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ABSTRACT 

 

LAUREN STONE LIGON: Suppressor Analysis to Identify Proteins that Work with the 
Mycobacterium smegmatis SecA2 Protein Export System 

(Under the direction of Miriam Braunstein) 

 

Mycobacterium tuberculosis, the causative agent of the disease tuberculosis, is a serious 

threat to human health, responsible for 1.4 million deaths annually.  When M. tuberculosis is 

spread from person to person by aerosol and is phagocytosed by alveolar macrophages, the 

proteins exported by the bacterium are ideally positioned to interact with the host.  Therefore, 

exported proteins and the systems responsible for their export are important for M. tuberculosis 

virulence.  All bacteria, including mycobacteria, contain the Sec protein export system, which is 

responsible for the bulk of protein export and is composed of a motor ATPase protein, SecA, and 

a membrane-embedded channel complex, SecYEG.  Mycobacteria, including both M. 

tuberculosis and the model organism Mycobacterium smegmatis, along with some Gram-

positive bacteria, are unique in containing two functionally distinct SecA proteins.  The SecA 

protein responsible for housekeeping protein export is termed SecA1 and is essential for cell 

survival, while the second SecA protein, termed SecA2, is required for the export of a small 

subset of proteins and is important for M. tuberculosis virulence.  While the canonical Sec 

system is well understood, the mechanism of SecA2-dependent export is not.  Like canonical 

SecA proteins, the mycobacterial SecA2 requires ATPase activity to function.  Furthermore, an 

M. smegmatis secA2 mutant (secA2 K129R) that encodes a SecA2 protein defective in ATP 

binding is dominant negative and appears to be trapped in a complex with interacting proteins 
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at the membrane.  Here, we analyze extragenic suppressors of secA2 K129R in an effort to 

better understand SecA2-dependent export and identify additional components of the SecA2 

pathway.  Using this approach, we demonstrate a connection between M. smegmatis SecA2 and 

SecY, the major membrane-embedded component of the housekeeping Sec export channel.  In 

addition, we demonstrate a connection between the SecA2 system and Msmeg_1684, a protein 

of unknown function that is found throughout mycobacteria and may represent a novel 

component of the SecA2 pathway.  Our findings suggest a new model in which the 

mycobacterial SecA2 export pathway is integrated into the housekeeping Sec pathway and 

includes an additional SecA2-specific component, Msmeg_1684.  
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CHAPTER 1 

Introduction1 

 

Mycobacterium tuberculosis is the causative agent of the disease tuberculosis, which the 

World Health Organization estimates kills 1.4 million people every year (1).  This pathogen is 

spread from person to person by aerosols created by sneezing and coughing.  When aerosols are 

inhaled by an uninfected person, M. tuberculosis is able to reach the alveolar spaces and is 

taken up by alveolar macrophages.  However, M. tuberculosis is not killed by macrophages, but 

rather can survive and persist, sometimes for decades, before eventually causing active disease.  

HIV-positive individuals are especially susceptible to developing active tuberculosis disease and, 

as a result, HIV/tuberculosis co-infection is the primary cause of death worldwide for the HIV-

infected population.  No effective vaccine is available and although tuberculosis is treatable, it 

requires a long antibiotic regimen that is expensive and difficult to complete, especially for 

people in the developing world.  Furthermore, multidrug resistant (MDR) and extensively drug 

resistant (XDR) M. tuberculosis strains make treatment even more problematic.  Therefore, 

novel drugs are desperately needed to combat this disease. 

Because of their importance to virulence and bacterial viability, the exported proteins of 

M. tuberculosis and their respective protein export systems can be considered potential drug 

                                                           
1
Adapted for this dissertation from: Ligon LS, Hayden JD, Braunstein M. 2012. The ins and outs of Mycobacterium 

tuberculosis protein export. Tuberculosis (Edinb) 92(2):121-132. 
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targets (recently reviewed in (2)).  Many exported proteins, which we define as including 

proteins in the cell envelope of M. tuberculosis and proteins secreted by M. tuberculosis, 

interact with the host and are crucial for causing disease.  Without its systems for transporting 

these proteins across the cytoplasmic membrane and to their final destination, M. tuberculosis 

cannot deliver effector proteins that are necessary for virulence.  Furthermore, some M. 

tuberculosis protein export systems are essential. 

In M. tuberculosis, as well as the non-pathogenic model organism Mycobacterium 

smegmatis, there are two highly conserved protein export systems that are responsible for the 

majority of protein export: the Sec and Tat export pathways.  M. tuberculosis and M. smegmatis 

also possess specialized protein export systems dedicated to the export of a more limited set of 

proteins: the accessory SecA2 export pathway and ESX pathways.  ESX pathways are also 

referred to as Type VII secretion systems.  Interestingly, both of these specialized protein export 

systems were first identified in M. tuberculosis but later found to also exist in some other 

bacteria.  A better understanding of the mycobacterial protein export systems could lead to new 

strategies to combat tuberculosis disease.  This dissertation describes efforts to understand the 

mechanism of the SecA2 export pathway, which is important for M. tuberculosis virulence. 

 

Housekeeping Sec Export System 

The Sec system is highly conserved and present in all bacteria, and it acts as the primary 

route for exporting proteins to the cytoplasmic membrane and beyond.  Because many of the 

proteins exported by the Sec system perform vital functions that require proper export, the Sec 

pathway is essential for bacterial viability (Table 1.1).  In addition, many bacterial proteins with 

roles in virulence are exported by the Sec system (3).  The current understanding of Sec export 



3 
 

comes from extensive study in Escherichia coli (for recent reviews see (4, 5)).  While Sec export 

functions in essentially the same manner in all bacteria in which it has been studied, only a few 

aspects of this system have been directly investigated in mycobacteria. 

Exported proteins and targeting.  The Sec system exports proteins across the 

cytoplasmic membrane post-translationally.  Proteins exported by the Sec system, termed 

preproteins or precursors, are synthesized with an N-terminal signal peptide that is important 

for targeting the protein for export.  Following export, the signal peptide is cleaved to generate 

the mature protein.  Sec signal peptides consist of a positively charged N-terminus, a 

hydrophobic central domain, and an uncharged polar C-terminus containing the cleavage site 

(5).  Some Sec-exported proteins are lipoproteins, and in these cases the C-terminal end of the 

signal peptide contains a lipobox motif with a conserved cysteine that is the site of lipid 

attachment (6).  Sec signal peptides and lipoprotein signal peptides can be predicted using the 

bioinformatic programs PSORTb v3.0 (7), SignalP v4.0 (8), and LipoP v1.0 (9). 

Proteins must be in an unfolded state to be exported by the Sec system.  In many Gram-

negative bacteria there is a Sec export chaperone, SecB, that binds preproteins, maintains them 

in an unfolded state, and delivers them to SecA – a central component of the Sec system 

discussed below.  However, not all preproteins of Gram-negative bacteria require SecB, and 

Gram-positive bacteria lack a SecB ortholog (10).  In the absence of SecB, it is thought that other 

proteins fulfill the role of export chaperone.  In M. tuberculosis, Bordes et al. recently identified 

Rv1957 as a SecB-like protein (11).  Rv1957 prevents proteolysis and aggregation of M. 

tuberculosis HigA, a presumed cytoplasmic protein that is part of the M. tuberculosis HigBA 

toxin-antitoxin system.  These activities are consistent with Rv1957 being a chaperone.  
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However, there is currently no evidence that Rv1957 functions as a chaperone for protein 

export and it is possible that the function of Rv1957 is restricted to the HigBA system. 

System components and mechanism.  SecA is a multifunctional component of the Sec 

export system that works with the heterotrimeric SecYEG membrane channel to export proteins 

across the cytoplasmic membrane.  SecA recognizes and binds to the signal peptide, as well as 

portions of the mature domain, of preproteins (12, 13).  SecA is also an ATPase that harnesses 

energy from multiple rounds of ATP binding and hydrolysis to “push” preproteins through the 

SecYEG channel (14, 15).  The proton motive force can also contribute to Sec export, but is not 

absolutely required (15). 

Mycobacteria and some Gram-positive bacteria have two SecA proteins, each with 

distinct functions.  The primary housekeeping SecA, which functions like SecA of E. coli, is 

referred to as SecA1, while the accessory SecA is referred to as SecA2 (see later section for 

SecA2 discussion).  SecA1 is predicted to be essential in M. tuberculosis (16, 17) and proven to 

be essential in the model mycobacterium M. smegmatis (18).  Because secA1 deletion mutants 

are not viable, conditional silencing has been used to study SecA1 function.  As would be 

expected for a housekeeping SecA, depletion of SecA1 in M. smegmatis causes both growth 

inhibition and reduced export of a test protein with a Sec signal peptide (19, 20).  M. 

tuberculosis SecA1 is also a demonstrated ATPase (21), and the X-ray crystal structure of M. 

tuberculosis SecA1 is similar to other bacterial SecA structures (22). 

The SecYEG complex provides the channel through which proteins travel across the 

cytoplasmic membrane (23) and together with SecA it forms the “translocase,” which is the 

minimum apparatus needed to reconstitute efficient Sec export in vitro (24).  SecY is a polytopic 

membrane protein and the largest component of the SecYEG complex, forming the pore in the 
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membrane through which proteins pass during export.  SecE is suggested to act as a “clamp” to 

stabilize SecY (25).  SecG improves efficiency of protein export (26).  Additional Sec components 

that improve export efficiency are SecD, SecF, and YajC (27). 

Once a protein has been exported across the membrane, the signal peptide is removed 

by one of two signal peptidases – the Type I signal peptidase LepB, or the Type II signal 

peptidase LspA (28).  LspA acts specifically on lipoprotein signal peptides.  The M. tuberculosis 

LepB (29) and LspA (30) have been studied and confirmed to function in protein 

export.  Furthermore, lepB is essential (29) and an lspA mutant of M. tuberculosis is attenuated 

in macrophage and mouse models of infection (30), demonstrating the importance of correctly 

exported proteins for M. tuberculosis survival and virulence.   

In addition to the process described above for exporting proteins completely across the 

cytoplasmic membrane, the SecYEG channel is also used for a significantly different process – 

co-translational insertion of integral membrane proteins into the cytoplasmic membrane (for a 

recent review, see (31)).  In this process, transmembrane domains of nascent integral 

membrane proteins are recognized by the signal recognition particle SRP during translation.  SRP 

then delivers the nascent integral membrane protein to the SRP receptor FtsY, which in turn 

passes the protein to SecYEG for co-translational insertion into the membrane.  SecY contains a 

“lateral gate” which is believed to allow transmembrane domains of integral membrane 

proteins to pass sideways out of the SecYEG channel and into the membrane, with the help of 

the YidC protein (32, 33).  While not generally required for integral membrane protein insertion, 

the SecA protein does assist in the case of integral membrane proteins with large hydrophilic 

domains (34).  Integral membrane proteins can be predicted using the bioinformatic program 

TMHMM v2.0 (35), which searches for transmembrane domains.  Specifically in mycobacteria, 
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co-translational insertion of integral membrane proteins has only barely begun to receive 

research attention, with the recent confirmation that M. tuberculosis SRP displays biochemical 

properties comparable to SRP of E. coli (36). 

Contribution to disease and physiology.  Because the Sec system performs the bulk of 

protein export, many Sec-exported proteins are important for both M. tuberculosis viability and 

virulence.  Several M. tuberculosis proteins proven to function in virulence contain Sec signal 

peptides (37, 38).  Also, as mentioned above, the importance of LspA demonstrates that Sec-

exported lipoproteins are important for M. tuberculosis virulence (30).  In fact, several 

lipoproteins with Sec signal peptides are known to be important for M. tuberculosis virulence, 

including LpqH (19kD) (39), LppX (40), and LprG (41).  While SecYEG is homologous to the Sec61 

complex found in eukaryotic cells, there is no eukaryotic homolog of SecA.  The lack of SecA in 

mammalian cells, combined with the critical importance of SecA1 for both viability and virulence 

in bacteria, makes SecA1 a compelling potential drug target (as reviewed in (2)). 

Model, summary, and future questions.  At this point, the studies of SecA1, LepB, LspA, 

and SRP are the only ones to directly investigate housekeeping Sec export in mycobacteria (18-

22, 29, 30, 36, 42).  However, the data from these studies, combined with the presence of Sec 

component orthologues (Table 1.1) and exported proteins with Sec signal peptides in both M. 

tuberculosis and M. smegmatis, is consistent with the housekeeping Sec system of mycobacteria 

functioning as described in other bacteria (Fig. 1.1).  In this case, preproteins with N-terminal 

signal peptides are recognized by SecA1, which interacts with the SecYEG channel complex to 

form the translocase.  SecA1 performs repeated cycles of ATP hydrolysis, pushing segments of 

the preprotein through the SecYEG channel.   Signal peptides are removed by a LepB or LspA 

signal peptidase, and mature exported proteins fold into their final conformations. 
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In the future it will be important to expand our understanding of the Sec export system 

in mycobacteria.  For example, nothing is currently known about mycobacterial chaperone(s) 

involved in Sec export.  Also, the process of inserting integral membrane proteins into the 

mycobacterial cytoplasmic membrane is a topic that has so far received little research attention. 

 

Accessory SecA2 Export System 

All mycobacteria are unusual in having two SecA proteins.  In contrast to SecA1, SecA2 is 

non-essential and secA2 deletion mutants have been constructed in several mycobacteria, 

including M. tuberculosis (43), M. smegmatis (18), and Mycobacterium marinum (44).  SecA2 

functions in protein export, but its role appears limited to a much smaller subset of proteins 

than those exported by SecA1.  SecA2 is necessary for the full virulence of M. tuberculosis (43, 

45) and M. marinum (44), suggesting that one or more of the proteins it exports are important 

in pathogenesis.  Accessory SecA2 export has been studied directly in mycobacteria; however, 

there is still much that is unknown. 

Exported proteins and targeting.  Comparative 2D-PAGE analysis of exported proteins 

from wild-type and secA2 deletion mutant strains has been used to identify proteins that 

require SecA2 for their export (43, 46).  Only a small number of proteins were identified in these 

studies, and they include examples both with and without signal peptides.  In M. smegmatis, cell 

wall proteins were analyzed by 2D-PAGE, identifying Msmeg_1704 and Msmeg_1712 as proteins 

exported by the SecA2 system (46).  These proteins share many similarities – both are 

lipoproteins, contain lipoprotein Sec signal peptides (9), and are predicted sugar-binding 

components of ABC transporter systems.  While direct homologues of Msmeg_1704 and 

Msmeg_1712 are not found in M. tuberculosis, similar sugar-binding lipoproteins are present, 
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although they have yet to be evaluated for SecA2-dependence.  The SecA2-dependent proteins 

with signal peptides are currently indistinguishable from proteins exported by the housekeeping 

Sec export system, and experimental evidence shows the signal peptide is required for export of 

Msmeg_1712 (46).  However, it is the mature domain of M. smegmatis SecA2-dependent 

proteins, not the signal peptide, that imparts the requirement for SecA2 in their export (47). 

In M. tuberculosis, proteins exported into the culture media (culture filtrates) were 

analyzed by 2D-PAGE (43).  Among the very few proteins identified was the antioxidant enzyme 

SodA (superoxide dismutase).  SodA does not have a signal peptide, but its dependence on 

SecA2 for export was confirmed by western blot and SodA activity assay (43, 48).  Given the role 

of SodA in detoxifying oxygen radicals, the export of M. tuberculosis KatG (catalase), another 

antioxidant enzyme, was directly evaluated for SecA2-dependence.  Like SodA, KatG lacks a 

signal peptide and is dependent on SecA2 for export (43). 

System components and mechanism.  Accessory SecA2 proteins are found in all 

mycobacteria and some Gram-positive bacteria (for an extensive review of SecA2 export, see 

(49)).  Several SecA2 export systems include a SecY2 protein.  Referred to as SecA2-SecY2 

systems, these systems seem to be dedicated to exporting a single large protein that is heavily 

glycosylated prior to export (50-52).  In addition to the SecA2 and SecY2 proteins, proteins 

referred to as Asps (or alternately Gaps) also participate in SecA2-SecY2 protein export (52, 53).  

Asp1, Asp2, and Asp3 are found in all SecA2-SecY2 systems.  The Streptococcus gordonii system 

also includes proteins Asp4 and Asp5 (54), which have limited homology to the canonical SecE 

and SecG proteins, suggesting they may function as components of a SecY2 membrane channel 

complex.  Other proteins associated with SecA2-SecY2 systems are involved in glycosylation of 

preproteins prior to their export (51, 53, 55-58).  In contrast, the mycobacterial SecA2 system 
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does not contain a SecY2 protein or any other known additional components.  The 

mycobacterial SecA2 system is therefore referred to as a SecA2-only system. 

SecA2 has been directly studied in both M. tuberculosis and M. smegmatis.  Importantly, 

complementation experiments show that SecA2 of M. tuberculosis and M. smegmatis can 

substitute for one another to complement secA2 deletion mutant phenotypes (20).  Because 

these cross-species complementation experiments demonstrate that the SecA2 proteins of M. 

tuberculosis and M. smegmatis can carry out the same functions, M. smegmatis has been used 

as a model for studying the mechanism of mycobacterial SecA2-dependent export. 

SecA2 exhibits several similarities to the housekeeping SecA1 protein.  SecA1 and SecA2 

proteins are present in equivalent amounts in M. tuberculosis, and both proteins have proven 

ATPase activity (21).  Like housekeeping SecA proteins, ATP hydrolysis is also required for SecA2 

function in both M. tuberculosis (21) and M. smegmatis (20). 

There are also several differences between SecA1 and SecA2.  SecA2 is smaller than 

SecA1 because it lacks the C-terminal linker region, which in E. coli has been implicated in 

binding to phospholipids, SecB, and zinc (59-61).  SecA2 also differs from SecA1 in how it 

localizes within the bacterium.  Like E. coli SecA, SecA1 is evenly distributed between soluble 

and cell envelope fractions, but SecA2 is found predominantly in the cytosol-containing soluble 

fraction (20).  Most importantly, it is clear that SecA1 and SecA2 have independent functions.  

Even when SecA2 is overexpressed, SecA1 cannot be deleted, indicating that SecA2 cannot 

substitute for SecA1.  Similarly, overexpression of SecA1 does not rescue the phenotypes of a 

secA2 deletion mutant (18). 

Given that there is no accessory SecY or obvious alternate export channel to work with 

SecA2 in mycobacteria, it seems likely that SecA2 functions with the help of some or all of the 
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housekeeping Sec export system.  To address this possibility, export of the SecA2-dependent 

protein Msmeg_1712 was assessed following depletion of SecA1 in M. smegmatis.  In the 

presence of SecA1 depletion, export of Msmeg_1712 was found to be significantly compromised 

(20).  The simplest interpretation of this result is that the SecA2 export system needs the 

housekeeping SecA1 to function.  However, the possibility that SecA1 depletion has an indirect 

effect on SecA2 export cannot currently be ruled out. 

Listeria monocytogenes, Clostridium difficile, and Corynebacterium glutamicum also 

have SecA2-only type export systems.  A notable similarity between the L. monocytogenes and 

mycobacterial SecA2 systems is that both are reported to export proteins with signal peptides as 

well as proteins without signal peptides (62, 63).  In L. monocytogenes, this includes export of 

MnSOD (manganese superoxide dismutase), which lacks a signal peptide (63).  In addition, 

SecA2 of L. monocytogenes, like that of M. tuberculosis, is important for virulence but is not 

essential for growth (62, 64).  Interestingly, L. monocytogenes SecA2 has been found to be 

enriched at cell division sites, and the polarly-localized cell division protein DivIVA is required for 

export of SecA2-dependent proteins p60 and MurA (65).  It will be interesting to see if 

mycobacterial SecA2 proteins also exhibit polar localization. 

Unlike in mycobacteria, SecA2 of C. difficile and C. glutamicum are essential for growth 

(66, 67), which may reflect a difference in the essentiality of proteins exported by each of these 

systems.  Despite this difference, there are also similarities between the mycobacterial and C. 

difficile SecA2 systems.  In both species, SecA2 is found localized predominantly to the 

cytoplasm (20, 66).  An amino acid substitution in the Walker box of M. smegmatis SecA2, SecA2 

K129R, prevents binding and hydrolysis of ATP and results in a dominant negative phenotype 

(20), as does the comparable SecA2 K106R substitution in C. difficile SecA2 (66).  In addition, 
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these non-functional, dominant negative SecA2 KR variants cause growth inhibition in both 

species, suggesting they interfere with an essential cell process.  As discussed in chapter 2 of this 

dissertation, the essential process disrupted in M. smegmatis is believed to be the canonical Sec 

export pathway.   

Contribution to disease and physiology.  The M. tuberculosis secA2 mutant is 

attenuated for growth in both macrophages (45) and the mouse model of tuberculosis infection 

(43).  Similarly, the M. marinum secA2 mutant is attenuated for growth in both zebrafish and 

mouse models of infection (44).  These results indicate that the SecA2 system exports proteins 

important for M. tuberculosis and M. marinum virulence.  The fact that both M. tuberculosis 

SodA and KatG proteins are dependent on SecA2 for export suggests that the SecA2 system may 

protect M. tuberculosis from the oxidative burst of macrophages.  Yet, the secA2 mutant is still 

attenuated for growth in phox-/- macrophages, which cannot produce an oxidative burst (45).  

While this result does not exclude a role for SecA2 in resisting oxygen radicals during infection, it 

does reveal the existence of other roles for the SecA2 system in promoting virulence.  During 

macrophage infection, the M. tuberculosis secA2 mutant induces increased release of 

proinflammatory cytokines (45) and increased apoptosis (48), as compared to wild-type M. 

tuberculosis.  Thus, the SecA2 system may block innate immune responses to enable M. 

tuberculosis growth in macrophages.  In addition, the secA2 mutant fails to arrest phagosome 

maturation and acidification, and the growth defect of the secA2 mutant in macrophages is 

rescued by inhibitors of phagosome acidification (68).  These findings demonstrate the 

importance of phagosome maturation arrest for M. tuberculosis growth in macrophages and 

suggest that the SecA2 system may export proteins important for blocking this host defense 

during wild type M. tuberculosis infection.   
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Model, summary, and future questions.  More research is needed to elucidate the 

details of SecA2-dependent export.  However the studies conducted prior to this dissertation, 

particularly those using M. smegmatis, help build a preliminary model for this system (Fig. 1.1).  

SecA2 recognizes a small subset of proteins that are normally not compatible with Sec export, 

and uses its ATPase activity to assist in their export.  It seems most likely that SecA2 works with 

components of the housekeeping Sec export system, either by delivering proteins to SecA1 or by 

actively participating in exporting proteins through the SecYEG channel.  It remains possible, 

however, that other unknown components are required in addition to or in lieu of the 

housekeeping Sec components. 

Many important questions remain.  For the SecA2-dependent proteins with signal 

peptides, it is not known what distinguishes them from proteins exported by the housekeeping 

Sec system, or why these SecA2-dependent proteins cannot be exported by the housekeeping 

Sec system alone.  The fact that some SecA2-dependent proteins do not have signal peptides 

adds an additional layer of complexity to understanding this system.  It is possible that both 

proteins with signal peptides and proteins without signal peptides are directly exported by the 

SecA2 export system.  Conversely, the SecA2-dependence of proteins without signal peptides 

may be an indirect effect.  For example, it is possible that the SecA2 system exports an 

unidentified protein containing a signal peptide, which in turn participates in the export of 

proteins lacking signal peptides via another pathway.  Finally, it is likely that more SecA2-

dependent proteins exist and remain to be identified, including M. tuberculosis proteins 

containing signal peptides.  Important future goals are to identify additional proteins exported 

by the SecA2 system and understand the role this export system plays in the pathogenesis of M. 

tuberculosis. 
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Summary 

While the canonical Sec export system has been studied extensively over several 

decades and is now well characterized, the SecA2 export system of mycobacteria is poorly 

understood.  In addition to questions about the identity and targeting of SecA2-dependent 

proteins and the role of SecA2-dependent export in M. tuberculosis virulence, the mechanistic 

steps of SecA2 export remain unknown.  In this dissertation, we describe a search for additional 

proteins that are either required for or connected to SecA2-dependent protein export.  We 

demonstrate a relationship between SecA2 and the canonical Sec pathway, specifically the SecY 

channel protein.  We also identify a genetic link between SecA2 and the conserved hypothetical 

protein Msmeg_1684.  Finally, we demonstrate that the relationship between SecA2 and SecY 

does not appear to represent a direct, physical interaction. 

In chapter 2, we describe a suppressor analysis carried out using the dominant-negative 

M. smegmatis secA2 K129R allele.  Interestingly, two extragenic suppressor strains carry 

mutations located upstream of the secY gene, encoding the main component of the canonical 

Sec channel complex.  We demonstrate that these mutations are located within the secY 

promoter and that they cause increased expression of secY.  This increase in secY expression is 

sufficient to suppress the secA2 K129R allele.  Furthermore, we find that SecY protein levels are 

severely reduced in the presence of the non-functional SecA2 K129R protein.  This supports a 

model in which SecA2 K129R becomes locked in non-functional interactions with the Sec 

pathway, creating stress on housekeeping Sec export, and resulting in degradation of SecY.  

Suppressor mutations can alleviate this stress by helping to restore the amount of SecY protein 

available.  Additionally, our findings imply that SecA2 works with the SecYEG channel to export 

proteins.  Finally, we revisit the previously reported requirement for SecA1 in SecA2-dependent 
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export (20).  Depletion of SecA1 reduces export of a SecA2-dependent protein, but does not 

cause degradation of SecY, confirming the requirement for SecA1 in SecA2-dependent protein 

export. 

In chapter 3, we extend our suppressor analysis of the M. smegmatis secA2 K129R 

allele.  Here, we identify several extragenic suppressors affecting the conserved hypothetical 

protein Msmeg_1684.  We further show that an in-frame, unmarked deletion of msmeg_1684 is 

also able to suppress the secA2 K129R allele.  The function of Msmeg_1684 is unknown.  

However, the homologous Rv3311 protein of M. tuberculosis, like SecA2, is predicted by TraSH 

to be important for growth in macrophages (69).  Intriguingly, Msmeg_1684-like proteins and 

SecA2 proteins frequently co-occur within the order Actinomycetales, of which mycobacteria 

are members.  Our findings suggest that Msmeg_1684 is required for the interaction of SecA2 

with the housekeeping Sec pathway and may participate directly in SecA2-dependent protein 

export. 

In chapter 4, we describe the use of in vivo protein crosslinking to assess the possibility 

of a physical interaction between the M. smegmatis SecA2 and SecY proteins.  The results of 

chapter 2 were consistent with a model in which these two proteins would interact during 

protein export, similar to the interaction between SecA and SecY during canonical Sec export.  

However, we found no evidence of a physical interaction between SecA2 and SecY.  While it 

remains possible that these proteins do interact, and that we were simply unable to detect this 

interaction with the techniques used, our current results support a role for SecA2 that does not 

involve a direct physical interaction with SecY.  Rather, our findings suggest that SecA2 interacts 

with the canonical Sec pathway either through an intermediary protein or at a step prior to 

protein export through SecY. 
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Our results suggest a model in which SecA2-dependent protein export is integrated into 

the canonical Sec pathway.  SecA1 is required for SecA2-dependent export, and SecA2-

dependent proteins most likely cross the cell membrane through the canonical SecYEG channel 

complex.  While the canonical Sec components appear to be shared between Sec and SecA2 

export pathways, additional components, such as Msmeg_1684, may be specific to the SecA2 

system and assist in the export of SecA2-dependent proteins.  SecA2 may act either to deliver a 

specific subset of proteins to the canonical Sec apparatus, or to participate directly in energizing 

export of these proteins.  These results are significant in improving our understanding of the 

mechanism of SecA2-dependent protein export.  



16 
 

Table 1.1.  M. smegmatis and M. tuberculosis homologs of conserved export system 
components. 

