (3.4)

Maximization

Instead of maximizing the Q function, we minimize the penalized negative Q func-

tion. Using a coordinate descent algorithm, we estimate βk and γk iteratively with the

following objective function:

Ok = −
∑
i

{ẑiXiγ − log[1 + exp(Xiγ)] + (1− ẑi) log[fNB(yi;µi, φ)]}

+I(k > 1)λ log(w
(β)
k |βk|+ w

(γk)
k |γk|+ τ) (3.5)

We minimize this objective function iteratively with respect to βk and γk with the

following two objective functions:

O(βk)
k = −

∑
i

(1− ẑi) log[fNB(yi;µi, φ)] + I(k > 1)λ log(w
(β)
k |βk|+ w

(γk)
k |γk|+ τ)(3.6)

O(γk)
k = −

∑
i

{ẑiXiγ − log[1 + exp(Xiγ)]}

+I(k > 1)λ log(w
(β)
k |βk|+ w

(γk)
k |γk|+ τ) (3.7)

Equation (3.6) is just a penalized weighted negative binomial and equation (3.7) is

just a penalized logistic regression. We then employ two approximations for this max-

imization problem.

First, we apply a local linear approximation (LLA) of the penalty around the current

estimate for the parameter to be estimated. For example, if we are currently optimizing

equation (3.6) for βk where the current estimate is β(t)
k , then we can approximate our
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penalty as:

λ log(w
(β)
k |βk|+ w

(γk)
k |γk|+ τ) = λ log(w

(β)
k |β

(t)
k |+ w

(γ)
k |γk|+ τ)

+
λw

(β)
k

w
(β)
k |β

(t)
k |+ w

(γ)
k |γk|+ τ

(|βk| − |β(t)
k |).

(3.8)

We also apply a quadratic approximation of the objective function. Since equa-

tion (3.7) is a well solved GLM, we can use its iteratively reweighted least squares

(IRLS) quadratic approximation for the likelihood, with generalized form: -Σivi(ξi −

Xiβ)2 where we have, for the logistic model:

v
(γ)
i = πi(1− πi) (3.9)

ξ
(γ)
i = Xiγ +

ẑi − πi
v

(γ)
i

(3.10)

Similarly, if we fix φ, we can use the IRLS quadratic approximation for equation (3.6)

where

v
(β)
i = (1− ẑi)

µ2
i

µi + µ2
iφ

(3.11)

ξ
(β)
i = Xiβ +

yi − µi
µi

(3.12)

Exact derivations can be found in the appendix.

Taking these approximations together and dropping the constants, the final approx-

imated objective functions are:

O(β)
k = Σiv

(β)
i (ξ

(β)
i −Xiβ)2 + I(k > 1)|βk|

λ

w
(β)
k |β

(t)
k |+ w

(γ)
k |γk|+ τ

(3.13)

O(γ)
k = Σiv

(γ)
i (ξ

(γ)
i −Xiγ)2 + I(k > 1)|γk|

λ

w
(β)
k |βk|+ w

(γ)
k |γ

(t)
k |+ τ

(3.14)

47



Setting ∂O(β)
k

∂βk
= 0 gives us the following iterative updates:

βk =



ν−1
(β)

(
b̄k − λI(k>1)

2(w
(β)
k |β

(t)
k |+w

(γ)
k |γk|+τ)

)
, if b̄k

ν(β)
> λI(k>1)

2ν(β)(w
(β)
k |β

(t)
k |+w

(γ)
k |γk|+τ)

ν−1
(β)

(
b̄k + λI(k>1)

2(w
(β)
k |β

(t)
k |+w

(γ)
k |γk|+τ)

)
, if b̄k

ν(β)
< − λI(k>1)

2ν(β)(w
(β)
k |β

(t)
k |+w

(γ)
k |γk|+τ)

0 otherwise

(3.15)

where ν(β) =
∑

i v
(β)
i X2

ik and b̄k =
∑

i v
(β)
i (ξ

(β)
i − Xi,−kβ−k)Xik. Since the objective

function for γk (equation 3.14) has the same form as the one for βk (equation 3.13), γk

can be solved similarly.

3.1.2 Step 2: Testing Conditional Independence

After estimating moral graph using neighborhood selection, we remove false positive

connections using a modified PC algorithm, which removes an edge between two vari-

ables if they are conditional independent given any subset of other variables. Consider

testing for conditional independence of two variables Y1 and Y2 with conditioning set

Yκ. Then, if Y1 is the response variable, we have design matrix X2,κ = [x2,Xκ] where

x2 = log(y2 + 1) and Xκ = log(Yκ + 1). The coefficient vectors β1 = [β1,2,β
ᵀ
1,κ]

ᵀ and

γ1 = [γ1,2,γ
ᵀ
1,κ]

ᵀ. Similarly, if Y2 is the response, we have design matrix X1,κ and coef-

ficient vectors β2 = [β2,1,β
ᵀ
2,κ]

ᵀ and γ2 = [γ2,1,γ
ᵀ
2,κ]

ᵀ. Then, we perform two following

likelihood ratio tests: H01 : β1,2 = γ1,2 = 0, and H02 : β2,1 = γ2,1 = 0. We remove

the edge between Y1 and Y2 if the p-value of both tests are larger than a pre-specified

significance level α.

3.2 Implementation Details

Due to the complex nature of this optimization problem, there were several imple-

mentation decisions made in order to improve runtime and accuracy of our algorithm.
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Dynamic Tuning Parameters: Despite efforts to define the tuning parameter

grid to encompass the full range of model sizes, in rare instances this would fail. In

practice, we found it was beneficial to use a dynamic tuning parameter algorithm by

appending additional tuning parameter grid searches if found necessary. This means,

after running the model on an initial set of tuning parameters, we evaluated the sizes

of models derived and either re-ran the model using a finer grid search on a subsection

lacking granularity, or we expanded the range of penalty strengths to ensure full cov-

erage.

Initial values of β and γ: We set the initial values of β by a penalized Poisson

regression with Lasso penalty using the observed count data (including zero’s) as re-

sponse variable, and set the initial values of γ by a penalized logistic regression with

Lasso penalty and the response variable is an indicator whether the observed count is 0.

First Step Screening: We found in simulations that marginal screening (to re-

move covariates that are not even weakly associated with the response variable) prior

to penalized regression improved the performance of the variable selection and greatly

reduced runtime.

Model Selection: For model selection, we found the best metric for model selection

to be a version of extended BIC −2` + k log(n) + 2γBIC log
(

2p
k

)
, where k is the total

number of non-zero coefficients including both β’s and γ’s. γBIC is the BIC tuning

parameter which we set as logn p.
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3.3 Simulation

3.3.1 Set-up

Similarly to our model-free algorithm set up, we will simulate the base graph struc-

tures using the Erdős and Rényi (ER) model where we connect the vertices randomly

with equal probability (ErdËİos and RÂťenyi 1959). Specifically, the probability of

having an edge for any pair of vertices (Yi, Yj) with i < j is pE = d0/p. Then, all

graphs with p vertices and d edges have probability of pdE(1− pE)(
p
2)−d to be generated.

A single graph is generated for the count process and for the zero-inflated process. For

these particular simulations, we will use combinations of n = 300, p = 100 or 1000, and

d0 = 1 or 5.

For data generation, we will start with simulating all of the count data for all

samples, Y (NB) and all of the latent binomial data for all samples, Y (B). We do so by

first randomly generating multivariate normal data according to the underlying data

structure:

Y = BᵀY + e (3.16)

by sampling from the distribution N(0,Σ) where Σ = (Ip×p −Bᵀ)−1 and B is a upper

triangular matrix of coefficients. For the purpose of this simulation, we assume all

coefficients are 1. We obtain the multivariate Gaussian copula then by applying the

distribution function for N(0, 1) over the generated data (U = Φ(Y)). To transform the

multivariate Gaussian copula data into marginally negative binomial and binomial data,

we use the generalized inverse distribution function (F−1
· ) for the negative binomial

with µ = 2 and θ = 1.5 and binomial with success probability 0.6. We define F−1
NB(p) =

inf{x ∈ DNB : FNB(x) ≥ p}, where FNB is the negative binomial cumulative distribution

function and DNB ≡ N is the domain of the negative binomial distribution. We define

F−1
B (p) similarly. Then Y

(NB)
ji = F−1

NB(U) and Y
(B)
ji = F−1

B (U). We derive the final
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observed variable Yj:

Yji =


Y

(NB)
ji if Y (B)

ji = 0

0 if Y (B)
ji = 1

(3.17)

3.3.2 Results

We conducted simulations in four settings with n = 300, p = 100 or p = 1000,

and d0 = 1 or 5. In the modified PC-algorithm portion of scZINB, a p-value threshold

α is needed to evaluate the conditional independence testing results. We examined

at a range of α values. We compared the performance of scZINB against the Hurdle

model after transforming the zero-inflated count data to zero-inflated normal: g(X) =

log(X + 1). The current Hurdle model method only supports BIC model selection.

