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Abstract
SHANKAR VISWANATHAN: Statistical Methods for Recurrent Event

Data in the Presence of a Terminal Event and Incomplete Covariate
Information.

(Under the direction of Dr. Jianwen Cai.)

In many clinical and epidemiological studies, recurrent events such as infections in

immunocompromised patients or injuries in athletes often occur. It is of interest to

examine the relationship between covariates and recurrent events, however in many

situations, some of the covariates collected involve missing information due to various

reasons. Under such missingness, a commonly practiced method is to analyze complete

cases; this method may be inefficient or result in biased estimates for parameters. In

this dissertation, we develop methods to analyze recurrent events data with missing

covariate information. These will be useful in reducing the bias and improving the

efficiency of parameter estimates.

This method is motivated by the need for analyzing recurrent infections in a renal

transplant cohort from India in which approximately 19% of patients died and over

13% had missing covariate information. Literature shows that opportunistic infections

times and death time may be correlated and need to be adjusted in the estimation

process. First, we studied this problem by developing methods using marginal rate

models for both recurrent events and terminal events with missing data. We adopted

a weighted estimating equation approach with missing data assumed to be missing at

random (MAR) for estimating the parameters.

Second, we considered a marginal rate model for multiple type recurrent events in

the presence of a terminal event. We proposed a weighted estimating equation approach

assuming that terminal events preclude further recurrent events. We adjusted for the
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terminal events via inverse probability survival weights. The asymptotic properties of

the proposed estimators were derived using empirical process theory.

Third, we extended the marginal rate model for analyzing multiple type recurrent

events in the presence of a terminal event to handle missing covariates. The main goal

was to examine the relationship between covariates and multiple type recurrent infec-

tions broadly classified into bacterial, fungal and viral origin from the aforementioned

data. We considered a weighted estimating equation approach to estimate the parame-

ters. Through simulations, we examined the finite sample properties of the estimators

and then applied the method to the India renal transplant data for illustration in all

three papers.
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Chapter 1

INTRODUCTION

In many clinical and epidemiological studies, the event of interest often occurs

more than once or the event times are correlated because they are from some natural

groups or clusters. Recurrent events data arise when a subject experiences repeated

occurrences of the same type of events, for example repeated concussions in football

players, opportunistic infections in renal transplant patients, hospitalization of patients

etc. or of different types, say, multiple type of injuries in athletes or multiple type of

infections (bacterial, viral etc). On the other hand, event times of interest could be

clustered in a group, where the outcomes are correlated. Examples of such clustering

studies include multicenter studies, twin studies, or some genetic studies. The focus

under this framework of studies can be classified as time-between-events (gap time) or

time-to-event (total time) models. Because of dependencies among the failure times, the

usual univariate time-to-event analysis will not provide valid inferences, and methods

which can properly handle such dependency are needed for analyzing such multivariate

failure time data. Over the past two decades, many methodologies have been developed

(Prentice, Williams and Peterson (PWP), 1981; Andersen and Gill (AG), 1982; Wei,

Lin and Weissfeld (WLW), 1989; Lee, Wei and Amato (LWA), 1992; Pepe and Cai

(PC), 1993; Lin et al., 2000) to analyze multivariate survival data of recurrent nature.



Recent advancement in computer technology and incorporation of the above meth-

ods in softwares have made these procedures popular. Excellent reviews comparing

these established conditional and marginal methods using real time or simulated data

are provided in Wei and Glidden, (1997); Cook and Lawless, (2002); Cai and Schaubel,

(2004); Kelly and Lim, (2000). Liang, et al., (1995) provide a comprehensive review of

frailty models as well as the marginal models for multivariate survival data. Though

there have been established robust procedures, much of the literature questions the

appropriateness of some of the marginal hazard methods to handle recurrent events

data. Lin (1994) suggested using AG or PWP models when interest is overall rate of

occurrence under recurrent events data framework. However, it has been pointed out

that the AG and PWP models are sensitive to misspecification of dependence structure

(Wei et al., 1997; Cai and Schaubel, 2004). Other marginal models, such as LWA and

WLW when used for the analysis of recurrent event data, have a problem of presenting

a carry-over effect for subsequent events, especially when the estimated effect for the

first event was large (Kelly and Lim, 2000).

More recently, research focus has shifted from intensity based models to means/rates

model, because of its intuitive interpretation and no requirement for specification for

dependency through event history. Pepe and Cai (1993) developed an approach that

can be considered intermediate between conditional intensity and marginal hazard ap-

proaches. Subsequently, Lawless and Nadeau (1995) presented robust nonparametric

estimation of the cumulative mean/rate function and considered modeling the mean

number of events and developed the theory of discrete time case. Lin et al., (2000)

proposed a semiparametric regression for the mean and rate functions of recurrent

events providing rigorous justification through empirical process theory. An important

assumption of the above methods is independent censoring.

In many disease settings, for example when patients are immunocompromised, op-
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portunistic infections occur, and it reflects the patient immune system’s inability to

combat the organism. It is not unreasonable to assume that patients with multiple

recurrence of infections are at higher risk of death. This can provide complication in

analyzing the recurrences. More recently, Ghosh and Lin (2002), Ghosh and Lin (2003)

and Miloslavsky et al.,(2004) presented estimators for regression parameters relaxing

the independent censoring assumption and focused modeling recurrent event data under

dependent censoring or death. However, all the above mentioned models will provide

unbiased estimates of regression coefficients provided data information are complete.

However, in real life studies, data are often incomplete. The missingness may arise due

to many circumstances including the unavailability of covariate measurements, survey

non-response, study subject failing to report to clinic, respondents refusing to answer

and loss of data.

Extensive literature has been developed for analyzing missing data and excellent re-

views on methods are available in Little, (1992); Horton and Laird, (1999); Ibrahim et

al., (2005); Ibrahim and Molenberghs, (2009) and a comprehensive coverage of existing

methods is discussed in Little and Rubin (2002). Many methods have been formu-

lated for analyzing univariate survival procedures under missing covariate information

(Schluchter & Jackson, 1989; Lin & Ying, 1993; Zhou & Pepe, 1995; Lipsitz & Ibrahim,

1996b; Paik, 1997; Paik & Tsai, 1997; Martinussen, 1999; Chen & Little, 1999); Herring

& Ibrahim, 2001; Wang & Chen, 2001; Chen, 2002; Herring et al., 2004). Under multi-

variate setup, methods have been proposed to handle missing event category (Schaubel

and Cai, 2006a, 2006b) and clustered data (Lipsitz and Ibrahim, 2000). Despite devel-

opment of such methods, to our knowledge there are no methods available to handle

missing covariate data under recurrent event data setting. Hence it is desirable to

develop a method to handle recurrent events data with missing covariates.

This doctoral research has been motivated by the need for analyzing the recurrent
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opportunistic infections in the presence of a terminal event among patients from a single

center prospective renal transplant cohort data in southern India. Earlier studies (John

et al., 2001, 2003; Kamath et al., 2006) from this cohort studied various infections in-

dependently and examined the effect of covariates on time to first infection and time to

death. However, being in a developing country and immunocompromised, patients are

more susceptible and experience multiple infections. Hence, it is of interest to study

the rates of recurrent opportunistic infections and risk factors for recurrent infections

in these patients. Around 19% of the patients experienced death, truncating the total

infection experience. Thus, we also would like to adjust for terminal event. Aforemen-

tioned methods expect the data to be complete but the renal transplant data involves

13% missing covariates which complicates the scenario. In Chapter 3, we propose a

method for analyzing recurrent events data in the presence of a terminal event and

missing covariate data. For the issue of death, we consider inverse probability survival

weighting and missing data is handled via weighted estimating equation procedure.

In Chapter 4, we consider marginal regression modeling of multiple-type event rate

function in the presence of a terminal event. Often in many studies, interest lies in

the assessment of more than one type of outcome and the events could be recurrent.

Examples include multiple type of tumors (Abu-Libdeh et al., 1990), multiple types of

shunt failures in patients with pediatric hydrocephalus (Lawless et al., 2001), in health

service utilization studies, hospitalization and physician office visit (Cai and Schaubel,

2004). There have been a limited number of methods proposed under both marginal

and conditional setup to analyze multiple-type recurrent event data but none in the

presence of a terminal event. The main objective of this paper is to consider such issue

of multiple-type recurrent event analysis in the presence of a terminal event. Our moti-

vation comes from the model proposed by Cai and Schaubel,(2004) but restrict ourself

to exponential link function and extend the model incorporating inverse probability
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survival weights for adjustment of terminal event similar to the approach of Ghosh and

Lin,(2002). An estimation procedure based on the weighted estimating equation the-

ory have been developed and simulation studies are conducted to assess finite sample

properties of the parameter estimates.

The problem of analyzing multiple-type recurrent event in the presence of a ter-

minal event and missing covariate information is taken up in Chapter 5. The finite

sample properties of the proposed method were performed through extensive simula-

tions. Since 13.5% of patients did not have complete covariate information in the renal

transplant cohort data, we illustrated the proposed method by applying to the India

renal transplant data.

In the next Chapter, we will review the relevant literature in these areas.
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Chapter 2

LITERATURE REVIEW

Multivariate failure time data arise when each study subject may experience several

events or when there exists some natural grouping of subjects whose responses are

correlated within the group. In this section we describe the essential notation and

review the literature on statistical methods for: 1) correlated failure time data under

independent censoring, 2) correlated failure time data under dependent censoring, and

3) failure time data analysis with incomplete covariate information.

2.0.1 Notation and Definition

We define notation and definition that will be used in the following sections. Let

N∗i (t) =
∫ t

0
dN∗i (s) denote the number of events in [0,t], for subject i (i=1,2,...,n),

where dN∗i (s) denotes the number of events in the small time interval [s, s+ds), N∗i (t)

is a counting process for the recurrent events. Let Ci denote the censoring time, and

Ti,1, Ti,2, ..., Ti,k the recurrent event times. These event times are called total times and

represent, for instance, the time since randomization to treatment until the occurrence

of the kth event for the ith subject. Let Ni(t) denote the observed counting process for

the recurrent events, i.e. N(t) = N∗(t) ∧Ci where a ∧ b = min(a, b). Let τ denote the

end of the study and Zi(s) be a possibly time-dependent covariate vector. We assume

censoring process is independent of recurrent events process given the covariates. Let



N∗i (t) ≥ 0 is a subject specific counting process (Ross, 1989) since (i) N∗i (t) ≥ 0 (ii)

N∗i (t) is integer valued (iii) for s < t, N∗i (s) ≤ N∗i (t) (iv) for s, t, the number of events

in (s, t) is given by Ni(t)−Ni(s).

Under counting process notation, the conditional intensity function for N∗(t) can

be defined as:

λi(t|Hi(t)) = lim
∆t→0

Pr(N∗i (t+ ∆t)−N∗i (t) = 1|Hi(t))

∆t

where Hi(t) = (N∗i (s), 0 ≤ s < t; Zi(s), 0 ≤ s ≤ t) represents the process history up

to time t. It is assumed that the probability of more than one event over the interval

[t, t+ ∆t) is o(∆t), so E[dN∗i (t)|Hi(t)] = λi(t;Hi(t))dt. The rate function is defined as

µi(t) = lim
∆t→0

Pr(N∗i (t+ ∆t)−N∗i (t) = 1)

∆t
= E [dN∗i (t)]

it can be considered as an expectation of the intensity function across all possible event

histories. E[dN∗i (t)] is a marginal quantity and can be connected to E[dN∗i (t)|Hi(t)]

through the relation

E[dN∗i (t)] = E[E[dN∗i (t)|Hi(t)]]

.

2.1 Modeling Recurrent Event Data assuming Independent

Censoring

Multivariate failure time data can have events that are either ordered or unordered. The

following section describes the methods for analyzing ordered recurrent events. Before

discussing the methods for multivariate failure time data we review the univariate case.

Let λ(·) denote the hazard function for the univariate failure time T. The Cox regression
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model (Cox, 1972) with p× 1 possibly time-varying covariates Z(t) = (Z1(t), ..., Zp(t))
′

is

λ(t;Z) = λ0(t)eβ
′
Z(t)

where λ0(t) is an unspecified baseline hazard function and β is a p × 1 column vector

of unknown parameters. Let C denote the potential censoring time. Let X=min(T,C)

denote the observed time and δ = I(T ≤ C) be an indicator of failure. Assume T and

C are independent conditional on Z. The parameters are estimated using the partial

likelihood function (Cox, 1975). The log partial likelihood is

logL(β) =
n∑
i=1

[
β
′
Zi(Xi)− log

(∑
j

Yj(Xi)e
β
′
Zi(Xi)

)]
δi(t)

where Yi(t) = I{Xi ≥ t}. The corresponding score function ∂logL(β)/∂β equals

U(β) =
n∑
i=1

δi

{
Zi(Xi)−

S(1)(β,Xi)

S(0)(β,Xi)

}

where

S(0)(β, t) = n−1

n∑
i=1

Yi(t)e
β
′
Zi(t)

and

S(1)(β, t) = n−1

n∑
i=1

Yi(t)Zi(t)e
β
′
Zi(t).

The maximum partial likelihood estimator β̂ is the solution to U(β) = 0. The large-

sample properties of parameter estimators can be obtained through the theory of mar-

tingales (Andersen and Gill, 1982) or empirical processes (Tsiatis, 1981). n−1/2U(β)

is asymptotically p-variate normal with mean 0 and 1
n
A(β̂) and β̂ is asymptotically
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p-variate normal with mean β and estimated covariance matrix A−1(β̂) where

A(β) = −∂
2logL(β)

∂β2
=

n∑
i=1

δi

{
S(2)(β;Xi)

S(0)(β;Xi)
− S(1)(β;Xi)

⊗2

S(0)(β;Xi)2

}

and

S(2)(β, t) = n−1

n∑
i=1

Yi(t)Zi(t)Zi(t)
′
eβ
′
Zi(t)

2.1.1 Conditional Hazards Models

(Andersen and Gill, 1982) proposed an extension of Cox proportional hazards model

for multiple event data. It can be adopted to analyze recurrent event data. The

intensity function for the kth recurrence relates to the covariates through the following

formulation:

λik(t|Zik(t)) = Yik(t)λ0(t)eβ
′
Zik(t),

for k = 1, ..., K. This model assumes a common baseline hazard for all events and

that the events in non overlapping time intervals are independent given the covariates

and the event history, which is known as independent increments assumption (i.e., non-

homogeneous Poisson process (Chiang, 1968). Under this model, the risk sets for the

(k+1)th recurrences are not restricted to the subjects who have experienced the first k

recurrences. In such case, a subject’s second event time may contribute to the risk set

corresponding to another subject’s first event, for instance (Kelly and Lim, 2000).

The parameter estimation is based on partial likelihood. An iterative algorithm can

be used to obtain an estimator of β, denoted by β̂, by solving the estimating equation

U(β) = 0, where:

U(β) =
n∑
i=1

∫ τ

0

[
Zi(t)−

S(1)(β, t)

S(0)(β, t)

]
dNi(t),

9



with S(j)(β, t) = 1
n

∑n
i=1

∑K
k=1 Yik(t)Zik(t)

⊗jeβ
′
Zik(t), and for a vector z, z⊗0 = 1, z⊗1 =

z and z⊗2 = zz
′
.

The Breslow-Aalen estimate of the cumulative baseline hazard is given by dΛ̂0(β, t) =

n−1
∫ t

0
dN.(t)/S

(0)(β, t), where dN.(t) =
∑n

i=1 dNi(t). The information matrix is defined

as:

I(β) =
n∑
i=1

∫ τ

0

[
S(2)(β, t)

S(0)(β, t)
−
{
S(1)(β, t)

S(0)(β, t)

}⊗2
]
dNi(t)

Under certain regularity conditions, as n → ∞, n−
1
2 U(β) has an asymptotic normal

distribution with mean zero and a variance which can be consistently estimated by

(n−1I(β))−1 and n
1
2 (β̂−β) has an asymptotic normal distribution with mean zero and

variance which can be consistently estimated by nI(β)−1 (Andersen and Gill, 1982).

A robust variance estimator for U(β) is given by nΣ̂(β), where

Σ̂(β) = n−1

n∑
i=1

B̂i(β)B̂i(β)
′
,

with B̂(β) = {
∫ τ

0
[Zi(t)−S(1)(β,t)

S(0)(β,t)
]dM̂i(β, t)} and dM̂i(β, t) = dNi(t)−Yi(t)eβ

′
Zi(t)dΛ̂0(β, t).

Therefore, this results in a robust sandwich variance estimator nI(β̂)−1Σ̂(β)I(β̂)−1 for

β̂ (Kalbfleish and Prentice, 2002). The Andersen-Gill model has been recommended

when the interest is with respect to the overall recurrence rate and when only a small

proportion of subjects have Ni(τ) ≥ 2 (Lin, 1994).

Prentice, Williams and Peterson (1981) proposed two models which were the first

extensions of Cox model for multiple event data. The intensity function for subject i

at time t for the kth recurrence, conditional on Ni(t) and on the covariates, can be

defined as:

λik(t|Ni(t),Zi(t)) = Yik(t)λ0k(t)e
β
′
kZik(t),

λik(t|Ni(t),Zi(t)) = Yik(t)λ0k(t− Ti,k−1)eβ
′
kZik(t),
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for total and gap times, respectively, with Ni(t) = {Ni(s); s ∈ [0, t)} denoting the ith

subject’s event history at time t-, and Yik(t) = I(Xi,k−1 ≤ t < Xi,k) and Yik(t) =

I(Xi,k ≥ Xi,k−1 + t), respectively, for total time and gap time models. It is assumed

that a subject is not at risk for the kth event until he/she has experienced event k-1.

In both models, the authors formulated the baseline hazard to be different for different

events producing a stratified proportional intensity model with time-dependent strata.

The estimation of the regression parameters is based on partial likelihood. The

estimating equation for the PWP total time model and gaptime model is given by:

UTT (βk) =
n∑
i=1

∫ τ

0

[
Zik(t)−

Q
(1)
k (βk, t)

Q
(0)
k (βk, t)

]
dNik(t),

for k = 1, ..., K,, where Q
(j)
k (βk, t) = 1

n

∑n
i=1 Yik(t)Zik(t)

⊗jeβ
′
kZik(t) and Nik(t) = I(Ti,k ≤

t,∆ik = 1); ∆ik is the event indicator for the kth event in ith subject and

UGT (βk) =
n∑
i=1

∫ τ

0

[
Zik(t+ Ti,k−1)− R

(1)
k (βk, t)

R
(0)
k (βk, t)

]
dÑik(t),

for k = 1, ..., K, where R
(j)
k (βk, t) = 1

n

∑n
i=1 Yik(t)Zik(Ti,k−1 + t)⊗jeβ

′
kZik(Ti,k−1+t) and

Ñik(t) = I(Gi,k ≤ t,∆ik = 1).

Chang and Wang (1999) proposed a semiparametric conditional regression model for

recurrence time data similar to that of PWP model that includes structural and episode

specific parameters. In their model, distinct recurrence time within each recurrent

event (episode) is ordered and the order of episodes of recurrent event served as a

stratification variable. In this model, when constant covariate effect is of interest then

the model with only structural parameters are required to be modeled which reduces

to the gaptime model with common regression parameter. When the interest is to

examine covariate effects over different episodes, only episode specific parameters are

needed to be modeled which in fact reduces to PWP gaptime model. They estimated
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the parameters via profile-likelihood approach.

2.1.2 Marginal Hazards Models

Wei, Lin and Weissfeld (1989) proposed a Cox-type proportional hazards model, where

marginal hazards of each failure time was modeled assuming no specific dependence

structure among the distinct failure times on each subject. The hazard function for the

kth event time of the ith subject assumes the form:

λik(t) = λ0k(t)e
β
′
kZik(t),

for k = 1, 2, . . . , K. The kth event-specific partial likelihood is given by:

PLk(βk) =
n∏
i=1

[
exp{β ′kZik(Xik)}∑

l∈<k(Xik) exp{β ′kZlk(Xik)}

]∆ik

,

where <k(t) = {l : Xlk ≥ t} is the set of subjects at risk just prior to time t with

respect to the kth event time.

The estimator β̂k is defined as the solution to Uk(βk) = 0, where

Uk(βk) =
n∑
i=1

∫ τ

0

[
Zik(t)−

S
(1)
k (βk, t)

S
(0)
k (βk, t)

]
dNik(t),

with S
(j)
k (βk, t) = 1

n

∑n
i=1 Yik(t)Zik(t)

⊗jeβ
′
kZik(t), Yik(t) = I(Xi,k ≥ t), ∆ik = I(Ti,k ≤ Ci)

and Nik(t) = I(Xi,k ≤ t,∆ik = 1).

Under certain regularity conditions, n
1
2 (β̂k−βk)→D Np(0p×1, Ik(βk)−1Bk(βk)Ik(βk)−1),

as n→∞, where a consistent estimator of the asymptotic variance is obtained through
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estimating Ik(βk) and Bk(βk) by

Îk(βk) =
1

n

n∑
i=1

∫ τ

0

S
(2)
k (βk, t)

S
(0)
k (βk, t)

−

{
S

(1)
k (βk, t)

S
(0)
k (βk, t)

}⊗2
 dNik(t)

and

B̂k(βk) =
1

n

n∑
i=1

{∫ τ

0

[
Zik(t)−

S
(1)
k (βk, t)

S
(0)
k (βk, t)

]
dM̂ik(βk, t)

}⊗2

with dM̂ik(βk, t) = dNik(t)− Yik(t)eβ
′
kZik(t)dΛ̂0k(βk, t) and dΛ̂0k(βk, t) = n−1

∫ t
0
dN.k(s)/

S
(0)
k (β̂k, s), where dN.k(t) =

∑n
i=1 dNik(t).

The inferences regarding β̂k are valid asymptotically regardless of the true intra-

subject correlation structure. However there is some debate in the literature regarding

the appropriateness of WLW model for recurrent data, especially the interpretation of

regression coefficients. Two main issues have been discussed in applying this approach

to recurrent event settings: (i) the possibility of a subject to be at risk for the (k+1)th

event prior to having experienced the kth event (Cook and Lawless, 1997); (ii) a carry-

over effect, which leads to an overestimation of regression coefficients (Kelly and Lim,

2000).

Lee, Wei and Amato,(1992), proposed a marginal model similar to that to WLW

model with an unspecified common baseline hazard function λ0(t), which considers

highly stratified data. This model is recommended for clustered data rather than

recurrent events data. Kelly and Lim, (2000) points out that one of the concerns in

using LWA model for recurrent event data is that it allows the subject to be at risk

for several events simultaneously. Another concern is that a carry over effect similar to

that of WLW model is observed in this model.

To acknowledge the time dependencies and to enhance the efficiency of β in cor-

related failure time data, Cai and Prentice (1995, 1997) formulated an approach sim-

ilar to that of GEE-methodology where they introduced weights into standard Cox
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marginal intensity process model and suggested inverse matrix of the correlation func-

tions between counting process martingales. Under both situations, they observed that

the efficiency improvements due to the weighting are modest except when pairwise

dependencies were strong with censoring not being severe. Huster, Brookmeyer and

Self (1989) proposed a marginal model under an independence working model (IWM)

treating the dependence between the pair members as a nuisance. In contrast, Liang

et al., (1993) formulated a marginal semiparametric model for clustered data assum-

ing independent censoring and independence across clusters. They proposed selecting

appropriate sample of the risk set to form a set of individuals to be included in the

conditioning argument of the probability element. This is to adjust for dependence

among individuals within the clusters and to obtain the probability elements in the

partial likelihood. Their method involved conditioning argument which would include

only two individuals from different clusters : the individual who fails and a single other

individual who is at risk. Lu and Wang (2005) formulated pseudo-likelihood approach

to analyze clustered failure time data analogous to Liang et al., (1993). In their method,

to obtain a zero-unbiased estimating function, the authors device a risk set sampling

procedure to sample new risk sets that are composed of independent individuals and

preserve the marginal risk structure at each distinct failure time. A new risk set is

selected from the original risk set such that one and only one case is chosen per cluster

excluding the one which had the failure. At each failure time, a proportionality con-

stant m is estimated which is a probability of non-failure case chosen per cluster to

those non-failures exist in that cluster. The pseudo-likelihood estimating equation is

given by

U∗(β) =
n∑
i=1

m∑
j=1

[
Zij(tij)−

∑
(k,l)∈R∗ij

Zkl(tij) exp
{
β
′
Zkl(tij)

}∑
(k,l)∈R∗ij

exp {β ′Zkl(tij)}

]
δij
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and the marginal cumulative baseline hazard function is given by

Λ̂∗0(t; β̂∗) =
∑
tij≤t

δij∑
(k,l)∈R∗ij

mexp
{
β̂∗′Zkl(tij)

} .
With mild regularity conditions, the resulting estimators were shown to be consistent

and asymptotically normally distributed.

