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ABSTRACT

Qian Wang: Registration of Brain MR Images in Large-Scale Populations.

(Under the direction of Dinggang Shen.)

Non-rigid image registration is fundamentally important in analyzing large-scale

population of medical images, e.g., T1-weighted brain MRI data. Conventional pairwise

registration methods involve only two images, as the moving subject image is deformed

towards the space of the template for the maximization of their in-between similarity.

The population information, however, is mostly ignored, with individual images in

the population registered independently with the arbitrarily selected template. By

contrast, this dissertation investigates the contributions of the entire population to

image registration.

• First, the population can provide guidance to the pairwise registration between

a certain subject and the template. If the subject and an intermediate image

in the same population are similar in appearances, the subject shares a similar

deformation field with the intermediate image. Thus, the guidance from the

intermediate image can be beneficial to the subject, in that the pre-estimated

deformation field of the intermediate image initiates the estimation of the subject

deformation field when the two images are registered with the identical template.

• Second, all images in the population can be registered towards the common space

of the population using the groupwise technique. Groupwise registration differs

from the traditional design of pairwise registration in that no template is pre-

determined. Instead, all images agglomerate to the common space of the pop-

ulation simultaneously. Moreover, the common space is revealed spontaneously
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during image registration, without introducing any bias towards the subsequent

analyses and applications.

This dissertation shows that population information can contribute to both pairwise

registration and groupwise registration. In particular, by utilizing the guidance from

the intermediate images in the population, the pairwise registration is more robust

and accurate compared to the direct pairwise registration between the subject and

the template. Also, for groupwise registration, all images in the population can be

aligned more accurately in the common space, although the complexity of groupwise

registration increases substantially.
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Chapter 1

Introduction

1.1 Significance of Image Registration

Without introducing hazardous ionizing radiation, magnetic resonance imaging (MRI)

offers the capability to visualize internal structures of the human body in a non-invasive

manner. The technique has thus been widely applied to numerous clinical and research

works ever since it was invented decades ago. Brain magnetic resonance (MR) images,

in particular, facilitate the diagnoses and the treatments for many neurological diseases

thanks to the well rendered contrasts of brain tissues. Large-scale studies are enabled

for investigating brain development (Casey et al., 2000; Giedd et al., 1999; Lenroot and

Giedd, 2006; Sowell et al., 1999b; Thompson et al., 2000), maturation (Holland et al.,

1986; Sowell et al., 1999a; Paus et al., 1999, 2001), aging (Resnick et al., 2000; Raz

et al., 2005), disease-induced anomalies (Frisoni et al., 2010; Laakso et al., 2000; Polman

et al., 2011; Thompson et al., 1998), and for monitoring the effects of pharmacological

intervention over treatment time (Jack et al., 2004; Mulnard et al., 2000; Resnick and

Maki, 2001).

Computer-aided methods with the capability of analyzing brain MR images au-

tomatically are highly desired for related applications. Many diseases, e.g., major

neuropsychiatric and substance abuse disorders, can cause very complex spatiotempo-



ral changes in brain tissue patterns that are difficult to identify visually. Meanwhile,

technique advances help reduce the costs of MRI, thus large-scale populations of MR

images are often employed in recent studies. To manually process and analyze large-

scale populations of brain MR images, however, can be made difficult by (1) the rapidly

increasing number of acquisitions; (2) the large size (or the dimensionality) of the im-

age data; (3) the subtle changes of image appearances; (4) the difficulty and the cost

in recruiting human experts. As a result, many sophisticated computer-aided medical

image analysis methods have been proposed in the literature, including image registra-

tion (Glocker et al., 2011; Hajnal and Hill, 2010; Oliveira and Tavares, 2012; Rueckert

and Schnabel, 2011), segmentation (Balafar et al., 2010; Heimann and Meinzer, 2009;

Pham et al., 2000), disease-oriented classification (Aggarwal et al., 2012; Ecker et al.,

2010; Klöppel et al., 2008; Zhang et al., 2011), etc.

Image registration acts as one of the most fundamentally important tools in the

area of medical image analysis. The task of registration aims to align a certain moving

image, which is often termed as the subject, with another fixed image often termed as

the template. After registration, the subject and the template are regarded as being

within the same image space, thus the two images can be quantitatively compared. By

registering longitudinal scans of a certain patient to the common template space, for

instance, the intra-subject temporal changes can be accurately captured (Holland and

Dale, 2011; Li et al., 2012; Smith et al., 2001). Similarly, the inter-subject variation

can also be modeled by the means of registration, after all subjects under consideration

are spatially aligned. By registering a population of images, researchers are also able to

construct an atlas that reflects the common information of the population. And inter-

population comparisons can then be conducted (Learned-Miller, 2006; Joshi et al., 2004;

Zhang et al., 2013). Furthermore, the understanding of a certain image (i.e., anatomical

parcellation) can be easily propagated to other images that have been registered to the
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same template space, thus significantly reducing the costs in processing and analyzing

large-scale image populations (Aljabar et al., 2009; Cuadra et al., 2004; Vemuri et al.,

2003).

1.2 Brain MR Image Registration

The registration of brain MR images has drawn abundant interest and also intensive

investigations due to its importance in the area of medical image analysis. Most con-

ventional methods regard the task of registration as a typical optimization problem,

where a pair of moving subject and fixed template are often involved. The classical

model of pairwise registration is illustrated by Figure 1.1, as the optimizer estimates

the transformation, following which the subject is mapped to the space of the template

in order to maximize the similarity between the two images. Typically, the solution

to the transformation is attained in an iterative manner. In general, the optimization

related to image registration tries to maximize the following objective function:

Objective(φ) = Similarity(T, S ◦ φ) + Regularization(φ). (1.1)

In (1.1), variables S, T , and φ represent the subject, the template, and the transforma-

tion, respectively. The term S ◦φ indicates the transformed subject image. This formu-

lation, as well as its variants, will be revisited in the dissertation frequently. Moreover,

several components in the model of Figure 1.1 need to be addressed carefully, including:

• Subject and Template. The input subject and template images may belong

to either a single or multiple modalities, although multi-modal registration can

be much more complicated due to the significantly different appearances of the

two images under consideration. This dissertation, however, will focus on the

mono-modal registration of T1-weighted brain MR images only, meaning both
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the subject and the template are required to be mono-modal. Discussions of

other images modalities and organs are outside the scope of this dissertation.

• Similarity Metric. The similarity (or the distance) between the (transformed)

subject and the template can be computed in various ways, especially considering

the fact that brain MR images are high-dimensional data. Though there are a

huge number of voxels in each image and the anatomical variation of the images

may be high, the similarity can be simply computed from the intensities of two

images, i.e., as the inverse of the sum of squared differences (SSD) of intensities.

More sophisticated measures and advanced features of image contexts can also

contribute to the evaluation of the image similarity.

• Transformation Model. The transformation is a mapping between the image

spaces of the subject and the template. The mapping of the rigid transformation,

for example, allows rotation and translation of the subject. By incorporating

scalings and shearings in addition, the model becomes the affine transformation.

Non-rigid transformation affords unprecedented freedoms in deforming the sub-

ject. This dissertation will focus on image registration that is related to non-rigid

deformation. Further, the Lagrangian framework is adopted as the convention to

denote the transformation in this dissertation. In particular, the transformation

φ(·) is applied to register the moving subject S with the fixed template T . Then,

φ(x) : ΩT → ΩS maps the template point x ∈ ΩT to the subject point φ(x) ∈ ΩS.

Similarly, the inverse transformation φ−1(y) : ΩS → ΩT maps the subject point

y ∈ ΩS to the template point φ−1(y) ∈ ΩT .

• Optimizer and Correspondence Detection. The optimization aims to find

the optimal transformation that maximizes the similarity of the deformed subject

and the template under a certain regularization. From an alternative perspective,
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the optimizer can also be perceived as a correspondence detector for the two

images. The correspondence is defined as (1) two underlying points that are

similar in appearances; (2) the two points that signify similar neuroanatomies.

The optimizer estimates the transformation, following which individual points in

the subject should be mapped to the coordinate locations of their correspondences

in the template space. In this way, the optimizer is able to maximize the similarity

between the transformed subject image and the template image.

• Multi-Resolution Hierarchy. Registration is regarded as an ill-posed opti-

mization problem and suffers severely from the notorious curse of high dimen-

sionality. Brain MR images are intrinsically high dimensional due to their large

data size and the very abundant anatomical variations. The non-rigid transfor-

mation, or deformation, also requires a huge number of parameters for the sake of

its representation. Therefore, to alleviate the aforementioned concerns, a multi-

resolution strategy is often introduced by solving the registration problem hier-

archically. For example, both the subject and the template can be down-sampled

first, while a low-resolution transformation is computed. Then, the low-resolution

transformation is up-sampled to be further optimized at the higher level, where

high-resolution images should participate. The multi-resolution scheme allows

more abundant image information (corresponding to varying resolutions) to be

used by image registration, and results in a more robust estimation of the trans-

formation.

1.2.1 Intensity-Based Methods

Brain MR images provide clinically usable contrasts between tissues, as image inten-

sities carry important appearance information. For the sake of image registration, the
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Figure 1.1: The classical model of pairwise image registration as a typical optimization
problem.

similarity between the subject and the template can be calculated from image inten-

sities directly. Though simple and straightforward, the inverse of the SSD of image

intensities gives an effective image similarity measure in the Euclidean space. SSD

adopts the assumption that noises in images are Gaussian distributed, and is success-

fully applied in many state-of-the-art registration methods (Oliveira and Tavares, 2012).

Several other intensity-based metrics are also available in the literature, including the

statistical measure of normalized cross correlation (NCC) (Avants et al., 2008), the

information-theory-based mutual information (MI) (Maes et al., 1997; Pluim et al.,

2003; Viola and Wells III, 1997), minimum description length (MDL) (Davies et al.,

2002), etc.

Diffeomorphic Demons (Vercauteren et al., 2009) is among one of the most popular

intensity-based registration methods that are capable to handle brain MR images. The

image similarity term in (1.1) is simply calculated as Similarity(T, S ◦φ) = ‖T −S ◦φ‖2

by Demons. After being combined with the regularization upon φ, the derivative ∂ ·

Objective/∂φ can be computed to indicate the steepest ascent direction of the objective

function. Details of the regularization of φ will be discussed later in Section 1.2.3. Then,

gradient-based optimization methods can be plugged in to optimize the transformation

and to maximize the objective function. The final solution of the transformation is

attained in an iterative and multi-resolution manner.
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1.2.2 Feature-Based Methods

Correspondence detection, which is conveyed by image registration, can be challenged

by high ambiguities in brain MR images if only intensity information is considered.

Given two points that share the same intensity, it is risky to assert that they are corre-

spondences to each other. In fact, though brain MR images offer good contrast between

grey matter (GM) and whiter matter (WM), the intensities within a certain tissue can

be very similar. To this end, it is often impossible to identify respective correspondences

of neighboring points by using intensity information only. As an alternative, it is well

known in computer vision research that correspondences can be better established by

using sophisticated context features. The rule also applies in the case of brain MR

image registration, to which correspondences between points (Maurer Jr et al., 1997),

curves (Lyu et al., 2013), and surfaces (Jiang et al., 1992; Pelizzari et al., 1989) may

contribute.

The method of hierarchical attribute matching mechanism for elastic registration

(HAMMER) (Shen and Davatzikos, 2002) is a typical example of the feature-based

category. In HAMMER, each point in the brain MR image is signified by its own

attribute vector. Then, a certain point in the template can detect its correspondence

in the subject image space, by searching for the nearby subject point with the most

similar attribute vector. Specifically, both the subject and the template images are seg-

mented into different tissue types including GM, WM, and corticospinal fluid (CSF),

respectively. The attribute vector for each point is then computed to incorporate the ge-

ometric moments (Lo and Don, 1989) of all tissue types in the nearby area of the point.

Furthermore, a set of key points are selected, as correspondence detection is performed

upon each selected key point. The key points are usually located in tissue transitions,

e.g., crowns of gyri and roots of sulci. Thus their abundant context features can help

reduce the ambiguities in correspondence detection, while their anatomically impor-

7



tant locations are crucial for driving the correct alignment of corresponding anatomies

of the two brains. For the sake of optimization, the selection of key points and the

correspondence detection are further arranged into an iterative and multi-resolution

scheme. With the progress of registration, more key points are devoted to the process

as the correspondence detection becomes more accurate. The deformation field, which

can be interpolated from the key points and their correspondences, thus approaches

the desired solution gradually.

1.2.3 Deformation and Its Smoothness

The non-rigid transformation, or the deformation field, is usually expected to be phys-

iologically meaningful and smooth in the registration of brain MR images. A simple

criterion requires that the Jacobian determinant of the deformation field is positive

everywhere. In this way, though the deformation allows free movement of individual

points in the image space, it is guaranteed that no folding of brain tissues could possibly

be introduced during the warping of the subject. Meanwhile, the smoothness of the

deformation can be implemented in several different ways, e.g., via low-pass filtering of

the deformation field.

• The way to enforce the smoothness regularization is tightly related to the way

the deformation field is represented, which can generally be categorized into non-

parametric and parametric models. The non-parametric modeling regards the

entire deformation as a whole and offers flexibility in describing respective defor-

mations of individual grid points. The smoothness of the deformation field can be

easily achieved by the low-pass filtering technique (Myronenko and Song, 2010).

Simple isotropic Gaussian smoothing, for instance, is often applied to ensure that

the resulting deformation field is smooth. Moreover, the low-pass filter can be

specifically designed to cater to varying demands of the smoothness requirement
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of the deformation field.

• The deformation can also be parameterized as a collection of basis functions.

B-Splines, for instance, are capable of representing the free-form deformation

(Rueckert et al., 1999). In particular, for a certain control point in the image

space, a B-Spline is attached to describe its contribution to the entire deforma-

tion field. The set of control points should cover the whole brain volume, and

often needs to be decided carefully. The deformation field, which is spanned across

the entire image space, can be interpolated by integrating contributions from all

control points. Other choices for the parametric modeling of the deformation field

include but are not restricted to thin-plate splines (TPS) (Bookstein, 1989; Chui

and Rangarajan, 2003), Fourier basis functions (Amit et al., 1991; Ashburner and

Friston, 1999), and wavelets (Amit, 1994). Compared to non-parametric mod-

eling, parametric modeling is able to reduce the number of parameters that are

needed for the representation of the deformation field. Thus, the optimization of

the registration usually becomes less challenging. Also, most parametric model-

ing provides subtle controls upon the smoothness when the deformation field is

interpolated.

• The deformation can be described by both the small deformation model and the

large deformation model (Christensen et al., 1996). In the small deformation

model, the smoothness requirement is attained in the elastic style. That is, the

smoothness regulation is imposed on the deformation field directly, e.g., by ap-

plying the Gaussian filter to the deformation. By contrast, the large deformation

model functions in the fluid style while the smoothness requirement is typically

imposed on the incremental field of the deformation. Mathematically, the large

deformation model rewrites the regularization in (1.1) to Regularization(∆φ),

while φ can be self-updated following the rule φ ← φ ◦ ∆φ. Though the elastic
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and the fluid styles are different, they can sometimes be combined and utilized

as a hybrid. In particular, the incremental of the deformation estimated in every

iteration complies with the smoothness constraint in the fluid style, while the it-

eratively integrated overall deformation can be regulated by the elastic constraint

as well.

1.2.4 Performance Evaluation

It is necessary to evaluate the performances of brain MR image registration, before the

registration outputs can be potentially used by the following clinical applications and

research studies. The lack of prior knowledge or the ground truth, however, leads to the

dilemma that the performance evaluation could be non-trivial. The evaluation often

starts from the assessment of the robustness of the registration results. Experts with

minimal training can easily conclude whether a registration is satisfactory by visually

inspecting the similarity between the deformed subject and the template images. The

robustness of image registration is important in that the registration method is expected

to handle a large-scale population of images automatically. Manual inspection obviously

interrupts the pipeline in processing images and requires additional cost.

The quantitative evaluation is more difficult in the absence of the ground truth. To

this end, prior knowledge of the deformation field is highly desired. For example, West

et al. (1997) use skull-implanted markers to derive the rigid transformations between

multi-modal images. Thus the outputs from different registration methods can be

compared with respect to displacements of external markers. However, it might be

difficult to generate a non-rigid transformation from external markers. Therefore, most

methods prefer to simulate physically plausible deformations that are comparable to

realistic scenarios. The simulation then allows the researcher to evaluate the accuracy

of the registration as well as the accompanying statistical analyses, e.g., for the studies
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of the Alzheimer’s Disease (AD) (Camara et al., 2008).

The annotations of anatomical structures provide a convenient way to evaluate

registration accuracy. Note that the purpose of image registration is to correctly align

corresponding anatomies. Thus, the consistency or overlapping of identical anatomical

structures after registering the subject to the template space is a natural indicator

of the registration quality. For instance, by (manually) labeling regions of the same

anatomical role but from the deformed subject and the template, respectively, the

overlap of the two regions can be captured by the Dice ratio

RD(Region1,Region2) =
2× Vol(Region1 ∩ Region2)

Vol(Region1) + Vol(Region2)
. (1.2)

Here, the operator Vol(·) computes the volume of the underlying anatomical region. Be-

sides the Dice ratio, other measures (e.g., the Jaccard ratio) may be applicable as well.

The registration accuracy metric can also extend to incorporate more corresponding

anatomical structures, including landmarks, curves, surfaces, etc.

To end the retrospect of the literature, a list of typical registration methods for

brain MR images is provided in Table 1.1. Also, it is worth noting that a comprehensive

investigation of performances of individual registration methods is reported in Klein

et al. (2009). Systematic understanding and surveys of the current status of medical

image registration are also available in the literature (Hajnal and Hill, 2010; Oliveira

and Tavares, 2012; Rueckert and Schnabel, 2011).

1.3 Limitations of Conventional Methods

As discussed in the above, most conventional registration methods belong to the pair-

wise category, which is designed to handle a pair of subject and template images only.
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Method Similarity Metric Transformation and Regularization

ART NCC
Non-parametric deformation, Low-pass
filtering

AIR
Mean squared differ-
ence

Polynomial warps

Diffeomorphic
Demons

SSD
Non-parametric deformation, low-pass fil-
tering

FLIRT SSD, MI, NCC, etc. Linear/rigid/affine transformation
FNIRT SSD B-Splines

HAMMER Feature matching
Non-parametric deformation, low-pass fil-
tering

IRTK Normalized MI B-Splines

LDDMM SSD
Non-parametric deformation, low-pas fil-
tering

S-HAMMER Feature matching
Symmetric deformation, TPS, bending
energy

SPM
Mean squared differ-
ence, etc.

Discrete cosine transform, bending energy

SyN NCC
Non-parametric and symmetric deforma-
tion, low-pass filtering

Table 1.1: Summary of state-of-the-art pairwise registration methods for brain MR
images. Only exemplar methods are reported in this table, including: ART (Ardekani
and Bachman, 2009), AIR (Woods et al., 1998b,a), Diffeomorphic Demons (Vercauteren
et al., 2009), FLIRT (Jenkinson and Smith, 2001; Jenkinson et al., 2002), FNIRT
(Andersson et al., 2008), HAMMER (Shen and Davatzikos, 2002), IRTK (Schnabel
et al., 2001), LDDMM (Beg et al., 2005), S-HAMMER (Wu et al., 2012d), SPM (Friston
et al., 2011), and SyN (Avants et al., 2008).

Contrarily, image registration is more frequently applied to large-scale populations of

images nowadays. Analyses based on large-scale image populations, whose prevalence

is partially due to the introduction of automatic image analysis techniques and the

lowered costs of image acquisitions, are statistically more convincing and attractive.

When applying pairwise image registration methods to a large-scale population of im-

ages, researchers typically need to designate a certain template to which all subject

images are registered. The template can be randomly selected from the population, or

determined as the specific image that best represents the population. Standard image
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spaces, which are not necessarily related to the image population under consideration,

may also provide convenient alternatives.

Images in the population can be regarded as individual subjects and handled by

pairwise registration in either the round-robin or parallelized manner. The registration

tasks of individual subject images are essentially independent of each other. However,

it is known that two similar subject images (i.e., denoted by S1 and S2), when regis-

tered with the same template, should have similar deformation fields. This property is

unfortunately ignored when applying pairwise registration to a large-scale population

of images. Even though S1 and S2 are very similar in appearances and deformations,

their registration with the template is independently considered. However, it would be

desirable for the two subject images to share certain information during the registration

process. For example, the registration of S1 (or S2) might be a good approximation

of the registration of S2 (or S1). In other words, to register one of them could well

initialize the registration of the other.

