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ABSTRACT
JEONGYOUN AHN: High Dimension, Low Sample Size Data Analysis

(Under the direction of Dr. J. S. Marron)

This dissertation consists of three research topics regarding High Dimension, Low Sample

Size (HDLSS) data analysis. The first topic is a study of the sample covariance matrix of a

data set with extremely large dimensionality, but with relatively small sample size. Especially

the asymptotic behavior of eigenvalues and eigenvectors of the sample covariance matrix is the

focus of our study. Assuming that the true population covariance matrix of the data is not

too far from identity matrix (i.e., spherical in the Gaussian case), we show that the sample

eigenvalues and eigenvectors tend to behave as if the true structure of the data is indeed from

identity covariance. Based on this, the asymptotic geometric representation of HDLSS data

is extended to a wide range of underlying distributions. The representation essentially states

that data vectors form a regular simplex in the data space with the number of vertices equal

to the sample size.

The second part of the dissertation studies a discriminant direction vector, which is only

interesting in HDLSS settings. This direction is characterized by the property that it projects

all the data vectors, which are generated from two classes, to two distinct values, one for each

class. It will be seen that this Maximal Data Piling (MDP) direction lies within the hyperplane

generated by all the data vectors, while it is orthogonal to the hyperplanes generated by each

class. It has the largest distance between piling sites among all the possible piling direction

vectors and also maximizes the amount of piling. The formula of MDP is equivalent to the

Fisher’s linear discrimination when the dimension is less than the sample size. As a classification

method, MDP is heuristically desirable when the data are well approximated by the HDLSS

geometric representation.

The third topic relates to kernel methods in statistical learning, especially the kernel based

classification problem. Taking the case of the Gaussian kernel function for the support vector

machines and mean difference methods, we propose a novel approach to select the bandwidth
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parameter in kernel functions. The derivation is based on the fact that the bandwidth pa-

rameter in a kernel function determines the geometry of the high dimensional kernel embedded

feature space. Compared with cross-validation and other tuning criteria from the literature, our

approach is demonstrated to be robust to the sampling variation, while maintaining comparable

classification power and low computing cost, in real and simulated data examples.
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CHAPTER 1

Introduction

Data sets with more variables (i.e., attributes or entries in the data vector) than observations

are now important in many fields. For example, in genetics a typical microarray gene expression

data set has the number of genes ranging from thousands to tens of thousands, while the number

of tissue samples (i.e., observations) is less than several hundreds (see for example Golub et al.

(1999) and Furey et al. (2000)). Data from medical imaging, and from text recognition also

often have a much larger dimension d than the sample size n. The term “High Dimension Low

Sample Size (HDLSS)” will be used for this type of situation in this dissertation. Other terms

such as “large p small n” (from the usage of p for the number of variables), appear in other

references such as Bickel and Levina (2004). We view these as synonyms. As the technologies

for collecting information are improving, it is quite likely that one will face HDLSS data more

frequently in future applications.

The analysis of these types of data has become a serious challenge to the statistical commu-

nity. Many statistical methods for multivariate analysis, which can be found in textbooks such

as Muirhead (1982) and Anderson (2003), seldom work for HDLSS data. In fact, these classical

methods rarely provide meaningful results in situations with high dimensional data in practice,

even with the sample size somewhat larger than the dimensionality. One of the main reasons

for their failures is because there are not enough data to estimate the underlying covariance

structure properly. A key element in the classical multivariate analysis is to sphere the data

by multiplying the data vector by the squared root inverse of the sample covariance matrix,

which cannot be done when the matrix is singular, as is the case for HDLSS data. Bickel and

Levina (2004) observed that sometimes simply assuming independence of variables, sometimes

colled the “näıve Bayes” approach, can yield better performance than attempting to estimate



the whole covariance. Chapter 2 and 3 discuss this topic in detail.

Several methods have been developed which confront the HDLSS challenge. Methods

that reduce a high dimension to a lower, more manageable dimension have been developed

over a number of years. For example, the dimension reduction techniques based on principal

component analysis (PCA) find a set of new variables explaining most of the variability in

the data. The number of these principal components can be as large as n − 1, but usually

one expects it to be much smaller than n or d, in practice. Feature selection or variable

selection methods find a subset of variables that are most relevant to the objective of analysis.

In supervised learning problems such as regression or classification, a popular solution to the

model unidentifiability problem caused by the singularity of the covariance, is to put a restriction

on the model space. For example, a smoothing constraint on coefficients can be added to the

objective function (Hastie and Tibshirani, 2004).

Most methods discussed above were originally developed under the assumption of d < n.

They have been applied to the HDLSS cases because it is plausible and seems appropriate.

However, they do not consider the characteristics of HDLSS data which are quite different from

typical non-HDLSS data. Especially HDLSS data are known to have some surprising and often

counter-intuitive geometrical structure (Hall et al., 2005). For example, mean zero Gaussian

random samples in a very high dimensional space are hardly present near the population mean.

Not only that, they also tend to be farther away from the origin as the dimension increases,

which appears paradoxical since the Gaussian density is largest near the origin. More detailed

discussion of this topic can be found in Chapter 2.

Even though challenging, the visualization of HDLSS data is helpful for understanding of

the geometrical structure. Many methods have been proposed such as parallel coordinates,

which uses a curve connecting the d values to display a d-length vector and then overlay n such

curves to show the entire data set (Inselberg, 1985). Another popular method is to project the

data onto one, two, or three dimensional subspaces and look at the projected data (Buja et al.,

1996). Especially the so-called draftsman’s plot (Tukey and Tukey, 1981) has been proposed

as a useful display of low dimensional projections. While these methods can be used to show

high dimensional data, it is still possible that they may miss some important high dimensional

structures.
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This dissertation takes geometrical approaches to several statistical problems regarding

HDLSS data analysis. Each of the problems is introduced along with a literature review and

discussed in detail in separate chapters.

In Chapter 2, a non-classical type of asymptotics of the sample covariance matrix from

HDLSS data is studied. Some of the results imply a shortcoming of PCA applied in HDLSS

settings. Also, the asymptotical geometric representation of HDLSS data, which was first

introduced in Hall et al. (2005), is established under much milder assumptions than the original

work.

The binary discrimination problem in HDLSS settings is considered in Chapter 3. In

particular a phenomenon called “data piling” (Marron et al., 2005) is explored. A direction

vector in the data space that maximizes data piling is the main topic of the chapter and is

discussed with a careful mathematical treatment and geometrical characterization. Also this

direction is compared with some other popular discriminant directions as a linear classification

method.

In Chapter 4, a bandwidth parameter selection problem in the kernel based classification

is considered. We treat a nonlinear classification as a linear one in the kernel embedded

feature space and propose to choose the bandwidth that makes this linear classification task

“easier”. The geometry of the embedded data in the infinite dimensional feature space is

taken into account to develop a criterion for a measure of “easiness”. The proposed method

is shown to be more robust to sampling variation than the classical cross-validation approach.

The Gaussian Radial Basis Function kernel is used to demonstrate how the proposed method

compare with the support vector machine and the mean difference methods as classification

methods.
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CHAPTER 2

HDLSS Asymptotics:
Sample Covariance Matrices and the Geometric Representation

2.1 Introduction

Asymptotic studies regarding HDLSS data are of increasing interest to many researchers.

While the classical asymptotic analysis deals with the sample size increasing with fixed dimen-

sionality, an important type of asymptotics, which is more relevant for HDLSS data, studies

the case where the dimension d increases. Sample size n can grow with d at the same rate or

it can be fixed. We will use notations such as n-, (d, n), and d-asymptotics to denote these

three different kinds of asymptotics: The traditional large sample asymptotics will be denoted

by n-asymptotics, the asymptotics for both simultaneously increasing dimension and sample

size will be denoted by (d, n)-asymptotics, and finally the asymptotics for increasing dimension

with a fixed sample size will be denoted by d-asymptotics.

Among various subjects that could be studied these types of asymptotics, particularly there

has been substantial interest in the HDLSS properties of the sample covariance matrix. One

of the reasons is because many multivariate statistical analysis methods inevitably use the

sample covariance matrix, such as by transforming the data vectors by multiplying by the root

inverse of the sample covariance matrix. Most of the HDLSS studies on the covariance matrix

have had a focus on the asymptotic properties when both dimension and sample size go to

infinity together, i.e., the (d, n)-asymptotic properties. Also it is usually assumed that d and

n increase at the same rate, i.e., the ratio d/n goes to some constant γ ∈ (0,∞). Section 2.2

will be an overview of some of the (d, n)-asymptotic results on the sample covariance matrix.

See Fujikoshi (2004) for a useful survey of some other (d, n)-asymptotic results on multivariate

analysis, such as MANOVA and discriminant functions.



Unlike the aforementioned works, Hall et al. (2005) let only d tend to infinity, i.e., take a

d-asymptotic approach. They examine the geometry of HDLSS data and showed that under

some conditions on the underlying distribution, pairwise distances between the data vectors

become a constant as d grows with a fixed n. This geometric representation essentially means

that the randomness of data, with an extremely high dimensionality and small sample size,

only lies in random rotations of a regular n-simplex in Rd. (See Section 2.5 for details.) In

their paper, they applied this to the binary classification problem and obtained some insights

about asymptotic behaviors of some popular discrimination methods such as the support vector

machines (Section 3.1.3) and the distance weighted discrimination (Section 3.1.4).

The original work of Hall et al. (2005) requires the variables to be “nearly independent” and

the condition they imposed views the data entries (variables) as a time series. This assumption

has some evident shortcomings. First, it is somewhat too strict because it is common to have

a severe collinearity among variables. Second, the condition also depends on the order of the

data entries, which can be arbitrary.

In this chapter, d-asymptotic properties of the sample covariance matrix are studied in

Section 2.3. From this result, it is shown that the geometric representation in Hall et al. (2005)

can be extended to a much more general condition in Section 2.5. The new condition is on

the population eigenvalues and controls the departure from sphericity by restricting the relative

size of dominating eigenvalues.

In the (d, n)-asymptotic limit, it is known that eigenvalues of the sample covariance matrix

behave as if the underlying covariance were identity, which is the so-called “phase transition”

phenomenon. The sufficient condition for this is that the underlying structure of the data is not

far from spherical in the sense that non-unit eigenvalues are not much larger than one ( Section

2.2.4). Paul (2005) shows that sample eigenvectors also undergo the same phenomenon. It

turns out that this also happens in the d-asymptotic case in Section 2.3.

The phase transition phenomenon makes the PCA with HDLSS data often unreliable (John-

stone and Lu, 2004; Muller et al., 2005). In Section 2.4, an extremely non-spherical population

model is presented, for which the phenomenon no longer takes place. The departure from

sphericity in this model is so large that the first principal component direction vector converges

to the population analog as d grows with a fixed n. However even in this case the first sample
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eigenvalue still fails to converge to its population counterpart. This model can be considered

as an extreme case of the “spiked population model” (Section 2.2.4).

2.2 (d, n)-Asymptotics of Sample Covariance Matrices

Assume a d × n data matrix X is from the multivariate Gaussian distribution with mean

zero and covariance Σ, i.e., each d-length column vector, xj , j = 1, · · · , n, are independently

and identically distributed as Nd(0,Σ). Denote the sample covariance matrix by S:

S =
1
n
XXT. (2.1)

Note that the sample mean is not subtracted from the data matrix in (2.1). S is easier to

handle than the usual sample covariance matrix with mean subtracted in this setting. Also

it is the maximum likelihood estimator of Σ. In the following subsections, various topics

involving S when the dimension/sample size ratio d/n approaches some constant γ ∈ (0,∞)

as d increases, are reviewed. During most of those discussions, even though the entries of

the matrix X depends on both d and n, we suppress the indices for the sake of simplicity of

notation.

2.2.1 Hypothesis Tests for the Population Covariance Matrix

In this section, two common hypothesis testing problems, for the sample covariance matrix

from the Gaussian distribution, are considered.

The first testing problem is whether the underlying distribution is spherical. The testing

hypotheses of the sphericity test are

H0 : Σ = σ2I vs. H1 : Σ 6= σ2I, (2.2)

where σ is not specified. The likelihood ratio criterion by Mauchly (1940) is

R1 =
|A|

1
2
n

(tr(A)/d)
1
2
dn
,

where A = nS. Note that this criterion is degenerate when S is singular, i.e., when d > n.
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The locally most powerful test for (2.2) is based on the statistic (John, 1971)

U =
1
d
tr

[(
S

tr(S)/d
− I
)2
]
, (2.3)

and U is well-defined even when d > n.

The second hypothesis testing problem is to test whether the underlying covariance is equal

to a given positive definite matrix Σ0. This is equivalent to testing

H0 : Σ = I vs. H1 : Σ 6= I,

by multiplying the data by Σ−1/2
0 . The likelihood ratio criterion (Anderson, 2003, Chapter 10)

is

R2 =
( e
n

) 1
2
dn
|A|

1
2
ne−

1
2
tr(A),

which is also degenerate when d > n. A non-degenerate testing criterion (Nagao, 1973), well

defined even if the dimensionality exceeds the sample size, is

V =
1
d
tr
[
(S− I)2

]
,

which can be derived in a similar way as U for the test of Σ = I.

Ledoit and Wolf (2002) studied asymptotic behaviors of the tests based on U and V , as d

and n go to infinity together with the ratio d/n converging to a limit γ ∈ (0,∞). They showed

that the sphericity test based on the test statistic U remains consistent as d/n→ γ, in the sense

that the (d, n)-asymptotic limiting distribution of U is the same as its n-asymptotic limiting

distribution. However, it no longer holds for the second type of test based on V .

Ledoit and Wolf (2002) modified V and introduced a new test statistic W as follows:

W =
1
d
tr
[
(S− I)2

]
− d

n

(
tr(S)
d

)2

+
d

n
.

W has the same n-asymptotic properties as V and shows better (d, n)-asymptotic behaviors,
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i.e., is not only consistent in the n-asymptotic sense, but also its n-asymptotic properties remain

valid in the limit of d/n→ γ. Birke and Dette (2003) investigated (d, n)-asymptotic properties

of U , V , and W when the ratio d/n goes to either zero or infinity.

2.2.2 Spectral Distribution of Sample Covariance Matrices

Let `1 > · · · > `d be the eigenvalues of a sample covariance matrix S from the spherical

Gaussian distribution, i.e., from Nd(0, I). The empirical distribution of these sample eigenval-

ues is called the empirical spectral distribution of S, and defined by

Fd(x) =
1
d
× number of elements in {i : `i 6 x}.

The limiting spectral distribution, i.e., the limit of Fd, if d/n goes to γ ∈ (0, 1] as d → ∞,

was first obtained by Marčenko and Pastur (1967). Fd converges to the Marčenko-Pastur

distribution F , defined with the density function

f(x) = F ′(x) =


(2πγx)−1

√
(x− a)(b− x) a < x < b

0 otherwise,
(2.4)

where a = (1−√γ)2 and b = (1+
√
γ)2. When γ > 1, this distribution has an additional Dirac

measure at x = 0 of mass 1− 1
c .

