
 
 
 
 

EVALUATION OF A DIFFRACTION-ENHANCED IMAGING (DEI) PROTOTYPE 
AND EXPLORATION OF NOVEL APPLICATIONS FOR CLINICAL 

IMPLEMENTATION OF DEI 
 
 
 
 

Laura Suzanne Faulconer 
 
 
 
 

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill 
in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the 
Department of Biomedical Engineering (Medical Imaging). 

 
 
 

Chapel Hill 
2009 

 
 

 
 
 
 
 
 
 
 
Approved By: 
 
Advisor: Etta Pisano 
 
Reader: Caterina Gallippi  
 
Reader: David Lalush 
 
Reader: Mark Tommerdahl 
 
Reader: Zhong Zhong

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2009 
Laura Suzanne Faulconer 

ALL RIGHTS RESERVED 
 

 ii



 
 

ABSTRACT 
 

LAURA FAULCONER: Evaluation of a Diffraction-Enhanced Imaging (DEI) Prototype 
and Exploration of Novel Applications for Clinical Implementation of DEI  

(Under the direction of Etta Pisano) 
 

 Conventional mammographic image contrast is derived from x-ray absorption, 

resulting in breast structure visualization due to density gradients that attenuate radiation 

without distinction between transmitted, scattered, or refracted x-rays. Diffraction-

enhanced imaging (DEI) allows for increased contrast with decreased radiation dose 

compared to conventional mammographic imaging due to monochromatic x-rays, its 

unique refraction-based contrast mechanism, and excellent scatter rejection. Although 

laboratory breast imaging studies have demonstrated excellent breast imaging, important 

clinical translation and application studies are needed before the DEI system can be 

established as a useful breast imaging modality. This dissertation focuses on several 

important studies toward the development of a clinical DEI system. 

 First, contrast-enhanced DEI was explored using commercially available contrast 

agents. Phantoms were imaged at a range of x-ray energies and relevant contrast agent 

concentrations. Second, we performed a reader study to determine if superior DEI 

contrast mechanisms preserve image quality as tissue thickness increases. Breast 

specimens were imaged at several thicknesses, and radiologist perception of lesion 

visibility was recorded. Lastly, a prototype DEI system utilizing an x-ray tube source was 

evaluated through a reader study. Breast tissue specimens were imaged on the traditional 

and prototype DEI systems, and expert radiologists evaluated image quality and 

pathology correlation.  
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 This dissertation will demonstrate proof-of-principle for contrast-enhanced DEI, 

establishing the feasibility of contrast-enhanced DEI using commercially available 

contrast agents. Further, it will show that DEI might be able to reduce breast compression, 

and thus the perception of pain during mammography, without significantly decreasing 

breast lesion visibility. Finally, this research shows the successful implementation of a 

DEI prototype, displaying breast features with approximately statistically equivalent 

visibility to the traditional DEI system. Together, this research is an important step 

toward the clinical translation of DEI, a technology with the potential to facilitate early 

breast cancer detection and diagnosis. 
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CHAPTER 1: INTRODUCTION 
 
1.1 Overview 
 
 Screen-film mammography (SFM) and digital mammography (DM) have been 

optimized and have thus become relatively low-dose imaging modalities with moderate 

sensitivity and specificity. However, despite their widespread utilization for breast cancer 

screening, approximately 10 to 15% of cancers remain mammographically occult (Meyer 

1990). In addition, there is a substantial risk of the induction of breast cancer or other 

radiation exposure-related disease because of the use of mammography (Kopans 2007). 

Cancer imparts distinct and measurable changes in breast tissue at a cellular level, yet 

attenuation contrast based on the spatial distribution of x-ray attenuation does not always 

provide sufficient contrast in a mammographic image, primarily due to the often minimal 

differences in physical density between normal and cancerous tissues.  

 However, such microscopic and macroscopic aberrations associated with early 

small cancers may cause refraction, minute changes in the direction of x-ray propagation. 

These subtle changes can be exploited by the use of diffraction-enhanced imaging (DEI). 

DEI obtains images based on absorption contrast as well as the unique contrast 

mechanisms of refraction and extinction, with the potential for greatly reduced radiation 

dose (Chapman 1997, Zhong 2000, Parham 2006). The application of DEI to breast 

imaging has consistently provided superior contrast and signal-to-noise (SNR) ratios 

when compared with conventional radiographic images (Pisano 2000, Kiss 2003, Kiss 

 1



2004, Chapman 1996, Chapman 1997, Chapman 1998, Hasnah 2002b, Fiedler 2004, Liu 

2007a, Fernández 2005, Lewis 2003, Pagot 2005).  

Contrast-enhanced mammography is under investigation, either as an adjunct or 

replacement for conventional mammography (Dromain 2006, Jong 2003, Diekmann 2003, 

Lewin 2003). Limited research has been conducted evaluating the potential of contrast-

enhanced DEI (CE-DEI). Thus, theoretical prediction of absorption and refraction 

contrast was performed for a variety of potential x-ray contrast agents considering 

physical density amenable to absorption-based contrast and electron-density that could 

potentially create refraction contrast. DEI phantom imaging of several commercially 

available contrast agents established the feasibility of CE-DEI.  

 Furthermore, in this dissertation we demonstrate that DEI has a major advantage 

over conventional mammography in that the x-ray energy used can be set higher, thus 

lowering patient dose. Conventional mammography must use lower energies because 

there is a rapid decrease in the photoelectric effect as x-ray energy increases, resulting in 

a dramatic loss of absorption contrast. At higher energies, refraction contrast persists. 

Thus, DEI can harness higher imaging energies while conserving refraction contrast. 

High energy monochromatic x-rays result in reduced patient radiation and overcome path 

length limitations requiring breast compression in a conventional system. It follows that 

DEI may not require breast compression in order to obtain an image that contains 

information important for clinical diagnosis. This could offer a dramatic improvement for 

patient comfort and could potentially increase the number of women willing to undergo 

annual screening mammography. 
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Until recently, the largest drawback to the implementation of DEI for breast 

imaging has been the difficulty in translating this technology into a clinical setting using 

available incoherent source x-ray tube technology (Förster 1980, Davis 1995, Ingal 1998, 

Wang 2006b, Kim 2007b, Vine 2007). Nonetheless, our group recently constructed an x-

ray tube-based DEI system (DEI-PR) that successfully acquired refraction images 

(Parham 2009). This dissertation demonstrates that the DEI-PR system can provide 

images comparable to the synchrotron-based DEI system in spite of obstacles to such a 

demonstration, such as design flaws that were unavoidable at the time of development. 

We developed a reference set of data, with expert radiologists evaluating the correlation 

of DEI image features with known histological findings. A second-generation DEI-PR 

currently under development will utilize a more powerful x-ray tube and an optimized 

digital detector with a reduced source-to-detector distance. When the second-generation 

DEI-PR has been developed, allowing a fair receiver-operator characteristic (ROC) 

analysis study, its performance can be compared to these correlation data. 

DEI might have the potential to revolutionize mammography and early-stage 

breast cancer detection. As DEI research continually makes strides demonstrating the 

ability to acquire images with excellent soft tissue contrast, particularly within breast 

tissues, one must also consider real issues involving the translation of this imaging 

modality into a clinical setting. This research addresses several issues critical to the 

development of DEI as a clinically relevant imaging modality such as the evolution of a 

contrast-enhanced DEI protocol, the reduction of breast compression for increased patient 

comfort, and the development of a standalone DEI system for preclinical development.  
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1.2 Objectives 
 
Aim 1: To determine the feasibility of contrast-enhanced DEI.  
 

A. Predict absorption and refraction contrast for potential DEI contrast agents at 
clinically viable concentrations 
 
B. Obtain or synthesize contrast agents for phantom studies 
 1. Iodine, molecular 
 2. Gadolinium, molecular 
 3. Ferric Oxide, nanoparticle 
 6. Microbubble 
 
C. Implement phantom DEI imaging to measure refraction and absorption 
contrast 

 1. Several x-ray energies 
 2. Multiple rocking curve positions 
 3. Range of concentrations 

 
Aim 2: To determine if breast compression significantly affects DEI image quality.  
 

A. Image human breast tissue specimens with DEI 
 1. Image at three compression levels  
 2. Image at multiple rocking curve positions 

 3. Obtain pathologic diagnosis for regions of interest 
 

 B. Develop DEI training set for expert radiologists 
 

 C. Conduct reader study evaluating lesion characteristic visibility of various tissue 
thicknesses using synchrotron-based DEI  
 

Aim 3: To demonstrate the prototype DEI system as roughly equivalent with the 
synchrotron-based DEI. 
 

A. Image full-thickness human breast tissue specimens with DEI 
 1. Image on prototype x-ray tube-based DEI system, traditional 
 synchrotron-based DEI system, and digital mammography 
 2. Image at multiple rocking curve positions 

 3. Obtain pathologic diagnosis for regions of interest 
 
 B. Develop DEI training set for expert radiologists 
  
 C. Conduct reader study evaluating lesion benign/malignant appearance and 

lesion characteristic visibility using the synchrotron- and x-ray tube-based DEI  
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1.3 Dissertation Organization 

 In order for readers of widely varied backgrounds to understand DEI as applied to 

breast imaging, chapter 2 describes the anatomy of the human breast and discusses 

cancers of the breast as well as risk factors for breast cancer development. Chapter 3 

reviews methods of x-ray generation and how x-rays interact with breast structures. 

Chapter 4 covers issues affecting radiographic image quality. Conventional and digital 

mammography are detailed in chapter 5. Other preclinical and clinical breast imaging 

modalities are briefly detailed in chapter 6. Chapter 7 reviews how laboratory and clinical 

trials are used to demonstrate clinical utility of an emerging breast imaging technology. A 

thorough explanation of DEI and its cousin DEI-computed tomography (DEI-CT) is 

presented in chapter 8. Although much research has explored DEI for breast imaging 

applications, chapter 9 explores additional potential medical imaging applications of DEI. 

Chapter 10 investigates the novel area of contrast-enhanced DEI. Chapter 11 considers 

the effects of the reduction of breast compression on DEI image quality. Chapter 12 

discusses the prototype DEI device with comparison to both traditional DEI and digital 

mammography standards. Finally, chapter 13 reviews the findings presented throughout 

this dissertation and suggests future directions for continued research. 
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CHAPTER 2: THE HUMAN BREAST AND BREAST CANCER 
 
2.1 Overview 

Breast cancer is currently the second most common cancer in the world, and the 

second leading cause of death among women in the United States (Jemal 2007, Parkin 

2001). The implementation of dedicated mammography units, improved x-ray beam 

quality, effective breast compression, and exposure control during imaging have 

dramatically improved breast cancer detection (Haus 1990). This chapter addresses the 

normal human breast structure and anatomy, followed by a discussion of the cellular and 

molecular basis of breast cancer. Together, these create a foundation for understanding 

the changes induced by benign and cancerous conditions of the breast, followed by 

discussion of breast cancer risk factors and the potential for breast cancer prevention. 

2.2 Human Female Breast Structure and Anatomy 

 The intricate structure of the human female breast undergoes cyclical changes 

with the menstrual cycle, dramatic changes with life events such as pregnancy and 

menopause, and gradual changes associated with aging. Ovulation induces cellular 

proliferation and swelling due to increased sex steroid levels. Pregnancy causes lobules to 

multiply and fill the breast, and lactation engorges and fills the lobules. Aging and 

menopause usually cause dense breast tissue to become replaced with fatty tissue and a 

decline in endogenous sex-steroids. For simplicity, this discussion will only address 

normal and pathological issues concerning the mature, non-lactating female breast, 

summarized in Figure 2.1.  
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Breasts are rarely bilaterally symmetrical. Breast parenchyma is composed of a 

mixture of glandular and stromal tissue. Stroma comprises approximately 80% of the 

breast volume, and is made up of fatty tissue, dense interlobular connective tissue, and 

loose intralobular connective tissue. Hormone-sensitive specialized glandular tissue 

surrounds the milk-producing alveolar glands that terminate the branching ductal system, 

referred to as terminal ductal lobular units (TDLU). The lobules are lined by cuboidal 

epithelial cells loosely supported by myoepithelial cells. (Winchester 2005, Kopans 2007, 

Rosen 2001, Ronnov-Jessen 1996)

    

FIGURE 2.1: Structure and Anatomy of the Human Breast. The human breast is part 
of the female reproductive system, containing milk-producing glandular tissue and an 
extensive ductal system situated within a collagenous and fatty matrix. These breast 
structures are surrounded by the stromal breast component and supported by fibrous 
Cooper’s ligaments, which anchor to the skin and chest wall. The breast stroma contains 
connective tissues, vasculature, and lymphatics. Although attached to the pectoralis 
muscle, the breast only contains small muscles of its own in the nipple and surrounding 
pigmented region of skin called the areola. (Reprinted with kind permission from 
http://diane.ponpines.com/images/breast_structure.jpg) 
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Each TDLU is attached to an extralobular duct system. The lactiferous ducts 

terminate at secretory pores in the nipple and form asymmetric branching structures of 

variable diameter arranged in distinct ductal networks. These ducts are lined by columnar 

epithelium formed by two types of cells: columnar cells that line the lumen and basal 

cells. These basal cells can differentiate into either columnar or myoepithelial cells. This 

ductal epithelium is supported by myoepithelial cells, basement membrane, and elastic 

fibers. (Winchester 2005, Kopans 2007, Rosen 2001, Ronnov-Jessen 1996) 

These lobular structures undergo dramatic structural changes associated with the 

menstrual cycle, pregnancy, lactation, exogenous hormone use, and menopause. 

Menopause has the most considerable lasting effect on breast anatomy. The characteristic 

decrease in estrogen and progesterone, with maintenance of testosterone levels, induces 

structural changes in the hormone-sensitive lobules. Epithelial cells, and to a lesser extent 

myoepithelial cells, undergo atrophy, causing a loss of cellularity in the lobules. The 

basement membrane thickens, collagen content in the stromal tissue within the lobules 

increases, and the quantity of elastic fibers decreases. (Rosen 2001) 

The breast contains approximately 15 separate ductal tracts, referred to as lobes. 

These lobes are not morphologically evident, but can be appreciated via dye injection into 

a single ductal system, although isolated shunts between distinct lobes do sometimes 

exist. The amount of tissue drained by a particular lobe is variable. Duct diameter tends 

to increase as the lactiferous ducts converge to deliver milk to the nipple through a 

lactiferous duct orifice secretory pore. The nipple contains sebaceous glands, and is 

surrounded by a region of pigmented skin called the areola, which contains modified 

sebaceous glands of Montgomery. The nipple and areola contain smooth muscle, which 
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constitutes the only muscle tissue contained in the breast. (Winchester 2005, Kopans 

2007, Rosen 2001) 

The lobular and ductal systems are surrounded by a collagenous and fatty stromal 

matrix that contains vasculature, lymphatics, and connective tissues. Breast elements are 

supported by collagenous Cooper’s ligaments throughout the stroma that anchor to the 

skin and chest wall. Quantities of stromal fatty tissue and collagen vary widely between 

individuals as well as over a lifetime due to weight change and fatty replacement of dense 

parenchyma associated with aging. It is this combination of stromal and epithelial 

structures that leads to the radiographic appearance of breast tissue. (Rosen 2001) 

The primary breast blood supply is provided by the axillary and internal 

mammary arteries. Lymphatic drainage of the breast occurs predominantly through the 

axillary lymph node (LN) chain, but drainage also occurs through the internal mammary, 

posterior intercostal, and supraclavicular LN chains. The lymphatic systems of each 

breast are interconnected, but flow to the contralateral breast typically only occurs in the 

case of lymphatic obstruction. A sentinel LN is the first node in the lymphatic drainage 

path of a particular region in the breast. There can be multiple sentinel LNs that drain a 

particular region (Wong 2001). (Winchester 2005, Kopans 2007, Rosen 2001) 

2.3 Cellular Biology of Breast Cancer 

 The ductal network is the site of origination of most cancers. Ducts are composed 

of two main epithelial cell types- luminal epithelial and myoepithelial. Luminal epithelial 

cells function to excrete milk during lactation. The vast majority of cancers express 

markers consistent with origin from luminal epithelial cells. Myoepithelial (ME) cells can 

be either luminal or acinar in form. Luminal ME cells form a contractile layer around the 
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luminal epithelial cells. Acinar ME cells form a network around, but do not always 

continuously surround, the luminal epithelium. Although ME cells rarely undergo 

malignant transformation, they are involved in the carcinogenic process. ME cells are 

aberrant in in situ cancers, and largely absent in invasive cancers. Although the 

mechanisms are not fully understood, loss of ME function is associated with breast 

cancer development and metastasis. This is likely due in part to basement membrane and 

extracellular matrix proteins produced by ME cells, as well as tumor suppressor gene 

expression. (Adriance 2005, Lakhani 2001) 

 It is believed that breast cancer typically takes several years to develop into 

clinically detectable disease. Mammographic density of normal and abnormal tissue is 

often very similar, while necrosis and invasion into surrounding tissue are easily 

overlooked or miscategorized. Most cancers originate in the ducts, but form in other 

structures as well. Fibrotic tissue occasionally forms around a cancer. This process is 

referred to as “desmoplastic response.” A tumor is often 90% stroma, with stromal tissues 

demonstrating abnormalities both near and far from the tumor (Ronnov-Jessen 1996). 

(Ikeda 2004, Winchester 2005, Harris 1991) 

 In situ carcinomas are locally contained collections of cancerous cells, bound 

inside the lobule or duct by the basement membrane. Sometimes these cells undergo 

changes that allow invasion of local and/or distant sites. With local invasion, basement 

membranes are disrupted and cancerous cells sometimes spread along collagen fibrils 

which subsequently display increased turnover rates and abnormal bundling (Kauppila 

1998). Distant metastases originate by spread through vasculature or lymphatics. The 
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most common sites for distant metastatic breast cancer include the LNs, lung, liver, and 

bone. (Harris 1991, Winchester 2005) 

 Increased metabolic demand dictates an increased supply of oxygen- and nutrient-

rich blood. Cancers initiate angiogenesis, creating a hypervascular network to supply 

increasing energy demands and overcome their diffusion-limited size, above which 

simple diffusion can not provide enough energy to meet the metabolic demands for 

continued growth and self-sustenance. These vascular networks are abnormal and lack 

appropriate restrictions for exchange across the vascular wall. However, angiogenesis is 

not exclusive to cancer. Benign proliferative lesions can also demonstrate 

hypervascularity due to increased metabolic demands, with increased vascularity 

proportional to the pathologic severity of the lesion (Heffelfinger 1996). (Harris 1991, 

Winchester 2005) 

 Tumor-involved lymphatics become crushed and nonfunctional with increasing 

tumor size, but the surrounding network will continue to filter and drain breast lymph and 

offers a route for metastatic spread of invasive breast cancer (Wilking 1992). While the 

axillary LNs are more commonly evaluated clinically, evaluation of the internal 

mammary LNs identifies metastatic spread in approximately 30% of patients diagnosed 

with invasive carcinoma and negative axillary LNs (Heuts 2009). For this reason, 

identification of sentinel LNs is an important method of assessing the metastatic spread 

of cancer. (Harris 1991, Winchester 2005) 

 Because the sentinel LNs are the most likely initial sites of metastatic spread, their 

status correlates with the status of subsequent LNs in the chain (Kamath 2001). If the 

sentinel LN contains metastatic disease, subsequent LNs in the chain have a 40-50% 
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chance of containing metastatic disease (Jakub 2003, Albertini 1996). However, sentinel 

LNs are bypassed in lymphatic metastases in approximately 1 to 4% of cases (Weaver 

2000, Jakub 2003, Albertini 1996). Sentinel LN mapping has rapidly gained widespread 

clinical implementation because in situ tumors are sometimes found to have an 

undetected invasive component and because thorough pathologic evaluation of sentinel 

LN biopsy sometimes leads to upstaging, and thus a different course of treatment, for 10 

to 20% of breast cancer patients (Albertini 1996, Cox 2001, Kelly 2003). 

2.4 Molecular Basis of Human Breast Cancer 

Breast cancer can occur spontaneously, in response to an environmental insult, or 

from a genetic predisposition to cancer where normal cellular control mechanisms are 

unable to prevent neoplastic transformation. Genetic influence depends on the actual 

genetic code as well as epigenetics, where heritable information in the form of DNA 

methylation patterns influences transcriptional products and genetic stability. Survivable 

mutations are passed on to daughter cells, typically involving cell cycle control, DNA 

repair, cell death pathways, angiogenesis, and cell adhesion. The carcinogenic process is 

summarized in Figure 2.2. Although the genetic profile of cancers is highly variable 

between individuals, the profile from different tumors within the same patient typically 

varies very little. (Alberts 2002, Ross 2005)  

Cancer growth depends on self-sufficient development of growth signals while 

ignoring signals inhibitory to continued growth, avoiding senescence and apoptosis, and 

developing provisions for continually increasing energy demands by angiogenesis. When 

cells divide quickly, there is less time for DNA checking or repair of damage and 

mistakes, allowing an accumulation of errors. Abnormal cell-cell contact inhibits proper 
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communication with normal cells that might otherwise allow some regulation. Some 

tumors possess the ability to invade surrounding parenchyma as well as metastasize to 

distant sites in the body when cells lose normal adhesion properties and enter the blood 

stream or lymphatic system. Many genes are involved in the carcinogenic process, some 

of which are summarized in Table 2.1. Because currently understood genetics do not 

fully explain the extent of risk, it is highly likely that additional genes exist that confer 

breast cancer risk. (Winchester 2005, Ross 2005, Mihich 1996)  

  
FIGURE 2.2: Carcinogenesis. Carcinogenesis occurs in four stages: initiation, 
promotion, conversion, and progression. Cells are primed for neoplastic transformation 
when an initiating event directly affects DNA. Exposures to chemical carcinogens or x-
rays are examples of initiating events. Identifying an initiated cell is exceptionally 
difficult. Continued progression down the carcinogenic pathway involves hyperplasia and 
the linear evolution of an increasingly aberrant and aggressive collection of abnormal 
cells with loss of normal control mechanisms.  
 
 BRCA1 and BRCA2 mutations confer an increased risk of breast cancer due to 

loss of proper DNA repair, cell cycle control, and ubiquitination processes. BRCA 

mutations also result in an increased risk of developing cancer in other tissues, such as 

ovaries, fallopian tubes, pancreas, pharynx, stomach, gallbladder, bile ducts, and colon. 

Women with mutations in BRCA1 and BRCA2 have a 65% and 39% chance of 

developing breast cancer by the age of 70, respectively (Antoniou 2003). Hereditary 
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breast cancers due to BRCA mutations have unique phenotypes and often express basal-

like markers. BRCA genes are rarely mutated in sporadic cancers. Cancers with BRCA1 

mutations tend to have lost p53 control and do not often overexpress HER-2. The same 

has not been demonstrated for BRCA2 mutations. (Hall 1990, Narod 2004, Phillips 2001)  

  Gene  Controls   Interacts With 
 
Tumor   BRCA1  DNA repair, cell cycle control, Rad51, TP53, Myc, E2F, BAP1  
Suppressor   ubiquitination    
Gene  BRCA2  DNA repair, cell cycle control, Rad51, TP53 
    ubiquitination 
  Rad51  DNA repair   BRCA1, BRCA2 
  TP53  Cell cycle control, DNA repair,  MDM2, p16 
    apoptosis 
  RB1  Cell cycle control   E2F, TFs, cyclins 
  PTEN  Cell cycle control, apoptosis AKT 
  p16  Cell cycle control   CDK4, TP53 
  CHEK2  Cell cycle control, DNA repair, TP53, BRCA1 
    apoptosis   
  RIN1  Cell migration   Ras 
 
Oncogene HER-2/neu Cell growth, differentiation GRB7 
  Myc  Proliferation, cell growth,  HATs, Miz-1, MAPK 
    apoptosis, differentiation 
  Ras  Signal transduction, cell adhesion GEF, GAPs 
    and migration, proliferation,  
    apoptosis 
  Fos   Proliferation, differentiation Jun, growth factors, MAPK, PKA 
    cell damage repair  PKC, cdc2 
  Jun  Regulate gene expression  Fos, JNKs 
  MDM2  Negative TP53 regulator  TP53, Ras 
  GRB7  Cell migration   EGFR, FAK 
 
Other  Bcl-2  Apoptosis   Btf 
  HSP27  Stress survival, apoptosis, signal Actin, IFs, NF-κB  
    transduction, differentiation   
  FGF  Angiogenesis, proliferation Heparin 
  NCOA3  Transcription   Histones, ERα, PR, TP53,  NF-κB  
  BRAF  Cell cycle control   MEK 
  CD44  Cell adhesion, cell migration Hyaluronan 
  Cadherin Cell adhesion   Calcium 
  ATM  Cell cycle control, DNA repair, TP53, CHEK2, BRCA1 
    apoptosis 
 
TABLE 2.1 Genes Involved in Breast Cancer. Many genes involved in breast cancer 
have been discovered, while many more are under investigation. Mutations interact 
(directly or indirectly) with many other proteins, enzymes and entire pathways. These 
interconnections are only beginning to be elucidated. (Winchester 2005, Ross 2005, 
Milstein 2007, Burwinkel 2005, Mihich 1996)
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The HER-2/neu gene is expressed in all breast epithelial cells, but is 

overexpressed in 10 to 34% of human breast cancers, and is highly correlated with breast 

cancer pathogenesis and prognosis (Slamon 1989, Ross 2003, Camp 2003). HER-2/neu is 

important for proper cell growth and differentiation processes. While there is no known 

ligand for HER-2/neu, it is the preferred heterodimerization partner for other family 

members, resulting in a strong signaling cascade (Ross 2003). Women with HER-2/neu 

overexpression and proliferative benign changes (typical or atypical) have a significantly 

increased risk of breast cancer development (Stark 2000). A tumor overexpressing HER-

2/neu will also demonstrate amplification in its metastatic sites (Niehans 1993). 

Moreover, the extracellular membrane receptor location makes this an optimal target for 

active targeting through receptor-mediated endocytosis for imaging and therapeutic 

agents.  

The estrogen receptor (ER) is expressed in only 10% of healthy breast tissue, 

while many cancerous tissues express ER at much higher percentages. Activation of the 

ER signaling pathway occurs in coordination with heat shock proteins, estrogen response 

elements, cyclin D, and several coactivators and corepressors. The ER is located 

internally, and binding stimulates cellular proliferation. Estrogen is mitogenic and it is 

generally believed that increasing levels of exposure to this hormone will increase breast 

cancer risk. Similarly, binding of the hormone progesterone to its receptor (PR) mediates 

cellular proliferation. The role of progesterone in breast cancer is controversial with 

researchers finding that PR is protective, has no effect, or even that it promotes the 

carcinogenic process. (Anderson 2002, Winchester 2005, Ross 2005, Althuis 2004, 

Pasqualini 2007) 
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Mutations in other genes such as p53, CHEK2, PTEN, ATM, CASP8, PBRL, 

BRIP1, bcl-2, cyclin D1, telomerase, and various growth factors are further examples of 

aberrant expression in many hyperplastic lesions and breast cancers (Gasco 2002, Nadler 

2008, Roy 2006, Baykal 2004, Klijn 1992, Bradbury 2007). A single mutation is not 

enough to cause cancer. Further mutation, along with loss of heterozygosity (LOH), is 

common among invasive cancers, but has also been found to be present within in situ 

cancers, atypical lobular hyperplasia, non-atypical hyperplasia, and in normal tissue. 

LOH was found more often in patients with breast cancer than those with benign breast 

tissue. Together, this suggests that genetic changes are likely more widespread than 

currently believed. LOH detected in both luminal and ME cells suggest a common 

aberrant stem cell progenitor, yet ME breast tumors are far more rare than those of 

luminal origin. (Lakhani 1995a, Lakhani 1995b, Lakhani 1996, Lakhani 1999) 

Once tumors have developed vasculature, they begin releasing proteins, and 

sometimes cells, into the bloodstream. Several such circulating biomarkers1 have been 

identified that can assist in the detection and characterization of breast cancer. 

Interestingly, metastatic development does not induce a large change in the biomarker 

profile, suggesting that the potential for metastatic transformation is already present 

within the primary breast cancer. Very few biomarkers have found their way into routine 

clinical screening or diagnostic evaluation. The only regularly tested biomarkers include 

HER-2/neu, ER, and PR, largely because these biomarkers are also targets for therapeutic 

treatments using pharmacologic agents such as Herceptin, Tamoxifen, Fareston, Femara, 

Aromasin, Evista, and Megace (Profiles of Breast Cancer Drugs 2008). Recently, a 21-
                                                 
1. Several circulating biomarkers have been identified which assist in the detection and characterization of breast cancer, including: 
HER-2/neu, ER, PR, Ki-67, p53, cyclin D1, cyclin E, cyclin B, uroplasminogen activator, cathepsin D, matrix metalloproteinases, 
carbohydrate antigen 15.3 (CA 15.3), CA 27.29, carcinoembryonic antigen, α-fetoprotein, urokinase plasminogen activator receptor 
and autobodies to breast cancer proteins. 
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gene assay scoring the likelihood of metastasis has been developed (Paik 2004). (Ross 

2005) 

2.5 Benign and Cancerous Diseases of the Breast 

 Differences between normal and abnormal breast tissue are often subtle, 

characterized by cellular features (typical versus atypical) and growth patterns 

(proliferative versus nonproliferative). Many of these features are important for 

mammographic detection and appropriate characterization of lesions. Several benign and 

atypical conditions are shown in Tables 2.2 and 2.3, respectively. Nonproliferative 

benign conditions are growths of disregulated cells, typically only harmful if the location 

disrupts normal function, such as blockage of proper lymphatic drainage. Some 

neoplasms do confer an increased risk for cancer development, usually classified as 

atypical or proliferative. (Jacobs 1999, Ikeda 2004, Hartmann 2005, Harris 1991)  

       Calcifications    Features 
 
Duct Ectasia                   Yes        Wide, hard ducts sometimes forming a mass 
Oil Cyst                         Some        Well-circumscribed round, oil-filled mass 
Fat Necrosis                  Some        Round, fatty mass (occasionally spiculated, cystic) 
Hamartoma                  Some        Uncommon circumscribed, fatty/fibrotic mass 
Papillary Apocrine Change  None        Proliferation of ductal epithelial cells 
Fibrocystic Disease     Some        Proliferative, palpable mass with multiple cysts, stromal fibrosis,  
           apocrine metaplasia 
Fibroadenoma     Some        Common well-circumscribed, solid mass 
Fibromatosis            Rare        Locally invasive mass of fibroblast proliferation 
Benign Vascular Lesions      Some        Hemangioma, angiolipoma 
Granular Cell Tumor    None        Uncommon palpable, poorly circumscribed mass 
Lipoma                    Some        Circumscribed, hard fatty mass 
Papilloma     Some          Individual or multiple well-circumscribed ductal mass(es), often  
           with intraductal hyperplasia, sclerosing adenosis 
Phyllodes Tumor                   Rare        Round, dense fibrotic mass 
Mastitis                     Yes        Inflammation 
 
TABLE 2.2: Benign Breast Conditions. Although this is not an exhaustive discussion 
of benign breast diseases, several common conditions are listed. Typical clinical and 
mammographic presentations are noted, including whether calcifications are usually 
associated with the condition. (Rosen 2001) 
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 Common benign inflammatory and reactive diseases include duct ectasia and fat 

necrosis. Mammary duct ectasia is characterized by dilation of the ducts with 

inflammatory changes within the ducts and surrounding tissues that sometimes becomes 

fibrotic or cystic. Fat necrosis typically results from an injury to the tissue from trauma, 

surgery or high radiation exposure. These masses are usually small and sometimes 

contain calcifications or cysts. (Rosen 2001) 

        Calcifications  Features 
 
Lobular Neoplasia (LCIS)  None    Proliferation of lobular cells (often with ALH) 
Atypical Ductal / Lobular  Yes    Proliferation of ductal or lobular epithelial cells 
    Hyperplasia (ADH, ALH)   
Radial Scar (RS)   Yes    Irregular, proliferative mass with atrophic center, often  
        occurring in multiples or with cysts, DCIS, ADH, SA 
Sclerosing Adenosis (SA)  Yes    Proliferation of glandular and stromal cells into fibrotic mass 

 
TABLE 2.3: Atypical Breast Lesions. Some benign conditions are considered atypical 
and proliferative, and confer an increased risk of subsequent cancer development. These 
lesions are often considered to be precancerous or closely associated with the presence of 
cancer. (Rosen 2001) 
 
 Several benign tumors are closely associated with the presence of cancer or are 

considered precancerous lesions. Although papillomas are benign masses in the ductal 

epithelium, papillary carcinoma is often associated with areas of benign papillomas. 

Multiple papillomas tend to have greater precancerous potential. Phyllodes tumors arise 

from stroma surrounding the ducts to become benign, low-grade malignant, or high-grade 

malignant tumors, and are sometimes associated with LCIS or invasive ductal carcinoma. 

(Rosen 2001)  

 Neoplasia is a proliferative lesion with atypia and carries a risk of breast cancer 

development. Lobular carcinoma in situ (LCIS) is a non-malignant, high-risk lesion 

which is difficult to detect through mammographic screening due to its growth pattern 

and typical absence of calcifications. Abnormal cells tend to grow around the TDLU 
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lumens instead of within them. Interestingly, LCIS is most often associated with invasive 

ductal carcinoma. Proliferative and atypical lesions are often associated with, or develop 

into, cancerous lesions. (Rosen 2001) 

 Ductal and lobular hyperplasias are proliferative lesions that are considered 

precancerous. Sclerosing lobular hyperplasia is often associated with a fibroadenoma. 

Radial scars are considered precancerous by some experts because they are proliferative 

in nature and are found more often in women with breast cancer than those without. LCIS 

lesions are often associated with radial scars. However, most radial scars are too small to 

be reliably detected by clinical exam or mammography. Sclerosing adenosis is a 

proliferative lesion of the TDLU. Although fibroadenomas are generally benign tumors, 

they sometimes develop adenosis, which carries a risk of breast cancer development. 

Even though nonproliferative fibrocystic change does not convey increased breast cancer 

risk, the proliferative variant is composed of several disease processes that each conveys 

increased risk, such as ductal hyperplasia and sclerosing adenosis. (Rosen 2001)  

 Several common breast cancers are summarized in Table 2.4. Ductal carcinoma in 

situ (DCIS) is a non-malignant lesion originating in the TDLU. Although DCIS 

sometimes develops metastatic potential, it typically has an excellent prognosis. Papillary, 

tubular, and mucinous carcinomas are additional cancers that are associated with good 

prognoses. Invasive ductal carcinomas represent 65-80% of malignant breast cancer 

diagnoses. Medullary carcinoma is a rapidly-growing receptor negative cancer more 

common among women with BRCA mutations, and is associated with a poor prognosis. 

(Rosen 2001) 
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   Invasive  Features 
 
Ductal Carcinoma in Situ        No           Ductal mass often with necrosis, calcifications 
Papillary Carcinoma    Not Often     Individual or multiple slow-growing, round ductal mass(es),  
              sometimes with inflammation, fibrosis, cysts, hemorrhage 
Invasive Ductal Carcinoma     Yes           Irregular, spiculated ductal mass often with necrosis, hemorrhage 
Invasive Lobular Carcinoma   Yes             Single-cell lines of lobular cancer cells or irregular mass 
Medullary Carcinoma       Yes           Circumscribed, rapidly-growing, poorly-differentiated mass 
Tubular Cancer        Yes           Slow-growing, irregular, spiculated mass, often with DCIS, RS 
Inflammatory Carcinoma       Yes           Mastitis, skin thicknening 
Mucinous Carcinoma       Yes           Slow-growing, soft mass in mucinous picket, often with DCIS 
Adenoid Cystic Carcinoma      Yes           Rare, slow-growing mass with excessive mucin 
Sarcoma         Yes           Well-circumscribed mass 
Lymphoma        Yes           Often well-circumscribed 
 
TABLE 2.4: Malignancies of the Breast. Although this is not an exhaustive list, it 
summarizes some of the more common breast cancers. Common clinical and 
mammographic presentations are listed, with indication of whether the lesion represents a 
lesion capable of invading surrounding tissue and metastasizing to distant sites within the 
body. (Rosen 2001) 
 
2.6 Breast Cancer Risk Factors 

Currently, an American woman has a 12% chance of being diagnosed with breast 

cancer in her entire lifetime (Ries 2007). Regardless of a rapidly growing understanding 

of factors contributing to breast cancer risk, the exhaustively verified Claus and Gail risk 

assessment models and the standardized classification of clinical findings of breast cancer, 

clinicians can not specifically determine which women will actually develop cancer 

(Costantino 1999, Rockhill 2001, Weik 2005). However, it is generally accepted that 

factors affecting circulating levels of female sex hormones will influence breast cancer 

risk directly and indirectly through incompletely understood mechanisms. Risk factors 

include gender, age, genetic abnormalities, breast pathologies, history of breast cancer, 

ethnicity, exogenous hormone use, weight, lifestyle, initiation and cessation of 

menstruation, parity, in utero events, and radiation exposure.  

Because men have significantly lower levels of circulating estrogen and less 

breast tissue in general, simply being a woman presents a substantial risk of breast cancer 
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development (Fentiman 2006, Nahleh 2006). Additionally, age is an important indicator 

of breast cancer risk due to percent breast density and accumulation of DNA damage 

(Boyd 2007, Milanese 2006, Vachon 2007, Key 2001, Torres-Mejía 2005, Palomares 

2006). Although breast density varies widely between women and through the course of a 

lifetime, young women typically have dense breasts. Breasts generally become fatty 

replaced with aging, with involution rate being approximately 65% heritable (Stone 

2006).  

Fatty involution allows better visualization of breast features, but aging also 

allows DNA damage accumulation, particularly if repair pathways are not functioning 

properly. This means older women have more unhealthy cells primed for carcinogenic 

transformation, and thus a higher risk of breast cancer than younger women, even 

allowing for differences in breast density. Menopause influences breast cancer risk 

through a characteric and significant change in endogenous levels of sex hormones such 

as estrogen, androgen, and progesterone concentrations (Missmer 2004). 

 Several hereditary genetic mutations in genes governing functions such as steroid 

hormone metabolism, carcinogen metabolism, cell cycle control, and DNA repair 

pathways increase the chance of breast cancer development, particularly of early onset 

cancer, shown in Table 2.5 (Ross 2005). Women with these mutations are considered to 

be at high risk for breast cancer development, spurring the recent push for better 

adjunctive imaging procedures to screen for and diagnose cancers. Magnetic resonance 

imaging (MRI) and ultrasound (US) are attractive options as they do not deliver a 

radiation dose that could initiate tumors in women with compromised pathways that 

process such insults (Patani 2008, Berg 2008). While these systems are not presently 

 21



considered ideal for the general screening population, the risk-benefit ratio for high-risk 

women may justify their use as screening modalities (Patani 2008, Berg 2008).  

 Syndrome                  Mutated Gene 
 
 Hereditary Breast Ovarian Cancer Syndrome  BRCA1, BRCA2 
 Li-Fraumeni Syndrome                        p53 
 Cowden Syndrome                     pTEN 
 Peutz-Jeghers Syndrome                 STK11/LKB1 
 Ataxia-Telangiectasia Syndrome                      ATM 
 Blooms Syndrome                      General 
 
TABLE 2.5: Genetic Abnormalities Commonly Resulting in Breast Cancer. BRCA1, 
BRCA2 and STK11/LKB1 mutations each confer a 50 to 85% risk of breast cancer 
development within a lifetime. Mutations in the p53 gene, resulting in Li-Fraumeni 
syndrome, convey a 60% risk of breast cancer development over a lifetime. There is a 25 
to 50% risk of breast cancer for women with mutations in the pTEN gene. A mutation in 
the ATM gene doubles the lifetime risk of breast cancer. Blooms syndrome creates 
susceptibility to all cancers, vastly increasing the chance of developing a wide range of 
cancers. (Ross 2005) 
 

With the exception of cysts, both typical and nonproliferative benign breast 

pathologies only impart minimally increased breast cancer risk (Key 2001, Hartmann 

2005, Wang 2004). Atypia and proliferative benign conditions increase early-onset breast 

cancer risk, with some conditions such as LCIS increasing risk up to ten-fold (Hartmann 

2005, Wang 2004, Ikeda 2004, Jacobs 1999). A woman who has had breast cancer has a 

greater risk of developing a second incidence of breast cancer in either breast. This risk is 

increased by additional factors, such as breast conserving therapy instead of full 

mastectomy. (Ikeda 2004) 

Risk is increased two- to three-fold with a family history of breast cancer (Claus 

1998, Pharoah 1997, Basham 2002). The influence of family history on a woman’s breast 

cancer risk varies. Factors that influence breast cancer risk imposed by a family history of 

breast cancer include the degree of the affected family member, the number of family 
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members who develop breast or ovarian cancers, the age of family member at the time of 

cancer diagnosis, and racial differences within the family (Yang 1998). However, only 

25% of women with familial breast cancer have BRCA1 or BRCA2 mutations (Shih 

2002). A family history of breast cancer could indicate aggregation of risk factors such as 

genetics, lifestyle, and environmental exposures (Lalloo 2006, Claus 1998). 

Breast cancer risk demonstrates racially distinct patterns, shown in Figure 2.3. 

Many race and ethnicity factors potentially influence such disparities in breast cancer 

incidence and mortality, including genetics, societal factors such as insurance status and 

availability of high quality mammographic systems in a facility with well-trained 

physicians, and environmental influences such as diet. Race can be further broken into 

ethnicity subgroups. For example, Ashkenazi Jewish white women have higher breast 

cancer incidence than that calculated for the entire white population of the United States. 

(American Cancer Society 2008) 

   
FIGURE 2.3: Incidence and Mortality of Breast Cancer by Race in the United 
States. As seen in the most recently compiled statistics, there are significant disparities in 
breast cancer incidence and mortality when analyzed by race. Reprinted with kind 
permission from the American Cancer Society. Breast Cancer Facts and Figures 2007-
2008. Atlanta: American Cancer Society, Inc.  
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Recently, gene expression studies identified several subtypes of breast cancer 

important for prognosis and guiding therapy, with subtype prevalence differing based on 

race (Carey 2006). The basal-like subtype has low ER and HER-2/neu expression levels, 

and is associated with poor outcome (Carey 2006). This subtype occurs with dramatically 

increased frequency in African American women and in women carrying the BRCA1 

mutation (Carey 2006).  

However, neither BRCA1 mutation nor adjustment for higher prevalence of breast 

cancer subtypes with unfavorable prognoses fully explains the disparity in mortality 

between Caucasian women and African American women. This indicates the contribution 

of undiscovered genetic trends as well as societal factors such as insurance status and 

availability of high quality mammographic systems in a facility with well-trained 

physicians (Carey 2006). Furthermore, environmental influences, such as diet differences, 

could be important in explaining these disparities. (American Cancer Society 2008, 

Simon 2005b, Chu 2001, Weir 2003, Shavers 2002, Althuis 2004, Ikeda 2004, Ries 2007) 

Recent hormonal oral contraceptive use is thought to only minimally increase 

breast cancer risk because it imitates normal hormonal processes and is typically used in 

younger women whose background risk levels are relatively low (Bernstein 2002, Key 

2001, Althuis 2004). Cessation of use will gradually decrease risk to normal or to 

minimally elevated levels relative to background risk (Key 2001). The use of fertility 

drugs also has the potential to increase breast cancer risk, but current data is limited (Key 

2001). After menopause, some women choose to undergo hormone replacement therapy 

(HRT), which increases risk because HRT use causes higher circulating hormone levels 

when levels would normally be decreased, and often increases breast density (Tamimi 
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2005, Greendale 2003, Torres-Mejía 2005, Key 2001, Magnusson 1999). Elevated risk 

diminishes gradually with HRT cessation (Tamimi 2005, Greendale 2003, Torres-Mejía 

2005, Key 2001, Magnusson 1999). 

Obesity can result from poor lifestyle choices, genetic conditions, or both. 