Though a template is inevitably necessary for applying pairwise registration to

large-scale image populations, the determination of the proper template can be highly

complex and sensitive. The template implies the common image space where all im-

ages in the population are deformed to and then compared. Thus, the template can

easily introduce bias towards the statistical analyses following image registration. For

example, given a population that consists of both normal controls and disease-affected

subjects, the influence of using a normal or abnormal image as the template would be

very hard to predict. To this end, a better solution of image registration would get rid

of the concern over the determination of the template, while all subject images could

still be registered to the common space for facilitating analyses and evaluations upon

them.
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1.4 Thesis

Thesis: Registration of brain MR images in large-scale populations benefits from utiliz-

ing information from the entire population, instead of from the subject and the template

only.

This dissertation investigates ways of incorporating information contributed by the

entire image population into solving the registration problem. In particular, two specific

aims are proposed to improve brain MR image registration.

• Specific Aim 1: Pairwise registration can be improved by utilizing the guidance

from other images in the population. Instead of registering the subject with the

template directly in the conventional style of pairwise registration, the subject can

initiate its registration by using guidance provided by other images (namely the

intermediate images) in the population. The guidance of the intermediate images

helps the subject to identify its deformation towards the template more easily.

Thus the registration of the subject with the template becomes more robust and

accurate in the end, compared to direct registration of the two images.

• Specific Aim 2: The large-scale population of brain MR images can be registered

towards their common space in a groupwise manner. Groupwise registration sig-

nificantly differs from the traditional pairwise registration, in that the designation

of the template, as well as its bias, is completely avoided. However, by iteratively

optimizing the coherence of the population, groupwise registration is capable of

deforming all images to the common space of the population. Meanwhile, the

similarity between each pair of warped subjects is maximized, as all images are

registered with each other with respect to the common space.

In order to support the thesis and the specific aims in the above, the detailed

contributions of this dissertation include:
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• Two types of guidance from the intermediate images, namely the image-scale

guidance and the patch-scale guidance, are investigated for guiding the pairwise

registration of a certain subject with the template and improving registration

performance;

• The image-scale guidance allows the subject to seek help from the intermediate

image in estimating its own deformation towards the template, in that the in-

termediate image is required to be similar to the subject and thus shares similar

deformations with respect to the template;

• In the setting of patch-scale guidance, individual patches in the subject flexibly

predict their associated deformations with respect to the template, in accordance

with the guidance provided by different intermediate images and their correspond-

ing patches;

• The importance and advantages of groupwise registration are addressed, as in

groupwise registration all subject images in the large-scale population are warped

to an unknown common space where the atlas of the population can be con-

structed;

• With a mean image to represent the common space, groupwise registration is

feasibly implemented by a set of pairwise registrations of individual subjects and

the mean, while the sharpness of the group-mean is proven to be significantly

important in terms of the quality of groupwise registration;

• The explicit estimation of the group-mean image is not always necessary; instead,

a certain subject is still able to locate the common space of the population, simply

by following the deformation pathway combined from its pairwise registration

towards other similar images in the population;
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• With an objective function to capture the variation of all images with respect to

the unknown common space, groupwise registration is able to directly optimize

the objective function by simultaneously estimating the deformation fields for

all subjects; meanwhile, correspondences of points from individual subjects are

established via the implicit common space;

• By incorporating information of the entire population, overall registration quality

is improved, thus benefiting other related applications, e.g., to propagate anatom-

ical labeling from the known images to the unknown images more precisely after

all images are registered.

1.5 Overview of Chapters

The remaining chapters of this dissertation are organized as follows.

• Chapter 2 investigates the utilization of the guidance, provided by the intermedi-

ate images, in pairwise registration of the subject with the template. The scales

of the guidance, i.e., at the image or the patch scale, are further addressed and

compared. The guidance from the intermediate images provides good initial-

ization for the subject to estimate its deformation towards the template. The

initialized deformation can be refined efficiently and effectively, and thus enhance

the accuracy of pairwise registration significantly.

• Chapter 3 systematically overviews typical implementations of groupwise regis-

tration, which aims to register all images in the population towards the common

space of the population simultaneously. In particular, groupwise registration gets

rid of the template that is arbitrarily designated in pairwise registration, implying

that the bias of the template is completely avoided. Moreover, the images can
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be aligned with each other more accurately in the common space compared to

pairwise registration, though the problem of groupwise registration is much more

complicated due to the population size.

• Chapter 4 demonstrates that improved registration, i.e., by incorporating infor-

mation from the entire population, can benefit the multi-atlas labeling technique

to generate more reliable segmentation outcomes. Multi-atlas labeling, a state-of-

the-art method, is capable of propagating anatomical labels from the known atlas

to other unknown images for the sake of automatic segmentation. In that the at-

lases and the to-be-segmented images are registered more precisely, the resulting

segmentation provided by multi-atlas labeling is also improved in the context of

brain MR images.

• Chapter 5 concludes the entire dissertation. In general, this dissertation inves-

tigates the contributions of large-scale populations towards image registration.

The entire population benefits the conventional pairwise registration between

two images, due to the guidance from other intermediate images in the popula-

tion. Moreover, from the perspective of groupwise registration, all images in the

population can be registered simultaneously and accurately.

1.6 Summary

Image registration is a complicated yet important problem in the area of medical image

analysis. Though much effort has been devoted to solving it, the problem is still

open to further investigation. In particular, it is necessary to introduce large-scale

population information into registration, since most studies nowadays rely on huge

numbers of acquisitions. As outlined in this chapter, the image population contributes
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to registration in at least two ways: (1) the conventional pairwise registration benefits

from the guidance provided by other intermediate images in the population; (2) the

pairwise limitation can be broken by using the groupwise registration technique for

simultaneous warps of all images in the population. The following chapters in this

dissertation will discuss these two aspects in detail, and will also demonstrate that

better registration leads to better applications, e.g., segmenting brain MR images into

individual anatomical areas.
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Chapter 2

Population Guidance in Pairwise

Registration

2.1 Overview

When applying the conventional pairwise registration methods to a large-scale popula-

tion of brain MR images, the typical scenario requires researchers to specify a certain

template first and then register all images with the template. Regardless of the order

in handling subject images, the registration of each individual subject is generally in-

dependent of the others, as only a specific subject and the template are involved in any

particular pairwise registration task. The performance of this straightforward scheme,

namely the direct registration of the subject, could be undermined by the complexities

in (1) evaluating the similarity of high-dimensional image data and (2) optimizing a

huge number of parameters to represent the deformation field. The direct registration

could even fail if the subject and the template differ significantly in appearances. To

this end, the desire for high-performance registration has inspired enormous efforts for

the improvement of existing registration methods.

Among all the blueprints proposed for better brain MR image registration, guidance



is utilized by a family of methods to initiate optimization and produce better registra-

tion outputs in the end. Specifically, both the template and the to-be-registered subject

are incorporated by a population; other images in the population are termed as the in-

termediate images, whose registration with the template are presumed to be known

already. Then, for the subject image under consideration, the guidance towards its

registration with the template originates from the intermediate images in the popu-

lation. In particular, two images that are similar in appearances should have similar

deformations when registered with the same template. Thus, after identifying a certain

intermediate image from the population that is similar with the subject in appearances,

the subject initiates its own registration with the template immediately, by using the

deformation field that has been pre-estimated for that specific intermediate image.

The contribution from the intermediate image, which is categorized as the image-

scale guidance here, is illustrated by Figure 2.1. Given a large-scale population of brain

MR images, a high-dimensional manifold is often instantiated to characterize the distri-

bution of the entire population (Aljabar et al., 2012). Images that are similar in appear-

ances are spatially close to each other within the manifold. Meanwhile, the geodesic

along the manifold connects a certain pair of images, and represents the deformation

pathway for the registration between them. Figure 2.1(a) illustrates an image manifold

and enumerates several exemplar images that are annotated by individual nodes (i.e.,

red for the template, purple for the subject, blue for the intermediate images). The

geodesic arrow denotes the deformation pathway, following which a non-template image

is registered with the template. The intermediate images are pre-registered with the

template, thus the deformation pathways in blue are known already.

The direct estimation of the deformation in purple that registers the subject S1

with the template T is frequently adopted by most state-of-the-art pairwise methods

(c.f. Figure 2.1(a)). As an alternative, in Figure 2.1(b), S1 utilizes the intermediate
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image M1 to initialize its own registration. That is, S1 first registers with the inter-

mediate image M1, and then follows the existing pathway from M1 to T to complete

its registration with the template. The overall deformation of S1 is thus derived from

the integration of two deformation segments that correspond to the two registration

sub-tasks. It is worth noting that the intermediate image M1 is required to be similar

to S1 in this case. Thus the deformation segment from S1 to M1 is relatively short,

while the segment from M1 to T contributes to the majority of the overall deformation

for S1. In other words, the deformation that registers M1 with T can be regarded as a

well-functioning approximation (as well as initialization) to registering S1 with T .

The image-scale guidance contributed by the intermediate image M1 is able to al-

leviate difficulties in registering the subject S1 with the template T directly. Given an

existing deformation that registers M1 to T reliably, the remaining task for S1 is to

find the deformation segment from S1 to M1 only. The length of the to-be-determined

segment of the entire deformation pathway is shortened significantly. A short pathway

usually implies that the registration could be handled more easily, complying with the

observation that the registration between similar images faces many fewer challenges

in optimizing the deformation field. After integrating two segments into a single defor-

mation, the subject is able to further refine the deformation, i.e., via state-of-the-art

registration methods, in effective and efficient manners.

The guidance from the intermediate images also allows registration to assess diffi-

culties of individual tasks and then assign priorities to register images in the population

adaptively. In the case illustrated by Figure 2.1(c) for example, the direct registration

of the subject S2 with the template T could be challenging due to the high anatomical

variation and the lengthy deformation pathway between them. However, with the in-

troduction of the intermediate image M2, the registration of S2 is decomposed into two

sub-tasks, i.e., to register S2 with M2 and to register M2 with T , respectively. Both
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Figure 2.1: The manifold of the image population and the image-scale guidance in
pairwise registration: (a) The subject S1 is registered with the template T directly
regardless of other intermediate images (including M1) in the population; (b) Alterna-
tively S1 utilizes the guidance provided by M1 to initiate its registration with T ; (c)
The registration of S2 with T is decomposed into two relatively easy-to-solve problems
with the introduction of M2, i.e., from S2 to M2 and from M2 to T , respectively. Red
nodes correspond to the templates, blue for the intermediate images, and purple for
the subjects. Curved arrows correspond to the deformation pathways that register the
linked pairs of images.

sub-tasks are obviously less difficult than the direct registration of S2 with T . To this

end, the optimal strategy in handling S2 is to defer its registration until the guidance

associated with M2 has become available. Therefore, from the perspective of the entire

population, images that are more similar to the template (e.g., M2) should be regis-

tered at higher priorities than other images that are less similar to the template (e.g.,

S2). In this way, those images registered at earlier stages might be recursively utilized,

as they provide guidance to initiate registration of more images at later stages. The
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overall registration performance evaluated upon the entire image population can thus

be improved.

Granularity of Guidance. Though above discussions are focused on image-scale

guidance, the intermediate images are capable of contributing towards the registration

of the subject image in the patch-scale manner. The two types of guidance differ

significantly in terms of their granularities. For example, once the subject has identified

the intermediate image (similar in appearances), the image-scale guidance is provided

by the intermediate image within the entire image space. The rationale is that similar

images (in appearances) should have similar deformation fields when registered with

the same template. On the other hand, the patch-scale guidance relies on the fact

that the deformations of two patches from the subject and the intermediate image are

highly correlated, if the appearances of the two patches are similar (Wang et al., 2013b).

Therefore, for individual patches of the subject, their correspondences may come from

patches belonging to different intermediate images. By reducing the granularity of the

guidance from image to patch, the patch-scale guidance allows the subject to utilize all

intermediate images in the population for predicting its own registration more flexibly.

Initialization and Refinement. The guidance contributed by the intermediate

images yields a predicted deformation for the subject, while the prediction acts as

initialization and needs further refinement to register the subject with the template

completely. The refinement is typically accomplished via state-of-the-art pairwise reg-

istration methods, most of which follow the iterative optimization strategy. Moreover,

the refinement is often conducted within the high resolution only (i.e., correspond-

ing to the original resolution of the subject and the template). The multi-resolution

framework is in general unnecessary, in that the predicted deformation is at the high

resolution already. Given the initializing predicted deformation and the following effec-
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tive refinement, the final deformation is able to register the subject with the template

more accurately, compared to the traditional direct registration scheme.

The rest of this chapter is organized as follows. In Section 2.2, more details related

to image-scale guidance are provided. Then, patch-scale guidance is proposed and

elaborated in Section 2.3. A brief summary is available in Section 2.4 to conclude this

chapter.

2.2 Image-Scale Guidance

Incorporating the intermediate images in the population alleviates many of the chal-

lenges encountered by the direct registration of the subject with the template. A critical

problem to be resolved here is the identification of the source of the guidance, or the

optimal intermediate image for a certain subject. In particular, two criteria need to be

satisfied to qualify the intermediate image, which are that it (1) should be similar to

the subject in appearances and (2) is registered with the template already. The image-

scale guidance is often utilized in two directions (Jia et al., 2012b), i.e., (1) selecting

the intermediate image from the population to best approximate the subject, and (2)

generating the subject-specific intermediate image via simulation.

2.2.1 Intermediate Image: Selection

The optimal intermediate image can be cherry-picked from the image population (Dalal

et al., 2010; Hamm et al., 2010; Jia et al., 2011b; Munsell et al., 2012; Wolz et al.,

2010). The selected intermediate image is expected to approximate the subject in

appearances, such that the deformation pathways from the two images to the common

template (on the manifold of the population) are also very similar to each other. In
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the literature, simple metrics (e.g., SSD and MI) are often adopted to capture image

similarity. More sophisticated measures associate the similarity with the deformation

field between images (Beg et al., 2005; Joshi et al., 2004). The manifold of images is then

approximated by graph-based structures, where nodes correspond to individual images

and edges reflect similarities between images. Different from the full connection of all

pairs of images, the graph-based structure only allows similar images to be connected

and thus registered directly. The deformation pathway between images that are not

directly linked is estimated by concatenating all edges of the shortest path between

the two images in the graph-based structure. Thus, for a to-be-registered subject,

its deformation is predictable given its path towards the template in the graph-based

structure. In other words, the intermediate images, which correspond to nodes along

the path from the subject to the template, provide guidance to register the subject

under consideration.

A simulated image population is used here to demonstrate the solution above. As

in Figure 2.2(a), the population consists of an arbitrary root image and three branches,

each of which consists of 20 images. For convenience, only a limited number of images

(including the root and samples of each branch) are shown in the figure. The root image

is featured with a bright area and a relatively dark layer, which mimic the appearances

of WM and GM in human brains, respectively. Then, within each branch, a sequence

of images is derived by consistently altering the cortical folding pattern in the root.

For example, 20 images are simulated in Branch I, such that all of them share the

same pattern of a single fold while their WM volumes decrease gradually. Similarly,

Branches II and III consist of simulated images that are assigned with bi-folding and

tri-folding patterns, respectively, while the WM volumes are also decreasing from the

root to the end of each branch. The three branches generally reflect possible cortical

folding patterns in human brains.
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With SSD to describe the distance between each pair of images, a minimum spanning

tree (MST) is instantiated in Figure 2.2(a) to model the distribution of the entire

population. The root of the tree serves as the template, to which all other simulated

images need to be registered. The distribution in the tree can be verified via principal

component analysis (PCA). In Figure 2.2(b), all images in the population are projected

on a 2D plane, which is spanned by the first two principal components identified in PCA.

The root and the three branches, which lead to the structure of the tree, are clearly

observable in the PCA output.

Assume that the image at the end of Branch II is the subject under consideration.

The direct registration of the subject with the template (i.e., the root) can easily

fail (Jia et al., 2012a). Figure 2.3(b) shows the deformation yielded by the direct

registration, as well as the appearance of the deformed subject. The deformation is

obviously unable to describe the evolution from the root to the subject in the simulation

process, such that the warped subject contains unacceptable artifacts. By contrast, with

image-scale guidance from the intermediate image(s), the registration of the subject

with the template can be well solved (c.f. Figure 2.3(a)). In particular, the subject

identifies its optimal intermediate image as the one next to itself on Branch II. The

intermediate image further seeks guidance from its own intermediate image, which is

even closer to the template. Therefore, the registration of the subject with the template

is essentially decomposed into a series of sub-tasks in the recursive manner, while each

sub-task happens between similar images and thus is relatively easy to solve. The final

deformation for the subject in Figure 2.3(a) is acquired by integrating deformation

fields associated with all sub-tasks.
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(a)

(b)

Figure 2.2: The population of simulated images in Section 2.2.1: (a) Three branches
of images are simulated by altering the folding pattern in the root, and then organized
into the tree structure; (b) The distribution of the population is verified by projecting
all images on the 2D plane via PCA.
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Figure 2.3: The direct registration of the subject leads to a failure in (b), while the
subject essentially locates the correct deformation pathway with the guidance from the
intermediate images in (b).

2.2.2 Intermediate Image: Generation

Instead of selecting the intermediate image from the population, several models are

proposed to generate the intermediate image for a certain subject to be registered with

the template (Chou et al., 2013; Kim et al., 2012; Tang et al., 2009). For example, Kim

et al. (2012) proposed to capture the correlation between appearance-derived features of

training images and their deformations in registering with the common template. The

correlation model is acquired via support vector regression (SVR) (Drucker et al., 1997).

When a new subject image comes in the testing stage, the pre-trained model is able to

prompt the deformation field according to the appearance features of the subject. After

inverting the deformation provided by the regression model, the intermediate image is

generated by warping the template accordingly. Since the deformation pathway between

the simulated intermediate image and the template is known as ground truth, the only

remaining thing for the subject is to find its deformation towards the intermediate
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image. Moreover, the intermediate image is highly similar to the subject in appearance,

in that the deformation field for its generation encodes the appearance of the subject

already. As a result, the registration of the subject to the intermediate image is easy

to solve, while the entire deformation pathway from the subject to the template can be

integrated and refined afterwards.

2.3 Patch-Scale Guidance

2.3.1 Motivation

It is effective to improve the performances (i.e., robustness and accuracy) in registering

the subject with the template by introducing additional intermediate images in the

population. The utilization of the image-scale guidance, as in Section 2.2, considers

the entire image as a whole. A fundamental assumption for the image-scale guidance is

that images with similar appearances should have similar deformations when registered

with the same template. The assumption is closely related to the manifold instantiated

for describing the large-scale population of images (e.g., Figure 2.1). Though geodesics

upon the manifold are perceived to represent deformation pathways between neigh-

boring images, the theory is challenged especially by the high-dimensional images and

deformations. In fact, it is known that a tiny perturbation in the appearance of the

images (and thus their mapped locations on the manifold) may possibly result in a very

different deformation for registration (Modersitzki, 2004).

High anatomical variations (i.e, sulcal folding) are prevalent in brain MR images,

impairing an accurate determination of the optimal intermediate image and then the

proper utilization of the image-scale guidance. It is often questionable to conclude

whether a certain intermediate image is similar to the subject in approximating both

the appearances and the deformation field, requiring a non-trivial task to evaluate their
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similarity. The subject might share common anatomical structures with the interme-

diate image in certain gyri or sulci, where the guidance from the intermediate image is

trustworthy; at the same time, they may also differ significantly in other areas where

the guidance could even be harmful. A simple illustration is provided in Figure 2.4,

where a new subject is simulated (and highlighted by the blue rectangle) in addition

to the dataset in Section 2.2.1 and Figure 2.2. The new subject differs significantly

in appearance from any other image in the population, implying that the intermediate

image can hardly be acquired for providing guidance at the scale of the entire image.

In contrast to the image-scale guidance, the patch-scale guidance (Wang et al.,

2013b) allows the subject to utilize multiple intermediate images at the scale of patches,

though, for its own registration with the template. Meanwhile, the patch-scale guidance

is interpretable in the sense of correspondence detection, which leads to a rigorous

formulation. Specifically, if two respective patches from the subject and a certain

intermediate image are similar in appearance, the center points of the two patches are

generally perceived as correspondences to each other. Since the intermediate image

is presumed to be registered with the template already, the point in the intermediate

image is able to identify its correspondence in the template image space. Then, bridged

by the point in the intermediate image, the correspondence between the subject point

and the template point is established as both of them identify the same intermediate

point as their correspondences. The subject-template correspondence gives a hint of

the deformation field at the locations of specific points. With more points in the image

space and their associated subject-template correspondences, the entire deformation

field for registering the subject with the template is essentially predictable. In general,

the collection of intermediate images contributes to the registration of the subject

with the template, by providing the patch-scale guidance that bridges point-to-point

correspondences between the two images. The guidance is allowed to originate from
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different intermediate images for individual points in the image space.