The survey paper by Bai (1999) has a comprehensive review on the spectral distribution,

for both the real and the complex cases. Under some conditions on moments, Bai et al.

(2003) found out that the order of the convergence in (2.4) is Op(n−2/5) when γ is not close

to 1 in the sense that γ < 1 − O(n−1/8), and Op(n−1/8) when γ is close to 1 in the sense

that γ > 1 − O(n−1/8). The model with Σ that has a few non-unit eigenvalues is called the

“spiked population model” (Section 2.2.4). It is known (Silverstein and Bai, 1995) that the

Marčhenko-Pastur limit still holds for this case too, with possibly different support depending

on the model.

The density curves f and the distribution function F for γ = .1, .5, and 1, are sketched

in Figure 2.1. Note that when γ is close to 1, i.e., d ≈ n, the eigenvalues have more spread,

with the largest approaching 4 and the smallest approaching 0. This density function is more
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Figure 2.1: The density and distribution functions of the Marčenko-Pastur distribution.

skewed than the densities for smaller γ’s, with more mass around zero.

Note that this limiting spectral distribution is useful in obtaining the asymptotic behavior

of a function of the form

Tn ≡ 1
d
{φ(`1) + · · ·+ φ(`d)}

=
∫ ∞

0
φ(x)dFd(x),

since it converges to

∫ ∞

0
φ(x)dF (x),

as d/n→ γ.
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2.2.3 Sample Eigenvalues from the Spherical Distribution

While the results in the previous section are about the whole bulk of the sample eigenvalues,

in this and the following sections we consider asymptotic properties of each eigenvalue. The

identity covariance matrix is considered here and the non-identity case is considered in the next

section.

Geman (1980) showed that, for a spherical Gaussian distribution, the largest sample eigen-

value converges to the upper edge of the support of F in (2.4):

`1 → (1 +
√
γ)2 almost surely. (2.5)

An analogous result for the smallest eigenvalue holds (Silverstein, 1985; Bai and Yin, 1993):

`min{d,n} → (1−√γ)2 almost surely, (2.6)

i.e., it converges to the lower edge of the support. Yin et al. (1988) generalized these results to

non-Gaussian cases under the assumption of a finite fourth moment. Note that these results do

not provide any information on the variability, or the distribution of the largest or the smallest

eigenvalues.

For the Gaussian case, the limiting distribution of the largest sample eigenvalue `1 is derived

by Johnstone (2001). If we define the center and scaling constants as follows:

µnd = (
√
n− 1 +

√
d)2, (2.7)

σnd = (
√
n− 1 +

√
d)
(

1√
n− 1

+
1√
d

)1/3

, (2.8)

then as d/n→ γ ∈ (0, 1],

n`1 − µnd

σnd

D−→W1 ∼ G1. (2.9)

The limiting distribution function G1 is defined by

G1(s) = exp
[
−1

2

∫ ∞

s

{
q(x) + (x− s)q2(x)

}
dx

]
, s ∈ R,

10
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Figure 2.2: The density and distribution function of the Tracy-Widom distribution G1.

where q(x) solves the Painlevè II differential equation

q′′(x) = xq(x) + 2q3(x),

q(x) ∼ Ai(x) as x→∞,

and Ai(x) denotes the Airy function (Deift, 1999). Tracy and Widom (1996) first found this

distribution as the limiting law of the largest eigenvalue of an n by n Gaussian symmetric

matrix. Note that the mean constant (2.7) divided by n gives (
√

1− n−1 +
√
d/n)2, which is

about the same as the limit (2.5) except for a slight adjustment to the quality of approximation

for small n.

The distribution G has been numerically evaluated (Prähofer and Spohn, 2003) and plotted

in Figure 2.2. It is asymmetric, has mean .= −1.21 and standard deviation .= 1.27 and decays

like exp(− 1
24 |s|

3) at the left tail and exp(−2
3s

3/2) at the right. Comparing percentiles of the

empirical distribution of the largest sample eigenvalue and its limiting distribution, Johnstone

(2001) argued that this approximation is reasonable for both n and d as small as 5.

Principal Component Analysis (PCA) is often performed after each variable has been stan-

dardized, because variables are often not on the same scale. Equivalently the sample correlation

matrix is used instead of the covariance matrix. In this case, the result in (2.9) does not di-

rectly apply for the largest eigenvalue. Johnstone (2001) suggested to synthesize a data matrix

11



X̃ = [x̃1, · · · , x̃p]T where x̃j = rj
xj

‖xj‖ and rj is iid 1
nχ

2
n. Now the above approximation holds

for the largest eigenvalue of 1
nX̃X̃T.

2.2.4 Sample Eigenvalues from the Spiked Population Model

The assumption of identity covariance is sometimes unrealistic since there are many cases

where a few sample eigenvalues are separated from the rest of the eigenvalues. Such exam-

ples include speech recognition (Johnstone, 2001; Buja et al., 1995), wireless communication

(Telatar, 1999), and statistical learning (Hoyle and Rattray, 2004). In this section the spiked

population model (Johnstone, 2001), where all but finitely many eigenvalues of the population

covariance matrix are one, is considered as the underlying distribution.

Paul (2005) and Baik and Silverstein (2004) independently derived the almost sure limit of

the largest sample eigenvalue from the spiked population model. The former work assumes

the real Gaussian model, derives the asymptotic distribution of the largest eigenvalue, and also

examines asymptotic properties of the corresponding eigenvector. Baik and Silverstein (2004)

have a focus on the almost sure limits of the largest and the smallest eigenvalues in real/complex

non-Gaussian cases.

Assume that the population distribution is Gaussian with mean zero and diagonal covariance

matrix

Σ = diag(λ1, · · · , λ1, λ2, · · · , λ2, · · · , λM , · · · , λM , 1, · · · , 1),

where λ1 > · · · > λM > 0 with multiplicity k1, · · · , kM , respectively. Set k0 = 0. Thus if

r = k1+· · · kM , then d−r number of eigenvalues are one’s. Let us assume that `1 > · · · > `d > 0

are the sample eigenvalues and the ratio d/n converges to γ as d, n→∞. Baik and Silverstein

(2004) showed the following. Note that all the convergence results below are almost sure

convergence.

(1) Case 0 < γ < 1.

Let M0 be the number of j’s such that λj > 1 +
√
γ, and let M −M1 be the number of

12



j’s such that λj < 1−√γ. Then, for each 1 6 j 6 M0,

`k1+···+kj−1+i → λj

(
1 +

γ

λj − 1

)
, 1 6 i 6 kj . (2.10)

For each M1 + 1 6 j 6 M ,

`d−r+k1···+kj−1+i → λj

(
1 +

γ

λj − 1

)
, 1 6 i 6 kj . (2.11)

Also

`k1+···kM0
+1 → (1 +

√
γ)2, and (2.12)

`d−r+k1+···+kM1
→ (1−√γ)2. (2.13)

Note that (2.10) is for the largest k1 + · · ·+ kM0 eigenvalues and (2.11) is for the smallest

kM1+1 + · · · + kM eigenvalues. The results (2.10) and (2.12) are proved also by Paul

(2005).

(2) Case γ > 1.

Let M0 be the number of j’s such that λj > 1 +
√
γ. Then, for each 1 6 j 6 M0,

`k1+···+kj−1+i → λj

(
1 +

γ

λj − 1

)
, 1 6 i 6 kj .

Also

`k1+···kM0
+1 → (1 +

√
γ)2,

`n → (1−√γ)2, and

`n+1 = · · · = `d = 0.

(3) Case γ = 1.

Let M0 be the number of j’s such that λj > 2. Then for each 1 6 j 6 M0,

`k1+···+kj−1+i → λj

(
1 +

γ

λj − 1

)
, 1 6 i 6 kj .
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Also

`k1+···kM0
+1 → 4, and

`min{n,d} → 0.

The overlapping results of Baik and Silverstein (2004) and Paul (2005) say that if the population

eigenvalue λj is larger than 1 +
√
γ then the corresponding sample eigenvalue `j converges to

λj

(
1 + γ

λj−1

)
almost surely, and if λj is less than 1 +

√
γ then `j converges to (1 +

√
γ)2.

Note that the limits in (2.12) and (2.13) are the same as the limits in (2.5) and(2.6). In

other words, the limit of the largest (or smallest) eigenvalue from a non-identity underlying

covariance is the same as the limit from the identity covariance. This “phase transition”

phenomenon means that if the deviance from sphericity is not strong enough, in the sense that

the largest true eigenvalue is less than 1 +
√
γ or the smallest one is bigger than 1−√γ, then

the sample eigenvalue behaves as if it is from the identity covariance.

Now let us consider asymptotic distributions of sample eigenvalues. The (d, n)-asymptotic

normality of the largest sample eigenvalue is shown by Paul (2005), in the case of a severe

spiked Gaussian population model: If λj > 1 +
√
γ with multiplicity one and d

n − γ = o(n−1/2),

then

√
n(`j − µj)

D−→ N(0, σ2
j ),

where µj = λj

(
1 + γ

λj−1

)
and σ2

j = 2λ2
j

(
1− γ

(λj−1)2

)
.

The phase transition phenomenon also happens in sample eigenvectors (Paul, 2005). Sup-

pose the j-th population eigenvector vj , j = 1, · · · , d is d×1 vector with 1 in the j-th coordinate

and zeros elsewhere and let ej be the corresponding sample eigenvector. Then the following

results hold when d/n→ γ ∈ (0, 1):

(a) If λj 6 1 +
√
γ,

< ej ,vj >
a.s.−−→ 0 as n, d→∞.
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(b) If λj > 1 +
√
γ and of multiplicity one, then

| < ej ,vj > | a.s.−−→

√(
1− γ

(λj − 1)2

)
/

(
1 +

γ

λj − 1

)
as n, d→∞.

The inconsistency of principal component analysis in a high dimensional setting has been ob-

served (Johnstone and Lu, 2004). The above result in (a) proves a stronger version of the

inconsistency for the mildly spiked population model.

2.3 d-Asymptotic Properties of Sample Covariance Matrices

In this section we examine the asymptotic properties of the sample covariance matrix when

only the dimension d tends to infinity while the sample size n is fixed, since the order of

magnitude of d is much larger than n in many real data sets.

Suppose we have a d× n (d > n) data matrix

X ≡ [x1, · · · ,xn],

where xj = (x1j , · · · , xdj)T are iid from a d-multivariate distribution with mean zero and non-

negative definite covariance matrix Σ. Note that [, ] is for the horizontal concatenation of

vectors/matrices. The eigenvalue decomposition of Σ is Σ = VΛVT, where Λ is a diagonal

matrix of eigenvalues λ1 > · · · > λd > 0 and V is the matrix of corresponding eigenvectors. A

“factor matrix”, which is essentially the square root of Σ, is defined as F ≡ VΛ1/2, which gives

Σ = FFT. Using the factor matrix F, we can write X = FZ where

Z = Λ− 1
2 VTX

is a d×n random data matrix from d-multivariate distribution with identity covariance matrix.

Note that if X is from the multivariate Gaussian distribution, the elements of Z are independent

standard univariate normal variables.

Using the factor matrix F, the sample covariance matrix S is decomposed as

S ≡ 1
n
XXT =

1
n
FZZTFT.
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A “dual” approach switches the columns and rows of the data matrix, replacing X by XT. The

n× n dual sample covariance matrix

SD ≡ 1
n
XTX.

Note that SD has the same eigenvalues as S. If we write X as FZ and use the fact that VTV

is the identity matrix,

nSD = (ZTFT)(FZ)

= ZTΛZ

=
d∑

i=1

λiWi, (2.14)

where the n× n matrix Wi = zT
i zi and zi’s, i = 1, · · · , d, are row vectors of the matrix Z. If

X is Gaussian, Wi’s are independently from Wishart distribution Wn(1, In).

Remark. If a matrix A has the Wishart distribution Wm(ν,G), then A =
∑ν

i=1 zizT
i , where

z1, · · · , zν are random vectors with an iid m-dimensional multivariate Gaussian distribution

with mean 0 and covariance matrix G. See Muirhead (1982) or Anderson (2003) for more

details on this distribution.

The main theorem in this chapter states that under mild conditions on the population

eigenvalues, SD becomes a scaled identity matrix for very large d with a fixed n. Thus all

the eigenvalues of SD (also those of S) approximately are the same. In a sense, extreme

HDLSS data behave as if the underlying distribution were spherical. This means that the

phase transition phenomenon, observed for (d, n)-asymptotics in Section 2.2.4 also happens for

d-asymptotics.

The assumption for this theorem can be conveniently characterized by a well-known measure

of sphericity (Muller et al., 2005)

ε ≡ tr2(Σ)
dtr(Σ2)

=

(∑d
j=1 λj

)2

d
∑d

i=1 λ
2
j

. (2.15)
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The empirical version of (2.15)

ε̂ =
tr2(S)
dtr(S2)

,

is a locally most powerful invariant test statistic of sphericity of multivariate Gaussian distri-

butions (John, 1972). Note that test statistics (2.3) in Section 2.2.1 can be expressed as a

function of ε̂:

U =
1− ε̂

ε̂
.

Also note that these inequalities always hold:

1
d

6 ε 6 1.

Note that perfect sphericity of the distribution occurs only when ε = 1. Our key assumption

concerns the other end of the ε spectrum, in particular, we need ε� 1
d for large d, in the sense

that ε−1 = o(d). In other words, the underlying distribution needs to be not too close to the

most singular case, where only the first eigenvalue is nonzero.

Theorem 2.3.1. For a fixed n, consider a sequence of d× n random matrices X1, · · · ,Xd, · · ·

from multivariate distributions with dimension d, with zero means and covariance matrices

Σ1, · · · ,Σd, · · · . Let λ1,d > · · · > λd,d be the eigenvalues of the covariance matrix Σd, and

SD,d be the corresponding dual sample covariance matrix. Suppose the eigenvalues of Σd are

sufficiently diffused, in the sense that

1
dε

=

∑d
j=1 λ

2
j,d(∑d

j=1 λj,d

)2 → 0 as d→∞. (2.16)

Then the sample eigenvalues behave as if they are those of the identity covariance in the sense

that

SD,d

Kd
→ In as d→∞,
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where Kd = 1
n

∑d
j=1 λj,d.

Proof. By (2.14), any diagonal element of nSD,d can be expressed as
∑d

j=1 λj,dZ
2
j where the

Zj ’s are iid from univariate distribution with unit variance. Define the relative eigenvalues λ̃j,d

as

λ̃j,d ≡
λj,d∑d

j=1 λj,d

.

Then by Chebyshev’s inequality and the assumption (2.16), for any τ > 0,

Pr

∣∣∣∣ d∑
j=1

λ̃j,dZ
2
j − 1

∣∣∣∣ > τ

 6
var
(∑d

j=1 λ̃j,dZ
2
j

)
τ2

=
2
∑d

j=1 λ̃
2
j,d

τ2
→ 0 as d→∞.