Spiekerman and Lin (1998) proposed a general Cox type model to formulate the

marginal distribution of multivariate failure time data. The model is of nested structure

that allows different baseline hazard functions among different failure types and imposes

a common baseline hazard function on the failure times of the same type. They showed

that the vector of estimated parameters under maximum quasi-partial-likelihood under

independence working assumption is consistent. Spiekerman and Lin (1998) also es-

tablished the uniform consistency and joint weak convergence of the the Aalen-Breslow

type estimators for the cumulative baseline hazard functions.Clegg, Cai and Sen (1999)

independently derived a marginal mixed baseline hazards model (MMBHM) to ana-

lyze correlated or clustered failure time data. This models assumes baseline hazards

function identical for some combination of subjects and failure types in a cluster but is

different for other combination in that cluster. They also developed the large-sample

theory for the resulting estimator of regression parameter β0.

2.1.3 Frailty Models

In recent years, another type of conditional model that have found considerable im-

portance is frailty or addition of random effects to survival models. Often, when the

study involves some artificial or natural grouping, the failure times from the same group

usually share certain unobserved characteristics which tend to be correlated. This un-

observed characteristic are called individual heterogeneity or frailty (Hougaard, 2000).
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Unlike marginal models, in frailty models, the intra-subject correlation are modeled

explicitly. Whenever the interest resides in estimating the effect of risk factors as well

as the strength and nature of dependence among the failure time components, use of

frailty models have been suggested. An excellent overview of frailty models has been

presented by Liang et al., (1995) and Wei and Glidden,(1997). A review in terms of

modeling clustered data from multicenter trials is examined by Glidden and Vittinghoff

(2004) and detailed account of fraily models are given by Duchateau and Janssen (2008)

respectively.

The frailty may be thought of as a random variable which induces dependence

among the multiple event times. The main assumption in this random-effect model is

that the failure times are conditionally independent given the value of the frailty. Let

the conditional hazard conditioning on the frailty for the subject i with respect to the

kth event is

λik(t|Wi) = wiλ0(t)eβ
′
Zik(t)

where the frailty term Wi, i = 1, ..., n, are assumed to be independent and to arise from

a common parametric density. The most popular frailty model is the gamma frailty

model proposed by Clayton and Cuzick (1985) with mean 1 and variance θ such that

fWi(w) =
w1/θ−1 exp(−w/θ)

θ1/θΓ(1
θ
)

, θ > 0, w > 0

Parameter estimation for such a model is difficult since standard partial likelihood

does not eliminate the nuisance hazard function. Nielson et al., (1992) proposed an

estimation procedure for the regression parameters, the variance of the frailty, and the

underlying intensity function. The method proposed is computationally demanding,

and the large sample properties are available only for special cases. One disadvantage

with gamma frailty is that while hazards are proportional conditional on the frailty,
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the marginal hazards are not proportional. Hougaard, (1984,1986) proposed a positive

stable distribution to model heterogeneity in univariate survival models. The density

function of the W and its Laplace transform are given by

g(w; θ) = − 1

πw

∞∑
k=1

Γ(kθ + 1)

k!

[
−w−θ

]k
sin(θkπ), w ≥ 1

and

Lap(s) = exp[−sθ], 0 < θ ≤ 1

respectively. The global strength of the association between individuals in the ith group,

is measured by Kendall’s τ is (1− θ). Frailty models based on log-normal distribution

and Gaussian distribution are proposed by Hougaard, (2000) and McGilchrist and

Aisbett (1991) respectively.

Klein, (1992) developed a semiparametric approach, where the regression parame-

ters and frailty parameters is estimated through the EM algorithm based on profile-

likelihood. Wang, Klein and Moeschberger (1995) extended this approach to allow

for random group sizes, which allowed incorporating single individuals, each with their

own random frailty in the model. They implement both parametric and semiparametric

models via full EM algorithm. An alternative approach with simplified computational

procedure was proposed by Therneau and Grambsch (2001) in which they formulated a

penalized survival model along with its application to smoothing splines. They showed

that a penalized Cox model with the penalty function p(w) = (1/θ)
∑

[wi − exp(wi)]

is equivalent to the gamma frailty model discussed by Klein, (1992) and Neilsen et al.,

(1992) while with a penalty function p(w) = (1/2θ)
∑
w2
i is equivalent to the Gaussian

random effects model of McGilchrist and Aisbett (1991). In this gamma frailty model,

the correlation among subjects within groups are equivalent to Kendal’s tau θ/(2 + θ).

Similarly random-effects model for analysis of clustered survival times using parametric
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and nonparametric frailty approaches using accelerated EM algorithm was discussed

by Guo and Rodriguez (1992). More recently, Duchateau et al., (2003) investigated

the effect of use of different time scales on the frailty model and on its interpretation

for recurrent event data. Though frailty models have been studied for quite sometime

in analyzing clustered data, some debate about its use because of model implications

under misspecification of the dependence structure and the amount of information such

as number of events, number of groups and the distribution of events per group required

to produce stable frailty estimates. Hougaard,(2000) reported that there is no single

family of frailty distribution that have all desirable properties. Hence choice of the

frailty distribution requires more caution and detailed exploration is recommended.

2.1.4 Marginal Means and Rates Models

All the methods discussed above were based on conditional intensity and marginal

hazards models. However, for recurrent events, mean and rate functions are more

intuitive and have attractive interpretations. Consequently, models for means and rates

have been studied actively during the past two decades. Pepe and Cai (1993) proposed

a rate model that is an intermediate between conditional intensity and marginal hazards

models. They proposed modeling conditional rate function (i.e. the average intensity) of

occurrence of kth event among subjects at risk at time t conditional on they have already

experienced (k-1) events, which is more intuitive under recurrent event event scenario.

Lawless, (1995) proposed a robust methods for estimating rate of occurrence of events

and cumulative mean functions in the discrete time framework and provided asymptotic

results for discrete time models that do not involve a full probabilistic specification of

recurrent event processes. Their methods were based on Poisson maximum likelihood

estimates with robust variances and they discussed both parametric and non-parametric

estimation. Cook et al., (1996) described a robust test which is a class of generalized
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pseudo-score statistics for comparing groups.

Based on modern empirical process theory, Lin et al., (2000) provided a rigorous

formalization of the marginal means/rates model and developed inference procedure for

the continuous time setting. Lin et al., (2000) assumed only the covariates affect the

instantaneous rate of counting process, ie. E {dN∗(t)|Z(t)} = exp
{
β
′
0Z(t)

}
λ0(t)dt.

The proposed proportional rates model is given by

E {dN∗(t)|Z(t)} = dµZ(t) = exp
{
β
′

0Z(t)
}
dµ0(t)

and

µZ(t) =

∫ t

0

exp
{
β
′

0Z(u)
}
dµ0(u),

where µ0(.) is an unknown continuous function. When the covariates are time invariant,

it is a proportional means model

E {N(t)|Z(t)} = µZ(t) = exp
{
β
′

0Z
}
µ0(t).

This model treats the intra-subject correlation as nuisance and allows for arbitrary

dependent structures among recurrent events. The intensity model implies proportional

rate model but not vice versa.

Lin et al., (2000) provided regularity conditions similar to that of Andersen and

Gill (1982) for development of the proportional rates model and showed that the in-

ference on the regression parameters is defined by solution to the estimating equation

U(β, t)=0p×1, where

U(β, t) =
n∑
i=1

∫ t

0

[
Zi(u)− S(1)(β, u)

S(0)(β, u)

]
dNi(u),

where S(0)(β, t) = 1
n

∑n
i=1 Yi(t) exp{β ′Zi(t)} and S(1)(β, t) = 1

n

∑n
i=1 Yi(t)e

β
′
Zi(t)Zi(t).
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The baseline mean function µ0(t) is estimated by the Breslow-type estimator

µ̂0(t) = n−1

∫ t

0

dN.(u)/S(0)(β, u).

Using modern empirical process theory, they showed that the random vectors n−
1
2 U(β0, t)

(0 ≤ t ≤ τ) and n
1
2 (β̂− β0) converge weakly to a continuous zero mean normal process

with covariance matrices Σ(s, t) and Γ ≡ A−1ΣA−1, where Σ = Σ(τ, τ), respectively.

The covariance function between time points s and t is given by

Σ(s, t) = E[

∫ s

0

{Z1(υ)−S(1)(β, υ)

S(0)(β, υ)
}dM1(υ)×

∫ t

0

{Z1(ν)−S(1)(β, ν)

S(0)(β, ν)
}dM1(ν)], 0 ≤ s, t ≤ τ,

with dMi(t) = dNi(t) − Yi(t) exp{β ′Zi(t)}dµ0(t). The authors extended the proposed

model to a class of weighted estimating fucntions and further provided numerical and

graphical techniques to check the adequacy of the fitted mean and rate models.

Schaubel, Zeng and Cai (2006) proposed an additive recurrent rates model where

covariates are assumed to add to their unspecified baseline rate instead of having a

multiplicative effect. The regression coefficients based on additive models provide ab-

solute effects and are of interest in public health field. Ghosh and Lin (2004) studied

accelerated rates regression models for recurrent events data where they formulated

a semiparametric model in which the effect of covariates transform the time scale of

baseline rate function with an assumption of arbitrary dependence structure for count-

ing process. Further advances have been made in mean and rates models for recurrent

events extending it to analyze recurrent events where not only within subjects events are

correlated but the individuals are correlated among groups. Schaubel and Cai (2005a,

2005b) mention that most marginal methods for recurrent events assume independence

among individuals, therefore cannot be directly applied to studies with clustered sub-

jects. They formulated two proportional rates models to analyze recurrent events data
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where in study subjects are clustered. The proposed models are semi-parametric in

that a functional form is assumed for multiplicative covariate effects, but the baseline

rates are left unspecified as are the dependence structures among the correlated events.

The first model contains a baseline rate that is common across all clusters, while the

second model features cluster-specific baseline rates

Let n be the number of independent clusters and nj be the number of subjects in the

j th cluster, the cumulative number of events at time t is denoted as N∗ij(t). The authors

proposed the following proportional rates models where the rate function can be con-

sidered an expectation across all possible histories ie. E[dN∗ij(t)] = E[E[dN∗ij(t)|Fij(t)]]

where Fij(t) is the filtration containing event history, the models are

E[dN∗ij(t)|Zij(s)] = exp
{
β
′

0Zij(s)
}
dµ0j(s)

E[dN∗ij(t)|Zij(s)] = exp
{
β
′

0Zij(s)
}
dµ0(s)

where dµ0j and dµ0 are unspecified baseline rate functions, β0 is an unknown parameter

vector. Events are assumed to be subject to independent right censoring and the

censoring time is denoted by Cij, which is assumed to be conditionally independent of

the recurrent event process Nij(t) given the covariate vector. Although the censoring

is independent of the events, censoring times for individuals within a cluster need not

be independent. The parameters for model with different baseline rate is estimated by

solving Ud(β) = 0 where :

Ud(β) =
n∑
j=1

nj∑
i=1

∫ τ

0

{
Zij(s)− Z̄j(s; β)

}
dNij(s)

where Z̄j(s; β) =
S

(1)
j (s;β)

S
(0)
j (s;β)

with S
(d)
j (s; β) = n−1

j

∑nj
i=1 I(Cij > s)Zij(s)

⊗d exp
{
β
′
Zij(s)

}
for d=0,1,2. I(A) takes value 1 when A occurs and 0 otherwise. In the above model,
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the authors use stratification to allow for difference in the baseline rates. For common

baseline rate model the parameters are estimated through solving following estimating

equation.

Uc(β) =
n∑
j=1

nj∑
i=1

∫ τ

0

{
Zij(s)− Z̄(s; β)

}
dNij(s)

where Z̄(s; β) = S(1)(s;β)

S(0)(s;β)
and S(d)(s; β) = n−1

∑n
j=1

∑nj
i=1 I(Cij > s)Zij(s)

⊗d exp
{
β
′
Zij(s)

}
for d=0,1,2. The baseline mean µ0(t) is estimated by

µ̂0(t; β) = n−1

n∑
j=1

nj∑
i=1

∫ t

0

S(0)(s; β)−1dNij(s)

Under regularity conditions, they showed that β̂d converges to β0 and
√
n(β̂d− β0) has

asymptotic normal distribution with mean zero and covariance

Ω(β0)−1
d Σd(β0)Ω(β0)−1

d ,

where Ω̂d(β) = n−1
∑n

j=1

∑nj
i=1

∫ τ
0

Vj(s; β0)S
(0)
j (s; β0)−1dNij(s), Vj(s; β) =

S
(2)
j (s;β)

S
(0)
j (s;β)

−

Z̄j(s; β)⊗2 and Σd(β) = n−1 limn→∞
∑n

j=1E[Ψd
j (β)⊗2]. Similarly for common baseline

rate model the authors showed that
√
n(β̂c − β0) is asymptotically distributed with

mean 0 and covariance

Ω(β0)−1
c Σc(β0)Ω(β0)−1

c .

where Ωc(β0) =
∫ τ

0
V(s; β0)S(0)(s; β0)dµ0(s), where V(s; β) = S(2)(s;β)

S(0)(s;β)
− Z̄(s; β)⊗2,

Z̄(s; β) = S(1)(s;β)

S(0)(s;β)
and Ψc

j(β) =
∑nj

i=1

∫ τ
0

{
Zij(s)− Z̄(s; β)

}
dM c

ij(s; β).

The above variance procedure and its estimation for clustered recurrent event data

with small number of clusters was further discussed by Schaubel, (2005). He proposed

a corrected version of robust variance estimator for small number of moderate-to- large

sized clusters.
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Cai and Schaubel,(2004b) formulated a class of semiparametric model to analyze

multiple-type recurrent events data and proposed a method to test mean and ratio

parameters. The proposed semiparametric marginal means/rates model for multiple

type recurrent event data assumes that the censoring and event process are independent.

Let N∗ik(t) =
∫ t

0
dN∗ik(s) represent the number of events of type k at time t for subject i.

Let Cik and Yik(s) = I(Cik ≥ s) denote event-type-specific censoring time and at-risk

function respectively and Zik(t) be a p× 1 covariate vector that may contain external

time-dependent covariates. The event-type k mean and rate model is given by

E[dN∗ik(t)|Zik(t)] = g(β
′

0Zik(t))dµ0k(t)

where g(·) is the pre-specified, assumed to be continuous almost everywhere and twice

differentiable link function. µ0k(t) =
∫ t

0
dµ0k(s) is an unspecified baseline mean function

and β0 is a p × 1 vector of parameters of interest. The baseline mean functions are

allowed to be different for each event type in this model and the following estimating

equations are proposed:

n∑
i=1

K∑
k=1

∫ τ

0

Zik(s)
g(1)(β

′
Zik(s))

g(β ′Zik(s))

{
dNik(s)− Yik(s)g(β

′
Zik(s))dµ0k(s)

}
= 0p×1

where P (Yik(τ) = 1) > 0 for k=1,...,K and

n∑
i=1

∫ t

0

{
dNik(s)− Yik(s)g(β

′
Zik(s)dµ0k(s)

}
= 0

Based on above equation, dµ0k(s, β) = dN.k(s)

nS0
k(s;β)

. Substituting this in the previous equa-

tion yields an estimating equation for β0 which is free of {µ0k(.)}Kk=1:

Un(β) =
n∑
i=1

K∑
k=1

∫ τ

0

{
Zik(s)

g(1)(β
′
Zik(s))

g(β ′Zik(s))
− Ek(s; β)

}
dNik(s) = 0p×1,
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where Ek(s; β) =
S

(1)
k (s;β)

S
(0)
k (s;β)

and µ0k(t) is estimated by a Breslow - Aalen type estimator

based on the kth type event: µ̂0k(t; β̂n) =
∫ t

0
dN.k(s)

nS
(0)
k (s;β̂n)

. The authors showed that

the parameter estimates are consistent and
√
n(β̂n − β0) is asymptotically normally

distributed with zero mean and covariance matrices Σ(β) = A(β)−1B(β)A(β)−1. The

consistent estimator of A(β) is given by Â(β̂) = n−1
∑K

k=1

∫ τ
0

Vk(s; β̂)dN.k(s) and B̂(β)

is given by

B̂(β̂) = n−1

n∑
i=1

(
K∑
k=1

∫ τ

0

{
Zik(s)

g(1)(β̂TZik(s))

g(0)(β̂TZik(s))
− Ek(s; β̂)

}
dM̂ik(s; β̂)

)⊗2

where dM̂ik(s) = dNik(s)−Yik(s)g(β
′
Zik(s))dµ0k(t; β. The authors also suggested other

link functions not restricted to be in the exponential form.

2.2 Modeling Recurrent Event Data Assuming Dependent Cen-

soring

Data from recurrent events provide richer information about disease progression than

those from a single event. In the previous section, we reviewed several methods that

deal primarily with recurrent events which assumes independence between censoring

and recurrent event process. However in certain clinical studies, the recurrent events

may be subject to dependent censoring. Dependent or informative censoring arises

if the censoring time depends on the observed or unobserved recurrent event times.

When the study is subject to dependent censoring the correlation structure between

dependent censoring time and recurrent event process is complex and in such scenario

analyzing recurrent events data using aforementioned methods are not valid. Depen-

dent censoring can be considered to be of two major forms: one in which subjects in

the study voluntarily withdraw themselves for the reasons that are related to recurrent
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event process. In this case subjects can potentially experience events even after their

withdrawal but are not observable by the investigators. The second one arises when

censoring occurs because of death and in this case there are no possibility for further

occurrence of the event. Luo, Wang and Huang (2008) demonstrated that inappropri-

ate modeling of recurrent event can result in misleading conclusion, especially when

terminal event is correlated with recurrent event process.

Lin (1997) presented a useful quantity of cumulative incidence function under com-

peting risk studies, he used a resampling technique to construct confidence bands for cu-

mulative incidence curves over the entire span of interest and provided non-parametric

inference to compare two such curves. Ghosh and Lin (2000)presented a non-parametric

estimator that defined marginal mean of the cumulative number of recurrent events over

time. A nonparametric statistics for comparing two mean frequency function and for

combining data on recurrent events and death was also discussed. Wang and Chiang

(2002) compared risk set methods with alternative nonparametric approaches under

informative censoring. The authors discussed procedures for estimation of the cumula-

tive occurrence rate function (CORF) and the occurrence rate function (ORF). More

recently Chen and Cook (2004) described a strategy for testing the treatment effects in

the context of multivariate recurrent events with dependent terminal event. They pro-

posed strategy that construct marginal test statistics for each type of recurrent event

while adjusting for the possibility of dependent termination and then to synthesize the

evidence across all event types by constructing global test statistic.

Some efforts have been put forth recently on the regression analysis of recurrent

events in the presence of dependent censoring especially the terminating event (death)

both under marginal and frailty models. We discuss such methods below.
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2.2.1 Marginal Models

Li and Lagakos (1997) adapted the WLW method by treating death as censoring vari-

able for recurrent events or by defining time for each recurrence as minimum of the

recurrent event time and survival time. In similar lines, Finkelstein et al., (1997) com-

pared several analysis of recurrent events methods especially WLW method with respect

to recurrent infections and death using AIDS clinical trial data. They point out that if

the recurrent events are common and death is also of interest, it is best to use combined

endpoints with WLW method.

Cook and Lawless (1997) studied the mean and rate functions of recurrent events

among survivors at certain time points. They suggested joint rate/mean function

models for recurrent events and terminal event and is done by modeling marginal

distribution of failure times and the rate function for the recurrent events condi-

tional on the failure time. The effect of failure time on recurrent events is specified

through two functions: ri(s; t) = (d/ds)E {Ni(s)|Ti = t, xi} , s ≤ t and mi(s; t) =

(d/ds)E {Ni(s)|Ti ≥ t, xi} , s ≤ t. However, Ghosh and Lin (2002) commented that

neither of these methods yields results that pertain to the subjects ultimate recur-

rence experience. Luo, Wang and Huang (2008) provided a review comparing vari-

ous rate function for recurrent event process under terminal event. They compared

rate function defined by λ(t)dt = E[dN(t)], adjusted rate function (ARF) defined by

λA(t)dt = E[dÑ(t)] where Ñ(t) = N(t) if t < D and N(D) if t ≥ D and the survivor

rate function (SRF) defined by λS(t)dt = E[dN(t)|D ≥ t]. When study interest is

placed on evaluating treatment effect on recurrent event process, they recommend first

investigating possible mortality differences among treatment groups, if there is no dif-

ference then any of the rate functions can be applied. While if the interest is based

on treatment efficacy in recurrent events, rate function is recommended, on the other

hand if disease progression is not of interest ARF or SRF could be used.
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Ghosh and Lin, (2002) focused on the marginal mean of the cumulative number of

recurrent events over time analogous to the cumulative incidence function in the com-

peting risk literature. Their mean function incorporates the fact that a subject that dies

cannot experience further recurrent events and thus characterizes the subjects ultimate

recurrence experience in the presence of death. They proposed two semiparametric

regression models that specify multiplicative covariate effects on the marginal mean

function. The first procedure uses inverse probability of censoring weighting (IPCW)

and second approach uses modeling survival time (IPSW). Assuming that the censor-

ing times are known such that it is caused solely by the termination of the study, the

estimating equation for β0 can be written as

U(β0) =
n∑
i=1

∫ τ

0

{
Zi(t)−

∑n
j=1 I(Cj ≥ t)Zj(t)e

β
′
0Zj(t)∑n

j=1 I(Cj ≥ t)eβ
′
0Zj(t)

}
I(Ci ≥ t)

×
{
dN∗i (t)− eβ

′
0Zi(t)dµ0(t)

}

Under the IPCW method, consider a quantity wi(t) = I(Ci ≥ Di ∧ t)G(t)/G(Xi ∧ t)

that reduces to I(Ci ≥ t) in absence of death and under the assumptions that Ci have

a common distribution with survival function G(t) and censoring and failure time are

independent given covariates. Since G is unknown, we can estimate it by Kaplan-Meier

estimator or based on proportional hazards model, then G(t|Zi) = E
{
wCi (t)|Zi

}
. Let

Ĝ(t|Zi) denotes an estimate for G(t) and let wCi (t) = I(Ci ≥ Di∧t)Ĝ(t|Zi)/Ĝ(Xi∧t|Zi),

then the estimating function under IPCW method by replacing I(Ci ≥ t) with wCi (t)

is given by

UC(β) =
n∑
i=1

∫ τ

0

{
Zi(t)− Z̄C(β, t)

}
ŵCi (t)dNi(t)

where Z̄C(β, t) = S̃(1)(β, t)/S̃(0)(β, t) and S̃(k)(β, t) = n−1
∑n

j=1 ŵ
C
j (t)Z⊗kj (t)eβ

′
Zj(t),
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k=0,1,2. The corresponding baseline mean function µ0(.) is estimated by Breslow

estimator

µ̂C0 (t) ≡
n∑
i=1

∫ t

0

ŵCi (u)dNi(u)

nS̃(0)(β̂C , u)
, 0 ≤ t ≤ τ,

which in the absence of death reduces to (2.3) of Lin et al., (2000).