Export system 
components 

Required for 
E. coli growtha 

M. smegmatis homolog M. tuberculosis homolog 
Required for 
M. tuberculosis growthb 

SecA yes Msmeg_1881 Rv3240c (SecA1) yes 

  Msmeg_3654 Rv1821 (SecA2) no*† (43) 

SecY yes Msmeg_1483 Rv0732 yes 

SecE yes Msmeg_1344 Rv0638 yes 

SecG no Msmeg_3087 Rv1440 no 

SecD no Msmeg_2961 Rv2587c yes 

SecF no Msmeg_2962 Rv2586c yes 

YajC no Msmeg_2960 Rv2588c no 

SecB no  Rv1957‡ no 

Ffh (SRP) yes Msmeg_2430 Rv2916c yes 

FtsY yes Msmeg_2424 Rv2921c yes 

YidC yes Msmeg_6942 Rv3921c yes 

LepB yes Msmeg_2441 Rv2903c yes* (29) 

LspA yes Msmeg_3174 Rv1539 no*† (30) 
 

a information compiled from references (70-78) 
b unless marked by *, requirement for growth is predicted by deep sequencing of transposon libraries (Tn-seq) (17) 
* experimentally demonstrated 
† experimentally demonstrated required for M. tuberculosis virulence 
‡ see discussion of Rv1957 in text  
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Figure 1.1.  A preliminary model of the mycobacterial housekeeping Sec and SecA2-
dependent protein export systems.  (A) Preproteins (grey ribbon) with N-terminal signal 
peptides (black oval) are recognized by SecA1, which interacts with the SecYEG channel complex 
to form the translocase.  SecA1 performs repeated cycles of ATP hydrolysis, pushing the 
unfolded preprotein through the SecYEG channel.   SecD, SecF, and YajC increase efficiency of 
protein export.  Signal peptides are removed by a LepB or LspA signal peptidase (SP), and 
mature proteins fold into their final conformations.  (B) SecA2 recognizes a small subset of 
proteins and uses its ATPase activity to assist in their export.  In the most likely scenario, SecA2 
works with components of the housekeeping Sec export system and exports proteins across the 
cytoplasmic membrane through the SecYEG channel complex.  However, it remains possible that 
other unknown components are required in addition to or in lieu of the housekeeping Sec 
components.  The role of SecA2 in the export of proteins lacking signal peptides (not shown) is 
currently not understood.  
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CHAPTER 2 

Suppressor Analysis Reveals a Role for SecY in the SecA2-Dependent 

Protein Export Pathway of Mycobacteria1 

 

All bacteria use the conserved Sec pathway to transport proteins across the cytoplasmic 

membrane, with the SecA ATPase playing a central role in the process.  Mycobacteria are part of 

a small group of bacteria that have two SecA proteins: the canonical SecA (SecA1) and a second, 

specialized SecA (SecA2).  The SecA2-dependent pathway exports a small subset of proteins and 

is required for Mycobacterium tuberculosis virulence.  The mechanism by which SecA2 drives 

export of proteins across the cytoplasmic membrane remains poorly understood.  Here we 

performed suppressor analysis on a dominant negative secA2 mutant (secA2 K129R) of the 

model mycobacterium Mycobacterium smegmatis to better understand the pathway used by 

SecA2 to export proteins.  Two extragenic suppressor mutations were identified as mapping to 

the promoter region of secY, which encodes the central component of the canonical Sec export 

channel.  These suppressor mutations increased secY expression, and this effect was sufficient 

to alleviate secA2 K129R phenotypes.  We also discovered that the level of SecY protein was 

greatly diminished in the secA2 K129R mutant, but at least partially restored in the suppressors.  

Furthermore, the level of SecY in a suppressor strongly correlated with the degree of 

                                                           
1
Adapted for this dissertation from: Ligon LS, Rigel NW, Romanchuk A, Jones CD, Braunstein M. Suppressor Analysis 

Reveals a Role for SecY in the SecA2-Dependent Protein Export Pathway of Mycobacteria. J Bacteriol (in submission). 
Additional contributing author: Brittany Miller (Department of Microbiology and Immunology, School of Medicine, 
University of North Carolina, Chapel Hill, North Carolina, 27599-7290) 
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suppression.  Our findings reveal a detrimental effect of SecA2 K129R on SecY, arguing for an 

integrated system in which SecA2 works with SecY and the canonical Sec translocase to export 

proteins. 

 

Introduction 

Bacteria use both conserved and specialized protein export systems to deliver proteins 

to the bacterial cell surface and to the extracellular environment.  These exported proteins are 

important for critical cell functions like nutrient acquisition, cell structure, and in the case of 

pathogens, virulence.  All bacteria possess the conserved Sec protein export system, which 

performs the bulk of “housekeeping” protein export.  More recently, it was discovered that 

mycobacteria and some Gram-positive bacteria possess a second, specialized Sec export system 

(1-7).  This specialized protein export system is only partially understood, but in pathogens is 

often required for virulence. 

In the housekeeping Sec export system, the motor protein SecA plays a central role in 

exporting unfolded proteins through a membrane channel composed of the integral membrane 

proteins SecY, SecE, and SecG, where SecY is the major component of the translocon (8).  SecA is 

a cytoplasmic ATPase that provides energy for protein export through successive rounds of ATP 

binding and hydrolysis (9, 10).  Proteins exported by the Sec system possess an N-terminal signal 

peptide, which is cleaved from the mature protein following export.  Because many important 

proteins rely on the Sec system for export, many Sec proteins are essential, including SecA and 

SecY (6, 11).  Bacteria containing a second, specialized Sec export system are characterized by 

the presence of two SecA proteins with distinct functions.  The second SecA protein, called 

SecA2, also possesses ATPase activity (12, 13) and is generally non-essential (14). 
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In mycobacteria, SecA2 is responsible for the export of a small subset of proteins (15, 

16) and is required for virulence of the pathogen Mycobacterium tuberculosis (16).  The model 

organism Mycobacterium smegmatis also possesses a SecA2 system, which is functionally 

conserved with that of M. tuberculosis (6, 17).  Studies with M. smegmatis show that SecA2-

dependent proteins can contain N-terminal signal peptides indistinguishable from classical Sec 

signal peptides and that it is the mature domain of the protein that determines the requirement 

for SecA2 (18).  However, the mechanism of SecA2-dependent protein export in mycobacteria is 

unknown.  Some SecA2 export systems, referred to as “SecA2-SecY2” systems, include a second 

distinct SecY protein (named SecY2) that is required for export of SecA2-dependent proteins.  In 

these systems, SecY2 is presumed to function as the channel for protein translocation across the 

membrane (5, 7, 14).  In mycobacteria, there is no SecY2 protein evident, making it unclear how 

SecA2-dependent proteins are exported in this system.  One possibility is that the mycobacterial 

SecA2 system exports proteins through the SecYEG channel, sharing this channel with the 

housekeeping Sec export system; however, this model has not been proven. 

To increase our understanding of SecA2 export and identify additional components of 

the SecA2 system, we carried out a suppressor analysis of a secA2 mutant of M. smegmatis.  For 

this purpose, we used a secA2 K129R mutant that encodes for a SecA2 protein with an amino 

acid substitution (K129R) in the Walker box, which is an amino acid motif important for ATP 

binding and hydrolysis.  We previously demonstrated that this K129R substitution disrupts the 

ATPase activity of SecA2, rendering it non-functional (12, 17).  In addition, SecA2 K129R has a 

dominant negative effect on wild type SecA2 (17).  This suggests that SecA2 K129R is still able to 

interact with its normal binding partners within the cell, but because it is non-functional, 

interferes with the function of these partners.  Further, SecA2 K129R must disrupt an important 

process in the cell, because the phenotypes of the secA2 K129R allele are worse than those of a 
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secA2 deletion mutant.  These properties make the secA2 K129R allele a good starting point for 

suppressor analysis. 

In the present study, we characterized two extragenic suppressor mutations of secA2 

K129R, both of which are located in the promoter region of the only secY gene of mycobacteria.  

We also discovered that SecY protein levels are drastically reduced in the secA2 K129R mutant, 

and that these suppressor mutations increase secY expression to partially restore SecY protein 

levels and suppress secA2 K129R phenotypes.  Finally, we found that SecY levels were increased 

relative to the secA2 K129R strain in six additional extragenic suppressors.  Taken together, 

these findings suggest that SecA2 K129R disrupts the housekeeping Sec export system, causing 

SecY degradation and thus the severe phenotypes of the secA2 K129R mutant.  The data 

presented here argues for SecA2 working in concert with SecY and the housekeeping Sec 

pathway to export SecA2-dependent proteins. 

 

Materials and Methods 

Bacterial strains and culture conditions.  M. smegmatis strains used in this study are 

described in Table 2.1, and were grown at 37°C or 30°C, using Middlebrook 7H9/7H10 or 

Mueller-Hinton media.  To limit acquisition of suppressors when working with the secA2 K129R 

strain (NR178), starter cultures were generally grown at 30°C, but the actual experiments 

performed at 37°C.  Media were supplemented with 0.5% glycerol plus 0.2% glucose (7H9/7H10 

media only) and 0.1% tween-80 (all media).  Antibiotics kanamycin (20 μg/mL) and hygromycin B 

(50 μg/mL) were added as needed.  When required, plasmids were introduced into M. 

smegmatis strains by electroporation (19).  Escherichia coli strains were grown at 37°C in 
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lysogeny broth or on lysogeny broth agar (otherwise known as Luria-Bertani media).  Antibiotics 

kanamycin (40 μg/mL) and hygromycin B (150 μg/mL) were added as needed. 

Suppressor collection.  The secA2 K129R strain encodes for a SecA2 protein in which the 

lysine at position 129 is substituted with an arginine (amino acid numbering based on NCBI 

GenBank accession number AF287049 (6)).  Suppressors of secA2 K129R were isolated by plating 

38 independently grown cultures of the secA2 K129R strain onto Mueller-Hinton agar at 37°C.  

Spontaneous suppressors (i.e. colonies that grew on Mueller-Hinton agar) were obtained, and 

one small (S) and one large (B) suppressor colony was chosen from each independent culture. 

Plasmid construction.  Plasmids used in this study are described in Table 2.2 and 

primers are described in Table 2.3.  In all cases, newly constructed plasmids were sequenced.  To 

create secY’-‘lacZ fusion plasmids, a region upstream of secY was PCR amplified from M. 

smegmatis genomic DNA of strains NR178 and NR236 (suppressor 4S) to generate wild type and 

4S secY promoter sequences, respectively.  Each PCR product contained 379 bp upstream of 

secY along with 34 bp of secY coding sequence and engineered EcoRI restriction sites, and was 

cloned into pCR2.1-TOPO (Invitrogen), yielding plasmids pLL5 and pLL6.  The EcoRI secY 

promoter fragments were cut from pLL5 and pLL6 and ligated into EcoRI-digested pCV125, 

yielding plasmids pLL11 and pLL8, which contain secY’-‘lacZ translational fusions.  pLL11 was 

mutated by site-directed mutagenesis (Stratagene QuikChange II) to re-create the mutation 

found upstream of secY in suppressor NR151 (24S), yielding plasmid pLL15. 

To construct integrating secY expression plasmids, plasmid pYUB2063 was first digested 

with PciI and re-ligated to create a smaller plasmid of 5198 bp in size named pLL2.  This plasmid 

integrates at the Tweety mycobacteriophage attB site in the M. smegmatis genome (20).  The 

entire secY gene along with its upstream promoter was PCR amplified from NR178 and NR236 
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genomic DNA, with engineered NotI and EcoRV restriction sites for cloning purposes.  Each PCR 

product was cloned into pCR2.1-TOPO (Invitrogen), yielding plasmids pLL17 and pLL19.  The 

NotI-EcoRV secY fragments were cut from pLL17 and pLL19 and ligated into NotI-EcoRV-digested 

pLL2, yielding plasmids pLL21 and pLL23. 

Azide sensitivity assays.  Cultures were plated for azide sensitivity as previously 

described (17), by mixing 200 µL of a saturated culture with 7H9 top agar and pouring over 7H10 

agar plates (with tween supplementation omitted) in three technical replicates.  Discs soaked 

with 10 µL of 0.15 M sodium azide were added to the center of each plate.  The diameter of the 

zone of inhibition was measured after two days and presented as a percentage of the entire 

plate diameter, yielding percent azide inhibition. 

Whole genome and directed sequencing.  Genomic DNA was isolated (as described 

previously (21)) from the 4S suppressor strain (NR236) and submitted for whole genome 

sequencing at the High-Throughput Sequencing Facility at the University of North Carolina at 

Chapel Hill.  Sequencing was performed using Illumina GA II technology with 36 bp single-end 

reads.  Reads were aligned to the M. smegmatis mc2155 reference genome (NCBI RefSeq 

accession number NC_008596.1) using SOAP (22) (with default parameters), resulting in an 

average sequence coverage of 47.5.  Single nucleotide polymorphisms, insertions, and deletions 

were located using SOAP and BLAT (23) (default parameters), resulting in a total of 86 mutations 

identified.  Mutations also identified in other mc2155-derived strains sequenced in our 

laboratory were discarded as background mutations (i.e. mutations already present in the 

parent strain), leaving 15 mutations appearing unique to the 4S strain.  Following further 

confirmatory sequencing of PCR amplified products (Eton Bioscience, Inc. or Genewiz, Inc.), all 

but one of these mutations were eliminated as either background or false positives. 
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5’ RLM-RACE.  RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE) was 

performed using the GeneRacer kit (Invitrogen) according to manufacturer instructions.  Briefly, 

total RNA was isolated from strain NR172, treated with TAP to remove 5’ triphosphates, and 

ligated to the GeneRacer RNA oligo.  secY 5’ ends were reverse-transcribed to cDNA using a 

gene-specific primer located within the secY coding sequence (primer R1, see Fig. 2.2B).  5’ end 

cDNA was then amplified using a nested PCR strategy involving a first round of PCR with a 

second gene-specific primer located within the secY coding sequence (primer R2) and the 

GeneRacer 5’ primer (homologous to the GeneRacer RNA oligo), followed by a second round of 

PCR with a primer located upstream of the secY coding sequence (primer R3) and the GeneRacer 

5’ primer.  PCR products were separated by agarose gel electrophoresis, individually gel purified, 

and cloned into pCR2.1-TOPO (Invitrogen).  A minimum of 4 clones originating from each PCR 

product were submitted to Genewiz, Inc. for sequencing.  Transcript 5’ ends were identified as 

the first nucleotide following the sequence of the GeneRacer RNA oligo.  Nucleotide positions 

were numbered relative to the translational start site of secY (NCBI GenBank accession number 

ABK75688). 

Quantitative RT-PCR.  Strains were grown in 7H9 broth to an OD600 nm of approximately 

1.0, pelleted by centrifugation at 1,600 x g for 10 minutes, and flash-frozen.  RNA was isolated 

using one of two protocols.  For both protocols, bacteria were lysed in 1 mL 3:1 

chloroform:methanol, and then vortexed with 5 mL Trizol and incubated 10 minutes at room 

temperature.  Phases were separated by centrifugation at 1,600 x g for 15 minutes at 4°C.  For 

the first protocol, the upper phase was mixed with 1x volume of isopropanol to precipitate 

overnight at 4°C.  RNA was pelleted by centrifugation at 20,000 x g for 30 minutes at 4°C, 

washed twice with cold 70% ethanol, and resuspended in RNAse-free water.  For the second 

protocol, the upper phase was mixed with 0.625x volume of 95% ethanol and column-purified 
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(Promega SV Total RNA Isolation System).  All RNA samples were treated with DNAse (Promega) 

and then column-purified (Zymo DNA-Free RNA kit).  Following RNA isolation, quantitative RT-

PCR was performed in triplicate technical replicates using 25 or 50 ng RNA in each reaction.  

Products were reverse transcribed and amplified from total RNA using the Bioline SensiMix SYBR 

& Fluorescein One-Step Kit, and amplified from a DNA standard using the Bioline SensiMix SYBR 

& Fluorescein Kit.  For quantitative RT-PCR on secY, products were amplified from the 5’ ends of 

secY and rpoB gene sequences, starting quantity of each transcript was calculated relative to 

DNA standards, and secY transcripts were normalized to rpoB transcripts (as a control) in each 

sample (24). 

LacZ (β-galactosidase) activity assays.  LacZ activity assays were performed similar to 

those described previously (25).  Each strain was grown in 7H9 broth to late-exponential or 

saturated phase and 800 μL was pelleted in a microcentrifuge.  Cell pellets were resuspended in 

800 μL Z buffer (60 mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, 1 mM MgSO4, 50 mM β-

mercaptoethanol), then lysed with 35 μL chloroform and 1 μL 0.1% SDS, and vortexed for 30 

seconds.  160 μL ONPG (4 mg/mL in Z buffer) was added to each reaction and incubated for 1 

hour at room temperature.  Reactions were terminated by addition of 400 μL of 1 M Na2CO3.  

Debris was removed by centrifugation at 16,000 x g for 3 minutes, and the OD420 nm was read 

from the supernatant.  LacZ activity (Miller units) was calculated by the formula: (1,000 x OD420 

nm) / (reaction time (minutes) x culture volume used in reaction (mL) x OD600 nm). 

Subcellular fractionation and western blotting.  Each strain was grown in Mueller-

Hinton broth to an OD600 nm of approximately 1.0.  Subcellular fractions were prepared as 

previously described (15).  Briefly, cell pellets were lysed by passage through a French press.  

Cell debris was removed by centrifugation at 1,600 x g for 30 minutes and clarified whole cell 
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lysates (supernatants) were standardized for equal protein content using the Pierce BCA Protein 

Assay.  Clarified whole cell lysates were centrifuged at 100,000 x g for 2 hours to separate cell 

envelope (pellet) and soluble (supernatant) fractions.  Alternately, clarified whole cell lysates 

were centrifuged at 50,000 x g for 30 minutes to separate cell wall (pellet) and the resulting 

supernatant was centrifuged at 100,000 x g for 2 hours to separate cell membrane (pellet) and 

soluble (supernatant) fractions.  In some cases, 1% Igepal CA-630 was added during cell 

envelope resuspension to facilitate solubilization of SecY. 

Whole cell lysates (WCL, loaded for equal protein content) or subcellular fractions 

(loaded for equivalent starting cell material to WCL samples) were boiled, separated by SDS-

PAGE, and transferred to nitrocellulose membranes for western blotting.  Proteins were 

detected using a rabbit αSecY polyclonal antiserum at a 1:150 dilution, a rabbit αSecA1 

polyclonal antiserum at a 1:50,000 dilution (26), and a mouse αHA monoclonal antibody at a 

1:10,000 dilution (Covance).  Primary antibodies were detected using alkaline phosphatase-

conjugated goat anti-rabbit or goat anti-mouse IgG secondary antibodies, ECF substrate (GE 

Healthcare), and a Molecular Dynamics Storm 860 phosphorimager or Syngene G:BOX machine.  

To measure localization of Msmeg_1712-HA in subcellular fractions, fluorescence was quantified 

using GeneTools software (Syngene) and the percent located in each fraction was calculated 

relative to the total fluorescence of cell wall + cell membrane + soluble fractions. 

SecY antiserum production.  Anti-SecY antiserum was produced for this work by 

Yenzym Antibodies, LLC, and was raised in rabbits to a peptide corresponding to the C-terminal 

16 amino acids of M. smegmatis SecY (QIESQLMQRNYEGFLK), using TiterMax Gold adjuvant.  

Affinity purified antibody was used in this study. 
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Construction of SecA1 depletion strain.  The SecA1 depletion strain, JM693, was 

created as described previously (26).  Briefly, wild type M. smegmatis mc2155 was transformed 

with the pKIsecA1 suicide plasmid (gift of Dr. Sabine Ehrt, Weill Cornell Medical College) and 

transformants were selected by plating on media containing hygromycin B.  Integration of 

pKIsecA1 at the native secA1 locus in the chromosome was confirmed by southern blot.  

Regulation of SecA1 in strain JM693 was achieved by introducing plasmid pNR55 (expressing the 

revTetR repressor) and growing cultures in the dark with anhydrotetracycline (1200 ng/mL) 

supplementation.  This level of anhydrotetracycline was sufficient to completely deplete SecA1 

protein levels (as assessed by western blotting) without impacting cell growth. 

 

Results 

Spontaneous suppressor mutations alleviate the severe phenotypes of the secA2 

K129R allele.  Compared to wild type M. smegmatis, a secA2 deletion mutant exhibits a 

moderate growth defect on Mueller-Hinton agar and increased sensitivity to azide (6).  This 

phenotype is complemented by adding the wild type secA2 allele, expressed from the 

constitutive hsp60 promoter, into the secA2 deletion mutant (Fig. 2.1A) (17).  However, 

introduction of the secA2 K129R allele, also expressed from the hsp60 promoter, into the secA2 

deletion mutant fails to complement secA2 deletion phenotypes.  SecA2 K129R is non-functional 

as a result of an amino acid substitution in the ATP binding Walker box.  Moreover, the secA2 

K129R allele exacerbates both the growth defect on Mueller-Hinton agar and sensitivity to azide 

phenotypes (i.e. secA2 K129R phenotypes are more severe than phenotypes of the secA2 

deletion) (Fig. 2.1B) (17).  Reported previously, the secA2 K129R allele is also dominant negative, 

exhibiting phenotypes even in the presence of a wild type secA2 allele (17). 
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Suppressor mutations spontaneously arise in the secA2 K129R background, and are 

easily identified by their ability to grow on Mueller-Hinton agar.  To begin our suppressor 

analysis, we collected 63 suppressor mutants.  All suppressors alleviated the severe phenotypes 

associated with the secA2 K129R allele, improving both growth on Mueller-Hinton agar and 

resistance to azide (Fig. 2.1B).  Throughout this study, we routinely compared suppressor strains 

to the complemented secA2 strain (NR172) as a control, instead of the wild type strain.  By doing 

so, we could study the effect of the suppressor mutations across a series of strains that all 

express secA2 alleles from the same hsp60 promoter.  In no case did suppressors rescue 

phenotypes to the level of the complemented secA2 strain.  Instead, suppressor phenotypes 

more closely resembled the phenotypes of the secA2 deletion strain, suggesting that suppressor 

mutations overcome the detrimental effect of SecA2 K129R, but do not necessarily restore 

SecA2-dependent export.  Of the 63 suppressors isolated, 40 did not produce SecA2 K129R 

protein (by western blot, data not shown), suggesting that these suppressors alleviate secA2 

K129R phenotypes by preventing SecA2 K129R production.  This is a category of suppressors 

that we expected to observe.  The remaining 23 suppressors produced detectable levels of full-

length SecA2 K129R protein. 

We next sequenced the secA2 K129R allele in the 23 suppressors producing SecA2 

K129R protein.  Of these 23 suppressors, 9 strains contained mutations in the secA2 K129R allele 

(intragenic), while the remaining 14 strains had no mutations in the secA2 K129R allele and are 

therefore extragenic suppressors.  Because our goal was to identify proteins that work with 

SecA2 during export, we focused on characterizing extragenic suppressors. 

Suppressors 4S and 24S contain mutations upstream of secY.  We chose a single 

extragenic suppressor with normal SecA2 K129R protein levels, identified as 4S (strain NR236), 
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and performed whole genome sequencing.  Alignment of sequence reads to the M. smegmatis 

mc2155 reference genome resulted in average sequence coverage of 47.5, sufficient to identify 

mutations in the 4S genome.  Each candidate suppressor mutation was PCR amplified and re-

sequenced from both 4S and its parent secA2 K129R strain.  Following this directed sequencing, 

false positives and background mutations were discarded, leaving only a single mutation 

uniquely present in suppressor 4S.  This unique mutation was a 2 bp insertion located 137 bp 

upstream of the translational start site for the predicted M. smegmatis secY gene, msmeg_1483 

(Fig. 2.2A).  The msmeg_1483 open reading frame is the only secY homolog in M. smegmatis 

(43% identical and 63% similar at the amino acid level to the canonical E. coli SecY). 

To determine whether any other extragenic suppressors in our collection contained 

mutations upstream of secY, we sequenced approximately 1000 bp upstream of secY in the 13 

additional extragenic suppressor strains.  One additional suppressor, identified as 24S (strain 

NR151), contained a single C→G polymorphism located 134 bp upstream of the translational 

start site for secY (Fig. 2.2A).  The close proximity of the 4S and 24S mutations suggests that they 

act in a similar manner to suppress the secA2 K129R allele. 

4S and 24S suppressor mutations are located within the secY promoter.  Because the 

mutations identified in suppressors 4S and 24S are located upstream of the secY coding 

sequence, we hypothesized that they would map to the secY promoter and suppress the secA2 

K129R phenotypes through an effect on secY transcription.  Mycobacterial promoters do not 

always resemble the classical promoter structure defined for E. coli and other bacteria, and it 

can be difficult to predict their location.  However, manual inspection of the sequence upstream 

of secY revealed two potential M. smegmatis -10 regions, each beginning with the highly 

conserved nucleotides “TA” (27) and matching at least 3/6 nucleotides of the -10 region 
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consensus sequence.  These two -10 regions, positioned at nucleotides -132 and -140 upstream 

of the secY start codon, are the closest potential -10 regions to secY, and are located in the same 

region as the 4S and 24S mutations (Fig. 2.2A).  No obvious -35 region was found, but this is not 

surprising given that mycobacteria have low homology at this region (27), and may not even 

require the -35 region for promoter function (28).   

The location of the potential promoter -10 regions suggests that the 4S and 24S 

mutations could directly impact transcription.  The 4S mutation is an insertion that improves the 

-10 region at nucleotide -140 from a 3/6 nucleotide match to the -10 region consensus to a 4/6 

nucleotide match.  The 24S mutation is a C→G polymorphism upstream of the -10 region at 

nucleotide -132.  Interestingly, this mutation creates a “TGn” motif upstream of the -10 region.  

Addition of a “TGn” motif to a -10 region can result in a 3-5 fold increase in transcription (29). 

To determine the location of the secY transcriptional start site in relation to the 4S and 

24S mutations, we performed 5’ RLM-RACE on M. smegmatis RNA (using primer R1, Fig. 2.2B).  

Following the RACE procedure, we PCR amplified the 5’ ends of cDNA created from secY 

transcripts, using a nested PCR strategy.  The first round of PCR (using primer R2) amplified out 

from the secY coding sequence and yielded multiple products.  A second round of PCR with a 

primer upstream of secY (primer R3) narrowed in on the longest secY transcripts.  This nested 

PCR amplification produced two products (Fig. 2.2B) that we cloned and sequenced to 

determine the 5’ end of each species.  The longer of the two species represents secY transcripts 

with a 5’ end located 127-129 bp upstream of the secY translational start site, and the shorter of 

the two species represents secY transcripts with a 5’ end located 75 bp upstream of secY.  The 

transcripts beginning 127-129 bp upstream of secY were the longest species detected, making it 

likely that they represent true transcriptional start sites.  This start site region corresponds 
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perfectly with the potential -10 regions we identified upstream of secY, and supports the 

conclusion that the 4S and 24S suppressor mutations are located within the secY promoter.  The 

transcripts beginning 75 bp upstream of secY could result from an alternate transcriptional start 

site, although there are no obvious promoter sequences located adjacent to this site.  

Alternatively, these shorter transcripts could be a result of transcript processing/degradation at 

this location. 

4S and 24S suppressor mutations cause increased secY transcript levels.  Given the 

location of the 4S and 24S mutations, we next tested whether the mutations affect secY 

expression by measuring secY transcript levels in the complemented secA2, secA2 deletion 

mutant, secA2 K129R mutant, and 4S and 24S suppressor strains, along with additional 

suppressor strains 7S and 20B for comparison.  Total RNA was isolated from each strain and was 

analyzed by quantitative RT-PCR (Fig. 2.3A).  There was no significant difference in secY 

transcript levels between the complemented secA2, secA2 deletion mutant, secA2 K129R 

mutant, and 7S and 20B suppressor strains.  However, relative to the secA2 K129R parent strain, 

both suppressors 4S and 24S exhibited a reproducible increase in secY transcript levels, although 

this result is statistically significant only for suppressor 24S. 

We also tested the effects of the 4S and 24S mutations in the absence of the secA2 

K129R allele (i.e. in a wild type background) using secY’-‘lacZ fusions.  To do this, we constructed 

plasmids containing 379 bp upstream of secY plus 34 bp of secY coding sequence translationally 

fused to lacZ, introduced these plasmids into wild type M. smegmatis (mc2155), and measured 

LacZ (β-galactosidase) activity as a readout of secY expression (Fig. 2.3B).  Relative to the wild 

type secY promoter, constructs containing the 4S or 24S secY promoters produced significantly 



38 
 

higher levels of LacZ activity.  These results reinforce the conclusion that the 4S and 24S 

mutations increase secY expression. 

SecY protein is undetectable in the secA2 K129R strain, but recovered in 4S and 24S 

suppressor strains.  We next tested for an increase in SecY protein levels in the 4S and 24S 

suppressors.  To measure SecY protein, we generated an antibody against a peptide matching 

the C-terminus of M. smegmatis SecY, and performed αSecY western blots on whole cell lysates 

(WCL) and on subcellular fractions containing the cell envelope (ENV) or the cytoplasm (SOL).  

The purity of the subcellular fractions was confirmed by western blot analysis with antibodies to 

the cell envelope protein MspA and the cytoplasmic protein GroEL1 (data not shown).  αSecY 

western blotting on the WCL of the complemented secA2 strain detected a prominent protein 

species at 37 kDa (Fig. 2.4).  Although the predicted size of M. smegmatis SecY is 48 kDa, full-

length SecY in E. coli (30) and Synechococcus PCC7942 (31) is also observed to migrate 

aberrantly at about 37 kDa.  Additionally, lower molecular weight species were sometimes 

apparent on the αSecY western blots, which are likely degradation products similar to those 

detected for E. coli SecY (8, 32).  In support of the 37 kDa species being full-length SecY, strains 

expressing higher levels of secY exhibited an increase in this product (as discussed below).  In 

addition, this full-length M. smegmatis SecY species is detected almost exclusively in the cell 

envelope (ENV) fraction, as expected for an integral membrane protein. 