Although it is hard to utilize image-scale guidance for the specific new subject in

Figure 2.4, patch-scale guidance helps its registration with the template due to the

high flexibility in accessing the intermediate images. In particular, due to a certain

point on the left half of the new subject, its correspondence can be easily identified

from the intermediate image at the end of Branch I, e.g., by comparing appearances

within the two respective patches circled in green (c.f. Figure 2.4(a)). The deformation

associated with the subject point under consideration is then predictable, in that the

subject point shares a common correspondence in the template space with the identified

point in the intermediate image. Meanwhile, for the point in the right half of the

subject image (e.g., encircled by the yellow patch), its correspondence in the template,

as well as the associated deformation, is also revealed with respect to the guidance

from another intermediate image (i.e., at the end of Branch III). Note that the patch-

based correspondence detection is conducted within the neighborhood of each point-

of-interest, since only local correspondence is meaningful in non-rigid brain MR image

registration.

2.3.2 The Prediction-Reconstruction Protocol

To effectively utilize the patch-scale guidance from the collection of the intermedi-

ate images and apply it towards brain MR image registration, a novel prediction-

reconstruction strategy, namely the P-R protocol, is proposed in Wang et al. (2013b).

The P-R protocol consists of two coupled steps:

1 Predict the deformations associated with a subset of key points, which are scat-

tered in the image space to cover the entire brain volume;

2 Reconstruct the dense deformation field based on all key points and their predicted
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(a)

(b)

Figure 2.4: The population of simulated images in Section 2.3 incorporated with an
additional subject as highlighted by the blue rectangle in (a). The new subject is
registered with the root by utilizing patch-scale guidance. The distribution of all images
revealed by PCA is shown in (b).
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deformations to register the subject image with the template.

In the prediction step, it is critical to establish point-to-point correspondences be-

tween the subject and the template, by utilizing the highly reliable correspondences

identified between the subject and the intermediate images. To this end, the patch-

based sparsity learning technique, which is widely applied in computer vision (Wright

et al., 2010), is applied here. For a specific subject point, it aims to estimate the linear

and sparse representation of its surrounding patch given all possible candidate patches

from the intermediate images. The optimal linear representation determined by the

sparsity learning locates a sparse set of intermediate patches, the appearances of which

are highly similar to the subject patch under consideration. Therefore, all center points

of the intermediate patches qualified by the sparsity learning can be regarded as the cor-

respondence candidates of the subject point, and then help identify the correspondence

of the subject point in the template image. The subject-template point correspondence

predicts the (local) deformation, following which the specific subject point is expected

to deform.

The prediction procedure is applied to a subset of selected key points, each of

which typically identifies several possible correspondences between the subject and the

template via sparsity learning. In other words, multiple predictions of the deformation

associated with a certain key point are often collected. All key points and the multiple

predictions of their individual deformations are further integrated for the reconstruction

of the dense deformation field across the entire image space. That is, varying confidences

of individual key points and all of their predicted deformations are computed. Then

an adaptive interpolation approach, which is based on a special family of compact-

support radial basis functions (RBFs), is applied to reconstruct the dense deformation

field. The reconstruction considers the computed confidences of predictions, as the

predicted deformation of higher confidence plays a more important role. Meanwhile,
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the reconstructed deformation field complies with the smoothness constraint, in order

to suppress unrealistic warping (i.e., folding) of brain tissues.

2.3.3 Prediction of Correspondences

It is critically important to predict the correspondence, as well as the associated de-

formation, of each key point in the image space. For convenience, mathematical nota-

tions with respect to the P-R protocol are introduced first. In particular, the subject

S needs to be registered with the fixed template image T following the deformation

φ(·) : ΩT → ΩS, while the point x ∈ ΩT in the template space locates its corre-

spondence at φ(x) ∈ ΩS in the subject image space. Conversely, φ−1(·) is capable

of deforming the template towards the subject image space. To help estimate φ(·),

the patch-scale guidance is contributed by the collection of the intermediate images

{Mi|i = 0, · · · ,m}. Given each Mi, the deformation ψi(·) that registers it with the

template is already known. That is, ψi(x) ∈ ΩMi
indicates the correspondence of the

template point x ∈ ΩT . Note that the template T is also referred as M0, as ψ0(·) is

simply an identity transform that registers the template to itself. For easy reference, a

list of important variables here is summarized in Table 2.1. Moreover, since only the

prediction of the non-rigid deformation is investigated here, all images are necessarily

pre-processed, including being aligned to a common space by affine registration (i.e.,

FLIRT (Jenkinson and Smith, 2001; Jenkinson et al., 2002)).

The deformation is predictable in that point-to-point correspondences can be iden-

tified from similar patch-scale appearances between images. Figure 2.5 helps illustrate

the rationale of the patch-scale guidance. In Fig. 2.5(a) particularly, three individual

patches (in the top-bottom order) from the template T , a certain intermediate image

Mi, and the subject S are enumerated. All three patches are represented by circles,

while their center points are noted by x ∈ ΩT , ỹ ∈ ΩMi
, z̃ ∈ ΩS, respectively. Without
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Variable Note

T Template image
S Subject image
Mi The i-th intermediate image (i is the index)
ΩT ,ΩS ,ΩMi

Individual image spaces
x Template point
y, ỹ Points in the intermediate images
z, z̃ Points in the subject image
t Resolution
φ(·) Transformation field to register S with T
ψi(·) Transformation field to register Mi with T
~φ, ~ψi Signature vectors of φt(x) and ψi(x)
~u, ui Confidence of ψi(x) in prediction
~ξ, ~θij Signatures of patches at φt−1(x) and yij
~v, vij Confidence of yij in prediction
rc Maximal radius allowed in correspondence detection
~w,wij,W Confidences of combined predictions
k(·),K RBF kernel function and kernel matrix
σ, c Control the size of the support of k(·)
~γx,Γ RBF kernel coefficients
Φ Predicted transformations

Table 2.1: Summary of important variables with respect to the Prediction-
Reconstruction protocol.

losing generality, x and ỹ are defined to be correspondences to each other such that

ỹ = ψi(x) or x = ψ−1
i (ỹ). Immediately this leads to

Proposition 1 If ỹ ∈ ΩMi
and z̃ ∈ S are correspondences to each other, then

φ−1(z̃) = ψ−1
i (ỹ). (2.1)

Proof 1 Given the facts that (1) ỹ and z̃ are correspondences to each other, (2) x and

z̃ are correspondences to each other, the correspondence relationship could be established

between x and ỹ. Here, the correspondence is defined such that any two points under
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consideration share similar appearances in their surrounding patches. Therefore, the

proposition is derived following (1) x = ψ−1
i (ỹ) and (2) x = φ−1(z̃) accordingly.

The proposition above allows the prediction of φ−1(·) from the inverse of the collec-

tion {ψi(·)}. The model is further improved to predict φ(·) directly from ψi(·), instead

of its inverse. As in Figure 2.5(b), there is

Proposition 2 If (1) y ∈ ΩMi
and z ∈ S are correspondences to each other AND (2)

y is spatially close to ψi(x), then

φ(x)− z = ∇φ(x) (∇ψi(x))−1 (ψi(x)− y) , (2.2)

where ∇ indicates the Jacobian operator.

Proof 2 As y is spatially close to ψi(x), it is natural to assume that y = ψi(x + δx)

where δx is a infinitesimal perturbation of x. Moreover, it is implied by ψi(·) that the

point (x+ δx) locates its correspondence as y. Thus the points (x+ δx) and z are also

correspondences to each other, via the bridge of y ∈ ΩMi
:

y = ψi(x+ δx) = ψi(x) +∇ψi(x)δx+O(δxT δx), (2.3)

z = φ(x+ δx) = φ(x) +∇φ(x)δx+O(δxT δx). (2.4)

After subtracting the two equations and eliminating the perturbation variable δx, it leads

to the conclusion

(∇ψi(x))−1 (y − ψi(x)) = (∇φ(x))−1 (z − φ(x)) , (2.5)

from which (2.2) is derived.
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Figure 2.5: Illustration of the predictability of the deformation: (a) The correspon-
dence between the template point x and the subject point z̃ is established as both
points identify ỹ as their correspondence in the intermediate image; (b) The subject
deformation φ(x) is predictable from the intermediate deformation ψi(x), if y and z are
correspondences to each other; (c) Multiple correspondence candidates of y might be
detected, thus resulting in multiple predictions upon the subject deformation φ(x).

The rule in Proposition 2 allows the prediction of φ(x) from the intermediate col-

lection {ψi(x)} of the intermediate images. All variables (i.e., i, y, x, and z in (2.2))

need to be handled carefully for brain MR image registration. In particular, a set of

key points is selected from the template image space, with more details regarding the

selection of key points provided in Section 2.3.5. Each key point is then fed as an

instance of the variable x to (2.2). Furthermore, z is related to the tentative estimation

of φ(x); thus (2.2) is converted to the incremental optimization style as

φt(x) := φt−1(x) +∇φt−1(x) (∇ψi(x))−1 (ψi(x)− y) . (2.6)

Here, t records the timing in optimizing φ(·). The term ∇φt−1(x) is used to approxi-

mate the Jacobian of φt(x) by assuming that φt(x) can only be generated by changing
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∇φt−1(x) mildly. The variables i (as well as ψi(x)) and y will be determined later, such

that y ∈ ΩMi
is the correspondence to the previously estimated φt−1(x) ∈ ΩS given the

patch-scale appearances of the two center points.

Given the key point x, several intermediate images with their individual contribu-

tions as ψi(x) might be available. Moreover, multiple instances of y can potentially be

identified as correspondences to φt−1(x) as well. Though the number of correspondences

can be arbitrarily reduced to 1 for each instance of x, allowing multiple correspondences

can greatly improve the robustness and the accuracy for correspondence detection (Chui

and Rangarajan, 2003). To this end, the sparsity learning technique (Wright et al.,

2010) is applied for the determination of i and y, respectively. In general, the sparsity

learning technique allows multiple, yet only a limited number of, instances of ψi(x) and

y to contribute to the prediction in (2.6). Meanwhile, varying confidences are attained

for the instances of ψi(x) and y that are active in the prediction. The product of the

confidences of ψi(x) and y is further regarded to measure the reliability of the resulted

predictions. All key points and their multiple predicted deformations, along with the

varying confidences, are passed to the reconstruction of the dense deformation field in

Section 2.3.4.

Determination of i and ψi(x)

The correspondence between φt−1(x) and y implies that the locations of the two points

should be close to each other, especially in brain MR images after affine registration.

Therefore, ψi(x) better predicts φt(x) if the two deformations are more similar. In Fig.

2.5(c), for example, the point φt−1(x) is assumed to identify its correspondence y1 from

M1 and another correspondence y2 from M2. However, the challenges in determining

y1 and y2 are different concerning ψ1(x) and ψ2(x). As ψ2(x) is closer to φt(x) than

ψ1(x) (in reference to the marked location of x), the correspondence detection for y1
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thus should be conducted in a much larger area in that ‖y1−φt−1(x)‖ > ‖y2−φt−1(x)‖.

In this case, ψ2(x) is obviously a better selection for the sake of predicting φ(x).

In order to determine a ψi(x) that is similar to φt(x) and compute the accompanying

confidence, the sparse representation of φt(x) over the dictionary spanned by ψi(x) is

investigated. Assuming that φt(x) and ψi(x) are signified by the vectors ~φ and ~ψi,

respectively, the sparsity learning aims to solve

~u = arg min
~u

‖~φ−Ψ~u‖2 + α‖~u‖1,

s.t. Ψ = [~ψ1, · · · , ~ψi, · · · , ~ψM ],

~u = [u1, · · · , ui, · · · , uM ]T ,

ui ≥ 0,∀i.

(2.7)

Here, ~u indicates the vector of the coefficients for the linear representation of ~φ given the

dictionary Ψ, which consists of potential contributions from all intermediate images.

The l1 constraint ‖~u‖1, weighted by the non-negative scalar α, favors a sparse subset

of column items from Ψ to represent ~φ. The coefficient ui, yielded by the sparsity

learning, also acts as a similarity indicator between ~φ and ~ψi (Wright et al., 2010).

To attribute signatures to both φt(x) and ψi(x), the corresponding deformations

are vectorized into ~φ and ~ψi, respectively. On the other hand, ~φ cannot be acquired

directly, in that φt(x) is still pending for estimation. As an alternative, the signature ~φ

is generated from φt−1(x), based on the assumption of mild changing between φt−1(x)

and φt(x). In general, via the optimization in (2.7), several intermediate images are

identified (or activated), with their contributions {ψi(x)} and the non-negative coeffi-

cients {ui}, for the sake of the prediction of φt(x). The term ui is further regarded as

the measure of the confidence in predicting φt(x) from ψi(x).
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Determination of y

Candidates of y can be identified via the correspondence detection, centered at the

location of φt−1(x), within each active intermediate image after the determination of i.

For convenience, all possible candidates of y are annotated by {yij}, as yij indicates the

j-th candidate from the i-th intermediate image. The candidate collection {yij} often

consists of each grid point yij ∈ ΩMi
if ‖φt−1(x) − yij‖ ≤ rc and rc is the maximally

allowed radius for correspondence detection. The signatures of the points φt−1(x) and

yij are defined as ~ξ and ~θij, respectively, as the similarity between the two points can

thus be acquired by comparing their signature vectors. In particular, the same sparsity

learning technique is used for the purpose

~v = arg min
~v

‖~ξ −Θ~v‖2 + β‖~v‖1,

s.t. Θ = [· · · , ~θ1j, · · · , ~θij, · · · , ~θMj, · · · ],

~v = [· · · , v1j, · · · , vij, · · · , vMj, · · · ]T ,

vij ≥ 0,∀i, j.

(2.8)

In (2.8), the matrix Θ indicates the dictionary of contributions from the candidate

collection {yij}, the vector ~v records the coefficients for the linear sparse representation

of ~ξ given Θ, and the non-negative scalar β controls the sparsity of ~v. The vectorized

patch is defined as the signature (i.e., ~θij) for the center point (i.e., yij). Then, vij

captures the similarity between the two patches centered at φt−1(x) and yij. Higher

vij obviously implies that the correspondence between φt−1(x) and yij is more reliable

given their individual patch-scale appearances. As the result, vij is regarded as the

confidence for predicting φt(x) from yij.

The correspondence detection via (2.8) is independent of x, and thus may cause

inconsistent outputs for points that are even neighboring each other. To this end, the
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consistency in correspondence detection is enforced via the l2,1-norm constraint (Liu

et al., 2009). In particular, the optimization problem in (2.8) is modified as

V = arg min
V

‖Ξ−ΘV‖2 + β‖V‖2,1,

s.t. Ξ = [· · · , ~ξx+∆, · · · ], ‖∆‖ ≤ ε,

Θ = [· · · , ~θ1j, · · · , ~θij, · · · , ~θMj, · · · ],

V = [· · · , ~vx+∆, · · · ], ‖∆‖ ≤ ε,

vx+∆,ij ≥ 0,∀∆,∀i,∀j.

(2.9)

(2.9) aims to detect correspondence candidates for the centering point x, as ∆ in the

subscript is associated with the point (x + ∆) that is neighboring x. Similarly, ~ξx+∆

represents the signature vector for (x + ∆). The matrix Ξ captures signatures for all

points that are located within the radius of ε to the point x, while their representation

coefficients on Θ are stored in individual columns of the matrix V. Identical to (2.8),

the coefficient vector for (x + ∆), namely vx+∆,ij is encouraged to be sparse. Mean-

while, neighboring points are inclined to share similar coefficients, as their patch-scale

appearances could not change drastically. Therefore, besides the l1 constraint, the l2,1

constraint to the matrix V (Liu et al., 2009) is enforced. That is, each column of V

satisfies the sparsity requirement, while the sparsity patterns of individual columns are

expected to be highly similar. Finally, the column for ∆ = 0 in V tells all possible

correspondence candidates of the point φt−1(x).

Any arbitrary combination of ψi(x) and yij yields an attempt in predicting φt(x). In

particular, the confidence wij is defined for the attempt as the product of the confidences

of ψi(x) and yij, or wij = uivij. The sparsity enforced in selecting ψi(x) and yij results

in multiple, but a limited number of, predictions with non-zero confidences. In this
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way, the method can (1) avoid local minima if only acquiring a single but incorrect

prediction for the key point, and (2) suppress a majority of predictions of low reliability.

The confidence of each key point is further normalized by wij ← wij/
∑
wij, to impose

the same priors on all key points.

The order of determining i first and then y provides good scalability in handling

a large-scale population of (intermediate) images. Specifically, the determination of

i can be much more efficient than y, in that the column size of the dictionary Ψ

is identical with the number of intermediate images, or O(m). Meanwhile, multiple

correspondences may exist in even a single intermediate image. The dictionary Θ has

to enumerate all possible instances of y, and thus increases the column size to O(r3
cm),

as rc represents the radius in searching for correspondences. By determining i first,

the number of activated intermediate images, only from which the contributions to

the determination of y should be counted, is well controlled. Thus, the complexity in

determining y is well scaled regardless of the size of the collection of the intermediate

images, as most intermediate images are deactivated already in the determination of y.

2.3.4 Reconstruction of Deformation Field

The dense deformation field is reconstructed to fit the multiple predictions of all key

points. To this end, the radial basis function (RBF) provides a feasible means for the

representation of the deformation field. Suppose that the RBF kernel function is k(·)

and ~γx is the radial basis function (RBF) coefficient vector for the key point x, the

dense field associated with the arbitrary location x′ ∈ ΩT is then computed by

φ(x′) =
∑
x

k (‖x′ − x‖)~γx. (2.10)

The kernel matrix K is further defined, in which the entry at the junction of the m-
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th row and the n-th column is calculated by feeding the Euclidean distance between the

m-th and the n-th key points to the kernel function k(·). If only a single prediction was

ever attempted for each key point, the residuals for the dense field to fit the predicted

deformations of all key points could then be easily computed in the matrix form as

‖Φ −KΓ‖2. Here, the predicted deformation (in the transposed row vector form) of

the m-th key point is recorded in the m-th row of Φ and its transposed RBF coefficient

vector in the m-th row of Γ.

In order to accommodate multiple predictions of each key point, the expanded

matrix Φ and the confidence matrix W are introduced for fitting. All predictions, as

well as the confidences, are enumerated in Φ and W. Supposing that the p-th row of

Φ records a certain prediction for the m-th key point weighted with the confidence wij,

the entry of W at the junction of the p-th row, and the m-th column is set to wij while

all other entries in the p-th row are zero. The overall residuals in fitting predictions,

weighted by varying confidences, then become ‖Φ−WKΓ‖2.

Smoothness regularization is critically important to the reconstruction of the dense

field, in order to suppress any unrealistic warping that might be applied to brain tissues

(Rueckert and Schnabel, 2011). To this end, the kernel function k(·) is usually designed

in the style of low-pass filters (Myronenko and Song, 2010). Further, if K is positive-

definite, the regularization can be attained by solving (Girosi et al., 1995)

Γ = arg min
Γ
‖Φ−WKΓ‖2 + λTr

(
ΓTKΓ

)
, (2.11)

where λ controls the strength of the smoothness constraint. The RBF coefficients Γ,

which are needed to generate the dense deformation field according to (2.10), are thus

solvable in the following

(
K + λ

(
WTW

)−1
)

Γ =
(
WTW

)
WTΦ. (2.12)
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In (2.12), WTW is a positive-definite diagonal matrix, where the m-th diagonal entry

equals the sum of squares of the confidences for all predictions for the m-th key point.

The kernel k(·) is designed such that K is positive definite and k(·) has low-pass

response. Abundant choices of RBF kernels are available, e.g., the thin plate splines

(TPS) with polynomial decay in frequency domain (Bookstein, 1989; Chui and Ran-

garajan, 2003). Most RBF kernels, however, are globally supported, leading to a very

dense matrix K and thus suffering from scalability and numerical instability. As an

alternative, the compactly supported kernel (Genton et al., 2001) is used for the recon-

struction of the deformation field

k(‖x′ − x‖) =


(

1− ‖x
′ − x‖2

c

)
· exp

(
−‖x

′ − x‖2

2σ2

)
, if ‖x′ − x‖ ≤ c;

0, if ‖x′ − x‖ > c.

(2.13)

The kernel k(·) is obviously a truncated Gaussian, as it is set to 0 if beyond the compact

support (‖x′−x‖ > c). The resulted kernel matrix K is sparse and thus benefits solving

(2.12).

