
   

HIV TRANSMISSION DYNAMICS: INFECTIVITY, SEXUAL PARTNERSHIP PATTERNS, 
AND THE ROLE OF EARLY INFECTION 

Kimberly Anne Powers 

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in 
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the 

Department of Epidemiology. 

Chapel Hill 
2010 

 
 
 
 
 
 
 
 

Approved by: 
 

William C. Miller, MD, PhD 
 
Myron S. Cohen, MD 
 
Azra C. Ghani, PhD 
 
Irving F. Hoffman, PA, MPH 
 
Audrey E. Pettifor, PhD

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/210602126?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 ii  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2010 
Kimberly Anne Powers 

ALL RIGHTS RESERVED



 iii  

ABSTRACT 
 

Kimberly Anne Powers 
 

HIV transmission dynamics:  
Infectivity, sexual partnership patterns, and the role of early infection 

(Under the direction of William C. Miller) 
 
Although remarkable progress has been made in the diagnosis, treatment, and prevention of 

HIV, a cure is unavailable and many of the most promising prevention interventions have 

failed.  At this critical juncture in the epidemic, there is a necessity for improved 

understanding of the fundamental drivers of the epidemic, as well as an urgent need for 

innovative interventions against HIV.  This dissertation focuses on two of these fundamental 

drivers – the heterosexual infectivity of HIV-1 and the details of sexual partnership patterns 

– as well as the power of interventions initiated during the highly infectious period of early 

HIV infection (EHI).  We conducted a systematic review and meta-analysis of the 

heterosexual infectivity of HIV-1, defined as the per-contact probability of HIV-1 transmission 

in a single heterosexual contact between an infected and a susceptible individual.  Infectivity 

estimates were extremely heterogeneous, ranging from zero transmissions after more than 

100 penile-vaginal contacts in some sero-discordant couples to one transmission for every 

3.1 episodes of heterosexual anal intercourse. Several co-factors were associated with 

increased infectivity.  Infectivity differences (95% confidence intervals), expressed as 

number of transmissions per 1000 contacts, were 8 (0-16) comparing uncircumcised to 

circumcised male susceptibles, 6 (3-9) comparing susceptible individuals with and without 

GUD, 2 (1-3) comparing late-stage to mid-stage index cases, and 3 (0-5) comparing early-

stage to mid-stage index cases.   We also analyzed recent sexual partnership patterns in a 

sexually transmitted infections (STI) clinic in Lilongwe, Malawi.  We found that multiple 
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sexual partnerships were uncommon (14%), and partnerships were long on average 

(mean=858 days).  Among those reporting multiple recent partners, patterns ranged from 

long-term concurrency (mean overlap=246 days) to narrowly spaced consecutive 

partnerships (mean gap=21 days), presenting a substantial risk for efficient HIV 

transmission.  Finally, we conducted a mathematical modeling study to determine the 

contribution of EHI to epidemic spread in Lilongwe, Malawi.   Our analyses suggest that 

38.4% (95% CI: 18.6%-57.5%) of ongoing HIV transmissions in Lilongwe can be attributed 

to EHI index cases, and that interventions targeting the entire duration of infection will be 

needed to have a significant, lasting effect on the epidemic. 
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CHAPTER 1:  SPECIFIC AIMS 

 

While HIV prevention programs have led to declining HIV incidence in several settings, 2.7 

million individuals worldwide became newly HIV-infected in 2008, with the majority of new 

cases arising in sub-Saharan Africa.1  Although access to antiretroviral therapy (ART) 

continues to expand, about 3 million HIV-infected individuals received ART in sub-Saharan 

Africa during 2008, representing just 44% of those in need.1  It is clear that prevention must 

continue to be a dominant strategy for combating the epidemic.2 

 

The design of effective prevention interventions requires a detailed understanding of the 

factors driving HIV transmission.  Although much has been learned about HIV transmission 

in the past several decades, a number of questions remain about its fundamental 

determinants.  In this dissertation, we explored three research areas related to key factors 

determining HIV spread:  the heterosexual infectivity of HIV-1, the various forms that sexual 

partnerships can take, and the contribution of newly infected index cases to onward HIV 

transmission.   

 

To study the infectivity of HIV-1, we performed a systematic review and meta-analysis of 

existing studies conducted worldwide.  To examine heterosexual partnership patterns, we 

analyzed data from a sexually transmitted infections (STI) clinic in Lilongwe, Malawi.  To 

analyze the contribution of early HIV infection (EHI) to epidemic spread, and to predict the 

potential impact of interventions initiated during this period, we developed a mathematical 

model of the HIV epidemic in Lilongwe, Malawi.  Lilongwe serves as a representative 
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example of an urban, sub-Saharan African setting where HIV is hyper-endemic, 

transmission is mainly heterosexual, and access to antiretroviral therapy is limited but 

growing.   

 

The heterosexual infectivity of HIV-1 (Aim 1) 

 

Specific Aim 1   

Conduct a systematic review and meta-analysis of observational studies estimating the 

heterosexual infectivity of HIV-1 to: (a) estimate transmission co-factor effects on the 

heterosexual infectivity of HIV-1, and (b) quantify the extent to which study methods have 

affected infectivity estimates.   

 

Rationale for Aim 1 

Although a vast number of HIV transmissions worldwide are attributable to heterosexual 

contact, the belief that HIV cannot be transmitted efficiently via this route has persisted in 

biomedical reports, prevention education materials, policy recommendations, and the 

popular press.  This belief has been based on a commonly cited3-7 value of ~0.001 for the 

heterosexual infectivity of HIV-1, defined as the probability of HIV-1 transmission during a 

single heterosexual contact between an infected and an uninfected individual.   

