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ABSTRACT 

 

MARGARET M. KOVACH: Climate-Human Health Vulnerability: Identifying 

Relationships between Maximum Temperature and Heat-Related Illness across North 

Carolina (Under the direction of Charles E. Konrad II) 

 

Heat kills more people than any other weather-related event in the United States, 

resulting in hundreds of fatalities each year. In North Carolina, heat-related illness accounts for 

over 2,000 yearly emergency department admissions. In this study, data from the North Carolina 

Disease Event Tracking and Epidemiologic Collect Tool is used to identify spatiotemporal 

relationships between temperature and morbidity across six warm seasons (May-September) 

from 2007 through 2012. Spatiotemporal relationships are explored across different regions (e.g. 

coastal plain, rural) and demographics (e.g. gender, age) to determine the differential impact of 

heat stress on populations. Additionally, HRI incidence will be mapped across North Carolina 

and linked with land cover and socioeconomic data to determine which local characteristics 

correlate with an increase in a population’s risk for HRI.  This research reveals that most cases 

HRI occurs on days with climatologically normal temperatures (e.g. 31 to 35 ˚C); however, HRI 

rates increase substantially on days with abnormally high daily maximum temperatures (e.g. 35 

to 37.8 ˚C).  HRI ED visits decreased on days with extreme heat (e.g. greater than 37.8 ˚C), 

suggesting that populations are taking preventative measures during extreme heat, and therefore 

mitigating heat-related illness. Analyses also reveal the largest number of heat-related illnesses 

occur in rural locations, particularly in areas of the Coastal Plain where a large percentage of the 

population lives below the poverty line and engage in outdoor labor. 
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CHAPTER 1: INTRODUCTION 

 

Environmental heat stress is associated with increased morbidity and mortality.  Heat 

stress occurs when the thermoregulation system is overwhelmed and cannot shed sufficient heat 

through sweating, causing the body’s core temperature to rise. In such instances, this heat stress 

can cause heat-related illness (HRI), which clinically manifests with symptoms, such as heat 

cramps, heat syncope, and heat exhaustion (Becker and Stewart 2011, Lugo-Amado et al. 2004).  

Signs of heat-related illness may include fatigue, thirst, tiredness, mental confusion, weakness, 

paleness, fainting, nausea, vomiting, and headache (Kilbourne et al. 1980).  If left untreated, HRI 

can progress to heat stroke, a life threatening condition, with severe health effects such as, 

delirium, convulsions, or coma. Survivors of heat stroke experience neurologic impairment, 

which can persist long after recovery and often results in mortality within one year (Dematte et 

al. 1998). 

Heat-related deaths are traditionally studied in the context of heat waves, where classic 

heat stroke and deaths from cardiovascular or respiratory diseases have been shown to rise.   The 

major risk factors for heat-related mortality include age, socioeconomic factors, and lack of 

preventative behaviors (i.e. air conditioning, relocating to a cooling shelter). In the United States, 

one of the most studied heat waves occurred in Chicago in 1995 heat wave, where a five-day 

period of extreme heat event resulted in nearly 700 excess deaths (Johnson et al. 2012).   These 

heat-related deaths were found to be most common among the poor or elderly and those who 

were socially isolated and required the assistance of visiting nurses, housekeepers, or outside 

programs (Whitman et al. 1997, Semenza et al. 1999, Naughton et al. 2002, Jones et al. 1982, 
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Kilbourne et al. 1982).  Living conditions, including the type of building, floor level, the 

presence of an air conditioning unit and the number of rooms, were also found to be important 

determinants of heat-related morality (Semenza et al. 1996).  Other literature that examined heat 

waves in Chicago (1990), St. Louis (1980), and Kansas City (1980) have found similar results 

with greater mortality among the elderly, poor, social isolated non-whites, and city dwellers 

(Jones et al.1982, Naughton et al. 2002, Kilbourne et al. 1982).    

Despite a well-establish relationship between heat and mortality, few studies have 

attempted to assess the impact of heat on morbidity.  This gap in research is due to restrictions on 

the use and availability of hospital and emergency department data. These studies have 

contradictory results from heat-mortality studies. In London, for instance, United Kingdom 

hospital ED visits were compared to overall mortality rates. Results found that for the same high 

temperatures, ED visits did not increase, whereas mortality increased markedly (Kovats et al. 

2004). Similarly, in the Chicago 1995 heat wave, overall mortality increased 147%, whereas ED 

visits increased by 11% (Semenza et al. 1999, Whitman et al. 1997). However, when examining 

ED visits specifically related to HRI, there are significant increases with temperature, even with 

modest temperature increases (Knowlton et al. 2009).  Most of these HRI ED admissions occur 

in the elderly (i.e. 65 years and older), children, or for people with underlying medical 

conditions.  These populations are generally considered more heat vulnerable, with 

thermoregulation systems that do not readily mitigate high temperatures (Jones et al. 1982, 

Semenza et al. 1999).  

Variations in the relationship between temperature and HRI or deaths are complicated by 

a population’s coping abilities and the timing of the heat onset. In the United States, there is not a 

universal temperature range where rates of heat-related morbidity and mortality rise significantly 
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(McGeehin and Mirabelli 2001).   Kalkstein and Davis (1989) found that the strongest 

relationships between temperature and mortality in the United States occur in regions where hot 

weather is uncommon and the weakest relationships occur in the hottest locations.  These 

differences in the relationship between temperature and mortality can be attributed to regional 

acclimation (Kalkstein and Davis 1989). Similarly, Curriero et al. (2002) found that residents of 

northern cities (e.g. Chicago, IL Boston, MA) have lower minimum mortality temperatures than 

residents of southern cities (e.g. Miami, Tampa, FL).  They also confirmed that residents of 

northern cities are at greater risk of dying from heat events due to a lack of regional acclimation.  

Research into acclimation demonstrates that initial physiological acclimation to hot 

environments can occur over a few days, but complete acclimation may take several years 

(Zeisberger et al. 1994). 

The timing of extreme heat across summer months is also important. Heat waves or high 

temperatures occurring in the early summer or spring result in more deaths than the same high 

temperatures in the later summer months. This phenomenon is known as mortality displacement 

(formerly known as the harvesting effect) and occurs when the most vulnerable populations 

experience mortality earlier in the summer, while less vulnerable populations survive extreme 

heat either through behavioral or physiological adaptations (Basu and Samet 2002, Anderson and 

Bell 2011).   

Heat-related deaths and illnesses are expected to increase in the future, as general 

circulation models of climate change project increases in temperatures and extreme heat events 

(Meehl & Tebaldi 2004). The potential for reducing future impacts is significant for several 

reasons.   
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1.)  Heat-related illness is easily prevented through basic hydration or relocating to a 

cooler environment; thus basic warning and public health interventions can easily 

mitigate future heat-health effects.   

2.) Meteorologists can accurately forecast the severity, duration, and intensity of heat 

several days prior to an extreme heat event. Therefore, identifying temperatures that 

cause HRI will allow for the activation of an early heat warning system or emergency 

response plan to mitigate future HRI.  In other locations, heat warning systems (HWWS) 

have been applied and shown to decrease mortality (Ebi et al. 2004).   

3.) High risk populations experience a disproportionate number of health impacts.   

Identifying these high risk populations in a given location will allow for targeted public 

health and resource allocation that can mitigate any negative health impacts. This 

motivates the need to identify vulnerable locations and populations as well as the 

temperatures that increase HRI.  

The aim of this dissertation is to identify local to regional scale patterns of climate-health 

vulnerabilities and the temperatures that control these patterns.  This will be carried out by 

identifying the spatiotemporal footprint of HRI and how it intersects with the spatial patterns of 

temperature.  Specifically, this study will address the following questions:  

1.) What is the spatial pattern of HRI across North Carolina and how does this pattern 

relate to socioeconomic, demographic, and land cover patterns?  

2.) What is the spatial relationship between temperature and HRI, and how this 

relationship is modified among different demographics and regions (e.g. rural, mountains, 

etc.)?  
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3.) What is the intra-seasonal relationship between temperature and HRI across the warm 

months? 

This study expands upon previous literature in several ways: 

 1.) It examines populations that have not been studied in the context of heat-health 

vulnerability (e.g. rural populations, farm workers).  Previous research has focused 

mainly on metropolitan locations, where population density is the greatest and there is a 

heat island in which surface heat retention elevates nocturnal temperatures (McGeehin 

and Mirabelli 2001).  This research, complements some recent research (e.g. Sheridan 

and Dolney 2003, Gabriel and Endlicher 2011), which suggests that rural populations 

experience greater rates of heat-health effects.  

2.) It assesses regional differences in the heat morbidity and temperature relationship 

across the state of North Carolina. This approach addresses the need for more multi-

location studies with consistent methodologies to make comparisons between 

temperature effects on locations and populations (Kalkstein and Greene 1997, Ye et al. 

2012). 

 3.) It considers heat vulnerability through an examination of heat morbidity (i.e. HRI) 

rather than heat mortality.  Because heat morbidity has received limited attention, these 

these findings open the door on that dimension of HRI.  

 4.) It will examine HRI in North Carolina, which is situated in the southeastern United 

States where there is a lack of heat-mortality and excess deaths from heat waves 

(Donaldson et al. 2003, Davis et al. 2003).  Despite few heat-related deaths, North 

Carolina still experiences significant numbers of heat-related illness (Lippmann et al. 
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2013).  The state also provides an excellent setting to study patterns of HRI due to its 

humid subtropical climate, large and rapidly growing population, and state of the art 

morbidity surveillance network (i.e. NC-DETECT).  

Ultimately, results from this dissertation will provide new insights on the etiology of HRI 

in North Carolina and illustrate how geographic methods can be employed creatively to uncover 

significant climate-public health relationships.  
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CHAPTER 2: AREA-LEVEL RISK FACTORS FOR HRI 
 

Every year, a large number of hospitalizations and deaths occur in association with 

exposure to heat (Basu and Samet 2002). This exposure is detrimental to a person’s health when 

it overwhelms their ability to thermoregulate, increasing the likelihood of succumbing to heat 

stroke or exacerbating pre-existing health conditions (Kovats and Hajat 2008; Luber and 

McGeehin 2008).  Most of these heat-health effects are concentrated in geographic areas where 

certain socioeconomic factors and physical exposure increase a population’s vulnerability to 

heat-related morbidity or mortality. Adverse health effects from heat are preventable through 

basic hydration or relocating to a cooler environment; therefore, public health interventions are a 

key component in reducing these effects (Luber and McGeehin 2008). However, establishing 

which populations are at greatest risk is a complex issue involving a combination of 

environmental and social conditions.   

Numerous studies have identified individual-specific risk factors for heat-related 

mortality, with age, income, and social isolation being the most important (Jones et al. 1982; 

Kilbourne et al. 1980; Naughton et al. 2002; Semenza et al. 1996, 1999). Certain living 

conditions, including the type of building, floor level, the presence of an air conditioning unit, 

and the number of rooms, are also important determinants of heat-related mortality (Semenza et 

al. 1996).  Research assessing the impact of heat on morbidity is more limited, owing partly to 

the availability of hospitalization or emergency department (ED) data.  Despite this limitation, 

increases in morbidities, such as heat-related illness (HRI), have been noted in heat waves in 

Chicago, IL in 1995 and St. Louis and Kansas City, MO in 1980 (Jones et al. 1982; Semenza et 
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al. 1999). Most of these morbidities befall the elderly (65 years and older) and individuals with 

underlying medical conditions (Jones et al. 1982; Semenza et al. 1996, 1999; Knowlton et al. 

2009).  

The majority of heat-health research has been conducted in urban areas, which are 

generally warmer than surrounding rural areas due to the urban heat island effect (Dousset et al. 

2011; Böhm 1998).  Additionally, since urban areas display high population densities, the 

number of deaths and morbidities attributable to extreme heat can be very high (Luber and 

McGeehin 2008). Less research has been conducted in rural regions. Some examples include 

Gabriel and Endlicher (2011), who found higher mortality rates in urban locations compared to 

rural locations during extreme heat events in Germany.  Similar results were noted in and around 

St. Louis and Kansas City, MO during the 1980 heat wave (Jones et al. 1982). In contrast, both 

Sheridan and Dolney (2003) and Henderson et al. (2013) found higher mortality rates in rural 

and suburban regions compared to urban regions in Ohio, USA and British Columbia, Canada, 

while Lippmann et al. (2013) found a similar pattern in North Carolina, USA using ED visit data 

for HRI.    

Heat-health researchers have also attempted to address heat vulnerability at a local level 

by aggregating previous established area-level risk factors for heat mortality into heat 

vulnerability indexes. Often, these studies identify vulnerable locations, by examining the 

collocation of areas of greater physical exposure to extreme heat (e.g. urban surfaces) with 

locations displaying high social vulnerability (e.g. living below the poverty line, minorities) 

(Chow et al. 2012; Harlan et al. 2013; Johnson et al. 2012; Reid et al. 2009).  Reid et al. (2009), 

provides a useful example of this approach. They incorporated several physical, socioeconomic, 

and environmental area–level factors at the metropolitan level through the creation of a heat 
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vulnerability index (HVI). Using principal components analysis, their index reduces 10 variables 

into four representative factors including social and environmental vulnerability, social isolation, 

prevalence of air conditioning, and proportion of the population that are elderly or diabetics.  

Using the HVI, they contrast differences in vulnerability across different metropolitan regions of 

the United States, particularly downtown metropolitan areas, which have some of the highest 

HVI values. 

The main limitation of these studies is that their results (i.e. identification of areas with 

high and low heat vulnerability) are not validated with actual counts of morbidity or mortality.   

Recent research has evaluated some of these indices, including the HVI, to assess whether they 

indeed demarcate areas of high heat vulnerability. Reid et al. (2012) assessed the utility of the 

HVI with hospitalization and mortality data and found that it correctly identified locations with 

an overall high health burden. However, the performance of the HVI varied when comparing the 

health burden on days with high temperatures across different locations.  Harlan et al. (2013) 

evaluated the HVI in Phoenix, Arizona, United States and found that certain HVI factors, such as 

social and environmental vulnerability and elderly, accompanied with land surface temperatures, 

most accurately predicted heat mortality.  Most recently, Maier et al. (2014) evaluated the HVI 

across the state of Georgia and found increases in all-cause mortality during extreme heat for 

counties with high HVI values.  

Unlike the HVI approach, this research assessed the spatial variability of heat 

vulnerability using an ecological study design, where spatially explicit, area-level risk factors are 

associated with heat morbidity (i.e. HRI).  I determine these area-level risk factors from fine-

scaled spatial variations in the incidence of HRI using ED visit data, rather than from previously 

established individual-level risk factors. Additionally, I examine HRI incidence across rural and 
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urban landscapes and populations. Thus, previously unexamined risk factors common to rural 

locations are included in the analysis (e.g. mobile homes, non-citizens, and labor requirements 

for agriculture production). By identifying the risk factors for HRI and the locations of 

vulnerable populations within North Carolina, more targeted public health interventions and 

strategies for resource allocation can be developed to help mitigate the health effects of heat. 

Materials and Methods 

 

Health Data   

The incidence of HRI in North Carolina was determined using emergency department (ED) visit 

data from the North Carolina Disease Event Tracking and Epidemiologic Tool (NC DETECT), a 

statewide, public health surveillance system developed by the University of North Carolina and 

the North Carolina Division of Public Health (Lippmann et al. 2013).  NC DETECT provides 

information on the age, sex, county of residence, and ZIP code of residence of the patient, as 

well as the date and time of the ED visit, and up to 11 diagnoses at discharge coded using the 9th 

revision of the International Classification of Disease (ICD-9-CM).  It is estimated that NC-

DETECT included ED visit data for 92% of the population in 2007 and 99.5% by 2008, allowing 

for statewide coverage of HRI incidence rates (Rhea et al. 2012).  NC-DETECT does not include 

ED data from federally run military hospitals (Womach Army Hospital at Fort Bragg near 

Fayetteville and Naval Hospital at Camp Lejune near Jacksonville) or Indian Health Services 

hospital (Cherokee Indian Hospital) located on the Qualla Boundary. ED visits containing at 

least one heat-related code (ICD-9-CM code 992.xx) in any of the 11 diagnostic fields were used 

in this study to calculate the incidence of HRI.  Due to the low number of HRI ED visits (i.e. < 

10 ED visits for HRI over the six year time period), the mountainous western quarter of the state, 

which rarely experiences temperatures above 35°C, was excluded from the analysis.  The 
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resulting dataset contains a total of 13,095 ED visits for HRI covering the warm season months 

(May-September) from 2007-2012.   

