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ABSTRACT 

VIRGINIA JEAN HOGLUND: Characterization of the Arterial Adventitia as a Sonic 
Hedgehog Responsive Niche 

 (Under the direction of Mark W. Majesky) 
 

While formerly viewed as merely connective tissue, the emerging view of the 

arterial adventitia is that of a complex and organized vascular progenitor cell niche. 

Previously, our lab has identified a domain of Sonic Hedgehog (Shh) signaling 

restricted to the adventitia. This domain is locally produced and maintained, with the 

peak of activity being during embryonic and neonatal development of the vessel 

from embryonic day 14.5 (e14.5) to postnatal day 14 in the mouse. Developmental 

studies suggest that the mesenchyme continuous with the perichondrium of the axial 

skeleton contains Shh responsive cells that may contribute to adventitial 

development around e14.5. The cell types that participate in this Sonic Hedgehog 

adventitial signaling community are CD68-positive macrophages, Sca1-positive 

progenitor cells, and Perilipin A-positive adipocytes that make and/or respond to Shh 

protein as shown using transgenic reporter mice. Thus, we characterize the 

adventitia as a Shh responsive vascular niche. 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

Background 

Niche Environments 

Classic and Flexible Niche Models 

Stem cell biology and regenerative medicine are frontiers of research that are 

rapidly gaining momentum and showing promise as future therapeutics for many 

diseases including Alzheimer’s, muscular dystrophy, and repair of ischemic injury 

after myocardial infarction. Important in understanding the nature of stem cells is 

characterizing the specialized microenvironments that prevent their differentiation 

and promote their survival called niches. A niche is defined to be a “subset of tissue 

cells and extracellular substrates that can indefinitely house one or more stem cells 

and control their self-renewal and progeny production in vivo” (Figure 1)1. There are 

two types of niches: a classic niche and a “flexible” niche. The Drosophila ovary is a 

model system that contains both types of niches for the three types of stem cells 

involved in oogenesis. The germline stem cells (GSCs) and escort stem cells are 

maintained in classic niches, while the follicle stem cells (FSCs) reside in a flexible 

niche 2, 3. 

Classical niches consist of differentiated cells that directly contact stem cells 

and direct their self-renewal and behavior (Figure 1A)2, 4. In the fruit fly Drosophila 
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melanogaster, the ovary, known as the “germarium” was first described as a classic 

niche for the germline stem cells (GSCs) by Xie and Spradling in 20005. In the last 

decade of research, data suggest that there are two key mechanisms that promote 

functionality of this classical niche: adhesive interactions between the niche cells 

and stem cells and asymmetric signaling6.  

In contrast, follicle stem cells (FSC) reside in a “flexible” niche where the 

architecture and position of the niche is less clearly defined (Figure 1B)3. In such 

niches, there are no obvious differentiated support cells to provide an anchoring 

function. Instead the stem cells generate some of the components necessary for 

their self-renewal and maintenance2, 3, 7. Specifically, FSCs in the germarium 

produce the essential local niche component, Laminin A, which activates integrin 

signaling in the FSC, promoting anchoring and proliferation of the cell3. Additionally 

required, differentiated niche resident cells (red and blue, Figure 1B) secrete 

paracrine signals to the FSCs (green, Figure 1B) to stimulate proliferation. In one 

example, niche resident cells produce the ligand Hedgehog (Hh) to signal to FSCs 

that express its receptor Patched (Ptc) and effector proteins Smoothened (Smo) and 

the Drosophila homolog of transcription factor Gli, Cubitus Interruptus (Ci)8, 9. 

Mutants for Hh, Smo, or Ptc all have defects in FSC proliferation rates, indicating an 

important role for the pathway in control of FSC proliferation8, 10.   
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Figure 1: Schematic of two types of niches. A) A classical niche: Adhesive 

factors (light blue) keep the stem cells (green) inside the niche to reinforce 

paracrine signals from niche cells (blue) that block differentiation. When stem 

cells divide, they can either divide symmetrically to make 2 stem cells (upper 

mitotic cell) or they can divide asymmetrically (lower mitotic cell) and produce 

a stem cell and a differentiated daughter (red). Figure adapted from Spradling 

et al.1 B) A flexible niche: Stem cells (green) receive paracrine factors from 

niche resident cells (blue, red) but also produce autocrine factors for self-

maintenance. Integrin signaling is one mechanism stem cells use to adhere to 

the ECM (brown and grey lines) and maintain position in the niche. 

 

The Perivascular Niche 

In vertebrates, there are several examples of perivascular spaces as being 

important for nurturing stem cells. One example is the neural progenitor niche in the 

brain. Neurons, astrocytes, and blood vessels are organized in functional 

“neurovascular units” in which the vasculature can impact neuronal activity and, in 
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turn, dynamically adjust to its change11. Recent work by Licht et al. shows that 

vascular endothelial growth factor (VEGF) is important for neurogenesis. Transgenic 

mice with tet inducible expression of VEGF in the brain increased angiogenesis and 

neurogenesis in the hippocampus and improved memory. Once tetracycline was 

removed and the overexpression was turned off, neurogenesis was still improved 

over controls, although memory regressed back to control levels11. The authors 

speculate that the expanded vasculature provided an expanded niche for neuronal 

stem cells in the VEGF on>off mice11.  Additionally, Kokovay and colleagues show 

that proliferative subventricular zone (SVZ) neural progenitor cells home to 

endothelial cells in a stromal-derived factor 1 and CXC chemokine receptor 4 

(CXCR4)-dependent manner, making cell-cell contact with the vessel, and laying 

down long processes along its length12. These studies suggest that the vasculature 

provides an important niche environment for neuronal precursors. 

Hematopoietic stem cells have also been shown to be maintained in a 

perivascular niche. Rafii et al. showed that bone marrow derived endothelial cells 

(ECs) co-cultured with hematopoietic stem cells (HSCs) produced several 

hematopoietic cytokines that promoted proliferation and differentiation of the HSCs13, 

14. Davis et al. went on to show that ECs from the porcine brain microvasculature 

were capable of expanding HSCs in culture, suggesting that ECs from non-

hematopoietic tissues could also support HSC growth in vitro15. Subsequent studies 

confirmed that human brain endothelial cells produced soluble factors that induced a 

10 fold expansion of HSCs from cord blood and bone marrow in vitro16-18. 

Collectively, these studies suggest an important function for the bone marrow 



5 
 

vasculature, particularly the ECs, in regulating hematopoiesis and hematopoietic 

regeneration. 

In the mammalian testis, it has recently been shown that spermatogenic stem 

cells are localized to the vasculature. Yoshida and colleagues performed 

experiments using time lapsed confocal imaging of GFP tagged spermatogenic stem 

cells that showed that the stem cells stayed close to the vessels and migrated away 

as they differentiated19. Furthermore, experimental alteration of the vasculature 

resulted in rearrangement of the stem cells19. While the stem cells did not directly 

touch the vasculature, they were in close proximity, and clustered with macrophages 

and Leydig cells, a testis support cell thought to be derived from pericytes. The 

researchers speculate that these perivascular cells take part in producing this niche 

by production of androgens and other necessary factors19. It is also possible that the 

vessels secrete soluble factors that the spermatogenic stem cells require for 

maintenance, and unlike the gonads in flies, tight junctions with the niche cells are 

not required. 

 

The Arterial Adventitia 

Structure and Function 

The tunica adventitia has been long thought of as a simple layer of collagen-

rich connective tissue matrix embedded with a few fibroblasts and perivascular 

nerves (reviewed in Majesky, 2011 20 and Majesky, 2012 21). This definition is fast 

becoming outdated as research is now discovering that the adventitia is a complex, 
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organized, and diverse community of cell types that serve important functions in the 

wall, and support a progenitor cell niche20-31.  

Functionally, the adventitia serves as a dynamic compartment for cell 

trafficking into and out of the vessel wall, and adventitial cells play key roles in artery 

wall growth, control of lumen size by remodeling the extracellular matrix, opposing 

the transmural pressure to prevent overdistension of vessel, and defense against 

infection32-34. This layer of artery wall also contains a microvasculature, called the 

vasa vasorum, which penetrates and nourishes the medial and intimal layers of the 

artery wall32, 35. Adventitial microvessels from the vasa vasorum extend through the 

media and into atherosclerotic plaques where they serve as important channels for 

leukocyte trafficking into and out of the lesion36, 37. Recent studies describe novel 

and interesting roles for the adventitia insofar as it supports resident stem cell 

antigen-1 (Sca1)-positive progenitor cells that can adopt both vascular and non-

vascular cell fates20-31. The molecular pathways that maintain vascular progenitor 

cells in the adventitia, that promote the growth of adventitial microvessels, and that 

coordinate overall growth and remodeling of the adventitia during development and 

the postnatal period have not been described. 

The structure of the adventitial matrix has recently been reported in the 

porcine coronary artery34. The researchers found that both the collagen and elastin 

fibers formed alternating layers in the inner adventitia. In the outer adventitia, elastin 

fibers were largely absent, and collagen fibers were randomly arranged compared to 

the inner adventitia. This is consistent with an earlier report examining the elastin 

composition of the adventitia in the canine aorta that found alternating lamellae of 
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collagen and elastin fibers in the adventitia38. These reports suggest a level of 

organization to the adventitia and a role in structural support of the wall. 

 

Figure 2: Schematic of the artery wall. The adventitia is home to 

progenitor cells (AdvSca1, green), a diverse array of leukocytes (blue, 

pink, grey, light green), perivascular nerves and their support cells 

(yellow-green and brown), fibroblasts (purple), the vasa vasorum 

(orange), and its supporting adipose tissue and pericytes (yellow, dark 

purple, respectively) all embedded in a collagen and elastin rich 

extracellular matrix (grey and brown lines). Int = intima, Med = media, 

Adv = adventitia, IEL = internal elastic lamina, EEL = external elastic 

lamina 
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Adventitial Progenitor Cells 

Adventitial progenitor cells were first described in work by Hu et al.23. They 

sought to find a source of progenitor cells in ApoE knockout mice. By staining many 

types of non-bone marrow tissues for a panel of stem cell markers, they found that 

the arterial adventitia was the only location where significant numbers of cells 

expressing these markers could be found. These cells expressed Sca1, c-kit, CD34, 

and Flk1, but lacked embryonic stem cell marker SSEA-123. To test the in vivo 

potential of these cells, they isolated genetically labeled cells from Rosa26 donor 

mice and transplanted them into wild type mice on the outside of an experimental 

vein graft. After 4 weeks, the genetically labeled cells were found to have migrated 

through the media into the graft neointima, and had become smooth muscle marker 

positive and Sca1-negative. In the control experiment, Sca1-negative adventitial 

fibroblasts from Rosa26 donor mice did not leave the graft adventitia, and were only 

rarely found in the neointima23. In vitro experiments confirmed the ability of Sca1 

cells to differentiate into smooth muscle in response to PDGF-BB23. In this model, 

adventitial Sca1 cells were shown to be able to differentiate into SMCs and 

contribute to neointimal formation20. 

There have been several reports since then that have found similar results. 

Work by Campagnolo et al. isolated CD34-positive cells from human saphenous 

veins of patients undergoing cardiac bypass surgery39. These cells expressed the 

stem cell marker Sox2 and exhibited multilineage potential. Furthermore, the when 

transplanted into a mouse hindlimb after ischemic injury, these human CD34-

positive cells differentiated into pericytes that formed N-cadherin mediated contacts 
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with endothelial cells and enhanced angiogenesis that promoted recovery in the 

ischemic limb39. 

 

Figure 3: Vascular progenitor cells. Sca1-positive progenitor cells 

reside in the adventitia, and form highly organized layers and clusters 

with each other20. 

 

Work by Passman and colleagues further characterized the adventitial niche 

and AdvSca1 cells by describing a novel domain of Sonic Hedgehog (Shh) signaling 

restricted to the adventitia25. Passman and colleagues concluded that Shh was 

involved in survival and proliferation of the AdvSca1 cells.  In vivo, Shh knockout 

mice had significantly reduced, but not absent, numbers of AdvSca1 cells. In vitro, 

treatment of AdvSca1 cells with the Hh signaling inhibitor cyclopamine showed 
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reduced proliferation and survival with no increase in apoptosis20, 25, 40. They 

confirmed results by Hu et al. that AdvSca1 cells differentiated into SMCs in vitro, 

and further showed that roughly half of these cells readily differentiated into SMCs in 

culture after removal from the adventitial niche with only the addition of serum to the 

culture medium and no additional growth factors23, 25. This observation that AdvSca1 

cells differentiate into SMCs in response to serum was also made by Howson et al. 

examining spheroid forming rat adventitial cells41.  

Passman et al. went on to confirm that this SMC population occurred because 

of differentiation and not proliferation of contaminating SMCs by treatment with 

aphidicolin, an inhibitor of cell division. Further examination of these cultures 

revealed roughly ¼ of the cells retain their Sca1 phenotype, and the remaining ¼ 

lose Sca1 expression but do not detectably express smooth muscle markers20, 25, 40. 

These data suggest that AdvSca1 cells are a heterogeneous population of cells with 

different potentials (See figure 19 for model).  Indeed, culturing isolated AdvSca1 

cells from Rosa26 mice in Matrigel plugs containing recombinant FGF2 and heparin 

injected subcutaneously in the mouse showed these cells can differentiate into 

pericytes, adipocytes, and macrophages40 (Supplementary figure 1).  

 

Molecular Control of Progenitor Cells 

Much current research is being conducted on the molecular and epigenetic 

control of stem and progenitor cells and their self-renewal and differentiation. 

Smooth muscle progenitors in particular are governed by the actions of key 

transcription factors including serum response factor (SRF), co-activators like 
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myocardin, and co-repressors like Krüppel-like factor 4 (Klf4) (reviewed in Xiao, 

2010 42).  

SRF is a MADS-box containing transcription factor, comprised of a DNA 

binding element, a dimerization domain, and an interface for protein-protein 

interaction43. Smooth muscle genes contain one or more of the binding sites for SRF 

called CArG elements, with a CC [A/T]2 A [A/T]3 GG motif, in the promoter or intronic 

sequence44. Because SRF is not specific for smooth muscle, interactions with co-

activators and co-repressors provide regulation and control over target genes. Some 

influence SRF binding to DNA45, while others form a complex with SRF to either 

stimulate (myocardin related factors, Csrp1) or inhibit (Klf4 46, Msx1 and 2 47, Elk1 48) 

transcriptional activity. Also important to the regulation of SRF-mediated 

transcription is the actin cytoskeleton. Myocardin related factors bind to G-actin and 

are released into the nucleus to interact with SRF during Rho-activated actin 

polymerization and treadmilling49. Upstream activators of SRF and myocardin 

activity include TGFβ50, PDGF42, and Wnt251. 

Repressors of SRF-mediated transcription include factors like Foxo4: a 

transcription factor that represses the activity myocardin52; and Klf4: a transcription 

factor that inhibits the expression of myocardin and possibly recruits histone 

deacetylases to modify chromatin structure at smooth muscle genes44, 46. Klf4 has 

recently come on stage as one of the four transcription factors that reprogram 

fibroblasts into pluripotent stem cells53, 54.  Passman and colleagues showed that 

AdvSca1 cells express both Foxo4 and Klf4, and upon removal from the adventitial 

niche, AdvSca1 cells downregulated Klf4 expression and upregulated smooth 
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muscle marker genes25. Knockdown of Klf4 by siRNA enhanced differentiation of 

AdvSca1 cells into SMCs, and overexpression of Klf4 by adenoviral infection 

inhibited differentiation in response to serum40. The factors released by the niche to 

promote and regulate expression of Klf4 to maintain AdvSca1 cells have not yet 

been determined. 

Chromatin remodeling is an important aspect of transcriptional regulation in 

all cell types, especially stem/progenitor cells. Studies of differentiation of HSCs into 

erythrocytes showed the importance of higher order chromatin structure and 

chromatin looping of the β-globin locus control region to interact with a downstream 

promoter by Brg1, a component of the SWI-SNF chromatin remodeling complex55.  