Next, we performed αSecY western blots on complemented secA2, secA2 deletion 

mutant, secA2 K129R mutant, and 4S and 24S suppressor strains (Fig. 2.4).  Both complemented 

secA2 and secA2 deletion mutant strains exhibited a strong signal for full-length SecY protein.  In 

stark contrast, we observed a complete loss of detectable full-length SecY protein in the secA2 

K129R mutant, revealing a link between SecA2 K129R and SecY.  As there was no transcriptional 
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effect on secY observed in the secA2 K129R strain (Fig. 2.3A), the change in SecY protein levels in 

the secA2 K129R mutant does not appear to be caused by a difference in secY expression.  An 

alternate possibility is that stability of the SecY protein is reduced by SecA2 K129R.  This 

explanation is supported by an increase in the SecY degradation products observed in the secA2 

K129R strain.  In addition, experiments in E. coli show that jamming export through the SecYEG 

channel results in degradation of SecY (33).  Therefore, the most likely explanation for the lack 

of detectable SecY protein in the secA2 K129R strain is that SecA2 K129R causes stress on the 

housekeeping SecY export channel, resulting in drastic SecY degradation. 

Relative to the secA2 K129R strain, suppressors 4S and 24S exhibited increased levels of 

full-length SecY protein.  While the SecY level in 4S and 24S was still lower than that in the 

complemented secA2 or secA2 deletion mutant strains, the increase relative to the secA2 K129R 

strain is consistent with the increased transcription of secY (Fig. 2.3A).  This increase in secY 

expression would not be expected to prevent the SecY degradation caused by SecA2 K129R.  In 

fact, the presumed SecY degradation products remained high in both suppressor strains.  Thus, 

it appears that the 4S and 24S mutations are able to suppress secA2 K129R by altering the 

balance between secY expression and SecY degradation, shifting the steady-state SecY protein 

level high enough to allow the recovered growth seen in these strains. 

Increased secY expression is sufficient to suppress secA2 K129R.  The above results 

demonstrate that the 4S and 24S mutations cause increased expression of secY.  However, the 

question remained whether this relatively small increase in secY expression alone was sufficient 

to suppress the secA2 K129R phenotypes.  To address this question, we created integrating 

plasmids carrying the secY gene under the control of its native promoter, either with no 

mutation (wild type) or carrying the 4S mutation upstream of secY.  These plasmids were then 
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introduced into the secA2 K129R strain, creating merodiploid strains that contain the 

endogenous secY gene at its chromosomal location and a second copy of secY integrated in the 

chromosome at the Tweety mycobacteriophage attachment site.  Addition of an extra copy of 

secY, whether driven by the 4S promoter or the native promoter, was indeed sufficient to 

suppress secA2 K129R phenotypes, and both versions suppressed secA2 K129R equally as well as 

the original 4S suppressor (Fig. 2.5A).  In support of this result, western blotting revealed that 

when a second copy of secY was introduced into the secA2 K129R strain, the level of full-length 

SecY protein increased to the same level as seen in the 4S suppressor strain (Fig. 2.5B).  These 

results indicate that the increased secY expression observed in the 4S and 24S suppressor strains 

can indeed explain their ability to suppress secA2 K129R phenotypes. 

Additional extragenic suppressors are also associated with increased SecY levels.  

Given the above results, we selected six additional extragenic suppressors and tested for an 

effect on SecY.  These six suppressors expressed normal levels of SecA2 K129R protein and did 

not carry mutations in the secY gene or promoter (data not shown).  Relative to the secA2 K129R 

mutant, each of these suppressors exhibited improved azide resistance and growth on Mueller-

Hinton agar (Fig. 2.6A), with the degree of suppression varying from strain to strain.  Western 

blotting for SecY revealed that all six additional suppressors have an increased steady-state level 

of SecY protein relative to the parent secA2 K129R strain (Fig. 2.6B).  However, unlike the case 

with the 4S and 24S suppressors, none of these six additional suppressors had altered secY 

transcription, as assessed by quantitative RT-PCR (Fig. 2.6C).  Therefore, these suppressors must 

affect SecY levels in a completely different manner. 

The finding that multiple extragenic suppressors affect the SecY protein level, despite 

differences in their genotypes and phenotypes, reinforces the conclusion that SecA2 K129R has 
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a detrimental effect on SecY.  Furthermore, the level of SecY protein observed correlates with 

the phenotype of the respective strain.  The secA2 K129R mutant had no detectable SecY 

protein, little resistance to azide, and very poor growth on Mueller-Hinton agar.  Intermediate 

suppressors such as 4S, 24S, 1S, and 3S had low but detectable SecY protein levels and 

moderate resistance to azide and growth on Mueller-Hinton agar.  Strong suppressors such as 

29S, 33S, 33B, and 10S had near wild type levels of SecY protein and the strongest azide 

resistance and growth on Mueller-Hinton agar observed, comparable to the phenotypes of the 

secA2 deletion mutant.  Based on this pattern, we conclude that a critical problem caused by the 

presence of SecA2 K129R is reduced SecY protein level, and that extragenic suppressor 

mutations can correct this problem by increasing the amount of SecY protein to a functional 

level. 

SecA1 is required for SecA2-dependent protein export.  We have previously shown that 

depletion of SecA1 in M. smegmatis leads to reduced SecA2-dependent export, suggesting a 

requirement for SecA1 in the SecA2 export pathway (17).  However, in light of our findings that 

SecA2 K129R causes degradation of SecY, we wondered if a reduction in SecA1 might similarly 

cause a stress on the housekeeping Sec export system resulting in SecY degradation.  In that 

case, the apparent requirement for SecA1 we reported previously might actually have been a 

reflection of a role for SecY in the SecA2 export pathway.  To address this question, we 

expressed HA-tagged Msmeg_1712 (a known SecA2-dependent exported protein (15)) in a 

strain (JM693) in which SecA1 depletion can be induced by addition of anhydrotetracycline (Atc) 

in the presence of the revTetR repressor (26).  We then monitored both SecY levels and SecA2-

dependent export of Msmeg_1712-HA in the presence and absence of SecA1.  Interestingly, the 

addition of Atc alone resulted in reduced levels of SecY protein (Fig. 2.7A).  This occurred even in 

the absence of the revTetR repressor and was therefore not a result of SecA1 depletion.  On the 
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contrary, when compared to a +Atc/-revTetR sample, the SecA1-depleted sample 

(+Atc/+revTetR) showed no additional reduction in SecY protein levels, indicating that SecA1 

depletion does not cause degradation of SecY.  Monitoring the subcellular localization of 

Msmeg_1712-HA (Fig. 2.7), we observed a decrease in SecA2-dependent export when SecA1 

was depleted, confirming the previously observed requirement for SecA1 in SecA2-dependent 

protein export.  SecA1 depletion had no effect on protein levels or localization of either SecA2 or 

a cytoplasmic control protein, SigA (data not shown). 

SecA1 overexpression does not cause SecY degradation.  We have previously shown 

that overexpression of SecA1 in a secA2 deletion mutant background causes a growth defect on 

Mueller-Hinton agar (6).  The reason for this result is not fully understood, but hints at the 

connection between SecA1 and SecA2-dependent pathways, as discussed above.  In light of our 

findings that SecA2 K129R causes degradation of SecY, we revisited this experiment.  If 

overexpression of SecA1, in the absence of SecA2, exerts a stress on the Sec pathway, it also 

could have resulted in SecY degradation, causing the observed phenotypes.  To evaluate this 

possibility, we compared strains with and without a multi-copy M. smegmatis SecA1 

overexpression plasmid, in both wild type and secA2 deletion mutant backgrounds.  As seen 

previously, SecA1 overexpression in the secA2 deletion mutant background resulted in a growth 

defect on Mueller-Hinton agar (Fig. 2.8A).  Additionally, SecA1 overexpression resulted in 

increased sensitivity to azide in both wild type and secA2 deletion mutant backgrounds.  

However, SecA1 overexpression did not significantly affect SecY protein levels (Fig. 2.8B), 

demonstrating that the detrimental effect of high SecA1 levels did not occur through SecY 

degradation.  SecA1 overexpression had no effect on protein levels of a cytoplasmic control 

protein, SigA (data not shown). 
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Discussion 

While the conserved Sec export system of bacteria is well understood, even the most 

basic steps of SecA2-dependent export remain to be characterized.  For the mycobacterial 

SecA2-dependent export system, there is no obvious SecY2 available to serve as a dedicated 

export channel.  This type of SecA2 pathway is therefore termed a “SecA2-only” system (14).  

One of the many basic questions to be answered about the SecA2 pathway of mycobacteria is 

whether it utilizes the SecYEG translocase or an unknown apparatus to export its specific set of 

proteins.  Here we showed that a SecA2 K129R dominant negative protein leads to reduced 

levels of the sole SecY of mycobacteria and that increased SecY levels can suppress the severe 

phenotypes of a secA2 K129R mutant.  These data are significant in revealing a link between 

SecA2 and the housekeeping SecY, which provides strong support for the idea that SecA2 works 

with the canonical SecYEG translocase to export proteins. 

The effect of SecA2 K129R on SecY levels indicates a relationship between SecA2-

dependent export and the canonical Sec pathway.  However, this result also raises the question 

of why SecA2 K129R leads to lower SecY levels.  There is precedent for SecY degradation 

occurring in response to stress at the Sec translocase.  In E. coli, when the SecYEG channel 

complex is artificially “jammed” by attempted export of a folded protein, the SecY protein is 

degraded by the FtsH protease, which serves to remove the non-functional “jammed” 

translocon (33).  Our results are consistent with there being a similar stress on the SecYEG 

channel in the presence of the ATP binding-defective SecA2 K129R in M. smegmatis.  There is 

also a homolog of ftsH in M. smegmatis, which could potentially be responsible for SecY 

degradation as in E. coli. 
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The housekeeping SecA protein drives export of an individual protein in a stepwise 

fashion through successive cycles of ATP binding and hydrolysis, during which SecA repeatedly 

releases and re-associates with the translocon.  Furthermore, ATP hydrolysis is specifically 

necessary for SecA to dissociate from the translocase during this process (10).  Therefore, a SecA 

protein that cannot bind and/or hydrolyze ATP (such as a Walker box KR variant) will become 

trapped at the membrane translocon and will fail to complete protein export.  A Walker box 

substitution in E. coli SecA (SecA K108R) that is defective in ATP binding and hydrolysis (34) 

shifts SecA localization from the soluble fraction towards the cell envelope fraction (35), as does 

the corresponding SecA2 K129R variant of M. smegmatis (17).  Thus, the most likely explanation 

for the effect of SecA2 K129R on SecY is that SecA2 K129R is locked in non-functional complexes 

with the housekeeping Sec export pathway, which results in SecY degradation in an effort by the 

cell to eliminate SecA2 K129R-jammed translocons.  By analogy to the housekeeping Sec 

pathway (36), SecA2 could physically “dock” with SecYEG during protein export.  However, we 

were unable to detect any physical interaction between SecA2 and SecY by chemical crosslinking 

in M. smegmatis (see Chapter 4).  Therefore, the link we detect between SecA2 export and the 

SecY channel may reflect either a transient physical interaction or an indirect interaction 

involving another component of the export machinery. 

Because SecY is critical for the export of many essential proteins, the reduced SecY 

levels observed in the presence of SecA2 K129R would be extremely detrimental to the cell.  

This helps explain the severe growth inhibition caused by SecA2 K129R.  However, it is unlikely 

that there is no functional SecY protein in the secA2 K129R mutant, even though there was no 

full-length SecY detectable by western blotting in this strain (Fig. 2.4).  SecY is thought to be 

essential for growth in all bacteria, including mycobacteria (37); therefore, a complete loss of 
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SecY would be lethal.  Most likely, the amount of SecY in the secA2 K129R strain is below the 

level of detection with our αSecY antibody. 

Given the reduced SecY levels in the secA2 K129R strain, it is logical that extragenic 

suppressor mutations might act to restore SecY abundance to a functional level.  In suppressors 

4S and 24S, this is accomplished by increasing transcription of secY, which must allow sufficient 

SecY production to replace the SecY channels lost to degradation.  Interestingly, while 

suppressor 4S consistently displayed a less robust effect on secY expression than suppressor 24S 

(Fig. 2.3), these two suppressors are phenotypically identical (Fig. 2.1B).  This indicates that the 

relatively weak effects of the 4S mutation are sufficient to reach a threshold SecY level 

necessary to restore functional export through the SecYEG translocon. 

Six additional extragenic suppressors also restored SecY protein to varying degrees, 

though not by affecting secY transcription.  These additional suppressor mutations could act in 

an alternate way to increase SecY production, for example by increasing the efficiency of secY 

translation.  Another possibility is that these additional suppressor mutations serve to avoid the 

detrimental interaction between SecA2 K129R and the Sec pathway, thereby preventing SecY 

degradation in the first place.  This latter possibility is especially interesting, as it may point to 

additional components of the machinery required for SecA2-dependent export and help 

elucidate the interaction points between the SecA2 pathway and housekeeping Sec export.  In 

any case, the correlation between the suppressor phenotype and restoration of detectable SecY 

protein levels makes a strong case for reduced SecY levels being responsible for the secA2 

K129R mutant phenotype. 

The results of the current study confirm and build upon our previous result that the 

canonical SecA of mycobacteria (SecA1) is important for SecA2-dependent protein export, and 
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suggests that the SecA2 export pathway is fully integrated into housekeeping Sec export.  It 

remains possible, however, that there exist additional specialty components that are important 

for SecA2-dependent protein export.  We recently showed that features of a protein’s mature 

domain (i.e. not the signal peptide) determine the requirement for SecA2.  One interesting 

possibility is that the defining feature of the mature domain of SecA2-exported proteins is a 

propensity to fold in the cytoplasm prior to export (18).  As an integrated component of the Sec 

pathway, SecA2 could assist the canonical Sec pathway to greater or lesser degrees with the 

export of proteins that are difficult to export due to folding or other features. 

A protein export pathway in which SecA2 works with SecYEG may be a common feature 

of “SecA2-only” type systems.  In fact, recent data from the Clostridium difficile “SecA2-only” 

system (4) shows that the corresponding Walker box substitution in the SecA2 of this system 

(SecA2 K106R) is dominant negative and causes severe growth inhibition when overexpressed, 

suggesting that it similarly interferes with an essential pathway.  This and other data is 

consistent with the idea that SecA1 and SecA2 may also share use of the SecYEG channel in C. 

difficile.  It would be interesting to see whether the detrimental effects of C. difficile SecA2 

K106R also involve SecY degradation.   

In conclusion, we uncovered a connection between SecA2 and the housekeeping SecY of 

mycobacteria using a classical genetic approach.  Our results indicate that the “SecA2-only” 

system of mycobacteria utilizes the housekeeping SecYEG channel to export its select subset of 

proteins, addressing a key question about the mechanism of SecA2-dependent export.  This 

pathway for SecA2-dependent export is distinct from that employed by “SecA2-SecY2” systems.  

Because our study indicates that the mycobacterial SecA2 export system is actually an  
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adaptation of the housekeeping Sec system, continued study of this system will not only 

increase our understanding of SecA2-dependent export, but may also shed light on the 

conserved Sec pathway utilized by all bacteria.  
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Table 2.1.  Mycobacterium smegmatis strains used in this study. 

M. smegmatis strain Description Source 

mc2155 wild type (38) 
NR116 ∆secA2 (17) 
NR158 mc2155+pMV306.kan, wild type+empty plasmid (17) 
NR160 NR116+pMV306.kan, ∆secA2+empty plasmid (17) 
NR172 NR116+pYA810, ∆secA2+secA2 complementing plasmid (17) 
NR178 NR116+pNR25, ∆secA2+secA2 K129R plasmid (17) 
NR236 NR178, with extragenic suppressor mutation 4S This work 
NR151 NR178, with extragenic suppressor mutation 24S This work 
NR154 NR178, with extragenic suppressor mutation 29S This work 
NR155 NR178, with extragenic suppressor mutation 33S This work 
NR156 NR178, with extragenic suppressor mutation 33B This work 
NR230 NR178, with extragenic suppressor mutation 1S This work 
NR234 NR178, with extragenic suppressor mutation 3S This work 
NR248 NR178, with extragenic suppressor mutation 10S This work 
JM693 secA1 under control of Pmyc1-tetO, for SecA1 depletion Dr. Justin 

McDonough 
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Table 2.2.  Plasmids used in this study. 

Plasmid Genotype Description Source 

pMV306.kan aph int attPL5 ColE1 Single-copy mycobacterial shuttle vector, 
integrates in mycobacteriophage L5 attB site 

(39) 

pMV361.kan aph Phsp60 int attPL5 ColE1 Single-copy mycobacterial shuttle vector with 
hsp60 promoter, integrates in 
mycobacteriophage L5 attB site 

(39) 

pYA810 aph Phsp60-secA2 int attPL5 ColE1 M. smegmatis secA2 in pMV361.kan (15) 
pNR25 aph Phsp60-secA2K129R int attPL5 ColE1 M. smegmatis secA2 K129R in pMV361.kan (17) 
pCR2.1-TOPO aph bla ColE1 TOPO TA cloning plasmid Invitrogen 
pLL5 aph bla PsecY-secY’ ColE1 M. smegmatis secY promoter and 34 bp of secY 

gene in pCR2.1-TOPO 
This work 

pLL6 aph bla PsecY(4S)-secY’ ColE1 NR236 (4S) secY promoter and 34 bp of secY gene 
in pCR2.1-TOPO 

This work 

pCV125 hyg ‘lacZ oriM ColE1 Multi-copy mycobacterial shuttle vector with 
promoter-less lacZ gene 

MedImmune 

pLL11 hyg PsecY-secY’-‘lacZ oriM ColE1 M. smegmatis secY translationally fused to lacZ in 
pCV125 

This work 

pLL8 hyg PsecY(4S)-secY’-‘lacZ oriM ColE1 NR236 (4S) secY translationally fused to lacZ in 
pCV125 

This work 

pLL15 hyg PsecY(24S)-secY’-‘lacZ oriM ColE1 NR151 (24S) secY translationally fused to lacZ in 
pCV125 

This work 

pLL17 aph bla secY ColE1 M. smegmatis secY in pCR2.1-TOPO This work 
pLL19 aph bla secY(4S) ColE1 NR236 (4S) secY in pCR2.1-TOPO This work 
pYUB2063 hyg bla int attPTweety ColE1 cosλ Single-copy mycobacterial shuttle vector, 

integrates in mycobacteriophage Tweety attB site 
Dr. WR Jacobs, 
Albert Einstein 
Coll. of Med. 

pLL2 hyg bla int attPTweety ColE1 pYUB2063 with 3299 bp PciI fragment removed, 
single-copy mycobacterial shuttle vector, 
integrates in mycobacteriophage Tweety attB site 

This work 

pLL21 hyg bla secY int attPTweety ColE1 M. smegmatis secY in pLL2 This work 
pLL23 hyg bla secY(4S) int attPTweety ColE1 NR236 (4S) secY in pLL2 This work 
pKIsecA1 hyg Pmyc1-tetO-secA1’ ColE1 Suicide vector containing the first 641 bp of M. 

smegmatis secA1 fused to Pmyc1-tetO 
(26) 

pHSG85 aph msmeg_1712-HA oriM ColE1 M. smegmatis msmeg_1712 with HA tag in 
pMV261.kan 

(17) 

pNR55 aph msmeg_1712-HA oriM ColE1 
Psmyc-revTetR  

revTetR and msmeg_1712-HA in pMV261.kan (17) 

pMV261.kan aph Phsp60 oriM ColE1 Multi-copy mycobacterial shuttle vector with 
hsp60 promoter 

(39) 

pYUB544 aph Phsp60-secA1 oriM ColE1 M. smegmatis secA1 in pMV261.kan (6) 
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Table 2.3.  Primers used in this study. 

Primer Sequence and Description 

1483promF 5’-GAGAATTCGTCCCACGTGTCGTTCT-3’ 
binds 379 bp upstream of secY (msmeg_1483), contains engineered EcoRI site, used to amplify secY promoter 
region 

1483promR 5’-GAGAATTCCCGTTCGCAGCGACGAGATG-3’ 
binds at bp 34 of secY (msmeg_1483) coding sequence, contains engineered EcoRI site, used to amplify secY 
promoter 

secYFNotI 5’-GAGCGGCCGCGTCCCACGTGTCGTTCTC-3’ 
binds 379 bp upstream of secY (msmeg_1483), contains an engineered NotI site, used to amplify secY with its 
native promoter 

secYREcoRV 5’-GAGATATCAGGCGGTCCGAGCAGAAC-3’ 
binds 23 bp downstream of secY (msmeg_1483), contains an engineered EcoRV site, used to amplify secY 
with its native promoter 

secY5’RACE-R1 5’-GACCTGCGCGATGCATTGCTGAAC-3’ 
binds at bp 153 of secY (msmeg_1483) coding sequence, used to reverse transcribe secY transcript 5’ ends to 
cDNA for 5’ RLM-RACE 

secY5’RACE-R2 5’-GGATTACCAGGCCCAAGGTGAACAG-3’ 
binds at bp 79 of secY (msmeg_1483) coding sequence, used to amplify secY transcript 5’ ends for 5’ RLM-
RACE 

secY5’RACE-R3 5’-GTGGGTCCAGCGTCAATGGTCAAG-3’ 
binds 51 bp upstream of secY (msmeg_1483), used to amplify secY transcript 5’ ends for 5’ RLM-RACE 

secYF1 5’-GTGCTTTCGGCTTTCATCTC-3’ 
binds at bp 1 of secY (msmeg_1483) coding sequence, used for quantitative RT-PCR 

secYR1 5’-CGCGATGCATTGCTGAAC-3’ 
binds at bp 147 of secY (msmeg_1483) coding sequence, used for quantitative RT-PCR 

rpoBF 5’-GTCTCTAGCCAGAGCAAGTC-3’ 
binds at bp 25 of rpoB (msmeg_1367) coding sequence, used for quantitative RT-PCR 

rpoBR 5’-TCGAAGGAATCCGTCTGAAC-3’ 
binds at bp 158 of rpoB (msmeg_1367) coding sequence, used for quantitative RT-PCR 
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Figure 2.1.  Azide sensitivity and Mueller-Hinton agar growth phenotypes.  The indicated 
strains were plated for sensitivity to 10 μL of 0.15 M sodium azide for two days at 37°C and 
growth on Mueller-Hinton agar plates for six days at 37°C.  Average azide inhibition is calculated 
by measuring the diameter of the zone of azide inhibition as a percentage of the plate diameter 
and is the mean of three technical replicates.  Results shown are representative of at least three 
independent experiments.  Strains tested were: (A) wild type+empty plasmid (NR158), 
∆secA2+empty plasmid (NR160), and complemented secA2 (NR172); (B) complemented secA2 
(NR172), ∆secA2+empty plasmid (NR160), secA2 K129R (NR178), 4S (NR236), and 24S (NR151).  
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Figure 2.2.  4S and 24S mutations are located within the secY promoter.  (A) Relative to 
the predicted translational start site of secY (indicated by start codon GTG), suppressor 4S 
(NR236) contains a 2 bp insertion between nucleotides -137 and -138.  Suppressor 24S (NR151) 
contains a single nucleotide polymorphism at nucleotide -134.  Suppressor mutations are boxed.  
Potential promoter -10 regions are shown in bold letters.  The M. smegmatis -10 region 
consensus sequence is shown as a sequence logo representing the frequency at which each 
nucleotide occurs (percentages indicated beneath each nucleotide, adapted from (27)).  
Drawing not to scale.  (B) Transcript 5’ ends identified upstream of secY.  Using primer R3, two 
species of secY transcript 5’ ends were amplified (see agarose gel inset) from RNA from the 
complemented secA2 strain (NR172).  Relative to the predicted translational start site of secY 
(GTG), the longer species has a 5’ end at nucleotides -129-127, and the shorter species has a 5’ 
end at nucleotide -75.  5’ end nucleotides are boxed.  Potential promoter -10 regions are shown 
in bold letters.  Amplified 5’ end products are represented by wavy lines.  
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Figure 2.3.  Suppressor mutations cause increased secY expression.  (A) secY transcript 
levels measured by quantitative RT-PCR, relative to rpoB transcript levels.  secY transcript level 
in the complemented secA2 strain is set to 1.  Data represents the mean of three biological 
replicates, and error bars represent standard error.  *Statistically different from the secA2 
K129R strain (p<0.001) by one-way ANOVA with Student-Newman-Keuls test.  Strains tested 
were: complemented secA2 (NR172), ∆secA2+empty plasmid (NR160), secA2 K129R (NR178), 4S 
(NR236), 24S (NR151), 7S (NR242), and 20B (NR260).  (B) LacZ fusion activity assays.  secY 
promoter regions plus 34 bp of secY coding sequence from wild type and suppressor strains 
were translationally fused to lacZ, and tested in wild type M. smegmatis mc2155.  Data 
represents the mean of six biological replicates, and error bars represent standard error.  
*Statistically different from “wild type promoter” strain (p<0.05) by one-way ANOVA on ranks 
with Student-Newman-Keuls test.  LacZ fusions tested were: no promoter (pCV125), wild type 
secY promoter (pLL11), 4S secY promoter (pLL8), and 24S secY promoter (pLL15).  
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Figure 2.4.  Suppressor mutations increase SecY protein levels relative to the secA2 
K129R strain.  Whole cell lysates and subcellular fractions were separated by SDS-PAGE and SecY 
protein detected by western blotting.  All samples were equally loaded.  WCL – whole cell lysate, 
ENV – pellet fraction containing cell envelope, SOL – soluble fraction containing cytoplasm.  
Strains tested were: complemented secA2 (NR172), ∆secA2+empty plasmid (NR160), secA2 
K129R (NR178), 4S (NR236), and 24S (NR151).  
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Figure 2.5.  Increased SecY levels are sufficient to suppress secA2 K129R.  Integrating 
plasmids containing secY under the control of the wild type promoter or the 4S promoter were 
added to the secA2 K129R strain and tested for azide sensitivity, colony size on Mueller-Hinton 
agar, and SecY protein level.  Strains tested were: 4S suppressor+empty plasmid (NR236+pLL2), 
secA2 K129R+empty plasmid (NR178+pLL2), secA2 K129R+4S secY (NR178+pLL23), secA2 
K129R+WT secY (NR178+pLL21).  (A) Azide sensitivity and Mueller-Hinton agar growth 
phenotypes.  Average azide inhibition is calculated by measuring the diameter of the zone of 
azide inhibition as a percentage of the plate diameter and is the mean of three biological 
replicates.  *Statistically different from secA2 K129R strain (p<0.001) by one-way ANOVA with 
Student-Newman-Keuls test.  (B) Whole cell lysates separated by SDS-PAGE and SecY protein 
detected by western blotting.  All samples were equally loaded.  
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Figure 2.6.  Additional extragenic suppressors increase SecY protein levels, but not secY 
transcript levels.  Strains tested were: complemented secA2 (NR172), ∆secA2+empty plasmid 
(NR160), secA2 K129R (NR178), 4S (NR236), 24S (NR151), 29S (NR154), 33S (NR155), 33B 
(NR156), 1S (NR230), 3S (NR234), and 10S (NR248).  (A) Azide sensitivity and Mueller-Hinton 
agar growth phenotypes.  Average azide inhibition is calculated by measuring the diameter of 
the zone of azide inhibition as a percentage of the plate diameter and is the mean of two to four 
biological replicates.  *Statistically different from secA2 K129R strain (p<0.001) by one-way 
ANOVA with Student-Newman-Keuls test.  (B) Cell envelope fractions separated by SDS-PAGE 
and SecY protein detected by western blotting.  All samples were equally loaded.  (C) secY 
transcript levels measured by quantitative RT-PCR, relative to rpoB transcript levels.  The secY 
transcript level for the secA2 K129R strain is set to 1.  Data represents the mean of six biological 
replicates, and error bars represent standard error.  No statistical differences by one-way 
ANOVA.  
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Figure 2.7.  SecA1 depletion does not affect SecY and is required for SecA2-dependent 
protein export.  (A) Whole cell lysates and subcellular fractions were separated by SDS-PAGE 
and SecA1, SecY, and Msmeg_1712-HA proteins detected by western blotting.  All samples were 
equally loaded.  WCL – whole cell lysate, CW – pellet fraction containing cell wall, MEM – pellet 
fraction containing cell membrane, SOL – soluble fraction containing cytoplasm.  Strains tested 
were: “- revTetR” (JM693+pHSG85) and “+ revTetR” (JM693+pNR55).  Each strain was tested in 
the presence (+ Atc) or absence (- Atc) of 1200 ng/mL anhydrotetracycline.  SecA1 depletion 
occurs when both revTetR and Atc are present.  (B) Msmeg_1712-HA localization was 
quantitated from western blots as in (A).  WCL was calculated by adding CW+MEM+SOL and 
setting to 100%.  Subcellular fractions (CW, MEM, and SOL) are presented as a percentage of the 
total WCL value.  Data represents the mean of three biological replicates, and error bars 
represent standard error.  *Statistically different from the “-revTetR” strain (p<0.001) by t-test.  
Strains tested were: “- revTetR” (JM693+pHSG85) and “+ revTetR” (JM693+pNR55).  Each strain 
was tested in the presence (+ Atc) of 1200 ng/mL anhydrotetracycline.  
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Figure 2.8.  Overexpression of M. smegmatis SecA1 does not cause SecY degradation.  
Strains tested were: wild type+empty plasmid (mc2155+pMV261.kan), wild type+SecA1 
overexpression (mc2155+pYUB544), ∆secA2+empty plasmid (NR116+pMV261.kan), and 
∆secA2+SecA1 overexpression (NR116+pYUB544).  (A) Azide sensitivity and Mueller-Hinton agar 
growth phenotypes.  Average azide inhibition is calculated by measuring the diameter of the 
zone of azide inhibition as a percentage of the plate diameter and is the mean of one to three 
biological replicates.  (B) Whole cell lysates separated by SDS-PAGE and SecA1 and SecY proteins 
detected by western blotting.  All samples were equally loaded.  When quantitated from three 
biological replicates of each strain and normalized to the cytoplasmic control protein SigA, no 
significant differences in SecY protein level were detected (data not shown).  
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CHAPTER 3 

Identification of Mycobacterium smegmatis secA2 K129R Suppressor 

Mutations in Gene msmeg_16841 

 

All bacteria contain the conserved Sec pathway, which is responsible for transporting 

proteins across the cytoplasmic membrane.  The SecA motor protein is an ATPase that plays a 

central role in this process.  In mycobacteria, there are two SecA proteins.  The canonical SecA 

responsible for the majority of protein export is referred to as SecA1 and a second SecA protein, 

referred to as SecA2, is responsible for exporting a small subset of proteins.  SecA2-dependent 

export is also required for virulence of the pathogen Mycobacterium tuberculosis.  Our previous 

work (Chapter 2) suggests that SecA2-dependent proteins of the model organism 

Mycobacterium smegmatis are exported through the canonical SecYEG channel with the 

assistance of SecA1.  Despite this advance in our understanding of the mycobacterial SecA2 

pathway, the mechanistic details of how SecA2 drives protein export across the cytoplasmic 

membrane remain poorly understood.  Here, we analyzed suppressors of a dominant negative 

M. smegmatis secA2 mutant (secA2 K129R) in order to improve our understanding of the SecA2 

pathway.  Eight extragenic suppressor mutations were identified as mapping to conserved 

hypothetical gene msmeg_1684.  While the function of Msmeg_1684 is unknown, our results 

                                                           
1
Contributing authors: Artur Romanchuk and Corbin Jones (Department of Biology, The University of North Carolina at 

Chapel Hill, Chapel Hill, NC 27599-3280); Nathan Rigel, Brittany Miller, Brandon Anjuwon-Foster, Chelsea Moriarty, 
Courtney Sutphen, Meagan Martin, and Miriam Braunstein (Department of Microbiology and Immunology, School of 
Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7290) 



63 
 

suggest that it participates directly in the mycobacterial SecA2-dependent protein export 

pathway. 