Since in scenarios with larger p, this model selection method does poorly, we augmented

the results with extended BIC model selection as well as best possible graphical model

across all tuning parameters. Here the best model is defined as the one that has smallest

number of false positives plus false negatives. Similarly, in the sparse case of n = 300

and p = 1000 it is clear that the model selection criteria for scZINB is not sufficiently

parsimonious. Therefore, we included the best model case for better comparisons.

We found that using α = 0.001 consistently gave good results. In denser graphs,

we see a marked decrease in the power while the true discovery rate remains consistent

high. Compared to BIC or extended BIC Hurdle model selected graphs, scZINB sees

similar results for n = 300 and p = 100 when the graph is sparse, but significantly

better results in all other scenarios (Table 3.1).

The better performance of scZINB can be partially attributed to the difference in

penalties, where the log penalty tends to have better performance in cases of higher

density, as well as to the assumption of normality of the log transformed count data.

Table 3.2 contains comparisons of scZINB when using the Lasso penalty rather than the
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log penalty. We see that when d0 = 1 the performance is roughly equivalent, whereas

Lasso’s performance is much worse than the log penalty when d0 = 5.

3.4 Application to Peripheral Blood Mononuclear Cell Data

3.4.1 Data Sourcing and Processing

For our data analysis, we use a sample of approximately 68k peripheral blood

mononuclear cells sequenced by Zheng et al. (2017). We re-ran the raw data through

the Cell Ranger 2.0 pipeline which included 1) converting Illumina’s sequencing data

into FASTQ files and 2) aligning, filtering, and UMI counting the data, using the

GRCh38 transcriptome. This gave us a data set of 63,495 cells. There were 21,257

genes detected with 22,132 mean number of reads per cell and a median of 550 genes

per cell. We trimmed down this data set by removing all genes with 0 read counts in

all the cells. and finally ended up with a data set of 63,495 cells and 20,387 genes.

3.4.2 Clustering

For clustering, we followed the same clustering procedure laid out in Zheng et al.

(2017). First, for each cell, we standardized the total UMI count per gene by dividing it

with the cellular total UMI count, and then multiplying it by the median cellular total

UMI count. Then, following the approach used by Zheng et al. (2017), we derived the

top 1000 most variable genes after adjusting for their mean values. Specifically, we sort

all genes into 20 bins by their total counts and calculating their normalized dispersion

within each bin. Dispersion di was first calculated as the ratio of variance to mean.

Normalized dispersion was calculated as |di − di,med|/di,mad where di,med was the median

dispersion within the bin di belongs to, and di,mad was the median adjusted absolute

median deviation within the bin di belongs to. All normalized dispersion values were

then pooled and the 1,000 genes with largest values were used for clustering.
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To prepare for clustering, the data was log transformed after adding 1 to the count

value. Then, to perform PCA analysis, we used a singular value decomposition on the

standardized data set, such that each gene has mean 0 and variance 1 (Wall et al. 2003).

K-means clustering was then applied to the eigenvectors corresponding to the largest

10 eigenvalues obtained from the SVD using the MacQueen (1967) algorithm for k = 10

and a maximum of 150 iterations. Results are plotted in Figure 3.1 using coordinates

derived by t-SNE (Maaten and Hinton 2008). Zheng et al. (2017) has also collected

single cell RNA-seq data of 11 cell types. Following their approach, we calculated the

correlation between the gene expression of each cell (using the 1,000 most variable

genes) and the mean gene expression of the purified 11 sub-populations, and assigned a

cell to the sub-population with highest correlation. Using this approach, we can assign

each cluster based on the majority vote of the cells within the cluster. This gives us

the following cell types per cluster: 1) clusters 1, 2, 7 and 8 are T lymphocyte cells, 2)

cluster 10 are natural killer (NK) cells, 3) cluster 4 are B lymphocyte cells, 4) cluster

5 are myeloid cells.

Myeloid cells are key players in the metastatic process including detachment from

the primary tumor and colonization at new sites (Toh et al. 2012). Mutations in myeloid

cells are also the driver of acute myeloid leukemia (AML), the most common type of

acute leukemia. They differentiate into macrophages and dendritic cells. Applying the

same clustering strategy to cluster 5 alone revealed these substructures with k = 4 for

k-means, as shown in Figure 3.2. Using gene expression heatmaps in Figure 3.3, we

found that 1) subcluster 1 were CD16-/low monocytes, 2) subcluster 3 were CD16+

monocytes, and 3) subcluster 4 were dendritic cells. Subcluster 2 was small and con-

sisted of a few wayward cytotoxic T cells. Thus, for the purposes of this analysis, we

focused on subclusters 1, 3, and 4 of cluster 5. Table 3.3 contains the exact number of

cells within each subpopulation.
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Figure 3.1: K-means clustering results compared with classification using subpopulation
correlations for full population.

Figure 3.2: K-means clustering results compared with classification using subpopulation
correlations for Myeloid Cells (Cluster 5).

Figure 3.3: Gene expression heatmaps for macrophages.
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3.4.3 Results

As expected from our simulations, a selective set of edges were found. Within the

dendritic cells subcluster we filtered out genes with more than 80% zeroes. This left

us with a sample size of 651 cells and 882 genes. Our final estimate for dendritic

cells consisted of 208 genes with connections and 181 edges between genes. The full

graph estimate can be found in Figure 3.4. For preliminary analysis we examined the

pathways with the most number of connected vertices. The estimated graph had only

a few connected genes involved with known pathways. We highlighted the genes genes

from a few pathways that contribute larger number of connections to the graph.

Within the subcluster of CD16-/low Monocyte cells, we again applied a filter to

remove the genes with more than 80% zeroes. This left us with a sample size of

939 cells and 445 genes. Based on our simulation results, we expect higher power

and a similar true discovery rate of 80%+. Our final estimate consisted of 91 genes

with connections and 75 edges between genes. We see a similar cluster of connected

nodes involving S100A8 and S100A9. Interestingly, the classical CD16- monocyte is

characterized by a high level of CD14 expression, in this particular graph we see that

its expression is associated with S100A8 and S100A9, implying variable expression. The

full graph estimate can be found at Figure 3.5. Similarly to the dendritic subcluster,

for preliminary analysis we looked for the pathways with the most connected number

of vertices. The three most represented pathways are highlighted: rRNA Processing in

the Nucleus and Cytosol in green (9), Metabolism of Amino Acids and Derivatives as

boxes (10), and Influenza Viral RNA Transcription and Replication (8).

These results demonstrate the very different gene regulatory networks that are de-

rived when we separate out single cells to their respective sub populations. In the

context of dendritic versus macrophages, the extensive differences between the two

make sense as they have very different roles within the body. Macrophages tend to be

55



singularly focused on the engulfing and digesting of cellular debris, as indicated by the

represented pathways, while dendritic cells identify foreign bodies to present as targets

to the immune system.

In terms of similarities, we find that out of the 200+ connected genes, only 34

of them are shared between the cell types. These largely include genes focused on

generalized immune system functions such as Lyz, which codes a protein that attacks

cell walls, and HLA genes, which codes for proteins used by the immune system to

identify foreign identities. In both cell types, the most connected vertex was S100A9

which has been found to have large impact with clinical significance for a multitude of

diseases including leukemia, HIV, and cystic fibrosis. This highlights the usefulness of

such comparisons in order to identify genes with high impact.

3.5 Discussion

In real world use, the high computation load of zero inflation modeling meant that

a large amount of parallel computing was necessary for estimation to take place in a

reasonable amount of time. Despite the numerous techniques used to improve compu-

tation time, it still remains our primary drawback. The main culprit of this is having

to do a joint penalized mixed model which requires a long calculate and convergence

time.