Thus a diagonal element
∑d

j=1 λ̃j,dZ
2
j converges to 1 almost surely.

The off-diagonal elements of nSD,d can be expressed as
∑d

j=1 λj,dZjZj′ where the Zj ’s and

the Zj′ are independent.

Pr

∣∣∣∣ d∑
j=1

λ̃j,dZjZj′

∣∣∣∣ > τ

 6
var
(∑d

j=1 λ̃j,dZjZj′

)
τ2

=

∑d
j=1 λ̃

2
j,d

τ2
→ 0 as d→∞.

Thus an off-diagonal element converges to 0 almost surely.

The condition (2.16) holds for quite general settings, including the following.

(a) Constant: λ1,d = · · · = λd,d = C, where C is a constant. This is a spherical case where

all the eigenvalues are the same. Since,

∑d
j=1 λ

2
j,d(∑d

j=1 λj,d

)2 =
dC2

(dC)2
=

1
d
→ 0 as d→∞.

(b) Fixed Block, Small: λ1,d = · · · = λk,d = C1d
α, λk+1,d = · · · = λd,d = C2, where
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k < d, α < 1, C1, C2 > 0. The first k eigenvalues are moderately larger than the rest.

Since,

∑d
j=1 λ

2
j,d(∑d

j=1 λj,d

)2 =
kC2

1d
2α + (d− k)C2

2

(kC1dα + (d− k)C2)2
=
O(d ∨ d2α)
O(d2)

→ 0 as d→∞.

(c) Polynomial: λj,d = j−β , j = 1, · · · , d, ∀β > 0. The eigenvalues decrease in polynomial

order. Since,

∑d
j=1 λ

2
j,d(∑d

j=1 λj,d

)2 =

∑d
j=1 j

−2β

(
∑d

j=1 j
−β)2

=
O(d−2β+1)
O(d−2β+2)

→ 0 as d→∞.

The cases where the condition (2.16) fails include the following.

(d) Fixed Block, Large: λ1,d = · · · = λk,d = C1d
α, λk+1,d = · · · = λd,d = C2, where

k < d, α > 1, C1, C2 > 0. The first k eigenvalues are greatly larger than the rest. Since,

∑d
j=1 λ

2
j,d(∑d

j=1 λj,d

)2 =
kc21d

2α + (d− k)C2
2

(kC1dα + (d− k)C2)2
→ C1 as d→∞.

(e) Exponential: λj,d = γj , j = 1, · · · , d, ∀ 0 < γ < 1. The eigenvalues decrease exponen-

tially. Since,

∑d
j=1 λ

2
j,d(∑d

j=1 λj,d

)2 =
(1− γ)2(1− γ2d)
(1− γ2)(1− γd)2

→ 1− γ

1 + γ
as d→∞.

(f) Finite Support: λj,d = C, j = 1, · · · , k, λk+1,d = · · · = λd,d = 0, k < d, C > 0. Only the

first k eigenvalues are nonzero. Since,

∑d
j=1 λ

2
j,d(∑d

j=1 λj,d

)2 =
1
k
.

Example (f) has a singular covariance structure, and (d) and (e) are examples that become

nearly singular as the dimension tends to infinity.

19



2.4 An Extremely Spiked Population Model

For high dimensional data, PCA often fails to estimate the true directions and the variances

of principal components, due to the phase transition phenomenon as explained earlier. The

condition (2.16) characterizes an underlying structure of the data, which makes the PCA fail in

providing reasonable estimates. While this condition is quite mild, there are some distribution

models that do not satisfy (2.16). In this section we consider such an extreme case of the spiked

population model, in order to see if the PCA can work well under this model. Specifically, we

will look at whether the first sample eigenvalue and eigenvector can estimate their population

analogs.

We assume that the extremely spiked population models considered here are a sequence of

Gaussian distributions, i.e., Nd(0,Σd), d = 1, 2, · · · . The diagonal covariance matrix Σd has a

dominating first eigenvalue, i.e.,

Σd ≡ Λd ≡ diag(dα, 1, · · · , 1), (2.17)

where α > 1. Also the eigenvectors of Σd are assumed to be d-dimensional unit vectors. Thus

the first eigenvalue and eigenvector for this model are dα and (1, 0, · · · , 0)T, respectively. In a

factor analysis context, this model corresponds to single common factor model with uniqueness

diminishing as d → ∞. It also can be seen as a special case of example (d) in Section 2.3.

Note that we already looked at the case where 0 < α < 1 in the example (b) in that section.

2.4.1 The First Sample Eigenvalue

Let `1,d > · · · > `n,d be nonzero eigenvalues of the sample covariance matrix S (or SD). By

(2.14), the dual sample covariance matrix

SD =
1
n

d∑
j=1

λjWj

=
1
n

dαW1 +
d∑

j=2

Wj

 ,
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where Wj ’s are iid Wn(1, In). If we define

U ≡ W1,

V ≡
d∑

j=2

Wj ,

then U ∼ Wn(1, In) and V ∼ Wn(d − 1, In), independently. Here the subscript ,d is being

omitted for the sake of simplicity in notation. Dividing SD by dα gives

1
dα

SD =
1
n
U +

1
ndα

V. (2.18)

U can be expressed as the outer product of a random vector from the Nn(0, In) distribution

with itself. Thus it has rank one and the only nonzero eigenvalue is the inner product of

that random vector with itself, which is a χ2
n random variable. Also as d becomes large, V

approximates (d − 1)In. Hence if α > 1, (2.18) converges to 1
nU as d → ∞, since the second

term 1
ndα V tends to 0.

The first sample eigenvalue `1,d is approximately distributed as 1
nd

αχ2
n when d is large.

This means for fixed sample size n, the first sample eigenvalue is the product of the true

eigenvalue and a random quantity depending on the specific realization of data. However,

with a reasonably large n, 1
nχ

2
n is expected to be close to 1 by the law of large numbers, which

makes the first sample eigenvalue close to the population counterpart. Note that the other

eigenvalues converge to 0 as d increases since U has rank one.

2.4.2 The First Sample Eigenvector

Consider the eigenvalue decomposition of S = GLGT, where

G = {gij : i, j = 1, · · · , d}

is the matrix of corresponding eigenvectors, ej = (g1j , · · · , gdj)T, j = 1, · · · , d, are the eigen-

vectors, and

L = diag(`1,d, · · · , `n,d, 0, · · · , 0).
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Now writing Λd in (2.17) as Λ to simplify the notation, define a standardized version of S as

S̃ ≡ Λ− 1
2 SΛ− 1

2

= Λ− 1
2 GLGTΛ− 1

2 . (2.19)

Using the fact that

S =
1
n
FZZTFT

=
1
n
Λ

1
2 ZZTΛ

1
2 ,

we have

S̃ =
1
n
Λ− 1

2 Λ
1
2 ZZTΛ

1
2 Λ− 1

2

=
1
n
ZZT

∼ 1
n
Wd(n, Id), (2.20)

where Z is a d× n data matrix whose elements are iid from the standard univariate Gaussian

distribution. Note that S̃ is independent of the underlying covariance matrix Σd and its

diagonal elements are independently distributed as 1
nχ

2
n. Also by (2.19), the i-th diagonal

entry of S̃ is

s̃ii =
g2
i1`1,d + · · ·+ g2

in`n,d + 0 + · · ·+ 0
λi,d

.

If we plug in the underlying eigenvalues, then

s̃11 =
g2
11`1,d + · · ·+ g2

1n`n,d

dα
,

s̃jj = g2
j1`1,d + · · ·+ g2

jn`n,d, j = 2, · · · , d.

From the result of Section 2.4.1, for a large d,

s̃11 ≈ [limd→∞ g2
11]d

αχ2
n

ndα
,
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s̃jj ≈
[limd→∞ g2

j1]d
αχ2

n

n
, j = 2, · · · , d.

Since by (2.20) s̃jj ∼ 1
nχ

2
n, j = 1, · · · , d,

g2
11 → 1 as d→∞,

g2
j1 → 0 as d→∞, j = 2, · · · , d.

Thus, under the identifiability restriction that the first component of the eigenvector must

be positive, e1 → (1, 0, · · · , 0)T, i.e., the first sample eigenvector converges to the population

counterpart as d increases.

2.5 HDLSS Geometric Representation

Understanding the geometric structure of HDLSS data is a challenging task due to the

limitation of visualizing the data. In fact it is known that they have quite different geometry

from low dimensional data. In their (d, n)- asymptotic study on simplices in high dimensional

space, Donoho and Tanner (2005) found out that the convex hull of n Gaussian data vectors in

Rd “looks like a simplex” as the ratio d/n converges to γ ∈ (0, 1), in the sense that all points are

on the boundary of the convex hull. Furthermore, depending on the value of γ, all the pairwise

line segments, triangles, quadrangles, etc., are also on the boundary of the convex hull. In this

section we focus on the geometry of HDLSS data using the d-asymptotic approach, letting only

d tend to infinity, while fixing n.

Suppose zd = (z1, · · · , zd)T is a d-dimensional random vector from the Gaussian distribution

with mean zero and identity covariance matrix. Since the sum of squared entries of zd has

Chi-square distribution with degrees of freedom d, it can be shown that

‖zd‖ = d
1
2 +Op(1).

This gives a sense that the data vector lie on the surface of an expanding sphere. If there are

two independent vectors from same distribution, z1,d and z2,d, then the distance between these
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two is

‖z1,d − z2,d‖ = (2d)
1
2 +Op(1). (2.21)

Note that data vectors tend to have a deterministic distance apart. Also they are approximately

perpendicular because the angle between them

ang(z1,d, z2,d) =
1
2
π +Op(d−

1
2 ). (2.22)

Both equations (4.7) and (2.22) hold for n random vectors z1,d, · · · , zn,d. This implies that all

pairwise distances are approximately equal and all pairwise angles are approximately perpen-

dicular.

Hall et al. (2005) extended the above argument to the non-Gaussian case. Suppose xd =

(x1, · · · , xd)T is a random vector from a d-dimensional multivariate distribution. Assume the

following:

(1) The fourth moments of the entries of the data vectors are uniformly bounded.

(2) For a constant σ2,

1
d

d∑
j=1

var(xj) → σ2.

(3) Viewed as a time series, x1, · · · , xd, · · · is ρ-mixing for functions that are dominated by

quadratics. That is, for i, j = 1, · · · , d with |i− j| > r,

sup
|i−j|>r

|E(xixj)| 6 ρ(r) → 0 as r →∞. (2.23)

If x1,d, · · · ,xn,d are random vectors from the distribution satisfying the conditions above, then

the distance between xi,d and xj,d, i 6= j, is approximately (2σ2d)
1
2 , in the sense that

d−
1
2 ‖xi,d − xj,d‖ → (2σ2)

1
2 , in probability.
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Thus after scaling by d−
1
2 , the data vectors xi,d are asymptotically located at the vertices of a

regular n-simplex where all the edges are of length (2σ2)
1
2 .

Hall et al. (2005) applied the above result to the two sample case in the context of binary

classification. They also obtained some insights about limiting behaviors of some popular

discrimination methods such as the support vector machines (see for example Cristianini and

Shawe-Taylor (2000)) and the distance weighted discrimination (Marron et al., 2005).

The condition (3) requires entries in the data vector (variables) to be nearly independent.

If the entries are far from each other in their locations in the data vector, the correlation

between them should diminish. This condition is somewhat too strict because it is common to

have a severe collinearity among variables and the condition also depends on the order of the

data entries, which can be arbitrary. In this section we establish the same HDLSS geometric

representation using Theorem 2.3.1 and show that our assumption (2.16) is more general than

that of Hall et al. (2005).

Let xj,d = (x1j , · · · , xdj)T, j = 1, · · · , n, be j-th column of the data matrix X, i.e., j-th

sample, from the d-dimensional multivariate distribution with mean zero and covariance matrix

Σd. Suppose the eigenvalues of Σd satisfy the condition (2.16). The squared distance between

xi,d and xj,d is

‖xi,d − xj,d‖2 =
d∑

k=1

(xki − xkj)2

=
d∑

i=1

x2
ki +

d∑
i=1

x2
kj − 2

d∑
i=1

xkixkj . (2.24)

Note that the first two terms in (2.24) are the i-th and j-th diagonal entries of nSD respectively.

Thus for a sufficiently large d, both terms become close to
∑d

j=1 λj by Theorem 2.3.1. Also

since the third term is the (i, j)-th entry of nSD, it diminishes to zero as d grows. Thus, for

sufficiently large d, the pairwise distances become approximately

‖xi,d − xj,d‖ ≈

2
d∑

j=1

λj


1
2

.

Now let us compare the ρ-mixing condition with (2.16). If (2.23) is satisfied, for i, j =
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1, · · · , d,

E[xixj ] → 0 as |i− j| → ∞. (2.25)

Note that

d∑
k=1

λk,d =
d∑

k=1

E[x2
k], and

d∑
k=1

λ2
k,d = tr(Σ2

d) =
d∑

i,j=1

E[xixj ]2.

Then the left hand side of (2.16) becomes

∑d
j=1 λ

2
j,d(∑d

j=1 λj,d

)2 =

∑d
i,j=1E[xixj ]2∑d

i,j=1E[x2
i ]E[x2

j ]
=

o(d2)
O(d2)

→ 0 as d→∞,

if all the moments above are bounded. This equation implies that our condition (2.16) is at

least as mild as their mixing condition. Note that by a random permutation of the data entries

it is easy to make an example that satisfies (2.16) but not the mixing condition. Hence our

condition is strictly milder than their ρ-mixing condition.
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CHAPTER 3

The Direction of Maximal Data Piling in High Dimensional
Spaces

3.1 Introduction to Linear Discrimination

Suppose we are given two classes of objects. We are then faced with a new object with

unknown class information, which we are to assign to one of the two classes. The given objects

with the known classes are called training data. This binary discrimination problem can be

formulated as follows. Assume we are given the training data

(x1, t1), · · · , (xn, tn) ∈ X × {±1}.

Here, xi are called inputs or patterns, the class variable ti are sometimes called targets or labels,

and X is called the feature space where the xi are taken from.

It is commonly assumed that X is d-dimensional Euclidean space Rd and xi are indepen-

dently and identically distributed random vectors on Rd. We call each dimension of the feature

space a feature or a variable. Whenever it is easier to convey a particular idea, we will use x

for the input vectors with Class +1 and y for Class −1.

A discriminating function, or a classifier f(x) is a real valued function of a new data vector

x ∈ Rd. We assign x according to the sign of f(x), i.e., if f(x) > 0 (< 0) then we classify it

to the Class +1 (−1). The process of obtaining such classifiers is called a classification rule.