 

Introduction 

Mycobacteria use a variety of systems to export proteins to the bacterial cell surface 

and extracellular environment, including the widely conserved Sec and Tat systems as well as 

the specialized SecA2 and ESX systems (1).  Many of the proteins exported by these systems are 

important for either basic cellular processes or virulence mechanisms, and are therefore critical 

to the ability of Mycobacterium tuberculosis to cause disease. 

The canonical Sec pathway is conserved in all bacteria and is responsible for the 

majority of housekeeping protein export.  In this system, SecY, SecE, and SecG form a 

membrane-embedded channel complex through which unfolded proteins are able to cross the 

membrane (2, 3).  The cytoplasmic motor protein SecA pushes exported proteins through the 

SecYEG channel using the energy provided by repeated rounds of ATP binding and hydrolysis (4, 

5).  However, mycobacteria and also some Gram-positive bacteria are unique in that they 

contain two functionally distinct SecA proteins (6-12).  In these bacteria, the housekeeping SecA 

protein (SecA1) is essential and performs the bulk of protein export, whereas the accessory SecA 

protein (SecA2) is generally non-essential (13) and is required for the export of a specific subset 

of proteins. 

In M. tuberculosis, the SecA2 protein export system is important for virulence (14).  M. 

tuberculosis is a pathogen that survives and grows in macrophages, and the SecA2-dependent 

protein export system is necessary for M. tuberculosis to block phagosome acidification and 



64 
 

maturation, which is important for intracellular growth (15).  However, the mechanism of 

SecA2-dependent protein export is poorly understood.  Some SecA2 systems include a second 

copy of the major Sec channel component SecY, called SecY2, which is believed to provide the 

channel for SecA2-dependent protein export (11-13).  However, no SecY2 protein is present in 

mycobacteria.  As presented in Chapter 2, we demonstrated a genetic relationship between the 

SecA2 protein of the model mycobacterium Mycobacterium smegmatis and the canonical SecY 

protein.  Our data support a model in which the M. smegmatis SecA2 system works with the 

housekeeping Sec pathway to export its select set of proteins through the SecYEG translocon.  

However, it remains unknown whether additional SecA2-specific components participate in 

SecA2-dependent export.  In fact, some SecA2 export systems of other bacteria are known to 

include additional protein components (i.e. components other than SecA2 and SecY2 proteins) 

important for tailoring the pathway to export a specific subset of proteins.  For example, 

“SecA2-SecY2” type systems typically export glycosylated proteins.  These systems contain 

proteins called Asps that assist in protein export, as well as GtfA and GtfB proteins that are 

important for glycosylation of SecA2-dependent proteins prior to export (16).  Glycosylation 

does not seem to be the defining feature of proteins exported by the “SecA2-only” type 

mycobacterial systems, but other specific features of the mycobacterial SecA2-dependent 

proteins may require additional export machinery components. 

To improve our understanding of the mycobacterial SecA2 export system, we performed 

a suppressor analysis using a dominant negative allele of M. smegmatis secA2, referred to as 

secA2 K129R.  This allele encodes a variant of SecA2 containing a substitution in the Walker box 

motif, which is important for ATP binding and hydrolysis.  The resulting SecA2 K129R protein is 

unable to hydrolyze ATP, and therefore is non-functional for SecA2-dependent protein export 

(17, 18).  In addition, SecA2 K129R exhibits severe azide sensitivity and growth on Mueller-
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Hinton agar defects, even in the presence of wild type SecA2 protein (18).  This dominant 

negative phenotype, along with the fact that the phenotypes of the secA2 K129R strain are more 

severe than those of a secA2 deletion mutant (18), suggests that SecA2 K129R, though non- 

functional, is still able to interact with its normal binding partners and interferes with their 

function.  SecA2 K129R also undergoes a shift in localization towards the membrane-containing 

cell envelope fraction, whereas wild type SecA2 is primarily located in the cytoplasm (18).  

Therefore, SecA2 K129R would appear to be locked in an interaction at the cell membrane.  

These features make the secA2 K129R allele useful as a starting point for suppressor analysis.  

The utility of this suppressor approach was demonstrated in Chapter 2 by identifying two 

suppressor mutations in the secY promoter.  Examination of these two suppressors showed that 

the presence of SecA2 K129R results in degradation of SecY and that increased secY expression 

is able to suppress the secA2 K129R phenotypes.  These findings support a model in which SecA2 

K129R interacts with the housekeeping Sec pathway and causes jamming of the SecY channel, 

leading to the drastic phenotypes of the secA2 K129R strain. 

In Chapter 2 we characterized two extragenic suppressors; here, we characterized eight 

additional extragenic suppressors of secA2 K129R.  Whole genome sequencing of these 

suppressor mutants demonstrated that all eight had mutations affecting the same gene, 

msmeg_1684.  Two of these suppressors contain very large chromosomal deletions including 

msmeg_1684, while the other six suppressors contain various mutations directly in or adjacent 

to msmeg_1684.  The function of Msmeg_1684 is unknown, but msmeg_1684-like genes co-

occur with secA2 genes in actinomycetes and, similar to SecA2, the Msmeg_1684-like protein 

Rv3311 is predicted to be important for growth of M. tuberculosis in macrophages (19).  The 

data presented here argues for a model in which Msmeg_1684 is directly involved in the SecA2-

dependent protein export pathway. 
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Materials and Methods 

Azide sensitivity assays.  Percent azide inhibition was measured as described previously 

(Chapter 2). 

Subcellular fractionation and western blotting.  Whole cell lysates and subcellular 

fractions were prepared and analyzed by western blotting as described previously (Chapter 2).  

Proteins were detected using rabbit polyclonal antisera against SecA2 (20), SecA1 (20), and SigA 

(gift of Dr. Murty Madiraju), at dilutions of 1:25,000, 1:50,000, and 1:20,000 respectively. 

Whole genome and directed sequencing.  Genomic DNA was isolated (as described 

previously (21)) from the 7S (NR242), 20B (NR260), 29S (NR154), 33S (NR155), 33B (NR156), 1S 

(NR230), 3S (NR234), and 10S (NR248) suppressor strains and submitted for whole genome 

sequencing at the High-Throughput Sequencing Facility at the University of North Carolina at 

Chapel Hill. 

For strains 7S and 20B, sequencing was performed and analyzed as described previously 

(Chapter 2).  Briefly, sequencing was performed at the High-Throughput Sequencing Facility at 

the University of North Carolina at Chapel Hill using Illumina GA II technology with 36 bp single-

end reads.  When reads were aligned to the M. smegmatis mc2155 reference genome (mc2155 is 

the parent strain to all strains described here) the resulting average read coverage was 16-20.  

Relative to the reference genome, a total of 53 mutations were identified in suppressor 7S and 

63 mutations were identified in suppressor 20B.  Many of these mutations were also identified 

in other mc2155-derived strains sequenced in our laboratory and were discarded as background 

mutations (i.e. mutations already present in our M. smegmatis parent strain).  The remaining 

mutations include 5 mutations appearing unique to the 7S strain and 8 mutations appearing 

unique to the 20B strain. 
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For strains 29S, 33S, 33B, 1S, 3S, and 10S, multiplex sequencing was performed using 

Illumina HiSeq technology with 50 bp single-end reads.  Reads were aligned to the M. 

smegmatis mc2155 reference genome (NCBI RefSeq accession number NC_008596.1) using 

Geneious version 5.5.6 (Biomatters, available from http://www.geneious.com/), resulting in an 

average coverage ranging between 171 and 251 across the various strains.  Single nucleotide 

polymorphisms, insertions, and deletions were located using Geneious, resulting in a list of the 

total mutations identified in each strain: 162 mutations in suppressor 29S, 168 in 33S, 161 in 

33B, 165 in 1S, 161 in 3S, and 160 in 10S.  The vast majority of these mutations are present in all 

6 sequenced strains, and are very likely to be background mutations.  Therefore, those 

mutations not identified in all 6 strains were examined further.  Four mutations were identified 

in either 3 or 4 strains each.  In previous sequencing projects, identical mutations identified in 

most but not all strains were checked by direct sequencing and were always found to be present 

in all strains; therefore, these 4 mutations are also likely to be background mutations.  The 

remaining mutations include 2 mutations appearing common to the 1S and 3S strains, 6 

mutations appearing unique to the 29S strain, 9 in 33S, 3 in 33B, 8 in 1S, 5 in 3S, and 5 in 10S. 

To assess specific genes or regions of interest, PCR amplified products were directly 

sequenced by Eton Bioscience, Inc. or Genewiz, Inc. 

M. smegmatis colony PCR.  M. smegmatis cell extracts were prepared by suspending a 

loop-full of the desired M. smegmatis strain (taken from an agar plate) in 100 µL of 0.1% Triton 

X-100 and boiling for 10 minutes.  Extracts were then cooled on ice and cell debris was pelleted 

for 10 minutes in a microcentrifuge.  PCR was performed using 5 µL of the resulting supernatant 

as the template for a 50 µL PCR reaction. 
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Plasmid construction.  Plasmids used in this study are described in Table 3.1 and 

primers are described in Table 3.2.  In all cases, newly constructed plasmids were sequenced.   

All plasmids used for unmarked gene deletion by two-step allelic exchange were built 

into the pMP62 suicide plasmid and were created by the same general strategy.  Regions of 

approximately 500-1000 bp flanking the left and right ends of each desired deletion were 

amplified by PCR, fused together, and then sub-cloned into plasmid pMP62. 

The suicide plasmid used to delete genes msmeg_1704-1712, pMEM4, was created by 

PCR amplifying the regions immediately flanking the left and right ends of the desired deletion.  

Splice overlap extension PCR (22) was then used to fuse the two flanking regions together into 

one PCR product.  This product was cloned into pCR2.1-TOPO (Invitrogen), creating plasmid 

pMEM3.  The combined flanking regions were then cut from pMEM3 using EcoRV, and ligated 

into EcoRV-digested pMP62, creating pMEM4. 

The suicide plasmid used to delete genes msmeg_1700-1726, pCS4, was created by PCR 

amplifying the regions immediately flanking the left and right ends of the desired deletion.  Each 

product was cloned into pCR2.1-TOPO (Invitrogen), creating plasmids pCS1 and pCS2, 

respectively.  The left flanking region was cut from pCS1 using HindIII and NheI, and ligated into 

HindIII/NheI-digested pCS2, creating pCS3 and placing the left and right flanking regions 

adjacent to one another.  The combined flanking regions were then cut from pCS3 using EcoRV, 

and ligated into EcoRV-digested pMP62, creating pCS4. 

The suicide plasmid used to delete genes msmeg_1692-1726, pLL13, was created by PCR 

amplifying the region immediately flanking the left end of the desired deletion.  This product 

was cloned into pCR2.1-TOPO (Invitrogen), creating plasmid pLL4.  The left flanking region was 

cut from pLL4 using HindIII and NheI, and ligated into HindIII/NheI-digested pCS3.  HindIII/NheI 
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digestion of pCS3 releases the left flank previously contained in this plasmid, but maintains the 

right flanking region.  This created pLL12 and placed the left and right flanking regions adjacent 

to one another.  The combined flanking regions were then cut from pLL12 using EcoRV, and 

ligated into EcoRV-digested pMP62, creating pLL13. 

The suicide plasmid used to delete genes msmeg_1677-1726, pLL14, was created by PCR 

amplifying the region immediately flanking the left end of the desired deletion.  This product 

was cloned into pCR2.1-TOPO (Invitrogen), creating plasmid pLL3.  The left flanking region was 

cut from pLL3 using HindIII and NheI, and ligated into HindIII/NheI-digested pCS3.  HindIII/NheI 

digestion of pCS3 releases the left flank previously contained in this plasmid, but maintains the 

right flanking region.  This created pLL7 and placed the left and right flanking regions adjacent to 

one another.  The combined flanking regions were then cut from pLL7 using EcoRV, and ligated 

into EcoRV-digested pMP62, creating pLL14. 

The suicide plasmid used to delete genes msmeg_1677-1692, pCM2, was created by PCR 

amplifying the regions immediately flanking the left and right ends of the desired deletion.  Each 

product was cloned into pCR2.1-TOPO (Invitrogen), creating plasmids pLL27 and pLL29, 

respectively.  The left flanking region was cut from pLL27 using HindIII and NheI, and ligated into 

HindIII/NheI-digested pLL29, creating pLL30 and placing the left and right flanking regions 

adjacent to one another.  The combined flanking regions were then cut from pLL30 using NdeI, 

and ligated into NdeI-digested pMP62, creating pCM2. 

The plasmid used to express secA2 K129R from its native promoter, pLL36, was created 

by cutting the secA2 K129R allele along with its native promoter from pNR21 (23) using NotI and 

EcoRI.  This fragment was then ligated into NotI/EcoRI-digested pMV306.kan, creating pLL36. 
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The suicide plasmid used to delete gene msmeg_1684, pLL50, was created by PCR 

amplifying the regions immediately flanking the left and right ends of the desired deletion.  Each 

product was cloned into pCR2.1-TOPO (Invitrogen), creating plasmids pLL43 and pLL44, 

respectively.  The left flanking region was cut from pLL43 using HindIII and NheI, and ligated into 

HindIII/NheI-digested pLL44, creating pLL49 and placing the left and right flanking regions 

adjacent to one another.  The combined flanking regions were then cut from pLL49 using NdeI, 

and ligated into NdeI-digested pMP62, creating pLL50. 

Bacterial strains and culture conditions.  M. smegmatis strains used in this study are 

described in Table 3.3, and were grown as described previously (Chapter 2).  Escherichia coli 

strains were grown at 37°C using lysogeny broth media (otherwise known as Luria-Bertani 

media).  Antibiotics kanamycin (40 μg/mL) and hygromycin B (150 μg/mL), and carbenicillin (for 

ampR plasmids, 100 µg/mL) were added as needed.  When hygromycin B and carbenicillin were 

used together (for pMP62-based plasmids), their concentrations were adjusted to 50 µg/mL 

each. 

Gene deletion by two-step allelic exchange.  Unmarked deletion strains were created 

by two-step allelic exchange, as described previously (10, 24, 25).  Briefly, suicide plasmids 

containing a hygromycin-resistance selectable marker, a sacB counter-selectable marker, and 

flanking regions for the genes to be deleted were transformed into M. smegmatis by 

electroporation.  Transformants in which the suicide plasmid recombined into the genome (by 

homologous recombination into one of the flanking regions) were selected by plating on media 

containing hygromycin B.  Hygromycin-resistant transformants were grown to saturation, 

diluted 1:100 in media lacking hygromycin B, and then grown overnight at 37°C.  Bacteria in 

which a second recombination event occurred, resulting in loss of the sacB marker, were 
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selected by plating on 7H10 agar supplemented with 0.2% glucose and 4.5% sucrose.  Sucrose-

resistant colonies were patched on 7H10 agar +/- hygromycin B to verify loss of the hygromycin 

resistance gene.  The resulting strains were assessed for the desired chromosomal deletion first 

by PCR and subsequently by southern blot.  Because some of the desired deletions were very 

large and technically challenging to create, they were built by sequentially deleting smaller 

regions of 8-17 kbp at a time.  In general, deletion strains were created in the wild type (mc2155) 

background to assess the phenotypes of each deletion in isolation.  In addition, deletion strains 

were created in combination with a secA2 deletion.  The secA2 K129R allele (pNR25) was then 

introduced into these double deletion strains to test the ability of each strain to suppress secA2 

K129R phenotypes.   

The msmeg_1704-1712 deletion strain was created by allelic exchange using suicide 

plasmid pMEM4 in the wild type M. smegmatis strain mc2155, resulting in strain LL036.  The 

secA2 deletion was then introduced into this strain (as achieved previously in the secA2 mutant 

NR116) using suicide plasmid pNR6, resulting in strain LL062. 

The msmeg_1700-1726 deletion strain was created by allelic exchange using plasmid 

pCS4 in strain LL036, resulting in strain LL051.  The secA2 deletion was then re-created in this 

strain using suicide plasmid pNR6, resulting in strain LL066. 

The msmeg_1692-1726 deletion strain was created by allelic exchange using plasmid 

pLL13 in strain LL051, resulting in strain LL082.  The secA2 deletion was then re-created in this 

strain using suicide plasmid pNR6, resulting in strain LL089. 

The msmeg_1677-1726 deletion strain was created by allelic exchange using plasmid 

pLL14 in strain LL082, resulting in strain LL129, and in strain LL089, resulting in strain LL132. 
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The msmeg_1677-1692 deletion strain was created by allelic exchange using plasmid 

pCM2 in strain mc2155, resulting in strain CM14, and in the secA2 mutant strain NR116, 

resulting in strain CM11. 

The msmeg_1684 deletion strain was created by allelic exchange using plasmid pLL50 in 

the secA2 mutant strain NR116, resulting in strain BAF1. 

Quantitative RT-PCR.  RNA isolation and quantitative RT-PCR were performed as 

described previously (Chapter 2).  For quantitative RT-PCR on secA2, msmeg_1677, 

msmeg_1682, and msmeg_1683, products were amplified from the 5’ ends of each gene 

sequence, as well as from the rpoB gene sequence.  Starting quantity of each transcript was 

calculated relative to DNA standards, and transcripts of each gene were normalized to rpoB 

transcripts (as a control) in each sample (26). 

 

Results 

Spontaneous suppressor mutations alleviate the severe phenotypes of the secA2 

K129R allele.  The M. smegmatis secA2 deletion mutant exhibits increased sensitivity to azide 

and a moderate growth defect on Mueller-Hinton agar, relative to the wild type mc2155 strain 

(10).  These phenotypes can be complemented by adding an integrating plasmid containing the 

wild type secA2 allele expressed from the hsp60 promoter (Fig. 2.1A, Chapter 2) (18).  However, 

addition of a comparable plasmid containing the secA2 K129R mutant allele expressed from the 

hsp60 promoter cannot complement the secA2 deletion phenotypes.  Instead, the non-

functional SecA2 K129R protein, which contains a substitution in the Walker box preventing ATP 

binding and hydrolysis, causes more severe phenotypes than observed for the secA2 deletion 
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strain (Fig. 3.1) (18).  The secA2 K129R allele is also dominant negative, exhibiting phenotypes in 

the presence of a wild type secA2 allele (18). 

As described in Chapter 2, suppressor mutations spontaneously arise in the secA2 K129R 

strain and were collected for further study.  Throughout this study, we routinely compared 

these suppressor strains to the complemented strain expressing secA2 from the hsp60 

promoter, in order to compare strains in which all secA2 alleles are expressed from the same 

promoter.  We chose two extragenic suppressor strains, 7S (NR242) and 20B (NR260), for 

identification of suppressor mutations.  Each of these suppressors exhibits azide resistance and 

growth on Mueller-Hinton agar similar to the secA2 deletion strain (Fig. 3.1), and are therefore 

referred to as “strong” suppressors.  In contrast, some other suppressors, such as the 4S and 

24S suppressors studied in Chapter 2, exhibit phenotypes that are “intermediate” between the 

phenotypes of the secA2 deletion strain and the secA2 K129R mutant strain.  Suppressors 7S and 

20B also exhibit normal SecA2 K129R protein levels (i.e. unchanged relative to the parent secA2 

K129R strain) and normal secY transcript levels (Fig. 2.3, Chapter 2). 

Suppressors 7S and 20B affect subcellular localization of SecA1 and SecA2.  In Chapter 

2, we described two suppressors (4S and 24S) with intermediate suppressor phenotypes that 

partially alleviate the effects of the secA2 K129R allele by increasing expression of secY.  Because 

suppressors 7S and 20B exhibit stronger suppressor phenotypes than 4S and 24S, we 

hypothesized that they might completely prevent the detrimental effects of the secA2 K129R 

allele.  One effect of this allele is that the localization of the SecA2 K129R protein shifts towards 

the membrane-containing cell envelope fraction, relative to wild type SecA2, which is found in 

the cytoplasm (18).  Therefore, we evaluated the subcellular localization of SecA2, and also 

SecA1, in these suppressor strains (Fig. 3.2). 
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As seen previously (18), in the complemented secA2 strain (NR172) SecA1 is found 

equally distributed between the cytoplasm-containing soluble fraction and the cell envelope-

containing pellet fraction.  This is consistent with the localization of the canonical SecA protein 

of E. coli (27).  In contrast, SecA2 is found predominantly in the soluble fraction of NR172 (18).  

In the presence of SecA2 K129R (strain NR178), the percentage of both SecA1 and SecA2 in the 

cell envelope-containing pellet fraction increased, indicating increased interaction of both 

proteins with the membrane (or membrane-bound proteins) in the secA2 K129R strain.  Unlike 

the SecA1 and SecA2 localization patterns seen in the secA2 K129R strain, suppressors 7S and 

20B exhibited localization patterns very similar to what is seen in the complemented secA2 

strain.  In other words, the 7S and 20B mutations that suppress the secA2 K129R plate 

phenotypes also restore normal localization of both SecA1 and SecA2 proteins.  For comparison, 

suppressor 4S (NR236) was also tested.  In the suppressor 4S strain, the localization patterns of 

SecA1 and SecA2 was also altered in comparison to what was seen in the secA2 K129R strain.  

However, in this case, the percent of membrane-bound SecA1 and SecA2 was not completely 

reduced to the level seen in the complemented secA2 strain.  As discussed in Chapter 2, 

suppressor 4S is an intermediate suppressor that acts by increasing secY expression.  This mode 

of suppression would not be expected to prevent the interaction of SecA2 K129R with the 

housekeeping Sec system, but it would compensate for the detrimental effects of that 

interaction by increasing the available pool of SecY channels.  Thus, it is not surprising that 4S 

would exhibit only a partial effect on localization of SecA1 and SecA2.  In contrast, the complete 

reversal of SecA1/SecA2 localization exhibited in suppressors 7S and 20B suggests that these 

strong suppressors may act to completely prevent the detrimental effects of SecA2 K129R, 

thereby preventing the shift in localization seen in the secA2 K129R strain. 
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Suppressors 7S and 20B contain large overlapping chromosomal deletions.  In 

preparation for whole genome sequencing to identify suppressor mutations, we first verified 

that suppressors 7S and 20B contained intact genes for each of the housekeeping Sec system 

components.  It was previously determined that each of these strains contains normal secA2 

K129R, secA1, and secY gene sequences (23).  In order to rule out the possibility of suppressor 

mutations occurring in either secE or secG, we sequenced each of these genes from suppressor 

strains 7S and 20B as well as the parent strain, the secA2 K129R mutant.  In all cases, the sec 

gene sequences matched those of the published M. smegmatis mc2155 genome. 

After confirming the absence of any sec gene mutations in strains 7S and 20B, we 

performed whole genome sequencing on both strains.  Alignment of sequence reads to the M. 

smegmatis mc2155 reference genome resulted in sequence coverage sufficient to identify 

mutations in both genomes.  To reduce the identification of background mutations, we 

compared the consensus sequences of 7S and 20B to those of other mc2155-derived strains 

sequenced in our laboratory (data not shown).  This allowed us to generate a list of 5 unique 

mutations in the 7S suppressor genome, and 8 unique mutations in the 20B suppressor genome.  

Interestingly, one of the unique mutations from each strain was a very large deletion, 

encompassing about 51 kbp in suppressor 7S (genes msmeg_1678-1726, bp 1769908-1820883) 

and about 43 kbp in suppressor 20B (genes msmeg_1684-1726, bp 1777694-1820871).  These 

deletions were characterized by extremely low to zero sequence coverage throughout the 

genomic region that was deleted (Fig. 3.3).  The deletions in 7S and 20B are largely overlapping; 

however, the two deletions arose independently of one another, as these two suppressor 

strains originated from separate cultures of the secA2 K129R strain and differ at the left end of 

the deletions. 
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To verify the presence of these large deletions in the 7S and 20B suppressors, we 

attempted to PCR amplify 3 different regions of about 1000 bp each within the large deletions – 

one encompassing the right end of the large deletions, one in msmeg_1712, and one in 

msmeg_1704 (Fig. 3.4).  Each of these PCR products was successfully amplified from genomic 

DNA purified from both the wild type strain and the secA2 K129R strain (NR178, parent strain to 

7S and 20B), but could not be amplified from suppressors 7S and 20B.  As a control, a region of 

about 700 bp in secE and a region of about 500 bp in secG could be PCR amplified from all four 

strains.  These results confirm that large deletions are indeed present in suppressors 7S and 20B, 

while the left end of these deletions was confirmed later (below). 

Suppressor NR123 also contains a large deletion overlapping those in suppressors 7S 

and 20B.  Upon identification of the overlapping  deletions in suppressors 7S and 20B, we 

wanted to determine whether similar mutations occurred in other extragenic suppressors.  To 

accomplish this, we attempted to colony PCR amplify the same 3 regions discussed above from 

other suppressors.  One additional suppressor with an overlapping deletion, strain NR123, was 

identified among a group of 7 suppressors arising from an M. smegmatis strain expressing the 

M. tuberculosis secA2 K115R allele (comparable to the M. smegmatis secA2 K129R allele). 

As discussed above, one PCR test region was located to encompass the right end of the 

large deletions, which is in approximately the same location in both 7S and 20B suppressors.  

This test PCR product could not be amplified from suppressor strain NR123, therefore the right 

end of the deletion in this strain extends at least as far as in 7S and 20B.  To assess the left end 

of the deletion in NR123, we attempted to colony PCR amplify a region of about 850 bp in 

msmeg_1684, the left-most gene deleted in suppressor 20B.  While this region could be 

successfully amplified from both the wild type and secA2 K129R strains, it could not be amplified 
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from suppressor NR123 (or from suppressors 7S and 20B, as expected).  Therefore, the left ends 

of all three deletions were confirmed to extend at least as far as msmeg_1684 (Fig. 3.4). 

Fifty genes are deleted in suppressors 7S and 20B.  Between the two deletions found in 

strains 7S and 20B, fifty genes are deleted (Fig. 3.4 and Table 3.4).  Forty-three of these genes 

are deleted in both strains.  Of the remaining seven genes deleted only in suppressor 7S, six are 

transcribed in a downstream orientation relative to the left end of the smaller deletion in 

suppressor 20B and therefore may be subject to polar effects on their expression, resulting from 

the nearby deletion site. 

Several genes worth noting are located within these large deletions.  Foremost, genes 

msmeg_1704 and msmeg_1712 encode the only two known M. smegmatis SecA2-dependent 

exported proteins (28).  In addition, four of the affected genes are predicted to encode amidases 

(msmeg_1679, msmeg_1686, msmeg_1702, and msmeg_1703).  Some SecA2-dependent 

exported proteins of Listeria monocytogenes are amidases (29, 30).  However, these L. 

monocytogenes amidases contain signal peptides, while none of the M. smegmatis amidase 

genes contain predicted signal peptides or transmembrane domains, and are therefore not 

predicted to be exported (Table 3.4).  None of the other genes affected in the 7S and 20B 

deletions have any known connection to protein export pathways, though some are predicted 

to be exported proteins themselves.  However, it is also interesting to note the presence of 

several genes at the right end of the 7S and 20B deletions that are annotated to encode 

transposase enzymes (msmeg_1716-1721 and msmeg_1725-1726).  These genes could 

conceivably have played a role in initiating the deletion of this large region of the genome. 