Also, it has been shown that various stimuli known to alter SMC phenotype, such as 

TGF-β, PDGF, and retinoic acid, appear to act in part through effects upon SMC 

chromatin structure56. Also, as stated above, Klf4 has been implicated in recruiting 

deacetylases to modify acetylated histone H4, a histone modification that is 

associated with open chromatin44. Understanding the chromatin landscape of 

AdvSca1 cells may be important in deciphering the mechanisms for self-renewal and 

regulation of differentiation. As it is likely that AdvSca1 cells are a heterogeneous 

population of progenitors, chromatin marks and higher order structure may differ 

from cell to cell in the overall population, and identification of markers of 

subpopulations within the AdvSca1 total population would benefit an analysis of the 

chromatin landscape of these cells.  
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Aging and Progenitor Cells: Dysregulation of the Niche 

Progenitors from old and young mice do have intrinsic differences. For 

example, telomerase is less active in “old progenitors” than “young progenitors”, 

leading to shortened telomeres and eventually proliferative senescence. Old satellite 

cells have reduced notch signaling, which reduces their capacity to self-renew57. 

Hepatic progenitors gradually increase expression of cEBPα and chromatin-

remodeling factor brahma over time and are less capable of regeneration of the 

aged liver58. However, recent studies suggest that loss of function of niche-

dependent signaling may be a contributing factor of various pathologies associated 

with aging, including greying and loss of hair, fibrosis, kyphosis, mal-absorption of 

nutrients, and osteoporosis59-64.  

Studies show that exposure of “old” progenitors to a “young” niche enhances 

proliferative capacity and increases their ability to regenerate. Transplanting muscle 

from a two year old mouse into a two month old mouse and then injuring the tissue 5 

weeks later resulted in increased expression of embryonic myosin heavy chain, 

BrdU incorporation, and regeneration of damaged muscle than in two year old 

muscle transplanted into another two year old mouse65. This phenomenon has also 

been seen in liver parabiosis experiments65. 

In a mouse model of premature aging, Fox et al. reported that there was a 

ten-fold increase in apoptosis in the intestinal crypts of 3-7 month old mice, primarily 

in the progenitor cell zones, resulting in impaired ability to absorb excess fat when 

placed on a high fat western diet chow64. Stem cell-derived organoids from these 

mutant mice failed to develop fully in culture and exhibited fewer crypt units, 
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indicating a dysregulation of intestinal progenitor cell maintenance64. While these 

mice do carry a mitochondrial mutation that impairs editing function of mitochondrial 

DNA synthesis, it would be interesting to see how much of this phenotype is due to 

the mutant prematurely aged niche and how much is inherent in the mutant stem 

cells by transplanting intestinal crypt cells from mutant mice into age matched wild 

type mice and vice versa. 

Reduction of adventitial progenitor cell pools with aging or mutation has not 

been directly tested, but may be a contributing factor to medial dissection and 

aneurysm formation in the aorta. It may also predispose patients with diseases like 

scleroderma or the premature aging syndrome progeria to loss of microvasculature 

in the vasa vasorum and adventitial fibrosis61, 66. As AdvSca1 progenitor cells and 

the critical signaling provided by the adventitial niche are better characterized, age 

related degeneration and pathological changes to the artery wall due to aging can be 

targeted for therapeutic intervention21.  

 

The Adventitia in Disease and Injury 

In addition to fibroblasts and the above mentioned progenitor cells, the 

adventitia is home to several leukocyte cell types including tissue resident CD68-

positive macrophages, T-cells, B-cells, and mast cells67-70. Although the functions of 

these cells have not been described in non-pathogenic settings, several studies 

have implicated adventitial lymphocytes participating in inflammation and remodeling 

in injury and disease models. George Tellides’s lab showed that depletion of 

macrophages prevented flow-dependent inward remodeling in the mouse carotid71. 
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Their lab went on to show that inward remodeling of the mouse carotid artery in 

response to reduction in blood flow required early adventitial accumulation of 

CXCR3-positive macrophages. They found evidence that a subset of macrophages 

with high levels of CXCR3 accumulated in the adventitia undergoing remodeling, 

suggesting an expansion of a population already resident, homing of monocytes with 

this gene expression profile, or both72.  

In another study of flow mediated remodeling, Erami and colleagues found 

that catecholamines had a significant effect on the inward and outward remodeling in 

response to changes in flow73. Ligation of the left carotid artery branches causes a 

reduction in flow in the left carotid and an increase in flow in the right carotid. In wild 

type mice, these changes in flow mediate an inward remodeling of the left carotid 

and outward remodeling in the right carotid. In the left carotid, this is accompanied 

with increases in the size of the adventitia, with increased proliferation, increased 

apoptosis, and as stated above, increase in macrophage accumulation73. These 

effects are inhibited in knockout mice of dopamine β-hydroxylase (DBH), the enzyme 

that synthesizes epinephrine and norepinephrine. Catecholamines have been shown 

to regulate Shh signal in lung morphogenesis74. Knockout mice of α2B-AR, an 

adrenoceptor, die right after birth of respiratory failure. These mice show strong 

upregulation of Shh, leading to an overproliferation of mesenchymal cells in the lung, 

reducing alveolar space74. It is possible that Shh is also increased in the adventitia of 

the DBH knockout mice with the reduction of catecholamine signaling. It would be 

interesting to test this hypothesis, and determine if an increase in Shh signal 
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reduces the hyperproliferative and inflammatory effects of flow dependent 

remodeling of the artery wall.   

Additionally, adventitial macrophages have been shown to respond to infusion 

angiotensin II (Ang II), a vasopressor known to promote vascular inflammation. 

Infusion of Ang II into 7 to 12 month old C57Bl6/J mice caused adventitial expansion 

and recruitment of macrophages to the adventitia. Adventitial cells in these mice 

produced inflammatory cytokines IL-6 and MCP-1, leading to the development of 

aortic dissection in some mice, a condition where the inner layers of the aorta tear, 

and blood begins to force the layers apart; a frequently fatal condition if not 

surgically repaired75. The researchers went on to show that the IL-6 and MCP-1 

produced in the adventitia promoted differentiation of monocytes into macrophages, 

and stimulated production of matrix metalloproteinase 9 (MMP9) and MCP1 by 

adventitial fibroblasts, creating an amplification loop that accelerated inflammation75. 

The production of these cytokines was 2.3 fold greater in vitro when adventitial 

fibroblasts were cocultured with monocytes over either cell type alone75, 76. These 

data suggest there is a paracrine signaling relationship between different adventitial 

cell types and provide further support for the importance of the adventitia  as a 

mediator of inflammatory cell interactions that can initiate physiological flow-

dependent remodeling as well as the pathological remodeling of the artery wall20. 

Another example of adventitial leukocytes playing a role in vascular 

remodeling comes from a study examining the role of T-cells and B-cells in 

hypertension. The researchers found that RAG knockout mice that lack both T-cells 

and B-cells have a blunted response to infusion of Ang II: a factor that produces 
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hypertension in wild type mice. Adoptive transfer of T-cells, but not B-cells, restored 

the wild type hypertensive response77. Infusion of low doses of Ang II stimulated 

production of chemokines by the vessel wall that recruited T-cells to the adventitia 

and peri-adventitial adipose tissue77. These T-cells became activated and produced 

inflammatory cytokines like TNFα, INFγ, and p47phox. These cytokines stimulate 

superoxide production that reduces the amount of available nitric oxide in the vessel 

wall, and increases smooth muscle contractile tone20, 77. These studies highlight the 

important role of the adventitia as a site of T-cell homing and activation in disease.  

Other arterial injury models have reported to have an effect on the adventitia. 

It has been shown that endothelial denudation by balloon injury not only induced 

neointimal formation, but also increased the fibroblast number and collagen 

deposition in the adventitial layer78. Furthermore, removal of the adventitia from 

rabbit carotid arteries results in formation of a hyperplastic intimal lesion79. This 

lesion regresses when a “neoadventitia” is grafted over the site of injury unless the 

animal is fed a high cholesterol diet79. Similarly, removal of rat abdominal aortic 

adventitia shows an initial severe trauma of the endothelial surface leading to 

complete de-endothelial areas as early as six hours after injury and intimal 

hyperplasia as early as one month after injury80. The researchers in both of these 

studies suggested that this response was likely due to the removal of adventitial 

microvessels and the ensuing hypoxia in the artery wall.  
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The Hedgehog Signaling Pathway 

Drosophila hedgehog (Hh) was discovered in 1980 by Nusslein-Volhard and 

Wieschaus81. Since then, the hedgehog pathway has come to the forefront as a 

major player both in embryonic development and disease. Hh signaling has been 

implicated as a mitogen controlling proliferation and promoting cell survival82-84, a 

repressor of cell differentiation in progenitor cells85, an angiogenic factor86-90, and as 

a morphogen controlling cell fate in a dose dependent manner91-94. Research into 

blocking Hh signaling is a promising therapeutic for many cancers95, 96, as well as 

some anti-psychotic medicines97, so new data are constantly being added to the 

picture and evolving our understanding of this highly regulated and complicated 

signaling network. Key components of the pathway and regulation are discussed 

below. 

 

The Vertebrate Hedgehog Signaling Pathway 

The vertebrate hedgehog family consists of three secreted ligands- sonic 

(Shh), indian (Ihh), and desert (Dhh) hedgehog94. While all three bind the receptor 

Patched (Ptc) with similar affinity, these three hedgehog proteins have differing 

expression patterns and exert functional effects with different potencies. 

Knockout mice of each of these genes reveal very different phenotypes. Shh-/- 

is embryonic lethal with about half of the expected number of embryos surviving to 

term, and none surviving beyond birth98. These mice have defects in numerous 

systems including craniofacial, spinal cord, limb, lung, skeletal, and patterning of the 

outflow tract of the heart98. Ihh-/- is also embryonic lethal, with similar survival rates 
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as Shh-/-. Ihh-/- embryos primarily have skeletal defects92. Mutants display markedly 

reduced chondrocyte proliferation, maturation of chondrocytes at inappropriate 

positions, forelimb and rib shortening, and failed development of osteoblasts in 

endochondral bones92. Unlike the other two, Dhh-/- is not lethal. Mice are viable, but 

with fertility defects, as spermatogenesis is impaired99. 

All three hedgehog ligands are produced in a similar fashion. As a specific 

example, Shh is synthesized as a ~45 kDa pre-protein that is autocatalytically 

processed into a ~19 kDa N-terminal domain (Shh-N) and a ~25kDa C-terminal 

domain (Shh-C) by activity intrinsic to the C-terminal domain100. Shh-C further 

processes Shh-N by adding a cholesterol residue to its C-terminus. Additional lipid 

modification of Shh-N results in a palmitoyl moiety added to the N terminal 

Hedgehog domain by the acetyltransferase skinny hedgehog (Ski)101-103. These lipid 

modifications facilitate the integration of Hh into multimeric lipoprotein particles94, 104. 

The release of this complex from the producing cell is dependent on the activity of 

Dispatched 1 (Disp1)105. Harfe and colleagues created a knockin mouse that is able 

to genetically label cells that are actively producing Shh using an EGFP-cre fusion 

protein under the control of the Shh locus (ShhEGFP) by examining localization of 

EGFP91; an important tool used in the work described in chapter 2. 

Hh signaling is initiated through binding to its receptors Patched-1(Ptc1) and 

Patched-2 (Ptc2) and to their accessory proteins CDO, Gas1, and BOC, which 

potentiate signaling106-108. In the absence of ligand, patched represses the activity of 

a signal transducing protein called smoothened (smo). Smo proteins contain a 

conserved sterol sensing domain and current evidence suggests that ptc represses 
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Hh signaling by transporting smo-activating sterols out of the cell84. In the absence 

of activated smo, the gli family of transcriptional mediators of Hh signaling is 

processed to a repressive form. This occurs when full length Gli (Gli-FL), bound to 

the inhibitor suppressor of fused (sufu)109, is phosphorylated by protein kinase A 

(PKA), glycogen synthase kinase 3β, (GSK3β), and casein kinase 1 (CK1)110-114. 

This multi-phosphorylated Gli-FL is then recognized by βTrCP, in complex with an 

E3 ubiquitin ligase114. Gli-FL is polyubiquitinated and marked for partial degradation 

by the proteasome to the truncated and repressive form (Gli-R). 

The gli family of zinc finger transcription factors includes members gli1, gli2, 

and gli3. Gli1 primarily has an activator function, and no reported repressive ability. 

Gli3 is primarily a repressor, with weak activator function. In an unusual mechanism, 

the proteasome processes Gli3 in the absence of Hedgehog pathway stimulation 

while Gli1 is not processed but degraded completely, despite considerable homology 

with Gli3115. These differences in processing can be described by defining a 

processing signal that is composed of three parts: the zinc finger domain, an 

adjacent linker sequence, and a degron. Gli1 is not processed because two 

components of the processing signal, the linker sequence and the degron, are 

ineffective115. Gli2 is a composite of positive and negative regulatory domains and 

functions as both an activator and repressor. In cultured cells, truncation of the 

activation domain in the C-terminal half results in a protein with repressor activity, 

while removal of the repression domain at the N-terminus converts Gli2 into a strong 

activator116.  Studies have described a “Gli code”, where the cell’s response to Hh 



21 
 

signal is determined by the combination and relative levels of the three Gli factors, 

and the balance of their full length active forms and truncated repressor forms117, 118. 

Shh binding to Ptc1 inhibits sterol transporter activity, thereby allowing 

activating sterols to accumulate to levels that activate Smo84. Activated Smo then 

traffics to the primary cilium where critical signal mediators (Gli 1-3 and Sufu) are 

concentrated119, 120. Activated Smo antagonizes the effects of Sufu, an inhibitor of 

Gli. Data currently indicate this occurs by way of two kinases. Uncoordinated51-like 

Kinase 3 (Ulk3) phosphorylates Gli-FL, and STK36 phosphorylates Sufu121-123. This 

results in processing of Gli-FL proteins (Gli1-3) to their transcriptionally-active forms 

and Shh-dependent gene expression is stimulated. Importantly, several Hh pathway 

elements are also targets of Shh signaling including ptc1, ptc2, and gli1, so 

transgenic mice with the LacZ gene under the control of these promoters are used 

as sensitive reporters of Shh signaling in vivo.(Ptc1LacZ/+, Ptc2LacZ/+, and Gli1LacZ/+ 

respectively) These reporter mice as used as tools in specific aims 1 and 2. 

Regulation of Hh signaling is mediated by several factors. SPOP is an 

important regulator of activated Gli. SPOP complexes with Cul3 ubiquitin ligase to 

recognize Gli-A in the nucleus and mark for proteosomal degradation109, 114, 124. As 

activated Gli 1-3 have a wide variety of targets like growth factors and morphogenic 

factors that could potentially be dangerous in the event of prolonged activity, it is 

essential to keep tight control over the half-life of Gli-A, and thus SPOP provides a 

necessary mechanism of regulation over hedgehog signaling. 

Heparin sulfate proteoglycans are components of the ECM that are also 

involved in regulation of Hh signaling. HSPGs can bind to the secreted Hh ligand 
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and have been shown to be involved in setting up gradients of Hh, and propagating 

the Hh signal over long distances. Recent work suggests that the HSPG perlecan is 

also required for maximal activation of Shh, especially in the brain125. 

 

 

Figure 4: Schematic of mammalian hedgehog signaling.  In the 

absence of Hh ligand, Gli transcription factor (Gli 2,3) is processed to a 

repressor form (Gli-R) by successive phosphorylation by PKA, GSK3β, 

and CK1. This phosphorylated form is recognized by βTrCP as part of 

an E3 ubiquitin ligase complex with Cul1. Conversely, Gli (Gli 1-3) is 
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activated when Hh is present to promote transcription of target genes, 

including Hh pathway elements ptc1, ptc2, gli1, and gli2. 

 

The Primary Cilium 

The primary cilium is a crucial component of transmission of vertebrate Hh 

signal, unlike in Drosophila. Once regarded as a mere curiosity, the primary cilium is 

widely becoming known as an organelle implicated in coordinating and regulating 

many different signaling pathways, including Hh, Wnt, and PDGF126-130. 

Inappropriate assembly of the primary cilium results in a whole class of disorders 

called ciliopathies, examples being Bardet-Biedl syndrome, Meckel syndrome, 

Joubert syndrome, and both the recessive and dominant forms polycystic kidney 

diseases131.  

Primary cilia consist of an axoneme of nine doublet microtubules that extends 

from a basal body, which is derived from the centriole132. In contrast to those of 

motile 9+2 cilia, axonemes of primary cilia lack the key elements involved in motility, 

including the central pair of microtubules, the proteins that surround them, and the 

dynein arms that power microtubule sliding to produce motility133, 134. The axoneme 

itself is assembled by the intraflagellar transport proteins, including the kinesin and 

dynein motors that power transport132. Knockouts of many of the IFT proteins result 

in absent or blunted primary cilia, leading to aberrant hedgehog signaling130, 135-137. 