A possible measure to evaluate a classifier f(x) is the training error

êrror =
∑n

i=1 1(sign(f(xi)) 6= ti)
n

,



where 1(·) is the indicator function. That is, the relative frequency of the training data points

which have a discrepancy between the label predicted by f(x) and its actual label. However,

we want our classifier to work well eventually for future observations as well as the observations

at hand, i.e., to have a good generalizability (Cristianini and Shawe-Taylor, 2000). Thus it is

always desirable that we use the misclassification error evaluated from a separate test data set,

i.e., the data independently generated from the same distribution as the training data. The

misclassification error from the test data can be used to approximate the classification error,

which is the expected relative frequency over all the possible test data sets. When the test

data set is not available, the V -fold cross validation (Burman, 1989; Wahba et al., 2000) can

approximate the test error. See Chapter 4 for more discussion of cross-validation.

Duda et al. (2000) gives broad reviews on various discrimination methods, also covering

some recent topics in the context of machine learning. Standard textbooks on multivari-

ate data analysis such as Mardia (1980) and Kachigan (1991) have discussions on traditional

approaches for discriminant analysis, such as Fisher’s linear discrimination. For recently devel-

oped classification algorithms such as CART, Hastie et al. (2001), Schölkopf and Smola (2001),

and Shawe-Taylor and Cristianini (2004) give good overviews of the many references that are

available.

We call a classifier linear/nonlinear if the discriminating function f(x) is a linear/nonlinear

function of x. In this chapter only linear classifiers are considered. In the classification problem

in a HDLSS setting, a linear classifier often gives better performance than most standard

nonlinear classifier in many applications (Hastie et al., 2001, Chapter 5), even though the

nonlinear classifier rules are generally more flexible (Chapter 4). We can explain this by the

HDLSS asymptotics in Section 2.5, since the data vectors approximately form two simplices for

each class, where a linear classifier can be a heuristically reasonable choice.

The classification boundary generated by a linear classifier is a linear separating hyperplane

between the two classes. A linear classifier in Rd can be expressed

f(x) = wTx + b, (3.1)

where the d-column vector w is the normal vector of the separating hyperplane and the intercept
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Class +1

Class −1

Normal Vector

Separating Hyperplane

Figure 3.1: Separable toy data in R2, with a separating hyperplane, shown as the dashed line, and
projections (dotted lines) onto the normal vector (solid line).

b is called the bias or the shift parameter. Figure 3.1 shows a toy data set in R2 with a

separating hyperplane. It also shows the projections of the data points onto the normal vector

of the hyperplane, which will be discussed in Section 3.2. In the following subsections, we will

look at some basic and some widely used linear classification methods.

3.1.1 Mean Difference

The Mean Difference (MD) method comes from a very simple idea which uses the sam-

ple means as representatives for each class. It is the optimal method when the underlying

distributions of the two classes are Gaussian and spherical, and differ only in their means.

The normal direction vector of the mean difference method w is proportional to the differ-

ence vector between the sample means of each class. If we normalize the direction vector,

w ≡ x̄− ȳ
‖x̄− ȳ‖

,

where x̄ and ȳ are the sample mean vectors of the training data from each class. Note that
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the probability of w being degenerate is zero due to the continuous distribution assumption.

The classifier bisects the difference vector x̄− ȳ, thus the threshold b is determined as

b = −wT

(
x̄ + ȳ

2

)
. (3.2)

The MD method is also called the nearest centroid method since it classifies a new data

vector x to the class whose centroid (sample mean) is closer to it. Schölkopf and Smola (2001,

Chapter 1) gives an overview on this method in the context of machine learning. A recent

work with an application to a microarray gene expression analysis can be found in Tibshirani

et al. (2003). They identified the subsets of genes that best characterize each class and then

apply the MD method, called the nearest shrunken centroid method.

3.1.2 Fisher’s Linear Discrimination

The Fisher’s Linear Discrimination (FLD), also known as linear discriminant analysis, uses

the sample covariance structure as well as the sample means. Let Xd×n1 and Yd×n2 be the

training data matrices of Class +1 and Class −1, respectively. Let n = n1 + n2 be the total

number of training samples. The direction vector of FLD is

w ≡ Σ̂−(x̄− ȳ)

‖Σ̂−(x̄− ȳ)‖
, (3.3)

where A− is the Moore-Penrose generalized inverse of the matrix A and Σ̂ is the pooled sample

covariance matrix, i.e.,

Σ̂ =
1

n− 2
{
(X− X̄)(X− X̄)T + (Y − Ȳ)(Y − Ȳ)T

}
. (3.4)

Here X̄ = x̄1T
n1

and Ȳ = ȳ1T
n2

, where 1n is a n-column vector of ones. The threshold b

is determined the same way as in the mean difference method (3.2). Note that the Moore-

Penrose generalized inverse operation is equivalent to the regular matrix inverse when the matrix

is nonsingular. This can happen for d 6 n− 2. See Hastie et al. (2001, Chapter 5 and 12) for

a detailed discussion and some extensions of the FLD.

Note that the Näıve Bayes (NB) discrimination method uses only the diagonal elements of
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Σ̂ (Duda et al., 2000, p.62), i.e. using only the variance estimates of the variables. Essentially

this method assumes the independence of variables, ignoring the covariance structure between

them. Bickel and Levina (2004) showed that in certain HDLSS situations, ignoring covariance

structure can give a better asymptotic classification performance than trying to estimate the

whole covariance matrix (Section 3.4.3).

3.1.3 Support Vector Machine

While the previous two methods, the MD and FLD, are classical methods, the methods

which will be presented in this and the following sections, are relatively recently developed.

Let us first assume that the training data set at hand is linearly separable, i.e., there is a linear

classifier that can have zero training error. Consider the convex hulls of training data vectors

of Class +1 and Class −1, respectively. Define the margin as the minimum distance between

these two convex hulls, which can be viewed as the shortest distance between the classes. The

Support Vector Machine (SVM) method (Vapnik, 1998; Cristianini and Shawe-Taylor, 2000;

Burges, 1998) seeks a separating hyperplane (3.1) that maximizes this margin between the

classes.

Let a linear classifier, f(x) = wTx + b, be such that f(x) > 1(6 −1) if x is inside or on

the convex hull of Class +1 (−1). For this classifier, the margin is 2/‖w‖. To obtain the

hyperplane maximizing this, one solves the following optimization problem

minimize
w,b

1
2
‖w‖2

subject to ti · (wTxi + b) > 1, i = 1, · · · , n. (3.5)

In many real-world problems, the training data may not be linearly separable, thus the

classifier from the above argument may not be plausible. Furthermore, it is common to have

noise in the training data set, in the sense that some portion of the data are mislabeled or

have measurement errors. Thus it is natural to use a classifier that allows some violations

on the margin boundary, which is called the soft margin classifier. The slack variables ξ are

introduced to allow the margin constraints (3.5) to be violated. Also the sum of ξ’s, the amount
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of violations, is limited by a constant. Now the problem becomes

minimize
w,b,ξ

1
2
‖w‖2

subject to ti(wTxi + b) > 1− ξi, (3.6)

ξi > 0,
n∑

i=1

ξi 6 constant, ∀i,

which is equivalent to

minimize
w,b,ξ

1
2
‖w‖2 + C

n∑
i=1

ξi

subject to ti(wTxi + b) > 1− ξi, (3.7)

ξi > 0, ∀i,

where C > 0 replaces the constant in the previous condition (3.6). C is called the penalty

parameter and needs to be chosen. A larger value of C allows less violations thus forces the

classifier to have smaller training errors, while a smaller value of C has the opposite effect.

This constrained optimization problem in (3.7) can be dealt with by a Lagrangian. The primal

Lagrangian is

LP =
1
2
‖w‖2 + C

n∑
i=1

ξi

n∑
i=1

αi [ti(wTxi + b)− (1− ξi)]−
n∑

i=1

µiξi, (3.8)

where αi > 0, µi > 0, i = 1, · · · , n, are the Lagrange multipliers. We minimize LP with

respect to the normal vector w, the intercept b, and the slack variable ξ, while maximizing it

with respect to αi > 0 and µi > 0.

The following conditions are obtained by differentiating (3.8):

w =
n∑

i=1

αitixi , (3.9)

0 =
n∑

i=1

αiti, (3.10)

αi = C − µi, ∀i. (3.11)
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If we substitute (3.9)-(3.11) into (3.8), then the dual Lagrangian is:

LD =
n∑

i=1

αi −
1
2

n∑
i,j=1

αiαjtitjxT
i xj . (3.12)

We maximize LD subject to 0 6 αi 6 C and
∑n

i=1 αiti = 0. The Karush-Kuhn-Tucker

conditions for this problem are

αi [ti(wTxi + b)− (1− ξi)] = 0,

µiξi = 0,

ti(wTxi + b)− (1− ξi) > 0, ∀i.

With these conditions, the solution to this convex optimization problem is uniquely defined.

Note that plugging (3.9) into (3.1), the separating hyperplane becomes

f(x) =
n∑

i=1

α̂itixT
i x + b̂, (3.13)

where α̂i and b̂ are from solving the above optimization problem. The data vectors with nonzero

corresponding α are called the support vectors. The SVM direction vector w is represented

solely by support vectors as seen in (3.9) and consequently the SVM classifier (3.13) only

depends on them.

While SVM is one of the most celebrated discrimination methods, there have been many

studies to improve the method. For example, Bradley and Mangasarian (1954), Zhu et al.

(2003) and Zhang et al. (2005a) minimize different norms on wv to select important features,

and Shen et al. (2003) proposed a robust version of SVM.

3.1.4 Distance Weighted Discrimination

The Distance Weighted Discrimination (DWD) method (Marron et al., 2005) is a recently

developed classification method that aims primarily at HDLSS data. For a recent application

of DWD on the microarray gene expression analysis, see Benito et al. (2004).

Given a separating hyperplane of a linear classifier f(x) = wTx + b, denote the distance to
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the hyperplane from the data point xi by r̄i, i.e.,

r̄i = ti(wTxi + b).

The DWD method finds the separating hyperplane that minimizes the sum of the inverse

distances, i.e.,
∑

1/r̄i. In this way, the data points that are close to the hyperplane have large

influence on the decision boundary, and those that are far away have little impact.

Introducing the slack variable ξ for good generalizability, the new distance, whose sum of

inverse is to be minimized is

ri = r̄i + ξi = ti(wTxi + b) + ξi.

Thus the DWD optimization problem is

minimize
w,b,ξ

∑n
i=1(r

−1
i + Cξi)

subject to ri > 0, ξi > 0, ∀i,

where C > 0 is the penalty parameter. This problem can be formulated as a second-order cone

programming (SOCP) problem and solved by software packages such as SDPT3 (for Matlab),

which is web-available at: http://www.math.nus.edu.sg/∼mattohkc/sdpt3.html.

3.2 The MDP Direction Vector

This section introduces the main topic of this chapter, the Maximal Data Piling direction

vector, and demonstrates the vector with a toy data example.

3.2.1 Introduction to MDP

Suppose we have a HDLSS data set with sample size n in d-dimensional Euclidean space

Rd and the underlying distribution of the data is continuous. Let us consider one dimensional

projections of the data vectors. There are directions such that all the data vectors project to

exactly one point. Since the data vectors generate an n-dimensional subspace, the projections

onto any direction in the (d − n) dimensional orthogonal subspace are all zeros. Also, the

projections onto any direction vector orthogonal to the (n−1) dimensional hyperplane generated

by the data, (i.e., the affine set of the data vectors) are possibly non-zero constants.
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Consider the case where we have two data sets from two different continuous distributions in

Rd and the combined sample size n is less than d, i.e., we have a HDLSS binary discrimination

problem (Section 3.1). We will show that there exists a direction vector with a property that

when the data are projected on that direction, they fall completely on just two points, one for

each class. We call this direction the Maximal Data Piling (MDP) direction.

In Section 3.3, the formula for the MDP direction vector is characterized as the product

of the generalized inverse of the global sample covariance matrix and the mean difference vec-

tor. Here, the global sample covariance matrix is obtained by using the global sample mean

calculated from the whole data instead of two sample means from each class. In Section 3.3.1,

we show that the MDP direction is uniquely determined within the subspace generated by the

data, and furthermore, it lies within the hyperplane generated by all the training samples, yet

is orthogonal to both of the hyperplanes generated by the separate training samples from each

class. Note the formula of MDP only replaces the pooled sample covariance matrix by the

global one in the FLD formula. It turns out that these two direction vectors are exactly the

same for non-HDLSS data in Section 3.3.2.

In Section 3.4, the classification performance of the MDP is discussed. It is compared with

SVM, with a simulated toy example and a microarray gene expression data set in Sections 3.4.1

and 3.4.2. A systematic comparative study to other simple directions in linear classification

such as MD, FLD, and NB is done by a simulation in Section 3.4.3. In this simulation we

consider a broad range of dimensions with a fixed sample size in a spherical Gaussian setting. It

is observed that the MDP shows much better performance than FLD in a very high dimensional

space, even slightly better than the NB. The performance of the MDP compared to that of

other methods is discussed in detail. In particular, an unexpected behavior of the MDP and

FLD, when the dimension is close to the sample size, is discussed.

In Section 3.4.3, the relationship between the MDP direction and the asymptotics of the

geometric representation of HDLSS data in Section 2.5 is also discussed. This geometric repre-

sentation provides the explanation of the good behavior of the MDP for very high dimensional

space, along with insights on the other directions for classification.
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3.2.2 A Toy Data Example

As it is difficult to visualize HDLSS data, projecting the data vectors to low dimensional

spaces, especially to a one dimensional vector or to a two dimensional plane can provide a

limited, but useful way to look at the data set. Projections on three direction vectors of

interest for a simulated HDLSS data set are shown in Figure 3.2. This toy data set has

the dimension d = 4000 and sample size n = 60, generated from the multivariate Gaussian

distribution with identity covariance matrix, with 30 observations from mean (0.1, · · · , 0.1)T,

shown with ‘+’ in the figure, and the other 30 from mean (−0.1, · · · ,−0.1)T, shown with ‘o’.

The three projection directions are the first coordinate direction (X1), i.e., (1, 0, · · · , 0)T , the

MDP direction, and the first principal component direction (PC1). Note that PC1 is the

direction with the largest variation in the whole data set. With the sample size increasing, the

PC1 direction converges to 1√
d
(1, · · · , 1)T, which is the optimal direction to discriminate the

two classes.

Projections onto each of these three directions are shown in the three diagonal panels.

In each diagonal panel, a “jitter plot” (Tukey and Tukey, 1990) is displayed for each class:

The projected data are shown with random vertical coordinates for visual separation of the

data. Also kernel density estimation curves are drawn to show how the projected values are

distributed. The off-diagonal panels show the projections onto the planes spanned by each pair

of directions, which are shown with two solid lines in the panel. This type of display is called

“draftsman’s view”.