Deletion of msmeg_1704 and msmeg_1712 is not responsible for suppression.  

Because the large deletions occurred in three independent suppressors, we hypothesized that 
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they represented the mutations responsible for suppression of secA2 K129R phenotypes in 

these strains.  Therefore, we next began to narrow down the deletion regions in an effort to 

determine the minimum deletion required to recreate the suppressor phenotype (Fig. 3.4).  The 

fact that msmeg_1704 and msmeg_1712, encoding the only two known SecA2-dependent 

exported proteins in M. smegmatis (28), are located within the large deletions was particularly 

striking to us.  This finding suggested a model in which elimination of the substrates of the 

SecA2 export system could suppress the severe phenotypes caused by SecA2 K129R.  If SecA2 

K129R must first engage a protein destined for export before it moves to and interferes with the 

membrane-associated export machinery, then elimination of SecA2-dependent exported 

proteins might prevent this detrimental interaction from occurring.  To test this hypothesis, we 

first created a strain in which genes msmeg_1704-1712 were deleted.  In a wild type background 

(LL036), this deletion has no effect on azide resistance or growth on Mueller-Hinton agar (data 

not shown).  Next, we deleted genes msmeg_1704-1712 in a secA2 deletion background (LL062) 

and then introduced the secA2 K129R allele (plasmid pNR25).  By introducing the secA2 K129R 

allele at the last step, we avoided the accumulation of new suppressor mutations prior to 

completion of the final strain.  Finally, we assessed the ability of this deletion to suppress secA2 

K129R phenotypes (Fig. 3.5).  Deletion of genes msmeg_1704-1712 did not suppress secA2 

K129R phenotypes, suggesting our initial model was incorrect. 

Large deletions can be narrowed down to a 15-gene deletion capable of suppression.  

Because deletion of msmeg_1704-1712 did not suppress secA2 K129R, we proceeded to create 

successively larger deletions, eliminating genes msmeg_1700-1726 and then msmeg_1692-1726 

(Fig. 3.4).  Because of their large size, these deletions were technically challenging to construct.  

Therefore, each deletion was constructed from the previous smaller deletion strain, effectively 

deleting 8-17 kbp at a time.  In a wild type background (strains LL051 and LL082 respectively), 
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these deletions have no effect on azide resistance or growth on Mueller-Hinton agar (data not 

shown).  Next we created strains carrying these same deletions along with a secA2 deletion 

(strains LL066 and LL089, respectively) and subsequently introduced the secA2 K129R allele 

(plasmid pNR25).  Both the msmeg_1700-1726 and msmeg_1692-1726 deletions did not 

suppress secA2 K129R phenotypes. 

Having failed to observe suppression with these deletions, we constructed an even 

larger deletion spanning msmeg_1677-1726 (strain LL129 in wild type background and strain 

LL132 in secA2 deletion background), which essentially recreates the deletion found in 

suppressor 7S.  Fortunately, this largest deletion suppressed the phenotypes of the secA2 K129R 

allele (Fig. 3.5), which demonstrates that the large deletions found in suppressors 7S and 20B 

can indeed account for the observed suppression of secA2 K129R. 

Because the msmeg_1677-1726 deletion suppressed secA2 K129R while the 

msmeg_1692-1726 deletion could not, we hypothesized that the deleted gene responsible for 

the suppressor phenotype resides somewhere in the msmeg_1677-1691 region.  To test this 

hypothesis, we constructed a strain with a deletion of msmeg_1677-1692 (Fig. 3.5) in a secA2 

deletion background (CM11), and then introduced the secA2 K129R allele (plasmid pNR25) into 

this strain.  In fact, the msmeg_1677-1692 deletion was capable of suppressing secA2 K129R 

phenotypes (Fig. 3.5).  This result indicated that the deleted gene(s) responsible for the 

suppressor phenotype is located within genes msmeg_1677-1692, a region of 15 genes. 

Suppressor 20B deletion does not prevent expression of downstream genes, 

narrowing down the suppressing region to a suite of 9 genes.  The finding that the 15-gene 

deletion (CM11, Δmsmeg_1677-1692) was capable of suppressing secA2 K129R drastically 

reduced the number of genes we needed to consider as possibly being responsible for the 
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suppressor phenotype (Fig. 3.6).  However, of the remaining 15 genes, none stood out as having 

the potential to be involved in protein export.  In an effort to narrow down this list of genes 

further, we next examined a group of six genes that are deleted in suppressor 7S but not in 

suppressor 20B (msmeg_1677-1683).  Because these six genes are transcribed in a downstream 

orientation relative to the left end of the 20B deletion, it was possible that, despite being 

present in suppressor 20B, they were not expressed due to polar effects.  Therefore, the 15-

gene deletion was engineered to include these six genes.  However, if expression of these genes 

is not prevented by the 20B deletion, then we could remove these genes from the list of genes 

under consideration as potentially responsible for suppression. 

Examination of genes msmeg_1677-1683 using a promoter prediction program 

(SoftBerry BPROM) revealed a likely promoter upstream of msmeg_1682 (Fig. 3.6).  In addition, 

genes msmeg_1677-1682 are closely spaced together on the chromosome (with the last codon 

of each gene overlapping the start codon of the following gene), suggesting they are likely 

transcribed as a single operon.  Therefore, we decided to assess expression of genes 

msmeg_1677 and msmeg_1682 as representative genes at the beginning and the end of this 5-

gene predicted operon.  The last of the six genes we wanted to examine, msmeg_1683, is not 

part of the predicted msmeg_1677-1682 operon and is also directly adjacent to the deletion in 

suppressor 20B.  Therefore, msmeg_1683 has a strong potential to be affected by the 20B 

deletion and we decided to separately evaluate its expression. 

Expression of each of these three genes (msmeg_1677, 1682, and 1683) was evaluated 

by quantitative RT-PCR, comparing suppressor strains 7S and 20B to the parent secA2 K129R 

strain (Fig. 3.7).  For each gene, transcripts were standardized to rpoB transcripts as a control, 

and the transcript level in the secA2 K129R strain was set to 1.  In all three cases, the gene 
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transcripts found in suppressor 7S were much lower than those found in the secA2 K129R strain.  

This was expected, as all three of these genes are deleted in suppressor 7S.  While a low amount 

of transcript was still detected in suppressor 7S for gene msmeg_1677, this was found to be 

caused by a non-specific transcript that was also amplified at a low level in these reactions.  In 

suppressor 20B, where all three genes are still present, the transcript levels of each gene are not 

reduced, but rather increased.  It is interesting that the presence of the deletion in suppressor 

20B increased expression of the neighboring genes (msmeg_1677-1683); however, because 

expression of these genes is increased rather than decreased, it is unlikely that any of these 

genes are involved in suppression of secA2 K129R.  Based on these results, we reasoned that the 

gene(s) responsible for the 7S and 20B suppression phenotype must be among nine genes: 

msmeg_1684-1692. 

Six extragenic suppressors contain mutations affecting msmeg_1684.  Six additional 

extragenic suppressors of M. smegmatis secA2 K129R were briefly examined in Chapter 2.  All of 

these suppressors exhibited normal SecA2 K129R protein levels and contained normal secA2 

K129R, secA1, and secY gene sequences (23), as well as normal secY promoter sequences 

(Chapter 2).  Interestingly, while these six suppressors exhibited increased SecY protein levels 

relative to the parent secA2 K129R strain, none exhibited changes in secY transcription like 

those seen in suppressors 4S and 24S (Fig. 2.6, Chapter 2).  These six suppressors do not contain 

large deletions like those found in suppressors 7S and 20B.  To further characterize these 

suppressors, we performed western blots to detect SecA1, SecA2, and SigA proteins (Fig. 3.8).  

As expected, all strains exhibit equal levels of the cytoplasmic control protein SigA.  In addition, 

all of the extragenic suppressors expressed SecA2 K129R to the same level seen in the parent 

secA2 K129R strain (as seen previously (23)) and all strains exhibited equal levels of SecA1 

protein. 
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In order to identify the mutations present in the six additional extragenic suppressor 

strains, we performed whole genome sequencing on all strains.  Alignment of sequence reads to 

the M. smegmatis mc2155 reference genome resulted in sequence coverage for each strain 

ranging from 171 to 251, sufficient to identify potential mutations in the suppressor genomes.  

The vast majority of mutations were identified in all 6 sequenced strains, and are very likely to 

be background mutations.  Therefore, we began by examining only those candidate mutations 

appearing unique to a single strain.  Interestingly, four of the suppressor strains were predicted 

to contain independent mutations in or near conserved hypothetical gene msmeg_1684.  

Further manual inspection of this region revealed that, in fact, all six sequenced suppressors 

contain candidate mutations in or near msmeg_1684, though the mutations in two strains were 

not identified by automated sequence analysis.  Importantly, no mutations are alike, indicating 

that each msmeg_1684 mutation arose independently of the others. 

To verify the presence of these mutations, we PCR amplified and sequenced 

msmeg_1684 from each strain.  All six suppressor strains contained the msmeg_1684 mutations 

as predicted by whole genome sequencing.  In contrast, the parent secA2 K129R strain 

contained an msmeg_1684 sequence identical to the sequence reported in the published 

mc2155 reference genome (NCBI Gene accession number YP_886060.1).  As shown in Fig. 3.9 

and Table 3.5, each msmeg_1684 mutation is unique.  Two mutations create frameshifts in the 

open reading frame at residues 25 and 261 and one mutation creates a premature stop codon 

truncating the protein at residue 123 (Msmeg_1684 is 431 amino acids in length).  Two other 

mutations create smaller changes, substituting a single amino acid at residue 134 and deleting 

two amino acids at residues 269-270.  The final mutation is a single nucleotide polymorphism 

located 6 bp upstream of msmeg_1684.  While it is not immediately clear if this mutation affects 

the msmeg_1684 promoter or shine-delgarno sequences, it seems likely that it affects 
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expression of msmeg_1684 in some way.  To assess whether any other suppressors contain 

msmeg_1684 mutations, msmeg_1684 was PCR amplified and sequenced from the other 8 (of 

the original 14) extragenic suppressor strains.  No additional msmeg_1684 suppressor mutations 

were found in any strain, including the 4S and 24S suppressor strains with mutations in the secY 

promoter examined previously (Chapter 2). 

Most interestingly, msmeg_1684 is located in the large deletions of both suppressors 7S 

and 20B.  Furthermore, msmeg_1684 is one of the remaining nine genes that we believed could 

explain the suppression observed in 7S and 20B.  Taken together, this work strongly suggests 

that deletion of the msmeg_1684 gene can suppress secA2 K129R phenotypes and can account 

for the 7S and 20B suppressor phenotypes. 

An msmeg_1684 deletion can suppress secA2 K129R phenotypes.  To directly assess 

whether deletion of msmeg_1684 can result in suppression of secA2 K129R phenotypes, we 

created an unmarked, in-frame deletion of msmeg_1684 (leaving behind only 10 amino acids) in 

a secA2 deletion mutant background (strain BAF1).  We then introduced the secA2 K129R allele 

into this strain and assessed the resulting phenotypes.  Deletion of msmeg_1684 is indeed able 

to suppress secA2 K129R phenotypes.  The secA2 K129R, deletion msmeg_1684 double mutant 

exhibited strong resistance to azide and growth on Mueller-Hinton agar (Fig. 3.10), similar to the 

phenotypes of suppressor 33S (NR155), which has a frameshift mutation at nucleotide 25 of 

msmeg_1684.  We conclude that loss of function mutations affecting msmeg_1684 can suppress 

secA2 K129R phenotypes.  This finding demonstrates that there is a genetic relationship 

between msmeg_1684 and secA2, and therefore indicates that Msmeg_1684 must perform a 

function related to the SecA2-dependent protein export pathway. 
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Suppressors affecting msmeg_1684 and secY do not act through the hsp60 promoter.  

Because the suppressor analysis described in Chapters 2 and 3 was carried out using a strain 

expressing the secA2 K129R allele from the hsp60 promoter, it was possible that some 

suppressor mutations would act by preventing or reducing expression from the hsp60 promoter, 

resulting in less SecA2 K129R protein and, consequently, a less severe phenotype.  The fact that 

SecA2 K129R is expressed at roughly equal levels, as assessed by western blot analysis, in all 

extragenic suppressors we have studied (Fig. 3.8) suggests that these suppressor mutations act 

specifically to suppress the effects of the SecA2 K129R protein, not to alter expression from the 

hsp60 promoter.  Nevertheless, this was a question that we wanted to investigate further. 

We began by measuring expression of secA2 alleles in various strains to determine 

whether subtle changes in expression might occur at the level of transcription from the hsp60 

promoter (Fig. 3.11).  Relative to the expression of wild type secA2 from the hsp60 promoter (in 

strain NR172), the secA2 deletion strain with an empty vector (NR160) exhibits no expression of 

secA2, as expected.  However, expression of the secA2 K129R allele from the hsp60 promoter (in 

strain NR178) is about 2.5 fold higher than expression of wild type secA2 from the same 

promoter.  Plasmids pYA810 (wild type secA2 on hsp60 promoter) and pNR25 (secA2 K129R on 

hsp60 promoter) are identical with the exception of the K129R mutation in secA2, therefore the 

presence of SecA2 K129R appears to affect the cell in such a way as to increase expression from 

the hsp60 promoter.  While the hsp60 promoter has previously been shown to respond to 

stresses such as heat, acid, and peroxide (31), it has not been shown to respond to export-

related stress, such as that seemingly caused by the presence of SecA2 K129R.  As the hsp60 

promoter is very commonly used to express genes in mycobacteria, this will be important to 

consider in the design of future experiments. 
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In suppressor 7S, a strong suppressor affecting msmeg_1684, expression of the secA2 

K129R allele is reduced to the level seen for the wild type secA2 allele (Fig. 3.11).  In contrast, 

expression of the secA2 K129R allele is only partially reduced in suppressor 4S, an intermediate 

suppressor affecting expression of secY (Chapter 2).  While on the surface this result seems to 

support the concern that suppressors might act to affect expression from the hsp60 promoter, it 

is important to consider that suppressor strains also prevent or alleviate the export-related 

stress caused by SecA2 K129R.  Because expression from the hsp60 promoter is sensitive to 

export-related stress, as demonstrated by the secA2 K129R strain (Fig. 3.11), the observed 

decrease in expression in the suppressor strains may be indicative only of reduced export stress, 

though we cannot draw a conclusion at this point. 

In order to determine conclusively whether our suppressors act to suppress the effects 

of SecA2 K129R or to reduce expression from the hsp60 promoter, we created an integrating 

plasmid carrying the secA2 K129R allele expressed from its native promoter (pLL36).  We then 

introduced this plasmid into various strains and assessed the resulting phenotypes.  By testing 

whether suppressor mutations can suppress the native promoter-driven secA2 K129R, we can 

remove any role for the hsp60 promoter from the experiment.  As for Phsp60-secA2 K129R, 

introduction of Pnative-secA2 K129R into the secA2 deletion strain caused increased sensitivity to 

azide and decreased growth on Mueller-Hinton agar compared to the secA2 deletion mutant 

(Fig. 3.12).  However, the effects of the Pnative-secA2 K129R allele are not as severe as those of 

the Phsp60-secA2 K129R allele, due to lower expression from the native promoter (SecA2 K129R is 

expressed at 36% of the level supported by the hsp60 promoter, by western blotting, data not 

shown).  Next, the Pnative-secA2 K129R allele was introduced into strains containing a secA2 

deletion in combination with engineered deletions removing genes msmeg_1677-1726 (strain 

LL132) or genes msmeg_1677-1692 (strain CM11).  As discussed above, both of these deletions 
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remove gene msmeg_1684 and both strains are capable of suppressing the Phsp60-secA2 K129R 

allele.  In the presence of the Pnative-secA2 K129R allele, each of these strains again exhibited 

suppressor phenotypes (Fig. 3.12).  We also tested a strain containing an extra copy of secY from 

suppressor 4S (NR116+pLL23).  As discussed in Chapter 2 (Fig. 2.5), this strain is capable of 

suppressing the Phsp60-secA2 K129R allele.  Again, this engineered suppressor strain is also 

capable of suppressing the Pnative-secA2 K129R allele (Fig. 3.12).  These findings demonstrate 

conclusively that both msmeg_1684 and secY type suppressor strains act specifically to suppress 

the effects of SecA2 K129R and not to reduce expression from the hsp60 promoter. 

 

Discussion 

As discovered in Chapter 2, the SecA2-dependent export pathway appears to be 

integrated with the housekeeping Sec pathway, with SecA2 and SecA1 likely sharing use of the 

SecYEG channel for protein export.  However, it remains unclear whether additional SecA2-

specific components exist and participate in SecA2-dependent protein export.  For example, in 

SecA2-SecY2 type systems, additional components called Asps also participate in SecA2-

dependent protein export (16). 

While the 4S and 24S suppressors (discussed in Chapter 2) are able to partially suppress 

secA2 K129R phenotypes by increasing secY expression, they do not completely prevent the 

detrimental effects of the SecA2 K129R protein, which appears to “jam” the housekeeping Sec 

export pathway, resulting in degradation of SecY.  Rather, these secY-type suppressors partially 

compensate for SecY degradation by increasing the available pool of SecY protein.  In contrast, 

several other extragenic suppressors discussed in Chapter 2 were able to suppress secA2 K129R 
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phenotypes more fully and with normal SecY protein levels, but did so without affecting secY 

expression (Fig. 2.6, Chapter 2). 

Here, we examined eight additional extragenic suppressors of the secA2 K129R allele, 

including the six suppressors mentioned above and assessed briefly in Chapter 2.  Of these eight 

suppressors, six exhibited strong suppressor phenotypes, with azide resistance and growth on 

Mueller-Hinton agar similar to that of the secA2 deletion mutant.  In addition, we demonstrated 

that two of these strong suppressors, 7S and 20B, completely reverse the SecA2 and SecA1 

membrane localization changes seen in the secA2 K129R mutant.  These findings suggest that, 

rather than partially compensating for the effects of the SecA2 K129R protein, as seen in the 4S 

and 24S secY-related suppressors (Chapter 2), these other suppressors may completely prevent 

the detrimental interactions of SecA2 K129R with the housekeeping Sec system from occurring 

in the first place.  These types of suppressors may point to additional components of the SecA2 

export system that are necessary for the interaction between SecA2 and the housekeeping Sec 

system. 

To identify the suppressor mutations present in these strains, all eight suppressors were 

subjected to whole genome sequencing.  In two suppressors, 7S and 20B, very large 

chromosomal deletions were identified including gene msmeg_1684.  The remaining six 

suppressors contained either point mutations or small insertions or deletions in or near gene 

msmeg_1684.  To confirm that mutations affecting this gene could indeed cause the suppressor 

phenotype, we engineered an unmarked, in-frame deletion of msmeg_1684 in a secA2 deletion 

background, which we found is also capable of suppressing secA2 K129R phenotypes.  The fact 

that deletion of msmeg_1684 results in a strong suppressor phenotype suggests that 

Msmeg_1684 must be present for the detrimental effects of SecA2 K129R to occur.  This is 
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consistent with the idea that Msmeg_1684 directly participates in the SecA2-dependent export 

pathway.  In the future, it will be interesting to explore this idea by assessing whether deletion 

of msmeg_1684 in a wild type background eliminates export of SecA2-dependent proteins. 

A variety of different msmeg_1684 mutations were identified as suppressor mutations.  

Five of the eight suppressor mutations either removed the msmeg_1684 gene (7S and 20B) or 

caused frameshifts or truncation of msmeg_1684 at residues 25, 123, and 261 of the 431 amino 

acid protein (strains 33S, and 33B, and 29S, respectively).  Interestingly, these five suppressor 

strains with drastic msmeg_1684 mutations also exhibited strong suppressor phenotypes, 

consistent with the conclusion that complete removal of msmeg_1684 prevents the detrimental 

effects of the secA2 K129R allele.  Because the mutations causing frameshifts or truncation have 

suppressor phenotypes as strong as the complete msmeg_1684 deletions, they most likely 

result in the production of unstable proteins that are quickly degraded.  One additional 

suppressor, 10S, also exhibits strong suppressor phenotypes.  However, this suppressor is 

unique in that it does not directly affect the msmeg_1684 coding sequence, but rather is a T→C 

polymorphism located 6 bp upstream of msmeg_1684.  Given the strength of the 10S 

suppressor phenotype, we hypothesize that the mutation in this strain must severely 

compromise expression of msmeg_1684; however, the location of the promoter and shine-

delgarno sequences upstream of msmeg_1684 are not immediately evident.  Therefore, it will 

be interesting to discover if the mutation in strain 10S does, in fact, affect expression of 

msmeg_1684, and in what way. 

The remaining two suppressors, 3S and 1S, affect msmeg_1684 in more subtle ways.  

The mutation in strain 3S causes a single amino acid substitution, changing glycine 134 to an 

aspartate.  Similarly, the suppressor mutation in strain 1S results in an in-frame deletion of two 
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amino acids, glycine 269 and threonine 270.  Both 3S and 1S suppressors exhibit an intermediate 

level of secA2 K129R suppression, suggesting that their respective mutations adversely affect, 

but do not completely destroy, Msmeg_1684 function.  These mutations in particular may prove 

useful for future study of Msmeg_1684 function.  If any of the suppressors are found to produce 

stable, but abnormal Msmeg_1684 protein, they may pinpoint specific portions of the amino 

acid sequence required for Msmeg_1684 to function or interact with other proteins. 

Msmeg_1684 is annotated as a conserved hypothetical protein and displays no 

informative homology to known proteins using BLAST.  Therefore, its function is completely 

unknown.  However there are a number of interesting features to note.  Msmeg_1684-like 

proteins are found in all mycobacteria and Msmeg_1684 has a strong homolog in M. 

tuberculosis, named Rv3311, which is 65% identical and 79% similar to Msmeg_1684 at the 

amino acid level (Fig. 3.13).  The function of Rv3311 is also unknown, but is predicted by TraSH 

to be required for growth of M. tuberculosis in macrophages (19).  Rv3311 was not tested in the 

TraSH screen performed in mice (32), therefore no prediction exists for this phenotype.  In 

addition, rv3311 is located downstream of, and predicted to be co-transcribed with, sapM 

(rv3310), encoding an exported protein which, like SecA2, is thought to be important for 

blocking phagosome maturation (15, 33).  It will be interesting to determine whether an M. 

tuberculosis rv3311 mutant exhibits virulence defects comparable to those of the secA2 mutant, 

which would be consistent with these two genes functioning in the same pathway. 

Intriguingly, there may be a trend for genes encoding exported proteins to cluster near 

msmeg_1684-like genes.  Both msmeg_1684 and rv3311 are located in close proximity to genes 

encoding amidases (genes msmeg_1679, 1686, 1702, and 1703 in M. smegmatis and genes 

rv3305c and 3306c in M. tuberculosis).  Amidase genes msmeg_1702 and 1703 are homologous 
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to genes rv3306c and 3305c, respectively.  The presence of these amidase genes is interesting to 

note, as amidases are found among the SecA2-dependent proteins identified in L. 

monocytogenes (29, 30).  The msmeg_1684 gene is also located not far from genes 

msmeg_1704 and msmeg_1712, encoding two solute-binding components of ABC transporter 

systems, which are the only known SecA2-dependent exported proteins in M. smegmatis (28).  

Similarly, the msmeg_1684 homolog in Corynebacterium glutamicum, NCgl0651, is also located 

near two amidase genes (NCgl0652 and 0657), as well as genes encoding two ABC transporter 

systems (NCgl0636-0646).  While this idea is purely speculative at this point, the proximity of 

amidase and ABC transporter-encoding genes to msmeg_1684-like genes implies that genes 

encoding SecA2-dependent exported proteins may cluster near msmeg_1684.  However, there 

is currently no evidence that any of the amidases are exported by the SecA2 system. 

It is also interesting to examine the occurrence of Msmeg_1684-like proteins in other 

bacteria.  All proteins homologous to Msmeg_1684 are found within the order Actinomycetales, 

of which mycobacteria are members.  Among the currently sequenced genomes of bacteria in 

the order Actinomycetales (about 370 genomes), approximately half contain homologs of 

Msmeg_1684, including the mycobacteria, corynebacteria, rhodococci, and gordonia species, as 

well as several others (Fig. 3.14).  SecA2 proteins are also commonly found within the order 

Actinomycetales and are also present in approximately half of the currently sequenced 

Actinomycetales genomes.  Intriguingly, the species within this order that contain SecA2 

proteins almost completely overlap with those species that contain Msmeg_1684-like proteins 

(Fig. 3.14).  We found only 16 species that contain Msmeg_1684-like proteins without a SecA2 

protein (notably including the rhodococci) and only 6 species that contain SecA2 proteins 

without an Msmeg_1684-like protein.  In the species containing Msmeg_1684-like proteins only, 

the Msmeg_1684-like protein is also more distantly related to those of mycobacteria.  This 
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frequent co-occurrence of Msmeg_1684-like and SecA2 proteins is consistent with the idea that 

they function as part of the same pathway.  The presence of an Msmeg-1684-like protein is a 

feature associated specifically with SecA2 systems closely related to those of mycobacteria.  This 

includes the SecA2 system studied in C. glutamicum (8).  SecA2 systems found outside of the 

order Actinomycetales, including those of both the “SecA2-only” and “SecA2-SecY2” varieties, 

do not contain Msmeg_1684-like proteins.  Therefore, it appears that Msmeg_1684-like proteins 

may represent a specific adaptation of the mycobacterial and related Actinomycetales SecA2 

systems. 

Another interesting feature is that both Msmeg_1684 and Rv3311 contain an unusually 

high number of aspartate and glutamate residues (Fig. 3.13), making them very acidic proteins 

(with predicted isoelectric points of 3.83 and 3.90 respectively).  Interestingly, protein export 

chaperones are frequently acidic proteins; for example, SecB, an export-dedicated chaperone of 

E. coli, has a predicted isoelectric point of 4.05.  Thus, we can hypothesize that Msmeg_1684 

might play a chaperone-like role in the SecA2-dependent export pathway, perhaps maintaining 

SecA2-dependent proteins in an export-competent state prior to export, similar to the role of 

SecB in E. coli Sec export.  Consistent with this idea, it was recently shown that features of the 

mature domain (i.e. not the signal peptide) of M. smegmatis SecA2-dependent proteins 

determine the requirement for SecA2 in their export (34).  Specifically, a tendency towards 

folding in the cytoplasm prior to export was suggested to play a role in the requirement for 

SecA2.  With this possibility in mind, we can develop a model to account for suppression of 

secA2 K129R phenotypes in the absence of Msmeg_1684 function.  If Msmeg_1684 is an export 

chaperone that serves to keep SecA2-dependent proteins unfolded prior to export, then the 

absence of Msmeg_1684 in a suppressor strain might prevent SecA2 K129R from interacting 

with proteins destined for export.  Because substrate protein binding by SecA2 could be a 
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requisite step for interacting with the SecYEG channel, the absence of Msmeg_1684 could then 

serve to avoid the detrimental interactions of SecA2 K129R with the housekeeping Sec pathway, 

resulting in a suppressor phenotype. 

The path to discovery of Msmeg_1684 was indirect; however, we collected additional 

pieces of information and useful tools along the way.  Notably, while deletion of msmeg_1704 

and msmeg_1712 was not important for suppressing secA2 K129R, as originally hypothesized, 

we created an msmeg_1704-1712 deletion strain, which may be useful in future study of the 

SecA2-dependent exported proteins encoded by these genes.  We also demonstrated that our 

suppressors are capable of suppressing secA2 K129R phenotypes, regardless of whether the 

allele is expressed from its native promoter or the hsp60 promoter, creating in the process a 

new version of the secA2 K129R allele that is expressed from the native promoter and may also 

be useful for future studies.  In addition, we discovered that the hsp60 promoter is subject to 

regulation in response to the export-related stress caused by the secA2 K129R allele.  This 

promoter is often considered to be constitutive and is widely used for gene expression in 

mycobacteria (31).  The changes in expression we observed from the hsp60 promoter under 

conditions of export-related stress could have unintended consequences, which should be 

considered in future experiments using this promoter.  A final interesting point to discuss is the 

presence of such large deletions (43-51 kbp) in the 7S and 20B suppressors when smaller 

mutations in msmeg_1684 are equally effective at suppressing secA2 K129R.  Interestingly, 

there are several genes annotated as transposases found at the right end of both the 7S and 20B 

deletions.  In addition, the right end of each deletion is in the same location, while the left ends 

of the deletions differ.  This suggests that the transposase genes are able to initiate deletion of 

nearby genes.  In the case of the secA2 K129R strain, any deletion beginning at this point and 

stretching far enough to affect msmeg_1684 would behave as a suppressor strain.  In fact, the 
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deletion in suppressor 20B stretches just far enough to affect msmeg_1684 but does not affect 

any additional genes located to the left of this point. 