Genetic studies show that IFT proteins act somewhere downstream of Ptc and Smo 

and upstream of the Gli transcription factors 1-3, and are thought to be involved in 

Gli processing114, 138. 



24 
 

The first evidence that vertebrate Hh signaling depends on primary cilia came 

from a screen for ENU-induced mutations that alter the patterning of the mouse 

embryo119, 130. This screen identified several mutants showing morphological and 

patterning defects that were phenotypically consistent with disrupted Hh signaling. 

The genes disrupted in these mutants encode several components of the IFT 

machinery, including the IFTB complex components IFT122, IFT172 and IFT88, and 

subunits of the retrograde and anterograde motors DynC2H1 and Kif3a136, 139.  

Despite the evolutionary conservation of the Hh pathway and the importance 

of primary cilia in vertebrate Hh signaling, cilia are not required for Hh signaling in 

Drosophila. This raises the question of why cilia are required for vertebrate Hh 

signaling. Recent data suggest that Kif7, a kinesin that is the vertebrate homologue 

of Drosophila Costal 2, may link the vertebrate Hh pathway to cilia130, 140-142. Cos2 is 

a kinesin-related protein that serves as a scaffold for Hh signaling complexes. Cos2 

is required for formation of the repressor form of the Drosophila Gli homologue Ci by 

recruiting the kinases that mark Ci for processing. Cos2 is also required after 

pathway activation to promote maximal pathway activation by antagonizing Sufu130. 

Although Cos2 can bind microtubules, its motor domain has diverged from other 

kinesins such that its motor function is disabled143. The vertebrate homolog Kif7 has 

similar function as Cos2. It is required for the processing of Gli3 to its repressor form 

in the absence of Hh and also required for the efficient localization of Gli3 to cilia in 

response to Hh signaling activation. However, unlike Cos2 the Kif7 motor domain 

has the motifs that are typical of kinesin motors. In the absence of ligand, Kif7 

localizes to the base of the primary cilium and moves to the tip in response to 
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pathway activation130, 142. This translocation depends on the motor domain, which 

suggests that Kif7 acts as an anterograde motor141, 142. These results cumulatively 

suggest that Cos2/Kif7 are an evolutionary link between Hh and primary cilia.  

Furthermore, recent work in planaria suggests that some conserved 

components of the Hh pathway were associated with cilia before they were 

associated with Hh. RNAi knockdown of Fused, Cos2, and Iguana, known Hh 

signaling components in flies and zebrafish, resulted in worms with a reduction in 

cilia, but intact Hh signaling144. Knockdown of known planarian IFT components had 

similar results144. Based on these findings, the authors concluded that cilia are not 

required for Hh signaling in planarians, and that the ancestral function of Fused, 

Cos2 and Iguana is in the regulation of ciliogenesis132, 144.  A related study, which 

focused on the planarian iguana gene, also arrived at similar conclusions145. These 

data provide insights as to why Hh signaling requires primary cilia in vertebrates but 

not in lower animals. 

 

Hedgehog Signaling and the Vasculature 

In vascular development, Hh is required for arterial-venous specification of 

endothelial cells146, 147, angiogenesis in the murine yolk sac148, as well as the 

remodeling of branchial arch blood vessels90. It is also a potent angiogenic factor87, 

89, 149. Blocking hedgehog signaling drastically impairs angiogenesis in both the 

neural tube150 and retina151 while overexpression in the neuroectoderm causes 

hypervascularization85. Mechanistically, it has been shown that Shh regulates the 
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expression of FGF, VEGF, and angiopoietin 1 and 2 in fibroblasts88, 89, 152, 153: all 

potent angiogenic factors.  

Other studies suggest a direct effect of Shh on endothelial cells154, 155. 

Renault et al. found that non-canonical Hh signaling in endothelial cells through the 

Rho pathway led to EC migration, capillary morphogenesis, and upregulated 

expression of matrix metalloproteinase 9 and osteopontin, important matrix 

remodeling factors required for angiogenesis155. A similar study also found that Shh 

induced capillary morphogenesis of ECs in vitro. The researchers found that Shh 

upregulated phosphoinositide 3 kinase (PI3K) and Shh induced morphogenesis was 

abolished when cells were treated with a PI3K inhibitor154. 

 

Hedgehog Signaling and Progenitor Cells 

One important function of Shh is promoting maintenance and survival of 

progenitor cells. Several studies have shown that Hh signaling is required in various 

regions of the brain to stimulate proliferation of progenitors and promote their 

survival. Conditional deletion of Shh or Smo in the telencephalon showed reduced 

progenitor cell numbers in the hippocampus and subventricular zone in the postnatal 

mouse brain156. Conversely, reactivation of Shh signaling in the mature brain 

resulted in an increase in proliferation of telencephalic progenitors156. In the 

cerebellum, Shh is required for proliferation of granule cell progenitors157-159. Ectopic 

expression of Shh in the spinal cord expanded neural progenitor cells and prevented 

their differentiation, reminiscent of tumors of the CNS85. Fate mapping Shh 

responsive cells using an inducible cre under the control of the Gli1 promoter shows 
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that Hedgehog responsive cells in the brain self-renew and while normally quiescent 

become mitotically active in response to injury160.  

Shh has also been implicated in the maintenance and proliferation of 

progenitors in several other niches. Liver progenitor cells are marked by PtcLacZ/+ 

activity. When treated in vitro with Hh inhibitor cyclopamine, these cells become 

apoptotic161. In the hair follicle there is a niche for stem cells that contribute to the 

cycling hair follicle as well as epidermal cells upon injury. These cells are Gli1LacZ/+ 

positive, and receive Shh from nearby nerves. Upon denervation, the stem cells in 

the upper bulge region of the niche are unable to make epithelial stem cells that 

contribute to wound healing. Their ability to contribute to the hair follicle was 

unaltered, possibly due to a source of Dhh at the base of the follicle162. A similar 

study found roles for Shh and Dhh in epidermal stem cell maintenance163. 

Overexpression of either in the epidermis produced embryos that either had 

hyperplastic stem cells or a loss of self-renewal, suggesting an importance for 

balance of Hh signal in stem cell maintenance163. Smooth muscle progenitor cells in 

the developing ureter have also been shown to rely on Shh signal. Shh promotes 

mesenchymal cell proliferation, regulates timing of differentiation into SMCs, and 

sets the pattern of differentiation through dose-dependent inhibition of smooth 

muscle formation82. In the absence of Shh signal, smooth muscle mass is greatly 

reduced due to a proliferation defect, and the progenitor cells are largely absent82. 
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Macrophages and the Vasculature 

Macrophages have been implicated in angiogenesis, especially in hypoxic 

environments. Recent studies have correlated angiogenesis with HIF2 expression 

in tumor associated macrophages in human breast cancer164, 165. These tumor 

associated macrophages release proangiogenic growth factors including VEGF and 

fibroblast growth factor (FGF)166. Microarray data also implicates the upregulation of 

more than 30 proangiogenic genes in primary macrophages exposed to hypoxia, 

including angiopoietin, IL-8, VEGF receptor 1, and inducible form of nitric oxide 

synthase (iNOS)167.  

Furthermore, recent studies show that ablation of macrophages 

pharmacologically from aortic explants blocked angiogenesis in vitro. This ability was 

restored when exogenous macrophages were added to the culture168. Enhanced  

capillary sprouting in aortic rings by co-culture with macrophages was not dependent 

on cell-cell contact between the ECs and macrophages, as conditioned medium 

from macrophages had the same stimulatory effect169.  

Interestingly, a recent study provided evidence that macrophages played a 

key role in the development of the vascular plexus in the mouse brain, retina, and 

zebrafish trunk. Their data suggest that macrophages guide tip cells together to form 

an anastomosis170: an important process in increasing the complexity of the plexus. 

 

Hedgehog Signaling In Macrophages and Inflammatory Cells 

Macrophages, mast cells, T cells, and other lymphocytes are all residents of 

the adventitia of normal vessels67, 171. Adventitial macrophages may play important 
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roles in the progression of intimal lesion formation in atherosclerosis. One study 

found that upon progression of atherosclerosis in apolipoprotein-E-deficient mice, 

there was a significant increase in the total number of macrophages, T-cells, and 

dendritic cells in the adventitia, suggesting that atherosclerosis induces the 

recruitment of inflammatory cells67. 

Cells of the immune system show evidence of Hedgehog signaling. Myeloid 

cells (CD33-positive), B cells (CD19-positive), T cells (CD3-positive) and primitive 

progenitors (CD34-positive CD38-) express ptc, smo, and shh mRNA83, 172-174. 

Monocyte derived macrophages express the hedgehog pathway components ptc, 

gli1, gli2, and smo. It has also been shown that macrophages upregulate expression 

of ptc in response to stimulation by commercially available recombinant Shh175. 

Recent evidence shows that macrophages use Shh as a chemoattractant to a 

gastric infection176.  Deletion of Shh from the parietal cells or deletion of Smo from 

macrophages resulted in a decrease of inflammation and macrophage recruitment to 

the stomach in response to infection with the bacterium H pylori176. 

 

Adipocytes and the Vasculature 

Adipose tissue is one of the most highly vascularized tissues in the body, with 

each adipocyte encircled by microvessels177. Indeed, emerging data show that 

angiogenesis modulators affect the expansion of fat mass by regulating the growth 

and remodeling of the adipose associated vasculature178. Vascular beds can also 

influence the growth of adipose tissue by a number of other mechanisms. For one, 

activated endothelial cells in angiogenic vessels produce growth factors that 
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communicate to the adipocytes in a paracrine manner to produce mitogenic 

effects177. Additionally, a recent study has shown that vascular pericytes can be 

differentiated into preadipocytes and adipocytes179. 

Conversely, adipocytes can influence the growth and remodeling of the 

vasculature. Many adipokines (cytokines produced by adipocytes) are also 

angiogenic; an example being Leptin180. More than 40 adipokines have been 

identified so far. 

 

Hedgehog Signaling and Adipocytes 

Hedgehog has been implicated in adipocyte biology as a negative regulator of 

white adipose differentiation181. However, this study further showed that brown 

adipocytes are unaffected by overexpression of Hh signal and develop normally. 

Adipocytes surrounding the thoracic aorta are largely brown adipocytes182. It is yet to 

be determined whether Hh is required for brown adipocyte formation.  
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Specific Aims 

This research was conducted towards the overall goal of characterizing the 

arterial adventitia as a Shh responsive vascular niche. We hypothesize that Shh is a 

key factor maintaining and/or developing this niche, and so we sought to answer the 

questions of what other cell types participate in Shh signaling in this environment 

that may be key niche cells, and when this niche forms in development. 

Specific aim 1: Determine the cell types involved in Shh signaling in the adventitia 

that contribute to making the adventitial niche. 

Specific aim 2: Determine the time the adventitia first appears in the embryo and 

characterize its spatial development, using responsiveness to Shh as a 

marker. 

  



 

 

 

CHAPTER 2 

SONIC HEDGEHOG SIGNALING IN THE NEONATAL ARTERIAL ADVENTITIA 

Introduction 

The adventitial layer of the artery wall has long been considered merely inert 

connective tissue. Recent evidence suggests that it is an active participant in flow 

dependent wall remodeling71, 76, 80, 183, 184, a site for immune cell accumulation and 

activation in injury and disease67-69, 72, 75, as well as an active niche for progenitor 

cells that can adopt both vascular and non-vascular fates22, 24, 25, 27, 28, 30.  

Our previous work identified a novel Shh signaling domain restricted to the 

adventitial layer of the artery wall25. Our data suggest that a paracrine Shh signaling 

network is involved in maintaining a progenitor cell niche in the adventitia. To begin 

to identify roles that Shh signaling plays within the artery wall, it is first necessary to 

identify the cell types that produce Shh in the adventitia, and then to determine what 

cell types are actively responding to it.  

Shh signaling is an essential morphogen, mitogen, and survival factor in 

many contexts including development and cancer94, 185. Shh has been shown to be 

required in survival and proliferation of progenitor cells in the brain156, 160, liver161, 

hair follicle162, 163, and ureteral smooth muscle82. 

In vascular development, Shh is required for arterial-venous specification of 

endothelial cells through the repression of venous cell fate146, 147, angiogenesis in 
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the murine yolk sac148, as well as the remodeling of branchial arch blood vessels90. It 

is also a potent angiogenic factor87, 89, 149. Blocking hedgehog signaling drastically 

impairs angiogenesis in both the neural tube150 and retina151 while overexpression in 

the neuroectoderm causes hypervascularization85.  

 

Hypothesis 

Shh signaling plays a role in developing and maintaining the adventitial niche 

through paracrine interactions between adventitial progenitors and other 

differentiated adventitia resident cells.  

 

Materials and Methods 

All antibody and reagent product numbers and sources are listed in Appendix B. 

Mice 

All animal protocols were approved for use by the Institutional Animal Care 

and Use Committees of the University of North Carolina and Seattle Children’s 

Research Institute. All mouse strains used were obtained from the Jackson 

Laboratories. Noon on the day of vaginal plug was designated as day 0.5. The day 

of birth was designated as P0. Mice used include Ptc1LacZ/+ (Ptch1tm1Mps, Jackson 

stock number: 003081)186, Ptc2LacZ(Ptch2tm1Dgen, Jackson stock number: 005827)187, 

Gli1LacZ/+ (Gli1tm2Alj, Jackson stock number: 008211)188, Gli2LacZ/+ (Gli2tm2.1Alj, Jackson 

stock number: 007922)189, and ShhEGFP/+ (B6.Cg-Shhtm1(EGFP/cre)Cjt Jackson stock 

number: 005622)91. See Appendix C for strain specific genotyping information. See 

Appendix D for mouse strain information.  
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Whole Mount Immunostaining 

ShhEGFP/+, Ptc1LacZ/+, and Gli1LacZ/+ mice were sacrificed at postnatal day 2, 

perfused with PBS to clear the blood, and arterial tissues were then fixed at 

physiologic pressures with 4% PFA at 100 mmHg. Thoracic aortas and carotid 

arteries were dissected, post fixed in 4% PFA for 30 minutes at room temperature, 

and then rinsed with PBS for 15 minutes. Antigen retrieval methods vary based on 

the primary antibody used. Antibodies against intracellular proteins like SMαA are 

retrieved with a 15 second wash in methanol. Antibodies against nuclear proteins 

and primary cilia are retrieved by adding 0.1% Triton X 100 to the blocking solution 

(2% normal donkey serum (NDS) + 2% normal goat serum (NGS) + 0.1% bovine 

serum albumin (BSA) in PBS). No antigen retrieval is used when staining for cell 

surface proteins like Sca1. See appendix B for list of antibodies and dilutions and 

notes on antigen retrieval conditions. 

Samples were blocked at room temperature with blocking solution composed 

of 2% NDS + 2% NGS + 0.1% BSA in PBS for one hour. Primary antibody was 

diluted in blocking solution overnight and incubated at 4⁰C. Samples were rinsed in 

PBS for 15 minutes, and blocked again at room temperature for 1 hour in recycled 

blocking solution. Secondary antibody diluted in 0.1% BSA in PBS was applied to 

the tissue for 2 hours at room temperature. Samples were then rinsed in PBS for 15 

minutes. Hoechst dye (Molecular Probes) was diluted to 1μg/ml in H2O, and applied 

for 1 minute. Tissue samples were washed briefly in H2O, followed by a brief wash in 

PBS before storage in a 1:1 glycerol: PBS solution at 4⁰C. Samples can be stored in 
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these conditions for several months to a year protected from light with no loss of 

signal. Samples were imaged on a Zeiss LSM5 Pascal Confocal Laser Scanning 

Microscope, an Olympus FV500 Confocal Laser Scanning Microscope, an Olympus 

FV1000 Confocal Laser Scanning Microscope, or a Leica SP5 Confocal Laser 

Scanning Microscope.  

Sections immunohistochemically stained for ECM components were 

processed by the histology core facility at Benaroya Research Institute at Virginia 

Mason, Seattle, WA.  

 

FITC Dextran Injection 

Mouse pups were anesthetized with 5% isoflurane in 1000cc oxygen, and 

anesthesia was maintained using 2% isoflurane in full oxygen.  A midline incision 

was made in the chest, and pectoral muscles were reflected to visualize the heart 

through the intercostal muscles. Pups were injected through the left ventricle with 

50μl of 20mg/ml solution of high molecular weight FITC-Dextran (2000kDa) (Sigma). 

Dextran was allowed to circulate for 5 minutes before euthanizing the animal.  