The IPCW requires modeling the censoring distribution, which is a nuisance, alter-

natively, modeling survival distribution, unlike censoring, is of clinical interest. Anal-

ogous to IPCW method I(Ci ≥ t) is replaced with an observable quantity with the

same expectation. Thus I(Ci ≥ t) is replaced with wDi (t) = I(Xi ≥ t)/S(t|Zi). As-

sume proportional hazard model for survival time λD(t|Z) = λD0 (t)eγ
′
DZ(t). The esti-

mator for S(t|Zi) is Ŝ(t|Z) = exp
{
−
∫ t

0
eγ̂DZ(u)dΛ̂D

0 (u)
}

and the approximate weight

ŵDi (t) ≡ I(Xi ≥ t)/Ŝ(t|Zi). The estimating equation is written as

UD(β) =
n∑
i=1

∫ τ

0

{
Zi(t)− Z̄D(β, t)

}
ŵDi (t)dNi(t)

where Z̄D(β, t) = S̃(1)(β, t)/S̃(0)(β, t) and S̃(k)(β, t) = n−1
∑n

j=1 ŵ
D
j (t)Z⊗kj (t)eβ

′
Zj(t),

k=0,1,2. The corresponding baseline mean function µ0(.) is estimated by Breslow

estimator

µ̂D0 (t) ≡
n∑
i=1

∫ t

0

ŵDi (u)dNi(u)

nS̃(0)(β̂D, u)
, 0 ≤ t ≤ τ

Let M̂i(t) =
∫ t

0
ŵCi (u)

{
dNi(u)− e ˆβTCZi(u)dµ̂C0 (u)

}
, and M̂C

i (t) = NC
i (t)−

∫ t
0
Yi(u)e

ˆγTCZi(u)

dΛ̂C
0 (u). The authors showed both β̂C and β̂D are consistent.

√
n(β̂C − β0) asymptot-

ically follows normal distribution with mean zero and covariance matrix Â−1
C Σ̂CÂ−1

C

where Â−1
C = −n−1∂UC(β̂C)/∂β, Σ̂C = n−1

∑n
i=1

(
η̂Ci + ψ̂Ci

)⊗2

,

η̂Ci =
∫ τ

0

{
Zi(t)− Z̄C(β̂C , t)

}
dM̂i(t),

ψ̂Ci =

∫ τ

0

B̂C

{
Zi(t)−

R̂(1)(γ̂C , t)

R̂(0)(γ̂C , t)

}
dM̂C

i (t) +

∫ τ

0

q̂C(t)

R̂(0)(γ̂C , t)
dM̂C

i (t)
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B̂C = n−1

n∑
i=1

∫ τ

0

{
Zi(t)− Z̄(β̂C , t)

}
ĝC(Xi, t,Zi)

′
Ω̂−1
C I(t > Xi)dM̂i(t)

ĝC(Xi, t,Zi) =

∫ t

Xi

eγ̂
′
CZi(u)

{
Zi(u)− R̂(1)(γ̂C , u)

R̂(0)(γ̂C , u)

}
dΛ̂C

0 (u),

q̂C(t) = −n−1

n∑
i=1

∫ τ

0

{
Zi(u)− Z̄C(β̂C , u)

}
eγ̂
′
CZi(t)I(u ≥ t > Xi)dM̂i(u),

Ω̂C = n−1

n∑
i=1

∫ τ

0

R̂(2)(γ̂C , t)

R̂(0)(γ̂C , t)
−

{
R̂(1)(γ̂C , t)

R̂(0)(γ̂C , t)

}⊗2
 dNC

i (t), and

R̂(k)(γ, t) = n−1

n∑
j=1

Yj(t)Zj(t)
⊗keγ

′
Zj(t), k = 0, 1, 2.

The asymptotic properties are similar for the IPSW method.

The IPSW method is more appealing when survival is of interest along with re-

current events, while if the marginal mean function of recurrent events is of primary

interest with censoring independent of covariates then IPCW method is more attractive

with non-parametric estimator of the censoring distribution. Liu et al.,(2004) mentions

that this method is limited due to strict conditions required for both IPCW and IPSW

methods which may not be satisfied in reality.

More recently, Miloslavsky et al., (2004)independently proposed estimating func-

tions for Andersen-Gill multiplicative intensity model and proportional rates model

in order to obtain consistent estimator from the observed data in the presence of de-

pendent censoring using inverse probability of censoring weighted (IPCW) mapping.

They mention that the full data estimating functions remain unbiased in the case of

dependent censoring, if the censoring mechanism is estimated consistently. The authors

mention that for obtaining correct standard error, one should use either bootstrap or

the influence curve approach of van der Laan and Robins, (2002). The authors extended

the above method to proportional rates model. They mentioned that the estimators
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are at least as efficient as the partial-likelihood-based estimating equations used in Lin

et al.,(2000). These estimators remain consistent if censoring mechanism is estimated

consistently and the identifiability assumption P (C > τ |V ) > δ > 0 holds.

2.2.2 Frailty Models

Many models frailty models have been proposed under dependent censoring setup.

Lancaster and Intrator (1998) modeled jointly distribution of recurrent events (hospi-

talization) and survival parametrically through a common unmeasured frailty. They

treated hospitalization episodes as a Poisson process whose rate function shares the

same frailty with the hazard function of survival time. These two events were consid-

ered independent given the frailty. Wang, Qin and Chiang (2001) modeled occurrence

rate function for recurrent events with informative censoring in semiparametric and

non-parametric ways. They assumed non stationary Poisson process via a frailty for

recurrent events, conditioning on the frailty, recurrent and terminal events are inde-

pendent. The authors showed that the solution of this class of estimating equations

has the property that
√
n(γ̂ − γ) converges weakly to a multivariate normal distribu-

tion with zero mean and covariance matrix which can be consistently estimated if the

marginal rate model is correctly specified. One of the limitations of this method is

that both the distribution of the informative censoring and frailty are considered as

nuisance parameters, thus their models cannot be applied to situations where modeling

both recurrent and terminal events is of interest. Also this proposed model cannot

handle time-dependent covariates (Liu et al., 2004).

Huang and Wolfe (2002) proposed a frailty model for clustered data with infor-

mative censoring, in which they assumed standard frailty assumptions that subjects

in the same cluster share a common frailty and within each cluster, censoring is in-

dependent of survival. The proposed method allows for informative censoring as well
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as non-informative censoring. For example, if there are administrative censoring and

dropout due to medication, then administrative censoring is assumed as noninforma-

tive and dropout as informative. Extending the above discussed method to a recurrent

event setting, Liu, Wolfe and Huang (2004) proposed a joint semiparametric model for

intensity functions for both recurrent events and death by a shared gamma frailty in

which frailty is modeled in such a way that it can have different effects on the two haz-

ards. Under their model, let Oi(t) =
{
Yi(u), NR

i , N
D
i , 0 ≤ u ≤ t

}
where NR

i and ND
i

are recurrent event and terminating processes and let υ be the unobserved frailty that

measures the latent process related to both recurrent events and terminal events. Un-

like the Wang, Qin and Chiang (2001) method, the parameters for the terminal events

can be estimated from the proposed model and can handle time-dependent covariates.

More recently, Rondeau et al., (2007) used a maximum penalized likelihood estima-

tion procedure to handle non-parametric estimation of continuous hazard function in

a joint frailty model with right censored and delayed entry. They jointly evaluated the

recurrent event and terminal event processes and showed that the method provides un-

biased and efficient parameters. Ye, Kalbfleisch and Schaubel (2007) formulated joint

semiparametric model in which dependence between terminal and recurrent events pro-

cesses is modeled via shared gamma frailty, in which, marginal models were used to

estimate regression effects on the terminal and recurrent events and a Poisson model for

estimating the frailty variable. A different approach under informative or dependent

censoring was proposed by Ghosh and Lin (2003), where they proposed a semiparamet-

ric joint model that formulates the marginal distribution of the recurrent event process

and the dependent censoring time through scale-change models while leaving the dis-

tributional form and dependence structure unspecified. Zeng and Lin, (2009) and Zeng

and Cai, (2010) proposed a non-parametric maximum likelihood approach for a broad

class of semiparametric transformation models with random effects for joint analysis
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of recurrent events and terminal events and additive rate models for recurrent events

with informative terminal events respectively.

2.3 Models for Failure Time Data with Incomplete Covariate

Information

In clinical trials and observational studies, complete covariate data are often not avail-

able for every subject. Incomplete data may arise due to many circumstances, including

unavailability of covariate measurements, survey non response, subjects failing to re-

port to clinic for monthly evaluation, respondents refusing to answer certain items on

the questionnaire and loss of data. When subjects with missing covariate values differ

systematically from those with complete data with respect to the outcome of interest,

result from a traditional data analysis omitting the missing cases may no longer be

valid. Complete case (CC) analysis in which subjects who are completely observed is

analyzed and is most common practice even with many methods have been developed

for handling incomplete data. Complete case analysis is unbiased when data is missing

completely at random but when the fraction of observation with missing data increases,

the estimate becomes inefficient. Another ad hoc method of dealing with missing co-

variate data is to exclude those covariates subject to missingness from the analysis,

but this procedure can lead to model misspecification. Many statistical methods have

been developed to handle missing covariates and have extensively reviewed (Little and

Rubin 2002; Schaffer 1997; Little 1992; Horton and Laird, 1999; and Ibrahim et al.,

2005). Little, (1992) focused on the multivariate normal models, Horton and Laird

(1999) focused exclusively on the maximum likelihood methods for generalized linear

models with missing at random (MAR) categorical variables and Ibrahim et al., (2005)

recently examined more generalized setting examining four different methods such as

maximum likelihood, multiple imputation (MI), Fully Bayes (FB) and weighted esti-
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mating equations (WEE) in the context of generalized linear models. A comprehensive

review of missing data methods for longitudinal data has been discussed by Ibrahim

and Molenberghs (2009).

Little and Rubin, (2002) discuss three missingness classification (i)Missing Com-

pletely at Random (MCAR), (ii) Missing at Random (MAR) and (iii) Nonignorable

Missing Data (NIG). Data are said to be MCAR, if the failure to observe a value does

not depend on any data, either observed or missing. A CC analysis may lose efficiency

but no bias is introduced when data are MCAR. Data are said to be MAR, if con-

ditional on the observed data, the failure to observe a value does not depend on the

data that are unobserved. The missing values of Xi are MAR if, conditional on the

observed data, the probability of observing Xi is independent of values of Xi that would

have been observed, but this probability is not necessarily independent of yi and the

observed values of Xi . In most MAR scenarios, a CC analysis will be both inefficient

and biased. When data are MAR, if missingness depends only on the observed Xi and

not on the yi, then a CC analysis will lead to unbiased estimates. However, if the

missingness depends on yi (and not necessarily on the observed Xi ) then a CC analysis

will result in biased estimates. The missing data mechanism is said to be nonignorable,

if the failure to observe a value depends on the value that would have been observed.

The missing values of Xi are nonignorable if, conditional on the observed data, the

probability that Xi is missing depends on the missing values of Xi.

Considerable efforts have been established and many likelihood based methods and

multiple imputation procedures have been developed to handle missing covariate data

under univariate survival analysis. In this section we will be reviewing such methods.
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2.3.1 Likelihood Methods for Survival Data with Incomplete

Covariate Information

Lin and Ying (1993) proposed approximate partial likelihood estimates that can accom-

modate any pattern of missing data. They followed the method of Self and Prentice

(1988) for case-cohort design by estimating the conditional expectation of Z̄(β; t) from

subjects who have complete measurements on all covariate components at time t or

from representative sample of the entire cohort. Assuming the missing covariate cor-

responds to MCAR, the approximate partial likelihood estimator (APLE) is estimated

by solving the estimating equation

Ũ(β) =
n∑
i=1

∆iHi

{
Zi −

S(1)(β; t)

S(0)(β; t)

}

where S(r)(β; t) = n−1
∑n

i=1 H0i(t)Yi exp
{
β
′
Zi(t)

}
Zi(t)

⊗r. The estimator is shown to

be consistent with mean 0 and covariance matrix A−1(β0)B(β0)A−1(β0).

Alternatively, Zhou and Pepe (1995) proposed an estimated partial likelihood method

(EPL) under MCAR assumption to estimate relative risk with auxiliary covariate infor-

mation. The EPL method requires covariate data information and a validation sample

with no missing covariate measurement. It is crucial that this validation sample is

representative of the entire cohort. The EPL estimator is shown to be consistent and

asymptotically normally distributed.

Schluchter and Jackson (1989) and Lipsitz and Ibrahim (1996a) developed meth-

ods for missing categorical covariates in fully parametric proportional hazards model.

The method by Schluchter and Jackson (1989) involves two parts: a multinomial

model for the probabilities in the contingency table formed by categorical covari-

ates and the second part considers the hazard function conditional on the covariates

and the estimator is estimated via EM as well as Newton-Raphson algorithm. While
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Lipsitz and Ibrahim, (1996b) assumed MAR and obtained maximum likelihood esti-

mates via EM by the method of weights that is applied to any failure time distri-

bution. The estimates are obtained by maximizing the expected complete data log-

likelihood , where the expectation is taken with respect to the conditional distribution

of the missing data given the observed data. The M-step maximizes the function

Q(θ|θ(t)) =
∑n

i=1

∑
xmis,i(j)

wij,(t)`(θ, xi, yi, δi), where xmis,i(j) is the missing component

of covariate vector with j indexing distinct covariate pattern in subject i, `(θ, xi, yi, δi) is

the complete data log-likelihood and wij,(t) is a weight function based on the conditional

probabilities p [xmis,i|xobs,i, yi, δi, θ] in the tth iteration. Martinussen (1999) modified the

method proposed by Ibrahim, (1990) and generalized them to Cox regression analysis

with missing values in the covariates which is similar to that of Lipsitz and Ibrahim

(1996b)but for semiparametric Cox model . This method relies on the non-parametric

maximum likelihood interpretation of Nelson-Aalen estimator in the Cox regression set-

ting and he considered missing covariates to be categorical and MAR. The covariance

is obtained by method of Louis (1982).

Chen and Little (1999) described a related method, where they approximate the

baseline cumulative hazard iteratively by Breslow estimator and then fit a propor-

tional hazards model with exponential baseline hazard to the incomplete covariate

data and survival time, their approach results in an approximate EM. The authors

use Expectation/Conditional Maximization (ECM) algorithm to handle the large num-

ber of parameters involved in the non-parametric maximization. Along with this, the

variance is obtained by variation of the profile likelihood approach using EM-aided

differentiation. The authors proposed modeling the covariate distribution to facili-

tate computation. However, modeling covariate distribution reduces the robustness

of the method and the maximization procedure requiring evaluation of the possibly

intractable integrals under continuous covariates. Wang and Chen (2001) proposed
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an augmented inverse probability weighted estimator which is an extension of Horvitz

and Thompson (1952) estimator and showed it is consistent and doubly robust. Let

r
(0)
i = exp

{
β
′
iXi(t) + β

′
iZi(t)

}
and r

(1)
i (β, t) = (X

′
i , Z

′
i)
′
r

(0)
i and the augmented inverse

probability weighted (AIPW) estimating equation is given by

n−1/2

n∑
i=1

[
ηi
πi
δi

{(
Xi

Zi

)
− S

(1)
AW (β, Ti)

S
(0)
AW (β, Ti)

}
+ Ai(β)

]
= 0

where πi = pr(ηi = 1|Zi,Ti, δi) is the selection probability and

Ai(β) = (1− ηi
πi

)×
∫ [

E
{

(X
′

i , Z
′
′ )dMi(u)|Ti, δi, Zi

}
−

{
S

(1)
AW (β, u)

S
(0)
AW (β, u)

}

×E {dMi(u)|Ti, δi, Zi}]

and for m=0,1,

S
(m)
AW (βi, Ti) = n−1

n∑
j=1

[
ηj
πj
I [Tj ≥ Ti] r

(m)
j (β, Ti) + (1− ηj

πj
)I [Tj ≥ Ti]

× E
{
r

(m)
j (β, Ti)|Ti, δi, Zi

}]

The estimators are estimated by EM type algorithm. The authors showed that the

estimators are consistent as long as selection probability model or the joint distribution

of covariates are correctly specified.

Similarly, Chen (2002) proposed double semiparametric method extending the semi-

parametric likelihood method by leaving some of the covariate distribution unspecified

and showed that the estimates are asymptotically more efficient than nonparametric

imputation methods and does not require discretizing the survival time like the method

proposed by Paik and Tsai, (1997). This method also allows the missing covariate and
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the response variable to be continuous and missingness may depend on the continuous

response variable. However, the proposed method require censoring to be independent

of missing covariates. This double semiparametric method offers advantages in terms of

achieving robustness against nuisance model misspecification and easing computational

difficulty in dealing the intractable integrations when parametric models are specified

for missing continuous covariates.

Lipsitz and Ibrahim (1998) proposed estimating equations for Cox regression model

to handle categorical missing covariates using an algorithm similar to the EM algorithm.

Their method can be considered as an extension of the likelihood methods proposed by

Schluchter and Jackson (1990) and Lipsitz and Ibrahim (1996b). Assuming that the

missing data are MAR, they suggested obtaining parameter estimates via Monte Carlo

methods similar to that of Wei and Tanner (1990). They proposed a semiparametric

approach by considering the parametric distribution of covariate Z and specify the

conditional distribution T |Z through semiparametric proportional hazards model and

leaving the baseline hazard λ0(t) unspecified. Let θ = [β, λ0(t), α] and θ̂ be the solution

to the complete data estimating equations

u(θ̂) =


uβ(β̂)

uλ[λ̂0(t), β̂]

uα(α̂)

 = 0

where uβ(β̂) =
∑n

i=1

∫∞
0

{
Zi − Z̄(s; β)

}
dNi(s), Z̄ =

∑n
j=1 ZjYj(s)e

β
′
Zj∑n

j=1 Yj(s)e
β
′
Zj

,

uλ[λ̂0(t), β̂] =
∑n

j=1

[
dNj(t)− λ0(t)Yj(t)e

β
′
Zj

]
, and uα(α̂) =

∑n
i=1

∂logp(zi|α)
∂α

. If the

missing covariates are MAR, a consistent estimate of θ can be obtained by setting the

conditional expectation of the complete data score vector u∗(θ) to 0 and solving for θ̂.

37



The estimating equations under missing categorical covariate can be written as

u∗(θ̂) = E




∑n

i=1

∫∞
0

{
Zi − Z̄(s, β)

}
dNi(s)∑n

i=1

{
dNi(t)− λ0(t)Yi(t)e

βTZi

}
∑n

i=1 ∂ log p(zi|α)/∂α

 |(zobs,1, x1, δ1), . . . , (zobs,n, xn, δn)



=

n1∑
zmis,1(j)

· · ·
nn∑

zmis,n(j)

p
(m)
1j · · · p

(m)
nj


∑n

i=1

∫∞
0

{
Zi − Z̄(s, β)

}
dNi(s)∑n

i=1

{
dNi(t)− λ0(t)Yi(t)e

βTZi

}
∑n

i=1 ∂ log p(zi|α)/∂α


where pij =

p(xi,δi|zobs,i,λ,β)p(zmis,i(j),zobs,i|α)∑
zmis,i

p(xi,δi|zobs,i,λ,β)p(zmis,i(j),zobs,i|α)
and the parameter can be estimated via

EM type algorithm. However, the equation uβ(β̂) pose a challenge since it cannot be

written as sum of independent individual contributions because each involves Z̄(s; β).

Hence the E-step involves n-dimensional sum instead of n one-dimensional sums and

maximization of such n-dimensional sum is very time consuming and sometimes not

practical. To ease the computational burden, the authors proposed a Monte Carlo ap-

proximation in solving u∗(θ|θ(m)) which, approximates the EM-type algorithm. In the

proposed algorithm, given the estimate θ(m) of θ, L values of zmis,i from the conditional

distribution of zmis,i given the observed data is obtained with multinomial probabilities

pij and the `th draw is denoted by z
`(m)
mis and the estimate of u∗(θ) is estimated by.

u∗∗(θ|θ(m)) =
1

L

L∑
`=1

u
(
θ, z

`(m)
mis

)
which can be written at the (m+ 1)th step as

1

L

L∑
`=1

u
(
θ(m+1), z

`(m)
mis

)
=

1

L

L∑
`=1


∑n

i=1

∫∞
0

{
Z
`(m)
i − Z̄`(m)(s, β(m+1))

}
dNi(s)∑n

i=1

{
dNi(t)− λ(m+1)

0 (t)Yi(t)e
β(m+1)TZ

l(m)
i

}
∑n

i=1

(
∂ log p(Z

`(m)
i |α)/∂α

)
α=α(m+1)

 = 0
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solving for β(m+1) reduces to a stratified Cox model with L strata which is given by

1

L

L∑
`=1

n∑
i=1

∫ ∞
0

{
Z
`(m)
i − Z̄`(m)(s, β(m+1))

}
dNi(s) = 0.

The authors show that the estimate θ̂ is approximately multivariate normal with mean

θ and the variance θ̂ is estimated using derivation similar to Louis,(1982)

v̂ar(θ̂) =

{
1

L

L∑
`=1

[
du(θ, z

`(M)
mis )

dθ

]
θ=θ̂

− 1

L

L∑
`=1

(
u(θ̂, z

`(M)
mis )

)(
u(θ̂, z

`(M)
mis )

)′}−1

This method was further extended by Leong et al., (2001) for non-ignorably missing

covariate data by modeling missing data mechanism along with other equations.

Herring and Ibrahim (2001) formulated a different approximation that allows use

of weighted expectation maximization algorithm to estimate the parameters. This

approximation provides flexibility to use both categorical and continuous covariate

missingness. Under continuous covariate missing, implementation is done using Monte

Carlo version of EM algorithm along with Gibbs sampler to obtain parameter esti-

mates. The proposed method is similar to that of Lipsitz and Ibrahim (1998) except

the expectation of Z̄ in the E-step for estimating β is approximated with

E[Z̄(β, u)] = E[
S(1)(β, u)

S(0)(β, u)
] =

E[S(1)(β, u)]

E[S(0)(β, u)]

which corresponds to a first order Taylor series approximation to E[Z̄(β, u)]. The
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proposed approximate E-step is

ũβ(β; θ(m)) = E

[
n∑
i=1

∫ ∞
0

{
zidNi(u)|(zobs,1, x1, δ1), . . . , (zobs,n, xn, δn), θ(m)

]]

−
n∑
i=1

∫ ∞
0

[
E
[
S(1)(β, u)|(zobs,1, x1, δ1), . . . , (zobs,n, xn, δn), θ(m)

]
E [S(0)(β, u)|(zobs,1, x1, δ1), . . . , (zobs,n, xn, δn), θ(m)]

]
dNi(u)

=
n∑
i=1

∑
zmis,i(j)

∫ ∞
0

{
p

(m)
ij (zi − Z̄w(β, u))

}
dNi(u)

where Z̄w(β, u)) =

∑n
i=1

∑
zmis,i(j)

p
(m)
ij zijYi(u) exp(β

′
zij)∑n

i=1

∑
zmis,i(j)

p
(m)
ij Yi(u) exp(β′zij)

≡ S
(1)
w (β,u)

S
(0)
w (β,u)

and

pij = p(xi,δi|zi,Λ0(t),β)p(zi|α)∑
zmis,i

p(xi,δi|zi,Λ0(t),β)p(zi|α)
. The authors showed that the estimated β̃ is con-

sistent and asymptotically normal with mean 0 and variance Σ−1VΣ−1 where Σ =

−E
[
∂
∂β

uβ,i(β0)
]

and is estimated by

Σ̂ = n−1

n∑
i=1

∑
zmis,i(j)

∫ ∞
0

p̂ij

S
(2)
w (β̃, u)

S
(0)
w (β̃, u)

−

{
S

(1)
w (β̃, u)

S
(0)
w (β̃, u)

}⊗2
 dNi(u)

and V = E[uβ,iu
′

β,i] − E[uβ,it
′
α,Λ,i]E[tα,Λ,it

′
α,Λ,i]

−1E[tα,Λ,iu
′

β,i], where uβ,i is the score

for β given (α,Λ0(t)) and tα,Λi,i is the score for (α,Λ0(t)).