To alleviate the concern over the optimal parameters of the kernel, the multi-kernel

strategy (Floater and Iske, 1996) is further applied to recursively reconstruct the de-

formation field. To derive a set of RBF kernels kh(·), σ is fixed in (2.13) and c is

adjusted. The size of the compact support for kh(·), denoted by ch, is defined following

ch = ch−1/2. The reconstruction starts with the kernel c1. Then, the residuals after

using the kernel kh−1(·) are further fitted by the kernel kh(·), which shows better capabil-

ity in modeling deformations at higher frequencies. The iterative procedure terminates

when the stopping criterion is met, i.e. the residual ‖Φ −WKΓ‖2 is tiny enough, or

the number of allowed kernels is exhausted. In the end, the dense deformation field is

represented by integrating contributions from all kernels involved.
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2.3.5 The Prediction-Reconstruction Hierarchy

The P-R protocol can be naturally embedded into a hierarchical framework in or-

der to better tackle the high complexity in brain MR image registration. The hier-

archy gives a schematic solution that supports multi-resolution optimization of the

deformation field. That is, the deformation field predicted in an earlier level initial-

izes the next level of the higher resolution. In particular, by relating the variable t

in (2.6) to the low-middle-high resolutions, the P-R hierarchy is summarized as fol-

lows:

1: Load T , S, {Mi}, and {ψi(·)};

2: Initialize φ(·) to the identity transform;

3: Select a set of template key points X ⊆ ΩT ;

4: for level ∈ {1, 2, 3} do

5: Select a subset of key points Xlevel ⊆ X;

6: for x ∈ Xlevel do

7: Determine i to activate ψi(x) ((2.7));

8: Determine candidates of y that are correspondences to φlevel−1(x) ((2.9));

9: Acquire multiple predictions of φlevel(x) ((2.6));

10: end for

11: Reconstruct the dense deformation field φlevel(·) (Section 2.3.4);

12: end for

13: Save φ3(·) as the final output of φ(·).

The P-R hierarchy above functions similarly to state-of-the-art multi-resolution im-

age registration methods, which are needed for registering all intermediate images with

the template and for refining the predicted deformation field. In particular, HAMMER

(Shen and Davatzikos, 2002) is used to register all intermediate images to the template,

and explicitly match correspondence points for estimating the deformation field in reg-
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istration. The resulting deformation fields of the intermediate images are then used for

the prediction of the deformation that registers a new subject with the template. The

key points are abundant in context information and thus crucial to accurate alignment

of neuroanatomical structures. Meanwhile, the set of key points X can be pre-computed

once the template image is fixed. As in HAMMER, the key points are mostly located at

the transitions of individual brain tissues (i.e., WM, GM, and CSF). Then, Xlevel that

corresponds to a certain resolution by sampling X randomly is acquired. The subset

of key points Xlevel enlarges its size gradually when the level increases (i.e., 1.0 × 104

for the size of X1, 4.0× 104 for X2, and 1.6× 105 for X3 in the end). Finally, after the

P-R hierarchy predicts the dense deformation field that registers the subject with the

template, the estimated deformation field is refined, e.g., by feeding the field as initial-

ization and running diffeomorphic Demons (Vercauteren et al., 2009) and HAMMER

(Shen and Davatzikos, 2002) at the high resolution only, respectively.

2.3.6 Experimental Results

The P-R hierarchy is applied to both simulated and real populations for the evaluation

of its performance. For the sake of refining the deformation field predicted by the

P-R hierarchy, two state-of-the-art registration methods, i.e., diffeomorphic Demons

(Vercauteren et al., 2009) and HAMMER (Shen and Davatzikos, 2002), are used. The

refinements are conducted within the original image resolution (or the high resolution)

only and follow recommended configurations of the two methods. Details related to the

experiments on the individual populations are reported in the following.

Simulated Data.

With the representation in B-Splines, 100 deformation fields are simulated. The sim-

ulated image population is then generated by deforming a pre-selected template in
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accordance to the simulated deformation fields. The template is arbitrarily selected as

the fourth image in the LPBA40 dataset (Shattuck et al., 2008). In the pre-processing

steps, the template is isotropically resampled to the size of 220 × 220 × 184 and the

spacing of 1 × 1 × 1mm3. The control points of B-Splines in simulating deformation

fields are placed 32mm apart, while the coefficients for control points along all axes are

uniformly sampled from −20mm to +20mm. Exemplar slices from the template and

simulated images are shown in Figure 2.6. From all the simulated images, one is desig-

nated as the subject while the rest are used to form up the intermediate collection. The

deformation field that registers each intermediate image to the template is acquired by

inverting the field for simulation directly via ITK (http://www.itk.org). Moreover,

the inverse of the simulated field of the subject is regarded as the ground truth, against

which the deformation produced in image registration can be quantitatively compared.

Further, 10 different subjects are selected from the collection in order to repeat all tests.

The results are examined and compared from three perspectives, including the errors of

the predicted deformations of the key points, the errors incurred in the reconstruction

process, and the errors after the final refinement.

Template Samples of Simulated Images 

Figure 2.6: The template and samples of simulated images for the evaluation in Section
2.3.6.

Errors of Predicted Deformations of Key Points. The predicted deforma-

tion for each key point is examined and the error with respect to the ground truth is
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computed. For each subject, the mean error for all key points is first calculated. The

errors are further averaged across all 10 tests. The overall prediction error of the P-R

hierarchy is 2.116± 0.975mm compared to the ground truth. By loosening the require-

ments for consistency, the model of correspondence detection can be downgraded from

(2.9) to the simpler (2.8). Then, the overall error for all key points and all tests in-

creases to 2.304±0.984mm. Therefore, it is concluded that the correspondences for key

points can be predicted more accurately by examining the correspondence consistency

of neighboring points in the image space.

Errors of Reconstructed Deformation Fields. A set of compactly supported

RBF kernels is used for the reconstruction of the deformation field, based on the key

points and their previously predicted deformations. Each reconstructed deformation

field is compared with the ground truth, in order to evaluate the residual errors between

the two fields. First, only a single RBF kernel is used for the reconstruction of the field

(c = 9mm, λ = 0.05). The parameters are determined such that (1) no folding occurs

in the predicted deformation field due to λ, and (2) the residual error is made minimal

(3.115 ± 1.185mm) by manually inspecting outputs of different parameters (i.e., the

configuration of c). Then, the complete reconstruction method in Section 2.3.4 is

adopted. In particular, three compactly supported kernels (λ = 0.05) are cascaded,

with c1 = 10mm for the first kernel. The overall error is 3.020 ± 1.134mm, implying

that the reconstruction accuracy is improved without the need to tune the parameter

c. Note that the reconstruction errors are calculated by excluding non-brain areas in

the images already. The errors, as well as the standard deviations, for 54 regions of

interest (ROIs) are plotted in Fig. 2.7. The index, as well as the specific region of

interest (ROI), is referred to in Table 2.2. In Fig. 2.7, the red color represents the

errors caused by using a single RBF kernel, while cyan is for the errors caused by using

cascaded kernels for the reconstruction.
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Figure 2.7: The errors and the standard deviations of the deformation fields recon-
structed by individual methods: blue - reconstructed by TPS; red - reconstructed by
a single compactly supported RBF kernel; cyan - reconstructed by multiple compactly
supported RBF kernels. The ROI names corresponding to their indices are listed in
Table 2.2.

The comparison of the reconstruction error also involves TPS, which is often applied

for interpolating the deformation field in the literature (Chui and Rangarajan, 2003;

Wu et al., 2010; Yap et al., 2010). The error associated with the TPS-based interpo-

lation is 3.540± 1.384mm, as detailed errors in individual ROIs are colored in blue in

Fig. 2.7. Note that the compact-support RBFs provide better numerical scalability

than TPS-based interpolation here. In fact, TPS yields a very dense kernel matrix

that requires partitioning the image space into several blocks. Then, the deformation
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fields in individual blocks are independently interpolated for further integration. Dis-

tortions and errors are thus inevitably introduced through adjacency of neighboring

blocks. However, the compact-support RBFs result in a highly sparse kernel matrix,

thus solving the problem much more conveniently. Moreover, though TPS enables the

estimation of the affine transformation, in addition to the non-rigid deformation, be-

tween two images, it is not necessary here since all images are affinely registered already

and the focus of this work is on deformable image registration.

Errors of Refined Deformation Fields. The predicted deformation fields are

further refined via Demons (Vercauteren et al., 2009) and HAMMER (Shen and Da-

vatzikos, 2002), respectively. Each refined deformation field is compared with the

ground truth, so the residual errors between them can be calculated. The errors in

54 anatomical regions averaged over 10 tests, as well as the standard deviations, are

plotted in Fig. 2.8. With the P-R hierarchy for initialization, the average errors of

deformation fields are 0.730± 0.211mm (refined by Demons) and 0.462± 0.062mm (re-

fined by HAMMER). Alternatively, each subject can be registered with the template

directly by using registration methods in the traditional way. The error for the direct

registration via Demons is 0.837 ± 0.238mm. Similarly, the error for HAMMER is

0.532± 0.072mm. Therefore, the P-R hierarchy provides good initializations for image

registration, as the initialization-refinement strategy can effectively reduce the errors

of deformation fields compared to using conventional registration methods alone.

Real Data

Two real datasets of brain MR images are used in the following section for the evalu-

ation and comparison of the P-R hierarchy. In each dataset, a template and a subject

are randomly selected and designated; other images are then tagged as the intermedi-

ate. All intermediate images are segmented and then registered with the template via

50



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

0.5

1

1.5

2

ROI Index

E
rr

o
r 

(m
m

)

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
0

0.5

1

1.5

2

ROI Index

E
rr

o
r 

(m
m

)

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
0

0.5

1

1.5

2

ROI Index

E
rr

o
r 

(m
m

)

Figure 2.8: The errors and the standard deviations of the deformation fields esti-
mated/refined by individual methods: magenta - estimated by Demons; blue - refined
by Demons; red - estimated by HAMMER; cyan - refined by HAMMER. The ROI
names corresponding to their indices are listed in Table 2.2.

HAMMER (Shen and Davatzikos, 2002), while the key points in the template image

space are determined at the same time. The predicted deformation field for the subject

can be further refined via existing registration methods. Moreover, after registering the

subject with the template, the Dice ratio of anatomical ROIs can be computed as an

indicator of the accuracy of the registration. The Dice ratio measures the overlap of

corresponding ROIs in the deformed subject and the template, as the higher measure

typically implies that the two images are registered more accurately (Klein et al., 2009;
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Index ROI Index ROI

1 L Superior Frontal Gyrus 2 R Superior Frontal Gyrus
3 L Middle Frontal Gyrus 4 R Middle Frontal Gyrus
5 L Inferior Frontal Gyrus 6 R Inferior Frontal Gyrus
7 L Precentral Gyrus 8 R Precentral Gyrus
9 L Middle Orbitofrontal Gyrus 10 R Middle Orbitofrontal Gyrus
11 L Lateral Orbitofrontal Gyrus 12 R Lateral Orbitofrontal Gyrus
13 L Gyrus Rectus 14 R Gyrus Rectus
15 L Postcentral Gyrus 16 R Postcentral Gyrus
17 L Superior Parietal Gyrus 18 R Superior Parietal Gyrus
19 L Supramarginal Gyrus 20 R Supramarginal Gyrus
21 L Angular Gyrus 22 R Angular Gyrus
23 L Precuneus 24 R Precuneus
25 L Superior Occipital Gyrus 26 R Superior Occipital Gyrus
27 L Middle Occipital Gyrus 28 R Middle Occipital Gyrus
29 L Inferior Occipital Gyrus 30 R Inferior Occipital Gyrus
31 L Cuneus 32 R Cuneus
33 L Superior Temporal Gyrus 34 R Superior Temporal Gyrus
35 L Middle Temporal Gyrus 36 R Middle Temporal Gyrus
37 L Inferior Temporal Gyrus 38 R Inferior Temporal Gyrus
39 L Parahippocampal Gyrus 40 R Parahippocampal Gyrus
41 L Lingual Gyrus 42 R Lingual Gyrus
43 L Fusiform Gyrus 44 R Fusiform Gyrus
45 L Insular Cortex 46 R Insular Cortex
47 L Cingulate Gyrus 48 R Cindulate Gyrus
49 L Caudate 50 R Caudate
51 L Putamen 52 R Putamen
53 L Hippocampus 54 R Hippocampus

Table 2.2: The List of ROIs in the LONI LPBA40 Dataset

Rohlfing, 2012). All images in each dataset are tested as the template and the subject

exhaustively, as the detailed performances report in the following.

NIREP NA0 Dataset There are 16 images in the NIREP dataset, each of which

is labeled by 32 ROIs. The ROI indices and names are provided in Table 2.3. First,

the refinement upon the predicted deformation fields is conducted via Demons (Ver-

cauteren et al., 2009). Compared to the direct registration via Demons, the overall
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Dice ratio after refinement increases by 1.49%. Then, the deformation fields are refined

by HAMMER (Shen and Davatzikos, 2002), and the overall Dice ratio after refinement

is 2.57% higher than directly registering two images via HAMMER. The average Dice

ratios, as well as standard deviations, with respect to individual anatomical ROIs are

detailed in Fig. 2.9.

Index ROI Index ROI

1 L Occipital Lobe 2 R Occipital Lobe
3 L Cingulate Gyrus 4 R Cingulate Gyrus
5 L Insula Gyrus 6 R Insula Gyrus
7 L Temporal Gyrus 8 R Temporal Gyrus
9 L Superior Temporal Gyrus 10 R Superior Temporal Gyrus
11 L Infero Temporal Region 12 R Infero Temporal Region
13 L Parahippocampal Gyrus 14 R Parahippocampal Gyrus
15 L Frontal Lobe 16 R Frontal Lobe
17 L Superior Frontal Gyrus 18 R Superior Frontal Gyrus
19 L Middle Frontal Gyrus 20 R Middle Frontal Gyrus
21 L Inferior Gyrus 22 R Inferior Gyrus
23 L Orbital Frontal Gyrus 24 R Orbital Frontal Gyrus
25 L Precentral Gyrus 26 R Precentral Gyrus
27 L Superior Parietal Lobule 28 R Superior Parietal Lobule
29 L Inferior Parietal Lobule 30 R Inferior Parietal Lobule
31 L Postcentral Gyrus 32 R Postcentral Gyrus

Table 2.3: The List of ROIs in the NIREP NA0 Dataset

LONI LPBA40 Dataset The LPBA40 dataset contains 40 images, each of which

is labeled by 54 ROIs. The ROI indices and names are provided in Table 2.2. Similar

to the experiment on the NIREP dataset, the predicted deformation fields are refined

via Demons (Vercauteren et al., 2009) and HAMMER (Shen and Davatzikos, 2002),

respectively. Compared to the direct registration via Demons, the overall Dice ratio

after refinement increases by 1.47%. Compared to the direct registration via HAMMER,

the outcomes of the P-R hierarchy and the refinement improve the overall Dice ratio

by 1.88%. The average Dice ratios, as well as standard deviations, with respect to
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Figure 2.9: The overall Dice ratios and the standard deviations yielded after individual
methods in the registration of the NIREP dataset: magenta - directly registered by
Demons; blue - refined by Demons; red - directly registered by HAMMER; cyan -
refined by HAMMER. The ROI names corresponding to their indices are listed in
Table 2.3.

individual anatomical ROIs are detailed in Fig. 2.10.

In general, on both real datasets, the Dice ratios increase by refining the outputs

from the P-R hierarchy, compared to applying state-of-the-art registration methods

directly. The improvement upon the registration accuracy can be attributed to the

introduction of the predicted deformation field, which acts as initialization to the exist-

ing registration methods. In particular, the prediction provides an input deformation

for registration to optimize at the high resolution. Since the prediction is accurate

and reliable, the refinement via state-of-the-art registration methods essentially leads

to more accurate alignment of the subject and the template images.
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Figure 2.10: The overall Dice ratios and the standard deviations yielded after individual
methods in the registration of the LPBA40 dataset: magenta - directly registered by
Demons; blue - refined by Demons; red - directly registered by HAMMER; cyan - refined
by HAMMER. The ROI names corresponding to their indices are listed in Table 2.2.

2.4 Summary

In the conventional style, only two images are involved for a specific registration task

- the moving subject is deformed to the space of the fixed template following the

estimated deformation field. The pairwise scheme, though simple, faces enormous chal-

lenges, especially given high anatomical variation between the subject and the template.

In this case, the guidance from the intermediate images is able to predict the deforma-

tion for the subject to complete its registration with the template.
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The intuitive motivation here is that similar images should share similar deformation

when they are registered with the same template. This leads to image-scale guidance, in

which an intermediate image similar to the subject is always identified. The granularity

is further reduced to the patch scale, such that individual parts within the subject can

flexibly seek for guidance from different intermediate images. Similar to image-scale

guidance, patch-scale guidance relies on the observation that similar patches, though

from different images, are associated with similar deformations when all images are

registered with the template. Moreover, patch-scale guidance can be interpreted from

the perspective of correspondence detection.

Guidance from the intermediate images in the population is capable of better solv-

ing the pairwise registration between the subject and the template. It is true that

the introduction of the intermediate images has incurred additional complexity, as the

question has evolved beyond the scope of only two images. However, the advantages

associated with the intermediate images are undeniable. The intermediate images pro-

vide reliable deformation fields, which are usually manually inspected, to predict the

subject’s registration. The prediction, combined with the refinement, leads to higher

accuracy compared with the direct registration scheme. The guidance can also speed

up the estimation of the deformation in cases when time cost is more sensitive than the

potentially slight loss of accuracy (Chou et al., 2013; Kim et al., 2012).
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Chapter 3

Groupwise Registration of Image

Population

3.1 Overview

The high anatomic variability within individual human brains and the corresponding

MR scans leads to the dilemma, in which any single template can hardly yield a full

success in terms of atlas-based analysis or clinical diagnostic system (Toga and Thomp-

son, 2001). Although it is applicable to register each subject in a large-scale population

to a template via pairwise registration, the registration scheme introduces systematic

bias towards the template. For instance, when examining impacts of certain diseases

upon the brain morphology (e.g., brain tissue atrophy caused by AD), registration is

often necessary for analyzing the large-scale population that consists of both patient

images and normal controls. Although a normal control is commonly selected from

the population to serve as the template, the selection may increase the difficulty in

registering certain patient images with the template. Thus, additional noise for the

statistical analysis is introduced by registration, since the overall quality used to reg-

ister patient images with the template is less reliable compared to the registration of



normal controls. To increase the signal-to-noise ratio (SNR) for statistical analysis,

the registration of a large-scale population of individual images needs to be considered

within a unified registration framework, so that the overall registration accuracy for all

images in a population is maximized and the anatomical differences within or across

populations is better delineated. To this end, the groupwise registration technique

has gained increasing research interest recently due to its capability of avoiding the

determination of the template as well as the bias (Joshi et al., 2004; Wu et al., 2012a).

(a) (b)

Figure 3.1: Comparison of the schemes of pairwise registration and groupwise registra-
tion. In (a), a certain image (indicated by the red dot) in the population is selected as
the template, while other images (in blue) are independently registered with the tem-
plate in the pairwise style. In (b), all images (in blue) are registered in the groupwise
style and thus deformed towards the common space of the population (represented by
the red circle).

To alleviate the limitations of pairwise registration, groupwise registration is capable

of registering all images towards the common space of the population simultaneously.

Figure 3.1 compares the schemes of the conventional pairwise registration with its

groupwise counterpart. In the pairwise style, the template is often determined to be a

certain image in the population (e.g., the red node in Figure 3.1). All other images in

the population (indicated by the nodes in blue) are then registered with the template

independently. The selection of the template is obviously critical - the registration

could be extremely difficult if an outlier (e.g., S2 in Figure 2.1(c)) is selected as the
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template. By contrast, in groupwise registration, all images are deformed towards

the common space of the population (represented by the red circle in Figure 3.1(b)),

while the common space itself is revealed spontaneously during the registration process,

instead of being manually designated in the beginning.

Different from the objective function in pairwise registration (c.f. (1.1)), all images

in the population are involved simultaneously for groupwise registration. Assuming

that the large-scale population consists of subject images S = {Si|i = 1, · · · , n}, the

task of groupwise registration is to estimate a collection of deformation fields Φ =

{φi(·)|i = 1, · · · , n}, such that

Φ = arg max
Φ
{Similarity(S,Φ) + Regularization(Φ)}. (3.1)

All images in S are warped to the common space following the deformation fields

Φ. The (smoothness) regularization upon Φ is typically enforced on each individual

deformation field, or in the form
∑

i Regularization(φi). In the common space, the simi-

larities amongst all warped images (measured by Similarity(S,Φ)) are maximized. The

common space is also referred to as the atlas of the population. The atlas helps reveal

the image variation within the population, while comparing the atlases of individual

populations provides an intuitive glimpse of the inter-population analysis (Wang et al.,

2010b). Moreover, each pair of input images is connected via the common space (c.f.

Figure 3.2). That is, by warping Si in accordance with its deformation φ(·)i and then

applying φ−1
j (·) to it, the newly generated image Si ◦ φi ◦ φ−1

j shares the same space

with the subject Sj. In other words, Si is registered with Sj following the concatenated

deformation field φi ◦ φ−1
j .