In conclusion, we used a classical genetic approach to discover a novel aspect of 

mycobacterial protein export – the presence of an Msmeg_1684-like protein.  Msmeg_1684 

appears likely to participate directly in the SecA2 export pathway.  In the future, it will be 

interesting to characterize this relationship and determine the specific role of Msmeg_1684 in 

SecA2-dependent export.  Because the M. tuberculosis homolog of Msmeg_1684, Rv3311, is 

predicted to be important for virulence, continued study of these proteins will not only increase 

our understanding of SecA2-dependent export, but may also shed light on virulence 

mechanisms of M. tuberculosis.  
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Table 3.1.  Plasmids used in this study. 

Plasmid Genotype Description Source 

pMV306.kan  aph int attPL5 ColE1 Single-copy mycobacterial shuttle vector, integrates 
in mycobacteriophage L5 attB site 

(31) 

pMV361.kan aph Phsp60 int attPL5 ColE1 Single-copy mycobacterial shuttle vector with hsp60 
promoter, integrates in mycobacteriophage L5 attB 
site 

(31) 

pYA810 aph Phsp60-secA2 int attPL5 ColE1 M. smegmatis secA2 in pMV361.kan (28) 
pNR25 aph Phsp60-secA2K129R int attPL5 ColE1 M. smegmatis secA2 K129R in pMV361.kan (18) 
pNR7 aph Phsp60-secA2K115R int attPL5 ColE1 M. tuberculosis secA2 K115R in pMV361.kan (18) 
pCR2.1-TOPO aph bla ColE1 TOPO TA cloning plasmid Invitrogen 
pMP62 bla hyg Phsp60-sacB ColE1 empty suicide vector for creating deletions in 

mycobacteria, also called pYUB657 
(24) 

pNR6 bla hyg Phsp60-sacB ColE1 ΔsecA2 suicide vector containing flanking regions to delete M. 
smegmatis secA2 

(18) 

pMEM3 aph bla Δmsmeg_1704-1712 ColE1 left and right flanking regions for msmeg_1704-1712 
in pCR2.1-TOPO 

This work 

pMEM4 bla hyg Phsp60-sacB ColE1 
Δmsmeg_1704-1712 

suicide vector containing flanking regions to delete 
msmeg_1704-1712 

This work 

pCS1 aph bla msmeg_’1699 ColE1 left flanking region for msmeg_1700 in pCR2.1-TOPO This work 
pCS2 aph bla msmeg_1728 ColE1 right flanking region for msmeg_1726 in pCR2.1-TOPO This work 
pCS3 aph bla Δmsmeg_1700-1726 ColE1 left and right flanking regions for msmeg_1700-1726 

in pCR2.1-TOPO 
This work 

pCS4 bla hyg Phsp60-sacB ColE1 
Δmsmeg_1700-1726 

suicide vector containing flanking regions to delete 
msmeg_1700-1726 

This work 

pLL4 aph bla msmeg_’1691-1692’ ColE1 left flanking region for msmeg_1692 in pCR2.1-TOPO This work 
pLL12 aph bla Δmsmeg_1692-1726 ColE1 left and right flanking regions for msmeg_1692-1726 

in pCR2.1-TOPO 
This work 

pLL13 bla hyg Phsp60-sacB ColE1 
Δmsmeg_1692-1726 

suicide vector containing flanking regions to delete 
msmeg_1692-1726 

This work 

pLL3 aph bla msmeg_’1678 ColE1 left flanking region for msmeg_1677 in pCR2.1-TOPO This work 
pLL7 aph bla Δmsmeg_1677-1726 ColE1 left and right flanking regions for msmeg_1677-1726 

in pCR2.1-TOPO 
This work 

pLL14 bla hyg Phsp60-sacB ColE1 
Δmsmeg_1677-1726 

suicide vector containing flanking regions to delete 
msmeg_1677-1726 

This work 

pLL27 aph bla msmeg_’1678 ColE1 left flanking region for msmeg_1677 in pCR2.1-TOPO This work 
pLL29 aph bla msmeg_’1692-1693’ ColE1 right flanking region for msmeg_1692 in pCR2.1-TOPO This work 
pLL30 aph bla Δmsmeg_1677-1692 ColE1 left and right flanking regions for msmeg_1677-1692 

in pCR2.1-TOPO 
This work 

pCM2 bla hyg Phsp60-sacB ColE1 
Δmsmeg_1677-1692 

suicide vector containing flanking regions to delete 
msmeg_1677-1692 

This work 

pNR21 bla ColE1 oriF1 lacZ’-msmeg_3652-
secA2-msmeg_3654-‘lacZ 

M. smegmatis secA2 K129R with native promoter in 
pSKII+ 

(23) 

pLL36 aph secA2K129R int attPL5 ColE1 M. smegmatis secA2 K129R with native promoter in 
pMV306.kan 

This work 

pLL2 hyg bla int attPTweety ColE1 pYUB2063 with 3299 bp PciI fragment removed, 
single-copy mycobacterial shuttle vector, integrates in 
mycobacteriophage Tweety attB site 

This work 
(Chapter 2) 

pLL23 hyg bla secY(4S) int attPTweety ColE1 NR236 (4S) secY in pLL2 This work 
(Chapter 2) 

pLL43 aph bla msmeg_’1686-1684’ ColE1 left flanking region for msmeg_1684 in pCR2.1-TOPO This work 
pLL44 aph bla msmeg_’1684-1683’ ColE1 right flanking region for msmeg_1684 in pCR2.1-TOPO This work 
pLL49 aph bla Δmsmeg_1684 ColE1 left and right flanking regions for msmeg_1684 in 

pCR2.1-TOPO 
This work 

pLL50 bla hyg Phsp60-sacB ColE1 
Δmsmeg_1684 

suicide vector containing flanking regions to delete 
msmeg_1684 

This work 
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Table 3.2.  Primers used in this study. 

Primer Sequence and Description 

1704-1712LF1-2 5’-GATATCATCCCGCAGATCGGCACCC-3’ 
binds at bp 751 of msmeg_1703, contains engineered EcoRV site , used to amplify left flank for 
Δmsmeg_1704-1712 plasmid 

1704-1712LF2 5’-GGAGTCGGCTTGTGAGGAAGTCATAAACGTCGGCGGCTAC-3’ 
binds 278 bp downstream of msmeg_1703 , used to amplify left flank for Δmsmeg_1704-1712 plasmid 

1704-1712RF1 5’-CTTCCTCACAAGCCGACTCC-3’ 
binds 408 bp upstream of msmeg_1713, used to amplify right flank for Δmsmeg_1704-1712 plasmid 

1704-1712RF2 5’-ATGGTGCACGCCGTGAAATC-3’ 
binds at bp 308 of msmeg_1713, used to amplify right flank for Δmsmeg_1704-1712 plasmid 

1700-1726LF1-3 5’-GAGATATCGAACGATTCGGCATATGTG-3’ 
binds at bp 540 of msmeg_1699, contains engineered EcoRV site, used to amplify left flank for 
Δmsmeg_1700-1726 plasmid 

1700-1726LF2-2 5’-GAGCTAGCAACAAGTGTAGGCCAACAAG-3’ 
binds 94 bp upstream of msmeg_1699, contains engineered NheI site, used to amplify left flank for 
Δmsmeg_1700-1726 plasmid 

1700-1726RF1-2 5’-GAGCTAGCCAAGGGCAGCATCTAGTGTC-3’ 
binds 303 bp upstream of msmeg_1728, contains engineered NheI site, used to amplify right flank for 
Δmsmeg_1700-1726 plasmid 

1700-1726RF2 5’-TCGATGTAGTCGACGATCAC-3’ 
binds 16 bp downstream of msmeg_1728, used to amplify right flank for Δmsmeg_1700-1726 plasmid 

1692-1726LF1 5’-GAGATATCCGGCCTCGCAGTCGTTG-3’ 
binds at bp 595 of msmeg_1691, contains engineered EcoRV site, used to amplify left flank for 
Δmsmeg_1692-1726 plasmid 

1692-1726LF2 5’-GAGCTAGCGGCCTGAAGTCAAACAC-3’ 
binds 114 bp upstream of msmeg_1691, contains engineered NheI site, used to amplify left flank for 
Δmsmeg_1692-1726 plasmid 

1677-1726LF1 5’-GAGATATCGTGCTTCGTGACTCTG-3’ 
binds at bp 309 of msmeg_1678, contains engineered EcoRV site, used to amplify left flank for 
Δmsmeg_1677-1726 plasmid 

1677-1726LF2 5’-GAGCTAGCGTCCGAGAGGGCTAGG-3’ 
binds 11 bp downstream of msmeg_1678, contains engineered NheI site, used to amplify left flanks for 
Δmsmeg_1677-1726 and Δmsmeg_1677-1692 plasmids 

1677LF1NdeI 5’-GACATATGCGTGCTTCGTGACTCTG-3’ 
binds at bp 308 of msmeg_1678, contains engineered NdeI site, used to amplify left flank for Δmsmeg_1677-
1692 plasmid 

1692RF1 5’-GAGCTAGCGGGACGCTGATCACTC-3’ 
binds 10 bp downstream of msmeg_1693, contains engineered NheI site, used to amplify right flank for 
Δmsmeg_1677-1692 plasmid 

1692RF2 5’-GACATATGGCAGTTGCTCGACATCAC-3’ 
binds at bp 1,008 of msmeg_1693, contains engineered NdeI site, used to amplify right flank for 
Δmsmeg_1677-1692 plasmid 

1684LF1 5’-AACATATGCGCAACTGGGTGTGCCGTATCACTG-3’ 
binds at bp 758 of msmeg_1686, contains engineered NdeI site, used to amplify left flank for Δmsmeg_1684 
plasmid 

1684LF2 5’-AAGCTAGCAGCAGCCATGCGGCACAGCCTAAC-3’ 
binds at bp 9 of msmeg_1684, contains engineered NheI site, used to amplify left flank for Δmsmeg_1684 
plasmid 

1684RF1 5’-ATGCTAGCTCCCGGCTCCGTCAGGAGTAGCG-3’ 
binds at bp 21 of msmeg_1684, contains engineered NheI site, used to amplify right flank for Δmsmeg_1684 
plasmid 

1684RF2 5’-AACATATGAGCCACCCGGCGAAATTGAAGCCAC-3’ 
binds at bp 614 of msmeg_1683, contains engineered NdeI site, used to amplify right flank for Δmsmeg_1684 
plasmid 

secA2RTF2 5’-GCTGTCGGAGGTCAAAGG-3’ 
binds at bp 93 of secA2, used for quantitative RT-PCR 

secA2RTR2 5’-GCGAGAAACTGCGTGATG-3’ 
binds at bp 227 of secA2, used for quantitative RT-PCR 

1677F1 5’-CGAAGCGAATCGTCAACTC-3’ 
binds at bp 183 of msmeg_1677, used for quantitative RT-PCR 

1677R1 5’-TCGTTGGCGTTCATGTTGG-3’ 
binds at bp 338 of msmeg_1677, used for quantitative RT-PCR 

1682F1 5’-GTGGCGGATTATCTGGTCTC-3’ 
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binds at bp 238 of msmeg_1682, used for quantitative RT-PCR 
1682R1 5’-TCACGGGCTTCTGGAATG-3’ 

binds at bp 415 of msmeg_1682, used for quantitative RT-PCR 
1683-1F 5’-CCGATGCTGGAACAACAC-3’ 

binds at bp 28 of msmeg_1683, used for quantitative RT-PCR 
1683-1R 5’-CAGGCTCCACCAGAGATTC-3’ 

binds at bp 192 of msmeg_1683, used for quantitative RT-PCR 
rpoBF 5’-GTCTCTAGCCAGAGCAAGTC-3’ 

binds at bp 25 of rpoB (msmeg_1367) coding sequence, used for quantitative RT-PCR 
rpoBR 5’-TCGAAGGAATCCGTCTGAAC-3’ 

binds at bp 158 of rpoB (msmeg_1367) coding sequence, used for quantitative RT-PCR 
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Table 3.3.  Mycobacterium smegmatis strains used in this study. 

M. smegmatis strain Description Source 

mc2155 wild type (35) 
NR116 ∆secA2 (18) 
NR160 NR116+pMV306.kan, ∆secA2+empty plasmid (18) 
NR172 NR116+pYA810, ∆secA2+secA2 complementing plasmid (18) 
NR178 NR116+pNR25, ∆secA2+secA2 K129R plasmid (18) 
NR242 NR178, with extragenic suppressor mutation 7S This work (Chapter 2) 
NR260 NR178, with extragenic suppressor mutation 20B This work (Chapter 2) 
NR236 NR178, with extragenic suppressor mutation 4S This work (Chapter 2) 
NR151 NR178, with extragenic suppressor mutation 24S This work (Chapter 2) 
NR123 NR116+pNR7, with extragenic suppressor mutation (23) 
NR154 NR178, with extragenic suppressor mutation 29S This work (Chapter 2) 
NR155 NR178, with extragenic suppressor mutation 33S This work (Chapter 2) 
NR156 NR178, with extragenic suppressor mutation 33B This work (Chapter 2) 
NR230 NR178, with extragenic suppressor mutation 1S This work (Chapter 2) 
NR234 NR178, with extragenic suppressor mutation 3S This work (Chapter 2) 
NR248 NR178, with extragenic suppressor mutation 10S This work (Chapter 2) 
LL036 Δmsmeg_1704-1712 This work 
LL062 Δmsmeg_1704-1712, ∆secA2 This work 
LL051 Δmsmeg_1700-1726 This work 
LL066 Δmsmeg_1700-1726, ∆secA2 This work 
LL082 Δmsmeg_1692-1726 This work 
LL089 Δmsmeg_1692-1726, ∆secA2 This work 
LL129 Δmsmeg_1677-1726 This work 
LL132 Δmsmeg_1677-1726, ∆secA2 This work 
CM14 Δmsmeg_1677-1692 This work 
CM11 Δmsmeg_1677-1692, ∆secA2 This work 
BAF1 Δmsmeg_1684, ∆secA2 This work 
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Table 3.4.  Genes found in suppressor 7S and 20B deletionsa. 

Msmeg_ 
Gene # 

Coding 
Strand 

Annotation Exported 
Proteinc 

1678 + transcriptional regulator, LysR family protein No 
1677 - aspartate ammonia-lyase No 
1679 - AmiB No 
1680 - conserved hypothetical protein No 
1681 - endoribonuclease L-PSP superfamily protein No 
1682 - flavin-containing monooxygenase FMO No 
1683 - cytosine/purine/uracil/thiamine/allantoin permease family protein Yes 

1684 - conserved hypothetical protein No 
1685 - hypothetical protein No 
1686 - NPL/P60-family secreted protein No 
1687 - hypothetical protein No 
1688 - cupin domain protein No 
1689 - 3-oxoacyl-[acyl-carrier-protein] reductase No 
1690 - putative ECF sigma factor RpoE1 No 
1691 - transcriptional regulatory protein No 
1692 + ECF-family RNA polymerase sigma factor No 
1693 - succinate dehydrogenase [ubiquinone] flavoprotein subunit No 
1694 + uracil phosphoribosyltransferase No 
1695 - phosphoglucomutase/phosphomannomutase No 
1696 - regulatory protein, MarR No 
1698 + putative ammonia monooxygenase superfamily protein Yes 
1697 - hypothetical protein No 
1699 - pentachlorophenol 4-monooxygenase Yes 
1700 + TetR-family protein transcriptional regulator No 
1701 - purine nucleoside phosphorylase No 
1702 + Amidohydrolase No 
1703 + Amidohydrolase No 
1704 + ABC transporter Yes 
1705 + D-xylose transport ATP-binding protein XylG No 
1706 + xylose transport sytem permease protein XylH Yes 
1707 - phosphatase YfbT No 
1708 - ribose operon repressor, putative No 
1709 - inner membrane ABC transporter permease protein YjfF Yes 
1710 - ribose transport system permease protein RbsC Yes 
1711 - ATP binding protein of ABC transporter No 
1712 - ABC transporter periplasmic-binding protein YtfQ Yes 
1713 + L-ribulokinase No 
1714 + L-ribulose-5-phosphate 4-epimerase UlaF No 
1715 + L-arabinose isomerase No 
1716 + IS3 family element, transposase orfA No 
1718b + IS3 family element, transposase orfB, interruption-N N/A 
1717 - ISMsm8, transposase No 
1719b + IS3 family element, transposase orfB, interruption-C N/A 
1720 + IS1137, transposase orfA No 
1721 + IS1137, transposase orfB No 
1722 - hypothetical protein Yes 
1723 + hypothetical protein Yes 
1724 - conserved hypothetical protein No 
1725 + putative transposase No 
1726 + Transposase No 
a Genes located above red line are deleted in suppressor 7S, but not in suppressor 20B. 
b Previously annotated as a gene on SmegmaList, but annotation has since been removed. 
c Proteins predicted to be exported based on presence of a signal peptide (by SignalP v4.1 (36)) or transmembrane domain (by 

TMHMM v2.0 (37)).  
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Table 3.5.  Suppressors affecting msmeg_1684. 

Suppressor 
Strain 

Suppressor 
Strength 

Mutation Effect on Msmeg_1684 Protein a 

10S (NR248) Strong T→C SNP 6 bp upstream of msmeg_1684 Possible effect on promoter or ribosome 
binding site 

33S (NR155) Strong CCGCGCT duplication beginning at bp 67 of 
msmeg_1684 

Frameshift beginning at Trp25 

33B (NR156) Strong C→A SNP at bp 369 of msmeg_1684 Cys123→STOP substitution, causes truncation 
3S (NR234) Intermediate G→A SNP at bp 401 of msmeg_1684 Gly134→Asp substitution 
29S (NR154) Strong C insertion at bp 782 of msmeg_1684 Frameshift beginning at Pro261 
1S (NR230) Intermediate ACCGGC deletion beginning at bp 805 of 

msmeg_1684 
Deletion of Gly269 & Thr270 b 

20B (NR260) Strong Deletion of msmeg_1684-1726 (removes 
bp 1-1180 of msmeg_1684) 

Deletion of Met1 to Val394, should completely 
prevent Msmeg_1684 production 

7S (NR242) Strong Deletion of msmeg_1678-1726 Complete deletion 
a Amino acid numbering based on NCBI GenBank accession number ABK72696.  The msmeg_1684 gene is 1296 bp in length and the 
Msmeg_1684 protein is 431 amino acids in length. 
b Note that amino acids Gly269 and Thr270 are part of a short repetitive region, “TGTGT,” therefore the precise amino acids (or bp) 

deleted cannot be determined.  



100 
 

 

 

Figure 3.1.  Azide sensitivity and Mueller-Hinton agar growth phenotypes.  The indicated 
strains were plated for sensitivity to 10 μL of 0.15 M sodium azide for two days at 37°C and 
growth on Mueller-Hinton agar plates for six days at 37°C.  Average azide inhibition is calculated 
by measuring the diameter of the zone of azide inhibition as a percentage of the plate diameter 
and is the mean of three technical replicates.  Results shown are representative of at least three 
independent experiments.  Strains tested were: complemented secA2 (NR172), ∆secA2+empty 
plasmid (NR160), secA2 K129R (NR178), 7S (NR242), and 20B (NR260).  
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Figure 3.2.  Suppressors affect subcellular localization of SecA1 and SecA2.  The 
percentage of SecA1 or SecA2 detected by western blot in soluble (cytoplasmic) or pellet (cell 
envelope) fractions is plotted as a percentage of the total protein detected.  Data represents the 
mean of six biological replicates, and error bars represent standard error.  For SecA1 
localization, the secA2 K129R strain is statistically different from all other strains (*p≤0.018) by 
one-way ANOVA with Student-Newman-Keuls test.  For SecA2 localization, both the secA2 
K129R and 4S strains are statistically different from all other strains (*p≤0.021).  Strains tested 
were: complemented secA2 (NR172), secA2 K129R (NR178), 7S (NR242), 20B (NR260), and 4S 
(NR236).  
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Figure 3.3.  Suppressors 7S and 20B contain large deletions.  Sequencing read coverage 
(number of times a given location was sequenced) plotted by position in the M. smegmatis 
mc2155 reference genome.  Both suppressors contain large gaps in sequencing coverage, 
indicating that the unsequenced region has been deleted from the suppressor genome.  
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Figure 3.4.  Genomic region affected by 7S and 20B suppressors.  Genes of interest are 
indicated at the top.  The first 3 lines represent naturally occurring extragenic suppressors of 
secA2 KR alleles.  Small black arrows indicate the location of PCR primer pairs used to confirm 
deletions.  The region deleted in suppressor NR123 is at least as large as that in suppressor 20B, 
but the exact boundaries of the NR123 deletion are unknown.  The last 5 lines represent 
engineered deletions.  Of these, only Δmsmeg_1677-1726 and Δmsmeg_1677-1692 are able to 
suppress secA2 K129R phenotypes.  
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Figure 3.5.  Strains Δmsmeg_1677-1726 and Δmsmeg_1677-1692 are suppressors of 
secA2 K129R phenotypes.  Azide sensitivity and Mueller-Hinton agar growth phenotypes.  
Average azide inhibition is calculated by measuring the diameter of the zone of azide inhibition 
as a percentage of the plate diameter and is the mean of one to three biological replicates (with 
three technical replicates for each biological replicate).  Each panel represents a separate 
experiment.  *Statistically significant suppression (p≤0.002) by one-sample t-test (calculated 
versus 100% azide inhibition).  (Note that when suppressor 7S is not marked as significant, it is 
because only a single biological replicate of 7S was tested in that experiment.)  Strains tested 
were: secA2 K129R (NR178), 7S (NR242), secA2K 129R + Δmsmeg_1704-1712 (LL062+pNR25), 
secA2 K129R + Δmsmeg_1700-1726 (LL066+pNR25), secA2 K129R + Δmsmeg_1692-1726 
(LL089+pNR25), secA2 K129R + Δmsmeg_1677-1726 (LL132+pNR25), and secA2 K129R + 
Δmsmeg_1677-1692 (CM11+pNR25).  
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Figure 3.6.  A 15-gene region is responsible for suppression.  Protein annotations are 
indicated at the top.  Naturally occurring suppressors 20B and 7S contain deletions beginning at 
msmeg_1684 and msmeg_1678 respectively.  An artificially constructed deletion of genes 
msmeg_1677-1692 also exhibits full suppression of secA2 K129R.  (Note that msmeg_1678 is 
located to the left of msmeg_1677.)  Red bent arrow represents a putative promoter upstream 
of msmeg_1682.  
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Figure 3.7.  Genes msmeg_1677-1683 are expressed in suppressor 20B.  msmeg_1677, 
msmeg_1682, and msmeg_1683 transcript levels measured by quantitative RT-PCR, relative to 
rpoB transcript levels.  Relative transcript levels in the secA2 K129R strain are set to 1.  Data 
represents the mean of three biological replicates, and error bars represent standard error.  
*Statistically different from the secA2 K129R strain (p<0.05) by one-way ANOVA on ranks with 
Student-Newman-Keuls test.  Strains tested were: secA2 K129R (NR178), 7S (NR242), and 20B 
(NR260).  
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Figure 3.8.  Suppressor mutations do not affect SecA1 and SecA2 protein levels.  Whole 
cell lysates were separated by SDS-PAGE and SecA1, SecA2, and SigA (as a loading control) 
proteins detected by western blotting.  All samples were equally loaded.  Strains tested were: 
complemented secA2 (NR172), ∆secA2+empty plasmid (NR160), secA2 K129R (NR178), 24S 
(NR151), 4S (NR236), 7S (NR242), 20B (NR260), 29S (NR154), 33S (NR155), 33B (NR156), 1S 
(NR230), 3S (NR234), and 10S (NR248).  
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Figure 3.9.  Eight suppressor mutations affect msmeg_1684.  Red stars indicate 
approximate locations of suppressor mutations.  Suppressors 20B and 7S are indicated by black 
bars and contain large deletions encompassing msmeg_1684-1726 and msmeg_1678-1726 
respectively.  Drawing not to scale.  
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Figure 3.10.  Δmsmeg_1684 can suppress secA2 K129R phenotypes.  Azide sensitivity 
and Mueller-Hinton agar growth phenotypes.  Average azide inhibition is calculated by 
measuring the diameter of the zone of azide inhibition as a percentage of the plate diameter 
and is the mean of three to four biological replicates (with three technical replicates for each 
biological replicate).  *Statistically different from secA2 K129R strain (p<0.001) by one-way 
ANOVA with Student-Newman-Keuls test.  Strains tested were (from left to right): 
ΔsecA2+empty plasmid (NR160), secA2 K129R (NR178), 33S (NR155), ΔsecA2 
Δmsmeg_1684+empty plasmid (BAF1+pMV306.kan), and ΔsecA2 Δmsmeg_1684+secA2 K129R 
(BAF1+pNR25).  
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Figure 3.11.  Export-related stress causes increased secA2 expression from the hsp60 
promoter.  secA2 transcript levels measured by quantitative RT-PCR, relative to rpoB transcript 
levels.  secA2 transcript level in the complemented secA2 strain is set to 1.  Data represents the 
mean of three biological replicates, and error bars represent standard error.  Both the ΔsecA2 
and secA2 K129R strains are statistically different from all other strains (*p≤0.017) by one-way 
ANOVA with Student-Newman-Keuls test.  Strains tested were: complemented secA2 (NR172), 
∆secA2+empty plasmid (NR160), secA2 K129R (NR178), 4S (NR236), and 7S (NR242).  
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Figure 3.12.  Suppressor strains can suppress secA2 K129R expressed from its native 
promoter.  Azide sensitivity and Mueller-Hinton agar growth phenotypes.  Average azide 
inhibition is calculated by measuring the diameter of the zone of azide inhibition as a 
percentage of the plate diameter and is the mean of three to four biological replicates (with 
three technical replicates for each biological replicate).  *Statistically different from secA2 K129R 
strain (p<0.001) by one-way ANOVA with Student-Newman-Keuls test.  Strains tested were 
(from left to right): ΔsecA2+empty plasmid (NR160), Pnative-secA2 K129R (NR116+pLL36), Pnative-
secA2 K129R + Δmsmeg_1677-1726 (LL132+pLL36), Pnative-secA2 K129R + Δmsmeg_1677-1692 
(CM11+pLL36), ΔsecA2+empty plasmid (NR160+pLL2), Pnative-secA2 K129R (NR116+pLL2+pLL36), 
and Pnative-secA2 K129R + extra secY (NR116+pLL23+pLL36).  
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Figure 3.13.  Alignment of Msmeg_1684 and Rv3311 proteins.  Msmeg_1684 protein 
sequence was aligned to the homologous Rv3311 protein sequence from M. tuberculosis using 
the EBLOSUM62 algorithm available from EMBOSS Needle.  Acidic residues are highlighted in 
yellow.  
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Figure 3.14.  Phylogenetic tree of Msmeg_1684-like proteins showing co-occurrence of 
SecA2 proteins.  All proteins homologous to Msmeg_1684 were identified by NCBI Protein 
BLAST and exported as a phylogenetic tree, which was then visualized using iTOL.  Color blocks 
indicate groups of related organisms and the presence of a SecA2 protein in each species is 
indicated by a red bar.  
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CHAPTER 4 

Searching for Evidence of a Physical Interaction Between Mycobacterium 

smegmatis SecA2 and SecY1 

 

Bacteria use the conserved Sec protein export system to transport proteins across the 

cell membrane.  In this system, the motor protein SecA interacts with the membrane channel 

complex SecYEG and harnesses energy from ATP hydrolysis to push proteins through the SecYEG 

channel and across the membrane.  In mycobacteria, a second SecA protein, called SecA2, is 

responsible for a subset of protein export.  Unlike the canonical Sec system, the mechanism of 

protein export in the mycobacterial SecA2 system is not well understood.  However, SecA2-

dependent exported proteins are thought to be exported through the canonical SecYEG 

membrane channel complex with the assistance of SecA1 (Chapter 2).  This suggests a model for 

SecA2-dependent export in which SecA2 interacts physically with SecY during export, analogous 

to the physical interaction of Escherichia coli SecA with SecY during canonical Sec export.  Here, 

we evaluate this model by performing in vivo protein crosslinking of M. smegmatis SecA2 and a 

dominant negative variant of SecA2 (SecA2 K129R).  Crosslinked complexes containing SecA2 

proteins were purified and tested for co-purification of SecY.  In no case were we able to detect 

SecY crosslinked to SecA2 proteins.  Our findings suggest an alternate model for SecA2-
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dependent protein export, in which SecA2 and SecY proteins both participate in the SecA2 

system, but do not physically interact or form stable complexes during protein export. 

 

Introduction 

Bacteria must place proteins on their cell surface and in their extracellular environment 

in order to survive.  Many of these exported proteins are required for essential cell functions 

such as nutrient acquisition, while others are important for pathogenesis.  All bacteria contain 

the conserved Sec protein export system, which is responsible for the bulk of protein export.  

This system transports unfolded proteins across the cell membrane through a membrane-

embedded channel complex, composed of SecY, SecE, and SecG (1, 2).  Protein export is driven 

by the motor protein, SecA, which is an ATPase that pushes proteins through the SecYEG 

translocon using energy derived from successive rounds of ATP binding and hydrolysis (3, 4).  In 

Escherichia coli and other bacteria, it has been shown that SecA engages in a direct physical 

interaction with SecY during protein export (5-8).  This interaction is integral to the Sec export 

mechanism, inducing activation of SecA ATPase activity (9, 10) and possibly opening of the 

SecYEG channel (6). 