 

EdU Injection 

Mouse pups were given 100μl of 0.3mg/ml EdU in sterile 0.9% NaCl by IP 

injection (50mg/kg). After 2 hours, mice were sacrificed and fixed with 4% PFA. 

Staining was done according to the manufacturer’s instructions (Invitrogen). 
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Xgal Staining 

Tissues were fixed using 0.2% gluteraldehyde solution in a 0.1 M sodium 

phosphate buffer pH 7.3 containing 2 mM MgCl2 and 5 mM EGTA for 1 hour at room 

temperature. Samples were then washed three times for 30 minutes at room 

temperature with rinse buffer pH 7.3 containing 0.1 M sodium phosphate, 2 mM 

MgCl2, and 0.1% Triton X100. Finally, tissue samples were stained overnight in a 

shaking incubator at 37°C using X-gal staining buffer pH 7.3, composed of 5 mM 

potassium ferricyanide, 5 mM potassium ferrocyanide, 0.02 M Tris-Cl, and 1 mg/ml 

Xgal (Bioline) diluted in the rinse buffer described above. Tissue samples were post-

fixed in 4% PFA for 30 minutes at room temperature and stored in PBS. Whole 

mount X-gal stained tissues were imaged on a Leica MZFLIII stereomicroscope with 

the Leica DFC310FX camera. 

 

Results 

Shh Responsive Cell Types in the Arterial Adventitia 

Our studies using Ptc1LacZ/+, Ptc2LacZ/+, and Gli1LacZ/+ transgenic reporter mice 

and cell type-specific antibodies have identified several key players involved in Shh 

signaling in the adventitia. These reporter mice are a useful because Ptc1, Ptc2, and 

Gli1 are not only mediators of hedgehog signaling, but also direct Shh target genes, 

and serve as reporters of active hedgehog signaling186-188. We were initially 

surprised to find that the expression of the reporters was entirely restricted to the 

adventitia25(Figure 5). No other signaling pathway that we are aware of has been 

shown to be confined exclusively to the arterial adventitia. When using cell type 
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specific antibodies, we observe that cells expressing -galactosidase (-gal) in the 

Hedgehog reporter mice included CD68-positive macrophages and Perilipin A-

positive adipocytes in the aorta or carotid arteries from newborn mice. These cells 

cluster with AdvSca1 progenitor cells, indicating possible paracrine signaling 

between these cell types. 

 

 

Figure 5: Hedgehog responsive cells in the adventitia. PtcLacZ/+ and 

Gli1LacZ/+ expression is restricted to the adventitia. X-gal stained P0-P2 

aorta sections, counterstained with nuclear fast red (A, B). CD68-

positive macrophages (D, F, arrowheads), and adipocytes (G, I, double 

arrows) express both Ptc1LacZ/+ and Gli1LacZ/+. AdvSca1 cells cluster 

with cells strongly positive for Ptc1LacZ/+ and Gli1LacZ/+ (C, E). Primary 
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cilia are also localized solely to the adventitia, marked by acetylated α 

tubulin (H, J, arrows).  

 

We also detect that these -gal-positive cells have primary cilia, which are 

marked by acetylated α-tubulin (Figure 5 H, J). Primary cilia are required proper 

processing and activation of Gli transcriptional mediators 1-3130. We also observe 

that these β-gal-positive cells express the co-receptor BOC (Figure 6B). Previous 

work has shown that the overall population of AdvSca1 cells expresses RNA 

transcripts for Smo, BOC, CDO, Ptc1, Ptc2, Gli1, and Gli225. While AdvSca1 cells do 

not appear to express Ptc1LacZ/+ or Gli1LacZ/+, a couple of them appear to express 

BOC. These data support and confirm the findings from reporter mouse data. 

 

 

Figure 6: Immunostaining for Shh pathway elements confirms reporter 

mouse data. A small subset of AdvSca1 cells (arrow in A) and 

Ptc1LacZ/+-positive cells co-localize staining with Hedgehog co-receptor 
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BOC. Arrowheads in A: BOC strongly positive cells that 

morphologically resemble tissue resident macrophages. Arrowheads in 

B: BOC-positive and Ptc1LacZ/+-positive cells that morphologically 

resemble macrophages. Arrow in A: colocalization of Sca1 and BOC. 

Not all AdvSca1 cells also express BOC. Arrows in B: cells with 

nuclear localized LacZ that also co-express BOC. These cells cannot 

be identified by morphology. 

 

We also observe that Hedgehog responsive cells are organized in the 

adventitia into layers and clusters (Figure 7). This architecture and arrangement of 

cells is similar to the organization we observe for AdvSca1 cells (Figure 3 B, C) and 

may reflect the overall structure of the adventitial ECM as described in porcine and 

canine vessels34, 38. We hypothesize that this clustering behavior is important for 

AdvSca1 maintenance. Adherens junctions and cell-cell mediated contacts have 

been shown to be important in maintaining stemness in niches7, 190, 191. This 

clustering effect may also be important in regulating the level of Shh signal. Shh has 

been shown to induce different fates in a dose dependent manner, so clustering and 

layering may be in part to ensure the cells participating in the paracrine signaling 

loop are receiving the proper amount of Hh ligand91, 192, 193. It has been shown that 

the inner adventitia is composed of alternating layers of collagen and elastin fibers in 

the pig and dog34, 38. These reports suggest a level of organization to the adventitia, 

and this ECM organization likely mediates the layering of cells in the adventitia. 
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Figure 7: Hedgehog responsive cells in the neonatal adventitia are 

organized into clusters and layers. In the early postnatal aorta, 

Hedgehog responsive cells are distributed throughout the adventitia in 

layers and clusters. Images were taken of a side profile of whole mount 

vessels.  

 

 

Figure 8: Gli2LacZ/+ expression in the artery wall. Gli2LacZ/+ is expressed 

in both the media and the adventitia in the early postnatal period, and 

medial expression persists into adulthood. 
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 One curious observation we note is that Gli2LacZ/+ does not have a similar 

staining pattern to the Hedgehog reporters shown in Figure 5. In Ptc1LacZ/+, 

Ptc2LacZ/+, and Gli1LacZ/+, we repeatedly observe that Hedgehog signaling is restricted 

entirely to the adventitia, and never have we observed any staining in the media, in 

embryogenesis, perinatal development, or adulthood. Gli2LacZ/+ mice have abundant 

and strong expression both in the media and adventitia. This suggests that Gli2LacZ/+ 

expression is uncoupled from a dependency on Shh signaling in the artery wall. It is 

likely that Gli2 is being transcribed in response to a pathway other than Shh. A 

recent study found that Gli2 and Gli3 are transcribed in response to Notch1 signaling 

in neural progenitors194. It has also been shown that Gli2 is a transcriptional target of 

TGF-β signaling195, 196. Both of these pathways have been shown to be active in 

vascular SMCs to promote differentiation50, 197, 198. Further study will be required to 

determine the mechanism for Gli2 transcription in the medial smooth muscle cells. 

 

Shh Production in the Arterial Adventitia 

Expression of the Hedgehog reporters Ptc1, Ptc2, and Gli1 in the adventitia 

led to the next obvious question, is Shh protein produced locally, and if so, from 

which cell types? To address this question, we studied early postnatal mice from 

another reporter strain, ShhEGFP/+. This mouse has EGFP knocked into the 

endogenous Shh locus, and serves as a faithful reporter of cells actively producing 

Shh91. Previous work from our lab demonstrated that Shh protein concentrated along 

the border between the media and adventitia (Figure 10D)25. The source of this Shh 
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protein was unclear. In the analysis shown in Figure 9, adventitial cells producing 

Shh are identified by anti-EGFP using whole mount confocal microscopy. The data 

suggest that Shh is synthesized locally and that the protein we detected between the 

medial and adventitial layers was made by adventitial cells themselves. We 

observed that EGFP-positive cells are numerous in the postnatal day 1 (P1) 

adventitia (Figure 9) and like PtcLacZ/+, EGFP expression also was restricted 

exclusively to the adventitia, with no smooth muscle cells in the media expressing 

either EGFP or Shh protein. Cell types that we observed to be strongly EGFP 

positive include CD68-positive macrophages, nerves marked by β-tubulin III, and 

Sca1-positive adventitial progenitor cells (Figure 9). About half of the Perilipin A-

positive adipocytes stain with Shh-antibody, and weakly stain with ShhEGFP/+. We 

confirmed these results by immunostaining with anti-Shh (DSHB) (for antibody 

information, see Appendix B). The 5E1 Shh antibody developed by Thomas Jessel 

and Susan Brenner-Morton was obtained from the Developmental Studies 

Hybridoma Bank developed under the auspices of the NICHD and maintained by 

The University of Iowa, Department of Biology, Iowa City, IA 52242. 

Some of these results are consistent with previous reports on Hedgehog 

signaling in similar cell types, but not all. Shh has been shown to be expressed in 

cells of the immune system. Myeloid cells (CD33-positive), B cells (CD19-positive), T 

cells (CD3-positive) and primitive progenitors (CD34-positive CD38-) express ptc, 

smo, and shh mRNA83, 172-174. Additionally, nerves have been shown to express Shh. 

Nerve derived Shh supports stem cells in hair follicles. Upon denervation, the stem 

cells in the upper bulge region of the hair follicle niche are unable to make epithelial 
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stem cells that contribute to wound healing162. Retinal ganglion cells also express 

and secrete Shh. Interference with Shh signaling in the retinal ganglion cells 

themselves causes abnormal growth and navigation of contralateral projecting 

axons, indicating cell autonomous signaling199. Additionally, genetic cell fate 

mapping results show that Shh is exclusively expressed in all spiral ganglion 

neurons in the cochlea and not in surrounding glia cells200.  

Cell types that have not been reported to secrete Shh that we have identified 

include the Sca1-positive progenitors and adipocytes. Several studies have shown 

that stem cells respond to Shh156, 163, 201, but there is very little literature on 

progenitor cells expressing Shh. Passman et al. showed that AdvSca1 cells express 

shh mRNA25, but no other reports that we know of have stated this. Additionally, it 

has been shown that Hedgehog acts as a negative regulator of white adipose 

differentiation181. Brown adipocytes are unaffected by overexpression of Hh signal 

and develop normally181. Adipocytes surrounding the thoracic aorta are largely 

brown adipocytes182. It is yet to be determined whether Hh is required for brown 

adipocyte formation, or if brown adipocytes make Shh. 
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Figure 9: Shh is locally produced in the adventitia. AdvSca1 cells (A, 

double arrows), some Perilipin A-positive adipocytes (B, arrows), 

CD68-positive macrophages (C, arrowheads), and β-tubulin III-positive 

nerves (D, double arrowhead) all make Shh as seen by reporter 

activity. Locally produced Shh protein is localized along the 

adventitia/media border (B). 
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Because there are Shh producing cells throughout the adventitia and yet Shh 

protein is concentrated along the media-adventitia border (Figure 9B, Figure 10A), 

we hypothesized that the locally produced protein is sequestered along this border 

due to heparin sulfate proteoglycans (HSPG) and other matrix proteins in the ECM 

that Shh binds to. Perlecan is one such HSPG reported to bind Shh protein125. 

Perlecan knockout cells have an impaired ability to respond to Shh compared to wild 

type125. Indeed, we see that Perlecan is robustly expressed in the media in adult 

mice, and in the matrix in the innermost layer of the adventitia (Figure 10B). Note the 

distribution of Shh (Figure 10D) resembles the distribution of Perlecan in the inner 

adventitia (Figure 10B). 

 

 

Figure 10: ECM expression in the adult artery wall. Shh is distributed 

along the media/adventitia border (D). We hypothesize that the 
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distribution pattern is controlled by the localization of ECM proteins that 

bind Shh protein. The HSPG Perlecan is robustly expressed in the 

media and the innermost layer of the adventitia (B). Hyaluronic Acid 

(A) and Versican (C) are expressed in the adventitia and intima. Panel 

D is modified from Passman et al.25.  

 

Shh and the Vasa Vasorum 

The adventitia and particularly the periadventitial adipose tissue contains a 

microvascular network called the vasa vasorum. In the perinatal period of 

development, these microvessels are rapidly expanding, particularly within the 

rapidly growing perivascular adipose tissue. Immunostaining for anti-phospho-

histone H3 or Ki67 show a large number of dividing endothelial cells. Many 

endothelial cells in the adventitial microvasculature also incorporate EdU, a 

thymidine analog, into their DNA within 2 hours, indicating active DNA synthesis 

(Figure 11F).  
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Figure 11: The vasa vasorum. Adventitial microvessels are rapidly 

growing during the perinatal time period as shown by phospho-

histoneH3 and Ki67 staining, and EdU incorporation in a 2 hour pulse. 

Microvessels also closely associate with Shh responsive cells.  

 

We also observe that microvessels reside in a Shh rich matrix (Figure 11A) 

and closely associated with hedgehog responsive cells, as seen in the Ptc1LacZ/+ and 

Gli1LacZ/+ reporter mice (Figure 11B, Figure 12). We identify these hedgehog 

responsive cells to be CD68-positive and LysMcre/+-positive tissue resident 

macrophages (Figure 12). Macrophages have been shown to play a role in 

anastomosis in the cerebral vasculature170. Macrophages have also been implicated 

in angiogenesis in hypoxic environments, specifically tumors. Tumor associated 
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macrophages release proangiogenic growth factors including VEGF and fibroblast 

growth factor (FGF)166. Microarray data also implicates the upregulation of more 

than 30 proangiogenic genes in primary macrophages exposed to hypoxia, including 

angiopoietin, IL-8, and iNOS167. We hypothesize that macrophages are playing a 

role in angiogenesis of the vasa vasorum, and that hedgehog signaling in 

macrophages may be important in this process.  

 

 

Figure 12: Macrophages associate with the vasa vasorum. A-C: 

postnatal day 3 aortas (P3) were whole mount immunostained for 

PECAM and β-galactosidase in Ptc1LacZ/+ mice. Cells strongly positive 

for β-gal (most likely CD68-positive macrophages) are closely 

associated with adventitial microvessels (See Figure 11B). D-F: 
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postnatal day 3 aortas were whole mount immunostained for PECAM 

and anti-GFP in LysMcre/+/R26RYFP/+ mice. Macrophages positive for 

YFP immunostaining are closely associated with PECAM positive 

microvessels in the adventitia. 

 

Discussion 

Hedgehog Reporter Signaling in the Adventitia 

The basic structure of the mammalian artery wall is well established at the 

time of birth. However, a period of very rapid growth and structural remodeling of 

major elastic arteries occurs during the first two weeks after birth. For example, the 

number of SMCs in aorta of the rat increases 2.5 fold, the thickness of the wall 

doubles, there is a 3 fold increase in collagen and elastin, and smooth muscle 

protein mass amasses correspondingly in the first month after birth202, 203. These 

changes in wall structure are adaptations to large increases in blood flow and blood 

pressures that occur in tandem with the growth of the animal during the first two to 

four weeks after birth. After three months of age, growth of the artery wall is 

completed, cell proliferation rates are low, and wall structure has reached an adult 

state. Passman et al. showed Ptc1lacZ/+ activity in the aortic adventitia was highest 

from postnatal day 1 (P1) to P10, and diminished thereafter, thus correlating with 

rapid growth of all layers of the aorta including the adventitia during the perinatal 

period25. Gli1LacZ/+ expression however, does not diminish with age and reporter 

activity remains high throughout the adult life of the animal. 
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The mechanism for why Gli1 continues to be robustly expressed in adulthood 

is still unclear. One study reported similar results that Ptc1 and Gli1 were 

differentially regulated. In a mouse model of pancreatic cancer, the researchers 

reported that during tumor progression, expression of Shh and Ptc1 decreased while 

Gli1 expression remained unchanged. Gli1 levels are still high, even with the 

ablation of Smo in the pancreatic epithelium, suggesting an uncoupling of Gli1 from 

canonical signaling. They went on to show that Gli1 was regulated by TGF-β and 

KRAS in this tumor model204. Further evidence shows that Gli1 may differ from other 

Hh reporter genes due to regulation by Hh-independent mechanisms. Other studies 

have implicated regulation of Gli1 by TGF-β. In the developing lung, knockout of 

TGF-β-receptor II in the mesoderm led to upregulation of Ptc1 and Gli1, with no 

discernible change in levels of Shh205. Dennler et al. reported that TGF-beta induces 

the expression of Gli1 and Gli2 in various human cell types, including normal 

fibroblasts and keratinocytes, as well as various cancer cell lines. According to their 

results, Gli2 induction by TGF-β is rapid, independent from Hh receptor signaling, 

and requires a functional Smad pathway. Gli1 expression is subsequently activated 

in a Gli2-dependent manner195. Other studies have reported negative regulation of 

Gli1 by Notch194, 206. Notch target Hes1, a negative regulator, binds Gli1 at the first 

intron, and may prevent transcription. In a model of glioblastoma, inhibition of Notch 

with γ-secretase inhibitors increased levels of Gli1 and activated Hh signaling206. 