The proposed methodology was further extended to accommodate missing contin-

uous covariates by substituting integrals instead of sum in the E-step, however, most

times the integral do not have a closed form. Since the expectation is with respect

to missing covariates given the observed covariate the authors proposed to evaluate

using Monte Carlo EM of Wei and Tanner (1990) and Ibrahim et al., (1999). Sam-

ples were obtained using Gibbs sampler (Gelfand and Smith 1990) along with the

adaptive rejection algorithm of Gilks and Wild (1990). The estimating equation of

ũβ(β|θ(m)) is evaluated by selecting a sample of si,1, . . . , si,ni for each observation i,

from p(zmis,i|zobs,i, xi, δi, θ(m)) using Gibbs sampler with adaptive rejection algorithm.
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The sample si,k, k = 1, . . . , ni is a qi × 1 vector with qi being length of zmis,i. Under

Monte Carlo EM, the E step for missing continuous covariates was given by

ũ∗β(β|θ(m)) =
n∑
i=1

{
1

ni

ni∑
i=1

∫ ∞
0

(z∗i,k − Z̄w(β, u))dNi(u)

}

where z∗i,k = (zobs,i, sik)
′

and Z̄w(β, u) =
∑n
i=1

{
n−1
i

∑ni
k=1 z∗i,kYi(u) exp(β

′
z∗i,k)

}
∑n
i=1{n−1

i

∑ni
k=1 Yi(u) exp(β′z∗i,k})

. Herring et al.,

(2004) extended the above method for non-ignorable missing data incorporating the

missing data mechanism in the model.

2.3.2 Multiple Imputation

Multiple imputation (MI) has emerged as a very popular technique for dealing with

missing data problems. The technique of MI involves creating multiple ‘complete’

datasets by filling in values for the missing data. Then each filled-in dataset is ana-

lyzed as if it were a complete dataset. The inference for the filled-in dataset are then

combined into one result by averaging over the filled-in datasets. Paik and Tsai (1997)

proposed two estimating equations for three missing scenarios one MCAR and two

under MAR assumption: one in which missingness depend on the observed covariates

while in the second, the missingness depends on the observed covariates and on the

corresponding failure or censoring time Xi = (Ti ∧Ci) and δi. Under the first scenario,

the authors proposed imputing only the expected term of the score equation and dis-

card the contribution to the score function if the failed subject has missing covariates;

the other is to impute both observed and expected terms. The partial likelihood score

equation with complete data is expressed as

Uf (β,∞) =
n∑
i=1

∆i

 Z1i(Xi)

Z2i(Xi)

− n∑
i=1

∆i

 S(1)(β,Xi)/S
(0)(β,Xi)

S(2)(β,Xi)/S
(0)(β,Xi)
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where S(0)(β,Xi) =
∑n

j=1 Yj(Xi)e
β
′
1Z1j(Xi)+β

′
2Z2j(Xi) and S(k)(β,Xi) = ∂S(0)(β,Xi)

∂βk
. Let

the covariates be partitioned into two parts such that (Z1i(t)
′
, Z2i(t)

′
) where Z1i is a

completely observed q×1 covariate vector and Z2i is p×1 vector of covariates that may

be missing. Let Hji(t) be an indicator function that takes value 1 if j th component

of covariate vector at time t is observed and 0 otherwise and Hi(·) be a p× p diagonal

matrix with indicator functions {Hq+1,i(·), . . . , Hq+p,i(·)} as diagonal elements. The

scenario 1 is handled similar to that of Lin and Ying, (1993) where the contribution

to score function is discarded if the failed study subject has missing covariate. Under

missing covariates, the missing eβ2lZ2li and Z2lie
β2lZ2li are replaced with estimators of

their conditional expectation, and S̃(0) and S̃(1) are estimated as follows:

S̃(0)(β,Xi) =
∑n

j=1(Yj(Xi)e
β
′
1Z1j(Xi)

×
[
H0j(Xi)e

β
′
2Z2j(Xi) + {1−H0j(Xi)} Ẽ

{
eβ
′
2Z2j(Xi)|F(t), Xj ≥ t

}]
)

and

S̃(k)(β,Xi) =
∂S̃(0)(β,Xi)

∂βk

where

Ẽ
{
eβ
′
2Z2j(Xi)|F(t), Xj ≥ t

}
=

p∏
l=1

eH(q+l)j(t)β2lZ2lj(t)Ẽ
{
eβ2lZ2lj(t)|F(t), Xj ≥ t

}{1−H(q+l)j(t)}

Ẽ
{
eβ
′
2lZ2lj(t)|F(t), Xj ≥ t

}
=

∑n
i=1 Yk(t)H(q+l)k(t)I {Z1k(t) = Z1j(t)} eβ2lZ2lk(t)∑n

i=1 Yk(t)H(q+l)k(t)I {Z1k(t) = Z1j(t)}
,

The authors showed that the estimators are consistent when missing covariates are

MCAR or when missing covariates just depend upon other observed covariates and

not on the censoring or survival time. For the second scenario, both the observed and

expected part is imputed, since the missingness depends on the covariates and observed

time and is continuous. Smoothing technique is employed. The missing covariates
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Z2i(Xi) is replaced with estimator of E {Z2i(Xi)|Xi,∆i = 1, Z1i(Xi)} and is estimated

by

E {Z2i(Xi)|Xi,∆i = 1, Z1i(Xi)}

=
∑K
k=0

∑n
j=1 I{Xj∈Jk,Xi∈Jk,Z1j(Xi)}∆jH(q+l)j(Xi)Z2lj(Xi)∑K

k=0

∑n
j=1 I{Xj∈Jk,Xi∈Jk,Z1j(Xi)}∆jH(q+l)j(Xi)

where Jk = (Ck, Ck+1], 0 = C0 < C1 · · · < Ck < Ck+1 = ∞. For the expected part if

H(q+l)i(t) = 0 then Zm
2lie

β2lZ2li(t) (m=0, 1) is replaced with their estimated counterparts

as above. After imputing missing statistics the partial score function is defined by

Ũ(β) = n−1

n∑
i=1

 ũ1i(β)

ũ2i(β)


where ũ1i(β) = ∆i

{
Z1i(Xi)− Ẽ1(β,Xi)

}
and ũ2i(β) = ∆iWi(Xi)

{
Z2i(Xi)− Ẽ2(β,Xi)

}
.

Under scenario 2, Wi(Xi) = IP , while under scenario 1, Wi(Xi) is replaced by Hi(Xi).

The authors showed that the estimators are consistent and asymptotically normally

distributed. One difficulty in applying their method is that some smoothing techniques

are needed to deal with the inherently continuous follow-up time. Another difficulty

is that all possible configurations of the full data must be observable with positive

probabilities in complete cases. When not all full-data configurations are observable

for complete cases the obtained estimates are biased.

Paik, (1997) proposed multiple imputation estimates β̄PT and β̄ZP adapting two-

imputation based estimates β̂PT and β̂ZP . The idea is to replace missing eβ2Z2i in

S(0)(β, t) with eβ2Z∗2i in the partial score equation where Z∗2i is a randomly drawn value

from the observed data via Approximate Bayesian Bootstrap (ABB) procedure. They

also propose third estimate β̄ that is estimated modifying β̄ZP , this is accomplished by

replacing Z̃2i by a statistic that do not depend on β and is given by
∑n
j=1HjYj(Xi)Z2je

β̂
′
cZj∑n

j=1HjYj(Xi)e
β̂
′
cZj
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where β̂c is complete case Cox model estimate. The main advantage of this method

is that the variance estimates are calculated easily by adding between-imputation and

within-imputation variances.

2.3.3 Models for Correlated Survival Data with Incomplete

Covariate Information

Lipsitz et al., (1994) showed that with no missing covariates, if the marginal distribu-

tions of the correlated survival times follow a given parametric model, then the esti-

mates using maximum likelihood estimating equations, naively treating the correlated

survival times as independent, give consistent estimates of relative risk parameter. Lip-

sitz and Ibrahim (2000) extended this approach to missing covariate by naively treating

the observations within the cluster as independent and use maximum likelihood esti-

mating equations and use EM algorithm to obtain the estimates. In their paper, the

authors work with fully parametric marginal models and assume missingness mecha-

nism as MAR. Let there be N clusters with ni subjects within cluster then the missing

data conditional on observed data is independent of data from any other member of

cluster i or data from any other cluster. Let Tik and Cik be the failure time and cen-

soring time respectively for the kth member of cluster i and zik = [zik1, . . . , zikp]
′

be

the (P × 1) vector of covariates. Let Yik = min(Tik, Cik) where the censoring indicator

is δik = I[Tik ≤ Uik]. They propose EM algorithm to obtain the estimate for discrete

missing covariate. In case of missing continuous covariate they proposed Monte Carlo

EM algorithm mimic the method of Ibrahim et al., (1999a) with one more layer for the

clusters and the estimating equation under missing data is given by

u∗(γ) =
N∑
i=1

ni∑
k=1

E


 u1ik(β; yik, δik, zik)

u2ik(α; zik)

 |yik, δik, zobs,ik
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The solution to u∗(γ̂) = 0 is obtained via the EM algorithm by defining the function

as

u∗(γ|γ(t)) =
N∑
i=1

ni∑
k=1

 ∑zmis,ik
w

(t)
ik,zmis,ik

u1ik(β; yik, δik, zobs,ik, zmis,ik)∑
zmis,ik

w
(t)
ik,zmis,ik

u2ik(α; zobs,ik, zmis,ik)


where w

(t)
ik,zmis,ik

= w
(t)
ik,zmis,ik

(γ(t)) = p(yik,δik|xik,β)p(xik|α)∑
xmis,ik

p(yik,δik|xik,β)p(xik|α)
where γ = (β, α). Though

the parameter estimates are consistent even when naively assuming the members within

clusters are independent, the authors suggest using the asymptotic variance of γ̂ esti-

mated using robust sandwich estimator and is given by

V̂ ar(γ̂) =

{
N∑
i=1

ni∑
k=1

u̇∗ik(γ̂)

}−1


N∑
i=1

[
ni∑
k=1

u∗ik(γ̂)

][
ni∑
k=1

u∗ik(γ̂)

]′
{

N∑
i=1

ni∑
k=1

u̇∗ik(γ̂)

}−1

where u̇∗ik(γ̂) =

[
∂u∗ik(γ)

′

∂γ

]
γ=γ̂

. The authors use Weibull distribution and strongly recom-

mend using robust variance but caution that even though the estimates are consistent

it could be inefficient when the observations within a cluster are highly correlated.

Herring, Ibrahim and Lipsitz (2002) proposed a frailty model with random effects

with covariates missing at random provides a great flexibility in the structure and choice

of distribution of the random effects. The authors formulated the random effects as

a linear predictor. They introduced an approximation to accommodate both missing

categorical and continuous covariates and random effects from a wide variety of distri-

butions. The variance estimation in this problem is complicated by several factors and

thus the authors suggest a imputation procedure proposed by Goetghebeur and Ryan

(2000). The variance of the EM estimator is then obtained as a weighted sum of the

mean of the imputation variances and the empirical variance of the imputation point

estimates, with weight 1 and 1 + 1/m where m is the number of imputation used.
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2.3.4 Methods for Recurrent Event Data with Missing Event

Category

Schaubel and Cai (2006) proposed semiparametric regression method for analyzing

multiple category recurrent event data and consider the setting where event times are

known but event category information is missing. They propose fitting proportional

rates/means models to multiple sequence recurrent event data and employ weighted

estimating equations under MAR assumption. Two event rate models (i) proportional

common baseline rate model and (ii) distinct category specific baseline rates model

were considered and are given below,

E [dN∗ik(s)|Wik(s)] = exp
{
βT0 Wik(s) + γk

}
dµ0(s)

E [dN∗ik(s)|Zik(s)] = exp
{
βT0 Zik(s) + γk

}
dµ0k(s),

where k = 1, . . . , K Wik(s) and Zik(s) are covariate vectors, β0 is a parameter vector,

dµ0(t) and dµ0k(t) are unspecified baseline rate functions and, γ1, . . . , γK−1 are con-

stants of proportionality and γK = 0. Let ∆i(s) denote the category for the event which

occurred to subject i at time s with ∆ik(s) = I(∆i(s) = k) and Ri(s) = 1 when event oc-

curs at time s and ∆i(s) is known and 0 otherwise. Let dNik(s) = dNi.(s)∆ik(s) where

dNi.(s) =
∑K

k=1 dNik(s). Now defining dNik(s) = dNik(s)Ri(s) + dNi.(s)∆ik(s)(1 −

Ri(s)), where dNiu(s) = dNi.(s)(1−Ri(s)) and under the assumption that ∆i(s) is af-

fected by the past and not the future and the event category missingness is conditionally

independent of event category given the covariates Xi(s), then

E [∆ik(s)|dNiu(s) = 1,Xi(s)] = E [∆ik(s)|dNi.(s) = 1, Ri(s),Xi(s)]
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and the authors proposed a generalized logit model to estimate

pik(s; ξ0) = E [∆ik(s)|dNiu(s) = 1,Xi(s), ξ0] .

The estimates ξ̂n is estimated via following estimating equation

n∑
i=1

K∑
k=2

∫ ∞
0

Xik(s) {∆ik(s)− pik(s; ξ)}Ri(s)dNi.(s) = 0

and the category probabilities are estimated through pik(s; ξ) =
exp{ξ̂TnXik(s)}∑K
`=1 exp{ξ̂TnXi`(s)} , ex-

ploiting the consistency of ξ̂n for ξ0. The estimating equations for β0 and µ0k(t) for the

common baseline rate is given by

UP
n (θ) =

n∑
i=1

K∑
k=1

∫ ∞
0

{Zik(s)− E(s; θ)}
{
Ri(s)dNik(s) + pik(s; ξ̂n)dNiu(s)

}

and the baseline means function is estimated by µ̂0(t; θ) = n−1
∑n

i=1

∫∞
0

dNi.(s)

S(0)(s;θ)
, where

S(d)(s; θ) =
∑K

k=1 S
(d)
k (s; θ) for d = 0, 1, 2 and S

(d)
k (s; β) =

∑n
i=1 Yi(s)Zik(s)

⊗deβ
TZik(s),

E(s; θ) = S(1)(s;θ)

S(0)(s;θ)
. The estimating equation for the distinct baseline rate model esti-

mating equation is given by

US
n(β) =

n∑
i=1

K∑
k=1

∫ ∞
0

{Zik(s)− Ek(s; β)}
{
Ri(s)dNik(s) + pik(s; ξ̂n)dNiu(s)

}

and the basline mean function estimator is given by

µ̂S0k(t; β, ξ) = n−1

n∑
i=1

∫ ∞
0

Ri(s)dNik(s) + pik(s; ξ̂n)dNiu(s)

S
(0)
k (s; β)

where S
(d)
k (s; β) = n−1

∑n
i=1 Yi(s)Zik(s)

⊗deβ
TZik(s) for d = 0, 1, 2 and Ek(s; β) =

S
(1)
k (s;β)

S
(0)
k (s;β)

.

The authors showed the estimator is consistent and asymptotically normally distributed.
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A multiple imputation approach for missing event category was also proposed by

Schaubel and Cai (2006b) where estimating equation is given by

U(β) =
n∑
i=1

K∑
k=1

∫ ∞
0

{Zik(s)− Ek(s; β)} {Ri(s)dNik(s) + (1−Ri(s))∆ik(s)dNi.(s)}

When ∆ik(s) are unobserved under (1 − Ri(S))dNi.(s) = 1, they proposed to impute

∆ik(s) based on the model

E [∆ik(S)|Zi1(s), . . . ,ZiK(s), (1−Ri(S))dNi.(s) = 1] .

Exploiting the relationship between event category probabilities and the rate functions,

E [∆ik(S)|Zi1(s), . . . ,ZiK(s), dNi.(s) = 1] =
E [dNik(s)|Zik(s), dNi.(s) = 1]∑K
`=1E [dNi`(s)|Zi`(s), dNi.(s) = 1]

,

since baseline rates are proportional under marginal recurrent rate model leads to a

generalized logit model: log
{
pik(s;ξ0)
pi1(s;ξ0)

}
= ξT0 Xik(s), where pik(s; ξ0) =

E[∆ik(S)|Zi1(s), . . . ,ZiK(s), dNi.(s) = 1; ξ0], ξ0 is a vector of unknown parameters and

Xik(s) are covariates for k = 2, . . . , K with k = 1 is selected as reference category. The

estimate for ξ is obtained via generalized estimating equation with working indepen-

dence assumption. Provided the ξ̂ is estimated consistently the estimating equation for

obtaining β is defined as

U〈m〉(β) =
n∑
i=1

K∑
k=1

∫ ∞
0

{Zik(s)− Ek(s; β)}
{
Ri(s)dNik(s) + (1−Ri(s))∆̂

〈m〉
ik (s)dNi.(s)

}

where m = 1, . . . ,M denote imputed complete dataset and ∆̂
〈m〉
ik (s) is the imputed

value based on estimated probability p̂ik(s). The authors employ two imputation pro-

cedures: (i) improper imputation where in imputed values were generated based on
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multinomial distribution and (ii) proper imputation wherein ∆̂
〈m〉
ik (s) are drawn from

its approximated large-sample distribution. The estimate for β0 based on these two

imputation procedures are then obtained by M−1
∑M

m=1 β̂
〈m〉. The authors showed

that both methods lead to consistent estimation of regression parameters even when

missingness of event categories depend on covariates.

Recently, Chen and Cook (2009) developed an alternative method for analysis of

recurrent events data with missing event categories. They described a likelihood based

approach based on joint models for the multi-type recurrent events and formulated their

estimation via Monte-Carlo EM algorithm. The authors showed that their proposed

method gives unbiased estimator for regression coefficients and variance-covariance pa-

rameter and they also mention that the estimators behave well even when the distri-

bution of frailty variable is misspecified.
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Chapter 3

STATISTICAL METHODS FOR
RECURRENT EVENTS DATA IN

THE PRESENCE OF A
TERMINAL EVENT AND

MISSING COVARIATE
INFORMATION

3.1 Introduction

End stage renal disease (ESRD) is of increasing public health concern worldwide espe-

cially in developing countries. Opportunistic infections are important complication in

India where an estimated 4000 renal transplants are performed annually with varying

immunosuppressive protocols (John et al., 2001). The infections in these patients can

be due to primary infection, reactivation infection or super infections.

The exposure to infective agents and net state of immunosuppression are important

determinants of infection risk after transplantation. Although immunosuppression pro-

tocols in the tropics are similar to that of developed countries, overcrowding, exposure

to endemic infections, under nutrition and hot humid climatic conditions increase their



susceptibility to infections in the developing regions. Because of this environment,

patients are more prone to recurrent infections post transplantation, where episodes

may occur with either the same organism or multiple different organisms. In the trop-

ics, though there are no registry based systematic study of etiology and course of post

transplant infections, there have been a few attempts from independent medical centers

which examined the pattern of infections and its risk factors specific to a single infection

(Jha, 2000; John et al., 2001, 2003). Earlier published studies from India have shown

that incidence of tuberculosis (TB), systemic mycosis, cytomegalovirus (CMV) and uri-

nary tract infection (UTI) are 13.3%, 6.6%, 20% and 16.5%, respectively (John et al.,

2001, 2003; Kamath et al., 2006). When modeled using proportional hazards regression

(Cox, 1972) with tuberculosis and systemic mycoses infection as time-dependent covari-

ate, a 2 and 15 fold risk for death were reported respectively. Although the published

reports have helped physicians target investigative protocols and empirical treatments,

a shortcoming of this analyses based on time to a single infection is that it does not

make use of complete information on complications arising from other infections. Data

on recurrent events provide much richer information about disease progression than

those of a single event. It provides more comprehensive summaries of disease burden

in the renal-transplant patients. Hence the requirement for studying rate of recurrent

infections and their risk factors in this group of patients is desirable.

The motivating study for this article comes from the single center prospective co-

hort of renal-transplant recipients receiving primary renal allograft from 1994 to 2007

at Christian Medical College and Hospital in southern India. This center pioneered

dialysis and renal transplantation in the country and draws patients from most states

in India, Bangladesh, Nepal, Bhutan and Sri Lanka. As immunosuppresion is one of

the important determinants of infection we present the number of recurrent infections

and death by the regimens in Table 3.1. The main objective of the study is to examine
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the rates of infections and to identify the risk factors associated with the recurrent

infections. In our case, it is established from previous studies that infections and death

are correlated hence needs adjustment.
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In the last two decades, extensive work has been done in developing methods for

analyzing recurrent events data, under independent censoring especially in the absence

of a terminal event. An excellent review of the intensity models and rates models are

presented in Cook and Lawless (2007). However, in the presence of a terminal event, the

methods for independent censoring are inappropriate. Luo, Wang and Huang (2008)

demonstrated that inappropriate modeling of recurrent events can result in misleading

conclusion, especially when the terminal event is correlated with the recurrent event

process.

Li and Lagakos (1997) adapted WLW marginal model and regarded terminating

event as a censoring event for each recurrent event or treated the failure time for each

recurrence as the minimum of the recurrent event time and survival time. Marginal re-

gression models have been proposed to analyze recurrent event data in the presence of a

terminal event (Cook and Lawless, 1997; Ghosh and Lin, 2002; Miloslavsky et al., 2004).

Ghosh and Lin (2002) proposed two semiparametric methods using Inverse Probability

Censoring Weights (IPCW) and Inverse Probability Survival Weighting (IPSW). More

recently, Cook et al.(2009) studied different methods for estimation of event mean func-

tion under event dependent censoring and termination where they considered marginal

rate models and partially conditional models with Markov assumption. They suggest

that IPCW method eliminate bias in the presence of event dependent censoring. Ghosh

and Lin (2003) proposed a scale-change models while, Zeng and Cai (2010) proposed a

marginal additive rate model for analyzing recurrent events with informative terminal

events.

Alternatively, frailty models have been proposed for analyzing recurrent events in

the presence of a terminal event. Wang, Qin and Chiang (2001), Huang and Wang

(2004), and Liu et al., (2004) proposed joint semiparametric model for the intensity

functions of both recurrent event and death process by shared gamma frailty model
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Table 3.2: Missing data patterns

Donor Donor HLA Diabetes Acute Frequency Percent
Age Gender Match Melitus Rejection
0 0 0 0 0 1172 86.49
0 0 0 0 M 98 7.23
0 0 0 M 0 7 0.52
0 0 0 M M 6 0.44
0 0 M 0 0 28 2.07
0 0 M 0 M 1 0.07
0 0 M M 0 3 0.22
0 0 M M M 1 0.07
0 M M 0 0 2 0.15
M 0 0 0 0 8 0.59
M 0 M 0 0 5 0.37
M M 0 0 0 4 0.30
M M 0 0 M 1 0.07
M M M 0 0 18 1.33
M M M 0 M 1 0.07

M= missing data, 0=observed

under nonhomogeneous Poisson process assumption. Ye, Kalbfleisch and Schaubel

(2007) proposed a similar model in that the recurrent event process was only conditioned

on the covariates and not on the history of the process. Rondeau et al., (2007) proposed

a non-parametric penalized likelihood method for estimating hazard functions in a joint

frailty models for recurrent events and death. In a recent paper, Zeng and Lin (2009)

studied the general transformation model in the joint modeling approach. All the above

methods assume that complete data on covariates exist which may not be true in many

clinical trials and observational studies.

Another complication in the India renal transplantation study is that it involves

missing covariate information in 13.5% of the cases. If analyzed using only complete

cases would result in 15.5% (98/634) loss of patients with at least one infection and

30.5% of those who died. The missing data pattern by covariates and its percentages

are provided in Table 3.2.