Demographic and Socioeconomic Data 

 Information on the demographic and socioeconomic characteristics of North Carolina 

was gathered from the 2010 Census and the 2008-2012 American Community Survey (ACS) at 

the ZIP code level (i.e. ZIP code tabulation area, or ZCTA).  Similar to the HVI (Reid et al. 

2009), we gathered data on age, poverty, educational attainment, those living alone, and non-

white population.  Information on diabetes prevalence and air conditioning were not included, 

since these variables were not available at the ZIP code level.  However, air conditioning is 

nearly ubiquitous in the southeastern U.S., with 97% of households owning either a window unit 

or central air system (U.S Energy Information Administration 2010).  We also gathered data on 

non-citizens from the ACS.  This variable is not included in the HVI but may capture potentially 

vulnerable populations in North Carolina, such as migrant farmworkers or immigrants who 

experience social isolation or lack of access to health care resources. Unlike Reid et al. (2009), I 

did not combine elderly and those living alone, and instead left them as discrete variables.  All 

demographic and socioeconomic variables were expressed as a percentage of the total population 

for each ZCTA. Older houses and mobile homes tend to be less energy efficient (Harrison and 

Popke 2011), which in turn affects the ability to cool these structures during summer months. 

Therefore, to account for the potential effects of housing structure, we examined the median year 

that a house structure was built and the percentage of the population residing in a mobile home.   

Land Cover and Agricultural Data  
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Land cover can influence the micro-climatic conditions, including temperature, 

evapotranspiration and surface run-off (Foley et al. 2005). Land cover data were obtained from 

the National Land Cover Database (NLCD) (U.S. Department of the Interior 2012).  The NLCD 

provides a 30 X 30 m pixel raster of land cover data, which can be aggregated to varying spatial 

scales. Land cover classifications include developed land, different types of forest cover (i.e. 

mixed forest, deciduous forest, evergreen forest, mixed forest), and several classifications of 

agriculture. Similar to Reid et al. (2009), each NLCD pixel is assigned to a ZIP code in which its 

center is located.  Percent land cover was calculated for ZIP codes, as the sum of the land area 

classification divided by the total area for the ZIP code. Percent land cover for different 

classifications was calculated for each year of available data (i.e. 2008-2012) and averaged to 

represent the entire study’s time period (i.e. 2007-2012). The percentage of impervious surface 

area in each ZIP code was estimated by aggregating across all the developed land cover 

categories (i.e. open, low, medium, and high). Likewise, the percentage of green space in urban 

areas was estimated by aggregating across all forest cover types (i.e. mixed forest, deciduous 

forest, etc.).   

The NLCD also provides land cover information for over 40 crop types from 2008 to 

2012.  Assessing heat vulnerability in rural populations that specialize in agriculture is especially 

important in North Carolina, which experiences the highest number of heat-related deaths among 

farm laborers in the U.S. (Luginbuhl 2008).  Farm laborers acquire heat externally from the 

environment (e.g. solar radiation) but also generate much heat internally through metabolic 

processes resulting from strenuous muscular activity (May 2009). To estimate the amount of 

physical labor required for crop production, crop enterprise budgets (Greaser 1994) were 

acquired for each of the crop types identified in the NLCD found across North Carolina. Total 
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labor costs were obtained from these budgets by averaging the hours of machinery labor and 

farm labor required per acre of crop production. These hourly labor estimates were obtained 

from crop enterprise budgets developed at Clemson University, North Carolina State University, 

Florida State University, and Mississippi State University. Labor requirements for different crops 

ranged from over 74 hours for fruit crops, including strawberries and peaches, to less than 1 hour 

for wheat or grass crops.  Similar to other land cover variables, percent land cover for the 

different crop types were calculated from the NLCD data as the sum of the crop area 

classification divided by the total ZIP code land cover area. Within each ZIP code, the percent 

areal coverage of each crop type allowed for a weighted average of the hourly labor requirements 

for crop production. This resulted in a single hourly estimate of labor requirements for all the 

crops grown within each ZIP code. 

Analysis 

 

In order to identify a statistical relationship between ED visits and risk factors for HRI in 

North Carolina, spatial regressions were constructed for rural and urban populations using R 

software 3.0.1, specifically the spdep package (R Foundation for Statistical Computing, Bivard 

2014).  In contrast to previous heat-health research, which evaluated rural and urban differences 

at the county level, this study evaluates HRI at the ZIP code level.  This provides a finer spatial 

scale of analysis that better captures Census-defined urban areas.  Each patient’s ZIP code 

address was used to assign the location of the ED visit.  Using the 2010 Census for a comparison, 

ZIP codes with a population density of at least (less than) 150 people per km2 were classified as 

urban (rural), since they encompassed the greatest number of Census defined locations (Figure 

1).  



14 
 

In traditional multiple regression approaches, an a priori assumption is made that all data 

are collected from the same location.  However, in practice, each location displays a unique 

relationship with the health data and risk factors in question. Spatial regression approaches, 

however, account for these spatial effects. These techniques have been employed in other public 

health studies (e.g. Drewenowski et al. 2007, Smiliey et al. 2010) to identify risk factors for 

separate health outcomes (i.e. obesity, tobacco, etc.) but, to date, have not been exploited for HRI 

outcomes.   

ED visits for HRI were standardized by age and gender-specific population estimates 

from the 2010 Census at the ZIP code level. This standardization resulted in a crude incidence 

rate, with heat vulnerability being displayed as heat-related ED visits per 100,000 person-years. 

In order to perform a regression analysis, the HRI incidence rate was transformed to obtain a 

normal distribution. Potential transformations, including square root, log, and logistic 

transformations were tested. In this case, the log of HRI incidence followed the most normal 

distribution. To account for locations with zero ED visits for HRI, a coefficient of one was added 

to this transformation of log(HRI). 

Similar to other spatial regression studies, (e.g. Drewnowski et al. 2007), I used a 

bivariate analysis to select variables for use in the spatial regression. Within the bivariate 

analysis, all 11 potential demographic, socioeconomic, and land cover risk factors were assessed 

to determine whether they have a statistically significant association with rates of HRI.  Bivariate 

relationships were assessed with log linear regression models using a two tailed test, (α = 0.05). 

In the urban areas, six risk factors were significant at the 95% confidence level, while all 11 risk 

factors in the rural areas were significant at the 95% confidence level (Table 1). Those risk 
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factors found not to be statistically significant at the 95% confidence level were eliminated from 

the analysis.   

 

 

Table 1: Coefficient of determination and correlation coefficient for potential risk factors.  

 

 To address potential multicollinearity between risk factors, correlation matrices and 

variance inflation factors were calculated for all significant risk factors identified from the 

bivariate analysis.  In the rural locations, four variables exhibited multicollinearity: Median Year 

Structure Built was highly correlated with the Developed Land (r = 0.70) and No High School 

Diploma was highly correlated with Living below the Poverty Line (r = 0.51).  In these instances, 

the variables Living below the Poverty Line and Median Year Structure Built were removed from 

the analysis since both risk factors displayed the weakest relationship with HRI. Lastly, to ensure 

no additional multicollinearity existed among remaining variables, the variance inflation factor 

(VIF) was calculated. VIF quantifies how much the variance is inflated for each independent 

variable due to collinearity.  A high VIF indicates that two or more collinear independent 

variables were included in the model. Typically, VIF values greater than 10 signify 

multicollinearity.  In both rural and urban locations, the VIF for the remaining risk factors was 

less than 1.5, indicating no significant multicollinearity between them. 

 Rural Urban 

Area Level Risk Factors R2 R p-value R2 R p-value 

No High School Diploma 0.07 0.27 <0.001 0.13 0.36 <0.001 

Mobile Home 0.13 0.35 <0.001 0.16 0.40 <0.001 

Living below the Poverty Line 0.03 0.17 <0.001 0.11 0.33 <0.001 

Median Year Structure Built 0.10 0.32 <0.001 0.03 0.17 <0.001 

Non-Citizens 0.01 0.09 <0.01 0.04 0.20 <0.01 

Minority 0.02 0.12 <0.001 0.01 0.10 0.68 

Labor-Intensive Agriculture 0.03 0.18 <0.001 --- --- --- 

Forest Cover --- --- --- 0.02 0.16 <0.05 

Developed Land 0.20 0.45 <0.001 0.00 0.01 0.89 

Elderly 0.02 0.14 <0.001 0.02 0.13 0.09 

Living Alone 0.01 0.12 <0.01 0.01 0.07 0.95 
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To confirm that spatial regression modeling was appropriate for this study, ordinary least 

square multivariate linear regression models (i.e. OLS) were constructed using the R statistical 

package to test for spatial autocorrelation of the residuals. In a regression analysis, spatially 

autocorrelated residuals violate the specification assumptions of OLS models.  In this study, 

spatial autocorrelation was evaluated with Moran’s I, which is roughly equal to zero when there 

is no spatial autocorrelation and increases to +/- 1 when there is greater spatial autocorrelation 

(Cliff and Ord, 1981, Anselin, 1998).  

In the rural locations, bivariate predictors of the dependent variable, log(heat – related 

illness + 1) were all significant at the 95% confidence level. Within the OLS regression model 

only the coefficients for Mobile Homes, Developed Land, Elderly, Non-citizen, and Labor 

Intensive Agriculture were significant the 95% in confidence level.   The coefficients for Living 

Alone and No High School Diploma were insignificant with the OLS and did not improve model 

performance (e.g. similar R2 value and AIC value) (Table 2). In the urban locations, significant 

bivariate predictors of the dependent variable, log (heat – related illness + 1) included No High 

School Diploma, Mobile Homes, Living below Poverty Line, Median Year Structure Built, Non-

Citizen, and Forest Cover.  All of these variables were included in the OLS model and were 

significant at the 99% confidence level (Table 2). In both rural and urban OLS models, the 

regression residuals exhibited spatial autocorrelation at the 99% confidence level, verifying the 

need for spatial regression techniques to account for the spatial effects within the data.   

 

Area-Level Factors Coefficient Standard Error P-Value 

Rural    

Mobile Homes 2.292 0.4701 0.0000 

Developed Land -0.030 0.045 0.0000 

Non-Citizens 0.0002 00001 0.0509 
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Elderly 2.187 0.9223 0.0318 

Labor-Intensive Agriculture 0.686 0.245 0.0053 

R2 0.25   

AIC 1660   

Urban    

No High School Diploma 3.201 1.095 0.0039 

Mobile Home 2.994 0.6312 0.0000 

Living below the Poverty 

Line 

1.692 0.6025 0.0055 

Median Year Structure Built -0.001 0.0003 0.0028 

Non-Citizen -5.100 1.0959 0.0000 

Forest Cover -0.010 0.0028 0.0007 

R2 0.40   

AIC 2034   

Table 2: Ordinary least regression model output for rural and urban location 

 

Spatial autocorrelation in the OLS residuals may be the result of autocorrelation of the 

dependent variable (i.e. spatial lag) or autocorrelation in the error term (i.e. due to spatially 

autocorrelated predictors that are not included in the model). The Lagrange Multiplier test 

identifies which form of spatial autocorrelation is present and what model type is best through 

the calculation of a Robust Lagrange Multiplier Index.  Index values for both rural and urban 

locations indicate that the spatial error regression tends to be more significant (statistically 

significant: p-value <0.01) than the spatial lag regression model. Hence, the spatial error model 

is the more appropriate model specification for this data (Anselin 1988).   

In the spatial error regression model, the spatial error term incorporates spatial 

dependence into the error term (Anselin and Bera 1998).  

𝑦 = 𝑋𝛽 + 𝜀 with 𝜀 = 𝛾𝑊 + 𝜑 

where W is spatial weights matrix, is the vector error terms,  𝜀 are spatially lagged errors, and 𝜑 

is a vector of independent random errors.  𝛾 is an autoregressive coefficient, which describes the 

extent to which the errors are correlated with each other, given the spatial weights matrix 
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(Anselin and Bera 1998).   In order to apply the methods of spatial regression analysis, we 

needed to express the nearness of geographic units, using a spatial weights matrix (W) (GeoDa 

version 1.6.6, Tempe, AZ).  The spatial weights matrices were assigned a first-order contiguity 

weights matrix (e.g. queen contiguity); where we considered ZIP codes that shared boundaries 

and vertices as contiguous (Anselin and Bera 1998, Aneslin et al. 2006).   

Spatial error regression models were constructed for both rural and urban locations, using 

the same variables that were significant at the 95% confidence level in the OLS models. The 

results of the spatial error regression models are presented in Table 3. The residuals of both the 

urban and rural spatial error regression model exhibited no significant spatial autocorrelation. 

This finding further confirms that the spatial error regression model successfully incorporates the 

spatial effects.   

Area-Level Factors Coefficient Standard Error P-Value 

Rural    

Mobile Homes 1.623 0.4895 0.0000 

Developed Land -0.0343 0.0047 0.0000 

Non-Citizens 0.0002 0.0001 0.0500 

Elderly 2.419 0.9025 0.0073 

Labor-Intensive Agriculture 0.636 0.2883 0.0273 

R2 0.30   

AIC 1636   

Lambda 0.32   

Urban    

No High School Diploma 1.668 1.0845 0.1240 

Mobile Home 2.475 0.5911 0.0000 

Living below Poverty Line 2.070 0.6170 0.0009 

Median Year Structure Built -0.0009 0.0003 0.0031 

Non-Citizen -5.485 1.1151 0.0000 

Forest Cover -0.010 0.0028 0.0006 

R2 0.45   

AIC 345   

Lambda 0.36   

Table 3: Spatial error regression model output for rural and urban locations 
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Results  

 

Figure 1 shows the incidence rate of heat-related ED visits by ZIP code across North 

Carolina for the warm season months (May-September) of 2007-2012. The majority of locations 

with high HRI incidence rates were located in the southern Coastal Plain or the southeastern 

region of North Carolina. The bottom 10% of ZIP codes with the lowest HRI incidence had less 

than 3.4 ED visits per 100,000 person-years. These locations were concentrated around 

metropolitan cities including, Raleigh, Durham, Greensboro, Charlotte, and Winston-Salem. The 

top 10% of ZIP codes with the highest HRI incidence had greater than 41.6 ED visits per person-

years. These locations were concentrated in rural areas in the southern Coastal Plain of North 

Carolina, which experiences some of the warmest summer temperatures in North Carolina. 

 

Figure 1: Map of study area featuring major cities and heat-related illness rates per 100,000 

person-years.  ZIP codes defined as urban using the 150 people per square kilometer 

definition are highlighted in black.  Cities include Charlotte, Greensboro, Raleigh, 

Winston-Salem, Durham, and Fayetteville. Health data was collected from NC-DETECT. 
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Overall, urban locations had fewer total HRI ED visits (42 .7% of the total HRI ED 

visits) than rural ZIP locations (57.3% of total HRI ED visits).  Accounting for age and gender 

specific populations, these differences are even further pronounced with 19.7 ED visits per 

100,000 person-years in urban locations and 33.5 ED visits per 100,000 person-years in rural 

locations. Generally, rural locations displayed a greater percentage of cropland, population 

living below the poverty line, mobile homes, elderly, and residents without a high school diploma 

or living alone.  Urban locations showed a greater percentage of residents with a race other than 

white and percent developed land (Table 4).   