One of the avenues we explored to minimize this was to use a score test for zero infla-

tion, in order to do a penalized negative binomial regression in the instances where zero

inflation was not detected. There are challenges present in this. In Poisson data, there

exists a score test which allows testing for zero-inflation without fitting the mixture

model (van den Broek 1995) which would be ideal for computation efficiency. However,

we found in the case of negative binomial data, the procedure used for Poisson data does

not afford the same simplified test. In order to realistically test for zero-inflation, we
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Figure 3.4: Full estimated graph of dendritic myeloid cells. Genes within pathways:
rRNA Processing in the Nucleus and Cytosol, Metabolism of Amino Acids and Deriva-
tives, and Influenza Viral RNA Transcription and Replication are highlighed. Uncon-
nected singletons were removed. The graph consists of 208 genes and 181 edges between
genes.
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Figure 3.5: Full estimated graph of CD16-/low monocyte myeloid cells. Genes within
pathways: rRNA Processing in the Nucleus and Cytosol, Metabolism of Amino Acids
and Derivatives, and Influenza Viral RNA Transcription and Replication are highlighed.
Unconnected singletons were removed. The graph consists of 231 genes and 224 edges
between genes.
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instead must use the identity link and test for γ = 0 rather than π = 0. Consequently,

this makes it difficult to test one-sided hypotheses for π, which means that in cases of

zero deflation, such as when the response has no zeros, the test would come back as

significant (Jansakul and Hinde 2008). Further, since we use penalization for variable

selection, if we wish not to fit the full mixture model first, we must use a pre-specified

covariate structure. We tested whether or not testing just the marginal zero-inflation

would be sufficient in simulations, and found the power to be too low to pursue further.

A comparison with the Hurdle model also highlighted the issue of scaling the BIC

with p. While the scZINB model does not encounter this issue as often as the Hurdle

model, the case of sparse n = 300 and p = 1000 makes it clear that it is still an issue.

For the most part, a tighter α level seems to ameliorate most of the ill effects in the

variable selection portion, however it does quickly increase the computation time.
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Table 3.1: Full Simulation Results

n p d0 Est # Edges/ scZINB Model
Type Step 2 α Power Type 1 Error TDR

300 100 1 GM 94.8 0.996 0.009 0.545
G 0.1 0.996 0.008 0.563
G 0.05 0.996 0.007 0.600
G 0.001 0.968 0.000 0.957

300 100 5 GM 277.2 0.911 0.011 0.815
G 0.1 0.844 0.004 0.927
G 0.05 0.828 0.002 0.948
G 0.001 0.643 0.000 0.997

300 1000 1 GM 2212.5 0.984 0.003 0.219
G 0.05 0.981 0.003 0.240
G 0.001 0.933 0.000 0.670
G 0.0005 0.915 0.000 0.791
GM Best Model 679.8 0.974 0.000 0.705
G Best Model 0.0005 0.918 0.000 0.951

300 1000 5 GM 2638 0.869 0.001 0.808
G 0.1 0.839 0.001 0.867
G 0.05 0.828 0.000 0.895
G 0.001 0.672 0.000 0.992

Hurdle Model
300 100 1 BIC 49.1 0.955 0.000 0.993

extBIC 46.8 0.916 0.000 0.998
Best Model 50.9 0.980 0.000 0.983

300 100 5 BIC 92.6 0.307 0.004 0.823
extBIC 70.6 0.238 0.002 0.837
Best Model 211.4 0.617 0.012 0.727

300 1000 1 BIC 113989.9 1.000 0.227 0.004
extBIC 113989.9 1.000 0.227 0.004
Best Model 454.4 0.868 0.000 0.947

300 1000 5 BIC 116063.3 0.998 0.229 0.021
extBIC 116059.1 0.998 0.229 0.021
Best Model 2235.8 0.822 0.000 0.916

*Effect size was set at 1 with the exception of no transformation which was set at
0.5.
TDR = True Discovery Rate
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Table 3.2: Log Penalty versus Lasso Penalty Simulation Re-
sults

n p d0 scZINB with Group Log Penalty
Step 2 α Power Type 1 Error TDR

300 100 1 0.001 0.945 0.000 0.987
300 100 5 0.001 0.518 0.005 0.847

scZINB with Lasso
300 100 1 0.001 0.938 0.000 0.990
300 100 5 0.001 0.332 0.005 0.765

TDR = True Discovery Rate

Table 3.3: Subpopulation counts for full cell population and myeloid subpopulation.

All Cells T cells NK Cells B Cells Myeloid Cells
Count 52,450 3,633 3,972 3,234
Proportion 82.87% 5.72% 6.26% 5.09%
Myeloid Cells CD16- Monocytes Cytotoxic T CD16+ Monocytes Dendritic
Count 939 133 1,511 651
Proportion 29.04% 4.11% 46.72% 20.13%
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CHAPTER 4: CONCLUSION

Over the course of this dissertation, we have discussed a generic two-step framework

for estimating the skeletons of directed acyclic graphs and applied it to two types of

data. We showed the flexibility of this framework to tackle a variety of situations when

implemented in a modular manner. Under the generic scenario of non-linear and non-

parametric data, we were able to demonstrate its efficacy in a variety of simulations.

We saw its ability to better capture non-linear and non-parametric relationships in real

world data. We explored variations on our selected methods within this framework,

and showed robustness even under dimension reduction of the conditioning space un-

der conditional independence testing. Theoretically, we were able to show asymptotic

consistency properties in both steps. Within the narrower context of scRNA-seq data,

we showed its efficacy as well as its computational disadvantages.
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APPENDIX A: ALGORITHMS FOR MODEL-FREE APPROACH

Algorithm A1: Tuning Parameter Grid Generation
Data: X, yt (transformation of y with h dimensions), τn (the number of τ ’s), λn

(the number of λ’s)

Result: λ, τ

λ← []

τ ← []

Choose τ uniformly in log scale. Let τmax = 1, τmin = 10−6, and

dτ = [log(τmax)− log(τmin)]/(τn − 1). τt ←

[exp(log(τmin)), exp (dτ + log(τmin)) , exp (2dτ + log(τmin)) , .., exp(log(τmax))]

for it = 1 to τn do
κ← τt[it]

λ.max← 0

for s = 1 to h do
η ← 0

for j = 1 to p− 1 do

b̄ =
(
Xᵀ
jXj

)−1
Xᵀ
j yt,s

ω = ‖yt,s‖2/(n‖Xj‖2)

η = η +
(
2b̄κ/ω

)2

η =
√
ηt

if η > λmax then
λmax = η

Let λmin = 10−6, and dλ = [log(λmax)− log(λmin)]/(λn − 1). λt ←

[exp(log(λmin)), exp (dλ + log(λmin)) , exp (2dλ + log(λmin)) , .., exp(log(λmax))]

τ = [τ, repeat κ λn times]

λ = [λ, λt]
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APPENDIX B: PROOFS FOR THEORETICAL RESULTS OF
MGAP

B.1 Weak Oracle Property for Model Free Variable Selection

For graphical model estimation, we treat one of the p variables as the response

variable and the other p− 1 variables as covariates and then apply model free variable

selection alone. In this section, we focus on the model free variable selection. To simplify

the notation, we denote the response variable as Y , the h spline transformation of Y as

T = (T1, ..., Th), and assume there are p covariates X1, ..., Xp. Recall that our objective

function is:

O(B;ω, κ, λ, τ) =
h∑
s=1

‖Ts −XBs‖2

ωs
+ λ

p∑
j=1

‖bj‖+ τ

κj
+ λ

p∑
j=1

log(κj) + n
h∑
s=1

log(ωs).

(4.1)

with ‖bj‖ =
√

Σh
s=1B

2
j,s. Without the loss of generality, we assume the covariates have

been standardized to have mean 0 and L2 norm ‖Xj‖2 =
√
n, ∀j = 1, ..., p.