 

Discrepancies between low infectivity estimates and high HIV prevalence are likely due, in 

part, to the inherent challenges of infectivity estimation, as well as the use of a single value 

for “the” heterosexual infectivity of HIV-1.  This simplistic approach fails to reflect the effects 

of potential co-factors, such as direction of transmission (male-to-female vs. female-to-

male),8 type of sexual act,9, 10 viral load,11, 12 male circumcision,13, 14 vaginal flora,15 age,16 

and STI.17, 18   
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While these co-factors have been established at the level of cumulative HIV incidence, their 

effects at the per-contact level are not well-defined.  As infectivity is a fundamental 

determinant of HIV transmission, more accurate, detailed estimates of this parameter are 

critical for evaluating potential interventions, understanding the HIV epidemic, and 

communicating risk.   

 

Hypotheses for Aim 1 

Methodological features of studies estimating the heterosexual infectivity of HIV-1 have 

affected the corresponding infectivity estimates.  Variables that have been identified as 

transmission co-factors at the level of cumulative HIV incidence also affect transmission at 

the per-contact level.  

 

Overview for Aim 1   

We conducted a systematic review and meta-analysis of heterosexual HIV-1 infectivity 

estimates published through April 2008.  To examine the influence of study features and 

transmission co-factors, we conducted random-effects meta-analyses and univariable meta-

regressions.    

 

Heterosexual partnership patterns (Aim 2) 

 

Specific Aim 2 

Describe partnership patterns and estimate the duration of (a) partnerships, (b) gaps 

between partners, and (c) overlaps across partners among patients attending the Kamuzu 

Central Hospital (KCH) STI Clinic in Lilongwe, Malawi.    

  

Rationale for Aim 2 
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Sexual partnership dynamics are critical determinants of HIV/STI spread.  Measures of 

partnership patterns include partner change rates, durations of steady partnerships, 

frequency of sexual contact within steady partnerships, frequency of sexual contact outside 

of steady partnerships, lengths of gaps between consecutive sexual partnerships, and 

lengths of overlap across concurrent sexual partnerships.  Many of these aspects of sexual 

contact are not well-defined, particularly in sub-Saharan African settings.    

 

Hypothesis for Aim 2 

Individuals with STIs engage in multiple partnerships of short duration, resulting in 

substantial risk for rapid transmission of HIV and STIs.   

 

Overview for Aim 2   

 We conducted a secondary analysis of data collected at the baseline and one-week follow-

up visits of a longitudinal study of HIV viral dynamics conducted at KCH STI Clinic in 

Lilongwe, Malawi.  Participants underwent physical exams and HIV tests, and completed 

questionnaires about demographics, risk behaviors, and sexual partnership characteristics.  

We used generalized estimating equations to calculate mean partnership lengths, overlaps 

across concurrent partnerships, and gaps between consecutive partnerships.  We used 

multinomial logistic regression to examine predictors of concurrent and consecutive 

partnerships.      

 

The contribution of EHI and its potential as a target for prevention interventions (Aim 
3) 
 

Specific Aim 3a 
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Estimate the proportion of secondary HIV transmissions attributable to index cases with EHI 

in Lilongwe, Malawi, where HIV is hyper-endemic, spread is mainly heterosexual, and ART 

uptake is limited.   

 

Specific Aim 3b 

Predict the reduction in HIV prevalence achievable through detection of EHI cases and 

implementation of prevention interventions during EHI in Lilongwe, Malawi. 

 

Rationale for Aim 3 

During the earliest months of HIV infection, concentrations of HIV RNA in blood and genital 

secretions are sharply elevated,19, 20 and the probability of secondary HIV transmission is 

increased.21, 22  Unfortunately, in the initial portion of this period (the acute phase), 

detectable antibodies to HIV are absent and case identification requires more sophisticated 

and expensive methods than standard antibody tests.  The contribution of EHI to epidemic 

spread is a complex function of multiple setting-specific factors, including patterns of risk 

behavior and the stage of the HIV epidemic.  If EHI cases are responsible for a substantial 

number of secondary infections in a particular setting, then identification of EHI cases and 

implementation of effective prevention interventions during this period could have important 

public health benefits.  In settings where EHI plays only a minor role in perpetuating the HIV 

epidemic, however, the additional resources required to detect EHI may be difficult to justify.  

To optimize resource allocation and the beneficial effects of intervention strategies, the role 

of EHI in epidemic spread must be understood.   

 

Previous modeling studies22-27 estimating the contribution of EHI to HIV incidence have used 

overly simplified model structures, have lacked empirical data from the setting of interest, 

and/or have focused on men-who-have-sex-with-men (MSM) in western settings.  No 
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previous study has modeled the potential impact of interventions initiated during EHI in sub-

Saharan Africa, the region hit hardest by the HIV epidemic.  While our model will focus on 

Lilongwe as a representative of this region, the model can be modified with relative ease in 

the future to address similar questions in other settings.  

 

Hypothesis for Aim 3a 

A disproportionate number of secondary HIV transmissions are attributable to index cases 

with EHI in urban, sub-Saharan African settings. 

 

Hypothesis for Aim 3b   

EHI case detection and prevention interventions can reduce HIV incidence in urban, sub-

Saharan African settings by preventing transmission during the most infectious period. 