 

Characteristics of 

Rural/Urban Locations 

Living 

below the 

Poverty 

Line 

No High 

School 

Diploma 

Minority Elderly 

Rural 

Mean 17.6 13.1 29.2 15.5 

Standard 

Deviation 
11.4 6 22 6.3 

Urban 

Mean 15.5 8 32.7 11.9 

Standard 

Deviation 
9.7 5.2 20 6 

Characteristics of 

Rural/Urban Locations 

Living 

Alone 

Mobile 

Home 

Developed 

Land 
Cropland 

Rural 

Mean 25.9 25.3 10.5 16 

Standard 

Deviation 
9.2 12.9 14 13.2 

Urban 

Mean 28.5 6.3 25 5.3 

Standard 

Deviation 
9.9 8.1 48.5 7.8 

 

Table 4: Mean and Standard Deviation of Area-Level Risk Factors in Rural and Urban Locations 

 

The rural spatial error regression model explained 30% of variance of HRI ED visits 

(Table 3).  It reveals that rural locations with a greater percent of mobile homes, non-citizens, 
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non-developed land, and more agricultural labor hours predict higher rates of HRI incidence.  

Increases in elderly (i.e. age greater than 65 years old) predicted the largest increase in HRI, with 

10.23 ED visits per 100,000 person-years.  Increases in mobile homes and agricultural labor 

hours predicted 4.07 and 0.89 ED visits per 100,000 person-years, respectively.  Increases in the 

percent developed land predicted decreases in ED visits per 100,000 person-years (Table 3). 

Although non-citizens were significant in the rural model, it only predicted marginal increases in 

ED visits.  

The urban spatial error regression model explained 45% of variance of HRI ED visits 

(Table 3).  It reveals that urban locations with a greater percent of mobile homes, people with no 

high school diploma, and people living below the poverty line predict higher rates of HRI 

incidence.  Whereas, urban locations with a greater percent of non-citizens, forested land cover, 

and newer median year structure built lower rates of HRI. Increases in mobile homes, no high 

school diploma, and living below the poverty line predicted increases in HRI incidence of 10.9, 

4.3, and 6.9 ED visits per 100,000 person-years, respectively.  Increases in non-citizens, median 

year structure built, and forested land cover predicted decreases in HRI incidence of -1.0, -

0.0009, and -0.010 ED visits per 100,000 person-years, respectively. 

Discussion 

 

 Rates of HRI across rural and urban regions of North Carolina were associated with 

socioeconomic, demographic, and environmental area-level risk factors at the ZIP code level.  

This study considered potential risk factors, such as living in poverty and low educational 

attainment that have been identified through previous research (e.g. Reid et al. 2009).  Because 

of the inclusion of rural areas, un-examined risk factors relevant to these locations were also 



22 
 

incorporated, including the number of mobile homes, non-citizens, and estimates of agricultural 

labor intensity.  Spatial regression models were constructed separately for rural and urban 

locations, with each explaining 30% and 45% of the variance of HRI ED visits, respectively.  

 In urban areas, the best predictors of heat-related ED visits included percent of population 

lacking a high school diploma, living in mobile homes, living below the poverty line, median 

year structure built, percentage of forest cover, and percentage of non-citizens.  Most of these 

risk factors are consistent with previous heat-health studies, which are focused on urban areas.  

Specifically, living in poverty and low educational attainment (i.e. no high school education) are 

well-established risk factors for heat-related mortality across many populations and regions (Kim 

and Joh 2006; Naughton et al. 2002; O’Neill et al. 2005).  In our study, both of these risk factors 

predicted large increases in HRI ED visits in the urban locations (i.e. 6.9 and 4.3 ED visits per 

100,000 person-years, respectively).  

  Forest cover and newer buildings have been identified as protective factors against 

adverse heat-health outcomes in urban environments (Vandentorren et al. 2006).  Vegetation 

mitigates the urban heat island effect by reducing heat exposure, while older buildings often have 

deteriorating and insufficient insulation, which can affect the efficiency of air conditioning and 

increase heat exposure.  However, our results only demonstrated a marginal decrease in 

predicted HRI with respect to these two variables. 

This analysis also identified less-established risk factors in urban regions.  The numbers 

of non-citizens in urban locations predicted decreases in HRI ED visits. This may result from 

stronger internal social network and subsequent social cohesion among this population (Chow et 

al. 2012).  Also, large numbers of non-citizens have migrated to affluent urban areas where there 

are many jobs in the technology industry, such as Research Triangle Park near Raleigh.  
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Specifically, these immigrants are often of Asian descent and fulfill the growing demand for 

highly-skilled workers to fuel entrepreneurship and continued employment in the technology 

industry within these urban locations (Appold 2014).  In addition, mobile homes predicted a 

large increase in the number of HRI ED visits within the spatial regression model. Mobile homes 

are an affordable housing option for low-income households in North Carolina and have not been 

studied in the context of heat-related morbidity or mortality (Rust 2007). Mobile homes are often 

energy inefficient, with little or no insulation in the walls, ceiling, floor, or doors (U.S Energy 

Information Administration 2010). Poor insulation limits the ability of air conditioning units to 

sufficiently cool the mobile home. This problem is compounded when residents cannot afford to 

run air conditioning for extended periods of time (Arman and Yarnal 2010).   

In rural areas, the greatest risk factors for heat-related ED visits included elderly, labor-

intensive agriculture, mobile homes, non-citizens, and developed land.  Percent elderly (e.g. 

population greater than 65 years old) predicted the largest increases in HRI incidence.  As noted 

in multiple heat-health studies, elderly have a biological predisposition towards heat stress 

causing them to be more sensitive to heat than younger populations (Basu 2009; Chow et al. 

2012; Kovats and Hajat 2008; Vandentorren et al. 2006).  In comparison to urban locations, rural 

elderly also tend to be of a lower socioeconomic status, which may further increase their 

vulnerability to HRI (Coburn and Bolda 2001).  This difference in socioeconomic status may 

explain why older residents in urban locations do not predict HRI incidence.  

By integrating hourly estimates of labor with land cover data, we developed a variable 

that quantifies the labor requirements of agriculture within each rural location.  As expected, 

increases in hourly labor requirements predicted increases in ED visits for HRI.  We hypothesize 

that farm workers are especially vulnerable in rural areas. Earlier research has demonstrated that 
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40% of North Carolina farm workers experience at least one HRI symptom while laboring in 

extreme heat (Mirabelli et al. 2010). In some cases, HRI cases can lead to death. A review of 

medical examiner records from 1977 to 2001 across the state identified nearly 50% of all 

occupational heat-related deaths also occurred within this group. These deaths often arose from 

physical labor in hot weather (Mirabelli and Richardson 2005).  In addition, other research has 

highlighted that poor housing, lack of access to social networks and health care also make 

farmworkers particularly vulnerable to heat (Montz et al. 2011, Quandt et al. 2013).  

Investigation of the percentage of farm worker populations contributing to ED HRI visits relative 

to the proportion of labor-intensive agriculture would be an important direction for greater 

understanding of these patterns.   

An additional risk factor for HRI in rural locations is the numbers of non-citizens.  In 

contrast to urban locations, the number of non-citizens corresponded with increases in HRI ED 

visits in rural areas.  While this may be related to the isolation experienced by some non-citzens 

(Chow et al. 2012; Harlan et al. 2013), many non-citizens in rural North Carolina perform 

agricultural labor (Carroll et al. 2011) and therefore are highly exposed to the heat and exertion 

heat stress from physical labor (May 2009). 

   Similar to urban locations, mobile homes predicted a large increase in heat-related ED 

visits in rural areas.  Many mobile home owners cannot afford high energy bills that occur when 

attempting to cool poorly insulated mobile homes, particularly during the hot summer months.  

Harrison and Popke (2010) conducted interviews in rural North Carolina that provide evidence 

of unaffordable energy bills, some as high as $400 USD during the warmest months of the year. 

 In rural locations, the only risk factor that predicted decreases in HRI ED visits was the 

amount of developed land or impervious surfaces. This result contradicts previous heat-health 
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research, which has mostly been carried out in urban locations, where effects of the urban heat 

island contribute to heat-related mortality or morbidity (Anderson and Bell 2011; Luber and 

McGeehin 2008).  As reported earlier, rural areas in North Carolina experience significantly 

greater incidence rates of HRI ED visits, and underlying social vulnerabilities (e.g. poverty, low 

educational attainment) in rural areas are a greater concern for increased HRI.  

It is important to discuss some limitations of this study.  The counts and rates presented 

are likely underestimates of the true occurrence of HRI in North Carolina emergency 

departments, since data from NC-DETECT does not include ED visits for federally run hospitals 

(military and Indian Health Services) and other health clinics, such as urgent cares.  Secondly, 

we analyzed data across ZIP code areas, which do not capture socioeconomic and demographic 

differences as effectively as census boundaries (Krieger et al. 2002). Thirdly, the use of single 

classes of rural and urban on the basis of population density does not allow for the capture of 

intervening areas in the urban-rural continuum (e.g. suburban, rural near urban areas etc.).  

Future analysis should incorporate gradations of urban and rural as well as proximity to urban 

areas.  Lastly, we based our study on area-level measures, evaluating the risk factors at a 

population level rather than an individual level. Subsequently, we can only make suggestions of 

the causal pathways that alter individual health at the ZIP code level.  Further research is needed 

to identify the effects of heat at an individual level.  

Conclusion 

 

This study relates socioeconomic, demographic, and land cover patterns to fine-scaled 

spatial variations of HRI for both urban and rural populations across the state of North Carolina. 

It addresses previous research gaps in several ways. First, this study identifies area-level risk 
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factors for heat morbidity rather than heat mortality. Second, it demonstrates that rural 

populations are especially vulnerable to the heat. Over the six-year time period, rural locations 

presented greater rates of HRI compared to urban locations. Lastly, it incorporates several 

previously unexamined heat-health risk factors, including the number of mobile homes, non-

citizens, and the labor-intensity of the agriculture, which were all associated with an increase in 

rural HRI.  In urban locations, previously established risk factors for heat-related mortality, such 

as decreased vegetation, living in poverty, and low education attainment, were associated with 

increases in HRI.  On the other hand, only one established risk factor, elderly, predicted an 

increase in HRI in rural locations of North Carolina. Future research should explore risk factors 

for HRI at the individual-level to confirm which populations and environments increase heat 

vulnerability. Ultimately, results from the present study highlight locations where targeted public 

health interventions, future research, and resource allocation can mitigate ED visits from HRI. 
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CHAPTER 3: RELATIONSHIPS BETWEEN HRI AND TEMPERATURE 
 

Exposure to extreme heat is the most common cause of weather-related fatalities in the 

United States (NOAA 2007). This extreme heat exposure is detrimental to a person’s health 

when it overwhelms their ability to thermoregulate, increasing the likelihood of succumbing to 

heat-related illnesses (Luber and McGeehin 2008). Heat-related illnesses (HRI) range from mild 

heat cramps to heat exhaustion, heat syncope and, in the most severe cases, heat stroke, which 

has a 50% mortality rate (Grogan and Hopkins 2002). Persons with chronic health conditions 

(e.g. cardiovascular disease, diabetes, or obesity) are more susceptible to the effects of heat, 

resulting in further increases in morbidity and mortality (Blum 1998).  Understanding heat-

related morbidity and mortality is of growing importance as climate change is anticipated to 

increase temperatures and the magnitude and frequency of extreme heat events.   

The relationship between extreme temperatures, increased heat-related morbidity, and 

mortality is well established (Basu and Samet 2002). Most research evaluating temperature and 

human-health has investigated the exposure-response relationship of temperature and mortality 

in metropolitan locations (e.g. Chicago, IL, Boston, MA, Charlotte, NC, Tampa, FL.). These 

studies describe a non-linear relationship (a U, J, or V shaped curve), with the lowest mortality 

rates at moderate temperatures that rise progressively as temperatures increase or decrease 

(Curriero et al. 2003, Anderson and Bell 2009). The exposure-response relationship for 

temperature and mortality has been determined for multiple cities and reveals much spatial 

heterogeneity. This heterogeneity reflects the ability of local populations to adapt to extreme 
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temperatures.  Often, residents not acclimated to heat, such as populations in northern cities, are 

more heat-vulnerable, experiencing higher mortality at lower temperatures (Kalkstein and Davis 

1989, Curriero et al. 2003). Variation in the temperature and mortality relationship also varies by 

race, education level, use of air conditioning, and population density (O’Neill et al. 2003, 

Kalkstein and Davis 1989).  Overall, there is general agreement among the literature that within 

urban environments, the elderly, minorities, young, poor, and people with underlying medical 

conditions are the most vulnerable to heat-related mortality and morbidity (McGeehin and 

Mirbaelli 2001).  

Consistent with the previous discussion on temperature and mortality, a number of 

studies (e.g. Baccini et al 2008, Kovats et al. 2004, Liang et al. 2008, Lin et al. 2009, 

Alessandrini et al. 2011) also find a V or J-shaped relationship between temperature and 

morbidity. The most common morbidities evaluated in these relationships include cardiovascular 

and respiratory diseases, such as stroke, acute myocardial infarction, acute coronary syndrome, 

and asthma (Ye et al. 2012, Buckley and Richardson 2012).  Less research (e.g. Hartz et al. 

2012, Golden et al. 2008, Ng et al. 2014) has evaluated the relationship between temperature and 

heat-related morbidities, such as heat stroke, heat exhaustion, fluid and electrolyte abnormalities, 

and acute renal failure. This limitation is due to the restricted availability of large-scale hospital 

admissions and emergency department visit surveillance systems. Recently, Hartz et al. (2013) 

and Ng et al. (2014) evaluated maximum temperature relative to heat-related 9-1-1 emergency 

dispatches in Chicago, IL, USA, Phoenix, AZ, USA, and cities across the Kato area of Japan and 

found that morbidity rates rise progressively as temperature increases in all locations. Other 

morbidity literature has focused on excess ED visit data or hospitalization during extreme heat 

events, demonstrating that the elderly (i.e. greater than 65 years old) are at particular risk for 
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heat-related illnesses during such events (Knowlton et al. 2009).  These heat-related health 

outcomes are a considerable burden in terms of reduced quality of life, higher cost of healthcare, 

and loss of economic productivity (Bambrick et al. 2008). 

Unlike the majority of previous research, this study analyzed the association between the 

daily temperature and heat-related morbidity, rather than heat-related mortality, for six warm 

seasons (May – September) from 2007 to 2012. These relationships are evaluated across 

different regions (e.g. coastal plain, piedmont) and demographics (e.g. gender, age) within the 

state of North Carolina to determine the differential impact of heat stress across populations. In 

particular, we examine variations across rural populations, which are seldom addressed in the 

heat-health literature. North Carolina is an optimal location to conduct this research because of 

its large, diverse, and growing population, humid subtropical climate, topographic variability, 

and statewide surveillance emergency department network. Ultimately, results from this study 

will provide a better understanding of how temperature affects human morbidity and vulnerable 

populations, which is not only crucial to the medical community, but to policy makers and 

community leaders who develop mitigation and intervention strategies for extreme temperatures.  