In addition to the canonical Sec system, Mycobacteria and some Gram-positive bacteria 

also contain a specialized export system characterized by the presence of a second, functionally 

distinct SecA protein (11-17).  In these cases, the “housekeeping” SecA protein is referred to as 

SecA1, while the second SecA protein is referred to as SecA2 and is responsible for a subset of 

protein export.  SecA2 systems are typically non-essential, but in the case of pathogens such as 

Mycobacterium tuberculosis, are often important for virulence (18, 19).  Like SecA1, SecA2 is an 
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ATPase, and this activity is required for SecA2 to function normally (20, 21).  However, the 

mechanism of mycobacterial SecA2-dependent protein export is poorly understood. 

In the model mycobacterium Mycobacterium smegmatis, we have analyzed suppressor 

mutants of a dominant negative secA2 allele in order to learn more about the mycobacterial 

SecA2 export pathway.  This mutant secA2 allele, referred to as secA2 K129R, encodes a SecA2 

protein with an amino acid substitution in the Walker box, a region which is important for ATP 

binding and hydrolysis.  The resulting SecA2 K129R protein is non-functional (20, 22) and 

appears to become “locked” in detrimental interactions with its protein binding partners.  In 

addition, while wild type SecA2 is found primarily in the cytoplasm, SecA2 K129R exhibits a shift 

in localization towards the cell envelope, suggesting it is locked in an interaction with 

membrane-localized proteins.  Mutations that suppress the phenotypes of the secA2 K129R 

allele act to avoid or compensate for these detrimental interactions and can therefore point to 

proteins that are connected in some way to the SecA2-dependent export pathway.  Previously 

(Chapter 2), this approach identified a genetic relationship between SecA2 and SecY, the main 

component of the channel complex used for housekeeping Sec export.  In the presence of SecA2 

K129R, SecY protein levels dramatically decrease.  This reduction in SecY levels is most likely a 

result of SecY degradation that is caused by “jamming” or stress on the SecYEG translocon in the 

presence of the non-functional SecA2 K129R protein.  Mutations increasing secY expression are 

able to compensate somewhat for the ongoing degradation of SecY, and thereby suppress the 

phenotypes of the secA2 K129R allele. 

These findings suggest a model in which SecA2-dependent proteins are exported 

through the canonical SecYEG channel.  Thus, we hypothesized that SecA2 interacts directly with 

SecY during protein export, in the same way that SecA of other bacteria interacts with SecY to 
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export proteins (5, 6).  Here, we tested for a physical SecA2-SecY interaction in M. smegmatis 

using in vivo protein crosslinking followed by purification of SecA2-containing protein 

complexes.  Our experiments failed to demonstrate a physical interaction between SecA2 and 

SecY.  This result suggests that the genetic relationship between SecA2 and SecY does not 

represent a direct physical interaction, but rather a transient or indirect interaction.  Alternate 

models for the interaction of SecA2 with SecY are discussed. 

 

Materials and Methods 

Bacterial strains and culture conditions.  M. smegmatis strains used in this study are 

described in Table 4.1, and were grown at 37°C, using Mueller-Hinton media supplemented with 

0.1% tween-80 and kanamycin (20 μg/mL).  Hygromycin B (50 μg/mL) was added as needed.  To 

induce SecA2 K129R expression in strain LL159, cultures at an OD600 nm of 0.3 were 

supplemented with 400 ng/mL anhydrotetracycline (Atc) and grown in the dark for 4 hours.  

When required, plasmids were introduced into M. smegmatis strains by electroporation (23).  

Escherichia coli strains were grown at 37°C in lysogeny broth or on lysogeny broth agar 

(otherwise known as Luria-Bertani media).  Antibiotics kanamycin (40 μg/mL) and hygromycin B 

(50 μg/mL) were added as needed. 

Plasmid construction.  Plasmids used in this study are described in Table 4.2 and 

primers are described in Table 4.3.  In all cases, newly constructed plasmids were sequenced.  To 

construct an integrating plasmid expressing secY from the 24S (NR151) mutant promoter, we 

began with plasmid pLL17 (Chapter 2), which contains M. smegmatis secY on its native 

promoter.  Site-directed mutagenesis (Stratagene QuikChange II) was performed on pLL17 to 

introduce the 24S secY promoter mutation (C→G polymorphism 134 bp upstream of the secY 
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coding sequence), resulting in plasmid pLL41.  A NotI-EcoRV fragment (containing secY and its 

promoter) was then cut from pLL41 and ligated into NotI-EcoRV-digested pLL2, yielding plasmid 

pLL42. 

Intracellular crosslinking and SecA2-His purification.  Each strain was grown in Mueller-

Hinton broth to an OD600 nm of approximately 1.0.  For each condition to be tested, 200 mL 

culture was pelleted at room temperature, washed, and resuspended in 2 mL PBS + 5x protease 

inhibitor cocktail (500x stock contains: 1 mg/ml each of aprotinin, E-64, leupeptin, and pepstatin 

A and 50 mg/ml Pefabloc SC in DMSO).  Fresh crosslinkers were added (2.5% formaldehyde, 10 

mM DSP in DMSO, or 20 mM SDAD in DMSO) and incubated for 30 minutes at room 

temperature, vortexing periodically to mix.  Tris (1.5 M, pH 8.8) was added to a final 

concentration of 100 mM to quench crosslinkers and was incubated for 15 minutes at room 

temperature, vortexing periodically to mix.  Cells were then pelleted, washed, and resuspended 

in 3 mL PBS + 5x protease inhibitor cocktail.  Specifically for SDAD-treated samples, cells were 

moved to a glass flask and exposed to UV light (320-370 nm) for 5 x 3 minutes to complete 

crosslinking, cooling with ice during exposure.  Cells were lysed by passage through a French 

press, and cell debris was removed by centrifugation at 1,600 x g for 30 minutes to generate 

clarified whole cell lysates (WCL, supernatants).  A small amount of WCL was set aside for SDS-

PAGE and 2.2 mL WCL was centrifuged at 100,000 x g for 2 hours to separate cell envelope 

(pellet) and soluble (supernatant) fractions.  Cell envelope pellets (ENV) were resuspended in 

2.2 mL of Qiagen lysis buffer (50 mM NaH2PO4, 300 mM NaCl, 10 mM imidazole, adjusted to pH 

8.0 using NaOH) + 1% Igepal CA-630 to facilitate solubilization of membrane proteins.  A small 

amount of ENV was set aside for SDS-PAGE. 
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To purify His-tagged SecA2 proteins, 2 mL of each ENV sample was mixed with 0.5 mL 

Qiagen Ni-NTA agarose and incubated for 1 hour at 4°C on a rocking platform.  Slurry was then 

loaded into a column created by packing a 1 inch square of glass wool into the tip of a 3 mL 

plastic syringe.  The slurry was allowed to settle, collecting the flow-through for future analysis.  

Columns were washed twice with 2 mL of Qiagen wash buffer (50 mM NaH2PO4, 300 mM NaCl, 

20 mM imidazole, adjusted to pH 8.0 using NaOH) + 1% Igepal CA-630, collecting each wash.  

Next, SecA2-His proteins were eluted twice with 1 mL of Qiagen elution buffer (50 mM NaH2PO4, 

300 mM NaCl, 250 mM imidazole, adjusted to pH 8.0 using NaOH) + 1% Igepal CA-630, collecting 

each eluate. 

SDS-PAGE and western blotting.  WCL, ENV, and samples from SecA2-His purification 

were either boiled 15 minutes in SDS-PAGE sample buffer + 5% β-mercaptoethanol (β-ME) to 

reverse protein crosslinks, or mixed with SDS-PAGE sample buffer lacking β-ME at room 

temperature to maintain intact crosslinks.  Samples were then loaded for equivalent starting 

material and separated by SDS-PAGE.  Gels were either stained with coomassie or transferred to 

nitrocellulose membranes for western blotting.  Membranes were temporarily stained with 

Ponceau S to detect all protein prior to western blotting, and individual proteins were detected 

using a rabbit αSecY polyclonal antiserum at a 1:150 dilution (Chapter 2) and a rabbit αSecA2 

polyclonal antiserum at a 1:25,000 dilution (24).  Primary antibodies were detected using 

alkaline phosphatase-conjugated goat anti-rabbit IgG secondary antibodies, ECF substrate (GE 

Healthcare), and a Syngene G:BOX machine. 
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Results 

SecY does not crosslink to SecA2-His.  We previously found that SecA2 interacts 

genetically with SecY (Chapter 2).  By analogy to the housekeeping Sec pathway (6), SecA2 could 

physically “dock” with SecYEG during protein export.  We therefore performed in vivo protein 

crosslinking (Fig. 4.1) and evaluated whether or not crosslinking could be detected between a C-

terminally His-tagged SecA2 protein and SecY.  His-tagged SecA2 (expressed from the hsp60 

promoter, plasmid pHSG93) has previously been shown to complement a secA2 deletion mutant 

(25), demonstrating that it is capable of normal function despite the presence of the His tag. 

Membrane-permeable protein crosslinkers formaldehyde, DSP, and SDAD were chosen 

and were added to intact M. smegmatis cells.  This whole cell in vivo crosslinking method was 

chosen in an effort to avoid disruption of native protein interactions, which can occur when cells 

are lysed prior to crosslinking.  Formaldehyde is a widely used crosslinker that reacts with 

primary amine groups and has been used successfully for whole cell in vivo crosslinking of SecA 

to SecY in E. coli (8).  DSP also reacts with primary amines but has a longer spacer arm (12.0 Å) 

than formaldehyde (2.0 Å), enabling it to react with more distant amine groups.  SDAD is a 

photoactivatable crosslinker that also has a long spacer arm (13.5 Å).  This crosslinker reacts first 

at one end with primary amines and then, upon UV exposure, reacts non-specifically at the 

opposite end, allowing it to crosslink proteins even in the absence of adjacent amine groups. 

Following in vivo crosslinking, complexes containing SecA2-His were purified and 

analyzed for the presence of SecY.  While SecA2 is normally found primarily in the cytoplasm 

(22), SecY is a membrane protein and is found in the cell envelope fraction (Fig. 2.4, Chapter 2).  

Therefore, any SecA2 protein that has been crosslinked to SecY will become trapped at the 

membrane.  In order to enrich for crosslinked SecA2 complexes that might contain SecY, we first 
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isolated the cell envelope fraction from crosslinker-treated cells and solubilized this fraction 

using 1% Igepal CA-630, a detergent we found effective for solubilizing SecY (data not shown).  

Finally, crosslinked complexes containing SecA2-His were purified from the solubilized cell 

envelope fraction by allowing the His-tag to bind to a nickel-affinity column, washing away 

unbound proteins, and then eluting SecA2-His by addition of high levels of imidazole. 

SDS-PAGE of crosslinked samples demonstrated that all crosslinkers used were active in 

the cell envelope.  This was evidenced by changes in the banding pattern observed when 

crosslinked cell envelope samples are compared to untreated samples (Fig. 4.2A).  In addition, 

all crosslinkers induced the appearance of higher molecular weight SecA2-containing species 

(Fig. 4.2B), indicating they successfully reacted with SecA2-His.  Despite its typical localization in 

the cytoplasm, SecA2-His was successfully purified from the cell envelope and was present in 

column eluates (Fig. 4.2C).  Finally, western blotting was performed to detect any SecY protein 

crosslinked to SecA2-His (Fig. 4.2D).  The SecY monomer band was weak to undetectable in 

crosslinked samples, consistent with crosslinking of SecY to other proteins (though no discrete 

higher molecular weight bands were visible).  Upon reversal of crosslinks, the SecY monomer 

was again detectable.  However, in no case was SecY detected in the purified SecA2-His column 

eluate samples. 

SecY does not crosslink to SecA2 K129R-His.  Because the genetic relationship between 

SecA2 and SecY was originally detected using the secA2 K129R allele, we also tested whether 

SecY could be chemically crosslinked to SecA2 K129R-His.  SecA2 K129R also exhibits a shift in 

localization towards the cell envelope relative to wild type SecA2 (22), consistent with increased 

interaction with SecY or other membrane proteins.  In setting up this experiment we took into 

consideration the fact that the presence of SecA2 K129R is very detrimental to the cell and 
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results in SecY degradation (Chapter 2).  In order to successfully express both SecA2 K129R-His 

and SecY at the same time, we used a strain carrying an anhydrotetracycline (Atc)-inducible 

secA2 K129R-His allele (strain LL159).  Atc was added during the last 4 hours of culture growth to 

induce expression of the secA2 K129R-His allele.  By inducing secA2 K129R-His expression only 

briefly before crosslinking, we could limit the length of time during which SecY would be subject 

to degradation induced by the SecA2 K129R protein.  In addition, this strain is also a secY 

merodiploid, containing both the chromosomal copy of secY and an extra copy of secY driven 

from the overexpressing 24S mutant secY promoter and integrated into the chromosome at the 

Tweety mycobacteriophage attachment site (26).  Crosslinking and purification of SecA2 K129R-

His was performed as described above.  Again, all crosslinkers were active in the cell envelope 

(Fig. 4.3A) and all crosslinkers induced the appearance of higher molecular weight SecA2-

containing species (Fig. 4.3B), indicating they successfully reacted with SecA2 K129R-His.  In 

addition, SecA2 K129R-His was successfully purified from the cell envelope fraction (Fig. 4.3C).  

However, as before, no SecY was detected in purified SecA2 K129R-His samples (Fig. 4.3D).  

Therefore, even using the SecA2 K129R protein, which we believe is trapped in non-functional 

complexes with the Sec pathway, no interaction between SecA2 and SecY could be detected. 

 

Discussion 

As shown previously (Chapter 2), SecA2-dependent protein export appears to be 

integrated into the housekeeping Sec pathway and SecA1 and SecA2 appear to share use of the 

SecYEG translocon to export proteins across the cell membrane.  The most obvious model for 

this relationship is one in which SecA2 directly interacts with SecY during protein export, in the 

same way observed for the canonical Sec pathway.  The interaction between SecY and the 
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canonical SecA protein has been demonstrated in E. coli using numerous methods (including 

ligand affinity/far western blotting (5), surface plasmon resonance (7), and in vivo crosslinking 

(8)) and a co-crystal structure of the Thermotoga maritima SecA-SecY complex has been solved 

(6).  Here, we evaluated this model by attempting to chemically crosslink SecY to SecA2-His or 

SecA2 K129R-His.  Under the conditions tested, no crosslinking was observed.  These results 

suggest that the interaction of SecA2 with the housekeeping SecY protein may not be as direct 

as we initially hypothesized. 

The primary amine-reactive crosslinker formaldehyde has been successfully used in E. 

coli to crosslink SecA to SecY in vivo (8) and was thus our first-line choice for crosslinking.  In 

addition, we also used DSP, a second primary amine-reactive crosslinker with a longer spacer 

arm.  Neither of these chemicals were successful at crosslinking SecY to either SecA2-His or 

SecA2 K129R-His.  To assess the likelihood of obtaining amine-amine crosslinking between 

SecA2 and SecY, we modeled hypothetical SecA2-SecY and SecA1-SecY protein complexes onto 

the T. maritima SecA-SecY co-crystal structure (6).  Next we identified the location of all primary 

amines (i.e. all lysine residues and the protein N-terminus) in both the SecA1-SecY and SecA2-

SecY modeled structures.  For the modeled SecA1-SecY structure, there were SecA1 amine 

groups in close proximity to SecY amine groups, suggesting an amine-amine crosslinker would 

successfully crosslink these two proteins.  However, for the modeled SecA2-SecY structure, 

there were no closely spaced pairings of SecA2 amine groups with SecY amine groups observed.  

This suggests that an amine-amine crosslinker, such as Formaldehye or DSP, might fail to 

crosslink these two proteins.  To account for this potential disadvantage, we additionally used a 

photo-activatable crosslinker, SDAD.  While this crosslinker reacts at one end with a primary 

amine group (which is readily available in either SecA2 or SecY), the second end of the SDAD 

crosslinker reacts non-specifically upon exposure to UV light, allowing it to react with any 
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protein in close proximity at the time of UV exposure.  This feature should overcome the lack of 

closely spaced amine group pairs in the hypothetical SecA2-SecY complex. 

Despite the use of a variety of carefully chosen chemical crosslinkers, no crosslinking 

was observed between SecY and either SecA2-His or SecA2 K129R-His.  This suggests that SecA2 

does not participate in a direct physical interaction with SecY.  However, there are many 

possible explanations for this finding.  One possibility is that SecA2 and SecY do interact 

physically, but that this interaction could not be detected under the present experimental 

conditions.  There are many variables that can affect the success of a crosslinking experiment, 

such as type of crosslinker, crosslinker concentration, exposure time and temperature, and 

protein context at the time of crosslinking (i.e. in vivo vs. in vitro crosslinking).  While it would be 

technically prohibitive to try all possible crosslinking conditions, the conditions used here were 

carefully chosen to maximize our chances of finding a SecA2-SecY interaction, yet they failed to 

identify an interaction. 

The lack of a detectable interaction between SecA2 and SecY may indicate that any 

interactions between these two proteins are weak or transient in nature.  The fact that SecA2 is 

found predominantly in the cytoplasm (Fig. 3.2, Chapter 3) is consistent with this conclusion.  In 

contrast, SecA1, which is believed to interact directly with SecY, is found evenly distributed 

between the cell envelope and the cytoplasm.  It would be interesting to test whether a physical 

interaction can be detected between SecA1 and SecY in M. smegmatis.  Perhaps SecA2 interacts 

with SecY only briefly to deliver SecA2-dependent proteins, allowing SecA1 to take over and 

drive export of these proteins through the SecY channel and across the membrane.  In fact, 

SecA1 appears to be required for SecA2-dependent protein export ((25) and Fig. 2.7, Chapter 2). 
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Relative to wild type SecA2, the SecA2 K129R protein variant is located to a larger extent 

in the cell envelope, suggesting it is trapped in an interaction with a membrane protein(s) such 

as SecY.  Therefore, it was possible that using SecA2 K129R in our crosslinking experiments 

would improve our ability to detect a SecY interaction.  However, we previously found that the 

presence of SecA2 K129R results in degradation of SecY (Chapter 2).  To work around this 

potential problem, we expressed SecA2 K129R only briefly from an inducible promoter and also 

used a secY merodiploid strain (LL159) that overexpresses secY.  While this strain exhibited 

normal levels of SecY protein, no interaction was detected between SecA2 K129R and SecY.  

However, we do not know how quickly SecY is degraded following interaction with SecA2 K129R.  

It is possible that SecA2 K129R-SecY complexes do form, but are immediately degraded, and 

that any remaining SecY protein has not yet engaged in an interaction with SecA2 K129R.  This 

could be another reason we were unable to detect crosslinking of SecY to SecA2 K129R-His. 

Another possible explanation for the lack of a detectable interaction between SecA2 and 

SecY is that, while SecA2 and SecY participate in the same SecA2-dependent export pathway, 

these two proteins may not directly interact with one another.  Rather, other components of the 

canonical Sec pathway, such as SecA1, may mediate the genetic relationship between SecA2 and 

SecY, interacting with both proteins during different steps of protein export.  This type of 

intermediary function could also be performed by other unknown SecA2-specific components of 

the protein export machinery.  Through the course of our suppressor analysis we also identified 

Msmeg_1684, a protein that appears to play a role in the process of SecA2-dependent protein 

export (Chapter 3).  The function of Msmeg_1684 is currently unknown.  It will be interesting in 

the future to assess whether this protein interacts physically with either SecA2 or SecY. 
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In conclusion, we used in vivo protein crosslinking to assess whether SecY interacts with 

SecA2-His or SecA2 K129R-His.  No physical interaction was detected between these proteins.  

However, this does not contradict our findings that SecA2 and SecY interact genetically (Chapter 

2).  Rather, the nature of the interactions between SecA2 and the housekeeping Sec pathway, 

including SecY, are not immediately evident and will require additional study to understand 

fully.  
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Table 4.1.  Mycobacterium smegmatis strains used in this study. 

M. smegmatis strain Description Source 

NR116 ∆secA2 (22) 
LL133 NR116+pHSG93, ΔsecA2+secA2-6xHis plasmid This work 
LL143 NR116+pNR54, ΔsecA2+Atc-inducible secA2 K129R-6xHis plasmid This work 
LL159 LL143+pLL42, ΔsecA2+Atc-inducible secA2 K129R-6xHis plasmid+24S secY plasmid This work 
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Table 4.2.  Plasmids used in this study. 

Plasmid Genotype Description Source 

pMV306.kan aph int attPL5 ColE1 Single-copy mycobacterial shuttle vector, 
integrates in mycobacteriophage L5 attB site 

(27) 

pMV361.kan aph Phsp60 int attPL5 ColE1 Single-copy mycobacterial shuttle vector with 
hsp60 promoter, integrates in 
mycobacteriophage L5 attB site 

(27) 

pHSG93 aph Phsp60-secA2-6xHis int attPL5 ColE1 M. smegmatis secA2-6xHis in pMV361.kan (25) 
pNR54 aph oriM ColE1 Pmyc1-tetO-secA2 

K129R-6xHis Psmyc-tetR 
Atc-inducible secA2 K129R-6xHis plasmid (22) 

pCR2.1-TOPO aph bla ColE1 TOPO TA cloning plasmid Invitrogen 
pLL17 aph bla secY ColE1 M. smegmatis secY in pCR2.1-TOPO This work 

(Chapter 2) 
pLL41 aph bla secY(24S) ColE1 NR151 (24S) secY in pCR2.1-TOPO This work 
pLL2 hyg bla int attPTweety ColE1 pYUB2063 with 3299 bp PciI fragment removed, 

single-copy mycobacterial shuttle vector, 
integrates in mycobacteriophage Tweety attB site 

This work 
(Chapter 2) 

pLL42 hyg bla secY(24S) int attPTweety ColE1 NR151 (24S) secY in pLL2 This work 
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Table 4.3.  Primers used in this study. 

Primer Sequence and Description 

NR151sdmF 5’- GGCCGACGCAAGGGCTCCTGTTACTCTGGTAGACTGTTTGAC -3’ 
binds 161 bp upstream of secY (msmeg_1483), used for site-directed mutagenesis to recreate 24S (NR151) 
secY promoter mutation 

NR151sdmR 5’- CTCAGCCGTCAAACAGTCTACCAGAGTAACAGGAGCCCTTGC -3’ 
binds 113 bp upstream of secY (msmeg_1483), used for site-directed mutagenesis to recreate 24S (NR151) 
secY promoter mutation 
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Figure 4.1.  Schematic representation of experimental design for protein crosslinking 
and purification.  Briefly, cultures were grown containing either SecA2-His (strain LL133) or Atc-
induced SecA2 K129R-His (strain LL159).  Cells were concentrated and crosslinked at room 
temperature.  For samples containing the crosslinker SDAD, cells were also exposed to UV light 
to complete crosslinking.  Cells were lysed by passage through a French press, creating whole 
cell lysates (WCL), which were then fractionated to cell envelope-containing (ENV, pellet) and 
cytoplasm-containing (SOL, supernatant) fractions by ultracentrifugation.  The ENV fraction was 
resuspended in Qiagen lysis buffer and incubated with Ni-NTA agarose to allow binding of His-
tagged proteins.  ENV/agarose slurry was loaded into a column and the flow-through was 
collected.  Columns were washed twice with Qiagen wash buffer and His-tagged proteins were 
eluted twice with Qiagen elution buffer.  All samples were collected during column purification 
steps and were subsequently analyzed by SDS-PAGE and Western blotting.  See Materials and 
Methods section for additional details.  



134 
 

 

 

Figure 4.2.  SecY does not crosslink to SecA2-His.  Whole cells of strain ΔsecA2+secA2-
His (LL133) were crosslinked with the indicated chemicals and SecA2-His was purified from cell 
envelope (ENV) fractions.  Samples were either mixed with SDS-PAGE sample buffer lacking β-
ME at room temperature (-) to maintain protein crosslinks, or mixed with SDS-PAGE sample 
buffer containing 5% β-ME and boiled for 15 min. (+) to reverse protein crosslinks.  Approximate 
molecular weights (in kDa) are indicated.  All images shown are representative of at least 2 
experiments.  (A) ENV fractions separated by SDS-PAGE and all proteins detected with 
coomassie stain.  (B) ENV fractions separated by SDS-PAGE and SecA2 detected by Western 
blotting.  (C) SecA2-His purification samples separated by SDS-PAGE and transferred to a 
membrane, all proteins detected with Ponceau S stain (bottom), then SecA2 detected by 
Western blotting (top).  Samples shown were not crosslinked and were treated with 5% β-ME + 
15 min. boiling.  Arrow indicates location of SecA2 band on Ponceau S-stained membrane.  (D) 
Selected SecA2-His purification samples separated by SDS-PAGE and SecY detected by Western 
blotting.  
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Figure 4.3.  SecY does not crosslink to SecA2 K129R-His.  Strain ΔsecA2+Atc-inducible 
secA2 K129R-His+24S secY (LL159) was treated with 400 ng/mL Atc for four hours to induce 
production of SecA2 K129R-His.  Whole cells were then crosslinked with the indicated chemicals 
and SecA2 K129R-His was purified from cell envelope (ENV) fractions.  Samples were either 
mixed with SDS-PAGE sample buffer lacking β-ME at room temperature (-) to maintain protein 
crosslinks, or mixed with SDS-PAGE sample buffer containing 5% β-ME and boiled for 15 min. (+) 
to reverse protein crosslinks.  Approximate molecular weights (in kDa) are indicated.  All images 
shown are representative of at least 2 experiments.  (A) ENV fractions separated by SDS-PAGE 
and all proteins detected with coomassie stain.  (B) ENV fractions separated by SDS-PAGE and 
SecA2 detected by Western blotting.  (C) SecA2-His purification samples separated by SDS-PAGE 
and transferred to a membrane, all proteins detected with Ponceau S stain (bottom), then 
SecA2 detected by Western blotting (top).  Samples shown were not crosslinked and were 
treated with 5% β-ME + 15 min. boiling.  Arrow indicates location of SecA2 band on Ponceau S-
stained membrane.  (D) Selected SecA2 K129R-His purification samples separated by SDS-PAGE 
and SecY detected by Western blotting.  
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CHAPTER 5 

Discussion 

 

As the causative agent of the disease tuberculosis, the bacterium Mycobacterium 

tuberculosis is responsible for 1.4 million deaths annually and is the primary cause of death for 

HIV-positive individuals (1).  In addition, multiply and extensively drug-resistant strains of M. 

tuberculosis (MDR and XDR-TB) pose a serious challenge for future tuberculosis treatment.  

When M. tuberculosis is spread from person to person by aerosol and is phagocytosed by 

alveolar macrophages, the proteins exported by the bacterium are ideally positioned to interact 

with the host.  The pool of M. tuberculosis exported proteins, in addition to performing 

functions critical for M. tuberculosis growth and survival, are able to modulate host immune 

responses, allowing the bacterium to survive within the host and cause disease. 

M. tuberculosis and other mycobacteria, including the model organism Mycobacterium 

smegmatis, have several systems dedicated to the export of proteins to the bacterial cell surface 

and the extracellular environment (2).  Like the proteins they export, these systems are often 

required for the survival and/or virulence of the bacterium.  The conserved Sec export system is 

responsible for the bulk of protein export and is essential for cell survival (3).  In this system, 

unfolded proteins with N-terminal signal peptides are post-translationally exported through a 

membrane-embedded channel composed of SecY, SecE, and SecG (4, 5).  The SecA motor 

protein recognizes the proteins destined for Sec export (6, 7) and interacts with the SecYEG 
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translocon (8, 9), harvesting the energy from repeated cycles of ATP binding and hydrolysis to 

push proteins through the SecYEG channel and across the membrane (10, 11). 

Mycobacteria, along with some Gram-positive bacteria, are unique in containing two 

functionally distinct copies of the SecA motor protein.  The SecA protein responsible for 

housekeeping Sec export is referred to as SecA1, while the second SecA protein is referred to as 

SecA2, is generally non-essential, and is responsible for a subset of protein export (12).  When 

found in pathogens such as M. tuberculosis, the SecA2 export system is often important for 

virulence.  In some bacteria, the SecA2 protein is accompanied by a SecY2 protein that is also 

required for SecA2-dependent protein export (12).  These systems are referred to as “SecA2-

SecY2” systems.  Mycobacteria do not contain a SecY2 protein or any other obvious SecA2 

system components and the mycobacterial SecA2 export pathway is therefore referred to as a 

“SecA2-only” system.  Unlike the well-studied, conserved Sec export pathway, the mechanism of 

mycobacterial SecA2-dependent export is poorly understood. 

This dissertation describes experiments that advance our understanding of the M. 

smegmatis SecA2 export pathway.  Prior to this dissertation work, we knew that SecA2 had 

ATPase activity and that this activity was important for its function (13, 14).  We also knew that 

SecA2-dependent export could not proceed in the absence of the housekeeping SecA1 protein 

(14).  However, we did not know whether SecA2 worked with other housekeeping Sec 

components or if any additional factors were involved in the SecA2 export pathway.  Here, we 

demonstrated for the first time a connection between M. smegmatis SecA2 and SecY, the major 

component of the housekeeping Sec export channel.  In addition, we demonstrated a 

connection between the SecA2 export pathway and Msmeg_1684, a protein of unknown 

function that is conserved throughout mycobacteria and may represent a novel component of 
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the SecA2 export system.  The findings described in this dissertation suggest a new model in 

which the mycobacterial SecA2 export pathway is integrated into the housekeeping Sec 

pathway and includes an additional SecA2-specific component, Msmeg_1684. 