 

Overview for Aim 3   

We developed a deterministic mathematical model to describe heterosexual HIV 

transmission in Lilongwe, Malawi.  The model included steady sexual partnerships, as well 

as casual, one-off sexual contacts outside of these partnerships.  We used the results of 

Aims 1 and 2 above, along with additional data from our work in Lilongwe, to inform model 

parameter values.  We programmed the model to produce output describing adult HIV 

prevalence in Lilongwe over time, as well as the proportion of incident cases attributable to 

contact with EHI index cases.  We used the model to explore a range of scenarios with and 

without interventions targeted to various stages of infection.        

 

Layout of dissertation chapters 

Specific Aims 1 and 2 are described in Chapters 4 and 5, respectively.  Specific Aims 3a 

and 3b are described in Chapter 6.   



CHAPTER 2:  BACKGROUND 

 

The HIV/AIDS epidemic in sub-Saharan Africa 

More than two-thirds of the world’s 33 million HIV-infected individuals live in sub-Saharan 

Africa, and approximately the same fraction of AIDS deaths in 2008 occurred in this region.1  

The burden is especially great in southern and eastern Africa, where more than a third of all 

people with HIV/AIDS live, and a third of both incident HIV cases and AIDS deaths occur.1 

The epidemic has exacted a far-reaching toll on nearly all aspects of life in sub-Saharan 

Africa, compromising not only the well-being of infected individuals, but also the 

development, security, and stability of the region.28 

 

HIV prevalence has stabilized in parts of sub-Saharan Africa, but incidence remains high.  

Most countries in this region have “generalized” epidemics (prevalence >1% in the general 

adult population, >5% in high-risk subgroups), driven mainly by heterosexual transmission.  

In several of these countries, HIV prevalence exceeds 15% in the general population (i.e., 

HIV is “hyperendemic”) and is as high as 50% in certain subgroups.  Although HIV 

prevalence appears to be reaching a plateau in many countries, nearly 2 million individuals 

were newly infected in this region during 2008, underscoring the need for intensive 

prevention efforts among those most at risk of transmitting or acquiring infection.  

 

The need for new HIV prevention interventions  

HIV prevention programs have led to declining HIV incidence in several settings; however, 

2.7 million individuals worldwide became newly infected in 2008, with most of these new 
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infections arising in sub-Saharan Africa.1  Although access to antiretroviral therapy (ART) 

continues to expand, about 3 million HIV-infected individuals received ART in sub-Saharan 

Africa during 2008, representing 44% of those in need.1  Prevention must continue to be a 

dominant strategy for combating the epidemic.2   

 

Clinical trial failures of several prevention interventions underscore the need for new 

strategies. A number of clinical trials have been conducted to evaluate control of bacterial 

sexually transmitted infections (STI) as a means of preventing HIV transmission,29-32 based 

on co-factor effects of STIs on HIV susceptibility and infectiousness detected in 

observational studies.17, 18, 33-35  Only one29 of these trials demonstrated an effect of bacterial 

STI treatment on HIV incidence.  Three recently completed trials – one of diaphragms plus 

lubricant and condoms,36 and two of acyclovir for herpes simplex virus type 2 (HSV-2)37, 38  – 

also failed to demonstrate a difference in HIV incidence between the intervention and control 

groups.  A number of other interventions, including the Merck Ad5 trivalent vaccine39 and the 

microbicides cellulose sulfate40 and nonoxynol-9,41  were associated with increased HIV 

acquisition among patients assigned the intervention.  This succession of disappointing 

results has caused considerable consternation among AIDS researchers,42 leading to calls 

for innovative interventions.43   

 

Understanding the determinants of epidemic spread 

Optimal design of interventions requires a thorough understanding of the biological and 

behavioral factors driving the HIV epidemic.  Biological factors include the duration of 

infection, the inherent infectivity of the virus, changes in infectivity over time, and the 

presence of co-factors (such as concomitant STIs) that can amplify transmission.  

Behavioral factors include partner change rates, durations of steady partnerships, frequency 

of sexual contact within steady partnerships, patterns of temporal overlap across concurrent 
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partnerships, and durations of gaps between consecutive partnerships.  The relative 

importance of specific biological and behavioral factors varies across settings, resulting in 

different primary risk groups and levels of prevalence around the world.       

 

The heterosexual infectivity of HIV-1 (Aim 1) 

 

The importance of infectivity to HIV spread 

The infectivity of HIV – defined as the per-contact probability of HIV transmission from an 

HIV-positive to an HIV-negative individual – is one of the most important parameters 

involved in understanding the magnitude of the HIV epidemic, communicating risk to 

infected and susceptible individuals, and evaluating the potential impact of control efforts.  It 

is generally accepted that the majority of HIV infections are attributable to heterosexual 

transmission; however, most commonly cited estimates3-7 of heterosexual infectivity seem 

far too low to explain the vast proportions of the current epidemic.  Discrepancies between 

low estimates of heterosexual infectivity and the tremendous magnitude of the HIV epidemic 

are likely due to the inherent challenges of studying infectivity, as well as under-appreciation 

of co-factors that can amplify transmission. 

 

The challenge of measuring infectivity 

Although the infectivity of HIV via some routes of transmission can be estimated relatively 

accurately with observational data, the infectivity of HIV via sexual contact has proven 

difficult to measure.  In the case of mother-to-child or parenteral transmission of HIV, the 

transmission event can be identified with certainty, since exposure to HIV can be verified 

and an individual is likely to experience only one such exposure within a given time period.  

In the case of sexual transmission of HIV, however, the transmission event typically can only 

be narrowed down to the series of all sexual acts occurring in a given time interval.  These 
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acts may involve multiple partners – possibly of unknown HIV status – and be protected or 

partially protected by condoms.  Certainty in identifying the transmission event is decreased 

further by reliance on self-reported sexual histories.     