Methods 

 

Data sources 

 

The incidence of heat-related illness (HRI) in North Carolina was determined using 

emergency department (ED) visit data from the North Carolina Disease Event Tracking and 

Epidemiologic Collection Tool (NC DETECT), a statewide public health surveillance system 

developed by the University of North Carolina and the North Carolina Division of Public Health 

(Rhea et al. 2012; Lippmann et al. 2013).  NC DETECT provides information on the age, sex, 
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county of residence, and ZIP code of residence of the patient, as well as the date and time of the 

ED visit, and up to 11 diagnoses at discharge coded using the 9th revision of the International 

Classification of Disease (ICD-9-CM).  NC DETECT provided ED visit data for 92% of the 

population in 2007 and 99% by 2008, allowing for statewide coverage of HRI incidence rates 

(Rhea et al., 2012).  NC DETECT does not include ED data from federally operated military 

hospitals (Womach Army Hospital at Fort Bragg near Fayetteville and Naval Hospital at Camp 

Lejune near Jacksonville) or Indian Health Services hospital (Cherokee Indian Hospital) located 

on the Qualla Boundary.  ED visits containing at least one heat-related code (ICD-9-CM code 

992.xx) in any of the 11 diagnostic fields were used in this study to calculate the incidence of 

HRI.  This code accounts for the effects of heat and light and includes diagnostic codes such as, 

heat stroke (992.0), heat syncope (992.1), heat cramps (992.2), heat exhaustion (992.3-992.5), 

heat fatigue (992.6), heat edema (992.7) and other specified and unspecified heat effects (992.8-

992.9). The resulting dataset contains a total of 13, 364 ED visits for HRI covering the warm 

season months (May-September) from 2007-2012.   

Age- and gender- specific estimates of the population included in this analysis were 

obtained from the United States Bureau of Census. The 2010 Census-based population estimates 

were used as denominators in the estimation of HRI ED visits per 100,000 person-years.  Other 

socioeconomic, employment, and housing data were collected from the five-year estimates from 

the American Community Survey for 2008 to 2012 at the ZIP code level. These data were used 

to characterize ZIP code locations and regions. In order to obtain rates for different 

demographics, HRI ED visits were divided into 13 age categories (i.e. under 4, 10 to 14, 15 to 

17, 18 to 24, 25 to 34, 35 to 44, 45 to 54, 55 to 64, 65 to 74, 75 to 84, and over 85), which 

correspond to the 2010 US Census demographic categories. 
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Daily maximum temperature observations were obtained from weather stations 

maintained by the National Weather Service and Federal Aviation Administration, the U.S. 

Forest Service, as well as stations in the North Carolina Environment and Climate Observing 

Network.  In total, 169 weather stations were used across the following networks: the Automated 

Surface Observing System (ASOS), the Automated Weather Observing System (AWOS), the 

Remote Automatic Weather Station network (RAWS), and the North Carolina Environment and 

Climate Observing Network (EcoNet). The ZIP code of the patient’s residential address was 

utilized to determine which weather station to assign to each ED admission.  Specifically, the 

shortest distance was determined between the center of the patient’s ZIP code area and the 

weather station based on the shortest Euclidean distance using the great circle distance formula: 

D = Rcos-1[sinl1 sinl2+cos l1 cosl2cos(m2-m1)] 

where D is the distance (km) between the ED admission and the weather stations, R is the mean 

earth radius, l1 and l2 are the latitudes (rad) of the ED visit and weather station, respectively, and 

m1 and m2 are the longitudes (rad) of the ED visit and weather station, respectively (Cao, et al. 

2004). Each ED visit was assigned a latitude and longitude based on the centroid of the patient’s 

ZIP code address.  

Initially, the daily maximum heat index was considered as a measure of heat stress for 

this study.  The heat index was formulated by Steadman (1984) and later refined by the United 

States National Weather Service to take into account the combined effects of temperature and 

humidity on human thermal comfort.  However, preliminary analyses revealed that the 

relationship between the number of HRI ED visits and daily maximum heat index was not as 

strong as the relationship identified with daily maximum temperature.  Specifically, HRI shows a 

flatter, more dispersed distribution with respect to values of heat index (e.g. Figure 2). We 
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hypothesize that there is greater spatial variability in heat index values due to microclimatic 

variations in humidity (e.g. effects of vegetation, bodies of water).  Because the network of 

weather stations used in this study is too sparse to capture this variability, the relationship 

between HRI and maximum heat index is not as strong.  In contrast, the maximum temperature 

displays more modest microclimatic variations, thus providing a more spatially robust measure 

of heat stress.   Fahrenheit scale was used for data management and analysis.  Celsius 

conversions were also presented in consideration of non-United States and scientific readers. 

 
Figure 2: HRI ED visits per 100,000 person-years for maximum temperature and heat index 

versus heat-related illness.  

 

Urban and rural character  

 

 There are large variations in the demographic and socioeconomic character across the 

state of North Carolina that may be tied to the incidence of HRI. Among other things, these 

differences relate to the urban and rural character of the landscape and the thermal environment 

in which people work (e.g. farm laborers who are exposed to heat versus office workers who 
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spend much of their time inside in an air conditioned environment).  The study area was 

therefore classified into four regions on the basis of the urban-rural character of the landscape 

and the Census-determined work commuting flows between areas (e.g. rural residents 

commuting to urban areas or remaining in rural areas) (Hartz et al. 2005).  Regardless of whether 

a person lives in a rural or urban environment, large portions of their workday are spent at their 

place of occupation. In the case of HRI, specific occupational environments can promote (e.g. 

construction, agriculture) or reduce (e.g. office) heat exposure.  

  Rural-Urban Commuting Area (RUCA) codes were used to differentiate areas according 

to their economic integration (i.e. commuting patterns) with urban areas or other rural areas 

(WWAMI Rural Health Research Center 2004).  RUCA codes were assigned to each United 

States ZIP code based on markers of population density, with values ranging from 1.0 (most 

urban) to 10.6 (most rural).  In this study, ZIP codes were classified into one of four mutually 

exclusive RUCA groups (Table 5): 1) Metropolitan, defined as the most urban containing 

populations that reside and work in large urban environments; 2) Rural metropolitan, defined by 

a low population density, low values of impervious surface area, and large portions of its 

residents commuting and employed in nearby metropolitan locations; 3) Rural town, including 

larger towns and adjacent rural areas where few people commute into metropolitan locations; 

and 4) Rural isolated, the most rural category, including populations that reside in small towns 

and adjacent rural areas.   

Location RUCA code Definition 

Metropolitan 1.0 
Census defined Urban Areas (e.g. Greater 

than 50,000 population) 

Rural Metropolitan 
2.0-3.0, 4.1, 5.1, 7.1, 

8.1, 10.1 

Locations with substantial commuter flows 

to Urban Areas (30% to 50%) 

Rural Town 
4.0, 4.2, 5.0, 5.2, 6.0, 

6.1 

Census defined (large) Urban Clusters (e.g. 

10,000 to 25,000 population) with minimal 
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commuter flows to Urban Areas (Less than 

29%) 

Rural Isolated 
7.0, 7.2-7.4, 8.0, 8.2-8.4, 

9.0-9.2,10.0,10.2-10.6 

Census defined (small) Urban Clusters (e.g. 

2,500 to 9,999 population) with commuter 

flows to Urban Clusters (Less than 50%) and 

minimal flows to Urban Areas (Less than 

29%) 

Table 5: Definition of Metropolitan, Rural Metropolitan, Large Rural City, and Rural and 

Isolated Town from Rural-Urban Commuting Codes (RUCA codes). 

Statistical analysis 

 

The objective of this study was to examine the relationship between the maximum 

temperature and HRI. Counts of HRI ED visits were standardized using age and gender specific 

2010 Census estimates at the ZIP code level to provide crude incidence rates (i.e. HRI ED visits 

per 100,000 person-years).  A generalized additive model (GAM) was used to describe the 

relationship between temperature and HRI. GAMs are commonly applied in time-series studies 

of air pollution and health data and more recently have been utilized in HRI and mortality studies 

(Li et al. 2012, Hondula et al. 2013). In this study, GAMs were calculated using a natural cubic 

spline (i.e. nonparametric smoothing function) to interpolate the non-linear relationship with 

temperature and HRI ED visits. Using daily maximum temperature observations for the warm 

season months (May-September) of 2007-2012, GAMs were constructed to model two aspects of 

the relationship between HRI and temperature: 1) the mean annual rate of HRI ED visits per 

100,000 person-years relative to temperature. Because this measure takes into account the 

number of days in which a given temperature is observed annually, it reveals the cumulative 

effects of commonly occurring weather conditions. While rates of HRI may be relatively low on 

these days, their frequent occurrence yields high aggregate values over the course of the warm 

season. 2) The daily rate of HRI ED visits per 100,000 persons with respect to temperature. This 
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provides a direct estimate of the rate of HRI expected on a day with a given maximum 

temperature. 

Two summary statistics were developed from the GAM models and compared across 

different populations in the study area. 

 1) The threshold temperature, which represents the maximum temperature in which a 

significant elevation in HRI is observed.  In studies of heat-related mortality, this defines 

the inflection point in the “U- or J- shaped” relationships between temperature and 

mortality. Applying similar methods, we defined the threshold temperature as the 

temperature in which HRI ED visits were statistically different from zero (at the 95% 

confidence level) and remain significant for higher temperatures (Davis et al. 2003, 

Gosling et al. 2014).  

2.) Peak temperature, which is the daily maximum temperature in which the greatest rates 

of HRI ED visits occurred. All statistical analysis was conducted using R software 3.0.1 

with the MGCV package (R Core Team 2013, Wood 2006, Wood 2011). 

Results 

 

Basic characteristics of HRI across North Carolina 

 

Figure 3 illustrates the incidence rates of HRI ED visits by ZIP code across North 

Carolina for the warm season months (May-September) of 2007-2012. The highest HRI ED rates 

were observed in the rural locations of eastern North Carolina (i.e. Coastal Plain), while the 

lowest rates were largely concentrated in the western mountainous portion of North Carolina and 

the metropolitan areas around Charlotte, Greensboro, and Raleigh, NC. More than half of the 

HRI ED visits occurred when the maximum temperature was between 31.7˚C (89 ˚F) and 35.6˚C 
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(96 ˚F) (Figure 4a).  Temperature of this magnitude are quite common across the eastern two-

thirds of the state (e.g. approximately 10% to 15% of days within warm season) during the 

months of June through August (North Carolina State Climate Office 2014).  

 
Figure 3: HRI ED visits per 100,000 person-years for May through September from 2007 to 

2012. HRI ED visits are acquired through NC-DETECT. Map also includes regional locations 

and cities with metropolitan characteristics.  

 

Figure 4b depicts the daily average rates of HRI ED visits across North Carolina with 

respect to temperature. HRI ED visits increase strongly at the threshold temperature of 30.6 ˚C 

(87 ˚F) and reach a peak at 38.3˚C (101 ˚F). Above this temperature, there is a very marked 

decline in HRI ED visits, with rates at 40.6˚C (105 ˚F) roughly half those observed at the peak 

temperature of 101 ˚F.  
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Figure 4: HRI versus maximum temperature across North Carolina for May - Sept 2007 to 2012 

(a) Daily HRI ED visits per 100, 000 people with respect to maximum temperature; (b) HRI ED 

visits per 100,000 person-years relative to maximum temperature for North Carolina  

 

Regional characteristics of HRI 

 

 HRI ED visits were significantly lower in the Mountains region compared to the 

Piedmont and Coastal Plain (Table 6). Owing to its higher elevation, most portions of the 

Mountains region rarely experience maximum temperatures above 35˚C (95 ˚F). Indeed, its 

threshold temperature of 26.7 ˚C (80˚F) for HRI was the lowest threshold temperature observed 

in this study.  Additionally, the Mountain region displayed the lowest peak temperature (33.3˚C, 

92 ˚F) across the three regions.  The populous Piedmont region, on the other hand, experienced 

nearly double the number of HRI ED visits per 100,000 person-years and a threshold 

temperature that was 5 degrees Celsius higher than the Mountains region. 
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Table 6: Regional and demographic characteristics of HRI including the crude incidence rates 

(i.e. HRI ED visits per 100,000 person-years), the threshold temperatures, peak temperatures, 

and maximum ED visits with respect to the peak temperature value. 

 

The Coastal Plain exhibited significantly higher rates of HRI ED visits than the Piedmont 

and Mountains. The peak temperature for ED visits was 37.8˚C (100 ˚F), with significantly more 

ED visits (1.53 daily HRI ED visits) than the Piedmont (0.62 daily HRI ED visits) and 

Mountains (0.35 daily HRI ED visits) for peak temperatures. The threshold temperature was 31.7 

˚C (89 ˚F), which was lower than the Piedmont, suggesting the population’s greater vulnerability 

to heat. All three regions exhibited a large decline in HRI ED visits after peak temperatures.  

This decline is especially precipitous across the Coastal Plain, even though the number of HRI 

ED visits remained higher than the other two regions (Figure 5).  Due to the low incidence of 

 

ED visits per 

100,000 person-

years (HRI 

incidence Rates) 

Threshold 

Temperature 

˚C(˚F) 

Peak 

Temperature 

˚C(˚F) 

Daily 

Maximum 

ED visits  

Regional 
Mountains 11.6 26.7(80) 33.3(92) 0.35 

Piedmont 20.3 31.7(89) 37.8(100) 0.62 

Coastal Plain 34.7 31.1(88) 37.8(100) 1.53 

Rural and Urban   

Metropolitan 18.8 32.2(90) 38.3(101) 0.62 

Rural Metropolitan 26.7 32.2(90) 37.2(99) 1.00 

Rural Town 37.7 30.6(87) 38.3(101) 1.24 

Rural Isolated 38.6 31.7(89) 37.8 (100) 1.86 

Age (years)  

Under 14 6.2 n/a 37.8(100) 0.19 

15 to 17 34.8 31.7(89) 37.8(100) 1.06 

18 to 44 35.6 31.1(88) 37.8(100) 1.32 

45 to 64 25.8 31.7(89) 38.3(101) 1.01 

65 and Older 23.9 31.7(89) 37.8(100) 0.71 
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HRI in the mountain region, and a different relationship with HRI at lower maximum 

temperatures, the remainder of the analysis focused on the Piedmont and Coastal Plain.  

 
Figure 5: Daily HRI ED visits per 100, 000 people with respect to Maximum Temperature for 

different physiographic regions of North Carolina (i.e. Mountains, Piedmont, and Coastal Plain) 

 

Rural and urban characteristics of HRI 

 

In the assessment of the rural-urban characteristics of HRI, Table 6 reveals that incidence 

rates of HRI increased with the rurality of the region.  Specifically, rural isolated populations 

displayed significantly higher HRI ED visit rates between temperatures of 31.7 ˚C (89 ˚F) and 

40˚C (104 ˚F) compared to the other urban-rural categories. The differences across the four 

regions in the urban-to-rural continuum were greatest at higher temperatures (e.g. at the peak 

temperature). Threshold temperatures for the rural locations (i.e. rural isolated and rural town) 
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were also lower compared to the more urban locations (i.e. metropolitan and rural metropolitan) 

(Figure 6).  

 
Figure 6: Daily HRI ED visits per 100,000 people with respect to maximum temperature for 

different rural-urban regions (i.e. metropolitan, metropolitan rural, rural town, and rural 

isolated) 

 

Demographic characteristics of HRI 

 

 HRI ED visit data included demographic characteristics of the patient, allowing for the 

identification of age and gender differences between HRI and temperature. Figure 7 illustrates 

the incidence of HRI for each demographic age category within the rural and urban continuum. 

In rural locations (e.g. rural town and rural isolated), the highest HRI incidence rates were in the 

15 to 64 age demographic. Urban locations experienced the highest HRI incidence rates in the 15 
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to 17 and 55 to 64 age demographic.   The metropolitan-rural differences in HRI rates were most 

pronounced in the 18 to 34 age demographic.   

 
Figure 7:  HRI ED visits per 100, 000 person-years (i.e. HRI incidences) for different age 

demographics across the rural-urban continuum 

 

 Figure 8 illustrates relationships between HRI by age group and maximum temperature.  