Postmenopausal obesity increases cancer risk because after menopause, sex hormones are 

primarily produced in fatty tissue, extending the length of exposure to high levels of 

hormones at a time beyond which the body naturally possesses high circulating levels 

(Colditz 2004, Althuis 2004, Lahmann 2004, Porter 2006). Obesity increases risk even 

further for women undergoing HRT or those with a family history of breast cancer (Key 

2001, Carpenter 2003). In addition to fundamental interactions between obesity and 

estrogen levels, obese women tend to have larger breasts, increasing mammography 

image quality problems and potentially hindering cancer detection. 

Lifestyle risk factors include alcohol consumption and cigarette smoking. Alcohol 

influences estrogen levels, generates toxic metabolites, and hinders DNA repair (Colditz 

2004, Longnecker 1994, Smith-Warner 1998, Feigelson 2003, Feigelson 2001, Ross 

2005). There is no conclusive evidence concerning the relationship between age at 

initiation of drinking habits and breast cancer risk (Okasha 2003). Heavy and prolonged 

smoking, as well as initiation of smoking habits during adolescence when breasts are 

developing, both result in increased breast cancer risk (Reynolds 2004, Key 2001, Colditz 

2004, Okasha 2003). It is interesting to note that current smoking by women with a 

family history of breast cancer does not further increase risk, whereas current smokers 

without such a family history have increased breast cancer risk (Reynolds 2004). Passive 
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second-hand smoke exposure does not appear to increase breast cancer risk (Reynolds 

2004, Okasha 2003).  

Additional lifestyle risk factors include physical fitness and diet. Although 

lifetime exercise has the greatest breast cancer preventative effect, high levels of activity 

later in life is the greatest contributor to risk reduction, particularly for women without a 

family history of breast cancer (Friedenreich 2001, Friedenreich 2004, Carpenter 2003). 

The mechanism by which exercise reduces breast cancer risk is thought to be related to 

reduced obesity as well as alterations in hormone levels caused by regular exercise 

(Bernstein 1992). Recent research has explored the possible breast cancer protection and 

promotion effects of various nutrients. Current evidence shows that there are subgroups 

of women for which diet has a more pronounced effect on breast cancer risk, suggesting 

variable diet-gene interactions (Rock 2000). According to some researchers, calcium, 

vitamin E, and fiber are suspected to have age-specific protective roles against the 

development of breast cancer (Rock 2000, Okasha 2003). Moreover, there is a protective 

effect of an overall restricted caloric intake (Okasha 2003).  

Adolescents who begin menstruation before 12 years of age have a 30% increased 

breast cancer risk than those beginning after the age of 15 (Kelsey 1993, Ma 2006, 

Althuis 2004, Bernstein 1987). Each full-term pregnancy poses a short-term increased 

cancer risk due to increased hormone levels, yet the long term effect is protective (Ma 

2006, Rosner 1996, Althuis 2004). Younger age at first childbirth and breastfeeding are 

protective (Ma 2006, Althuis 2004). Preeclampsia, a characteristically reduced level of 

estradiol during later stages of pregnancy, has a protective effect against breast cancer for 

a female baby, while evidence suggests fraternal twins, high birth weight, and severe 
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nausea during pregnancy increase risk for a female baby (Potischman 1999, Okasha 

2003).  

Low-dose radiation, such as that delivered in medical imaging applications, 

exhibits a linear dose-response with no threshold below which the probability of biologic 

effects is zero (Bushberg 2002, Upton 2003). This is due to cross-linking of DNA 

proteins, DNA backbone breakage, DNA nucleotide base damage, free radical generation, 

or any combination of such effects, summarized in Figure 2.4 (Upton 2003). When such 

damage is survivable and occurs in the presence of compromised DNA repair 

mechanisms, the daughter cells inherit aberrant genetic information, leading to cellular 

disregulation and a linear increase in frequency of cancer precursors and certain types of 

cancers (Upton 2003).  

  
FIGURE 2.4: Radiation Damage to DNA. Radiation exposure can induce direct and 
indirect damage to DNA, such as backbone breakage, bond and crosslink disruption, 
incorrect crosslinking, base loss, and base change. Reprinted with kind permission from 
Scott BR, www.radiation-scott.org/radsource/3-0.htm, 2006. 
 

A study by Berrington de Gonzalez and Darby suggested that the use of 

diagnostic x-rays in all medical applications increased total cancer risk by approximately 
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0.9% (2004). For women aged 50 to 69, the ratio of induced to prevented cancers due to 

conventional mammographic screening is approximated to be 1:242, but for women aged 

40 to 49, this ratio is estimated to fall to 1:8 (Beemsterboer 1998). Thus, it is important to 

decrease the amount of radiation dose a patient receives when obtaining mammographic 

images in order to optimize the risk-benefit ratio. 

2.7 Breast Cancer Prevention 

 Reducing breast cancer risk factors and regular screening have traditionally been 

the only breast cancer preventive measures. However, chemopreventive drugs and breast 

cancer vaccines are under development, potentially offering primary breast cancer 

prevention. The goals of both are to prevent or delay invasive breast cancer development 

without excessive undesirable side effects. Even though many laboratory trials have 

shown early promise, extensive breast cancer chemoprevention or vaccination trials in 

healthy women with normal risk of breast cancer have not yet been performed due to 

concerns over safety. Further, only women with high risk of breast cancer or with a 

current cancer diagnosis have been included in trials, limiting the generalization of the 

results. (Senn 2008) 

 Antiestrogen pharmaceuticals have been widely used to treat breast cancer, and 

recent clinical trials demonstrated their potential as chemopreventive agents. The 

National Surgical Adjuvant Breast and Bowel Project (NSABP) P-1 Study accrued over 

13,000 women at increased risk of breast cancer development and administered 

tamoxifen (TAM) over the course of five years, demonstrating a 50% reduction in both 

invasive and DCIS cancers over the placebo control. Even in the face of serious side 

effects, including increased risk for thromboembolic events and endometrial cancer, the 
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data suggests that TAM chemoprevention might benefit certain subsets of women, 

including women under the age of 50, women with a history of DCIS or other atypical 

lesions, and women with BRCA1/BRCA2 mutations. (Fisher 1998, Fisher 2000, Fisher 

2005) 

 Raloxifene (RAL), which has similar pharmacokinetics as TAM, was compared to 

TAM as a chemopreventive agent in the NSABP P-2 Study of Tamoxifen and Raloxifene. 

Interestingly, RAL only demonstrated a reduction in invasive cancer development, but 

has the advantage of being slightly less chemotoxic. Although the Food and Drug 

Administration (FDA) has approved both TAM and RAL for use as chemopreventive 

agents, neither is widely prescribed. (Vogel 2006) 

 Aromatase inhibitors (AIs) have also been used to treat breast cancer, with a 

clinical trial including 6,000 postmenopausal women underway to test the ability for this 

type of drug to act as a chemopreventive (Cuzick 2005). AIs do not carry the same risk of 

thromboembolytic events or endometrial cancer, but do have deleterious effects on bones 

without concurrent bone-health restorative therapy (Cuzick 2005). Another 

pharmaceutical category evaluated as a chemopreventive agents are statins. Although 

statins demonstrated promise as chemopreventatives in both in vitro and in vivo 

laboratory trials, meta-analysis of several clinical trials did not find an effect for reducing 

mortality from breast cancer in general (Seeger 2003, Alonso 1998, Bonovas 2005).  

 With growing understanding of the carcinogenic process, some researchers are 

evaluating the feasibility of breast cancer vaccines. Theoretically, these vaccines would 

allow the body to recognize and destroy cancerous cells. Most vaccines currently under 

development use antigens to prime the immune system, but have very low success rates 
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due to limited antigen expression in the tumor, antigen expression in regions protected 

from vaccine exposure, heterogenous tumor antigen exposure throughout tumor volume 

and throughout tumor development, and limited ability of the tumor microenvironment to 

mount an immune response. (Mittendorf 2007) 

 Prophylactic vaccines can sometimes be engineered against an infectious agent 

that causes disease, such as the recent clinical implementation of routine HPV 

vaccinations in young women that prevent certain types of cervical cancers. However, no 

infectious agent has definitively been associated with breast cancer development. Instead, 

antigens that have been considered for breast cancer vaccine include HER-2/neu, MUC-1, 

carcinoembryonic antigen, hTERT, p53, mammaglobin A, and cancer-testis antigens. No 

breast cancer vaccines have been studied in large, robust clinical trials within a 

generalizable population. (Mittendorf 2007) 

 Women at very high risk for breast cancer development would likely benefit the 

greatest from such forms of breast cancer prevention since the only other primary 

preventive measure is a prophylactic bilateral mastectomy. Because most 

chemoprevention and breast cancer vaccines are still under development, and others 

available in the clinic are not routinely implemented, the threshold risk level to balance 

the side effects has not yet been established. Much more research is required in the field 

of primary breast cancer prevention. 

2.8 Summary 

 Although molecular approaches to breast cancer detection and treatment are 

rapidly progressing, too much remains unknown about breast cancer carcinogenesis for 

primary prevention. Conventional mammographic screening depends on the detection of 
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structural changes through images based on x-ray interaction with matter. However, it is 

clear that there are measurable molecular changes indicative of cancerous disease 

processes well before structural abnormalities become radiographically apparent. The 

future of breast imaging might harness these biomarkers to detect and treat only those 

precancerous and malignant lesions which pose a threat. 
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CHAPTER 3: X-RAY INTERACTION WITH MATTER 
 
3.1 Overview 

A general understanding of x-ray physics and how x-rays interact with matter 

facilitates understanding the differences between x-ray absorption and x-ray refraction as 

it pertains to medical imaging. Clinical x-ray imaging is almost exclusively based on x-

ray absorption. The following discussion reviews atomic structure, photon characteristics, 

x-ray transmission, the photoelectric effect and x-ray absorption, x-ray scatter, x-ray 

refraction, and several distinct types of radiation production. Together these provide a 

foundation for understanding diffraction-enhanced imaging, which implements 

refraction-based image contrast. 

Electromagnetic radiation includes radio waves, x-rays, light, and gamma rays, 

shown in Figure 3.1. Radiation can be non-ionizing, directly ionizing, or indirectly 

ionizing. Diagnostic imaging uses indirectly ionizing x-rays where an electron is released 

in the object, then this released electron transfers energy into the object (Podgoršak 2006). 

Ionizing radiation exposure to human tissue components is dangerous because tissues 

have low ionization energies ranging from 5 eV to 20 eV, disrupting the covalent bonds 

of many organic materials (Sprawls 1993).  
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FIGURE 3.1: Electromagnetic Radiation Spectrum. The electromagnetic spectrum is 
composed of gamma rays, x-rays, ultraviolet (UV)-rays, visible light, infrared radiation 
(IR), microwaves, and radio waves. It is measured in wavelength, with units of meters.2

 
There are three categories of x-ray interaction with matter: transmission without 

interaction, complete absorption, and scatter. Together, absorption and scatter are said to 

attenuate an x-ray beam. Scatter includes a wide variety of interactions including 

reflection, refraction, elastic scatter (without energy transfer), and inelastic scatter (with 

some degree of energy transfer). All such interactions must satisfy the physical laws of 

conservation of energy, momentum, and electric charge.  

3.2 Atomic Structure 

 The Bohr atomic model describes atomic structure, with protons and neutrons 

contained within the nucleus, while electrons circle the nucleus in designated orbits, 

referred to as shells. Each element has a unique atomic number (Z) equal to the number 

of protons in the atom. For a neutral atom, Z also equals the number of electrons. For 

inhomogeneous materials, effective atomic numbers (Zeff) can be calculated, with several 

Zeff values relevant to medical imaging shown in Table 3.1. Electron shells contain a 

maximum number of electrons, given by 2n2, where n is the quantum number of the shell. 

For example, the maximum number of electrons in the K-shell is two, eight in the L-shell, 

18 in the M-shell, and 32 in the N-shell. (Bushberg 2002) 

 

                                                 
2. This figure was compiled using the following sources: Sprawls 1993, Podgoršak 2006, Ikeda 2004, 
Bushberg 2002. 
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      Material  Zeff   Density 
 
     Air  7.64      0.00 
    Water  7.42      1.00 
     Fat  5.92      0.91 
     Muscle 7.46      1.00 
     Bone  11.6      1.65 
 
TABLE 3.1: Physical Properties of Biological Materials. Values listed for water and 
fat are representative of those obtained with soft tissue imaging. Physical density 
(measured in g/cm3) and effective atomic number (Zeff) values do not vary greatly for 
components of soft tissue, posing challenges for medical imaging. 
 
 Electron binding energies increase with distance from the nucleus. Electrons can 

move to higher or lower energy shells with addition or release of energy, respectively. K-

shell electrons of intermediate and high Z materials have binding energies within the 

range of diagnostic imaging, giving rise to the phenomenon of K-edges when a photon 

interacts with an atom at an energy just above its shell-specific binding energy and 

ionizes the atom. Such absorption edges can occur with all electron shells, and are 

referred to as L-edges, M-edges, etc. This creates a large but transient increase in the 

attenuation coefficient at this energy, causing a temporary increase in photoelectric 

absorption. (Bushberg 2002)  

3.3 The Photon 

A photon, the smallest unit of electromagnetic radiation, is defined as an 

individual particle of no mass, with energy (E, measured in units of eV), wavelength (λ, 

measured in units of m), and frequency (v, measured in units of s-1):  

    E = hc / λ     (1) 
    λ = c / v     (2) 
    v = E / h     (3) 
 

where h is Planck’s constant (4.13566733 x 10-15 eV·s) and c is the speed of light in a 

vacuum (2.99792458x108 m·s-1). Photon radiation can be characterized by either the 
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particle model or the wave model, which are complementary to each other at this size 

range. Radiation wave characteristics are amplitude, wavelength, frequency, and period. 

Radiation particle characteristics consider individual photon quanta with a specific 

energy. For example, the Compton effect is explained by the particle model and x-ray 

diffraction is characterized by the wave model. (Bushberg 2002, Podgoršak 2006) 

 X-rays, composed of many photons, are characterized by their average energy as 

either hard (high energy) or soft (low energy). Medical imaging primarily utilizes hard x-

rays between 20 and 70 keV because they are soft enough to allow absorption, while a 

sufficient number of photons can still effectively penetrate the body to create image 

contrast. X-rays become harder as they travel through a medium because lower energy x-

rays are absorbed, resulting in a lower-intensity x-ray beam with higher average photon 

energy. Hardness is quantified by half-value layer (HVL), describing the amount of 

material an x-ray penetrates before half the photon’s energy has been absorbed:  

     HVL = 0.693 / μ    (4) 

where μ is the linear attenuation coefficient. HVL is derived from the Beer-Lambert 

attenuation equation: 

     I = I0 e-μx
     (5) 

where I is the resulting intensity, I0 represents initial intensity, and x is the specific half-

value layer to be calculated. (Bushberg 2002) 

3.4 X-Ray Transmission 

There must exist sufficient differential attenuation such that photons interact with 

the object and are transmitted to expose the detector to create image contrast. The 
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probability that a photon traverses an object without interaction is described by the 

following equation: 

   e-μx = (e-ωx)(e-τx)(e-σx)(e-κx)(e-πx)   (6) 

where the linear coefficients are as follows: ω is coherent scatter, τ is photoelectric 

absorption, σ is Compton scatter, κ is pair production, π is photodisintegration, and x is 

path length within the sample. For soft tissue imaging energies, the effects of coherent 

scatter, photodisintegration, and pair production do not contribute substantially to x-ray 

interactions with matter. (Hendee 2002) 

 Thus, the total linear attenuation coefficient (μ) is the sum of τ and σ, depending 

on hv, Z, and physical density (ρ), and can be calculated by the following formula: 

    μ = (1 / Δx) log [(N0 - n) / N0]   (7) 

where n is the number of photons removed from the incident beam, N0 is the number of 

incident photons, and Δx represents object thickness. The change in μ is not linear as 

object thickness increases. The mean path length an x-ray travels within an object, 

referred to as relaxation length, is described by μ-1. A related value is the mass 

attenuation coefficient, which is equal to μ / ρ. Beam hardening with polychromatic x-

rays affects the estimation of μ, requiring calculation of an effective linear attenuation 

coefficient (Bushberg 2002, Hendee 2002): 

     μeff = ln2 / HVL     (8) 

3.5 The Photoelectric Effect and X-Ray Absorption 

 With the photoelectric effect, a tightly-bound electron completely absorbs a 

photon, ejecting the electron (now referred to as a photoelectron) and ionizing the atom. 

The ejected photoelectron possesses kinetic energy (EK) described as follows: 
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     EK = hv – EB(K)    (9) 
 
where EB(K) is the binding energy of the K-shell electron and hv is the energy of the 

incident photon. A cascade of electrons from outer energy shells fills the vacancy created 

by the ejection of the photoelectron, emitting energy in the form of either characteristic 

radiation or an Auger electron, with an energy equal to the difference in binding energies 

between the shells. (Podgoršak 2006, Bushberg 2002, Hendee 2002) 

 The photoelectric effect, summarized in Figure 3.2, increases with increasing Z 

and decreasing photon energy. Photoelectric absorption still occurs at high x-ray energies 

where absorption edges exist, decreasing from absorption edges proportionally as:  

    1 / (hv)3     (10) 
 

where hv is the photon energy. However, for the primary elements in human tissue 

(hydrogen, carbon, nitrogen, and oxygen), the K-shell absorption edges all occur below 1 

keV. (Sprawls 1993, Podgoršak 2006, Bushberg 2002, Hendee 2002) 

    
FIGURE 3.2: The Photoelectric Effect. An incident photon is completely absorbed by 
an electron, ejecting the electron at approximately 90°. An electron from a shell further 
from the nucleus moves to the closer shell to fill the vacancy, releasing either 
characteristic radiation or an Auger electron. This electron cascade continues until the 
vacancy is located in the outermost shell.3

                                                 
3. This figure was compiled using the following sources: Sprawls 1993, Podgoršak 2006, Bushberg 2002. 
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3.6 X-Ray Scatter 

 Scatter occurs due to interatomic spacing, deflecting a photon from an atom with 

(inelastic) or without (elastic) energy transfer. Porod’s Law states that scattering intensity 

increases with sample non-uniformity and that multiple scatter events increase with Z and 

sample thickness. Scatter relevant to x-ray imaging is nonresonant, varying smoothly 

with photon energy. Several categories of scatter include ultra-small angle scatter 

(USAXS) occurring with structure sizes on the scale of 100’s of nanometers to several 

microns, small angle scatter (SAXS) occurring with supramolecular structures ranging 

from 10 to 100 nm in size, and wide angle scatter (WAXS) occurring with interatomic 

distances of several nanometers. While these categories depend on scattering particle size, 

Rayleigh, Compton, and Thomson are specific types of x-ray scatter with unique physics. 

Each has a distinctive role in specific applications of medical imaging.4 (Kidane 1999, 

Fernández 2002, Fernández 2005, Bushberg 2002, Hendee 2002, Podgoršak 2006) 

 Rayleigh scatter is an elastic scattering process in which a low energy incident 

photon scatters in a random direction from an orbital electron without inducing a change 

in its wavelength, energy, or frequency and without ionizing the atom. Rayleigh scatter 

occurs when the scattering particle is small in comparison to the x-ray wavelength. On 

the other hand, Compton scatter is an inelastic scattering process that occurs when a 

photon scatters from a loosely bound outer-shell electron, imparting some of its energy to 

eject the electron, now referred to as a Compton or recoil electron, before continuing on 

an altered path with decreased energy. The recoil electron is absorbed near the site of 

interaction, whereas the scattered photon does not necessarily interact again at a nearby 

                                                 
4. For an exhaustive mathematical treatment of scattering, please refer to van de Hulst 1981.  
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site. Rayleigh and Compton scatter are diagramed in Figure 3.3. (Bushberg 2002, Hendee 

2002, Podgoršak 2006, Sprawls 1993)  

 Compton scatter is the dominant contribution to x-ray attenuation at energies 

between 30 keV and 30 MeV. Because Compton scatter does not decrease as rapidly as 

the photoelectric effect with increasing photon energy and atomic number, Compton 

scatter predominates for low Z materials, such as soft tissue, when imaged at high x-ray 

energies. For example, Compton scatter and photoelectric interactions occur with about 

the same rate at 30keV. (Bushberg 2002, Hendee 2002, Podgoršak 2006, Sprawls 1993).  

 

 
FIGURE 3.3: Rayleigh and Compton Scatter.  On the left, Rayleigh scatter is 
produced when a low-energy incident photon is deflected from a tightly-bound electron 
yet does not change energy, wavelength, or frequency. The orbital electron is not 
dislodged from its shell. On the right, Compton scatter occurs when an incident photon 
strikes an outer-shell electron, deflecting the photon and ejecting the electron. The 
deflected photon has a reduced energy, equal to the binding energy that was required to 
eject the electron. The deflection angle of the photon after a Compton scattering event is 
related to photon energy.5

 
 Thomson scatter, or forward scatter, is an elastic process and dominates as the 

scattering particle size increases and with high x-ray energies far from absorption edges, 

                                                 
5. This figure was compiled using the following sources: Sprawls 1993, Podgoršak 2006, Bushberg 2002. 
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scattering photons at approximately 0°. The intensity of forward-scattered photons 

decreases as: 

    I = I0 exp(-x / λS)     (11) 

where x is the x-ray path length and λS is the scattering mean free path (Michna 2005, 

Authier 2001). Forward scatter forms the basis of x-ray diffraction. Diffraction from the 

atoms of perfect crystals allows x-ray refraction effects to be separated from attenuation 

for analyzer-based phase contrast imaging (discussed thoroughly in section 6.10 and 

chapter 8). (Hendee 2002, Podgoršak 2006) 

3.7 X-Ray Refraction 

 Refraction occurs due to differences in density and thickness, with the greatest 

intensity at interfaces between tissues with different molecular structures, as shown in 

Figure 3.4. The refractive index is given by the following: 

  n = 1 – δ + iβ      (12) 

where β represents x-ray absorption and δ is the phase shift due to scattering. This phase 

shift is described by: 

     δ = (N λ2 re) / 2π    (13) 

where re is the classical electron radius, 2.8179402894 x 10-15 m, and N is the number of 

electrons per unit volume. The formula for calculating the electrons per unit volume is: 

     N = (NA ρ) / A     (14) 

where NA is Avogadro’s Number (6.02214179 x 1023 atoms/mole), ρ is physical density 

(measured in kg/m3), and A is the atomic mass (measured in kg/mole). The x-ray 

refractive index is always approximately unity, and deviations are usually very small, on 

the order of microradians. (Suortti 2003, Kiss 2003, Hasnah 2005) 
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 Snell’s law, depicted in Figure 3.4, describes x-ray refraction at interfaces:  

     n1sinθ1 = n2sinθ2    (15) 

where n1 is the refractive index of the medium, n2 is the refractive index of the sample, θ1 

is the incident angle, and θ2 is the refraction angle. The specific refraction angle at a 

linear interface is calculated by: 

   ∆θz ≈  ∆δ tanθ1 ≈ ∂/∂x ∫L n(x,y,z)dz   (16) 

where ∆ δ = n1 - n2 (difference in refractive indices), L is the approximately straight path 

traversed by the beam, (x,y) are the spatial coordinates of the image domain, and (z) is 

the spatial coordinate along x-ray propagation. This derivative creates an edge-

enhancement effect without the quantum noise sensitivity that plagues post-processing 

filtering or sharpening algorithms that provide computerized edge-enhancement. (Suortti 

2003, Kiss 2003, Hasnah 2005) 

   
FIGURE 3.4: X-Ray Refraction. As an incident photon travels from a medium with a 
refractive index n1 to a material of a different refractive index n2, the direction of 
propagation will be slightly altered due to a change in photon wavelength, referred to as 
refraction. θ1 is the incident angle, θ2 is the refraction angle, and  ∆θz is the deflection 
angle. X-rays refract directionally above or below the plane of the incident x-ray beam.6

 
 

                                                 
6. This figure was compiled using the following sources: Sprawls 1993, Podgoršak 2006, Bushberg 2002. 
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3.8 Generation of X-Rays 

 Similar to photon interactions with atoms, electrons can interact with atoms to 

produce electromagnetic radiation by bremsstrahlung, characteristic, or synchrotron 

processes. X-ray tube sources generate bremsstrahlung and characteristic radiation while 

synchrotron sources generate a broad range of radiation through synchrotron radiation 

(SR). The generated radiation diverges to cover a larger area with reduced intensity away 

from its source according to the inverse-square law. This law states that the intensity 

decreases proportionally with the inverse of the square of the distance from the source. 

Intensity (photon flux, φ) is defined as the number of photons delivered to a specific area 

(photon fluence, Φ) within a specific time (measured in watts/cm2): 

     φ = Φ/t = N/(A t)    (17) 

where t represents time, N is the number of photons, and A is the exposed area. Exposure 

is proportional to fluence at a specific x-ray energy and is measured in Roentgen (R) or 

Coulomb/kg (C/kg). (Sprawls 1993, Bushberg 2002)  

 Bremsstrahlung radiation, also referred to as white radiation, is generated by 

Coulomb interactions when negatively charged electrons are deflected by orbital 

electrons or positively charged atomic nuclei, shown in Figure 3.5. When an electron is 

deflected, part of the kinetic energy is released as electromagnetic radiation. The energy 

of the emitted radiation depends on the energy of the incident electron and the distance 

between the orbital electron and the nucleus. (Bushberg 2002, Podgoršak 2006)  

 Bremsstrahlung radiation is intrinsically a continuous polychromatic spectrum 

with maximum photon energy equal to the energy of the incident electron. Such 

polychromatic radiation sources have an effective beam energy of approximately 30% of 
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the peak energy. This variability leads to a bell-shaped curve describing photon fluence. 

Production of bremsstrahlung radiation is more efficient at higher electron energies. 

(Bushberg 2002, Podgoršak 2006) 

    
FIGURE 3.5: Bremsstrahlung Radiation. Bremsstrahlung radiation can be emitted 
when an incident electron trajectory is bent by either the repulsive force of an orbital 
electron or the attractive force of the nucleus. The energy of the emitted radiation 
depends on the incident electron energy as well as the orbital electron binding energy.5

Characteristic radiation, depicted in Figure 3.6, is also referred to as fluorescent 

radiation. Characteristic radiation emission occurs when electrons move between atomic 

shells to fill vacancies created when an electron collides with an atom with enough 

energy to overcome the binding energy of one of the atom’s electrons, removing it from 

the atom. (Bushberg 2002, Podgoršak 2006) 

Electrons rearrange between atomic shells to return to a lower energy ground state, 

emitting either Auger electrons or characteristic radiation in spikes of intensity equal to 

the difference in binding energies of the shells involved in the cascade. Radiation emitted 

from electrons cascading from the next closest shell to a vacancy in the K-shell is 

referred to as Kα and radiation emitted from electrons from the second closest shell is 

referred to as Kβ, and so forth. Auger electron production competes with characteristic x-

ray generation, especially for elements of low Z. Fluorescent yield describes the 
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probability that an electron cascade will result in characteristic radiation emission. 

(Bushberg 2002, Podgoršak 2006) 

   
FIGURE 3.6: Characteristic Radiation. An incident electron ejects an orbital electron, 
releasing energy as either characteristic radiation or an Auger electron. An electron 
cascade fills the vacancy created by the ejected electron.5 

 
 Synchrotron radiation (SR) is created when an electron is accelerated to nearly the 

speed of light and forced to traverse a circular orbit within a magnetic field, depicted in 

Figure 3.7. The magnetic field causes acceleration by the Lorentz force and subsequent 

photon emission. The Lorentz force is described by the following equation: 

     F = q [E + (v x B)]    (18) 

where F is the force in Newtons, E is the electric field in volts/meter, v is the magnetic 

field in teslas, q is the electric charge in coulombs, and x is the mathematical operator 

representing the cross product. SR is polychromatic and contains radiation throughout the 

entire electromagnetic spectrum, with the peak emitted wavelength linearly proportional 

to the radius of the accelerating particle’s path. SR radiation is intense, spatially coherent, 

and highly collimated throughout the entire spectrum. (Margaritondo 1988, Podgoršak 

2006, Arfelli 2000, Suortti 2003, Meuli 2004, Margaritondo 2003) 
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FIGURE 3.7: Synchrotron Radiation. A bending magnet synchrotron x-ray source as 
shown above generates a highly coherent fan beam over a broad range of wavelengths. 
Electrons orbit a circular storage ring in the (x,y) plane at nearly the speed of light. These 
orbiting electrons are exposed to a magnetic field in the (z) plane, causing radiation 
emission due to the Lorentz force. The emitted radiation can be accessed at many points 
along the orbit, referred to as beamlines, as shown by the lines radiating from the storage 
ring.7  
 
3.9 Summary  

 X-rays can interact with matter in a variety of ways, leading to unique image 

quality considerations for different x-ray imaging modalities. There is always a noise-

resolution tradeoff in medical x-ray imaging systems, which depends on the fundamentals 

of x-ray interactions with matter discussed in this chapter.  

                                                 
7. This figure was compiled using the following sources: Bushberg 2002, Margaritondo 1988. 
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CHAPTER 4: IMAGE QUALITY 
4.1 Overview 

 Image quality describes how accurately a radiographic image reflects physical 

object features (distortion) without introducing image features not representative of a true 

object feature (artifacts). It is often considered and measured within a relevant clinical 

imaging task. Image quality factors must be balanced with important clinical parameters 

such as radiation dose and image acquisition time. Contrast, blur, magnification, 

resolution, noise, and dose are several factors influencing image quality, and are affected 

by imaging parameters such as intensity, exposure, and detector characteristics. 

4.2 Factors Influencing Image Quality 

 Object or subject contrast is derived from inherent properties of the object or 

subject being imaged, such as gradients in ρ, Z, or thickness that alter the transmission of 

x-rays. X-rays detected and displayed as image contrast depend on intrinsic object 

contrast as well as imaging parameters such as radiation penetration, scatter, and detector 

characteristics. Image contrast is the visible difference in exposure between one pixel and 

its neighboring pixels. It is useful to consider both area contrast generated by a large 

feature and boundary contrast generated at an interface between features. Contrast 

response, described by the contrast transfer function (CTF), illustrates the ability of an 

imaging modality to resolve objects of increasing size. (Sprawls 1993, Bushberg 2002) 

 Blur, or unsharpness, quantifies the amount a defined point in an object is spread 

out within the image. Blur occurs due to the physical characteristics of the object, object 
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motion, imaging system design characteristics, and detector characteristics. 

Magnification (M):  

  M = image size = source-to-detector distance   (19)  
          object size     source-to-object distance 
 
may increase visibility, particularly for small regions of interest, by increasing the size of 

the region of interest while decreasing the field of view. However, magnification does not 

increase intrinsic resolution and can increase blur. (Sprawls 1993, Bushberg 2002) 

 Spatial resolution describes the separation of fine details and can be measured 

using a test object of parallel lines with increasing spatial frequency. Detector pixel size, 

x-ray focal spot size, source-to-sample distance, and source-to-detector distance all 

influence the spatial resolution. Spatial resolution is quantified by the Modulation 

Transfer Function (MTF), Point Spread Function (PSF), Line Spread Function (LSF), and 

Edge Spread Function (ESF). The Signal-to-Noise Ratio (SNR) allows comparison of 

true image information and noise: 

    SNR = (I – Imin) / σ ≈ √(Ndet)    (21) 

where I is the intensity, Imin is the minimum intensity, σ is noise, and Ndet is the number 

of photons detected within a specific pixel. The detective quantum efficiency (DQE) has 

emerged as a valuable representation of how the imaging system affects the SNR, and 

quantifies the ability to detect small, low-contrast objects: 

    DQE = (SNRout / SNRin)2    (20) 

where SNRout is the SNR output by the imaging system and SNRin is the SNR received 

by the imaging system. (Hendee 2002, Sprawls 1993, Bushberg 2002) 

Most noise in x-ray imaging is quantum noise but there is also noise associated 

with the structure of the object being imaged and with specific components of a particular 
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imaging system. Quantum noise occurs because a limited number of photons emitted 

from an x-ray tube with statistical Poisson distribution become incident to the detector 

with a random distribution. An example of structure noise is the image information due to 

x-ray attenuation by normal breast parenchyma such as fat and connective tissue, 

contributing unimportant information to the image and consequently decreasing contrast 

of desired features. Certain noise sources are universal to all x-ray imaging modalities, 

but compensatory design features introduce differences in how the noise influences 

image quality for particular clinical tasks. (Sprawls 1993, Bushberg 2002) 

 Another useful comparison quantifying the effect of noise on image quality is the 

signal-difference-to-noise ratio (SDNR): 

    SDNR = NROI – Nback    (22) 
        σROI – σback 
 
where NROI is the signal within a region of interest, Nback is the signal within a 

background region, σROI is the noise within a region of interest, and σback is the noise 

within a background region (Pisano 2004). Although noise is a major image quality issue, 

it typically only notably reduces visibility of low contrast objects. Rose’s criterion states 

that in order to reliably identify an object in an image, the SNR or SDNR must be greater 

than or equal to five (Bushberg 2002). Many digital processing techniques exist to reduce 

the visibility of noise, including blurring, integration over time, and averaging. (Sprawls 

1993) 

All current clinical x-ray imaging requires differential attenuation of x-rays to 

create image contrast, typically through absorption. This fundamentally implies delivery 

of a radiation dose to the object being imaged. Greater exposure on the detector means 
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greater SNR, but also greater radiation dose. Absorbed radiation dose is measured in 

grays (Gy) or rads and can be calculated with the following formula:  

    Dose = E / m     (23) 

where E is absorbed energy (measured in Joules) and m is mass (measured in kg). Mean 

glandular dose (MGD) quantifies the amount of ionizing radiation received by glandular 

tissue. Absorbed dose equivalent, a weighted estimate of actual damage caused by 

radiation exposure, is measured in Sieverts (Sv) or rem. The dose equivalent is found by 

multiplying dose by a quality factor that depends on the radiation’s linear energy transfer 

(LET) function and weighting factors specific to various tissue radiation damage 

sensitivities. (Bushberg 2002, Podgoršak 2006, Hendee 2002) 

4.3 Summary 

 Excellent image quality facilitates an observer’s ability to detect features 

important for a clinical diagnosis. Accurate portrayal of object structure or function 

without artifacts and noise allows excellent contrast and resolution. All imaging systems 

optimize imaging protocols to maximize image quality, but for some imaging modalities, 

such as conventional and digital mammography, this often comes with a cost of increased 

subject radiation dose. 
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CHAPTER 5: SCREEN-FILM AND DIGITAL MAMMOGRAPHY 
 
5.1 Overview  

Fewer than 20 years after Wilhelm Roentgen discovered x-rays in 1895, 

rudimentary mammographic imaging was performed by Albert Salomon. The American 

College of Radiology was founded in 1923. Mammography as a subspecialty emerged in 

the 1960’s but routine screening mammography was not implemented in the clinic until 

the 1970’s, after the Breast Cancer Detection Demonstration Project generated 

widespread interest among women and recommendation from physicians. This chapter 

first presents the development of mammography and the fundamental principles of 

mammography before discussing mammographic system components. This is followed 

by a discussion of several novel developments, such as monochromatic mammography, 

computer-aided diagnosis, and contrast-enhanced mammography. (Lerner 2001, Law 

2006) 

5.2 Mammography Fundamentals 

Mammographic imaging equipment and image interpretation were standardized 

through the Mammography Quality Standards Act and the Breast Imaging Reporting and 

Data System (BI-RADS), respectively. This standardization, along with dramatic 

improvements in detector technologies, has allowed mammography to remain the 

dominant breast imaging modality even among the development of many cutting-edge 

breast imaging technologies. (Lerner 2001)  
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The majority of evidence suggests a benefit from mammographic screening for 

women with normal breast cancer risk between the ages of 50 and 69 (Kopans 2007). 

Mammography is relatively insensitive for cancer detection in younger women with 

dense breasts, and detection of breast cancers within women over the age of 70 does not 

significantly extend life expectancy (Ostbye 2003). The sensitivity of mammography has 

been reported to range from 54 to 94%, with breast density strongly affecting sensitivity 

(Kopans 1992). Mammography is intended to accurately detect and diagnose breast 

abnormalities and cancers.  

 Screen-film mammography (SFM) and digital mammography (DM) image 

contrast is based on photoelectric absorption, depending on differing photon flux through 

the object. Photons are attenuated due to variations in stromal and epithelial breast 

components, giving rise to the radiographic appearance of the normal and abnormal 

breast. Compton scatter is significantly produced at mammographic imaging energies, 

leading to image degradation without compensatory design features such as collimators 

and anti-scatter grids which subsequently decrease detector exposure and increase dose 

requirements. 

 Both SFM and DM perform better at lower x-ray energies because decreasing x-

ray energy increases photoelectric absorption and decreases the contribution of scatter. 

However, low-energy x-rays are more readily absorbed, requiring greater flux for 

sufficient x-ray detection and consequently greater patient radiation dose. A typical 

mammographic image delivers between 1 and 3 mGy MGD per view. In the United 

States, a patient typically receives at least two views per breast through an annual 

screening protocol. Additional views are sometimes recommended for women with large 
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breasts, or when image artifacts or structural noise either create or appear to obscure a 

region of interest, or when potential abnormalities are detected. (Hendee 2002, Ikeda 

2004, Brenner 2002, Young 2000) 

 Much of the DM system setup is the same as SFM except for fundamentally 

distinct x-ray detection and display technologies. A general mammography system 

diagram is shown on the left in Figure 5.1 with contrasting features of SFM and DM 

shown on the right. SFM implements a cassette and screen-film combination to convert 

x-rays to light with an intensifying screen and expose film. DM uses digital detector 

technology to detect individual photons directly or to convert x-rays into light with 

detection of the light produced.  

 
FIGURE 5.1: Mammography Unit Diagram and Comparison of SFM and DM. On 
the left, the system diagram shows the main components of both the SFM and DM 
modalities. The fundamental difference between SFM and DM is the image receptor and 
display system where for SFM, photons are detected using a screen-film combination and 
for DM, photons are captured using a digital detector. SFM images are displayed on x-ray 
film, whereas DM images are inherently digital and are typically viewed on a softcopy 
review workstation, but can also be printed to x-ray film. Both modalities traditionally 
use polychromatic x-ray sources to acquire absorption-based image contrast. Both also 
require breast compression to reduce scatter and improve image quality. While SFM is 
the conventional breast imaging system and has better spatial resolution, DM has recently 
been validated through clinical trials and is now preferred for many patient subsets. 
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 DM has many advantages, such as improved contrast resolution, immediate image 

acquisition and review, versatile storage options, fewer materials required, and the 

opportunity to manipulate the images to change image feature saliency, but the spatial 

resolution is slightly less than that of SFM. A large multicenter, national clinical trial, 

Digital Mammographic Imaging Screening Trial (DMIST), was sponsored by the 

National Cancer Institute and was coordinated by the American College of Radiology 

Imaging Network. Approximately 50,000 asymptomatic women obtained mammograms 

using both standard SFM and one of five DM systems. For the entire study population, 

there was no significant difference in diagnostic accuracy between SFM and DM, as 

measured by area under the receiver operator characteristic (ROC) curves. However, DM 

outperformed SFM for three subgroups: women under the age of 50, pre- and peri-

menopausal women, and women with heterogeneously or extremely dense breasts. 

(Pisano 2004, Pisano 2005a, Pisano 2005b, Pisano 2008, Hendrick 2008) 

5.3 The Traditional X-Ray Tube 

Conventional mammography utilizes x-ray tubes to generate polychromatic x-rays 

via a spectrum of superimposed bremsstrahlung and characteristic radiation. The energy 

spectrum of the radiation produced is conditioned by filtration but is ultimately 

influenced by cathode (filament) material, anode (target) material, and the voltage 

applied to the filament. Common high Z cathode and anode materials include 

molybdenum (Mo), rhodium (Rh), tungsten (W), and aluminum (Al), with material 

properties listed in Table 5.1.  

 A cathode filament is a metal wire heated with a current of electrons to a 

temperature that overpowers electrostatic forces to release electrons, a process called 
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thermionic emission. Thermionic emission increases with increasing temperature until a 

saturation point is reached. The voltage supplied to the filament, or filament current, 

dictates the energy of the freed electrons. The electron current and the electrons released 

from the filament give the cathode a negative charge. By placing the filament inside a 

negatively charged cup, electrostatic repulsion directs the freed electrons toward the 

target. The flow of electrons originating at the cathode and ending at the anode is called 

the tube current. (Hendee 2002, Sprawls 1993, Bushberg 2002)  

    Material     Z   Melting Point   Characteristic keV 
 
    Aluminum (Al)   13        660ºC       1.6       ,        - 
    Molybdenum (Mo)   42        2623ºC       17.5      , 19.6  
    Rhodium (Rh)   45        1964ºC       20.3      , 22.7 
    Tungsten (W)   74        3370ºC       59.3      , 67.2 
 
TABLE 5.1: Properties of Common X-Ray Target Materials. Mammography units 
most commonly use x-ray tubes with some combination of Mo and Rh. It is critical to 
choose a cathode/anode combination of materials with physical properties amenable to 
the type of imaging desired. Imaging that requires extended or repeated scan times with 
little or no cool-down requires materials with high melting points to avoid damage from 
heat loading. It is also important to choose materials with characteristic emission lines 
that will either contribute to the desired energy flux or do not create an increased demand 
for filtration.  
 
 Passing a high voltage through the target creates an electrical potential energy, 

imparting a positive charge to the anode, and accelerates the electrons freed from the 

filament toward the target. This potential energy is fully converted into kinetic energy, 

with a velocity dependent on the voltage applied to the target. When electrons impinge on 

the target, they produce characteristic radiation, bremsstrahlung radiation, and heat. The 

tube current and filament current must be appropriately balanced to avoid electron cloud 

formation at the cathode that suppresses thermionic emission or an electron cloud 
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forming at the anode, potentially reversing the flow of electrons and destroying the x-ray 

tube. (Hendee 2002, Sprawls 1993, Bushberg 2002) 

 The x-ray tube focal spot refers to the size of the field of electron impact and x-

ray production on the target. While decreasing focal spot size increases spatial resolution, 

the tradeoff involves increased anode heat loading and a reduced field of view. Focal spot 

size is modulated by tube current, voltage, filament size, filament positioning within the 

cathode, and anode angle. Steep anode angles decrease the apparent focal spot size but 

create the heel effect, where there is a notable intensity drop from the cathode to anode 

side of the x-ray beam, demonstrated in Figure 5.2. Some x-ray tube designs rotate the 

anode for greater distribution of heat loading. (Hendee 2002, Sprawls 1993, Bushberg 

2002)  

  
FIGURE 5.2: The Heel Effect. Electrons impinging on the anode generate x-rays. These 
x-rays must escape the anode without being absorbed. X-rays produced on the anode-side 
have less material to escape before being exiting the x-ray tube. The x-rays generated on 
the cathode-side of the anode are attenuated slightly more, creating an x-ray beam that 
increases in intensity from the cathode-side to the anode-side. 
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 There is a particular voltage at which x-ray production is most efficient, specific 

to the cathode and anode materials. Power deposited to the x-ray tube (PD), efficiency, 

and power radiated from the x-ray tube (PR) are described by the following equations: 

   PD = V * I        (24) 
  PR = (0.9 x 10-9) * Z * V2 * I     (25) 
  Efficiency = PR / PD       (26) 

 
where V is the voltage (in volts) and I is the current (in amperes). Only a small 

percentage of energy supplied to the x-ray tube is actually converted into x-rays, with the 

remainder emitted as heat. An x-ray tube with either a high Z cathode/anode combination 

or a large filament current will produce higher energy photons more efficiently through 

bremsstrahlung emission. (Hendee 2002, Sprawls 1993, Bushberg 2002) 

 Characteristic radiation production will only occur when the energy provided to 

the x-ray tube overcomes the binding energy threshold of an electron shell specific to the 

filament material. When the tube current is above the shell-specific binding energy of the 

anode, the quantity of characteristic x-rays produced increases proportionally with the 

difference between the tube current and the binding energy. A polychromatic x-ray 

spectrum is characterized by the homogeneity coefficient, which is the ratio of the first 

HVL to the second HVL. The effective energy of a polychromatic x-ray beam is 

approximately one-third to one-half the maximal energy predicted by energy input. 