 

Infectivity estimation requires an accurate count of the transmission events resulting from a 

defined number of potentially infectious exposures experienced by a specified population of 

susceptible individuals.  It is difficult to obtain reliable counts of potentially infectious sexual 

exposures; often, it is only possible to estimate an approximate number of sex acts 

occurring between one individual who is presumed to be infectious and another who is 

presumed to be susceptible over some specified time interval.  Overestimation of the 

number of potentially infectious exposures will produce deflated infectivity estimates, and 

underestimation of the number of exposures will have the opposite effect.   

 

Despite these challenges, more than two dozen studies have produced estimates of the 

heterosexual infectivity of HIV-1.21, 35, 44-67  These studies have differed in many ways, 

including their methods of exposure and outcome assessment (longitudinal vs. cross-

sectional), identification of subjects (as part of a serodiscordant couple or not), HIV testing 

intervals, analytical models, and treatment of condom use, self-report error, and possible 

exposures outside of those measured in the study.  The extent to which these differences 

have affected infectivity estimates has not been quantified.      

 

Modifying effects of transmission co-factors 

Previous studies of cumulative HIV incidence have identified co-factors that may modify the 

risk of HIV transmission.  A substantial amount of evidence suggests that susceptibility to 

HIV infection is elevated among uncircumcised males13, 14 and individuals with sexually 

transmitted infections.17, 18  These factors also may be associated with increased 



 11  

transmissibility of HIV when present in HIV-infected individuals.  Further, HIV transmissibility 

is thought to vary over the course of infection according to changes in viral concentrations in 

blood and genital secretions,11, 12 and perhaps due to other time-varying factors as well.22, 68  

Finally, previous research has suggested that HIV transmission is more efficient from males 

to females than from females to males,8 and by anal rather than vaginal intercourse.9, 10  

While these co-factors have been well-studied at the level of cumulative incidence, efforts to 

quantify their effects at the per-contact level have been less common, and practical 

applications of infectivity estimates often fail to take these possible modifiers into account.   

 

The need for more research 

Neither the influence of particular study methods on infectivity estimates nor the per-contact 

effects of transmission-modifying co-factors are well-defined.  Given the importance of HIV 

infectivity estimates for understanding the HIV epidemic, communicating risk, and predicting 

the effects of prevention interventions, there is a need for: 1) clear identification of study 

methods’ impacts on infectivity estimates, and 2) a detailed understanding of the effects of 

transmission co-factors at the level of the individual exposure. 

 

Heterosexual partnership patterns (Aim 2) 

 

The importance of partnership dynamics to HIV/STI transmission 

Sexual contact patterns are fundamental determinants of HIV/STI transmission.  When 

sexual partnerships are consecutive (separated by “gaps” in time), an infected index case 

can pass the infection to only one additional person while a partnership remains intact.  

Furthermore, earlier partners are protected from infections among later partners.  When 

partnerships are instead concurrent (overlapping in time), neither of these limitations is 

present, and transmission can be amplified.69   Even consecutive partnerships can be 
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effectively concurrent, however, if an STI is introduced by the earlier partner and the gap 

between partnerships is shorter than the infecting agent’s infectious period.70, 71  Partnership 

lengths are also important, as longer partnerships may enable more opportunities for 

transmission.  Different combinations of “gap lengths” and partnership durations will have 

different effects on epidemic spread.72    

 

Given the importance of concurrency, partnership durations, and gap lengths in determining 

epidemic spread, careful characterization of these parameters is critical for designing 

prevention interventions and building mathematical models of HIV/STI transmission.  In 

particular, partnership and gap lengths are key input parameters in a specific type of model 

– referred to as a pair-formation model – that explicitly models the formation and dissolution 

of sexual partnerships.73  In these models, the rate of pair formation is the inverse of the gap 

length, and the rate of pair dissolution is the inverse of the partnership length.  Although pair 

models are capable of representing sexual contact patterns more realistically than are 

simpler models, their use has been limited by a lack of data on partnership and gap lengths 

in many settings, particularly among African populations. 

 

Partnership dynamics in the context of HIV transmission 

In the case of HIV in particular, the infectious period begins at the time of acquisition and 

spans the remainder of an infected person’s lifetime.  This biological fact seems to suggest 

that gap lengths are less important in determining HIV transmission when compared to other 

STIs with shorter infectious periods.  However, HIV transmissibility varies dramatically over 

the course of infection, with an extremely high level of infectivity concentrated in the earliest 

months of infection.21, 22  As a result, the transmission dynamics of HIV may be similar to 

bacterial STIs with short infectious periods, and gap lengths may therefore be important 

determinants of HIV transmission. 
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The role of concurrency in HIV transmission has been debated vigorously.74-78  While 

mathematical modeling studies have established the theoretical potential of concurrent 

sexual partnerships to amplify HIV transmission,69, 79-81 an empirical link between 

concurrency and HIV spread has not been confirmed.  Some investigators have 

hypothesized that the relatively high levels of long-term, concurrent partnerships measured 

among some sub-Saharan African populations may be to blame for the severe epidemic in 

that region.82, 83  However, this ecological evidence has been mixed, partly due to differing 

definitions of concurrency across studies.  Further, ecological associations are insufficient to 

definitively establish a link; individual-level data are necessary.  Unfortunately, these data 

are very difficult to collect, as it is a susceptible individual’s partner’s practice of concurrency 

that results in increased risk to the susceptible individual, rather than an individual’s own 

practice of concurrency.84, 85   Empirically measuring the contribution of concurrency to 

HIV/STI transmission requires information not only about an individual’s sexual contact 

patterns, but also the sexual contact patterns of the individual’s partner(s). 