Non-canonical signaling of Hedgehog pathway elements is a potential mechanism to 

account for our results. To test this, it would be informative to treat Gli1LacZ/+ adult 

mice with TGF-β receptor inhibitors and examine levels of Gli1LacZ/+ expression. 
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Spatially, the distribution of Ptc1LacZ/+, Ptc2LacZ/+, and Gli1LacZ/+ expression 

patterns are not discernibly different. The adventitias of all large arteries are strongly 

positive, veins stain weakly, and lymphatic vessels are devoid of expression. 

Arteries as small as 18μm in diameter show expression of Gli1LacZ/+ in the brain, 

mesenterics, uterus, hindlimb, and heart (Supplemental Figure 5). The hedgehog 

response reporter that differs in its expression pattern from these three is Gli2LacZ/+. 

Gli2LacZ/+ is expressed in both the adventitia and the media, while all other reporters 

of Hh activity never show staining in the media.  

Gli2 has been reported to act as both a repressor and activator207, 208. In the 

absence of Hh ligand, Gli2 and Gli3 are processed to a truncated repressor form. 

When Hh signaling is activated, Gli1-3 are processed to the active form. A recent 

study has found that the proteasome processes Gli3 in the absence of Hedgehog 

pathway stimulation while Gli1 is completely degraded115. Gli1 is not processed 

because two of the three components of the processing signal are ineffective115. 

While this study did not focus on Gli2, it has been shown that Gli2 is a composite of 

positive and negative regulatory domains and functions as both an activator and 

repressor, similar to Gli3. In cultured cells, truncation of the activation domain in the 

C-terminal half results in a protein with repressor activity, while removal of the 

repression domain at the N-terminus converts Gli2 into a strong activator116.  It is 

possible that the SMCs in the media are transcribing Gli2 in the absence of Hh 

signal as a constitutive repressor, while the adventitia is using Gli2 as an activator. 

The Gli2LacZ/+ reporter mice will only be able to determine whether or not the gene 
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was transcribed. β-galactosidase will not be processed like Gli2 protein will, so we 

cannot use it as a readout of protein translation or protein modification.  

. It is likely that Gli2 is being transcribed in response to a pathway other than 

Shh. It has been recently reported that Gli2 and Gli3 are transcribed in response to 

Notch1 signaling in neural progenitors194. It has also been shown that Gli2 is a 

transcriptional target of TGF-β signaling195, 196. Both of these pathways have been 

shown to be active in vascular SMCs to promote differentiation50, 197, 198. Further 

study will be required to determine the mechanism for Gli2 transcription in the medial 

smooth muscle cells. 

There are a few possible experimental approaches to address this question. 

For one, it would be informative to do a western blot for Gli2 comparing the media to 

the adventitia. The repressive form of Gli2 is truncated, and will therefore produce a 

band that is a smaller size than Gli2-activator form. Additionally, ChIP-chip or ChIP-

seq analysis would show binding targets for Gli2. These data would then be 

compared to gene expression data with RT-PCR for these targets to show whether 

Gli2 was acting to turn on or off these targets.  

The limitation to these approaches is that they all rely entirely on a good 

antibody for Gli2. An antibody free approach to this question would be to make a 

mouse with a tagged Gli2. Epitope tagging Gli2 on the activator end would allow for 

biochemical approaches listed above to be performed with antibodies against the 

epitope tag. Additionally, a construct with different fluorescent tags (i.e. GFP and 

DS-Red) on both ends of Gli2 would allow visualization of which form of Gli2 was 

present in the cell type. Truncation of the activation domain in the C-terminal half 
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results in a protein with repressor activity, while removal of the repression domain at 

the N-terminus converts Gli2 into a strong activator116. If DS-Red were on the N 

terminus while GFP were on the C-terminus, Gli2 would be green when in its 

activated form, and red when in its repressive form based on cleavage of the protein.  

It would also be informative to look at relative levels of Gli3 between the 

media and adventitia. Gli3 has most often been described as having the strongest 

repressive activity, and having the weakest activator function117. We predict that the 

tunica media would have higher levels of Gli3 than the adventitia, and that Gli2 and 

Gli3 are acting as repressors in SMCs to keep Hh signaling off. For the same 

reason, we would expect levels of Hedgehog Interacting Protein (Hhip) to be higher 

in the media than adventitia. Hhip is a target gene of Shh signaling, and acts as a 

negative regulator by competing for binding of Hh ligand with Ptc, but not 

transmitting a signal209, 210. 

 

Next Steps 

A necessary next experiment is to verify whole mount confocal staining data 

with other methods like flow cytometry. There are many advantages to using whole 

mount confocal imaging in studying the adventitia. It shows the native architecture, 

and cell-cell physical interactions like clustering that are occurring, and individual 

cells are more clearly identified than in tissue sections. One disadvantage to this 

technique is that it is easy to misinterpret signals that are coming from 2 cells 

stacked on top of each other in the Z plane as co-localization of signal. It will be 

important to verify co-localization of cell-type specific markers with Hh reporters 
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using single cell dispersion techniques like flow cytometry. We can also adhere 

freshly isolated adventitial cells from reporter mice in single cell suspension to a 

coverslip with poly-L-lysine coating for immunofluorescence analysis.  

Another important next step for understanding the role for Shh signaling in the 

adventitia is to identify target genes in each cell type. Shh has a broad range of 

targets, and it will be important to identify key factors for establishing and 

maintaining the adventitial niche. Starting with adventitial CD68-positive 

macrophages, we will isolate these cells by immunomagnetic selection or FACS. We 

will then isolate RNA for gene expression analysis by RT-PCR and microarray. 

These data will help identify candidates for potential niche factors. Candidate genes 

will most likely be secreted factors, as there are minimal cell-cell contacts between 

AdvSca1 cells and macrophages. These cells do cluster together, but do not appear 

to be binding to one another. Gene Ontology will help identify common functions of 

genes expressed in the CD68-positive cells, as well as gene expression patterns 

that mimic other well characterized cell types. These tools will be useful in identifying 

the factor or factors produced by the macrophages that support niche function. 

In addition, we will culture these isolated macrophages and collect the 

conditioned culture medium. The conditioned medium will be used to treat isolated 

and cultured AdvSca1 cells to see if it suppresses differentiation compared to 

unconditioned medium. We can also subject the conditioned culture medium to 

ELISA analysis to look for the presence of the soluble factors found in the gene 

expression study.  
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Important variables to control in each of these experiments will be the age of 

the mice that we collect the macrophages and AdvSca1 cells from and the oxygen 

tension in the culture conditions. Because of the differences in expression of 

Ptc1LacZ/+ in newborn versus adult mice, cells from these mice are going to have 

different gene expression profiles. Because AdvSca1 cells persist into adulthood and 

are not only around during the time of PtcLacZ/+ expression, it will be important to 

examine both time points to identify genes that are only expressed during 

development of the wall, and distinguish them from genes that are involved in 

maintaining homeostasis of the niche throughout the life of the animal.  

Oxygen tension in culture conditions of both macrophages and AdvSca1 cells 

will be important to monitor as well. It has been shown that stem and progenitor cells 

are sensitive to oxygen levels and many stem cell niches are more hypoxic than 

surrounding areas211-213. While the vasa vasorum provides oxygen to the adventitia, 

oxygen levels in the adventitia are 10 mmHg lower than the endothelium of the 

normal rabbit aorta, although not the most hypoxic region of the wall214. In vitro 

culture conditions will likely be more hyperoxic than the adventitia in vivo, and will 

undoubtedly affect results. To remove oxygen tension as a variable from our culture 

conditions, it would be most effective to measure the partial pressure of oxygen in 

the mouse adventitia, and use that oxygen level in our culture conditions. If this is 

not possible, we will need to test both hyperoxic and hypoxic conditions to determine 

the effect of oxygen on our in vitro results. 

Additional future directions are discussed in the following chapters. 

  



 

 

 

CHAPTER 3 

SONIC HEDGEHOG IN THE DEVELOPMENT OF THE ARTERIAL 

ADVENTITIA 

Introduction 

Much progress has been made in discerning the genetic and molecular 

pathways that govern vascular development. However, the majority of the work has 

been made towards understanding the early steps in vasculogenesis, arterial-

venous specification, and patterning of the vasculature20, 21, 215, 216, while studies 

toward elucidating the origins and development of the adventitia have been lacking. 

As a broad outline, vasculogenesis begins when vascular progenitor cells, called 

angioblasts, are specified by bFGF and BMP4 signaling in the primitive streak. 

These cells form blood islands that self-assemble into a primitive vascular plexus217, 

218. A complex remodeling process ensues, and a functional embryonic circulation is 

formed from the newly fledged network of small arteries, veins, and lymphatic 

vessels 20, 218-220. Closely following the remodeling of the endothelial plexus, smooth 

muscle cells and pericytes begin to invest in the wall (Supplemental Figure 2). 

Interactions between the endothelial cells and smooth muscle cells through the 

Notch signaling pathway and biomechanical stimulation from blood flow promote 

maturation of both cell types20, 221, 222. However, there is a gap in information 
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between these early steps in the development of the media and the mature 

multilayered vessel wall complete with adventitia. 

Since the adventitia is only recently coming to light as an important niche 

environment, it is not surprising that little attention has been paid to its development. 

The goal in undertaking this work was to lay a foundation for future studies on 

origins of the adventitia and discerning the properties of the cells that live there. 

Knowing the context for how the cells came to reside in the adventitia, we can gain 

some insight into why they stay, and the factors involved in the maintenance of this 

critical niche. Additionally, understanding how an organ functions and develops 

normally can point to potential mechanisms for disease when these processes are 

misregulated or reactivated inappropriately. 

 

Hypothesis 

Shh plays a role in the development of the arterial adventitia and that 

response to hedgehog is a non-exclusive marker for cells predefined to be 

adventitia. Tracking these cells, we can observe the developmental timing and 

morphogenetic movements of the adventitia as it develops. 

 

Materials and Methods 

All antibody and reagent product numbers and sources are listed in Appendix B. 

Mice 

All animal protocols were approved for use by the Institutional Animal Care 

and Use Committee of the University of North Carolina and Seattle Children’s 
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Research Institute. All mouse strains used were obtained from the Jackson 

Laboratories. Noon on the day of vaginal plug was designated as day 0.5. The day 

of birth was designated at P0. We used Gli1LacZ/+ (Gli1tm2Alj/J, Jackson stock number: 

008211)188, and ShhEGFP/+(B6.Cg-Shhtm1(EGFP/cre)Cjt/J, Jackson stock number: 005622 

)91 mice for this analysis. 

See Appendix C for strain specific genotyping information (Page 94). See 

Appendix D for mouse strain information (Page 96). 

 

Whole Mount Immunostaining 

Wild type females crossed to either ShhEGFP/+ or Gli1LacZ/+ male mice were 

sacrificed when embryos were at the stage designated. Embryos were removed 

from the uterus; their chest cavities were opened, then fixed in 4% PFA for 30 

minutes at room temperature, and rinsed with PBS for 15 minutes. Thoracic aortas 

and carotid arties were then dissected out, as arterial tissues are less fragile when 

dissected after fixation.  

Antigen retrieval methods vary based on the primary antibody used. See 

appendix B for list of antibodies and dilutions and notes on antigen retrieval 

conditions. 

Samples were blocked at room temperature with 2% normal donkey serum 

(NDS) + 2% normal goat serum (NGS) + 0.1% bovine serum albumin (BSA) in PBS 

for one hour. Primary antibody was diluted in 2% normal donkey serum (NDS) + 2% 

NGS + 0.1% BSA in PBS and incubated overnight at 4⁰C. Samples were rinsed in 

PBS for 15 minutes, and blocked again at room temperature for 1 hour in recycled 
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blocking solution. Secondary antibody diluted in 0.1% BSA in PBS was applied to 

the tissue for 2 hours at room temperature. Samples were then rinsed in PBS for 15 

minutes. Hoechst dye (Molecular Probes) was diluted to 1μg/ml in H2O, and applied 

for 1 minute. Tissue samples were washed briefly in H2O, followed by a brief wash in 

PBS before storage in a 1:1 glycerol: PBS solution at 4⁰C. Samples can be stored at 

these conditions protected from light for several months to a year with little to no loss 

of signal. Samples were imaged on a Leica SP5 Confocal Laser Scanning 

Microscope.  

 

Xgal Staining 

Embryos were fixed using 0.2% gluteraldehyde solution in a 0.1M sodium 

phosphate buffer pH 7.3 containing 2mM MgCl2 and 5mM EGTA for 1 hour at room 

temperature. Samples were then washed three times for 30 minutes at room 

temperature with rinse buffer pH 7.3 containing 0.1M sodium phosphate, 2mM 

MgCl2, and 0.1% Triton X100. Finally, tissue samples were stained overnight in a 

shaking incubator at 50 rpm and 37°C using X-gal staining buffer pH7.3, composed 

of 5mM potassium ferricyanide, 5mM potassium ferrocyanide, 0.02M Tris-Cl, and 

1mg/ml Xgal (Bioline) or Rose-β-D-gal (Biotium Inc.) diluted in the rinse buffer 

described above. Tissue samples were post-fixed in 4% PFA for 30 minutes at room 

temperature and stored in PBS. 
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Sectioning 

Frozen sections were obtained by first fixing tissues in 4% PFA for 30 minutes 

at room temperature. Samples were then taken through a sucrose gradient in PBS 

at 4°C, with 10%, 15%, 20%, and 30% sucrose washes 2 hours each, followed by a 

2 hour 1:1 30% sucrose in PBS:OCT wash. Samples were then oriented and 

embedded in OCT and frozen on dry ice and stored and cut at -20°C. Blocks can be 

stored at -20°C for 2-3 weeks. After this time, the OCT begins to dry out and 

sections are more brittle and prone to shredding. If blocks are older than a few 

weeks, melt, and re-embed in fresh OCT. Sections were cut at 6μm on a Leica 

Cryostat model CM3050S.  

Paraffin sections were obtained by first fixing tissues in 4% PFA for 30 

minutes at room temperature. Samples were then dehydrated by taking tissues 

through an ethanol gradient, with two 15 minute washes each for 30% EtOH + 0.9% 

NaCl, 50% EtOH + 0.9% NaCl, 70% EtOH, 95% EtOH, 100% EtOH. Samples were 

cleared by washing twice each with 1:1 100% EtOH: Histoclear (National 

Diagnostics) and 100% Histoclear for 15 minutes each wash. Tissue samples were 

next washed in 1:1 Histoclear: paraffin wax at 60°C for an hour, and finally incubated 

in clean wax at 60°C overnight and oriented and embedded. Sections were cut at 

6μm.   

Sections were counterstained with Nuclear Fast Red (ENG Scientific Inc.) for 

approximately 1 minute. Excess stain was washed off briefly in water. Slides were 

allowed to air dry before coverslipping with Mowiol (Polysciences) dissolved in in 

glycerol, prepared according to the manufacturer’s instructions.  
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Results 

Gli1LacZ/+ Expression through Embryonic Development  

Starting at e11.5, we examined Gli1LacZ/+ expression every day through birth. 

Strikingly, we observe that there is a region of Gli1LacZ/+-positive cells that lies 

adjacent to the vessel on the dorsal side from e11.5 through e14.5. Between e13.5 

and e14.5, Gli1LacZ/+ positive cells begin to appear on the ventral side of the wall. 

This pattern of expression begins in the thoracic descending aorta, followed by the 

carotid arteries. The aortic arch is void of Gli1LacZ/+-positive cells until e16.5. The 

ductus arteriosus, and later the ligamentum arteriosum, never appears to fully be 

covered in Hh responsive cells (Supplemental Figure 3).  The coronary arteries 

begin expressing Gli1LacZ/+ between e16.5 and e17.5, and are fully covered by e18.5. 
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Figure 13: Hedgehog signaling in adventitial development. A time 

course of Gli1LacZ/+ expression was performed through arterial 

development from e11.5-birth. Gli1LacZ/+ expression does not appear on 

the ventral side of the aorta until e14.5 (P, black arrow). Gli1LacZ/+ 

expression does not extend up into the ventral aortic arch until e16.5 

(V, white arrow). Coronary arteries express Gli1LacZ/+ starting between 

e16.5 and e17.5 (U, Y, white double arrow). Panel Z for e17.5 was 

stained with Rose-β-D-gal instead of X-gal, showing a magenta 

pigment instead of blue where β-gal is active. 