When missing data arises in a study due to various reasons, commonly practiced
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procedures are to omit those cases that have missing covariates and analyze the rest of

the data as if they were complete. Unless the data are missing completely at random

(MCAR), complete case analysis provides biased estimates. The subject of missing data

for other type of data has been previously developed and reviewed extensively (Little

and Rubin, 2002; Schaffer, 1997; Ibrahim et al., 2005; Ibrahim and Molenberghs, 2009).

Lin and Ying (1993) proposed an approximate partial likelihood based method but

assumed missingness to be MCAR. Zhou and Pepe (1995) proposed an estimated partial

likelihood method (EPL) under MCAR assumption to estimate relative risk function

with auxiliary covariate information. Schluster and Jackson (1989) and Lipsitz and

Ibrahim (1996a) developed methods for missing categorical covariates in fully para-

metric proportional hazards model. Martinussen (1999) modified the method proposed

by Ibrahim (1990) and generalized to semiparametric Cox model for ignorable miss-

ing data. Chen and Little (1999) described a related method based on nonparametric

estimation when missing data are missing at random (MAR). Chen (2002) proposed

a doubly robust semiparametric method by leaving the covariate distribution unspec-

ified. A Monte Carlo based parameter estimation procedure was proposed to handle

missing categorical data with MAR assumption in Cox regression (Lipsitz and Ibrahim,

1998). Herring and Ibrahim (2001) and Herring, Ibrahim and Lipsitz (2004) assuming

ignorable and non-ignorable missingness respectively, formulated a different approxi-

mation that allows use of weighted expectation maximization algorithm to estimate the

parameters in univariate survival model with both categorical and continuous missing

data.

Under clustered survival data framework, to handle missing covariate data, Lipsitz

and Ibrahim (2000) proposed a likelihood based method by naively treating the obser-

vations within the cluster as independent assuming MAR. A frailty model approach was

proposed by Herring, Ibrahim and Lipsitz (2002) who introduced an approximation to
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accommodate both missing categorical and continuous covariates and random effects

from a wide variety of distributions. Schaubel and Cai (2006a, 2006b) considered the

problem of missing event types with multiple sequence recurrent event data, and pro-

posed an approach based on weighted estimating equation and multiple imputations

respectively. Chen and Cook (2009) studied an alternate method based on multivari-

ate random effects model. Although, many procedures have been developed to handle

missing data, to our knowledge, methods have not previously been developed to handle

such covariate missingness in recurrent events data in the presence of a terminal event.

The purpose of the article is to study the rates of infections and risk factors for

recurrent infections in the presence of a terminal event and missing covariate informa-

tion. We consider the marginal rate model for the recurrent event process and assume

missing covariates to be missing at random. The remainder of the article is organized

as follows. In Section 3.2, we present the models and the estimation procedure for the

proposed method. The design and results of the simulation studies are described in

Section 3.3 and in Section 3.4 we analyze the India renal transplant cohort data. Some

concluding remarks are made in Section 3.5.

3.2 Modeling and Estimation

Let N∗(t) be the number of recurrent events over the time interval [0, t]. Let D denote

the terminal event time, we assume that recurrent events cannot occur after terminal

event so that N∗(t) does not jump after D. Let C denote the follow-up time or censoring

time. It is assumed that N∗(·) is independent of C conditional on Z(·), where Z(·)

is a p × 1 vector of covariates which is possibly time-dependent. We assume all time-

dependent covariates are external (Kalbfleisch and Prentice, 2002). It is also assumed

that N∗(·) can only be observed up to minimum of C and D. Let X = D ∧ C,

δ = I(D ≤ C) and N(t) = N∗(t ∧ C). For a random sample of n subjects, the data
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consist of {Ni(·), Xi, δi,Zi(·)} , i = 1, 2, . . . , n.

We consider the marginal proportional rates model specified by

E {dN∗(t)|Z(t)} = dµZ(t) = exp(βT0Z(t))dµ0(t), (3.1)

where dµ0(t) is the unspecified baseline rate function and β0 is an unknown parameter

vector. Assume that the terminal event time follows the Cox proportional hazards

model given by

λD(t|Z) = λD0 (t)eγ
T
DZ(t), (3.2)

where λD0 (t) is an unspecified baseline hazard function and γD is a p × 1 vector of

regression parameters. Without missing covariates, Ghosh and Lin (2002) considered

models (3.1) and (3.2), and proposed an estimating equation UD(β) = 0 using inverse

probability survival weight where the score function is given by

UD(β) =
n∑
i=1

∫ τ

0

Zi(t)−
∑n

j=1 ŵ
D
j (t)Zj(t)e

βTZj(t)∑n
j=1 ŵ

D
j (t)eβ

TZj(t)

 ŵDi (t)dNi(t), (3.3)

where ŵDi (t) ≡ I(Xi ≥ t)/Ŝ(t|Zi) and Ŝ(t|Zi) = exp
{
−
∫ t

0
eγ̂

T
DZ(u)dΛ̂D

0 (u)
}

, and

γ̂D and Λ̂D
0 (t) are the maximum partial likelihood and Breslow estimators of γD and

ΛD
0 (t) ≡

∫ t
0
λD0 (u)du, respectively. With missing covariates, this approach cannot be

applied directly. We will extend this method to incorporate missing covariate informa-

tion by adopting a weighted EM algorithm (Herring and Ibrahim, 2001). The weighted

EM algorithm involves solving estimating equations by taking the expectations with

respect to conditional distribution of missing covariates given the observed data.
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3.2.1 Estimation using weighted estimating equations

Suppose that when some covariate values are missing, we write Zi = (Zobs,i,Zmis,i)

where Zobs,i and Zmis,i correspond to the observed and the missing component of the

covariate vector Zi, respectively. We first fill in the missing covariate information

for each subject with all possible values for each covariate from its distribution which

results in an augmented complete data. We then analyze this complete data via EM

type algorithm, which is a two step iterative procedure. In the E-step, we write the

estimating equation as an expectation conditional on the observed data. In the M-step,

we maximize the weighted estimating equation as if the data were complete but now

being replaced with the distinct missing data patterns and the corresponding weights.

At each step, each subject with missing data is weighted by the probability of the filled-

in missing data pattern conditional on the observed data and subjects with complete

information will have the weight of 1.

When there are no missing covariates β can be estimated by solving UD(β) = 0.

However, when some covariates are missing, we need additional distributional assump-

tions. In particular, we need to specify parametric distributions for covariates Z with

parameter vector α. Once the data is augmented by filling the values, the data are now

complete and the complete data score equations may be written as

U(θ̂) =



UD
β (β̂)

Uµ{µ̂0(t)}

UγD(γ̂D)

UΛD{Λ̂D
0 (x)}

Uα(α̂)


= 0 (3.4)

where θ = (β,µ0(·),γD,ΛD
0 (·), α); UD

β (β̂), Uµ(µ̂0(t)), UγD(γ̂D), UΛD(Λ̂D
0 (x)) and Uα(α̂)
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are the score functions for β,µ0(·),γD,Λ0(·) and α, respectively. A consistent estimate

of parameters of interest under MCAR and MAR assumption can be obtained by solving

U∗(θ|θ(m)) = E [U(θ)|observed data] = 0. (3.5)

We note that the expectation in (3.5) is taken with respect to the conditional distribu-

tion of the missing data given the observed data. We consider the following weighted

estimating function for β

U∗Dβ (β|θ(m)) =
n∑
i=1

∑
Zmis,i(j)

∫ ∞
0

p̂
(m)
ij (t)

{
Zi(t)− Z̄

D
w (β, t)

}
ŵ
D(m)
i (t)dNi(t), (3.6)

where Z̄
D
w (β, t) =

∑n
i=1

∑
Zmis,i(j)

p̂
(m)
ij (t)ŵ

D(m)
i (t)Z ij(t) exp(βTZ ij(t))∑n

i=1

∑
Zmis,i(j)

p̂
(m)
ij (t)ŵ

D(m)
i (t) exp(βTZ ij(t))

= Ŝ
(1)
w (β,t)

Ŝ
(0)
w (β,t)

and Ŝ
(k)
w (β, t) = n−1

∑n
i=1

∑
Zmis,i(j)

p̂
(m)
ij (t)ŵ

D(m)
i (t)Z⊗kij (t)eβ

TZ ij(t) for k = 0, 1, where

ŵ
D(m)
i (t) and p̂

(m)
ij (t) will be defined in the next two sections. The corresponding baseline

mean function µD0 (·) can be estimated by

µ̂0(t) =

∫ t

0

∑n
i=1

∑
Zmis,i

p̂
(m)
ij (u)ŵ

D(m)
i (u)dNi(u)

nŜ
(0)
w (β̂, u)

, 0 ≤ t ≤ τ. (3.7)

3.2.1.1 Inverse Probability Survival Weight ŵDi (t)

To obtain unbiased estimate of β, we need unbiased estimate of survival function

Ŝ(t|Zi) which is estimated based on model (3.2). Under covariate missingness, this

complicates the issue which now requires estimating survival function in the presence

of missing covariates and requires estimating cumulative baseline hazard function ΛD
0 (t)

along with the covariate distribution.

60



Following the arguments of Herring and Ibrahim (2001), let ψ =
(
γD,Λ

D
0 (·), α

)
and

U∗(ψ|ψ(m)) =


U∗γD(γD|ψ(m))

U∗ΛD(ΛD
0 (X)|ψ(m))

U∗α(α|ψ(m))


where U∗γD(γD|ψ(m)),U∗ΛD(ΛD

0 (X)|ψ(m)) and U∗α(α|ψ(m)) are the expectation of score

functions for γD,Λ
D
0 (·) and α, respectively. Note that the expectation is taken with

respect to conditional distribution of missing data given observed data. With missing

covariates, ψ can be estimated by solving U∗(ψ|ψ(m)) = 0, for ψ. The approximate

E-step for γD is

U∗γD(γD|ψ(m)) =
n∑
i=1

∑
Zmis,i(j)

∫ ∞
0

o
(m)
ij

Zi −

∑n
i=1

∑
Zmis,i(j)

o
(m)
ij ZijYi(u)eγ

′
DZ ij∑n

i=1

∑
Zmis,i(j)

o
(m)
ij Yi(u)eγ

′
DZ ij


× dND

i (u),

and cumulative baseline hazard function is estimated by solving the following estimating

equation

U∗ΛD(ΛD
0 (t)) =

n∑
i=1

∑
zmis,i(j)

o
(m)
ij

{
dND

i (t)− dΛD
0 (t) exp(γ

′

DZij)Yi(t)
}

= 0

and

o
(m)
ij =

p(xi, δi|Zmis,i(j),Zobs,i; ΛD
0 (x),γD)p(Zmis,i(j),Zobs,i|α(m))∑

Zmis,j
p(xi, δi|Zi; Λ

D(m)
0 (x),γ

(m)
D )p(Zi|α(m))

(3.8)

where p(xi, δi|Zmis,i(j),Zobs,i; ΛD
0 (x),γD) = [λ0(xi) exp(γ

′
DZi)]

δi exp(− exp(γ
′
DZi)Λ

D
0 (xi))

and p(Zmis,i(j),Zobs,i|α(m)) is the joint distribution of covariates which is described be-

low.

When some covariates are missing, we need to specify covariate distribution for
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the missing Zi and estimate its parameter from the data. When there are p inde-

pendent and identically distributed covariates, the distribution of covariates require

p-dimensional joint distribution. To simplify this, we consider conditional-conditional

specification of Lipsitz and Ibrahim (1996b), in which we specify the joint distribution

of missing covariates into product of one-dimensional conditional distributions. Let

Zi = (zi1, zi2, . . . , zip) be p × 1 covariate vector where (zi1, zi2, . . . , zir) are missing for

at least one i, (i = 1, . . . , n), and let vi = (zir+1, zir+2, . . . , zip) be complete covariates.

The joint distribution can be written as

p(zi1, zi2, . . . , zir|α) = p(zir|zi1, . . . , zir−1,vi, αr)p(zir−1|zi1, . . . , zir−2,vi, αr−1) · · ·

×p(zi1|vi, α1),

(3.9)

where αj is the parameter vector for the jth conditional distribution and is estimated

by solving the estimating equations for α, Uα(α̂) = 0, where

Uα(α) =
n∑
i=1

∂ log p(Zi|α)

∂α
.

Once the γ
(m)
D and Λ

D(m)
0 (·) are obtained, the IPSW weight may be estimated by

ŵDi (t)(m) = I(Xi ≥ t)/Ŝ(m)(t|Zi), where, Ŝ(m)(t|Zi) = exp
{
−
∫ t

0
eγ̂

(m)T

D Zi(u)dΛ̂
D(m)
0 (u)

}
.

3.2.1.2 Missing Data Weights p̂ij(t)

The missing data weights for the proposed estimating function (3.6), p̂ij(t), are esti-

mated conditional probabilities that the missing data for subject i takes the pattern

indexed by j given θ̂
(m)

and may be viewed as posterior probabilities of the missing

values. Let Ri1, Ri2, · · · , RiK denote K recurrent events in the ith individual and ∆ik,
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k = 1, 2, . . . , K, denote recurrent event indicator, then

pij(Rik) = pr{zmis,i = zmis,i(j)|zobs,i, Rik,∆ik, Xi, δi; θ} =

p {Rik,∆ik, Xi, δi|zmis,i(j), zobs,i;µ(·), β,Λ(·), γ} p {zmis,i(j), zobs,i|α}∑
zmis,i

p {Rik,∆ik, Xi, δi|zi;µ(·), β,Λ(·), γ} p {zi|α}
(3.10)

where
∑ni

j=1 pij(Rik) = 1, ni is number of missing pattern per subject. To obtain the

above weight, we considered the following working models:

dri(t|Zi; ζi) = ζie
βTCZ idr0(t)

hi(t|Zi; ζi) = ζie
γTCZ ih0(t)

where ζi follows a positive stable distribution and conditional on ζi andZi, the recurrent

event and the terminal event are independent. Based on the working models, the joint

density function of recurrent and terminal event is then given by

p {Rik,∆ik, Xi, δi|Zi; r(·), βC , H(·), γC}

=
∫
p {Rik,∆ik|Zi;βC , r(·), ζi} p {Xi, δi|Zi;γC , H(·), ζi} p(ζi)dζi

where ∆ik and δi are the kth recurrent event and terminal event indicators, respectively.

βC and γC are regression parameters from conditional rate and condtional hazard

models respectively. Similarly, r(t) and H(t) =
∫ t

0
h0(u)du are the cumulative rate

and cumulative hazard functions from the respective conditional models. The density

function of ζ and its Laplace transform are given by

f (ζ;φ) = −
(

1

πζ

) ∞∑
k=1

Γ (kφ+ 1)

k!

[
−ζ−φ

]k
sin (φkπ) , ζ ≥ 1 (3.11)
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Lap(s) = exp
[
−sφ

]
, 0 < φ ≤ 1,

where φ is the parameter of positive stable distribution. The relationship between φ

and the dependence measure Kendall’s τ is τ = 1− φ. Under the working assumption

that the recurrent events follow non-homogeneous Poisson process given the frailty ζi,

the density for recurrent event at the kth event in the ith individual can be written as

p {Rik,∆ik|Zi;βC , r(·), ζi} =
[
ζidr0(Rik)e

βTCZ i

]∆ik

e−ζir0(Rik)eβ
T

CZ i
.

Therefore,

∫
p {Rik,∆ik|Zi;βC , r(·), ζi} p {Xi, δi|Zi;γC , H(·), ζi} p(ζi)dζi

=
[
dr0(Rik)e

βTCZ i

]∆ik
[
h0(Xi)e

γTCZ i

]δi ∫
ζ∆ik+δi
i e

−ζi

[
r0(Rik)eβ

T

CZ i+H0(Xi)e
γTCZ i

]
p(ζi)dζi

=
[
dr0(Rik)e

βTCZ i

]∆ik
[
h0(Xi)e

γTCZ i

]δi
E

ζ∆ik+δi
i e

−ζi

[
r0(Rik)eβ

T

CZ i+H0(Xi)e
γTCZ i

]
By Lemma (3.1) in Wang, Klein and Moeschberger(1995), if ζ follows a positive

stable distribution with density (3.11) then

E [ζq exp {−sζ}] =
(
φsφ−1

)q
exp

{
−sφ

}
J [q, s] , q = 0, 1, . . . ; s > 0 (3.12)

where J [q, s] =
∑q−1

m=0 Ωq,ms
−mφ and Ωq,m is a polynomial of degree m given recursively

by

Ωq,0 = 1;

Ωq,m = Ωq−1,m + Ωq−1,m−1 {(q − 1)/φ− (q −m)} ;m = 1, 2 . . . , q − 2;

Ωq,q−1 = φ1−qΓ [q − φ] /Γ [1− φ] .
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By the above Lemma, under the working assumptions, the joint distribution of recurrent

events and terminal event reduces to

[
dr0(Rik)e

βTCZ i

]∆ik
[
h0(Xi)e

γTCZ i

]δi
E

ζ∆ik+δie
−ζi

[
r0(Rik)eβ

T

CZ i+H0(Xi)e
γTCZ i

]
=
[
dr0(Rik)e

βTCZ i

]∆ik
[
h0(Xi)e

γTCZ i

]δi (
φsφ−1

ik

)qik
e−s

φ
ikJ [qik, sik]

where sik =
[
r0(Rik)e

βTCZ i +H0(Xi)e
γTCZ i

]
; qik = ∆ik+δi with J [0, sik] = 1, J [1, sik] =

1 and J [2, sik] =
[
1 + 1−φ

φ
s−φik

]
=
[
1 + τ

1−τ s
τ−1
ik

]
.

Given θ(m), we consider the following working weights for missing data

p̂
(m)
ij (Rik) =e ˆβ

(m)T

C Z i(j)

∆ik[
e
γ̂(m)T
C Z i(j)

]δi(
(1−τ̂)s

−τ̂(m)
ik

)qik
e
−ŝ(1−τ̂)(m)
ik J [qik,sik]p(Zmis,i(j),Zobs,i|α̂(m))

∑
Zmis,i

e ˆβ
(m)T

C Z i(j)

∆ik[
e
γ̂(m)T
C Z i(j)

]δi(
(1−τ̂)ŝ

−τ̂(m)
ik

)qik
e
−ŝ(1−τ̂)(m)
ik J [qik,sik]p(Z i|α̂(m))

,

where p(Zi|α̂(m)) are defined as in (3.9) and under positive stable distribution the re-

lationship between marginal and conditional models estimates can be written as βC =

β/(1− τ), γC = γ/(1− τ), r0(Rik) = (µ0(Rik))
1/(1−τ) and H0(Xi) = (Λ0(Xi))

1/(1−τ).

To summarize, the steps for the proposed EM algorithm are as follows:

(a) Obtain estimates of the Kendall’s τ for the recurrent event and terminal event.

(b) Obtain an initial estimate θ = (β,µ0(·),γD,ΛD
0 (·), α) = θ(0) from the complete

cases. The cumulative baseline rate is estimated via Breslow-Aalen type estimator

as in (3.7) and the cumulative baseline hazard is estimated using

Λ̂
D(m)
0 (t) =

∫ t

0

∑n
i=1

∑
Zmis,i

ô
(m)
ij dND

i (u)∑n
i=1

∑
Zmis,i(j)

ô
(m)
ij Yi(u)eγ̂

(m)T

D Z ij(u)
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where ND
i (u) is the death process.

(c) At the (m + 1)th EM iteration, compute o
(m)
ij as in (3.8) and solve U∗(ψ|ψ(m))

for ψ(m+1), updating the estimates of γD and the nuisance parameters (ΛD
0 (·), α).

Compute ŵDi (t)(m) and p̂
(m)
ij (Rik) and solve U∗(β|β(m)) = 0 for β(m+1) updating

the estimates of β and µ0(·).

(d) Iterate until convergence.

3.2.2 Variance Estimation

Several factors complicate the variance estimation for the parameters of interest in

our proposed method. Because the estimates are obtained via EM algorithm, Louis

(1982) method can be used to estimate the observed information matrix. However,

the dimension of µ0(·) and Λ0(·) are large and may cause the variance estimates to

be computationally intractable and unstable. A simple variance estimator with good

small-sample properties based on multiple-imputation was proposed by Goetghebeur

and Ryan (2000). Following Rubin and Schenker (1991), they proposed to impute

the unobserved covariates with sampled values and obtain naive point and variance

estimates for the parameter of interest. Then the variance of EM estimator is obtained

as a weighted sum of the empirical variance of the imputation point estimates and the

mean of the imputation variances, with weights 1 + 1/m and 1 respectively. We adopt

this method for our estimates. We chose the number of imputation m to be 20 and

performed the imputation based on Approximate Bayesian Bootstrap (ABB) method.

3.3 Simulation studies

We conducted simulation studies to examine the finite sample properties of the proposed

regression parameter estimators. Two terminal event set-ups (70 and 30 percent) with
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sample size (n) of 500 were considered with 500 replications. For each subject, the kth

event time for the ith subject is given by

Ti,k = Ti,k−1 − log{1− Ui,k}{ζidµ0 exp{βC1zi1 + βC2zi2}}−1 (3.13)

where Uik are independent Uniform (0,1) variates, Ti,0 ≡ 0 and dµ0 = 0.5. The

survival times are generated from an exponential distribution with hazard λi(t) =

ζiλ0(t) exp(γC1zi1 + γC2zi2), where λ0(t) = 0.3. We generated covariates zi1 and zi2 in-

dependently with Bernoulli(0.5), and (βC1, βC2) = (γC1, γC2) = (1,−1). We generated

ζi, a positive stable variate with parameter φ by using the algorithm of Kanter (1975)

described in Chambers, Mallows and Stuck (1976) given by

ζ = S(φ, 1) =
(
a(ρ)
W

) 1−φ
φ
,

a(ρ) = sin((1−φ)ρ)(sinφρ)
φ

1−φ

(sin ρ)1/(1−φ) , 0<ρ<π,

where W, follows standard exponential distribution and ρ follows Uniform(0, π). The

gaptime between two successive events and the survival time have Kendall’s τ corre-

lation of 1-φ. Under each terminal event setup four dependence scenarios (φ=0.7, 0.8,

0.9, 1) were considered. Since the data are generated from the positive stable distri-

bution, the generated data satisfy the marginal models (3.1) and (3.2) where β = φβC

and γ = φγC (Hougaard, 2000). Thus the true parameters of (β1, β2) and (γ1, γ2) cor-

responding to the dependence parameter (φ: 0.7, 0.8, 0.9 and 1) are (0.7, -0.7), (0.8,

-0.8),(0.9, -0.9) and (1, -1) respectively. The censoring times were generated from an

independent uniform (0,C) distribution, where C was determined to achieve the desired

censoring proportions. The covariate zi1 is fully observed while zi2 was missing for some
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i. The missing data mechanism was generated by

p(ri2 = 1|X∗i ,Zobs,i, ε) =
exp(ε0 + ε1X

∗
i + ε2zi1 + ε3RE + ε4X

∗
i ∗RE)

1 + exp(ε0 + ε1X∗i + ε2zi1 + ε3RE + ε4X∗i ∗RE)
,

where X∗i = (Xi − µXi)/σXi , RE= dichotomized recurrent events (any event=1, and

0 otherwise) and ε was specified to achieve desired 5%, 10%, 20% and 30% missingness

respectively. The convergence criterion for the EM-algorithm was less than 10−8. Under

70% terminal event setup, the average percentage of cases with any recurrent events

was 56, 55, 53, 51 percent among alive cases and 53, 54, 54, 54 percent among dead

cases respectively with the data configuration of 0, 10, 20 and 30 percent correlation.

The maximum number of recurrent events for each simulation ranged between 4-22

and 6-24 among those alive and dead, respectively. Under the 20% terminal event

configuration, the average percentage of cases with any events was 25, 23 ,20 and 18

percent among the alive cases and 25, 28, 32 and 35 percent among those who had

terminal event for 0, 10, 20 and 30 percent correlation, respectively. The maximum

number of events per case ranged between 2 to 21 among those alive and 1-21 in those

whose time was terminated by death.