(Hendee 2002, Sprawls 1993, Bushberg 2002) 

5.4 Additional System Components 

 The cathode and anode are housed in an insulating vacuum container which 

prevents air molecules from interfering with the tube current. The x-ray tube power 

supply converts power grid energy into the appropriate waveform and selects output 
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energy, exposure time, kV and mA. Radiopaque collimators restrict x-rays into a useful 

beam by absorbing all x-rays not traveling in a particular direction, parallel for fan-beam 

collimators or within a particular range of angles for cone-beam collimators. Alternating 

strips of radiopaque and radiolucent materials arranged into grids reduce scatter radiation. 

These grids are arranged either parallel or crossed in a focused grid. A radiolucent 

compression paddle immobilizes and compresses the breast. (Kopans 2007, Sprawls 1993)  

5.5 X-ray Film 

Conventional SFM records images onto a film with a thin transparent base, with 

one side coated in a silver halide emulsion and a radiolucent protective coating. Photon 

absorption by silver halide granules ejects an electron which is drawn into a sensitivity 

center. As the electrons collect, the negative charge attracts and neutralizes the positively 

charged silver ions, depositing the black metallic silver permanently into the emulsion. 

This process can repeat many times, creating a large dark deposit of metallic silver. 

Unaffected granules are washed away by a fixing solution, leaving an unexposed light 

area on the film. The gray scale in SFM image is determined by the number of silver 

halide granules per unit area in the film. These granules are too small to be viewed with 

the naked eye, giving the resulting image the appearance of continuous gray scale. 

(Kopans 2007, Sprawls 1993) 

Films are often combined with intensifying screens and antiscatter grids. 

Intensifying screens are made of materials that fluoresce when an x-ray is absorbed. Film 

highly sensitive to the characteristic fluorescent wavelength captures the image. This 

reduces the required exposure because film is not very sensitive to x-ray exposure 

directly. Intensifying screens introduce blur, noise, and potentially artifacts. Intensifying 
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screens help reduce the amount of exposure required to generate a useful image, and 

antiscatter grids preserve image contrast by preventing scattered radiation from 

contributing to image formation. However, they also block some unscattered x-rays, 

reducing the intensity at the detector and thus increasing the exposure required. The grids 

move during imaging to blur gridlines from the image. (Kopans 2007, Sprawls 1993) 

X-ray film contrast is nonlinear with respect to x-ray intensity, and is 

characterized by an Hunter and Driffield (H and D) curve showing the relationship 

between film density and exposure, with the slope representing contrast produced by a 

specific exposure. While SFM image quality depends on many factors unique to each 

system, resolution is typically about 0.03 mm and DQE is approximately 45% (Ikeda 

2004, Bushberg 2002, Pisano 2004). SFM-specific noise sources include halide 

distribution in the film emulsion, anti-scatter grids, intensifying screens, and artifacts 

imposed by film processing, such as fingerprints and roller marks from the processor. 

(Kopans 2007) 

5.6 Digital Detector 

 There are two categories of digital detectors- directly digital and indirectly digital. 

Indirectly digital detectors convert absorbed x-rays into light which is then detected and 

measured by a digital device. Directly digital detectors capture and quantize x-rays 

without an intermediate conversion step. Screens in indirectly digital systems use total 

internal reflection to channel light produced upon x-ray exposure to preserve resolution. 

These must be thick enough to provide sufficient conversion efficiency, but thin enough 

to prevent excessive lateral light spread that introduces image blur and resolution loss. 

Directly digital detectors avoid this intermediate conversion step by immediately 
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generating an electron signal in response to x-ray exposure. This provides higher 

resolution and relaxes thickness limitations because electrons can travel within the 

detector medium with limited lateral spread. (Bushberg 2002) 

 Spatial resolution, ranging from 0.05 to 0.1 mm, depends on detector element (del) 

size and arrangement, picture element (pixel) size, signal spread, and bit depth. Larger 

dels capture more photons, but fewer fit in the same detector matrix, decreasing 

resolution. Del spacing and geometrical arrangement within the matrix influence how 

many photons incident on the detector will actually contribute to image formation. DM 

gray scale is determined by many pixels, small squares of solid colors representing a 

single value, or shade of gray. Increased bit depth provides a digital detector with the 

ability to display a wide dynamic range (many shades of gray), allowing for increased 

contrast resolution. (Pisano 2004, Sprawls 1993) 

 Digital detectors offer an important advantage over film image receptors in that 

they can be linear with respect to intensity, and are compared with nonlinear H and D 

curves in Figure 5.3. To provide optimal SFM contrast, the exposure must be adjusted 

such that images are acquired on the steep part of the slope, instead of at the toe of the 

curve where highly attenuating object contrast is located, or on the heel of the curve 

where weakly attenuating object contrast resides. DM does not have this particular 

exposure level limitation since it is most often a linear system. 

 However, digital detectors still have DQE less than unity, meaning that not all x-

rays incident on the detector contribute to image formation. Not all detector materials 

produce signal equally with the same amount of incident radiation. The energy-dependent 

quantum efficiency (η) of a digital detector is described by: 
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     η = 1 – e-μ d      (27) 

where μ is the linear attenuation coefficient for the detector material and d is the detector 

thickness. The following formula calculates the actual number of electron-hole pairs 

produced, and thus the signal generated: 

    Signal = E η      (28) 
           ω 
 
where E is x-ray energy (measured in eV) and ω is the amount of energy required to 

produce an element of signal. (Pisano 2004) 

   
FIGURE 5.3: Screen-Film versus Digital Detector Exposure. The graph relates 
detector exposure to the amount of density recorded in the image.8  
 
 Some digital detectors uniquely possess energy resolution, the ability to 

distinguish between different photon energies. However, they also possess a time 

resolution limitation, the length of time necessary between two photon interactions with 

the detector in order for them to be perceived as two separate events. While scattered 

radiation and the heel effect are noise sources for both SFM and DM, DM-specific noise 

sources depend on detector material, detector geometry, digital sampling procedures, 

                                                 
8. The values used to create this graph are only for illustration and are not representative of an actual 
comparison between a specific SFM and DM system. 
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electronic noise, fixed-pattern detector structural noise (for example, due to dead pixels), 

and pixel size. Electronic noise is particularly a problem for extended imaging times 

because it increases with time and temperature. (Pisano 2004) 

 Just as SFM images can be digitized, DM images can be printed to film instead of 

viewed on a specialized softcopy review workstation, but this is an additional step with 

associated image degradation sources. When displayed using soft-copy systems, images 

can be manipulated for optimized feature visibility by tuning the window and level, 

magnification, zoom, by applying specialized image processing, and through the use of 

many other features. Windowing allows the user to manipulate the range of pixels that 

will be converted into the gray scale, with pixels containing values outside of this range 

being represented by either pure white or pure black. Decreasing the window width 

increases displayed image contrast. (Pisano 2004) 

5.7 Monochromatic Mammography 

 Although not yet implemented clinically, the use of quasi-monochromatic x-rays 

could produce excellent mammographic image contrast by reducing beam hardening and 

allowing K-edge imaging. A polychromatic x-ray beam possesses a spectrum of energies, 

with lower-energy x-rays that are more readily absorbed, leading to beam hardening and 

contributing to radiation dose. A monochromatic x-ray beam thus reduces beam 

hardening that requires increased flux in polychromatic systems in order to obtain the 

same number of photons on the detector. Additionally, fewer photons at low energies 

would be absorbed that don’t contribute beneficially to image formation, reducing 

radiation dose and increasing image quality. The heterogeneous nature of breast tissue 

composition implies that different monochromatic energies would be optimal for 
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different breast compositions or to visualize precise features within a specific type of 

breast. Generally, McKinley et al determined that for a 50% dense breast, the optimal 

imaging energy (for attenuation contrast) is between 30 and 40keV (2006). (Johns 1987, 

Carroll 1994, Boone 1999, Kimme-Smith 1999) 

 Monochromatic, or nearly monochromatic, x-rays might allow the detection of 

minute differences in tissue linear attenuation coefficients. These values are very similar 

between normal and cancerous tissues, but are energy-dependent. If a tissue was exposed 

to two different monochromatic energies, these differences might become apparent. The 

drawback is that this would require at least two exposures. Another way to harness K-

edge imaging is to utilize contrast agents with a K-edge near the monochromatic imaging 

energy, taking advantage of increased x-ray absorption, and thus contrast. 

 Because monochromatic x-ray tube sources capable of generating sufficient flux 

for mammography are not currently available for use in the clinic, there are several 

approaches for conditioning the polychromatic x-ray beam before interaction with the 

subject. By using thick filters with a K-edge at the optimal imaging energy and an x-ray 

tube operating at the appropriate voltage, a quasi-monochromatic x-ray beam can be 

produced (Crotty 2007, McKinley 2004a, McKinley 2004b, McKinley 2006). Another 

approach is to monochromate a polychromatic x-ray beam by using perfect crystal optics 

(Chapman 1996, Chapman 1997, Chapman 2006) or using mosaic crystals (Gambaccini 

1995, Gambaccini 1996, Gambaccini 2001, Baldelli 2004, Baldelli 2005, Lawaczeck 

2005). Each type of crystal monochromator has specific advantages and disadvantages, 

such as diffraction efficiency, width of the angular acceptance window, ease of alignment, 
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and so forth. Both the thick filter and crystal monochromator approaches generate quasi-

monochromatic x-rays, but in fundamentally different ways. 

 The use of a thick filter will stop low-energy photons from a polychromatic 

source. Using a filter material with a K-edge near the optimal imaging energy will cause 

a reduction in photons above the K-edge due to photoelectric absorption. Thus, a quasi-

chromatic x-ray beam is formed surrounding the K-edge of the filter material. The energy 

of the photons incident on the filter must not be significantly higher than the K-edge of 

the filter, or a bimodal distribution of photon energies will develop. This is because an 

increasing portion of the photons have sufficient energy to penetrate the filter. 

 When a polychromatic beam strikes a perfect crystal, the beam is diffracted based 

on the d-spacing of the crystal. By changing the angle of the crystal, energy can be 

selected based on Bragg diffraction, discussed thoroughly in Chapter 8.3. Because 

crystals are never absolutely perfect, the number of angles that satisfy the Bragg 

condition occurs over a small range instead of a discrete angle. Thus, a beam diffracted 

from a monochromator crystal is inherently quasi-monochromatic. Different crystal 

materials will have different angular acceptance window widths, so in this manner, the 

level of monochromaticity could be selected. 

 An advantage of the thick filter approach is that, assuming an incident area beam, 

the beam emerging from the filter will still be an area beam. This allows for exposure of a 

larger volume of tissue, whereas perfect crystals diffract fan beams, requiring the object 

to be scanned through the beam. The thick filter design could potentially be implemented 

with existing clinical x-ray sources with little expertise required by the radiation 

technicians. However, the thick filter design has several major drawbacks. For example, 
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it is not very tunable. In order to change energy spectrum, a different filter would have to 

be used. The filter and tube spectrum would need to be closely matched.  

 A crystal monochromator system allows energy tuning by simply changing the 

angle of the crystal. However, the ability to tune the crystal system also presents a 

technical challenge not encountered with the thick filter design. Crystals are 

exceptionally sensitive to changes in direction, vibration, and thermal fluctuations. 

Alignment of the crystals might be problematic, particularly in a clinical setting.  

 Both the thick filter and crystal designs are subject to unwanted energies in the 

spectrum. For a thick filter system, unwanted energies can occur in two ways. First, for a 

continuous spectrum, a source that produces high energy photons (e.g. operating at high 

tube voltage) could create a bimodal spectrum, with some photons having enough energy 

to traverse the filter. Recall that photoelectric absorption is a probability distribution, and 

not all photons will undergo a complete absorption event, even at the K-edge. Second, the 

thick filter design requires secondary filtering because as the filter stops the photons just 

above its K-edge, characteristic x-rays will be produced. A crystal system can produce a 

spectrum containing unwanted energies because diffraction can occur on multiple planes 

of reflectivity. These additional energies would need to be removed through filtering. 

 Inducing monochromaticity through both of these approaches significantly 

decreases photon flux. Further compounding the problem, x-ray tube sources generate the 

majority of x-rays near the K-edge of the anode material, and unless the x-ray tube 

contains multiple anodes, production of x-rays away from this spectrum is inefficient. So 

even though the crystal system allows energy tunability, the efficiency of a conventional 

x-ray tube source is prohibitive. Because synchrotron sources are not clinically useful, 
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one might consider alternative tabletop monochromatic x-ray source designs instead, 

such as the terawatt laser inverse Compton scatter x-ray source (Carroll 1990, Carroll 

2002) or parametric x-radiation production when an electron beam interacts with a crystal 

(Piestrup 2001, Sones 2007). 

5.8 Computer Aided Detection 

 Approximately 67% of cancers are visible in retrospect, and only 15 to 30% of 

biopsies performed actually possess malignancy. This implies that sufficient information 

was contained in the image to lead to such a diagnosis. Digital image formats and the 

rapid evolution of sophisticated computing systems have allowed the development of 

computer aided diagnosis (CAD). Algorithms process mammographic images in an 

attempt to identify and classify regions of potential concern, with several systems 

commercially available (Yang 2007a, Kim 2006, Morton 2006, Gur 2004). A digital 

image format (through either primary digital acquisition or digitization of SFM image) 

allows the application of sophisticated computer algorithms to decipher information 

contained within an image that could be overlooked by humans, or made ambiguous by 

noise or artifacts. (Costaridou 2005, Bazzocchi 2007, Castellino 2005) 

 While CAD is highly sensitive for some cancer features, nonspecific lesion 

features and large overlap of cancerous and benign features reduce CAD specificity. 

CAD systems generally perform better for calcification detection and classification 

algorithms than for mass detection and classification algorithms (Freixenet 2008, Sakka 

2006, Brem 2005). Algorithms generally perform well at detecting potential 

abnormalities, but training the programs to classify subtle image features indicative of 

clinical findings is more difficult. Therefore, such programs have been developed as a 
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second-reader function that allows review of images after initial radiologist interpretation, 

alerting radiologists to areas which require additional review (Gromet 2008, Taylor 2008, 

Georgian-Smith 2007, Taplin 2006). One study showed that implementing CAD as a 

second opinion reduced biopsy recommendation for benign lesions while increasing 

biopsy recommendation for malignant lesions. (Costaridou 2005) 

 Essential algorithm steps include preprocessing to enhance SNR, segmentation to 

extract desired signals, and rule-based distinction between true and false signals. It is 

important that the images used with CAD are of excellent quality or the software will not 

be effective. Although most current algorithms only utilize one view, research is 

underway to allow registration between different views such that asymmetry can be 

evaluated between the left and right breast, and to monitor changes between current and 

prior mammograms (Pu 2008, Kim 2006, van Engeland 2007, Qian 2007, Zheng 2006). 

(Costaridou 2005) 

5.9 Contrast-Enhanced Mammography 

 Fast image acquisition possible with DM facilitates contrast-enhanced 

mammography (Dromain 2006, Jong 2003, Diekmann 2003, Lewin 2003). Recent studies 

have shown that contrast-enhanced mammography may be able to differentiate between 

benign and cancerous lesions as well as expose multifocality and multicentricity 

(Dromain 2006, Jong 2003, Diekmann 2003, Diekmann 2005, Diekmann 2007, Lewin 

2003, Lawaczeck 2003, Baldelli 2006). Contrast enhancement is not currently used for 

typical screening mammography but is sometimes recommended to facilitate suspicious 

lesion characterization or to determine the extent of disease. Although minimal 

compression is needed in order to decrease motion artifacts for contrast-enhanced 
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imaging protocols, strong compression should be avoided with this technique because it 

interferes with tissue perfusion.  

 Contrast-enhanced mammography typically utilizes iodine-based contrast agents 

due to their relative safety and excellent attenuation at mammography imaging energies. 

The iodine K-edge is 33.2 keV, so traditional x-ray tubes of Mo or Rh are typically 

filtered to increase the effective beam energy and take advantage of the large increase in 

photoelectric absorption above the K-edge. This filtration decreases the flux and so 

increases the required imaging time. Moreover, the increased energy decreases absorption 

contrast of tissue structures, particularly for microcalcifications. This is suboptimal for 

simultaneously detecting anatomical features, but allows better visualization of contrast 

enhancement with less obscuration from structural noise. Several molecular contrast 

agents are undergoing evaluation for mammography-specific contrast enhancement such 

as bismuth and gadolinium (Diekmann 2007, Lawaczeck 2003). Recently, Diekmann et 

al demonstrated that bismuth might outperform iodine for contrast-enhanced 

mammography (2007). An optimal mammography contrast agent should be selected to 

best match the energy spectrum used, with attention to patient safety. 

 There are two main techniques for contrast-enhanced mammography- temporal 

subtraction and dual-energy. Temporal subtraction imaging protocols for DM were 

adapted from MRI enhancement protocols. An image acquired prior to injection of the 

contrast agent bolus is subtracted from a second image acquired post-injection. With 

dual-energy mammography, images are acquired at two energies surrounding the K-edge 

of the contrast material. This is currently achieved by acquiring two images post-injection 

of a contrast agent bolus. However, sophisticated digital detectors with excellent energy 
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resolution can acquire each image simultaneously using a bimodal x-ray spectrum. 

(Diekmann 2003, Diekmann 2005, Diekmann 2007, Jong 2003, Lewin 2003) 

5.10 Summary 

 Although mammography is the dominant breast cancer screening modality, there 

are many areas where adjunctive breast imaging systems might provide increased 

diagnostic accuracy. Planar mammography is obscured by superimposed structures, and 

only acquires images based on structure as visualized by x-ray attenuation. Images based 

on the interaction of other signals such as sound, light, or magnetic relaxation with breast 

tissue can provide increased insight into normal and disease processes. Some systems can 

even harness physiologic processes present in breast cancers to generate images based on 

functional molecular processes. Thus, a battery of breast imaging technologies are 

available in the clinic, but have specific clinical indications to supplement the traditional 

mammographic imaging procedure. Recently, researchers and manufacturers alike have 

recognized the value in developing multimodal imaging platforms which might provide 

an increase in diagnostic capabilities to outweigh increased cost and imaging time.  
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CHAPTER 6: ADJUNCT CLINICAL AND PRECLINICAL  
BREAST IMAGING TECHNOLOGIES 

 
6.1 Overview 

 The sensitivity of planar mammography is often excellent, especially for breasts 

with high fat content. However, the radiographic appearances of benign and malignant 

processes are sometimes ambiguous, especially when obscured by structural noise due to 

overlying tissues and dense breast parenchyma. For example, the mammographic 

sensitivity when imaging women over the age of 65 varies between 81 and 94%. For 

younger women, under the age of 40, with typically radiographically dense breasts, the 

sensitivity of mammography is lower, between 54 and 58%.9 Moreover, low 

mammographic specificity leads to a high false-positive rate, with between six and eight 

benign lesions sampled for every 10 recommended biopsies (Meyer 1990). Additionally, 

an estimated 10 to 15% of breast cancers are mammographically occult (Meyer 1990). 

(Kopans 1992) 

 Conventional mammography requires compression and the use of lower energy x-

rays in order to generate sufficient soft tissue contrast, at the cost of increased radiation 

dose by more damaging ionizing radiation. Although mammography is the dominant 

imaging technology used for the detection and diagnosis of breast cancer, the many 

shortcomings of conventional mammography allow room for improvement through 

adjunctive imaging technologies. These technologies might offer improved detection of 

                                                 
9. Thus, the National Institutes of Health Consensus Development Panel does not recommend routine 
mammography for women aged 40 to 49 (1997). 
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small or occult lesions, increased diagnostic performance for certain lesion types or 

within dense breast tissue, enhanced evaluation of the extent of disease, or monitoring of 

the course of treatment. Moreover, these systems might offer benefits such as reduced 

radiation dose, increased patient comfort, or decreased cost.  

 A wide variety of imaging methods have been successfully applied to breast 

imaging. While planar x-ray mammography is the current clinical standard of care for 

both screening and diagnostic breast imaging, there are many other modalities used 

clinically as adjunct or complementary procedures, and many more undergoing research 

and development. This chapter discusses system capabilities, components and 

applications of several prominent breast imaging technologies that are commercially 

available or are undergoing evaluation for potential clinical utility in breast cancer 

imaging. These include ultrasound, magnetic resonance imaging, computed tomography, 

tomosynthesis, nuclear imaging, optical imaging, thermography, electrical impedance 

tomography, and various phase-sensitive modalities.  

6.2 Ultrasound 

 The technology necessary for ultrasound (US) imaging was developed 

incrementally, and was initially used for therapeutic applications. US technology was 

first applied to diagnostic medical imaging by George Ludwig in the late 1940’s. John 

Julian Wild and John Reid generated real-time images of breast tumors in 1953. Today, 

US imaging is a widely available and inexpensive medical imaging technology with 

limited side effects. (Woo 2008) 

 A transducer composed of an array of piezoelectric crystals generates sound 

waves that cause movement of molecules due to mechanical pressure waves. The US 
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wave can be reflected, absorbed, scattered, or refracted. These interactions create an 

increase or decrease in echogenicity or acoustic shadowing, detected as a change in singal 

amplitude. US can also quantify flow as a change in scatterer position, which induces 

shifts in signal frequency and phase. An ultrasound wave will travel through a material 

with characteristic velocities and impedances based on intermolecular bonds and object 

density, respectively. Table 6.1 lists the velocity and impedance properties of materials 

important to US breast imaging. (Prince 2006, Zagzebski 1996) 

    Material               Velocity           Impedance 
 
    Water        1480      1.48 
    Blood        1570      1.61 
    Fat        1450      1.38 
    Soft Tissue       1540      1.63 
    Muscle  1575-1585  1.65-1.74 
    Bone        4080  3.75-7.38 
 
TABLE 6.1: Measures of Ultrasound Transmission. The velocity (measured in m/s) 
and impedance (measured in kg/m2/s) of US propagation through various tissues varies 
greatly based on intermolecular spacing and density. While water and fat produce similar 
US signals, bone essentially blocks the ultrasound signal, creating shadowing. Because 
calcifications are typically composed of calcium and phosphorous, US can easily detect 
many calcifications within its resolution limitations. US propagation through muscle 
tissue varies depending on muscle type and orientation of muscle fibers. (Topp 2000, 
Prince 2006) 
 
 Interaction between an US wave and an object depends on object density, size, 

and ultrasound wavelength. If a smooth object is large in comparison to the wavelength, 

the wave will reflect from the object largely unchanged, except for direction of 

propagation. Reflection strength, or echo, depends on the difference in acoustic 

impedance between materials at the interface, and the angle at which the ultrasound wave 
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becomes incident with the structure.10 An exceedingly steep angle of incidence causes 

refraction of the wave instead of reflection. Refracted waves are not detected by the 

transducer and cause defocusing. If the object is small or comparable in size to the 

wavelength, the sound wave will be scattered nonuniformly, referred to as specular 

scatter. (Prince 2006, Zagzebski 1996) 

 US spatial resolution is described in axial, lateral, and elevation terms. Each is 

influenced by distinct imaging parameters and system design features. While typical 

systems operate at 5 to 10 MHz with resolution on the scale of millimeters, new high-

frequency US imaging systems, operating at 20 MHz or higher, have the potential for 

submicron resolution and are beginning to be tested in the clinic (Chao 2007b, Wratten 

2007, Teh 2000). However, two drawbacks to US for breast imaging are: suboptimal 

detection of microcalcifications due to resolution limitations, and excessive image noise. 

US noise is due to system design factors such as detector element size and spacing, noise 

from tissue structure, and speckle that is directly related to system resolution. Moreover, 

US image quality is heavily dependent on the operator, although automated breast US 

systems are under development (Richter 1997, Shipley 2005, Sinha 2007, Kotsianos-

Hermle 2009). (Bushberg 2002, Prince 2006, Zagzebski 1996) 

 US is particularly useful in evaluating lesion shape, delineating lesion edge 

characteristics, and determining whether a lesion is solid or fluid-filled. US imaging can 

also be used for real-time functional studies, such as blood flow analysis. US can image 

dense breast tissue, and it does not use ionizing radiation, and so it is safe for repeated 

imaging and for use in the breasts of young women. Breast US CAD systems are under 

                                                 
10. The formula for US reflection: R = [(z2 / z1) - √(1 – [n – 1] tan2 αi)] / [(z2 / z1) + √(1 – [n – 1] tan2 αi)], 
where z is the acoustic impedance in the medium, n = (c2 / c1)2, c is the speed of sound in the medium, and 
αi is the angle of incidence. 
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development (Drukker 2009, Yap 2008, Gruszauskas 2008, Wu 2008), with one system 

commercially available (Junlai 2009). Three-dimensional US imaging techniques have 

been developed and implemented in the clinic, potentially overcoming the limitation of 

operator-dependent image quality (von Ramm 1990, Duric 2007). However, even with 

three-dimensional imaging, US remains depth-limited, and its low spatial resolution often 

precludes the detection of microcalcifications, an important early indicator of breast 

cancer. (Bushberg 2002, Prince 2006, Zagzebski 1996) 

 Contrast-enhanced breast imaging might be valuable due to increased contrast 

agent at tumor sites due to the Enhanced Permeability and Retention (EPR) effect. US 

contrast agents are only recently becoming widely available. In order to manipulate the 

US wave, contrast agents must induce alterations in acoustic velocity or impedance. Most 

US contrast agents are microbubbles that change acoustic impedance via low-density 

insoluble perfluorocarbon gas-filled biocompatible shells. These bubbles vibrate and 

reflect the incident US wave, but are typically unstable for extended imaging periods. 

Liposomes, which are lipid bilayers containing an aqueous solution, can also manipulate 

US echogenicity. Nanoparticles are also being explored for contrast-enhanced US 

imaging (Liu 2007b, Yang 2008a). Novel nonlinear US imaging protocols such as 

harmonic, subharmonic, and pulse-inversion can be used in conjunction with contrast 

enhanced US imaging, potentially allowing for increased contrast enhancement (Forsberg 

2007). Functionalization of targeted contrast-enhanced ultrasound imaging is also being 

developed (Behm 2006, Lanza 2003, Rapoport 2007, Gao 2008, Liu 2007b). (Dawson 

1999, Dayton 2002, Cosgrove 2006, Quaia 2007, Morawski 2005) 
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 While US is commonly used as an adjunctive breast imaging modality, it is not 

currently recommended for screening the general population due to limited spatial 

resolution and low specificity that prevents detection of small lesions without 

unacceptably high false-positive rates (Berg 2008). However, US does have many 

clinical indications. US is routinely used to classify mammographic abnormalities. For 

dense breast tissue containing invasive cancer, US has increased sensitivity over 

conventional mammography (Berg 2004, Kolb 2002). US has also demonstrated 

moderate diagnostic performance in screening for axillary lymph node metastases 

(Alvarez 2006).  

 Several novel US-based imaging techniques are being developed. These 

techniques include US elastography, photoacoustic imaging, and thermoacoustic imaging. 

None of these techniques have yet demonstrated clear clinical utility for breast imaging 

and gained clinical implementation. US elastography is a real-time, semi-quantitative 

technique that measures tissue stiffness. Several clinical trials have demonstrated the 

potential utility of breast US elastography to differentiate nonpalpable benign and 

malignant lesions (Cho 2008, Itoh 2006). A recent study which enrolled 235 patients that 

had been referred for core-needle biopsy showed that US elastography was useful for 

fibroadenoma classification (Fleury 2009). Additional clinical trials demonstrated that 

breast lesion characterization was improved with the addition of tissue stiffness 

parameters (Qiu 2008, Zhi 2008).  

 Despite these initial promising results, differences in elasticity between normal 

and abnormal tissues are not fully characterized, limiting the clinical application of this 

technique. In fact, one trial with 100 patients with nonpalpable breast masses found that 
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US elastography diagnostic performance was roughly equivalent to conventional US 

(Cho 2008). Another clinical trial  of 111 patients with lesions between 5 mm and 30 mm 

found roughly equivalent diagnostic accuracy of US elastography as compared to 

conventional mammography (Itoh 2006). These results suggest that, for some patient 

populations, this new technique might not offer any improvement in lesion 

characterization over existing clinical imaging techniques. Moreover, US elastography 

requires compression similar to mammography, and compression affects elasticity 

quantification. 

 Photoacoustic tomography (PAT) imaging generates image contrast based on 

measurement of emitted wideband US after laser absorption by tissue. The absorbed laser 

energy generates heat, and thus thermoelastic expansion, with the magnitude of the 

emitted US signal based on the absorption properties of the tissue. Although some have 

speculated that this technology might be useful for breast imaging, most studies are 

restricted to phantom studies, laboratory in vivo studies, or pilot clinical trials. Several 

groups have evaluated contrast-enhanced PAT with both commercially available and 

novel contrast agents using phantom (Rajian 2009, Kim 2008a, Kim 2007d, Ku 2005), in 

vitro (Bhattacharyya 2008), and rat models (Song 2009, Song 2008). PAT might also be 

useful for evaluating the development of tumor vasculature (Lao 2008) or blood flow 

(Hoelen 1998). One group has constructed a prototype PAT breast imaging system, with 

a small pilot clinical demonstration (Manohar 2005, Vaartjes 2007, Manohar 2007, 

Manohar 2004). Large clinical trials with PAT technology have not yet been undertaken.  

 Similarly, thermoacoustic tomography (TAT) imaging generates image contrast 

based on measurement of emitted US after radio-frequency (rf) absorption by tissues. The 
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heat generated by rf absorption causes thermoelastic expansion and US emission based 

on the rf absorption properties of the tissue. TAT laboratory trials have been performed 

with tissue phantoms (Ku 2005), and breast tissue specimens (Nie 2008). One study 

imaged five patients with TAT to demonstrate the feasibility of breast tumor contrast 

enhancement (Kruger 2000). Another group has evaluated microbubbles for contrast-

enhanced TAT (Mashal 2009). Others have suggested the combination of PAT and TAT 

into a single multi-modality imaging platform (Pramanik 2008). However, substantially 

more laboratory studies are needed to establish the performance of this system, and until 

rigorous clinical trials in patients have been undertaken, the potential applications of TAT 

are tentative. 

6.3 Magnetic Resonance Imaging 

Nuclear magnetic resonance was developed by Felix Bloch and Edward Purcell in 

1946, but did not enter the clinic until the 1980’s, after development into a medical 

imaging system by Paul Lauterbur and Peter Mansfield. MRI provides information that 

can not be obtained from other clinical breast imaging modalities such as mammography 

and ultrasound. Recent advances in imaging sequences have allowed MRI to provide 

images based on either anatomy or physiology. (Hornak 2007) 

MRI depends on the nuclear magnetic resonance (NMR) properties of atomic 

nuclei. Only nuclei with odd atomic number or mass number have angular momentum 

(spin) and can thus generate an NMR signal. Most MRI imaging is of hydrogen, which is 

abundant in the human body and strongly NMR active. In general, the micromagnetic 

fields of nuclei are randomly oriented, resulting in a net magnetization of zero. When 

these nuclei are exposed to a gradient magnetic field, the spins align. Protons absorb 
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radiofrequency (rf) pulses at resonant frequencies, which causes a change in dipole 

alignment. The rf energy is re-emitted, with specialized coils detecting the frequency and 

phase in order to spatially encode the signal for tomographic reconstruction, while 

Faraday induction generates an MRI signal. (Prince 2006) 

MRI signal is determined by tissue relaxation properties (T1, T2, proton density) 

and scanner imaging protocols (pulse sequences). T1, or spin-lattice, relaxation refers to 

the recovery of magnetization after an rf excitation pulse. T2, or spin-spin, relaxation 

refers to the decay in emitted rf signal due to free induction decay, with dephasing of the 

rf signal from local microenvironment inconsistencies. There are a wide variety of pulse 

sequences allowing weighting or suppression of different signals based on tissue-specific 

relaxation and composition properties. MRI acquires a series of planar images that can be 

reconstructed into three-dimensional tomographic images, eliminating obscuration by 

overlying or dense breast tissue, thus also eliminating the need for breast compression. 

(Prince 2006)  

Typical MRI spatial resolution ranges from 25 to 100 μm. MRI spatial resolution 

is influenced by filtration, number of volume elements (voxels) used, the gradient applied, 

and the type of phase encoding used (Bushberg 2002, Prince 2006, Ikeda 2004). Sources 

of MRI noise include rf emission from the patient’s body, thermal vibrational noise 

within the patient’s body, as well as system noise such as additive electronic noise 

(Bushberg 2002, Prince 2006, Ikeda 2004). The reported sensitivity of MRI ranges from 

71 to 100%, while specificity typically only ranges from 50 to 79%, depending on patient 

population, tumor type, and imaging sequence (Bluemke 2004, DeMartini 2008, Boné 

1996, Heywang-Köbrunner 1997). This low specificity rate prevents its use as a routine 
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screening modality and does not allow MRI to contribute to biopsy rate reduction (van 

Goethem 2006).  

Improved MRI systems are being developed with stronger magnetic fields and 

high-sensitivity dedicated breast coils. CAD for MRI is also under development, with 

several commercially available systems (Behrens 2007, Penn 2006, Lehman 2006, Kurz 

2009). Although MRI offers exceptional three-dimensional structural and functional 

images, there are several disadvantages to this system. Scanners typically can not 

accommodate large patients or those with claustrophobia. The high magnetic fields 

exclude patients with certain implants, such as pacemakers. Additionally, if the MRI 

system is used as a multimodal or interventional platform, non-magnetic tools and 

equipment are required. An MRI imaging sequence requires sizeable data storage 

capacity as well as interpretation time. In general, the high cost, longer scan time, and 

lower availability hinder widespread clinical implementation of MRI.  

There are a wide variety of MRI imaging sequences that have been adapted with 

unique potential applications in breast imaging, including magnetic resonance 

spectroscopy (MRS), magnetic resonance angiography (MRA), diffusion-weighted MRI 

(DW-MRI), and magnetic resonance elastography (MRE). MRS can detect biochemical 

information about proton-containing metabolites often associated with processes active 

within cancers, i.e. proliferation (choline) and metabolism (creatine, inositol, glucose, 

alanine, lactate) (Sinha 2009, Partridge 2008). The lipid and fat content of the breast 

creates difficulties in MRS data analysis, which might be overcome with two-

dimensional MRS imaging sequences (Thomas 2005, Thomas 2001). Some have 

suggested that MRS might allow highly specific evaluation of ex-vivo fine needle 
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aspiration biopsy specimens as well as in vivo breast cancer diagnosis, with the potential 

to predict LN involvement and vascular invasion (Mountford 2004, Mountford 2009).  

Multiple clinical trials have evaluated the potential for MRS to increase 

sensitivity and specificity when this data is combined with conventional MRI (Bartella 

2006, Meisamy 2005, Katz-Brull 2002, Tse 2003, Huang 2004, Stanwell 2005, Kim 

2003). However, these trials have also raised questions about the utility of the MRS 

technology for small lesions (Tse 2003), with concern for false-negatives (Yeung 2002, 

Stanwell 2005). Preliminary data has shown the potential of MRS for ex vivo axillary LN 

evaluation for the presence of metastases, with results complementary to histopathologic 

sectioning (Yeung 2002, Sharma 2004, Seenu 2005). MRS has also demonstrated the 

potential for in vivo monitoring of therapeutic response by locally advanced breast 

cancers (Jagannathan 2001, Meisamy 2004, Kumar 2006).  

MRA is a form of contrast-enhanced MRI imaging that can be used to generate 

vascular maps and detect tumor-associated angiogenesis. Injected paramagnetic or 

superparamagnetic contrast agents are commonly used to improve tissue differentiation 

and breast cancer detection (Sinha 2009, Heywang-Köbrunner 1996, Kacl 1998, Kelcz 

1996). Common MRI contrast agents are gadolinium chelate and iron oxide, which 

possess magnetic properties that induce a net change in the local magnetic field and affect 

longitudinal (paramagnetic) or transverse (superparamagnetic) relaxation (Morawski 

2005). Although some gadolinium-based MRI contrast agents have caused adverse events 

such as kidney dysfunction (Ersoy 2007, Ledneva 2009), the agents currently used in the 

clinic are relatively safe (Bleicher 2008).  
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While both molecular and nanoparticle MRI contrast agents are used clinically, 

novel contrast agents such as quantum dots and core-shell nanoparticle composites have 

also been proposed (Santra 2005, Su 2007). Recent research has evaluated the potential 

for breast cancer targeted contrast-enhanced MRI using HER-2/neu, folate, and glucose 

(Artemov 2003, Ito 2004, Ito 2005, Wuang 2007, Wuang 2008, Sakamoto 2005, Swanson 

2008, Alric 2008, Luciani 2004). Because MRI has low sensitivity, multiple contrast 

medium molecules must be bound to each targeting agent in order to create a detectable 

increased contrast agent density at the targeted location (Morawski 2005). 

Contrast-enhanced MR imaging of the breast has gained some clinical 

implementation, but suffers from several limitations. For example, contrast agents can 

sometimes induce nephrotoxicity or an allergic reaction, the contrast-enhanced imaging 

protocol increases the imaging time (and subsequently the cost), and the complex data 

resulting from a contrast-enhanced MR imaging protocol sometimes lead to imprecise 

sizing and localization of the region of interest. Further, although contrast-enhancement 

demonstrates excellent sensitivity, the specificity varies, and contrast-enhanced MR 

imaging protocols have not been fully standardized in the clinic. (Sardanelli 2005, 

Sardanelli 2007, Macura 2006, Helbich 2000)  

The DW-MRI imaging sequence forms images of tissue structure based on 

translational motion of water and can be used to detect early cellular changes associated 

with cancer, such as alterations in membrane permeability, cell swelling, and cell lysis 

(Sinha 2002). Several clinical trials have demonstrated the potential for DW-MRI to 

provide high sensitivity and facilitate differentiation between benign and malignant breast 

lesions (Marini 2007, Guo 2002, Lo 2009, Park 2007b). The performance of DW-MRI 
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has been compared with conventional MRI, contrast-enhanced MRI, conventional 

mammography, and positron emission tomography (Park 2007b, Yoshikawa 2007, 

Komori 2007). 

MRE measures the MR signal after application of a mechanical pressure wave to 

the breast tissue, generating an image based on tissue elasticity or viscosity. Although 

this might help differentiate benign and malignant lesions, this technique yields low 

specificity since many benign processes also cause increased fibrosis and changes in 

tissue viscoelastic properties. The MRE technique has been tested in vivo, but all studies 

to date included fewer than five patients. Thus, the potential of this technique must be 

rigorously established through larger clinical trials before it can begin to find a potential 

indication for clinical use. (Xydeas 2005, Sinkus 2005, Manduca 2001, Plewes 2000) 

Conventional MRI is clinically indicated for breast cancer staging, screening for 

residual or recurrent tumor (particularly in the presence of scar tissue), therapy 

monitoring, localizing occult breast disease when distant breast cancer metastases have 

been found, and screening women at high risk for breast cancer development (Sardanelli 

2003). Some practitioners also utilize MRI for diagnostic workup to evaluate 

indeterminate mammographic or clinical findings (Patani 2008, van Goethem 2006). MRI 

may be particularly useful for detecting breast cancer in women with radiographically 

dense breasts (van Goethem 2006). As breast density increases, MRI tends to outperform 

conventional mammography (Lee 1997, Berg 2004). However, the routine use of MRI 

for staging of breast cancer might warrant further clinical studies, considering the rates of 

local recurrence after breast cancer therapy, the resolution limitations of MRI, and the 

risk of over- and under-estimation of tumor size (Morrow 2009). (Zakhireh 2008) 
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Conventional MRI is not currently used to screen the general population for breast 

cancer, but recent research indicates it might be useful for screening high risk women 

(Patani 2008, Port 2007, Saslow 2007, van Goethem 2006, Warner 2008, Lehman 2005b). 

When breast cancer has been detected, MRI not only gives an excellent indication of 

extent of disease in the affected breast, it also has demonstrated utility in detecting occult 

disease in the contralateral breast (Fischer 1999, Slanetz 2002, Liberman 2003, Lee 2003, 

Viehweg 2004, Berg 2004, Lehman 2005a, Pediconi 2007). While the many novel MRI 

imaging techniques have demonstrated promise for improved breast cancer detection and 

diagnosis, these techniques must undergo many more trials with larger populations to 

best identify their appropriate applications in the clinic. 

6.4 Computed Tomography 

Computed tomography (CT) creates a three-dimensional image from a series of 

planar x-ray images. Although this technique was theoretically realized in the early 

1900’s, it could not be practically implemented until x-ray detector technology 

dramatically improved. Godfrey Hounsfield and Allan McLeod Cormack pioneered CT 

research and development, with commercial availability of these systems in the early 

1970’s. Initial clinical studies using whole-body and dedicated contrast-enhanced breast 

CT failed due to excessive dose, low specificity, and high cost. Major improvements in 

imaging protocols, hardware design, and image processing algorithms might facilitate 

breast CT imaging applications. (Boone 2001, Boone 2006a, Boone 2006b, Glick 2007) 

Images are based on the spatial distribution of attenuation without obscuration 

due to overlying tissue structures by reconstructing many individual planar images 

acquired throughout 360 degrees. Each voxel displays the averaged sum of all intensity 
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attenuation along the path within the object, and is represented in a pixel of the two-

dimensional digital matrix. Conventional CT uses a polychromatic source, which means 

that beam hardening and the energy-dependence of μ must be taken into consideration. 

(Bushberg 2002, Podgoršak 2006, Kalendar 2005) 

Quantitative CT numbers, calculated in Hounsfield units (HU), are relative to 

water and can be calculated by the following equation:  

  CT number = (μ – μwater)/ μwater * 1000 HU    (30) 

where μ is the linear attenuation coefficient for the object being imaged and μwater is the 

linear attenuation coefficient for water. CT values typically range from -1,000 to +3,000 

HU, with soft tissue CT numbers typically between -300 and -100 HU. High CT values 

represent high ρ and high Z, which translates to high x-ray contrast. (Bushberg 2002, 

Kalendar 2005) 

For an inhomogeneous object, the distribution of μ along the x-ray’s path by a 

single projection image is unknown, but by applying Radon’s theory, μ can be 

approximated. Radon’s theory states that if infinite line integrals are known, you can 

exactly calculate the two-dimensional distribution of an object. Each projection’s 

attenuation profile is calculated by:  

    ln(I0/I)       (29) 

where I0 is the initial intensity and I is the attenuation after interaction with the object. A 

set of these attenuation profiles is referred to as a Radon transform. Image reconstruction 

implements convolution-backprojection, Fourier, algebraic reconstruction, or iterative 

reconstruction techniques. Convolution-backprojection, also called filtered back 

projection, is the most common reconstruction technique, smearing μ along the path of 
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each ray of the x-ray beam. Filtration reduces characteristic blurring and can be used to 

improve image feature visibility through reduced noise or increased edge enhancement. 

(Kalendar 2005, Bushberg 2002) 

 CT spatial resolution is approximately 0.5 mm. CT offers excellent contrast 

resolution of 0.5%, whereas conventional SFM only offers approximately 5%. CT spatial 

and contrast resolution are influenced by a variety of factors, summarized in Table 6.2. 

CT experiences similar noise and artifact sources as DM, with unique noise and artifacts 

introduced by beam hardening, cupping, partial volume effect, photon starvation, and 

inaccurate image reconstruction. A typical CT scan currently delivers a radiation dose 

between 10 and 40 mGy. Because images are acquired over 360 degrees, there is a higher 

external dose at the perimeter of the object being imaged, with a lower core dose. 