 

 

Figure 14: Gli1LacZ/+ positive mesenchyme lies dorsal to the aorta in 

development. At embryonic day 13.5, ribs and the perichondrial 
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mesenchyme between them (arrow) express Gli1LacZ/+. It is possible 

that this mesenchyme participates in making adventitia.  

 

Shh Expression in Development 

Similar to results with Gli1LacZ/+, we observe that Shh expressing cells do not 

invest in the vasculature until around e14.5. At e12.5 and e13.5, nearly no ShhEGFP/+-

positive cells can be found in the aorta and carotids (Figure 15 A, B). By e14.5 

however, ShhEGFP/+-positive cells have invested into the outside of the wall of the 

descending thoracic aorta (Figure 15 D-F), but not the aortic arch (Figure 15C). At 

e15.5 and e16.5, the aortic arch becomes invested with Shh expressing cells (Figure 

15 G-I). This is consistent with data from Gli1LacZ/+ reporter mice (Figure 13). 

Further analysis is required to verify the cell types that are Gli1LacZ/+-positive 

and ShhEGFP/+ positive in embryonic development. CD68-positive macrophages 

express Shh-N protein at e14.5 in the thoracic descending aorta (Figure 15F, 

arrows). AdvSca1 cells do not appear to express Shh protein in mid-late gestation 

(e15.5, Figure 17), despite expressing ShhEGFP/+ in the perinatal time period. When 

AdvSca1 cells begin to express Shh is not yet known, but this analysis is in 

progress. It is possible that fibroblasts and/or other leukocytes are expressing Shh 

during development in addition to the CD68-positive macrophages. Adipocytes do 

not appear until late in gestation, so it is unlikely that these are a primary source of 

Shh in the development of the adventitia. 
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Figure 15: Shh expression in arterial development. Few Shh 

expressing cells are in the aorta at e12.5 and e13.5 (A, B). By e14.5, 

many Shh expressing cells have invested in the outer layers of the 

thoracic aorta wall (D, E, F), but not up in the aortic arch (C). The aortic 
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arch becomes invested in Shh-positive cells at e15.5 and e16.5 

(G,H,I), with a concentration of Shh-expressing cells in the aortic root 

at e15.5 (G)  and lesser-curvature of the aorta at e16.5 (I). See Figure 

17 for more images of Shh protein distribution at e15.5. 

 

 

AdvSca1 Cells in Development 

Passman et al. reported that AdvSca1 cells were not found until around e16.5 

25. This analysis was conducted using frozen tissue sections through the aortic root. 

Using whole mount confocal microscopy, we observe that AdvSca1 cells can be 

found in the anterior end of the descending thoracic aorta at least as early as e14.5 

in a cluster on the dorsal side (Figure 16). Whole mount confocal microscopy is a 

useful tool for studying the adventitia to better appreciate the three dimensional 

architecture of this complex layer of the artery wall. This is especially true in 

development, as the adventitia’s spatiotemporal development is not uniform across 

the whole vasculature. 
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Figure 16: AdvSca1 in development: e14.5. AdvSca1 progenitors are 

located in a large cluster on the dorsal side of the thoracic aorta, with 

few detected cells on the ventral side, and some smaller clusters on 

the dorsal aortic arch.  
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At e15.5, we detect AdvSca1 cells distributed in a similar pattern to e14.5. We 

observe that they cluster together along the dorsal side of the thoracic aorta. These 

AdvSca1 cells are found within a region expressing Shh-N, although themselves are 

not Shh-N-positive at this time (Figure 17D). There are no AdvSca1 cells detected in 

the carotid arteries, aortic arch, or abdominal aorta at e15.5 (Figure 17).  

At e16.5, AdvSca1 cells exist in scattered patches in the vasculature, with 

most being proximal to the heart, and enrichment for patches on the dorsal side of 

the vessels (Figure 18). There are many more clusters of cells at e16.5 than 

previously. No AdvSca1 cells were found posterior to the thoracic aorta. Unlike at 

e15.5, there are AdvSca1 cells located in the carotids, aortic arch, and several cells 

can be detected on the ventral side of the vasculature.  

We also note that patches of AdvSca1 cells tend to be found in regions of 

branch points, although not in every occasion. One potential explanation for this is 

that regions of disturbed flow, such as branch points or the lesser curvature of the 

aorta, tend to be more hypoxic223. It has been shown that stem cells are sensitive to 

oxygen tension, and many niches tend to be more hypoxic211-213. AdvSca1 cells may 

also be sensitive to oxygen levels, and colonize more hypoxic regions preferentially. 

Further study will be required to test AdvSca1 cells sensitivity to oxygen.  
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Figure 17: AdvSca1 cells in development: e15.5. AdvSca1 cells are 

found in a cluster on the dorsal side of the thoracic aorta at e15.5 in a 

region expressing Shh-N. Not all regions that express Shh-N have 
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AdvSca1 cells, as there are abundant Shh-N-positive cells in the 

ascending aorta. Arrowhead: region focused in panel D; Arrow: region 

focused in panel C. 

 

 

Figure 18: AdvSca1 cells in development: e16.5. Sca1-positive 

progenitors reside in the vasculature at e16.5, but are unevenly 

distributed. More AdvSca1 cells reside on the dorsal side of the aortic 

arch and carotids. Few AdvSca1 cells can be found on the ventral side 

of the thoracic aorta, and no detectable AdvSca1 cells reside in the 
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abdominal aorta at this time. Dashed square in A is shown in D. 

Dashed square in C is shown in E. Dashed line in E shows division 

between the thoracic and abdominal aorta. 

 

Discussion 

Vascular Wall Development 

The molecular and genetic pathways that govern early vasculogenesis, 

arterial-venous specification, and vascular patterning have been well studied147, 217, 

221, 224. Mechanisms that control the later stages of vascular development, and 

especially adventitial development, are still unclear. Understanding the cessation of 

the smooth muscle media formation program will be informative to the initiation of 

adventitia formation, as these two events occur at approximately the same time: 

around e14.5-e15.5 in the mouse225. 

Work by Wolinsky and Glagov showed that the number of layers of smooth 

muscle in the media of mature arteries is characteristic of species and vessel type, 

correlating to the normalization of circumferential wall stress226. As an example, the 

aorta of a mouse has 6-8 layers of smooth muscle and elastin, the rat has 8-10 

layers, and human aortas have 40-50 layers20. This number of layers is not entirely 

contingent on body size, and does not change to accommodate changes in mass. 

This is best shown in a mouse model of gigantism where rat growth hormone under 

the metallothionein promoter (MtGH) was injected into the pronuclei of fertilized 

mouse eggs. These mice have an increase in body mass 1.8 fold over its wild type 

littermates, with proportional increases in the mass of internal organs227. To 
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accommodate increase in demand for blood flow, the aorta exhibited several 

structural changes from wild type including a 1.22 fold increase in lumen diameter, a 

1.24 fold increase in wall thickness, and 30% more SMCs228. Despite the increase in 

the number of SMCs and the thickness of the wall, the number of layers of smooth 

muscle is unchanged in these mice221, 228.  

Insight into the mechanism to control the number of layers comes from mice 

hypomorphic for elastin. Knockout of elastin (Eln-/-) is perinatal lethal, with the mice 

developing supravalvular aortic stenosis from over-proliferation and disorganization 

of SMCs to the point that they occlude the aorta225. Mice that are hemizygous for 

elastin (Eln+/-) are viable, and have a 35% increase in the number of layers in the 

tunica media229. The extra layers begin to appear at approximately embryonic day 

18.5 (E18.5) and are completed by birth230, 231. These ectopic layers are added from 

the adventitial side of the wall, preserving lumen diameter. Because these ectopic 

layers are added to the adventitial side of the media, it has been proposed that the 

ectopic SMCs come from differentiating AdvSca1 cells184.  

Eln+/- mice may represent a small window of time between e18.5 and birth 

that the artery wall has the potential to adjust the number of smooth muscle layers to 

normalize wall strain221. It is possible that this potential may still be retained by adult 

vessels to respond to injury, or is pathologically reactivated in situations like 

pulmonary hypertension20, 184. In pulmonary hypertension, hypoxia induces dramatic 

remodeling of the pulmonary artery. Pulmonary arteries of chronically (2 wk) hypoxic 

neonatal calves demonstrate marked adventitial thickening, excessive deposition of 

extracellular matrix proteins such as type I collagen, fibronectin, and tenascin-C, 



73 
 

augmented cell proliferation, myofibroblast accumulation/differentiation, cytokine 

production such as the active isoform of TGF-β1, and recruitment of circulating 

leukocytes and fibrocytes184. Further study is necessary to pinpoint the factors 

responsible for maintaining or reactivating plasticity of the artery wall to respond in 

this fashion. Identification of these pathways will be useful therapeutic targets to 

inhibit in obstructive arterial disease, or reactivate in medial dissection. These 

pathways will also likely be informative of the regulative mechanisms controlling the 

proliferation and differentiation of AdvSca1 cells. 

 

Lineage of AdvSca1 Cells 

The developmental origin and lineage of the adventitia, and specifically 

AdvSca1 cells, is still unclear. Circulating bone marrow derived progenitor cells have 

been suggested to contribute to neointimal lesion formation. While recent work 

debates whether this is accurate232, 233, bone marrow is a potential source of 

AdvSca1 cells. Hu et al. examined this possibility by reconstituting bone marrow 

from lethally irradiated wild type mice with genetically labeled Rosa26LacZ/+ marrow. 

Six months after bone marrow reconstitution, they examined the cells in the 

adventitia, and did not find any β-gal positive AdvSca1 cells. Further work from our 

lab showed that AdvSca1 cells were not labeled by Tie2cre/+ mice40. Tie2 labels cells 

of hematopoietic or endothelial origin234.  

Work from our lab further investigated potential lineages for AdvSca1 cells40. 

There are several known origins of vascular smooth muscle cells235. Using these 
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known lineages, our lab used lineage tracing cre mice to determine if AdvSca1 cells 

were also derived from one or more of these lineages. 

Cardiac neural crest cells contribute to the aortic arch and common carotid 

artery smooth muscle, as well as the neurons of cardiac innervation224, 235. They also 

mediate the complex remodeling of the symmetrical pharyngeal arch arteries into the 

aortic arch, carotid, and subclavian arteries, as well as septation of the outflow tract 

into pulmonary and systemic circulation224. Additionally, neural crest derived 

melanocytes (chromatophores) can be found in the frog adventitia (Supplemental 

figure 4), unlike in mammals. It has been shown that Indian Hedgehog is required for 

proper migration of Xenopus neural crest cells236. Neural crest derived cells can be 

labeled and traced in the mouse using Wnt1cre crossed to R26R. Cross sectional 

analysis of these mice reveals that the adventitia and AdvSca1 cells do not derive 

from neural crest.  

Somite derived paraxial mesoderm contributes to the smooth muscle of the 

thoracic aorta. Paraxial mesoderm contributes to several lineages sclerotome 

(cartilage), myotome (skeletal muscle), syndotome (tendon), dermatome (dermis), 

and endothelial cells237. Work from our lab tested Nkx3.2cre/+ to label somite derived 

cells, and did not detect any in the adventitia40. Other somite derived paraxial 

mesoderm cre mouse lines include Tbx6cre/+ 238 and Meox1cre/+ 239. These could be 

informative of adventitial origins.  

Wilm’s Tumor 1 cre (WT1cre/+), which is a marker of cells derived from the 

mesothelium was also tested, and the adventitia was not labeled. 
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Other possibilities for lineages for AdvSca1 cells are anterior heart field, 

splanchnic mesoderm, mesoangioblasts, yolk sac, and foregut. Anterior heart field 

(mef2ccre/+), splanchnic mesoderm, and mesoangioblasts have all been shown to 

contribute to vascular smooth muscle diversity235, and splanchnic mesoderm in 

particular also contributes to the myocardium and endocardium of the heart237, 240. 

Yolk sac derived macrophages are involved in angiogenesis in the brain during 

embryogenesis170, and contribute to hematopoiesis241. It is possible that the yolk sac 

may provide other cells as well. A recent study by Samokhvalov and colleagues 

using lineage tracing of Runx1-positive cells (yolk sac derived) found labeled cells 

that surrounded the dorsal aorta at e11.5 241. The study did not go later in 

development than e11.5, but these cells could possibly contribute to adventitia. 

Foregut contributes to lung and esophagus: both Hh responsive structures in close 

contact to the dorsal aortic arch.  Further studies will be required to determine the 

developmental origin of the AdvSca1 cells.  

 

Next Steps 

We observe that Gli1LacZ/+ begins to be expressed on the outer ventral part of 

the aorta wall between e13.5 and e14.5. We hypothesize that the Hh responsive 

cells on the dorsal side of the aorta migrate around ventrally at this time. The 

alternative explanation is that mesenchymal cells already in the ventral part of the 

wall activate Gli1 de-novo during this time window. 

To address this, we will use Gli1creERT2/+, a tamoxifen inducible cre 

recombinase192. Using Rosa 26 cre reporter strains (R26R), that include a reporter 
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gene like LacZ behind a stop codon flanked by two LoxP sites, we can irreversibly 

activate the reporter in Gli1 expressing cells at a specific time in development, and 

observe where those cells and their progeny end up later in development. We will 

treat pregnant R26R females crossed to male Gli1creERT2/+ mice with tamoxifen by 

oral gavage at time points between e10.5 and e13.5 to label the mesenchyme dorsal 

to the aorta. Then we will examine newborn pups for expression of the reporter.  

It will also be informative to do lineage tracing of Shh producing cells with 

ShhcreERT2/+, another tamoxifen inducible cre recombinase91 as some of the cell types 

that are positive for Gli1LacZ/+ also appear to be positive for ShhEGFP/+. We will treat 

pregnant R26R females crossed to male ShhcreERT2/+ mice with tamoxifen by oral 

gavage or IP injection at time points between e10.5 and e13.5 to label Shh 

expressing cells. Then we will examine newborn pups for expression of the reporter. 

These results will be compared to Gli1creERT2/+/R26RLacZ/+ labeled with tamoxifen at 

the same time points. 

An alternative approach to determining if Hh responsive cells migrate around 

ventrally from the dorsal side of the aorta would be to use transgenic zebrafish for 

ShhGFP/+ and Gli1GFP/+ and time lapse microscopy242, 243. This way we can view 

movements of Gli1GFP/+-positive or ShhGFP/+-positive cells as they happen. Time-

lapse microscopy with live zebrafish embryos is a common technique and a useful 

attribute of zebrafish as a model system244.  

The zebrafish circulatory system has been well studied, and many transgenic 

models are available to visualize blood vessels in live embryos, such as the Fli1GFP/+ 

and Flk1mCherry/+ fish that labels endothelial cells245. Vasculogenesis begins early in 
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the zebrafish, with angioblasts beginning to form around 14 hours post fertilization. 

At 17 hours, the angioblasts are already expressing markers of arterial/venous 

specification. The longitudinally aligned major axial vessels of the trunk, the dorsal 

aorta, and posterior cardinal vein, become patent and blood conducting about 30 

hours post fertilization. The axial vessels are linked by dorsoventrally aligned 

intersegmental arteries and intersegmental veins, nearly all of which are perfused by 

3 days post fertilization245. Zebrafish embryos lacking Hh signaling display defects of 

the primary intersegmental vessel sprouting242. Shh appears to promote the 

maturation of blood vessels by regulating the levels of angiopoietin-1 and -2 and 

VEGF242. It is in this second day post fertilization between the formation of the major 

axial vessels and perfusion of the intersegmental arteries around day 3 as the dorsal 

aorta is maturing that we would monitor with time lapse imaging for ShhGFP/+ and 

Gli1GFP/+ expression.  

An obvious first step to this experiment however, is to determine if zebrafish 

express markers of Hh signaling in the adventitia of the dorsal aorta. Zebrafish have 

2 homologs of the Shh gene, Sonic Hedgehog (Shh A) and Tiggy-Winkle Hedgehog 

(twhh) (now named Shh B)246. Zebrafish also express 2 different Indian Hedgehog 

genes (Ihha and Ihhb), as well as Desert Hedgehog247. An analysis of all 5 Hh genes 

and the other Hh pathway elements (Ptc, Smo, Gli1-3) will be important to verify 

before proceeding with time lapse video capture.  