The simulation results for β1 and β2 are presented in Tables 3.3 and 3.4 for 70%

and 20% terminal events configuration, respectively. For comparisons, complete case

estimates, where the subjects with missing covariate information are deleted, and full

data estimates, which is based on the simulated data before the covariate value was set

to missing, are presented along with the proposed estimates. Note that the full data

estimates are not attainable in practice when covariate information is missing.
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Under 70% terminal events, the estimates from the proposed method performed

well. With 5 and 10 percent missingness, both the proposed method and complete case

analysis perform well. However, with more missing data the complete case analysis is

in general more biased and less efficient. In the 10% correlation scenario, the proposed

estimates for β1 were biased together with the full data estimate and the complete case

analysis. However, when we increased the sample size in some further simulations the

bias became negligible. From the results, we can see that the proposed estimates for

β2 are approximately unbiased under all correlation scenario and with different miss-

ing percentages. The average approximated standard error, denoted by ASE, closely

approximates the empirical standard deviation (ESD) and the 95% confidence interval

covearges (CP) are close to the nominal level in most of the cases. When examined

with larger sample size the proposed estimates are closer to the true values and the

coverage probabilities for the proposed method increased consistently in all four cor-

relation scenarios towards the nominal value 0.95. Similar observations are made for

20% terminal event setup (Table 3.4).
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3.4 Analysis of the India Renal Transplant Data

We now apply the proposed methods to the analysis of infections among the renal

failure patients. We compare our method to estimation based on complete cases. The

study population consisted of 1,355 renal transplant patients between January 1, 1994

and December 31, 2007. Of the transplants, 1298 (95.8%) were from living donors

and 57 (4.2%) were cadaveric transplants. Patients were seen in the center three times

weekly for the first two months, then twice weekly for the next two months and once

weekly for the fifth and sixth month; then they were seen at the 9th and 12th month

and from then on whenever necessary. Patients for this study were followed-up until

earliest of death, loss to follow-up, graft loss, or conclusion of observation period which

was December 31, 2008. The median follow-up time was 60.4 months (range: 0 to 179.5

months). Around eighty percent (n=945) of patients were alive with surviving graft,

19.0%(n = 258) of patients died, 3.9%(n = 53) had graft loss and 7% (n=99) were

lost to follow-up or had renal failure (serum creatinine ≥ 3.5 mg/dl). For the infection

analysis graft loss patients were considered alive and will be censored at the time of

graft loss.

In total, 1259 infections were observed, for a mean of approximately 0.93 per pa-

tients. Of those who had at least one infection the average infections was two per

patient. The number of infections ranged between 0 to 8. Around 47%(n = 632) of the

patients had at least one infection and 337 (24.8%) had recurrent infections. Patients

received different combination of primary immunosuppression. For this analysis, we

grouped the regimens into three groups: Pred+Aza+CNI (prednisolone, azathioprine

and calcineurin inhibitor; n=1132), Pred+(MMF/MPA)+CNI (prednisolone, CNI and

Mycophenolate Mofetil (MMF) or Mycophenolate Sodium (MPA); n=165) and Oth-

ers which consists of non-CNI combinations, Everolimus and Sirolimus based regimen

(n=58).
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The distribution of death by immunosuppression groups is statistically significant

(log-rank χ2 = 8.3, p < 0.0156). Our main goal is to examine the rates of infections

and identify the risk factors for recurrent infections. In addition to immunosuppression

(z1), important predictors for both infections and survival includes age of patient (z2),

sex of patient (z3), donor age (z4), donor sex (z5), HLA antigen match (z6), diabetes

melitus (z7), and acute rejection (z8). Immunosuppresion, age and sex of patient were

measured for all patients and all other covariates had missing values for some patients.

Overall 13.5% of the patients had missing covariate data.

We assumed missingness does not depend on the value of missing covariates which

in the terms of Little and Rubin (2002) is missing at random (MAR). We use propor-

tional rates model to model the relationship between recurrent infections and the given

prognostic factors. There are five covariates with missing values (z4, z5, z6, z7, z8). We

partition them in the following way:

p(zi4, zi5, zi6, zi7, zi8|zi1, zi2, zi3, α) = p(zi4|zi1, zi2, zi3, zi5, zi6, zi7, zi8, α4)

×p(zi5|zi1, zi2, zi3, zi6, zi7, zi8, α5)× p(zi6|zi1, zi2, zi3, zi7, zi8, α6)

×p(zi7|zi1, zi2, zi3, zi5, zi8, α7)× p(zi8|zi1, zi2, zi3, α8), i = 1, . . . , n.

Since donor age (z4), HLA antigen match (z6) and diabetes melitus (z7) are categori-

cal covariates with three categories, we model them using multinomial regression, for

example,

p(zi4 = j|zi1, zi2, zi3, zi6, zi7, zi8, α4) =

exp(α40j+α41jzi1+α42jzi2+α43jzi3+α44jzi5+α45jzi6+α46jzi7+α47jzi8)

1+
∑J
j=1 exp(α40j+α41jzi1+α42jzi2+α43jzi3+α44jzi5+α45jzi6+α46jzi7+α47jzi8)

,

where j=category number. We model donor sex (z5) and acute rejection (z8), which
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are dichotomous covariates, using logistic regression, for example,

p(zi8|zi1, zi2, zi3, α8) =
exp(α80 + α81zi1 + α82zi2 + α83zi3)

1 + exp(α80 + α81zi1 + α82zi2 + α83zi3)
.

Kendall’s τ between the recurrent event time and the terminal event time was estimated

using patients who have both recurrent events and terminal event. The estimate is

obtained via penalized gamma frailty model (Therneau and Grambsch, 2000) with

fully observed covariates and is 0.11.

The results of the regression analysis for infection recurrence is summarized in Table

3.5. Table 3.5 also presents the complete case analysis for comparison. Based on the

proposed method, none of the donor related variables were significant predictors for

infection analysis. The prednisolone+MMF+CNI group was associated significantly

with increased infection rates compared to non CNI (others) group at 10% significance

level with estimated rate ratio (RR) of exp {0.377}=1.46 and 90% confidence interval of

(1.03, 2.06). Younger (≤ 15 years of age) children tend to have lower rate of infections

(RR=0.578) compared to older transplant population(≥ 41 years of age). Males have a

benefit of lower infection rates compared to females. Patients with either pre (RR=1.34)

or post transplant (RR=1.26) diabetes mellitus have a higher risk for increased infection

rates compared to those who do not have diabetes. Patients who had acute rejection

(cellular or vascular) has increased post transplant infections rates (RR=1.45). In

comparison, results based on complete case analysis was only statistically significant at

10% significance level for diabetes mellitus and acute rejection.

3.5 Discussion

We proposed a method of estimation in the proportional rates model in the presence of a

terminal event when covariates are missing at random. We considered the weighted es-
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Table 3.5: Regression analysis of infection recurrence

Covariates Proposed Method (n=1355) Complete Case (n=1172)
Estimate SE P- Value Estimate SE P-value

Immunosuppression
Pred+Aza+CNI 0.047 0.179 0.793 0.063 0.197 0.749
Pred+(MMF/MPA)+CNI 0.378 0.209 0.071 0.349 0.228 0.126
Others ref ref

Age (Years)
≤ 15 -0.549 0.314 0.080 -0.373 0.338 0.269
16− 40 -0.005 0.101 0.960 0.133 0.112 0.235
≥ 41 ref ref

Gender
Male -0.165 0.095 0.082 -0.147 0.106 0.166
Female ref ref

Donor Age (Years)
≤ 40 ref ref
41− 58 0.053 0.083 0.523 0.067 0.089 0.451
≥ 59 0.149 0.138 0.280 0.159 0.151 0.292

Donor Gender
Male 0.013 0.079 0.869 0.015 0.086 0.862
Female ref ref

HLA Match
< 2 0.108 0.168 0.520 0.120 0.177 0.498
2− 3 0.042 0.148 0.776 0.009 0.150 0.952
≥ 4 ref ref

Diabetes mellitus (DM)
Pre Tx DM 0.292 0.156 0.061 0.386 0.172 0.025
Post Tx DM 0.232 0.104 0.025 0.303 0.110 0.006
No ref ref

Acute Rejection
Yes 0.369 0.077 < 0.001 0.367 0.084 < 0.001
No ref ref
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timating equation approach with inverse probability survival weighting. Though there

have been methods developed for analyzing univariate survival analysis and clustered

survival data with missing data, our method is novel in estimating parameters for re-

gression models for recurrent event in the presence of a terminal event. In this paper,

we considered only analyzing categorical covariates with missing data mechanism as-

sumed to be missing at random. This procedure can further be extended to continuous

as well as mixed covariates situations. In addition, the framework can be extended to

non-ignorable missing situation but the inference will depend on the model of missing

data mechanism. Simulation results demonstrated the proposed method performs well

and the accuracy of the proposed method improves with increasing sample size.

The missing data weight is constructed under the working frailty model with positive

stable distribution and the weight is expressed as a function of Kendall’s τ which

measures the association of the recurrent event and the terminal event. The estimation

of the Kendall’s τ does not need to be based on the frailty model with positive stable

distribution. In our simulation, we estimated the Kendall’s τ based on gamma frailty

model. Our simulation results show that the regression coefficient estimates perform

well regardless of how the Kendall’s τ is estimated.

In the tropical developing nations such as India, infectious morbidity is an over-

whelming issue and especially in immunosuppresed cohort of patients. The survival of

renal transplant patient in the tropics has been shown to be strongly associated with

the risk of of infections as 50% of the mortality has been proven to be due to infections

(John, 2009). Furthermore, tragically, such deaths with a functioning graft occur more

often in patients riddled with multiple risk factors. Hence in this article, we sought to

examine the risk factor for rates of recurrent infections. Specifically, our objective was

to compare the rates of infections by different immunosuppression group as they are

one of the important determinants of infections. Our analysis showed that cyclosporine
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therapy along with Mycophenalate therapy is associated with increased risk for recur-

rent infections. The occurrence of rejection along with history of pre-transplant or post

transplant hyperglycemia are important risk factors for recurrent infections in the renal

transplant patients. The rate of recurrent infections in the first two years looks to be

increasing (Figure 1) very steeply for all three groups indicating a high risk period for

recurrent infections. Certain factors that increase the susceptibility of infections are

important independent risk factors for patient survival. Our findings are critical which

indicates that optimal control of hyperglycemia, prophylaxis treatment for preventing

acute rejections, individualized immunosuppresion protocol are needed in preventing re-

current infections. Along with early diagnosis and treatment of opportunistic infections

will improve the prognosis in these patients.
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group.
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Chapter 4

STATISTICAL METHODS FOR
MULTIPLE TYPE RECURRENT

EVENTS DATA IN THE
PRESENCE OF A TERMINAL

EVENT

4.1 Introduction

In the last several years, there has been significant research in analyzing single type

recurrent events via marginal and conditional models (Cook and Lawless, 2007). How-

ever, in many clinical and epidemiological studies, multiple type of events can arise

when two or more different types of events occur repeatedly over a period of time.

Examples include multiple types of tumors (Abu-Libdeh et al., 1990), multiple types

of shunt failures in patients with pediatric hydrocephalus (Lawless et al., 2001), and

in health service utilization studies, hospitalization and physician office visit (Cai and

Schaubel, 2004). Despite development of methods for analyzing single type recurrent

events, limited work has been done in the context of multiple-type recurrent events.

Analysis of multiple-type recurrent events was first introduced by Prentice, Williams



and Peterson (1981) in their paper where they suggested that their conditional intensity

procedure can be extended to multiple type events in which the events are infections

classified as being bacterial, viral or fungal origin. When Cox-type relative risk function

based estimation is of interest, the marginal mixed baseline hazards model proposed by

Spiekerman and Lin (1998) and Clegg, Cai and Sen (1999) can be used. Abu-Libdeh et

al., (1990) formulated a parametric model for replicated point process data. They con-

sidered a non-homogeneous Poisson processes with random and fixed covariate effects

with maximum likelihood inference to study recurrence of multiple type of skin can-

cers. However, in line with other random effects models for single type event, correct

specification of dependence is needed. A robust inference procedure for joint regression

models for cumulative mean functions arising from bivariate point process was studied

by Ng and Cook (1999). Chen et al., (2005) developed joint models for multiple type re-

current events under interval censoring setup and described Gibbs sampling algorithms

for fitting mixed Poisson models with piecewise constant baselines and multivariate

log-normal random effects. More recently, Cai and Schaubel (2004) proposed a class

of semiparametric marginal mean/rates models for multiple type recurrent events data

with general relative risk form, they estimated the parameters via estimating equa-

tions. However, in the presence of terminal events, the above mentioned methods are

inappropriate. Luo, Wang and Huang (2008) showed that inappropriate modeling of

recurrent events can result in biased conclusion especially when the terminal event is

correlated with the recurrent event process.

As discussed in Chapter 3, research has been conducted for the development of

estimation method for single type recurrent events that are subject to terminal event

under marginal setup (Li and Lagakos, 1997; Cook and Lawless, 1997; Ghosh and

Lin, 2002; Miloslavsky et al., 2004) as well as frailty models (Wang, Qin and Chiang,

2001; Huang and Wang, 2004; Liu, Wolfe and Huang, 2004; Rondeau et al., 2007; Ye,
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Kalbfleisch and Schaubel, 2007). Lawless et al., (2001) considered methods to analyze

gaptimes between events and discuss the possibility of extension to multiple types of

events and considered the problem of terminal events. Despite the progress in the

methods for analyzing multiple-type recurrent events data, methodologies to address

analysis of multiple type events in the presence of terminal events are needed.

In this chapter, we propose a weighted estimating equation approach for estimating

the parameters in marginal rates regression model for multiple type recurrent event data

in the presence of a terminal event. The rest of this chapter is organized as follows. We

present the proposed model and method of estimation in Section 4.2. In Section 4.3,

the asymptotic properties of the proposed estimators are studied. The finite sample

properties are investigated by simulations. In Section 4.4, a discussion of study results

are provided.

4.2 Models and Methods

Our motivation comes from the model proposed by Cai and Schaubel, (2004) but restrict

ourselves to exponential link function and extend the model incorporating adjustment

for terminal event via inverse probability survival weights similar to the approach of

Ghosh and Lin (2002). We first establish the required notation. Let N∗ik(t) =
∫ t

0
dN∗ik(s)

be the cumulative number of events of type k over the interval [0, t] for subject i. Let

D denote the terminal event time, we assume that recurrent events cannot occur after

terminal event so that N∗ik(t) does not jump after D. Let Cik denote the event specific

censoring time and Yik(s) = I(Cik ≥ s) denote at-risk function. In practice, censoring

times for different event types are usually the same for a subject, i.e. Cik = Ci,

although this might not always be the case. It is assumed that N∗k (·) is independent of

C conditional on Zk(·), where Zk(·) is a p×1 vector of covariates which is possibly time-

dependent (Kalbfleish and Prentice, 2002). We assume all time-dependent covariates
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are external. It is also assumed that N∗k (·) can only be observed up to minimum of C

and D. Let X = D ∧ C, δ = I(D ≤ C) and Nk(t) = N∗k (t ∧ C). For a random sample

of n subjects, the data consist of {Nik(·), Xi, δi, } ,Zik(·), 1 = 1, 2, . . . , n.

We consider the following k-type event rate model

E [dN∗ik(t)|Zik(t) : t ≥ 0] = exp(βT0 Zik(t))dµ0k(t) (4.1)

where µ0k(t) =
∫ t

0
dµ0k(u) is the unspecified baseline mean function, and β0 is a p × 1

unknown parameter vector. Assume that the terminal event time follows the Cox

proportional hazards model given by

λD(t|Z) = λD0 (t)eγ
T
DZ(t), (4.2)

where λD0 (t) is an unspecified baseline hazard function, and γD is a p × 1 vector of

regression parameters. We examine the effects of covariates on the marginal distribu-

tion of N∗k (·) without specifying the nature of dependence among recurrent events and

between multiple-type recurrent events and death.

4.2.1 Estimation

We propose the following estimating equation to obtain the parameters and adjust the

presence of terminal events using IPSW weights

UD(β) =
n∑
i=1

K∑
k=1

∫ τ

0

{
Zik(t)− Z̄

D
k (β, t)

}
ŵDi (t)dNik(t) = 0p×1, (4.3)

where Z̄
D
k (β, t) = Ŝ

(1)

k (β, t)/Ŝ
(0)
k (β, t), with Ŝ

(d)

k (β, t) = n−1
∑n

i=1 ŵ
D
i (t)Zik(t)

⊗deβ
TZik(t),

d = 0, 1, 2 and for a vector a, a⊗0 = 1, a⊗1 = a, a⊗2 = aaT . Also define V k(β, t) =

Ŝ
(2)

k (β, t)/Ŝ
(0)
k (β, t) − Z̄D

k (β, t)⊗2. The limiting values of S
(d)
k (β, t) and V k(β, t) are
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given by s
(d)
k (β, t) and vk(β, t), respectively. Let ŵDi (t) = I(Xi ≥ t)/Ŝ(t|Zi) and

Ŝ(t|Zi) = exp
{
−
∫ t

0
eγ̂

T
DZi(u)dΛ̂D0 (u)

}
, where γ̂D and Λ̂D

0 (t) are the maximum partial

likelihood and Breslow estimators of γD and ΛD
0 (t) ≡

∫ t
0
λD0 (u)du. The corresponding

estimate of µ0k(t) is given by Breslow-Aalen type estimator based on the kth type event

µ̂0k(β̂, t) =

∫ t

0

∑n
i=1 ŵ

D
i (u)dNik(u)

nŜ
(0)
k (β̂D, u)

, 0 ≤ u ≤ τ. (4.4)

The Newton-Raphson iterative procedure can be used for solving (4.3).

4.2.2 Asymptotic properties

We summarize the essential asymptotic behavior of the regression parameter estimator

in the following theorem. We assume the following regularity conditions hold:

(a) {Nik(·), Xi, δi,Zik(·)}Kk=1 are independent and identically distributed for i = 1, . . . , n.

(b) There exists a τ > 0 such that P (Xi ≥ τ |Zi) > 0, i = 1, . . . , n.

(c) Nik(τ) is bounded by a constant almost surely for i = 1 . . . , n, k = 1, . . . , K.

(d) |Zik`(0)| +
∫ τ

0
|dZik`(t)| < cZ < ∞ almost surely, for ` = 1, . . . , p, i = 1, . . . , n,

k = 1, . . . , K.

(e) Positive-definiteness of the matrix A(β0) =
∑K

k=1

∫ τ
0

vk(β0, u)s
(0)
k (β0, u)dµ0k(u).

(f) For β ∈ B0, where B0 is a small neighborhood about β0, exp(βTZik(t)) is locally

bounded away from 0.

(g) s
(d)
k (β, u) and o

(r)
k (β, u), for d = 0, 1, 2 and r = 0, 1, are continuous functions of
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β ∈ B0 uniformly in t ∈ [0, τ ] and are bounded on B0 × [0, τ ], with

s
(1)
k (β; t) = ∂s

(0)
k (β; t)/∂β, s

(2)
k (β; t) = ∂2s

(0)
k (β, t)/∂β∂βT ,

o
(1)
k (β; t) = ∂o

(0)
k (β; t)/∂β,

where ork(β, t) is defined below. Conditions (a) and (d) imply the following as n→∞

for β ∈ B0, d = 0, 1, 2 and r = 0, 1:

sup
t∈[0,τ)

∥∥∥S(d)
k (β; t)− s

(d)
k (β; t)

∥∥∥ a.s.−→ 0,

sup
t∈[0,τ)

∥∥∥O(r)
k (β; t)− o

(r)
k (β; t)

∥∥∥ a.s.−→ 0,

where ‖ a ‖= (aTa)1/2 and

O
(0)
k (β; t) = n−1

∑n
i=1w

D
i (t) (β − β0)T Zik(t) exp(βT0 Zik(t)),

O
(1)
k (β; t) = ∂

∂β
O

(0)
k (β; t) = n−1

∑n
i=1 w

D
i (t)Zik(t) exp(βT0 Zik(t)).

It is useful to introduce the following notations: for i = 1, . . . , n and k = 1, . . . , K,

let

M †
ik(t) =

∫ t

0

wDi (u)
{
dNik(u)− eβ

T

0 Zik(u)dµ0k(u)
}
,

ND
i (t) = I(Xi ≤ t, δi = 1), and MD

i (t) = ND
i (t) −

∫ t
0
Yi(u)eγ

T
DZi(u)dΛD

0 (u), where

Yi(t) = I(Xi ≥ t). Also let M̂ †
ik(t) =

∫ t
0
ŵDi (u)

{
dNik(u)− e

ˆβ
T

DZik(u)dµ̂0k(u)

}
, and

M̂D
i (t) = ND

i (t)−
∫ t

0
Yi(u)eγ̂

T
DZi(u)dΛ̂D

0 (u), where dΛ̂D
0 (u) =

∑n
i=1 dN

D
i (u)∑n

i=1 Yi(u)e
γ̂T
D
Zi(u)

.

We first state and prove strong consistency.

Theorem 4.1 Under the conditions, (a)-(g), β̂D is consistent estimator of β0, i.e.

(β̂D
a.s.→ β0) and the random vector n1/2(β̂D − β0) converges in distribution to a zero-

mean normal random vector with a covariance matrix that can be consistently estimated
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by Â−1
D Σ̂DÂ−1

D where ÂD = −n−1∂UD(β̂D)/∂β, Σ̂D = 1
n

∑n
i=1

(
η̂Di + ψ̂Di

)⊗2

,

η̂Di =
∑K

k=1

∫ τ
0

{
Zik(t)− Z̄D

k (β̂D, t)
}
dM̂ †

ik(t),

ψ̂Di =
∫ τ

0
B̂D

{
Zi(t)− R̂(1)(γ̂D,t)

R̂(0)(γ̂D,t)

}
dM̂D

i (t) +
∫ τ

0
q̂D(t)

R̂(0)(γ̂D,t)
dM̂D

i (t),

B̂D = 1
n

∑n
i=1

∑K
k=1

∫ τ
0

{
Zik(t)− Z̄D

k (β̂D, t)
}

ĝD(t,Zi)
T Ω̂−1

D dM̂ †
ik(t),

ĝD(t,Zi) =
∫ t

0
eγ̂

T
DZ i(u)

{
Zi(u)− R̂(1)(γ̂D,u)

R̂(0)(γ̂D,u)

}
dΛ̂D

0 (u)

q̂D(t) = 1
n

∑n
i=1

∑K
k=1

∫ τ
0

{
Zik(u)− Z̄D

k (β̂D, u)
}
eγ̂

T
DZi(t)I(u ≤ t)dM̂ †

ik(u),

Ω̂D = n−1
∑n

i=1

∫ τ
0

{
R(2)(γ̂D,t)

R(0)(γ̂D,t)
−
[

R(1)(γ̂D,t)

R(0)(γ̂D,t)

]⊗2
}
dND

i (t)

and R̂(k)(γ̂D, t) = n−1
∑n

j=1 Yj(t)Zj(t)
⊗keγ

TZj(t)

Proof: Let Xn(β) =
∑n

i=1

∑K
k=1

∫ τ
0

{
βTZik(t)− log(nS

(0)
k (β, t))

}
wDi (t)dNik(t),

Xn(β0) =
∑n

i=1

∑K
k=1

∫ τ
0

{
βT0Zik(t)− log(nS

(0)
k (β0, t))

}
wDi (t)dNik(t), and

∆n(β) = 1
n
{Xn(β)−Xn(β0)}

= 1
n

{∑n
i=1

∑K
k=1

∫ τ
0

{
(β − β0)TZik(t)− log

(
S(0)(β,t)
S(0)(β0,t)

)}
wDi (t)dNik(t)

}
.