 

To facilitate comparison across settings, the UNAIDS Reference Group on Estimates, 

Modelling, and Projections recently issued a consensus definition for sexual partner 

concurrency: “overlapping sexual partnerships in which sexual intercourse with one partner 

occurs between two acts of intercourse with another.”86  While this standardized definition 

represents an important step forward in the study of concurrency and its effects on HIV 

transmission, it is unable to capture many important details of sexual partnership patterns.  

Additional research is needed to improve our understanding of the various forms that sexual 

partnerships can take, including measurements of partnership lengths, gap lengths, and 

overlap lengths.   
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Empirical estimates of gap lengths and the prevalence of concurrency 

Gap lengths estimated in previous research have varied widely, and to our knowledge, no 

prior studies have characterized gap lengths among African populations.  Studies conducted 

in the US have also found substantial proportions of short gaps:  a study of women aged 15 

to 44 estimated that 47% of gaps between partners in the prior five years were shorter than 

six months,71 and a telephone survey conducted among Seattle adults aged 18 to 39 

estimated that 60% of gaps across the last five partners were six months or shorter.70  In the 

Seattle study, the mean gap length was 354 days, and the median was 187 days.70  In 

another study conducted in the US,87 the mean gap length was 14.6 days for all partners 

contacted in the prior seven months by “high-risk” women ages 14-21.  By contrast, a recent 

study among UK heterosexuals ages 16-44 reported that only 9% of gaps between partners 

contacted in the prior 5 years were shorter than four months.72 

        

Estimated proportions of participants engaging in recent concurrency have varied 

considerably in African studies.  A study conducted among Ugandans ages 15-49 estimated 

that 2% of women and 14% of men had some degree of overlap across their three most 

recent partners.81  Similarly, a study conducted among South Africans ages 15 to 24 

estimated that 2% of women and 11% of the overall population had some degree of 

concurrency across their two most recent partners contacted in the prior three years; 

however, the corresponding proportion of men was a much higher 38%.88  A study 

conducted among HIV-positive individuals in Botswana produced higher estimates among 

men (23%), women (18%), and overall (20%).89  A study among Tanzanians ages 15 to 44 

also obtained higher estimates overall (26%) and among men (53%), but a lower estimate 

(4%) among women.90  These differences across settings are likely to due to differences in 

study methods and concurrency definitions, in addition to true differences in concurrency 

prevalence across populations.   
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Methodological issues related to measuring sexual partnership patterns 

Data collection methods can affect measurement of these parameters in ways that may not 

be obvious in the study design phase.  For example, partnerships may continue beyond the 

final data collection point; if this possibility is not appropriately addressed in data collection 

and analysis, partnership lengths may be underestimated (Figure 2.1).  Previous studies’ 

methods for handling partnership censoring have varied, and have not always been 

explicitly described.  In some studies, investigators simply acknowledged the absence of this 

information as a limitation,71, 87 or they made assumptions about the likelihood of censoring91 

and then used Kaplan-Meier survival analysis to account for censored observations in 

estimating partnership lengths.72  Other investigators asked participants to report whether 

they expected each partnership to continue, and then used that information with Kaplan-

Meier analysis to account for censoring.70, 81  Although this latter approach likely produces 

the most valid estimates, its validity depends on the accuracy of participants’ expectations 

about partnership continuation.  

 

Additionally, studies that have compared several different methods of estimating 

concurrency have found widely discrepant results across measures.92-94  These measures 

include determining partnership intervals from reported dates of first and last sex, 

prospective data collection via coital diaries, and direct inquiry about overlap and/or 

numbers of partnerships at specific times.87, 93-96 Further, restriction of partnership recall to a 

specified “look-back period” can have a constraining effect on gap length measurements.  

Because the most recent contact with each partner must have occurred within the “look-

back period,” each gap between consecutive partners has to be fully contained within that 

time.  Reporting periods in previous gap length studies have ranged from seven months87 to 

five years,71, 72 and one study had an open-ended period.70   Additionally, the time unit 

chosen for reporting the start and end of partnerships can affect the resolution of partnership 
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and gap length measurements, as well as the related classification of partnerships as 

consecutive or concurrent.  Numerous partnership dynamic studies have collected only 

month and year of first and most recent sexual contacts,70-72, 92, 93 necessitating assumptions 

that could bias measurements of length and could result in misclassification of partnership 

patterns.  Finally, when the number of partners on whom information is assessed is fewer 

than the total number of partners that an individual has had during the look-back period, an 

individual’s short-term partnerships are less likely to be captured than his or her long-term 

partnerships.91, 97  

 

The need for more research 

Several studies have characterized these parameters in various settings, but the 

implications of data collection methods have not always been thoroughly considered or 

discussed.  There is a need for greater understanding of these methodological issues and 

for improved accounting for them in future studies.  Additionally, there is a particular need 

for estimates of partnership, gap, and overlap lengths from sub-Saharan Africa, as 

descriptions of these parameters in this region are sparse.     