In accordance with the various implementations related to Similarity(S,Φ) in (3.1),

most contemporary groupwise registration methods fall into three categories.
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Figure 3.2: In groupwise registration, each pair of subject images, Si and Sj, is con-
nected via the common space. Si is deformed to the common space following its de-
formation φi, and further deformed to the space of Sj following the inverse of the
deformation field of Sj, or φj.

1. Pairwise registration is capable of evolving into the form of groupwise registration,

e.g., by constructing the atlas of the population and then registering each subject

image with the atlas. A characteristic of groupwise registration is the lack of a

pre-determined template to serve as the destination towards which the subject

is deformed, as in pairwise registration. However, with an estimated atlas that

indicates the common space of the population, groupwise registration is reduced

to functioning as a set of pairwise registration tasks between each subject in the

population and the atlas. Mathematically, the similarities amongst all warped

images are measured by
∑

i Similarity(Si ◦ φi, S̄), where S̄ indicates the group

mean image. The group-mean-based similarity measure allows each subject Si

to identify the deformation field φi(·) and to complete the pairwise registration

between Si and S̄.

2. Without the need to construct the atlas, the population similarity is observable

as
∑

i,j,i6=j Similarity(Si ◦ φi, Sj ◦ φj) other than the previous group-mean-based

measure. Moreover, the evaluation of the similarity is often combined with a

graph-based structure that approximates the manifold of the image population.

Thus, only for pairs of images that are connected in the graph and similar in ap-
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pearances, the similarities between them need to be considered. With knowledge

of the image manifold modeled by the graph, a certain subject can estimate it

respective deformation pathways to other similar images in the population, i.e.,

via pairwise registration. The averaging upon all acquired deformations results

in the pathway that corresponds to the geodesic on the manifold to deform the

subject under consideration towards the common space, even though the common

space is never explicitly constructed (Jia et al., 2010; Ying et al., 2014).

3. Conventional pairwise techniques are used in both above categories, for registering

either a certain subject with the estimated group-mean image or a pair of similar

subjects. Nevertheless, it is possible to directly capture and maximize the coher-

ence within all images of the population in a complete groupwise sense, without

turning to pairwise registration for help. In this case, the similarity term in (3.1)

can typically be represented by
∫
x∈Ω

Coherence(S,Φ, x)dx. The coherence with

respect to x in the common space Ω, for example, is observable as the inverse of

the variance of intensities belonging to the set of points {Si ◦φi(x)|i = 1, · · · , n}.

Thus, the task of groupwise registration is to find {Φ(x),∀x ∈ Ω} such that the

coherence of all deformed images at x ∈ Ω is maximized. Meanwhile, it is also

implied that all points in the set {φi(x),∀i} should be correspondences to each

other and share the same location x in the common space Ω.

All three categories of groupwise registration methods and their implementations will

be detailed in Sections 3.2-3.4, respectively. Then, the issue of preserving sub-group

consistency in groupwise registration will be discussed in Section 3.5. A brief summary

of this chapter is provided later in Section 3.6.

61



3.2 The “Mean” of the Population

A straightforward and well-known solution of groupwise registration is to reduce the

problem into a series of pairwise registration tasks, with the participation of the iter-

atively estimated group-mean image. In this way, the complex groupwise registration

is successfully implemented via pairwise registration, for which a lot of sophisticated

methods are available in the literature. The group-mean-based groupwise registration

aims to solve the following problem

Φ = arg max
Φ

(
−
∑
i

‖Si ◦ φi − S̄‖2 +
∑
i

Regularization(φi)

)
. (3.2)

In particular, two iterative steps are involved in this optimization, which is also illus-

trated by Figure 3.3:

1. Estimate the group mean image S̄t (corresponding to the t-th iteration) to reveal

the common space of the population, based on all subject images {Si} and their

previously estimated deformation fields {φt−1
i };

2. Update φt
i based on the tentative group mean image S̄t, all subjects {Si}, and

their previously estimated deformations {φt−1
i }.

As in Figure 3.3(a), for example, the current group mean image, which is represented by

the red circle, is derived from all to-be-registered subjects (in the blue nodes). Then, in

(b), each subject starts to deform and tries to shorten their (geodesic) distances to the

tentative group mean image. Next, in (c), the group mean is further updated according

to the latest subjects, while each subject can further refine its deformation with respect

to the new group mean image.

A high-quality atlas is needed to reflect the common space of the population, while

all subjects regard the atlas as their destination in pairwise registration. Based on the
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(a) (b)

(c)

Figure 3.3: Illustration of the iterative group-mean-based groupwise registration
method. In (a), the group mean image (in the red circle) is estimated from all im-
ages in the population (represented by the blue nodes). In (b), each subject starts to
deform towards the tentatively estimated group mean via pairwise registration. In (c),
the group mean is updated according to the newly deformed subjects, while all subjects
continue deforming to the latest group mean image.

theory of the manifold of diffeomorphism, Joshi et al. (2004) derived an elegant solution

for the atlas in the “group-mean” form

S̄ =
1

n

∑
i

Si ◦ φi. (3.3)
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The group-mean formulation has inspired several follow-up works (Fletcher et al., 2009;

Ma et al., 2008; Zhang et al., 2013), in which the computation of the mean image is

shown to be non-trivial.

A major drawback of the conventional group-mean method (Joshi et al., 2004) is

that all subjects are treated equally when constructing the atlas, especially in the very

beginning of the groupwise registration process. Since the subject images are not well

aligned with each other prior to groupwise registration, averaging them in the intensity

domain typically results in a very fuzzy mean image. The blurry group-mean image

fails to provide clear guidance to the subsequent pairwise registration tasks, and leads

to (1) the loss of anatomical details which can hardly be recovered from the initial fuzzy

group-mean image; (2) the degradation of the alignment in each iteration of groupwise

registration due to the difficulty of establishing reliable correspondences between sharp

subject images and the fuzzy group-mean image; and (3) the slow convergence of the

groupwise registration due to the lack of clear and consistent information from the

fuzzy group mean image to guide the registration.

3.2.1 Sharp Mean: Motivation

The quality of the group-mean image, or its “sharpness” in particular, is important

for the performance of the group-mean-based groupwise registration. Indeed, the fuzzy

group-mean image is detrimental to groupwise registration due to the difficulty in regis-

tering an individual subject of clear anatomical structures with the group mean image

of fuzzy structures. Also, a fuzzy group-mean image challenges the convergence of op-

timization since it provides insufficient anatomical information to guide registration.

For example, in Figure 3.4, the group-mean method is applied to the simulated dataset

(c.f. Figure 2.2) for the sake of groupwise registration. A group-mean image is con-

structed in the conventional way by following (3.3) and averaging all input images. The
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iterative evolution of the group mean image starts from a very fuzzy instance, while

the finally estimated mean image (corresponding to the end of groupwise registration)

contains a lot of artifacts (c.f. Figure 3.4(a)). Moreover, further examinations confirm

that similar artifacts are observable on all deformed subjects, the samples of which

are also available in the figure. The reason is that the low-quality group-mean image

lacks clear structural information to guide the pairwise registration between each sub-

ject and the mean. Thus, the errors in estimating the subject deformation fields occur

from the very beginning of groupwise registration, and can never be corrected in the

following optimization. Although all subjects become similar to each other and yield

a less fuzzy mean image in the end, the artifacts basically reflect the fact that huge

errors are accumulated when the registration converges to an incorrect solution.

The drawback of the conventional group-mean method is outlined in Wu et al.

(2011), where a new way to compute the “sharp” group-mean image is proposed for

modeling the atlas in groupwise registration. The sharp-mean work consists of two

contributions:

1. It generalizes the conventional group-mean method by adaptively treating all sub-

ject images throughout the registration process. Only the registered subjects that

are close enough to the tentatively estimated group-mean image are involved in

updating the sharp-mean, since treating the subjects equally in the early regis-

tration stage leads to the irreversible loss of structural/anatomical details. As

registration progresses, deformed subjects are more likely to agglomerate to the

common space of the population. Then, more subjects will be allowed to par-

ticipate in the construction of the group-mean image, and their contributions

gradually become similar to each other. In this scenario, the group-mean image

is capable of approaching the common space iteratively, while its high “sharpness”

is well preserved.
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(a) (b)

(c)

Figure 3.4: Comparison of the conventional group-mean method and novel sharp-mean
method. In (a), the group-mean image is fuzzy in the beginning and contains artifacts
in the end. The low-quality mean image leads to failed cases in registering images in
all three branches. In (b), the sharp-mean retains consistent high quality throughout
the entire registration process, and leads to satisfactory results for all images in the
population. In (c), the evolutions of the group-mean S̄ and the sharp-mean S̃ are
projected onto the 2D PCA plane. The evolution starts from the hollow square and
moves to the solid square for both mean images.
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2. The performance of groupwise registration, measured by the accuracy in aligning

each subject with the group-mean image, is enhanced by introducing a tree-

structure for describing the distribution of the entire image population. It is non-

trivial for pairwise registration methods to handle the prevalent high anatomical

differences between individual brain images. As a remedy, a tree-based hierarchi-

cal registration method (Hamm et al., 2010; Jia et al., 2011a) is incorporated to

register each subject with the latest group-mean image. Specifically, the sharp-

mean is set as the root of the MST for the population, while each subject is

represented by a certain node. The tree only allows similar images to be directly

connected, while every subject is able to identify its path to the root. The ben-

efit of the tree-based registration is that (1) each subject is registered with a

connected counterpart that owns similar anatomies only; (2) the complete regis-

tration of the subject to the group-mean image is estimated by concatenating all

deformation fields along its pathway to the root.

The advantages of the sharp-mean method, as compared to the conventional group-

mean method, are illustrated by Figure 3.4(b). The sharpness of the mean image

is preserved consistently during its iterative evolution. Meanwhile, with the help of

MST to identify the optimal deformation pathway between each subject and the sharp

group-mean image, all deformed subject images are similar to each other and to the

sharp group-mean image at the end of groupwise registration. In Figure 3.4(c), the

evolution of the sharp group-mean image, as well as the conventional group-mean image,

is projected onto the 2D PCA plane. Both the sharp group-mean (in red, noted by S̃)

and the conventional group-mean images (in blue, noted by S̄) evolve from the hollow

square (corresponding to the start of registration) to the solid square (corresponding to

the end of registration). Note that the sharp-mean image coincides well with the root

that is used to simulate the entire dataset, while the conventional group-mean image
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deviates from the distribution of the population (i.e., in three branches of the tree).

3.2.2 Objective Function and Optimization

Instead of using arbitrarily equal weights, the contributions from individual subjects to

the construction of the sharp-mean image should be integrated dynamically during the

groupwise registration process. Moreover, each anatomical region in a certain subject

may have its own unique characteristic other than the respective region in the group-

mean. Therefore, applying the same weight to all anatomical regions of a certain subject

may lead to uncontrolled fuzziness across different anatomical areas of the group-mean,

even though varying weights are assigned to individual subjects. To mathematically

formulate these issues and solve the construction of the sharp-mean, two strategies are

utilized:

1. A distance measure for each point x ∈ Ω, with respect to the tentative mean

image S̃t and the previously deformed subject St−1
i , is defined as

D(St−1
i , S̃t, x, b) =

∑
y,‖y−x‖≤b

‖St−1
i (y)− S̃t(y)‖2. (3.4)

Here, b is related to the size of the patch centered at the point x. The term

D(St−1
i , S̃t, x, b) captures the overall intensity difference between the correspond-

ing local image patches (centered at x) in the images St−1
i and S̃t. Although other

advanced distances are applicable, the simple intensity difference is used here for

easy computation. Meanwhile, recall that in St−1
i = Si ◦ φt−1

i , the distance mea-

sure is also dependent on the deformation field φt−1
i , albeit implicit. It is worth

noting that D(·) approaches to the distance between the two entire images if b is

large enough, while it becomes a voxelwise difference when b shrinks to 1. Since

registration usually follows global to local refinement, the value of b is high in the
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initial registration stage and then decreases gradually.

2. In order to treat each subject adaptively, the variable ωt
i(x) (satisfying

∑
i ω

t
i(x) =

1) weights the contribution of the warped subject St−1
i to constructing the group-

mean image at a particular location x. In the initial stage of groupwise regis-

tration, all subjects are not well aligned and their averaging typically results in

a fuzzy mean image. Thus, to keep the group-mean sharp throughout registra-

tion, only those deformed subjects {St−1
i } that are similar enough to the tentative

group-mean image S̃t are qualified with high weights ωt
i(x). With the progress of

registration, all subjects are likely to agglomerate towards the population center.

At that moment, all subjects {St−1
i } are allowed to contribute equally for the

unbiased estimation of the group-mean, as long as they are similar enough to the

group-mean image. In other words, given deformed subjects that are well aligned,

little fuzziness is introduced and the group-mean image keeps high sharpness. The

dynamic changes of the weights are controlled by requiring the entropy of the set

{ωt
i(x)}, i.e., −ωt

i(x) · log(ωt
i(x)), to increase while registration progresses.

With the two strategies in the above, the sharp-mean based groupwise registration

method needs to maximize the following objective function

∑
i

(
−
∫

Ω

(
ωi(x) ·D(Si ◦ φi, S̃, x, b) + r · ωi(x) · log(ωi(x))

)
dx+ Regularization(φi)

)
,

(3.5)

where
∑

i ω
t
i(x) = 1 is satisfied for any x ∈ Ω and the scalar r controls the penalty of

high distance from Si to S̃. Compared with the conventional group-mean method, the

new formulation is generalized by introducing the adaptive weights ωi(x) for not only

each subject Si but also every spatial location x in the common space.

The optimization related to (3.5) is accomplished by decoupling it into two alter-

nating sub-problems, i.e., estimating the sharp-mean image and then the deformation
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fields for all subjects. First, given the previously deformed subjects St−1
i (with respect

to φt−1
i ), the optimal ωt is computed. The mean image S̃t is tentatively estimated

according to ωt. Second, using φt−1
i as the initialization, the pairwise registration algo-

rithm, e.g., diffeomorphic Demons (Vercauteren et al., 2009), is used to calculate the

deformation field φt
i for each subject Si towards S̃. The iterative solution allows all

subjects to deform toward the mean image, while the deformed subjects become more

similar to each other gradually.

Adaptive Estimation of Sharp Mean.

Given the subject image Si and its previously estimated deformation φt−1
i (with respect

to the mean S̃t−1), the latest deformed subject is St−1
i = Si ◦ φt−1

i . After isolating all

variables other than ω and S̃ in (3.5), the optimal solution to ωt
i(x) is computed by

letting the derivative of the objective function vanish:

ωt
i(x) = exp

(
−D(St−1

i , S̃t−1, x, b)/r
)
. (3.6)

The weight ωt
i(x) is further normalized following ωt

i(x)← ωt
i(x)/

∑
i ω

t
i(x). Two param-

eters are involved here in determining ωt
i(x), i.e., the temperature r and the patch size

b. In particular, r controls the fuzziness of the mean image, acting as the inverse tem-

perature in the annealing system. Initially, the value of r is low, i.e., the contribution of

a certain subject to constructing the group-mean image decays in an exponential way

unless it is very similar to the tentative mean image. With the progress of groupwise

registration, all subjects become more similar to the common space. Then, the temper-

ature r increases to encourage equal weights for all deformed subjects. In general, the

temperature r(t), corresponding to the t-th iteration, is determined as r(t) = r0 +∆r · t.

The term r0 is the initial temperature and ∆r denotes the iterative temperature in-

crease. To cater for possible misalignment, especially in the initial stage of groupwise
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registration, b is able to adaptively control the scale, i.e., from global to local fashion,

in measuring the image similarity. That is, the size of the patch, controlled by b, drops

from the entire image space to a single voxel iteratively and linearly during the regis-

tration process. In this way, the weight ωt
i(x) is different across not only the subjects

but also spatial locations.

After determining the weight ωt
i(x), the sharp-mean image is computed as

S̃t(x) =
∑
i

ω̃t
i(x) · St−1

i (x), (3.7)

where ω̃t
i(x) ∝∑y,‖y−x‖≤b ω

t
i(y) and is further normalized to satisfy

∑
i ω̃

t
i(x) = 1. It is

clear that (1) the group mean image is the weighted average of all previously registered

subjects with respect to the common space; (2) the weight ωt
i(x) is adaptive to each

subject; (3) the weight ωt
i(x) is also locally adaptive as it is computed from the local

patch discrepancy.

It is worth noting that S̃1 still follows the conventional simple average in the first

iteration. Alternatively, the weights ωt
i(x) are calculated by regarding the median

image in the population as S̃0 for reference. The sharpness of S̃1 is then guaranteed.

To identify the median image, the distance between two images, i.e., Si and Sj, is

defined by (3.4) as
∫
x
D(Si, Sj, x, b)dx. Then, the median image is determined to be

the subject, with minimized overall distances to all other images in the population.

Moreover, no bias in estimating the mean image is introduced by the median image in

that: (1) the median image is only used as the reference to calculate the contribution

of each subject, instead of being directly used as a template for registration; (2) the

temperature r is gradually increased to ensure that all warped subjects have an equal

opportunity to contribute to constructing the group-mean image, as long as the subject

images are well registered in the common space.
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Incremental Optimization of Deformation.

With the latest sharp-mean image S̃t, the task for the subject Si is to incrementally

update its deformation φt
i(·) from the existing field φt−1

i (·) via pairwise registration.

However, the high anatomical variations among the images may hinder the pairwise

registration problem from being solved correctly and efficiently. Assuming all subjects

reside on the manifold, it is relatively easy for the pairwise registration algorithm to

align two nearby subjects, as opposed to two faraway subjects. In light of this, a tree-

based registration method is applied, where each subject only needs to be registered

with other similar images.

For the sake of tree-based registration, the image distance between each pair of

images in the augmented population {{St−1
i }, S̃t} is computed first. Then, a fully

connected graph is built by regarding each subject as a node and assigning image

distances to respective edges. Next, MST is extracted from the graph, using Kruskal’s

algorithm, where S̃t is always set as the root node since the goal here is to estimate the

deformation from each subject to the mean image. In this way, all images are organized

into a tree structure where only similar images are connected. The advantage of using

the tree-based registration is obvious - it allows the subjects to be registered more

robustly and accurately to the tentative group-mean, especially for the subjects that

are far away from the common space. Note that, in estimating φt
i(·), both φt−1

i (·) and

the deformations related to individual paths of the tree are only used as initializations.

The deformation φt
i(·) is always optimized in the direct pairwise registration between

Si and S̃t.

Compared to the conventional group-mean method, the advantages of sharp-mean-

based groupwise registration include: (1) the sharp-mean image is adaptively con-

structed from all aligned subjects, instead of a simple arithmetic average; (2) the con-
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tribution of each subject is dynamically adjusted throughout groupwise registration

in the annealing scenario; (3) the sharpness of the group-mean image is always pre-

served; and (4) the accuracy of groupwise registration in each iteration is improved by

using MST to guide pairwise registration between the subject and the mean image. In

conclusion, the method of the sharp-mean in groupwise registration is summarized as

follows

1: Initialize parameters and variables, including t, r0, ∆r, b0, {Si}, {φ0
i (·)};

2: Compute the median image of the population and set it as S̃0;

3: loop

4: Compute the adaptive weights {ωt
i(x)};

5: Compute the sharp-mean S̃t in accordance with {ωt
i(x)};

6: Compute image distances and build MST;

7: Register Si to S̃t in pairwise registration;

8: Deform Si in accordance with {φt
i(·)} to generate St

i ;

9: if converged then

10: Abort loop;

11: else

12: t← t+ 1

13: end if

14: end loop

15: Save {φt
i(·)} as the outputs.

3.2.3 Experimental Results

Evolution of Group-Mean Images.

It is claimed that the sharp-mean method is capable of producing an atlas of higher

“sharpness” than the conventional group-mean method. To verify the quality of the
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mean image after groupwise registration, a population of 18 elderly brain MR images is

used here. The size of each image in the population is 256× 256× 124 and the spatial

resolution is 0.9375 × 0.9375 × 1.5mm3 per voxel. Sample slices of all 18 images are

arranged in the MST and shown in Figure 3.5. Note that the MST is also used by

the sharp-mean method for estimating the deformation field between each individual

subject and the group-mean image.

Figure 3.5: The MST consists of sample slices from 18 elderly brain MR images, which
need to be registered towards the common space of the population.

The conventional group-mean method starts from a very fuzzy group mean, the 3D

rendering of which is shown at the left end of the top row in Figure 3.6. By contrast,

the sharp-mean with detailed anatomical structures can be constructed even from the

very beginning of groupwise registration as in the bottom row of Figure 3.6. Though

the quality of the conventional group-mean improves quickly during the iterative opti-

mization, the final atlas still suffers from loss of detail compared to the outcome of the
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sharp-mean method. The fuzzy atlas in the conventional group-mean method implies

that the quality of the groupwise registration of all images in the population is lower.