The relationships display generally parallel forms.  Threshold temperatures were similar across 

age groups, but there were marked differences in the rates near the peak temperature, with those 

in the 18 to 44 age group nearly double HRI rates of the under 14 age group. Peak temperatures 

across the five groups are remarkably similar, though the peak for the 45 to 64 age group is 

slightly higher (38.3 ˚C, 101 ˚F) and the 15-17 age group slightly lower (37.2˚F, 99 ˚F).  Due to 

small sample size, a robust threshold temperature could not be calculated for the under 14 age 

demographic (Table 6).  
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Figure 8: Daily HRI ED visits per 100, 000 people with respect to maximum temperature for 

different demographics 

 

The rates of HRI ED visits for males were higher than for females across all age 

categories (Table 7). The gender differences between HRI rates were less pronounced for the 

younger patients (i.e. under 9 years) and older patients (i.e. 85 and older) than for the working 

age demographic (i.e. 25-44 years), where HRI rates were nearly four times greater for males 

(Table 7). 
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Age (years) Female Male 

Under 4 2.5 2.7 

5 to 9 3.1 5.6 

10 to 14 12.8 16.9 

15 to 17 23.3 45.8 

18 to 24 16.6 49.7 

25 to 34 13.5 55.9 

35 to 44 12.9 47.8 

45 to 54 13.5 45.0 

55 to 64 23.5 55.2 

65 to 74 13.0 34.7 

75 to 84 16.6 36.3 

85 and older 25.8 39.2 

Table 7: Demographic characteristics of HRI incidence rates for males and females    (incidence 

rates are reported as 100,000 person-years). 

Discussion 

 

This study investigated the association between the maximum temperature and heat-

related morbidity in North Carolina across six warm seasons (e.g. May to September) from 2007 

to 2012. The impact of temperature on human health has been studied extensively, however, 

most epidemiological studies have focused on the relationship between temperature and 

mortality in urban locations. Unlike previous studies, this study examined the relationship with 

heat morbidity rather than heat mortality.  In addition, this relationship was investigated across 

an entire state, allowing for an examination of the differences between rural and urban 

populations. 
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Previous research reveals a U-or J-shaped curve with mortality peaks at the highest and 

lowest ends of the temperature spectrum.  This study focused on the warm season and 

consequently, the higher end of the temperature spectrum. At the state level, results from this 

study indicated that the temperature and morbidity curves also followed a J-shape curve with 

HRI visits beginning to increase at a threshold temperature of 30.6˚C (87 ˚F).  However, in our 

study the J-shape curve reached a maximum at 38.3˚C (101 ˚F), with the highest HRI rates 

occurring at this temperature. At extremely high temperatures (temperatures higher than 38.3˚C) 

HRI rates declined considerably.  To our knowledge, this type of decline has not been reported in 

the research. Hartz (2013), for example, observed increased rates of heat-related 9-1-1 

emergency dispatches at maximum temperatures above 38.3˚C (101 ˚F) in Chicago, Illinois, 

USA and Phoenix, Arizona USA.  Also, Curriero et al. (2003) has observed linear or exponential 

increases in heat mortality at higher temperatures in other cities across the United States.   

Noteworthy exceptions to the J-shape curve can be found when evaluating specific health 

outcomes. For instance, Xiang et al. (2014), evaluated associations between maximum 

temperature and work-related injuries and found a positive association with temperatures below 

100 ˚F and a decline when temperatures exceeded this peak temperature.  Xiang et al. (2014) 

suggested this decline was due to effective protective measures including hot weather policies, 

which advise the cessation of work when temperatures are extreme. In North Carolina, the 

decline in HRI at extremely hot temperatures could also be due to the implementation of similar 

protective measures. Air conditioning is prevalent, with 97% of households having either a 

window unit or central air system (U.S. Department of Energy 2010).  Access to air conditioning 

significantly decreases heat stroke and heat mortality (Kilbourne et al. 1982, Kalkstein 1993).  

Therefore, coping measures for heat are nearly ubiquitous for the North Carolina population, 
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allowing many residents to stay indoors and prevent HRI with air conditioning use.  Additional 

coping mechanisms include a North Carolina High School Athletic Association mandate to 

suspend athletic practice at high temperatures and other recommendations by the North Carolina 

Department of Labor to mitigate occupational risk during extreme heat (North Carolina 

Department of Labor 2011, North Carolina High School Athletic Association 2014).  Future HRI 

mitigation strategies should emphasize adaptive and coping measures at lower temperatures (i.e. 

35 to 37.8 ˚C, 95 to 100 ˚F) to prevent HRI ED visits.  

Regionally, the Mountains experienced significantly lower HRI ED visit rates than the 

Piedmont and Coastal Plain. The higher elevations (305 -2098 meters) of this region experience 

relatively cooler temperatures throughout the summer. The threshold temperature for the 

Mountain region (26.7˚C, 80˚F) was also lower than other regions, suggesting that its population 

is less acclimatized to heat.  This result is consistent with Curriero et al. (2003) and Kalkstein 

and Davis (1987), who found regional differences in acclimatization, with cooler northern cities 

experiencing higher rates of heat mortality than southern cities.  

The Coastal Plain displayed a lower temperature threshold (i.e. 31.1˚C, 88 ˚F) and greater 

rates of HRI ED visits than the Piedmont, suggesting that this population is more vulnerable to 

heat.  The Coastal Plain is more rural than the Piedmont, with an economy primarily based on 

agriculture. According to estimates from the 2008 to 2014 American Community Survey, a 

greater percentage of the population is engaged in farming, forestry, and fishing occupations in 

the Coastal Plain (0.3%) as compared to the Piedmont (0.2%) and Mountains (0.1%).  Farm 

laborers work outdoors, acquiring not only external heat from the environment but also internal 

heat through metabolic processes associated with the strenuous labor (May 2009).  Mirabelli et 

al. (2010) found that 40% of farm workers in North Carolina experienced at least one HRI 
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symptom while laboring in extreme heat from June through September in 2009.  Many of these 

workers are migrant and seasonal farm laborers, and the greatest concentration of these workers 

reside in the Coastal Plain counties of Duplin, Sampson, and Wayne County (Montz et al. 2011). 

Migrant and seasonal farm laborers, are particularly heat vulnerable, as they not only experience 

HRI through strenuous activity in high temperatures, but also from dangerous hot indoor 

conditions within housing structures (Quandt et al. 2013).  

To investigate the relationship between temperature and HRI across different regions 

within the urban-rural continuum of the study area, ZIP codes were categorized as Metropolitan, 

Rural Metropolitan, Rural Town, and Rural Isolated based on their population density and work 

commuting patterns. To date, few studies have examined the effect of temperature on rural 

populations. The lack of research likely relates to the well-established understanding among 

researchers that an urban environment is an important risk factor for heat-related morbidity and 

mortality, mainly due to the urban heat island effect (McGeehin and Mirabelli 2001). In North 

Carolina, however, we found that rural populations displayed significantly higher rates of HRI 

than the urban populations. Moreover, our results established that rates of HRI ED visits are 

greatest in isolated rural areas and rural towns relative to rural areas situated near larger cities, 

where many people commute to the city.   

The Isolated and Rural locations experienced nearly a threefold increase in HRI at 37.8˚C 

(100 ˚F) compared to more urban regions. Additionally, rural locations (e.g. Rural Town and 

Isolated Rural) displayed a lower threshold temperature (e.g., 30.6 to 31.7 ˚C, 87 to 89 ˚F), 

compared to urban populations (32.2 ˚C, 90 ˚F). Several factors likely contribute to the heat 

vulnerability of rural residents. These factors may relate to the population’s underlying social 

vulnerability, where a combination of environmental, demographic, and socioeconomic risk 
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factors affect their capacity to cope with heat. One common factor that increases social 

vulnerability is poverty, a well-established risk factor for both heat morbidity and mortality 

(Anderson and Bell 2011). In the urban-rural continuum of regions, poverty levels increased 

from 15.2% (Metropolitan) to 20.1% (Rural Isolated), coincident with increasing rates of HRI.  

Other risk factors that influence social vulnerability include the proportion of the population with 

low educational attainment (i.e. no high school education) and older building structures (i.e. 

more energy inefficient) were also greater in rural locations (Table 8).  

 

RUCA 

classification 

Percent 

Mobile 

Homes 

Percent of 

residents living 

below the 

poverty line 

Percent of 

residents with 

no high school 

education 

Population Density 

Metropolitan 8 15.2 12.8 465 

Metropolitan 

Rural 
26 16 18.1 60 

Rural Town 23 17.6 18.5 94 

Rural Isolated 25 20.1 20.3 35 

RUCA 

classification 

Median Year 

Structure 

Built 

Percent 

Cropland 

Percent 

Developed 

Land 

Percent of residents 

within the farming, 

fishing, and forestry 

occupation 

Metropolitan 1982 9.9 43.7 0.096 

Metropolitan 

Rural 
1985 12.7 8.8 0.582 

Rural Town 1979 19.4 13.5 0.583 

Rural Isolated 1978 19.1 7.8 1.305 

 

Table 8: Socioeconomic, housing, and land cover characteristics of rural and urban locations. 

Percent were calculated from a total population across each rural-urban ZIP code region (e.g. 

percent mobiles homes of total households).  

 

  HRI ED visits in the Rural Town and Rural Isolated regions were exceptionally high in 

the 18 to 44 male demographic, which corresponds to the working age population.  This group, 
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however, is more likely to engage in outdoor exertional activities associated with their 

occupation. In fact, these rural regions contain significantly more cropland and a greater 

proportion of the population engaging in agriculture (Table 8).  As was observed in the Coastal 

Plain, farm laborers who engage in agriculture are predisposed to HRI due to outdoor exposure 

and strenuous labor.  This occupational risk and added social vulnerability are a plausible 

explanation for the exceptional rates of HRI. Future research should explore patterns of HRI at 

the individual-level to understand the specific pathways (e.g. occupation, social vulnerability, 

etc.) that result in high HRI in rural communities.    

   Overall incidence rates of HRI were highest among the 15 to 64 age demographic, 

particularly the 18 to 44 age group. These results contradict previous research, which focused on 

excess morbidity and mortality during heat waves and found that the elderly, very young, and the 

debilitated (i.e. underlying medical conditions) were more likely to experience heat-health 

effects (e.g. Knowlton et al. 2009).  In contrast, we found that these populations (i.e. young, 

elderly) experience significantly lower rates of HRI across North Carolina, even at the highest 

temperatures, which are typically experienced during heat wave events.  

The average rates of HRI ED visits for males were three times greater than that for 

females. This pattern may be tied to the fact that men engage in more outdoor activities (e.g. yard 

work, home maintenance, outdoor occupations) than women. Research at the national level 

revealed similar differences between males and females, with exertional HRI ED visits resulting 

from activities such as, home maintenance, yard work, and sports like football, which are prone 

to high rates of HRI (Nelson et al. 2011).  Interestingly, nearly half of exertional HRI ED visits 

nationally were in the under 19 age demographic, while in North Carolina, we found the highest 

rates within the male population were in the 15 to 54 demographic.  Previous research in North 
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Carolina using ED triage notes found that cases of HRI were often occupational-related in the 19 

to 45 demographic and exercise-related in the 15 to 17 demographic (Rhea et al. 2012). In this 

study, we found that much of the HRI in these demographics occurred when daily maximum 

temperatures ranged from 31.1 ˚C to 37.8 ˚C (88 ˚F to 100 ˚F).  Therefore, future HRI 

preventative measures should target workplace and sports-related activities within this broad 

range of temperature, and not solely at the highest temperatures. 

It is important to discuss the limitations of this study.  First, in order to focus on spatial 

and demographic heterogeneity in the temperature-morbidity relationships, we did not 

investigate any potential delayed effects of temperature and only examined temperature on the 

same day as the ED visit.  Secondly, maximum temperature observations were based on the ZIP 

code address of the patient. In an unknown number of cases, the place of heat exposure was at a 

location with a microclimate different from that found at the weather station in which the 

corresponding temperature observation was made.  Lastly, the counts and rates of HRI presented 

here were likely underestimates of the true occurrence of HRI in North Carolina, either as a 

result of: 1) The under-diagnosis of HRI in which ED physicians fail to appropriately document 

its diagnosis and symptoms, 2) The non-reporting of HRI because the health care provider was 

not part of the NC DETECT network (e.g. federal military hospital, urgent care facility), or 3) 

People suffering from HRI that did not seek medical care.  The under-diagnosis of HRI was 

likely more common in rural locations of HRI, particularly rural and isolated, where residents 

must travel longer distances to seek medical care at an ED.   

Conclusion 

 

 This study analyzed the association between the daily maximum temperature and heat-

related illness (HRI) for six warm seasons (May-September) from 2007 to 2012.  These 
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temperature and HRI relationships were evaluated across different regions (e.g. piedmont, 

coastal plain, rural isolated, etc.) and demographic groups (e.g. gender, age).  Unlike previous 

research, this study analyzed the association between heat –related morbidity across a broad area 

that included both urban and rural populations.  Results demonstrated that HRI incidence 

increases as rurality increases, particularly for the male, 15 to 44 age demographic. HRI 

incidence increased most significantly between temperatures of 30.6˚C (87 ˚F) to 38.3˚C 

(101˚F), though variations were noted across different regions and populations. Surprisingly, 

HRI incidence decreased at temperatures warmer than 38.3˚C (101˚F), suggesting that adaptive 

or coping measures were adopted when temperatures were excessively high.  Overall these 

results suggest that a large portion of HRI in North Carolina is related to exertional activities. 

Future mitigation and intervention strategies for heat should target populations that engage in 

exertional activities, particularly at temperatures that are not exceptionally high (e.g. 31.1 ˚C to 

37.8 ˚C, 88 ˚F to 100 ˚F). 
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CHAPTER 4: INTRA-SEASONAL RELATIONSHIPS OF HRI 

 

There is increasing concern over the adverse health effects associated with hot weather.  

In the United States, heat kills more people annually than any other weather-related disaster, 

resulting in hundreds of fatalities each year (NOAA 2007).  Prolonged exposure to high 

temperature can result in heat-related illnesses (HRI), such as heat syncope, heat exhaustion, 

head edema, heat cramps, and in the most severe cases, heat stroke, which has a very high 

mortality rate. The health effects from heat are likely to increase as temperatures are also 

projected to increase due to climate change. The adverse heat-health effects are easily mitigated 

through basic hydration, relocating to a cool environment, or the implementation of targeted 

public health intervention or heat-warning systems (Koppe 2004). Therefore, research is needed 

to identify susceptible population and when these populations are most vulnerable to adverse 

heat-health effects.  

The relationship between extreme temperature and mortality has been evaluated across 

multiple metropolitan locations (e.g. Kalkstein and Davis 1989, Curriero et al. 2003), however, 

few studies have addressed the intra-seasonal trends of these relationships. Limited studies focus 

on extreme heat events or heat waves, and how the timing of these events influences mortality, 

particularly among susceptible individuals (Kaiser et al. 2007; Le Tertre et al. 2006; Anderson 

and Bell 2011; Baccini et al. 2008, Hajat et al. 2002).  Results indicate that extreme heat events 

earlier in the warm season trigger higher mortality outcomes than similar heat events later in the 

summer season (Anderson and Bell 2011). High mortality rates early in the summer season were 

often attributed to a combination of the most susceptible individuals succumbing to the first heat 
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wave (i.e. mortality displacement) and to a lack of heat acclimatization (Kilbourne 1980; 

Kalkstein and Smoyer 1993; Smoyer 1998). Susceptible populations include the elderly, infants, 

people with chronic diseases, and socially deprived groups (e.g. poverty, minority).   

Consistent with most heat-health studies, research on intra-seasonal trends were also 

focused on heat mortality rather than heat-related morbidly. Recent research in the United States 

has examined heat-related morbidity through emergency 9-1-1 dispatches in Chicago, Illinois 

from 2003 to 2006 and Phoenix, Arizona from 2001 to 2006 (Hartz et al. 2013). In Phoenix, 

Arizona heat-related dispatches peaked in July, the month with the highest maximum 

temperatures and dew points, followed by August, which had the third highest average maximum 

temperatures (i.e. after June) and the second highest average dew point (i.e. after July) (Golden 

et al. 2008).  Similarly, the maximum number of heat-related dispatches in Chicago, IL occurred 

in July, followed by August and then June (Hartz et al. 2012).  