 

 

The contribution of EHI and its potential as a target for prevention interventions (Aim 
3) 
 

The danger of transmission during acute and early infection 

Early HIV infection (EHI) represents a “perfect storm” of conditions for spreading HIV.  In 

particular, acute HIV infection (AHI), which comprises the three- to twelve-week period 

between HIV acquisition and seroconversion,20, 98, 99 is characterized by high concentrations 

of HIV RNA in blood19, 20, 100-104 and genital secretions.19, 104 Given the relationship between 

blood viral load and sexual transmission risk,11, 12, 66, 105 transmission is thought to be very 
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efficient during EHI,21, 22, 55 particularly during AHI.104, 106, 107  Furthermore, acutely infected 

individuals test negative on standard HIV antibody tests, contributing to the likelihood of 

ongoing, high-risk behavior even if testing is performed.  For these reasons, persons with 

EHI and AHI can transmit the virus to susceptible sexual partners after very few contacts in 

short periods of time.21, 107, 108 Phylogenetic109-112 and modeling22-27, 73, 113-117 studies have 

estimated that large proportions of new HIV infections may be attributable to early-stage 

index cases (Tables 2.1, 2.2). 

 

Recent studies have suggested that the period of increased infectivity is not limited to the 

time of highest viral loads, and that certain viral factors may result in additional 

enhancements of transmissibility beyond the elevation due to increased viral loads.22, 68 An 

analysis of transmission events among serodiscordant couples in Rakai, Uganda, estimated 

transmission rates 26 times as high during early HIV infection as during the subsequent 

asymptomatic period.22  This transmission rate ratio was more than ten times higher than the 

ratio the authors calculated based on previously published estimates of the functional 

relationship between viral load and transmissibility.118  Further, a mathematical modeling 

study of the within-host dynamics of simian immunodeficiency virus (SIV) during acute 

infection concluded that the infectivity of individual virions is likely to decline over the course 

of the earliest period.68 While the mechanisms of this effect and the specific form of changes 

in virion infectivity over time require further elucidation, these observations suggest that 

additional factors beyond elevated viral loads may enhance the role of EHI in epidemic 

spread.     

 

Targeting transmission prevention interventions to EHI 

Prevention interventions during EHI represent an innovative approach to preventing 

secondary transmission, as most current interventions among HIV-infected persons are 
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initiated after this period has ended.  In settings where EHI is responsible for a large 

proportion of new cases, interventions initiated during this highly infectious phase could alter 

the epidemic trajectory.  For these reasons, a number of researchers have called upon the 

public health community to focus intervention efforts on individuals with EHI.104, 106, 107, 119-122    

Such interventions could include counseling to encourage prevention behaviors during the 

most infectious period, using a network approach to identify those exposed to acutely 

infected individuals, treating STIs, and initiating ART.104, 106, 107, 119-122   

 

Interventions during EHI may also have practical advantages over interventions initiated 

later. Voluntary HIV counseling and testing (VCT) and behavioral interventions can 

effectively lead to short-term reductions in unprotected sex among people living with HIV 

(PLWH), STI clinic patients, and HIV-serodiscordant couples;123-133 however, many 

prevention intervention effects decline over time.134  In Uganda, a country often lauded as 

having the most successful national HIV prevention program, HIV incidence recently has 

begun to rise, due at least in part to fatigue associated with the ABC (abstain, be faithful, 

use a condom) strategy.135   Numerous other interventions among persons with chronic 

(post-early) HIV infection (CHI), including several of those described above, also have been 

hampered by poor compliance over the long term.136  Intensive, shorter-term interventions 

that occur only within the brief EHI period are likely to be less susceptible to intervention 

fatigue and poor compliance than longer-term interventions.  Furthermore, compliance with 

longer-term interventions initiated during EHI (rather than CHI) is likely to remain high at 

least through the most infectious period, minimizing the detrimental effect of waning 

compliance over time.  Interventions initiated during EHI in sub-Saharan Africa may have an 

especially strong impact, as high levels of sexual partner concurrency in some parts of this 

region81, 137 may enable rapid and extensive propagation of HIV infection69, 79, 138 during the 

highly infectious early phase. 
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Identification of cases early in infection 

Although identification of infected persons during the narrow AHI window is logistically and 

financially challenging, AHI screening is feasible – even in resource-limited settings – if 

pooling of samples and/or targeted screening is performed.  In previous cross-sectional 

studies that we have conducted in a Lilongwe STI clinic, we estimated an AHI prevalence of 

1.5%139 to 2.5%,140 and we demonstrated that AHI patients can be readily identified via RNA 

pooling in these types of settings.  

 

To increase the efficiency of AHI screening in this setting, we developed a risk-score 

algorithm for identifying individuals most likely to be acutely HIV infected, such that HIV RNA 

or p24 tests could be targeted to those individuals.  In the original development of the 

algorithm and in subsequent validation studies, we estimated that the algorithm could detect 

84%-95% of AHI cases and rule out 60%-82% of HIV-negative individuals.141, 142  In 

continued use of the algorithm, we have reduced the monthly number of patients receiving 

HIV RNA tests by 75% and have nearly doubled the number of AHI cases detected each 

month.143  Taken together, these results demonstrate that risk score algorithms can enable 

rapid, reliable AHI detection in resource-limited settings. 

 

Despite the elevated risk of transmission during EHI and the feasibility of AHI detection, the 

extra effort required to identify AHI cases may be difficult to justify in settings where 

resources are limited and the actual contribution of EHI is small.  The brevity of this period 

may limit its overall contribution to the epidemic, and the particular sexual behavior patterns 

and current epidemic phase in a given setting will determine the role of EHI in the local 

epidemic.  If the role of EHI is small, then interventions focusing on the later phases of 

infection may have the greatest impact on epidemic spread.  On the other hand, if the role of 

EHI is large, then interventions focusing on chronic HIV infection will have a limited effect.  It 



 20  

is therefore important to understand the role of EHI when designing and implementing HIV 

prevention efforts.  

