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ABSTRACT

SCOTT C. HAUSWIRTH: PHYSICOCHEMICAL APPROACHES
FOR THE REMEDIATION OF MANUFACTURED GAS PLANT

TAR IN POROUS MEDIA
(Under the direction of Cass T. Miller)

Tars produced as a by-product of coal and oil gasification at former manu-

factured gas plants (FMGPs) during the 19th and early 20th centuries were often

released into the environment through poor disposal practices or leaks in hold-

ing tanks and piping. These tars are persistent contaminants, leaching polycyclic

aromatic hydrocarbons (PAHs) into groundwater and posing a significant risk to

human and ecological health. FMGP tars also have several properties that make

them notoriously difficult to remediate. They are dense non-aqueous phase liq-

uids (DNAPLs), so they can migrate to depths which make removal by excavation

difficult or impossible, and their relatively high viscosities and ability to alter the

wetting characteristics of porous media result in inefficient removal by traditional

pump-and-treat methods. This work investigates the relationship between tar

composition and properties, and explores several remediation approaches. The

interfacial tension (IFT) of a set of FMGP tars was measured as a function of

pH and correlated with compositional features. It was observed that IFT is a

strongly decreasing function of pH, suggesting the potential use of high pH (al-

kaline) solutions to mobilize FMGP tar in porous media systems. Laboratory

column experiments were conducted to investigate the use of alkaline solutions,

alone and in combination with natural polymers (xanthan gum) and surfactants,

iii



to remediate tar-contaminated porous media. The results of these experiments in-

dicated that alkaline-surfactant-polymer (ASP) solutions could efficiently remove

95% of residual tar. Surfactant-polymer (SP) solutions removed an even greater

fraction of residual tar, over 99%, but required a larger flushing volume to do so.

These experiments also illustrated that both ASP and SP flushing significantly

reduced dissolved-phase PAH concentrations, which are often the primary concern

at contaminated FMGP sites.
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CHAPTER 1

INTRODUCTION

1.1 Non-aqueous Phase Liquids

Groundwater is the second largest source of freshwater for human use, account-

ing for approximately 26% of the United States’ freshwater [218]. Contamination

of groundwater is a major concern and may arise from a wide range of sources,

including discharges from industrial operations and wastewater treatment plants,

leaking underground storage tanks, septic systems, mining operations, improper

disposal of chemical wastes, runoff from agricultural lands and roadways, or from

natural sources (e.g., arsenic and radon). Hazardous waste sites, estimated to

number 300,000 in the U.S., represent an important source of groundwater con-

tamination [217].

One of the largest concerns at these sites is non-aqueous phase liquids (NAPLs),

which are organic liquid contaminants that are immiscible with water [150]. NAPLs

are commonly classified according to their density relative to water as either a

light NAPL (LNAPL) or a dense NAPL (DNAPL). Common LNAPLs include

gasoline, diesel, heating oil, most crude oils, and aromatic solvents (e.g., the

BTEX compounds: benzene, toluene, ethylbenzene and xylenes). DNAPLs in-

clude trichloroethylene (TCE), an industrial solvent, tetrachloroethylene (PCE),

a dry-cleaning solvent, wood preservatives (creosote, chlorophenols) and former

manufactured gas plant (FMGP) tars.
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Many NAPL components are toxic, carcinogenic, or otherwise harmful to hu-

mans and ecological systems. These components can dissolve into groundwater

and potentially migrate to sensitive receptors in the vicinity of waste sites. The

solubilities of many components is sufficiently low that NAPLs can persist in the

environment as a source of groundwater contamination for years to centuries after

their release [39, 150]. The following sections discuss the behavior of NAPL con-

taminants in the environment and remediation technologies used in the clean-up

of NAPL contaminated sites.

1.1.1 Behavior of NAPLs in the Subsurface

The behavior of NAPLs is controlled by a complex set of factors that includes

local and regional geology and groundwater flow patterns, the amount and rate

of the release of the NAPL, the physiochemical properties of the NAPL and the

interactions between the solid, aqueous, and NAPL phases [131]. NAPLs may be

released into the environment through leaks from storage tanks and piping, spills,

or improper disposal in waste ponds/lagoons, landfills, or wells. The NAPL will

tend to migrate downward through the unsaturated zone under the force of gravity

until reaching the capillary fringe or an impermeable geologic material [26].

DNAPLs, due to their higher density, can migrate downward through the water

table to infiltrate deeper geological strata. The degree to which a DNAPL will

sink is dependent on the density and interfacial properties of the phase as well as

the heterogeneity and properties of the porous media, and the volume and spatial

and temporal scale of the release [39, 150]. DNAPLs tend to follow preferential

flow pathways through fractures and higher permeability (i.e., coarser-grained)
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geologic units [150]. NAPL pools may form at the top of low permeability units

and subsequently migrate laterally as a function of the topography of the unit

[39, 45, 131]. Further vertical migration may occur once the NAPL reaches a

height above the finer-grained material sufficient to overcome capillary forces.

Layering of the porous media, even when the differences between the layers are

small, can result in the formation of horizontal stringers or lenses of NAPL [150].

As NAPLs move through porous media, both above and below the water table,

disconnected NAPL ganglia become trapped in pore spaces as a result of snap-

off and bypassing processes [25, 157, 205]. Residual NAPL is generally immobile

under natural conditions and may constitute a large portion of the total NAPL

mass present at a site [45].

The presence of NAPLs in the subsurface results in groundwater contamina-

tion due to the continuous dissolution of the NAPL constituents. The maximum

concentration of dissolved contaminants depends on the aqueous solubility of in-

dividual compounds, the mole fraction of those compounds in the NAPL, and

mass transfer rates. The lateral and vertical extent of a dissolved plume is im-

pacted by a number of additional factors, including the groundwater flow velocity,

the distribution of NAPL in the source zone, degradation rates, dispersivity, the

heterogeneity of the porous media, and the rates and equilibria associated with

the sorption of compounds to the porous media. It has been shown that to sig-

nificantly reduce dissolved phase concentrations, nearly complete removal of the

NAPL is required [230]. Complete depletion of NAPL source zones may take up

to thousands of years under natural conditions, and therefore human interven-

tion is required if more immediate reductions in contaminant concentration in
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groundwater are desired [150].

1.1.2 Remediation of NAPLs

The remediation of NAPL-contaminated sites has been the focus of a great deal of

research over the last several decades. Remediation can be classified into four gen-

eral categories: (1) removal, (2) separation, (3) destruction, and (4) containment.

Each of these remediation classes is discussed below.

Removal generally refers to the excavation of contaminated soils and NAPL

source zones, which are disposed of off-site (i.e., in landfills). This approach is

relatively straight-forward and is commonly practiced. In many cases, however, it

is impractical, including when the NAPL is deep or utilities, roads, or buildings

overlie the source zone [65, 120, 128, 150].

Initial efforts to remediate NAPL-contaminated sites without excavation fo-

cused on pump-and-treat approaches, which extract groundwater from wells and

remove contaminants (either NAPLs or dissolved phase contaminants) using ex

situ treatment methods [128, 130]. Where mobile NAPL is present, such an ap-

proach can remove some portion of it, but residual NAPL will remain in place.

Pumping groundwater containing dissolved phase contaminants is generally inef-

fective at removing significant quantities of NAPL due to low aqueous solubilities

of most NAPL components, mass transfer rate limitations, and heterogeneities in

the subsurface [58, 130, 152, 159].

To improve the effectiveness of in situ separation methods, researchers have

employed several techniques to improve the mobilization and dissolution of NAPLs.

The solubility of NAPLs can be increased with cosolvents, frequently alcohols (e.g.,
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methanol, ethanol, isopropanol, and tert-butanol).

Surfactants have also been applied for the purpose of increasing NAPL solu-

bility [52, 57, 121, 156, 158]. Above the critical micelle concentration (CMC) of

a surfactant, the surfactant molecules will group together to form spherical mi-

celles. Within the micelles, the surfactant molecules are oriented such that the

hydrophobic (lipophilic) portions of the molecules are in the center of the sphere

and the hydrophilic portions are directed outward. The micelle acts as an organic

pseudophase into which NAPL components may partition, increasing the effective

solubility [182, 225]. Enhanced-solubility approaches suffer from reduced efficien-

cies in heterogeneous media, where NAPL trapped in finer-grained material is less

accessible to the flushing solution [197].

Mobilization-based approaches attempt to improve the removal of free-phase

NAPL by altering the balance of forces acting on the NAPL.Three dimensionless

numbers, the capillary number (NC), the Bond number (NB), and the trapping

number (NT ), are frequently employed to indicate the relative impacts of the

relevant forces. These non-dimensional numbers are derived from a balance of

forces acting on a trapped NAPL droplet, and are defined as [160]:

NC ≡
µaqa

σa,n cos θ
(1.1)

NB ≡
(ρa − ρn)gkkra

σa,n cos θ
(1.2)

NT ≡
√

N2
C + 2NCNB sinα +N2

B (1.3)
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where µa is the aqueous phase dynamic viscosity, qa is the magnitude aqueous

phase Darcy velocity, k is the intrinsic permeability of the media, ρa and ρa

are the NAPL and aqueous phase densities, kra is the aqueous phase relative

permeability, and α is the angle between the flow direction and horizontal. NC

and NB represent the ratio of viscous forces to capillary forces and gravitational

forces to capillary forces, respectively. NT takes viscous and gravitational forces

into account simultaneously.

NT , NC , and NB have been found to correlate with residual NAPL satura-

tion, with higher values corresponding to lower saturations [32, 33, 160, 170].

The general approach in designing mobilization-based remediation techniques is

to increase the value of these numbers by decreasing the capillary forces that trap

NAPLs (i.e., decreasing IFT) or by increasing viscous forces (i.e., increasing flow

rate or viscosity). Of these, IFT reduction has received the most attention from

researchers, and is usually accomplished using surfactants (or in some cases al-

cohols) [55, 95, 108, 127, 151, 159, 160, 227, 230]. The use of polymer solutions

to increase flushing fluid viscosity has been applied in the petroleum industry for

enhanced oil recovery (EOR), and has received some attention from remediation

researchers [63, 93, 108, 127]. Alteration of flow rate is less common for field im-

plementation due to limitations to fluid injection and extraction rates [150, 171].

The major drawback of mobilization-based methods is that complete removal of

the NAPL is not achieved, and the remaining NAPL will persist as a source of

dissolved-phase contamination [230].

Destructive methods include in situ chemical oxidation (ISCO), enhanced

biodegradation, and natural attenuation (i.e., biological degradation under nat-
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ural conditions). ISCO involves injecting oxidants, including hydrogen peroxide

(H2O2), potassium permanganate (KMnO4), sodium persulfate (NaS2O8), and

ozone, into the subsurface to destroy contaminants [89]. ISCO approaches may

be applied to either NAPLs or dissolved phase contaminants, although high NAPL

saturations are more difficult to remediate by this method due to mass transfer

limitations and chemical delivery problems [92]. Additionally, sites with high

natural oxidant demands are not well suited to ISCO remediation [92].

Enhanced bioremediation involves the injection of oxygen, nutrients, or elec-

tron donor compounds to increase the growth and activity of contaminant-degrading

microorganisms present in the soil. Mass transfer limitations and toxicity of high

concentrations of contaminants to microorganisms make this approach ineffective

when significant quantities of NAPL are present [149].

Natural attenuation involves allowing natural processes to degrade contami-

nants. This approach is generally applicable as a primary remediation method

only when the risks to humans and the environment are limited, other methods

are impractical, or the contaminants present are readily biodegradable [150]. Nat-

ural attenuation has been used effectively after NAPL source zones are removed

[120, 145].

Containment methods include in situ stabilization (ISS), installing slurry walls,

and capping contaminated zones with impermeable materials. ISS involves mixing

cement and other binders into the contaminated zone to immobilize NAPL and

reduce groundwater flow, thereby preventing off-site transport of dissolved-phase

contaminants [23]. Similarly, slurry walls are constructed of impermeable ma-

terials (clays, cements) in the subsurface in locations designed to prevent off-site
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migration of NAPLs and dissolved phase contaminants [128]. Capping approaches

use natural and synthetic materials to prevent vertical migration of contaminants

or to prevent water from entering and mobilizing contaminants in a contaminated

zone. This method is frequently used for preventing movement of contamina-

tion between groundwater and surface water, and for remediating contaminated

sediments [81, 155].

1.2 Manufactured Gas Plants

FMGPs constitute an important category of DNAPL-contaminated sites, and are

the focus of the work described in this dissertation. Manufactured gas plants

(MGPs1) were common in the U.S. and Europe in the 19th and early 20th cen-

turies, with an estimated 36,121 and 55,001 facilities in the U.S. [217]. These

plants produced a flammable gas used for heating, cooking, and lighting from coal

and petroleum products. As a by-product of this process, an estimated 11.5 billion

gallons of tar DNAPL were produced between 1880 and 1950 [214]. This tar was

frequently released into the subsurface through on-site disposal practices or leaks

in plant infrastructure. FMGP tars possess several properties that make them

among the most challenging of DNAPLs to manage, including high viscosities,

compositional complexity, and the ability to alter the wetting characteristics of

porous media. A summary of the history and processes of gas production and a

description of wastes produced at these sites are provided in the following sections.

1A note on semantics: “MGP” is used to refer to the historic facility whereas “FMGP” references
the site at which an MGP was formerly located.
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1.2.1 History and MGP Processes

Manufactured gas, frequently referred to as town gas, is a flammable gas that was

historically used for heating and lighting purposes. The first commercial MGP

was operated by the Gas Light and Coke Company in London, England starting

in 1812 [74]. The technology quickly spread to Europe and the United States, and

the first U.S. commercial MGP was constructed in Baltimore, Maryland in 1816

[70]. Early processes involved the heating of bituminous coal or oil shale in iron

or baked-clay “retorts” in the absence of oxygen. The hydrocarbons of the source

material were cracked to form coal gas, which was composed of methane (CH4),

hydrogen (H2), carbon monoxide (CO), ethylene (C2H4), and acetylene (C2H2)

[70]. Where coal was unavailable or prohibitively expensive (i.e., the West coast

of the U.S.), petroleum oil was used as the source material. The oil gas produced

contained relatively higher concentrations of C2H4 and C2H2 than coal gas [18].

In the late 1800s and early 1900s, the two-stage carburetted water gas (CWG)

process became widespread throughout the U.S. In the first step, water steam

was passed through heated anthracite coal or coke to form water gas, which was

composed primarily of CO and H2. Petroleum oils, initially naphtha and later

heavier oils, were then injected into the still-hot gas through a carburettor to

increase the heating and lighting value of the gas [70, 140]. A number of alternative

processes were employed, but these three major classes (coal, oil, and CWG gas)

constitute the majority of gas manufacturing in the U.S.[203].

Once the gas was produced, it was passed through a condenser to cool the gas

and remove vaporized oil and tar. Additional filtration units were employed to
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remove hydrogen cyanide (HCN), ammonia (NH3), and hydrogen sulfide (H2S)[70].

The purified gas was then pumped into gas holders for storage prior to distribution.

With the construction of a widespread natural gas distribution network in the

1940s–1950s, the manufactured gas industry rapidly declined, and the last U.S.

MGP was decommissioned in 1968 [69].

1.2.2 Wastes at FMGP Sites

The vast majority of the 36,000–55,000 FMGPs are suspected to have had releases

of solid and liquid waste products, which include tars, cyanide-bearing purifier

waste, slag, and coke [70, 128, 217]. Many of these materials were valuable com-

modities and were sold or recycled for use in the MGP. Coal tar, a byproduct of

coal gas production, contained numerous useful chemicals, including dyes, saccha-

rin, quinoline, lubricating oils, and asphalt for road paving, and was frequently

sold by MGPs. When coal and coke prices were high, it could also be burned as

a fuel source at the plant. Oil gas and CWG tars, on the other hand, contained

much lower concentrations of the valuable chemicals, and frequently had high wa-

ter contents, making them unsuitable for burning. As a result, these tars were

frequently disposed of on-site in ponds, pits, and tar wells [18, 128]. Even at coal

gas MGPs, accidental releases through spills and leaks in piping were common.

Although cyanide, heavy metal, and other contamination is a concern at some

FMGPs, most remediations at these sites focus on tars due to their relatively

high mobility and carcinogenicity [38].
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1.2.2.1 Chemical Composition of FMGP Tars

FMGP tars are complex mixtures, estimated to contain up to 10,000 individual

compounds [147]. Polycyclic aromatic hydrocarbons (PAHs), hydrocarbons com-

posed of two or more fused aromatic rings, are the dominant class of compounds

in tars. While hundreds of individual PAH species have been identified in tars

[21, 66, 68, 228, 238, 239], the compounds which are most often monitored for the

purposes of remediation, and which are frequently present at the highest conc-

entrations, are the 16 EPA Priority Pollutant (PP) PAHs. These compounds,

along with their molecular masses and aqueous solubilities, are shown in Ta-

ble 1.1. Other compound classes present in tars include: mononuclear aromatic

hydrocarbons (MAHs; e.g., benzene and alkylated benzenes), tar acids (phenolics)

and bases (pyridines), neutral heterocyclic compounds (e.g., thiophenes, furans,

pyrroles), aliphatics, cyanide compounds, oxygenated PAHs, and trace metals

[18, 54, 56, 83, 126, 137, 148]. The exact composition of a tar is controlled by

the process and source material that created it. One important example of this is

that tars resulting from the carbonization of coal (coal tars) contain much higher

concentrations of tar acids and bases than those resulting from the cracking of

petroleum (oil and CWG tars) [70].

Fractionation methods provide another approach to characterizing complex

mixtures. A common method in the petroleum field is a separation into satu-

rate, aromatic, resin, and asphaltene (SARA) fractions based on solubility and

polarity. Asphaltenes are the fraction which is insoluble in a given alkane, typ-

ically n-pentane or n-heptane. The alkane-soluble portion is further separated
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Table 1.1: EPA Priority Pollutant PAHs
Molecular weight Solubility

Compound No. of rings (g/mole) (mg/L)

Naphthalene 2 128 31
Acenaphthene 3 154 3.8
Acenaphthylene 3 152 16.1
Anthracene 3 178 0.045
Phenanthrene 3 178 1.1
Fluorene 3 166 1.9
Fluoranthene 4 202 0.26
Benzo(a)anthracene 4 228 0.011
Chrysene 4 228 0.0015
Pyrene 4 202 0.132
Benzo(a)pyrene 5 252 0.0038
Benzo(b)fluoranthene 5 252 0.0015
Benzo(k)fluoranthene 5 252 0.0008
Dibenz(a,h)anthracene 5 278 0.0005
Benzo(g,h,i)perylene 6 276 0.00026
Indeno(1,2,3-cd)pyrene 6 276 0.062

into, in order of increasing polarity, saturate, aromatic, and resin fractions using

column chromatography. Asphaltenes have received a great deal of attention in

the petroleum industry due to their tendency to clog pipelines and pores in oil

reservoirs, and are suspected to play a major role in the interfacial behavior of

crude oils and FMGP tars [17, 29, 30, 88, 105, 115, 186, 240–243]. Resins have

received less attention than asphaltenes, but may also be expected play a role in

interfacial properties due to their polarity [198, 241]. The chemical compositions

of resins and asphaltenes are uncertain, but are believed to be high molecular

weight (>500 g/mole), aromatic compounds with aliphatic side-chains and multi-

ple heteroatomic groups, with resins being somewhat smaller and less polar than

asphaltenes [8, 64, 107, 132, 199]. In FMGP tars, asphaltene concentrations of

up to 36% have been reported, considerably higher than most crude oils, which

generally contain between 0.1 and 12.6% [80, 242]. Conversely, resins are present
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at relatively lower concentrations in FMGP tars (0.4–7.2%) than in crude oils

(9–37.3%) [18, 115].

1.2.2.2 Physical Properties of FMGP Tars

FMGP tars are DNAPLs, with reported specific gravities of between 1.005 and

1.424 [18]. Reported dynamic viscosities of MGP tars range from about 10 cP

to more than 500,000 cP (35◦C) [18]. As with composition, the density and

viscosity of tars is impacted by the processes and source materials used at the

MGP. The greatest factors impacting the tar characteristics are the temperature

of the process and whether the tar derives from coal (coal gas) or petroleum oils

(CWG and oil gas). Higher temperature processes, such as those used in oil gas

production, result in higher concentrations of larger compounds and, consequently,

denser and more viscous tars [70]. In general, these factors result in density and

viscosity differences following the order: oil gas tars > coal tars > CWG tars [18].

Tar-water IFT, a critical factor in controlling the movement and entrapment

of tars in the subsurface, has only been reported for tars from four sites, with a

range of 20–25 mN/m at neutral pH [17, 221, 242]. This range is significantly

lower than other common DNAPLs, such as TCE and PCE, which have IFTs

of 34.5 and 47.5 mN/m, respectively [9]. Tar-water IFT has been found to be

strongly dependent on pH, with values as low 0.6 mN/m reported at pH 12.4 [17].

This effect is believed to be the result of the formation of surfactants from acidic

groups associated with asphaltenes, as further discussed in Chapters 2 and 3.

FMGP tars have been noted to alter wettability, defined as the relative ten-

dency of one fluid to coat the solid phase in the presence of another fluid, from
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water-wet to tar-wet [172, 241]. A greater tar-wet character results in higher tar

residual saturations and reduced efficiencies during tar recovery efforts as com-

pared to water-wet and intermediate-wet systems [88, 172]. Like IFT, wetting

behavior has also been found to be pH dependent, with a low pH being associated

with greater tar-wetting behavior. Organic bases in the tar are protonated to

form positively-charged ions, resulting in an increased electrostatic attraction to

the typically negatively-charged solid phase [46, 88, 125, 172, 241, 242]. As noted

in Section 1.2.2.1, major differences in acid and base concentrations are observed

between coal tars and CWG tars, and therefore differences may also be expected

in the interfacial behavior of different tar types.