Let us denote the panel in the r-th row and c-th column by “[r, c]”. For example, [1,2] is

the (top, center) off-diagonal panel showing the projected data on the plane spanned by the X1

direction and the MDP direction. The first diagonal panel [1,1] of Figure 3.2 indicates that

the difference between the two classes is not discernible in the X1 direction. The projected

data on the MDP direction shown in [2,2] are piled up completely at two points, one for each

class. The panel [3,3] shows nice separation of the two classes by projecting the data onto the

PC1 direction. The panels [1,2] and [2,1] show that the X1 direction is almost orthogonal to

MDP, while [1,3] and [3,1] show it is also nearly orthogonal to PC1, even though the angle with

MDP is a little more perpendicular than with PC1 (see [2,1] and [3,1]). The projections to the
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Figure 3.2: Visualization of a toy HDLSS data based on 1 and 2 dimensional projections (d = 4000,
n = 60). The three projection directions, used in the diagonal panels, are the first coordinate direction, the
MDP direction, and the first principal component direction. The off-diagonal panels show the projected
data on the plane generated by the respective two directions.
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plane of MDP and PC1 ([2,3] and [3,2]) show that these two directions are much closer to each

other, which means the geometric representation of HDLSS data in Chapter 2 applies well for

this toy data set.

3.3 Mathematics of the MDP Direction

In this section we express the MDP direction vector in a closed form and show that it is

uniquely determined within the subspace generated by the data. Also, we show that it is

equivalent to the FLD direction vector when the dimension d is less than or equal to the sample

size minus two, i.e., when d 6 n− 2.

Let X = (x1, · · · ,xn1) be the matrix of the training data from Class +1, where the xi’s

are random column vectors from a continuous probability distribution in Rd, and define Y =

(y1, · · · ,yn2) for Class −1 in a similar way. Let n = n1 +n2. Define the d×n combined data

matrix Z as [X,Y], the horizontal concatenation of the matrices X and Y, using Matlab-like

notation. Denote the global sample mean vector of the combined data by z̄. Then the sample

covariance matrix of Z is

Σ̃ ≡ 1
n− 1

{(Z− Z̄)(Z− Z̄)T}, (3.14)

where Z̄ = z̄1T
n. We will call the matrix Σ̃ the global sample covariance matrix.

The MDP direction vector is defined as

vMDP ≡
Σ̃−(x̄− ȳ)
‖Σ̃−(x̄− ȳ)‖

, (3.15)

where A− is the Moore-Penrose generalized inverse of a matrix A. The MDP direction vector

exists if the data vectors are linearly independent, which is satisfied with probability one when

the underlying distribution of the data is continuous in Rd.

3.3.1 Characterization of the MDP Direction Vector in the Data Space

In this section we characterize the geometry of the MDP direction vector within the data

space. The data vectors in the matrix Z, i.e. the columns of Z, generate an n-dimensional
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subspace in Rd and this subspace is expressed as

SZ = {Zw : w ∈ Rn}. (3.16)

In other words, SZ is the set of all linear combinations of the data vectors. If we let H̃Z be

the hyperplane generated by Z, then we can write

H̃Z = {Zw : wT1n = 1,w ∈ Rn}. (3.17)

Note that H̃Z is a set of linear combinations of data points of which the sum of the coefficients

is one. The parallel subspace can be found by shifting the hyperplane so that it goes through

the origin. A natural shift is via the point in H̃Z that is closest to the origin which is calculated

in the following lemma.

Lemma 3.3.1. Let vZ be the point in H̃Z that is nearest to the origin. Then,

vZ =
Z(ZTZ)−11n

1T
n(ZTZ)−11n

.

Proof. Since vZ is on the hyperplane H̃Z, it can be expressed in the form vZ = Zw, where

wT1n = 1,w ∈ Rn by (3.17). The squared distance from the origin to vZ is wTZTZw and we

need to find w that minimizes this distance. The Lagrangian (Cristianini and Shawe-Taylor,

2000, Chapter 5) of this minimization problem is

L(w) =
1
2
wTZTZw − α(1T

nw − 1),

where α > 0 is the Lagrangian multiplier. From ∂L(w)/∂w = 0,

w = α(ZTZ)−1.
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From wT1n = 1,

α =
1

1T
n(ZTZ)−11n

.

Thus,

vZ =
Z(ZTZ)−11n

1T
n(ZTZ)−11n

.

Now let us shift the hyperplane H̃Z so that it contains the origin and call the new shifted

hyperplane HZ. Because HZ = H̃Z − vZ,

HZ =
{
Zw : w∗ = w − (ZTZ)−11n

1T
n(ZTZ)−11n

,wT1n = 1,w ∈ Rn

}

= {Zw∗ : w∗T1n = 0,w∗ ∈ Rn} . (3.18)

Note that HZ is a subspace of Rd with dimension n − 1 and we can decompose SZ into an

orthogonal sum of HZ and {vZ}, i.e., SZ = HZ ⊕ {vZ}. In the same fashion we can define

subspaces parallel to the hyperplanes of X and Y, call them HX and HY, respectively. They

have the following expressions:

HX =
{
Xw∗

1 : w∗
1 = w1 −

(XTX)−11n1

1T
n1

(XTX)−11n1

,wT
11n1 = 1,w1 ∈ Rn1

}

= {Xw∗
1 : w∗T

1 1n1 = 0,w∗
1 ∈ Rn1} , (3.19)

HY =
{
Yw∗

2 : w∗
2 = w2 −

(YTY)−11n2

1T
n2

(YTY)−11n2

,wT
21n2 = 1,w2 ∈ Rn2

}

= {Yw∗
2 : w∗T

2 1n2 = 0,w∗
2 ∈ Rn2} . (3.20)

We can show these two subspaces of X and Y are actually the subspace of HZ in the following
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lemma.

Lemma 3.3.2. Let HZ, HX, and HY be as defined in (3.18), (3.19), and (3.20), respectively.

Then both HX and HY are subspaces of HZ.

Proof. This can be shown by setting the w∗ in (3.18) to w∗ = [w∗
1;0n2 ] for HX and w∗ =

[0n1 ;w
∗
2] for HY. Here “;” denotes the vertical concatenation of two vectors and 0n is the

n-vector of zeros.

The following theorem specifies where the MDP direction vector vMDP (as defined in (3.15))

lies within the subspace generated by the data.

Theorem 3.3.3. The MDP direction vector vMDP is a member of HZ and orthogonal to the

subspaces HX and HY. i.e.,

HZ = {HX +HY} ⊕ {vMDP}. (3.21)

Note that this theorem also implies that the MDP direction vector is uniquely determined

within the subspace generated by the data: The sum of dimensions in the right hand side of

(3.21) is equal to the dimension of HZ, which is n− 1.

Figure 3.3 illustrates geometric relationships among HX, HY, and vMDP when each class

has two data points, i.e., n1 = n2 = 2. Note that the subspaces HX and HY are actually

one-dimensional straight lines and they are not necessarily orthogonal to each other. The

hyperplanes H̃X and H̃Y are shifted to HX and HY so they meet each other at the origin.

Theorem 3.3.3 states that vMDP is orthogonal to the subspace generated by HX and HY, shown

as the gray plane in Figure 3.3.

To prove Theorem 3.3.3 we need the following lemma:

Lemma 3.3.4. Let A be a d×m(m < d) matrix with rank(A) = m− 1 such that the sum of

each row is zero. Then

A−A = Im − 1
m

Jm,
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Figure 3.3: The illustration of HX, HY, and vMDP when n1 = 2, and n2 = 2.

where Jm = 1m1T
m.

Proof. Consider the singular value decomposition of

A = UΛVT,

where

U(d×m) = (u1, · · · ,um),

Λ(m×m) = diag(λ1, · · · , λm−1, 0), and

V(m×m) = (v1, · · · ,vm).

Here U,Λ, and V are generic notations for singular value decomposition in this chapter. Note

that the columns of U and V form an orthonormal basis in Rd and Rm, respectively, and V

is obtained from the eigenvalue decomposition of ATA = VL2VT. Since the columns of the
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eigenvector matrix V span the row space of A, the sum of the coefficients of vi, (i = 1, · · · ,m−1)

is zero and the last column vm = (m− 1
2 , · · · ,m− 1

2 )T to satisfy orthogonality condition on the

columns.

Now since

A− = (v1, · · · ,vm−1)


λ−1

1 · · · 0

0
. . . 0

0 · · · λ−1
m−1




uT
1

...

uT
m−1

 ,

we have

A−A = (v1, · · · ,vm−1)


vT

1

...

vT
m−1


by the orthogonality of the matrix U. It follows from the fact VVT = Im, that

A−A = v1vT
1 + · · ·+ vm−1vT

m−1

= Im − vmvT
m

= Im − 1
m

Jm.

Proof of Theorem 3.3.3. First we show that vMDP is in HZ. Note that each member of HZ is

a linear combination of data vectors where the sum of the coefficients is zero. Since

(Z− Z̄) = Z
(
I− 1

n
Jn

)
,

and

(x̄− ȳ) = Z
(

1
n1
, · · · , 1

n1
,− 1

n2
, · · · ,− 1

n2

)T

,

all the columns of Z− Z̄ and x̄− ȳ are in HZ.
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Using the notations U,Λ and V in a generic way, the singular value decomposition of Z− Z̄

is

Z− Z̄ = Ud×(n−1)Λ(n−1)×(n−1)V
T

(n−1)×(n−1).

Then the eigenvalue decomposition of

(Z− Z̄)(Z− Z̄)T ≡ UΛVTVΛUT

= UΛ2UT

=
n−1∑
j=1

λ2
jujuT

j ,

where u1, · · · ,un−1 are columns of U and are orthogonal to each other. Since u1, · · · ,un−1

are the bases of the column space of Z− Z̄, which is HZ, the mean difference vector x̄− ȳ can

be expressed as the linear combination of uj ’s. That is, for some constants a1, · · · , an−1,

x̄− ȳ =
n−1∑
k=1

akuk.

Then, since the MDP direction is proportional to

{
(Z− Z̄)(Z− Z̄)T

}− (x̄− ȳ) =
n−1∑
j=1

λ−2
j ujuT

j

(
n−1∑
k=1

akuk

)

=
n−1∑
j=1

λ−2
j ajuj ,

the MDP belongs to HZ.

For the second part of the theorem, let w be (w∗
1;w

∗
2), where w∗

1 and w∗
2 are as defined in

(3.19) and (3.20), respectively. Let Z̃ = Z−Z̄. To show that {vMDP} ⊥ HX and {vMDP} ⊥ HY,

it suffices to show that the inner product of Z w and vMDP is zero.

Note that it suffices to show that the inner product of Zw and vMDP is zero.

< Zw,vMDP > = wTZTvMDP

∝ wTZT(Z̃Z̃T)−(x̄− ȳ)

44



∝ wTZT(Z̃Z̃T)−Z(1n1 ;−1n2)

= wTZ̃T(Z̃Z̃T)−Z̃(1n1 ;−1n2).

By Searle (1982, p.222),

Z̃T(Z̃Z̃T)−Z̃ = Z̃−Z̃.

Now by Lemma 3.3.4,

< Zw,vMDP > = wTZ̃−Z̃(1n1 ;−1n2)

= wT(In −
1
n
Jn)(1n1 ;−1n2)

= 0.

3.3.2 Relationship to Fisher’s Linear Discrimination

The FLD direction vector, defined in (3.3), has almost the same formula as MDP except it

uses the pooled sample covariance matrix (3.4). The following theorem says the two directions

are actually equivalent in non-HDLSS settings.

Theorem 3.3.5. Let vMDP and vFLD be as defined in (3.15) and (3.3), respectively. If d < n−1

and the data matrix Z is of full rank, then vMDP = vFLD.

To prove this theorem we need the following lemma, which is a slight variation of exercise

5.16 in Searle (1982).

Lemma 3.3.6. Let A and B be matrices with the same number of rows and let c be a constant.

As long as the following inverse matrices make sense,

(B + cAAT)−1A = B−1A(I + cATB−1A)−1.
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Proof.

(B + cAAT)B−1A(I + cATB−1A)−1 = (I + cAATB−1)A(I + cATB−1A)−1

= (A + cAATB−1A)(I + cATB−1A)−1

= A(I + cATB−1A)(I + cATB−1A)−1

= A.

Proof of Theorem 3.3.5. Note that under the assumption of d < n− 1, both the global sample

covariance matrix Σ̃ and the pooled sample covariance matrix Σ̂ are nonsingular so that the

Moore-Penrose generalized inverse matrices are actually the regular inverse matrices. Let p

and q be the proportions of samples with Class +1 and −1, respectively, i.e. p = n1/n and

q = n2/n. Note that the centered version of Z,

Z− Z̄ = (X,Y)− (pX̄ + qȲ)

= (X,Y)− (X̄, Ȳ) +
(
q(x̄− ȳ)1T

n1
,−p(x̄− ȳ)1T

n2

)
= (X− X̄,Y − Ȳ) +

(
q(x̄− ȳ)1T

n1
,−p(x̄− ȳ)1T

n2

)
.

Thus,

(n− 1)Σ̃ = (Z− Z̄)(Z− Z̄)T

= (X− X̄)(X− X̄)T + (Y − Ȳ)(Y − Ȳ)T

+n1q
2(x̄− ȳ)(x̄− ȳ)T + n2p

2(x̄− ȳ)(x̄− ȳ)T

= (n− 2)Σ̂ + (n1q
2 + n2p

2)(x̄− ȳ)(x̄− ȳ)T,

since the cross-product term is zero.

Therefore,

Σ̃ =
n− 2
n− 1

Σ̂ +
(n1q

2 + n2p
2)(x̄− ȳ)(x̄− ȳ)T

n− 1
.
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Now if we apply Lemma 3.3.6 with B = n−2
n−1Σ̂, A = x̄− ȳ, and c = n1q2+n2p2

n−1 , then

Σ̃−1(x̄− ȳ) =
(
n− 2
n− 1

Σ̂
)−1

(x̄− ȳ)

(
I +

n1q
2 + n2p

2

n− 1
(x̄− ȳ)T

(
n− 2
n− 1

Σ̂
)−1

(x̄− ȳ)

)−1

=
Σ̂−1(x̄− ȳ)

n−2
n−1 + n1q2+n2p2

n−1 (x̄− ȳ)TΣ̂−1(x̄− ȳ)

=
Σ̂−1(x̄− ȳ)

constant
.

Thus vMDP = vFLD after standardization.

Because vMDP and vFLD are based on different covariance matrices, Theorem 3.3.5 may be

viewed as surprising. For deeper geometrical understanding, consider a simple example in

R2 and see how it can be seen in terms of the underlying distributions. Let X and Y be

random variables from two bivariate normal distributions with different means, but with the

same covariance matrix. That is,

X ∼ N2


 µ1

µ2

 ,

 1 ρ

ρ 1


 , (3.22)

Y ∼ N2


 −µ1

−µ2

 ,

 1 ρ

ρ 1


 , (3.23)

where µ1 and µ2 are real numbers and −1 < ρ < 1. Note that by a shift of the data, this mean

structure is quite general. The common underlying covariance structure of X and Y , whose

estimator is the pooled sample covariance matrix Σ̂, is

Σp ≡

 1 ρ

ρ 1

 .