We denote the true value of B by B(0), hence its j-th row is denoted by b
(0)
j , and

its s-th column is denoted by B(0)
s . We separate the space of the vectors {Xj : j ∈

{1, 2, . . . , p}} into the subspace of the supporting set (S) and its complement (Sc) where

Xj ∈ S if and only if ‖b(0)
j ‖ 6= 0. Denote the size of S by d0. Let X1 be an n × d0

matrix for those Xj ∈ S. Let X2 be an n × (p − d0) matrix for those Xj ∈ Sc. We

define B
(0)
1 and B

(0)
2 analogously for the supporting set and its complement. Then we

use B(0)
1,s and B(0)

2,s to denote the s-th column of B
(0)
1 and B

(0)
2 , respectively.

Condition 1.1 log(p) = O(nα) and d0 = O(nν) with 0 ≤ α < 1, 0 ≤ ν < 1/2.

Condition 1.2 dn ≡ 2−1 mins min1≤j≤d0{|b
(0)
j,s |} = O(n−γ0(log n)1/2) for some γ0 ∈

(ν, 1/2).
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Condition 1.3 p′s(dn) = o(dn). Where p′s is the penalty gradient for transformation

s. For the purposes of this proof, we are keeping the penalty general.

Condition 2.1 p′s(0+) > σ−
1
2η(1 − K)−1 for K ∈ (0, 1) where η = O(n

α−1
2

√
logn),

and n
1
2

+ν
√
logn = o(p′s(0+)).

Condition 2.2 ‖Xᵀ
2X1‖∞

‖Xᵀ
1X1‖∞ ≤ min

{
KOp(n

−1)p
′
s(0+)
p′s(dn)

, Op(n
ν)
}
.

Condition 3 λκ0 = o(τ0), where κ0 = maxδ∈N0,s κ(p′s, δ), τ0 = minδ∈N0 λmin [∆2L(δ)],

L(δ) = n
∑h

s=1 log‖Ts −Xδ‖2, and N0 = {δ ∈ Rd0 : ‖δ − B(0)
1,s‖∞ ≤ dn}. λmin[∆2L(δ)]

is the smallest eigenvalue across all of the second derivative matrices of L(δ).

The log penalty that we use for this dissertation satisfies condition 1.3, 2.1, 2.2, and

3. Though to keep our results more general for any penalty functions that may satisfy

these conditions, we state them explicitly. Recall that the coefficient matrix B is an

h×p matrix. The j-th row of B, denoted by bj, includes the h regression coefficients for

the j-th covariate; and the s-th column of B, denoted by Bs, includes the p regression

coefficients for Ts, the s-th transformation of y.

Recall that the coefficient matrix B is an h× p matrix. The j-th row of B, denoted

by bj, includes the h regression coefficients for the j-th covariate; and the s-th column

of B, denoted by Bs, includes the p regression coefficients for Ts, the s-th transforma-

tion of y.

Lemma 6. Estimating the B = {B1, ..., Bh} which minimizes the mGAP objective

function is equivalent to:

argminB

{
n

h∑
s=1

log‖Ts −XBs‖2 + λ

p∑
j=1

log(‖bj‖+ τ)

}
(4.2)

Proof of Lemma 6
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The mGAP objective function is:

argminB,ω,κ

{
h∑
s=1

‖Ts −XBs‖2

ωs
+ λ

p∑
j=1

‖bj‖+ τ

κj
+ λ

p∑
j=1

log(κj) + n

h∑
s=1

log(ωs)

}
(4.3)

with tuning parameters λ and τ . First, we note that if we optimize over κ and ω

first while holding B = (B1, ..., Bh) constant, the solutions are: κ̂j = ‖bj‖ + τ and

ω̂s = ‖Ts−XBs‖2
n

. Substituting κ̂j and ω̂s into equation (4.3) gives us:

nh+ λp+ λ

p∑
j=1

log(‖bj‖+ τ) + n

h∑
s=1

log‖Ts −XBs‖2 − nhlogn (4.4)

Since n, h, p and λ are all constants with respect to the parameter of interest, B, we can

say that optimizing the objective function in equation (4.3) is equivalent to optimizing:

O(B) = n
h∑
s=1

log‖Ts −XBs‖2 + λ

p∑
j=1

log(‖bj‖+ τ) (4.5)

Lemma 7. Let B̂ = (B̂1, ...., B̂h) be an estimator of B = (B1, ...., Bh) by minimizing

equation (4.2). Then B̂s satisfies the following conditions for all s:

2n
[
Xᵀ

1(X1B̂1,s)−Xᵀ
1Ts

]
‖Ts −X1B̂1,s‖2

+ p′s(B̂1) = 0d0×1 (4.6)∥∥∥∥∥∥
2n
[
Xᵀ

2(X2B̂2,s)−Xᵀ
2Ts

]
‖Ts −X2B̂2,s‖2

∥∥∥∥∥∥
∞

= 0(p−d0)×1 (4.7)

λmin{∇2L(B̂1)} > max
s

(
λκ(p′s; B̂1)

)
, (4.8)

where p′s(B̂1) = ∂p(B1)
∂B1,s

|B1=B̂1
is a vector of length d0, with j-th element being ∂p(B1)

∂Bjs
|B1=B̂1

,

λmin{·} indicates the smallest eigenvalue of the matrix,
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κ(p′s; ν) = limε→0 maxj supt1<t2∈(|vj |−ε,|vj |+ε)−
p′s(t2)−p′s(t1)

t2−t1 is the local concavity of the

penalty around ν, and p′s(t1) or p′s(t2) indicates the derivative with respect to Bjs, an

element of B.

Proof of Lemma 7

The objective function from equation (4.2) is a constrained optimization problem

which we can break down into our loss function and our penalty or constraint functions.

Let

O(B) = n
h∑
s=1

log‖Ts −XBs‖2 + λ

p∑
j=1

log(‖bj‖+ τ) = L(B) + p(B), (4.9)

where p(B) = λ
∑p

j=1 log(‖bj‖+ τ).

By the Karush-Kuhn-Tucker conditions, we know that the minimizer B̂ = [B̂1, ..., B̂p]

satisfies the first order necessary condition:

∂L(B)

∂Bjs

+
∂p(B)

∂Bjs

∥∥∥∥
B=B̂

= 0, (4.10)

where

∂L(B)

∂Bjs

= −2n
Xᵀ
j (Ts −XBs)

‖Ts −XBs‖2
, and

∂p(B)

∂Bjs

=
λBjs

‖bj‖(‖bj‖+ τ)
. (4.11)

Notice then, that we can express the set of equations (4.10) as:

2n
(
Xᵀ(XB̂s)−XᵀTs

)
‖Ts −XB̂s‖2

+ p′s(B̂) = 0, ∀ s ∈ {1, 2., . . . , h}, (4.12)

where p′s(B̂) = ∂p(B)
∂Bs
‖B=B̂ is a vector of length p, with j-th element being ∂p(B)

∂Bjs
‖B=B̂.

For a consistent estimate, p′s(B
(0)
2 ) = 0 ∀s. Therefore, we can rewrite equation (4.12)
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into its consistency and sparsity necessary conditions:

2n
(
Xᵀ

1(X1B
(0)
1,s )−Xᵀ

1Ts

)
‖Ts −X1B

(0)
1,s‖2

+ p′s(B
(0)
1 ) = 0 (4.13)∥∥∥∥∥∥

2n
(
Xᵀ

2(X2B
(0)
2,s )−Xᵀ

2Ts

)
‖Ts −X2B

(0)
2,s‖2

∥∥∥∥∥∥
∞

= 0 (4.14)

Finally, since our penalty function p(‖bj‖) is not convex, and thus our objective

function may not be convex. Therefore, in addition to the first order condition, the

estimator must also satisfy the second order sufficient condition that ∇2O(B(0)) is

positive definite. This can be written as:

λmin{∇2L(B
(0)
1 )} > λκ(p′s; B

(0)
1 ) (4.15)

where, λmin indicates the smallest eigenvalue across the second derivative matrices for

each slice and

κ(p′s; ν) = lim
ε→0

max
1≤j≤|S|

sup
t1<t2∈(|vj |−ε,|vj |+ε)

−p
′
s(t2)− p′s(t1)

t2 − t1

is the local concavity of the penalty around ν.

Theorem 2. Given the conditions 1.1 to 1.4, with probability at least

1 − 2 [d0n
−1 + (p− d0) exp (−nα log n)], there exists a penalized likelihood estimator

B̂ = (B̂1, ..., B̂h) where B̂s = (B̂ᵀ
1,s, B̂

ᵀ
2,s)

ᵀ which satisfies:

(1) Sparsity: P (B̂2,s = 0)→ 1 ∀ s

(2) L∞ loss: ‖B̂1,s −B1(0),s‖∞ = op(n
−γ0
√

log n) ∀ s.