1.3 Research Objectives

The remainder of this dissertation is divided into four chapters, the first three of

which represents a body of work that has been or will be published in a peer-

reviewed journal. A summary of each the chapters is provided below.

1. Relationship Between Interfacial Tension and Tar Composition

The objective of this chapter is to improve the understanding of the role

of tar composition on IFT behavior. Published investigations of the IFT

behavior of FMGP tars are limited to two studies, which provide measure-

ments for only two tars and one creosote sample [17, 242]. This work adds to

the existing published data by measuring IFT as a function of pH for several

tars from two FMGPs, as well as a commercially-available coal tar. The tars

were characterized in terms of acid, base, resin, and asphaltene content, and

Fourier-transform infrared (FTIR) spectroscopy was performed to provide
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additional information regarding the chemical groups present in the tars

and resin and asphaltene fractions. IFTs of synthetic DNAPLs containing

asphaltenes and resins extracted from the tar samples will be measured to

isolate the impact of composition on IFT behavior. This chapter was pub-

lished in the peer-reviewed journal Environmental Science & Technology in

2012 [76] .

2. Mobilization of Manufactured Gas Plant Tar with Alkaline Flush-

ing Solutions The objective of this work is to assess the feasibility of the

use of alkaline (NaOH) solutions to reduce tar IFT, alter wetting behavior,

and mobilize residual tars from porous media. Tar IFT and contact angle is

measured as a function of NaOH concentration (0–1 wt. %), and a series of

one-dimensional column studies is conducted with 0.2, 0.35, and 0.5% NaOH

flushing solutions both with and without the addition of xanthan gum (XG)

as a viscosifying agent. This chapter was published in the peer-reviewed

journal Environmental Science & Technology in 2012 [75].

3. A Comparison of Physicochemical Methods for the Remediation

of Porous Medium Systems Contaminated with Tar This chapter

has several objectives: (1) to compare the performance of alkaline flushing,

surfactant flushing, and alkaline-surfactant flushing in terms of the removal

of residual tar in one-dimensional column experiments, (2) to investigate

the use of ISCO using base-activated persulfate for the remediation of re-

maining free-phase FMGP tar, and (3) to demonstrate the ability of a these

approaches individually or in series to remediate FMGP tars using aqueous-
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phase PAH concentrations as the criteria for success.

4. Conclusions and Recommendations This chapter provides overall con-

clusions for this work and recommends directions for future research.
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CHAPTER 2

COMPOSITIONAL AND PH EFFECTS ON THE INTERFACIAL
TENSION BETWEEN COMPLEX TAR MIXTURES AND

AQUEOUS SOLUTIONS 1

2.1 Introduction

Former manufactured gas plants (FMGPs) operated throughout the U.S. and Eu-

rope between the early-1800s and mid-1900s and produced a flammable gas for

heating and lighting for commercial and residential purposes. The U.S. Environ-

mental Protection Agency (EPA) indicated that there may be as many as 50,000

FMGPs and related sites in the U.S, with the majority of these sites expected to

have some level of contamination [217]. The primary contaminant of concern at

FMGPs is tar, which was produced as a by-product of the gasification of coal and

petroleum, and was frequently released into the environment either intentionally

or through leaks in plant infrastructure [128].

FMGP tars possess a number of characteristics that make them among the

most challenging of nonaqueous phase liquids (NAPLs) to remediate. They are

generally denser than water (i.e., dense NAPLs or DNAPLs) and are usually

significantly more viscous than water or other NAPLS, with reported dynamic

viscosities ranging from 10 to 500,000 cP [18]. FMGP tars have exhibited the

ability to alter the wetting characteristics of porous media, further decreasing

1Reprinted (adapted) with permission from Hauswirth, S. C., et al. (2012) Environmental Science

and Technology 46(18), 10214–10221. Copyright (2012) American Chemical Society.
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recovery efficiencies [88, 172]. Additionally, the tars are chemically complex and

can compositionally vary greatly from site to site, and within a given site, due to

differences in the source materials and processes used in the plant operation, as

well as due to environmental alteration after being released into the subsurface

[27, 54]. These variations can have significant implications for the physiochemical

properties and subsurface behavior of tars, and subsequently to risk assessment

and remedial design at contaminated FMGP sites.

A major source of the variation in tar characteristics is a result of differences

in the gas production process used at the FMGP. Coal tars were a by-product

of coal carbonization. Carburetted water gas (CWG) tars were a by-product

of a process that first used coal to produce water-gas and then sprayed oil in

the gas stream. Oil-gas tars were a by-product of gas produced from cracking

oils. Birak and Miller [18] provide a summary of historic tar data highlighting

differences between tars produced by different processes. Briefly, coal tars were

considered distinct in that they contained phenolic acids and nitrogenous bases,

and lacked paraffinic compounds. Being petroleum based, oil-gas and CWG tars

were almost entirely absent of the acids and bases, but contained a small amount

of aliphatic compounds (<5%). Early CWG plants used mostly anthracite coal,

and the resultant tars were also generally absent of the acids and bases. In later

years, bituminous coal was sometimes used and the resulting CWG tars could

more closely resemble coal tars. Though much of the recent literature does not

distinguish between these tar types, referring to tars at FMGPs as “coal tars,”

CWG tars are more likely to be sources of contamination at FMGP sites because

they had less commercial value than coal tars and were more likely to be disposed
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of on-site [18, 70].

Interfacial tension (IFT) is a property of major importance in determining the

behavior of NAPLs in porous media. Unlike most DNAPLs (e.g., chlorinated sol-

vents), FMGP tars exhibit IFTs that are strongly pH dependent. This behavior

was first reported by Barranco and Dawson [17], who observed a drop in IFT

from an average of 23.5 mN/m for pH 3.4–9.1 to 0.6 mN/m at pH 12.4. Zheng

and Powers [242] reported a similar finding and suggested that asphaltenes, the

fraction of tar that is insoluble in a given short alkane (usually n-pentane or n-

heptane), are responsible for the observed IFT behavior. They observed that

the IFT of asphaltenes dissolved in toluene decreased with increasing asphaltene

concentration. Asphaltenes are composed of a large number of individual species,

but generally consist of relatively high-molecular weight polar compounds con-

taining aromatic, aliphatic, and heteroatomic groups [8, 64, 107, 132, 199]. The

reduction of IFT at high pH is believed to be due to the deprotonation of acidic

groups within the asphaltenes, resulting in the formation of surface active ionic

compounds [17, 242]. These two studies combined, however, measured IFT as

a function of pH for only two FMGP tars and a creosote sample, and therefore

provide an incomplete picture of the potential range of behavior for FMGP tars.

Hauswirth et al. [75] recently found that the pH dependence of IFT can be

exploited for the remediation of tar-contaminated porous media. The use of basic

aqueous solutions containing xanthan gum to increase viscosity were capable of

removing over 90% of residual CWG tar (sample B1-07 in this study) in column

studies [75]. To assess the widespread applicability of such a method to FMGP

tars, a better understanding of tar IFT behavior is necessary.
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The overall goal of this work is to advance our understanding of the factors

that influence the IFT of FMGP tars. The specific objectives of this study are

the following: (1) to characterize tars from eight wells at two FMGPs, as well as

a commercially-available coal tar using a variety of analytical techniques, (2) to

measure the IFT as a function of pH for the tars, as well as synthetic DNAPLs

containing asphaltenes and resins extracted from the tars, and (3) to correlate

the results of the tar characterization with the pH-dependent IFT behavior of the

tars.

2.2 Methods and Materials

2.2.1 Materials

ReagentsAll reagents were obtained from Fisher Scientific and were ACS Reagent

grade or better. Standards for the 16 Priority Pollutant PAHs, benzene, toluene,

ethylbenzene, and trimethylbenzenes were obtained from Spex Certiprep. Addi-

tional compound standards were made from neat compounds obtained from Alfa

Aesar, Acros Organics, and Ultra Scientific. Buffer solutions were produced for pH

values of 3 (citrate), 5 (acetate), 7 (phosphate), 9 (borate), and 11 (carbonate) by

dissolving appropriate quantities of each salt in distilled, deionized water (DDI)

and titrating to the desired pH. Buffer strength was 1 mM with a normalized total

ionic strength of 10 mM (with NaCl). Measurements of pH were conducted with

an Orion Research EA 940 expandable ion meter.

Tar Samples Samples from FMGP sites in Portland, Maine, and Baltimore,

Maryland, as well as a commercially available coal tar were analyzed. The Port-
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land FMGP operated from the late 1800s until at least 1950, using a coal gas

process exclusively until the early 1900s at which point simultaneous water gas

production was begun. By 1950, the plant produced solely carburetted water gas

[214]. Samples were collected from two monitoring wells near a presumed tar

source (P1 and P2) and from three wells 400–500 ft downgradient (P3–P5). It

is believed that the tar has migrated through the subsurface from source area to

the downgradient wells. The Baltimore FMGP operated over a similar time span

as the Portland FMGP, and, while complete historic information is not available,

is believed to have used water gas and CWG processes for most of the plant’s

lifespan [214]. Five samples were collected from this site; two samples were col-

lected from a well near a former gas holder during two sampling events (B1-07 and

B1-09), one was collected from an adjacent well (B2), and one was collected from

a well near a gas holder in a different area of the site (B3). A commercial coal

tar (Fisher) was also included in this study (CT). This tar was produced from a

byproduct coke oven operating at 1100◦C.

Synthetic Tars Synthetic tars were produced using a PAH mixture com-

posed of naphthalene (12.8 wt.%), 1-methylnaphthalene (56.5%), phenanthrene

(18.8%), and pyrene (11.9%). Asphaltenes were dissolved in the PAH mix at a

concentration of 15 wt.% by sonicating the mixture for 1 hour then allowing to

sit for 24 hours. This procedure was repeated until there was no visible indica-

tion of undissolved asphaltenes. Resins were dissolved in the PAH mixture at a

concentration of 5 wt.%. The asphaltene and resin concentrations chosen were

approximately the average concentrations of these fractions in the tars.
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2.2.2 Methods

Asphaltene and Resin Determination Two methods were used to extract as-

phaltenes from the tar. The first was the ASTM D2007 method, which has been

used by a number of others investigating FMGP tars [17, 162, 242, 243]. With this

method, n-pentane is added to the sample at a 10:1 ratio, the mixture is warmed,

stirred, settled for 30 min, and filtered [10]. As noted in the petroleum literature,

however, ASTM D2007 is an imperfect method for asphaltene determination, as

it allows for the trapping of nonasphaltene compounds [4, 6, 199, 200]. There-

fore, asphaltenes were extracted from all tars using an improved method which is

described in detail elsewhere [75]. Briefly, this method uses an n-pentane to tar

ratio of 40:1 ratio, sonication, and multiple reprecipitations from toluene.

Resins were extracted by reducing the n-pentane solutions from the asphal-

tene extraction to 50 mL under nitrogen. This solution was passed through an

SPE column containing 2 g of Florisil. The Florisil (60-100 mesh) was purchased

from Acros Organics, activated at 130◦C overnight, and stored in a vacuum des-

iccator. The saturate and aromatic fractions were eluted with 75 mL of 4:1 n-

pentane/dichloromethane (DCM). The resins were eluted from the column with

a 1:1 toluene/acetone mixture, then dried under nitrogen and weighed.

Acid/Base ExtractionMeasurement of the acid/base content of the tars was

attempted using acid and base number analyses, however, it was found that the

tars were not sufficiently soluble in the solvents used for these methods (methyl

isobutyl ketone, 1:1 isopropanol/toluene). Therefore, a gravimetric extraction

method based on that of [85] was used to quantify extractable acid and base
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fractions. Acids were extracted by shaking 2 g tar with 15 mL 1 M NaOH,

centrifuging to separate layers, then pipetting off the aqueous phase. The organic

phase was rinsed with three additional 10-mL portions of 1 M NaOH and the

aqueous extracts collected. The basic aqueous phase was washed twice with DCM

to remove neutral organic compounds, then acidified with HCl. The organic acids

were extracted with three 5 mL portions of DCM. The DCM was dried with

Na2SO4, then evaporated under a gentle stream of N2. The bases were extracted

in the same manner using 10% H2SO4 containing 20 g/L Na2SO4.

Gas Chromatography Compound identification was conducted with a Hewlett-

Packard 5890 GC, coupled with an Hewlett-Packard 5971 quadrapole MS. NIST’s

AMDIS deconvolution software and 2003 mass spectral database was used to

analyze the MS data. Peak identification was based on MS library matches, com-

parison with standard compounds, and Lee retention index values [21, 111, 117,

126, 220, 223, 229]. Quantification of 39 compounds was conducted on a Hewlett-

Packard 5890 II GC equipped with a flame-ionization detector (GC-FID) using

internal and external standards.

Fourier Transform Infrared Analysis Tar, asphaltene and resin samples

were analyzed on a Nicolet Nexus 870 Fourier Transform Infrared (FTIR) Spec-

trophotometer from 400-4000 cm−1. Asphaltenes (0.1 g) were analyzed in KBr

pellets; the tars and resins (0.1 g) were analyzed as films on KBr windows.

Average Molecular Weight A Knauer K-7000 vapor pressure osmometer

(VPO) was used to determine the number-average molecular mass (MN) of the

tar samples and the isolated asphaltenes. Measurements were made in toluene at

60◦C using sucrose octaacetate (M̄ = 678.59 g/mol) as the calibration standard.
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Biphenyl (M̄ = 154.21 g/mol) was used as a check standard and was analyzed

every five runs or fewer. Measurements were made for solutions containing 5–

50 g/kg of the standard compound, tar, or asphaltene. The data was analyzed

using the limiting slopes method by fitting data to the truncated virial equation

[24]:

△E = aC + bC2 (2.1)

where △E is the voltage difference between the sample and reference thermistors,

C is the concentration in g sample per kg solvent, and a and b are coefficients to be

determined. The molar mass was then calculated from the following relationship:

MN =
K

a
(2.2)

where K is the calibration constant of the instrument for the given solvent and

temperature.

Interfacial Tension IFT was measured using the pendant drop method. An

optical glass cell (Krüss) was filled with buffer solution, and a drop of tar was

suspended from a 1.6-mm outer diameter stainless steel needle. A digital video

camera captured images of the drop, and Krüss’s Drop Shape Analysis II (DSA2)

software was used to determine the native IFT, for which △ρ = 1 g/cm3. The

density of each phase was measured with an Anton Paar DMA 48 density meter

and used to determine the actual IFT. The IFT was measured every five minutes,

with each measurement consisting of the average of three drop images. Mea-

surements were continued until three consecutive measurements were within 2%,

typically between 20–60 min. A minimum of three drops were measured for each
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sample. All measurements were conducted at 22±1 ◦C. IFT was measured for all

tar samples, as well as synthetic mixtures containing resins and asphaltenes from

samples P1, P3, B1-07, B3, and CT. The accuracy of the method was confirmed

with DCM.

2.3 Results

2.3.1 Composition

Fractionation The results of the asphaltene, resin, acid, and base analyses are

provided in 2.1. Asphaltenes are a major fraction of all the tars in this study,

with concentrations ranging from 12.5 to 23%. The highest asphaltene concen-

tration, 23%, was observed for sample B3. Sample B1-07, collected in 2007, has

a concentration of 17.2%, while the samples collected from the same area of the

site in 2009, B1-09 and B2, have somewhat lower concentrations (15.2 and 16.1%,

respectively). At the Portland site, concentrations in the near-source samples

(P1, P2) are 16.5 and 17.0%, while downgradient samples (P3–P5) contain lower

concentrations, ranging from 12.5–13.6%. The coal tar sample has an asphaltene

concentration of 17.4%. As expected, asphaltene concentrations determined by

ASTM D2007 were higher than those determined with the modified method by

as much as three times. The difference between the methods is likely due to

the trapping of non-asphaltene compounds that are not liberated during a simple

precipitate-and-rinse procedure [4, 6, 199, 200].

Resin concentrations were significantly lower than those of the asphaltenes,

with a range of 2.6 to 6.7%. Although a clear pattern among samples was not
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Table 2.1: Concentration of Asphaltene, Resin, Acid, and Base Fractions. ± 95%
CI.

Sample ASPH (%) ASPH-ASTM (%) Resin (%) Acid (%) Base (%)
Portland
P1 16.5 ± 0.3 30 ± 5 4.1 ± 0.7 0.10 ± 0.01 0.05 ± 0.01
P2 17.0 ± 0.2 −− −− 0.09 ± 0.04 0.07 ± 0.01
P3 13.6 ± 0.8 −− 6.7 ± 0.1 0.73 ± 0.05 0.32 ± 0.06
P4 12.8 ± 0.1 38 ± 8 5.2 ± 0.7 0.94 ± 0.03 0.54 ± 0.02
P5 12.5 ± 0.4 −− −− 0.9 ± 0.2 0.49 ± 0.07
Baltimore
B1-07 17.2 ± 0.5 −− 2.1 ± 0.3 0.21 ± 0.03 0.09 ± 0.02
B1-09 15.2 ± 0.5 −− 4.7 ± 0.2 0.24 ± 0.01 0.08 ± 0.02
B2 16.1 ± 0.3 −− 2.6 ± 0.3 0.18 ± 0.02 0.04 ± 0.01
B3 23 ± 1 −− 5.0 ± 0.3 0.22 ± 0.010.024 ± 0.004

CT 17.4 ± 0.7 60 ± 4 6.7 ± 0.2 1.8 ± 0.1 2.4 ± 0.2

evident, sample CT and the downgradient Portland samples (P3–P4) tended to

have higher concentrations, while the Baltimore and Portland near-source sam-

ples tended to be lower. GC-MS analysis indicated that the composition of the

resin fractions varied between samples. The resins from the near-source Portland

and Baltimore samples were composed of oxygenated compounds, including 9,10-

anthracenedione, indanone, fluorenone, and phenalenone. The resins from sample

CT contained pyrridinic and phenolic compounds, but no oxygenated compounds

were detected. The downgradient Portland samples contained a combination of

oxygenated compounds, pyridines and phenols. It is likely that the resin frac-

tions also contain high molecular weight compounds that cannot be observed by

standard GC-MS approaches.

The extractable acid and base fractions were present at the greatest conc-

entrations in the CT sample. The concentrations in the downgradient Portland

samples are considerably lower than sample CT, but are an order of magnitude
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higher than those in the near-source samples. The acid concentrations in the Bal-

timore samples are higher than the near-source Portland samples, while the base

concentrations are similar or lower. GC-MS analysis indicated that for all tars

the acid fraction is composed of phenols and hydroxy-PAHs, while the base frac-

tion contains predominately pyridinnic compounds (e.g., quinolines, acridines, az-

abenzopyrenes). While a similar suite of compounds were present for all tars, the

chromatograms indicated significantly different distributions of the compounds.

For the field-collected tars, peaks corresponding to the low molecular weight com-

pounds (i.e., phenols, quinolines) were significantly less pronounced relative to the

higher molecular weight compounds. This trend was observed most strongly in

the near-source Portland and Baltimore samples. The chromatograms for the coal

tar acid and base fractions indicated a relative enrichment in the lower molecular

weight compounds (i.e., phenol, cresols, and quinoline).

Gas Chromatography For all tars, naphthalene is the dominant compound,

with concentrations ranging from 60–104.6 mg/g (6–10.46%). The methylnaph-

thalenes, acenaphthene, acenaphthylene, phenanthrene, fluoranthene, and pyrene

are also major components of the tars. Concentrations of MAHs are consider-

ably lower in sample CT than the field collected samples, while parent PAHs are

present at generally higher concentrations. Phenol, cresols and quinoline were

present above the quantification limit only in the CT sample, and dibenzofuran

was detected at 5 times the highest concentration in FMGP tars. Differences

in composition between the near-source and downgradient Portland samples are

also observed, primarily manifested as a shift toward lower molecular weight com-

pounds in the downgradient samples. Detailed results of the GC-FID analysis are
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provided in the Supporting Information (Table S1).

Molar Mass The M̄ of the tars are generally similar, and, with the exception

of B3, range from 230 to 260 g/mol. Sample B3 has a somewhat higher M̄ of

340 g/mol. The M̄ of the asphaltenes extracted from the tars, however, exhibited

a greater range. The Baltimore asphaltenes had the highest M̄ , with a range of

1210–1360 g/mol. The asphaltenes from the near-source Portland samples (P1

and P2) were 1200 and 1140 g/mol, while those of the downgradient Portland

tars were between 800 and 870 g/mol. The M̄ of the CT asphaltenes was 610

g/mol, significantly lower than the FMGP field samples. It is well established

that coal asphaltenes are smaller than petroleum asphaltenes, and it is likely that

the variation observed here is a reflection of the source material used to produce

the tar [13, 22, 64, 87, 187, 235].

Table 2.2: Average molar mass of tars and asphaltenes

Sample Tar Asphaltene

P1 260 ± 30 1200 ± 100
P2 250 ± 20 1140 ± 30
P3 250 ± 20 830 ± 20
P4 240 ± 20 800 ± 20
P5 230 ± 20 870 ± 20

B1-07 260 ± 30 1240 ± 90
B1-09 260 ± 20 1210 ± 40
B2 270 ± 20 1360 ± 50
B3 340 ± 30 1300 ± 100

CT 240 ± 20 610 ± 50

FTIR The tar, asphaltenes, and resins have generally similar spectra, with

predominantly aromatic, aliphatic, and oxygen-containing moieties (Figure S1).