Meanwhile, it is worth noting that the initial sharp-mean is highly similar to the fi-

nal atlas, indicating the capability of the method to approximate the unbiased atlas

precisely and reliably even though all images are not well registered yet.

Figure 3.6: The conventional group-mean method starts with a fuzzy atlas, while the
sharp-mean method is able to construct a high-quality atlas in the beginning of group-
wise registration. Though the mean images are iteratively improved, the final atlas of
the conventional method is still worse than the sharp mean image.

Dice Ratios.

To quantitatively evaluate the accuracy of groupwise registration, the Dice ratios are

evaluated using two individual populations of real images, i.e., the NIREP NA0 dataset

and the LONI LPBA40 dataset. The NIREP dataset consists of 16 images, each with 32
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anatomical ROIs, while 40 images with 54 ROIs are available in the LONI dataset. After

groupwise registration, all images as well as their ROIs are deformed to the common

space, where the Dice ratios can be computed. Different from pairwise registration, the

ROIs belonging to the common space need to be voted first. That is, the label for a

certain point in the common space is determined as the most frequent ROI label for

all points at the same location in deformed subjects. After all ROIs are voted in the

common space, each registered image can compute the Dice ratio with respect to the

common space for every ROI.

The overall Dice ratio for the sharp-mean method, averaged over all subjects and all

ROIs in the NIREP dataset, is 79.31%, compared to 75.75% yielded by the conventional

group-mean method. Moreover, the results are also compared with pairwise registra-

tion, in particular, 70.60% for HAMMER. Similarly, the scores for the LONI dataset

are 79.26% (sharp-mean), 78.07% (conventional group-mean), 65.22% (HAMMER),

respectively. Note that in pairwise registration via HAMMER here, the template is

determined to be the median of the population, while the sum of the image distances

(in SSD) from the median to all other images in the population are minimal. The

Dice ratio again is evaluated in accordance to the ROIs voted in the common space,

instead of the template-associated ROIs, in order to be consistent in comparing with

other groupwise registrations. Detailed Dice ratios with respect to individual ROIs are

plotted in Figure 3.12 (for the NIREP dataset) and Figure 3.13 (for the LONI dataset),

respectively.

The scores reported in the above lead to the conclusion that both group-mean-based

groupwise registrations achieve higher registration accuracy than the pairwise method.

Although pairwise registration is designed to handle each subject and the template

well, no connection between individual subject images is enforced during their inde-

pendent registration towards the template. In groupwise registration, however, all
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subjects are registered with the group-mean image, while the mean image is also it-

eratively refreshed according to the deformed subjects. In this way, the relationship

across different subjects is incorporated into groupwise registration, which contributes

to better registration accuracy in the end. Moreover, the sharp-mean method outper-

forms the conventional group-mean method on both real datasets, partly due to two

reasons: (1) the sharp group-mean and its clear anatomical structures provide more

accurate context information to guide image registration, and (2) the MST structure

in the sharp-mean method alleviates the challenge of difficult image registration with

high anatomical variation.

3.3 Graph Theory in Groupwise Registration

In the group-mean method (c.f. Section 3.2), the common space is explicitly instanti-

ated first and all subject images are then registered with the mean image independently.

The interaction between a certain subject and the group-mean image is global, in the

sense that pairwise registration has to be conducted between the subject and the group-

mean, even though the two images might be very different anatomically and faraway on

the image manifold. As an alternative, Jia et al. (2010) proposed a method named AB-

SORB, which is short for Atlas Building by Self-Organized Registration and Bundling,

for the sake of groupwise registration. ABSORB avoids the explicit estimation of the

common space, and thus differs from the group-mean method.

In ABSORB, a graph is built to approximate the manifold of the image population.

In order to register each subject image to the common space in an iterative manner,

two strategies, namely self-organized registration and image bundling, are utilized.

1. The self-organized registration estimates the deformations from each subject to

a subset of its neighbors in the graph, which are (1) similar to the subject under
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consideration in appearance and (2) closer to the common space than the subject.

By warping the subject in accordance with the averaged deformation, the self-

organized registration is capable of condensing the distribution of the population

iteratively, though only local interactions between similar subjects are considered.

2. With the progress of ABSORB, certain nearby subjects become close enough to

each other and are bundled into a sub-group spontaneously. To this end, the

image bundling leads to the hierarchical registration structure in ABSORB. That

is, at the high level, the registration considers the representative images of all sub-

groups bundled from the previous low level. A pyramid of images is thus built

automatically, allowing each subject to access neighbors from nearby sub-groups

and to quickly deform towards the common space. The atlas at the common

space of the population is revealed once the registration arrives at the utmost

level in the hierarchy.

3.3.1 Self-Organized Registration

To deform a subject Si towards the common space at iteration t, the self-organized reg-

istration is first performed. Specifically, a subset of neighbors of St−1
i , resulting from

Si and its previous deformation φt−1
i , is selected according to the graph for St−1. Then

the incremental deformation field that warps St−1
i to St

i is calculated by combining all

deformation fields between St−1
i and its selected neighbors. Note that the deformation

fields between St−1
i and its selected neighbors can be obtained via any pairwise reg-

istration methods, while diffeomorphic Demons (Vercauteren et al., 2009) is applied

for demonstration here. The iterative solution of the self-organized registration is il-

lustrated in Figure 3.7. Suppose each node, corresponding to a subject, is connected

with its two qualified neighbors in the graph. The deformations from each subject
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to its neighbors, indicated by dashed arrows, are estimated via pairwise registration.

Then, in Figure 3.7(b), every node is allowed to move following the averaged deforma-

tions that are previously estimated. The tentative warps of all subjects thus result in a

more compact distribution of the population. The above procedures are further applied

iteratively, until all images are well aligned in the common space.

(a) (b)

(c)

Figure 3.7: Illustration of self-organized registration. In (a), each subject estimates
its deformations towards all qualified neighbors. In (b), the deformations are averaged
and applied to warp individual subjects. In (c), the above procedures are iteratively
invoked until all subjects are registered to the common space in the groupwise manner.
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Selection of Neighbors.

The selection of neighboring subjects is critical to self-organized registration. A pro-

cedure is thus designed to adaptively qualify the subset of neighbors for each subject

by considering both local and global information with respect to the distribution of

the population. Specifically, a metric is first defined to measure the distance between

any pair of subjects in the population. Then a graph is built and updated iteratively

to help locate the global center, which approximates the common space in groupwise

registration. Finally, the selection of neighboring subjects is applied to each subject

and its deformation field is later computed from the qualified neighbors.

In ABSORB, the intensity difference, or SSD, is used to capture the distance be-

tween two images, though other metrics are also applicable (Hamm et al., 2010; Munsell

et al., 2012; Seghers et al., 2004). To better instantiate the manifold that captures the

intrinsic distribution of the population, a k -NN isomap (Tenenbaum et al., 2000) is con-

structed from the pairwise image distances. Then, the distance of Si and Sj, denoted

by d(Si, Sj), is updated as the shortest geodesic distance between the two images on

the k -NN isomap. Note that the superscript t− 1 or t related to the current iteration

is temporarily ignored for convenience.

To ensure that the groupwise registration of the population is conducted on the

learned manifold, the interactions between individual subjects in a single iteration are

constrained within local neighborhoods only. That is, for the subject image Si at the

iteration t, the incremental deformation of the subject is locally determined with respect

to its neighbors, while the subject approaches the common space of the population

in the iterative manner. The local restriction is important, especially in the early

stage of registration, because it is always much easier to register two nearby subjects

with similar structures than to register images that are faraway from each other. As

the result, both global and local information for the distribution of the population is
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combined by embedding the global information into the selection of local neighbors.

For example, when qualifying the neighbors of a certain subject, only images that are

closer to the global center than the subject under consideration are chosen from its

neighborhood. It is worth noting that the global center is not serving as the common

space or the template, to which each subject is registered directly. The iteratively

updated global center approximates the common space, and provides guidance for the

selection of qualified neighbors only.

The global distribution of the population is embedded into the selection of local

qualified neighbors, as only those closer to the global center are chosen. It implies

that the determination of the global center is also critical to the performance of the

algorithm. In particular, the median subject of the population is selected from the

learned manifold as the global center due to its robustness to the outliers (Hamm

et al., 2010). The median of the population is defined as the subject that minimizes

the overall distances from this subject to all other subjects in the population. To

this end, an undirected graph, the edges of which are assigned the distances between

connected subjects, helps the identification of the median subject. Instead of using

a fixed graph throughout the registration process, a dynamic graph is used, which is

updated from all tentatively deformed subjects after each iteration. The global center

is then acquired from the graph, or the manifold, accordingly.

The determination of the global center helps subjects adjust their incremental de-

formations adaptively. However, if the graphs in different iterations are generated

independently, the global center may change dramatically, especially in the early stage

of registration. Thus, the estimated deformation for each subject would lack smooth-

ness from the perspective of the entire registration process. A stable global center can

provide a consistent guidance for subjects to avoid unnecessarily zigzagging paths. To

obtain such a consistent but not fixed global center, an iterative neighborhood graph
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(ING) is derived from the k -NN isomap. The weight assigned to the edge connecting

two images St
i and St

j in ING is defined as

w(St
i , S

t
j) =


d(St

i , S
t
j) + α · w(St−1

i , St−1
j ), t > 0;

d(St
i , S

t
j), t = 0.

(3.8)

The scalar α ∈ (0, 1) provides relaxation in terms of the previously calculated distances

to include the distance information in previous iterations. Based on the weight assigned

to each edge in ING, the median image, or the global center at the current iteration,

can thus be selected.

With ING and the global center, the neighbors for each subject are examined and

qualified accordingly. The desired neighbors should satisfy two criteria: (1) the neigh-

bors are similar to the subject (i.e., within its neighborhood), and (2) the neighbors

are more similar to the global center compared with the subject under consideration.

Note that, for a certain subject, the number of its qualified neighbors is allowed to be

zero only if the subject is the global center. In general, the neighbor selection strat-

egy successfully embeds the global information of the population into the selection of

the local neighbors for each subject, which is a desirable property of the self-organized

registration.

Average of Deformations.

To complete self-organized registration, each subject needs to estimate its incremental

deformation by averaging the deformation fields with respect to its selected neighbors.

The averaging here is conducted within the domain of deformations, which signifi-

cantly differs from the averaging of intensities as in Section 3.2. In particular, the

subject St−1
i follows an unknown incremental deformation ∆φt

i to deform towards the

common space. With the subset of selected neighbors {Ṡt−1
j |j = 1, · · · ,mi}, pairwise
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registration is performed between St−1
i and each Ṡt−1

j via diffeomorphic Demons (Ver-

cauteren et al., 2009), respectively. The resultant deformation field, ψi→j, is further

inverted and denoted by ψ−1
i→j to describe the deformation that registers Ṡt−1

j to St−1
i

(Christensen and Johnson, 2001). The overall incremental deformation for St−1
i is thus

computed as

∆φt
i =

(
1

m
·

m∑
j=1

ψ−1
i→j

)−1

. (3.9)

To emphasize the effect of the neighbors which are closer and more similar to the

subject, image distances can also be incorporated as

∆φt
i =

∑m
j=1 exp

(
w(St−1

i , Ṡt−1
j )/2σ2

)
· ψ−1

i→j∑m
j=1 exp

(
w(St−1

i , Ṡt−1
j )/2σ2

)
−1

. (3.10)

For each St−1
i in iteration t, the above procedure yields the incremental deformation

field ∆φt
i. Then, the subject is deformed following St

i = St−1
i ◦∆φt

i. The newly deformed

subject St
i moves closer to the current global center. Note, it is possible that the global

center cannot identify any qualified neighbors from the population. In this case, an

identity transformation is temporarily used. Due to the fact of the iteratively dynamic

global center, the specific image is capable of locating its deformation towards the real

common space in the following iterations via self-organized registration.

3.3.2 Image Bundling

With the self-organized registration introduced in the above, each subject in the pop-

ulation deforms towards the common space iteratively. However, it is possible that

several nearby subjects converge spontaneously, thus partitioning a sub-group from the

entire population. Each sub-group may become stable and consists of compactly dis-

tributed subjects, while individual sub-groups are far away from each other. In this

83



case, qualified neighbors for a certain subject are mostly restricted within the sub-

group to which the subject belongs. In order to break the barriers of sub-groups and

to further optimize the results of groupwise registration, image bundling is a necessary

measure here.

Individual bundles, which correspond to sub-groups of various sizes, need to be iden-

tified first. Given a set of tentatively registered subject images, a clustering method

i.e., affinity propagation (AP) (Frey and Dueck, 2007), is adopted to bundle the images

into sub-groups. Then, the representative image of each sub-group, determined auto-

matically by AP, forms a new population of a much smaller size. The same procedure

of self-organized registration is applied to the new population (at a higher level), to

further register sub-groups of images together.

Figure 3.8: Image bundling leads to a hierarchical registration structure. The represen-
tative images (in squares) of individual low-level sub-groups (in boxes) are considered
at the high level, where self-organized registration is recursively applied. When all
images under consideration are within a single bundle, the image pyramid reaches its
top level to complete groupwise registration.

The detail of the hierarchical registration structure is illustrated in Figure 3.8. Ini-

tially, all the subjects in the population are placed on the bottom level (Level 1),

where self-organized registration is performed on each of them, including the selec-

tion of neighboring subjects and the combination of multiple deformations to qualified

neighbors. The AP clustering method is then applied to detect whether the registered
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images have fallen into a stable sub-group. If the clustering results on St−1 and St are

not exactly the same, both self-organized registration and image bundling are repeated

for iteration t. If the clustering results in two consecutive iterations do not change, i.e.,

both the sub-groups and their representative images are exactly the same, the group-

wise registration framework goes to the higher level and initiates a new population

containing all representative images. The same procedures are repeated on this new

population, and the iterative registration will terminate once the representative images

are clustered into a single sub-group, or when the registration reaches the top of the

hierarchical structure.

It is worth noting that the registration accuracy does not decrease as the regis-

tration procedure moves upwards in the hierarchical structure. Also, the smoothness

of the estimated deformation fields is preserved, as justified by the following reasons.

First, the images in each sub-group have been well aligned to each other upon identi-

fication of the sub-group. Therefore, it is reasonable to use the representative image

to select a common set of qualified neighbors for all non-representative images in the

sub-group. Second, each image always has a chance to be registered individually with

respect to its new qualified neighbors (selected by its representative image). This in-

dicates that the deformation field estimated for the representative image is directly

applied to non-representative images. Therefore, the registration accuracy is guaran-

teed for the non-representative images, since all of them are separately registered with

the qualified neighbors (selected from the representative images of other sub-groups).

Third, the previously estimated deformation field for each image is regarded as a good

initialization for the current registration of the same image, thereby no discontinuities

of the deformation field are accumulated. When each image is registered to its new

qualified neighbors in every iteration, the smoothness of the deformation field is always

enforced.
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In the utmost level, all subjects are registered very close to each other, and the rest

of the representative images are compactly distributed within a single bundle. The task

of groupwise registration then finishes. The average of all deformed subjects is regarded

as the final atlas, which reflects the common space of the population. The sharpness

of the atlas is well preserved, with clear anatomical structures and boundaries.

3.3.3 Experimental Results

Different from the group-mean method in Section 3.2, subject images only interact

with other images in the population that are similar in appearance. However, with

local interactions only, all subjects are still capable of identifying and agglomerating to

the common space. After groupwise registration, the mean of all deformed subjects is

computed and regarded as the atlas of the population. Figure 3.9 compares the atlas

of the NIREP dataset estimated by ABSORB with the outcome of the group-mean

method (Joshi et al., 2004). The atlas of ABSORB clearly outperforms the fuzzy mean

image by Joshi et al. (2004), especially in gyri and sulci highlighted by red arrows. It is

worth noting that the atlas is never optimized directly in ABSORB, though the quality

of the atlas is better and implies more superior registration quality.

Quantitatively, the overall Dice ratios for ABSORB are 78.86% for the NIREP

dataset and 79.50% for the LONI dataset. Both scores are significantly better than the

conventional group-mean method Joshi et al. (2004) and comparable with the sharp-

mean method Wu et al. (2011). Detailed Dice ratios with respect to individual ROIs

are plotted in Figure 3.12 (for the NIREP dataset) and Figure 3.13 (for the LONI

dataset), respectively. The results indicate the capability of ABSORB to achieve top-

class groupwise registration accuracy, even though the atlas or the common space is

not explicitly estimated.
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Figure 3.9: The atlas images of the NIREP brain dataset built by the group-mean
method (a), ABSORB (b). The atlas generated by ABSORB can keep more anatom-
ical details than that generated by the group-mean method, especially on the cortical
regions marked by red arrows.

3.4 Features and Groupwise Correspondence

It is noted that, in pairwise registration, a point in the subject is deformed to the

location of its correspondence in the template image space. Similarly, groupwise regis-

tration can also be interpreted from the perspective of correspondence detection. That

is, a set of correspondence points from individual subject images should be deformed

to the same location in the common space, even though the common space (e.g., the

atlas) might not be explicitly constructed. To reduce ambiguities in correspondence

detection for groupwise registration, the concept of multiple features is introduced by

Wang et al. (2010a) and further extended in Wu et al. (2012b). In both works, an

attribute vector ~ai(x) = {aji (x)} is assigned to describe the point x of the subject Si. A

metric then measures the coherence of correspondences with respect to the location x

in the common space Ω and in accordance with the set of attribute vectors {~ai(φi(x))}

acquired from individual subject images. In general, the objective function of groupwise
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registration becomes

Φ = arg max
Φ

(∫
x∈Ω

Coherence ({φi(x)}) · dx+
∑
i

Regularization(φi)

)
. (3.11)

Note that the term Coherence ({φi(x)}) is defined from the attribute vectors {~ai(φi(x))}.

By solving the optimization problem in the above, the deformation fields for all images

in the population can be estimated simultaneously in groupwise registration.

3.4.1 Attribute Vector

Multiple features encapsulated by the attribute vector enable the correspondence de-

tection to be conducted more precisely for better image registration. The composition

of the attribute vector is quite flexible and can be easily fine-tuned to cater for differ-

ent applications. Besides complicated feature descriptors that are popular in computer

vision, even simple attributes can contribute to yield high registration accuracy. Under

the assumption that intensity transitions should be aligned at the same location after

two images are well registered, the intensity gradients are taken as effective feature de-

scriptors (Haber and Modersitzki, 2006; Staring et al., 2009). Inspired by these works,

the attribute vector in Wang et al. (2010a) is defined as consisting of the point intensity,

as well as the gradient of intensities.

More sophisticated features, which are anatomically meaningful, are adopted by Wu

et al. (2012b). After segmenting each image into tissues of WM, GM, and CSF, the

attribute vector consists of three parts: (1) the tissue edge information related to the

point; (2) the tissue type at the point; and (3) the geometric-moment-invariants (Lo

and Don, 1989) of the point with respect to the three tissues. The edge information

reflects whether the point is adjacent to tissue boundaries, while the tissue type of a

certain point is also recorded in the attribute vector. The geometric-moment-invariants
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model the distributions of individual tissues within the neighborhood of a center point.

Note that the composition of the attribute vector in Wu et al. (2012b) is identical with

that in HAMMER (Shen and Davatzikos, 2002), where the attribute vector proves to

be successful in pairwise registration due to its capability of telling individual points

apart.

3.4.2 Importance Sampling

Even though the attribute vector brings in more discrepancy capability than a single

feature (e.g., the intensity only), the task of correspondence detection is still difficult

in brain MR images. The ambiguity is high and prevalent, leading to the issue that

accurate and exact correspondences are usually hard to acquire for a majority of points

in the image space. To this end, it is better to apply correspondence detection to

only a limited number of key points, where salient features exist and lead to relatively

reliable correspondence detection. Denoting the set of key points as X, the coherence

term in (3.11) is then discretized from
∫
x∈Ω

Coherence(·)dx to
∑

x∈X Coherence(·), while

each x ∈ X can be treated independently. The key points and their correspondences

essentially contribute to the estimation of the dense deformation fields.

The importance sampling in Wang et al. (2010a), which collects the set of key points

X from the implicit common space Ω, is in close relationship with the intensity gradient

that is already part of the attribute vector. In particular, the gradient magnitude

maps of all subject images are averaged, smoothed, and then normalized in the entire

image space. The produced values signify the importance of each point, given the

assumption that aligning tissue transitions (of high intensity gradients) is critical in

image registration. Based on the importance map, a number of key points (around 1%

of the brain volume size) are randomly sampled as the registration is completely driven

by the selected key points. Higher importance implies that the point is more likely to
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be drawn from the non-uniform sampling, while lower value denotes more possibility

of rejection. Based on the importance map in Figure 3.10(b), for instance, a set of

key points, colored red in Figure 3.10(a), is selected initially, while more key points

are sampled to gradually participate to the progress of registration (red followed by

green, and blue). The spatial distribution of sampled key points is more concentrated

in boundary abundant areas, where accurate alignment of anatomical structures is

fundamentally important in image registration.