(Kalendar 2005, Bushberg 2002) 

 Because CT is an absorption-based imaging system, it most often uses the same 

iodine-based small molecule contrast agents as DM. However, because CT uses higher x-

ray energies than DM, iodinated contrast agents are not ideal. Novel nanoparticle 

(Hainfeld 2006, Cai 2007, Kim 2007c, Rabin 2006, Alric 2008), quantum dot (Santra 

2005, Daneshvar 2008), and molecular (Simon 2005a, Fu 2006) contrast agents have 

been proposed as blood-pool x-ray contrast agents, some with multimodal capabilities 

that might simultaneously provide magnetic or optical properties amenable to MRI or 

optical imaging, respectively. (Bushberg 2002, Kalendar 2005, Ikeda 2004) 

 Whole-body CT systems can be used to image breasts at the cost of higher dose, 

but several groups are currently developing dedicated low-dose breast CT systems (Shaw 

2005, Lindfors 2008, Yang 2007b, Boone 2001, Brzymialkiewicz 2005). Although low-
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dose dedicated breast CT systems have demonstrated excellent sensitivity, both low 

specificity and high dose issues remain.  

   Spatial Resolution  Contrast Resolution 
 
   Detector Pitch  X-Ray Tube Current 
   Aperture Size   Dose per Scan 
   Number of Views  Field of View 
   Number of Rays  Pixel Size 
   Focal Spot Size  Slice Thickness 
   Field of View   Patient Size 
   Pixel Size   Reconstruction Algorithm 
   Magnification 
   Slice Thickness 
   Reconstruction Algorithm 
 
TABLE 6.2: Factors Influencing CT Spatial and Contrast Resolution. 

 Breast CT is not currently recommended for breast cancer screening, but potential 

clinical indications include diagnostic follow-up to characterize ambiguous lesions, 

detection of suspected occult lesions, or determination of the extent of disease (Glick 

2007, Taira 2008). Breast CT does not require compression, which can improve patient 

comfort during image acquisition. Studies have shown that contrast-enhanced breast CT 

and MRI have roughly equivalent diagnostic accuracy for assessing the extent of 

intraductal spread of cancer (Nakahara 2002, Shimauchi 2006). Further research is 

needed to determine where dedicated breast CT fits into the spectrum of medical imaging 

systems. Limited-angle tomography, referred to as tomosynthesis, might compete for this 

role, or each of these systems might have unique applications.  

6.5 Tomosynthesis 

 Tomosynthesis is similar to computed tomography in that it generates a three-

dimensional image through reconstruction of multiple planar images, reducing structural 

noise due to overlying tissue layers. Although tomography was described in the 1930’s, 
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limited-angle tomography, termed tomosynthesis, was not described until the 1970’s 

when image processing techniques were developed to appropriately interpolate and 

reconstruct the images. Several initial studies demonstrated promising results and 

potential applications of the technology. (Maravilla 1984, deVries 1985, Sone 1991, 

Niklason 1997) 

 A polychromatic x-ray source is rotated through an arc over the object and 

detector, acquiring a series of images with multiple low-dose exposures. The object and 

detector can remain stationary or translate horizontally to increase the field of view by 

reducing x-ray loss on the detector at increasingly oblique angles. Post-processing shifts 

planar images to realign and reinforce shifted shadows of objects in each planar image.  

 Because data is acquired over an incomplete three-dimensions, the necessary 

interpolation means that tomosynthesis images have lower resolution than those acquired 

over a full three-dimensions, as with CT. Specifically, the depth resolution suffers. 

Tomosynthesis resolution was measured to be 2.41 mm in the x and y plane, with a 

resolution of 3.02 mm in the z plane (Flynn 2007). Image quality is further deteriorated 

by scatter radiation, which can not be eliminated using an anti-scatter grid because the 

angle of x-ray source changes while the detector remains stationary (Diekmann 2007). 

 Traditional iodine-based contrast agents have been evaluated for contrast-

enhanced breast tomosynthesis (Smith 2005, Park 2007a, Niklason 1997, Dobbins 2003, 

Chen 2007). Because tomosynthesis uses x-ray absorption to generate image contrast, 

commercially available and newly developed contrast agents used with DM and CT 

might also perform well with tomosynthesis. 
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 Recent phantom, ex vivo, and two small in vivo clinical trials have demonstrated 

that tomosynthesis generates images with excellent cancer visibility which might allow 

increased sensitivity (Niklason 1997, Suryanarayanan 2000, Stevens 2003, Poplack 

2007a, Andersson 2008). Although comparisons between tomosynthesis, SFM, and DM 

suggest that tomosynthesis might improve breast cancer detection and characterization, 

the clinical trials to date have selected study populations of women with an abnormal 

mammogram (Poplack 2007a, Andersson 2008). Larger studies with different 

populations should be conducted. Using 30 selected cases, one group found that image 

interpretation time increased for tomosynthesis as compared to DM, which must be 

weighed against the incompletely characterized ability to detect and diagnose (Good 

2008). Many issues remain unresolved, such as determination of the optimal scanning arc, 

dose per image, and number of projection images.  

 The potential benefits of tomosynthesis include improved lesion detection, 

characterization, lesion localization, tumor volume estimation, more effective 

determination of extent of disease, and reduced breast compression. Several groups are 

developing tomosynthesis CAD algorithms that might further enhance the detection and 

characterization of breast lesions (Chan 2005, Chan 2008, Singh 2008). Because 

tomosynthesis may deliver less radiation dose than CT imaging yet generates three-

dimensional images with versatile imaging parameters, it is potentially a valuable multi-

modality imaging platform. Sinha et al recently developed a multimodal tomosynthesis 

system that incorporates US (2007). Another group demonstrated improved image quality 

when high resolution tomosynthesis images were fused with low-resolution CT images 

(Zeng 2007). (Park 2007a) 
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6.6 Nuclear Medicine 

 Nuclear medicine involves the detection of radiation emitted from the decay of 

chemical or radioactive contrast agents injected into the patient. The first radiotracers 

were developed and used in 1923 by Georg Von Hevesy. Nuclear imaging became 

clinically available in 1958 when Hal Anger developed the gamma camera. Planar 

scintimammography (SM), and three-dimensional single photon emission computed 

tomography (SPECT) and positron emission tomography (PET) are three nuclear imaging 

techniques that have demonstrated possible utility for breast imaging applications. PET is 

referred to as positron emission mammography (PEM) when applied to breast imaging. 

(Nuclear Medicine 2003) 

 These systems acquire images based on organ physiology, metabolism, perfusion, 

or other functional processes associated with radiotracer biodistribution. Radiotracers can 

either emit γ-rays at a variety of different energies through radioactive decay, or can 

undergo positron decay. The positrons travel a short distance before annihilating with a 

free electron, generating two 511 keV γ-rays that travel in opposite directions. Breast 

imaging with nuclear medicine began with planar scintimammography (SM) using 99mTc-

labeled lipophilic cations. SPECT generates three-dimensional images through the decay 

of radionuclides such as 99mTc, 131I, 123I, 133Xe, 201Tl, 67Ga and 111In. Common PET 

isotopes include 18F, 15O, 13N, and 11C. High resolution SM has demonstrated up to 1 mm 

spatial resolution (Vincentis 2006) while SPECT has a spatial resolution of 1 to 7 cm. 

(Bushberg 2002, Ross 2005, Buck 2008) 

 PET using fluorodeoxyglucose (FDG-PET) is the most commonly used PET 

application because many cancers are strongly avid for glucose, and the FDG glucose 
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derivative is taken up readily by cells but is not easily metabolized. FDG-PET imaging is 

confounded by false-positive radiotracer uptake by muscle, inflammation, bowel and the 

urinary tract, as well as tumor-type-dependent metabolic variation and complex 

metabolic interactions. PET spatial resolution is typically between 6 and 8 mm, with 

sensitivity and specificity of PET ranging between 80 and 100% for tumors larger than 1 

cm (Adler 1993, Avril 2000). FDG-PET might be better for some subsets of breast cancer 

imaging than SM or SPECT (Buchmann 2007, Palmedo 1997). 

 Photon attenuation negatively influences image quality, which can be corrected 

by acquisition of a planar or CT transmission image. Transmission images fused with the 

nuclear imaging dataset provide attenuation correction and add anatomical information to 

the functional data. Due to the benefit in diagnostic accuracy for metastatic disease in 

breast cancer with these multimodal platforms, newly produced nuclear imaging systems 

are nearly exclusively available coupled with CT. (Bushberg 2002, Ross 2005, Buck 

2008) 

 Nuclear imaging sensitivity dramatically falls for lesions smaller than 1 cm, 

preventing these technologies from excluding the presence of cancer, and precluding their 

use as screening modalities (Avril 2000, Rosé 2002). However, nuclear imaging 

modalities might be useful as adjunct breast imaging techniques. Attachment of targeting 

ligands to the radiotracer hold promise for targeted imaging based on hormone and cell-

membrane receptor expression densities. Potential benefits of these techniques must be 

weighed against the risk associated with the use of the injected radiotracers.  

 Some clinicians utilize nuclear imaging techniques to characterize ambiguous 

mammographic findings, detect suspected occult breast lesions, or for women with dense 
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breasts that leads to poor mammographic image quality (Brem 2007, Brem 2008, 

Danielsson 2000, Buscombe 2001), but the clinical data supporting these methods is 

limited. These techniques may also be used for determining the extent of disease, such as 

identifying multifocality and multicentricity, regional metastases in axillary LNs, or even 

distant metastatic or recurrent lesions using whole-body PET (Avril 2000, Schirrmeister 

2001, Danielsson 1999, Rosé 2002, Cwikla 2000). Nuclear imaging techniques, such as 

SM, might be clinically indicated and cost-effective for screening young women with 

known breast cancer risk factors (Allen 1999). All of these applications require more 

clinical trial data before they are adopted widely. 

 Initial clinical trials have suggested that PET has high diagnostic accuracy for a 

variety of breast lesion types (Berg 2006, Levine 2003, Murthy 2000). Although PET 

does not offer an advantage in sensitivity over mammography, it may be useful to assess 

therapy response because cancer metabolic rates give an early indication of which 

patients are responding to treatment (Avril 2000, Wahl 1993, Smith 2000). While PET 

currently has greater spatial resolution than SM or SPECT, the fundamental resolution 

limitation due to positron range will not allow improved detection technologies to 

translate to improved resolution. So, although SPECT systems research is lagging behind 

PET, the tide might turn in the future as detector technologies meet and exceed 

fundamental PET resolutions. (Bénard 2005, Buscombe 2004)  

6.7 Optical Imaging 

The concept of using light to visualize breast cancers has been realized since the 

late 1920’s, when transillumination was used to observe internal breast structures (Cutler 

1929, Sickles 1984). Optical systems can measure the absorption, scatter, and even phase 
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differences of light. Optical imaging light wavelengths can range from UV through 

visible, near-infrared, and the infrared region to generate planar or three-dimensional 

images. Near infra-red (NIR) is most commonly used as it has the greatest penetrance 

through soft tissue. Technological developments and new imaging techniques such as 

Raman spectroscopy (RS), optical coherence tomography (OCT), and diffuse optical 

tomography (DOT) have only recently begun to provide sufficient data on sensitivity and 

specificity to support clinical applications. (Ntziachristos 2001) 

Raman spectroscopy gives specific information about the biochemical 

composition of breast tissue based on distinctive energy shifts in elastically scattered light 

(can use ultraviolet through infrared), but lacks structural and morphologic information. 

With carcinogenic progression, cells acquire increasingly abnormal biochemical profiles 

in addition to micro- and macro-scopic morphologic changes. For example, malignant 

cells tend to have abnormal extracellular matrices with increased collagen and elastin 

proteins; proliferative and metabolic activity results in changes in proteins such as NADH, 

FADH2, ATP, phosphocholine, phosphocreatine; and proteoglycans are released when 

malignant cells break through the basement membrane. These unique Raman spectra 

have allowed distinction between tumor and background for several ex vivo studies (Patil 

2008, Haka 2005, Bitar 2006, Chowdary 2006). One study has evaluated RS in vivo with 

9 patients undergoing partial mastectomy, demonstrating a potential decrease in positive 

surgical margins when using RS (Haka 2006). Furthermore, RS can distinguish between 

the two main types of calcifications: calcium oxalate dehydrate mainly associated with 

benign conditions and calcium hydroxyapatite commonly found in proliferative lesions 

(Stone 2008, Haka 2002). (Hanlon 2000)  
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Optical coherence tomography uses reflection of NIR pulses and interferometric 

image formation to visualize the structure of breast lesions at resolutions substantially 

greater than any currently available clinical system (Hsiung 2007). OCT is limited to 

extremely shallow imaging depths of 2 to 3 mm, but has submillimeter resolution within 

these depths (Hsiung 2007). While one group has combined the RS and OCT 

technologies into a multimodal platform and performed ex vivo imaging of  human breast 

tissue (Patil 2008), this technique will require considerably more laboratory and clinical 

trials before its potential utility in the detection and diagnosis of breast cancer can be 

established. 

Diffuse optical tomography, or diffuse optical spectroscopy for two-dimensional 

imaging, uses transmission of NIR light to provide functional information about breast 

tissue, such as tissue oxygen saturation and hemoglobin concentration (Konecky 2008, 

Durduran 2005, Ntziachristos 2001). Because changes in local vasculature and 

metabolism exist before structural changes become apparent, it is possible that such 

systems might allow earlier detection of breast cancers, and might also determine the 

benign or malignant nature of a lesion that is indeterminate on mammography, or might 

even predict response to breast cancer therapy (Xu 2007, Leff 2008, Cerussi 2007, 

Tromberg 2005, Fournier 2009).  

A recent review of the clinical studies involving over 2000 women imaged with 

DOT concluded that 85% of breast lesions were visible using DOT (Leff 2008). One 

study suggested DOT performed comparably with MRI for monitoring tumor response to 

chemotherapy (Choe 2005). However, the DOT system does not provide accurate lesion 

localization, and more clinical trials must be undertaken before its use as a breast imaging 
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modality can be established. Several groups are merging the DOT technology with other 

breast imaging platforms such as PET, MRI, and tomosynthesis (Konecky 2008, Shah 

2005, Carpenter 2007, Unlu 2008, Boverman 2007). 

All of the optical imaging techniques discussed above employ endogenous 

contrast, but could also be used with fluorescent or bioluminescent injected contrast 

agents such as indocyanine green, Nile Red, and others (Ntziachristos 2000, Licha 2000, 

Qian 2008, Weissleder 1999, Pham 2005). Fluorescent molecular contrast agents are 

stimulated by incident light, resulting in fluorescence at a different wavelength. This 

requires consideration both for how the incident light goes into tissue, but also how the 

emitted light escapes the tissue. Use of nanoparticle contrast agents such as gold or iron 

oxide that strongly absorb NIR light might facilitate breast lesion detection, especially at 

increased tissue depths (Jin 2007, Hleb 2008, Lim 2008, Rayavarapu 2007). Optical 

contrast agents can also be functionalized or targeted toward cancer (Achilefu 2000, 

Chen 2003, Qian 2008, van Tilborg 2006, Medarova 2006). Because optical imaging 

techniques can be relatively easily integrated with conventional breast imaging systems, 

multimodal contrast agents are under development (for example, contrast agents with 

both optical and magnetic properties for use with MRI). (Jin 2008, Lai 2008, Mulder 

2006, Ntziachristos 2000, Lim 2008, Bridot 2007, van Tilborg 2006, Medarova 2006, 

Bertorelle 2006).  

A potential advantage of optical imaging is its specificity even within 

mammographically dense breasts, with some systems providing exceptionally fine 

resolution, and others generating images with information about physiological processes 

and even biochemical composition. Additional advantages include the use of nonionizing 

 93



radiation, real-time image acquisition, and potentially less expensive systems. However, 

the performance of breast optical imaging with respect to skin pigmentation has not been 

evaluated. One of the major disadvantages of optical imaging is the severely limited 

tissue penetration of light in this region of the electromagnetic spectrum due to strong 

attenuation (Hawrysz 2000, Demos 2006, Hsiung 2007). This results in limited field of 

view and often requires breast compression. More accurate models of light interaction 

with tissue and better biochemical and morphological models of breast tissue are needed. 

Additionally, clinical diagnostic parameters for optical imaging have yet to be defined. 

Although there are several preclinical and clinical optical imaging systems, none are 

presently recommended for clinical breast imaging. (Hanlon 2000) 

6.8 Thermography 

 All objects with a temperature above absolute zero emit infrared radiation (IR). 

Rudimentary thermography was used to diagnose diseases by Hippocrates in 480 B.C. 

Modern clinical breast thermography was implemented in 1952 when breast cancers were 

found to have higher temperatures than the surrounding healthy tissue. Although 

thermography was approved for use by the FDA in 1982, recent advances in infrared 

scanners have only recently allowed this technology to demonstrate potential utility as a 

breast imaging system. (Amalu 2003, Kennedy 2009) 

 The temperature signatures from normal, benign, and cancerous tissues often 

differ by 1 to 2 degrees (Celsius) due to physiological differences in metabolism, cellular 

proliferation, and angiogenesis. Emitted IR can be converted into temperature by the 

Stefan-Boltzmann Law (Gore 2003). Camera technology currently allows resolution of 

temperature differences as small as 0.08ºC. Advantages of thermographic imaging 
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include no ionizing radiation exposure, no breast compression required, and breast 

density does not affect image quality. The thermographic signature may also indicate 

tumor aggressiveness (Head 1993). (Kennedy 2009) 

 Contrast-enhanced breast thermography has not been explored, but a recent report 

suggests that iron oxide nanoparticles, used clinically as MRI contrast agents, absorb 

laser light, causing an increase in temperature (Kim 2008b). Thus, contrast-enhanced 

breast thermography might be possible with a multimodal contrast agent for MRI or 

optical imaging.  

 Recent research has suggested that breast thermography might offer an imaging 

tool for young women and as an adjunct to clinical exam and mammography. Although 

breast thermography has been performed on thousands of women, many of these older 

studies suffered from a lack of standardization and limited IR camera technology. More 

recent studies involving patients with suspicious mammograms and/or clinical exams 

suggest that breast thermography may provide support for its use as an adjunct clinical 

breast imaging modality, with excellent sensitivity but very low specificity reported 

(Parisky 2003, Keyserlingk 2000, Arora 2008, Head 2000).  

 The diagnostic accuracy of breast thermography is compromised by normal 

cyclical cellular proliferation, pregnancy, benign proliferative conditions (e.g. fibrocystic 

breast disease), infection, and inflammation. Breast thermography does not provide any 

anatomic information, and does not allow accurate lesion localization, with depth-

dependent resolution on the order of centimeters (González 2007). Although 

microcalcifications are an important early indicator of breast cancer, they are not detected 

reliably with thermography. Moreover, tumors with low metabolic rates or without 
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abnormal angiogenesis can not be detected using breast thermography. Because 

angiogenesis often occurs as tumors exceed their diffusion-limited size to meet increased 

metabolic demand, breast thermography might have reduced sensitivity for small, early 

cancers. (Arora 2008, Yahara 2003, Kennedy 2009) 

6.9 Electrical Impedance Tomography 

 Electrical impedance tomography (EIT), also called electrical impedance 

mammography when applied to breast imaging, generates unique images based on the 

spatial distribution of tissue electrical properties. The first clinical electrical impedance 

imaging system was developed in 1978 for thoracic imaging (Henderson 1978). A known 

current is injected into the body surface. Ions in cells act as charge carriers, and the 

voltage is measured across multiple electrodes distributed across the skin surface. Breast 

cancer cells conduct electricity better than normal cells due to changes in cellular water 

content, amount of extracellular fluid, membrane properties, cellular orientation (e.g. 

randomly oriented cells versus sheets), and cell density (Martín 2002, Malich 2001, 

Malich 2003b). (Barber 1984, Brown 2003, Hope 2004) 

 This three-dimensional imaging technique has many advantages since it is 

noninvasive, does not involve exposure to ionizing radiation, and is inexpensive. Image 

quality is not limited by dense breast tissue and long-term monitoring is possible. 

However, EIT images do not provide sharp anatomical information, particularly for large 

lesions (Malich 2003a). Resolution is depth-limited and measurements are dependent on 

frequency and the location of the region of interest (Zhenyu 2005, Malich 2003a, Merwa 

2007). Dual- and multi-frequency systems increase the ability for tissue characterization 

(Trokhanova 2008, Halter 2008, Liu 2007c, Oh 2007, Soni 2004). Electrode design and 
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placement affects image quality, but magnetic impedance tomography is a variant of EIT 

that does not require electrode placement on skin (Merwa 2007). (Hope 2004, Brown 

2003, Prasad 2008, Cherepenin 2001). 

 Several prospective trials have evaluated EIT for breast cancer detection and 

diagnosis, demonstrating significant differences between abnormal and normal breast 

tissue with high sensitivity, but low specificity (Poplack 2007b, Stojadinovic 2006, 

Kerner 2002, Soni 2004, Malich 2001). One study demonstrated EIT results to be 

supplemental to US and MRI, facilitating classification of equivocal mammography-

detected lesions (Malich 2001). Recently, EIT has been combined with other medical 

imaging systems such as ultrasound (Steiner 2008), mammography (Kao 2007a), and 

tomosynthesis (Kim 2007a). This technology may identify women at risk for breast 

cancer development (Stojadinovic 2006). Although there are commercially available 

units, EIT is not widely used in the clinic, as further system and methodological 

improvements are warranted. (Hope 2004, Brown 2003) 

6.10 Phase-Sensitive X-Ray Imaging Methods 

 There are three well-established categories of phase-sensitive x-ray imaging 

modalities: free-space propagation, interferometry, and analyzer-based imaging. There is 

also a developing method of phase contrast imaging that uses coded apertures to capture 

phase information. Phase contrast imaging has a specific advantage in its ability to 

acquire excellent images at a range of x-ray energies. Because refraction contrast does 

not decrease nearly as rapidly as absorption with increasing x-ray energy, we expect 

phase contrast imaging to remain efficient even at high energies. In fact, Donnelly and 

Price demonstrated that the edge enhancement effect due to phase contrast only 
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minimally deteriorated with increasing energy (2002). While each has specific 

advantages and limitations, the drawback to many phase contrast imaging systems is the 

requirement for coherent, high flux x-ray sources (Wu 2005). However, recent advances 

in x-ray tube and detector technologies have allowed development of multiple preclinical 

and clinical phase contrast imaging systems which are being evaluated for a range of 

medical imaging applications. (Kotre 1999, Fitzgerald 2000, Lewis 2004)  

 X-rays that refract from an object due to phase variations will cause interference 

effects, but these systems require some distance of travel before these intensity 

modulations can be detected. Techniques that obtain phase contrast by free-space 

propagation in order to discern interference effects go by several names, including in-line 

holography, refraction-enhanced imaging, and propagation-based phase contrast imaging. 

We will refer here to this technique as the latter. Propagation-based phase contrast 

imaging has been described using Fresnel (near-field diffraction) effects by placing the 

detector relatively close to the sample, as well as Fraunhofer (far-field diffraction) effects 

where the detector is placed a large distance from the source. While Fraunhofer 

diffraction systems can truly record refraction contrast, Fresnel diffraction-based systems 

record images with contrast based on both absorption and refraction, essentially 

increasing image quality through edge enhancement. Unlike interferometry and analyzer-

based phase contrast imaging, propagation-based methods can use either monochromatic 

or polychromatic x-ray sources, and is possible using a divergent x-ray source. Planar and 

three-dimensional propagation-based phase contrast systems have been described. 

(Authier 2001, Arfelli 1998, Arfelli 2000, Snigirev 1995, Cloetens 1999, Pagot 2005, 

Peele 2005, Matsuo 2005, Gundogdu 2007, Olivo 2009) 

 98



 Because the free-space propagation method is the simplest and most stable, these 

types of systems, particularly those based on Fresnel diffraction, are the furthest along 

toward clinical translation. Several researchers have implemented propagation-based 

phase contrast imaging systems using conventional x-ray tubes, microfocus x-ray tubes, 

and synchrotrons (Snigirev 1995, Wilkins 1996, Suzuki 2002, Dreossi 2008, Zhang 

2008a, Zhang 2008c, Honda 2008, Olivo 2009). In 2005, Konica Minolta released the 

first clinical phase contrast x-ray tube mammography system based on free-space 

propagation detection of near-field diffraction (“Phase Contrast Technology” 2008, 

Tanaka 2005). This system is undergoing FDA approval trials in the U.S. at present.  

 Even though x-ray tubes can generate phase contrast imaging, coherent sources 

with exceptionally small focal spot sizes provide the best phase contrast images. This 

type of source is available at a synchrotron, and in 2006, Italy’s Elettra Synchrotron Light 

Laboratory’s Synchrotron Radiation for Medical Physics (SYRMEP) beamline 

established a phase contrast mammography project imaging live patients using free-space 

propagation phase contrast (Dreossi 2008). Although both the Konica Minolta and 

SYRMEP prototype systems are promising, they are still limited by the technical 

challenges imposed by these geometries which require specific source dimensions and 

pixel sizes in order to generate sufficient image quality (Olivo 2006). 

 Interferometry uses interference effects of x-rays to create an image based on 

phase variations induced in an incident x-ray wave by an object. After a monochromator, 

three perfect, matching crystals are aligned. The first crystal splits the incident beam. An 

object is placed in one of these two beams. A second crystal reflects both of these beams 

onto the third crystal which recombines the beam, creating image contrast based on the 
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interference effects induced by phase shifts. Several planar and three-dimensional x-ray 

interferometric imaging systems have been described in the literature (Momose 1996, 

Beckmann 1997, Weitkamp 2005, Weitkamp 2008, Pfeiffer 2006, Pfeiffer 2007, Momose 

1995). (Hart 1969) 

 The grating interferometer can be used with coherent synchrotron sources or even 

incoherent commercially available x-ray tubes (Pfeiffer 2006, Pfeiffer 2007), but requires 

at least quasi-monochromatic x-rays and has limitations with divergent sources (Olivo 

2006). Grating interferometry requires precise crystal alignment and stability, yet crystals 

are inherently sensitive to vibration and thermal variation. This technique is sensitive to 

very small phase gradients, but large phase gradients are problematic. The small field of 

view with grating interferometry is currently a significant limitation for medical imaging 

applications of this technology.  

 The grating interferometer phase contrast imaging system has been used for x-ray 

dark-field imaging (XDFI), where an image is formed based on the exclusion of 

unscattered photons (Pfeiffer 2008). Some XDFI imaging systems use Laue crystal optics 

to allow only the refracted component to contribute to image formation (Ando 2002, 

Ando 2005, Shimao 2006, Shimao 2007, Kunisada 2008), while others use multilayer 

reflector analyzers (Protopopov 2005). These XDFI systems generate images based on 

scatter contrast similar to the multiple image radiography image processing discussed in 

Section 8.5.  

 Planar and three-dimensional analyzer-based phase contrast imaging uses perfect 

crystals to manipulate an x-ray beam, extracting phase information (Ingal and 

Beliaevskaya 1995, Ingal 1998, Davis 1995, Chapman 1996, Chapman 1996, Briedis 
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2005, Dilmanian 2000). A variable number of crystals can be used to monochromate the 

x-ray beam before interacting with an analyzer crystal. The analyzer crystal diffracts the 

x-rays emerging from the object, only reflecting x-rays traveling at a very narrow range 

of angles satisfying the Bragg condition, rejecting the rest. This reflectivity profile is 

referred to as the rocking curve (described in depth in Section 8.3). As mentioned above, 

crystal optics can present limitations for clinical implementation due to vibration and 

thermal sensitivity. Optimal analyzer-based imaging requires a monochromatic, parallel-

beam source. 

 If the analyzer is aligned with the monochromator, then x-rays that fall within the 

narrow acceptance window will contribute to image formation while the rest, including 

scatter, are excluded. If the analyzer is angled slightly with respect to the monochromator, 

then x-rays that fall within the acceptance window will be reflected onto the detector with 

increased or decreased intensity, depending on the rocking curve characteristics. The 

rocking curve width defines whether a phase contrast or refractometric imaging is 

obtained (Gureyev 1997). Manipulation of the analyzer crystal angle allows recovery of 

refraction, absorption and scatter effects. X-ray dark-field breast imaging uses 

asymmetric diffraction to generate an image with contrast based on scatter (Ando 2008).  

 Recently, a coded-aperture approach to capture phase contrast has been described. 

This uses a sample mask to create an array of individual x-ray beams that do not interfere 

with each other (thus this is not an interferometric technique), that interact with the 

sample, then become incident to the detector. A separate detector mask defines sensitive 

and insensitive regions along detector pixel columns or row. By only allowing x-rays to 

illuminate the edge of the pixel, photons that would not normally be allowed to contribute 
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to image formation can be deviated by the sample into the active region, increasing signal 

intensity. Similarly, photons that would normally interact with the active region of the 

pixel can be deviated outside of the active region and reduce the signal intensity. This 

creates positive and negative intensity peaks similar to those obtained with DEI. These 

masks can be designed to facilitate the use of a divergent polychromatic conventional x-

ray tube. (Olivo 2006, Olivo 2007a, Olivo 2007b, Olivo 2007c, Olivo 2008a, Olivo 

2008b) 

 The coded aperture system can be sensitive to deviations in the vertical or 

horizontal plane, depending on the orientation of the masks along the detector rows or 

columns, respectively. A system simultaneously sensitive to deviations in both planes is 

feasible. This system has the advantage of using an area detector without the requirement 

for sample scanning. Because crystals are not used, there are not vibrational or thermal 

stability issues, but the masks must be very precisely aligned with little margin of error. 

(Olivo 2006, Olivo 2007a, Olivo 2007b, Olivo 2007c, Olivo 2008a, Olivo 2008b) 

 Olivo et al suggest that the coded aperture approach does not substantially filter 

the x-ray beam, and only requires approximately two times increased imaging time over a 

conventional system to achieve the same detector statistics. Because much of the beam is 

blocked, this system will have increased Poisson noise and decreased detection efficiency. 

The coded aperture system places restrictions on the detector pixel size. This system has 

issues with aliasing, and has only begun to be evaluated in the laboratory. Current studies 

implemented phantom imaging and one biological sample, a wasp head, imaged at only 

15 keV. When imaging objects with clinically relevant thickness, the increased level of 
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scatter and increased proportion of multiple scatter events might rapidly deteriorate edge 

contrast. (Olivo 2006, Olivo 2007a, Olivo 2007b, Olivo 2007c, Olivo 2008a, Olivo 2008b) 

 Traditional absorption-based contrast agents should also provide absorption 

contrast for phase contrast imaging that can acquire images with contrast contribution 

from absorption events. However, novel phase contrast imaging agents are not well-

researched. Zhang et al used saline perfusion to image mouse blood vasculature (2008). 

Another group used phase contrast imaging before and during displacement through high 

intensity ultrasound, calling this method an acoustic phase contrast agent (Hamilton 

2004). Furthermore, even though multimodal phase contrast imaging systems have not 

yet been developed, one group has suggested blending the propagation-based and 

analyzer-based phase contrast imaging modalities to capitalize on each systems 

advantages (Coan 2005). 

 Several groups are developing interferometric and propagation-based phase 

contrast imaging systems that implement incoherent x-ray tube sources (Pfeiffer 2006, 

Pfeiffer 2007, Tanaka 2005, Wilkins 1996, Gundogdu 2007, Honda 2008, Kotre 1999, 

Zhang 2008a, Zhang 2008c). Similarly, groups are developing incoherent-source 

analyzer-based phase contrast imaging devices, each with limited success. Several groups 

have used asymmetric crystals and were limited to imaging very thin objects at low x-ray 

energies (Davis 1995, Ingal 1995), while another group used asymmetric crystals and a 

commercially available x-ray tube operating at 30 keV to measure plastic phantom 

thicknesses (Vine 2007). Keyriläinen et al performed photon counting studies with 

phantoms using a single-crystal monochromator DEI setup with an x-ray tube source 

(Keyriläinen 2002). Wang developed a prototype DEI system using a laboratory-built 
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tungsten x-ray tube and successfully acquired phantom images, but was restricted to a 

very small field of view (Wang 2006). 

6.11 Summary 

 The low resolution of US raises questions about its use for breast cancer screening, 

although it is used extensively as an adjunct to mammography. MRI is expensive, but has 

been proven useful in the screening of high risk women and in determining extent of 

disease. The properties of the US and MRI breast imaging systems, which are used 

routinely in the clinic, are summarized in Table 6.3.  

    US                     MRI 
 
Signal   Absorption, Reflection  Magnetic Relaxation 
   of Sound 
Resolution  0.3 by 0.3 by 0.1 mm  25 to 100 μm2

Advantages  No Ionizing Radiation  No Ionizing Radiation, Many 
   Inexpensive   Imaging Protocols 
Disadvantages Poor Resolution, Requires  Expensive and Large Data Set, 
   Skilled Operator  Contraindicated for Certain Implants, 
       Requires Nonmetallic Equipment 
Compression  Some    No 
Contrast Source Anatomy   Anatomy, Physiology 
 
TABLE 6.3: Adjunct Breast Imaging Systems with Routine Clinical Implementation. 

 The current high radiation dose of CT prevents clinical use, but researchers are 

working to implement this as a low-dose imaging modality. Nuclear medicine may be 

useful as an adjunct system to detect occult or metastatic lesions, but limited clinical trial 

data, minimal anatomical detail, and the requirement for radioisotope injection prevent its 

use as a screening system. Properties of imaging systems that are available but not 

routinely implemented for breast imaging are summarized in Table 6.4.  
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           SM  SPECT       PET   CT 
 
Signal  Emission of γ-rays     Emission of γ-rays     Emission of γ-rays      Absorption of x-rays 
Resolution 1 mm2        1 – 7 cm2              2 – 8 mm2      0.5 mm2

Advantages Find Occult Cancers  Tomographic, Find    Tomographic, Find     Excellent Spatial 
  and Metastases,       Occult Cancers and    Occult Cancers and    Resolution, Excellent 
  Inexpensive       Metastases, Multi-      Metastases,       Lesion Localization 
          Isotope Imaging,         Sensitive 
          Inexpensive 
Disadvantages Requires Injection     Requires Injection       Requires Injection     High Dose, Complex 
  of Contrast Agent,     of Contrast Agent,      of Contrast Agent       Scanning Geometries, 
  Limited Resolution    Depth-Dependent       Radiation Dose           Inconsistent Data 
  and Specificity,          Attenuation, Long 
  Radiation Dose          Imaging Time, 
          Radiation Dose 
Compression No        No                No        No 
Contrast Source Physiology       Physiology               Physiology       Anatomy 
 
TABLE 6.4: Adjunct Breast Imaging Systems with Limited Clinical Implementation. 

 Tomosynthesis delivers lower radiation dose than CT, but has lower spatial 

resolution. Optical, thermographic, and electrical impedance imaging systems are not 

currently used clinically, but show promise. Preclinical breast imaging systems, which 

are only beginning to establish utility as breast imaging modalities are listed in Table 6.5, 

   Tomosynthesis        Optical           Thermography      EIT                 Phase Contrast           
 
Signal    X-Ray        Absorption,      Emission of IR       Electrical         X-Ray 
    Absorption      Reflection                    Impedance,      Refraction 
         Refraction,                     Permittivity 
         Emission 
         of Light 
Resolution 2.41x2.41x3.02      0.5 mm2             0.08°C                   Variable 50 μm2

          mm2

Advantages Excellent Spatial      Inexpensive,       Inexpensive,          Inexpensive,     Unique Contrast 
  Resolution,     No Ioinizing     No Ionizing          Sensitive,          Mechanism,  
  Excellent     Radiation,           Radiation     Multimodal  Potentially Low 
  Localization     High Resolution,      Platform  Dose 
        Multimodal 
        Platform 
Disadvantages    Ionizing Radiation   Limited Depth     Depth-     Low   Limited Clinical 
  Dose, Lower     Resolution and     Dependent      Specificity  Research, Needs 
  Resolution than        Field of View,     Resolution    High-Flux 
  CT      Better Models      X-Ray Source 
        Needed 
Compression Some      Yes      No      No   Some 
Contrast Anatomy     Anatomy,     Physiology     Physiology  Anatomy 
Source        Physiology 
 
TABLE 6.5: Preclinical Breast Imaging Systems. 
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 The adjunct and preclinical breast imaging modalities presented in this chapter 

have all undergone some level of evaluation as breast imaging systems, but widespread 

implementation in the clinic has not yet been achieved. These systems must find a niche 

in which they offer advantages over existing breast imaging technologies. The process of 

demonstrating these advantages will now be covered in Chapter 7, discussing the clinical 

translation of medical imaging technologies. 
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CHAPTER 7: TRANSLATING EMERGING TECHNOLOGIES  
INTO THE CLINIC 

 
7.1 Overview 

 Clinical trial design is an important factor in translating emerging breast imaging 

technologies into the clinic. These trials help establish for which women a system 

provides safe, accurate, and cost-effective breast cancer imaging. The following chapter 

reviews clinical utility, diagnostic accuracy, several methods for comparing medical 

imaging systems, and clinical trial design. 

 The climate of dramatically advancing technologic capabilities drives the 

improvement of existing medical imaging systems and allows novel concepts to be 

realized and developed. Even though many different imaging technologies have been 

evaluated for potential breast imaging applications, very few are actually available 

clinically, and even fewer are routinely used for the detection and diagnosis of breast 

disease. Mammography has been the staple of breast imaging clinical protocols for 

decades. Ultrasound has achieved routine use as an adjunct imaging technique. Although 

MRI has many benefits and has clearly demonstrated clinical utility, it is still not 

routinely used except within specific subsets of women. All other imaging modalities 

have not yet been subjected to sufficient study to provide appropriate evidence to justify 

clinical implementation. The fact that a system can acquire images of breast cancer does 

not necessarily mean that it will be clinically useful.  
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7.2 Diagnostic Accuracy 

 Accuracy, as it applies to breast cancer screening, describes the clinical utility of a 

modality and its freedom from error, both false positives and false negatives. Both 

quantitative accuracy and diagnostic accuracy are important. Quantitative accuracy 

describes error due to bias and imprecision. Diagnostic accuracy refers to the fraction of 

patients that are diagnosed correctly using a particular imaging system, given the errors 

and biases that are present in the system. Diagnostic accuracy of a qualitative diagnostic 

imaging system can be expressed by sensitivity/specificity, overall accuracy, likelihood 

ratio, predictive values, diagnostic odds ratios, or area under the receiver-operator 

characteristic (ROC) curve. Only the sensitivity and specificity are directly measured, 

using a contingency table as shown in Table 7.1. Other diagnostic accuracy parameters 

can be calculated from sensitivity and specificity data.  

  

Disease

Test

+

+

-

-

A B

DC
 

TABLE 7.1: Contingency Table. The contingency table values are based on the number 
of cases within the population set that meet the criteria in each column and row. The (+) 
disease column represents the presence of the disease, in this case breast cancer. The (-) 
disease column are cases within the population that do not have breast cancer. The (+) 
test row represents cases where the test system detected an abnormality, while the (-) test 
row represents cases in which the test system did not detect an abnormality. So A 
represents the true positive tests (TP), B represents the false positive tests (FP), C 
represents the false negative tests (FN) and D represents the true negative tests (TN). 
 
 Sensitivity refers to the true-positive fraction of patients who have breast cancer 

and are diagnosed with breast cancer by screening mammography. Referring to the 
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contingency table above, sensitivity is defined as A / (A + C), or (TP) / (TP + FN). 

Specificity represents the ability of the screening modality to indicate a patient as normal 

when breast cancer is not present. Specificity is calculated as D / (B + D), or  

(TN) / (TN + FP). Diagnostic accuracy is maximized by maximizing sensitivity and 

specificity, and is calculated by the formula (A + D) / (A + B + C + D), or  

(TP + TN) / (entire population). 

 In the real world, imaging features of normal and diseased conditions overlap, so 

test thresholds must be established that balance the sensitivity and specificity of a system 

for specific tasks. This threshold depends partially on the cost-benefit ratio. For example, 

identifying more regions of interest as suspicious increases the sensitivity such that more 

cancers will be detected, but decreases specificity, at the cost of potentially invasive 

follow-up procedures. This also increases the emotional and financial burden to the 

patient. When determining this threshold, both prevalence and overall health risk (short- 

and long-term) of such a lesion should be taken into consideration. Prevalence is an 

estimate of the frequency of a disease state within a specific population over a finite 

period of time, which is given by (A + C) / (A + B + C + D), or  

(TP + FN) / (entire population). 

 Positive predictive value (PPV) and negative predictive value (NPV) can also 

indicate system performance. For breast cancer screening, PPV represents the fraction of 

patients that a screening test identified as having breast cancer that actually have breast 

cancer. This is calculated by: A / (A + B), or (TP) / (TP + FP). The NPV, which is 

calculated by D / (C + D), or (TN) / (FN + TN), is the fraction of patients whose 
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screening mammography was negative for the presence of breast cancer that are actually 

disease free. Both PPV and NPV depend on the actual prevalence of breast cancer. 

 The diagnostic likelihood ratios (DLRs) are not dependent upon breast cancer 

prevalence. The positive DLR represents the probability that a suspicious finding on 

screening mammography will be found when screening patients with breast cancer, 

compared to the probability that a suspicious finding will occur for patients without 

breast cancer. This can be calculated as: [sensitivity / (1 – specificity)]. Conversely, the 

negative DLR represents the probability that a negative screening mammogram is 

obtained when imaging patients that have breast cancer, compared to the probability that 

a negative screening mammogram will be obtained for patients that have breast cancer. 

This is calculated as: [(1 – sensitivity) / specificity]. 

7.3 Receiver-Operator Characteristic Curve and Likert Analysis 

 Calculation of the area under the ROC curve (AUC) is the standard method of 

comparing medical imaging systems, and is based on the determination of true-positives 

and false-positives and includes the role of reader preference in such determinations. An 

image of a cancer that was ranked as suspicious or highly suspicious of cancer is 

typically considered a true positive. False negatives are more difficult to accurately 

determine. For example, an image that received a ranking of probably benign or lower 

but proved malignant at biopsy represents a false negative. However, false negatives are 

also accrued when the lesion is not seen at all on the test or reference images, but is later 

seen in retrospect or on follow-up imaging. This type of false negative is the most 

difficult to quantify.  
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 The ROC curve is a plot of the false-positives on the x-axis and the true positives 

on the y-axis. Similarly, a relative operating characteristic curve is constructed using the 

true positive and false positive rates. The relative ROC curve is particularly useful 

because it is insensitive to both uneven prevalence distribution and unequal error costs, 

which are common, particularly in screening studies (Fawcett 2006). Instead, it represents 

a relative measure of the tradeoff between the benefit of identifying a cancer as such and 

the cost of incorrectly identifying normal tissue as suspicious or cancerous. The ROC 

curve is generally calculated for each reader. Correlation values and inter-reader 

variability must be considered in the calculation of an averaged AUC.  

 The Likert scale uses gradations along a confidence scale to provide information 

on a range of image features. For example, readers might be asked to evaluate image 

quality of calcifications, general image quality or confidence of malignancy, ranking their 

findings on a scale which typically ranges from 5 to 7 gradations. This might allow an 

estimation of how far from truth the test system provides information to informed readers. 

Confidence rankings on a Likert scale can be compared to the reference standard to 

determine the TP and FP ratios. These values can then be plotted on an ROC curve. 

Multiple readers can rank images based on a Likert scale, which is particularly useful 

when analyzing systems that are unfamiliar to readers, as a significant amount of inter-

reader variability might exist.  

 Likert scale comparison allows more flexibility for comparison of dissimilar 

systems than ROC analysis, which requires the same model and precludes comparison 

between fundamentally distinct imaging systems. Furthermore, Likert scale analysis can 

be more general and does not necessarily require a known truth state. ROC analysis 
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requires a binary truth state (either the disease is present or it is not) determined 

independently of the test imaging system, but truth is indeterminate for some analyses. 

Additionally, the Likert scale can also be used to assess reader preferences or patient 

perceptions, when diagnostic accuracy might not necessarily be relevant (Rampaul 2004). 

Likert scale analysis is a more statistically powerful method, meaning it requires fewer 

cases and readers to demonstrate significant differences. 

7.4 Clinical Trial Design 

 A new technology must be rigorously evaluated in laboratory and clinical trials 

before being adopted for use in the clinic. Images must be acquired on the test system as 

well as on a reference system that is the clinical standard and/or identifies truth. Phantom 

imaging allows quantitative system characterization and optimization of imaging 

parameters with designed truth parameters. The typical next step is to image breast tissue 

specimens, where truth is determined through histopathologic sectioning. Imaging tissue 

specimens allows initial measurements of sensitivity and specificity with control over 

population parameters. Together, phantom and specimen imaging allows the collection of 

preliminary safety data. 