Differences between samples can be assessed semi-quantitatively using a variety of
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peak absorbance ratios. The use of ratios, as opposed to absolute peak areas, has

the advantage of minimizing errors associated with FTIR sample preparation (i.e.,

variations in KBr pellet concentration or mixing) [196]. The A-factor provides a

measure of aromaticity (with lower values indicating greater aromaticity) and is

defined as a ratio of peak intensities as follows [60]:

A-factor =
I(2860 cm−1) + I(2930 cm−1)

I(2860 cm−1) + I(2930 cm−1) + I(1601 cm−1)
(2.3)

where the peak at 1601 cm−1 corresponds to aromatic C−−C bonds, 2860 cm−1 to

−CH2 and −CH3 stretching, and 2930 cm−1 to −CH2 stretching. The aromaticity

would not be expected to play a major role in controlling the IFT pH-dependence,

but does provide useful information regarding the structure of the tars and frac-

tions.

The carbonyl index (IC=O) provides a measure of the carbonyl and carboxyl

content and is calculated based on the following peak area ratio [100]:

IC=O =
A(1800− 1640 cm−1)

A(1800− 1640 cm−1) + A(1640− 1533 cm−1)
(2.4)

where the range 1800–1640 cm−1 includes carbonyl peaks and 1640–1533 repre-

sents aromatic ring stretching and C−−C bonds. The IC=O includes carboxylic

acids, which are known to exhibit pH-dependent surface activity [28, 41, 42], and

may therefore be expected to relate to the IFT behavior of the tars.

The A-factor and IC=O for tars, asphaltenes, and resins are presented in

2.3. The A-factors are highest for the Baltimore and near-source Portland sam-

ples, with the downgradient Portland tars being slightly more aromatic (lower

29



Table 2.3: A-factor and IC=O from FTIR analysis.
A-Factor IC=O

Sample Tar ASPH Resin Tar ASPH Resin
Portland
P1 0.82 0.64 0.74 0.31 0.28 0.57
P2 0.80 0.66 – 0.32 0.33 –
P3 0.74 0.53 0.80 0.23 0.09 0.33
P4 0.78 0.53 0.62 0.22 0.09 0.39
P5 0.75 0.57 – 0.20 0.12 –
Baltimore
B1-07 0.85 0.62 0.73 0.31 0.18 0.55
B1-09 0.87 0.62 0.81 0.30 0.20 0.56
B2 0.85 0.60 0.73 0.32 0.21 0.57
B3 0.80 0.68 0.82 0.32 0.27 0.69

CT 0.48 0.34 0.44 0.03 0.01 0.34

A-factor). The CT sample exhibits significantly greater aromaticity than the

FMGP tars. Asphaltenes for all samples are more aromatic than the correspond-

ing tar, with the aromaticity of the resins generally falling between the tars and

asphaltenes.

The IC=O values follow a similar trend; they are highest for the Baltimore and

near-source Portland tars, somewhat lower for the downgradient Portland samples

and lowest for the coal tar sample. The values are lower for the asphaltenes, and

significantly higher for the resins.

2.3.2 Interfacial Tension

IFT was measured as a function of pH for all samples; the results for a repre-

sentative selection of tars is shown in Figure 2.1(a). At pH 7, IFTs ranged from

18.1 mN/m (P1) to 23.7 mN/m (CT). The Baltimore and near source Portland

samples (P1 and P2) exhibited an increase in IFT as the pH was decreased to 5,

then remained largely unchanged as pH was further reduced to pH 3. Conversely,
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Figure 2.1: Interfacial tension of (a) tars and synthetic mixtures containing (b)
asphaltenes and (c) resins as a function of pH. Error bars represent 95% CI. The
IFTs of B3 at pH 9 and 11 were below the method quantification limit of 0.05
mN/m.
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the IFT of the CT and the downgradient Portland samples (P3–P5) at pH 3 was

about 30% lower than at pH 7.

At high pH, all field-collected FMGP tars exhibited a steep decrease in IFT.

The greatest reductions between pH 7 and 11 were observed for the Baltimore (92–

95%) and near source Portland samples (86–88%). Somewhat lower reductions

were observed for the downgradient Portland samples (71–79%), and very little

reduction was observed for the coal tar (9%).

To investigate the impact of asphaltene and resin groups on IFT behavior, the

IFTs of synthetic DNAPLs containing asphaltenes and resins from a representa-

tive selection of samples were measured (Figure 2.1). The IFT behavior of the

PAH mixtures containing asphaltenes was generally very similar to that of the

corresponding tar, with a similar pattern of IFT decrease at low pH for the P3

and CT samples and high pH for all samples except CT.

The IFT measurements for the PAH mixtures containing 5% resin are shown

in Figure 2.1(c). Similar to the tar and asphaltene mixtures, the resin mixtures

exhibited an IFT decrease at high pH. For the Baltimore samples (B1-07 and B3),

the IFTs decrease with increasing pH over the entire pH range. The low-pH IFT

reduction observed for the P3 and CT tars and asphaltenes is not observed for

the resins from these samples. The CT resins also exhibit a much greater IFT

reduction at high pH than was observed for the tar. With the exception of sample

CT at pH 3, the IFTs of the resin mixtures were lower than either the tar or

asphaltene mixture at all pH values.
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2.4 Discussion

As noted in previous studies, the IFT of field-collected FMGP tars was found

to decrease as pH was increased above pH 7 [17, 75, 242]. However, the effect

was observed to vary significantly between tars. Unlike the field-collected sam-

ples, the IFT of the coal tar sample exhibited only a minor decrease at high pH.

Furthermore, the IFT of P3 at pH 11 was over two times greater than that of

P1, despite having similar IFTs at pH 5 and 7 and being collected at the same

site. Sample P3 also exhibited a decrease in IFT at pH 3, whereas P1 did not.

The IFTs of synthetic PAH mixtures containing asphaltenes were very similar to

those of the corresponding tar, indicating that, as noted elsewhere, asphaltenes

are strong contributers to IFT behavior [242]. Resins, however, were observed to

be more interfacially active, with mixtures containing 5% resins producing lower

IFTs than mixtures containing 15% asphaltenes over the entire pH range. The

tar IFT behavior, however, does not directly correlate with the concentration of

resins or asphaltenes (Figure 2.4), indicating that additional factors must be at

work.

The reduction of IFT at high pH is believed to be due to the presence of acidic

compounds in the tars, which become deprotonated, and subsequently interfacially

active, at high pH. While the extractable acid concentrations (2.1) do correlate

with the high pH-IFT reduction, the relationship is an inverse one (Figure 2.5).

This finding indicates that the extractable acids are not the primary contributers

to the observed IFT reduction at high pH. Since the method uses an aqueous

extraction technique, it may be that higher molecular weight compounds (i.e.
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Figure 2.2: The reduction in IFT at high pH as a function of (a) IC=O and (b)
A-factor, and the reduction of IFT at low pH as a function of (c) the log of the
extractable base concentration and (d) asphaltene molar mass. The lines represent
linear least squares fits.

resins and asphaltenes) are excluded. The relatively high water-solubility of the

extractable acids may decrease their interfacial activity due to a tendency to

diffuse away from the tar-water interface and into the bulk aqueous phase. It has

also, however, been found that phenols present in crude oil are not interfacially

active at high pH [190], suggesting the possibility that the same is true for the

extractable acid fraction (which is composed of phenolic compounds).

The IC=O value, alternatively, provides an indication of the concentration of

carbonyl groups. The very strong linear relationship (R2 = 0.96, p = 4 × 10−6)

observed between the reduction from the maximum IFT to the IFT at pH 11

versus IC=O is shown in Figure 2.2(a). This correlation strongly suggests that the

reduction of IFT is caused by the deprotonation of carboxylic acids at high pH

to form surface active compounds, which is consistent with studies of crude oils

34



[94, 116, 185, 190]. The fact that the reduction of IFT occurs at pH well above the

pKa of most carboxylic acids (generally < 5) is consistent with previous studies of

the IFT reduction associated with pure carboxylic acids and petroleum products

[28, 41, 42, 72, 77, 165]. These studies have found that the apparent interfacial

pKa of the acids is higher than the bulk pKa due to the formation of a double

layer, resulting in a lower H+ concentration near the interface [28, 41, 116], or due

to intermolecular forces between the acid molecules [101, 102].

It is also worth noting that the extractable acid and IC=O values are inversely

proportional (2.6a). The differences are most apparent when comparing the coal

tar with the Baltimore samples, which are strongly suspected to be CWG tars.

The coal tar contains a large amount of extractable acids (composed of primarily

phenolic compounds) but very low IC=O values, while the opposite is true of the

CWG tars. This finding is consistent with investigations of coal and petroleum

composition, which have found that oxygen is predominately present as phenolic

and furanic groups in coals (and even more so in coal-derived liquids), as opposed

to petroleum for which carbonyl/carboxyl groups are more pronounced [7, 22, 180,

226, 235].

The IFT reduction at low pH shows a strong positive correlation (R2 = 0.93,

p = 2 × 10−5) with the log extractable base concentration, as shown in Figure

2.2(c). The protonation of basic compounds at low pH results in the formation of

charged, surface active compounds and the observed reduction in IFT.

While the IC=O values and base concentrations explain the varied response of

IFT to pH, the asphaltene M̄ and A-factor also correlate well with the IFT reduc-

tion at both low and high pH (2.2(b) and (d) and Figure 2.7 (a) and (b)). These

35



properties would not be expected to impact an IFT-pH relationship, as they do not

correspond to acidic or basic compounds. Rather, these correlations are reflective

of overall structural differences between tars from different sources. Tars derived

from coal maintain certain characteristics from the source material, most notably

a high aromaticity with few, short aliphatic chains, a relatively low asphaltene

M̄ , and oxygen present primarily as hydroxyl groups [7, 22, 62, 180, 189, 235].

Each of these is observed for the coal tar used in this study. Similarly, the Bal-

timore CWG tars retain petroleum-like characteristics: lower aromaticity, longer

aliphatic chains, higher asphaltene M̄ , and greater carbonyl/carboxylic content

[22, 235]. The near-source Portland samples are very similar to the Baltimore

samples, and are presumed to be CWG tars. The downgradient Portland samples

fall between the Baltimore and CT samples in terms of IC=O and asphaltene M̄

but have an A-factor similar to the CWG tars, perhaps representing a mixture

of multiple tar types, a tar derived from both coal and petroleum sources (e.g., a

CWG process using bituminous rather than anthracite or coke), or possibly loss

of the larger and more polar asphaltenes by means of environmental alteration

(e.g., sorption of these compounds to porous media during tar migration).

The results of this study improve understanding of the relationship between

tar composition and IFT behavior. This is especially important in the application

of alkaline flushing remediation approaches [75]. Such an approach would have

limited effectiveness for tars like the coal tar used in this study. Furthermore,

differences in the IFT behavior of tars at a given site would be important to

recognize prior to designing an alkaline flushing remediation system.
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2.5 Supporting Information

The information in this section was submitted to Environmental Science and Tech-

nology as Supporting Information to be made available online as a supplement to

the paper.

Table 2.4: Results of GC-FID Analysis for Samples P1–P5. All values are mg/g
± 2 standard deviations
Compound P1 P2 P3 P4 P5
MAHs

Benzene 1.4 ± 0.1 2.4 ± 0.1 7.2 ± 0.1 7.3 ± 0.2 6.8 ± 0.3
Toluene 3.1 ± 0.4 7.2 ± 0.2 13.1 ± 0.1 12.8 ± 0.8 13.0 ± 0.7
Ethylbenzene 9.9 ± 0.9 12.0 ± 0.3 2.23 ± 0.02 1.4 ± 0.1 1.8 ± 0.1
m/p-Xylene 9.3 ± 0.9 11.3 ± 0.3 8.1 ± 0.1 7.8 ± 0.4 7.9 ± 0.5
Styrene 1.5 ± 0.3 2.42 ± 0.04 8.4 ± 0.1 8.3 ± 0.4 8.1 ± 0.5
o-Xylene 4.9 ± 0.5 5.8 ± 0.1 4.0 ± 0.1 3.8 ± 0.2 3.9 ± 0.2
1,3,5-Trimethylbenzene 2.4 ± 0.1 2.5 ± 0.2 1.6 ± 0.1 1.8 ± 0.1 1.9 ± 0.1
1,2,4-Trimethylbenzene 8.7 ± 0.5 10.6 ± 0.3 9.8 ± 0.8 9.9 ± 0.7 10.6 ± 0.2
1,2,3-Trimethylbenzene 3.5 ± 0.4 3.24 ± 0.03 2.0 ± 0.1 2.2 ± 0.1 2.3 ± 0.2

PAHs

Indane 3.5 ± 0.2 4.2 ± 0.1 1.0 ± 0.1 1.1 ± 0.1 1.1 ± 0.1
Indene 22 ± 1 26.6 ± 0.9 29 ± 2 30 ± 1 30.2 ± 0.8
Naphthalene 70 ± 2 84 ± 2 103 ± 7 102 ± 7 104.6 ± 0.9
2-Methylnaphthalene 25.9 ± 0.5 26.6 ± 0.9 36 ± 2 39 ± 3 40.0 ± 0.2
1-Methylnaphthalene 17.3 ± 0.7 17.8 ± 0.3 24 ± 2 27 ± 2 28.0 ± 0.5
Biphenyl 2.5 ± 0.3 2.4 ± 0.1 2.6 ± 0.2 2.8 ± 0.3 2.9 ± 0.2
2-Ethylnaphthalene 4.4 ± 0.4 3.1 ± 0.1 1.5 ± 0.1 2.0 ± 0.1 2.1 ± 0.3
Acenaphthylene 10.9 ± 0.4 12.2 ± 0.4 13.9 ± 0.9 15.6 ± 0.7 16.3 ± 0.3
Acenaphthene 4.3 ± 0.1 3.8 ± 0.2 2.5 ± 0.2 2.6 ± 0.2 2.6 ± 0.1
Fluorene 6.3 ± 0.1 6.3 ± 0.3 8.3 ± 0.4 8.5 ± 0.5 8.84 ± 0.02
Phenanthrene 16.9 ± 0.6 17.0 ± 0.9 19 ± 1 18 ± 1 17.6 ± 0.4
Anthracene 5.4 ± 0.3 5.1 ± 0.3 5.4 ± 0.4 5.6 ± 0.4 5.5 ± 0.2
Fluoranthene 6.5 ± 0.2 6.5 ± 0.3 7.3 ± 0.4 6.9 ± 0.4 6.7 ± 0.1
Pyrene 9.4 ± 0.2 9.4 ± 0.4 9.1 ± 0.5 8.2 ± 0.1 8.3 ± 0.1
Benzo(a)anthracene 4.9 ± 0.4 4.8 ± 0.2 4.1 ± 0.4 4.0 ± 0.4 4.0 ± 0.3
Triphenylene/chrysene 3.7 ± 0.3 3.6 ± 0.1 3.1 ± 0.3 3.0 ± 0.3 3.0 ± 0.2
Benzo(b)fluoranthene 1.5 ± 0.2 1.3 ± 0.1 1.5 ± 0.1 1.4 ± 0.1 1.3 ± 0.1
Benzo(k)fluoranthene 2.1 ± 0.1 1.8 ± 0.1 1.8 ± 0.1 1.7 ± 0.1 1.5 ± 0.1
Benzo(a)pyrene 2.9 ± 0.3 2.4 ± 0.1 2.2 ± 0.1 1.9 ± 0.1 1.8 ± 0.2
Indeno(1,2,3-CD)pyrene 1.4 ± 0.1 1.3 ± 0.1 1.20 ± 0.03 1.1 ± 0.1 0.9 ± 0.1
Dibenz(a,h)anthracene 0.58 ± 0.04 0.52 ± 0.03 0.45 ± 0.01 0.43 ± 0.02 0.38 ± 0.03
Benzo(ghi)perylene 1.5 ± 0.1 1.4 ± 0.1 1.27 ± 0.01 1.08 ± 0.04 0.89 ± 0.02

Heterocylcic Compounds

Benzo(b)thiophene 1.2 ± 0.1 1.3 ± 0.1 3.4 ± 0.2 3.7 ± 0.3 4.0 ± 0.1
Dibenzothiophene 1.16 ± 0.04 1.2 ± 0.1 2.7 ± 0.2 2.7 ± 0.2 2.64 ± 0.01
Dibenzofuran 1.4 ± 0.1 1.56 ± 0.04 2.3 ± 0.1 2.6 ± 0.2 2.52 ± 0.02
Carbazole 0.69 ± 0.03 0.7 ± 0.1 1.3 ± 0.1 1.3 ± 0.1 1.3 ± 0.3
Quinoline ND ND ND ND ND

Phenolics

Phenol ND ND ND ND ND
o-Cresol ND ND ND ND ND
m/p-Cresol ND ND ND ND ND
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Table 2.5: Results of GC-FID Analysis for Samples B1–B3 and CT. All values are
mg/g ± 2 standard deviations
Compound B1-07 B1-09 B2 B3 CT
MAHs

Benzene 0.5 ± 0.0 0.5 ± 0.1 0.53 ± 0.05 1.4 ± 0.2 0.137 ± 0.001
Toluene 1.4 ± 0.2 2.3 ± 0.3 2.4 ± 0.3 2.0 ± 0.1 0.61 ± 0.01
Ethylbenzene 1.7 ± 0.3 2.1 ± 0.2 2.3 ± 0.2 1.3 ± 0.2 0.66 ± 0.04
m/p-Xylene 3.0 ± 0.4 3.8 ± 0.4 3.9 ± 0.4 7.0 ± 0.9 0.98 ± 0.05
Styrene ND 0.1 ± 0.0 0.15 ± 0.02 0.9 ± 0.2 ND
o-Xylene 1.5 ± 0.2 1.9 ± 0.2 2.0 ± 0.2 3.2 ± 0.5 0.33 ± 0.01
1,3,5-Trimethylbenzene 1.0 ± 0.0 0.8 ± 0.1 0.91 ± 0.01 1.49 ± 0.05 0.17 ± 0.01
1,2,4-Trimethylbenzene 3.0 ± 0.1 2.5 ± 0.2 2.76 ± 0.04 6.0 ± 0.3 0.4 ± 0.1
1,2,3-Trimethylbenzene 1.4 ± 0.1 1.1 ± 0.1 1.21 ± 0.02 1.24 ± 0.05 0.15 ± 0.02

PAHs

Indane 3.9 ± 0.1 3.3 ± 0.2 3.6 ± 0.1 1.1 ± 0.7 5.1 ± 0.2
Indene 3.0 ± 0.2 4 ± 1 4.5 ± 0.1 12.5 ± 0.4 0.64 ± 0.04
Naphthalene 93.0 ± 1.9 84 ± 4 90 ± 1 60 ± 4 88 ± 3
2-Methylnaphthalene 32.9 ± 0.7 30 ± 2 32.5 ± 0.7 33 ± 2 19.9 ± 0.9
1-Methylnaphthalene 23.7 ± 0.6 20 ± 1 21.7 ± 0.2 22 ± 2 9.0 ± 0.4
Biphenyl 4.6 ± 0.1 4.2 ± 0.2 4.54 ± 0.03 2.5 ± 0.3 3.8 ± 0.1
2-Ethylnaphthalene 4.4 ± 0.1 3.2 ± 0.2 3.57 ± 0.02 1.6 ± 0.1 2.1 ± 0.1
Acenaphthylene 1.8 ± 0.1 1.7 ± 0.2 1.9 ± 0.1 3.5 ± 0.1 0.8 ± 0.1
Acenaphthene 11.6 ± 0.4 10.8 ± 0.6 11.8 ± 0.1 4.2 ± 0.3 2.10 ± 0.04
Fluorene 9.0 ± 0.3 8.5 ± 0.5 9.1 ± 0.5 6.3 ± 0.4 21 ± 1
Phenanthrene 22.9 ± 0.8 22 ± 1 23 ± 1 13.3 ± 0.6 49 ± 4
Anthracene 6.1 ± 0.2 6.0 ± 0.3 6.3 ± 0.2 4.1 ± 0.1 8.9 ± 0.5
Fluoranthene 10.0 ± 0.3 9.1 ± 0.5 9.8 ± 0.2 3.4 ± 0.2 28 ± 3
Pyrene 12.0 ± 0.4 11.8 ± 0.6 12.7 ± 0.3 5.9 ± 0.4 23 ± 3
Benzo(a)anthracene 4.3 ± 0.2 3.8 ± 0.2 4.0 ± 0.2 2.3 ± 0.1 7.2 ± 0.9
Triphenylene/chrysene 4.8 ± 0.1 4.1 ± 0.2 4.4 ± 0.1 2.1 ± 0.1 8 ± 1
Benzo(b)fluoranthene 2.8 ± 0.2 2.8 ± 0.2 3.1 ± 0.1 0.83 ± 0.05 5.88 ± 0.04
Benzo(k)fluoranthene 2.7 ± 0.1 2.7 ± 0.1 2.91 ± 0.02 1.1 ± 0.1 4.8 ± 0.4
Benzo(a)pyrene 3.2 ± 0.2 3.4 ± 0.2 3.7 ± 0.1 1.6 ± 0.1 5.4 ± 0.1
Indeno(1,2,3-CD)pyrene 1.6 ± 0.1 1.9 ± 0.1 1.95 ± 0.04 0.72 ± 0.03 3.7 ± 0.1
Dibenz(a,h)anthracene 0.7 ± 0.0 0.6 ± 0.0 0.58 ± 0.01 0.23 ± 0.03 1.6 ± 0.1
Benzo(ghi)perylene 1.7 ± 0.1 1.8 ± 0.1 1.9 ± 0.1 0.66 ± 0.04 2.9 ± 0.1

Heterocylcic Compounds

Benzo(b)thiophene 4.1 ± 0.1 4.1 ± 0.2 4.5 ± 0.1 3.4 ± 0.3 4.2 ± 0.1
Dibenzothiophene 3.7 ± 0.1 3.1 ± 0.2 3.3 ± 0.1 1.9 ± 0.3 4.4 ± 0.1
Dibenzofuran 4.0 ± 0.1 3.3 ± 0.3 3.60 ± 0.04 1.0 ± 0.1 18.5 ± 0.9
Carbazole 1.4 ± 0.1 1.1 ± 0.1 1.1 ± 0.1 0.31 ± 0.01 6.1 ± 0.2
Quinoline ND ND ND ND 2.8 ± 0.1

Phenolics

Phenol ND ND ND ND 1.1 ± 0.1
o-Cresol ND ND ND ND 1.0 ± 0.1
m/p-Cresol ND ND ND ND 3.2 ± 0.1
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Figure 2.3: FTIR spectra comparing (a) asphaltenes from samples B1-09 and CT,
and (b) tar, resin, and asphaltene fractions from sample P3.