In the Kanto metropolitan area of Japan, heat-related dispatches also coincided with the 

highest temperatures. The month of August contained the most dispatches and highest 

temperatures, followed by July (i.e. second highest temperatures) and September. One key 

finding in Ng et al. (2014) was the increased risk for heat-related dispatches early in the warm 

season, particularly in June, when temperatures were typically below the heat watch warning 

thresholds.   

The objective of this study is to evaluate intra-seasonal patterns of HRI across the North 

Carolina for six warm seasons from 2007 to 2012.  The present study compliments previous 

research by Kovach et al. (2015) that evaluated the spatial patterns of HRI across different 

demographics (e.g. age) and regions (e.g. rural, urban, Coastal Plain). Unlike Kovach et al. 

(2015), which evaluated spatial patterns, this study focuses on intra-seasonal variations in HRI 
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rates and how they vary across different demographics and regions of North Carolina.  To our 

knowledge, this study provides the longest, continuous data set of HRI morbidity in the United 

States to date, and this allows for a more robust, in-depth investigation of how the timing of high 

temperatures influences rates of HRI.  

Data and Methods 

 

Study area 

 

North Carolina is an optimal study location due to its large population (10th most 

populous in the U.S.), varying climate, physiography, and topography (Mackun et al. 2011). 

While the urbanized areas of the state are growing rapidly, roughly one-third of its population 

still resides in rural areas, according to the 2010 Census. Given this diversity, analyses were 

performed across three separate physiographic regions (e.g. mountains, piedmont, and coastal 

plain) and four areas along an urban-rural continuum.  Daily maximum temperature and 

minimum temperatures were highest in the month of July and lowest in the months of May 

(Table 9). 
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 Mountains Piedmont Coastal Plain 

May    

Average Number of HRI ED visits 7.2 19.5 13.3 

Maximum Temperature ˚C(˚F) 25.1(77.2) 29.2(84.5) 29.6(85.2) 

Minimum Temperature ˚C(˚F) 12.7(54.8) 15.5(59.9) 16.7(62.0) 

June    

Average Number of HRI ED visits 17.9 62.4 42.5 

Maximum Temperature ˚C(˚F) 30.3(86.5) 33.3(92.0) 33.3(91.9) 

Minimum Temperature ˚C(˚F) 16.9(62.5) 19.9(67.8) 21.2(70.2) 

July    

Average Number of HRI ED visits 16.0 67.5 47.4 

Maximum Temperature ˚C(˚F) 30.8(87.4) 34.1(93.3) 34.2(93.5) 

Minimum Temperature ˚C(˚F) 18.2(64.8) 21.3(70.3) 22.4(72.3) 

August    

Average Number of HRI ED visits 14.8 55.6 40.6 

Maximum Temperature ˚C(˚F) 30.7(87.3) 33.8(92.8) 33.4(92.2) 

Minimum Temperature ˚C(˚F) 17.9(64.2) 21.3(70.3) 22.3(72.1) 

September    

Average Number of HRI ED visits 5.0 15.6 10.9 

Maximum Temperature ˚C(˚F) 26.9(80.4) 29.8(85.7) 30.9(87.7) 

Minimum Temperature ˚C(˚F) 13.9(57.0) 17.8(64.1) 19.2(66.5) 

Table 9: 2007 to 2012 Monthly mean maximum, minimum and number of HRI ED visits for three 

physiographic regions of North Carolina 

 

Health data 

 

The incidence of heat-related illness (HRI) was determined using emergency department 

(ED) visit data from the North Carolina Disease Event Tracking and Epidemiologic Tool (NC 

DETECT), a statewide public health surveillance system developed by the University of North 

Carolina and the North Carolina Division of Public Health. ED visits containing at least one 

heat-related code (ICD-9-CM code 992.xx) in any of the 11 diagnostic fields were used to 

calculate the incidence of HRI. ED data are a valuable source of HRI information, as they are a 

common healthcare access point for patients experiencing HRI, which is sudden, acute, and 

debilitating illness. 
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 Age and gender-specific estimates of the population included in this analysis were 

obtained from the United States Bureau of Census. The 2010 Census-based population estimates 

were used as population denominators in the estimation of HRI ED visits per 100,000 person-

years.   

Weather and Environmental data: Daily maximum temperature observations were obtained from 

169 weather stations networks, including Automated Surface Observations Stations (ASOS), 

Automated Weather Observing System (AWOS), Remote Automatic Weather Stations (RAWS), 

and the North Carolina Environment and Climate Observing Network (EcoNet).  These stations 

are maintained by the National Weather Service and Federal Aviation Administration, the United 

States Forest Service, and the North Carolina Environment and Climate Observing Network.  

The daily maximum temperature of the weather station closest to the patient’s residential billing 

ZIP code was determined for each ED admission (see Kovach et al. (2015) for details).  

 Assessing heat vulnerability in rural populations that specialize in agriculture is 

especially important in North Carolina, which experiences the highest number of heat-related 

deaths among farm laborers in the United States (Luginbuhl 2008). To evaluate the intra-

seasonal relationship for locations with agriculture, data from the National Land Cover Dataset 

(NLCD) were acquired.  NLCD data provides land cover information for over 40 crop types 

from 2008 to 2012.  Tobacco and sweet potatoes are two common cash crops in North Carolina 

that require strenuous labor for harvesting.  To determine locations that specialize in these crops, 

geographic information system (GIS) was used to estimate their acreage within each ZIP code 

for the five years in which NLCD data were available (i.e. 2008 to 2012).  These values were 

then divided by the ZIP code area to provide a percent coverage for each crop. 
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Rurality 

 

There are large variations in the rural and urban character of the state.  These differences 

affect the thermal environment in which people work (e.g. farm laborers who are exposed to heat 

versus office workers who spend much of their time inside in an air conditioned environment). 

To differentiate the rural and urban character of areas, Rural-Urban Commuting Areas were 

assigned to each ZIP code based on markers of population density and proximity to urban 

locations.  In this study, ZIP codes were classified into one of four mutually exclusive RUCA 

categories (Table 11): 1) Metropolitan were identified as the most urban with populations that 

reside and work in urban locations where the population is greater than 50,000 people 2.) Rural 

metropolitan were defined by a low population density and large portions of its residents 

commuting into nearby metropolitan locations 3.) Rural town included larger towns and adjacent 

rural areas 4.) Rural isolated, the most rural category, included populations that resided in small 

towns and adjacent rural areas.  

RUCA 

classification 
RUCA code Definition 

Metropolitan 1 Census defined Urban Areas  

Metropolitan 

Rural 

2.0-3.0, 4.1, 5.1, 

7.1, 8.1, 10.1 

Locations with substantial commuter flows to 

Urban Areas (30% to 50%) 

Rural Town 
4.0, 4.2, 5.0, 5.2, 

6.0, 6.1 

Census defined (large) Urban Clusters (e.g. 10,000 

to 25,000 population) with minimal commuter 

flows to Urban Areas (Less than 29%) 

Rural 

Isolated 

7.0, 7.2-7.4, 8.0, 

8.2-8.4, 9.0-

9.2,10.0,10.2-10.6 

Census defined (small) Urban Clusters (e.g. 2,500 

to 9,999 population) with commuter flows to Urban 

Clusters (Less than 50%) and minimal flows to 

Urban Areas (Less than 29%) 
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RUCA 

classification 

Percent of residents 

within the farming, 

fishing, and 

forestry occupation 

Percent of residents living below 

the poverty line 

Percent of 

residents with 

no high school 

education 

Metropolitan 0.096 15.2 12.8 

Metropolitan 

Rural 
0.582 16 18.1 

Rural Town 0.583 17.6 18.5 

Rural 

Isolated 
1.305 20.1 20.3 

Table 11: Definition and Characteristics of Rural and Urban Locations defined using the Rural 

Urban Community Area (RUCA) Codes.  Percent of residents within the farming, fishing and 

forestry occupation, living below the poverty line, and residents with no highs school education 

were calculated using American Community Survey estimates from 2008 to 2012 and calculated 

based on total population within ZIP code.  

 

Statistical analysis 

 

A generalized additive model (GAM) was used to describe the relationship between 

temperature and HRI. GAMs are commonly applied in time series studies of air pollution and 

health data and more recently have been utilized in HRI and mortality studies (Li et al. 2012, 

Hondula et al. 2013). In this study, GAMs were calculated using a natural cubic spline (i.e. 

nonparametric smoothing function) to model the non-linear relationship with daily maximum 

temperature and HRI ED visits. GAMs were constructed to model the monthly (May – 

September) relationship between HRI and temperature.  This model provides the daily rate of 

HRI ED visits per 100,000 persons with respect to temperature (i.e. number of temperature 

observations within month of interest).  Thus, providing a direct estimate of the rate of HRI 

expected on a day with a given maximum temperature.   

Three summary statistics were developed from the models and compared across different 

months, regions, and populations: 1) Monthly rate of HRI ED visits per 100,000 person-years 

(i.e. monthly HRI incidence rates) 2) Threshold temperature in which HRI ED visits increased to 

the point that they were statistically different from zero and remained significant for higher 
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temperatures (Davis et al. 2003, Gosling et al. 2014). 3) Peak temperature, which is the daily 

maximum temperature in which the greatest rates of HRI ED visits occurred. Analyses were 

performed in R software 3.0.1 with the MGCV package (R Core Team 2013) at a 95% 

confidence level.  

Results 

 

Basic characteristics of HRI across North Carolina 

 

Figure 9 illustrates the crude incidence rate of HRI ED visits across North Carolina for 

the warm season months (May-September) of 2007-2012.  HRI ED rates were highest in the 

rural locations of eastern North Carolina (i.e. Coastal Plain), while the lowest HRI ED rates were 

largely concentrated in the western mountainous portion of the state and the metropolitan areas 

located within the Piedmont.  The highest HRI ED visits were observed in July, June, and 

August. The month of July experienced the highest maximum and minimum temperatures values 

followed by August and June (Table 9).    

 
Figure 9: HRI ED visits per 100,000 person-years for May through September from 2007 to 

2012.  
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Figure 10 depicts the monthly rates of HRI ED visits across North Carolina with respect 

to daily maximum temperature. HRI ED visits rates are the greatest in June and July and much 

lower in shoulder months of May and September.  The form of the relationship is remarkably 

similar for the months of June and July, with a peak observed around 37.2 ˚C (99 ˚F) and a 

marked decline at the highest temperatures (Table 12). Although August displayed relatively 

lower rates of HRI, it showed the highest temperature threshold and peak temperature.  

Moreover, the decline of HRI ED visits at the very warmest temperatures was less pronounced 

(i.e. August displayed the highest rates of HRI at temperatures > 38.9 ˚C (102 ˚F). May displayed 

the lowest temperature threshold 26.7 ˚C (80 ˚F) and a much lower peak temperature 33.3 ˚C (92 

˚F) relative to June and July.  

 

Figure 10: Daily heat-related illness emergency department visits per 100,000 people with 

respect to maximum temperature across the entire state of North Carolina.  To account for 

monthly HRI with respect to temperature, the frequency of daily maximum temperatures was 

obtained for each month.  
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Regional characteristics of HRI 

 

HRI ED visits were significantly lower in the Mountains region compared to the 

Piedmont and Coastal Plain.  The threshold temperatures and peak temperatures in this region 

were the lowest across all months in the study (Table 12).  Due to small samples, threshold and 

peak temperature values were not calculated for the months of May and September.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 12: HRI incidence (i.e. Total HRI ED visits per 100,000 person-years), threshold 

temperature, Peak temperature, and corresponding maximum HRI ED visits (at peak 

Month 

Threshold 

Temperature 

˚C(˚F) 

Peak 

Temperature 

˚C(˚F) 

Daily 

Maximum 

HRI ED visits 

Total HRI 

ED visits per 

100,000 

person-years 

Entire State         

May 26.7 (80) 33.3 (92) 0.819 8.6 

     

June 27.8 (82) 37.2 (99) 3.335 34.4 

July 28.3 (83) 37.2 (99) 3.276 36.2 

August 28.9 (84) 37.8 (100) 2.634 29.9 

September 28.3 (83) 33.9 (93) 0.721 7.3 

Mountains         

May n/a n/a n/a 5.4 

June 25.0 (77) 34.4 (94) 1.132 17.6 

July 26.1 (79) 35.0 (95) 1.088 16.6 

August 26.7 (80) 35.0 (95) 1.360 15.3 

September n/a n/a n/a 4.4 

Piedmont         

May 27.8 (82) 32.2 (90) 0.760 7.6 

June 28.9 (84) 36.7 (98) 2.439 30.4 

July 30.0 (86) 36.7 (98) 2.638 31.0 

August 30.6 (87)  37.8 (100) 2.294 25.2 

September 27.8 (82) 32.8 (91) 0.413 6.1 

Coastal Plain         

May 28.3(83) 34.4 (94) 1.403 11.9 

June 29.4 (85) 37.2 (99) 5.799 49.6 

July 30.6 (87) 37.8 (100) 5.966 54.9 

August 30.0 (86) 37.2 (99) 4.200 45.5 

September 31.1 (88) 34.4 (94) 1.491 10.9 
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temperatures) values for the different physiographic regions (i.e. Mountains, Piedmont, and 

Coastal Plain) and the entire state of North Carolina.  

 

Given the low incidence of HRI in the mountains, the remainder of the analyses focused 

on the Piedmont and Coastal Plain regions of North Carolina.  The Coastal Plain displayed 

significantly higher rates of HRI visits than the Piedmont across all months (Figure 11).  Near 

the peak temperature, the months of June and July experienced considerably higher rates of HRI 

than August, May, and September.  The Coastal Plain showed a more marked drop than the 

Piedmont in HRI ED visits in the month of August relative to June and July.  

 
Figure 11: Daily heat-related illness emergency department visits per 100,000 people with 

respect to maximum temperature across the(a) the Piedmont (b) The Coastal Plain 

 

Locations with a high percentage of sweet potatoes or tobacco crops were assessed to 

examine intra-seasonal trends in HRI.  Crop locations were selected based on the natural 

grouping of the upper data distribution, which corresponded to the top 7% of ZIP codes for each 

crop type (i.e. sweet potato, tobacco).  To assess, crop-type relationships comparisons were made 

with HRI rates in the Coastal Plain and/or Piedmont.  
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All locations with a high percentage of sweet potatoes were located in the Coastal Plain. 

Compared to Coastal Plain rates, HRI rates were greater for sweet potato locations in the months 

of June, July, August, and September (Table 13).  September had exceptionally high HRI 

incidence rates, with the second highest September rates observed within the study.  

Month Sweet Potato 
Coastal 

Plain 
Tobacco 

Average of 

Coastal Plain & 

Piedmont 

May 11.6 11.9 9.2 10.6 

June 51.0 49.6 45.0 43.8 

July 59.3 54.9 53.1 47.7 

August 49.7 45.5 42.5 39.4 

September 13.2 10.9 11.7 9.4 

Table 13: HRI incidence reported as HRI ED visits per 100,000 person-years for ZIP codes with 

a high percentage of sweet potato acreage and tobacco acreage.  A weighted average was 

calculated for regional rates in the Piedmont (30%) and Coastal Plain (70%) as a comparison of 

HRI incidence for tobacco locations 

 Roughly two-thirds of locations containing a high percentage of tobacco were situated in 

the Coastal Plain, while the remaining third of locations were situated in the Piedmont. HRI 

incidence rates were greater for tobacco locations in the months of June, July, August, and 

September as compared to Coastal Plain and Piedmont HRI incidence rate (Table 13).  Tobacco 

locations had considerably higher HRI incidence rates in the month of July with an additional 5.3 

HRI ED visits per 100,000 person-years.  