 

SecA2 K129R Causes SecY Degradation 

In Chapter 2, we identified a relationship between SecA2 and SecY by studying secA2 

K129R, an allele encoding a substitution in the Walker box of SecA2.  This Walker box 

substitution prevents binding and hydrolysis of ATP, rendering SecA2 K129R non-functional (13, 

14).  In addition, the Walker box substitution produces a dominant negative SecA2 protein (14).  

Dominant negative proteins exhibit phenotypes even in the presence of a wild type copy of the 

protein, and are often still able to interact with their normal binding partners.  Consistent with 

the idea that it is interacting with other proteins, SecA2 K129R exhibits a shift in localization 

from the cytoplasm towards the cell envelope (14), implying that it is trapped in a complex with 

a membrane protein. 

During protein export, the canonical SecA protein repeatedly associates with and 

releases from the SecYEG translocon, pushing exported proteins through the SecYEG channel in 

a stepwise fashion (10, 11).  ATP hydrolysis is necessary for SecA to release from the SecYEG 

translocon (10).  An E. coli SecA variant containing a Walker box substitution (15) comparable to 

that in M. smegmatis SecA2 K129R is therefore unable to release from and becomes trapped at 

the cell membrane (16).  If SecA2 interacts with the canonical Sec pathway in a similar way as E. 

coli SecA does, we would expect SecA2 K129R to become trapped at the translocon while 

attempting to export a protein.  As demonstrated in Chapter 2, the presence of SecA2 K129R 

results in a drastic reduction in SecY protein levels.  This effect on SecY makes sense in light of 
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previous studies performed in Escherichia coli.  “Jamming” of Sec protein export in E. coli by 

attempted export of a folded protein results in degradation of SecY by the protease FtsH (17).  

Therefore, SecY degradation in the M. smegmatis secA2 K129R mutant might occur in an effort 

by the cell to remove SecY channels rendered non-functional by trapped SecA2 K129R proteins. 

In addition to being a dominant negative protein, SecA2 K129R causes severe growth 

inhibition in M. smegmatis.  The observed connection between SecA2 K129R and SecY explains 

this growth defect.  Because SecY is an essential protein critical for cell growth and viability (18, 

19), the severe decrease in SecY protein levels in the presence of SecA2 K129R would be 

detrimental to the cell.  SecA1 depletion could also be stressful on the Sec export system and 

could potentially result in SecY degradation, as seen for SecA2 K129R.  Therefore, we also re-

evaluated the previously observed (14) requirement for SecA1 in SecA2-dependent export.  Our 

results showed that SecA1 depletion does not affect SecY protein levels, and therefore that SecY 

degradation does not account for the apparent role of SecA1 in the SecA2 export system. 

 

Suppressor Mutations Increase SecY Protein Levels 

Given the degradation of SecY observed in the presence of SecA2 K129R, it is logical that 

suppressor mutations might alleviate the phenotypes of the secA2 K129R strain by either 

avoiding SecY degradation or restoring SecY protein levels.  Consistent with this hypothesis, we 

found two extragenic suppressors containing mutations affecting secY expression, strains 4S and 

24S.  Each of these suppressors contains a mutation upstream of secY.  In Chapter 2, we 

demonstrated that these mutations are located within the secY promoter and cause an increase 

in secY transcript levels.  At the protein level, suppressors 4S and 24S exhibit increased SecY 

levels relative to the secA2 K129R strain, but do not fully restore SecY to the level seen in the 
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presence of the wild type secA2 allele.  This increase in secY expression is sufficient to suppress 

the secA2 K129R allele.  These findings demonstrate that suppressors 4S and 24S do not prevent 

SecY degradation, but rather act to partially restore SecY protein levels, balancing SecY 

degradation with increased secY expression. 

In addition to the two suppressors that directly affect secY expression, we examined six 

additional extragenic suppressors.  All six suppressors exhibited increased levels of SecY protein 

relative to the secA2 K129R strain.  However, these six suppressors do not contain mutations in 

or near secY and do not affect secY transcript levels.  The suppressor mutations in these strains 

might affect SecY production in some other way; alternately, these mutations might act to avoid 

SecY degradation in the first place.  For instance, these suppressor mutations may act by 

preventing the non-functional interaction of SecA2 K129R with components of the 

housekeeping Sec export pathway, preventing the stress on Sec export that results in SecY 

degradation.  This possibility is especially interesting, as suppressor mutations that act in this 

manner may point to additional proteins required for SecA2-dependent protein export.  It is also 

interesting to note that when the eight total extragenic suppressor strains examined in Chapter 

2 are taken as a group, the strength of the suppressor phenotype correlates with the level of 

SecY protein in each strain.  This provides support for the conclusion that degradation of SecY is 

responsible for the severe phenotypes of the secA2 K129R mutant strain and that the level of 

suppression reflects the degree of restoration of SecY levels. 

 

Msmeg_1684 is Genetically Connected to SecA2-Dependent Protein Export 

In Chapter 3, we examined additional extragenic suppressors of the dominant negative 

secA2 K129R allele.  Two suppressors, strains 7S and 20B, contain very large deletions (43-51 
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kbp) in the same region of the genome.  Among the many genes located within these deletion 

regions, we ruled out all but nine, leaving genes msmeg_1684-1692 as candidates for explaining 

the suppression phenotype.  Whole genome sequencing of six additional suppressors revealed 

mutations affecting gene msmeg_1684 in all six strains.  Because msmeg_1684 is also deleted in 

suppressors 7S and 20B, we actually collected a total of 8 suppressor strains that appear to act 

through msmeg_1684 mutations.  To confirm the role of msmeg_1684 in the suppressor 

phenotype, we evaluated a strain containing an unmarked, in-frame deletion of msmeg_1684.  

Like the eight suppressor strains, the msmeg_1684 deletion strain is also able to suppress the 

secA2 K129R allele. 

Our findings in Chapter 3 demonstrate that the presence of Msmeg_1684 contributes to 

the SecA2 K129R phenotype and that the loss of Msmeg_1684 creates a suppressor phenotype.  

This implies that Msmeg_1684 is connected in some way to the SecA2 protein export pathway.  

The role of Msmeg_1684 in SecA2-dependent export is yet to be determined; however, there 

are several interesting clues to its function that are worthy of discussion.  Foremost, 

Msmeg_1684 appears to be required for the interaction of SecA2 K129R with the housekeeping 

Sec pathway.  In support of this conclusion, the shift in localization of SecA2 K129R to the cell 

envelope is completely reversed in suppressors 7S and 20B.  These two suppressors, which 

contain large deletions removing gene msmeg_1684, exhibit SecA2 K129R localization to the 

cytoplasm, resembling that of wild type SecA2.  Consistent with the localization change, these 

suppressors are also able to completely reverse the SecA2 K129R azide sensitivity and growth on 

Mueller-Hinton phenotypes, exhibiting phenotypes similar to the secA2 deletion strain.  In 

contrast, suppressors 4S and 24S, which act by increasing secY expression, are only able to 

partially reverse the effects of the secA2 K129R allele.  The complete reversal of SecA2 K129R 

localization and phenotypes in suppressors 7S and 20B demonstrates that Msmeg_1684 must be 



144 
 

required for SecA2 K129R to become trapped in complexes at the membrane.  In suppressor 

strains lacking Msmeg_1684, the detrimental interaction of SecA2 K129R with the Sec pathway 

is completely prevented, avoiding the resulting stress on export and degradation of SecY 

entirely.  In the future, the requirement for Msmeg_1684 in the interaction of SecA2 K129R with 

the cell membrane should be confirmed in the in-frame msmeg_1684 deletion mutant. 

An additional point supporting the observed connection of Msmeg_1684 to the SecA2 

export pathway is found in the pattern of occurrence of Msmeg_1684-like proteins in other 

species.  Proteins with strong homology to Msmeg_1684, as well as SecA2 proteins, are found 

throughout mycobacteria.  In addition, Msmeg_1684-like proteins are found in about half of the 

approximately 370 currently sequenced species within the order Actinomycetales, of which 

mycobacteria are members.  Similarly, SecA2 proteins are also found in about half of the 

sequenced Actinomycetales species.  Strikingly, the species containing Msmeg_1684 proteins 

and the species containing SecA2 proteins are largely overlapping.  We identified only 16 species 

containing Msmeg_1684-like proteins without SecA2 proteins, and only 6 species containing 

SecA2 proteins without Msmeg_1684-like proteins.  However, bacteria outside of the 

Actinomycetales that contain SecA2 systems, including those of both the “SecA2-only” and 

“SecA2-SecY2” types, are not associated with Msmeg_1684-like proteins.  The frequent co-

occurrence of SecA2 and Msmeg_1684-like proteins among the Actinomycetales supports the 

conclusion that these two proteins operate as part of the same pathway and suggests that the 

presence of an Msmeg_1684-like protein is a specific adaptation of the mycobacterial and 

related SecA2 systems. 

Msmeg_1684 is 431 amino acids in size and contains no predicted signal peptide or 

transmembrane domains, supporting a predicted cytoplasmic location.  Despite the fact that 
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Msmeg_1684 is conserved with similar proteins found throughout the order Actinomycetales, it 

has no useful similarity to proteins with known functions.  Therefore, the function of 

Msmeg_1684 cannot be predicted.  However, it is interesting to note that Msmeg_1684 

contains many aspartate and glutamate residues and is therefore a highly acidic protein 

(isoelectric point is 3.83).  Protein export chaperones are often acidic proteins, such as the SecB 

chaperone involved in housekeeping Sec export in Gram-negative bacteria (20) (isoelectric point 

is 4.05).  In addition, numerous acidic chaperones are involved in type three secretion (21).  

Thus, one possibility to consider is that Msmeg_1684 might perform a chaperone role in SecA2-

dependent protein export.  Export chaperones can have functions both in maintaining proteins 

in an unfolded state and in delivering them to the export apparatus, thus it will be interesting to 

evaluate Msmeg_1684 for these roles in the future. 

The M. tuberculosis homolog of Msmeg_1684, Rv3311, is predicted by TraSH to be 

important for growth in macrophages (22), indicating that Rv3311 likely plays a role in M. 

tuberculosis virulence.  Rv3311 was not tested in the TraSH screen performed in mice (23), 

therefore no prediction exists for this phenotype.  Similarly, the M. tuberculosis SecA2 protein is 

also predicted by TraSH to be important for growth in macrophages (22), as well as in mice (23).  

These SecA2 phenotypes have also been demonstrated directly (24, 25).  If Rv3311 and SecA2 

participate in the same pathway, then mutant strains of each would be expected to display 

similar phenotypes.  Therefore, it will be interesting to assess an rv3311 deletion strain for 

phenotypes exhibited by the secA2 deletion strain, such as failure to grow in macrophages(25), 

reduced early growth in mice (24), smooth colony morphology on agar plates (14), and failure to 

block phagosome maturation (26).  The rv3311 gene is also predicted to be co-transcribed with 

sapM (rv3310).  Like SecA2, SapM is thought to be important for the ability of M. tuberculosis to 
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resist phagosome maturation (26, 27).  This close association of rv3311 with sapM provides yet 

another indirect clue connecting Msmeg_1684 to the SecA2 export system. 

 

A Physical Interaction Between SecA2 and SecY Cannot be Detected 

In Chapter 4, we assessed the possibility of a physical interaction between the M. 

smegmatis SecA2 and SecY proteins.  The results presented in Chapter 2 demonstrated a 

connection between SecA2 and SecY and suggested a model in which SecA2 would interact 

physically with SecY during protein export, pushing exported proteins through the canonical 

SecYEG channel.  To assess this model, we performed in vivo protein crosslinking using a variety 

of chemical crosslinkers.  One of the crosslinkers used, formaldehyde, has been successfully 

used to crosslink SecA to SecY in vivo in E. coli (28).  Following chemical crosslinking, we purified 

His-tagged SecA2 and SecA2 K129R proteins from the cell envelope using a nickel-affinity 

column and evaluated the resulting eluates for co-purification of SecY.  In no case did we 

identify SecY in association with either SecA2 or SecA2 K129R.  This finding suggests that the 

observed genetic relationship between secA2 and secY does not represent a direct physical 

interaction between the SecA2 and SecY proteins. 

There are several possible explanations for this finding.  First, while the crosslinking 

conditions used were carefully chosen to maximize our chances of success, it is possible that the 

crosslinking conditions used for this experiment were simply not capable of trapping a SecA2-

SecY interaction.  Second, it is possible that a physical interaction between SecA2 and SecY does 

occur, but is so weak or transient that it could not be detected.  This possibility is supported by 

the fact that SecA2 is normally found primarily in the cytoplasm (14), suggesting that it spends 
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less time interacting with membrane proteins than SecA1, which is found in both the cytoplasm 

and the cell envelope. 

It is also possible that our failure to detect an interaction between SecA2 and SecY is 

indicative of the true situation within the cell.  Perhaps, unlike the physical interaction between 

the canonical SecA and SecY proteins, SecA2 never engages in a direct physical interaction with 

SecY.  Rather, the genetic relationship between secA2 and secY may represent an indirect 

interaction mediated through other proteins involved in SecA2-dependent export.  This is an 

interesting possibility as it would point to a function for SecA2 that is very different than the role 

of SecA1 as a motor protein.  Instead of physically pushing proteins through the SecYEG channel, 

perhaps SecA2 delivers proteins to SecA1, which then performs the final export steps.  As shown 

previously (14) and confirmed here, SecA1 does play a role in SecA2-dependent protein export.  

Alternately, the connection between SecA2 and SecY could be mediated by some other protein 

involved in SecA2-dependent export, such as Msmeg_1684, the protein of unknown function we 

identified in Chapter 3.  The exact relationships between SecA2, SecY, SecA1, and Msmeg_1684 

will require additional study in the future to fully understand how these proteins interact during 

SecA2-dependent protein export. 

 

Suppressor Analysis Through Genome Sequencing is a Successful Approach for 

Exploring SecA2-Dependent Export 

Extragenic suppressor analysis is a classical genetic method that can be used to identify 

unknown genes involved in various bacterial pathways, and has been used extensively in 

studying the canonical Sec system in E. coli.  However, this approach has only rarely been used 
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in mycobacteria (29, 30).  Here, we described the analysis of 10 extragenic suppressors of the M. 

smegmatis secA2 K129R allele.  This approach was successful in identifying two genes, secY and 

msmeg_1684, that are genetically connected to SecA2-dependent export. 

Our original suppressor collection included 63 independent suppressor strains capable 

of improved growth on Mueller-Hinton agar relative to the parent secA2 K129R mutant strain 

(as described in Chapter 2 and (31)).  Of these 63 suppressors, 23 expressed SecA2 K129R 

protein.  The remaining 40 suppressors lost expression of the secA2 K129R allele, suggesting 

they act either through intragenic mutations within the secA2 K129R allele, through mutations 

affecting the hsp60 promoter from which secA2 K129R was expressed, or through mutations 

affecting genes that regulate Phsp60-secA2 K129R expression or SecA2 K129R protein levels.  

While these 40 suppressors could potentially inform on SecA2 regulation, they are unlikely to 

provide mechanistic information on SecA2-dependent protein export and were not studied 

further.  Of the 23 suppressors still expressing SecA2 K129R protein, 9 were found to have 

intragenic mutations within the secA2 K129R allele (31).  These intragenic mutations could 

provide information on specific regions of the SecA2 protein that are important for its function 

and would be interesting to study in the future, particularly in the context of exploring physical 

interactions between SecA2 and other proteins involved in SecA2-dependent export.  The 

remaining 14 suppressors expressing SecA2 K129R protein do not have mutations in the secA2 

K129R allele and are therefore extragenic suppressor strains (see Appendix for detailed 

information on extragenic suppressors).  This category of suppressor mutants is where we 

focused our study for this dissertation, in an effort to identify additional components of the 

SecA2-dependent protein export system. 
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Among the 14 extragenic suppressors of secA2 K129R, we found two strains to have 

mutations upstream of secY, as discussed in Chapter 2.  The remaining 12 extragenic 

suppressors do not contain mutations affecting secY or its promoter.  We found 8 of the 

remaining 12 extragenic suppressors of secA2 K129R to contain mutations affecting gene 

msmeg_1684, as discussed in Chapter 3.  Mutations in msmeg_1684 are not found in the other 

6 of 14 extragenic suppressors of secA2 K129R (Appendix). 

Therefore, of the 14 extragenic suppressors of secA2 K129R the mutations responsible 

for suppression in 4 strains have yet to be identified.  These strains do not carry mutations in 

either the secY promoter or msmeg_1684 (Appendix).  Therefore, future identification of the 

suppressor mutations in these strains may provide yet additional information about the SecA2 

pathway.  Notably, two of these suppressors, strains 5S and 13B, do express SecA2 K129R 

protein, but do so at a reduced level relative to the parent secA2 K129R strain.  It is possible that 

this reduction in SecA2 K129R levels is responsible for the suppressor phenotype of these two 

strains. 

In addition to the suppressors of M. smegmatis secA2 K129R examined here, a separate 

group of 7 extragenic suppressors was isolated from an M. smegmatis strain expressing the M. 

tuberculosis secA2 K115R allele (comparable to M. smegmatis K129R) (31).  Though these 7 

suppressor strains were not studied in depth in this dissertation work, they were screened for 

mutations affecting the secY promoter.  No mutations affecting secY were found among this 

group of extragenic suppressors (Appendix).  However, one suppressor from this group has a 

large chromosomal deletion affecting msmeg_1684.  The remaining 6 suppressors of M. 

tuberculosis secA2 K115R have not been evaluated for msmeg_1684 mutations, an experiment 

which should be performed in the future. 
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The recent advent of whole genome sequencing technology has significantly contributed 

to the success of the suppressor analysis strategy described in this dissertation.  Previous 

methods used to locate mutations responsible for suppression, such as the screening of 

genomic DNA librairies, had significant drawbacks.  For example, a dominant mutation, such as 

those affecting secY, could not be identified in the same way as a recessive mutation, such as 

those affecting msmeg_1684.  Therefore, if the wrong approach was used, the suppressor 

mutation could not be identified.  In comparison, we are now able to quickly sequence and 

analyze whole genomes, pinpointing hundreds of mutations of all types in a single genome in a 

matter of weeks.  However, this approach comes with its own challenges.  Initially, genome 

analysis and identification of mutations was a laborious process requiring us to recruit the 

assistance of collaborators capable of constructing custom computer algorithms tailored to the 

project at hand.  In addition, the first genomes we sequenced required an entire lane of Illumina 

sequencing for each genome and provided average sequence coverage as low as 16.  Even after 

mutations are successfully identified, the identification of multiple mutations in a single strain 

presents the challenge of determining which mutation(s) is responsible for the suppressor 

phenotype.  During the course of this dissertation work, genome sequencing and analysis has 

improved drastically, to the point where we can now sequence 6 genomes (or more) in a single 

lane of Illumina sequencing, resulting in average coverage of around 200 for each genome.  In 

addition, user-friendly computer software, such as the Geneious program used here, now allows 

quick automated data analysis and mutation identification without the assistance of computer 

programmers. 

Previously, the idea of performing a suppressor analysis in M. tuberculosis would have 

been daunting.  The laborious process required to locate a suppressor mutation combined with 

the slow growth and difficulty of working with M. tuberculosis would likely have prohibited such 
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an effort.  However, the use of whole genome sequencing now makes the suppressor analysis 

strategy described here feasible in M. tuberculosis.  In the future, it would be interesting to 

assess whether suppressors of M. tuberculosis secA2 mutants occur in genes similar to those 

identified in M. smegmatis suppressor mutants.  In addition, this strategy could also be used to 

explore novel molecular pathways in M. tuberculosis, providing an unbiased method of 

identifying unknown genes related to a gene of interest. 

 

A Model of the SecA2-Dependent Protein Export Pathway 

Combining the findings of this dissertation with our previous knowledge of the 

mycobacterial SecA2 system, we can now propose an improved model for SecA2-dependent 

protein export (Fig. 5.1).  We knew previously that depletion of SecA1 reduced export of SecA2-

dependent proteins, reflecting a possible requirement for SecA1 in the SecA2 pathway (14).  

However, we did not know if the SecYEG channel was also used for SecA2-dependent export.  

We find here that SecY is also connected to the SecA2 system.  In addition, we find that the 

observed requirement for SecA1 is not a consequence of SecY degradation induced upon SecA1 

depletion.  This result does not prove a direct role for SecA1 in exporting SecA2-dependent 

proteins, as it is still possible that SecA1 is required for export of another protein that is in turn 

involved in SecA2-dependent export.  However, the connection of SecA2 to both the SecA1 and 

SecY components of the housekeeping Sec pathway strongly supports a model in which SecA2-

dependent export is fully integrated into the Sec export system.  Therefore, we propose that 

SecA2-dependent proteins are exported through the SecYEG channel with the direct assistance 

of SecA1. 
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In general, SecA proteins are known to physically engage the SecYEG translocon while 

pushing exported proteins across the membrane (8, 9, 28).  However, we failed to detect a 

physical interaction between SecA2 and SecY.  Therefore, we propose that SecA1 performs the 

canonical SecA function as the motor protein and interacts with SecYEG to drive export of 

SecA2-dependent proteins across the membrane.  Meanwhile, rather than simply substituting 

for SecA1 in certain cases, SecA2 must perform a completely different mechanistic function 

from that of canonical SecA proteins.  One possibility is that SecA2 is responsible for a targeting 

step, recognizing a specific subset of proteins that are not recognized by the housekeeping 

system and then delivering them to the SecA1-SecYEG translocase for subsequent export.  While 

it is not mutually exclusive with the previous possibility, another possibility is that SecA2 plays a 

chaperone-like role, maintaining a subset of proteins in an export-competent state prior to or 

during export by the housekeeping Sec system.  In fact, this potential chaperone function is 

consistent with another recent study from our laboratory (32).  In this study, it was shown that 

the N-terminal signal peptides found on M. smegmatis SecA2-dependent proteins are required 

for their export, but do not determine the requirement for SecA2.  Rather, it is the mature 

domain of these SecA2-dependent proteins that carries the SecA2-specificity feature.  This 

feature that determines SecA2-dependence is proposed to be a propensity to fold in the 

cytoplasm prior to export.  Perhaps SecA2 is required either to prevent folding or to provide 

additional energy necessary to unfold proteins during export.  Also, while folding or some other 

specific feature of the mature domain targets these proteins for SecA2-dependent export, the 

simultaneous requirement for the N-terminal signal peptide in their export is consistent with 

our model.  After being delivered and/or unfolded by SecA2, the N-terminal signal peptides of 

SecA2-dependent proteins would be important for normal interaction with both SecA1 and 

SecY, as in canonical Sec export. 
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Further, we propose that Msmeg_1684 also participates in SecA2-dependent protein 

export.  While the connection we observed between Msmeg_1684 and the SecA2 system has 

not yet been proven to represent a direct role in export, our findings support this model.  The 7S 

and 20B suppressors, in which msmeg_1684 is deleted, completely reverse the association of 

SecA2 K129R with the membrane, returning it to a cytoplasmic localization resembling wild type 

SecA2.  In addition, msmeg_1684 suppressor mutations are able to completely reverse the 

phenotypes of the parent secA2 K129R strain.  These findings suggest that msmeg_1684-type 

suppressor strains prevent the detrimental interaction of SecA2 K129R with the Sec pathway, 

preventing degradation of SecY from ever occurring.  In the future, pulse chase experiments 

could be used to confirm the apparent effects of various suppressor mutations on SecY 

degradation rates. 

Based on the above arguments, we propose that Msmeg_1684 must be present in order 

for SecA2 to interact with the housekeeping Sec system.  This requirement for Msmeg_1684 

might occur at a variety of points in the SecA2 export pathway.  For example, one possibility is 

that Msmeg_1684 acts as an adaptor protein and is necessary to mediate the interaction 

between SecA2 and other Sec components such as SecA1 or SecY.  In the case of a suppressor 

strain lacking Msmeg_1684, no interaction would occur between SecA2 and the housekeeping 

Sec pathway, thereby preventing any detrimental effects caused by the SecA2 K129R variant.  

Alternately, Msmeg_1684 might act at an earlier point in SecA2-dependent export.  For 

example, Msmeg_1684 might act as a chaperone that maintains SecA2-dependent proteins in 

an export-competent state prior to their interaction with SecA2.  In fact, Msmeg_1684 is a very 

acidic protein, similar to other known protein export chaperones.  In this case, Msmeg_1684 

would be required for SecA2 to interact with proteins destined for SecA2-dependent export.  

Therefore, in a suppressor strain lacking Msmeg_1684, SecA2 K129R would not be able to 
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interact with a SecA2-dependent exported protein and, as a result, might never proceed to 

interact with the housekeeping Sec pathway, preventing the detrimental effects of SecA2 

K129R. 

In conclusion, our findings as presented in this dissertation have significantly improved 

our understanding of the mechanism of SecA2-dependent protein export.  Because the 

mycobacterial SecA2 system appears to be a specialized adaptation of the housekeeping Sec 

pathway, an improved understanding of SecA2-dependent export will also inform on currently 

unknown limitations of the Sec pathway that necessitate this adaptation.  Therefore, continued 

study of this system will shed light not only on SecA2-dependent export, a pathway important 

for M. tuberculosis virulence, but also on the canonical Sec pathway utilized by all bacteria and 

essential for bacterial survival.  



155 
 

 

 

Figure 5.1.  An improved model of the SecA2-dependent protein export system.  SecA2 
recognizes the mature domain of a small subset of proteins and uses its ATPase activity to assist 
in their export.  Msmeg_1684 influences the SecA2 export pathway at an unknown step.  SecA1 
is also required for SecA2-dependent export and performs repeated cycles of ATP hydrolysis, 
pushing the unfolded preprotein (grey ribbon) through the SecYEG channel.  Signal peptides 
(black oval) are removed by a LepB or LspA signal peptidase (SP), and mature proteins fold into 
their final conformations.  
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APPENDIX 

Extragenic Suppressors of Walker Box Mutant secA2 Alleles 

 

Official 
strain 
name 

Strain 
isolation 
number 

Genome 
sequenced 

secY 
promoter 
mutation 

msmeg 
_1684 
mutation 

Azide 
resistance 

Mueller-
Hinton 
colony 
size 

secY 
transcript 
level 

SecY 
protein 
level 

SecA2 
protein 
level 

SecA1 
protein 
level 

NR151 24S  Yes No Intermediate Normal High Low Normal Normal 

NR154 29S Yes No Yes Strong Normal Normal Normal Normal Normal 

NR155 33S Yes No Yes Strong Normal Normal Normal Normal Normal 

NR156 33B Yes No Yes Strong Normal Normal Normal Normal Normal 

NR201 39S  No No       

NR230 1S Yes No Yes Intermediate Small Normal Low Normal Normal 

NR234 3S Yes No Yes Intermediate Small Normal Low Normal Normal 

NR236 4S Yes Yes No Intermediate Normal High Low Normal Normal 

NR238 5S  No No Intermediate Normal  Normal Low Normal 

NR242 7S Yes No Yesa Strong Normal Normal Noneb Normal Normal 

NR243 7B  No No     Nonec  

NR248 10S Yes No Yes Strong Normal Normal Normal Normal Normal 

NR254 13B  No No Intermediate Normal  Normal Low Normal 

NR260 20B Yes No Yesa Strong Normal Normal Noneb Normal Normal 

NR122a SSW1  No        

NR123a SSW2  No Yesa       

NR128a SSW7  No        

NR129a SSW8  No        

NR140a SSW9  No        

NR141a SSW10  No        

NR142a SSW11  No        

 

Suppressors in top portion of table were isolated from an M. smegmatis strain expressing the M. smegmatis secA2 K129R allele (as 
described in Chapter 2 and (1)).  This group of suppressors was pre-screened for the presence of a normal secA2 K129R allele (i.e. 
with no intragenic mutations) and for expression of SecA2 K129R protein.  Suppressors in bottom portion of table were isolated from 
a Mycobacterium smegmatis strain expressing the Mycobacterium tuberculosis secA2 K115R allele (as described in (1)), which is 
comparable to the M. smegmatis secA2 K129R allele.  This group of suppressors was screened for normal secA2 K115R alleles and 
for expression of SecA2 K115R protein upon initial isolation by Nathan Rigel, but have not been re-tested. 

Empty cells indicate experiment has not been done.  Mutations in secY promoter were assessed by sequencing approximately 1 kbp 
upstream of secY.  “Strong” azide resistance and “normal” Mueller-Hinton colony size refers to phenotypes similar to the secA2 
deletion mutant.  “Intermediate” azide resistance and “small” Mueller-Hinton colony size refers to phenotypes intermediate 
between those of the secA2 deletion and secA2 K129R mutants.  “Normal” transcript or protein levels refers to levels similar to the 
secA2 K129R mutant. 
a In these suppressors, msmeg_1684 is removed by a large chromosomal deletion. 
b These large deletion type suppressors do not produce detectable levels of SecY protein, unlike other suppressors affecting 
msmeg_1684. 
c This suppressor exhibited a normal SecA2 protein level when originally tested by Nathan Rigel, but no SecA2 was detected upon re-
testing.  This phenotype should be re-evaluated.  
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