Let Z be the random variable whose distribution is the mixture of the two distributions (3.22)
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and (3.23) with equal probabilities. We can write

Z =

 Z1

Z2


= B

 µ1

µ2

+ U,

where

B =

 +1 w.p. 1/2

−1 w.p. 1/2,

U =

 U1

U2

 ∼ N2


 0

0

 ,

 1 ρ

ρ 1


 ,

and B and U are independent.

Then, Z has mean 0 and the variance of Zi is equal to the variance of µiB + Ui, which is

1 + µ2
i , i = 1, 2. The covariance of Z1 and Z2 is equal to the covariance of µ1B + U1 and

µ2B + U2, which is ρ+ µ1µ2. Thus, the covariance matrix of Z, whose estimator is the global

sample covariance matrix Σ̃, is

Σg ≡

 1 + µ2
1 ρ+ µ1µ2

ρ+ µ1µ2 1 + µ2
2

 .

Note that Σg can be expressed as a sum of Σp and the outer product of the mean difference

vector (2µ1, 2µ2)T multiplied by a constant:

Σg = Σp +
1
4

 2µ1

2µ2

( 2µ1 2µ2

)
.

The true version of the MDP direction vector can be defined as the product of Σ−1
g and the
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mean difference vector, (2µ1, 2µ2)T:

True vMDP = Σ−1
g ×

 2µ1

2µ2


∝

 1 + µ2
2 −ρ− µ1µ2

−ρ− µ1µ2 1 + µ2
1

×

 2µ1

2µ2

 (3.24)

∝

 µ1 − ρµ2

µ2 − ρµ1

 . (3.25)

Similarly the true version of the FLD direction vector is the product of Σ−1
p and (2µ1, 2µ2)T:

True vFLD = Σ−1
p ×

 2µ1

2µ2


∝

 1 −ρ

−ρ 1

×

 2µ1

2µ2


∝

 µ1 − ρµ2

µ2 − ρµ1

 . (3.26)

From (3.25) and (3.26), we can see the resulting direction vectors are actually equivalent.

One possible interpretation is that the effect of the mean difference vector on the global

covariance matrix Σg is negated when we take the inverse (3.24), which cancels out when the

mean difference vector is multiplied by Σ−1
g to obtain the direction vector. Note that this is

only true for the non-HDLSS case.

3.4 MDP as a Linear Classifier

3.4.1 Relationship to the Support Vector Machine

In many applications of SVM in HDLSS settings, we observe that a large portion of the

data lie on the margin boundaries. Thus, if we project the data points onto the normal vector

of the SVM hyperplane, many of the projections are identical, which is what we call data piling.

Marron et al. (2005) initially developed the notion of data piling. The MDP can be thought

49



as a linear classifier that maximizes data piling, in the sense that all of the data vectors pile

onto exactly two distinct values.

The term “Maximal” has two implications: The MDP maximizes the amount of data piling,

forcing all data points to pile up at the margin boundaries. Also it has the largest distance

between the two piling sites among all the possible piling directions. Note that any linear

combination of the vector orthogonal to the affine set of the data and the MDP direction vector

also has complete data piling, but has a smaller margin than MDP.

Here we use a toy example to illustrate data piling for the SVM and the MDP. The toy data

vectors are generated from a spherical, unit variance Gaussian distribution with dimension 50,

and mean 0, except that the first coordinate has mean +5.2 for Class +1 and −5.2 for Class

−1. The toy data set is of size 40, out of which 20 belong to each class. Note that since the

underlying distribution is known, the theoretically optimal Bayes rule is the hyperplane with

(1, 0, · · · , 0)T as its normal direction vector.

Figure 3.4 has the same structure as Figure 3.2 except the three projection directions are

now the Bayes rule, MDP, and the SVM directions. The projections onto the theoretical Bayes

direction have a nice Gaussian mixture appearance in [1,1]. The SVM shows some partial data

piling in [3,3], i.e., for each class, the projection values closest to 0 are taken on by about 10

data points. The MDP, as expected, has complete data piling in [2,2]. From [2,2] and [3,3],

it can be seen that the MDP has smaller margin (the distance between the piling sites) than

SVM. The MDP direction tends to have a smaller margin than the SVM because it needs to

adapt to all the noise in the data to obtain the complete data piling. Note that as discussed

above, the MDP maximizes the margin keeping the complete data piling, however, the SVM

maximizes it regardless of data piling. A smaller margin usually yields a bigger classification

error bound as shown in Vapnik (1998, Chapter 10). Thus for this example, we can expect

that the MDP has worse generalizability than the SVM.

The angles between the lines in the off-diagonal panels [2,1] and [3,1] also give some insights

into generalizability. The Bayes direction has a bigger angle with MDP (60.3◦ ) than with

SVM (22.7◦). Since the data are separated only in the Bayes direction, the angle between

the Bayes direction and the MDP ([2,1]) or SVM ([3,1]) determines the discrimination perfor-

mance. In particular, performance is better for smaller angles, which again implies the superior

50



−5 0 5
0

0.05

0.1

0.15

Bayes

−5 0 5
0

0.2

0.4

0.6

0.8

1

MDP

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

SVM

−5 0 5

−6

−4

−2

0

2

4

6

MDP

B
a

ye
s

−5 0 5

−6

−4

−2

0

2

4

6

SVM

B
a

ye
s

−5 0 5

−6

−4

−2

0

2

4

6

Bayes

M
D

P

−5 0 5

−6

−4

−2

0

2

4

6

SVM

M
D

P

−5 0 5

−6

−4

−2

0

2

4

6

Bayes

S
V

M

−5 0 5

−6

−4

−2

0

2

4

6

MDP

S
V

M

Figure 3.4: Illustration of data piling for the SVM and the MDP direction using a toy data example
(d = 50, n = 40). Here the three projection directions are the theoretically optimal Bayes rule, the MDP,
and the SVM direction. Shows none, complete, and moderate data piling respectively.
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performance of the SVM in this example.

3.4.2 Gene Expression Data Example

In this section a real data example is presented to demonstrate data piling. The data are

microarray gene expressions from the UNC breast cancer data base. See Perou et al. (2000) for

the details regarding this data set. As for many other microarray data sets, this is a HDLSS

data set, with 5,705 genes and 105 breast cancer patients, of whom 71 survived and 34 died.

Here we consider a linear classification problem using mortality as the target variable and apply

the SVM, DWD, MDP, and MD. The tuning parameter C = 1000 is used for the SVM and

DWD. The projected value of the global sample mean is used as the threshold for the MDP.

Figure 3.5 shows a draftsman’s view of the projection plots of the MDP, SVM, DWD, and

MD direction vectors. In each panel, the circles represent the women that survived and the

pluses are for the group that died. The panel [1,1] shows that the projections of each class

onto the MDP direction vector pile up completely at two points, one for each class, and the

distance between them is 9.00. [2,2] shows substantial data piling also for the SVM direction

vector. The projections of the group that died pile up completely near 6 and most of the group

that survived pile up around −3, with the distance between the piling sites about 9.09. The

projection onto the DWD direction vector which is shown in [3,3], on the other hand, shows no

piling at all, and the distance between the two peaks is a little more than 10. The MD has the

biggest distance (about 21) between the peaks of the projections in [4,4], however, it also has

huge overlap.

The 2-d projections on the off-diagonal panels highlight relationships between these direc-

tions. In particular, the MDP and SVM directions are quite similar to each other in this

example (e.g. the angle between them is small in [1,2]). The only difference between sub-

stantial data piling (SVM) and complete data piling (MDP) is a slight rotation. The DWD

direction is rather close to both MDP and SVM, having relatively small angles with them in

[1,3] and [2,3]. The fact that the MD direction is very different than the others is reflected in

the much larger relative angles.

The ten-fold cross validation error of the four methods are 0.50 (MDP), 0.28 (SVM), 0.29

(DWD), and 0.36 (MD). For DWD and SVM, the penalty parameter C is tuned by cross
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Figure 3.5: Projections of microarray data onto MDP, SVM, DWD, and MD direction vectors, with
1-d projections onto each direction vectors on the diagonal panels and 2-d projections onto the plane
generated by each pair of the direction vectors on the off-diagonal panels
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validation within each training data set. Consistent with the above discussions, MDP has a

substantially worse error rate. MD also shows a poor performance. The SVM shows slightly

better performance than DWD. Hall et al. (2005) pointed out a need for improvement of DWD

with unequal sample sizes of each class, which may be the reason for the inferior performance of

DWD to SVM. Since these data have a large difference between the sample sizes for each class,

an improved version of DWD that takes care of this problem is recommended, as proposed in

Zhang et al. (2005b).

For this particular data set, the accuracy of the labels is also an issue. There are likely to

be some mislabeled samples in the sense that the patients who are about to die were categorized

as “survived” when their gene expression may be more closely connected with the patients who

died. A sophisticated approach to this issue, using survival analysis ideas, is taken in Johnson

et al. (2005).

3.4.3 A HDLSS Comparative Simulation Study

In this section, the MDP is compared with other simple classification methods over a wide

range of dimensionality. Each class has a d-dimensional multivariate Gaussian distribution

with identity covariance. The two classes only differ in their means: Class +1 has mean

µ = (0.1, · · · , 0.1)T and Class −1 has mean −µ = (−0.1, · · · ,−0.1)T. We generate n = 50

training data vectors, 25 for each class, with d = 5, 10, 50, 100, and 1000, repeating 100 times

at each setting. Later, for a more detailed analysis of the behavior in the critical region where

d ≈ n, 1000 repetitions were made at the finer grid d = 41, 42, · · · , 60. The classification

methods considered here are MD, FLD, MDP, NB, as well as the theoretically optimal Bayes

rule, whose direction vector is (1, · · · , 1)T/
√
d.

To evaluate the performances of the discrimination methods, an analytic misclassification

error is calculated as follows. Suppose v is the direction vector of a separating hyperplane. The

projection of a random vector from Class +1(−1) onto v is distributed as N (vTµ(−µ), 1). To

simplify the argument, we use 0 as the threshold of the classifiers. In other words, a new sample

x is classified as Class +1(−1) if the projected value vTx > 0 (< 0). Instead of generating

independent test data to evaluate the misclassification error, we calculate the theoretical error

analytically since we know the underlying distributions. It is given by Φ(−vTµ), where Φ is
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Figure 3.6: Misclassification error rate shown with error bars for the Bayes, MD, FLD, MDP, and Naive
Bayes method from the simulation with n = 50. Left hand panels are for d = (5, 10, 50, 100, 1000) with
100 repetitions and right hand panels are for d = (41, · · · , 60) with 1000 repetitions.

the standard normal cumulative distribution function.

Figure 3.6 shows the analytic misclassification rates with error bars, reflecting the Monte

Carlo variation, for each method over a range of dimensions. The right hand panel shows the

results for a finer range of d around n. We can see that MD and NB show nearly identical error

rates in all cases. Also they both perform better than any other methods in most of the cases

except the theoretically optimal Bayes rule . (The MDP behaves slightly better than NB when

d = 1000.) Note that for this underlying structure of the data, MD is the empirically optimal

Bayes rule, thus it is not surprising for MD to perform the best among all methods. The good

HDLSS performance of NB was theoretically justified by Bickel and Levina (2004), where they

compare the asymptotic properties of FLD and NB as both d and n tend to infinity. In their

work, the inferior performance of FLD in a very high dimensional space is also discussed.

Also in this particular setting, the classification task becomes somewhat less challenging as

the dimension increases because a larger d means the two classes are farther away from each

other. This is part of the reason that all the methods show generally better performances for
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higher dimensions in the left hand panel of Figure 3.6.

The good performance of MDP when d = 1000 can be explained by the asymptotic geometric

representation of HDLSS data, as in Section 2.5. In a binary classification setting, the training

data vectors become two simplices, one for each class, which makes MDP the heuristically

desired classifier. Also any reasonable classification method will find the same direction as the

MDP eventually when d becomes very large.

The FLD and MDP have exactly the same error rates up to d = 48 = n − 2 in the right

hand panel, as expected from Theorem 3.3.5. An interesting feature is that, however, when d

becomes close to n, the error rates of both FLD and MDP get worse, with peaks at d = n−2 for

FLD and d = n− 1 for MDP as shown in the right hand panel of Figure 3.6. After that, their

error rates start decreasing, with MDP recovering faster than FLD. This phenomenon can be

explained by the following. As d grows close to n, the estimation of the covariance structure

becomes unreliable due to the lack of data points, which yields increasing error rates. The effect

of this unreliable covariance estimation problem peaks at around d = n, (more precisely at the

ranks of the estimated covariance matrices, n − 2 for FLD and n − 1 for MDP) and remains

until d is somewhat higher than n. However, as d grows well past n, the HDLSS asymptotics

begin to take effect as discussed earlier, with the increasing distance between classes for this

particular setting, resulting in decreasing error rates.
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CHAPTER 4

Bandwidth Selection for Kernel Based Classification

4.1 Introduction to the Kernel Based Classification

In discrimination (Section 3.1), sometimes a linear classifier between two classes is not

flexible enough for the data with complicated structure. Aizerman et al. (1964) introduced the

idea of data embedding, which maps the data in the original space into a higher dimensional

space via an embedding function φ.

Figure 4.1 illustrates data embedding with a toy example. The original data, shown in

the left, are not linearly separable in the original space R1. However, after mapping by the

function φ : x→ (x, x2)T, the embedded data are linearly separable in R2.

x

φ

)(xφ

Figure 4.1: An illustration of data embedding. The data in R1 (left) becomes linearly separable in the
two dimensional space (right). The DWD (Section 3.1.4) separating hyperplane is also shown in the
right figure.

The higher dimensional embedded space is usually called the feature space, denoted by F .

We already introduced the term in Section 3.1 as the space where the data points are. We can



avoid possible confusion by using the term “feature space” for only the space where the actual

classification occurs.

If we map the data in Rd into a feature space F using a nonlinear function φ, a linear

classifier in the feature space F has the form

f(x) = wTφ(x) + b,

where w is the normal vector of the separating hyperplane in the feature space and b is the

threshold. Note that this classifier creates a nonlinear classification boundary in the original

space Rd.

If φ has an explicit form, as it does in the toy example above, the data embedding is called

explicit. For example, the polynomial embedding is one of the simplest examples of explicit

embedding. Let the original data lie in Rd, i.e., x = (x1, x2, · · · , xd)T ∈ Rd. If we define φ as

φ(x) = (x1, · · · , xd, x
2
1, · · · , x2

d, x1x2, · · · , xd−1xd)T,

then a linear classifier in the feature space of dimension d(d + 3)/2, is a quadratic function of

x, which yields a nonlinear classifying boundary in the original data space.

Algorithms of some linear classification methods only depend on inner products between

the data vectors, i.e., we can obtain a classifier without knowing all the coordinates of the data

vectors as long as we have their pairwise inner products. For these classification methods,

replacing the inner product by some nonlinear function yields more general types of classifiers.