Since dM †
ik(t) = wDi (t)

{
dNik(t)− eβ

T

0Z ik(t)dµ0k(t)
}

, replacing wDi (t)dNik(t) with

dM †
ik(t) + wDi (t)eβ

T

0Z ik(t)dµ0k(t), we have

∆n(β) =
1

n

n∑
i=1

K∑
k=1

∫ τ

0

{
(β − β0)TZik(t)− log

(
S

(0)
k (β, t)

S
(0)
k (β0, t)

)}

×
(
dM †

ik(t) + wDi (t)eβ
T

0Z ik(t)dµ0k(t)
)

=
1

n

n∑
i=1

K∑
k=1

∫ τ

0

{
(β − β0)TZik(t)− log

(
S

(0)
k (β, t)

S
(0)
k (β0, t)

)}
dM †

ik(t) +

1

n

n∑
i=1

K∑
k=1

∫ τ

0

{
(β − β0)TZik(t)− log

(
S

(0)
k (β, t)

S
(0)
k (β0, t)

)}
wDi (t)eβ

T

0Z ik(t)dµ0k(t)

85



= ∆1n(β) + ∆2n(β) where

∆1n(β) = 1
n

∑n
i=1

∑K
k=1

∫ τ
0

{
(β − β0)TZik(t)− log

(
S

(0)
k (β,t)

S
(0)
k (β0,t)

)}
dM †

ik(t)

∆2n(β) = 1
n

∑n
i=1

∑K
k=1

∫ τ
0

{
(β − β0)TZik(t)− log

(
S

(0)
k (β,t)

S
(0)
k (β0,t)

)}
wDi (t)eβ

T

0Z ik(t)dµ0k(t)

∆2n(β) = 1
n

∑K
k=1

∫ τ
0

∑n
i=1

{
(β − β0)TZik(t)

}
wDi (t)eβ

T

0Z ik(t)dµ0k(t)

−
∑K

k=1

∫ τ
0

log

(
S

(0)
k (β,t)

S
(0)
k (β0,t)

)
× 1

n

∑n
i=1w

D
i (t)eβ

T

0Z ik(t)dµ0k(t)

=
1

n

K∑
k=1

∫ τ

0

n∑
i=1

{
(β − β0)TZik(t)

}
wDi (t)eβ

T

0Z ik(t)dµ0k(t)−
K∑
k=1

∫ τ

0

log

(
S

(0)
k (β, t)

S
(0)
k (β0, t)

)
×S(0)

k (β0, t)dµ0k(t)

=
K∑
k=1

∫ τ

0

[
O

(0)
k (t,β)− log

(
S

(0)
k (β, t)

S
(0)
k (β0, t)

)
S

(0)
k (β0, t)

]
dµ0k(t)

Given (a), (c) and (d) and by strong law of large numbers ∆1n(β)
a.s.→ 0, while

∆2n(β)
a.s.→

K∑
k=1

∫ τ

0

[
o

(0)
k (t,β)− log

(
s

(0)
k (β, t)

s
(0)
k (β0, t)

)
s

(0)
k (β0, t)

]
dµ0k(t) ≡∆(β)

Therefore, as n→∞, ∆n(β)→∆(β), which has the first and second derivatives:

∂

∂β
∆(β) =

∑K
k=1

∫ τ
0

{
o

(1)
k (β, t)− s

(1)
k (β,t)
s
(0)
k (β,t)

s
(0)
k (β0, t)

}
dµ0k(t)

∂2

∂β∂βT
∆(β) = −

∑K
k=1

∫ τ
0

[
s
(2)
k (β,t)
s
(0)
k (β,t)

−
(

s
(1)
k (β,t)
s
(0)
k (β,t)

)⊗2
]
s

(0)
k (β0, t)dµ0k(t).
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Now, evaluated at β = β0, ∂

∂β
∆(β)

∣∣∣
β=β0

= 0p×1, since o(1)(t,β0) = s(1)(t,β0).

While,

∂2

∂β∂βT
∆(β)

∣∣∣∣
β=β0

= −
∑K

k=1

∫ τ
0

[
s
(2)
k (t,β0)

s
(0)
k (t,β0)

−
(

s
(1)
k (t,β0)

s
(0)
k (t,β0)

)⊗2
]
s

(0)
k (t,β0)dµ0k(t),

−∂2∆(β)/∂β∂βT = A(β0), which is positive definite by condition (e). Therefore ∆(β)

has a local maximum at β = β0.

Set B = {β : ‖β − β0‖ ≤ δ} for arbitrary δ > 0. Thus ∆(β0) ≥ ∆(β) for β ∈

∂Bδ, ∆(β0)>∆(β) , where ∂Bδ = {β : ‖β − β0‖ = δ}. Using SLLN and continuity

arguments ‖∆n(β)−∆n(β0)‖ a.s.→ ‖∆β)−∆(β0)‖. Therefore ∆n(β0) ≥ ∆n(β) for all

β ∈ Bδ with ∆n(β0)>∆n(β) when β ∈ ∂Bδ. ∆n(β) has a maximum which is not

on the boundary implying that there is an interior point of Bδ which corresponds to a

local maximum of ∆n(β). But, ∂∆n(β)/∂β = 0p×1 at β = β̂n, meaning that β̂n is the

local maximum. Since δ was arbitrary letting δ → 0 demonstrates that β̂
D a.s.→ β0. By

consistency of β̂
D

, Taylor series expansion of UD(β̂
D

) at β = β0 gives

UD(β̂D) = UD(β0) +
∂

∂βT
UD(β)

∣∣∣∣
β∗

(β̂D − β0),

where β∗ lies between β̂D and β0 in Rp. Since UD(β̂D) = 0, we have

(β̂D − β0) = −

{
∂

∂βT
UD(β)

∣∣∣∣
β∗

}−1

UD(β0).

Setting In(β∗) = − ∂UD(β)/∂βT
∣∣
β∗

and An(β) = n−1In(β), we have

√
n(β̂D − β0) = {An(β∗)}

−1 n−1/2UD(β0) (4.5)
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Set An(β) =
∑K

k=1
1
n

∑n
i=1

∫ τ
0

{
S

(2)
k (t,β)

S
(0)
k (t,β)

−
[

S
(1)
k (t,β)

S
(0)
k (t,β)

]⊗2
}
wDi (t)dNik(t),

=
∑K

k=1

{
1
n

∑n
i=1

∫ τ
0

(
S

(2)
k (t,β)

S
(0)
k (t,β)

−
[

S
(1)
k (t,β)

S
(0)
k (t,β)

]⊗2
)
dM †

ik(t)

}

+
∑K

k=1

{
1
n

∑n
i=1

∫ τ
0

(
S

(2)
k (t,β)

S
(0)
k (t,β)

−
[

S
(1)
k (t,β)

S
(0)
k (t,β)

]⊗2
)

× wDi (t)eβ
T

0Z ik(t)dµ0k(t)
}

By repeated application of SLLN and Lemma 1 of (Lin et al., 2000), the first term in

An(β) converges in probability to 0p×p. Therefore, we have

An(β) =
∑K

k=1

∫ τ
0

(
S

(2)
k (t,β)

S
(0)
k (t,β)

−
[

S
(1)
k (t,β)

S
(0)
k (t,β)

]⊗2
)

1
n

∑n
i=1w

D
i (t)eβ

T

0Z ik(t)dµ0k(t)

=
∑K

k=1

∫ τ
0

(
S

(2)
k (t,β)

S
(0)
k (t,β)

−
[

S
(1)
k (t,β)

S
(0)
k (t,β)

]⊗2
)
S

(0)
k (t,β0)dµ0k(t)

Now since β̂
D a.s.→ β0 and since ‖β∗ − β0‖ ≤

∥∥∥β̂D − β0

∥∥∥,

Ak(β∗)
P→
∫ τ

0

{
S

(2)
k (t,β)

S
(0)
k (t,β)

−
[

S
(1)
k (t,β)

S
(0)
k (t,β)

]⊗2
}
S

(0)
k (t,β0)dµ0k(t)

=
∫ τ

0
vk(t,β0)S

(0)
k (t,β0)dµ0k(t) ≡ Ak(β0)

Thus,

An(β∗)
P→

K∑
k=1

Ak(β0) ≡ A(β0).

Now it remains to determine the asymptotic distribution of n−1/2UD(β0). Let

UD
β (β) =

n∑
i=1

K∑
k=1

∫ τ

0

{
Zik(t)− Z̄D

k (β, t)
}
ŵDi (t)dNik(t) = 0p×1.
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Addition and substraction yield

n−1/2UD(β0) = n−1/2
∑n

i=1

∑K
k=1

∫ τ
0

{
Zik(t)− Z̄

D
k (β0, t)

}
dM †

ik(t)

+n−1/2
∑n

i=1

∑K
k=1

∫ τ
0

{
Zik(t)− Z̄

D
k (β0, t)

}
×
(
ŵDi (t)− wDi (t)

){
dNik(t)− eβ

T

0Z ik(t)dµ0k(t)
}

= n−1/2

n∑
i=1

K∑
k=1

∫ τ

0

{
Zik(t)− Z̄

D
k (β0, t)

}
dM †

ik(t)

+n−1/2

n∑
i=1

K∑
k=1

∫ τ

0

{
Zik(t)− Z̄

D
k (β0, t)

}{ 1

Ŝ(t|Zi)
− 1

S(t|Zi)

}
×I(Xi ≥ t)

{
dNik(t)− eβ

T

0Z ik(t)dµ0k(t)
}

(4.6)

By algebra,

n1/2
{

1

Ŝ(t|Z i)
− 1

S(t|Z i)

}
= n1/2

S(t|Z i)

[
S(t|Z i)

Ŝ(t|Z i)
− 1
]

= n1/2

S(t|Z i)

[
e−ΛD(t|Z i)

e−Λ̂D(t|Z i)
− 1

]
= n1/2

S(t|Z i)

[
eΛ̂D(t|Z i)−ΛD(t|Z i) − 1

]
= n1/2

[
Λ̂D(t|Z i)−ΛD(t|Z i)

S(t|Z i)

]
+ op(1)

where Λ̂D(t|Zi) =
∫ t

0
exp

{
γ̂TDZi(u)

}
dΛ̂D

0 (u) and ΛD(t|Zi) =
∫ t

0
exp

{
γTDZi(u)

}
dΛD

0 (u).

Now for 0 ≤ t ≤ τ , by n1/2 consistency of Ŝ for S, and the Martingale Central Limit

Theroem (Fleming and Harrington, 1991), Lin et al., (1994a), demonstrated the fol-

lowing equivalence:

n1/2Λ̂D(t|Zi)− ΛD(t|Zi) = n−1/2

n∑
j=1

[∫ t

0

eγ
T
DZ i(u)

dMD
j (u)

r(0)(rD, u)

+ gD(t,Zi)
TΩ−1

D

∫ τ

0

{
Zj(u)− r(1)(γD, u)

r(0)(γD, u)

}
dMD

j (u)

]
+ op(1) (4.7)
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where gD(t,Z(u)) =
∫ t

0
eγ

T
DZ(u)

{
Z(u)− Z̄D

(γD, u)
}
dΛD

0 (u) and r(d)(γD, t) is the

limit of n−1
∑n

j=1 I(Xj ≥ t)Zj(t)
⊗d exp

{
γTDZj(t)

}
as n approahes infinity, d=0,1.

Plugging (4.7) in (4.6) and interchanging integrals gives

n−1/2UD(β0) = n−1/2
∑n

i=1

∑K
k=1

∫ τ
0

{
Zik(t)− Z̄

D
k (β0, t)

}
dM †

ik(t)

+n−1/2
∑n

i=1

∑K
k=1

∫ τ
0

{
Zik(t)− Z̄

D
k (β0, t)

}
×n−1/2 n−1/2

S(t|Z i)

[
gD(t,Zi)

TΩ−1
D

∑n
j=1

∫ τ
0

{
Zj(u)− r(1)(γD,u)

r(0)(γD,u)

}
dMD

j (u)

+
∑n

j=1

∫ τ
0
I(u ≤ t)eγ

T
DZ i(u) dMD

j (u)

r(0)(rD,u)

]
I(Xi ≥ t)

{
dNik(t)− eβ

T

0Z ik(t)dµ0k(t)
}

+ op(1)

n−1/2UD(β0) = n−1/2
∑n

i=1

∑K
k=1

∫ τ
0

{
Zik(t)− Z̄

D
k (β0, t)

}
dM †

ik(t)

+n−1/2
∑n

i=1

∫ τ
0

B̃D

{
Zi(t)− r(1)(γD,t)

r(0)(γD,t)

}
dMD

i (t)

+n−1/2
∑n

i=1

∫ τ
0

q̃D(t)
dMD

i (t)

r(0)(rD,t)
+ op(1)

(4.8)

where B̃D = n−1
∑n

i=1

∑K
k=1

∫ τ
0

{
Zik(t)− Z̄

D
k (β0, t)

}
gD(t,Zi(t))

TΩ−1
D dM †

ik(t) and

q̃D(t) = n−1
∑n

i=1

∑K
k=1

∫ τ
0

{
Zik(u)− Z̄D

k (β0, u)
}
I(u ≤ t)eγ

T
DZ i(t)dM †

ik(u).

By the martingale central limit theorem (Fleming and Harrington, 1991) and argu-

ments based on empirical process theory B̃D and q̃D may be replaced in (4.8) by their

population limits without altering the asymptotic distribution of n−1/2UD(β0). In ad-

dition, we can substitute Z̄
D

(β0, t) in the first integral in (4.8) with its population limit

Z̄k(β0, t) = s
(1)
k (β0, t)/s

(0)
k (β0, t). We now have

n−1/2UD(β0) = n−1/2
∑n

i=1

∑K
k=1

∫ τ
0

{
Zik(t)− Z̄k(β0, t)

}
dM †

ik(t)

+n−1/2
∑n

i=1

∫ τ
0

BD

{
Zi(t)− r(1)(γD,t)

r(0)(γD,t)

}
dMD

i (t)

+n−1/2
∑n

i=1

∫ τ
0

qD(t)

r(0)(rD,t)
dMD

i (t) + op(1)

= n−1/2

n∑
i=1

(
ηDi + ψDi

)
+ op(1), (4.9)
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where BD = limn→∞ B̃D, qD = limn→∞ q̃D, ηDi =
∑K

k=1

∫ τ
0

{
Zik(t)− Z̄k(β0, t)

}
dM †

ik(t)

and

ψDi =

∫ τ

0

BD

{
Zi(t)−

r(1)(γD, t)

r(0)(γD, t)

}
dMD

i (t) +

∫ τ

0

qD(t)

r(0)(rD, t)
dMD

i (t)

The right-hand side of (4.9) is essentially a normalized average of n i.i.d terms. The

multivariate central limit theorem implies n−1/2UD(β0)
D→ N(0,ΣD), where ΣD =

E
{(
ηD1 + ψD1

)⊗2
}

. Combining this with (4.5) and the subsequent discussion n1/2(β̂D−

β0)→d N(0,A−1ΣDA
−1).

4.3 Simulation studies

Simulation studies were conducted to examine the finite sample properties of the pro-

posed estimators. We simulated two terminal event set-ups (30 and 20 percent) for

a sample size (n) of 750. Event times for two event types were generated based on

mixed effects marginal rates model and the lth event time for the ith subject of the

kth event type is given by Tikl = Tik,l−1 − log{1 − Uik,l}{ζidµ0k exp{β1zi1 + β2zi2}}−1,

where Uikl are independent Uniform (0,1) variates, Tik,0 ≡ 0. We used µ01(t) = 0.5t

and µ02(t) = 0.4t. The survival times was generated from an exponential distribution

with hazard λi = ζiλ0(t) exp(γ1zi1 + γ2zi2), where λ0(t) = 0.3. We generated covariates

zi1 and zi2 independently with Bernoulli(0.5) and (βC1, βC2) = (γC1, γC2) = (1,−1).

We generate ζi, a positive stable variate with parameter φ by using the algorithm of

Kanter (1975) described in Chambers, Mallows and Stuck (1976) given by

ζ = S(φ, 1) =
(
a(ρ)
W

) 1−φ
φ
,

a(ρ) = sin((1−φ)ρ)(sinφρ)
φ

1−φ

(sin ρ)1/(1−φ) , 0<ρ<π,
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Table 4.1: Bias, Empirical Standard Deviation (ESE), Standard Error Estimates (SEE)
and Coverage Probability (CP) for parameter estimates from 500 simulations: 20 and
30 percent terminal events percentage, dependence (τ =0, 10, 20 and 30 percent) for
multiple type recurrent event rate model

Terminal event % KT bias1 ESE1 SEE1 CP1 bias2 ESE2 SEE2 CP2

30 0 0.0061 0.078 0.086 0.980 -0.0021 0.084 0.086 0.952
0.1 0.0043 0.104 0.102 0.950 -0.0103 0.103 0.102 0.936
0.2 0.0012 0.116 0.117 0.954 -0.0030 0.119 0.118 0.956
0.3 -0.0078 0.136 0.130 0.948 -0.0056 0.133 0.130 0.956

20 0 0.0080 0.099 0.105 0.968 0.0049 0.107 0.104 0.934
0.1 0.0049 0.127 0.126 0.930 -0.0133 0.125 0.127 0.956
0.2 0.0060 0.147 0.143 0.936 -0.0161 0.148 0.143 0.952
0.3 0.0021 0.162 0.159 0.942 -0.0046 0.161 0.160 0.944

where W, follows standard exponential distribution and ρ follows Uniform(0, π). The

gaptime between two successive events and the survival time have Kendall’s τ correla-

tion of 1-φ. Under each terminal event setup four dependence scenarios (φ=0.7,0.8, 0.9,

1) were considered. Since the data were generated from positive stable distribution,

the generated model satisfy the marginal models (4.1) and (4.2) where β = φβC and

γ = φγC (Hougaard, 2000). The censoring times were generated from an independent

uniform (0,C), where C will be determined to achieve the desired proportions. For

each setup, we ran 500 replications, we present the sampling bias, sampling/empirical

standard deviation(ESE) of the estimates β, the mean of the standard error estimates

(SEE)and the coverage probability (CP) of the Wald 95% confidence interval. The

sampling bias and sampling variance of the estimates β are defined respectively, as the

average bias and variance from the random samples. Let β̂ki be the estimate of ith

random sample and k = 1, 2 in our case then Sampling bias =
∑500
i=1 βk
500

− βk, Sampling

variance =
∑500
i=1((β̂ki−β̄k)2

500
, where β̄k =

∑500
i=1 β̂ki
500

.
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Table 4.1 presents the results of estimates for the two terminal event (30 and 20

percent) setups. Based on these results we can see that the estimators appears to be

unbiased for both setup. The standard error estimators tend to slightly underestimate

the true standard errors. The results of the simulation study appear to be insensitive

to correlation between recurrent and terminal events. The coverage probabilities for

the estimates are close to the nominal value 0.95. The coverage probabilities with

30% terminal events are slightly better than the 20% set up, this could be because

the variance of β̂D accounts for variability in both recurrent event and terminal event

models. Higher number of terminal events provides a better estimate of γ̂D thus a

better coverage probability.

4.4 Discussion

We have proposed a semiparametric marginal rate for the analysis of multiple type

recurrent events in the presence of a terminal event. Following the method of Cai

and Schaubel (2004) and Ghosh and Lin (2002), weighted estimating equation have

been proposed and inverse probability survival weights were considered to adjust for

terminal events. We restricted our method’s link function to be of exponential form.

Our simulation results indicate that the bias in the estimator are negligible and the

variance estimators for the regression parameters are slightly smaller compared to the

sampling variability of the estimators. The proposed method could be extended to

models with other link function and accelerated failure time models.
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Chapter 5

ANALYSIS OF MULTIPLE TYPE
RECURRENT EVENTS DATA IN

THE PRESENCE OF A
TERMINAL EVENT AND

MISSING COVARIATE
INFORMATION

5.1 Introduction

In this chapter, we develop methodology for analyzing recurrent event data especially

when events of multiple types are of interest in the presence of a terminal event and

missing covariate information. We formulate a marginal rate model with exponential

link function. We extend the methodology from previous chapter to handle missing co-

variates information. We adopt a weighted estimating equation approach with missing

data assumed to be missing at random (MAR) for estimating parameters. The param-

eters are estimated via weighted expectation-maximization (EM) algorithm. The finite

sample properties of the estimators from proposed procedure are examined through

simulation studies. The methodology is illustrated using India renal transplant data



where now the interest is examine the rates of different type of infections (bacterial,

fungal and viral) .

5.2 Model and Estimation

Suppose that a total of n subjects are observed over time. There are K different types

of events of interest, each potentially recurrent and subject to right censoring. Let

N∗ik(t) =
∫ t

0
dN∗ik(u) represent the number of events of type k at time t for subject

i. Let Cik denote the event-type-specific censoring time. In practice, censoring times

for different event types are usually the same for a subject, i.e., Cik = Ci, although

this might not always be the case. It is assumed that N∗ik(·) is independent of Ci

conditional on Zi(·). Note that N∗ik(·) can only be observed upto Ci and in general

only the minimum of Di and Ci is known. Let Xi = Di ∧ Ci, δi = I(Di ≤ Ci) and

Nik(t) = N∗ik(t ∧ Ci), where a ∧ b= min(a,b)and I(·) is the indicator function. Let

Zik(t) be a p×1 covariate vector. We model the rate of event-type k semi-parametrically

similar to 4.1

E[N∗ik(t)|Zik] = exp(βT0 Zik)dµ0k(t)

where µ0k(t) =
∫ t

0
dµ0k(u) is the unspecified baseline mean function, and β0 is a p × 1

unknown parameter vector. Also we assume that the terminal event time follows the

Cox proportional hazards model given by 4.2 where λD0 (t) is an unspecified baseline

hazard function, and γD is a p × 1 vector of regression parameters. We assume that

recurrent events cannot happen beyond death and we examine the effects of covariates

on the marginal distribution of N∗k (·) without specifying the nature of dependence

among recurrent events and between multiple-type recurrent events and death.

Suppose that when some covariate values are missing for subject i, we write Zik =

(Zmis,ik,Zobs,ik), where Zmis,ik and Zobs,ik correspond to the missing and the observed
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component of the covariate vector Zi respectively. We first fill in the missing covariate

information for each subject with all possible values for each covariate from its distri-

bution which results in an augmented complete data. We then analyze the complete

data via EM type algorithm, which is a two step iterative procedure. In the E-step, we

write the estimating equation as an expectation conditional on the observed data. In

the M-step, we maximize the weighted estimating equation as if the data were complete

but now being replaced with the distinct missing data patterns and the corresponding

weights. At each step, each subject with missing covariates is weighted by the probabil-

ity of the filled-in missing data pattern conditional on the observed data and subjects

with the complete information will have the weight of 1.