 When a system has exhibited sufficient image quality and safety in laboratory 

studies, a clinical trial must be designed. Potential imaging applications of the technology 

(screening, diagnostic imaging, assessment of extent of disease, monitoring therapy 

response) will influence study design. Trial procedures include patient eligibility criteria 

(e.g. age, race/ethnicity, mammographic density, family history, breast size, prior cancer, 

prior surgery, implant), imaging parameters (e.g. subject radiation dose, contrast 

enhancement, reference imaging system), study endpoint, associated laboratory testing 
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(e.g. biopsy, genetic testing), and criteria for data inclusion (e.g. image quality). 

Statistical procedures include study design (e.g. prospective, retrospective, blinded), 

study hypotheses, sample size estimation, randomization protocol, as well as data and 

statistical monitoring for interim and final analyses. 

 As of 2006, the FDA has promoted adaptive trial design, such that modification of 

trial and/or statistical procedures based on interim data analysis can occur while a trial is 

ongoing in order to increase the likelihood of achievement of study endpoints without 

compromising the validity of the original trial (Chow 2008, Mehta 2009). Initial pilot 

clinical trials often start with small targeted patient populations, which provide 

information on efficacy and system performance. The next step may be to compare the 

new technology to the gold standard in a head-to-head comparison by way of a 

randomized or double-blind randomized, controlled trial controlling for and possibly 

matching as many variables as possible. Expert radiologists analyze the images, ranking 

their suspicion of malignancy on a confidence scale (as used for Likert or ROC). Head-

to-head studies with competing breast imaging systems supply data for cost and 

diagnostic accuracy, and may demonstrate further where a system might fit within the 

slope of breast imaging technologies. 

7.5 Summary 

 In order to be clinically valuable, a system must demonstrate an improvement 

over the current gold standard. Ideally, an improvement would represent an increased 

ability to detect and/or diagnose breast cancer at an earlier stage, as this may lead to 

reduced morbidity and mortality. However, a system might also demonstrate 

improvement over the gold standard with respect to the risk-benefit or cost effectiveness 
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ratio, or in terms of patient quality of life. For example, while an imaging system might 

detect certain lesions with high sensitivity and specificity, it might also expose the patient 

to excessive ionizing radiation, or be insensitive to other types of lesions. Such 

demonstrations of clinical utility must be performed for every application of the imaging 

technology, such as for breast cancer screening, diagnostic and/or adjunct breast imaging, 

detection of multifocality or metastases, or tumor size quantification. 

 One must consider the population for which the system demonstrates clinical 

utility, and whether the results with this population can be generalized. Additional factors 

that should be considered in the evaluation of any new technology include the risk to 

operator health, effect on workflow capability, cost to patients (e.g. insurance 

reimbursement), requirement for a skilled operator, and cost to operate and maintain 

equipment. Every imaging system is faced with fundamental tradeoffs with respect to 

image quality, diagnostic accuracy, and cost. Diffraction-enhanced imaging is a novel x-

ray imaging system that has undergone laboratory studies to evaluate lesion visibility and 

explore potential clinical applications. The DEI system and the results of previous studies 

evaluating DEI for breast imaging applications will be discussed in the following chapter. 
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CHAPTER 8: DIFFRACTION-ENHANCED IMAGING 
 

8.1 Overview 

 Synchrotron radiation applied to mammography has demonstrated improved 

contrast and resolution due to intense, smooth, and highly collimated synchrotron x-rays 

(Burattini 1992, Burattini 1995, Johnston 1996, Margaritondo 1988). In 1980, Förster 

proposed the Schlieren method of diffractometry using synchrotron radiation, a single-

crystal collimator, and a one- or two-crystal analyzer (1980). The Schlieren method was 

modified by Chapman in 1996, renamed diffraction-enhanced imaging (DEI), and 

investigated as a breast imaging modality. DEI has traditionally utilized synchrotron 

radiation, and is capable of producing images based on the independent contrast 

mechanisms of refraction, absorption, and extinction due to unique properties of x-ray 

diffraction in perfect crystals (Davis 1995, Ingal 1995, Chapman 1997, Hasnah 2002b).  

 The following chapter presents general DEI concepts and DEI system design 

features. This is followed by a review of how the DEI system converts x-ray refraction 

into image contrast using Bragg diffraction from perfect crystals. The discussion of DEI 

image processing techniques presents the removal of analyzer-based artifacts, as well as 

post-processing techniques that generate images unique to medical imaging. This is 

followed by presentation of three-dimensional DEI using CT image acquisition and 

processing techniques.  
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8.2 Fundamentals of Diffraction-Enhanced Imaging 

 The application of DEI to breast imaging has consistently provided superior 

contrast and signal-to-noise ratio (SNR) when compared to conventional radiographic 

images (Pisano 2000, Kiss 2003, Kiss 2004, Chapman 1996, Chapman 1997, Chapman 

1998, Hasnah 2002b, Fiedler 2004, Liu 2007a, Fernández 2005, Lewis 2003). DEI has 

also demonstrated better performance than other phase contrast imaging techniques 

(Pagot 2005, Kitchen 2005).  

 The DEI system utilizes a series of two perfect crystals to make the x-ray beam 

monochromatic before interaction with the object. The beam emerging from the object 

then diffracts from a third perfect crystal, referred to as the analyzer, which directs 

refracted x-rays onto the detector. The analyzer separates the transmitted beam into 

individual images based on Bragg’s law of diffraction, rejecting all wavelengths except 

the narrow range (approximately 1 microradian) of wavelengths at its Bragg reflection 

(θB), characterized by a rocking curve.  

 The narrow width and steep sides of the rocking curve convert extremely small 

differences in refractive indices into large changes in x-ray intensity reflected onto the 

detector. Rejection of scattered x-rays traveling at angles outside the narrow acceptance 

window of the rocking curve occurs at angles appreciably smaller than those rejected by 

antiscatter grids used in conventional mammography. Although monochromaticity offers 

distinct advantages, the contrast mechanisms of refraction and extinction uniquely 

provided by diffraction from the analyzer crystal allow for increased fine detail visibility. 

(Chapman 1996, Chapman 1997, Pisano 2000, Zhong 2000, Dilmanian 2000)  
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 Soft tissue imaging is difficult because the physical and electron density of 

normal and abnormal tissues often does not vary greatly. DEI may facilitate breast tumor 

detection, classification, and characterization of growth patterns because of its extreme 

sensitivity to even exceptionally small differences in refractive indices, particularly at the 

interface between healthy tissue and the aberrant structure of cancerous lesions. Photons 

at interfaces are strongly deviated, creating a region of edge enhancement due to 

interference effects or rejection by the analyzer. These inherent edge enhancement effects 

due to interference occur without an associated increase in noise as occurs with 

computerized edge-enhancement algorithms. Thus, structures that are too small to 

produce attenuation contrast, such as thin collagen strands or thin spiculations of cancers, 

potentially produce refraction contrast with edge enhancement (Fiedler 2004).  

 At x-ray energies between 14 and 30 keV, the linear attenuation coefficient of 

breast cancers is often greater than that of the surrounding normal tissue (Johns 1987, 

Carroll 1994). Conventional mammography is restricted to low x-ray energies in order to 

obtain sufficient image contrast due to the rapid decrease in photoelectric absorption as x-

ray energy increases. These low energy x-rays are readily absorbed, contributing to 

increased dose and decreased exposure on the detector which increases the noise content 

in the images.  

 DEI imaging parameters and image quality are still under investigation. We 

previously estimated that 60 keV is likely the optimal imaging energy for DEI, whereas 

conventional mammography is limited to an energy range of between 20 and 30 keV 

(Parham 2006). Refraction events decrease much more slowly with increasing energy, 

indicating that DEI can implement higher x-ray energies where radiation dose is low, and 
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the x-rays have greater penetrance. Because refraction imaging is not restricted to low-

energy imaging, this allows a more tunable energy window.  

 Because ionizing radiation exposure carries stochastic risks of radiation-related 

diseases, exposures should remain as low as possible. Conventional attenuation contrast 

images require radiation absorption by the patient to create differential attenuation 

patterns. The typical delivered dose represents a balance between the dose required to 

visualize structures with sufficiently low Poisson noise while minimizing the risk of 

stochastic radiation damage. While the optimal dose for DEI breast imaging has yet to be 

defined, DEI inherently offers low-dose, high-contrast images. DEI resolution depends 

on which contrast mechanisms are implemented. For refraction contrast, resolution can 

reach 0.1 mm, while some have found resolution in the range of tens of nanometers with 

extinction contrast (Fernández 2005).  

8.3 DEI System Setup 

DEI has traditionally implemented a collimated, polychromatic 130 mm by 2 mm 

fan beam diverted to an imaging hutch from the bending-magnet SR source, shown in 

Figure 8.1. The x-ray beam first passes through a beryllium window, then an aluminum 

filter to reduce ozone-producing low-energy x-rays. A series of two 10 mm thick perfect 

float-zone silicon crystals were mounted on independently tunable stages allowing 

adjustment of the Bragg and azimuthal angles with 0.03 μm angular resolution. The 

crystals and stages were positioned in a continuously Helium-flushed steel tank with 

Kapton windows. This setup transforms the polychromatic SR beam into a 

monochromatic beam, with energy selection based on Bragg angle manipulation of the 

monochromator crystals. The monochromator system is on a granite block supported by 
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steel beams with vibration-reducing feet. The crystal optics are extremely sensitive to 

temperature fluctuations, which requires a warm-up period in order to reach thermal 

equilibrium. (Chapman 1996, Zhong 2000) 

  

Polychromatic 
SR X-ray 
Beam

Analyzer Crystal

Monochromator Crystals

In He flushed steel box

Sample Stage
Collimator

 
FIGURE 8.1: Synchrotron-based DEI System Configuration. An intense, collimated 
polychromatic synchrotron x-ray beam is made monochromatic by a parallel series of two 
perfect crystals, referred to as the monochromator. Manipulating the monochromator 
angle allows energy selection of the subsequent monochromatic x-ray beam. This 
monochromatic beam interacts with the object before becoming incident onto the third 
perfect crystal, referred to as the analyzer crystal. Manipulating the angle of the analyzer 
crystal allows image contrast based on either absorption or refraction, both with almost 
no scatter due to the highly efficient filtering by the analyzer (extinction). 
 
 The shutter and stage are isolated on an arm attached to a frame that is secured to 

the floor to prevent vibration. The object being imaged is then scanned through the 

collimated monochromatic x-ray beam by vertical translation of a sample stage. X-rays 

interact with the object before diffraction by the analyzer crystal. The analyzer crystal is 

identical to the monochromator crystals and aligned with matching reflectivity. The 

analyzer crystal angle can be adjusted with 0.1 μm angular resolution. The detector is 

positioned at twice the Bragg angle. 
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 Both SR sources and conventional x-ray tube sources have limited capability to 

produce high energy x-rays at high flux. X-Ray tubes are limited by heat production 

when generating high flux, high energy x-rays. The DEI system can use either indirectly 

digital photostimulable phosphor image plates or a directly digital flat-panel detector. 

Although many imaging systems are transitioning to digital detectors, this is not always a 

practical choice for low-flux systems. For low-flux applications, the use of directly digital 

detectors leads to high electronic noise, compromising image quality. In this case, image 

plates can be used, but suffer from latent image degradation as a function of time and 

light contamination. Both digital detector types must have high stopping power in order 

to efficiently detect high energy x-rays, representing a fundamental tradeoff between 

resolution and noise.  

8.4 Bragg Diffraction from Perfect Crystals and the Rocking Curve   

 Perfect crystals are made up of many planes of atoms, which form three-

dimensional unit cells. These unit cells can take on many shapes. The spacing between 

the atoms in the unit cell is referred to as the d-spacing. Each plane of atoms in the crystal 

will reflect a portion of the incident beam, so the intensity drops off with increasing 

depths within the crystal. Diffraction from perfect crystals is described by the dynamical 

theory of diffraction. Bragg’s Law explains the diffraction of x-rays from the surface of 

perfect crystals as follows: 

     nλ = 2dsin(θ)     (31) 

where n is an integer representing the order of reflection (for the [111] reflectivity, n=1; 

for the [333] reflectivity, n=3), λ is the photon wavelength, θ is the angle measured from 

the crystal plane, and d refers to the “d-spacing” of the lattice points within the crystal. 
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Crystal defects or strains placed on the crystal structure will influence diffraction patterns. 

(Cullity 1978, Authier 2001) 

 The many photons constituting a polychromatic incident x-ray beam can be 

approximated as the superimposition of multiple scalar plane waves which might 

experience interference effects. This allows the application of the transport intensity 

equation to obtain phase information from detected intensity differences. When the plane 

wave is diffracted from atoms in a perfect crystal as depicted in Figure 8.2, differences in 

path length are introduced. This leads to phase shifts equal to the difference in path length, 

and thus a change in amplitude due to constructive and destructive interference. The 

plane-spacing equation, 

        Plane Spacing = 1 / d2      (32) 

combined with the Bragg formula (Eqn. 31) allows prediction of every potential angle at 

which diffraction might occur. However, some predicted Bragg angles are forbidden and 

result in zero diffracted beam intensity. (Cullity 1978, Authier 2001, Briedis 2005). 

   
FIGURE 8.2: Perfect Crystal Diffraction. The angle of diffraction is determined by the 
size and shape of the crystal’s unit cell, characterized by d-spacing. Incident x-rays will 
diffract at the same angle when they interact with an atom in a crystal, but travel different 
distances within the crystal before such interaction. This leads to alterations in path 
length and phase with subsequent interference and the reflection of only a specific narrow 
range of wavelengths.11

                                                 
11. The figure adapted from the following sources: Authier 2001, Cullity 1978 
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 The diffracted beam is not a single energy for several reasons. First, dynamical 

theory of diffraction predicts a narrow range of angles that satisfy the Bragg diffraction 

criteria. Moreover, crystal imperfections smear the permitted Bragg angles into a narrow 

range of angles diffracted. Lastly, crystal diffraction for a particular x-ray wavelength 

will also occur at λ / 2 for the second order reflection, λ / 3 for the third order reflection, 

and so on. (Cullity 1978) 

 The analyzer rocking curve, shown in Figure 8.3, represents the reflectivity 

profile from the analyzer crystal. The peak position represents near complete reflection, 

and the slopes allow small changes in refraction angles to be converted into intensity 

changes reflected onto the detector. The rocking curve has been modeled systematically 

by Oltulu et al, and approximated as a Taylor series by Chapman et al: 

  R(θ0 + Δθz) = R(θ0) + dR/dθ (θ0) Δθz    (33) 

where R(θ0) is the rocking curve at the ½ WD position and Δθz is the vertical diffraction 

component (Oltulu 2003, Chapman 1997). The degree of intensity fluctuation due to 

refraction depends on the slope of the rocking curve, with steep rocking curve slopes 

generating the greatest refraction contrast. Factors that broaden a rocking curve and 

decrease slope include increasing x-ray wavelength, beam divergence, polychromaticity, 

non-rejected scatter radiation, and crystal reflectivity. 

 Analyzer tuning refers to manipulation of the analyzer crystal angle relative to the 

monochromator crystals. The zero rocking curve tuning angle is obtained when the 

crystals are positioned in parallel, and is called the Bragg angle, θB. The intensity 

diffracted from the analyzer IR at the low angle side (IL, -½ WD) or high angle side (IH, 

+½ WD) is as follows: 
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   IR = (dR/dθ) Δθz      (34) 

where (dR/dθ) is the gradient of the rocking curve at the respective angle and Δθz is the 

deflection angle, calculated as follows: 

   Δθz ≈ 2Δδtanθ1      (35)  

where Δδ = n1 – n2. The values of n1 and n2 represent the refractive indices of two 

materials at an interface. (Chapman 1997) 

  
FIGURE 8.3: DEI Rocking Curve.12 Reflectivity is equal to the intensity at the detector 
(I) divided by the intensity delivered to the object (I0). For perfect silicon crystals, the 
rocking curve width is typically between 1 and 10 μrads. When positioned at the ±½ WD, 
50% of incident x-rays are diffracted onto the detector. Refraction above or below the 
plane of the incident x-ray beam will cause an increase or decrease in x-ray intensity at 
the detector. Maximal reflectivity occurs at the peak of the rocking curve where image 
contrast is due to a mixture of absorption, refraction, and scatter rejection. Excellent 
scatter rejection occurs at the peak and refraction of x-rays will decrease intensity 
regardless of the direction of refraction, creating an image that appears similar to an 
absorption-based image. 
 
 Rocking curve position greatly influences the relative contribution of each 

contrast mechanism to overall image contrast. With the analyzer tuned to the peak of the 

rocking curve (WD), the incident beam is completely reflected and image contrast is 

                                                 
12. This figure adapted from the following source: Zhong 2000. 

 123



based predominantly on x-ray absorption. Any change in x-ray propagation direction 

through refraction or scatter results in decreased intensity. Benefits of imaging at the peak 

include maximal reflectivity and optimal scatter rejection (Fiedler 2004). For soft tissue, 

peak images are sharper, and possess more contrast with a wider dynamic range and 

reduced noise when compared to conventional radiographs (Lewis 2003, Kiss 2003).  

 Maximal refraction contrast is obtained at ±½ WD, approximately the full width at 

half maximum of the rocking curve, where 50% of the incident beam is reflected. 

Refraction above or below the axis of the incident x-ray beam will cause an increase or 

decrease in x-ray intensity at the detector. When positioned on the slope of the rocking 

curve, image contrast is based predominantly on refraction, but without processing will 

also include contribution from absorption and USAXS. Several different methods have 

been developed that might allow simultaneous acquisition of absorption and refraction 

DEI images, facilitating dynamic DEI imaging (Siu 2005, Hasnah 2002b). (Briedis 2005, 

Oltulu 2003, Authier 2001) 

8.5 DEI Image Processing 

 Crystal optics inevitably contain flaws that cause slight variations in diffracted 

image intensity, causing a vertical striping artifact in DEI images. Because these stripes 

represent differing photon counts across the image, the Poisson noise also varies across 

the image. These stripes are removed by an in-house image processing algorithm referred 

to as Dean flattening. This technique normalizes the beam intensity across the image but 

slightly decreases the image resolution. Because noise is a random process, it is not 

wholly normalized by the flattening.  
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8.6 Post-Processing DEI Images 

 Post-processing can be applied to sets of DEI images acquired in exactly the same 

manner except for rocking curve position, obtaining unique images such as pure 

refraction, apparent absorption, mass density, and extinction. However, these 

combinations of images suffer from increased noise since the random Poisson noise does 

not cancel out. Subtraction of the +½ WD and -½ WD images, with a normalization factor, 

provides a pure refraction image. Apparent absorption contrast images can be obtained by 

processing applied to a pair of refraction images acquired at the +½ WD and –½ WD with 

an appropriate normalization factor, calculated pixel by pixel with the following formula: 

                           IR  =            IL(dR/dθ)(θH) – IHR(θL)____   (37) 
                                               R(θL)(dR/dθ)(θH) – R(θH)(dR/dθ)(θL)   

(Chapman 1997, Lewis 2003, Dilmanian 2000). Apparent absorption images and images 

acquired at the peak of the rocking curve appear almost identical (Lewis 2003).  

 Another post-processing technique transforms the information contained in the 

DEI refraction image into an energy-independent mass density image, which appears 

very similar to absorption images and contains much of the same information. (Hasnah 

2005, Wernick 2006). A compositional image can be formed using the mass density 

image and the refraction image. This compositional image has direct relation to the 

absorption per electron of the object being imaged and might allow highly specific 

identification of tissue components (Hasnah 2007).  

 Considerable scattering occurs at diagnostic x-ray energies, becoming the 

dominant interaction as energy increases due to a rapid decrease in photoelectric 

absorption. Scatter rejection is the dominant contrast mechanism for extremely small 

objects approaching pixel-size because at this level, refraction averages out over the 
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object (Kiss 2003). Scatter images convey tissue information on a molecular level, 

allowing the interpretation of intensity changes to infer size, shape, and electron density 

of the objects imaged with the potential for excellent contrast and SNR (Johns 2002, 

Wernick 2002, Wernick 2003, Khelashvili 2006, Muehleman 2006a, Chou 2007). 

Some scatter signatures are unique to tissue type and disease state (Evans 1991, Kidane 

1999, Fernández 2005, Falzon 2006, Fernández 2008).  

 The multiple image radiography (MIR) post-processing technique uniquely 

generates images with contrast depending solely on scatter due to extinction-based 

intensity modulations, as well as producing absorption and refraction images. Similar 

post-processing techniques are referred to as generalized DEI, or extended DEI, requiring 

image acquisition at three rocking curve positions in order to generate images with 

contrast based uniquely on absorption, refraction, or scatter (Rigon 2008). (Wernick 2002, 

Wernick 2003, Khelashvili 2006, Muehleman 2006a, Chou 2007, Pagot 2003)  

8.7 DEI Computed Tomography 

 Although refraction contrast images are not as severely limited by tissue thickness 

as attenuation contrast images, overlying tissues might still decrease image quality (Gang 

2005). Post-processing applied to a series of planar DEI images acquired through 360º 

allows tomographic refraction imaging, termed DEI-CT. The DEI-CT technique provides 

excellent contrast and fine detail visibility allowing lesion visibility and localization 

(Fiedler 2004, Dilmanian 2000, Hashimoto 2006, Wang 2006a, Yuasa 2006, Yuasa 2007, 

Yuasa 2008, Huang 2007, Sun 2007, Bravin 2007, Majumdar 2004, Gao 2006). DEI-CT 

has been applied to imaging of the breast, liver, lung, eye, bone, and cartilage (Bravin 

2007, Hashimoto 2006, Majumdar 2004, Gao 2006).  
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Fiedler et al demonstrated that DEI-CT images acquired at the +½ WD had very 

high contrast, and images acquired at the peak of the rocking curve that exhibited 

increased fine detail visibility when compared to standard clinical CT (2004). In fact, 

when the analyzer crystal was removed to obtain a synchrotron-CT image using the 

synchrotron x-rays and monochromator crystals, the image produced was still improved 

over standard CT images, but the previous fine details could not be resolved (Fiedler 

2004). This reinforces the fact that although there is a substantial benefit to image quality 

by using monochromatic x-rays, the unique contrast mechanisms of refraction and 

extinction that are possible with DEI allow for increased visibility of fine details.  

The main difference between the planar DEI and DEI-CT system configuration is 

that the sample stage can rotate for DEI-CT in addition to the standard vertical translation 

used for planar DEI. Because of the nature of computed tomography, DEI-CT requires 

the use of a digital detector. Otherwise, the acquisition system is the same. So far, DEI-

CT has only been achieved with a SR source, but recent advances in x-ray tube 

technology might make DEI-CT using an x-ray tube source feasible in the future. Both 

planar DEI and DEI-CT suffer from flux limitations, a large technical challenge to the 

construction of a practical DEI-CT prototype. Several other limitations of the DEI-CT 

technology include limited field of view and excessive radiation dose. While field of 

view is not a substantial problem with planar DEI, limited field of view is much more 

important for DEI-CT, and might pose problems for imaging large regions of interest, 

such as the breast. Radiation dose delivered during DEI-CT imaging is higher than 

clinically acceptable, but dose can be significantly decreased by optimizing the detector, 

increasing the x-ray energy and decreasing the dose per slice.  
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 DEI utilizes the refractive index gradient vector, but conventional CT algorithms 

require scalar data. Refraction angles, ∆θz, are calculated using Equation 35, then used to 

create a refraction-angle sinogram. The line integration of angular deviations are shown:  

    ∆θz = ∫(∂n/∂z)(l)dl    (38) 

Because it is similar to standard CT line integrals, standard filtered back-projection (FBP) 

algorithms can then be applied to produce refraction contrast CT images. Although less 

than ideal, such direct application will preserve refraction contrast. CT has also been 

applied to the MIR technique (Rigon 2008, Brankov 2006). (Wang 2006a, Dilmanian 

2000, Fiedler 2004, Yuasa 2007, Sun 2007, Huang 2007, Yuasa 2006) 

8.8 Summary 

 Although DEI and DEI-CT have shown initial promise, much more remains to be 

evaluated before potential clinical utility can be evaluated. These systems have the major 

advantage of being able to acquire both conventional and novel images with the potential 

for radiation dose reduction. Studies should evaluate these systems in clinically relevant 

tasks evaluating such parameters as lesion detection and characterization, recall rate, and 

so on. Initially, DEI might find clinical applications for problem cases or for presurgical 

evaluation of extent of disease. The excellent contrast and fine detail visibility possible 

with the DEI refraction contrast images might allow multiple clinical applications. 

Furthermore, DEI’s many potential medical imaging applications and versatile image 

contrast mechanisms make it a potentially excellent multimodal imaging platform. 

However, identifying the appropriate clinical applications of DEI will be challenging. In 

order to supersede a system currently used clinically, DEI must prove to be less invasive, 

safer, more effective, and less expensive.  
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CHAPTER 9: DIFFRACTION-ENHANCED IMAGING APPLICATIONS 
  
9.1 Overview 

 Phase contrast imaging techniques utilize x-ray refraction, with several 

advantages over absorption-based imaging, such as sensitivity to exceptionally small 

changes in the refractive index, as well as the ability to image at higher x-ray energies 

where dose is low (Donnelly 2002). Several preclinical and clinical free-space 

propagation, interferometric, and analyzer-based phase contrast imaging systems are 

under development (Kotre 1999, Fitzgerald 2000, Lewis 2004, Snigirev 1995, Wilkins 

1996, Suzuki 2002, Dreossi 2008, Zhang 2008a, Honda 2008, Tanaka 2005). The DEI 

system generates excellent contrast over a sufficiently large field of view while delivering 

a low radiation dose. DEI has also been explored for imaging a variety of tissue types, 

such as breast, cartilage, lung, heart, liver, kidney, brain, thyroid, eye, uterus, and bone.  

9.2 Breast 

 Breast cancer is the second most common cancer among women in the United 

States, behind skin cancer (U.S. Cancer Statistics Working Group 2007). It is also the 

second most common cause of cancer death among American women, behind lung 

cancer (SEER Program 2007). Earlier cancer detection generally leads to better prognosis, 

which has motivated a variety of medical imaging systems for breast cancer screening. 

Planar x-ray mammography is currently the gold standard for breast cancer detection and 

diagnosis. However, many other clinically available imaging systems such as ultrasound, 

MRI, nuclear imaging techniques, and breast CT are sometimes recommended for 
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adjunct breast imaging. Furthermore, many novel breast imaging systems are under 

development, such as techniques that harness tissue interaction with light or electricity. 

Clinical translation of these novel breast imaging systems is typically a long process. 

Breast imaging systems are reviewed in Chapters 5 and 6. 

 Considerable DEI research has been conducted on breast tissue. Research has 

consistently demonstrated increased contrast and fine detail visibility over conventional 

absorption-based imaging systems, as well as other phase contrast imaging systems. 

Work has also shown that refraction contrast images correlate well with pathology. DEI 

breast imaging has been performed using planar and three-dimensional platforms. (Pisano 

2000, Hasnah 2002b, Hasnah 2005, Kiss 2004, Arfelli 2000, Lewis 2003, Bravin 2002, 

Bravin 2007, Fernández 2005, Fernández 2008, Liu 2007a, Keyriläinen 2005, Fiedler 

2004, Yuasa 2008, Pagot 2005, Kiss 2004, Kao 2009) 

9.3 Cartilage 

 Noninvasive cartilage imaging is an important way to assess cartilage damage due 

to injury or degenerative diseases, such as osteoarthritis. Cartilage does not possess blood 

vessels, so it can not rapidly or efficiently repair after damage or degradation. It may be 

important to identify early signs of damage or disease and intervene to prevent further 

injury. 

 Conventional x-ray imaging performs exceptionally poorly for cartilage imaging. 

With conventional x-ray imaging, cartilage is essentially invisible, so assessing damage 

or wear can only be inferred due to changes in joint spacing or processes that sometimes 

occur simultaneously in the underlying bone. Instead, US or MRI is often recommended 

to directly evaluate cartilage damage or wear (Möller 2008, Tarhan 2003). US is limited 

 130



by difficulty in resolving cartilage around joint heads (Tarhan 2003). MRI has the 

advantage of measuring cartilage volume as well as assessing important biochemical 

concentrations (Majumdar 2006, van Breuseghem 2004). Nevertheless, the diagnostic 

accuracy, widespread availability, and low cost of US indicate it as an initial cartilage 

screening modality over x-ray and MRI.  

   
FIGURE 9.1: Cartilage Imaging. Images in the first column are of a bone with healthy 
overlying cartilage. Another sample with degenerated cartilage and underlying bone are 
shown in column 2. Panels A and B were acquired with a conventional planar x-ray 
system. Panels C and D are DEI absorption images. Panels E and F are refraction-contrast 
DEI images. Reprinted with kind permission from Springer Science+Business Media: 
European Radiology, 14(8), 2004, 1440-1448, Majumdar S, Issever AS, Burghardt A, 
Lotz J, Arfelli F, Rigon L, Heitner G, Menk RK. 
 
 
   Tissue Type       Refractive Index 
 
   Cartilage      1.492 
   Bone       1.556 
   Soft Tissue  1.37 – 1.4 
 
TABLE 9.1: Refractive Indices Relevant to Cartilage Imaging. (Biwas 2002) 
 
 DEI refraction images have repeatedly demonstrated excellent cartilage soft tissue 

contrast, with fine detail visibility (Mollenhauer 2002, Muehleman 2003, Muehleman 

2004b, Muehleman 2004c, Muehleman 2006b, Li 2005, Hashimoto 2006, Majumdar 

 131



2004, Wagner 2005). Refractive indices relevant to cartilage imaging are shown in Table 

9.1. Majumdar et al demonstrated that both cartilage damage and changes in the 

underlying bone were visible simultaneously with DEI when imaging femoral 

osteoarthritis, shown above in Figure 9.1 (2004). Cartilage is visible using DEI because 

there is a measurable change in refractive indices between the cartilage, bony hard tissue, 

and soft tissue (Biwas 2002). Thus, DEI might provide high quality cartilage images at a 

lower cost than MRI without the resolution limitations of US. 

9.4 Lung 

 Diagnostic lung imaging is important for the assessment of many disease states 

such as infections or cancers. Lung cancer is a leading cause of cancer death among both 

men and women in the United States, yet is rarely detected at an early stage of disease 

(CDC 2007a). Lung cancer screening programs do not currently exist, as no diagnostic 

imaging modalities have demonstrated a clear benefit in mortality reduction (Field 2008). 

A comprehensive lung imaging system should be able to evaluate the anatomical features 

of the lung, quantify lung volume, detect nodules or lesions, measure perfusion and 

ventilation, and visualize excessive fluid in or around the lungs (pleural effusion). A 

technical challenge associated with lung imaging remains the necessity for rapid image 

acquisition (or gated imaging techniques) in order to avoid motion blur from breathing. 

 Diagnostic lung imaging is most often performed using x-ray CT imaging, 

providing information on structure, perfusion, and ventilation (Field 2008, Hoffman 2004, 

Evans 2004). Novel techniques have been developed that allow MRI to acquire lung 

images in spite of the low proton density and the air-lung tissue field inhomogeneity 

(Hoffman 2004). MRI does not deliver an ionizing radiation dose, and has better 
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volumetric imaging capability than CT (Hoffman 2004). US is excellent for diagnosing 

pleural effusion and can be used to detect some lung lesions (Diacon 2005, Tsai 2003, 

Evans 2004). PET has been evaluated for lung cancer detection, but low resolution does 

not allow the exclusion of the presence of disease (Heron 2008, Evans 2004).  

 Initial studies of DEI lung imaging have been performed in mice and rabbits, 

demonstrating substantially better anatomic detail than possible with planar x-ray 

imaging, shown in Figure 9.2 (Lewis 2003, Yagi 1999, Kitchen 2005). Refractive indices 

relevant to lung imaging are listed in Table 9.2. DEI might offer excellent anatomical 

information of the lung, with simple detection of effusion due to the large differences in 

refractive indices between air-filled and fluid-filled tissues.      

   

FIGURE 9.2: Lung Imaging. Panels A and C show conventional absorption-contrast 
image of a rabbit lung acquired along the lateral and anteroposterior views, respectively. 
Panels B and D depict dose-matched images of the same lung acquired using DEI at the 
peak of the rocking curve. Reprinted with kind permission from the Elsevier: Nucl Instr 
Meth Sec A, in press, Connor D, Zhong Z, Dilmanian A, Pisano E. Ultra low dose in 
vivo rabbit lung imaging using diffraction-enhanced imaging. Nucl Instr Meth Sec A in 
press.  
 
 
 
 
 

 133



 
              Material               Refractive Index 
 
   Air       1.00 
   Water       1.33 
   Soft Tissue  1.37 – 1.4 
 
TABLE 9.2: Refractive Indices Relevant to Lung Imaging. (Biwas 2002) 
 
9.5 Heart 

 Heart disease is the leading cause of death in America (CDC 2008). There are a 

wide range of structural and functional defects from congenital or acquired disease 

processes. In order to diagnose heart conditions, it is often important to visualize both 

anatomy and perfusion. Earlier detection of the signs of heart disease in asymptomatic 

patients may save lives and reduce morbidity. Heart imaging is technically challenging 

due to tissue movement. Time gating during image acquisition can reduce motion blur, 

but irregular heartbeats or palpitations can still cause artifacts. 

 A simple planar chest x-ray is often used as a rapid, inexpensive method of 

screening for heart problems. Angiography using planar fluoroscopic x-ray imaging is 

another common clinical heart imaging procedure. However, angiography is an invasive 

procedure requiring the placement of a catheter to inject contrast agents. CT can acquire 

cardiac images with high sensitivity and specificity while quantifying coronary 

calcifications and evaluating plaque morphology. SPECT can be used for cardiac imaging 

(Buck 2008, Henneman 2007). PET imaging has also demonstrated utility in identifying 

areas of damaged heart tissue (Gropler 2004, Di Carli 2007). These nuclear imaging 

systems are highly sensitive, but not very specific. When interfaced with CT, the 

combination of anatomic and functional information leads to excellent diagnostic 

accuracy. (Petretta 2008, Chen 1997) 

 134



  Echocardiography uses US to offer an inexpensive real-time cardiac imaging 

system. US can assess the velocity of blood flow and cardiac tissue using Doppler 

imaging, and can also determine perfusion using contrast agents (Villanueva 2008). 

Cardiac MRI has been evaluated, but many technical challenges restrict its widespread 

use in the clinic (Jerosch-Herold 2008, Carlsson 2008). The timing and pattern of the 

heart’s electrical impulses are routinely measured through cardiac electrophysiology 

(Fogoros 2006). These systems typically output a graph instead of a traditional image, but 

important information about heart automaticity, conduction velocity, and refractory 

periods can be determined. (Petretta 2008, Chen 1997)  

 DEI images of an ex-vivo mouse heart, shown in Figure 9.3, demonstrated 

increased contrast and sharpness over a comparable conventional image (Lewis 2003). 

However, technical limitations of DEI do not currently allow image acquisition at a high 

enough rate of speed to avoid motion blur due to heart movements. If these time 

limitations could be overcome, the excellent anatomical information provided by DEI 

might be accentuated by valuable information about calcification and atherosclerotic 

plaque morphology and stability.  

   
FIGURE 9.3: Heart Imaging.  Panel A shows a conventional radiographic imaging of 
an ex-vivo mouse heart. Panels B and C depict DEI images with contrast based on 
absorption and refraction, respectively. Reprinted with kind permission from the British 
Institute of Radiology: Br J Radiol, 76(95), 2003, 301-308, Lewis RA, Hall CJ, Hufton 
AP, Evans S, Menk RH, Arfelli F, Rigon L, Tromba G, Dance DR, Ellis IO, Evans A, 
Jacobs E, Pinder SE, Rogers KD.  
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              Material               Refractive Index 
 
   Air        1.50 
   Water       1.431 
   Soft Tissue  1.37 – 1.4 
 
TABLE 9.3: Refractive Indices Relevant to Heart Imaging. (Biwas 2002) 
 
9.6 Liver 

 The liver is a vital organ that provides filtration and plays a large role in 

metabolism. Chronic liver disease is the 12th leading cause of death among Americans 

(Kung 2008). Liver imaging predominantly looks for evidence of injury or disease 

processes, such as cirrhosis or cancer. 

 US imaging of abdominal organs is an inexpensive way to assess liver disease, 

but has limited spatial resolution. Contrast-enhanced liver US is the most common first 

method of liver imaging. MRI can generate excellent liver images, with better contrast 

resolution than US (van den Bos 2008, Cantwell 2008, Taouli 2004). However, use of 

contrast agents might be dangerous for patients with compromised liver function. Liver 

elastography is a unique imaging technique that can be used with both US and MRI, 

which might facilitate the diagnosis of fibrosis (Nguyen-Kac 2006, Castera 2008, Huwart 

2008a, Huwart 2008b, Venkatesh 2008). CT can rapidly provide excellent anatomical 

information. Nuclear imaging has shown utility for detecting liver cancers, but suffers 

from low resolution (Cantwell 2008). 

 Refraction contrast might provide excellent detection of liver injury or disease. 

Fatty or fibrotic liver tissue might appear very different due to differences in refractive 

index. Moreover, many diseases cause retention of materials, such as iron or copper, in 

the liver. These might provide a natural contrast agent that would influence the refractive 
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indices of the liver. Initial DEI liver imaging showed increased structural detail over 

conventional imaging, shown in Figure 9.4. Refractive indices relevant to cardiac 

imaging are listed in Table 9.4. 

    
FIGURE 9.4: Liver Imaging. Panel A shows a conventional absorption-contrast image 
of an ex-vivo mouse liver. Panel B and C represent DEI absorption and refraction 
contrast images, respectively. Reprinted with kind permission from the British Institute of 
Radiology: Br J Radiol, 76(95), 2003, 301-308, Lewis RA, Hall CJ, Hufton AP, Evans S, 
Menk RH, Arfelli F, Rigon L, Tromba G, Dance DR, Ellis IO, Evans A, Jacobs E, Pinder 
SE, Rogers KD.  
 
 
              Material               Refractive Index 
 
   Air        1.45 
   Soft Tissue  1.37 – 1.4 
 
TABLE 9.4: Refractive Indices Relevant to Liver Imaging. (Biwas 2002)  
 
9.7 Kidney 

 The kidney does not regenerate rapidly, so damage or loss of function may lead to 

morbidity or death. Recent estimates found that 7.69% of the adult United States 

population suffer from chronic kidney disease (Coresh 2007). Kidney imaging attempts 

to detect damage due to trauma or disease processes such as kidney stones or cancer 

(Herts 2003). 

 Planar and CT x-ray imaging are commonly used to evaluate the liver, sometimes 

with the use of contrast agents. The gold standard for kidney cancer imaging is CT. 

Abdominal ultrasound is an inexpensive, rapid method of evaluating the kidney without a 
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radiation dose. MRI is also free from ionizing radiation exposure, and provides excellent 

soft tissue visualization, but is expensive. X-ray and MR angiography can demonstrate 

renal vasculature. FDG-PET only has modest affinity for kidney cancers. (Guermazi 

2006) 

 Only one published set of DEI kidney images was found, and extensive imaging 

of the kidneys using refraction contrast has not yet been performed (Gang 2005). The 

refractive index of kidney is approximately 1.4 (Biwas 2002). Because of limited 

research, the utility of DEI for kidney imaging is yet to be determined.  

9.8 Brain 

 The brain is an integral organ essential for the normal function of every other 

organ and system in the body. Injury and disease can be devastating or deadly. 

Approximately 1.4 million people in the United States suffer traumatic brain injury 

annually (CDC 2007b). It is important for a brain imaging system to be able to detect 

minute changes in both structure and function.  

 MRI provides superb soft tissue contrast of the brain and can provide excellent 

insight into functional performance of the brain soft tissue, but has many 

contraindications due to the strong magnetic field, lower spatial resolution, and less 

sensitivity for calcifications. CT has excellent spatial resolution and performs well for 

calcification detection. CT does not have clinical contraindications like MRI, but does 

suffer from bony artifacts that might interfere with image interpretation. A full CT scan 

can be acquired much faster than MRI, which reduces motion artifacts. PET and SPECT 

have demonstrated excellent brain physiologic and functional imaging. When interfaced 

with CT, image registration allows simultaneous analysis of fine anatomical detail, as 
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well as functional information. Electroencephalography measures oscillations in electric 

potentials in the brain in order to assess brain function, but is nonspecific and should only 

be used to confirm diagnoses obtained through independent clinical tests (Nunez 2006). 

(Fowler 2003, Mazziotta 1992) 

 Recently, several groups have used DEI to evaluate brain tissue (Hönnicke 2005, 

Mannan 2005, Connor 2008, Connor 2009). Because gray matter and white matter have 

different refractive indices (1.395 and 1.467, respectively), DEI might provide good 

anatomical images of the brain (Biwas 2002). Connor et al explored the utility of DEI for 

imaging Alzheimer’s plaques (2008). However, because of limited research, the utility of 

DEI for brain imaging is not yet clear.  

9.9 Thyroid 

 The thyroid is an endocrine gland important for the maintenance of metabolism 

and many bodily functions. Improper thyroid function can negatively influence 

cardiovascular health. Although thyroid disease prevalence is difficult to quantify, a 

recent study found that 9.5% of the studied population had abnormal thyroid hormone 

levels (Canaris 2000). Due to location in the anterior aspect of the neck, the thyroid is 

relatively simple to image with a variety of imaging modalities. 

 US offers a rapid and inexpensive method to screen for thyroid disease (Desser 

2008). Nuclear imaging uses iodine-based radiopharmaceuticals to provide a simple 

method of thyroid imaging due to rapid uptake of iodine by the thyroid (Griggs 2008, 

Nanni 2006). While nuclear medicine has proven useful in identifying certain types of 

diseases, its performance as a thyroid cancer diagnostic tool is limited due to a high rate 

of false positives (Lansford 2006). Tomographic imaging techniques, such as CT and 
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MRI, are typically only indicated when part of the thyroid is situated below the sternum 

where ultrasound evaluation is not possible, or when cancer is highly suspected (Loevner 

2008, Lansford 2006). 

 One report exists in the literature detailing DEI of ex-vivo thinly sliced thyroid 

glandular tissue, demonstrating excellent nodular morphology visualization (Rocha 2005). 

Although no published report of the refractive index of thyroid tissue was found, it is 

likely very similar to the general refractive index of soft tissue. Nodules of abnormal 

tissue might be readily visible against the normal tissue background. Despite the 

promising initial images, conclusions on the utility of DEI for thyroid imaging must be 

conservative due to the limited research to date.  

9.10 Eye 

 Diagnostic eye imaging is performed to assess a variety of diseases of the eye, 

including cataracts, glaucoma and choroidal tumors. Ophthalmology has a wide range of 

medical imaging tools with which to assess eye structure and function. Many imaging 

systems have demonstrated utility in the diagnosis of injury and disease, including CT, 

MRI, US, various microscopy techniques, OCT, and infrared thermography (Lee 2004, 

Conneely 2008, Purslow 2005, Galassi 2007, Hoh 2000, Mazziotta 1992, Masters 1990).  

 Ex vivo DEI imaging has demonstrated excellent visualization of eye anatomy, 

shown in Figure 9.5. It is difficult to postulate where DEI would offer a clear advantage 

in diagnostic accuracy within a field with such advanced and accurate techniques, 

especially given the limited research conducted entirely ex vivo (Kelly 2007, Yin 2005, 

Gao 2006). 
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FIGURE 9.5: Eye Imaging. Conventional x-ray imaging of a pig eye is shown in Panel 
A. Panel B and C show DEI absorption and refraction images, respectively. Reprinted 
with kind permission from the Canadian Opthalmological Society: Can J Ophthalmol, 
42(5), 2007, 731-733, Kelly ME, Coupal DJ, Beavis RC, Schultke E, Romanchuk K, 
Juurlink BH, Zhong Z, Chapman LD. 
 