Table 2.6: Results of IFT analysis. Units are mN/m. ± 95% CI.
Sample / pH 3 5 7 9 11
Tar

P1 19.1 ± 0.1 21.6 ± 0.5 18.6 ± 0.3 10.9 ± 0.2 2.5 ± 0.2
P2 19.7 ± 0.1 20.5 ± 0.3 18.5 ± 0.1 10.7 ± 0.7 2.2 ± 0.2
P3 13.8 ± 0.3 20.2 ± 0.9 20 ± 2 15.5 ± 0.4 6 ± 1
P4 13.0 ± 0.5 18.8 ± 0.4 19.7 ± 0.3 13.3 ± 0.8 4.1 ± 0.2
P5 12.8 ± 0.4 18.5 ± 0.1 18.1 ± 0.4 12.9 ± 0.8 4.9 ± 0.8
B1-07 22 ± 1 22.8 ± 0.3 21.0 ± 0.4 11.1 ± 0.1 1.6 ± 0.2
B2 22.31 ± 0.09 22.2 ± 0.9 21 ± 1 12 ± 3 −−

B3 22.6 ± 0.6 22 ± 1 20.6 ± 0.4 10.5 ± 0.6 1.13 ± 0.04
CT 13.6 ± 0.2 20.3 ± 0.2 23.7 ± 0.1 24.5 ± 0.4 21.7 ± 0.4

Asphaltene DNAPL

P1 20.1 ± 0.1 21.8 ± 0.1 20.8 ± 0.4 15.0 ± 0.7 2.0 ± 0.4
P3 14.91 ± 0.07 20.6 ± 0.3 20.6 ± 0.7 16.24 ± 0.08 6.9 ± 0.4
B1-07 20.2 ± 0.4 22.4 ± 0.4 18.7 ± 0.1 6.1 ± 0.4 0.092 ± 0.003
B3 24.8 ± 0.1 25.3 ± 0.5 22.8 ± 0.3 13 ± 2 0.047 ± 0.008
CT 10.8 ± 0.3 16.3 ± 0.4 19.6 ± 0.4 19.7 ± 0.2 15.7 ± 0.4

Resins DNAPL

P1 17.0 ± 0.2 16.9 ± 0.6 13.6 ± 0.3 5.0 ± 0.5 0.3 ± 0.2
P3 14.4 ± 0.4 15.3 ± 0.2 13.8 ± 0.5 6.9 ± 0.2 2.3 ± 0.4
B1-07 18.5 ± 0.6 15.2 ± 0.2 7.0 ± 0.4 2.8 ± 1.6 0.13 ± 0.02
B3 13.3 ± 0.7 9.2 ± 0.3 0.12 ± 0.02 ¡0.05 ¡0.05
CT 16.1 ± 0.4 17.1 ± 0.2 17.33 ± 0.02 14.3 ± 0.4 8.2 ± 0.6
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Figure 2.4: IFT reduction at high pH versus (a) resin concentration and (b)
asphaltene concentration.
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Figure 2.7: Relationship between (a) asphaltene M̄ and the IFT reduction at high
pH, and (b) the A-factor and the IFT reduction at low pH.
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Figure 2.8: Hypothetical coal (a) and petroleum (b) asphaltene structures, based
on [3, 22, 64, 87, 132, 138, 139, 177, 189, 201, 235], and consistent with the findings
in this work.
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CHAPTER 3

MOBILIZATION OF MANUFACTURED GAS PLANT TAR WITH
ALKALINE FLUSHING SOLUTIONS1

3.1 Introduction

Former manufactured gas plants (FMGPs) were common in the U.S. and Europe

between the early 1800s and the 1950s. These plants produced coke or town gas,

a flammable gas that was used primarily for heating and lighting. The U.S. En-

vironmental Protection Agency (EPA) estimated that there were between 36,121

and 55,001 FMGPs and related tar and gas processing facilities in the U.S. [217].

The vast majority of these sites are suspected to have had releases of solid and

liquid waste products, including tars, cyanide-bearing purifier waste, slag, and

coke [70, 128, 217]. The tars, which contain thousands of individual compounds,

including many known or suspected carcinogens, are frequently the focus of re-

mediation efforts at FMGPs [147]. Polycyclic aromatic hydrocarbons (PAHs),

hydrocarbons composed of two or more fused aromatic rings, are the dominant

class of compounds in tars [21, 228, 238, 239]. Asphaltenes, operationally de-

fined as the short-alkane insoluble fraction, are another important component of

tars and may account for up to 36% of total tar mass [18, 242]. Asphaltenes are

suspected to play a key role in tar interfacial behavior [17, 88, 172, 240–243].

Once released into a porous medium system, tars migrate downward by grav-

1Reprinted (adapted) with permission from Hauswirth, S. C., et al. (2012) Environmental Science

and Technology 46(1), 426–433. Copyright (2012) American Chemical Society.
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ity, and because they are denser than water, can move down through the water

table until reaching a confining layer (e.g., silt or clay). As the tar migrates

through a porous medium, capillary forces act to trap isolated globules of tar in

pores, creating a zone of residual saturation. FMGP tars’ tendency toward NAPL-

wetting conditions results in higher residual saturations than other denser-than-

water NAPLs (DNAPLs), such as chlorinated solvents [128, 222]. FMGP tars

are persistent in the environment due to their resistance to chemical and bio-

logical degradation and the relatively low solubilities of many of the chemical

constituents in these complex mixtures. The U.S. EPA estimated the per site

clean-up costs in the millions of dollars, and a cumulative total of $128 billion for

all of the FMGP and related sites in the U.S. [217]. A number of strategies have

been applied or investigated for MGP tar remediation including containment, ex-

cavation, natural or enhanced bioremediation, extraction by pumping (with or

without the use of chemical additives), chemical oxidation, and thermal methods

[15, 65, 79, 96, 120, 128, 134, 204, 211, 215, 217, 232].

Mobilization approaches are attractive alternatives for the remediation of NAPLs

since they are less restricted by site access limitations than other methods. The

basic principle behind such methods is to reduce the forces trapping the NAPL

in the porous media. NAPL droplets are trapped in porous media when capillary

forces are greater than the pressure acting on the drop. The capillary number (NC)

is a dimensionless number that represents the ratio of viscous forces to capillary

forces, and for vertical flow it is defined as follows [160]:

NC =
qαµα

σαn cos θ
, (3.1)
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where qα is the magnitude of the aqueous phase Darcy velocity, µα is the aqueous

phase viscosity, θ is the contact angle, and σαn is the interfacial tension (IFT)

between the aqueous and NAPL phases. When buoyancy forces are expected to

be important, NC may also be combined with the bond number (NB) to arrive at

the trapping number (NT ), which, for vertical flow, is defined as follows [160]:

NT =

∣

∣

∣

∣

NC +
gkkrα△ρ

σαn cos θ

∣

∣

∣

∣

= |NC +NB| , (3.2)

where k is the intrinsic permeability, krα is the relative water permeability, g is

gravitational acceleration, and △ρ = ρα − ρn, where ρα and ρn are the aqueous

and NAPL phase densities. When △ρ is small, as is the case for many FMGP

tar-water systems, the contribution of NB is negligible relative to NC . It has been

well established that residual saturation is a decreasing function of the trapping

number [160, 170]. The goal for a mobilization-based remediation technique is to

increase NT , which is typically accomplished by reducing σαn by adding cosolvents

or surfactants to the aqueous flushing solution, or by increasing the flow rate.

The addition of polymers, such as xanthan gum (XG), to increase µα is common

in the petroleum industry for enhanced oil recovery (EOR) applications [191],

but has seen less use in the remediation field. Investigations of the effect of

viscosity on remediation efficiency have tended to focus on the viscosity ratio (κ =

µn/µα) alone, rather than in relation to capillary forces. Giese and Powers [63]

performed creosote and synthetic NAPL flushing experiments with XG solutions

under NAPL-wet conditions, and found that solutions with κ = 0.1 resulted in

final NAPL saturations roughly half those obtained when using solutions with
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κ ≥ 1. Tzimas et al. [212] reported a similarly strong impact for other NAPLs.

Some researchers have found that NCκ
m, where m is determined by fitting to

experimental data, correlates with residual NAPL saturations better than NC

alone [124]. The proposed reason for this is that µn, which is not accounted for

in the formulation of NC , impacts NAPL entrapment processes (i.e., snap-off).

The use of alkaline agents to reduce IFT was developed by petroleum re-

searchers for EOR applications. When exposed to high pH aqueous solutions,

organic acids in crude oils become ionized, forming natural surfactants that sig-

nificantly reduce the NAPL-water IFT [36, 37, 90, 237]. One of the major ad-

vantages of this approach is cost: commonly used alkaline chemicals, sodium

hydroxide (NaOH) and sodium carbonate (Na2CO3), are readily available and

inexpensive compared to other flushing chemicals such as surfactants [53, 205].

From a remediation perspective, an additional benefit is that both NaOH and

Na2CO3 are designated as “generally recognized as safe” by the U.S. FDA and

used widely as food additives [213]. The feasibility of applying such alkaline-based

approaches to the remediation of FMGP tars has not been explicitly investigated;

however, it has been shown that when exposed to high pH solutions, FMGP tars

exhibit lower NAPL-water IFT and have a decreased tendency to wet porous me-

dia [17, 88, 172, 240–243]. This evidence suggests that acidic species are present

that react to form surface active compounds, and that alkaline flushing may be

effective for tars.

Two field trials of alkaline-surfactant-polymer (ASP) flushing have been con-

ducted on wood-treating creosote, a DNAPL with similarities to, but important

differences from, FMGP tars. One of the trials failed due to injection problems
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and insufficient site characterization, while the other trial successfully removed

84.3% of the residual creosote [136, 169, 178]. The latter study, however, used a

five-stage sequence of chemical flushing solutions and relied more on the use of

surfactants than alkaline agents. The surfactant concentration in the main flush-

ing solution was 1.4% while the pH was only 9.2; alkaline flushing solutions for

EOR applications are typically above pH 12 [191].

The objectives of this work are: (1) to assess the impact of NaOH solutions

on the IFT and contact angle of FMGP tars, (2) to conduct column experiments

to assess the potential for the use of such solutions to remediate FMGP tars, and

(3) to assess the impact of the remediation on dissolved phase concentrations of

15 PAHs.

3.2 Materials and Methods

All solvents used were ACS Reagent grade or better (Fisher) and water was dis-

tilled and deionized (DDI). Stock solutions of 10% NaOH (99.8%; Fisher Scientific)

and 5% XG (MP Biomedicals) were prepared and used to make all subsequent

solutions for IFT, contact angle, and flushing experiments. The buffer solution

was made by dissolving appropriate quantities of NaH2PO4 and Na2HPO4 in DDI

and titrating to pH 7 to produce a 100 mM stock solution. This solution was

diluted to 1 mM, and NaCl was added to adjust the ionic strength to 10 mM.

The tar used for this study was a tar, believed to be a carburetted water-gas tar,

collected from a well at an FMGP in Baltimore, Maryland, USA. Measurements

of pH were made with an Orion Research EA 940 expandable ion meter. All

experiments were conducted at 22± 1 ◦C.
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3.2.1 Fluid Characterization

To determine the tar composition, 0.05 g of tar was dissolved in 10 mL dichloromethane

(DCM) containing 2-fluorobiphenyl and m-terphenyl as internal standards. Twenty-

six compounds, including the 16 EPA priority pollutant PAHs, were quantified

using a Hewlett-Packard 5890 gas chromatograph equipped with a flame ioniza-

tion detector (GC-FID) and a Hewlett-Packard 7673 autoinjector system. Peak

identification was confirmed with a gas chromatograph equipped with a mass spec-

trum detector (GC-MS). The GC-FID was calibrated with six standard solutions

containing concentrations ranging from 0.3 to 500 mg/L.

Asphaltenes were extracted with n-pentane and reprecipitated from toluene.

Acids and bases were extracted with 1 M NaOH and 10% H2SO4, respectively.

Details of the methods used for the asphaltene, acid, and base extractions are

provided in Supporting Information.

Density was measured with an Anton Paar DMA 48 density meter. Tar dy-

namic viscosity (µt) was measured with a TA Instruments AR-G2 rheometer at a

shear rate of 1 s−1. The viscosity of XG solutions with 0, 0.2, and 0.5% NaOH was

measured over a shear rate (γ̇) range of 10−4 to 10 s−1. The solutions containing

NaOH were analyzed within 1 hour of being produced.

3.2.2 IFT and Contact Angle

IFT was measured using the pendant drop method. An optical glass cell (Krüss)

was filled with aqueous solution (0–1 wt.% NaOH), and a drop of tar was sus-

pended from a stainless steel needle. A digital video camera captured images of
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the drop, and Krüss’s Drop Shape Analysis II (DSA2) software was used to de-

termine the native IFT, for which △ρ = 1 g/cm3. The density of each phase was

measured and used to determine the actual IFT. A schematic of the experimental

apparatus is provided in Supporting Information.

Two needle sizes were used, a 16-gauge needle (1.6-mm outer diameter) for

IFTs above 1 mN/m, and a 24-gauge needle (0.4-mm diameter) for IFTs between

1 mN/m and 0.05 mN/m, which was the lower limit of quantification for this

method. The magnification of the optics system was adjusted as appropriate for

each needle size. Optical scale calibration was performed directly by the DSA2

software using needle diameters measured to 0.001 mm with a digital micrometer.

DCM-distilled water interfacial tensions were measured as a check of the accuracy

of the measurements.

IFT was measured with and without prior equilibration. Equilibration entailed

combining the tar and aqueous solution at a 1:3 volume ratio in a centrifuge tube,

shaking periodically over a period of 7 days, and centrifuging at 3200 rpm (1700 g)

for 20 minutes prior to measurement. This volume ratio was chosen based on an

assumed residual tar saturation of 0.25 for the column experiments.

Contact angles were measured using the same instrumentation and software

as for the IFT measurements. The measurements were conducted on a 25 mm ×

25 mm quartz slide (Chemglass) placed in the glass cell. The interaction between

the tar and the needle used to dispense the drop was found to greatly impact the

drop shape, and therefore an inclined plate method was used to determine the

advancing (θA) and receding (θR) contact angles. A drop was dispensed on the

quartz slide and the stage was tilted until the drop just began to move along the

49



surface of the slide. Images captured immediately prior to the movement of the

drop were used to measure the angle (through the aqueous phase) on each side of

the drop. Contact angle measurements were conducted with the equilibrated tar

and aqueous phases.

Between each sample, the glass cell and quartz slide were rinsed sequentially

with methanol, n-methylpyrollidinone (NMP), DCM, methanol, and DDI water,

followed by a 15 min soak in NaOH-saturated ethanol and a final, thorough DDI

rinse.

3.2.3 Column Studies

Column studies were conducted in 2.5-cm inner diameter glass columns that were

adjusted to 10 cm in length. The influent and effluent tubing, along with all

associated fittings, were constructed of PTFE. Water and flushing solutions were

pumped using Harvard Apparatus PHD 4400 programmable syringe pumps. A

schematic of the column apparatus is provided in Supporting Information.

The columns were dry packed with a sieved fraction (#25 to #35 mesh) of a

natural quartz and feldspar sand, using an air vibrator to ensure complete com-

paction. This sand was used since it is more representative of natural mineralogy

and grain shapes than glass beads or pure quartz sand that are commonly used

for this type of experiment. The intrinsic permeability was determined to be

2.2±0.4×10−7 cm2 for a representative column by measuring the head difference

between the inlet and outlet over a range of flow rates. Further characterization of

the original soil is presented elsewhere [16]. After packing, the column was flushed

upward with carbon dioxide for 30 minutes at a rate of 20–30 mL/min to displace
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the air from the column. This was followed by a several pore volume flush of pH

7 buffer to displace and dissolve the carbon dioxide. Porosity was calculated for

each column based on the bulk density.

Tar was injected upward into the column to achieve a NAPL saturation (Sn)

approaching 1. A water flood was conducted to create a residual tar saturation

by flushing the pH 7 buffer downward until tar was no longer present in the

effluent. Column experiments were conducted using 0.2, 0.35, and 0.5% NaOH

solutions with and without the addition of 5000 ppm XG. An additional column

was flushed with a 5000 ppm XG solution without NaOH. Chemical flushes were

conducted in a downward direction and performed until no tar was present in

the effluent. The column was then flushed with several pore volumes of the pH

7 buffer. Effluent samples of between 5 and 30 mL were collected during the

water and chemical flushing. Tar removal was quantified by extracting the tar in

the effluent samples with sequential portions of DCM, centrifuging and pipetting

off the organic phase between each step, and analyzing the extract by GC-FID as

described above. Internal standards were added directly to the effluent samples to

account for extraction losses and matrix background. The mass of six individual

compounds (naphthalene, 1- and 2-methylnaphthalene, acenaphthene, fluorene,

phenanthrene) in each sample was determined and divided by the known mass

fraction of that compound in the tar. These six values were averaged to provide

an estimate of the tar mass in the sample. This approach was tested by adding a

known mass of tar to DDI-filled centrifuge vials, and extracting as for the samples.

These tests indicated that such an approach was accurate to within 0.4%.

Aqueous-phase concentrations of PAHs were measured before and after the
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alkaline flushing for select columns. Aqueous effluent samples were collected in

acetonitrile containing deuterated anthracene as an internal standard. The sam-

ples were filtered with 0.2 µm PTFE syringe filters (Fisher), allowing the first 1 mL

to go to waste. Analysis was performed by high-performance liquid chromatogra-

phy (HPLC) (Waters 600S controller, 616 pump, and 717 autosampler) equipped

with a multi-wavelength fluorescence detector (Waters 2475) as described in [19].

At the completion of the flushing, the soil was split into four segments along

the length of the column, each of which was homogenized and divided into three

centrifuge vials. Internal standard and Na2SO4 (10 g) were added, and the tar

was extracted with one 15-mL and three 10-mL portions of DCM. The vials were

shaken and centrifuged between each step, and the supernatant from each sample

was combined and diluted to 50 mL. The samples were then analyzed by GC-FID.

3.3 Results

The tar composition is presented in 3.1. The density of the tar was 1.0800± 0.0004

g/cm3 (22◦C), and the dynamic viscosity was 190 ± 10 (22◦C, 1 s−1). Rheological

measurements of 5000 ppm XG solutions with 0.5% NaOH and without NaOH

are shown in 3.1. The solution containing 0.2% NaOH yielded results very similar

to those of the 0.5% solution. The addition of NaOH resulted in a significant

reduction of the viscosity. At 0.75 s−1, the shear rate (γ̇) estimated to occur in

the column using the equation of Hirasaki and Pope [84], the viscosity is a factor

of 2.7 lower for the solution containing NaOH than the pure XG solution.
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Table 3.1: Tar composition and properties. Compound concentrations are the
average of 3 injections of 3 samples. All other values are the average of three
analyses. All values are ± 95% CI
Compound Concentration (mg/g)

indane 3.6 ± 0.1
indene 2.2 ± 0.1
naphthalene 95 ± 3
benzo(b)thiophene 3.9 ± 0.1
2-methylnaphthalene 34 ± 1
1-methylnaphthalene 24.4 ± 0.9
biphenyl 5.3 ± 0.2
2-ethylnaphthalene 4.5 ± 0.1
acenaphthylene 2.4 ± 0.1
acenaphthene 11.5 ± 0.4
dibenzofuran 4.1 ± 0.1
fluorene 10.9 ± 0.3
dibenzothiophene 5.5 ± 0.8
phenanthrene 33 ± 1
anthracene 8.9 ± 0.3
carbazole 3.0 ± 0.1
fluoranthene 13.0 ± 0.4
pyrene 14.7 ± 0.5
benzo(a)anthracene 5.3 ± 0.1
chrysene 6.0 ± 0.3
benzo(b)fluoranthene 3.5 ± 0.2
benzo(k)fluoranthene 3.5 ± 0.3
benzo(a)pyrene 4.5 ± 0.5
indeno(1,2,3-CD)pyrene 2.8 ± 0.2
dibenz(a,h)anthracene 1.2 ± 0.1
benzo(ghi)perylene 2.7 ± 0.3
sum 309 ± 4

asphaltenes 168 ± 3
extractable acids 1.8 ± 0.2
extractable bases 0.9 ± 0.3
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Figure 3.1: Rheology of XG solutions. The results of three analyses and the best-
fit power law equation for each solution are shown. The dashed line represents a
shear rate of 0.75 s−1

3.3.1 IFT and Contact Angle

The measured IFT for DCM in DDI was 27.7 ± 0.6 mN/m (n=7), in good agree-

ment with literature values, which ranged from 27.4–28.3 mN/m [14, 59, 86, 183,

184]. The IFT from [59] was measured at 20◦C, while all other literature values

were reportedly measured at room temperature.