 

Mathematical Models for Assessing the Role of EHI and the Impact of Interventions 

Mathematical models are valuable tools for understanding the mechanisms of disease 

spread, forecasting the future course of an epidemic, and predicting the effect of 

interventions.  Epidemic models for HIV/AIDS in particular have been used to predict the 

effects of vaccination, ART, HSV-2 treatment, and behavior change on epidemic spread.  

Several HIV/AIDS models have explicitly estimated the proportion of new infections due to 

index cases with early infection (Table 2.2).22-27, 73, 113, 114  These estimates have been close 

to 100% during the epidemic growth phase, and have ranged from <1% to 82% (Table 2.2) 

at endemic equilibrium.   

 

The extreme heterogeneity of the estimates in Table 2.2 is due to differences in “early HIV” 

definitions, population-specific parameter values, epidemic phases of interest, and model 

types.   It is difficult to quantify the extent to which different results can be attributed to 

particular model features, as each model has had a unique and multifaceted set of 

components, and interactions among parameters and structural features can have non-

linear effects.  In general, the predicted role of EHI will be higher earlier in the epidemic than 

later, because the percentage of index cases in EHI declines over time.   The predicted 

contribution of EHI also will increase with its assumed relative duration, and will depend on 

the model structure used for generating estimates.   

 

Four general model types have been used: linear models and three types of dynamic 

models.  Dynamic models incorporate the non-linear feedback process underlying epidemic 

systems, in which incidence of new infections depends on infection prevalence in the 
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population. Linear models ignore this process.  While linear models can be useful for short-

term planning, dynamic models are more appropriate for providing longer-term insights into 

epidemic spread and intervention effects.  The three types of dynamic models that have 

been used for estimating the contribution of EHI are: 1) “mixing models” that assume every 

sexual contact is instantaneous and occurs with a new partner; 2) “pair models” that assume 

every contact occurs within a monogamous partnership of finite duration; and 3) “hybrid 

models” that include partnerships of finite duration as well as random, one-off contacts.  

Mixing models with only one-off contacts predict higher contributions of EHI to the epidemic 

than do “pair models,” since pair models allow the infection to remain “trapped” within or 

“excluded” from monogamous partnerships during the most infectious period.  Hybrid 

models that include both types of contact allow these “trapping” and “excluding” effects, but 

also allow the possibility of HIV “escape” from or “entry” into some partnerships via one-off, 

casual contacts.  Hybrid models are likely to represent sexual contact patterns and HIV 

transmission dynamics more realistically than pure “mixing” or “pair” models.        

 

The need for more research 

No prior study has used a “hybrid” model to examine the contribution of EHI to HIV epidemic 

spread in Sub-Saharan Africa, the hardest-hit region in the world.  Further, no study has 

examined the potential impact of interventions initiated during EHI in this region, and no 

prior model has used detailed behavioral and viral load data from the setting of interest to 

examine the role of EHI and the potential effect of interventions initiated during this time.  

Given the elevated transmission risk during this period and the corresponding potential for 

this period to play a large role in perpetuating HIV spread, it is important to gain a better 

understanding of this period, its effects on HIV transmission, and its power as a target for 

prevention efforts. 
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Table 2.1.  Proportion of new HIV infections attributable to early index cases in phylogenetic 
studies  

First author (year) Population / Setting Early HIV definition % new cases 
due to EHI 

Yerly (2001)109 Mixed / Switzerland First 3-12 months 29% 

Pao (2005)110 Mostly MSM / UK First 6 months 34% 

Brenner (2007)111 Mixed / Quebec First 6 months 49% 

Lewis (2008)112 MSM / UK First 6 months 25% 

 

MSM = Men who have sex with men
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Table 2.2.  Proportion of new HIV infections attributable to early index cases in mathematical modeling studies  

First author (year) Population / 
Setting 

Model 
typea 

EHI duration 
(months) 

% new cases 
due to EHI 

Factors varied 

Jacquez (1994)23 MSM / USA Mixing 2  25% - 51% Number of sexual activity groups; 

Sexual contact rates 

Early transmission probability 

Pinkerton (1996)25 MSM / USAb Linear 2 25% - 90% Early transmission probability; 

Number of acts per partner 

Koopman (1997)24 MSM / USAb Mixing 1.5  20% - 47% Aging process; 

Number of sexual activity groups  

Kretzschmar (1998)73 MSM / USAb Mixing, 

Pair 

1-2  65% - 82%c Model type (mixing / pair); 

Pair separation rate 

Coutinho (2001)116 Mixed Linear 1.5  2% - 89% Aging process; 

Sexual contact patterns; 

Relationship: viral load, infectivity 

Xiridou (2004)114 MSM / 

Amsterdam 

Hybrid 1 – 5  <1% - 39% Partnership type (casual / steady); 

Ratio of partnership to EHI length 
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First author (year) Population / 
Setting 

Model 
typea 

EHI duration 
(months) 

% new cases 
due to EHI 

Factors varied 

Hayes (2006)115 Heterosexuals / 

Uganda 

Mixing, 

Pair  

5  23% - 41%d Sexual contact patterns  

Pinkerton (2007)25 Mixed / USA Linear 1.5 - 2  3% - 17% Duration of EHI; 

Transmission rate ratio (EHI:CHI) 

Abu-Raddad (2008)27 Heterosexuals / 

Kenya & 

Cameron 

Mixing 2.5  7% - 15%c Sexual mixing patterns and risk 

behaviors 

Salomon (2008)117 Heterosexuals / 

Uganda 

Linear 5  ~20% - 40%d Sexual contact patterns;  

ART patterns 

Hollingsworth (2008)22 Heterosexuals / 

Uganda 

Mixing, 

Pair 

2.9  9%  - 31% Model type (mixing vs.pair) 