9.11 Uterus 

 The uterus is an essential organ in the female reproductive system. It is generally 

held that ionizing radiation exposure to human reproductive organs should be minimized 

as much as possible. Therefore, high-dose imaging systems such as CT are not clinically 

indicated (Ueda 1999, Hricak 2007). US does not deliver an ionizing radiation dose, is 

inexpensive, and does not require contrast agents, and so is the most common screening 

tool for uterine lesions (Ueda 1999, Hricak 2007). While MRI can provide excellent 

images, it is typically only used for cancer staging due to high cost and limited 

availability (Ueda 1999, Hricak 2007). One group demonstrated that DEI might allow 

improved detection of uterine lesions (Liu 2005). Further research is required before the 

utility of DEI as a uterine imaging modality can be evaluated. However, because DEI 

delivers a radiation dose, albeit small, it is unlikely that DEI would be clinically indicated 

when non-ionizing systems are readily available and offer sufficient diagnostic accuracy. 
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9.12 Bone 

 Bone imaging is often performed to evaluate injury, infection, and to assess bone 

microstructure for the diagnosis of degenerative diseases, treatment monitoring, and 

screening for the presence of cancer. Fracture is the most common result of bone disease, 

with 1.5 million Americans suffering from bone disease-related fracture annually (U.S. 

Department of Health and Human Services 2004). 

 Planar x-ray imaging is the most commonly used system to evaluate bone injury. 

Dual-energy x-ray absorptiometry is the clinical standard for assessment of bone density. 

Bone is highly attenuating, producing beam hardening artifacts, and is difficult to 

optimize for imaging other tissue types simultaneously. Although these hardening effects 

are incorrectable and quite pronounced using CT, a substantial amount of research is 

dedicated to evaluation of microCT for imaging bone microstructures (Genant 2008, 

Kalpakcioglu 2008, Kinney 1995, Laib 1999, Patel 2003, Boutroy 2005). MRI can also 

be used to view bone structure (Majumdar 1998). Nuclear imaging techniques can use 

radiopharmaceuticals targeted to bone to evaluate the presence of infection, trauma, or 

cancers (Grant 2008, Nadel 2007, Bridges 2007, Horger 2006, Prandini 2006). 

 DEI of bone has demonstrated detailed structure of bone, and has been shown to 

be particularly useful in evaluating the integrity and stability of metal implants, with 

excellent visualization of bone-implant interfaces (Wernick 2003, Muehleman 2004a, 

Muehleman 2006b, Kelly 2006, Connor 2005b, Connor 2006, Wagner 2006, Lewis 2003). 

Fine detail visible in the DEI images acquired of a rat spinal column demonstrates 

potential utility for evaluating degenerative bone conditions or post-treatment follow-up 

for procedures such as spinal fusion surgery (Kelly 2006).  
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9.13 Summary 

 As demonstrated by the growing body of research on biomedical applications of 

DEI, it is clear that there might be a place for this technology among the barrage of 

medical imaging systems currently used for clinical diagnosis. Furthermore, DEI might 

have applications in biology and ecology, as it has demonstrated excellent images of 

plants (Kao 2007b, Young 2007). As the technology develops, it is likely that some of 

these applications will not demonstrate sufficient diagnostic accuracy and performance to 

displace other currently available systems. Nonetheless, the excellent fine structure 

visibility afforded by DEI could mean that DEI might offer substantial benefits for 

specific applications of medical imaging. Clinical applications of DEI are explored in the 

following chapters, presenting the results from original experiements. 
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CHAPTER 10: FEASIBILITY OF CONTRAST-ENHANCED DIFFRACTION-
ENHANCED IMAGING 

 
10.1 Overview 

 This chapter discusses the feasibility of a contrast-enhanced DEI imaging protocol. 

First, we provide the motivation for the project and discuss potential contrast agents for 

DEI. Then, the hypothesis and goals of the project are discussed before a thorough 

description of the research methods and results for each contrast agent tested. Materials 

were prepared or used according to manufacturer instructions unless otherwise indicated. 

All experiments were performed with institutional approval as necessary. Finally, 

considerations for future studies are discussed, such as the mechanism for identifying an 

optimal DEI contrast agent. 

10.2 Motivation for Exploring Contrast-Enhanced DEI  

 Due to the diffusion limit of oxygen in tissue, tumor growth beyond 1-2 mm is 

often associated with the development of a new blood vessel network to supply the tumor 

(Folkman 1971). This process, called angiogenesis, often results in a network of tortuous, 

abnormal tumor-associated vasculature, which is often related to tumor growth and 

metastatic potential (Schneider 2005). However, angiogenesis is not exclusive to cancer. 

Benign proliferative lesions can also demonstrate hypervascularity due to increased 

metabolic demands, with increased vascularity proportional to the pathologic severity of 

the lesion (Heffelfinger 1996). Methods to image the microvasculature and blood 

perfusion associated with suspect lesions have demonstrated significant diagnostic 
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potential with modalities such as ultrasound, computed tomography, and magnetic 

resonance imaging (Charnley 2009). 

 Contrast media with a particle size below approximately 400 nm undergo passive 

targeting in the presence of a tumor due to the Enhanced Permeation and Retention (EPR) 

effect. Extravasation normally depends on vessel surface area, pressure gradients, the 

metabolic microenvironment, and active transport (Jain 2001). This process is highly 

restricted in normal vasculature, but aberrant tumor vasculature lacks smooth muscle and 

possesses intermittent basement membrane structure with large inter-endothelial 

junctions, leading to “leaky” blood vessels (Jain 2001, Greish 2007, Jain 2007). Due to 

restrictions by normal venous vasculature, contrast agents do not re-enter circulation 

easily, and so are not cleared efficiently from the tumor site (Greish 2007). Together, 

these factors allow accumulation of contrast media at the tumor site. 

 However, only limited reports of Contrast-Enhanced DEI (CE-DEI) have been 

reported in the literature to date. One group attempted to use gold nanoparticles to 

enhance contrast when imaging mouse brain tissue, but were unsuccessful (Mannan 

2005). Another group reported a preliminary study using microbubbles (Arfelli 2003). 

Materials with high electron density (i.e. atomic number) and physical density might 

generate refraction and absorption contrast when interfaced with low electron density and 

low density materials, such as fat or soft tissue. Contrast agents that cause x-ray 

scattering might generate extinction contrast. 

10.3 Potential DEI Contrast Agents 

 The body is composed mostly of water, and the differences in density and atomic 

number do not vary greatly between types of soft tissue. The electron density (i.e. atomic 
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number) influences refraction contrast, while physical density is the source of absorption 

contrast. K-edge values represent the x-ray energy, measured in keV, at which absorption 

contrast (and to a lesser extent refraction contrast) experience brief spikes due to electron 

binding energies in a particular shell.  

 Iodine (Diekmann 2003, Dromain 2006, Jong 2003, Lewin 2003), ferric oxide 

(Yang 2008a, Yang 2009, Chen 2009, Harada 2007, Duquet 2006, Artemov 2003), and 

gadolinium (Strunk 2004, Thomsen 2002, Rieger 2002) are clinically used intravenous 

contrast agents. The most prevalent x-ray contrast agents are iodine-based, and are 

primarily used in the blood pool. However, contrast agents of many other materials are 

used clinically, with many more under investigation for clinical implementation. The 

properties of potential DEI contrast agents are listed in Table 10.1. 

     Atomic Number Density electrons/volume K-edge 
   (Zeff)    (g/ml) 
 
  Iodine   53    4.93        2.34 x 1028  33.17 
  Iron    26    7.86        8.48 x 1028   7.11  
  Gadolinium   64    7.90        3.03 x 1028  50.24 
  Bismuth   83    9.78        2.82 x 1028  90.53 
  Gold    79   19.30        5.90 x 1028  80.72 
  Silver    47   10.49        5.86 x 1028  25.51 
  Platinum   78   21.45        6.62 x 1028  78.39 
  Tungsten   74   19.25        6.31 x 1028  69.53 
 
TABLE 10.1: Physical Properties of Potential X-Ray Contrast Agents.  
 
 The iodine K-edge is close to typical mammographic imaging energies, allowing 

an increase in image contrast due to the photoelectric effect. Iron oxide nanoparticles are 

used clinically as MRI contrast agents. The use of iron oxide nanoparticles as a breast 

imaging contrast agent has not been reported, possibly because the K-edge of iron is well 

below typical mammographic imaging energies.  
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 Gadolinium chelate-based contrast agents are used clinically for MRI contrast 

enhancement. Recent studies have suggested that gadolinium contrast agents might have 

applications in x-ray imaging (Strunk 2004, Thomsen 2002, Rieger 2002, Albrecht 2000, 

Sandborg 1995). Gadolinium chelate does not have regulatory approval for non-MRI 

contrast enhancement, and has only demonstrated diagnostic-quality radiographic 

imaging for arterial enhancement (Strunk 2004). Abdominal organ contrast was not 

diagnostic quality, and no studies of gadolinium-enhanced breast x-ray imaging have 

been reported in the literature (Strunk 2004). 

 Iodine-, iron-, and gadolinium-based contrast agents are used clinically. 

Additional contrast agents such as bismuth, gold, silver, platinum, and tungsten have 

been suggested as x-ray contrast agents. Bismuth, once used regularly as an x-ray 

contrast agent, is now being revisited (Rabin 2006, Yu 1999, Sandborg 1995). Gold has 

demonstrated promise in initial laboratory-based phantom and in vivo studies, suggesting 

potential utility as an x-ray contrast agent, even though the toxicity issues associated with 

gold nanoparticle injection still require substantially more investigation (Hainfeld 2006, 

Cai 2007, Kim 2007c, Jackson 2009, Park 2007c, Geso 2007, Park 2006, Kattumuri 

2007). While colloidal silver and silver salts have been studied as x-ray contrast agents, 

issues with cytotoxicity currently prevent their use in the clinic (Yu 1999). Platinum 

(Figuerola 2008, Breskin 2004) and tungsten (Yu 1999) have also been suggested as 

potential x-ray contrast agents, but limited data exists on their safety and efficacy.  

 Gases have been used as contrast agents for x-ray through CO2 injection (Heye 

2006, Chao 2007a, Shaw 2006), and for contrast-enhanced ultrasound through 

microbubble injection (Kedar 1996, Albrecht 1998, Reinikainen 2002, Alamo 2001, 
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Cassano 2006, Jiang 2007, van Esser 2007, Liu 2008, Balleyguier 2009). Initial clinical 

contrast-enhanced ultrasound studies of the breast were disappointing (Kedar 1996, 

Albrecht 1998). Improved ultrasound hardware and software technology, more advanced 

microbubble formulations, and optimized scanning sequences suggest that contrast-

enhanced ultrasound may become an important breast imaging tool, although some 

results are still mixed (Reinikainen 2002, Alamo 2001, Cassano 2006, Jiang 2007, van 

Esser 2007, Liu 2008, Balleyguier 2009).  

 Microbubble contrast agents used for ultrasound imaging are stabilized gas 

bubbles, typically filled with a high-molecular weight gas, such as a perfluorocarbon, 

which has low blood solubility. The stabilizing shell consists of either a lipid or a protein 

for currently FDA-approved agents Definity (Lantheus Medical Imaging) or Optison 

(GE), respectively. Because of their size, approximately 1 to 5 microns in diameter, 

microbubble contrast agents are limited to the vascular space and do not readily 

extravasate. Although microbubble toxicity is generally considered to be lower than the 

toxicity of other clinically used contrast agents, potential adverse effects, such as cardiac 

disturbances, loss of consciousness, and respiratory distress, suggest contraindications in 

some patients (Main 2007, Hayat 2005, Barnett 2007). 

10.4 Hypothesis and Goals 

 This project will focus on the evaluation of DEI contrast by commercially 

available contrast agents. It is our hypothesis that iodine-, iron-, and gadolinium-based 

commercially available contrast agents can generate DEI absorption, and possibly 

refraction contrast, within clinically relevant concentrations. Moreover, microbubble 

contrast agents might generate attenuation and extinction contrast. To this end, we 
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imaged phantoms containing a range of concentrations of iodine (OmnipaqueTM), ferric 

oxide (FeridexTM), gadolinium (MagnevistTM). We also imaged phantoms containing 

microbubbles of several sizes.  

10.5 Predicting Absorption and Refraction Contrast.  

 The following calculations are adapted from Kiss et al to determine the refraction 

contrast and absorption contrast for various contrast agents at a range of x-ray energies 

relevant to mammographic imaging, considering the models shown in Figure 10.1 (2003).  

   
FIGURE 10.1: Model for Contrast Calculations. The model used to predict absorption 
and refraction contrast is a 5 mm cylinder submerged in 5 cm deep rectangular water bath 
for planar imaging and a 6 cm cylindrical water bath for three-dimensional imaging.  
  
 Frequency (f) and wavelength (λ) were calculated using the following formulas:  

     f = E / h     (39)  
     λ = c / f     (40)  
 
where E is the x-ray energy (in eV), h is Planck’s constant (6.626 x 10-34 J s), and c is the 

speed of light in a vacuum (299,792,458 ms-1). Table 10.2 displays these values. 

 

 

 149



 

   Energy (keV)         f         λ 
 
            20  4.83 x 1018 6.21 x 10-11

            30  7.24 x 1018 4.14 x 10-11

            40  9.66 x 1018 3.10 x 10-11

            50  1.21 x 1019 2.48 x 10-11

            60  1.45 x 1019 2.07 x 10-11

 
TABLE 10.2: Frequency and Wavelength at Diagnostic X-Ray Energies. The 
frequency (f) is measured in Hz; the wavelength (λ) is measured in meters. 
 
 Because refraction occurs at interfaces, a change in cylinder thickness influences 

x-ray absorption more than refraction. Snell’s law describes x-ray refraction, stating that  

     n1sinθ1 = n2sinθ2    (41) 

where n1 is the refractive index of the phantom container (acrylic), n2 is the refractive 

index of the aqueous solution containing the contrast agent, θ1 is the incident angle, and 

θ2 is the refraction angle. The real portion of the refractive index is: 

     n = 1 – δ     (42) 
 
where 
 
     δ = (N λ2 re) / 2π    (43)  
 
and where re is the classical electron radius (2.8179402894 x 10-15 m), and N is the 

number of electrons per unit volume, represented by: 

     N = (NA ρ) / A     (44) 

where NA is Avogadro’s Number (6.02214179 x 1023 atoms/mole), ρ is density (in kg/m3), 

and A is the atomic mass (in kg/mole). Rewriting the equation for δ in terms of x-ray 

energy instead of in terms of wavelength demonstrates that the δ, and thus the angular 

deflection of x-rays, has a 1 / E2 dependency. Therefore, doubling the x-ray energy 

reduces angular deflection by a factor of four. 
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 The deflection angle caused by x-ray refraction from a cylinder is calculated by: 

     Δθz ≈ 2Δδtanθ1     (45) 

where Δδ = n1 – n2, and sinθ1 = y / R, with y representing the vertical position relative to 

the horizontal diameter of the cylinder, and R representing the radius of the cylinder. 

Higher up on the circle has greater the refraction contrast. For the purposes of these 

calculations, we chose the representative value of y = (5 / 6) R; thus, θ1 was 0.985111. 

The amount of refraction contrast generated by a specific deflection angle depends on the 

slope of the rocking curve, which changes with x-ray energy. Steep rocking curve slopes 

generate the greatest refraction contrast. Rocking curve slopes for the given x-ray 

energies are shown in Table 10.3.  

 Energy (keV)  FWHM Peak Reflectivity    Slope 

         20    3.2390      0.929394  0.286924 
         30   2.1035      0.949327  0.451308 
         40   1.5635      0.954559  0.610542 
         50   1.2461      0.957948  0.768739 
         60   1.0489      0.960566  0.915794 
 
TABLE 10.3: Rocking Curve Slopes. The characteristics of the rocking curve at several 
x-ray energies relevant to mammographic imaging are listed above, where FWHM is the 
full width at half maximum, measured in microradians. 
 
 The change in intensity due to refraction, ΔIref, generated by a certain deflection 

angle is calculated by: 

    ΔIref = (Rocking Curve Slope) (Δθz)   (46) 

 The intensity after absorption, Iabs can be predicted with the following formula: 

    Iabs = I0 exp(-μ z2)     (47) 

where I0 is the initial intensity, μ is the linear attenuation coefficient, and z2 approximates 

the path length of an x-ray inside the cylinder.  
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    z2 = 2 √(R2 + y2)     (48) 

For a diameter of 1 mm, z2 is 1.94365 mm; for a diameter of 10 mm, z2 is 10.1379 mm.  

Absorption contrast is calculated by the following formula: 

    Contrast = (Imedium – Im Imedium) / Imedium    (49) 

where Im is the intensity transmitted through the material of interest and Imedium is the 

intensity transmitted through the medium. 

 When considering contrast in an apparent absorption DEI-CT image, the 

Hounsfield units are calculated by the following formula: 

    CT number = [(μ – μmedium) / μmedium] (1000)  (50) 

where μ is the linear attenuation coefficient through the material of interest and μmedium is 

the linear attenuation coefficient through the medium. The CT number for human soft 

tissue typically ranges from -300 to -100. However, highly absorbing materials, such as 

contrast media, will cause increased x-ray absorption, and thus an increased CT number.  

 The contrast generated by microbubbles can be predicted using methods 

previously described (Connor 2005a). These calculations are beyond the scope of the 

current study and have not been performed with respect to the current DEI microbubble 

contrast agent phantom. 

10.6 Methods 

 Diffraction-Enhanced Imaging. DEI was performed at the National Synchrotron 

Light Source X15A beamline at Brookhaven National Laboratory in Upton, New York. 

The DEI setup is shown in Figure 10.2, as described previously (Zhong 2000). The linear 

collimated beam was 130 mm by 2 mm using a Bragg [333] crystal reflection. The 

double-crystal monochromator (Shaw Monochromators, Riverton, KS) was comprised of 
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a series of two perfect silicon crystals mounted on independently tunable stages in a 

continuously helium-flushed steel tank. The collimated monochromatic x-ray beam then 

interacted with the object being imaged before diffraction by the analyzer crystal. 

Refraction contrast images were acquired at the ±½ WD of the rocking curve; absorption 

contrast images were acquired at the peak of the rocking curve. 

   
FIGURE 10.2: DEI System Setup. An intense, collimated polychromatic synchrotron x-
ray beam is made monochromatic by a series of two perfect silicon crystals referred to as 
the monochromator. The monochromatic beam interacts with the object before becoming 
incident to the third perfect crystal, referred to as the analyzer crystal. The analyzer 
crystal diffracts the x-ray based on its rocking curve, only reflecting x-rays that fall 
within a narrow acceptance window. Manipulating the angle of the analyzer crystal 
allows the selection of image contrast based on either absorption or refraction.  
  
 The flux of the post-monochromator beam was measured using an ion chamber. 

Photons were detected using a 30 micron pixel size digital detector with a 120 mm by 80 

mm imaging area (Photonic Science Limited, UK). For planar imaging, the sample stage 

scanned the phantom vertically through the x-ray beam. For DEI-CT imaging, the 

phantoms were placed on a Huber (Blake Industries, Scotch Plains, NJ) rotational stage. 

For each DEI-CT image, 1000 projections were acquired with a sample rotation step size 

of 0.36 degrees, and with an acquisition time of 1 second per image.  The average surface 

dose for planar images was 0.18 mGy while the average DEI-CT surface dose was 0.114 

mGy. 
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 Planar DEI images were processed using the background subtraction tool in 

ImagePro Express 5.1 (Media Cybernetics, Bethesda, MD). DEI-CT images were 

reconstructed using filtered backprojection using IDL (ITT Visual Information Systems, 

Boulder, CO). Pure refraction contrast images were calculated using IDL from a series of 

planar images, as described previously (Chapman 1997).  

 Full-Field Digital Mammography. The iodine phantoms were also imaged on the 

General Electric (GE) Senographe 2000D (Waukesha, WI) at UNC Hospitals, with an 

average x-ray energy of 26 kVp. The SNR of the GE Senographe 2000D was measured to 

be 83.49 at 25 mm, 71.65 at 40 mm and 56.51 at 60 mm. The half-value layer was 

calculated to be 0.374, as measured using the ACR phantom, which simulates 

calcifications, fibrous calcifications in ducts, and tumor masses. The average phantom 

surface dose was 17.19 mGy. Images were saved in softcopy DICOM format with GE 

preprocessing applied.   

 Calculating Image Contrast. The percent absorption contrast was calculated in 

each image at each energy level by Equation 49; a line profile was drawn across the 

sample tube to measure the intensity. These values were then normalized by subtracting 

the percent contrast measured for the water control tube from the percent contrast 

measured for each sample tubes. The percent refraction contrast was calculated by 

drawing a line profile across the sample tube, measuring the difference in intensity 

between the water-sample tube interface and the sample tube-contrast agent interface.  

10.7 Iodine as a Potential DEI Contrast Agent 

 Iodine: Expected Performance as a DEI Contrast Agent. The LD50 for iodine is 

24.2 g/kg of body weight. Considering the standard range of iodine-based contrast agent 
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doses and an average human blood volume of 5 L, the typical diluted concentration of 

iodine in the blood in vivo ranges from 3 mg/ml to 11.5 mg/ml. Figure 10.3 graphs the 

predicted absorption and refraction contrast of iodine. Because contrast below 

approximately 5% is not accurately detected, an iodine-based x-ray contrast agent is 

expected to generate sufficient absorption contrast with a concentration of 5 to 10 mg/ml 

at 20 keV and at 40 keV. However, iodine is predicted to generate poor refraction 

contrast at clinically relevant concentrations and x-ray energies. Figure 10.4 displays the 

predicted CT numbers generated by an iodine contrast agent.  

   
FIGURE 10.3: Predicted Absorption (top) and Refraction (bottom) Contrast from 
Iodine. 
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FIGURE 10.4: Predicted CT Number Generated by Iodine. 

 Iodine Phantom. Plastic capillary tubes (5 mm internal diameter) were filled with 

10 mg/ml, 5 mg/ml, 2 mg/ml, or 1 mg/ml of Omnipaque™300 (GE Healthcare, Princeton, 

NJ). Each concentration was prepared by dilution in deionized water. A control capillary 

tube was filled with deionized water. For planar imaging, the phantom tubes were 

linearly arranged perpendicular to the x-ray beam. For DEI-CT imaging, the phantoms 

were arranged circularly, tilted at approximately 45 degrees. The tubes were sealed and 

submerged in a 5 cm rectangular water bath for planar imaging, or in a 6 cm cylindrical 

water bath for DEI-CT imaging. DEI, DEI-CT, and full-field digital mammography was 

performed as described in Section 10.5. Image contrast was calculated as described in 

Section 10.5.  

 Iodine: Results. The DEI absorption images generated by the iodine contrast agent 

phantom at a range of x-ray energies, including near the K-edge of iodine (33.117 keV), 

are shown in Figure 10.5. The measured absorption contrast values, graphed in Figure 

10.6, are slightly less than those predicted, likely due to monochromator or analyzer drift.  
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FIGURE 10.5: DEI Absorption Contrast from an Iodine Phantom. A 5 mm plastic 
capillary tube was filled with a range of iodine (Omnipaque™) concentrations and 
imaged at several x-ray energies while submerged in a 50 mm water bath. DEI images 
were acquired at the peak of the rocking curve. Water bubble artifacts can be seen in 
some regions. An increase in image contrast is noted between the images acquired at 30 
keV and 35 keV, as the x-ray energy has risen above the iodine K-edge. 
 

       
FIGURE 10.6: Measured Iodine Absorption Contrast. Percent contrast for each 
concentration of iodine was calculated for each x-ray energy and plotted. The (*) denotes 
the predicted percent contrast at that concentration and energy, as determined using the 
model in Figure 10.1. 
 
 The refraction contrast was measured from images acquired on the slope of the 

rocking curve, but the measurements were not in agreement with the predicted refraction 

contrast values. Because single DEI images contain a mixture of contrast mechanisms, 

pure refraction images were calculated. The measured refraction contrast values from the 
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pure refraction images are listed in Table 10.4. The measured values are now in better 

agreement with the predicted values.  

 
     10 mg/ml    5 mg/ml    2 mg/ml    1 mg/ml 
 
 20 keV  3.7935 (1.9) 1.8949 (1.0) 1.1576 (0.4) 0.2477 (0.2) 
 30 keV  1.9090 (1.3) 0.7438 (0.7) 0.7821 (0.3) 0.1030 (0.1) 
 40 keV  1.4280 (1.0) 0.5703 (0.5) 0.4257 (0.2) 0.1796 (0.0) 
 
TABLE 10.4: Percent Contrast Measured from Pure Refraction Images of Iodine. 
Pure refraction images were calculated as described previously (Chapman 1997), and 
contrast was measured using Equation 47. The predicted percent contrast for each 
concentration and energy are shown in parentheses. 
 
 DEI-CT images of the iodine contrast agent are shown in Figure 10.7. For 

apparent absorption processing (Row A), the 1 mg/ml, 5 mg/ml, 10 mg/ml, and 30 mg/ml 

iodine phantoms generated percent contrasts of 4.15%, 22.30%, 26.44%, and 141.07%, 

respectively. Similarly, the measured percent contrast in the refraction images (Row B) 

for 1 mg/ml, 5 mg/ml, 10 mg/ml, and 30 mg/ml iodine was -6.0167%, 5.9850%, 9.4616%, 

and 44.7971%. 

 
FIGURE 10.7: DEI-CT Imaging of Iodine Phantom. DEI-CT imaging was performed 
at 40 keV. Single representative DEI-CT slices are shown from left to right, representing 
1 mg/ml, 5 mg/ml, 10 mg/ml, and 30 mg/ml iodine. Row A displays apparent absorption 
images; Row B shows refraction contrast images.  
 
 The iodine phantom was also imaged on a clinical digital mammography system 

at 26 kVp, as shown in Figure 10.8. This is a polychromatic source, so the actual average 
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x-ray energy is lower. The measured absorption contrast generated by 1 mg/ml, 2 mg/ml, 

5 mg/ml, and 10 mg/ml iodine was 1.63%, 3.58%, 13.02%, and 22.83%, respectively. 

 
FIGURE 10.8: Digital Mammography of Iodine Phantom. Digital mammography was 
performed at 26 kVp of an iodine contrast agent phantom with 10 mg/ml, 5 mg/ml, 2 
mg/ml, and 1 mg/ml iodine and a deionized water control. 
 
10.8 Iron as a Potential DEI Contrast Agent 

 Iron: Expected Performance as a DEI Contrast Agent. The K-edge of iron is at 

7.1 keV, indicating that as x-ray energy increases, absorption contrast rapidly decreases. 

The typical dose of iron oxide nanoparticles is 0.56 mg/kg of body weight. When diluted 

in the human blood volume, the concentration becomes 0.008 mg/ml of blood. While the 

concentrations shown in Figure 10.9 are well above the typical concentrations used 

clinically, even at high concentrations, an LD50 for FeridexTM has not been reported. Thus, 

increased iron oxide nanoparticle concentrations might be used with limited increase in 

toxicity. However, iron is only predicted to generate clinically detectable absorption 

contrast enhancement at 5 mg/ml and 10 mg/ml at 20 keV; both of these concentrations 

are substantially greater than the typical clinical dose for MRI. Refraction contrast is not 

predicted to be sufficient at the concentrations and x-ray energies included in the current 

study. Figure 10.10 displays the predicted CT numbers generated by an iron contrast 

agent.  
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FIGURE 10.9: Predicted Absorption (top) and Refraction (bottom) Contrast from 
Iron. 
 

  
FIGURE 10.10: Predicted CT Number Generated by Iron. 
 
 Iron Phantom. Plastic capillary tubes (5 mm internal diameter) were filled with 10 

mg/ml, 5 mg/ml, 2 mg/ml, or 1 mg/ml of Feridex™ (Bayer Healthcare, Leverkusen, Germany). 

Each concentration was prepared by dilution in deionized water. A control capillary tube 
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was filled with deionized water. Phantom tubes were linearly arranged perpendicular to 

the x-ray beam. The tubes were sealed and submerged in a 5 cm rectangular water bath. 

DEI and full-field digital mammography was performed as described in Section 10.5. 

DEI-CT was not performed for the iron phantoms. Image contrast was calculated as 

described in Section 10.5.  

 Iron: Results. DEI images generated by the iron contrast agent phantom at 20 keV 

and acquired at the ±½ WD and peak rocking curve positions are shown in Figure 10.11. 

Only the 20 keV data is shown because, due to the low K-edge of iron (7.11 keV), 

absorption and refraction contrast rapidly decline with increasing x-ray energy. The 

measured absorption contrast values at a range of x-ray energies are graphed in Figure 

10.12. 

   
FIGURE 10.11: DEI Absorption Contrast from an Iron Phantom. A 5 mm plastic 
capillary tube was filled with a range of iron oxide nanoparticle (Feridex™) 
concentrations and imaged at 20 keV while submerged in a 50 mm water bath. DEI 
images were acquired at the ±½ WD and peak rocking curve positions. Water bubble 
artifacts can be seen in some regions.  
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FIGURE 10.12: Measured Iron Absorption Contrast. Percent contrast for each 
concentration of iron was calculated for each x-ray energy and plotted. The (*) denotes 
the predicted percent contrast at that concentration and energy, as determined using the 
model in Figure 10.1. 
 
 The refraction contrast was measured from images acquired on the slope of the 

rocking curve, but the measurements were not in agreement with the predicted refraction 

contrast values. Because single DEI images contain a mixture of contrast mechanisms, 

pure refraction images should be calculated. However, for this dataset, the images were 

not acquired symmetrically on the rocking curve, likely due to monochromator or 

analyzer drift, preventing an accurate pure refraction contrast image. The images that 

were produced by this inaccurate reconstruction (data not shown) did not demonstrate 

any measurable refraction contrast.  

 The iron phantom was also imaged on a clinical digital mammography system at 

26 kVp, as shown in Figure 10.13. The measured absorption contrast generated by 1 

mg/ml, 2 mg/ml, 5 mg/ml, and 10 mg/ml iron was 2.27%, 12.72%, 23.67%, and 52.40%, 

respectively. 
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FIGURE 10.13: Digital Mammography of Iron Phantom. Digital mammography was 
performed at 26 kVp of an iodine contrast agent phantom with 10 mg/ml, 5 mg/ml, 2 
mg/ml, and 1 mg/ml iron oxide nanoparticles and a deionized water control. 
 
10.9 Gadolinium as a Potential DEI Contrast Agent 

 Gadolinium: Expected Performance as a DEI Contrast Agent. The LD50 for 

MagnevistTM, a gadolinium chelate, is 1.1 g/kg of body weight. The typical dose of 

gadolinium-chelate contrast agent is 93.8 mg/kg of body weight. Once diluted in the 

average human blood volume, the concentration is approximately 1.3 mg/ml of blood. 

The predicted absorption and refraction contrast for gadolinium, shown in Figure 10.14, 

suggest that absorption contrast might be sufficient at 5 to 10 mg/ml concentrations when 

imaged at 20 to 30 keV. The 10 mg/ml concentration might also generate sufficient 

absorption contrast at 60 keV due to the photoelectric effect. However, refraction contrast 

is predicted to be poor at all x-ray energies evaluated. Figure 10.15 displays the predicted 

CT numbers generated by a gadolinium contrast agent.  

 163



   
FIGURE 10.14: Predicted Absorption (top) and Refraction (bottom) Contrast from 
Gadolinium. 
 

  
FIGURE 10.15: Predicted CT Number Generated by Gadolinium. 
 
 Gadolinium Phantom. Plastic capillary tubes (5 mm internal diameter) were filled 

with 10 mg/ml, 5 mg/ml, 2 mg/ml, or 1 mg/ml of Magnevist™ (Bayer Healthcare, 

Leverkusen, Germany). Each concentration was prepared by dilution in deionized water. 
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A control capillary tube was filled with deionized water. For planar imaging, the phantom 

tubes were linearly arranged perpendicular to the x-ray beam. For DEI-CT imaging, the 

phantoms were arranged circularly, tilted at approximately 45 degrees. The tubes were 

sealed and submerged in a 5 cm rectangular water bath for planar imaging, or in a 6 cm 

cylindrical water bath for DEI-CT imaging. DEI, DEI-CT, and full-field digital 

mammography was performed as described in Section 10.5. Image contrast was 

calculated as described in Section 10.5.  

 Gadolinium: Results. Gadolinium should theoretically generate greater absorption 

contrast than iodine, but gadolinium-based contrast agents have one gadolinium atom per 

molecule while iodine-based contrast agents have three iodine atoms per molecule of 

contrast agent.13 Thus, gadolinium contrast agents for x-ray applications require 

increased dosages (Thomsen 2002, Nyman 2002). The DEI images generated by the 

gadolinium contrast agent phantom at 20 keV and acquired at the ±½ WD and peak 

rocking curve positions are shown in Figure 10.16. Only the 20 keV data is shown 

because, due to the location of the K-edge of gadolinium (50.24 keV), absorption and 

refraction contrasts are declining in the range of x-ray energies used in this study.  

 

                                                 
13. Magnevist formula: C28H54GdN5O20; Omnipaque formula: C19H26I3N3O9
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FIGURE 10.16: DEI Absorption Contrast from a Gadolinium Phantom. A 5 mm 
plastic capillary tube was filled with a range of gadolinium (Magnevist™) concentrations 
and imaged at 20 keV while submerged in a 50 mm water bath. DEI images were 
acquired at the ±½ WD and peak rocking curve positions. Water bubble artifacts can be 
seen in some regions.  
 
 The measured absorption contrast values at 20 keV and 30 keV are graphed in 

Figures 10.17. The gadolinium phantom images at 40 keV contained artifacts that 

precluded accurate contrast measurements. As seen previously, the refraction contrast 

measured from a single image on the slope of the rocking curve contained a mixture of 

absorption and refraction contrast. A pure refraction image could only be generated from 

the 30 keV dataset, because the gadolinium phantom images at 20 keV were not acquired 

symmetrically on the rocking curve, likely due to monochromator or analyzer drift. When 

pure refraction processing was applied to images acquired at 30 keV, refraction contrast 

was not detectable (data not shown).  
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FIGURE 10.17: Measured Gadolinium Absorption Contrast. Percent contrast for 
each concentration of gadolinium was calculated for each x-ray energy and plotted. The 
(*) denotes the predicted percent contrast at that concentration and energy, as determined 
using the model in Figure 10.1. 
 
 DEI-CT images of the gadolinium contrast agent are shown in Figure 10.18. For 

apparent absorption processing (Row A), the 1 mg/ml, 5 mg/ml, 10 mg/ml, and 30 mg/ml 

gadolinium phantoms generated percent contrasts of 3.37%, 10.11%, 24.40%, and 

53.64%, respectively. Similarly, the measured percent contrast in the refraction images 

(Row B) for 1 mg/ml, 5 mg/ml, 10 mg/ml, and 30 mg/ml gadolinium was -0.98%, 0.78%, 

0.37%, and 0.25%. 

 
FIGURE 10.18: DEI-CT Imaging of Gadolinium Phantom. DEI-CT imaging was 
performed at 40 keV. Single representative DEI-CT slices are shown from left to right, 
representing 1 mg/ml, 5 mg/ml, 10 mg/ml, and 30 mg/ml gadolinium. Row A displays 
apparent absorption images; Row B shows refraction contrast images.  
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 The gadolinium phantom was also imaged on a clinical digital mammography 

system at 26 kVp, as shown in Figure 10.19. The measured absorption contrast generated 

by 1 mg/ml, 2 mg/ml, 5 mg/ml, and 10 mg/ml gadolinium was 0.03%, 0.40%, 4.69%, and 

7.36%, respectively. 

 
FIGURE 10.19: Digital Mammography of Gadolinium Phantom. Digital 
mammography was performed at 26 kVp of a gadolinium contrast agent phantom with 10 
mg/ml, 5 mg/ml, 2 mg/ml, and 1 mg/ml gadolinium and a deionized water control. 
 
10.10 Microbubbles as Potential DEI Contrast Agents 

 Microbubbles: Expected Performance as a DEI Contrast Agent. Contrast-

enhanced ultrasound using microbubble injection has been evaluated for liver (Lencioni 

2007, Rettenbacher 2007, Konopke 2007), breast (Kedar 1996, Albrecht 1998, 

Reinikainen 2002, Alamo 2001, Cassano 2006, Jiang 2007, van Esser 2007, Liu 2008, 

Balleyguier 2009), kidney (Mitterberger 2007, Correas 2006), pancreas (D’Onofrio 2007), 

spleen (Görg 2007, Catalano 2005), prostate (Mitterberger 2007, Heijmink 2007, Wink 

2007), lymphatic mapping (Wang 2009a, Wang 2009b, Goldberg 2005), and vascular 

(Granada 2008, Coli 2008, Hennerici 2004) imaging applications. A previous study 

suggested that microbubbles might also be useful as contrast agents in DEI, since x-rays 

readily scatter from a gas-liquid interface (Arfelli 2003). For microbubble structures on 

the scale of microns, we expect x-rays to undergo ultra small angle scattering and be 

rejected by the analyzer crystal. In prior studies, gases have been used as a contrast agent 
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for x-ray through CO2 injection for vascular imaging applications (Heye 2006, Chao 

2007a, Shaw 2006). 

 Microbubble Phantoms: Lipid-encapsulated microbubbles were prepared as 

previously described (Zhao 2004).14 Size distribution and concentration were measured 

using an optical particle sizer (Accusizer 780, Particle Sizing System, Santa Barbara, CA) 

immediately after microbubble synthesis. Microbubbles were maintained in sealed 1.5 

mL vials under perfluorobutane gas for 24 hours during transport to the imaging facility. 

Prior to imaging, microbubble solutions were transferred into 10 mm by 10 mm (internal 

dimension) plastic cuvettes. A magnetic stir bar was placed in each sample tube and 

stirred at a rate of 120 rotations per minute, and then sealed with a plastic stopper to 

reduce microbubble decay during imaging. A control capillary tube was filled with 

phosphate buffered saline 

 Diffraction-Enhanced Imaging. DEI was performed as described in section 10.5, 

with the following modifications. Photons were detected using a 9 micron pixel size 

digital detector with a 36 mm by 24 mm imaging area (Photonic Science Limited, UK). 

DEI images were acquired at 30 keV. The full-width-at-half-maximum of the rocking 

curve is 2.10350 microradians. A series of images were acquired at the peak of the 

rocking curve. The average dose for these images was 0.26 ± 0.01 mGy.  

 We also acquired a series of images at analyzer crystal positions ranging from -5 

microradians to +5 microradians in step sizes of 0.2 microradians. Each image was 

acquired with a dose of 0.04 ± 0.01 mGy, for a total of 2.08 mGy dose for the entire 

image set. This image series was used to calculate the change in the rocking curve width 

induced by the microbubble contrast agents, evaluating the FWHM, Full-Width-at-1/10th-
                                                 
14 Prepared in the laboratory of Dr. Paul Dayton at the University of North Carolina at Chapel Hill 
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Maximum (FW-1/10th-M), and the Full-Width-at-1/20th-maximum (FW-1/20th-M). These 

values were determined by separately selecting regions from the PBS control and the 

microbubble images, calculating the median intensity of each image.  

 The data for each image is an array of two sets of 50 points each, each 

corresponding to the 50 points acquired along the rocking curve. This was extrapolated to 

5000 data points, creating a corresponding array of angles corresponding to the rocking 

curve positions. The maximum value of the data was measured, along with the location in 

the data set where the value was half, 1/10th or 1/20th of the peak value on both sides of 

the rocking curve, corresponding to the +/- FWHM/2, +/- FWHM/10, and +/- FWHM/20 

points, thus finding the corresponding angle on the rocking curve. The FWHM is the 

difference in the values of those two points. Because the FWHM for the PBS control 

should be the same for all the control data sets, the standard deviation in the FWHM of 

the control was considered to be the standard deviation for both the control and 

microbubble data sets (+/- 0.03 microradians). 

 Microbubbles: Results. Microbubble size distribution and concentration for each 

sample (as measured immediately after microbubble synthesis) are listed in Table 10.5. 

When each sample is imaged at the peak of the rocking curve, the DEI attenuation 

contrast increases with increasing microbubble size, as shown in Figure 10.20. The peak 

position of the DEI rocking curve provides the greatest absorption contrast, with optimal 

scatter rejection by the analyzer crystal. Within this size range, we expected larger 

microbubbles to generate greater DEI contrast. For Sample A (1.1 μm), the measured 

attenuation contrast was 4.6 ± 0.9%. For Sample B (1.4 μm), the measured contrast was 

15.0 ± 1.0%. For Sample C (2.9 μm), the measured contrast was 46.4 ± 1.0%.  
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   Mean    Standard Deviation     Median     Initial Concentration 
 
 Sample A 1.1 μm               0.4 μm        1.0 μm        2.5x1010 microbubbles/ml 
 Sample B      1.4 μm               0.7 μm      1.4 μm   1.7x1010 microbubbles/ml 
 Sample C 2.9 μm               1.5 μm      2.9 μm   2.6x109  microbubbles/ml 
 
TABLE 10.5. Microbubble Characterization. Measurements were acquired 
immediately after microbubble synthesis. 
 

     
FIGURE 10.20: Effect of Microbubble Size. DEI images were acquired at 30 keV at 
the peak of the rocking curve. The phosphate buffered saline control is shown on the left, 
with each microbubble sample shown on the right. Panel A shows Sample A, 
approximately 1.1 μm; Panel B shows Sample B, approximately 1.4 μm; Panel C shows 
Sample C, approximately 2.9 μm. 
 
 We acquired a series of images across the DEI rocking curve. Figure 4 compares 

an image acquired at the peak (0 microradians) of the rocking curve (Panel A) to an 

image acquired in the tail (+5 microradians) of the rocking curve (Panel B). Increased 

contrast is seen at the peak, due to x-ray attenuation, a combination of x-ray absorption 

and scatter rejection. The images acquired at the tail of the rocking curve demonstrated 

an increase in scattered x-rays over the PBS control.  
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FIGURE 10.21: Extinction Contrast by Microbubbles. DEI images of Sample C (5 
μm) were acquired at 30 keV at the peak and tail of the rocking curve. The phosphate 
buffered saline control is shown on the left, with each microbubble sample shown on the 
right. Panel A shows an image acquired along the rocking curve at the peak position. 
Panel B depicts an image acquired along the rocking curve on the tail of the rocking 
curve. 
 
 This series of images acquired along the rocking curve was used to calculate the 

FWHM, FW-1/10th-M, and the FW-1/20th-M of the microbubble phantom, with results 

listed in Table 10.6. When evaluating the FWHM, we did not detect substantial 

broadening of the rocking curve. This might be because the amount of broadening of the 

rocking curve is on the scale of the resolution for detecting angular change. However, 

when evaluating the FW-1/10th-M, where the ability to resolve differences in the rocking 

curve width is improved, there is a measurable increase in rocking curve width as 

microbubble size increased. At the FW-1/20th-M, we found a dramatic broadening of the 

rocking curve as microbubble size increased. However, these values are qualitative, and 

need to be confirmed in a quantitative study. The uncertainty in measuring the percent 

difference for the FWHM, FW-1/10th-M, and FW-1/20th-M was 0.04 μradians, 0.06 

μradians, and 0.13 μradians, respectively.  
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      FWHM     FW-1/10th-M    FW-1/20th-M    
 
  Sample A  PBS   1.812  3.468    4.300 
   Microbubble  1.808  3.526    4.526  
  
   % Difference  -0.22  1.7    5.3  
 
  Sample B  PBS   1.742  3.462    4.306 
   Microbubble  1.736  3.716    5.318 
 
   % Difference  -0.34  7.0    23.5 
 
  Sample C  PBS   1.744  3.390    4.114 
   Microbubble  1.772  4.270    6.640 
 
   % Difference  1.61  26.0    61.4 
 
TABLE 10.6: Rocking Curve Measurements. The Full-Width-at-Half-Maximum 
(FWHM), Full-Width-at-1/10th-Maximum (FW-1/10th-M), and the Full-Width-at-1/20th-
Maximum (FW-1/20th-M) were calculated for the PBS control and the microbubble 
phantom. These values are reported in units of μradians. The percent difference in the 
widths between the microbubble sample and PBS control was also calculated. 
 