Proof of Theorem 2

From Lemma 6, we will be using equation (4.2) as our objective function of interest.
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Second, we reiterate the conditions for the estimator of B from Lemma 7:

2n
[
Xᵀ

1(X1B̂1,s)−Xᵀ
1Ts

]
‖Ts −X1B̂1,s‖2

+ p′s(B̂1) = 0d0×1∥∥∥∥∥∥
2n
[
Xᵀ

2(X2B̂2,s)−Xᵀ
2Ts

]
‖Ts −X2B̂2,s‖2

∥∥∥∥∥∥
∞

= 0(p−d0)×1

λmin{∇2L(B̂1)} > max
s

(
λκ(p′s; B̂1)

)
,

Now, let us consider the following set of events. Let ξs = (ξs1, ..., ξsp)
ᵀ = Xᵀ(Ts −

XᵀB
(0)
s ) = Xᵀεs, and the events be:

E1,s =
{
‖ξ1,s‖∞ ≤ σ−1/2

s n1/2
√

log n
}

and E2,s =
{
‖ξ2,s‖∞ ≤ σ−1/2

s n1/2
√
nα log n

}

where ξ1,s = (ξs1, ..., ξsd0)
ᵀ, ξ2,s = (ξs(d0+1), ..., ξsp)

ᵀ. Ultimately, our goal is to show

that the estimator which satisfies equations (4.6)-(4.8) falls into the intersection of all

of these events with probability converging to 1. First, we show that the intersection

of all these events converge in probability. For this, we need the following result:

Proposition 4 from (Fan and Lv 2011) using Hoeffding’s Inequality :

Assuming Ts = (T1s, ..., Tns)
ᵀ are bounded in [c, d]. Let a = (a1, ..., an)ᵀ. Then

P
(
|aᵀ(Ts −XB

(0)
s )| > ||a||2ε

)
≤ 2e−σsε

2 , where ε ∈ (0,∞) and σs = 2/(d− c)2.

The assumption of boundedness depends on the transformation applied to the re-

sponse. Our current application uses the B-spline transformation (where Ts is the s-th

basis of B-spline transformation of response variable Y ) or the slice inverse transfor-

mation (where tsk = 1 if Yk belongs to the s-th slice and 0 otherwise) which conforms

to this assumption.

Consider when a = Xj for j = 1, ..., p, and thus ‖a‖2 = ‖Xj‖2 =
√
n. Then, to
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apply the above inequality to E1,s and E2,s, let ε = σ
−1/2
s

√
log n and ε = σ

−1/2
s

√
nα log n,

respectively, such that:

P
(
|Xᵀ

j (Ts −XB(0)
s )| > ‖Xj‖2ε

)
≤ 2e−σsε

2

⇒ P
(
|ξj| > σ−1/2

s n1/2
√

log n
)
< 2n−1,

for j = 1, ..., d0.

P
(
|Xᵀ

j (Ts −XB(0)
s )| > ‖Xj‖2 ε

)
≤ 2e−σsε

2

⇒ P
(
|ξj| > σ−1/2

s n1/2
√
nα log n

)
< 2e−(nα logn),

for j = d0 + 1, ..., p.

Then, by Bonferroni’s inequality

P (E1,1 ∩ ... ∩ E1,h ∩ E2,1 ∩ ... ∩ E2,h) ≥ 1− h
d0∑
j=1

P
(
|ξj| > σ−1/2

s n1/2
√

log n
)

−h
p∑

j=d0+1

P
(
|ξj| > σ−1/2

s n1/2
√
nα log n

)
≥ 1− 2h

[
d0n

−1 + (p− d0)e−(nα logn)
]
.

Recall that true coefficients B(0)
s ∈ Rp can be split into two parts: B

(0)
1,s , and

B
(0)
2,s , where B

(0)
1,s ∈ Rd0 and B

(0)
2,s = 0 ∈ Rp−d0 . Let B̂s = (B̂ᵀ

1,s, B̂
ᵀ
2,s)

ᵀ ∈ Rp be the

estimated coefficients for transformation s. We seek to prove that under the event

E11 ∩ ... ∩ E1h ∩ E21 ∩ ... ∩ E2h, there is an estimate such that B̂2,s = 0, and B̂1,s → B
(0)
1

by L∞ norm.

Step 1: Consistency in the d0-dimensional subspace

For sufficiently large n, we first examine the existence of a solution B̂1,s ∈ Rd0 for

70



equation (4.6) inside the hypercube

N =
{
δ ∈ Rd0 : ‖δ −B(0)

1,s‖∞ = dn = Op(n
−γ0
√

log n)
}
. (4.16)

Define

ϕs(δ) =
2 {(X1δ)

ᵀX1 − T ᵀ
s X1}

‖Ts −X1δ‖2
+ p′s(δ)

=

[
2

‖Ts −X1δ‖2

{
(X1δ)

ᵀX1 − T ᵀ
s X1 + (X1B

(0)
1,s )

ᵀX1 − (X1B
(0)
1,s )

ᵀX1

}]
+ p′s(δ)

=
2

‖Ts −X1δ‖2

{(
δᵀ −B(0)

1,s

ᵀ)
(Xᵀ

1X1)− ξᵀ1s
}

+ p′s(δ).

Thus equation (4.6) is equivalent to ϕs(δ) = 0. Next, we show that there exists a

solution inside the hypercube N to satisfy ϕs(δ) = 0. Let

ϕ̄s(δ) =
‖Ts −X1δ‖2

2Xᵀ
1X1

ϕs(δ) = δ −B(0)
1,s

ᵀ
+ us,

where us = −‖Ts−X1δ‖2
2Xᵀ

1X1

[
ξᵀ1s

‖Ts−X1δ‖2 + p′s(δ)
]
. Since, for any δ ∈ N , |δj| ≥ |b(0)

j,s | − dn, we

have

min
j=1,...,d0

|δj| ≥ min
j=1,...,d0

|b(0)
j,s | − dn = dn.

By the monotonicity of p′s(δ), ‖p′s(δ)‖∞ ≤ p′s(dn), and thus with the definition of E1

∥∥∥∥ ξᵀ1s
‖Ts −X1δ‖2

+ p′s(δ)

∥∥∥∥
∞
≤ σ

−1/2
s n

1
2

√
log n

‖Ts −X1δ‖2
+ p′s(dn).
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Therefore,

‖us‖∞ ≤ ‖Ts −X1δ‖2

‖2Xᵀ
1X1‖∞

∥∥∥∥ ξᵀ1s
‖Ts −X1δ‖2

+ p′s(δ)

∥∥∥∥
∞

=
1

‖2Xᵀ
1X1‖∞

[
σ−1/2
s n

1
2

√
log n+ ‖Ts −X1δ‖2p′s(dn)

]
=

1

2d0n

[
σ−1/2
s n

1
2

√
log n+ ‖Ts −X1δ‖2p′s(dn)

]
.

Now, notice that within our hypercube:

‖Ts −X1δ‖2 ≤ ‖Ts −X1B
(0)
1,s‖2 + ‖X1(B

(0)
1,s − δ)‖2

≤ ‖Ts −X1B
(0)
1,s‖2 + dnd0n.

‖Ts − X1B
(0)
1,s‖2 =

∑n
i=1(Tis − X1,iB

(0)
1,s )

2, where X1,i denotes the i-th row of X1. We

assume Tis − X1,iB
(0)
1,s is bounded, which is an implicit assumption for any regression

problem, and thus ‖Ts −X1B
(0)
1,s‖2 = Op(n). Hence, we get:

‖u‖∞ = Op

[
d−1

0 n−
1
2σ
− 1

2
s

√
logn+ d−1

0 p′s(dn) + dnp
′
s(dn)

]

Then, from conditions (1.1 to 1.3), we can see that each term is of order o(n−γ0
√

log n),

hence ‖u‖∞ = o(n−γ0
√

log n).