The dynamic IFT for unequilibrated tar samples was measured for NaOH

ranging from 0.1–1%. A 0.01% NaOH solution was also tested, but the initial

IFT was below the quantitative limit of the method. The unequilibrated samples

showed significant changes in IFT with time (3.2). Initially, the results show a

trend of increasing IFT with increasing NaOH concentration. The trend begins

to change at t ≈ 2 min; however, difficulties with drops releasing from the needle

prevented measurement of IFT for some NaOH concentrations over longer time

scales.

Equilibrium IFT was found to decrease steadily as the NaOH concentration
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was increased from 0 to 0.5% (Figure 3.3). The IFT changed little between 0.5

and 1%. IFTs for equilibrated samples with NaOH concentrations of 0.1–0.4%

were significantly higher than the corresponding non-equilibrated samples. The

pH of the solutions was not significantly altered during the equilibration period,

except for the 0.01% solution which exhibited a pH reduction from 11.40 to 9.88

(see figure in Supporting Information).
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Figure 3.4: Contact angle measurements. Error bars are the 95% CI.

The results of the contact angle analyses are shown in 3.4. With the pH 7

buffer, contact angles were θR = 71±2◦and θA = 18±7◦. NaOH solutions of 0.01–

0.3% resulted in much lower θR values, approximately 20◦, while the θA values were

similar to that of the buffer. At 0.4% NaOH, θA remained low, but θR increased

significantly to about 70◦. The maximum receding angle (137±9◦) occurred at an

NaOH concentration of 0.5%, with similarly high values measured for 0.7 and 1%

NaOH solutions. Advancing angles for 0.5–1% NaOH solutions ranged from 35–

70◦. The results indicate that the lower NaOH concentrations (0.01–0.3%) reduce

the NAPL-wetting tendency of the system, while the higher concentrations (0.4–

1%) increase it. Drummond and Israelachvili [48] reported a similar shift toward
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NAPL-wetting for crude oils at high pH and sodium concentrations. The reported

cause of the shift is a combination of the reduction of IFT associated with the

high pH and the reduction of repulsive forces between the NAPL and solid phase

resulting from the high Na+ concentration.

3.3.2 Column Studies

The results of the column experiments are summarized in Table 3.2 and plots of

residual saturation versus pore volumes (PV) flushed for select columns are pro-

vided in Figure 3.5 (see Figures 3.9 and 3.10). The column experiments conducted

without XG (C1–C3) resulted in relatively low removal efficiencies. The 0.2 (C1)

and 0.5% (C3) NaOH solutions removed only 15 and 10% of the residual tar,

respectively. The majority of the tar removed by these columns eluted during the

first 2 PV of the alkaline flushing. The formation of a NAPL bank was observed

in both of these columns immediately after the injection of alkaline solution, but

appeared to stall near the top of the column. Column C2 (0.35% NaOH) resulted

in a considerably higher tar removal (44%), but required approximately 7 PV to

do so. The NAPL bank in this column was visibly more robust than those in

C1 and C3, but also became unstable near the top of the column and failed to

uniformly pass through the column.

Column C4 was conducted with 5000 ppm XG without NaOH to determine

the impact of an increased flushing solution viscosity. This column resulted in the

removal of 51% of the residual tar and a final tar saturation of 0.13.

Columns C5–C10 were all flushed with solutions containing an XG concen-

tration of 5000 ppm and varying NaOH concentrations of 0.2% (C5–C6), 0.35%
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Figure 3.5: Results of select column flushing experiments illustrating the improved
tar removal for a combined NaOH + XG solution versus either NaOH or XG alone:
(a) C1, 0.2% NaOH; (b) C4, 5000 ppm XG; (c) C5, 0.2% NaOH + 5000 ppm XG.
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(C7), and 0.5% (C8–C10). The viscosity ratio for these columns was about 0.1 at

γ̇ = 0.75. The lowest final tar saturation (0.018, 93% removal) was obtained for a

column flushed with a 0.2% NaOH solution (C5). A duplicate of this column (C6)

resulted in a higher 0.037 tar saturation, apparently due to a small amount of tar

trapped along the wall of the column. The columns flushed with 0.5% NaOH had

somewhat higher final saturations, ranging from 0.043–0.048. Stable NAPL banks

were observed in columns C5–C10, and were responsible for the large majority of

the tar removal.

Table 3.2: Summary of column experiment results.
Column Flushing Solution PV Flushed Residual Sn Final Sn % Removal
C1 0.2% NaOH 2.7 0.26 0.22 15 %
C2 0.35% NaOH 7.0 0.26 0.15 44 %
C3 0.5% NaOH 2.9 0.26 0.24 10 %
C4 5000 ppm XG 3.5 0.26 0.13 51 %
C5 0.2% NaOH + 5000 ppm XG 3.0 0.26 0.018 93 %
C6 0.2% NaOH + 5000 ppm XG 3.2 0.32 0.037 87 %
C7 0.35% NaOH + 5000 ppm XG 2.5 0.28 0.037 85 %
C8 0.5% NaOH + 5000 ppm XG 1.9 0.25 0.048 81 %
C9 0.5% NaOH + 5000 ppm XG 2.3 0.29 0.043 85 %
C10 0.5% NaOH + 5000 ppm XG 2.7 0.29 0.046 84 %

Aqueous phase concentrations of 15 PAHs were measured before and after

alkaline flushing for columns C8–C10. Table 3.3 shows the results from column

C9, which are typical of the results from the other columns. With the exception of

naphthalene, statistically significant reductions in aqueous phase concentrations

were not observed.

3.4 Discussion

Consistent with previous MGP tar studies, tar-aqueous IFTs were found to be

significantly lower at higher pH than at neutral pH [17, 242]. This work, however,

differs from previous studies in that a higher range of pH (7–13.4) was investigated.
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Table 3.3: Aqueous phase concentrations before and after alkaline flushing. Ceq
i

is the equilibrium concentration as calculated with Raoult’s law. The pure com-
pound aqueous solubilities (Saq

i ) are from [119] and the fugacity ratios (fS/fL) are
from [51]. All units are µg/L. ± 95% CI.
Compound Saqi fS/fL C

eq
i Preflush Postflush

naphthalene 31600 0.3 21200 15300 ± 300 11200 ± 800
acenaphthene 3800 0.2 370 264 ± 3 270 ± 50
fluorene 1900 0.16 210 140.3 ± 0.2 140 ± 20
phenanthrene 1200 0.28 210 139 ± 7 130 ± 50
anthracene 44 0.01 57 24.8 ± 0.3 30 ± 2
fluoranthene 210 0.21 17 12 ± 3 18 ± 7
pyrene 13.9 0.11 2.5 10 ± 2 18 ± 5
benzo(a)anthracene 9.3 0.04 1.3 1.4 ± 0.2 4 ± 1
chrysene 1.9 0.0097 1.2 1.2 ± 0.1 3 ± 3
benzo(b)fluoranthene 1.5 0.039 0.16 < 0.16 < 0.16
benzo(k)fluoranthene 8.0 0.013 2.10 0.3 ± 0.6 1.6 ± 0.80
benzo(a)pyrene 4.3 0.03 0.61 1 ± 2 3 ± 2
dibenz(a,h)anthracene 0.5 0.004 0.09 < 0.16 < 0.16
benzo(g,h,i)perylene 0.26 0.003 0.14 0.3 ± 0.1 < 0.16
indeno(1,2,3-cd)pyrene 0.2 0.045 0.01 0.5 ± 0.5 < 0.16

Instantaneous measurements indicated that, after a large decrease between pH 7

and 11.40, IFT generally increased with increasing NaOH concentration over this

range. Measurements of equilibrated samples, however, showed that lower conc-

entrations of NaOH resulted in relatively high IFTs. At an NaOH concentration

of 0.1%, for example, there is a difference of two orders of magnitude between the

instantaneous and equilibrium IFT. The difference between instantaneous and

equilibrium IFT is much less for solutions with higher NaOH concentrations (0.5–

1%). The change in pH during the equilibration period was minimal for all but

the 0.01% NaOH solution, indicating that other mechanisms are responsible for

the observed behavior.

A number of petroleum researchers have investigated the dynamic IFT behav-

ior of crude oils or synthetic oil-acid mixtures contacted with alkaline solutions

[31, 35, 36, 53, 143, 208, 224]. The basic mechanisms described in these studies

are as follows. The organic acids (HA) present in the oil or tar are deprotonated
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at the interface, resulting in a reduction of IFT. The ionized acids (A−) may

subsequently diffuse into the bulk aqueous phase or combine with Na+ ions to

form surface-inactive soap molecules (NaA). The rates and equilibria associated

with these processes are responsible for dynamic IFT behavior. The differences

between instantaneous and equilibrium IFT at different NaOH concentrations ob-

served in this study could be explained by the higher ionic strength of the 0.5–1%

NaOH solutions suppressing the diffusion of A− away from the interface. However,

the formation of NaA would simultaneously be expected to increase, leading to

an increase in IFT. An alternate explanation relates to the presence of multiple

acidic species within the tar. Chiwetelu et al. [35] showed that the dominant in-

terfacially active species changed from a higher solubility, lower pKa acid to a less

soluble, higher pKa acid as NaOH concentration was increased. A more recent

study [237] found that higher molecular weight petroleum acid fractions required

a higher alkaline concentration to produce an IFT reduction, but resulted in much

less time-dependent IFTs as compared to the lower molecular weight fractions. It

is likely that a similar range of species is present in FMGP tars and contributes

to the observed differences in dynamic IFT behavior at different NaOH concen-

trations.

The columns conducted without XG indicate that the reduction of IFT does

result in the mobilization of tar, but that the amount of removal is not correlated

with either the instantaneous or equilibrium IFT values. The column flushed

with 0.35% NaOH, which had intermediate equilibrium and instantaneous IFTs,

resulted in a significantly lower final saturation than both the 0.2% NaOH column

(with a lower instantaneous IFT) and the 0.5% NaOH column (with a lower equi-
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librium IFT). NAPL-wet conditions are associated with reduced NAPL recovery,

potentially explaining the low recovery for the 0.5% NaOH solution, which ex-

hibited a high contact angle [49, 88]. The reason for the limited effectiveness of

the 0.2% NaOH flushing solution is not immediately clear. A study investigating

alkaline flushing for a heavy crude oil similarly reported that the solution produc-

ing the minimum IFT was ineffective and that a higher alkaline concentration was

required [47]. Interactions between the alkaline solution and the solid phase (i.e.,

silica dissolution, ion exchange), and the increase of IFT as equilibration occurs

likely play a role.

The addition of XG to the flushing solutions greatly improved tar removal,

with final tar saturations below 0.05 for all NaOH concentrations. The final tar

saturations for 0.2 and 0.35% NaOH were similar, ranging from 0.018 to 0.037.

The slightly higher final saturation in the 0.5% NaOH columns may be due to the

high contact angles observed at this NaOH concentration. The addition of XG

not only increases the viscous forces acting on NAPL droplets, directly resulting

in increased tar mobilization, but also greatly reduces instabilities in the flushing

front, decreasing flow bypassing, and improving NAPL bank formation. Based

on the results of the column experiments, it is clear that the combination of IFT

reduction and increased flushing fluid viscosity results in much more effective tar

removal than either mechanism alone.

The use of NaOH-XG flushing solutions successfully removed between 81–93%

of the residual tar within about 1.5 PV without the use of costly surfactants.

Although several obstacles exist, such a method may have a place in the remedi-

ation of MGP sites. As is the case with all mobilization-based methods, complete
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removal of contaminants is not attained, with final saturations of 0.018–0.048.

At these saturations, aqueous phase PAH concentrations would not be expected

to be significantly reduced [230], and secondary remediation techniques, such as

cosolvent flushing, in situ chemical oxidation (ISCO), or bioremediation would

likely be required to achieve remediation goals.

3.5 Supporting Information

The information in this section was submitted to Environmental Science and Tech-

nology as Supporting Information to be made available online as a supplement to

the paper.

Asphaltene Separation Procedure Asphaltenes were determined as the

mass of tar that is insoluble in n-pentane. Others investigating FMGP tars have

typically used ASTM D2007 to separate asphaltenes [10, 17, 162, 242]. Briefly,

with this method n-pentane is added to the sample at a 10:1 ratio, the mixture is

warmed, stirred, settled for 30 min, and filtered. An improved asphaltene method

was developed based on combining several techniques described in the literature,

which included extended precipitation times [200], the use of a sonication bath

[6], and reprecipitation from toluene [199]. Specifically, asphaltene concentration

was determined by adding 60 mL of n-pentane to 1.5 g of tar, sonicating for 15-

minutes, and settling for 24 hours. The liquid portion was decanted through a

vacuum filtration apparatus with a 0.2-µm nylon filter. The precipitate remain-

ing in the flask was dissolved in toluene at a ratio of 10 mL per gram of solid,

and sonicated until the solids were completely dissolved. The asphaltenes were

then reprecipitated by adding n-pentane at a ratio of 50 mL per mL of toluene-
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asphaltene, allowed to settle for 30 minutes, and vacuum filtered using the same

filter as was used in the first stage. The flask and precipitate were rinsed with

an additional 200 mL of n-pentane and dried under vacuum and weighed. This

analysis was conducted for each of the samples in triplicate.

Acid and Base Extraction Acids were extracted by shaking 2 g of tar with

15 mL of 1 M NaOH, centrifuging to separate layers, then pipetting off the aqueous

phase. The organic phase was rinsed with three additional 10-mL portions of 1 M

NaOH and the aqueous extracts collected. The basic aqueous phase was washed

twice with DCM to remove neutral organic compounds, then acidified with HCl.

The organic acids were extracted with three 5-mL portions of DCM. The DCM

was dried with Na2SO4, then evaporated under a gentle stream of N2. The bases

were extracted in the same manner using 10% H2SO4 containing 20 g/L Na2SO4.

Figure 3.6: Diagram of the IFT and contact angle apparatus.
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Figure 3.7: Diagram of the column apparatus.
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Figure 3.8: Alkaline solution pH before and after equilibration for IFT measure-
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Figure 3.9: Results of column experiments conducted without XG: (a) 0.2%
NaOH, (b) 0.35% NaOH, (c) 0.5% NaOH
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Figure 3.10: Results of column experiments conducted with XG: (a) C4, 5000 ppm
XG, (b) C5, 0.2% NaOH + 5000 ppm XG, (c) C6, 0.2% NaOH + 5000 ppm XG,
(d) C7, 0.35% NaOH + 5000 ppm XG,(e) C9, 0.5% NaOH + 5000 ppm XG,(f)
C10, 0.5% NaOH + 5000 ppm XG
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CHAPTER 4

A COMPARISON OF PHYSICOCHEMICAL METHODS FOR THE
REMEDIATION OF POROUS MEDIUM SYSTEMS

CONTAMINATED WITH TAR

4.1 Introduction

The remediation of former manufactured gas plant (FMGP) tars presents a num-

ber of challenges. These tars were generated during the historical gasification of

coal and/or petroleum to produce “town gas,” a flammable gas used for heating,

cooking and lighting between the early 1800s and the 1950s [18]. Onsite disposal

practices and leaks in plant infrastructure frequently resulted in the release of

tars to the subsurface, and contaminated FMGP sites are estimated to number

in the tens of thousands [70, 217]. FMGP tars are viscous, dense non-aqueous

phase liquids (DNAPLs). They are mixtures of thousands of compounds, includ-

ing mono- and polycyclic aromatic hydrocarbons (MAHs and PAHs), heterocyclic

compounds, asphaltenes, and alkanes [18, 76, 128]. PAHs are the dominant com-

pound class, but high molar mass, heterocyclic compounds, such as asphaltenes

and resins, may account for up to 36% of the tar [17, 18, 76, 172, 242].

Once released to the subsurface tars may become trapped in porous media

due to capillary forces, forming a residual. The residual saturation of tars is

typically higher than that of other NAPLs due to their high viscosity and ability

to alter the wettability of porous media [172]. Because tar components have low

aqueous solubilities, they can persist in the subsurface for decades to centuries
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under natural conditions, thereby acting as a long term source of groundwater

contamination. Remediation through direct extraction or pump-and-treat have

proven largely ineffective [2, 11, 130]. Where NAPL-contaminated source zones

are readily accessible, direct removal by excavation, followed by ex situ treatment

or offsite disposal, is often a preferred approach [128]. However, in many cases

excavation may be precluded due to onsite structures, utilities, or roads, the depth

of the contaminated zone, geologic limitations, or other considerations. In such

situations, in situ techniques provide an alternative approach. In situ remediation

involves containing, treating, or removing contaminants without excavation, and

encompasses a wide-range of techniques, including surfactant or cosolvent flushing,

in situ stabilization (ISS), enhanced bioremediation, vapor extraction, chemical

oxidation or reduction, and thermal methods. We restrict our discussion here to

chemical methods that result in removal of contaminants from the system through

one of the following mechanisms: (1) mobilization of NAPL, (2) solubilization, and

(3) chemical oxidation.

The application of in situ remediation techniques for FMGP tars has re-

ceived relatively little study compared to petroleum, chlorinated solvents and

other NAPLs. A summary of previous studies investigating mobilization- and

solubilization-based methods for FMGP tars is provided in Table 4.1. A rela-

tively early field trial used hot water flooding to remove 1,500 gal of FMGP tar

from a site in Stroudsburg, PA, however, mobile tar remained after the project

[96, 216]. Subsequent research on mobilization-based approaches has focused on

modifying interfacial properties (contact angle and interfacial tension) by varying

the aqueous phase pH [17, 75, 76, 88] or viscosity [63], or by adding surfactant
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[46]. Of these studies, only Hauswirth, et al. (2012), which used a NaOH-xanthan

gum (XG) solution (alkaline-polymer; AP solution), resulted in a large reductions

of tar mass (80–93%), with final tar saturations of 0.018 to 0.048 [75].

Studies of the application of solubilization techniques for FMGP tars were ini-

tially directed at the use of cosolvents (Table 4.1), however, the mixed results and

difficulty associated with injecting large volumes of potentially hazardous solvents

at field sites shifted focus away from this approach [78, 128, 162, 179]. Although

no studies have used surfactants to solubilize separate-phase tar, researchers have

reported the removal of 60–80% of PAHs from FMGP soils, supporting the use of

surfactants to solubilize tar components [99, 168, 232, 236].

A number of researchers have investigated the use of in situ chemical oxidation

(ISCO) techniques for the remediation of FMGP soils, with widely varying results

(Table 4.2). Fenton’s reagent, H2O2 activated with ferrous iron, has been reported

to degrade 30–100% of PAHs in FMGP soils [91, 98, 110, 118, 142, 174] . Similarly,

PAH degradation as a result of persulfate (S2O
–2
8 ) activated by ferrous iron, heat,

or magnetite ranged from 0–100% [91, 106, 141, 167, 175, 219]. Only one study,

Blanchard (2010), investigated the application of ISCO for separate-phase FMGP

tar. This study indicated that combined H2O2-ozone with and without added

surfactant was shown to reduce volatile organic compounds (VOCs) by 79% and

naphthalene (NAP) by 31%, resulting in a large increase in the viscosity of the

tar [20]. The reason for the wide range of reported PAH degradation is unclear,

and highlights the need for additional research.

A major short-coming of the existing FMGP remediation literature is the lack

of studies illustrating “complete” remediation of systems containing NAPL-phase
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Table 4.1: Summary of Literature Studies of Mobilization and Solubilization Approaches Applied to FMGP Tars and Soils
Study Major Findings Ref.
Mobilization

Johnson and Fahy, 1997 Hot water flushing removed 1,500 gal of tar from a field site, but significant quantities of mobile tar remained after the
project.

[96, 216]

Barranco and Dawson, 1999 Tar-water IFT and quartz-water-tar contact angle are decreasing functions of pH. [17]
Hugaboom and Powers, 2002 NAPL-wetting conditions observed at low pH, water-wet at high pH. IFT is decreasing function of pH. Tar saturations of

0.47, 0.30, and 0.29 reported for flushing solutions of pH 4.7, 7.2, and 9.2, respectively.
[88]

Giese and Powers, 2002 In tar-wet columns, increasing viscosity of water flushing solution (κ = 0.1) decreased tar saturation from ∼ 0.45 to ∼ 0.19.
Tar saturation in water wet columns was ∼ 0.19 regardless of flushing solution viscosity.

[63]

Dong, et al., 2004 Polaxamine surfactants reduced tar-water IFT and alter wetting behavior. Qualitatively shown to mobilize tar in sand-
packed 2D cell.

[46]

Hauswirth, et al., 2012 NaOH + xanthan gum solutions mobilized >90% of residual tar in column studies, with final Sn of 0.018 –0.048. [75]

Solubilization

Peters and Luthy, 1993 Tar solubility greatly increased in n-butylamine, acetone, isopropanol. [162]
Roy, et al. 1995 Flushing tar-contaminated sand columns (tar saturation = 0.04–0.25) with 80–100% n-butylamine removed large quantity

of tar, but tar remained in effluent after 40 PV [179]
Hayden and Van der Hoven, 1996 Field-collected, tar-contaminated soil columns flushed with 100% isopropanol, resulting in a maximum tar removal of 19.4% [78]
Birak, et al. 2011 Field-collected, FMGP soil-packed columns flushed with 95% methanol resulted in 80–90% removal of total PAHs after

10 PV
[19]

Wu, et al., 2010 PAHs extracted from FMGP soil using biodiesel, Tween 80, and cyclodextrin. Biodiesel most effective, removing 80–100%
of PAHs.

[232]

Pinto and Moore, 2000 Very high concentrations (> 1000× CMC) of Tween 80 resulted in removal of > 50% of PAHs from aged, PAH-contaminated
soils in batch experiments.

[168]

Joshi and Lee, 1996 Nonionic surfactant (Igepal) at concentrations up to 10% removed up to 80% of PAHs from FMGP soil in column studies. [99]
Yeom, et al., 1995 Nonionic surfactants (Brij 30, Triton X-100, Tween 80) at concentrations up to 3% removed a maximum of 25% of total

PAHs from aged FMGP soil.
[236]
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Table 4.2: Summary of Literature Studies of ISCO Approaches Applied to FMGP Tars and Soils
Study Type Oxidant/Activator Removal Comments Ref.