Demographic characteristics 

 

Figure 12 illustrates the monthly rates of HRI ED visits across different demographics 

with respect to daily maximum temperature. The < 14 and >65 age demographic experienced the 

highest HRI ED incidence in June. In these age groups, June ED visits increased at the threshold 

temperature of 30 ˚C (86 ˚F) and 30.6 ˚C (87 ˚F) and reached a peak at 36.1 ˚C (97 ˚F) and 36.7 
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˚C (98 ˚F). Daily HRI ED visits at peak temperatures were also highest in June in the 45 to 64 

age demographic. However, monthly HRI incidence rates for the demographic were slightly 

higher in July (Table 14). 

 

Month 

Threshold 

Temperature 

˚C(˚F) 

Peak 

Temperature 

˚C(˚F) 

Daily 

Maximum 

HRI ED 

visits 

Total HRI ED 

visits per 

100,000 person-

years 

Under 14         

May 28.3 (83) 36.1 (97) 0.352 4.6 

June 30.0 (86) 36.1 (97) 0.697 10.5 

July 31.7 (89) 38.3 (101) 0.613 7.7 

August 31.7 (89) 37.2 (99) 0.436 7.3 

September 29.4 (85) 33.9 (93) 0.306 4.3 

15 to 17         

May 26.1 (79) 37.8 (100) 1.219 8.9 

June 30.0 (86) 36.1 (97) 2.492 36.1 

July 30.6 (87) 37.8 (100) 2.766 35.0 

August 30.6 (87) 37.8 (100) 3.680 50.2 

September 27.8 (82) 34.4 (94) 1.112 17.7 

18 to 44         

May 26.1 (79) 33.9 (93) 0.947 10.1 

June 27.8 (82) 37.2 (99) 3.803 41.6 

July 28.9 (84) 37.2 (99) 4.287 45.9 

August 30.0 (86) 37.2 (99) 3.306 36.9 

September 28.3 (83) 34.4 (94) 0.769 7.6 

45 to 64         

May 27.2 (81) 33.3 (92) 0.690 7.9 

June 29.4 (85) 37.2 (99) 3.399 31.3 

July 30.0 (86) 36.7 (98) 2.861 33.0 

August 28.9 (84) 37.8 (100) 2.430 26.5 

September 29.4 (85) 33.9 (93) 0.524 5.9 

65 and Older         

May 27.2 (81) 33.3 (92) 0.782 7.4 

June 30.6 (87) 36.7 (98) 2.928 28.4 

July 28.9 (84) 36.7 (98) 2.085 29.4 

August 29.4 (85) 37.2 (99) 1.481 20.6 

September 28.3 (83) 36.1 (97) 0.414 5.4 
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Table 14: Total HRI ED visits per 100,000 person-years (i.e. HRI incidence), Threshold 

Temperature, Peak Temperature, and corresponding Maximum HRI ED visits (at Peak 

Temperatures) values for the different demographics age categories.  

HRI incidence in the 15 to 17 age group was the highest in August and peaked at 37.8 ˚C 

(100˚F) with 3.7 HRI ED visits (Figure 12b).  The September and August HRI incidence rates 

among this age group were also exceptionally high; the highest observed rates during these 

months for the entire study period.   

Figure 12: Daily heat-related illness emergency department visits per 100,000 people with 

respect to maximum temperature for the (a) Under 14 (b) 15 to 17 (c) 18 to 44 (d) 45 to 65 (e) 65 

years and older age demographic  

 

HRI incidence was exceptionally high in the months of June and July in the 18 to 44 year, 

the healthy, working age demographic (Figure 12c).  In July and June, HRI ED visits increase 

strongly at the threshold temperatures and reach a peak at 37.2 ˚C (99 ˚F).  At the highest 

temperatures, there is a very marked decline in June and July HRI ED visits. In contrast, August 

HRI ED visits exhibited a less pronounced decline at the highest temperatures.  
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Rural and urban characteristics 

 

In the assessment of the rural-urban characteristics of HRI, rates of HRI ED visit rates 

increased with rurality, particularly during the months of June and July (Figure 13, Table 15). 

Metropolitan locations (i.e. most urban) displayed the lowest rates of HRI, which very similar 

relationships across the warmer months of June, July and August (Figure 13a), although the peak 

temperature for August was higher with a less pronounced decline at the highest temperatures.    

Month 

Threshold 

Temperature 

˚C(˚F) 

Peak 

Temperature 

˚C(˚F) 

Daily 

Maximum 

HRI ED 

visits 

Total HRI ED 

visits per 

100,000 

person-years 

Metropolitan         

May n/a 34.4 (94) 0.645 7.2 

June 30.0(86) 37.2 (99) 2.566 27.9 

July 30.6(87) 37.2 (99) 2.410 28.9 

August 31.1(88) 38.3 (101) 2.329 23.4 

September 28.3 (83) 33.3 (92) 0.484 6.3 

Rural 

Metropolitan         

May 28.9 (84) 32.8 (91) 1.074 9.7 

June 29.4 (85) 36.7 (98) 3.227 39.2 

July 32.2 (90) 36.7 (98) 4.529 41.0 

August 30.0 (86) 36.7 (98) 3.007 36.6 

September 29.4 (85) 33.3 (92) 0.838 6.6 

Rural Town         

May 28.9 (84) 34.4 (94) 0.471 4.5 

June 29.4 (85) 37.2 (99) 5.038 55.0 

July 28.9 (84) 37.2 (99) 5.172 58.4 

August 30.0 (86) 37.2 (99) 3.519 48.7 

September 31.1 (88) 36.1 (97) 1.137 5.0 

Rural and Isolated         

May 27.8 (82) 33.9 (93) 1.369 12.2 

June 31.7 (89) 37.2 (99) 6.848 53.9 

July 31.1 (88) 36.7 (98) 7.238 61.1 

August 31.1 (88) 37.2 (99) 5.104 46.4 

September 28.9 (84) 35.0 (95) 1.476 13.5 
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Table 15: Total HRI ED visits per 100,000 person-years (i.e. HRI incidence), threshold 

temperature, peak temperature, and corresponding maximum HRI ED visits (at peak 

temperatures) values for the different regions along the rural-urban continuum. Categories were 

determined using rural-urban continuum from RUCA codes.  

 
Figure 13: Daily heat-related illness emergency department visits per 100,000 people with 

respect to maximum temperature across the (a) Metropolitan (b) Rural Metropolitan (c) Rural 

Town (d) Rural Isolated locations 

 

Rural metropolitan locations displayed a marked rise in HRI ED rates in July with a peak 

observed around 36.7 ˚C (98 ˚F) and a marked decline at the hottest temperatures.  In addition, 

August and June exhibited a remarkably similar relationship between ED visits and maximum 

temperature (Figure 13b). Rural town locations, also displayed a similar relationship during the 
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months of June and July, with a peak at 37.2 ˚C (99 ˚F) and a marked decline at the highest 

temperatures.  

Rural Isolated locations had exceptionally high rates of HRI, particularly at peak 

temperatures during the months of June, July and August.  HRI incidence rates were also 

exceptionally high in the month of May and September, relative to other locations in the rural-

urban continuum. Moreover, the threshold temperature (27.8 ˚C, 82 ˚F) for the month of May 

was the lowest of all months relative to other locations in the rural and urban continuum. 

Discussion 

 

The objective of this study was to evaluate intra-seasonal patterns of HRI across the North 

Carolina for six warm seasons (May – September) from 2007 to 2012.  The present study 

compliments previous research by Kovach et al. (2015) that evaluated the spatial patterns of HRI 

across different demographics (e.g. age) and regions (e.g. rural, urban, Coastal Plain). Unlike 

Kovach et al. (2015), this study focused on intra-seasonal variations in HRI rates across different 

demographics and regions of North Carolina.  

 Previous research has focused on the patterns of mortality around the timing of extreme 

heat events (i.e. heat waves). The aim of this study was to evaluate the intra-seasonal patterns of 

heat morbidity (i.e. HRI ED visits) and their relationship with daily maximum temperature. 

Similar to previous temperature-heat-health studies (e.g. Curriero et al. 2003, Hartz 2013, Kovats 

et al. 2004), the temperature - morbidity curves followed a J-shape, with a morbidity peak at the 

high end of the temperature spectrum.  Temperature-morbidity curves displayed an inflection 

point at threshold temperatures that increased from 27.8˚C (82 ˚F) and 28.9 ˚C (84 ˚F) during 

June, July, and August, respectively, and peaked at approximately 37.2 ˚C (99 ˚F).  During the 

shoulder months of September and May, on the other hand, the morbidity curves displayed a 
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lower slope and temperature peak (e.g. 33.3 - 33.9 ˚C, 92 - 93 ˚F).  All months exhibited a 

marked decline of HRI ED rates at the highest temperatures (i.e. beyond the peak temperature).  

This decline is likely due to coping measures, such as air conditioning. Roughly 97% of 

households own either a window unit or central air system in North Carolina (U.S. Department 

of Energy 2010).  

 Previous research (e.g. Hajat et al. 2002) has shown that hot days earlier in the warm 

season (e.g. June) produce a larger effect on all-cause mortality than hot days later in the warm 

season (e.g. August). In this study, the summer months (e.g. June, July, and August) produced 

the highest rates of HRI, especially at the warmest temperatures.  Unexpectedly, significantly 

lower rates of HRI were found during May, the month in which one would expect there to be the 

least amount of acclimatization.   There at least two possible reasons why the rates are lowest 

during May: 1) the lack of humidity during this month, which decreases heat index values, 

thereby increasing the human body’s ability to thermoregulate.   2) At risk populations may not 

be as exposed during this month (e.g. fewer students engaged in high school athletics and smaller 

numbers of farm workers out in the fields). 

The HRI highest rates were observed in June and July. The month of August exhibited 

decreases in HRI at high temperatures, compared to the months of June and July.  This decrease 

was likely due to populations becoming acclimated by the end of summer.  Acclimation occurs 

when populations who were exposed to early heat either physiologically or behaviorally adapt to 

heat and hence deal with it more effectively (Kalkstein and Davis 1989). Acclimatization was 

also a likely reason for the increase in threshold temperatures as the summer progressed (e.g. 

26.7 ˚C in May to 28.9 ˚C in August).  
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Much intra-regional variation was observed between temperature and HRI across the 

study area. The cooler Mountain region experienced significantly less HRI than other regions.  

Additionally, HRI occurred at much lower temperatures, with threshold temperatures as low as 

25 ˚C (77 ˚F) in the month of June and as high as 26.7 ˚C (80 ˚F) in the month of August. In the 

warmer regions of the Piedmont and the Coastal Plain, threshold temperatures were 

approximately 7 ˚F higher across the summer months, suggesting these populations are more 

acclimated to the heat. This finding is consistent with research across California, where locations 

with lower summer temperatures also experienced greater excess ED visits during heat wave 

events (Knowlton et al. 2009). To prevent future HRI, National Weather Service personal should 

account for the lack of acclimation in the mountain populations and adjust heat warnings and 

advisories to higher temperatures as the warm season progresses. 

HRI ED visit rates were the greatest in the Coastal Plain.  While this area typically 

experiences the highest temperatures and heat index values in the state, the population is more 

vulnerable than the more urbanized population of the Piedmont region. This may relate to the 

fact that a large portion of its residents are employed in outdoor occupations and therefore may 

not have the opportunity to adapt their outdoor behaviors to heat (Kovach et al. 2015).  The 

Coastal Plain is also a major area for extensive agriculture and contains the greatest 

concentration of migrant and seasonal workers (Montz et al. 2011).  HRI observed in the summer 

months also coincides with the harvesting season, thus heat exposure associated with harvesting 

may partially explain the high rates of HRI.  

In both the Piedmont and Coastal Plain, August HRI ED visits were higher than other 

months at the hottest temperatures (i.e. 38.9 ˚C or 102 ˚F and higher).  This pattern was 

particularly notable for the Piedmont and suggests that although populations are better coping 
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with the extreme heat (as noted by the decline of HRI at the highest temperature), they are more 

exposed (e.g. engaging in outdoor activities).   

Intra-seasonal temporal variations were most notable across different age groups.  Both 

young (i.e. under 14 years) and older populations (i.e. 45 years and older) displayed the highest 

peak temperature HRI ED rates during June, the onset of summer. Similar results were noted in 

heat waves and mortality studies (i.e. Hajat et al. 2005, Anderson and Bell 2011), where 

susceptible individuals were more likely to experience high mortality at the onset of summer 

than later in the summer season (i.e. displacement effect). Although, HRI rates peaked in June, 

they remained elevated during the remainder of the summer, highlighting that these populations 

continued to be at risk throughout the summer season.  This continued risk is of importance as 

these age groups, particularly the 65 and older, are more likely to be admitted to the hospital due 

to severe cases of HRI (Rhea et al. 2012).  

Another interesting intra-seasonal pattern was revealed in the 15 to 17 age group, which 

was the only demographic group with the greatest HRI ED visits in the month of August. Rhea et 

al. (2012) examined HRI triage notes for approximately 25% ED visits in North Carolina and 

found that this age group were predominately related to heat exposure from organized sports, 

such as cross country and football.  These organized sports begin in August with the onset of the 

fall athletic season. Similar to our results, HRI among high school athletes at the national level 

occurred most frequently during August and when practicing or playing football (Gilchrist 

2010).  Compared to other age groups, HRI ED visits were also the highest in the month of 

September, with the highest rates at lower maximum temperatures (i.e. 34.4 ˚C or 94 ˚F).  

Increased rates in September highlight that exertional HRI may occur throughout the fall sports 

season, even when summer heat is diminishing. In order to prevent HRI, heat mitigation 
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strategies are needed for coaches to promote hydration or cooler indoor alternatives, especially 

when daily maximum temperatures range from 34.4 to 37.8 ˚C (94 to 100 ˚F).  

The highest HRI among demographic categories was in the 18 to 44 age group, the 

healthy-working age demographic.  Previous research in North Carolina highlighted that heat 

exposure among this age groups predominately resulted from outdoor occupational activities (i.e. 

farming, construction, etc.) (Rhea et al. 2012).  In this age group, HRI was most elevated in the 

summer months of June-August, peaking at a temperature of 37.2 ˚C (99 ˚F). This research 

suggests that targeted public health interventions should be directed towards this demographic 

group in the summer months, particularly in June and July.   

To investigate the intra-seasonal relationship between temperature and HRI across the 

urban-rural continuum, populations were categorized as Metropolitan, Rural Metropolitan, Rural 

Town, or Rural Isolated, based on their population density and work commuting patterns. To 

date, few studies examine the effect of temperature on rural populations and none examine the 

temporal effects of HRI on rural populations.  Yet across North Carolina, rural populations 

displayed significantly higher rates of HRI than the urban populations.  The intra-seasonal trends 

illustrate that as rurality increases (i.e. from metropolitan locations to isolated and rural 

locations), HRI rates increase in the months of July, June, and August. These months are the 

warmest of the year, with the highest maximum and minimum temperatures.  

This relationship between rurality and HRI is likely related to the fact that a larger 

proportion of the population works in outdoor occupations and displays underlying social 

vulnerabilities (e.g. poverty, low educational attainment, etc.) (Table 11).  Residents engaged in 

outdoor occupations can be exposed to the heat from the external environment and also internally 
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through strenuous activity. As rurality increased, so did the percent of population engaged in 

outdoor occupations, such as farming, fishing or forestry occupations (Table 11).  

To investigate if farm labor resulted in high HRI ED rates, two common cash crops that 

required strenuous labor were examined in detail, sweet potatoes and tobacco.  Sweet potatoes 

are a labor-intensive crop (i.e. typical migrant worker is paid $50 to haul two tons of potatoes) 

(North Carolina Farmworker Institute 2013) that are harvested in late August through early 

November.  In locations with sweet potato crops, HRI ED visits were exceptionally high during 

September, suggesting that migrant workers may be a vulnerable population.  In the case of 

tobacco agriculture, the harvest is also labor-intensive, bringing approximately 558 million 

dollars to North Carolina a year on average.  Harvesting begins in early July and can continue to 

September (North Carolina Department of Agriculture and Consumer Services, 2014).  For 

locations with a high proportion of tobacco, HRI incidence was highest during the month of July 

and remained elevated into August, corresponding to harvesting time periods.  These results 

suggest that labor-intensive agriculture influences intra-seasonal patterns of HRI.  However, 

because these relationships were identified at the ZIP code level, they cannot be confirmed 

without further research at the individual-level that explicitly addresses farm laborer’s heat 

exposure throughout the harvesting season.  