For a constant C > 0 and sufficiently large n, if δj − Bjs = Cn−γ0
√

log n then

ϕ̄js(δ) ≥ Cn−γ0
√

log n − ‖u‖∞ ≥ 0. Similarly, if δj − Bjs = −Cn−γ0
√

log n then

ϕ̄js(δ) ≤ −Cn−γ0
√

log n+ ‖u‖∞ ≤ 0.
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Then, by the continuity of function ϕ̄(δ) = (ϕ̄1(δ), ..., ϕ̄s(δ)) and Miranda’s exis-

tence theorem, there is a solution B̂1,s for ϕ̄(δ) = 0 in N , hence a solution for equa-

tion (4.6) in N . Since the above conclusion holds for any C > 0, we conclude that

‖δ −B(0)
1 ‖∞ = o(n−γ0

√
log n).

Step 2: Sparsity

Let B̂s ∈ Rp with B̂1,s ∈ N as the solution for equation (4.6) and B̂2,s = 0. To

prove the sparsity, we verify that equation (4.7) holds for B̂s.

∥∥∥∥2 ((X2B2,s)
ᵀX2 − T ᵀ

s X2)

‖Ts −XBs‖2

∥∥∥∥
∞

< p′s(0+)

under the event E1 ∩ E2.

Similarly to Step 1, we first rewrite 2
[
(X2B̂2,s)

ᵀX2 − T ᵀ
s X2

]
/‖Ts −XB̂s‖2 in terms

of ξ2,s:

2
[
(X2B̂2,s)

ᵀX2 − T ᵀ
s X2

]
‖Ts −XB̂s‖2

=
2

‖Ts −XB̂s‖2

[
Xᵀ

2(Ts −X1B
(0)
1,s )−Xᵀ

2(X1B̂s,1 −X1B
(0)
1,s )
]

=
2

‖Ts −XB̂s‖2

[
ξ2,s −Xᵀ

2X1(B̂s,1 −B(0)
1,s )
]
.

First, from Condition 2.1, we can see that: ‖ξ̂2,s‖∞
‖Ts−XB̂s‖2

= σ−
1
2 n

1+α
2
√

logn
‖Ts−XB̂s‖2

< (1 −

K)p′s(0+). Now, to examine the second term 2

‖Ts−XB̂s‖2
Xᵀ

2X1(B̂s,1 −B(0)
1,s ) :

From Step 1, we have:

B̂1,s −B(0)
1,s = (2Xᵀ

1X1)−1
[
Xᵀ

1ε̂1 + ‖Ts −XB̂s‖2p(B̂s,1)
]
. (4.17)
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Therefore, by conditions 2.1 and 2.2,

∥∥∥Xᵀ
2X1(B̂1,s −B(0)

1,s )
∥∥∥
∞

=
‖Xᵀ

2X1‖∞
‖Xᵀ

1X1‖∞

{
ξ̂1,s + ‖Ts −XB̂s‖2‖p′s(B̂s)‖∞

}
≤ Op(n

1
2

+ν
√

logn) +
‖Xᵀ

2X1‖∞
‖Xᵀ

1X1‖∞
‖Ts −XB̂s‖2p′s(dn)

≤ Kp′s(0+).

Then, we have

∥∥∥∥2 ((X2B2,s)
ᵀX2 − T ᵀ

s X2)

‖Ts −XBs‖2

∥∥∥∥
∞

< (1−K)p′s(0+) +Kp′s(0+) = p′s(0+).

Therefore for sufficiently large n, equation (4.7) holds.

Finally, equation (4.8) would be satisfied by condition 3 for sufficiently large n.

B.1.1 Consistency of modified-PC Algorithm

Lemma 8.

For any γ > 0, supi,j,s∈Πi,j
P [|TCI − E(TCI)| > γ] ≤ exp

{
−2nγ2

R4

}
. Where R2 is the

largest possible element of K̃Xi,s|XsK̃Xj |Xs .

Proof of Lemma 8

Recall that T (i,j|k)
CI = 1

n
Tr(K̃Xi,k|Xk

K̃Xj |Xk
) = 1

n

∑n
l λl(K̃Xi,k|Xk

K̃Xj |Xk
), where λl(·)

are the l = 1...n eigenvalues ranked in order of largest to smallest. In addition, from

[Shawe-Taylor et al. (2005)] we know the following probabilistic error bound of eigen-

values of a kernel matrix, where for any γ > 0:

P

{∣∣∣∣∣ 1n
n∑
l=1

λl(K)− 1

n

n∑
l=1

E(λl(K))

∣∣∣∣∣ > γ

}
≤ exp

{
−2nγ2

R4

}
(4.18)
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Then,

P
{∣∣∣T (i,j|k)

CI − E(T
(i,j|k)
CI )

∣∣∣ > γ
}

= P

{∣∣∣∣∣ 1n
n∑
l

λl(K̃Xi,k|Xk
K̃Xj |Xk

)− 1

n

n∑
l

E(λl(K̃Xi,k|Xk
K̃Xj |Xk

))

∣∣∣∣∣ > γ

}

≤ exp

{
−2nγ2

R4

}

Theorem 4. Assume a perfect estimation of GM in Step 1 as well as conditions

(1.1) and (2.3). Let the estimate from Step 2 be Ĝαnskel,n, where αn is the significance

level used in the conditional independence testing for Step 2. Then, there exists an

αn →n→∞ 0 such that:

P[Ĝskel,n(αn) = Gskel,n] = 1−O
(
exp(nα − C(n2(1−d))

)
→n→∞ 1

for some constant C > 0.

Proof of Theorem 4 For the proof of Theorem 4, recall the following condition:

Condition 2.3 If Xi ⊥ Xj|Xs, we put a lower bound on the size of infi,j|s TCI ≥ cn,

where cn = O(n
1
2
−d); 0 < d < 1/2.

An error occurs in the modified PC-algorithm when either a Type I or Type II error

occurs during the conditional test for nodes of edge (i, j) with conditioning set k ∈ Πi,j.

Denote these errors as Ei,j|k = EI
i,j|k ∪ EII

i,j|k, then:

P [An Error Occurs in Step 2] ≤ P

 ⋃
i,j|k∈Πi,j

(
Ei,j|k

)
≤ 22qn sup

i,j|k∈Πi,j

P[Ei,j|k].
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The above inequality can be derived using the cardinality of the set Πi,j. Recall that

Πi,j = {AG,i,j\DG,i,j, DG,i,j ⊆ CG,i,j} (at least one of the set in Πi,j includes all common

parents of Xi and Xj, but excludes any common descendants). Therefore |Πi,j| ≤

|P(A)G,i,j| ≤ 2|adj(G,Xi)|+|adj(G,Xj)| ≤ 22qn , where P(·) is the power set, qn is the maximum

degree of any one node.

Let the cdf of ŤCI be F (·). Then,

EI
i,j|k : TCI > F−1(1− αn) ; Xi ⊥ Xj|Xk.

EII
i,j|k : TCI ≤ F−1(1− αn) ; Xi 6⊥⊥ Xj|Xk.

Choose αn = 1−F (cn/2), then using Lemma 8 and the assumption that infi,j|k T
(i,j|k)
CI ≥

cn if Xi 6⊥⊥ Xj|Xk, we can get:

sup
i,j|k∈Kmn

ij

P[EI
i,j|k] = sup

i,j|k∈Kmn
ij

P
[
T

(i,j|k)
CI >

cn
2

]
= sup

i,j|k∈Kmn
ij

P

[∣∣∣T (i,j|k)
CI − E

(
T

(i,j|k)
CI

)∣∣∣ > cn
2
− 1

n
Tr(w̌w̌ᵀ)

]

≤ exp

{
−2n [cn/2− (1/n)Tr(w̌w̌ᵀ)]2

R4

}
,

and

sup
i,j|k∈Kmn

ij

P[EII
i,j|k] = sup

i,j|k∈Kmn
ij

P
[
T

(i,j|k)
CI ≤ cn

2

]
≤ sup

i,j|k∈Kmn
ij

P
[∣∣∣T (i,j|k)

CI − E
(
T

(i,j|k)
CI

)∣∣∣ > cn
2

]
≤ exp

{
− nc

2
n

2R4

}
.

We note that R4 is not dependent on n and assume it is bounded by some constant.