Kulik, et al., 2006 Batch H2O2 + Fe+2 88.5% of 3- and 4-ring PAHs Creosote-spiked sand [110]
Nam, et al., 2001 Batch H2O2+ Fe+2 90–100% of NAP, FLE, PHE Field-collected FMGP soil [142]

Lemaire, et al., 2013 Column H2O2+ Fe+2, S2O
–2
8 +H2O2 18–35% total PAH Field-collected, PAH-contaminated

soil
[118]

Jonsson, et al., 2007 Batch H2O2+ Fe+2 9–43% PAHs Field soils [98]
Reddy and Chandhuri, 2009 Batch H2O2+ Fe+2 Field soil: 30–40% total PAH, spiked

clay: 44–91% PHE
FMGP field soils, PHE-spiked clay [174]

Isosaari, et al., 2007 3D Cell H2O2+ Fe+2, S2O
–2
8 +Fe+2 H2O2: 26–30% total, S2O

–2
8 : 12–35% FMGP contaminated clayey soil [91]

Nadim, et al. (2006) Batch S2O
–2
8 +Fe+2 75–100% of seven PAHs PAH-contaminated field soil [141]

Killian, et al. (2007) Batch S2O
–2
8 +Fe+2 56–92% total PAH FMGP soil, PAH degradation depen-

dent on Fe+2 delivery
[106]

Peyton, et al., 1990 Column S2O
–2
8 52% total PAH Field soil, no activator [167]

Usman, et al., 2012 Batch S2O
–2
8 ± magnetite ± Fe+2 0% for field soil PAH-contaminated field soil [219]

Richardson, et al., 2011 Batch, Column S2O
–2
8 + heat Batch: 47%, Column: ∼ 0% total PAH PAH-contaminated field soil [175]

Blanchard (2010) Batch H2O2 + Ozone ± Surfactant Without surfactant: 31% NAP, with
surfactant: 25%

FMGP tar, viscosity increased after
oxidation

[20]
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tar. Although the success of a remediation project may in practice be defined by

any number of regulatory or site specific criteria, two common, general remediation

goals are: (1) a reduction of contaminant mass to a given value (e.g., soil clean-up

levels, removal of mobile NAPL) and (2) reduction of contaminant concentrations

in groundwater to regulatory or risk-based standards [44, 109, 197]. Few existing

studies have investigated the remediation of tar-containing systems, and of these,

only Hauswirth, et al. (2012) and Roy, et al. (1995) reported removal of a large

percentage of residual tar. Hauswirth, et al. (2012) was also the only study,

including those investigating remediation of FMGP soils, to assess the impact of

the remediation on dissolved-phase PAH concentrations (which was found to be

minimal). There is therefore a need to investigate remediation methods capable of

removing large fractions of residual tar and significantly reducing aqueous-phase

PAH concentrations.

The overall goals of this work are to identify effective remediation methods

for porous medium systems containing FMGP tars and to improve understand-

ing of the physicochemical mechanisms associated with these methods. Specific

objectives are to (1) assess the magnitude and efficiency of tar mobilization us-

ing alkaline and surfactant flushing solutions in column studies, (2) assess tar

solubilization with surfactant solutions in batch and column experiments, (3) de-

termine the feasibilty of the use of base-activated persulfate for the oxidation of

tar, (4) measure the impact of each flushing experiment on the dissolved-phase

effluent concentrations of tar components, and (5) improve understanding of the

mechanisms associated with mobilization, solubilization, chemical oxidation, and

compositional dynamics of FMGP tars.
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4.2 Background

4.2.1 NAPL Mobilization

The goal of mobilization-based remediation methods is to remove NAPL as a

phase or an emulsion, by overcoming the capillary forces trapping NAPL within

the porous media. The trapping number (NT ) represents the ratio of viscous to

capillary and gravity forces, and is defined as [160]:

NT =
√

N2
C + 2NCNB sin β +N2

B (4.1)

where

NC =
qαµα

γαncosθ
= Capillary Number, (4.2)

NB =
gkkrα△ρ

γαncosθ
= Bond Number, (4.3)

α and n subscripts represent aqueous and NAPL phases, respectively, β is the

angle of flow from horizontal, qα is the magnitude of the aqueous-phase Darcy

velocity, µα is the aqueous-phase viscosity, γαn is the NAPL-aqueous interfacial

tension (IFT), θ is the contact angle, g is gravitational acceleration, k is the in-

trinsic permeability, krα is the aqueous-phase relative permeability, and △ρ is the

density difference between the phases. Residual NAPL saturation is a decreas-

ing function of NT , which can be increased by altering any of the variables in

Equations (4.1–4.3). In practice, most schemes involve decreasing γαn and/or in-
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creasing µα. The former is frequently accomplished with surfactants or cosolvents

[131, 159, 160]. Viscosity is increased by adding viscosifying agents, which include

xanthan gum (XG), guar gum, and synthetic polyacrylamide polymers. Increas-

ing the viscosity of the flushing solution has the additional advantage of reducing

the mobility ratio, defined as [63]:

M =
λα

λn

=
krαµn

krnµα

=
krα
krn

κ, (4.4)

where λ is the fluid mobility and κ is the viscosity ratio (µn/µα). A decreased M

reduces fingering, promotes a stable displacement front, and allows the flushing

solution to enter less permeable zones in heterogeneous systems. While mobiliza-

tion is capable of efficiently removing a large fraction of NAPL, complete removal

is not obtained even under ideal conditions [95, 131, 197] . A mobilization ap-

proach, then, can lower the risk of future migration of NAPL and reduce the

overall NAPL mass in the system. To significantly reduce contaminant ground-

water concentrations, however, requires near complete NAPL removal, and there-

fore a mobilization approach alone will not generally achieve groundwater-based

remediation goals [173, 230].

4.2.2 Tar Dissolution

The dissolution of tar components has been found to be reasonably well described

by Raoult’s law [113, 114, 163]:

Cα,eq
i =

χn
i C

α
i,p

Fi

, (4.5)
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where Cα,eq
i is the equilibrium aqueous-phase concentration of species i, χn

i is the

mole fraction of species i in the NAPL phase, Cα
i,p is the pure compound solu-

bility, and Fi is the solid-liquid fugacity ratio. The pure-compound solubility of

tar components varies by several orders of magnitude, which results in selective

depletion of more soluble, lower molecular weight compounds as they dissolve

into groundwater. This phenomenon increases the viscosity of the tar, and with

sufficient time may result in the formation of a semi-solid [97, 122, 161, 164].

Solubilization-based remediation techniques may accelerate this process [179]. As

the viscosity increases, intra-NAPL diffusion rates and, therefore tar-water mass

transfer rates, will decrease. This will impact both mass flux from source zones

and the effectiveness of remediation strategies dependent on mass transfer [154].

Equilibrium aqueous-phase concentrations of individual components are also af-

fected by compositional dynamics. Changes in χn
i of several orders of magnitude

may occur as higher solubility compounds become depleted from the tar, result-

ing in proportional changes in compound solubility (decreasing for high solubility

compounds, increasing for low) [122].

4.2.3 NAPL Solubilization

Solubilization techniques involve increasing the solubility of NAPL components

(or compounds sorbed to soil) in the aqueous phase, allowing for greatly increased

contaminant removal through groundwater extraction. Increasing solubility can

be accomplished with cosolvents or surfactants. The increase in solubility for
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cosolvents follows the log-linear relationship [234]:

logCcs
i = logCα,eq

i + σcs
i fc (4.6)

where Ccs
i is the equilibrium solubility of species i in cosolvent, Cα

i is the solu-

bility in pure water, σcs
i is the cosolvency power, and fc is the volume fraction of

cosolvent.

Surfactants increase the solubility of hydrophobic compounds by forming mi-

celles above a critical surfactant concentration (critical micelle concentration;

Css,m). The micelles form due to the amphiphilic nature of surfactant molecules;

the molecules associate such that the hydrophobic portion of the molecule orient

toward the interior of the micelle, forming a hydrophobic core into which com-

pounds can partition. Above the critical micelle concentration, the increase in

solubility follows the relationship [52]:

Css
i = Cα,eq

i +MSR(Css − Css,m) (4.7)

where Cs
i is the apparent solubility of species i in the surfactant solution, MSR

is the molar solubilization ratio (moles i dissolved per mole of surfactant above

Css,m), and Css is the surfactant concentration. Solubilization-based approaches

are inherently less efficient than mobilization since they are limited by interphase

mass transfer processes [67, 73, 158]. In field applications, difficulties arise due

to porous media heterogeneity: aqueous flushing solutions preferentially flow into

high permeability materials, bypassing contaminants present in low permeability
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units [136, 197]. Recent research, however, has shown that preferential flow due to

heterogeneity can be reduced by increasing the viscosity of the flushing solution

with natural, food-grade polymers (i.e., XG) [40, 43, 127, 153, 176, 194, 195, 206,

207, 233, 244].

4.2.4 Chemical Oxidation

ISCO involves the injection of chemical oxidants to degrade organic contaminants

in the subsurface. A number of oxidants have been applied for ISCO remedia-

tion, including permanganate, ozone, H2O2, and persulfate. The effectiveness of

a given oxidant is dependent on the contaminants of interest, groundwater chem-

istry, soil oxidant demand, contaminant distribution, and site geology [192, 193].

Permanganate, for example, cannot oxidize benzene, a common component of

petroleum, industrial solvents, and FMGP tars. Iron-activated H2O2 is highly

reactive and non-selective, and therefore tends to be short-lived in porous me-

dia, especially where there is a high concentration of organic matter [166]. Other

oxidants, including persulfate, are longer lived in the subsurface [202]. Because

oxidation reactions occur primarily in the aqueous phase, mass transfer may be a

limiting factor when large quantities of NAPL are present, especially when in the

form of pools. As a result, ISCO is most often prescribed for dissolved or sorbed

contaminants or when low residual NAPL saturations are present [192, 193].
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4.3 Methods and Materials

4.3.1 Materials

All reagents were obtained from Fisher Scientific and were ACS Reagent grade or

better. Standards for the 16 Priority Pollutant PAHs were obtained from Spex

Certiprep. Additional compound standards were made from neat compounds

obtained from Fisher Scientific. The tar sample used in this study was collected

from a well at an FMGP in Baltimore, Maryland. The composition is presented in

Table 4.3; detailed tar characterization data is available elsewhere (Sample B1-07

in [76]). The sand used in the column experiments was 20/30-mesh Accusand,

which has an mean grain diameter of 0.713 mm and an intrinsic permeability (k)

of 2.3× 10−6 cm2 [188]. Triton X-100, (TX100) was used as the surfactant.

4.3.2 Analytical Methods

Density was measured with an Anton Paar DMA 48 and pH was measured with

an Oakton PC700 pH meter. Interfacial tension (γnα) and advancing and re-

ceding contact angles (θA and θR) on quartz were measured using the pendant

drop inclined plate methods, repsectively, as described elsewhere [75, 76]. Tar

was equilibrated with aqueous solution (1:3 tar-aqueous ratio) for 3 days prior

to interfacial tension and contact angle measurements. Viscosity was measured

with a TA Instruments AR-G2 rheometer. All measurements were conducted at

22±1◦C.

The dissolved-phase concentrations of 15 PAHs (see Table 4.3) were mea-

sured by high-performance liquid chromatography (HPLC) using a Waters 600S
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controller, 616 pump, and 717 autosampler equipped with a Waters 2475 multi-

wavelength fluorescence detector. The solvent flow and wavelength programs were

designed to maximize peak separation and detector sensitivity. All samples were

filtered with a 0.22-µm syringe filter prior to analysis. Calibration was performed

with 15-compound standards at five concentrations, with deuterated anthracene

(AD10) as an internal standard. The sum of the 15 PAHs is hereafter referred to

as “SPAH”.

Dichloromethane (DCM) extracts of effluent samples and sand from the col-

umn experiments were analyzed with a Hewlett-Packard 5890 gas chromatograph

with a flame ionization detector (GC-FID). The column was a 30-m, fused silica

DB-5 (95% methyl- 5% phenyl-methylsiloxane) capillary column with an inner di-

ameter of 0.25 mm and a 0.5-µm film thickness. The chromatographic conditions

were as follows: injector 300◦C, detector 310◦C, constant helium carrier flow of

1 mL per minute, splitless injection, initial oven temperature 40◦C, hold 2 min-

utes, increased linearly at 4◦C per minute to 310◦C, hold 5 minutes. Twenty-six

PAHs and heterocyclic compounds were quantified (Table 4.3). Standard solu-

tions of the 26 compounds at six concentration levels, using 2-fluorobiphenyl and

m-terphenyl as internal standards, were used for calibration. The sum of the 26

PAHs is hereafter referred to as “TPAH”.

4.3.3 Batch Experiments

Batch tests were conducted to determine the solubility of PAHs in TX100. 30 mL

of TX100 solution, at concentrations of 0, 0.1, 0.2, 0.35, 0.7, 0.9, and 1.0 wt.%,

was combined with 1 g of tar in centrifuge vials and tumbled at 22◦C for 5 days.
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Table 4.3: PAHs included in this study, their concentration in the tar (Ctar
i ) and

pure phase solubility(Si).
Compound Abbr. PAHs by HPLCa Ctar

i
(mg/g)b Si (mg/L; 25◦C)c

Indane INA 3.9 ± 0.1 109.1
Indene INE 3.0 ± 0.2 332.4
Naphthalene NAP X 93.0 ± 1.9 31.6
Benzo(b)thiophene Bbt 4.1 ± 0.1 130
2-Methylnaphthalene 2MN 32.9 ± 0.7 25.4
1-Methylnaphthalene 1MN 23.7 ± 0.6 28.045
Biphenyl BiPh 4.6 ± 0.1 7
2-Ethylnaphthalene 2EN 4.4 ± 0.1 8
Acenaphthylene ACY 1.8 ± 0.1 16
Acenaphthene ACE X 11.6 ± 0.4 3.8
Dibenzofuran DBF 4.0 ± 0.1 4.75
Fluorene FLE X 9.0 ± 0.3 1.9
Dibenzothiophene DBT 3.7 ± 0.1 1.47
Phenanthrene PHE X 22.9 ± 0.8 1.2
Anthracene ANT X 6.1 ± 0.2 0.044
Fluoranthene FLU X 10.0 ± 0.3 0.21
Pyrene PYR X 12.0 ± 0.4 0.0139
Benzo(a)anthracene BaA X 4.3 ± 0.2 0.0093
Triphenylene/chrysene CHR X 4.8 ± 0.1 0.0019
Benzo(b)fluoranthene Bbf X 2.8 ± 0.2 0.002
Benzo(k)fluoranthene BkF X 2.7 ± 0.1 0.0008
Benzo(a)pyrene BaP X 3.2 ± 0.2 0.0043
Indeno(1,2,3-CD)pyrene IND X 1.6 ± 0.1 0.0002
Dibenz(a,h)anthracene DaA X 0.7 ± 0.0 0.0005
Benzo(ghi)perylene BgP X 1.7 ± 0.1 0.00026

a. PAHs quantified by HPLC
b. Ref. [76]
c. Ref. [119]

The vials were then centrifuged, and the aqueous phase was sampled using a

gas-tight syringe. The aliquot was diluted to 10 mL with isopropanol (IPA) and

AD10 was added. The solution was filtered with a 0.2-µm PTFE syringe filter and

analyzed by HPLC to determine the aqueous-phase PAH concentrations. Batch

experiments were conducted in triplicate at 22±1◦C.

4.3.4 Column Experiments

The column experiments were conducted in 2.5-cm inner diameter glass columns

(Ace Glass) with bed lengths that are adjustable using PTFE plungers. The

columns were packed using two different procedures depending on the desired

initial tar saturation (Sn). For experiments with high initial tar saturations, the

column was packed using the method described in Ref. [75]. Briefly, dry sand

was added to the column, vibrated, then flushed with CO2 followed by DDI to

achieve an initially water saturated condition. Tar was injected upward such that

Sn approached 1. DDI was then flushed downward until tar was no longer present
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in the effluent, thereby producing a residual tar saturation. For experiments with

a low initial tar saturation (OX1-OX3, OX2C, OX3C), after adding sand to the

column, the desired volume of tar was injected directly into the sand. The plungers

were positioned to allow several cm of headspace and the column was shaken

vigorously by hand for 5 min to evenly coat the sand grains with tar. The plungers

were then pushed together, vibrating with an air vibrator several times to compact

the sand, and CO2 and DDI flushes were conducted to saturate the column with

water. Flushing for all experiments was performed with programmable Harvard

Apparatus syringe pumps, and all tubing and fittings were PTFE. Oxidant flushes

were performed at 2 mL/h; all other flushes were conducted downward at a rate

of 5 mL/h. Flushes for mobilization were conducted until no tar was present in

the effluent. All experiments were conducted at 22±1◦C.

During flushing, effluent samples were collected continually in 40 mL centrifuge

vials. Samples containing tar were extracted with DCM and the extract was

analyzed by GC-FID, as described elsewhere [75]. The mass of tar was calculated

based on the mass of six PAHs (NAP, 1MN, 2MN, ACE, FLE, and PHE) in the

sample and the concentration of each compound in the tar. This method was

found to be accurate to within 0.4% [75]. For experiments using surfactant, the

samples were centrifuged at 1500 g for 5 min prior to extraction by DCM, and

the aqueous phase was sampled, diluted and analyzed by HPLC. Both solubilized

PAHs and mobilized tar were quantified.

To assess the impact of each remediation method on dissolved-phase PAH

concentrations, aqueous samples were collected and analyzed at the end of each

stage. Prior to collecting the samples, the remediation solutions were flushed out of
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the column. Solutions containing XG were displaced with a series of six solutions

with decreasing XG concentrations to minimize viscous fingering, followed by a

DDI flush. Once XG and remediation fluids were removed from the column, a 12-

h stop flow was conducted prior to sampling. Aqueous samples (5 mL) were then

collected in 10-mL volumetric flasks containing pre-weighed IPA (5 mL) and an

appropriate concentration of AD10. The flasks were brought up to volume with

IPA, filtered through a 0.22-µm syringe filter, and analyzed by HPLC. Sampling

was performed for a minimum of 2 PV.

At the end of each experiment, the column sand was divided into segments

of equal length, and each segment was placed in a 40-mL centrifuge vial. Anhy-

drous sodium sulfate and internal standards (2-fluorobiphenyl and m-terphenyl)

were added, and the sand was extracted with successive additions of DCM. The

extractant was analyzed for 26 PAHs by GC-FID.

Table 4.4: Experimental Summary. HBRM columns are from Ref. [75]

Column L (cm) S0

n
Soln. NaOH TX100 persulfate XG PV Flushed

HBRM-C1a 10.00 0.26 ALK 0.2% – – – 2.7
HBRM-C4a 9.80 0.26 XG – – – 0.5% 3.5
HBRM-C5a 9.15 0.26 AP 0.2% – – 0.5% 3.0
HBRM-C6a 10.05 0.32 AP 0.2% – – 0.5% 2.1

OX1 9.50 0.028 Ox-L 0.2 M – 50 g/L – 52.1
OX2 10.65 0.031 Ox-H 0.2 M – 274 g/L – 19.1
OX2C 10.51 0.030 CTRL 0.2 M – – – 20.9
OX3 13.95 0.037 S-Ox 0.2 M 0.5% 274 g/L – 32.5
OX3C 13.90 0.037 S-CTRL 0.2 M 0.5% – – 33.4

MSR1A - Stage 1 11.70 0.20 ASP 0.2% 0.5% 0.5% 3.0
MSR1A - Stage 2 Ox-H 0.2 M – 274 g/L 10.0
MSR1B 11.35 0.20 ASP 0.2% 0.5% 0.5% 2.9
MSR1C - Stage 1 11.75 0.18 ASP 0.2% 0.5% 0.5% 2.9
MSR1C - Stage 2 DDI – – – – 50
MSR2 - Stage 1 11.71 0.21 AP 0.2% – – 0.5% 2.3
MSR2 - Stage 2 SP – 0.5% – 0.5% 6.6
MSR2 - Stage 3 Ox-H 0.2 M – 274 g/L – 9.6
MSR3 11.70 0.19 SP – 0.5% – 0.5% 20.9
MSR4 11.62 0.20 SP – 0.5% – 0.5% 20.2

a. HBRM data from Ref. [75]

The experimental details of the column experiments are summarized in Table

4.4. The general approach was to initially perform a mobilization stage to reduce

the tar saturation, followed by a secondary, and in some cases tertiary treatment
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using solubilization and/or ISCO methods. Mobilization was conducted with one

of three flushing solutions: (1) AP: 0.2 wt.% NaOH, 0.5% XG, which was the

most effective solution tested in Ref. [75], (2) SP: 0.5% TX100 surfactant, 0.5%

XG, or (3) ASP: 0.2% NaOH, 0.5% TX100, 0.5% XG. XG was added to all so-

lutions to increase viscous forces, create a favorable viscosity ratio, and ensure

a stable displacement. Solubilization experiments used a 0.5% TX100, 0.5% XG

solution. The XG was used in this case for front stability and due to the recent

interest in using viscosifying agents for improved chemical delivery [176, 194, 244].

Chemical oxidation with base-activated persulfate was investigated, using one of

three oxidant solutions: (1) 50 g/L persulfate, 0.2 M NaOH (OX-L), (2) 274 g/L

persulfate, 0.2 M NaOH (OX-H), and (3) 274 g/L persulfate, 0.2 M NaOH, and

0.5% TX100 (S-OX).