Key points are also sampled in Wu et al. (2012b) to guide groupwise registration.

However, the sampling in Wu et al. (2012b) is conducted within the spaces of individual

images, as each subject Si keeps its own set of key points Xi. All points in {Xi} will con-

tribute their correspondence information to groupwise registration. Moreover, due to

the availability of the tissue segmentation (e.g., in WM, GM, and CSF), the key points

are acquired from boundaries or transitions of individual tissues. The segmentation

specifies anatomical information to each key point - only points of the same tissue type

should be aligned in image registration. The tissue boundaries also bring to the key

points rich context features, which are necessary and helpful to reliable correspondence

detection.

3.4.3 Divergence Minimization

To maximize the coherence, or to minimize the divergence, within the set of attribute

vectors {~ai(φi(x))}, a metric has to be defined first. Moreover, the divergence is better

captured from not only a single point but its surrounding patch as well (Wang et al.,

2010a). Given x in a certain image, the neighborhood of the point is regarded as its

local pattern. Groupwise registration is then formulated to find the deformations which

could minimize the divergence among local patterns from different images, with respect

to the same location in the common space. For the subject Si and the point φi(x) ∈ Ωi,

90



Figure 3.10: Illustration of the key points acquired via importance sampling. In (a),
red points are first selected as key points to drive groupwise registration, while more
points in green and yellow participate later as registration progresses. The sampling of
key points is based on the importance map shown in (b).

a probability density function (PDF) Pr(aj|i, φi(x)) is further estimated to reflect the

distribution of the j-th feature aji (φi(x)) within the neighborhood of φi(x). The PDF

can be generated by using the Parzen windowing technique.

The probability density functions (PDFs) of all features here act as the signature

of the local pattern for the center point. Assuming that all input images are already

registered (c.f. Figure 3.11), the set of PDFs {Pr(aj|i, x),∀i} should be highly coher-

ent. Therefore, a well-behaved groupwise registration algorithm needs to minimize the

divergence within {Pr(aj|i, φi(x)),∀i}. In order to measure this divergence, a popular

information-theoretic metric, the Jensen-Shannon divergence (Lin, 1991), is employed

following

Divergence({Pr(aj|i, φi(x)),∀i}) =
1

n

n∑
i=1

(
Pr(aj|i, φi(x)) · log

Pr(aj|i, φi(x))∑
s Pr(a

j|s, φs(x))

)
.

(3.12)

Note that (3.12) computes the divergence related to the specific key point x ∈ Ω and

a single feature aj. The overall Coherence ({φi(x)}) in (3.11) is counted by combining
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Figure 3.11: Each point in the image is described by its unique attribute vector, while
the j-th feature in the attribute vector is underlined by the PDF Pr(aj) that is calcu-
lated from near the point.

contributions from all key points and all features. In particular, the weight of each

key point x ∈ X is associated with its computed importance in sampling. Individual

features are equally treated, though more advanced methods (Wu et al., 2007) are

applicable here to learn the optimal weights in the adaptive manner.

The optimization of the overall objective function in (3.11) is achieved by analyt-

ically solving for its gradient and then feeding it as the steepest descent direction to

a first order solver. To further improve the robustness, a multi-resolution registration

strategy is adopted. In each resolution, except for the highest one, images are down-

sampled first. The attributes are then calculated on those down-sampled images. This

approach ensures that the generated attribute vector is scale-related, and thus can bet-

ter capture anatomical structures in different resolutions. B-Splines (Rueckert et al.,

1999) are employed to describe the deformation for each subject image. To better

avoid local maxima in registration, the number of B-Spline control points is associated

with the resolution of registration (e.g., 16 along each direction in low resolution, 32

in middle resolution, and 64 in high resolution). Therefore, at a coarser resolution,

the optimization problem is effectively reduced to a lower degree-of-freedom problem,
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which is achieved by using a smaller number of B-Spline control points. The estimated

deformation is progressively refined as the registration gradually moves from the low

level to the high level in the hierarchical framework.

3.4.4 Correspondence Detection via Common Space

Bearing the notions of attribute vectors and correspondence detection for groupwise reg-

istration, the solution in Wu et al. (2012b) is significantly different. Instead of defining

the divergence with respect to the key point sampled in the common space, the coher-

ence in Wu et al. (2012b) is computed by examining point-to-point correspondences

between all possible pairs of images:

Coherence (x, x ∈ Xi,∀i) =
∑
j,j 6=i

Similarity
(
x, φj ◦ φ−1

i (x)
)
, (3.13)

though the similarity between x ∈ Ωi and φj ◦ φ−1
i (x) ∈ Ωj is derived from respective

attribute vectors of the two points.

The model in the above is built upon the fact the common space is able to bridge

point-to-point correspondences across individual images. For example, given a certain

key point x ∈ Xi in the subject image Si, its correspondence in the atlas (whose

existence is assumed here) is defined as φ−1
i (x) ∈ Ω. Then, with respect to another

subject Sj, the correspondence can be identified following φj and denoted by φj ◦

φ−1
i (x) ∈ Ωj. As a result, in (3.13), to maximize the similarity of the attribute vectors

of x ∈ Ωi and φj ◦φ−1
i (x) ∈ Ωj is equivalent to revealing the correspondence between x

and a certain point in Sj. The correspondence essentially contributes to the estimation

of both φi and φj in terms of groupwise registration.

The optimization of the overall coherence integrated upon all key points from in-

dividual subject images involves two steps: (1) to identify correspondences for each
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key point x ∈ Ωi in other subjects; (2) to interpolate the dense deformation fields of

all images from the key points and their detected correspondences. The two steps are

alternatively and iteratively applied. That is, in the first step, the correspondence in-

formation is refreshed according to the previously estimated deformation fields, while

the updated correspondence leads to an incremental refinement to the deformation in

the second step.

A correspondence field ψi is created for the subject Si in the current iteration t.

The correspondence field is sparse in that only correspondences of key points need to

be identified, while the values of other points can simply be set to zero. In particular,

the correspondence field ψi aims to maximize

∑
x∈Xi

∑
j,j 6=i

Similarity
(
~ai(x),~aj

(
φj ◦ ψ−1

i (x)
))
−
∑
x∈Xi

‖ψ−1
i (x)− φ−1

i (x)‖2. (3.14)

Note that, in the above equation, φi and φj indicate the deformation fields estimated

in the previous iteration, while their superscript (t− 1) is ignored for simplicity. Each

key point x ∈ Xi is encouraged to search for its correspondence in Sj by deviating

ψi(x) from the previously estimated φi(x). At the same time, the magnitude of the

update of ψi(x) is restricted (i.e., by limiting ‖ψi(x)−φi(x)‖2), in that the incremental

adjustment to φi(x) should be tiny in each iteration.

In particular, a greedy search method is applied for correspondence detection. Given

the key point x ∈ Ωi, its correspondence in Sj is searched for within the window cen-

tered at φj ◦φ−1
i (x). For x and each point in the search window, their attribute vectors

are examined such that only points of the same tissue type and tissue edge information

could possibly be correspondences to each other. Then, the dissimilarity between the

two points is calculated as the Euclidean distance of the geometric-invariant-moments

in their attribute vectors. Moreover, the evaluation involves not only the two points
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but also their individual local patches - to compare patches yields more reliable corre-

spondence than to compare the centered points only.

The correspondence detection for the key point x ∈ Ωi needs to be conducted

with respect to all subject images other than Si. Due to the prevalent uncertainty in

correspondence detection, the concept of soft correspondence is introduced. That is,

for a certain subject Sj, the key point x is allowed to identify multiple points as its

potential correspondences. Each correspondence candidate is assigned a confidence,

which is the point similarity evaluated in the above. All soft correspondences are then

averaged, in accordance with their individual confidences, to contribute to ψ−1
i (x) that

indicates the updated correspondence location in the common space for x.

The sparse correspondence field ψ−1
i (·) encodes the updated correspondence infor-

mation on all key points in Xi, which differ from the previously estimated deformation

field (i.e., φ−1
i (·)). The incremental deformations ∆φi for individual key points can thus

be acquired by subtracting the two fields. Then, the dense incremental deformation field

is interpolated from key points and their incremental moves. In particular, TPS is used

here for the interpolation such that the resulted incremental deformation field remains

smooth. The deformation field for Si can then be updated following φi ← φi ◦ ∆φi.

Note that the smoothness requirement upon φi is achieved in the fluid style, as in every

iteration the incremental ∆φi remains smooth.

The whole method is further embedded into a hierarchical and multi-resolution

framework. As registration progresses, more key points are involved for accurate align-

ment of anatomical structures. The number of key points in each image is around

10% of the brain volume size in the beginning of groupwise registration, while the rate

increases to about 50% when registration finishes. Also, the soft correspondence is

iteratively tightened. The reason is that multiple correspondences provide higher ro-

bustness in correspondence detection, especially when all images are not well registered

95



in the initial stage. However, after the deformed subject images are mostly similar

to each other in the common space, the correspondence should be detected within a

smaller-sized search window, and the one-to-one correspondence is then able to provide

higher accuracy in estimating the (incremental) deformation field.

3.4.5 Experimental Results

The registration accuracy with respect to the two methods described above, namely

Div-Min for Wang et al. (2010a) and GLIRT for Wu et al. (2012b), is evaluated and

reported in the following. Again, the Dice ratios are computed from the NIREP dataset

and the LONI dataset. The Div-Min method achieves the overall Dice ratio of 71.11%

for the NIREP dataset and 75.36% for the LONI dataset. The corresponding scores

for GLIRT are 76.52% and 76.64%, respectively. Note that both methods gain higher

Dice ratios compared with the conventional pairwise registration via HAMMER. The

detailed Dice ratios of all ROIs are plotted in Figure 3.12 (for the NIREP dataset)

and Figure 3.13 (for the LONI dataset), respectively. The figures also contain scores

yielded by HAMMER (pairwise registration) and other groupwise registration methods

including the conventional group-mean method (Joshi et al., 2004), the sharp-mean

method (Wu et al., 2011), and ABSORB (Jia et al., 2010).

The scores of Div-Min are lower than GLIRT, due to the following possible reasons.

First, the number of key points sampled in Div-Min is much lower than that of GLIRT,

and the low sampling rate makes the evaluation of the objective function in registration

less accurate. Second, the attribute vector in GLIRT is much more powerful due to

the anatomical information conveyed by the features. Specifically, in correspondence

detection, only points of the same tissue type could possibly be correspondences to

each other. The anatomical interpretation of the attribute vector significantly reduces

ambiguities in correspondence detection. Finally, each key point is allowed to search
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Figure 3.12: The Dice ratios for individual groupwise registration methods, as well as
the pairwise registration via HAMMER (Shen and Davatzikos, 2002), on the NIREP
dataset. The ROI names corresponding to their indices are listed in Table 2.3.

for its correspondences, while multiple correspondence candidates are allowed. Thus

the detected correspondences are more reliable for the estimation of the deformation

fields.

3.5 Sub-Group Consistency

It is often necessary to consider sub-group consistency in groupwise registration of a

large-scale image population and in subsequent analyses. For example, given a popula-

tion of both normal controls and patient data, the images can be naturally partitioned

into two sub-groups. Though groupwise registration is capable of warping all images
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Figure 3.13: The Dice ratios for individual groupwise registration methods, as well as
pairwise registration by HAMMER (Shen and Davatzikos, 2002), on the LONI dataset.
The ROI names corresponding to their indices are listed in Table 2.3.
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to a common space, the relationship amongst images in each sub-group might be inter-

rupted since a certain image needs to interact with all other images regardless of their

belongings to individual sub-groups. If the sub-group information (e.g., the distribution

of the entire population in two sub-groups) was discarded during image registration,

additional difficulties would possibly be encountered for differentiating and comparing

the two sub-groups of images in subsequent studies.

3.5.1 Hierarchical Groupwise Registration

Wang et al. (2010b) proposed a hierarchical framework to tackle the sub-group consis-

tency issue in groupwise registration. In particular, a clustering method is first invoked

to produce a hierarchical clustering of the entire image population. Then, groupwise

registration is applied to each clustered sub-group. Note that images in a certain sub-

group are usually similar to each other in appearances, thus making it relatively easy

to solve (groupwise) registration in the sub-group. Thereafter, an atlas for each sub-

group can be constructed and regarded as the representative image of the sub-group.

All representative images of individual sub-groups are further registered towards the

common space of the entire population, in a new round of groupwise registration at a

higher level. The deformation fields of the representative images are also applied to

images in respective sub-groups. Thus, all images in the population could complete

their groupwise registration with respect to the common space by following (1) the

deformation fields towards the representative images in their individual sub-groups and

(2) the deformation fields from representative images to the final common space of the

population.

Figure 3.14 illustrates the process of hierarchical groupwise registration (Wang et al.,

2010b). Specifically, two sub-groups, as well as their exemplar images, are shown in the

bottom of Figure 3.14. The atlas of each sub-group can thus be estimated via groupwise
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registration. Then, the atlases of all sub-groups are collected and registered towards the

common space of the entire population (in the top of the figure). Note that the depth

of the hierarchical callbacks of groupwise registration is not arbitrarily restricted, while

more levels are apparently allowed if a certain sub-group needs to be partitioned into

more clusters of finer granularity to cater for the complicated distribution of images in

the population.

Figure 3.14: Illustration of hierarchical groupwise registration. The large-scale pop-
ulation is first clustered into several sub-groups (bottom). Groupwise registration is
then applied to each sub-group, where an atlas is estimated accordingly (middle). The
atlases of individual sub-groups are applied to a new round of groupwise registration for
the estimation of the common space of the entire population (top). Finally, all images
are registered with the common space in the groupwise style.

The hierarchical clustering and then registration of the large-scale population allows

more precise description of the “multi-mode” distribution of brain MR images (Sabuncu

et al., 2009). That is, for all images in a certain sub-group, their high-level registration
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(e.g., to the final common space) follows the same deformation field that is estimated

from the representative image of their sub-group. In this way, the entire population

of images is registered in the unbiased groupwise manner such that all images can be

quantitatively compared. In addition, the interactions across individual sub-groups

are eliminated; thus the subtle difference between sub-groups of images can be better

revealed.

The power of the hierarchical clustering is demonstrated by the example in Figure

3.15. In particular, the population consists of 24 brain MR images and can be par-

titioned into two sub-groups. The first sub-group contains 12 normal controls. The

second sub-group is simulated by introducing tissue atrophies to every image in the

first sub-group. The tissue atrophies, which account for 10% of the original WM vol-

umes, are applied to the regions of pre-central gyrus (PCG) and superior temporal

gyrus (STG), respectively. Exemplar slices (of segmented tissues in WM and GM)

from a certain image in the first sub-group are shown in Figure 3.15(a) and (c), while

the corresponding image slices with atrophies in the second sub-group are shown by

(b) and (d). The atrophies are highlighted by red arrows in the figure.

The entire population of the two sub-groups is then processed via hierarchical group-

wise registration. After all images are registered with the common space, the Jacobian

determinants of their individual deformation fields are computed at all voxels. Note

that the Jacobian determinant reflects the morphological changes estimated by image

registration: a determinant above 1 indicates the spatial expansion, while a value lower

than 1 corresponds to the shrinkage. Further, paired t-test is applied to examine the

Jacobian determinants of the deformation fields of images in the two respective sub-

groups. Statistically significant differences are thus detected in the regions of PCG and

STG (c.f. Figure 3.15(e) and (f)), implying the capability of hierarchical groupwise

registration in revealing subtle yet systematic morphological changes between the two
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sub-groups.

Figure 3.15: Slices of the original image, (a) and (c), and the corresponding slices with
simulated atrophies in PCG (b), and STG (d), are provided, respectively. The morpho-
logical changes between the two sub-groups, with respect to the simulated atrophies,
are detected via paired t-test. The distributions of t-values are shown in (e) and (f),
respectively.

3.5.2 Longitudinal Constraint

Longitudinal sequences of brain MR images, which are usually referred to as 4D (three

spatial dimensions and one temporal dimension) image data, need to be specially ad-

dressed in groupwise registration. Typically, a longitudinal sequence for a certain pa-

tient contains acquisitions of different time points (e.g, 3- or 6-month interval between

two consecutive time points), and thus is capable of monitoring the temporal impacts of

neural diseases. In that the morphological changes of brain anatomies are usually gentle

and slow, the similarity amongst images of the same longitudinal sequence can be high

even though their acquisition time points are different. By contrast, the inter-patient
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image similarity is much lower due to the high anatomical variation across patients. To

this end, the longitudinal sequence for a certain patient can be regarded as a sub-group.

Then, the hierarchical groupwise registration method (c.f. Section 3.5.1) is applicable

to register multiple longitudinal sequences, as well as their individual acquisitions, to a

common space. After registration, quantitative analysis and comparison on the entire

population of longitudinal sequences of images can be conducted.

In fact, the longitudinal sequence conveys a temporal constraint, which is far beyond

regarding a certain sequence as a sub-group only. That is, when registering a certain

longitudinal sequence to the common space of the population, the deformation fields

associated with respective time points in the sequence should be temporally smooth.

The reasons are apparent: (1) images corresponding two consecutive time points in

the same sequence are similar to each other in appearances, and (2) similar images

should share similar deformation fields with respect to the same common space. In

the hierarchical groupwise registration framework, however, the temporal smoothness

is ignored. Though all time points in a certain sequence are grouped together and then

follow the same deformation field towards the common space of the population, the

deformation fields of individual time points with respect to the representative image of

the sequence are subject to independent smoothness constraint only.

For better registration of longitudinal sequences, Wu et al. (2012c) improved the

feature-based groupwise registration method in Section 3.4.4 by introducing spatio-

temporal heuristics. In the groupwise registration method designed for 3D images, each

individual deformation field is required to be smooth. By contrast, in the 4D groupwise

registration setting, an additional temporal smoothness constraint is applied. That is,

for two consecutive time points of the same patient, the temporal changes are required

to be minimal. After denoting the deformation field for the i-th sequence and the t-

th time point as φi,t, the regularization of Φ = {φi,t} then comprises of not only the
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smoothness of each individual φi,t, but also the magnitude of ∂φi,t/∂t.

Method WM GM CSF

GLIRT (Wu et al., 2012b) 89.89± 0.96% 81.92± 2.57% 86.27± 1.37%
Hierarchical (Wang et al., 2010b) 90.51± 0.97% 82.44± 2.73% 86.41± 1.34%
Longitudinal (Wu et al., 2012c) 91.28± 1.26% 83.70± 3.12% 87.21± 1.71%

Table 3.1: Tissue Dice rations (mean±standard deviation) concerning the consistency
within individual longitudinal sequences.

In order to evaluate the effects of different registration schemes on longitudinal

image sequences, a 4D image population is extracted from the Alzheimers Disease

Neuroimaging Initiative (ADNI) repository (http://www.adni-info.org/). The pop-

ulation consists 5 sequences of normal controls and 5 other sequences of AD patients,

while each sequence has 3 time points. All 30 images are necessarily pre-processed,

including skull-stripping, tissue segmentation, and affine registration. Then three dif-

ferent methods are applied to register the entire population in the groupwise manner.

For fair comparison, all methods use the same features to identify correspondences in

registration. For hierarchical registration, each sequence is regarded as a sub-group and

the entire population is registered in two levels.

After all images are registered to the common space, the performances of individual

methods are evaluated as the tissue overlapping within each sequence. In particular,

given all time points in a sequence that are registered to the common space, the Dice

ratio of tissues (including WM, GM, and CSF) are computed between each pair of

them. The mean scores averaged across individual sequences, as well as the standard

deviations, are reported in Table 3.1. In the hierarchical registration scheme, the Dice

ratios are higher than GLIRT (Wu et al., 2012b), in that a sequence only adopts a

single deformation field in registering all its member images to the common space. An

additional temporal smoothness constraint is introduced to the longitudinal registration

scheme; thus the Dice ratios are further improved.
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3.6 Summary

Due to the capability of handling a large-scale population of images in an unbiased

manner, groupwise registration is becoming a more preferred choice in the area of med-

ical image analysis. Though it is more complex to optimize the deformation fields of

multiple brain MR images simultaneously, the population provides additional informa-

tion that guides all images to be registered more accurately with respect to the common

space. The performance of groupwise registration thus has drawn a lot of interest, as

demonstrated by the utilization of the technique in many applications and studies.

Groupwise registration differs from pairwise registration in that the template is not

used. Thus, a possible solution for groupwise registration is to estimate the “template”,

or the atlas of the population first. Then, all images can be simply registered with

the atlas via existing pairwise methods. To this end, the estimation of the atlas in

the group-mean form is investigated. The mean image can be adaptively created in

accordance with the distribution of all images in the population, while the sharp-mean

substantially increases the performance of mean-based groupwise registration.