In other words, we can have a nonlinear classifier by switching 〈xi,xj〉 to a kernel function

K(xi,xj), i, j = 1, · · · , n. This kernel function implicitly defines the feature space which we

do not need to construct explicitly. Examples of these types of methods include the mean

difference (MD) method (Section 3.1.1) and the support vector machine (SVM) (Section 3.1.3),

whose nonlinear versions will be discussed in Section 4.1.2.

The idea of data embedding is not restricted only to discrimination. It can also be applied

to other problems such as regression and clustering, etc. The extension of any linear method

to a nonlinear one can be easily done by mapping the data via the embedding function φ (the
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explicit embedding). The implicit embedding can also be applied to any linear method, if

that method only needs pairwise inner products of data. The explicit/implicit data embedding

method is called the kernel method. Note that a nonlinear data analysis procedure using the

kernel method is a linear task in a kernel embedded feature space. Sometimes the term “kernel

trick” is reserved only for the implicit embedding method due to the fact that it only needs the

kernel evaluations of data, not the whole coordinate information.

Nonlinear classification by data embedding is called kernel based classification, which we

will focus on in this chapter. In the following subsections, some properties of a kernel function

will be discussed briefly (Section 4.1.1) and some examples of kernel based classification will

be introduced (Section 4.1.2). In Section 4.1.3, the Gaussian kernel and its feature space are

discussed and the rest of this chapter is outlined.

4.1.1 Kernel Function

This section briefly discusses some theoretical properties of kernel methods that are well

developed over the years. Cristianini and Shawe-Taylor (2000), Schölkopf and Smola (2001),

Shawe-Taylor and Cristianini (2004) and references therewithin are good sources for the deeper

understanding of the subject. Suppose X is the space of input variables, and note that it may

not be a Euclidean space. The kernel function K, defined on the Cartesian product space of

X

K : X × X 7−→ R,

is considered as a similarity measure between inputs. Thus the choice of a kernel function must

take the structure of the data and our knowledge of the particular application into account.

Also the kernel function K is considered as the inner product of the embedding function φ, i.e.,

K(x,y) = 〈φ(x), φ(y)〉,

in other words,

φ(x) = K(x, ·).

59



Here · indicates the position of the argument of the function.

The kernel matrix K is defined as the n× n matrix whose entries are

Kij = K(xi,xj) = 〈φ(xi), φ(xj)〉.

In particular, the kernel matrix for the linear kernel, which is just the usual inner product 〈·, ·〉,

is called the Gram matrix. Note that all the necessary information from the input data is in K.

Also note that a kernel matrix is positive semi-definite, since for any vector v = (v1, · · · , vn)T,

vTKv =
n∑

i,j=1

vivjKij =
n∑

i,j=1

vivj〈φ(xi), φ(xj)〉

=

〈
n∑

i=1

viφ(xi),
n∑

i=1

viφ(xi)

〉

=

∥∥∥∥∥
n∑

i=1

viφ(xi)

∥∥∥∥∥
2

> 0.

For a symmetric function to be a kernel that constructs a feature space, it needs to satisfy

Mercer’s condition (Mercer, 1909): Suppose

∫
X×X

K(x,y)f(x)f(y)dxdy > 0,

for all f ∈ L2(X ), where

L2(X ) =
{
f :
∫
X
f(x)2dx <∞

}
.

Then K(x,y) can be expanded in a uniformly convergent series in terms of basis functions φj

K(x,y) =
∞∑

j=1

φj(x)φj(y). (4.1)

Furthermore, the series
∑∞

i=1 ‖φi‖2
L2(X ) is convergent. Kernel embedded feature space F is

a Hilbert space, which means a separable, complete inner product space. For this reason,

sometimes the feature space associated with the kernel K, is denoted by HK .

It can be shown that the feature space is a set of functions of a form (Shawe-Taylor and
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Cristianini, 2004, Chapter 2):

F =

{∑̀
i=1

αiK(xi, ·) : ` ∈ N,xi ∈ X , αi ∈ R, i = 1, · · · , `

}
.

Let f, g ∈ F be given by

f(x) =
∑̀
i=1

αiK(xi,x) and g(x) =
k∑

j=1

βjK(yj ,x),

then the inner product between f and g is defined by

〈f, g〉 =
∑̀
i=1

k∑
j=1

αiβjK(xi,yj) =
∑̀
i=1

αig(xi) =
k∑

j=1

βjf(yj).

Interestingly, the inner product between f and K(x, ·) becomes f itself, since

〈f,K(x, ·)〉 =
∑̀
i=1

αiK(xi,x) = f(x).

Due to this “reproducing” property, HK is called Reproducing Kernel Hilbert Space (RKHS).

4.1.2 Examples

In this section, some examples of kernel based classification are presented.

Kernel Mean Difference

Ignoring the norm constraint on w in (3.1), the linear Mean Difference (MD) classifier is

f(z) = wTz + b

= (x̄− ȳ)Tz− (x̄− ȳ)T (x̄ + ȳ)
2

, (4.2)

where x̄ and ȳ are the sample means from Class +1 and −1, respectively. Note that (4.2) can

be solely expressed by inner products, because

f(z) =
1
n1

n1∑
i=1

〈xi, z〉 −
1
n2

n2∑
j=1

〈yj , z〉+ b, (4.3)
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where the threshold

b = −1
2

 1
n2

1

n1∑
i,i′=1

〈xi,xi′〉 −
1
n2

2

n2∑
j,j′=1

〈yj ,yj′〉

 ,

and n1 and n2 are the numbers of the samples from each class.

Replacing 〈·, ·〉 in (4.3) by a kernel function K(·, ·), the classifier of kernel (nonlinear) MD

becomes

f(x) =
1
n1

n1∑
i=1

K(xi, z)−
1
n2

n2∑
j=1

K(yj , z) + b, (4.4)

where the threshold becomes

b = −1
2

 1
n2

1

n1∑
i,i′=1

K(xi,xi′)−
1
n2

2

n2∑
j,j′=1

K(yj ,yj′)

 .

Note that in the case b = 0, this kernel MD method is equivalent to the classical nonparametric

discrimination method using the differences in density estimates (Hall and Wand, 1988).

Nonlinear Support Vector Machine

Recall the dual Lagrangian of SVM optimization in (3.12):

LD =
n∑

i=1

αi −
1
2

n∑
i,j=1

αiαjtitj〈xi,xj〉.

Note that this optimization problem only depends on the labels and pairwise inner products

between inputs. Thus the kernel version of SVM maximizes

LD =
n∑

i=1

αi −
1
2

n∑
i,j=1

αiαjtitjK(xi,xj),

and the resulting classifier is

f(z) =
n∑

i=1

α̂iK(z,xi) + b. (4.5)
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4.1.3 Gaussian Kernel and the Infinite Dimensional Feature Space

One of the most widely used kernel functions is Gaussian Radial Basis Function (RBF)

kernel, which is

K(x,y) = exp
(
−‖x− y‖2

2h2

)
. (4.6)

Here, h is the bandwidth, or the width parameter that needs to be chosen. As the bandwidth

parameter in kernel density estimation controls how rough or smooth the estimated curve is,

the h in (4.6) determines the smoothness of the classifying boundary, usually along with other

tuning parameters, such as the penalty parameter C in SVM.

The Gaussian kernel function implicitly embeds data into an infinite dimensional feature

space, since the kernel in (4.6) has an infinite number of basis functions, as in (4.1). Although

it is not easy to understand this space in a Euclidean geometrical sense, we attempt to visualize

the embedded data in the feature space in this section.

Let φ be the embedding function for the Gaussian kernel, i.e.,

K(xi,xj) = exp
(
−‖xi − xj‖2

2h2

)
= 〈φ(xi), φ(xj)〉.

Note that φ has no closed form and each of the embedded data points φ(xi) lies within the

infinite dimensional feature space F . Nevertheless, the intrinsic dimensionality of F is known

to be the sample size n (Shawe-Taylor and Cristianini, 2004, Chapter 9). The challenge is to

understand this n-dimensional manifold.

Even though it is impossible to know the coordinates of embedded data points φ(xi), the

pairwise distance between them can be easily calculated. The squared distance between the

embedded data points, φ(xi) and φ(xj), is

‖φ(xi)− φ(xj)‖2 = 〈φ(xi), φ(xi)〉 − 2〈φ(xi), φ(xj)〉+ 〈φ(xj), φ(xj)〉

= 2(1− 〈φ(xi), φ(xj)〉)

= 2
[
1− exp

(
−‖xi − xj‖2

2h2

)]
. (4.7)
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The squared distance in (4.7) is an increasing function of Euclidean distance in the original

space, and has the maximum value two. For a fixed h, if any two data vectors in the original

space are close to each other, they are close in the feature space as well, having distance close

to zero. If they have a large distance between each other originally, then the squared distance

in the feature space is close to two. Note that Gaussian kernel carries only the proximity

information from the original data: Any rotation around the origin or any parallel shift of the

original data will not change the feature space. Also note that since the norm of the embedded

data is always one (because 〈φ(xi), φ(xi)〉 = 1), all the embedded data vectors are in the unit

sphere in the feature space.

If the bandwidth h is large, we can do Taylor series expansion as follows

exp
(
−‖xi − xj‖2

2h2

)
= 1− ‖xi − xj‖2

2h2
+O(h−4).

Thus the distance between φ(xi) and φ(xj) becomes

‖φ(xi)− φ(xj)‖ =
‖xi − xj‖

h
+O(h−2), (4.8)

which means that the pairwise distances in the feature space are proportional to the ones in

the original space. This implies that the embedding with a very large h keeps the geometry of

the original data. Thus we can conjecture that kernel based classification with a very large h

is equivalent to the linear classification in the original space.

On the other hand, if h is very small, the exponent in (4.7) becomes close to the negative

infinity, which makes the distance between φ(xi) and φ(xj) close to
√

2, no matter what the

original distance is. Noting that the feature space is very high dimensional, it can be seen

that the embedded data are in the HDLSS geometric limit (Section 2.5), forming a regular

n-simplex. Note that this argument holds regardless of the original dimensionality.

Some dimension reduction techniques such as the Multidimensional Scaling (MDS) generate

low dimensional representations of any data, using only their pairwise proximity (distance)

information. I.e., MDS projects the high dimensional data onto low dimensional space while

trying to preserve the original pairwise proximity information as much as possible. See Cox
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and Cox (2000) for details about MDS. Since the pairwise distances in the feature space are

readily given in (4.7), we attempt to visualize the infinite dimensional feature space using MDS

as follows.

A target-shaped toy data example, shown in Figure 4.2, will be used for the illustration.

This toy data set has 160 data points in R2, ranging about from −4 to 4 for each axis. The

outermost and centermost points (80 points) are from Class +1, shown with the pluses (+),

and the middle ones (80 points) are from Class −1, shown with the circles (o). The Gaussian

kernel function with h = 10−2, · · · , 103 is used. Figure 4.3 shows the result of two-dimensional

MDS visualization. For h = 10−2, the data points in feature space appear to be randomly

spread over the surface of a sphere, which can be seen as a somewhat limited two dimensional

visualization of the equidistance relationship, i.e., a simplex, as explained above. On the other

hand, for a large h such as h = 103, it has the same target structure, as the original data, which

can be easily explained from the above argument about the large h limit in (4.8).

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4
Target−shaped toy data

Figure 4.2: Target-shaped toy data set

Just as the bandwidth selection problem is crucial to kernel density estimation, it is also an
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 h =0.01  h =0.1  h =1

 h =10  h =100  h =1000

Figure 4.3: Two dimensional MDS representations of the target toy data in the feature space generated
by the Gaussian kernels with different choices of the bandwidths.

important decision in kernel based classification (see for example Ben-Hur et al. (2001)) hence

it is the main topic of this chapter. Some existing studies of the bandwidth selection problem,

such as asymptotics and some current tuning methods, will be reviewed in Section 4.2.

In one dimensional kernel density estimation, there has been extensive work on bandwidth

selection. (See the survey paper by Jones et al. (1996) for a good review.) We try some of

those approaches in Section 4.3 to see if they can be useful in the classification setting as well.

A novel bandwidth selection approach is introduced in Section 4.4. The proposed criterion

is motivated by the following two facts: (1) different values of h construct different kernel

embedded feature spaces, in particular, different geometry of the embedded data. (2) the

kernel based classification is a linear classification in the embedded feature space. In Section

4.4.2, three real/simulated data examples are used to compare the proposed criterion and some

existing methods.
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4.2 Current Approaches to Bandwidth Selection

In this section, some existing studies on bandwidth selection are reviewed. Most of the

studies are regarding the two tuning parameters of SVM, which is the penalty parameter C

and the bandwidth parameter h. Also they treat these two parameters in the same way, in the

sense that they are tuned by same criteria.

In Section 4.2.1, asymptotics of large and small tuning parameters are reviewed. Some

existing tuning methods will be discussed in Section 4.2.2.

4.2.1 Asymptotics of the Bandwidth Parameter

The nonlinear SVM with Gaussian kernel involves careful tuning of two parameters, the

penalty parameter C in (3.7) and the bandwidth h inside the Gaussian kernel function. Keerthi

and Lin (2003) and Shawe-Taylor and Cristianini (2004, Chapter 9) studied asymptotic behav-

iors of the SVM classifier when these parameters take very large or very small values. Table

4.1 shows a quick summary of their conclusions.

small h large h
small C underfitting underfitting
large C overfitting underfitting

Table 4.1: Asymptotic SVM classification performances with small/large tuning parameters

Table 4.1 indicates that a very small h, when C is fixed to a sufficiently large value, yields

severe “overfitting” which means that small regions around the training data points of the

minority class are assigned to that class, while the rest of the data space is assigned to the

majority class. Also a very small h, when C is fixed to a sufficiently small value, yields

“underfitting” which means that the entire data space is assigned to the majority class. A very

large h yields severe underfitting when C is fixed (no matter how large or small).

The results of Keerthi and Lin (2003) are illustrated using the target toy example in Figure

4.4. Nine different versions of the nonlinear SVM are considered over combinations of different

values of h and C. The bright grey area is assigned to the Class +1 and the dark grey area

is assigned to the Class −1 and the white area is the undecided area where the value of the

classifier is zero.

As expected from the conclusion summarized in Table 4.1, Figure 4.4 shows severe under-
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Figure 4.4: SVM classification result on target-shaped toy example with different combinations of h and
C
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fitting with a very small h (10−1) and C (10−3), as shown in the upper left plot. Also we

have underfitting with a very large h (103) and any values of C, as shown in the plots in the

right column. On the other hand, overfitting occurs with a very small h (10−1) and large

C (100, 103), as seen in the bottom two plots on the left column. The two bottom plots in the

center column show that we have good classification performances with a reasonable choice of

h (100), when C is reasonably large (100, 103).

4.2.2 Existing Tuning Methods

Many approaches to the bandwidth selection problem in kernel based classification have

focused on minimizing the estimated misclassification rate. Cross-validation (CV) is the most

widely used method for the error estimation.