For example, for the Gaussian kernel, it is fixed at 1. Secondly, assume Tr(w̌w̌ᵀ) = nδ,
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(1/2− d) > δ − 1, i.e., δ < 3/2− d. Then this term is dominated by cn/2. Therefore,

we can write:

sup
i,j|k∈Kmn

ij

P[EI
i,j|k] ≤ O(exp

{
−C1(nc2

n)
}

) (4.19)

for some a positive constant C1 that’s not dependent on n. Similarly, we have:

sup
i,j|k∈Kmn

ij

P[EII
i,j|k] ≤ O(exp

{
−C2(nc2

n)
}

) (4.20)

Then, using the assumptions: 1) log(p) = O(nα) for some 0 < α < 1, 2) c−1
n =

O(n
1
2
−d) for some 0 < d < 1− α

2
and 3) qn = max(d0) = O(nν) : 0 ≤ ν < 1

2
:

P [An Error Occurs in Step 2] ≤ O
(
pqn22qn exp(−C3(nc2

n))
)

≤ O
(
nν exp(2nν + nα − C3(n2(1−d))

)
= o(1)

since 2(1− d) > 1 > max(α, ν), and thus n2(1−d) dominates all other terms.
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APPENDIX C: DERIVATION OF PENALTY WEIGHTS FOR
SCZINB

We calculate second derivative for the following log-likelihood function.

L = Σn
i=1 {log [πiI(yi = 0) + (1− πi)fNB(yi;µi, φ)]} (4.21)

C.1 When yi = 0

Derivatives for β:

Li|yi=0 = log[πi + (1− πi)fNB(0;µi, φ)]

∂
∂βk
Li|yi=0 = 1−πi

πi+(1−πi)fNB(0;µi,φ)
∂
∂βk

fNB(0;µi, φ)
(4.22)

Since,

∂
∂βk

fNB(0;µi, φ) = ∂(1+φµi)
− 1
φ

∂µi

∂µi
∂βk

= −(1 + φµi)
− 1
φ
−1µiXik

(4.23)

Let t1 = (1 + φµi), then,

∂
∂βk
Li|yi=0 = {−µi(1− πi)Xik} t

− 1
φ
−1

1

πi+(1−πi)t
− 1
φ

1

∂2

∂β2
k
Li|yi=0 = {−µi(1− πi)Xik} ∂

∂βk

t
− 1
φ
−1

1

πi+(1−πi)t
− 1
φ

1

+
{
− ∂
∂βk

µi(1− πi)Xik

}
t
− 1
φ
−1

1

πi+(1−πi)t
− 1
φ

1

(4.24)

78



Looking at each term of the expression separately:

{−µi(1− πi)Xik} ∂
∂βk

t
− 1
φ
−1

1

πi+(1−πi)t
− 1
φ

1

= {−µi(1− πi)Xik}

[
∂
∂βk

t
− 1
φ
−1

1

][
πi+(1−πi)t

− 1
φ

1

]
−
[

∂
∂βk

(
πi+(1−πi)t

− 1
φ

1

)][
t
− 1
φ
−1

1

]
[
πi+(1−πi)t

− 1
φ

1

]2

= µ2
iX

2
ik(1− πi)

(φ+1)t
− 1
φ
−2

1

(
πi+(1−πi)t

− 1
φ

1

)
−(1−πi)t

−2( 1
φ
+1)

1[
πi+(1−πi)t

− 1
φ

1

]2

= µ2
iX

2
ik(1− πi)

(φ+1)t
− 1
φ
−2

1 πi+φt
−2( 1

φ
+1)

1 (1−πi)[
πi+(1−πi)t

− 1
φ

1

]2

(4.25)

{
∂
∂βk

µi(1− πi)Xik

}
t
− 1
φ
−1

1

πi+(1−πi)t
− 1
φ

1

=
t
− 1
φ
−1

1

πi+(1−πi)t
− 1
φ

1

(µiX
2
ik(1− πi)) (4.26)

Let λi = πi
1−πi , then we can simplify to:

∂2

∂β2
k
Li|yi=0 = µ2

iX
2
ik(1− πi)

(φ+1)t
− 1
φ
−2

1 πi+φt
−2( 1

φ
+1)

1 (1−πi)[
πi+(1−πi)t

− 1
φ

1

]2 − t
− 1
φ
−1

1

πi+(1−πi)t
− 1
φ

1

(µiX
2
ik(1− πi))

= µiX
2
ik

µi(φ+1)t
− 1
φ
−2

1 λi+µiφt
−2( 1

φ
+1)

1[
λi+t

− 1
φ

1

]2 − t
− 1
φ
−1

1

λi+t
− 1
φ

1


= µiX

2
ik


µi(φ+1)t

− 1
φ

1 λi+µiφt
−2( 1

φ)
1 −t

− 1
φ
+1

1

(
λi+t

− 1
φ

1

)

t21

[
λi+t

− 1
φ

1

]2


= µiX
2
ik

 (φ+1)t
1
φ
1 λiµi−t

1
φ
+1

1 λi−1

t21

[
λit

1
φ
1 +1

]2


= µiX
2
ik

 t
1
φ
1 λi(φµi+µi−t1)−1

t21

[
λit

1
φ
1 +1

]2
 = µiX

2
ik

 t
1
φ
1 λi(µi−1)−1

t21

[
λit

1
φ
1 +1

]2


(4.27)
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Derivatives for γ

First, note that ∂
∂γk
πi = πi(1− πi)Xik. Then,

Li|yi=0 = log[πi + (1− πi)fNB(0;µi, φ)]

∂
∂γk
Li|yi=0 = 1−fNB(0;µi,φ)

πi+(1−πi)fNB(0;µi,φ)
πi(1− πi)Xik

∂2

∂γ2k
Li|yi=0 =

{
1−fNB(0;µi,φ)

πi+(1−πi)fNB(0;µi,φ)
(1− 2πi)−

[
1−fNB(0;µi,φ)

πi+(1−πi)fNB(0;µi,φ)

]2

πi(1− πi)
}

X2
ikπi(1− πi)

(4.28)

Similarly to above, we can simplify to:

∂2

∂γ2k
Li|yi=0 =

{
λit

θ
1

(λitθ1+1)
2 − λi

(1+λi)2

}
X2
ik (4.29)

C.2 When yi > 0

Derivatives for β:

Li|yi>0 = log[(1− πi)fNB(yi;µi, φ)]

= log

(
(1−πi)Γ(yi+

1
φ

)

yi!Γ( 1
φ)

)
+ yi log(φµi)− (yi + 1

φ
) log(1 + φµi)

∂
∂βk
Li|yi>0 =

[
yi
µi
− (yi+

1
φ

)φ

1+φµi

]
µiXik = yiXik − (yiφ+ 1)Xik

µi
1+φµi

∂2

∂β2
k
Li|yi>0 = −(yiφ+ 1)Xik

{
(1+φµi)−µiφ

(1+φµi)2

}
µiXik

= −µi(yiφ+1)
(1+φµi)2

X2
ik

(4.30)

Derivatives for γ:

Li|yi>0 = log(1− πi) + log

(
Γ(yi+

1
φ

)(φµi)
yi

yi!Γ( 1
φ)(1+φµi)

(yi+ 1
φ)

)
∂
∂γk
Li|yi>0 = −(1− πi)−1 [Xikπi(1− πi)] = −πiXik

∂2

∂γ2k
Li|yi>0 = −Xik [Xikπi(1− πi)] = −πi(1− πi)X2

ik

(4.31)
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Altogether, the diagonal values of the Hessian can be expressed as:

∂2

∂β2
k

Li =
n∑
i=1

I(yi = 0)
X2
ikµi

[
(µi − 1) exp(Xiγ)(1 + φµi)

1
φ − 1

]
(1 + φµi)2[exp(Xiγ)(1 + φµi)

1
φ + 1]

−
n∑
i=1

I(yi > 0)
X2
ikµi(1 + φyi)

(1 + φµi)2

∂2

∂γ2
k

Li =
n∑
i=1

I(yi = 0)
X2
ik exp(Xiγ)(1 + φµi)

1
φ[

exp(Xiγ)(1 + φµi)
1
φ + 1

]2 −
n∑
i=1

X2
ik exp(Xiγ)

(1 + exp(Xiγ))2
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APPENDIX D: DERIVATION FOR SCZINB APPROXIMATION

The log likelihood for a negative binomial model is

l(y, β, φ) =
n∑
i=1

[
log

(
Γ(yi + 1/φ)

yi!Γ(1/φ)

)
+ yi log

(
φµi

1 + φµi

)
− 1

φ
log(1 + φµi)

]
,(4.32)

Consider the generic form of a GLM model

l(y, β, ϕ) =
n∑
i=1

li =
n∑
i=1

{
ϕ−1[yiθi − b(θi)] + c(yi, ϕ)

}
Assuming the over-dispersion parameter φ is fixed, then a negative binomial distribution

belongs to the exponential family. Thus matching it with the generic form of a GLM

model, we have

ϕ = 1

θi = log

(
φµi

1 + φµi

)
,

∂θi
∂µi

=
1

V (µi)
=

1

µi + φµ2
i

b(θi) =
1

φ
log(1 + φµi) = −1

φ
log[1− exp(θi)], b′(θi) = µi, b′′(θi) = Vi

c(yi, ϕ) =
Γ(yi + 1/φ)

yi!Γ(1/φ)

Let ηi = xTi β = g(µi), where g is a link function. In our model, ηi = g(µi) = log(µi).