Moreover, the explicit common space is not always necessary. For example, a cer-

tain image can predict its deformation pathway towards the unknown common space

by interacting with other similar images only. The interaction happens between closely

distributed subjects on the image manifold, and can be regarded as being local. On

the other hand, the common space bridges point-to-point correspondences across indi-

vidual images. Thus, even though the common space is explicit, the task of groupwise

registration can be accomplished by revealing groupwise correspondences with respect

to all images in the population.
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Chapter 4

Population-Based Registration and

Multi-Atlas Labeling

4.1 Multi-Atlas Labeling

It is often necessary in many studies that certain medical images should be labeled

into different anatomical ROIs, in order to facilitate the following region-based anal-

ysis. Manual labeling, though accurate and probably the best if done by well-trained

experts, has a high cost, especially for large-scale populations of brain MR images. By

contrast, an automatic labeling method has the advantage of reducing the need for

human interaction. Meanwhile, the inconsistency among individual experts might be

suppressed after replacing manual labeling with the automatic method. Therefore, the

automatic labeling method is highly desirable for analysis of brain MR images and has

been intensively investigated recently.

To label (also known as to segment or to parcellate) brain MR images can be ac-

complished in many different ways. Among them, atlas-based segmentation provides

an efficient solution and yields comparable accuracy with respect to manual labeling

(Klein et al., 2009). Note that the definition of the term atlas here is different from



the scenario of image registration discussed in the previous sections. In the context of

image registration, the atlas is typically constructed from an image population (e.g.,

as the mean of all registered images). The atlas thus reflects the common space of the

population and is applicable to guide image registration (i.e., the group-mean based

groupwise registration method in Section 3.2). In terms of atlas-based labeling, how-

ever, the atlas refers to certain individual images whose segmentations are already

known. Specifically, the atlases are often manually labeled, as their labeling informa-

tion (e.g., in anatomical ROIs) is perceived as the gold standard. Then, after registering

the atlases to an unlabeled image, the labeling information associated with the atlases

can propagate to segment the unlabeled image. If the atlas can be accurately registered

with the unlabeled image, the well-established (anatomical) correspondences between

the two images guarantee that the propagated labeling is highly accurate.

Though convenient to use, the atlas-based labeling method inevitably suffers from

errors in registering the atlas with the unlabeled image. To this end, a multi-atlas

strategy has been more preferred in recent studies to alleviate the impact of errors in

image registration. After registering multiple atlases instead of a single one with the

unlabeled image, the to-be-determined labeling can be estimated by fusing contribu-

tions from all atlases after registration. The accuracy of multi-atlas labeling depends on

two factors, i.e., the quality of image registration and the reliability of label fusion. The

impact of registration on multi-atlas labeling is the focus of this chapter, as abundant

discussions over label fusion are available in the literature.

A typical scenario for multi-atlas labeling is to segment a population of images,

in which only a few atlases are pre-labeled by experts and the labels of other images

are unknown. For the sake of propagating labeling information from the atlases to

unlabeled images, all atlases are usually registered with each unlabeled image following

the direct pairwise registration style. More advanced registration schemes bring in
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additional benefits. For instance, Wolz et al. (2010) utilized the concept of image-

scale guidance and allowed the propagation to happen between similar images only. In

particular, the image population, which consists of both atlases and unlabeled images,

is first embedded into a high-dimensional manifold where similar images are closely

distributed. Then, each atlas starts propagating its labeling to images that are close

on the manifold. The registration of the atlas to each unlabeled image is accurate

due to the high similarity between them, and thus results in more reliable labeling for

the unlabeled image. Once the labeling is determined, the specific unlabeled image

is admitted as an atlas and helps propagate the labeling information further to other

images in the population. From the perspective of the entire population, the method

called LEAP (Wolz et al., 2010) achieves significantly better labeling results, since the

propagation always involves similar images with more reliable registration in between.

After registering atlases with a certain unlabeled image, the labels of the unlabeled

image can be determined, or fused, in various ways (Coupé et al., 2011; Rousseau

et al., 2011; Wang et al., 2013a; Warfield et al., 2004). In the simple yet powerful

majority voting scheme, for example, each grid point in the unlabeled image is assigned

the most frequent label from the same locations in all registered atlases. The use of

multiple atlases thus alleviates the concern that a single atlas might not necessarily be

optimal. That is, even if the registration of a certain atlas and the unlabeled image

is not sufficiently accurate, the labels contributed by the atlas are generally regarded

as outliers and are likely be omitted in majority voting. As the result, with multiple

atlases, the fused labeling for the unlabeled image is usually more accurate since the

potential errors in registering certain atlases with the unlabeled image become less

influential.

To further investigate the importance of image registration in multi-atlas labeling, a

population-based registration scheme is demonstrated in this chapter. In the traditional
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way, all atlases are registered with each unlabeled image by direct and independent

pairwise registration. However, as in the next example, the entire image population is

embedded into an MST, which helps register all images to the image space defined by

the root. Then, in the root space, all unlabeled images are parcellated according to

the deformed atlases in the population. The tentative labeling of the unlabeled images

provides additional information that is helpful to image registration, i.e., by adjusting

the MST for the population and refining the deformation fields with respect to the root

space. Then, with more accurate registration, the labeling for the unlabeled images are

iteratively optimized until satisfactory results are generated.

4.2 Registration and Label Fusion

To investigate the role of image registration in multi-atlas labeling specifically for a

large-scale image population, a novel population-based labeling method is described.

Specifically, the entire image population, including atlases and unlabeled images, is

registered to a common space first. Then, the labeling of each labeled image can be

estimated in the common space. Moreover, the label fusion for a certain unlabeled

image incorporates contributions from not only registered atlases but also tentative

labeling of other unlabeled images in the population. Further, the (tentative) labeling

of all images contributes to registering all images more accurately in the common space.

In general, the method consists of two alternating steps: (1) to register all images to

the common space; and (2) to determine the labeling for each unlabeled image. The

steps are iteratively applied.
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4.2.1 Tree Based Image Registration

All atlases and unlabeled images in the population are registered to a common space

by taking advantage of the distribution of the entire image population. In particular,

all images are first embedded into a fully connected graph, where the nodes indicate

individual images and the edge linking each pair of images records their in-between

distance, i.e., in SSD. An MST is then extracted from the graph. The root of the tree

is determined to represent the geometric median image in the population, from which

the sum of distances to other images in the population is minimized. All images are

connected with the root of the tree either directly or via other images/nodes.

The node at the root of the tree, or the median image of the population, is des-

ignated as the common space to which all images in the population are registered. It

is worth noting that the common space of the median image is different from the def-

inition in groupwise registration (c.f. Chapter 3). However, the potential bias of the

median image from the real common space in groupwise registration does not affect

the efficiency of multi-atlas labeling. Specifically, as shown later, the common space

of the median image here only provides an image space for all images to share their

labeling information. Also, it is known that the median image can be regarded as an

approximation of the unbiased common space in the sense of groupwise registration.

The learned MST helps register all images in the population to the root in a recursive

manner. In particular, given each non-root image, the path that it traverses along edges

to the root of the tree can be easily identified. If the parent node of the image under

consideration is the root, the direct registration via diffeomorphic Demons (Vercauteren

et al., 2009) will be computed immediately. Otherwise, the non-root image will utilize

the deformation belonging to its parent node as an initialization and further refine to

generate its own deformation towards the root. The recursive callbacks can eventually

deform all images to the common space. Compared with the direct registration of two
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images that might be very different in anatomies, the MST provides robust initialization

in estimating the deformation field. Thus, to organize images in the MST helps achieve

higher accuracy overall to register all images to the common space.

Due to the essentially high-dimensional image data and the limited size of the image

population, the estimation of the MST might be inaccurate. As a remedy, an augmented

population that consists of more simulated images is generated for building the MST.

The simulated images are derived by perturbing the pre-determined median image in

five steps (Jia et al., 2012b):

1. A set of images is directly registered with the median image;

2. All deformations are then inverted for the sake of deforming the median image;

3. PCA is applied to capture the variation within all inverted deformations;

4. By perturbing coefficients in the learned PCA model, a set of deformations can

be simulated;

5. All simulated deformations are applied to warp the median image and generate

a set of simulated images in the final.

The same setting in Jia et al. (2012b) is followed to specify the number of the simulated

images to be twice the size of the original image population. The augmented population,

including atlases, unlabeled images, and simulated images, leads to an MST that better

captures the distribution of the image population.

4.2.2 Consistent Label Fusion

After all images are registered to the common space, the labeling for the unlabeled

images can be fused from the atlases. In particular, the local voting strategy is adopted

for stochastic label fusion. By denoting the m-th registered atlas as Ṡm and its labeling
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as L̇m, the label for the n-th unlabeled image Sn, or Ln, can be assigned with the label

l at the location x, following the likelihood

p(Ln(x) = l) ∝
∑
m

w(Ṡm, Sn, x) · δ(L̇m(x), l). (4.1)

In the equation above, δ(L̇m(x), l) is the Dirac function and returns 1 if and only if

L̇m(x) = l; otherwise, it returns 0. The weight w(Ṡm, Sn, x) indicates the contribution

of Ṡm to label Sn by L̇m, and obviously relates to the similarity between Ṡm and Sn

at x. By using d(Ṡm, Sn, x) to denote the SSD of the two respective intensity patches

centered at x of both Ṡm and Sn (with the size 3 × 3 × 3 in voxel), it is defined

that w(Ṡm, Sn, x) = exp
(
−d2(Ṡm, Sn, x)/2σ2

)
as σ relates to the standard deviation

of all patch-to-patch dissimilarity measures. The likelihood p(Ln(x) = l) is further

normalized such that
∑

l p(Ln(x) = l) = 1,∀x. The exact label of Ln(x) is determined

as the value l of the maximal likelihood in the final result.

Most methods reported in the literature apply the mono-directional label fusion

by propagating the labeling from the atlases to the unlabeled image only. However,

recent studies show that the segmentation of an unlabeled image can also benefit from

other unlabeled images (Jia et al., 2012b; Wang et al., 2013a). That is, the labeling

should propagate not only from atlases to unlabeled images, but also among unlabeled

images if they are similar. Specifically, a certain unlabeled image can finally be seg-

mented from fusing both the labels of atlases and the tentative segmentation of other

unlabeled images. In this way, not only is the consistency across the segmentation of

each unlabeled image and the atlases well preserved, but also the intrinsic consistency

among all unlabeled images.

For the consistency of the population in label fusion, the likelihood in labeling Sn(x)
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can be calculated by

p(Ln(x) = l) =
∑
m

w(Ṡm, Sn, x) · δ(L̇m(x), l) +
∑
n′

w(Sn′ , Sn, x) · δ(Ln′(x), l). (4.2)

A stable solution to the above can be iteratively attained (Jia et al., 2012b). (4.2)

implies that the label Ln(x) complies with both the atlases and other unlabeled im-

ages. Also note that the simulated images, though participating in the registration, are

not included in the label fusion. All simulated images are instantiated by perturbing

the median image, which would arbitrarily dominate the segmentation result with the

simulated images included in the label fusion.

4.2.3 Interaction of Registration and Label Fusion

Though the unlabeled images can fuse their labeling from the atlases, it is worth noting

that the tentative labeling is derived from the yet imperfect registration. By contrast,

the tentative labeling is capable of feeding back for more accurate registration of the

population. As all images become better registered with the common space, the labeling

of the unlabeled images can be determined more easily and accurately. The registration

benefits from the tentative labeling in two ways:

1. The initial MST is estimated prior to the non-rigid registration. The high vari-

ation among all images, as well as the simple image distance measure (i.e., SSD

of intensities), may lead to improperly estimated MST and thus limit the regis-

tration accuracy. On the other hand, after all images are roughly registered to

the common space, the distribution of the entire image population is relatively

compact and can be better learned by considering the consistency of the labeling

of all images. That is, the MST can be updated by considering the tentative

labeling.
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2. The registration should also favor the consistency within the labeling of individual

images, which is only pursued in the label fusion part of conventional methods. In

particular, the (tentative) labeling of all images is regarded as an additional image

descriptor other than image intensities. In addition to maximizing the intensity

coherence, image registration also aims to directly eliminate the labeling incon-

sistency as well. In particular, the registration is required to align the boundaries

of corresponding labels of individual images. The estimated deformation fields

are then applied to register all images more accurately in the common space.

Update MST.

To learn the MST for representing the distribution of the entire population, the image

distance is evaluated according to the inconsistency between their labeling after all

images are (roughly) registered to the common space. Hence the distance measure is

different from the SSD for the initial MST. For any two images in the population, their

overall Dice ratio is computed and averaged over all labels. The distance of the two

images is then derived by inverting the Dice ratio in an exponential decay style. Given

pairwise distances of all images, a new MST is thus constructed. Note the median

image that is previously selected in the initial MST is still preserved as the root of the

new tree. In this way, the common space in registration is fixed, though each non-

root image will further refine its own deformation field towards the root. Moreover, the

updated MST consists of only atlases and unlabeled images, while the simulated images

are not incorporated. The reason is that, after the initial registration, the atlases and

the unlabeled images distribute compactly in the vicinity of the median image. Thus

the simulated images are not necessary for the update of the tree.
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Update Registration

The (tentative) labeling of all images is directly applied to the refinement of the defor-

mation fields in the registration, in order to compensate for the inconsistency within

the labeling. After deforming all images towards the median image of the population,

the boundaries of all anatomical areas labeled on each deformed image are extracted by

applying the Canny edge detector to the tentative labels. Points on the label bound-

aries form a discrete pointset for each image, while to align the boundary pointsets

of individual images is critically important in image registration and meaningful for

anatomy parcellation. To this end, a Gaussian kernel is applied to smooth the detected

boundaries and convert the discrete boundary pointset into a continuous volume of

Gaussian mixtures in the image space (Wang et al., 2008). The volumes of Gaussian

mixtures for the labeling of a pair of images can thus be easily registered, i.e., via dif-

feomorphic Demons (Vercauteren et al., 2009). The newly updated MST is also applied

in the above, as the registration upon the label boundaries is performed by following

edges in the MST recursively.

Note that all images further refine their registration to the common space after

being warped following their previously estimated deformation fields. Therefore, the

feedback from the (tentative) labeling leads to an iterative solution, as all images refine

their deformation fields to the common space and the unlabeled images update their

tentative labeling alternatively. The previous deformation field of each image and

its new deformation for refinement are concatenated into a single field, which warps

the image from its original space to the common space. To compensate for potential

errors in the above, the concatenated deformation functions as an initialization, and is

further refined by directly minimizing the intensity of the inhomogeneity between the

specific image and the median image designating the common space. In this way, both
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image intensities and the (tentative) labeling contribute to update the registration.

The interaction between registration and label fusion finally results in more accurate

parcellation for the unlabeled images.

4.3 Experimental Results

The performance, or the accuracy of multi-atlas labeling, is measured in the Dice ratio

upon the NIREP NA0 dataset. All 16 images in the dataset are manually labeled for

the ground truth. Then, 8 of them are regarded as atlases and used for the labeling

of the remaining images. The Dice ratios are then computed between the estimated

labeling of the 8 unlabeled images and their ground truth.
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Figure 4.1: The Dice ratio converges quickly during the iterative interaction between
registration of the population and label fusion for the unlabeled images.

In the conventional way of multi-atlas labeling, all atlases are registered with each

unlabeled image. The label fusion is then conducted in the one-shot format from the

registered atlas to the unlabeled image. The overall Dice ratio, averaged upon all

unlabeled images and their ROIs, is 73.09%. In comparison with the introduction of

the MST and the consistency requirement across the labeling of all unlabeled images,

the Dice ratios increases to 75.31%. Further, by allowing the (tentative) labeling to feed

back, the registration of the population is improved while the corresponding Dice ratio
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reaches 77.45%, implying that more accurate multi-atlas labeling results are yielded.

Note that the interaction between registration and label fusion leads to an iterative

solution. The reported scores are achieved after 4 iterations. The evolution of the

Dice ratio with respect to the increasing number of iterations is plotted in Figure 4.1.

Meanwhile, detailed Dice ratios for all 32 ROIs in the NIREP dataset are shown in

Figure 4.2.
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Figure 4.2: Dice ratios of individual multi-atlas labeling methods on the NIREP
dataset. The ROI names corresponding to their indices are listed in Table 2.3.

4.4 Summary

Image registration plays an important role in many related applications, including

multi-atlas labeling as demonstrated in this chapter. In particular, the impact of

population-based registration upon the accuracy of multi-atlas labeling is investigated

and examined. Given a population that consists of both atlases and unlabeled im-

ages, an MST is created to guide the registration of each image with the root. Then,
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within the space of the root image, the unlabeled images can fuse their labels from the

registered atlases. Moreover, the interaction between registration and label fusion is

considered, such that the (tentative) labeling of all images helps improve image reg-

istration, while better registration in turn leads to more accurate label fusion results.

The experiments clearly show that the performance of multi-atlas labeling is improved

by considering information from the entire image population.
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Chapter 5

Summary and Conclusion

As pointed out from the very beginning of this dissertation, image registration is fun-

damentally important in the area of medical image analysis. In studies of brain MR

images specifically, the non-rigid registration technique is often utilized to align individ-

ual images and then capture the anatomical variation within them. That is, deformed

images become similar to each other after registration, while their intrinsic dissimi-

larity is encoded by the deformation field that is estimated during image registration.

The registration technique enables comparison of individual images after warping them

to the same space. Meanwhile, quantitative analysis can be conducted accurately in

accordance with the deformation field associated with each image in the population.

Though many efforts have been devoted to the study of brain MR image registration,

the problem is still not fully resolved yet. Image registration is typically perceived as

an optimization problem with two images involved, by estimating the deformation field

for the subject image to maximize the similarity between the deformed subject and

the template. A major challenge to image registration is related to its conventional

pairwise design - only the subject and the template images are considered, while in

practice, most applications of image registration nowadays need to handle large-scale

populations of images. Specifically, given an image population, a certain image needs

to be designated as the template while the template selection is usually arbitrary. All



other images in the population are registered with the template independently via the

conventional pairwise method. Additionally, the concept of “population” is mostly

ignored during the registration of images in the population.

In contrast with the traditional method above, this dissertation investigates the

role of the “population” in image registration, and concludes that the population in-

formation benefits the registration of all images in the population. In particular, the

population can be utilized in two ways:

1. The pairwise registration of a certain subject and the template benefits from the

guidance provided by other intermediate images in the population;

2. The population allows groupwise registration, in which all images are registered

towards the common space of the population simultaneously and accurately.

The guidance from the intermediate images can be utilized due to the observation

that two similar images share similar deformation fields when registered to the same

template. Thus, if the subject identifies another (intermediate) image from the pop-

ulation that is similar in appearance, the deformation field of the intermediate image

provides a well-behaving approximation and then initialization in estimating the sub-

ject deformation. The granularity of the guidance can be further reduced to the patch

scale, such that different parts of the subject can utilize the guidance from multiple

intermediate images flexibly. In general, the introduction of the intermediate images

reduces the difficulties faced by the registration of the subject. The robustness and

accuracy of pairwise registration are thus improved from the perspective of the entire

image population.

To avoid the potential bias caused by the arbitrary template, groupwise registration

is proposed, such that all images deform towards the unbiased common space of the

population simultaneously. Compared to the traditional pairwise registration, the lack
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of the template in groupwise registration incurs additional complexity in estimating the

common space, besides the deformation fields for individual subjects. A mean image

of the population can thus be explicitly estimated for the description of the common

space. Then, groupwise registration is decomposed into two steps, i.e., to refine the

group-mean and to compute the deformation field between each subject and the mean

image. Alternatively, the explicit construction of the mean image, or the atlas, can even

be skipped for groupwise registration. For example, by maximizing the coherence of all

deformed images, the entire population can be registered to the common space where

point-to-point correspondences across individual subject images are well established.

More powerful image registration techniques facilitate research and clinical stud-

ies of medical images substantially. In this dissertation, a simple demonstration is

provided to show that improved registration leads to better solutions in terms of multi-

atlas labeling, which is commonly used for automatic parcellation and understanding

of brain MR images. Furthermore, other studies can also benefit from incorporating

population information into image registration, with regard to better registration per-

formance (e.g., robustness, accuracy, time cost, etc.). Also, note that several tools

used in this dissertation are publicly available already. More detains can be found

from NITRC (http://www.nitrc.org/projects/absorb/, http://www.nitrc.org/

projects/hammer_suite/, http://www.nitrc.org/projects/glirt/). To conclude

this dissertation, though population information is introduced and applied to image

registration, surely more investigation is necessary, especially for related applications

of medical image analysis.
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