4.4 Results

4.4.1 Fluid Properties

Table 4.5 shows the physical properties of the fluids used in this study. The

flushing solutions are denser than DDI in all cases; only the 0.2% NaOH, 0.5%

XG solution and solutions containing 0.2 M NaOH are denser than the tar. The

0.5% XG solutions had a viscosity of 2000 cP, roughly 10 times that of the tar (κ ≈

0.1). NaOH and TX100 reduced the tar-aqueous interfacial tension significantly,

as shown in Figure 4.1. NaOH alone reduced the IFT from a value of 20.0 ±

0.4 mN/m for DDI to 5.70 ± 0.05 mN/m for 0.1% NaOH. The IFT was similar

for 0.2% NaOH (5.5 ± 0.2 mN/m), then decreased to 1.4 ± 0.5 mN/m as the
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NaOH concentration was increased to 0.5%. TX100 produced similar results,

with an IFT of 5.5 ± 0.1 mN/m at a concentration of 0.1% and 3.0 ± 0.1 mN/m

at 0.5%. A combined 0.1% TX100, 0.2% NaOH solution had a higher IFT (6.5 ±

0.5 mN/m) than 0.2% NaOH alone, but as the TX100 concentration was increased

to 0.2% then to 0.5% (holding the NaOH concentration constant at 0.2%), the IFT

fell below values for either additive alone, with a minimum of 0.56 ± 0.06 mN/m.

Table 4.5: Physical properties of fluids used in this study. All values at 22 ± 1◦C.
Fluid ρ (g/cm3) pH µ (cP) γαn (mN/m) θA θR
DDI 0.9977 – 0.95a 20.0 ± 0.4 18 ± 7 71 ± 2
Tar 1.0080 – 190 − − −

XG 0.9990 6.7 2000 − − −

ALK 1.0014 12.7 – 5.5 ± 0.2b 34 ± 7 36 ± 6
AP 1.0097 12.7 2000 5.5 ± 0.2b,c − −

SP 0.9992 – 2000 3.0 ± 0.1c 103 ± 3 138 ± 8
ASP 1.0049 12.7 2000 0.56 ± 0.06c 60d 60d

Ox-H 1.1871 13.2 – − − −

S-CTRL 1.0152 13.3 – − − −

a. Ref. [104]
b. Ref. [75]
c. γαn measured for solution without XG
d. Estimated value, see text.

Wetting behavior varied significantly between solutions. NaOH resulted in

water-wetting conditions and nearly equal advancing and receding contact an-

gles. Conversely, TX100 resulting in NAPL-wetting conditions with a significantly

greater θR. Difficulties were encountered during measurement of the contact an-

gles for the combined NaOH-TX100 solution due to the dark coloration of the

aqueous phase and the tendency of the tar drop to move on the quartz slide when

the stage was tilted even slightly off-level. A sufficiently clear image of the drop

was obtained to estimate a value of 60◦for both θA and θR.
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Figure 4.1: Interfacial tension as a function of aqueous-phase composition. Data
for “NaOH Only” from Ref. [75].

4.4.2 Surfactant Batch Test

The data from the surfactant batch tests was used to calculate the MSR using

Equation 4.7 by fitting a line to (Cs
i −Cα,eq

i ) versus (Cs −Cs,m) (Table 4.6). The

micellar partitioning coefficient (Km) was calculated using the equation [52]:

Km =
χm
i

χα
i

=
MSR

(1 +MSR)Cα,eq
i V̄α

, (4.8)

where χm
i is the mole fraction of the component in the micelles, χα

i is the mole

fraction of the component in water, Cα,eq
i is the equilibrium aqueous-phase conc-

entration given in Equation 4.5, and Vα is the molar volume of water. Abso-

lute solubility in surfactant solution was generally inversely proportional to PAH

molecular mass, while the opposite was true for the ratio of Css
i /Cα,eq

i . For the

0.5% TX100 solution, the results of the surfactant batch experiments indicated

PAH solubility enhancements of 1–5 orders of magnitude (Figure 4.2).
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Table 4.6: Solubilization of PAHs in TX100 solutions in batch studies
PAH MSR R2 logKm

NAP 4.44 ×10−1 0.99 4.96

ACE 3.86 ×10−2 0.95 6.08

FLE 1.95 ×10−2 0.97 6.28

PHE 5.46 ×10−2 0.99 6.72

ANT 1.20 ×10−2 0.98 6.84

FLU 1.55 ×10−2 0.99 7.51

PYR 1.14 ×10−2 0.99 7.55

BaA 5.40 ×10−3 0.97 7.28

CHY 5.20 ×10−3 0.97 7.51

BbF 3.30 ×10−3 0.96 7.39

BkF 1.60 ×10−3 0.96 7.51

BaP 3.30 ×10−3 0.95 7.29

IND 6.00 ×10−4 0.94 7.26

DaA 1.30 ×10−3 0.96 6.69

BgP 1.80 ×10−3 0.97 7.93
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Figure 4.2: Solubility of tar components in 0.5% TX100 solution and the ratio of
the solubility in surfactant solution to aqueous solubility.

4.4.3 Mobilization and Solubilization

The results of mobilization experiments are summarized in Table 4.7. Column ex-

periments conducted as part of a previous study (HBRM-C1, HBRM-C4, HBRM-

C5, HBRM-C6) indicated that a 0.2% NaOH, 0.5% XG solution mobilized 88.4–

92.9% of residual tar by lowering interfacial tension and increasing viscous forces

(HBRM-C5 and HBRM-C6) [75]. A 0.2% NaOH solution alone resulted in a much

lower 14.5% removal due to flow instabilities resulting in fingering and bypassing

of tar-filled pores (HBRM-C1). A 0.5% XG solution removed 50.4% of residual

tar due to increased viscous forces alone (HBRM-C4).

Columns MSR1A-C were initially flushed with the ASP solution to investigate

the effect of added surfactant on alkaline flushing solutions. Based on effluent
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Table 4.7: Results of mobilization and solubilization experiments. HBRM columns
are from Ref. [75]
Column Solution %Rem. Tot.a %Moba,b %Sola,b Sendn SPAHc TPAHc

HBRM-C1 ALK 14.5% 100% 0% 0.22 – –
HBRM-C4 XG 50.6 100 0 0.13 – –
HBRM-C5 AP 92.9 100 0 0.018 – –
HBRM-C6 AP 88.4 100 0 0.037 – –
MSR1A ASP 94.1 99.7 0 0.012 22.6 35.9
MSR1B ASP 95.6 95.8 4.2 0.009 17.7 28.0
MSR1C ASP 95.0 95.5 4.5 0.009 – –
MSR2-Stage1 AP 77.3 100 0 0.051 – –
MSR2-Stage2 SP 92.5d 34.8 65.2 0.0005 5.8 9.5
MSR3 SP 99.3 62.2 37.8 0.0016 5.4 7.4
MSR4 SP 99.3 65.9 34.1 0.0014 8.9 12.5
ALK= NaOH, AP = alkaline-polymer (NaOH, XG), SP = surfactant-polymer (TX100, XG), ASP = alkaline-surfactant-polymer
(NaOH, TX100, and XG)
a. Tar mass determined from effluent sample analysis by GC for mobilization and HPLC for solubilization.
b. % Mob and % Sol are the percentage of total removal by mobilization and solubilization, respectively.
c. Concentration of SPAH (15 PAHs) and TPAH (26 PAHs) in sand as measured by GC-FID following sand extraction, mg/kg.
d. % Removal of residual from Stage 1. Total removal for both stages of MSR2 = 98.3%

sampling, tar removal was 94.1–95.6%, with final Sαn of 0.009–0.012, representing

a significant improvement over AP solutions. Tar was mobilized as a sharp tar

bank that eluted within 1.6 PV (Figure 4.3). Despite the presence of surfactant,

solubilization was minimal for these columns, accounting for only around 4% of the

removal (Figure 4.4). MSR1B was extracted after the mobilization flush without

receiving secondary treatment. The mass of extracted SPAH was 1.7 mg (by GC-

FID), consistent with the visual appearance of the column, but well below the

50.5 mg calculated based on the analysis of the effluent samples. While apparently

large, the difference in fact represents less than 0.25% of the initial, pre-water flush

mass of tar in the column, and is likely the result of cumulative error in the effluent

sample analysis.

To investigate changes in composition due to solubilization, a pseudo-mass

fraction was defined:

ω∗

i =
M s

i

26
∑

n=1

M s
n

, (4.9)

where M s
i is the mass of species i in the sand and

26
∑

n=1

M s
n is the sum of the
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Figure 4.3: Fraction SPAH remaining as a function of PV flushed for MSR1B–4.
The mass of PAHs was calculated solely by analysis of the effluent.
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Figure 4.4: Cumulative tar mass removed as a function of PV flushed for columns
MSR1–MSR4 showing the fraction removed by mobilization and solubilization
mechanisms. Portions of the post-treatment DDI flushes are also shown.
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masses of the 26 PAHs measured by GC-FID. This approach is necessary due to

the fact that the majority (73%) of the tar is not quantified, and therefore the

final total tar mass is uncertain. Changes in composition were assessed through

a ratio of final ω∗,f
i to the initial ω∗,0

i (Figure 4.5). For all columns, NAP was

significantly reduced, while higher molar mass species (PHE and above), were

relatively enriched (Figure 4.5). Columns MSR1A and 1C were flushed with

oxidant and additional DDI, respectively, after the ASP flush, as discussed later

in this section.
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Figure 4.5: Change in ω∗ for (a) mobilization and solubilization experiments and
(b) oxidation experiments.

Column MSR2 was flushed in two stages: first with the same AP solution

as HBRM-C5–6, then with the SP solution. The first stage resulted in the re-

moval of 77.3% of the residual tar and a reduction in Sn from 0.22 to 0.051,

representing both lower tar removal and a higher final saturation than for the

HBRM columns. Since the same fluids and procedures were used for both sets

of experiments, the difference in results is likely related to the sands used to

pack the columns. The previous study used a sieved fraction of a natural, field
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collected sand (d=0.50–0.71mm, porosity=0.40–0.42), whereas the current exper-

iments used 20/30-mesh Accusand (d=0.59–0.84, porosity=0.35–0.37). The dif-

ferences in pore geometry and wettability (due to mineralogical considerations),

likely account for the observed differences in both initial residual saturations (0.26–

0.32 for HBRM columns and 0.19–0.22 for MSR columns) and the removal by

alkaline flushing. The pattern of removal for the first stage of MSR2, however,

was similar to those of the HBRM columns, with the tar bank breaking through

prior to the flushing solution, and completion of mobilization within 2 PV (Figure

4.3).

The second stage of MSR2 used the SP solution to mobilize and solubilize the

tar remaining in the system after the alkaline flush. This stage removed 1.20 g of

the 1.21 g remaining in the column (98.9%), resulting in a calculated tar saturation

of 0.0006. The lower γαn of the surfactant solution (3.04 mN/m) as compared

to the alkaline solution (5.53 mN/m) resulted in the mobilization of additional

tar within the first 1.5 PV of the flush, accounting for 34.8% of the removal of

this stage. Solubilization accounted for the remaining 65.2%. Dissolved tar in the

effluent was minimal while mobilization was occurring, peaked immediately behind

the tar bank, and then tailed for several pore volumes (Figures 4.4 and 4.6). The

peak concentration was 5,060 mg/L, a factor of 210 times the pure water solubility

of SPAH (24.37 mg/L) as caclulated with Equation 4.5. The total removal for

both stages of flushing was 98.3%. MSR2 received tertiary treatment in the form

of ISCO, as discussed later in the following section.

MSR3 and MSR4 were duplicate columns flushed with SP solution for both pri-

mary mobilization and solubilization. The flushes removed 99.3% of the residual
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Figure 4.6: Effluent concentration of SPAH during surfactant flushing for MSR2,
MSR3, and MSR4.

tar over 20.9 and 20.2 PV, respectively, with 99% of the removal occurring during

the first 4 PV (Table 4.7, Figure 4.3). Mobilization constituted 62 and 66% of

the total removal, while solubilization accounted for 38 and 34% for MSR3 and 4,

respectively (Figure 4.4). Figure 4.6 shows the dissolved SPAH concentration for

MSR3 and MSR4. The pattern of effluent concentrations closely followed that of

MSR2 for the first 6 PV. Peak SPAH concentrations were 12,400 and 9,300 mg/L,

respectively. Stop flows (48 h) were performed as indicated in Figure 4.6, and ef-

fluent concentrations subsequently increased, suggesting that the dissolution was

rate limited. The greater concentrations for MSR3 during the initial and post-

stop flow peaks may be related to the lesser mass recovered by mobilization and

therefore greater mass available to be solubilized. Sand extractions indicated that

0.52 and 0.84 mg SPAH remained in MSR3 and MSR4, respectively; the masses

remaining based on effluent samples were 5.9 and 21 mg, respectively. A simi-

lar pattern of composition change as for MSR1B, with greater magnitude, was

observed for these columns (Figure 4.5).
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4.4.4 Oxidation

ISCO is frequently used as a “polishing” step during site remediation to degrade

contaminants remaining after primary remediation. Base-activated persulfate was

applied in this manner to columns MSR1A and MSR2, however, because there

is uncertainty in the mass of the PAHs present in the column at the start of

the oxidation, columns were also conducted for which oxidation was the only

remediation stage (OX1–3).

Columns OX1–OX3 had initial tar saturations of 2.5–4%, representing a post-

AP tar saturation. Results of these columns are shown in Figure 4.7. Column

OX1 was flushed with 52.1 PV (1 L) of OX-L solution for a total contact time

of 20.8 days and resulted in removal of 53% of quantified PAHs. The removal of

individual compounds was generally correlated with solubility, with the exception

of ACE, ACY, and ANT, which were more degraded than other compounds with

similar solubility and molar mass. OX2 was flushed with 20 PV (contact time =

8.6 days) of a solution with a higher persulfate concentration (274 g/L; OX-H)

along with a parallel control column flushed with the NaOH activator solution.

The oxidant column resulted in a 57% reduction in total PAHs, with the reduction

of individual PAHs again roughly correlating with solubility. The mass of PAHs

was reduced by 24% in the control column.

Due to the relatively low overall degradation, and the observed correlation

between removal and compound solubility, an additional set of columns (OX3

and OX3C) were conducted using a combined surfactant-oxidant (S-OX) flush.

These columns were flushed with 32.5 and 33.4 PV, with total contact times of
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Figure 4.7: Fraction of PAHs remaining in sand at the end of oxidation column
experiments.

18.4 and 18.7 days, respectively. Total PAH removal in column OX3 was 84%,

while 95% of total PAHs was removed from OX3C, which was flushed with an

NaOH+TX100 solution. The reduction in PAH mass in these columns is primarily

the result of solubilization. Figure 4.8 shows the cumulative effluent PAH mass for

columns OX3 and OX3C. The PAH removal in column OX3C is entirely ascribed

to solubilization by the surfactant solution, with a stage of rapid removal in the

first 5 PV of the TX-100 flush (between 15-20 PV on Figure 4.8), followed by

tailing as less accessible tar is slowly dissolved. The effluent from the oxidant

column contained very low concentrations of PAHs until a visible solubilized-tar

front moved through the system at 35 PV. For OX3, 19% of the initial total
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PAHs remained in the sand at the completion of the flush; 43% was removed by

solubilization and 38% was destroyed by oxidation (as calculated by difference).

The mass of total PAHs oxidized was 77 and 78 mg for columns OX2 and OX3,

respectively.

Columns MSR1A and MSR2 were flushed with 10 and 9.6 PV of the OX-

H solution after mobilization and solubilization stages. The mass of SPAH at

the beginning of the oxidant flush was 41.3 and 13.6 mg (based on effluent anal-

ysis) for MSR1A and MSR2, respectively. Based on the sand extractions, the

final SPAH mass was 2.2 and 0.56 mg, reductions of 95 and 96%, respectively.

It should be noted that the effluent-based calculations significantly overestimated

the post-mobilization/solubilization PAH mass for columns MSR1B and MSR3–4,

and, therefore there is considerable uncertainty in the pre-oxidation PAH mass for

MSR1A and MSR2. Furthermore, the final PAH mass in MSR1B (1.8 mg), which

received the same ASP flush as MSR1A without secondary ISCO treatment, was

slightly lower than that of MSR1A. Similarly, the final SPAH mass for MSR2 was

similar to that of MSR3 and 4, which were flushed with the same SP solution.

Changes in the relative concentrations of the remaining PAHs, however, do sug-

gest that some oxidation has occurred. Comparing ω∗

i /ω
∗,0
i for columns receiving

oxidation versus solubilization (Figure 4.5), a clear difference can be observed for

phenanthrene and anthracene. In the solubilization columns, ω∗

i /ω
∗,0
i is lower for

PHE than ANT, which would be expected based on the much higher solubility of

PHE. This trend is reversed for the oxidant columns, consistent with the results

of columns OX1–3, which indicated that ANT was much more readily oxidized

than ANT.
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Figure 4.8: Cumulative mass of SPAHs in effluent from OX3 and OX3C, indicating
significant removal by solubilization. Oxidant and control flushes started at 6.61
and 6.52 PV, respectively.

4.4.5 Dissolved PAH Concentrations

Aqueous samples were collected before and after each stage of remediation for

MSR1–MSR4 and OX1 to assess each remediation method’s impact on dissolved-

phase concentrations. Figure 4.9 shows the ratio of post-treatment dissolved-

phase concentration to the initial concentration prior to any treatment. The

concentrations used for the calculation were an average of multiple consecutive

samples once a quasi-steady-state concentration was reached. Analysis was limited

to nine of the 15 PAHs analyzed, due to the fact that the higher molecular mass

compounds were frequently at or below detection limits for many of the columns.

The effect of mobilization-based methods (AP and ASP) on dissolved-phase

concentrations was relatively limited. MSR1A (ASP) showed little change, except

for NAP, which was lower than the initial concentration by a factor of 5. A

greater reduction in NAP, along with decreases of ACE, FLE, PHE, and ANT,

was observed for MSR1B, which was also flushed with the ASP solution. MSR2,
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Figure 4.9: Ratio of post-treatment to pre-treatment dissolved-phase concen-
trations after (a) AP or ASP, (b) SP, and (c) oxidation flushes.

flushed with the AP solution, exhibited lesser decreases of NAP, ACE, FLE, PHE,

and ANT concentrations than either MSR1A or MSR1B. Small but significant

increases of BaA and CHY were observed for MSR1B and MSR2.

Solubilization methods had a larger impact on dissolved PAH concentrations.

NAP was reduced by nearly two orders of magnitude for all three columns re-

ceiving an SP flush (MSR2–4). The concentrations of ACE through PYR were

reduced by 0.5–1.5 orders of magnitude for all columns. Reductions in BaA and

CHY were observed for MSR3 and 4, while little change in the concentrations

of these compounds were observed for MSR2. Column MSR1C was flushed with
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Figure 4.10: Post-treatment effluent concentrations during 50 PV DDI flush of
MSR1C.
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Figure 4.11: Change in ratio of post-treatment to pre-treatment dissolved-phase
concentrations during MSR1C water flush.

50 PV of DDI after the ASP flush; the results are shown in Figure 4.10. The SPAH

concentration decreased over the first 5 PV, then remained relatively constant to

50 PV. The concentration of individual compounds changed significantly over the

course of the DDI flush (Figure 4.11). At the beginning of the flush, dissolved-

phase concentrations were generally similar to those of MSR1A and MSR1B, with

the exception of FLU–CHY, which were significantly higher. As the flush pro-

ceeded, all compounds decreased in concentration, with the final Ci/C
0
i values

falling between those of ASP and SP flushing.

Dissolved-phase concentrations after oxidation are shown in Figure 4.9c. For

MSR1A, NAP was decreased from the post-AP concentration, but several other
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Table 4.8: Ratios of measured to calculated dissolved-phase PAH concentrations
after each stage of treatment for MSR2. Cα,eq

i is calculated with Raoult’s law (Eq.
4.5) using the mole fraction in the original tar (Ref. [75]), Si from Ref. [119], and
FR from Ref. [51]. ± 95% CI

Cα
i /Cα,eq

i
PAH Cα,eq

i (µg/L) Initial Post AP Post SP Post Ox
NAP 19100 0.44 ± 0.04 0.18 ± 0.03 0.009 ± 0.003 0.016 ± 0.005
ACE 620 0.24 ± 0.02 0.14 ± 0.02 0.024 ± 0.004 0.024 ± 0.003
FLE 170 0.51 ± 0.05 0.32 ± 0.06 0.025 ± 0.005 0.094 ± 0.006
PHE 130 0.60 ± 0.09 0.47 ± 0.09 0.06 ± 0.01 0.26 ± 0.02
ANT 31 0.52 ± 0.05 0.37 ± 0.06 0.06 ± 0.01 0.16 ± 0.01
FLU 12 0.72 ± 0.09 0.8 ± 0.1 0.20 ± 0.07 0.6 ± 0.1
PYR 1.52 6.1 ± 0.7 7 ± 1 2.3 ± 0.9 5 ± 1
BaA 1.0 0.7 ± 0.3 1.8 ± 0.4 1.0 ± 0.4 0.7 ± 0.1
CHY 0.92 0.8 ± 0.3 1.8 ± 0.2 0.8 ± 0.5 0.9 ± 0.2
BbF 0.1 3 ± 1 8 ± 1 7 ± 3 3 ± 1
BkF 0.08 3 ± 1 7 ± 2 7 ± 2 1.8 ± 0.7
BaP 0.43 0.9 ± 0.7 2.2 ± 0.5 1.8 ± 0.8 0.4 ± 0.2
DaA 0.002 40 ± 20 70 ± 220 100 ± 50 59 ± 20
BgP 0.18 1.6 ± 0.9 5 ± 2 2.6 ± 0.9 2.3 ± 0.7

compounds increased, including PHE and FLU. For column OX1, NAP and ACE

were reduced, and FLE, PHE, FLU, and PYR increased. Despite a decrease in

ω∗

ANT (Figure 4.5), ANT exhibited a large increase for reasons that are not clear.