To derive the the MLE of βj, we start with the score function and Fisher’s infor-

mation matrix. The score function is

Sj =
∂l(y, β, ϕ)

∂βj
=

n∑
i=1

∂li
∂θi

∂θi
∂µi

∂µi
∂ηi

∂ηi
∂βj

=
n∑
i=1

(yi − µi)
1

V (µi)

1

g′(µi)
xij. (4.33)
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Let Ijk be the (j, k)-th element of the Fisher’s information matrix,

Ijk =
n∑
i=1

E

[
∂li
βj

∂li
βk

]
=

n∑
i=1

E

{
(yi − µi)2

[V (µi)g′(µi)]
2xijxik

}
=

n∑
i=1

{
1

V (µi) [g′(µi)]
2xijxik

}
,

since E[(yi − µi)2] = V (µi).

Let I(t−1) = I(β)|β=β(t−1) and S(t−1) = ∂l/∂β|β=β(t−1) . By Fisher scoring, the update

of β from the (t− 1)-th iteration to the t-th iteration is

β(t) = β(t−1) +
[
I(t−1)

]−1
S(t−1) ⇒ I(t−1)β(t) = I(t−1)β(t−1) + S(t−1).

LetW be a diagonal n×nmatrix, with the i-th diagonal element wi = 1/{V (µi) [g′(µi)]
2}

for i = 1, ..., n. Then based on equations (4.33) and (4.34), the score function and

information matrix can be written as

S = XWζ and I = XTWX,

where ζ is a vector of length n and ζi = (yi−µi)g′(µi). When W is evaluated based on

β(t−1), we write it as W (t−1). Then the Fisher scoring equation can be written as

[XTW (t−1)X]β(t) = XTW (t−1)Xβ(t−1) +XW (t−1)ζ = XTW (t−1)
[
η(t−1) + ζ

]
.

Therefore, β(t) is the solution of weighted least squares with working response being

ξ = η + ζ, and ξi = xiβ + (yi − µi)g
′(µi), and weight for the i-th observation is

1/{V (µi) [g′(µi)]
2}. Here we use log link function g(µ) = log(µ), and thus

ξi = xiβ + (yi − µi)/µi, and wi =
µ2
i

µi + µ2
iφ

=
µi

1 + µiφ
.
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APPENDIX E: PSEUDOCODE FOR SCZINB

Given response vector y, covariate matrix X and tuning parameters (λ, τ). (Note

that first column of covariate matrix is 1 for the intercept.):

(1) Scale X columns to standard deviation 1.

(2) Initialize:

• β = γ = 0

• θ = 1

• ∆θ = 1.8e+ 308

(3) While Loop over θ Estimates. (End Criteria: ∆θ < 1e− 2 or 5 iterations):

(a) Store Previous Value:

• θs = θ

(b) Initialize:

• ` = −1.8e+ 308

• ∆ = ∆k = 1.8e+ 308

(c) While Loop over EM Algorithm (β, γ). (End Criteria: ∆ < 1e − 5 or 1000

iterations):

i. Store Previous Values:

• `s = `

ii. Calculate current estimated means:

• π =
exp(η(γ))

1+exp(η(γ))
; η(γ) = Xγ

• µ = exp(η(β)); η(β) = Xβ

iii. Update expected value of latent variable: ẑ = I(y = 0) π
π+(1−π)fNB(0;µ,θ)
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iv. For Loop over each gene (Update βk, γk, k ∈ {1, 2, ..., p}):

• While Loop over βk, γk estimates. (End Criteria: ∆k < 1e− 5)

A. Store old estimates:

• βs = βk

• γs = γk

B. Recalculate current estimated means:

• π =
exp(η(γ))

1+exp(η(γ))
; η(γ) = Xγ

• µ = exp(η(β)); η(β) = Xβ

C. Update Beta

• Calculate IRLS Values:

• v(β)
i = (1− ẑi) µ2i

µi+µ2iφ

• ξ(β)
i = Xiβ + yi−µi

µi

• Calculate update values:

• b̄k =
∑
i v

(β)
i (ξ

(β)
i −Xi,−kβ−k)Xik∑
i v

(β)
i X2

ik

• δ(β) = I(k > 1) λ

2
∑
i v

(β)
i X2

ik(|β(t)
k |+|γk|+τ)

• Update:

βk =


b̄k − δ(β), if b̄k > δ(β)

b̄k + δ(β), if b̄k < −δ(β)

0 otherwise

(4.34)

D. Update Gamma

• Calculate IRLS Values:

• v(γ)
i = πi(1− πi)

• ξ(γ)
i = Xiγ + ẑi−πi

v
(γ)
i

• Calculate update values:
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• ḡk =
∑
i v

(γ)
i (ξ

(γ)
i −Xi,−kβ−k)Xik∑
i v

(γ)
i X2

ik

• δ(γ) = I(k > 1) λ

2
∑
i v

(γ)
i X2

ik(|βk|+|γ
(t)
k |+τ)

• Update:

γk =


ḡk − δ(γ), if ḡk > δ(γ)

ḡk + δ(γ), if ḡk < −δ(γ)

0 otherwise

(4.35)

E. Calculate end criteria: ∆k = |βk − βs|+ |γk − γs|.

v. Recalculate log likelihood:

A. Recalculate current estimated means:

• π =
exp(η(γ))

1+exp(η(γ))
; η(γ) = Xγ

• µ = exp(η(β)); η(β) = Xβ

B. Calculate log likelihood components:

• `0 =
∑

i{log[πiI(yi = 0) + (1− πi)fNB(yi;µi, φ)]}

• ρ =
∑p

2 λ log(|βk|+ |γk|+ τ)

C. ` = `0 − ρ

vi. Calculate end criteria: ∆ = |`s − `|

(d) Restimate θ using MLE with y, µ, ẑ.

(e) Calculate end criteria: ∆θ = |θs − θ|
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APPENDIX F: ADDITIONAL FIGURES AND TABLES

Table F1: Mean Results for Mardia’s Test of Multivariate Normality for Residuals of
Exclusive Pairs within Cross Validation Sample

Percentile Skew Stat Skew P Kurt. Stat Kurt. P Max Mah. Dis
PenPC 25% 0.196 8.381e-03 10.086 1.098e-07 23.744

50% 0.428 5.077e-06 11.748 0.000 31.566
75% 0.826 8.455e-12 13.398 0.000 43.017

Model 25% 0.258 1.434e-03 10.732 7.859e-11 25.599
Free 50% 0.481 1.089e-06 12.252 0.000 39.880

75% 0.957 6.102e-13 14.834 0.000 46.736
Max Mah. Dis refers to maximum Mahalanobis Distance.
Kurt. refers to kurtosis.
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Figure F1: Comparison of coefficient sizes for pairs exclusively selected by either PenPC
or Model Free. For each pair, two coefficients per member are estimated (one for each
member used as the response) by either the PC algorithm or mGAP, then the L2

norm of these coefficients are calculated. Since the coefficients derived from PenPC
and Model Free are not directly comparable, we show, in the following barplots, the
percentile of the derived L2 norms for each method separately.
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(b) Cross Validation Sample
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Figure F2: Comparison of − log10(P-Values) Found by Monte Carlo Simulation vs
Imhof’s Exact Method across 100, 1000, and 5000 iterations. Horizontal and vertical
reference lines are for − log10(0.05) and diagonal reference line is for y = x (p-values
are equivalent).
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