 

 



 

 

 

 

 

CHAPTER 4 

SUMMARY AND FUTURE DIRECTIONS 

 

Summary of Results 

1. The adventitia is a remarkably dynamic and diverse niche community of 

cell types that interact through a number of different signaling pathways, 

with one major player being Shh.  

2. We have identified that CD68-positive tissue resident macrophages, 

Perilipin A-positive adipocytes, and Sca1-positive adventitial progenitor 

cells all participate in making and responding to Shh signal, as shown 

using transgenic reporter mice.  

3. Hedgehog responsive cells appear on the ventral side of the developing 

artery wall between e13.5 and e14.5 in the mouse, and are present on the 

dorsal side at least as early as e11.5, although these cells may be a part 

of the perichondrium, and are not integrated into the wall. 

4. AdvSca1 cells are present in the adventitia at least as early as e14.5, and 

are found in clusters that are enriched on the dorsal side of the aorta.  
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5. There is a rapidly growing microvascular network in the adventitia and 

periadventitial adipose tissue that closely associates with Hh responsive 

cells, and resides in a Shh rich matrix. 

 

Figure 19: Model of the adventitial niche. Adventitial Sca1 positive 

progenitor cells are a heterogeneous population (Green cells with 

different tinted centers) with the ability to differentiate into many 

different cell types (dashed arrows). Some are poised to become 
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smooth muscle cells (red) to repair and replace aging SMCs in the 

tunica media (SMC, green cells with red tinted center). Others are 

poised to become pericytes (dark purple) that support the vasa 

vasorum (P, green cells with purple tinted center). Some are poised to 

become monocyte/macrophages (MΦ, green cells with turquoise tinted 

center)27. Still others are poised to become adipocytes (Ad, green cell 

with yellow tinted center). Additionally, the adventitia provides growth 

factors (Solid arrows, blue, red, purple, brown spheres) and ECM 

components (grey and brown lines) from fibroblasts (F, light purple 

cells) tissue resident macrophages (MΦ, blue cells) and adipocytes 

(Ad, light yellow cells) that build and maintain the AdvSca1 niche. In 

addition to AdvSca1 cells, the adventitia supports a small population of 

hematopoietic stem cells (HSC, yellow-green cells)26-28. Another 

important feature and function of the adventitia is the vasa vasorum 

(orange) that provides oxygen and nutrients to the outer layers of the 

tunica media that cannot receive it by diffusion from the lumen of the 

vessel.  
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Figure 20: Model of Gli1LacZ/+ expression in arterial development. We 

hypothesize that Gli1LacZ/+ expression patterns reflect the development 

of the adventitia. Hh responsive “pre-adventitia” from the mesenchyme 

adjacent to the dorsal side of the developing vasculature begins to 

migrate ventrally sometime between e13.5 and e14.5 to cover the 

entire vasculature by birth, with the exception of the ductus 

arteriosus/ligamentum arteriosum. 
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Future Directions 

Determine the Heterogeneity of the Advsca1 Population and Classify 

Subpopulations 

It is likely that the marker Sca1 labels a heterogeneous population of cells. In 

vitro studies of isolated AdvSca1 cells show that roughly ¼ of the cells retain their 

Sca1 phenotype, ½ differentiate into SMCs, and the remaining ¼ lose Sca1 

expression but do not detectably express smooth muscle markers in serum 

containing medium without supplement of additional growth factors20, 25, 40. Growth 

factor stimulation of AdvSca1 isolated cells only produced a small percentage of 

osteogenic or adipogenic cells20, 25. Psaltis et al. found that aortic adventitial cells 

generated a broad spectrum of multipotent and lineage-specific hematopoietic 

colony-forming units, with a preponderance of macrophage colony-forming units27. 

We hypothesize that Sca1 represents a heterogeneous population of progenitors 

with limited potentials and not a homogeneous population of multipotent cells. 

To test this hypothesis, we would use single-cell fluorescence activated cell 

sorting (FACS) to grow up clones of single AdvSca1 cells. Once sufficient quantities 

of clones have been grown up, we will test the potential of each clone to produce the 

lineages we know the AdvSca1 population as a whole is capable of becoming by 

treatment of cells from each clone with growth factors: PDGF-BB for SMCs23, insulin 

+ dexamethasone + isobutylmethylxanthine for adipocytes248, BMP-2 + heparin 

sulfate for osteocytes249, VEGF + bFGF + endothelial cell growth supplement for 

endothelial cells250, and CSF-1 for macrophages251.  Multipotent cells should be able 

to respond to each treatment and become each cell type tested. Data from 
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Campagnolo et al. show that AdvSca1 cells from the human saphenous vein can be 

cloned with a success rate of about ~2% of plated cells proliferating sufficiently to 

make clones. They find that clones are plastic and can differentiate into various 

mesenchymal cell types, and additionally β-tubulin III-positive nerves39.  

Culture conditions will be important to test in this analysis. Howson et al. 

found that AdvSca1 cells can form suspended spheroids in serum-free medium 

supplemented with bFGF, but when serum is added cells stick down to the culture 

dish and differentiate into SMCs41. Passman et al. confirmed that about half of 

AdvSca1 cells cultured in serum become SMCs, but ¼ of the cells retain Sca125. It 

will be important to ensure that this subpopulation of cells are not selected for when 

growing clones as they will not be representative of the whole population of AdvSca1 

cells. 

Additionally, these experiments will be repeated under hypoxic conditions to 

see if hypoxia shifts the potential of individual AdvSca1 cells. It has been shown that 

Sca1-positive cells become more adipogenic when pre-exposed to hypoxic 

conditions (2% oxygen) before switching to normoxic conditions (21% oxygen)213. 

Hypoxia also enhanced the ability of Sca1-positive adipose tissue derived 

mesenchymal stem cells to proliferate in culture213. 

Clones will also be tested for gene expression profile differences. If a 

particular clone is predisposed to make a specific cell type, we hypothesize that it 

would also have differences in gene expression and epigenetic marks that other 

clones will not. Microarray analysis will be useful for this study to analyze gene 

expression as well as to find markers that are specific for sub-populations of 
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AdvSca1 cells. Additional cell-type specific cell-surface antigens are needed to verify 

purity of AdvSca1 isolations, select a specific population for study, better understand 

niche interactions, and profile the relative ratios of each subpopulation. Ratios of 

subpopulations may be different in disease situations, and may serve as useful 

biomarkers for disease risk or indicators of disease severity.  Psaltis et al. found that 

in lesion free APOE-knockout mice, there were a greater percentage of macrophage 

colony forming AdvSca1 cells than wild type mice27.  

Alternatively, if AdvSca1 cells are not amenable to growing in culture, we can 

sort single cells into 96 well plates, and test each plate for the percentage of single 

cells that can differentiate into the cell type of choice when subjected to growth 

medium. While this method is not ideal, the proliferative capacity of AdvSca1 cells 

may be limiting to clonal analysis. 

As an alternative approach to studying gene expression in AdvSca1 cells if 

clonal analysis does not work to isolate sufficient quantities of RNA by standard 

methods, we would use single cell RNA isolation and gene expression analysis on a 

cell by cell basis. This technique is being optimized by several groups192, 193, and kits 

are becoming available from a few companies to perform this technique at the bench 

(Life Technologies, Signosis).  

 

Determine a Role for Shh Signaling in Macrophages in the Development of the 

Vasa Vasorum 

The vasa vasorum is an important part of maintaining the adventitial niche. 

Removal of the adventitia from rabbit carotid arteries results in formation of a 
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hyperplastic intimal lesion79. Similarly, removal of rat abdominal aortic adventitia 

shows an initial severe trauma of the endothelium and intimal hyperplasia as early 

as one month after injury80. The researchers in both of these studies suggested that 

this response was due to the removal of adventitial microvessels and the ensuing 

hypoxia in the artery wall. Hypoxia has been shown to enhance adipogenesis in 

Sca1 cells213, implicating the vasa vasorum as an important component of the 

adventitial niche. 

CD68-positive macrophages are very strongly positive for all of our hedgehog 

reporter mice, including ShhEGFP/+, Ptc1LacZ/+, and Gli1LacZ/+, indicating that they both 

make and respond to Shh. These cells closely associate with microvessels, and 

other recent studies have shown that macrophages play a key role in anastomosis of 

tip cells in angiogenic vessel plexuses170. We hypothesize that Shh signaling, 

particularly in these resident macrophages, induces the release of growth and 

angiogenic factors that promote increases in mass of the adventitia and formation of 

vasa vasorum microvessels in the perinatal period in vivo.  

To test this hypothesis, we would first disrupt Shh signaling and monitor 

effects on overall growth of the adventitia in the perinatal period, and on 

development of the vasa vasorum within this layer of artery wall. Shh signaling 

would be disrupted using two approaches in vivo. First, we would genetically disrupt 

signaling using the cre-lox system to target hedgehog signal transduction in 

macrophages specifically. Mice deficient in the Shh signaling receptor smoothened 

(Smo) are unable to respond to any of the vertebrate Hh ligands. We would use 

Smoflox/flox mice252 crossed with macrophage-specific cre mice (LysMcre/cre)253 to 



86 
 

inhibit macrophages from being able to respond to Hh signal. As an alternative 

approach, we would disrupt smoothened signaling pharmacologically with the well-

studied inhibitor of smoothened signaling, cyclopamine and determine effects on 

perinatal growth of the adventitia and formation of adventitial microvessels of the 

vasa vasorum. 

Conversely, we would look at how constitutive activation of smoothened in 

these cells affects the growth of the adventitia. We hypothesize that activity of Shh 

drops to a minimal baseline level of activity after the perinatal period of about 10-14 

days after birth, based on data from PtcLacZ/+ mice. Using the mouse line that puts an 

activated form of smoothened behind a floxed stop codon under the control of the 

ubiquitous Rosa26 promoter254, we can constitutively activate smoothened in 

macrophages when we cross them to the LysMcre/cre mice. Additionally, we can apply 

recombinant Shh protein to the adventitia in adult mice, as an alternative approach, 

although this is less specific to macrophages.  

 

Preliminary data 

Initial characterization of the LysMcre/+/R26RYFP/+ mice reveal no 

recombination in AdvSca1 cells, adipocytes, or medial SMCs (Figure 21 D, E, F). 

Minimal recombination occurs in activated macrophages that are Mac2-positive, but 

this population contributes to a minimal percentage of overall adventitial cells (Figure 

21 C). We also observe about 70% recombination in CD68-positive adventitial 

resident macrophages (Figure 21 A,B). This mouse line will serve as a very useful 

tool for studying this population of cells.  
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Figure 21: Characterization of LysMcre/+/R26RYFP/+ mice. Cre 

expression and recombination occurs in about 70% of CD68-positive 

macrophages (A, B), and a few Mac2-positive activated macrophages 

(C). No recombination is detected in AdvSca1 cells, adipocytes, or 

smooth muscle (D, E, F). 

 

In a first round of breeding of LysMcre/+/Smoflox/flox mice, we observe that these 

mice are viable, and are born at expected Mendelian ratios. There are no obvious 

gross morphological differences between wild type and mutant mice. It is possible 

that the differential phenotype of these mice will only be seen when aggravated with 
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an injury or disease stimulus. It is also possible that the wild type macrophages that 

escape recombination are able to compensate for the lack of normal hedgehog 

signaling response of the mutant cells. Further characterization is required to 

determine the effect of this mutation.  

A recent study by Schumacher and colleagues made LysMcre/+/Smoflox/flox 

mice to examine inflammation in response to gastric bacterial infection176. While they 

were not interested in angiogenesis in these mice, they reported that macrophages 

use Shh secreted by the stomach as a chemoattractant to respond to infection. 

LysMcre/+/Smoflox/flox mice had reduced levels of inflammation in response to infection 

by H pylori bacteria176. These data suggest that response to infection and injury in 

these mice will be impaired. It is possible that inflammation in response to vascular 

injury such as a hindlimb ischemia model, balloon injury, or carotid ligation would be 

reduced in LysMcre/+/Smoflox/flox compared to controls.  

Data from Fantin et al. hint at possible mechanisms for why the phenotypes of 

this mouse model are so subtle. In studying the role of macrophages on 

angiogenesis in the brain, they crossed LysMcre/cre mice to R26R-diptheria toxin 

mice, thus specifically killing LysM-positive cells. They found that angiogenesis in 

the brain was unaffected, reporting that LysM-negative macrophages derived from 

the yolk sac were responsible for brain angiogenesis170. The authors pointed to a 

study that used macrophage deficient mice in studying footplate remodeling, as it 

has been shown that macrophages clear the synchronized apoptotic cells between 

digits255. Neighboring mesenchymal cells were able to clear the debris of the 

apoptotic cells in the absence of tissue macrophages, albeit less efficiently255. Fantin 
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et al. speculate that the angiogenic effects of macrophages might be compensated 

for by other cell types in mice that lack macrophages170.   
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APPENDICES 

Appendix A: Supplemental Figures 

 

 

Supplemental Figure 1: AdvSca1 cell differentiation potential in vivo. 

AdvSca1 cells isolated from Rosa26 mice with membrane localized 
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tdTomato (mTmG, see appendix D for mouse strain information) were 

incubated in Matrigel plugs treated with 0.5 µg/mL human FGF2 and 

60 U/mL heparin for 10 days injected into wild type mice. Single 

confocal Z-sections indicate tdTomato co-localization with endothelial 

cell marker PECAM (arrowheads, A), Perilipin A, a marker of 

adipocytes (B), and macrophage marker CD68 (C).   Images courtesy 

of Dr. Jenna Regan 40.  

 

 

Supplemental Figure 2: Schematic of early arteriogenesis. Smooth 

muscle progenitors are recruited to the endothelial vascular plexus. 

They begin to differentiate and invest in the wall, and then through 

Notch signaling, and processes still unclear, the wall undergoes 

maturation into a multilayered structure complete with adventitia.256 

 

 



92 
 

 



93 
 

Supplemental Figure 3: The ductus arteriosus and ligamentum 

arteriosum are largely void of Gli1LacZ/+-positive cells throughout 

development. 

 

 

Supplemental Figure 4: Neural crest derived melanocytes closely 

associate with the vasculature of the African clawed frog (Xenopus 

laevis). Image of unstained adult male frog small intestine vasculature. 

Frog tissue courtesy of Dr. Frank Conlon. 
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Supplemental Figure 5: Gli1LacZ/+ expression in smaller caliber vessels. 

Gli1LacZ/+ is expressed in the brain, the mesentery, the uterine arteries, 

the femoral arteries, and fine caliber coronary arteries during neonatal 

development. Coronaries were measured with Leica LAS software 
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using the “distance line” analysis tool. All samples are newborn mice 

P0-P6. 

 

 

Supplemental Figure 6: Flow analysis of adventitial cells for AdvSca1.  

A) The adult mouse adventitia contains abundant AdvSca1 cells. B) 

Total adventitial cells from 3 wild type adult (6-8mo) C57Bl/6 mouse 

thoracic aortas, unstained control, gated with a false positive rate of 

1.56% of cells. C) Total adventitial cells from 3 wild type adult (6-8mo) 

C57Bl/6 mouse thoracic aortas were stained with anti-Sca1-FITC 

antibody. Using the same gate as A, 59.1% of the cells in the 

population stained positive for Sca1-FITC.  
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Appendix B: List of Antibodies and Reagents 

Antibody Host Source Cat # Dilution Staining Notes 

Acetylated α 

tubulin 

Mouse 

IgG2b 

Sigma M7451 1:1000 Triton 

BOC Mouse 

IgG2a 

R&D MAB20361 1:100 No antigen retrieval 

CD68 Rat IgG2a AbD Serotec MCA1957 1:200 No antigen retrieval, but 

can use methanol 

Chicken IgY-

Alexa 488 

Goat Molecular 

Probes 

A11039 1:500 Secondary antibody 

Chicken IgY-

Alexa 594 

Goat Molecular 

Probes 

A11042 1:500 Secondary antibody 

GFP Rabbit Invitrogen A11122 1:200 Methanol  

GFP Chicken Abcam Ab13970 1:1000 Methanol  

Ki67 Mouse 

IgG1 

Pharmingen 550609 1:200 Methanol  

KLF4 Rabbit Santa Cruz sc20691 1:100 Triton 

Mouse IgG1-

Alexa 594 

Goat Molecular 

Probes 

A21125 1:500 Secondary antibody 

Mouse IgG2a-

Alexa 488 

Goat Molecular 

Probes 

A21131 1:500 Secondary antibody 

Mouse IgG2a-

Alexa 594 

Goat Molecular 

Probes 

A21135 1:500 Secondary antibody 

Mouse IgG2a-

Alexa 633 

Goat Molecular 

Probes 

A21136 1:500 Secondary antibody 

Mouse IgG2b- 

Alexa 594 

Goat Molecular 

Probes 

A21145 1:500 Secondary antibody 

Mouse IgG2b-

Alexa 488 

Goat Molecular 

Probes 

A21141 1:500 Secondary antibody 

Pecam Rat IgG2a Pharmingen 550274 1:200 No antigen retrieval 

needed, can use methanol 
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Perilipin A Rabbit IgG Sigma P1998 1:200 No antigen retrieval. 