When there are no missing covariates β can be estimated by solving UD(β) = 0

as mentioned in equation (4.3). However, when some covariates are missing we need

additional distributional assumptions. In particular, we need to specify parametric

distribution of covariates Z with parameter vector α. Once the data is augmented by

filling the values, the data are now complete and the complete data score equation may

be written as

U(θ̂) =



UD
β (β̂)

Uµ0k
{µ̂0k(t)}

Uγ(γ̂)

UΛ

(
Λ̂0(x)

)
Uα(α̂)


= 0 (5.1)

where θ = (β, µ0k(·), γ,Λ0(·), α); UD
β (β̂), Uµ0k

(µ̂0k(t)), UγD(γ̂D), UΛD(Λ̂D
0 (x)) and Uα(α̂)

are the score functions for β,µ0k(·),γD,Λ0(·) and α, respectively. A consistent estimate

of parameters of interest under MCAR and MAR assumption can be obtained by solving

U∗(θ|θ(m)) = E [U(θ)|observed data] . (5.2)
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We note that the expectation in (5.2) is taken with respect to the conditional distribu-

tion of the missing data given the observed data. We consider the following weighted

estimating function for β

U∗Dβ (β|θ(m)) =
n∑
i=1

K∑
k=1

∑
zmis,ik(j)

∫ ∞
0

p̂
(m)
ikj (t)

{
Zik(t)− Z̄

D(m)
kw (β, t)

}
ŵ
D(m)
i (t)dNik(t),

(5.3)

where Z̄D
kw(β, t) =

∑n
i=1

∑
Zmis,ik(j) p̂

(m)
ikj (t)ŵDi (t)Zikj(t)e

βTZikj(t)

∑n
i=1

∑
Zmis,ik(j) p̂

(m)
ikj (t)ŵDi (t)e

βTZikj(t)
=

Ŝ
(1)
kw(β,t)
Ŝ

(0)
kw(β,t)

and

Ŝ
(d)

kw(β, t) = n−1
∑n

i=1

∑
Zmis,ik(j) p̂

(m)
ikj (t)ŵDi (t)Z⊗dikj(t)e

βTZikj(t) for d = 0, 1, where ŵ
D(m)
i (t)

and p̂
(m)
ikj (t) will be defined in the next two sections. The corresponding baseline mean

function for kth-type µD0k(·) can be estimated by

µ̂D0k(t) =

∫ t

0

∑n
i=1

∑
Zmis,ik

p̂
(m)
ikj (s)ŵ

D(m)
i (u)dNik(t)

nŜ
(0)(m)
kw (β̂, t)

, 0 ≤ t ≤ τ. (5.4)

The inverse probability survival weights under missing covariates is estimated similar

to that mentioned in section 3.2.1.1 which requires estimating survival probabilities

based on methods proposed by Herring and Ibrahim (2001).

5.2.0.1 Missing Data Weights p̂ikj(t)

The missing data weights for the proposed estimating function (5.3), p̂ikj(t), are esti-

mated conditional probabilities that the missing data for the kth event type in subject

i takes the pattern indexed by j given θ̂
(m)

and may be viewed as posterior probabilities

of the missing values. Let Rik1, Rik2, · · · , RikL denote L k-type recurrent events in the

ith individual and ∆ikl, l = 1, 2, . . . , L, denote k-type recurrent event indicator, then

pikj(Rikl) = pr{zmis,ik = zmis,ik(j)|zobs,ik, Rikl,∆ikl, Xi, δi, θ} =
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p {Rikl,∆ikl, Xi, δi|zmis,ik(j), zobs,ik, µ0k(·), β,Λ0(·), γ} p {zmis,ik(j), zobs,ik|α}∑
zmis,ik

p {Rikl,∆ikl, Xi, δi|zik, µ0k(·), β,Λ0(·), γ} p {zik|α}
(5.5)

where
∑ni

j=1 pikj(Rikl) = 1, ni is the number of missing pattern per subject. To obtain

the above weight, we considered the following working models:

drik(t|Zik; ζi) = ζie
βTCZ ikdr0k(t)

hi(t|Zi; ζi) = ζie
γTCZ ih0(t)

where ζi follows a positive stable distribution and conditional on ζi andZi, the recurrent

event and the terminal event are independent. Based on the working models, the joint

density function of recurrent and terminal event is then given by

p {Rikl,∆ikl, Xi, δi|Zik; rk(·), βC , H(·), γC}

=
∫
p {Rikl,∆ikl|Zik;βC , rk(·), ζi} p {Xi, δi|Zi;γC , H(·), ζi} p(ζi)dζi

where ∆ikl and δi are the lth k-type recurrent event and terminal event indicators,

respectively. βC and γC are regression parameters from conditional rate and conditional

hazard models respectively. Similarly, rk(t) and H(t) =
∫ t

0
h0(u)du are the cumulative

rate function for kth event type and cumulative hazard function from the respective

conditional models. The density function of ζ and its Laplace transform are given by

f (ζ;φ) = −
(

1

πζ

) ∞∑
c=1

Γ (cφ+ 1)

c!

[
−ζ−φ

]c
sin (φcπ) , ζ ≥ 1 (5.6)

Lap(s) = exp
[
−sφ

]
, 0 < φ ≤ 1,

where φ is the parameter of positive stable distribution. The relationship between φ

and the dependence measure Kendall’s τ is τ = 1− φ. Under the working assumption
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that the recurrent events follow non-homogeneous Poisson process given the frailty ζi,

the density for type-k recurrent event at the lth event of in the ith individual can be

written as

p {Rikl,∆ikl|Zik;βC , rk(·), ζi} =
[
ζidr0k(Rikl)e

βTCZ ik

]∆ikl

e−ζir0k(Rikl)e
βTCZ ik

.

Therefore,

∫
p {Rikl,∆ikl|Zik;βC , rk(·), ζi} p {Xi, δi|Zi;γC , H(·), ζi} p(ζi)dζi

=
[
dr0k(Rikl)e

βTCZ ik

]∆ikl
[
h0(Xi)e

γTCZ i

]δi ∫
ζ∆ikl+δi
i e

−ζi

[
r0k(Rikl)e

βTCZ ik+H0(Xi)e
γTCZ i

]
p(ζi)dζi

=
[
dr0k(Rikl)e

βTCZ ik

]∆ikl
[
h0(Xi)e

γTCZ i

]δi
E

ζ∆ikl+δi
i e

−ζi

[
r0k(Rikl)e

βTCZ ik+H0(Xi)e
γTCZ i

]
By Lemma (3.1) in Wang et al.,(1995), if ζ follows a positive stable distribution

with density (5.6) then

E [ζq exp {−sζ}] =
(
φsφ−1

)q
exp

{
−sφ

}
J [q, s] , q = 0, 1, . . . ; s > 0 (5.7)

where J [q, s] =
∑q−1

m=0 Ωq,ms
−mφ and Ωq,m is a polynomial of degree m given recursively

by

Ωq,0 = 1;

Ωq,m = Ωq−1,m + Ωq−1,m−1 {(q − 1)/φ− (q −m)} ;m = 1, 2 . . . , q − 2;

Ωq,q−1 = φ1−qΓ [q − φ] /Γ [1− φ] .
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By the above Lemma, under the working assumptions, the joint distribution of type-k

recurrent events and terminal event reduces to

[
dr0k(Rikl)e

βTCZ ik

]∆ikl
[
h0(Xi)e

γTCZ i

]δi
E

ζ∆ikl+δie
−ζi

[
r0k(Rikl)e

βTCZ ik+H0(Xi)e
γTCZ i

]
=
[
dr0k(Rikl)e

βTCZ ik

]∆ikl
[
h0(Xi)e

γTCZ i

]δi (
φsφ−1

ikl

)qikl
e−s

φ
iklJ [qikl, sikl]

where sikl =
[
r0k(Rikl)e

βTCZ ik +H0(Xi)e
γTCZ i

]
; qikl = ∆ikl + δi with J [0, sikl] =

1, J [1, sikl] = 1 and J [2, sikl] =
[
1 + 1−φ

φ
s−φikl

]
=
[
1 + τ

1−τ s
τ−1
ikl

]
.

Given θ(m), we consider the following working weights for missing data

p̂
(m)
ij (Rikl) =e ˆβ

(m)T
Z ik(j)

∆ikl[
e
γ̂(m)T
D Z i(j)

]δi(
(1−τ̂)s

−τ̂(m)
ikl

)qikl
e
−ŝ(1−τ̂)(m)
ikl J [qikl,sikl]p(Zmis,ik(j),Zobs,ik|α̂(m))

∑
Zmis,ik

e ˆβ
(m)T

Z ik(j)

∆ikl[
e
γ̂(m)T
D Z i(j)

]δi(
(1−τ̂)ŝ

−τ̂(m)
ikl

)qikl
e
−ŝ(1−τ̂)(m)
ikl J [qikl,sikl]p(Z ik|α̂(m))

,

for (∆ikl = 1 and δi = 1), (∆ikl = 1 and δi = 0), (∆ikl = 0 and δi = 1) and (∆ikl = 0

and δi = 0), respectively, where p(Zik|α̂(m)) are defined as in (3.9) and under positive

stable distribution the relationship between marginal and conditional models estimates

can be written as βC = β/(1− τ), γC = γ/(1− τ), r0k(Rikl) = (µ0k(Rikl))
1/(1−τ) and

H0(Xi) = (Λ0(Xi))
1/(1−τ).

To summarize, the steps for the proposed EM algorithm are as follows:

(a) Obtain estimates of the Kendall’s τ for the recurrent event and terminal event.

(b) Obtain an initial estimate θ = (β,µ0k(·),γD,ΛD
0 (·), α) = θ(0) from the complete

cases. The cumulative baseline rate is estimated via Breslow-Aalen type estimator
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as in (5.4) and the cumulative baseline hazard is estimated using

Λ̂
D(m)
0 (t) =

∫ t

0

∑n
i=1

∑
Zmis,i

ô
(m)
ij dND

i (u)∑n
i=1

∑
Zmis,i(j)

ô
(m)
ij Yi(u)eγ̂

(m)T

D Z ij(u)

where ND
i (u) is the death process.

(c) At the (m + 1)th EM iteration, compute o
(m)
ij as in (3.8) and solve U∗(ψ|ψ(m))

for ψ(m+1), updating the estimates of γD and the nuisance parameters (ΛD
0 (·), α).

Compute ŵDi (t)(m) and p̂
(m)
ikj (Rikl) and solve U∗(β|β(m)) = 0 for β(m+1) updating

the estimates of β and µ0k(·) .

(d) Iterate until convergence.

5.2.0.2 Variance Estimation

Several factors complicate the variance estimation for the parameters of interest in

our proposed method. Because the estimates are obtained via EM algorithm, Louis,

(1982) method can be used to estimate the observed information matrix. However,

the dimension of µ0k(.) and Λ0(.) are large and may cause the variance estimates to

be computationally intractable and unstable. A simple variance estimator with good

small-sample properties based on multiple-imputation was proposed by Goetghebeur

and Ryan (2000). Following Rubin and Schenker (1991), they proposed to impute

the unobserved covariates with sampled values and obtain naive point and variance

estimates for the parameter of interest. Then the variance of EM estimator is obtained

as a weighted sum of the empirical variance of the imputation point estimates and the

mean of the imputation variances, with weights 1 + 1/m and 1 respectively. We adopt

this method for our estimates. We chose the number of imputation m to be 20 and

performed the imputation based on Approximate Bayesian Bootstrap (ABB) method.
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5.3 Simulation studies

In this section, we present the setup and results of simulation studies that were con-

ducted to examine the finite sample properties of the proposed estimators. We generate

the simulation data similar to Section 4.3. We considered two setup of data with 30 and

20 percent terminal events with a sample size (n) of 750. Under each terminal event

setup three dependence scenarios (φ=0.7, 0.8, 1) were considered. Since the data are

generated from the positive stable distribution, the generated data satisfy the marginal

models (4.1) and (4.2) where β = φβC and γ = φγC (Hougaard, 2000). Thus the

true parameters of (β1, β2) and (γ1, γ2) corresponding to the dependence parameter (φ:

0.7, 0.8, and 1) are (0.7, -0.7), (0.8, -0.8) and (1, -1) respectively. We considered two

covariates where zi1 is fully observed while zi2 was missing for some i. The missing

data mechanism was generated by

p(ri2 = 1|X∗i ,Zobs,i, ε) =
exp(ε0 + ε1X

∗
i + ε2zi1 + ε3RE + ε4X

∗
i ∗RE)

1 + exp(ε0 + ε1X∗i + ε2zi1 + ε3RE + ε4X∗i ∗RE)
,

where X∗i = (Xi − µXi)/σXi , RE= dichotomized recurrent events (any event=1, and

0 otherwise) and ε was specified to achieve desired 5%, 10%, 20% and 30% missingness

respectively. The convergence criterion for the EM-algorithm was less than 10−8.

The simulation results for β1 and β2 are presented in Tables (5.1) and (5.2) for 30%

and 20% terminal events respectively. For comparison, we present the complete case

analysis where the subjects with missing covariate information are deleted along with

the proposed method estimates.
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Under 30% terminal event setup, the estimates from the proposed method for miss-

ingness performed well. With 5 and 10 percent missing data both proposed method and

complete case analysis preform well. However, with more missing data the complete

case analysis is in general more biased and less efficient. From the results, we can see

that the proposed estimates for β2 are closer to the true value under all correlation

scenario. When recurrent events and terminal events are independent, the asymptotic

standard errors are slightly bigger than the empirical standard errors otherwise they

are comparatively smaller and are closer to empirical standard errors. The coverage

probability in all correlation setup were closer to the nominal value of 0.95 except for

30% missing scenario. However with increased sample size the the coverage converges

closer to the nominal value. Under the 20% terminal event setup, the estimates of

proposed method are less biased while complete case estimates are biased with both

the covariates z1 and z2. When examined with larger sample size, the bias from our

proposed methods get smaller.
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5.4 Application: Risk factors for multiple-type infections

We now apply the proposed methods to analysis of multiple-type infections among the

renal failure patients to the India renal transplant data cohort. The data discussed

here cover all the patients who received primary renal transplantation over the period

1994-2007 at Christian Medical College and Hospital in Southern India. Patients were

followed to the end of 2008. The median follow-up time was 60.4 months (range: 0 to

179.5 months). Around eighty percent (n=945) of the patients were alive with surviv-

ing graft, 19% died (n=258), around 11% had graft loss or renal failure(serum failure

≥ 3.5 mg/dl) and loss to follow-up. For the infection analysis graft loss patients were

considered alive and will be censored at the time of graft loss. For each patient, the

data include the date of transplantation and subsequent infections. Infections were

ascribed to one of the three organism types: bacterial, systemic mycoses (fungal) and

viral. There are 1,355 renal transplant patients in the cohort with a total of 1259

infections. The average infections per patient observed was two. Of the transplant

patients, forty seven percent had at least one infection, 31 percent had bacterial in-

fection, 8 percent fungal infection and 26% had viral infection. Table 5.3 summarizes

the distribution of infections across patients and types of infections. Sixteen percent

of patients experienced multiple type infections. Factors which may affect the risk of

infections and death include immunosuppresion (z1) along with patient characteristics

such as age of patient (z2), gender of patient (z3), donor age (z4), donor sex (z5), HLA

antigen match (z6)and chronic disease such as diabetes mellitus (z7) and acute rejection

(z8). Immunosuppresion, age and sex of patient were measured for all patients and all

other covariates had missing values for some patients. Overall 13.5% of the patients

had missing covariate data. The pattern and distribution of missing data are presented

in table 3.2.

We assumed missingness does not depend on the value of missing covariates which
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Table 5.3: Recurrent infections by type of infection in renal transplant patients

Recurrent infections
Infections type 0 1 2 3 4 5 6
Bacteria 936 247 96 50 14 7 5
Systemic mycoses 1250 91 14 0 0 0 0
Virus 1002 283 64 5 1 0 0

in the terms of Little and Rubin(2002) is missing at random (MAR). We use propor-

tional rates model to model the relationship between recurrent infections and the given

prognostic factors. There are five covariates with missing values (z4, z5, z6, z7, z8). We

partition them in the following way: as mentioned in (3.9), we model the covariate

distribution as

p(zi4, zi5, zi6, zi7, zi8|zi1, zi2, zi3, α) = p(zi4|zi1, zi2, zi3, zi5, zi6, zi7, zi8, α4)

×p(zi5|zi1, zi2, zi3, zi6, zi7, zi8, α5)× p(zi6|zi1, zi2, zi3, zi7, zi8, α6)

×p(zi7|zi1, zi2, zi3, zi5, zi8, α7)× p(zi8|zi1, zi2, zi3, α8), i = 1, . . . , n.

Since donor age (z4), HLA antigen match (z6) and diabetes melitus (z7) are categori-

cal covariates with three categories, we model them using multinomial regression, for

example,

p(zi4 = j|zi1, zi2, zi3, zi6, zi7, zi8, α4) =

exp(α40j+α41jzi1+α42jzi2+α43jzi3+α44jzi5+α45jzi6+α46jzi7+α47jzi8)

1+
∑J
j=1 exp(α40j+α41jzi1+α42jzi2+α43jzi3+α44jzi5+α45jzi6+α46jzi7+α47jzi8)

,

where j=category number. We model donor sex (z5) and acute rejection (z8), which

are dichotomous covariates, using logistic regression, for example,

p(zi8|zi1, zi2, zi3, α8) =
exp(α80 + α81zi1 + α82zi2 + α83zi3)

1 + exp(α80 + α81zi1 + α82zi2 + α83zi3)
.
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Kendall’s τ between the first recurrent event time and the terminal event time was

estimated using patients who have both recurrent events and terminal event. The

estimates is 0.11 via penalized gamma frailty model with fully observed covariates.

The results of regression analysis for multiple-type recurrent events are presented in

the Table 5.4 which also presents the complete case analysis for comparison.

Based on the proposed model, the prednisolone+MMF+CNI group (Rate Ratio

=1.67) was significantly associated with increased infection compared to non -CNI

group. Similarly post transplant diabetes melitus (RR=1.27) and acute rejection

(RR=1.43). Male patients has lower rate of infection (RR=0.80) compared to female

patients. All other covariates were not statistically significant. The estimated base-

line mean number of opportunistic infections: bacterial, fungal and viral infections per

1000 renal transplant patients are plotted in Figure 5.1. The rate of infections all three

types are higher in the early post transplant period especially the bacterial and viral

infections are much higher as compared to the fungal infections. The possibilty that

the fungal infection recurrence is low since those acquire fungal infection has a higher

risk of mortality which may truncate further occurences (John, 2001, 2003).

5.5 Concluding remarks

We proposed methods for estimating parameters in the marginal rates model for multi-

ple type recurrent event data in the presence of a terminal event and missing covariates.

The regression parameters were estimated via weighted estimating equation approach

where the missing data weight was estimated based on positive stable working models

and variance was estimated via approximate Bayesian Bootstrap method. Simulation

results indicate that the proposed method estimators behave well with missing data

compared to complete case analysis. The proposed method can be extended to handle

missing continuous variables. The proposed methods were applied to the data from
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Table 5.4: Regression analysis of multiple-type infection recurrence

Covariates Proposed Method (n=1355) Complete Case (n=1172)
Estimate SE P- Value Estimate SE P-value

Immunosuppression
Pred+Aza+CNI 0.170 0.190 0.373 1.315 0.745 0.077
Pred+(MMF/MPA)+CNI 0.517 0.259 0.045 1.638 0.753 0.030
Others ref ref

Age (Years)
≤ 15 -0.517 0.338 0.126 -0.1598 0.354 0.651
16− 40 -0.074 0.113 0.515 0.2563 0.120 0.033
≥ 41 ref ref

Gender
Male -0.215 0.112 0.055 -0.0022 0.116 0.985
Female ref ref

Donor Age (Years)
≤ 40 ref ref
41− 58 0.024 0.088 0.787 0.136 0.092 0.138
≥ 59 0.189 0.137 0.170 0.196 0.150 0.190

Donor Gender
Male 0.020 0.081 0.807 0.079 0.086 0.356
Female ref ref

HLA Match
< 2 0.106 0.351 0.763 0.521 0.229 0.023
2− 3 0.036 0.342 0.916 0.385 0.210 0.067
≥ 4 ref ref

Diabetes melitus (DM)
Pre Tx DM 0.250 0.161 0.121 0.502 0.175 0.004
Post Tx DM 0.237 0.103 0.021 0.376 0.109 0.001
No ref ref

Acute Rejection
Yes 0.356 0.078 < 0.001 0.393 0.084 < 0.001
No ref ref
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Figure 5.1: Estimated mean number of infections by immunosuppression groups: (solid
line) Pred+Aza+CNI, (dashed line) Pred+CNI+MMF, (dotted line) Other Non CNI
group by type of infections.
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Indian renal transplant cohort. Results of the analysis indicate that the cyclosporine

therapy with MMF or MPA therapy is associated with higher risk of infections. The

risk of recurrent infections increases with presence of post transplant diabetes and

occurrence of rejection in this group of patients.
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Chapter 6

CONCLUSION AND FUTURE
RESEARCH

In many clinical studies it is of interest to examine the relationship between covariate

and occurrence of repeated events. However, sometimes recurrent event experience is

truncated by a terminal event which complicates the analysis by inducing correlation

between recurrent and terminal events. Methods have been developed to handle recur-

rent events and recurrent events with dependent censoring. These methods generally

provide consistent parameter estimators when full data are available or when missing

data are missing completely at random (MCAR). However, even when the MCAR as-

sumption holds, most times efficiency of these estimators are lost. Although several

methods have been developed to handle missing data for generalized linear models, uni-

variate survival models, no previous studies have been available to analyze recurrent

events with missing covariate information. Thus, our first paper focuses on the situa-

tion where the primary interest is to examine the effect of covariates on the recurrent

events in the presence of a terminal event, and some of the categorical covariates are

missing.

Assuming that missing data are missing at random (MAR), following the procedure

of Herring and Ibrahim (2001), we developed a likelihood-based estimation procedure



where the estimators are obtained via weighted estimating equation. When analyz-

ing recurrent events with a terminal event, we considered marginal proportional rates

model with inverse probability survival weights (IPSW)(Ghosh and Lin, 2002). The

main difficulty with respect to estimation is that we need to estimate survival prob-

ability under missing data as well as obtain missing data weights for recurrent event

model. In our model, missing data weights involve joint distribution of recurrent events

and terminal event. We assumed a positive stable frailty working model to estimate

the missing data weights and exploited the relationship between marginal model and

conditional model under positive stable distribution to obtain the weights. The pro-

posed method can be extended in several directions. First, we intend to extend this

proposed method to analyze missing covariates that are of continuous or mixed scales.

Another useful extension will be to develop methods wherein probability of missing

values depend on the missing values (non-ignorable missing data). In the estimating

functions (3.6) we considered IPSW weights to adjust for terminal events, it would be of

interest to compare the effects of estimates with different types of weights, for example,

variations of inverse probability censoring weights (IPCW) as proposed by Ghosh and

Lin, (2002) and Miloslavsky et al., (2004) along side IPSW weights. In our analysis, we

generated data using positive stable distribution, it would also be useful to see how the

proposed method behaves when data are generated from other distributions. Another

useful extension will be to develop different estimation method for obtaining Kendall’s

τ and compare the consistency of our proposed method estimators.

The second problem in the analysis of recurrent event considered in this dissertation

is multiple type recurrent events with terminal event. We have considered generalized

link marginal mean/rate model for multiple type recurrent events proposed by Cai

and Schaubel,(2004) and extended it to accommodate terminal events but limited our

link function to exponential function. Though the proposed methods achieve the ob-
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jective of obtaining consistent estimators, several issues remains to be examined. It

would be desirable to develop regression models and estimation procedures for multi-

ple type recurrences and terminal event with other link functions as well as in scale

change models and transformation models. As mentioned above, it would be useful

to investigate effect of different weights in these methods. Ghosh and Lin (2002) used

martingale-type and Schoenfeld residuals for assessing goodness of fit, an extension to

multiple type recurrences along with an objective model checking procedure would be

desirable. In addition, since our proposed method involve modeling both survival and

recurrences hence a joint procedure for checking model would be ideal. Currently in

all our proposed methods, we considered an average effect across different episodes of

infections however most times this will not be the case, hence an immediate extension

to consider will be to develop methods which handles different effects across different

episodes via time varying coefficient models where the coefficients could be estimated

using regression splines.

In Chapter 5, we developed marginal regression model for multiple type recurrent

events and terminal events with missing categorical covariate information. In most

missing percentage scenarios, our proposed method performed well. As mentioned

before we will extend this procedure to handle missing continuous and mixed type

covariates. In the future work, It will be interest to consider other ways of handling

missing data, for example, multiple imputation based methods. Finally, we have as-

sumed in this dissertation that the exact recurrent event times are known. In many

settings, however, recurrent event data arise when precise event times are not observed,

but time intervals can be determined within which events are known to have occurred.

Such data are called interval censored data, it would be useful to extend the proce-

dures developed here to interval censored data setting. It will also be of interest to

extend these methods to analyze recurrent events under complex designs, for example,
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multi-level clustered recurrent event data.
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