Suppose an separate tuning data set is available, which is generated from the same under-

lying probability model as the training and testing set. Cross-validation applies a wide range

of tuning parameters to the training data to obtain a classifier, and then selects the values

of parameters that yield the smallest error in the tuning set, i.e., the smallest cross validation

error. The finally fitted model (classifier) is based on the training data with the selected tuning

parameters, and the reported misclassification rate estimate is evaluated from the testing data.

In this way, model fitting and model evaluation precesses are separate so that we do not create

a classifier biased to the testing data.

If a separate tuning data set is not available, as for most of real-world situations, the V -fold

cross-validation and leave-one-out cross-validation are popular choices to estimate the cross-

validation error. The V -fold cross-validation divides the training data set into V roughly

equal-sized subsets. For the vth subset, a classification method is applied to the other V − 1

subsets and the misclassification rate is calculated from the vth subset that has been left out.

We repeat this for v = 1, · · · , V and estimate the cross-validation error by averaging the V

error estimates. The tuning parameters that minimize this cross-validation error is chosen. 5

or 10 is the most popular choice for V , and the case when V = the sample size, is known as the

leave-one-out cross-validation. The fitted model is calculated using all the training data with

the selected tuning parameters and its reporting error is evaluated with the testing data set if

it is available.
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Sometimes we only have a training data set, without the luxury of having separate data sets

for tuning and testing the classifier. In that case, the double-layered V -fold cross-validation is

recommended. I.e., we divide the data set to V subsets, and then we treat each V − 1 subset

as the training set and we do the tuning as explained in the previous paragraph, by splitting

this subset again into V ′ subsets. The left-out subset is the testing set to evaluate the fitted

model. In this way, we end up with V fitted models and V misclassification rate estimates,

whose average is reported.

Cross-validation has been used for bandwidth selection in kernel density estimation for a

long time. However, it also has been realized that cross-validation is of very limited practical

value due to the large sampling variability. It is quite likely that the practice of cross-validation

for the classification task also would have a similar disadvantage. We will empirically show its

large sampling variability in classification in Section 4.4.2.

Also the computational complexity of cross-validation is one of the reasons that many re-

searchers have been trying to find a faster way of tuning parameters. For example, Wahba

et al. (2000) proposed a tuning criterion called the Generalized Approximate Cross Validation

(GACV), which is basically an upper bound for the expected misclassification rate of a future

observation. The Xi-alpha method by Joachims (2000) uses a criterion which is an upper

bound of the leave-one-out cross validation error.

Duan et al. (2003) compared various tuning methods for SVM with some benchmark data

sets (Rätsch, 1999). They compared 5-fold cross-validation, GACV, X-alpha, Approximate

span bound by Vapnik and Chapelle (2000), VC bound by Burges (1998), Radius-margin bound

by Vapnik and Chapelle (2000), and Modified radius-margin bound by Chapelle et al. (2002).

In each training, they fixed the penalty parameter C at some value and varied the bandwidth h,

and then fixed h and vary the value of C. They concluded 5-fold cross-validation gives overall

best performances over various data sets. GACV and Xi-alpha show good performances for

some data sets, especially GACV has smoother variation with respect to tuning parameters.

Other bounds could not give a useful result, probably because these approximate bounds are

too loose.
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4.3 Some Ideas from Kernel Density Estimation

Here we employ some bandwidth selection ideas from kernel density estimation, where this

problem has been extensively studied. Among them, we adopt the over-smoothing idea (Section

4.3.1) and the scale-space approach (Section 4.3.2).

4.3.1 Maximal Smoothing Bandwidth Idea from Kernel Density Estimation

Terrell (1990) proposed the maximal smoothing principle which is originated from the over-

smoothing idea by Terrell and Scott (1985). The maximal smoothing principle in kernel

density estimation allows the most smoothing that is consistent with the estimated scale of the

data. We will call the bandwidth h which is chosen by this principle the maximal smoothing

bandwidth, denoted by hMS. The maximal smoothing bandwidth is supposed to be the most

conservative choice, in the sense that it should be used as a possible upper bound for the

bandwidth selection procedure.

In this section we apply the maximal smoothing bandwidth to kernel based classification.

The same toy example in the previous section is again used here. The formula for the maximal

smoothing principle for multivariate density estimation is given in Terrell (1990, p.474). The

d× d matrix bandwidth A is any solution of

AAT =

[
(d+ 8)(d+6)/2πd/2

∫
K2

16nΓ[(d+ 8)/2](d+ 2)

]2/(d+4)

Σ̂, (4.9)

where Σ̂ is the sample covariance matrix. Note that here K is the d-dimensional Gaussian

density with identity covariance matrix and mean zero. Adjusting (4.9) to the single bandwidth

case, we have

hMS =

[
(d+ 8)(d+6)/2πd/2

∫
K2

16nΓ[(d+ 8)/2](d+ 2)

]1/(d+4)

σ̂, (4.10)

where σ̂ is the pooled estimate of the standard deviation.

For the target toy data, we have d = 2 and n = n1 + n2 = 80 + 80 = 160. The maximal
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Figure 4.5: Kernel MD Classification result of the maximal smoothing bandwidth hMS for target-shaped
toy example, shown with a range of h

smoothing bandwidth (4.10) for this data set is

hMS =
[

104π(4π)−1

16× 160Γ(5)4

]1/6

σ̂ (4.11)

= 0.67932. (4.12)

Kernel MD is used as a classification rule because it is easy to implement and there is no

other tuning parameter. Figure 4.5 shows the kernel MD classification results over a range of h.

We can see a reasonably smooth separating boundary when h = hMS, while a smaller h yields

overfitting and a larger h yields underfitting. Hall and Kang (2005) argued that the optimal

bandwidth for classification is the same as that which would be used when we were constructing

pointwise density estimators in low dimensional, high sample size settings. This argument may

explain the reasonable classification performance of the maximal smoothing bandwidth in this

example.

Figure 4.6 shows the between class pairwise distances and within class pairwise distances in
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Figure 4.6: Pairwise distances in the feature space and the maximal smoothing bandwidth hMS. The
‘+’ symbol and ‘o’ are used for Class +1 and Class −1, respectively. The within pairwise distances of
Class +1 (−1) are shown in the top (middle) jittered layer and their kernel density estimates are shown
with the dotted (dashed) curve. The between class pairwise distances are shown as the x’s in the bottom
jittered layer and the kernel density estimate is shown with the solid curve. The maximal smoothing
bandwidth hMS = 0.68 is shown with the vertical line.
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the feature space in a jitter plot. (See Section 3.2 for detailed explanation about this type of

visualization and the caption of the figure for a detailed description.) The first small peak of

the dotted curve around 0.5 is for the distances within the points around the origin, the second

large peak around 3 is for the distances between the points in the center and the ones in the

outer ring, and the third peak around 5.4 is for the distances between the points lying on the

opposite sides of the outer ring. Also the largest peak of the dashed curve around 2.7 is for

the distances between the points lying on the opposite sides in the inner ring. The first big

peak of the solid curve around 1.6 is for the distances between the points from different classes

but with a similar polar angle and the second somewhat small peak around 4.1 is for the ones

in the opposite directions.

Also, the maximal smoothing bandwidth hMS is also shown as the vertical line in Figure

4.6. Note that hMS is very close to the minimum between-class pairwise distance. This fact

may account for the good performance of the maximal smoothing bandwidth, implying that

the good bandwidths must be chosen to be smaller than at least the majority of the between

class pairwise distances.

4.3.2 Scale-space Approach

Chaudhuri and Marron (1999) adopted the scale-space approach for bandwidth selection for

kernel density estimation. In the scale-space approach, we use a range of bandwidths instead

of a single chosen bandwidth. Figure 4.5 can be viewed as a scale-space approach to the

bandwidth selection problem. A movie version of the figure, with a finer range of h, can be

found at:

http://www.unc.edu/∼jyahn/target change h.avi.

In kernel density estimation, the scale-space approach can be useful for an overview of the

data at a range of scales. Likewise, this approach can be used to get some ideas on the data

structure. In Figure 4.7, two toy examples in R2 are shown with kernel MD training errors

over a range of bandwidths. The toy data set shown in the top left panel is the same target

data set used in the previous examples, and the second data set shown in the top right panel is

a linearly separable point cloud toy data set. The bottom left panel shows the training error

rates for the target data and the bottom right panel shows for the point cloud data.
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Figure 4.7: Training error of kernel MD over a range of h, for target-shaped data and point cloud data.
Data are shown in the top panels and the training errors are shown in the bottom panels.

Note that the training error curve on the left exhibits an S-shape, with the error being close

to zero until log2(h) is about 0. The error then increases rapidly until log2(h) reaches around

2.8, and very close to a half for bigger bandwidths, where the kernel classification is essentially

linear, in the spirit of the discussion in Section 4.1.3. In this sense, a desirable choice of h is

under 20, because within the range 0 < log2(h) < 2.8, a slight change in h yields a big difference

in the training error, and the error becomes too big after that.

The bottom right panel in Figure 4.7 shows that for the point cloud data the training error

is always zero no matter what value of h is selected. Here the large h also has zero training

error, because the geometry of the data in the feature space is actually very similar to the

original space, thus the embedded data points are also linearly separable.

When selecting the bandwidth parameter, hence eventually the classifier, the training error

itself is not at all enough. One must consider other criteria such as the test error to ensure the
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good generalizability of the classifier. However, as we observed in Figure 4.7, training error

over a range of bandwidth can give an insight of the data structure, especially when the data

are multi-dimensional.

4.4 New Approach

In this section we propose a new idea for selecting the bandwidth parameter in kernel based

classification. Even though only Gaussian kernel is used to illustrate the method here, the idea

can be applied to any other kernel function.

4.4.1 Motivation

The idea of data embedding is to obtain a complicated (nonlinear) decision boundary by

implementing a simple (linear) task in the high dimensional embedded feature space. For

example, kernel SVM does linear SVM in the feature space, searching for the separating hy-

perplane that maximizes the margin between the classes, i.e., the distance between the convex

hulls of each class. As shown in Figure 4.3, different bandwidths yield different geometry in

the feature space. The bandwidth parameter that yields a good nonlinear classifier also makes

a good linear classifier with the embedded data in the feature space. In this spirit, we want

the desirable bandwidth to make this linear task “easier”.

Since the feature space generated by the Gaussian kernel only keeps the information about

the pairwise distances between the data points, it makes sense to take those distances into

account. For the classification purpose, it would be easier to separate the two classes when the

within class pairwise distances are relatively smaller than the between pairwise distances.

Suppose x1, · · · ,xn1 are data vectors from Class +1 and y1, · · · ,yn2 are from Class −1.

Let us denote the difference between the average of between squared pairwise distances and the

average of within squared pairwise distances by D.

D ≡ 1
n1n2

n1∑
i

n2∑
j

‖φ(xi)− φ(yj)‖2

−1
2

 1
n1(n1 − 1)

∑
i6=j

‖φ(xi)− φ(xj)‖2 +
1

n2(n2 − 1)

∑
i6=j

‖φ(yi)− φ(yj)‖2


=

1
n1(n1 − 1)

∑
i6=j

K(xi,xj) +
1

n2(n2 − 1)

∑
i6=j

K(yi,yj)−
2

n1n2

n1∑
i

n2∑
j

K(xi,yj)
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=
1

n1(n1 − 1)

∑
i6=j

exp
(
−‖xi − xj‖2

2h2

)
+

1
n2(n2 − 1)

∑
i6=j

exp
(
−‖yi − yj‖2

2h2

)

− 2
n1n2

n1∑
i

n2∑
j

exp
(
−‖xi − yj‖2

2h2

)
.

We suggest to choose h that maximizes D or to use the range of the bandwidths with D > 0.

When D < 0 for all h, it is still desirable to use h which is the maximizer of D.
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Figure 4.8: Values of D for target toy example over a range of bandwidth h

Now we apply this approach to the target toy data example from the previous section. A

wide range of h = 2−10, · · · , 210 are considered and the corresponding D is calculated (Figure

4.8). Note that D is always positive in this range of h and has the highest value at h = .6156.

Hence h = .6156 is our best choice of bandwidth according to this criterion. It is not particularly

surprising regarding the result in Section 4.3.1, where the maximal smoothing bandwidth hMS,

purportedly an upper bound of a reasonable bandwidth, was 0.6793, which was slightly higher

than the chosen bandwidth here.
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Note that this method cannot be applied to tune the other tuning parameters outside the

kernel function such as the penalty parameter C in SVM, because those parameters are inde-

pendent of the feature space. When there are other parameters to tune, not inside the kernel

function, we suggest to use the V -fold cross-validation. Also note that unlike other methods

such as GACV and Xi-alpha, this criterion does not depend on particular discrimination meth-

ods. Thus given a data set, the selected bandwidth is the same for any discrimination method,

since only the kernel function, not the specific classification rule, determines the feature space,

and the bandwidth parameter is only related to that kernel function.

4.4.2 Data Examples

In this section we demonstrate the proposed criterion D in the previous section using three

real/simulated data examples. The first data set is “banana” toy data set from Rätsch et al.

(2001), which has two input variables, 400 training samples, 4900 test samples, and 100 realiza-

tions. The second data set is “diabetes” data set from 1994 AAAI Spring Symposium on Artifi-

cial Intelligence in Medicine, available at “http://www.ics.uci.edu/ mlearn/MLSummary.html”.

It has 8 input variables, 468 training samples, 300 test samples, and 100 realizations. The third

data set is the “target” toy data set used in the previous sections. We generate 100 training

samples and 1000 test samples, and repeat 100 times. The kernel MD and SVM with Gaussian

kernel is used, with tuning methods 5-fold cross validation (CV) and the D criterion for MD

and additionally GACV and Xi-alpha for SVM.

Figures 4.9 and 4.10 show boxplots of test errors, computing time, and selected bandwidths

from 100 realizations of the data for MD and SVM, respectively.

The leftmost column of Figure 4.9 shows that for MD, 5-fold CV does slightly better than

D for all three data sets. However, the center column shows a huge difference in computing

times, favorable to our method. The selected bandwidths for 5-fold CV in the right column

of the figure vary significantly , while D only picks one or two distinct values of h. Note that

since the 100 realizations of the data are from the same underlying structure, it makes better

sense if we choose the same bandwidth for every realizations.

Figure 4.10 has the results for SVM. For all three data sets, D shows much stronger

performances than GACV and Xi-alpha, having almost the same performance as 5-fold CV.
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Figure 4.9: Boxplots of test errors, computing time, and selected bandwidth of kernel MD for three data
sets.
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Figure 4.10: Boxplots of test errors, computing time, and selected bandwidth of kernel SVM for three
data sets.
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GACV shows poor performances, but it takes less time to compute than Xi-alpha. The

performance of Xi-alpha varies from data to data and also it has huge outliers in the boxplot

of test errors for the “target” data. The rightmost panels of selected bandwidths again shows

much larger sampling variability of 5-fold CV than the other methods. GACV and Xi-alpha

have some stability in choosing bandwidth in the first two examples, however, in the “target”

data, they both have outliers, which suggests a possible instability.
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