Incompatible with Triton 

Phospho-

Histone H3 

Rabbit  Upstate  06-570 1:100 Best with Triton, also works 

with methanol 

Rabbit IgG-

Alexa 488 

Goat Molecular 

Probes 

A11008 1:500 Secondary antibody 

Rabbit IgG-

Alexa 594 

Goat Molecular 

Probes 

A11037 1:500 Secondary antibody 

Rat IgG- Alexa 

488 

Donkey Molecular 

Probes 

A11034 1:500 Secondary antibody 

Rat IgG- Alexa 

594 

Donkey Molecular 

Probes 

A21209 1:500 Secondary antibody 

Rat IgG- Alexa 

633 

Goat Molecular 

Probes 

A21094 1:500 Secondary antibody 

Sca1 Rat IgG2a Pharmingen 

(BD) 

553333 1:200 No antigen retrieval. 

Incompatible with Triton 

Sca1-FITC Rat IgG2a Miltenyi 130-092-

529 

1:20 No antigen retrieval. 

Incompatible with Triton 

Shh-C Goat R&D AF445 1:100 Best with no antigen 

retrieval or methanol 

Shh-N (5E1) Mouse 

IgG1 

DSHB 5E1 1:50 Incompatible with Triton 

SM-MHC Rabbit IgG Biomedical 

Technologies 

BT-562 1:100 Methanol or Triton 

SMαA Mouse 

IgG2a 

Sigma A2547 1:500 Methanol or Triton 

β-gal Mouse 

IgG2b 

Roche 1083104 1:200 Methanol or Triton 

β-tubulin III Mouse 

IgG2a 

Covance MMS-435P 1:1000 Triton 
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Reagent Source Cat# Dilution/Notes 

Click-It® EdU- 

Alexa 647 

Invitrogen C10340 Use manufacturer’s instructions for 

staining. 50mg/kg injected/mouse 

FITC-Dextran Sigma FD2000S High molecular weight (2000kDa) 

Heparin Sigma H3393 60 U/ml 

Histoclear National 

Diagnostics 

HS-200 - 

Hoechst Dye Molecular Probes 33258 1μg/ml in H2O 

Matrigel  BD Biosciences 356231 Growth factor reduced 

Mowiol Polysciences 17951-500 Use manufacturer’s instructions 

Nuclear fast red ENG Scientific Inc. 9040 Counterstain sections for ~ 1 minute, 

wash off excess with H2O 

OCT Tissue-tek 4583 - 

Recombinant 

human FGF basic 

Peprotech 100-18B 0.5μg/ml 

Rose-β-D-gal Biotium Inc. 10013 1 mg/ml working concentration 

Sca1 isolation kit Miltenyi Biotec 130-092-529 Sort over 2 columns, follow 

manufacturer’s instructions 

X-gal Bioline BIO 37035 1 mg/ml working concentration 
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Appendix C: Genotyping Primers 

Strain Forward Primer Reverse Primer 
Product 
Length 

Gli1LacZ GGGATCTGTGCCTGAAACTG AGGCGATTAAGTTGGGTAAC 286bp 

Gli1 WT GGGATCTGTGCCTGAAACTG AGGTGAGACGACTGCCAAGT 261bp 

Gli2LacZ CCTGGGGTCAGAAGACTGAG AGGCGATTAAGTTGGGTAAC 350bp 

Gli2 WT CCTGGGGTCAGAAGACTGAG CTGCTGTCCTCCAAGAGACC 230bp 

Ptc1LacZ 

(not gene 

specific) 

TTGGAGTGACGGCAGTTATCT

GGA 

TCAACCACCGCACGATAGAGAT

TC 

348bp 

Ptc1 WT CTGCGGCAAGTTTTTGGTTG AGGGCTTCTCGTTGGCTACAAG 200bp 

Ptc2LacZ 
GGGTGGGATTAGTATAATGCC

TGCTCT 

TCAAACATCTGGAGGGACTGTG

TAG 
476bp 

Ptc2 WT 
CCTAGAAATCCCTGTCTGAGA

TCTC 

TCAAACATCTGGAGGGACTGTG

TAG 
222bp 

ShhEGFP GGGACAGCTCACAAGTCCTC GGTGCGCTCCTGGACGTA 333bp 

Shh WT GGGACAGCTCACAAGTCCTG CTCGGCTACGTTGGGAATAA 200bp 

LysMcre CTTGGGCTGCCAGAATTTCTC CCCAGAAATGCCAGATTACG 701bp 

LysM WT CTTGGGCTGCCAGAATTTCTC TTACAGTCGGCCAGGCTGAC 346bp 

Smo flox 
CCACTGCGAGCCTTTGCGCT

AC 
GGCGCTACCGGTGGATGTGG 400bp 

Smo WT 
CCACTGCGAGCCTTTGCGCT

AC 
CCCATCACCTCCGCGTCGCA 170bp 

R26R YFP AAAGTCGCTCTGAGTTGTTAT AAGACCGCGAAGAGTTTGTC 320bp 

R26 WT AAAGTCGCTCTGAGTTGTTAT GGAGCGGGAGAAATGGATATG 600bp 
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Appendix D: Mouse Strain Information 

Gli1LacZ/+ mice were made by Alexandra Joyner. (Gli1tm2Alj/J, Jackson stock 

number: 008211)188. To make the Gli1LacZ/+ mice, a targeting vector was designed to 

insert a nuclear localized β-galactosidase (LacZ) cDNA and loxP-flanked, reverse-

oriented neo cassette into the first coding exon (exon 2) and delete the coding 

sequences in exons two to seven of the targeted gene. This construct was 

electroporated into 129S6/SvEvTac-derived W4 embryonic stem (ES) cells. 

Correctly targeted ES cells were injected into recipient blastocysts and chimeric 

mice were bred with 129SvEv (Taconic) mice. Next, mutant mice were bred to TK-

Cre transgenic mice (129SvEv genetic background) to remove the floxed neo 

cassette. The resulting Gli1LacZ/+ offspring were selectively bred to remove the TK-

Cre transgene and then subsequently maintained by breeding to Swiss Webster 

mice and also interbreeding for many generations prior to arrival at The Jackson 

Laboratory.188  

Gli2LacZ/+ mice were made by Alexandra Joyner (Gli2tm2.1Alj/J, Jackson stock 

number: 007922)189. To make the Gli2LacZ/+ mice, a targeting vector was designed 

with a nuclear localized β-galactosidase cDNA (with 1.7 kb of 3' UTR and three 

tandem SV40 poly A sequence repeats downstream) and followed by a reverse-

oriented loxP-flanked neo cassette. This construct was used to replace a portion of 

the first coding exon (exon 2) of the targeted gene (including the ATG start codon) 

via electroporation into 129S6/SvEvTac-derived W4 embryonic stem (ES) cells. 

Correctly targeted ES cells were injected into recipient blastocysts and chimeric 

mice were bred with Black Swiss Webster outbred mice. The resulting Gli2nlzki 
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heterozygotes were then bred to cre expressing mice (on a Swiss Webster genetic 

background) to remove the neo cassette, generating Gli2LacZ/+ offspring (with a 

single loxP site remaining after the SV40 polyA). These Gli2LacZ/+ mutant mice were 

bred to Swiss Webster mice for many generations prior to arrival at The Jackson 

Laboratory, and are maintained by crossing heterozygotes to wild type littermates.189 

Ptc1LacZ/+ mice were made by Matthew Scott (Ptch1tm1Mps/J, Jackson stock 

number: 003081)186. To make Ptc1LacZ/+ mice, a targeting vector, KO1, containing 

sequence encoding nuclear localized beta-galactosidase (LacZ), neomycin 

resistance gene, mouse protamine 1 (mP1) intron, and a polyadenylation site was 

electroporated into 129-derived R1 embryonic stem (ES) cells. Correctly targeted ES 

cells were injected into C57BL/6 blastocysts. The resulting chimeric male mice were 

then mated to B6D2F1 females and backcrossed onto C57BL/6. This strain is also 

segregating the coat color allele dilute (Myo5ad). 

Ptc2LacZ/+ mice were made by Deltagen Inc. (Ptch2tm1Dgen/J, Jackson stock 

number: 005827)187. The construct insert is reported to be "Lac0-SA-IRES-LacZ-

Neo555G/Kan." These mice are maintained on C57BL/6 background. 

ShhEGFP/+ mice were made by Clifford Tabin. (B6.Cg-Shhtm1(EGFP/cre)Cjt/J, 

Jackson stock number: 005622 )91 To make the ShhEGFP/+ mice, a targeting vector 

containing a fusion product involving Enhanced Green Fluorescent Protein (EGFP) 

and Cre recombinase was inserted at the ATG of Shh and disrupted the sequence 

encoding the first 12 amino acids. The construct was electroporated into 

129S6/SvEv-derived TC-1 embryonic stem (ES) cells. Correctly targeted ES cells 
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were injected into recipient blastocysts. The resulting chimeric animals were crossed 

to C57BL/6 mice and are maintained on this background.91 

LysMcre/cre mice were made by Irmgard Foerster. (B6.129P2-Lyz2tm1(cre)Ifo/J, 

Jackson stock number: 004781)253. To make the LysMcre/cre mice, a targeting vector 

containing a FRT-flanked neomycin resistance gene, herpes simplex virus thymidine 

kinase genes and NLS (nuclear localization signal) -Cre cDNA, was inserted into the 

endogenous ATG-start site within exon 1 of the Lyzs gene. The construct was 

electroporated into 129P2/OlaHsd-derived E14.1 embryonic stem (ES) cells. 

Correctly targeted ES cells were transiently transfected with a Flp expression vector 

for the purpose of removing the selectable marker cassette. ES cells that had 

successfully undergone Flp recombination were injected in blastocysts. These mice 

are maintained on a C57Bl6/J background.  

Smoflox/flox mice were made by Andrew McMahon. (Smotm2AMC/J, Jackson 

stock number: 004526 )252. To make these mice, a loxP site flanked targeting vector 

containing a 400bp fragment of exon 1 and an FRT-flanked neomycin resistance 

gene was utilized in the construction of this mutant. This construct was 

electroporated into 129X1/SvJ derived AV3 embryonic stem (ES) cells. Correctly 

targeted ES cells were injected into C57BL/6J blastocysts. The resulting male 

chimeric animals were crossed to Swiss Webster females. These mice are 

maintained by intercrossing homozygous flox littermates. 

R26RYFP/YFP mice were made by Frank Costantini. (B6.129X1-

Gt(ROSA)26Sortm1(EYFP)Cos/J, Jackson stock number:00). To make these mice, a 

targeting vector was designed to contain the Enhanced Yellow Fluorescent Protein 
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gene (from the pEYFP-N1 plasmid, Clonetech) downstream of a loxP-flanked stop 

sequence (neomycin resistance gene and a trimer of the SV40 polyadenylation 

sequence). This entire construct was inserted into the Gt(ROSA)26Sor locus via 

electroporation of 129X1/SvJ-derived JM-1 embryonic stem (ES) cells. Correctly 

targeted ES cells were microinjected in C57BL/6J blastocysts. Chimeric male Y8-8 

was bred to a C57BL/6J female mouse. Mutant male progeny were backcrossed to 

C57BL/6J for 6 generations and then made homozygous. These mice are 

maintained by intercrossing homozygous R26R littermates.  
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Appendix E: Curriculum Vitae 

Virginia Jean Hoglund 
 

Education 

University of North Carolina, Chapel Hill, NC   August 2007-May 2012 
M.S. Genetics and Molecular Biology 
Thesis: Characterization of the Arterial Adventitia as a 
            Sonic Hedgehog Responsive Niche 
 
University of Florida, Gainesville, FL    August 2003-May 2007 
B.S. Zoology, Cum Laude 
 
Fellowship Support 

Hoglund VJ. American Heart Association Predoctoral Fellowship-Mid Atlantic 

Affiliate, 09PRE2060165. “Paracrine hedgehog signaling pathways in the 

arterial adventitia.” 2009. This application received (1.37, 5.77%) 

Hoglund VJ. Integrative Vascular Biology Training Program, National Institutes of 

Health 2T32-HL069768. “Paracrine hedgehog signaling pathways in the 

arterial adventitia.”  2009. This fellowship was awarded at the same time as 

the AHA Predoctoral Fellowship (above). The AHA award was accepted. An 

appointment to the IVB training grant was accepted without stipend support to 

avoid overlap with the AHA award. 

Publications 

Hoglund VJ & Majesky MW (2012) Patterning the artery wall by lateral induction of 

notch signaling. Circulation 125(2):212-215. 

Majesky MW, Dong XR, Hoglund V, Daum G, & Mahoney WM, Jr. (2012) The 

adventitia: a progenitor cell niche for the vessel wall. Cells Tissues Organs 

195(1-2):73-81. 

Majesky MW, Dong XR, Hoglund V, Mahoney WM, Jr., & Daum G (2011) The 

adventitia: a dynamic interface containing resident progenitor cells. 

Arterioscler Thromb Vasc Biol 31(7):1530-1539. 

Majesky MW, Dong XR, Regan JN, & Hoglund VJ (2011) Vascular smooth muscle 

progenitor cells: building and repairing blood vessels. Circ Res 108(3):365-

377. 
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Majesky MW, Dong XR, & Hoglund VJ (2011) Parsing aortic aneurysms: more 

surprises. Circ Res 108(5):528-530. 

Hoglund VJ, Dong XR, & Majesky MW (2010) Neointima formation: a local affair. 

Arterioscler Thromb Vasc Biol 30(10):1877-1879. 

Abstracts 

Hoglund V, Regan J, Maguire C, Enderlein C, Levenson M, Dong XR, Majesky M 

(2011). Building an Artery Wall: Characterizing the Development of a Sonic 

Hedgehog Responsive Adventitia. Seattle Children’s Research Institute 

Annual Symposium, Seattle Children’s Research Institute, Seattle, WA 

Hoglund V, Regan J, Maguire C, Enderlein C, Levenson M, Dong XR, Majesky M 

(2011). Building an Artery Wall: Characterizing the Development of a Sonic 

Hedgehog Responsive Adventitia. University of North Carolina Department of 

Genetics Retreat, Myrtle Beach, SC 

Hoglund VJ, Regan JN, Maguire CT, Dong XR, Majesky MW (2010). Sonic 

Hedgehog Signaling in Tissue Resident Macrophages in the Arterial 

Adventitia. University of North Carolina Department of Genetics Retreat, 

Myrtle Beach, SC 

Hoglund VJ, Regan JN, Maguire CT, Dong XR, Majesky MW (2010). 

Characterization of a Novel Sonic Hedgehog Signaling Domain and Stem Cell 

Niche in the Arterial Adventitia. Seattle Children’s Research Institute 

Symposium, Seattle, WA 

Hoglund VJ, Regan JN, Maguire CT, Dong XR, Majesky MW (2010). Hedgehog 

Signaling in the Arterial Adventitia. Curriculum in Genetics Student Seminars, 

University of North Carolina, Chapel Hill, NC 

Hoglund VJ, Regan JN, Maguire CT, Dong XR, Majesky MW (2010). Hedgehog 

Signaling in the Arterial Adventitia. Integrative Vascular Biology Symposium, 

University of North Carolina, Chapel Hill, NC 

Majesky MW, Dong XR, Regan J, Hoglund V (2010). Vascular Smooth Muscle 
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Denmark. Acta Physiol Scand, Volume 198, Supplement 677 :S-SAT-1-1 

Hoglund VJ, Regan JN, Maguire CT, Dong XR, Majesky MW (2009). Hedgehog 

Signaling in a Novel Progenitor Cell Niche Within the Arterial Adventitia. 

University of North Carolina Department of Genetics Retreat, Asheville, NC 
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