10.11 Discussion 

 This project evaluated a variety of commercially available, clinically used 

contrast agents, performing DEI at a range of x-ray energies. Although we expected 

conventional molecular contrast agents or novel nanoparticle contrast agents to generate 

absorption contrast, we did not expect these types of contrast agents to generate 

substantial refraction or extinction contrast. However, we expected contrast agents with 

unique structures, such as microbubbles, would generate sufficient x-ray scattering, 

causing these x-rays to be rejected by the analyzer crystal and generating extinction 

contrast. It is possible that other unique contrast agent structures, on the scale of microns, 

might also generate scatter to take advantage of the unique DEI extinction contrast 

mechanism.  
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 For iodine, iron, and gadolinium, the absorption and refraction contrasts measured 

from the contrast agent phantoms were generally in agreement with the predicted values. 

As expected, iodine generated good DEI absorption contrast, with detectable absorption 

contrast generated by 10 mg/ml OmnipaqueTM at 20 keV and by 5 through 10 mg/ml 

OmnipaqueTM at 40 keV. However, refraction contrast was poor. Iron oxide nanoparticles 

generated detectable absorption contrast by 10 mg/ml FeridexTM at 20 keV. Pure 

refraction images could not be calculated for this dataset, but we expect that the true 

refraction contrast generated by this phantom is poor and below the clinical detection 

threshold. Moreover, the concentrations evaluated in this study were substantially greater 

than that used clinically for MRI contrast enhancement. Gadolinium chelate 

(MagnevistTM) generated poor absorption and refraction contrast at the concentrations 

and energies used in this study. This was likely because the gadolinium contrast agent 

molecule has only one atom of gadolinium, while an iodine contrast agent contains three 

atoms of iodine per contrast agent molecule. 

 Microbubbles generated attenuation and extinction contrast, with increasing 

contrast as the microbubble size increased. The microbubbles caused increased x-ray 

scattering, which was rejected by the analyzer crystal, increasing the attenuation contrast 

when images were acquired at the peak of the rocking curve. We detected a widening of 

the rocking curve and increased intensity on the tail of the rocking curve, both confirming 

that the microbubbles indeed caused x-ray scattering which induced increased attenuation 

contrast. 

 In summary, molecular contrast agents might influence DEI contrast by affecting 

the physical density and effective electron density of the material. However, these 
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contrast agents only substantially influenced DEI absorption contrast. This contrast 

mechanism is not unique to DEI. Gaseous bubbles on the scale of microns created DEI 

attenuation and extinction contrast, with contrast dependant upon microbubble size. The 

extinction contrast mechanism is unique to DEI, and thus microbubbles might be an 

important DEI contrast agent. However, further analysis is needed to assess the potential 

of microbubbles as DEI contrast agents more completely. 

10.12 Future Directions 

 The unique microbubble shape generates substantial DEI extinction contrast (for 5 

μm microbubbles). There might be other contrast agent materials, shapes, or sizes that 

also allow increased contrast enhancement. Other materials not tested in the current study 

have been considered as x-ray contrast agents, including gold, silver, bismuth, platinum, 

tungsten, cesium, thorium, tin, zirconium, tantalum, ytterbium, and dysprosium (Yu 

1999). Moreover, it will be important to establish the x-ray energy and concentration 

required to generate sufficient DEI contrast enhancement to ensure that these values are 

synergistic with safety and practicality.  

 Specific contrast-enhanced imaging protocols (e.g. digital subtraction, 

functionalization of contrast agents) or multimodal imaging techniques might further 

improve CE-DEI, while in vivo experiments will be necessary to determine if CE-DEI 

might be viable outside of laboratory studies. Digital subtraction of images acquired 

above and below the K-edge allows visualization of contrast agent biodistribution within 

the field of view, with minimized obscuration by surrounding or overlying tissue. A 

recent study demonstrated image enhancement using an iodine contrast agent by 

performing digital subtraction of images acquired above and below the iodine K-edge 
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using a bent Laue monochromator and x-ray tube source (Zhong 1997). A similar method 

might be possible using the DEI setup. 

 Although the amount of contrast agent at the tumor site is largely dependent on 

the degree of angiogenesis and the EPR effect (for contrast agents small enough to 

extravasate), attachment of a functional or targeting group might increase contrast 

enhancement, allow for extended imaging times, or provide a vehicle for delivery of 

diagnostic or therapeutic agents. Future studies might explore functionalized, contrast-

enhanced DEI using a targeting agent such as Herceptin, a monoclonal antibody against 

HER-2 (erbB2/neu). This gene is expressed in all breast epithelial cells, and 

overexpressed in 10 to 34% of human breast cancers (Slamon 1989, Ross 2003, Camp 

2003). A tumor overexpressing HER-2 will also demonstrate amplification in its 

metastatic sites (Niehans 1993).  

 Breast cancer targeting using Herceptin-functionalized contrast agents has been 

demonstrated using ferric oxide nanoparticles (Wuang 2007, Ito 2004, Wuang 2008, 

Sakamoto 2005), gold nanoparticles (Copland 2004), quantum dots (Tada 2007), and 

other novel nanoparticles (Sun 2008, Cirstoui-Hapca 2007). Herceptin is an attractive 

functionalization biomolecule because it is a commonly used antiproliferative, anti-

angiogenic pharmaceutical agent that induces apoptosis in HER-2 expressing breast 

cancer cells (Nahta 2006).  

 The potential for contrast agents to have multimodal functionality has been 

recognized. For example, a magnetic contrast agent that might generate excellent x-ray 

absorption contrast might also be able to be used for MRI imaging. Some have suggested 

core-shell nanoparticle structures for multimodal contrast agents (Breskin 2004, Alric 
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2008, Zhang 2008b, Park 2007, de la Fuente 2006). Further, fluorescent dyes or gamma-

emitting radioisotopes might also allow multimodal imaging. For example, gold 

nanoparticles strongly absorb electromagnetic radiation. With enough energy absorption, 

substantial heat can be generated, which ablates surrounding tissue, suggesting value for 

concurrent imaging and therapy with a single injection of contrast agent (Hainfeld 2008, 

Rahman 2009, von Maltzahn 2009, McMahon 2008, Lowery 2006). 

 In vivo CE-DEI is an important step to demonstrate that this imaging technique 

has value for clinical contrast-enhanced imaging. By acquiring a series of images at a 

single rocking curve position over minutes and hours, the initial enhancement, washout, 

and tumor retention might be visualized. However, this might be most appropriately 

assessed on a second-generation DEI system operating with faster image acquisition time 

because contrast agent concentration and biodistribution changes rapidly within the first 

hour post-injection. After imaging and euthanasia, the tumors, kidneys, liver, and spleen 

might be excised and frozen separately for elemental analysis by inductively coupled 

plasma mass spectrometry (ICP-MS) to confirm the biodistribution profile. 

 Contrast-enhanced DEI is just one of many potential applications of DEI, with 

potential applications outside of breast imaging. While the visibility of contrast agents 

with DEI is still only beginning to be explored, the visibility of many breast lesion 

characteristics has been shown to be excellent using DEI. DEI imaging parameters are 

still being established, and it is possible that DEI might allow improvements in these 

parameters over conventional mammography, such as a reduction in the compression 

required in order to generate a clinically useful image. 
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CHAPTER 11: EFFECT OF BREAST COMPRESSION ON LESION 
CHARACTERISTIC VISIBILITY WITH DIFFRACTION-ENHANCED 

IMAGING 
 

11.1 Overview 

 Portions of this chapter include previously published data (Faulconer 2009b) 

reprinted with kind permission from Elsevier: Academic Radiology, in press. This 

chapter discusses the effect of breast tissue thickness on DEI lesion feature visibility. 

First, we provide an overview of the project. The hypothesis and goals of the project are 

discussed before a thorough description of the research methods, results, and discussion. 

Finally, a discussion of potential future studies is presented. 

11.2 Motivation for Evaluating Lesion Visibility as a Function of Tissue Thickness 

  Breast cancer imparts distinct and measurable changes in breast tissue at the 

cellular level. Conventional mammography attempts to detect these changes by utilizing 

attenuation contrast based on the spatial distribution of x-ray attenuation. This contrast 

mechanism requires compression of the breast between radiolucent plates to decrease x-

ray path length and separate overlapping breast structures, while creating more uniform 

thickness for even exposure levels throughout the breast, as depicted in Figure 11.1. This 

effectively reduces scatter, decreases subject radiation dose, and dramatically improves 

image quality. The American College of Radiology suggests a maximum compression 

force for mammography between 25 and 40 pounds (Hendrick 1999). Many women 

report the perception of pain associated with breast compression, potentially contributing 
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to noncompliance with annual screening mammography recommendations for women in 

the United States over the age of 40 (Keemers-Gels ME, Poulos 2003, Sapir 2003). 

  
FIGURE 11.1: Breast Compression. Compression decreases structural noise by 
flattening and spreading out superimposed tissue layers. The decreased path length 
contributes to decreased absorption and subsequent dose reduction while less scattering 
volume improves image quality and increases the amount of x-rays transmitted onto the 
detector. Compression also ensures more even tissue exposure at the periphery of the 
breast. 
 
 It is generally accepted that increased tissue thicknesses decreases image quality 

for conventional mammography (Helvie 1994, Guest 2000). This is particularly true for 

low-energy x-rays. The percent intensity of x-ray transmission through breast soft tissue 

after x-ray absorption is shown in Figure 11.2. The increased tissue thickness attenuates 

more radiation, leading to higher Poisson noise, and also contributes to greater structural 

noise through superimposition of tissue structures. A recent study suggests, using Monte 

Carlo simulations, that the typical level of breast compression for digital mammography 

could be decreased by approximately 12.5% with minimal impact on image quality 

(Saunders 2008). Another study found that for a 9% and 23% change in tissue thickness, 

the contrast was reduced by 5% and 12%, respectively, while the resolution was 

decreased by 8% and 19%, respectively (Helvie 1994). 
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 However, even with maximal breast compression, attenuation contrast does not 

always provide sufficient contrast due to minimal differences in physical and electron 

density between normal and cancerous tissues. Although monochromaticity alone has 

demonstrated the potential to decrease dose and facilitate reduced breast compression 

(Liu 2007a, Arfelli 2000, Boone 1999, Johnston 1996, Kimme-Smith 1999, Lawaczeck 

2005), we believe that the contrast mechanisms that are unique to DEI might enable 

mammography with reduced breast compression. Although refraction contrast may not be 

as severely limited by tissue thickness, overlying structures might cause multiple 

refraction events that may reduce overall refraction contrast for a thick object (Gang 

2005).  

 
FIGURE 11.2: Decrease in X-Ray Transmission as Tissue Thickness Increases. The 
graph plots the percent intensity of x-ray transmission, considering decrease in x-ray 
intensity due to absorption effects with respect to tissue thickness. Low-energy x-rays are 
more readily absorbed, decreasing the x-ray intensity incident on the detector, and thus 
increasing Poisson noise in the resulting image. Calculations are for half-glandular half-
fatty tissue composition (50% density). 
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11.3 Hypothesis and Goals 

 The current study investigates the effect of breast compression on DEI image 

quality and lesion characteristic visibility. It is our hypothesis that decreased breast 

compression might be possible with DEI without significantly altering image quality. In 

this paper, we present our results for the imaging of human breast tissue specimens at 30 

keV, with evaluation of the effect of tissue thickness on image quality via a reader study 

performed by five expert radiologists. This work demonstrates a potential advantage of 

DEI mammography over conventional mammography for reduced compressed tissue 

thickness without substantially compromising image quality.  

11.4 Study Design and Methods 

 All experiments were conducted with appropriate approvals granted by the 

University of North Carolina at Chapel Hill (UNC-CH) Institutional Review Board and 

were HIPAA-compliant.  

 Specimen Selection. Four mastectomy specimens were obtained from the 

Department of Pathology at UNC-CH without identifying patient information. As per 

usual clinical practice, these tissues were sliced for clinical purposes prior to acquisition 

for use in this study. Representative thin slices containing regions of interest (ROIs) with 

suspicious pathology were excised from the whole specimen. Seven full-thickness, un-

sliced breast specimens were obtained by dissection from cadavers made available by the 

UNC-CH Department of Cell Biology and Anatomy. All specimens were fixed in 10% 

buffered formalin and stored at room temperature.  

 For thin specimen imaging, specimens were placed directly between two 5 mm 

Acrylic plates with compression adjustment by a series of threaded rods. Full-thickness 
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specimens were first placed in deionized water in plastic bags with care to eliminate air 

bubbles before being placed between Acrylic plates. Specimen mounting is diagrammed 

in Figure 11.3. After the specimens were immobilized in the compression devices, natural 

resting thicknesses were measured using a standard ruler. Half- and fully- compressed 

thicknesses were 25% ± 1% and 47% ± 5% of resting thicknesses, respectively.  

  
FIGURE 11.3: Diagram of Specimen Mounting in Compression Plates. Thin 
specimens were mounted directly between two 5 mm thick Acrylic plates. Full thickness 
specimens were placed in plastic bags (26.8 by 15.4 by 8.8 cm, 1.75 to 2.00 mil) filled 
with deionized water. Care was taken to eliminate air bubbles when mounting. 
Compression levels were changed by adjusting nuts on threaded bolts positioned through 
each corner of the Acrylic plates. 
 
 Diffraction-Enhanced Imaging. DEI was performed at the National Synchrotron 

Light Source X15A beamline at Brookhaven National Laboratory in Upton, New York. 

The DEI setup is shown in Figure 11.4, as described previously (Zhong 2000). The linear 

collimated beam was 130 mm by 2 mm using a Bragg [333] crystal reflection. The 

double-crystal monochromator (Shaw Monochromators, Riverton, KS) was comprised of 

a series of two perfect silicon crystals mounted on independently tunable stages in a 
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continuously helium-flushed steel tank. By manipulating the angle of the monochromator 

crystals, 30 keV x-rays were selected based on the Bragg angle. The collimated 

monochromatic x-ray beam then interacted with the object being imaged before 

diffraction by the analyzer crystal, only reflecting x-rays that fall within a narrow range 

of energies and angles. Manipulating the angle of the analyzer crystal allowed the 

selection of image contrast based on either absorption or refraction. Refraction contrast 

images were acquired at the ±½ Darwin width (WD) of the rocking curve, which is equal 

to half of the full width at half maximum. Attenuation contrast images were acquired at 

the peak of the rocking curve. 

   
FIGURE 11.4: DEI System Setup. An intense, collimated polychromatic synchrotron x-
ray beam is made monochromatic by a series of two perfect silicon crystals referred to as 
the monochromator. The monochromatic beam interacts with the object before becoming 
incident to the third perfect crystal, referred to as the analyzer crystal. The analyzer 
crystal diffracts the x-ray based on its rocking curve, only reflecting x-rays that fall 
within a narrow acceptance window. Manipulating the angle of the analyzer crystal 
allows the selection of image contrast based on either absorption or refraction.  
  
 The flux of the post-monochromator beam was measured using an ion chamber. 

Images were acquired with a stimulable phosphor Fuji ST-VI image plate (Fuji Medical 

Systems, Stamford, CT) and developed by laser on the Fuji BAS-2500 image plate reader 

(Fuji Medical Systems, Stamford, CT). The image plate was affixed perpendicular to the 

x-ray beam diffracted from the analyzer crystal at twice the Bragg angle. Images were 

acquired un-compressed (resting thickness), half-compressed (75% of resting thickness) 
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and fully-compressed (50% of resting thickness) at each of three rocking curve positions: 

-½ WD, +½ WD, and peak. DEI surface dose was approximately 0.33 mGy.  

 Vertical linear artifacts created by crystal glitches were corrected manually using 

an Interactive Data Language (IDL) (ITT Visual Information Systems, Boulder, CO) 

image processing technique that included an in-house flattening algorithm applied to the 

vertical axes. DEI image files were converted from tiff to DICOM format using 

DICOMAccess (DesAcc, Chicago IL) software for display on the Sectra IM.5X 

mammography softcopy review workstation (Sectra, AB., Shelton, Connecticut).  

 Full-Field Digital Mammography. The specimens were imaged on the General 

Electric (GE) Senographe 2000D (Waukesha, WI) at UNC Hospitals, with an average x-

ray energy of 26 keV for thin specimens and 27.5 keV for thick specimens. The SNR of 

the GE Senographe 2000D was measured to be 83.49 at 25 mm, 71.65 at 40 mm, and 

56.51 at 60 mm. The half-value layer was calculated to be 0.374, as measured using the 

ACR phantom, which simulates calcifications, fibrous calcifications in ducts, and tumor 

masses. The x-ray energy and tube voltage were manipulated manually by an experienced 

radiology technologist to achieve an optimal absorption image at each compression level. 

Thus, the average surface doses for un-, half- and fully-compressed breast specimen 

images were 20.96 mGy, 13.54 mGy and 8.52 mGy, respectively. Images were saved in 

softcopy DICOM format with GE preprocessing applied for review workstation display.   

 Specimen Assessment. While blinded to history, lesion pathology, and lesion 

location, a breast imaging radiologist (EDP) identified 21 regions of interest (ROIs) using 

DM images. Further, this reader evaluated fully-compressed DM images of each 

specimen, estimating the radiographic density (percent adipose and glandular tissue 

 184



composition). An expert pathologist (CAL) performed pathologic sectioning of the 21 

ROIs previously identified within 10 tissue specimens.  

 Reader Study. A training set of six ROIs within four specimens was compiled 

detailing the interpretation of refraction-contrast DEI images containing both benign 

(fibrous tissue spiculations) and malignant (invasive lobular carcinoma, infiltrating ductal 

carcinoma) features. DM specimen images were provided for reference. Readers were 

instructed on refraction-based contrast mechanisms, guided through the use of the 

softcopy review workstation, and introduced to several common DEI image artifacts. 

Possible image manipulations included magnification, zoom, pan, and window/level 

adjustments. Training required approximately 30 minutes. Informed consent was 

obtained from participating radiologists. 

 All images were displayed on the calibrated softcopy workstation. Each DEI 

image acquired with full-compression was displayed side-by-side with a DEI image 

acquired either half- or un- compressed. A reference DM image acquired at full-

compression was displayed on a second monitor. This image was for reference only, 

displaying each ROI using attenuation contrast in a familiar format. ROIs were circled 

and pathology was provided, with instruction to consider positioning differences between 

images. Five expert radiologists were asked to compare lesion characteristic visibility 

between each DEI image pair using a seven-point quality score scale. Readers were given 

a five minute break for every 50 minutes of read time with additional breaks as desired. 

The average read time was two hours. A research assistant was present to assist the 

readers with any technical difficulties. 
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 Statistical Method. We fit a multivariate linear mixed model to investigate 

whether scores differed by breast compression. In the model, the responses were the 

scores generated by the five readers. To account for the heterogeneity among the 

specimens, in addition to the main effect of full-compression versus half-compression 

and full-compression versus no-compression, other covariates included in the regression 

model were the specimen thickness when un-compressed, specimen type (cadaveric 

versus mastectomy), rocking curve position (-½ WD, peak or +½ WD), lesion type 

(atypical, benign, in situ or malignant), and variables representing the five readers. 

  Furthermore, the interactions between breast compression and all these covariates 

were included in order to study possible modifying effects due to these covariates. We 

used 0.05 / 20 = 0.0025 as the level for statistical significance to adjust for a total of 20 

comparisons, with a 95% confidence interval. Each region of interest from the specimen 

was treated as random effect in the linear mixed model. The model fit was carried out in 

SAS version 9 (SAS Institute, Cary, NC). 

11.5 Effect of Tissue Compression on Lesion Visibility with DEI  

 Specimen Parameters. Specimen parameters that could influence image quality 

include specimen thickness as well as the relative glandular and adipose tissue 

composition. Specimens with greater glandular composition will attenuate more x-rays 

and might demonstrate increased structural noise. Specimen thickness and percent 

density is listed in Table 11.1.  

 The median radiographic density of the specimens included in this study was 

comparable to the typical radiographic density for pre- and peri-menopausal women 

(Kelemen 2008). For the full-thickness specimens included in this study, the average un-
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compressed, half-compressed, and fully-compressed thicknesses were 6.46 cm, 4.97 cm, 

and 3.5 cm, respectively. Of the 21 ROIs, 13 were benign, one was atypical, and seven 

were malignant. The malignant lesions included ductal carcinoma in situ (DCIS) and 

invasive metaplastic carcinoma. 

 
  Glandular Adipose       Un-      Half-     Fully- 
       (%)      (%)  Compressed Compressed Compressed 
        Thickness    Thickness   Thickness 
            (cm)       (cm)      (cm) 
 
Specimen 1       10      90         3.9        2.9       2.0 
Specimen 2       20      80         3.9        2.9       2.0 
Specimen 3       30      70         3.9        2.9       2.0 
Specimen 4       40      60         3.9        2.9       2.0 
Specimen 5       90      10         6.7        6.1       3.4 
Specimen 6       30      70         5.8        4.3       2.9 
Specimen 7       50      50         5.1        3.8       2.5 
Specimen 8       10      90         7.1        5.3       3.6 
Specimen 9       40      60         6.5        4.9       4.0 
Specimen 10       20      80         6.0        4.7       3.2 
Specimen 11       30      70         8.0        6.7       5.5 
 
TABLE 11.1: Measured Specimen Thicknesses and Percent Densities. Specimens 
were compressed an average of 24.7 ± 1.2 (%) of resting thickness at half-compression 
and 46.6 ± 4.6 (%) of resting thickness at full compression. The glandular / fatty 
composition of each specimen was assessed by an experienced radiologist. 
 
 Qualitative Assessment of Lesion Visibility as a Function of Tissue Thickness. 

Attenuation increases as tissue thickness increases. Images acquired at the peak of the 

rocking curve have a substantial proportion of image contrast due to x-ray absorption, 

and so image quality was expected to deteriorate with increasing tissue thickness. We 

expected refraction contrast images to be less affected by tissue thickness due to the 

properties of x-ray refraction and excellent scatter rejection by the analyzer crystal.  

 As can be seen qualitatively in Figures 11.5 and 11.6, DEI image quality did not 

vary greatly with respect to tissue thickness for either cancerous or benign pathologies, 

 187



respectively. As expected, DEI images acquired at the rocking curve peak suffered a 

greater loss of lesion detail visibility than those acquired at the ±½ WD due to contrast 

based predominantly on attenuation contrast mechanisms. Qualitatively, structural noise 

increased as tissue thickness increased, even on DEI images.  

 
FIGURE 11.5: Effect of Tissue Thickness on Cancerous Lesion Visibility. The circled 
region of interest contained extensive comedo-type ductal carcinoma in situ of nuclear 
grade three with necrosis and lobule cancerization, without calcifications. The left panel 
depicts a digital mammogram of a mastectomy specimen. The panel on the right shows 
the same lesion, cropped and shown at full-, half-, and un-compression at each DEI 
rocking curve position. 

  
FIGURE 11.6: Effect of Tissue Thickness on Benign Feature Visibility. All images 
were acquired at 30 keV. This ROI represents a vascular calcification. DM images are 
displayed in the first column (A,B). The second column (C,D) represents images acquired 
at the peak of the rocking curve, and the third column (E,F) were acquired at the + ½ WD. 
The fully compressed DM image (panel A) was acquired with a surface dose of 7.46 
mGy while the dose required to acquire an optimal image of the uncompressed specimen 
(panel B) was 30.93 mGy. DEI images were acquired with relatively constant doses at all 
thicknesses, with an average dose of 0.30 mGy for the above images. 
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 Reader Study Analysis. Expert radiologist perception of image quality was 

ascertained through a reader study where DEI images of fully-compressed specimens 

were compared to DEI images acquired at either half- or un-compressed thickness. The 

average scores recorded by the radiologists were plotted as a function of the difference in 

tissue thickness, shown in Figure 11.7. As the difference in tissue thicknesses increased, 

radiologists tended to perceive lesion features supportive of the diagnosis better in the 

fully-compressed images. DEI lesion feature visibility tended to decrease more rapidly 

with increasing thickness for images acquired at the peak of the rocking curve, where 

contrast is based predominantly on x-ray absorption. 

 
FIGURE 11.7: Trend in Lesion Perception as Tissue Thickness Increases. The 
average scores reported by the radiologists were plotted as a function of the difference in 
tissue thickness, measured in cm. The score values could range from -3 (the fully-
compressed DEI image displays lesion feature visibility supportive of the diagnosis 
significantly worse than the DEI image acquired with reduced compression), to 0 (no 
difference between either image), to +3 (the fully-compressed DEI image displays lesion 
feature visibility supportive of the diagnosis significantly better than the DEI image 
acquired with reduced compression). 
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 No evidence indicates that the scores depend on the thickness of the 

uncompressed breast (p-value = 0.80). From the fitted model, we predicted the mean 

scores for fully-compressed versus half-compressed and fully-compressed versus un-

compressed across different imaging conditions or features of the specimen. Overall, 

there is no evidence that the scores given by radiologists for fully-compressed versus 

half-compressed are different from zero (p-value = 0.147). However, the mean score for 

fully-compressed specimens versus un-compressed specimens is significantly different 

from zero (p-value = 0.0004). 

 Because previous DEI research only included thin tissue specimens, we sought to 

determine if there was a difference between these thin mastectomy specimens and full-

thickness breast tissues. The results shown in Table 11.2 demonstrate that DEI image 

quality is not significantly decreased for approximately a 25% change in tissue thickness. 

Overall, feature visibility was significantly different between DEI images acquired with a 

50% difference in tissue thickness. When evaluated by specimen type, mastectomy thin 

specimens or cadaveric thick specimens, we did not detect a difference in reader 

perception of lesion characteristic visibility. It is noted that the findings for a 50% 

difference in thickness in cadaveric thick specimens approached statistical significance.  

       Difference in     Standard 
    Tissue Thickness Mean       Error   95% CI  p-value 
 
Cadaveric                   25%                 0.3863      0.3357     (-0.273, 1.046)     0.2504 
             50%                 0.9678      0.3357     (0.308, 1.627)       0.0041 
Mastectomy            25%                 0.1019      0.2331     (-0.356, 0.560)     0.6623 
             50%                 0.2212     0.2331     (-0.237, 0.679)     0.3430 
 
TABLE 11.2: Reader Study Results: Effect of Specimen Type. The p-values were 
calculated based on the calculated means, standard errors, and a 95% confidence interval 
(CI). Radiologist perception of lesion visibility for a 50% difference in tissue thickness in 
cadaveric specimens approached significance. 
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  We also evaluated whether rocking curve position influenced radiologist 

perception of lesion visibility for differences in tissue thickness, shown in Table 11.3. We 

did not detect a difference in lesion visibility dependent upon rocking curve position for a 

25% difference in tissue thickness. For a 50% difference in tissue thickness, we found a 

significant difference for the -½ WD rocking curve position (p-value = 0.0001), and the 

results approached significance at the peak and +½ WD positions. 

    
         Difference in     Standard 
    Tissue Thickness Mean       Error    95% CI   p-value 
 
 -½ WD  25%                0.2631       0.2002     (-0.130, 0.656)     0.1892 
   50%                0.7818       0.2002     (0.389, 1.175)       0.0001 
 Peak  25%                0.1679       0.2002     (-0.225, 0.561)     0.4020 
   50%                0.5056       0.2002     (0.113, 0.899)       0.0118 
 +½ WD  25%                0.3012       0.2002     (-0.092, 0.694)     0.1329 
   50%                0.4961       0.2002     (0.103, 0.889)       0.0135 
 
TABLE 11.3: Reader Study Results: Effect of Rocking Curve Position. Scores for 
both specimen types (i.e. cadaveric and mastectomy) were averaged at each rocking 
curve position and compression level. The p-values were calculated based on the 
calculated means, standard errors, and a 95% confidence interval (CI). For a 50% 
difference in tissue thickness, radiologist perception of lesion visibility was different for 
each rocking curve position, but we only found statistical significance at the –½ WD 
position. The results approached significance at the peak and +½ WD positions. 
 
 Moreover, we investigated whether radiologist perception of lesion visibility was 

influenced by the type of lesion (benign, atypical, in situ, or malignant). Results are 

displayed in Table 11.4. The only significant difference was found for benign lesions (p-

value < 0.0001), when the difference in tissue thickness was approximately 50%. It is 

interesting to note that benign lesion visibility for a 25% difference in tissue thickness 

approached statistical significance. Additionally, visibility of in situ lesions for a 50% 

difference in tissue thickness approached significance (p-value 0.0087). Thus, for a 25% 
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difference in tissue thicknesses, radiologists tended to perceive benign lesion features 

worse with reduced compression. For a 50% difference in tissue thickness, the difference 

in radiologist perception of benign lesion features between the image pair was 

significantly different, and we detected a trend for decreased perception of in situ lesion 

features for this difference in tissue thickness. 

 
          Difference in        Standard 
       Tissue Thickness     Mean         Error         95% CI       p-value 
 
 Benign     25%                0.3719        0.1454       (0.086, 0.657)       0.0108 
      50%                0.6389        0.1454       (0.353, 0.925)      <0.0001
 Atypical    25%                0.3052        0.4643       (-0.607, 1.217)     0.5113 
      50%                0.5500        0.4643       (-0.362, 1.462)     0.2367 
 In Situ     25%                0.3941        0.2932       (-0.182, 0.970)     0.1794 
      50%                0.7723        0.2932       (0.196, 1.348)       0.0087 
 Malignant    25%                -0.09481     0.2641       (-0.614, 0.424)    0.71975 
      50%                0.4167        0.2651       (-0.102, 0.935)     0.1152 
 
TABLE 11.4: Reader Study Results: Effect of Lesion Type. The p-values were 
calculated based on the calculated means, standard errors, and a 95% confidence interval 
(CI). Difference in the perception of benign lesion visibility approached significance for a 
25% difference in tissue thickness, and achieved significance at a 50% difference in 
tissue thickness. In situ lesion visibility also approached significance for a 50% 
difference in tissue thickness. 
 
 Because DM images were obtained with different imaging parameters than DEI, 

direct comparisons are not appropriate between the effect of compression on DEI images 

and DM images. However, we did acquire DM images at each compression level, 

allowing the DM proprietary software to automatically calculate the optimal imaging 

parameters at each compression level. The average score reported for fully-compressed 

versus half-compressed DM images was 0.5 ± 1.2. However, as the tissue thickness 

increased, scores for fully-compressed versus un-compressed averaged 1.3 ± 1.1. This 

suggests that, even with optimization of imaging parameters as tissue thickness increases, 
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the lesion feature visibility deteriorates with increasing tissue thickness for DM. When 

compared to the overall average scores for DEI lesion visibility at 25% and 50% 

difference in tissue thickness, the DEI images tended to received an overall better score 

than DM images, shown in Figure 11.8, even though DM image acquisition was 

optimized at each compression level whereas DEI image acquisition parameters remained 

constant. 

 
FIGURE 11.8: Overall, DEI Lesion Visibility Less Affected than DM. The score 
values could range from -3 (the fully-compressed DEI image displays lesion feature 
visibility supportive of the diagnosis significantly worse than the DEI image acquired 
with reduced compression), to 0 (no difference between either image), to +3 (the fully-
compressed DEI image displays lesion feature visibility supportive of the diagnosis 
significantly better than the DEI image acquired with reduced compression). When the 
lesion visibility scores were averaged across all readers for DEI and Digital 
Mammography (DM), the reported scores for DEI tended to suggest that DEI was less 
affected by increasing tissue thickness than DM, although this result was not significant.  
 
11.6 Discussion 

 Breast soft tissue poses many challenges due to minimal differences in the 

radiographic appearance of benign and cancerous tissues. Although often perceived as 

painful, compression is necessary for sufficient image quality in conventional 
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mammography. This discomfort can be mitigated through optimized imaging techniques 

and technologies (Dibble 2005, Dullum 2000, Markle 2004, Miller 2008, Montgomery 

208), but an ideal system would not require compression. Refraction sensitivity, higher x-

ray energy, scatter rejection by the analyzer crystal, use of a monochromatic beam, and 

all unique features available using DEI might allow reduced breast compression without 

compromising lesion feature visibility supportive of the pathologic diagnosis.  

 Our reader study suggests that radiologist perception of DEI image quality is not 

significantly changed for a 25% difference in tissue thickness, but as the difference in 

tissue thickness approaches 50%, differences in radiologist perception of lesion visibility 

were detected. With a 50% difference in tissue thickness, statistically significant results, 

indicating decreased lesion visbility, were found at the –½ WD rocking curve position. 

Scores for the peak and +½ WD rocking curve positions at a 50% difference in tissue 

thickness approached significance, indicating that the lesion visibility might tend to 

decrease at these rocking curve positions as well at greater tissue thicknesses. Although 

images acquired at the ±½ WD represent the same physical contrast mechanism, 

radiologist perception of the images or system instability might have led to the scoring 

differences found in the current study. 

 We expected the peak rocking curve position to be negatively affected by 

increasing tissue thickness moreso than refraction contrast images.  However, the current 

study suggests that lesion feature visibility was decreased at all three rocking curve 

positions when the difference in thickness was approximately 50%, with significant 

difference for the –½ WD position, yet no differences were detected for any rocking curve 

positions for a 25% difference in tissue thickness. In spite of the superior physics of DEI 
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image contrast, a combination of multiple refraction events and increased structural noise 

are likely the causes of decreased lesion visibility for 50% difference in tissue thickness. 

But, these results are encouraging- suggesting that some reduction in breast compression 

might be possible for DEI applied to clinical breast imaging. 

 This difference at the –½ WD rocking curve position, and not also at the +½ WD, 

might have occurred due to analyzer or monochromator drift. This difference might 

disappear with a larger set of specimens, or with different radiologists. Moreover, we 

detected a significant difference in lesion perception scores between the five radiologists. 

This demonstrates a strong need to develop a refraction-contrast breast feature atlas in 

order to thoroughly train radiologists in refraction-contrast image interpretation, with 

comparison to conventional radiographic features when DEI is applied clinically.  

 Except in our previous studies (Parham 2009, Faulconer 2009a), to the best of our 

knowledge, all DEI breast specimen imaging has been performed using thin specimens 

not representative of clinical imaging parameters. In the current study, radiologist 

perception of lesion visibility did not depend on uncompressed specimen thickness. Thus, 

mastectomy specimens and the full-thickness cadaveric specimens might not demonstrate 

substantially different lesion feature visibility. Therefore, conclusions drawn from prior 

studies using such thin specimens might be relevant to imaging full-thickness specimens. 

However, this implication might be biased due to the fact that the mastectomy specimens 

in the current dataset typically contained malignant features, while the lesions in the 

cadaveric specimens typically contained benign features. Although our previous work 

suggested that the lesion type did not influence radiologist perception of lesion features in 
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full-thickness breast specimens at the [333] reflectivity (Faulconer 2009a), the current 

data suggest that benign feature perception might be affected by tissue thickness. 

 The limitation to specimen imaging is an inherent constraint on the current study 

since formalin-fixed tissues do not compress in the same manner as living tissue. 

Formalin dehydrates tissues and alters the structure of collagen by decreasing the d-

spacing, with more severe effects associated with longer periods of fixation (Fernández 

2005). This may affect lesion radiographic appearance and the mechanics of breast 

compression. Inherent lesion stiffness might also affect image quality with respect to 

tissue thickness. As the tissue is compressed, the breast parenchymal tissue and the lesion 

thicknesses might not change at the same rate. This might affect the x-ray attenuation, 

and thus the attenuation contrast. Compression is less likely to induce a large change in 

the interface between these regions to affect refraction contrast with respect to lesion 

stiffness. 

 Specimens obtained from surgical pathology have been sliced throughout the 

entire specimen, as per usual clinical practice. Compressing a sliced specimen does not 

represent a realistic situation, with un-reproducible shift artifacts and unrealistic 

compression mechanics. Thus, our study used thin specimens with malignancies and 

cadaveric full-thickness, un-sliced specimens. Because of the many differences between 

specimen and in vivo imaging, this study should be repeated when a DEI system is 

available for clinic-based studies. 

 Several drawbacks to reduced compression might still exist, such as uneven 

exposure, motion artifacts, and the ability to image near the chest wall. Digital post-

processing algorithms can adjust images acquired with uneven tissue exposure levels 
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allowing excellent contrast through both thick and thin regions at breast edges. 

Immobilization of the breast combined with breathing techniques during imaging might 

help minimize motion artifacts. Compression is typically used to pull tissue away from 

the chest wall. Patient positioning and imaging techniques might facilitate imaging near 

the chest wall without breast compression. 

 In summary, we believe that some degree of reduced compression can generate 

DEI images with excellent lesion feature visibility, free from scatter, and without a high 

radiation dose. While recent studies have shown that digital mammography image quality 

can be preserved with a minimal reduction in tissue thickness (Saunders 2008), DEI 

might allow a 25% or greater reduction in breast tissue thickness without significantly 

compromising lesion feature visibility. This study demonstrates the potential of DEI to 

acquire images of breast lesions with reduced compression without substantially 

compromising visibility of lesion features important for the pathologic diagnosis. This 

might have an important impact on patient comfort, potentially increasing compliance 

with annual mammographic screening recommendations.  

11.7 Future Directions 

 Because of the several limitations that were unavoidable at the time of this study, 

the data should be confirmed in future clinical studies. Data should be collected using a 

clinical DEI system, with particular attention to women with large breasts or women with 

lesions located near the chest wall. A recent study suggested that tomosynthesis might 

allow a reduction in breast compression without compromising mass and calcification 

conspicuity (Saunders 2009). It would be interesting to evaluate how three-dimensional 

DEI, through either the existing DEI-CT system or through a limited-angle reconstruction 
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of a set of DEI images, might influence lesion visibility with respect to varying breast 

tissue thicknesses. Further, because reduced breast compression would likely increase 

patient comfort, a quality of life survey might evaluate whether this reduction in 

compression affects patient perception of pain or anxiety related to breast imaging.  
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CHAPTER 12: READER STUDY EVALUATION OF A DIFFRACTION-
ENHANCED IMAGING PROTOTYPE 

 
12.1 Overview 

 Portions of this chapter include previously published data (Faulconer 2009a) 

reprinted with kind permission from Elsevier: Academic Radiology, in press. This 

chapter discusses the performance evaluation of a DEI prototype in a clinically relevant 

task. First, we provide an overview of the project. Then hypothesis and goals of the 

project are discussed, before a thorough description of the research methods, results and 

discussion. Finally, design considerations for a second-generation DEI prototype system 

are presented. 

12.2 Motivation for the Development of a DEI Prototype 

 Cancer imparts distinct and measurable changes in breast tissue at the cellular 

level. Contrast based on the spatial distribution of x-ray attenuation is not always 

sufficient to distinguish between normal and cancerous tissues. However, additional 

contrast can be gained from the refraction of x-rays, which is exploited by phase-contrast 

imaging. X-ray refraction contrast is not yet widely used in medical imaging, although 

several phase-contrast imaging devices are in various stages of research and development 

(Chapman 1997, Cloetens 1999, Ingal 1999, Pagot 2005, Peele 2005, Pfeiffer 2007, 

Tanaka 2005, Weitkamp 2005, Wu 2003). 

 Traditionally, DEI has used intense, highly collimated Synchrotron Radiation (SR) 

to produce images based on absorption, refraction, and extinction contrast (Chapman 

1997, Chapman 1996, Hasnah 2002b). Because DEI refraction contrast decreases 
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proportionally with (energy)-1 whereas absorption contrast decreases proportionally with 

(energy)-3 (Bushberg 2002), relatively high energy x-rays (60 keV) can be used to 

produce soft tissue contrast with a greatly reduced subject radiation dose.  

 To be clinically useful, the DEI system must transition to an x-ray tube source, 

but x-ray tube technology has only recently been capable of generating sufficient flux to 

overcome the limitations imposed by the use of crystal optics. Previous efforts to 

translate the DEI system into an SR-independent, clinically viable imaging modality have 

experienced major limitations, such as restriction to low x-ray energies without the 

capability to image thick objects (Forster 1980, Ingal 1998, Kim 1998, Vine 2007, Wang 

2006). Recently, our laboratory developed a DEI prototype (DEI-PR) utilizing a readily 

available tungsten x-ray tube source and traditional DEI crystal optics capable of 

acquiring images of phantoms and full-thickness breast tissue specimens at 60 keV with 

extremely promising initial results (Parham 2009). 

12.3 Hypothesis and Goals 

 It is our hypothesis that our DEI-PR generates images with comparable image 

quality to those produced by the traditional synchrotron-based DEI (DEI-SR) system, 

while avoiding significant loss of resolution or additional noise. To this end, we 

performed imaging studies with full-thickness human breast specimens. This allowed us 

to measure radiologist perception of image quality parameters with the DEI-SR and DEI-

PR systems. In this paper, we present our first results of imaging full-thickness human 

breast tissue specimens on a non-synchrotron-based DEI prototype system. We evaluated 

the performance of this system using a clinically relevant task, demonstrating its potential 

utility as a clinical mammography system. 
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12.4 Study Design and Methods 

 All experiments were conducted with appropriate approvals granted by the 

University of North Carolina at Chapel Hill (UNC-CH) Institutional Review Board. The 

studies were also HIPAA-compliant. 

 Specimen Selection. Six mastectomy specimens were obtained from the 

Department of Pathology at UNC-CH. Specimens were fixed in 10% buffered formalin 

and stored at room temperature. The specimens were mounted as shown in Figure 12.1. 

While blinded to history, lesion pathology, and lesion location, a breast imaging 

radiologist (EDP) in the UNC-CH Department of Radiology identified 14 regions of 

interest (ROIs) by using Digital Mammography (DM) specimen images. Radiographic 

features were grouped into two categories: (1) masses (which included all lesions 

characterized by EDP as masses, architectural distortions, focal densities, and asymmetric 

densities) and (2) calcifications.  

   
FIGURE 12.1: Specimen Mounting. The specimens were sliced as per usual clinical 
practice prior to inclusion in the current study. The slices were realigned and care was 
taken to eliminate air bubbles from the tissue layers before mounting the specimen 
with deionized water in the imaging container, with mild compression in order to 
prevent movement. 
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 Diffraction-Enhanced Imaging. All DEI imaging was performed at the National 

Synchrotron Light Source X15A beamline at Brookhaven National Laboratory in Upton, 

New York. The DEI-SR setup is shown in Figure 12.2 Panel A as described previously 

(Zhong 2000). The linear collimated beam from the bending-magnet SR source was 130 

mm by 2 mm using either a Bragg [333] or [111] crystal reflection. The DEI-SR source-

to-detector distance was approximately 18 m.  

 
FIGURE 12.2: DEI-SR and DEI-PR Configurations. Panel A depicts the 
traditional synchrotron-based DEI configuration, which implements a synchrotron 
source. Panel B shows the prototype DEI (DEI-PR) setup, with two significant 
modifications from the traditional system. First, the x-ray source is a commercially 
available tabletop x-ray tube. Second, DEI-PR uses a single-crystal monochromator 
instead of the traditional double-crystal monochromator. Both systems use a fan-
beam. 
 
 The double-crystal monochromator (Shaw Monochromators, Riverton, KS) was 

comprised of a series of two perfect silicon crystals mounted on independently tunable 

 202



stages in a continuously helium-flushed steel tank. The collimated monochromatic x-ray 

beam then interacts with the object being imaged before diffracting from the analyzer 

crystal, only reflecting x-rays that fall within a narrow range of energies and angles.  

 Refraction contrast images were acquired at the ±½ Darwin width (WD) of the 

rocking curve, which is equal to half of the full width at half maximum. Attenuation 

contrast images were acquired at the peak of the rocking curve. The flux of the post-

monochromator beam was measured using an ion chamber. Images were acquired with a 

stimulable phosphor Fuji ST-VI image plate (Fuji Medical Systems, Stamford, CT) and 

developed by laser on the Fujifilm BAS-2500 image plate reader (Fuji Medical Systems, 

Stamford, CT). The image plate was affixed perpendicular to the x-ray beam diffracted 

from the analyzer crystal at twice the Bragg angle. 