In MSR2, NAP through ANT were below initial concentrations, but higher than

post-SP/pre-oxidation concentrations. The full set of 15 PAHs for each stage of

remediation for column MSR2 is given in Table 4.8.

4.5 Discussion

4.5.1 Mobilization

These experiments illustrate that large reductions in tar saturation may be achieved

using several methods. Five different solutions were used to mobilize residual tar,

and, accounting only for the mass removed by mobilization, the effectiveness of

these solutions follows the order: ALK < XG < SP < AP < ASP. This ordering

is generally consistent with NT . XG alone resulted in a lower final Sn than NaOH

alone, because viscosity is increased by three orders of magnitude versus a one
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order of magnitude reduction of IFT. The ASP solution has an order of magnitude

lower IFT than either SP or AP, consistent with studies of enhanced oil recovery

[123, 143, 144, 209], and therefore results in greater tar mobilization. The SP so-

lution is apparently less effective than AP, however, the concurrent solubilization

confounds this analysis since some portion of the mobilized tar may dissolve in

the surfactant solution. Overall, the final Sn, calculated using only mobilized tar

mass, was found to be a strong linear function of log NT (Figure 4.12a). The slope

of the fitted line differs between the experiments conducted as part of this work

and those of Hauswirth, et al. (2012). This finding is explained by the different

media used in the experiments. The permeability of the media differ by an order of

magnitude (HBRM sand = 2.2×10−7 cm2 [75], MSR sand =2.3×10−6 cm2 [188]),

resulting in proportional differences in NB, which is important at low NC (i.e.,

the water flushing points where the greatest deviation is observed). Furthermore,

Sn–NT relationships themselves are dependent on media properties [33, 49, 160].

Previous studies have reported a critical NT (N c
T ), defined as the minimum

value required to initiate NAPL mobilization, below which Sn is constant, of

between 1 × 10−5 and 5 × 10−5 [34, 49, 112, 135, 146, 159, 160]. Above N c
T ,

Sn has been found to decrease sharply to a value of NT of about 1 × 10−3, at

which point a lower plateau is reached (N∞

T ). Figure 4.12a shows that neither

upper nor lower plateaus of Sn were observed over the range of NT used in this

study (1.8×10−6 to 2.0×10−2), which extended an order of magnitude lower and

higher than previously reported N c
T and N∞

T . The reason for this is not clear,

but major difference include the NAPL used in the experiments and the use of

polymer solutions. The previous studies focused on chlorinated solvents, which

100



−7 −6 −5 −4 −3 −2 −1 0
0

0.05

0.1

0.15

0.2

0.25

0.3
a.

log N
T

S
n

 

 
HBRM water
HBRM NaOH
HBRM XG
HBRM AP
MSR water
MSR AP
MSR ASP
MSR SP
Pennell, et al.

−7 −6 −5 −4 −3 −2 −1 0
0

0.2

0.4

0.6

0.8

1

1.2
b.

log N
T
κ0.5

N
or

m
al

iz
ed

 S
n

 

 
HBRM
MSR
Pennell, et al. (1996)

Figure 4.12: Relationship between (a) Sn and logNT , and (b) normalized Sn

and logNTκ
0.5. NT was calculated using Equations 4.1–4.3 for HBRM and MSR.

HBRM data from Ref. [75]. Sn and NTκ
0.5 for Pennell, et al. (1996) were

determined based on estimated values from Figure 4a and viscosity data in Table
1 in Ref. [160].

have much lower viscosity than the tar used in this work. In the development of

NT , it was assumed that shear forces are negligible, however, that may not be the

case for highly viscous NAPLs. Abrams (1975) and Longino and Kueper (1999)

suggested incorporating NAPL viscosity as follows:

N∗

C = NCκ
m (4.10)

where m is a fitted parameter (0.5 for Longino and Kueper, -0.4 for Abrams)[1,

124]. Figure 4.12b shows normalized Sn data from this work plotted against a
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modified form of Equation 4.10 that uses NT in place of NC . The dataset from

this work is not well suited to fitting m since there were only two values of κ

(with and without XG), and therefore the value of Longino and Kueper was used.

To allow direct comparison between studies, Sn, NT , and viscosity values were

extracted from Pennell, et al. (1996) [160], NTκ
0.5 was calculated, and the data

was plotted in Figure 4.12b. Because the Pennell study used perchlorothylene

(PCE), which has a viscosity of 0.89 cP, and did not use viscosifying agents,

κ was near unity for all points, and therefore NTκ
0.5 was only slightly changed

relative to NT . The incorporation of κm effectively shifts the MSR and HBRM

data to within the range observed in the Pennell, et al. study, suggesting that it

can serve as a scaling term allowing for comparison of systems with widely varying

viscosities of both NAPL and aqueous phases.

The reason for the scatter in the data Figure 4.12a is not clear, but we note

that there is some uncertainty in the values used for calculating NT . The IFT

measurement used in this study was determined after a 3 day equilibration pe-

riod; however, Hauswirth, et al. (2012) found that the instantaneous tar-alkaline

solution IFT may be an order of magnitude lower than the equilibrated value [75].

That study also observed differences in the temporal evolution of IFT with time

depending on the NaOH concentration. These findings suggest that the IFT may

vary in time and space in an alkaline flushing scenario, making identification of a

representative IFT value difficult. The contact angle may similarly be expected to

vary in time and space [71, 181]. In addition to chemical reaction kinetics, contact

angle hysteresis presents a difficulty since Equations 4.1–4.3 allow for only a sin-

gle contact angle, and θA and θR may vary by up to 100◦for tar-alkaline solution
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systems [17, 75]. While dynamic IFT and contact angle for surfactant and alkaline-

surfactant solutions were not measured in this study, previous studies conducted

with petroleum suggest that such effects may be significant [5, 12, 143, 144, 208].

4.5.2 Solubilization

SP flushes resulted in both mobilization and solubilization of tar components.

When considering both mechanisms, SP floods resulted in the greatest overall tar

removal of the methods tested. Although some tailing of dissolved-phase conc-

entration was observed (Figure 4.6), greater than 99% of the removal occurred

within 7 PV for all SP columns. The dissolved-phase concentration (SPAH) in

effluent (Figure 4.6) at the peak was over an order of magnitude higher than

equilibrium concentrations for the same TX100 concentration as measured in the

batch experiment (Figure 4.2) for all three SP columns (MSR2–4). Peak efflu-

ent concentrations for the ASP columns were approximately three times greater

than the batch concentration. The reason for this is not clear. Dwarakanath, et

al (1999) reported that the use of a polymer resulted in higher dissolved-phase

concentrations in surfactant flushing , with the hypothesized reason that NAPL-

surfactant contact was increased due to the increased viscosity [50]. In that study,

however, effluent concentrations remained below the equilibrium concentration.

The batch tests in this work did not use XG in the surfactant solutions, present-

ing two possible explanations for the apparent supra-equilibrium concentrations

in effluent. First, the XG may itself increase the solubility of PAHs by one of

two mechanisms: (1) the large XG molecules (∼ 2 − 20 × 106 g/mol [61]) may

act as colloids onto which molecules may adsorb, similar to findings of enhanced
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solubility due to natural colloids and humic acids [129], or (2) XG may become

incorporated into surfactant micelle structures and thereby increase the micel-

lar volume available for partitioning. The effect of polymers on the solubility

of hydrophobic compounds has received little study, and further research is re-

quired to better understand these potential processes. The second explanation is

that the elevated concentrations are the result of an analytical artifact. Both the

batch and column effluent samples were centrifuged prior to sampling the aque-

ous phase, however, the high viscosity of the XG-containing effluent samples may

have prevented the settling of small tar droplets, effectively increasing macroemul-

sion stability [210]. This explanation would also explain why SP flushes resulted

in lower-than-expected removal by mobilization, since some portion of separate

phase tar would be counted as solubilized tar.

4.5.3 Oxidation

ISCO using base-activated persulfate without surfactant resulted in removal of

53–57% of total PAHs. It is significant that the degradation was similar for OX1

and OX2 despite the > 5 times higher persulfate concentration and double total

persulfate mass of the OX2 flush. This fact, combined with the preferential degra-

dation of low molar mass, high solubility compounds, provides evidence that the

oxidation is mass transfer limited. That several compounds, including ACY and

ANT, were degraded to a greater degree than compounds with similar or even

greater solubilities, however, suggests an interplay of chemical and mass transfer

kinetics. Further research is required to elucidate the mechanisms responsible

for these observations. The addition of surfactant to the oxidant solution (OX3)
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greatly increased removal of tar compounds, however, most of that increase was

the result of solubilization. Oxidation was responsible for only 38% of the overall

removal, as compared to 33% for OX2. Furthermore, the removal by solubiliza-

tion was significantly lower than that for the control column (OX3C). The likely

explanation for these results is that the surfactant is oxidized by the persulfate,

resulting in competition with PAHs for oxidant and reduction of the surfactant

concentration.

4.5.4 Aqueous-Phase Concentrations

Assessment of the reduction of dissolved-phase concentrations is complicated by

the compositional complexity of the tar. Preferential dissolution of more soluble

compounds results in shifts in composition that produce corresponding changes

in Ceq
i according to Equation 4.5. Removal of high solubility compounds increases

the mole fraction of lower solubility compounds and thereby their equilibrium

aqueous-phase concentrations. As solubilization proceeds, increasingly high mo-

lar mass compounds are depleted from the tar. In comparing changes in aqueous

concentrations (Figure 4.9) and changes in composition Figure 4.5, the results of

the AP (MSR2), ASP (MSR1A–C), and DDI (MSR1C) flushes are qualitatively

consistent with this mechanism. The SP flushes, however, result in reduced aque-

ous concentrations of all measured PAHs despite increases in ω∗

i /ω
∗,0
i for higher

molar mass compounds. The likely reason for this is that the high molar mass

fraction of the tar (i.e., asphaltenes), which was not quantified in either effluent

sample or sand extracts, is relatively enriched in the post-treatment tar. Preferen-

tial retention of this fraction would result in reduced mass fractions for all PAHs,
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accounting for the observed dissolved-phase concentrations.

The observation that, for MSR2, oxidation reduced the aqueous-phase conc-

entrations of high molar mass PAHs (BbF through BgP) and increased concen-

trations of several lower molar mass compounds (FLE through PYR) relative to

post-SP concentrations (Table 4.8) is not as easily explained. This result would

suggest that high molar mass compounds are preferentially oxidized, which is not

consistent with either the results presented in Figure 4.7 or the general assumption

that oxidation reactions occur in the aqueous phase. Further research is required

to confirm this result and to determine the mechanisms responsible.

4.6 Conclusion

The effectiveness of an in situ NAPL remediation technique can be assessed by:

(1) the reduction NAPL/contaminant mass in the system or (2) the reduction

of contaminant concentrations or fluxes in the water passing through the con-

taminated region [103, 109, 173, 197]. In terms of mass removal, the overall

effectiveness of individual remediation methods follows the order OX (30–50%

removal) < AP (77–93%) < ASP (94–96%) < SP (>99%). SP flushes removed

99% of the tar residual within about 4 PV, with effluent PAH concentrations

reaching pure water solubility within about 5 PV (Figure 4.6). ASP flushes were

very efficient, removing 95% of the tar within about 2 PV. The ASP flushes were

stopped when NAPL-phase tar was no longer visible in the effluent, and a longer

flush or a secondary SP flush would likely have further reduced the mass of PAHs

through dissolution, although whether this would improve efficiency over a solely

SP flush is uncertain. It is also noted that the volume of ASP solution injected
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likely exceeded the volume required to achieve the same removal by mobilization.

The width of the tar bank for MSR1B, for example, is about 0.6 PV (Figure 4.4),

suggesting that a plug of ASP solution of considerably less volume than 2 PV may

have achieved the same final saturation. While it was previously shown that AP

flushing could efficiently remove over 90% of residual tar [75], the effectiveness was

considerably lower in this study, potentially due to sensitivity to the solid-phase

properties. Conducting an AP flush prior to SP flushing (MSR2) provided little

advantage over SP alone in terms of the final mass of PAHs, the removal efficiency,

or reductions in dissolved-phase concentrations. Tar removal by mobilization was

generally consistent with the trapping number concept, but it was found that in-

corporating the NAPL viscosity through κ (NTκ
m) resulted in better agreement

with other studies using less viscous NAPLs.

Base-activated persulfate was shown to degrade PAHs, primarily low molar

mass compounds, however, the overall mass reduction, even using very high per-

sulfate concentrations, was low compared to other methods. Furthermore, the

impact on dissolved-phase PAH concentrations was minimal whether used alone

(OX1–2), with surfactant (OX3), or in conjunction with other methods (MSR1A

and MSR2). The limited effectiveness of base-activated persulfate in this study

suggests that this activator-oxidant system is not well-suited for degrading NAPL-

phase FMGP tar.

Dissolved concentrations of the lower molar mass PAHs (i.e., NAP and ACE),

which often drive groundwater remediation at contaminated sites, were reduced

significantly for all flushing solutions. The SP solution was the most effective

at reducing post-treatment groundwater concentrations, with a 98.8–99.1% re-
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duction of the total PAH concentration (SPAH) and 0.5–2 orders of magnitude

for all individual compounds included in the analysis (NAP–CHY). Optimization

of combined ASP–SP flushing schemes may allow for equivalent results with in-

creased efficiency. For example, using a 0.5 PV ASP flush to mobilize 95% of

the residual tar followed by an SP flush, may reduce the overall volume of fluids

required to attain the desired reductions in tar mass and effluent concentrations.

The combination of efficient NAPL removal and significant reductions in dis-

solved concentrations results illustrate the potential for in situ remediation of

MGP tars under ideal conditions in one-dimensional systems. Field-scale remedi-

ation, however, involves three-dimensional systems with inherently more complex-

ity than laboratory column studies. Heterogeneity in terms of both geology and

NAPL distribution, and concerns regarding the downward migration of mobilized

tar, present major challenges to implementation of mobilization and solubiliza-

tion approaches. The use of viscosifying agents, a carefully designed remediation

scheme, and potentially an emplaced brine-based barrier [82, 133, 231], however,

may partially alleviate these challenges and allow for successful application.
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Nomenclature

Roman Letters Subscripts and Superscripts
C Concentration, subscript indicates α Qualifier for aqueous phase

species, superscript indicates phase i General species indicator
fc Cosolvent volume fraction n Qualifier for NAPL phase
g Gravitational acceleration eq Equilibrium qualifier
k Intrinsic permeability s Qualifier for solid phase
kr Relative permeability ss Qualifier for surfacant solution
Km Micellar partition coefficient nα Qualifier for NAPL-water interface
M Mobility ratio cs Qualifier for cosolvent
NT Trapping number m Qualifier for micelle pseudophase
Nc

T Critical trapping number below
which no mobilization occurs Abbreviations

N∞
T Trapping number corresponding to AP Alkaline-polymer solution

minimum Sn ASP Alkaline-surfactant-polymer solutio
NC Capillary number DDI Distilled, deionized water
NB Bond number FMGP Former manufactured gas plant
Sn NAPL saturation IPA Isopropanol
q Magnitude of the Darcy velocity ISCO In situ chemical oxidation
V̄ Molar volume of water MAH Monocyclic aromatic hydrocarbon

MSR Molar solubilization ratio
Greek Letters NAPL Non-aqueous phase liquid
µ Dynamic viscosity PAH Polycyclic aromatic hydrocarbon
σ Cosolvency power PV Pore volume
θ Contact angle SP Surfactant-polymer solution
β Angle between flow direction and SPAH Sum of 15 PAHs quantified by HPLC

horizontal TPAH Sum of 26 PAHs quantified by GC
ρ Density TX100 Triton X-100 surfactant
λ Fluid mobility XG Xanthan gum
κ Viscosity ratio, µn/µα

χ Mole fraction
γ Interfacial tension
ω∗ Pseudo-mass fraction based mass of

quantified PAH
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

The “town gas” industry of the mid-nineteenth through early-twentieth century

has left a legacy of environmental concerns. Waste by-products, most notably

tar, were released, intentionally or incidentally, into the environment at thou-

sands of former manufactured gas plants (FMGPs) throughout the U. S. In many

cases, these wastes persist in the subsurface, presenting continued risks to hu-

mans and ecological systems. FMGP tars contain high concentrations of harmful

and carcinogenic compounds that may leach into groundwater and potentially

contaminate surface water bodies and drinking water sources. The characteri-

zation and remediation of the tars has received considerable attention over the

last several decades, however, significant gaps in understanding, and challenges to

remediation, remain.

Tars are complex mixtures that can vary greatly between FMGPs and even

within a single site due to differences in the processes or source materials used at

the plant and due to subsequent environmental modification. Variations in compo-

sition result in corresponding variations in physical properties, including density,

viscosity, and interfacial behavior. The last of these, which includes interfacial ten-

sion (IFT) and wetting behavior (i.e., contact angle), are parameters of primary

importance in the flow and entrapment of non-aqueous phase liquids (NAPLs) in

porous medium systems. Understanding these properties is therefore critical for
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both predicting the movement of tars in the subsurface and designing remediation

techniques. The overall goals of this work were to (1) improve understanding of

the interfacial properties of FMGP tars and their relationship to composition, and

(2) to develop improved methods for remediating tar-contaminated sites. These

objectives were addressed by characterizing tars and measuring their interfacial

properties as a function of aqueous composition, and conducting a series of one-

dimensional column experiments to assess the ability of remedial flushing solutions

to remove residual tar.

Consistent with previous studies, tar-water IFT was found to be a strong func-

tion of pH, with the highest values obtained at neutral pH, and, for all samples

except the coal tar, minimum values at high pH [17, 242]. The pH dependence

of IFT has previously been associated with asphaltenes, an operationally defined,

high molar mass fraction of tars; however, the results of this work indicated that

the low IFT values at low and high pH were related to the concentrations of

aqueous-extractable base compounds and high molar mass carboxylic acids, re-

spectively. These compositional features, along with the concentration of ex-

tractable acids, the aromaticity of the tar and the average molecular mass of the

asphaltenes, were further related to the gas plant processes from which the tars

were produced. These findings provide valuable knowledge regarding the interre-

lationships between gas plant process, composition, and interfacial behavior. The

large differences observed between tars in terms of composition and properties can

significantly impact the behavior of tars in porous media, and are important to

take into consideration when investigating and remediating FMGP sites.

The potential exploitation of the pH dependence of IFT was investigated by

111



flushing tar-contaminated sand columns with alkaline (NaOH) solutions. Alkaline

solutions alone removed a maximum of only 44% of residual tar, however, the

addition of xanthan gum polymer (XG) to increase the viscosity of the flushing

solution resulted in tar removals of 81-93% within 2–3 pore volumes (PV). The

use of XG not only increased the viscous forces acting to mobilize the tar, but also

minimized viscous fingering, resulting in a more efficient displacement and the for-

mation of a stable tar bank. Despite the large fraction of residual tar removed by

these alkaline-polymer (AP) solutions, dissolved phase polycyclic aromatic hydro-

carbon (PAH) concentrations were not significantly reduced, indicating the need

for additional treatment to meet typical remediation goals.

Additional column experiments were conducted to identify methods capable of

removing a sufficient fraction of tar and tar components to reduce dissolved-phase

PAH concentrations. An alkaline-surfactant-polymer solution produced a signif-

icantly lower tar-water IFT than AP solutions, removed 94–96% of residual tar

within 2 PV, and reduced the concentration of low molar mass PAHs in the aque-

ous phase. Surfactant-polymer solutions, through a combination of mobilization

and solubilization, removed a larger fraction of the tar (> 99%) and resulted in

greater reduction of dissolved-phase PAHs, but required a larger flushing volume

to do so (6–20 PV). The use of base-activated persulfate to chemically oxidize tar

components resulted in the degradation of only 30–50% of total PAHs and had a

minimal effect on dissolved-phase PAH concentrations.

Consistent with previous studies, the final tar saturation achieved by mobi-

lization methods was generally a decreasing function of trapping number (NT )

[34, 49, 112, 135, 146, 159, 160]. However, incorporation of the NAPL-aqueous
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viscosity ratio (κ) into a modified trapping number (NTκ
m) allowed for better com-

parison between studies using NAPLs and aqueous solutions with widely varying

viscosities. This finding suggests that the commonly used form of NT developed

by Pennell, et al. (1996) [160] is insufficient for describing disparate systems, and

that further theoretical and computational research is required to better under-

stand the mechanisms of NAPL mobilization.

In comparing the effectiveness of these methods, the surfactant-polymer (SP)

solution resulted in the greatest total tar removal and the lowest post-remediation

dissolved-phase PAH concentrations. The alkaline-surfactant-polymer (ASP) so-

lution, however, was significantly more efficient in terms of the volume of solution

required. An optimized remediation strategy may take advantage of both ASP

and SP methods: an initial, low volume ASP flush to rapidly mobilize the bulk of

the tar, followed by SP to solubilize the remaining tar. The results of the chemi-

cal oxidation experiments strongly suggested that base-activated persulfate is not

an effective method of degrading tar components when even low saturations of

separate-phase tar are present.

The results of these studies are promising and support the application of in

situ flushing techniques for the remediation of FMGP tars. It is important to

acknowledge, however, that these experiments were conducted in one-dimensional

columns packed with homogenous sand. Real systems are three-dimensional and

inherently more complex. Geologic heterogeneity can significantly reduce the

effectiveness of such methods, and downward migration of mobilized tar into pre-

viously uncontaminated zones is a major concern. Future studies should focus

on heterogeneous systems of higher dimensionality to assess the effects of these
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complicating factors and to develop strategies to minimize them.
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