The study incorporates some limitations that warrant further discussion. In particular, the 

use of counts and rates of HRI presented here were likely underestimates of the true occurrence 

of HRI. Underestimates can occur when people with HRI did not seek medical care or physicians 

failed to appropriately document HRI diagnosis and symptoms.  Underestimates of HRI are more 

likely in isolated and rural locations where health-care access is limited.  Secondly, this study is 

limited to generalizations about the cause of intra-seasonal trends.  Future analysis should 
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explore heat exposure at an individual-level to confirm why specific populations (i.e. isolated 

and rural, the 15 to 17 age group) experience greater rates of HRI.  

Conclusions 

 

The objective of this study was to evaluate intra-seasonal patterns of HRI across the 

North Carolina for six warm seasons (i.e. May – September) from 2007 to 2012.  Unlike 

previous research, this study analyzed the association between intra-seasonal patterns of heat-

morbidity, rather than heat-mortality.  Results demonstrated that HRI incidence is highest in the 

months of July and June.  Significant variations in the pattern were observed across different age 

groups.  In particular, the young (i.e. younger than 14) and elderly (65 and older) experienced 

higher HRI rates in June with the onset of warmer summer temperatures.  In contrast, the 15 to 

17 age group experienced the highest rates in August, which corresponds with the beginning of 

the fall athletic season.  The demographic with the highest rates of HRI, the 18 to 44 age group, 

experienced the most HRI in June and July.  Similar patterns were observed for rural and 

isolated, whereas more urban locations had lower rates of in June and July.  Additional research 

is needed to identify the intra-seasonal variations of HRI at the individual-level to confirm why 

vulnerable populations (i.e. migrant worker, high-school athletes) experience HRI in different 

warm season months.  To mitigate future HRI, public health preparedness plans and heat 

advisories should be adjusted throughout the summer to account for the different populations at 

risk for HRI as the summer progresses (i.e. elderly in beginning of the summer, high school 

demographic at end of warm season).   Additionally, heat advisories should account for the lack 

of acclimation at the beginning of summer and for populations who are not frequently exposed to 

high temperatures (i.e. mountainous populations).  
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CHAPTER 5: CONCLUSIONS 
 

 Temperature increases due to climate change will likely intensify heat-related morbidity 

and mortality.  Adaptive and coping measures, including targeted public health interventions and 

heat-warnings systems are needed to prevent future and current heat-related health effects. The 

aim of this dissertation is to increase the understanding of the climatic, environmental, and 

population factors that affect patterns of heat-related illness (HRI).  In doing so, this research 

identifies vulnerable populations and temperature ranges, where HRI is most common across 

North Carolina.  

The principle objectives of our investigation were twofold: 

 1.) Identify area-level risk factors for HRI in both rural and urban populations.  

2.) Ascertain the spatiotemporal relationship between temperature and HRI for different 

demographics and locations.  

 These objectives where guided by three specific research questions:  

1.) What is the spatial pattern of HRI across North Carolina and how does this pattern 

relate to socioeconomic, demographic, and land cover patterns? 

 2.) What are the spatial relationships between temperature and HRI and how are these 

relationships modified for different demographics and regions (e.g. rural, mountains, 

etc.)? 
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 3.) What are the intra-seasonal relationships between temperature and HRI across the 

warm months (i.e. May – September)?  

Each of these questions were addressed in each chapter of the dissertation.  

 In the first chapter, area-level risk factors for HRI were evaluated across both rural and 

urban settings.  Former research has addressed heat vulnerability at a local-level by aggregating 

previous established individual-level risk factors for heat mortality into heat vulnerability 

indexes. Often, these studies identify vulnerable locations by examining the collocation of areas 

of greater physical exposure to extreme heat (e.g. urban surfaces) with locations displaying high 

social vulnerability (e.g. living below the poverty line, minorities).  Unlike this approach, the 

assessed spatial variability in heat vulnerability was investigated using an ecological study 

design, where spatially explicit, area-level risk factors are associated with heat morbidity.  HRI 

was aggregated at the ZIP code-level into rural and urban populations based on population 

density.  Area-level risk factors included previously established heat-health risk factors (e.g. 

poverty, minority) and unexamined area-level risk factors common to rural locations (e.g. mobile 

homes, agriculture).  Due to high spatial autocorrelation, a spatial error regression model was 

applied to identify risk factors with a significant relationship with HRI.  

In each environmental setting, different risk factors were associated with increased HRI.  

In urban environments, risk factors common to heat-mortality studies, such as reduced 

vegetation, low educational attainment, older median year structure built, and living below the 

poverty line were associated with increased HRI.  However, in rural environments risk factors, 

such as mobile homes, un-developed land, non-citizens, elderly, and labor-intensive agriculture 

were associated with increased HRI.  These differences highlight the variations in heat 

vulnerability for different populations and locations.  To create successful preventative heat 
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adaptation and mitigation plans, local knowledge of the unique risk factors for heat vulnerability 

is needed.  Consequently, more research is needed to understand heat-related morbidity and 

mortality across the southeastern United States at a localized-scale. 

Several unexamined risk factors (e.g. mobile homes, labor-intensive agriculture) were 

evaluated in this dissertation that had not been studied in the context of heat-related morbidity or 

mortality.   Mobile homes were of particular interest as they predicted large increases HRI across 

both rural and urban locations, even after accounting for any potential multicollinearity with 

other risk factors (i.e. living below the poverty line). Mobile home are an affordable housing 

option for low-income households in North Carolina and are often energy inefficient, with little 

insulation in the walls, ceiling, or floors. Interviews in rural North Carolina have demonstrated 

that many mobile home owners cannot afford high energy bills in the summer, thus limiting their 

air conditioning use.  In addition, some rural locations in North Carolina also have higher 

electricity costs also potentially influencing the unaffordability of air conditioning use.  

Additional research is needed at the individual-level (i.e. different spatial scale) to confirm heat 

exposure in these mobile homes and if mobile home owners are experiencing HRI.  

 In the second chapter, the relationship between HRI and maximum temperature was 

assessed across multiple regions (e.g. coastal plain, urban, etc.) and demographics (e.g. elderly, 

15 to 17). HRI incidence increases as rurality increases, particularly for the male, 15 to 44 age 

demographic.  These HRI ED visits increased from approximately 31.1˚C (88˚F) to 37.8 ˚C (100 

˚F), depending on the population being examined. Surprisingly, rates of HRI decreased at 

temperatures warmer than 37.8 ˚C (100 ˚F), suggesting that populations were more effectively 

coping to heat at these extremely hot temperatures. This decline was unprecedented, as all other 

US research has found significant increases in morbidity at extremely hot temperatures. These 
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results suggest that heat warning systems in North Carolina should target rural populations that 

engage in exertional activities, particularly at temperatures that are not exceptionally high. 

The National Weather Service (NWS) in Raleigh is tasked with issuing heat warnings 

across the eastern Piedmont and Coastal Plain of North Carolina. The NWS issues two-heat 

related products (Table 16): 1.) Excessive heat warnings, when heat poses a threat to life or 

property 2.) Heat advisory, when conditions are less extreme but still pose a potential threat if 

caution is not employed (NWS 2007). More than half of HRI in the state occurred at maximum 

temperatures between 31.7˚C (89 ˚F) and 35.6˚C (96 ˚F), climatologically normal summer 

conditions for North Carolina. These temperature fall outside NWS heat-related products and 

suggest that alternative methods are needed to mitigate the largest proportion of HRI ED visits. 

Preliminary research by Fuhrmann et al. (2014) also confirmed that the majority of HRI ED 

visits were occurring on days without a heat-related product forecast (Figure 14).  This research 

points to the need for updated NWS heat-related products, which are currently not accounting for 

heat-health effects.   

National Weather Service Heat-

Related Products  
Criteria 

Heat Advisory 

Issued when heat index is expected to reach between 

105 - 109 ˚F for 2 or more hours or is expected to 

reach between 102 - 105 ˚F for three or more 

consecutive days 

Excessive Heat Warning 
Issued when the heat index is expected to reach 110 ˚F 

or higher for any duration  

Table 16: National Weather Service Criteria for issuing either a heat advisory or excessive heat 

warning 
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Figure 14: Percent of Heat-Related ED visits accompanied by a Heat Advisory or Warning by 

NWS Region (2007 to 2012) from Fuhrmann et al. 2014 at International Conference of 

Biometeorology 

 

Most HRI ED visits are exertional-related with the highest incidence among the working 

age demographic (i.e. male, 18 to 44 years old) and in locations with a higher proportion of the 

population engaging in outdoor occupations (i.e. rural town and isolated rural). This vulnerability 

pattern is different than that observed with heat-related mortality, which is highest among 

infants, elderly, people with pre-existing illness, and low income groups. In addition, the 

morbidity studies in other regions of the United States have found similar patterns, with higher 

ED rates for HRI in the elderly and younger demographic (i.e. less than 4 years old) (Knowlton 

2004).  These differences in populations experiencing HRI suggest that the etiology of heat-

morbidity is different for North Carolina. Rather than HRI resulting from exposure to high 

environmental temperatures and affecting vulnerable populations (i.e. elderly, very young), HRI 

results from exertional activities and affects younger individuals, such as athletes and manual 

laborers.    
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 In the third chapter, the intra-seasonal patterns of HRI and maximum temperature were 

evaluated across North Carolina. Few studies have examined these patterns, except in the context 

of heat waves.  This dissertation was unique in that the HRI morbidity was investigated using a 

continuous, long dataset that examined HRI across a broad area, allowing for a detailed 

investigation into the timing of high temperatures influence on HRI.  Surprisingly, much lower 

rates of HRI at a given temperature were found during May, the month in which residents would 

be the least acclimated to high temperatures. HRI rates peaked during the summer months of 

June, July, and August. These monthly HRI rates were greatest across isolated rural locations 

and among the 18 to 44 age group, signifying that the rural, working age demographic are more 

likely to engage in outdoor activities that result in HRI in the summer heat.  However, at the 

hottest temperatures (99 ˚F), however, this population saw marked declines in HRI, suggesting 

that they engaged in adaptive measures. 

The threshold temperatures were found to increase as the warm season progressed, 

suggesting the occurrence of acclimatization. However, August HRI ED were higher than other 

months at extremely high temperatures (i.e. 38.9 ˚C or 102 ˚F and higher), highlighting that 

although populations are better coping with the extreme heat (e.g. decline of HRI at hot 

temperatures), they are more exposed (e.g. engaging in outdoor activities).  Intra-seasonal 

temporal variations were most notable across different age groups. While the young and the 

older populations displayed the highest HRI at peak temperature during June, the onset of 

summer, the high school age demographic (i.e. 15 to 17 years old) experienced high HRI rates in 

August and into September.  This peak coincides with organized sports beginning in August with 

the onset of the fall athletic season. 
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In order to prevent future HRI, various heat mitigation strategies need to be altered.   In 

the early warm season, NWS heat products should account for the lack of acclimatization within 

the population by issuing heat advisories and warnings at lower temperatures.  In addition, heat 

mitigation strategies should target particular vulnerable demographics, such as the elderly and 

young. These demographics are most vulnerable to heat at the beginning of the summer due to 

their inability to thermoregulate as efficiently as other demographics (McGeehin and Mirabelli 

2001).  During the late summer season, on the other hand, strategies should target exertional HRI 

that occurs among high school athletes and workers engaged in labor-intensive agriculture. 

Lastly, to mitigate the largest proportion of HRI, public health interventions are needed in June 

and July among the working age demographic who likely continue to work outdoors, perform 

home maintenance, and exercise on days with maximum temperatures ranging from 31.1˚C 

(88˚F) to 37.8 ˚C (100 ˚F).  

This dissertation addressed several significant literature gaps.  First, it demonstrated that 

heat vulnerability is also found among rural populations.   Few studies have addressed rural 

populations due to small sample sizes, data restrictions, and a common understanding among 

researchers that urban populations are the most heat vulnerable.  Previous research studies have 

highlighted that rates of heat mortality are highest in rural regions (i.e. Henderson et al. 2013, 

Sheridan and Dolney 2003), however, North Carolina is unique in that rural locations experience 

both increased rates and absolute numbers of HRI.   In addition, when examining HRI rates 

across the rural-urban continuum, HRI rates increased with increasing rurality, highlighting that 

living in an urban area or commuting to an urban area was a protective factor for HRI.  

Moreover, this increase in HRI rates with increased rurality is likely underestimated, as rural 

populations may not seek medical care for HRI due to the limited access of emergency 
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departments.  This research highlights the need for more research in rural environments across 

regions outside of North Carolina and the southeastern United States. 

This dissertation also addressed the need for more multi-locational studies of the 

temperature-morbidity relationships (Kalkstein and Greene 1997).  Our results were surprising in 

that declines of HRI were observed at extremely high temperatures across a wide variety of 

populations and months in North Carolina.  Declines of heat morbidity at the most extreme 

temperatures have not been identified in the United States and point to the need for more 

temperature-morbidity research.  Ultimately, establishing the temperatures in which a population 

is at greatest risk for HRI is a complex issue involving a combination of environmental, social, 

and ecological variables.   

 This dissertation also addressed a literature gap regarding the effects of heat on 

agricultural workers. To our knowledge, no previous studies have documented the types of 

agricultural workers most at risk for HRI, nor have they identified when during the growing 

season agricultural workers are at risk (e.g. harvesting times).  Identifying the types of 

agriculture that increase the risk of HRI is important.   To assess these patterns, a measure of the 

labor-intensiveness of the agriculture was calculated by integrating land cover data and crop 

enterprise budgets to provide an estimate of the labor required for harvesting within each ZIP 

code.  It was found that the labor intensity of the agriculture significantly predicted increases in 

HRI in rural environments. In addition, rural and isolated locations, where many of the labor-

intensive crops are grown displayed exceptionally high rates of HRI among the working age 

demographic (i.e. 18 to 44 years old). To investigate harvesting times and potential HRI 

increases, HRI rates were evaluated for two labor-intensive cash crops, sweet potatoes and 

tobacco.  Although HRI were higher during harvesting months, it is hard to infer a relationship 
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without exposure or occupational information about the ED patient.  Currently, ED visit 

information does provide insurance information, which can highlight occupational exposure with 

worker compensation insurance. This information will be utilized in future analyses to assess 

occupational HRI.  

 In order to more fully analyze heat exposure among agricultural workers and other 

residents of North Carolina, additional individual level data are needed to assess the degree to 

which exceptionally warm microclimates and strenuous activity contribute to adverse heat-health 

effects.   Individual-level data would provide the necessary information to confirm the types of 

individuals most at risk for HRI (i.e. agricultural workers, high school athletes, etc.) allowing for 

more informative public health recommendations for interventions or warning systems. The 

health data used in this dissertation (i.e. NC-DETECT) included individual level data of the 

patient’s age, gender, and insurance information.  Although this dissertation examined the 

etiology of HRI through the individual-level data on the patient’s age and gender, it did not 

utilize insurance information in the analysis.  Future research will employ the patient’s insurance 

information (i.e. no insurance, Medicare or Medicaid) to assess socioeconomic status and its 

influence on HRI across different demographics and locations.  

 It is hoped that the results of this dissertation will be applied in ways that contribute to a 

reduction heat-related morbidity across North Carolina.  Specifically, relationships identified 

between temperature and heat-related illness are being integrated into a web-based heat-health 

vulnerability tool, which will generate predictions of the number of HRI ED visits based on 

National Weather Service forecasted temperatures. The tool will be used by emergency response 

personnel and public health officials to more effectively warn demographic groups that are 

especially vulnerable to HRI. 
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