 There were two primary modifications made to the DEI-PR system, depicted in 

Figure 12.2 Panel B. For a complete description of the DEI-PR system, please refer to 

(Parham 2009). The DEI-PR utilized a stationary-anode tungsten Comet MXR-160HP/20 

x-ray tube source (Comet AG, Flammatt, Switzerland) with a 0.4 mm focal spot. This 

was powered by the Titan 160 x-ray system (GE Inspection Technologies, Ahrensburg, 

Germany), with a maximum voltage of 160 kV and 1 kW total power. The single-crystal 

monochromator (Shaw Monochromators, Riverton, KS) passed both the 59.318 keV Kα1 

and the 57.982 keV Kα2 characteristic tungsten emission lines, as well as the 

Bremsstrahlung within a narrow range of these energies. The source-to-detector distance 

was 959 mm ± 5 mm.  

 There were 79 DEI-SR images (37 at [333], 42 at [111] reflectivity) and 30 DEI-

PR images (22 at [333], 8 at [111] reflectivity) acquired. DEI-SR and DEI-PR images 
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were acquired at 60 keV with a typical surface dose of 0.1 mGy. Sample and detector 

scanning protocols, described in depth previously (Zhong 2000), were the same for both 

the DEI-SR and DEI-PR systems. However, imaging time for the DEI-PR system was 

greater than that for the DEI-SR system by a factor of 10. Vertical linear artifacts created 

by crystal glitches were corrected manually using an IDL (ITT Visual Information 

Systems, Boulder, CO) image processing algorithm that included an in-house flattening 

algorithm applied to the image. DEI image files were converted from tiff to DICOM 

format using DICOMAccess (DesAcc, Chicago IL) software for display on the Sectra 

IM.5X mammography softcopy review workstation (Sectra, AB., Shelton, Connecticut). 

 Full-Field Digital Mammography. The specimens were imaged on the GE 

Senograph 2000D (Waukesha, WI) at UNC Hospitals. Exact positioning of the full-

thickness breast tissue specimens was strictly maintained throughout imaging on DEI-SR, 

DEI-PR, and DM systems. The signal-to-noise ratio of the GE Senograph 2000D was 

83.49 at 25 mm, 71.65 at 40 mm, and 56.51 at 60 mm. The half-value layer was 

calculated to be 0.374, as measured using the ACR phantom. The compression paddle 

was brought into contact with the specimen container sides, allowing the GE software to 

automatically calculate clinically optimal imaging parameters based on specimen 

thickness.  

 Pathology Correlation. An expert pathologist (CAL) in the UNC-CH 

Department of Pathology and Lab Medicine performed pathologic sectioning of the 

14 ROIs previously identified. In these 14 ROIs, there were 10 benign lesions, 2 

atypical lesions and 2 cancerous lesions. One cancer was ductal carcinoma in situ 

(DCIS) and one was an invasive metaplastic carcinoma.  
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 Flux, Dose, and Signal Measured at the Detector. For DEI images, the flux, dose, 

and signal measured at the detector were calculated using IDL (ITT Visual Information 

Systems, Boulder, CO). Using the measured values from the photon-counting detector, 

flux in the DEI-SR and DEI-PR systems was calculated to be 1.5x107 ph/s/cm2 and 

3.83x104 ph/s/cm2, respectively. DEI-SR flux, and subsequently the dose rate, decreases 

from the time of electron injection. Scan speed was modified for DEI-SR imaging to 

match the dose delivered to the specimens during DEI-PR imaging, delivering an average 

of 0.1 mGy surface dose.  

 MGD depends on tissue thickness and the percentages of glandular and 

adipose tissue present in the tissue. An expert radiologist (EDP) determined the ratio 

of glandular and adipose tissue by reviewing DM specimen images. Specimen 

thicknesses were recorded as the thickness of the imaging container. The percent 

density and calculated thicknesses of glandular and adipose tissues, given total tissue 

thicknesses, are listed in Table 12.1 and were used to calculate the MGD for each 

image.  

 DEI-SR and DEI-PR refraction-contrast images were acquired at 60 keV, where 

surface dose and MGD are low. The average DEI-SR surface dose and MGD were 0.09 

mGy and 0.05 mGy, respectively. The average DEI-PR surface and MGD were 0.09 

mGy and 0.04 mGy, respectively. DM images were acquired at 30 keV with substantially 

higher radiation exposure, averaging 25.63 mGy surface dose and 3.99 mGy MGD. The 

average measured signal at the detector was determined by averaging counts across the 

raw image.  
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      Glandular   Adipose 
  Percent  Thickness Thickness 
  Density     (cm)      (cm) 
 
Specimen 1   20%      1.35      5.40 
Specimen 2   30%      2.55      5.95 
Specimen 3   20%      1.70      6.80 
Specimen 4   50%      2.25      2.25 
Specimen 5   30%      2.55      5.95 
Specimen 6   30%      2.55      5.95 
 

TABLE 12.1: Percent Density and Specimen Thickness. The percent density is the 
percent of the breast tissue composition that is glandular tissue. Considering the full 
resting thickness of the specimen, relative thicknesses of glandular and adipose tissue 
were calculated for each specimen. These tissue composition measurements were used to 
calculate the mean glandular dose, given additional knowledge of the x-ray energy and 
flux. 
 
 Reader Study. A training set of six ROIs in four specimens was compiled 

detailing the interpretation of refraction-contrast DEI images containing both benign 

(fibrous tissue spiculations) and malignant (invasive lobular carcinoma, infiltrating ductal 

carcinoma) pathologies. DM specimen images were provided for comparison. Readers 

were instructed on refraction-based contrast mechanisms, guided through use of the 

softcopy review workstation and introduced to several common DEI image artifacts. 

Possible image manipulations included magnification, zoom, pan, and window / level 

adjustments. Training required approximately 30 minutes. Informed consent was 

obtained from participating radiologists. 

 A panel of three expert radiologists evaluated a set of 123 images acquired on the 

DEI-SR, DEI-PR, or DM systems. Images were displayed one at a time with ROIs circled 

on a calibrated Sectra IM.5X mammography softcopy workstation (Sectra, AB., Shelton, 

Connecticut). A worksheet was provided with the pathologic results specific to the ROI 

to be evaluated in each image. Readers assessed whether general radiographic features 
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were present in the ROI using BI-RADS receptors (e.g. mass, calcification), then 

determined how easily each feature present could be seen, ranked on a scale from 1 (not 

easily seen) to 5 (easily seen). For each pathologic feature in the diagnosis, readers 

indicated how well the imaging findings provided information supportive of the 

pathologic diagnosis, ranked on a scale from 1 (image completely unsupportive of the 

diagnosis) to 5 (image completely supportive of the diagnosis). Readers were given a five 

minute break for every 50 minutes of read time with additional breaks as desired. The 

average reading time was 1.5 hours. A research assistant was present to assist the readers 

with any technical difficulties. 

 Statistical Method. We investigated if perception of radiographic features differed 

on the DEI-SR and DEI-PR systems with consideration for the influence of specific 

crystal reflectivities and rocking curve position. We used the Generalized Estimating 

Equations (GEE) models for each radiographic feature, adjusting for system, interaction 

between rocking curve position and system, and interaction between reflectivity and 

system. Chi-square test procedures were used for the multiple comparisons. Since we 

evaluated four conditions (there are two systems, DEI-SR and DEI-PR, as well as two 

reflectivities, [111] and [333]), we adopted p= 0.0125 or 0.05/4 as the significance level 

for the conservative Bonferroni multiple test adjustment. All analyses were performed 

using SAS 8.0 statistical software (SAS Institute, Cary, NC). 

12.5 Evaluation of Imaging Results for the DEI-PR and DEI-SR Systems 

 Phantom Imaging. The objective of this study was to compare the images 

generated by the DEI-PR system to the traditional DEI-SR system with optimal imaging 

parameters applied (Parham 2006). Initial phantom imaging using the DEI-PR system 

 207



demonstrated successful refraction contrast of a test object on the scale of 100 μm, shown 

below in Figure 12.3 (Parham 2009). It is apparent that the DEI-PR images have reduced 

contrast and resolution with increased noise as compared to the DEI-SR images. 

 
FIGURE 12.3 DEI-PR Phantom Imaging. Images were acquired on both DEI-SR 
(panel A) and DEI-PR (panel B) at 60 keV at the +½ WD. The phantom was constructed 
of 500, 200, and 100 micron diameter nylon wires stretched across an Acrylic frame and 
secured with metal screws. These initial phantom images successfully demonstrated 
refraction contrast visibility of even the 100 micron nylon fiber. Reprinted with kind 
permission from Elsevier: Academic Radiology, 16(8), 2009, 911-917, Parham C, Zhong 
Z, Connor DM, Chapman LD, Pisano ED. 
 
 The contrast and differential SNR (SNRdiff) were calculated using the following 

formulas, and are displayed in Table 12.2: 

    SNRdiff = (IROI – Iback) / σback           (51) 
    Contrast = (IROI – Iback) / Iback          (52) 
 
The DEI-SR system generated better images of each diameter nylon wire with respect to 

contrast and the SNRdiff. Using NIH Image (developed at the U.S. National Institutes of 

Health and available on the Internet at http://rsb.info.nih.gov/nih-image/), the number of 

pixels spanned by the smallest nylon wire of 100 μm was measured. For DEI-SR, the 

span was 4.45 pixels, while for DEI-PR, the span was 5.11 pixels. This represents a 

13.03% difference, indicating a reduced ability to resolve fine details using the current 

DEI-PR system as compared to the traditional DEI-SR system. 
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   Wire Thickness (μm)           SNRdiff           Percent Contrast 

 DEI-SR  500   35.34         12.83 
    200   16.40          8.93 
    100    8.45          4.87 
 
 DEI-PR  500    4.76          8.90 
    200    3.65          4.92 
    100    1.80          2.46 
 
TABLE 12.2: Measured Image Quality Parameters of Nylon Wire Phantom. The 
Differential Signal to Noise Ratio (SNRdiff) was calculated using Equation 38; contrast 
was calculated using Equation 39.  
 
 DEI-PR Measured Detector Counts Lower than DEI-SR. When comparing the 

average measured signal at the detector, differences in detector counts for different 

samples are expected due to individual object properties such as object thickness and 

relative glandular density. Counts in DEI-PR images were consistently lower than DEI-

SR when considering the same specimen, although imaging parameters were matched as 

closely as possible. In general, the average measured DEI-SR counts were 136.94 ± 39.08 

counts per pixel while DEI-PR averaged 46.5 ± 9.31 counts per pixel. This might be 

explained by the difference in image acquisition time due to time- and light-

contamination of the image plate.  

 Qualitative Lesion Visibility on DEI-SR and DEI-PR Systems. Full-thickness 

breast tissue specimens were visualized well on both the DEI-SR and DEI-PR systems. 

The image quality and lesion feature visibility for images of benign and cancerous ROIs 

acquired at the ±½ WD and [333] reflectivity were only minimally decreased in the DEI-

PR images compared to the DEI-SR images, as shown in Figures 12.4 and 12.5.  
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FIGURE 12.4: Comparison of Benign Lesion Characteristic Visibility. The 
circled region of interest represents dense stromal sclerosis, a biopsy cavity, 
fibrocystic change and focal atypical ductal hyperplasia with associated calcifications. 
Panel A displays the digital mammogram standard, acquired at 22 keV. DEI images 
shown in panels B-E were acquired at 60 keV using the [333] reflectivity. 
Synchrotron-based DEI images are displayed in the first column; prototype DEI 
images are shown in the second column. The top row, panels B and C, displays the 
+½ Darwin width (WD) rocking curve position, the bottom row, panels D and E, 
displays the –½ WD rocking curve position. 
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FIGURE 12.5: Comparison of Malignant Lesion Characteristic Visibility. The 
magnified views of this region of interest represent apocrine-type ductal carcinoma in 
situ (nuclear grade 2-3 with necrosis without associated calcifications), proliferative 
fibrocystic change and duct ectasia. Panel A displays the digital mammogram 
standard, acquired at 29 keV. DEI images shown in panels B-E were acquired at 60 
keV using the [333] reflectivity. The first column (B,C) was acquired on synchrotron-
based DEI and the second column (E,D) was acquired on prototype DEI. The top row, 
panels B and E, displays the +½ Darwin width (WD) rocking curve position while the 
bottom row, panels C and D, displays the –½ WD rocking curve position.  
 
 Qualitative Effect of Crystal Reflectivity. To evaluate whether the crystal 

reflectivity influenced radiologist perception of radiographic and pathologic features 

important for the diagnoses, we included images of full-thickness specimens acquired at 

each reflectivity. Figure 12.6 depicts images acquired on the DEI-SR system at both the 

[111] and [333]. It is clear that the ±½ WD images acquired at the [111] reflection do not 

have as much edge enhancement as those acquired at the [333] reflection. The [111] 

images generally appear more similar to the absorption-based images acquired at the peak 

of the rocking curve and the DM images.  
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FIGURE 12.6: Effect of Crystal Reflectivity on Lesion Feature Visibility. This 
magnified region of interest contains duct ectasia, proliferative fibrocystic change, 
stromal sclerosis, and calcifications at pathologic analysis. The digital 
mammographic image is displayed in Panel A , acquired at 28 keV. Panels B through 
D show the region of interest acquired on the synchrotron-based DEI (DEI-SR) 
system at 60 keV, the [333] reflectivity, at the +½ Darwin width (WD), -½ WD and 
peak rocking curve positions, respectively. Panels E through G represent the same 
region of interest, x-ray energy and rocking curve positions acquired on the DEI-SR 
system at the [111] reflectivity.  
 
 Reader Study Analysis. Expert radiologists evaluated a series of images, ranking 

the ease of visibility of lesion features, with results shown in Figure 12.7. Based on GEE 

models, we did not detect a significant difference between the average radiographic 

feature visibility rankings for either masses or calcifications on either the DEI-SR or 

DEI-PR systems. Neither rocking curve position nor crystal reflectivity influenced these 

findings. Readers also ranked feature visibility in DM images, but comparison to DEI-SR 

and DEI-PR performance is limited because DM images were not dose- or energy- 

matched to the DEI images.  

 Radiographic feature perception was not significantly better on the DM system, 

but was slightly improved. This difference is likely because lower x-ray energies 
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facilitate differential attenuation contrast and the DM images were acquired with 

significantly greater radiation dose, decreasing the effect of Poisson noise. It is interesting 

to note that calcifications were perceived roughly equally across all three systems. 

 
FIGURE 12.7: Reader Study Analysis of Radiographic Feature Visibility. Three 
expert radiologists ranked radiographic feature visibility on a scale of 1 (not easily 
appreciated) to 5 (easily appreciated). These scores were averaged for all mass-like 
and calcification regions of interest as perceived on the synchrotron-based DEI (DEI-
SR), prototype DEI (DEI-PR) and digital mammography (DM) systems. The graph 
on the left displays average scores obtained for images acquired at the [333] 
reflectivity while the graph on the right shows average scores for the [111] 
reflectivity.  
 
 Readers also scored how well they believed images correlated with known 

pathologic diagnoses. The average ranking for each diagnosis at the [333] and [111] 

crystal reflectivities are tabulated in Table 12.3. Based on GEE models, we did not detect 

a significant difference between the correlation with the diagnosis for any lesion type 

when comparing the DEI-SR and DEI-PR systems at the [333] reflectivity. However, for 

the benign pathologic lesions acquired at the [111] reflectivity, readers perceived the 

DEI-SR system better than these same features were perceived using the DEI-PR system 

(p-value 0.0003). No significant differences between DEI-SR and DEI-PR were detected 

at [111] for the atypical or cancerous lesions. However, for comparisons made between 

categories with lower frequencies (N), there is uncertainty about the results and further 

assessment will be needed.  
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 The dataset for [111] images acquired on the DEI-PR system was not complete, 

and small sample sizes might have influenced interpretation of the reader study analysis 

of pathologic findings. Considering the limitations of the current study, when we 

compared reader perception of correlation with pathologic diagnosis between the [333] 

and [111] datasets, we found that radiologists perceived malignant lesions significantly 

better (p-value <0.0001) at the [111] reflectivity as compared to the [333] reflectivity 

when imaging on the DEI-SR system. A similar significant difference was not detected 

for either benign or atypical lesions. A significant difference between [111] and [333] 

reflectivities was not detected for any type of pathologic diagnosis on the DEI-PR system.  

 
    DEI-SR   DEI-PR 
 
 Pathology      Standard      Standard    p- 
   Feature N Mean    Deviation N Mean    Deviation value 
 
333 Benign  17 1.84        0.35 9 1.94        0.74 0.8294 
 Atypical  9 1.87        0.43 6 2.03        0.51 0.4367 
 Malignant 11 1.94        0.47 7 1.88        0.48 0.5465 
 
111 Benign  18 2.05        0.38 4 1.46        0.25 0.0003 
 Atypical  6 2.06        0.69 4 2.03        0.37 0.9061 
 Malignant 18 2.92        0.89 -    -           -       - 
 
TABLE 12.3: Reader Study Analysis of DEI Image Correlation with Pathology. 
Three expert radiologists ranked correlation of imaging findings with pathologic 
diagnosis on a scale of 1 (image completely unsupportive of the diagnosis) to 5 (image 
completely supportive of the diagnosis). The difference between the mean scores for 
synchrotron-based DEI and prototype DEI (DEI-PR) were calculated using GEE models 
with Pearson correlations to obtain p-values. N represents the number of instances. Data 
is missing for DEI-PR images of cancerous lesions acquired at [111]. 
  
12.6 Preliminary Comparison between DEI-SR, DEI-PR and Tomosynthesis 

 Breast tomosynthesis (TS) prototypes are currently undergoing clinical trials and 

have the potential to offer three-dimensional breast imaging at approximately twice the 
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dose of conventional mammography, but substantially lower dose than dedicated breast 

CT systems. TS images have the advantage of lesion localization over planar 

mammography, but because TS reconstructs three-dimensional images over an 

incomplete dataset, the images have lower resolution than CT reconstructions. 

 Several groups have suggested the application of TS processing to refraction 

contrast images (Majidi 2007, Shimao 2007, Shimao 2008, Maksimenko 2007, Ando 

2008). Majidi et al demonstrated that an optimal number of angular views exists for MIR 

TS reconstructions, with each type of image possessing a different optimal number of 

angles (2007). Through phantom imaging and Simultaneous Iterative Reconstruction 

Technique, they demonstrated that attenuation contrast image reconstructions have an 

optimal maximum tomographic angle above 55°, and the maximal angle for refraction 

contrast image reconstructions ranges between 30° and 40°, while the optimal maximum 

angle for USAXS images is between 50° and 60° (Majidi 2007). 

 Another group performed DEI-TS, imaging at 17.5 keV using the Si [220] 

reflectivity (Maksimenko 2007). This study only imaged a small phantom and a 

cylindrical (3 mm diameter) breast tissue specimen. Images were reconstructed using a 

shrink-shift-and-add reconstruction technique. Still another group used x-ray dark-field 

refraction-contrast TS with shift-and-add reconstruction to image a finger joint (Shimao 

2007, Shimao 2008). Together, these studies demonstrated proof-of-principle for 

refraction-contrast TS through phantom and small specimen imaging. No studies have 

compared planar or three-dimensional DEI to either in-plane TS slices or full 

tomosynthesis reconstructions for full-thickness breast specimens. Further, no reader 

studies have been performed to allow these comparisons.  
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 The following presents a qualitative comparson of images of full-thickness breast 

tissue specimens on a clinical digital mammography system, a preclinical TS prototype, 

and both synchrotron- and x-ray tube- based DEI. The specimens were imaged using DEI 

and DM as described above in Section 12.4. The specimens were also imaged on the GE 

Senographe DS Acquisition System (Waukesha, WI) at UNC Hospitals. Exact 

positioning of the full-thickness breast tissue specimens was strictly maintained. The 

compression paddle was brought into contact with the specimen container sides, allowing 

the GE software to automatically calculate clinically optimal imaging parameters based 

on specimen thickness. Images were acquired with 36kVp using a dual-track Mo/Rh x-

ray tube with a flat panel amorphous silicon / cesium iodide directly digital detector. Both 

the DEI-SR and DEI-PR images were acquired at 60 keV and approximately 0.1 mGy of 

surface dose. 

 An experienced radiologist selected the in-plane TS slices most representative of 

each region of interest, then evaluated DEI-SR or DEI-PR images displayed beside these 

in-plane images. Figures 12.8 and 12.9 demonstrate comparison between images acquired 

of benign and malignant breast features on the DM, TS, DEI-SR and DEI-PR systems. 

An experienced radiologist determined that the in-plane TS images display lesion 

features significantly better than the two-dimensional DEI images, considering this 

preliminary evaluation with a limited data set and minimal controls.  

 Although two-dimensional DEI, using either the DEI-SR or DEI-PR systems 

might not demonstrate breast features better than in-plane TS slices, the comparison of 

DEI-CT or DEI-TS to conventional TS is an interesting potential future area of study. 
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FIGURE 12.8: Comparison of DM, TS, and DEI for Benign Lesions. This specimen 
contained dense stromal sclerosis, a biopsy cavity, fibrocystic change, and focal atypical 
ductal hyperplasia with associated calcifications. Digital mammography, tomosynthesis, 
synchrotron-based diffraction-enhanced imaging (DEI), and x-ray tube-based DEI images 
are shown in Panels A through D, respectively. 
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FIGURE 12.9: Comparison of DM, TS, and DEI for Malignant Lesions. This 
specimen contained three regions of interest (ROI). The circled ROI represented invasive 
metaplastic carcinoma. Digital mammography, tomosynthesis, synchrotron-based 
diffraction-enhanced imaging (DEI), and x-ray tube-based DEI images are shown in 
Panels A through D, respectively. 
 
12.7 Discussion 

 In 1980, Forster proposed the Schlieren method of diffractometry using a single-

crystal collimator and a one- or two-crystal analyzer (Forster 1980). This method was 

modified by Chapman in 1996 and renamed diffraction-enhanced imaging (Chapman 

1996). DEI traditionally required the use of a synchrotron radiation source in order to 

achieve sufficient flux for image acquisition because perfect crystal optics severely limits 

x-ray beam intensity (Chapman 1996, Chapman 1997). Developing a synchrotron-

independent DEI system is an integral step toward the clinical translation of this imaging 

modality. Our group developed a prototype DEI system using a commercially available 

stationary anode tungsten source and traditional DEI crystal optics (Parham 2009). 
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 The current study demonstrates acquisition of low-dose, high-contrast images of 

full-thickness breast specimens with a large field of view using this DEI-PR system. DEI-

PR performance was compared to the performance of the traditional DEI-SR system in 

clinically relevant tasks using a range of benign and malignant breast lesions.  

 For mammographic features (mass, calcification), no significant difference was 

detected between the DEI-SR and DEI-PR systems. Benign lesions were perceived as 

better seen by radiologists using the DEI-SR system than the DEI-PR system at the [111] 

reflectivity, with generalizations limited by small sample size. A similar significant 

difference was not detected between the DEI-PR and DEI-SR images of benign 

mammographic features at the [333] reflectivity. No significant difference between DEI-

SR and DEI-PR was detected for any other lesion type (atypical, cancer) at either crystal 

reflectivity. Thus, except for benign lesion characterizations at the [111] crystal 

reflectivity, our DEI-PR system performance was roughly equivalent to the traditional 

DEI system in a clinically relevant task. Overall, this project demonstrates a significant 

step toward clinical translation of this modality for breast cancer applications. 

 While considerable synchrotron-based DEI research has assessed breast lesion 

characteristic visibility, no previously published studies have evaluated full-thickness 

human breast tissue specimens on either a synchrotron- or an x-ray-tube- based DEI 

system (Fernández 2005, Fiedler 2004, Kiss 2004, Liu 2007, Pisano2000, Bravin 2007, 

Keyriläinen 2005). The current study demonstrates that images acquired on our DEI-PR 

system have clinical utility for breast imaging applications at reduced radiation dose.    

 Although DEI-SR and DEI-PR images were acquired with the same imaging 

parameters (e.g. x-ray energy, radiation dose, field of view), there was a marked decrease 
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in counts measured at the detector for DEI-PR images. This was likely due to the 

extended imaging times, causing signal decay on the imaging plate. Because of the 

extended imaging times required to acquire an image with the same surface dose on the 

DEI-PR system as compared to the DEI-SR system, the comparison made in the current 

study is not an ideal comparison. Moreover, the measured contrast and SNR was 

decreased on the DEI-PR as compared to the DEI-SR. Nonetheless, reader study analysis 

did not detect a significant difference in the ease of radiographic feature perception 

between the DEI-SR and DEI-PR systems.  

 Previous research demonstrated that the DEI-SR images correlate well with 

pathology as compared to digital mammography (Pisano 2000, Keyriläinen 2005). In 

most cases, we failed to detect a significant difference between pathologic correlation 

with the DEI-SR and DEI-PR systems for the pathologic types included in our sample. 

This implies that our DEI-PR system can demonstrate images of pathologic features that 

correlate equally well with the pathologic diagnosis as images acquired on the DEI-SR 

system. For the instance where we did detect a significant difference between the 

correlation with pathology for the DEI-SR and DEI-PR systems, the sample sizes are 

relatively small. These differences might be due to fundamental properties of the lesion 

that were not displayed equally using our flux-limited DEI-PR system that suffered from 

lower detector exposure than the traditional DEI-SR. However, these differences might 

disappear with a more robust sample size and distribution. 

 The [111] reflectivity is more commonly utilized by DEI researchers due to high 

flux and increased stability, but the [333] reflectivity has steeper rocking curve slopes and 

generates increased refraction contrast. This study demonstrated that generally, the [333] 
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and [111] reflectivities do not affect radiologist perception of radiographic features or 

interpretation of correlation with pathologic findings. For the instance where we did 

detect a significant difference in reader perception of image correlation with pathologic 

diagnosis when comparing [333] and [111] reflectivities, we suspect that the radiologists 

may have been more comfortable with the visual cues provided by the [111] images, 

which were more similar in appearance to the familiar absorption-contrast images. 

Furthermore, the [111] dataset was quite small, limiting the generalization of these results 

without further studies. The results give insight into the need to develop an atlas of breast 

features to help train radiologists in how to interpret the currently unfamiliar refraction 

contrast images and how these compare to conventional radiographic features. 

 While we were able to successfully produce images on the DEI-PR system, there 

were several design flaws unavoidable at the time of construction due to technology 

limitations. Primarily, our current DEI-PR system is photon-limited, demanding imaging 

times well outside of those acceptable for clinical use. Conventional mammography 

acquires images with sub-second imaging time, with softcopy display available within 

seconds. In its current configuration, the DEI-SR imaging system requires several 

minutes for image acquisition, while the DEI-PR imaging acquisition time required hours. 

Even though DEI can generate images at significantly lower dose than standard 

mammography, the appropriate number of photons per pixel for a clinically useful DEI 

image has not yet been established.  

 Because DEI is not as thickness-limited as conventional absorption-based 

mammography, planar DEI images of full-thickness breast specimens might provide 

sufficient lesion characteristic information without the increased dose required for 

 221



limited-angle tomography. Future studies might provide a quantitative comparison 

between planar DEI, DEI-CT, and TS. Further, these studies might also evaluate 

detection and the accurate assessment of extent of disease. 

 Given the specimen samples and readers in the current study, our first generation 

DEI-PR system successfully displayed refraction contrast with roughly equivalent 

radiographic detail visibility and pathologic correlation to the DEI-SR system. This study 

demonstrates an important step toward overcoming the technical limitations that have 

prevented clinical translation of this technology. This is the first application of a 

prototype incoherent-source DEI system to a clinically relevant imaging task.  

12.8 Future Directions 

 The focus of a second-generation preclinical DEI prototype should center on 

reducing imaging time while developing a system configuration amenable to clinical 

imaging. Considerations for a second-generation DEI prototype include crystal optics, x-

ray source, system configuration, digital detector, and user interface.  

 Several factors must be balanced when designing the crystal optics in a second-

generation DEI prototype, including temperature loading, type of crystal, crystal 

reflectivity, vibrational and thermal isolation, and control systems. With increasing 

photon flux, temperature loading on the DEI crystal optics might become a greater 

concern. Temperature loading causes expansion of the crystal’s unit cell, and thus 

increases d-spacing, affecting diffraction. Diffracted intensity at the Bragg angle 

decreases while an increased amount of diffuse scatter at non-Bragg angles is allowed to 

reflect from the crystal. Thus, thermal stability of the crystal optics affects the 

monochromaticity of the incident beam as well as the purity of the beam diffracted from 
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the analyzer. Crystal elasticity plays a role in the thermal loading properties, so it might 

be possible that another crystal type offers improved heat loading capabilities while 

providing Bragg diffraction. (Cullity 1978) 

 While DEI crystals have traditionally been made of silicon, other common crystal 

materials include germanium, quartz, graphite, and mica. These materials might allow 

improved heat loading or flux, with consideration for energies at which each crystal 

operates most efficiently. Using bent, or cylindrically curved, crystals might also allow 

for increased photon flux by increasing the effective area for diffraction from the crystal 

because the Bragg angle of incident x-rays is satisfied over a larger surface area (Wittry 

2001, Colonna 2001). Johan and Johansson curved crystals reduce vertical divergence 

and focus horizontally-divergent photons, but these crystals are not easily tunable and 

might not be robust enough in a clinical setting (Authier 2001, Bingölbali 2008). 

 If large crystals are used, parallel detection of multiple wavelengths might be 

possible by diffraction from different planes in different parts of the crystal (Wittry 2001). 

This might facilitate simultaneous K-edge imaging, with potential applications for 

calcification detection or contrast-enhanced imaging protocols (Lemacks 2002, Sarnelli 

2006). However, there are practical difficulties in crystal alignment, there are limited 

types of crystals that can facilitate parallel detection, and the diffraction efficiency is 

reduced (Wittry 2001). One group suggested the simultaneous use of a Bragg and Laue 

analyzer, allowing simultaneous acquisition of all data required to generate DEI 

absorption and refraction contrast, minimizing the potential for motion between image 

acquisitions (Hasnha 2002a). 
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 Different crystal reflectivities affect the flux of photons diffracted from the crystal, 

the amount of refraction contrast given a specific angular deviation, and have distinct 

stability properties. For example, the [111] reflection delivers significantly more flux to 

the detector at the cost of reduced refraction contrast, while higher order reflectivities, 

such as [333], are more susceptible to thermal fluctuations. The majority of DEI research 

has been performed at either the [333] or [111] reflectivities, although asymmetric 

reflections have been used. One group demonstrated that synchrotron radiation flux from 

perfect crystal monochromators could be increased by excitation using ultrasound waves 

to dynamically adjust crystal reflectivity (Polikarpov 1994). 

 Thermal fluctuation and mechanical vibration will both negatively impact the 

performance of a DEI system. The first-generation DEI system utilized a series of 

independently mounted arms, rubber pads, and a large granite block to dampen 

vibrational noise. However, shock vibration could still induce a detectable change in 

signal. Thermally-induced crystal fluctuations were minimized through water cooling 

systems and manual realignment control systems. The second-generation DEI system 

should implement real-time monitoring and automated correction for optimized thermal 

and vibrational isolation, with consideration for shock reduction. 

 The first generation DEI-PR utilized a 1 kW stationary anode x-ray tube. A more 

powerful x-ray tube capable of operating at increased tube voltages and with a rotating 

anode would allow higher heat-loading capacity without causing damage at continuous or 

near-continuous operation potential. X-ray tubes currently commercially available can 

operate at up to 100 kW at approximately 150 kV. Because this is polychromatic 

radiation composed of overlapping characteristic and bremsstrahlung spectrums, the 
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average photon energy is typically one-third to one-half the maximal value dictated by 

the peak kV, indicating an average photon energy range between 50 and 75 keV. Thus, 

current state of the art x-ray tubes typically used for computed tomography applications 

might be an optimal source for a second-generation DEI system. Several improvements 

in x-ray tube technology might allow for increased efficiency of these conventional x-ray 

sources, such as beam steering and increased anode surface area. Electron beam steering 

with magnetic fields increases efficiency by increasing the number of electrons that 

impinge on the anode (Reed 2000). Traditional anodes are disk-shaped, but other shapes, 

such as spherical, have been proposed that might increase heat-loading properties 

(Lustberg 2003). 

 Novel x-ray sources such as cold cathode field emission systems, microfocus 

systems, systems with multiple circular filaments, or laser x-ray sources might offer 

advantages in high-flux with extended use for DEI and DEI-CT applications. Field 

emission x-ray sources are receiving increased attention for their potential as medical 

imaging x-ray sources (Cao 2009, Yang 2008b). However, the existing prototypes have 

only been evaluated for small animal imaging and may not be suitable for high-flux 

imaging with DEI. 

 Microfocus x-ray tubes have been developed for use with x-ray spectroscopy and 

micro-CT applications. Phase contrast imaging prototype systems using a microfocus x-

ray tube have already been used to image tissues (Zhang 2008c, Kashyap 2008). 

Although these systems can generate x-rays at a range of energies (Maeo 2009), the flux 

is likely not sufficient for DEI due to lower power limitations. Multifilament x-ray 

sources, with circular filaments arranged concentrically, might allow sufficient flux for 
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DEI applications. The increased surface area of circular filaments allows increased 

electron production over traditional line filament x-ray sources, but also requires 

increased active cooling (Kim 2007). Theoretical modeling suggests that this type of 

concentric, circular multifilament source might allow comparable flux as a synchrotron 

source (Kim 2007). 

 Several types of laser systems can generate x-rays, including free-electron lasers, 

x-ray lasers, and Compact Light Sources (CLS). Although free electron laser sources 

have excellent power and high coherence, these systems are large and thus are not ideal 

for a tabletop DEI system (Edwards 2005). X-ray lasers use electronic transitions in 

highly stripped ions to generate highly coherent, monochromatic soft x-rays, but can not 

generate the hard x-rays required for medical imaging applications. CLS systems use 

Compton scattering to generate x-rays, generating a highly coherent beam that might 

perform well as an x-ray source for DEI applications (Bech 2009, Carroll 1990). 

(Umstadter 2002)  

 Reconfiguring the DEI system to maximally decrease imaging distances could 

decrease imaging time, but is limited by magnification and detector field of view. 

Because the DEI optimal imaging energy was previously estimated to be 60 keV, an ideal 

digital detector for a second-generation DEI prototype should have sufficient efficiency 

and accuracy at this energy. DEI uses monochromatic x-rays, so an energy-sensitive 

detector might also be useful. Because breast imaging requires the detection of very fine 

details with limited subject contrast, the detector would need to have excellent spatial and 

contrast resolution with a field of view large enough to accommodate the majority of 
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breast sizes. A cryo-cooled electronic detector might allow extended imaging times 

without drastically increased electronic noise.  

 A clinical system requires a user-friendly interface with the ability to adjust 

imaging parameters as well as internal system stability monitoring and correction. The 

operating system should automatically and precisely adjust multiple-axis crystal 

alignment. Development of a user interface would facilitate imaging technologist use of 

the system with the ability to adjust crystals to accommodate imaging at a various 

rocking curve positions, a wide range of x-ray energies, and even different crystal 

reflectivities. 

 Many technical advances facilitate the construction of a preclinical second-

generation DEI prototype. Construction of this system will begin in the near future. This 

system will enable many additional studies, potentially even clinical studies with living 

human patients, helping to define exactly where this technology fits within the landscape 

of breast imaging, as well as other tissue and organ system medical imaging technologies. 
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CHAPTER 13: SUMMARY AND IMPLICATIONS 
13.1 Overview 

 Benign, atypical, and cancerous breast features can differ by structure, physiology, 

or molecular composition. It is important to detect cancerous and precancerous lesions, 

and accurately assess their potential for causing morbidity or mortality, as early as 

possible. Conventional mammography acquires only structural or anatomic information 

about the breast based on x-ray absorption. However, many additional imaging 

modalities use other types of signals to generate important information concerning breast 

structure, as well as physiology and the molecular composition of the breast tissue. The 

following summarizes the research presented in this dissertation and discusses how this 

research likely impacts the field of breast imaging. 

13.2 Summary of Research 

 Diffraction-enhanced imaging can provide high-resolution images of many breast 

cancer features. This dissertation provides an important step toward the clinical 

translation of DEI. One specific aim was to evaluate the feasibility of a contrast-enhanced 

DEI imaging protocol. Through phantom imaging, we established that several 

commercially available contrast agents can generate DEI contrast enhancement, although 

conventional x-ray contrast agents appear to generate predominantly absorption contrast. 

Of the contrast agents tested, microbubbles performed the best, taking advantage of the 

unique extinction contrast mechanism. This is important because contrast-enhanced 

digital mammography is a potentially growing sector of the field. Further work should be 

performed to define an optimal DEI contrast agent. Moreover, targeted delivery systems 
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that might facilitate highly specific breast cancer imaging are rapidly being developed. 

An in vivo mouse model might allow evaluation of passive targeting through the EPR 

effect, or even demonstration of functionalized CE-DEI by using a targeting ligand such 

as Herceptin.  

 The second specific aim of this dissertation was to compare the lesion feature 

visibility of benign and malignant breast lesions at a range of breast tissue thicknesses. 

We have established an advantage of DEI in that substantially decreased breast 

compression might be possible with minimal loss of lesion feature visibility. However, 

multiple refraction events will increase as tissue thickness increases. The effect of 

multiple refraction events on DEI image quality should be better quantified. This means 

that DEI might increase patient comfort, which might increase adherence to 

recommended screening protocols. The effect of this potential reduced compression 

should be evaluated in a larger dataset to assess the effect of increasing thickness on 

diagnostic accuracy with DEI. Clinical studies must be performed before making this 

claim with greater confidence. 

 DEI attenuation contrast images appear similar to those obtained with screen-film 

and digital mammography, but how DEI attenuation contrast images affect diagnostic 

accuracy remains to be evaluated in a clinical setting. DEI also provides unique refraction 

contrast images. The effect of DEI refraction contrast images on diagnostic accuracy in a 

clinical setting also remains to be evaluated. Before these studies can be undertaken, a 

clinical prototype must be developed. 

 Thus, the final specific aim of this dissertation demonstrated a clinically viable 

prototype system using a tabletop x-ray source. This is an important step toward 
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transitioning from laboratory to clinical trials. At constant dose, our first generation DEI 

prototype that used a commercially available x-ray tube source generated images with 

roughly equivalent image feature visibility as the traditional synchrotron-based DEI 

system. Design modifications are underway in order to construct a second-generation 

preclinical prototype which will substantially decrease the imaging time to the order of 

seconds, which is comparable to the imaging time required on the synchrotron-based DEI 

system. This study should be repeated using the second-generation DEI prototype. 

 Although several recent studies have suggested that digital mammography can be 

performed at a reduced subject dose with a minimal decrease in diagnostic accuracy 

(Ruschin 2007, Samei 2007), these doses are still substantially greater than those 

delivered by an unoptimized DEI system. Future studies should evaluate optimal DEI 

sampling procedures, e.g. the number of photons needed per pixel to generate a clinically 

useful refraction-contrast image.  

13.3 How DEI Compares to Other Breast Imaging Modalities 

 Although several studies have demonstrated excellent DEI contrast as compared 

to conventional mammography, head-to-head comparison between DEI and either 

conventional mammography or adjunct breast imaging technologies will be most 

appropriately conducted when the performance of an optimized DEI system can be 

evaluated clinically. Clinical studies should be designed such that the diagnostic accuracy 

of DEI, including the ability to detect lesions, is compared to that of clinical breast 

imaging technologies that acquire images based on breast structure, including US, MRI, 

and CT.  
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 Performance for a specific diagnostic purpose might also be evaluated when 

compared to other modalities that acquire images based on breast structure that are 

currently undergoing clinical trails, such as tomosynthesis and additional phase sensitive 

x-ray imaging systems like the Konica Minolta propagation-based phase contrast imaging 

system. DEI performance compared to clinical systems that acquire images based on 

physiology might also be performed, including MRI or nuclear imaging, as well as other 

systems that are being evaluated for breast imaging applications such as optical imaging, 

thermography, and electrical impedance tomography. Although ROC analysis is 

generally the ideal comparison between imaging systems, refraction contrast versus the 

contrast mechanisms of other medical imaging modalities might not make this an 

appropriate analysis. Because image contrast mechanisms and interpretation of 

diagnostically important image features are unique for each modality, these systems 

might be best compared by matching imaging parameters where possible and performing 

Likert analysis. 

 The influence of DEI-detected lesions on patient treatment and survival outcomes 

can not be determined until a system has been constructed that can be tested in the clinic. 

Ultimately, receiver operating characteristic (ROC) analysis in a diagnostic and screening 

setting with radiologists familiar with refraction contrast image analysis should be 

performed to systematically evaluate a clinical DEI prototype. While the physics of x-ray 

refraction facilitate edge-detection and fine detail visibility, issues with refraction 

contrast image quality are not yet well-established.   

 Because of excellent fine detail visibility and spiculation visualization, it might be 

useful for determining local extent of disease prior to breast-conserving therapy. Also, 

 231



due to the low radiation dose and the decreased dependence on tissue thickness, the DEI 

system might be useful for women with large breasts, or women who do not tolerate 

breast compression well. The effect of refraction contrast on lesion detection and 

characterization within dense breast tissue has not yet been evaluated. Optimized image 

processing algorithms that preserve refraction contrast have not yet been developed. 

Moreover, the optimal methods for image display to radiologists, such as pure absorption, 

pure refraction, or some filtered compositional image, have not yet been studied. CAD 

algorithms for refraction contrast have not yet been developed. 

13.4 How DEI Compares to Other Phase Contrast Imaging Techniques 

 Propagation-based phase contrast imaging is the furthest toward clinical 

translation, with a prototype currently being tested in the clinic. However, the initial 

image quality observed from this system was not as great as expected, likely due to the 

stringent technical requirements imposed on the source and detector due to this type of 

phase contrast information capture. Interferometric and analyzer-based phase contrast 

imaging systems all use crystals, which possess the disadvantage of thermal and 

vibrational noise. DEI allows a substantially greater field of view than current 

interferometric systems. DEI also readily allows the use of increased x-ray energies, and 

has demonstrated successful imaging of full-thickness specimens in clinically relevant 

tasks, neither of which has been achieved by any other phase contrast imaging modality. 

 Coded aperture phase contrast imaging systems appear to be a potentially strong 

competitor for the clinical translation of phase contrast imaging, but very few imaging 

studies have been published with this technique. This system depends on the pixel size of 

the detector, and requires a direct digital detector for optimal image quality. However, 
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direct digital detectors have not yet demonstrated widespread success in the clinic. 

Although the coded aperture approach doesn’t substantially filter the x-ray beam, which 

is an improvement over interferometric or analyzer-based phase contrast imaging systems, 

this technique needs to be evaluated at a range of x-ray energies using full-thickness 

tissue specimens, with comparison to the clinical gold standard. Further, this system has 

not yet demonstrated that it is scaleable to realistic subject sizes for medical imaging and 

that there is not a substantial loss of subject information due to the apertures. Thus, coded 

aperture-based phase contrast imaging is lagging significantly behind the recent 

substantial developments in the DEI technology. As further research is performed on 

coding aperture phase contrast imaging, additional limitations may surface that inhibit its 

clinical translation. 

13.5 Summary 

 Overall, the DEI technology has recently overcome several longstanding hurdles 

that previously limited clinical evaluation and assessment of appropriate clinical 

applications. This dissertation represents the successful implementation of a DEI 

prototype in a clinically relevant task, and explores novel applications of the DEI 

technology while imaging thick objects. Much work remains to be done in order to 

establish where DEI fits in the spectrum of breast imaging technologies. While this 

dissertation focuses on DEI as a potential breast imaging modality, DEI has demonstrated 

potential utility for imaging other tissues and organ systems, such as cartilage, lung, heart, 

liver, kidney, brain, thyroid, eye, uterus, and bone. Moreover, DEI might be useful for 

industrial inspection imaging of castings, welds, material stress and faults, tires, and 

composite materials. With the restriction to a synchrotron x-ray source removed, the DEI 
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technology might now be developed into a preclinical system that would allow 

comparisons between DEI and existing medical imaging technologies. This might 

facilitate testing for breast or other medical imaging applications, or industrial inspection 

and security applications.  
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