Prabhu (2009)26 Mixed / USA Linear 1.5 11% Not applicable 

a Linear models fail to include the non-linear dependency of HIV incidence on HIV prevalence.  Mixing models assume that HIV 
transmission can only occur during instantaneous contacts between susceptible and infected individuals.  Pair models assume that 
HIV transmission can only occur within serodiscordant couples.  Hybrid models combine the transmission routes of mixing and pair 
models to allow transmission both within and outside of steady partnerships; therefore, hybrid models are likely to capture 
transmission dynamics more realistically than a pure mixing model or pure pair model.    
 
b Transmission probabilities were drawn from the population category shown, but the reported estimates result from a range of 
hypothetical sexual behavior parameters that do not necessarily reflect a specific population. 
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c The range of estimates shown was extracted from the endemic-phase portion of graphs showing the time-course of the proportion 
due to EHI 
 
d Range of estimates reflects the proportion of all transmissions during an individual’s entire infectious period that occur during EHI.  
The extent to which this proportion corresponds with the proportion of all transmissions that occur during EHI at the population level 
will depend on the epidemic phase and the distribution of sexual contact patterns in the population. 
 
Table 2.2 is reprinted from Current Opinion in HIV and AIDS, Volume 5, Issue 4, William Miller, Nora Rosenberg, Sarah Rutstein, and 
Kimberly Powers, “Role of acute and early HIV infection in the sexual transmission of HIV,” pages 277-282, with permission from 
Wolters Kluwer Health.
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Figure 2.1.  Effects of missing censoring information on measuring partnership lengths  
 

Solid and dashed bars represent measured and true partnership lengths, respectively.  Partner A is 
represented in light gray, and Partner B in dark gray.  If no information is available to indicate 
whether a partnership continues beyond the time of interview, it is not possible to determine 
whether the most recent act is the LAST (partnership-ending) act with a given partner.  If a 
partnership continues beyond the time of interview, as depicted for partner A, then the measured 
partnership length will be an underestimate of the true partnership length. 
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CHAPTER 3: RESEARCH DESIGN AND METHODS 

 

For our first specific aim, which was related to the heterosexual infectivity of HIV-1, we 

conducted a systematic review and meta-analysis of published studies on the topic.  For our 

second specific aim, which was related to describing sexual partnership patterns, we 

analyzed data from the Kamuzu Central Hospital (KCH) Sexually Transmitted Infections 

(STI) Clinic in Lilongwe, Malawi.  For our third specific aim, which was related to the role of 

early HIV infection (EHI) in epidemic spread and transmission prevention, we conducted a 

mathematical modeling study.  Our mathematical model was based on findings from the first 

two aims, as well as additional data from our previous work in Malawi.  We provide separate, 

detailed descriptions of the methods for each aim below.   

 

The heterosexual infectivity of HIV-1 (Aim 1) 

 

Literature search 

To identify literature for our review, we searched the PubMed/Medline and Web of Science 

Databases through April 27, 2008 with the following terms:  (HIV OR "human 

immunodeficiency virus") AND ((transmission AND (probability OR efficiency OR rate)) OR 

(transmission AND risk AND ((per AND contact) OR (per AND act))) OR infectivity OR 

infectiousness OR transmissibility) AND (sexual OR heterosexual OR coital).   

 

Study selection 



 

 28  

From the articles resulting from the search terms above, we examined the abstracts (if 

available) to identify articles that met any of the following criteria:  1) articles that mentioned 

any type of transmission probability estimate, 2) articles that described mathematical models 

that might have used transmission probability estimates as inputs, or 3) articles that related 

the frequency of heterosexual contact to HIV transmission in the study population.  If the 

abstract was unavailable, we examined the title to see if it referred generally to heterosexual 

transmission. To identify articles producing estimates of the heterosexual infectivity of HIV, 

we then conducted a detailed, manual review of the text and bibliographies of articles 

meeting any of the criteria described above.  We then excluded articles that provided only: 

1) graphical displays of continuous infectivity functions (but no point estimates), or 2) upper 

and lower infectivity limits (but no point estimates) if the same data were used in other 

articles to generate point estimates.   

 

Extraction and calculation of infectivity estimates and standard errors 

We extracted two types of estimates (where available) for each study population in each 

article meeting our inclusion criteria.  First, we extracted the most precise overall infectivity 

estimate; that is, the estimate calculated in the entire study population.  Second, we 

extracted the most precise stratified estimate within each co-factor category available in a 

given article. The co-factors of interest were genital ulcer disease (GUD), any (non-specific) 

STI, male circumcision status, female bacterial vaginosis (BV), age, HIV-1 subtype, index 

disease stage, index viral load, antiretroviral (ARV) use, sexual contact type, geographic 

region, and transmission direction (male-to-female vs. female-to-male).  In articles with all 

male or all female index cases, the “overall” estimate was the same as the estimate stratified 

by transmission direction.      
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As the focus of our analysis was restricted to HIV-1, we included estimates produced 

specifically for HIV-1, as well as any type-nonspecific estimates derived outside of West 

Africa, since HIV-1 predominates outside of that region.144  In cases where an estimate was 

not reported but could be calculated from the available data, we used Equation 1 in 

Appendix One to calculate an estimate.   

   

We also recorded the corresponding standard error for each infectivity estimate that we 

extracted or calculated.  If a standard error was not reported, we used the methods 

described in Appendix One to calculate approximate standard errors.   

   

As multiple articles could share (partially or wholly) a single study population, we included 

from each study population only the most precise overall estimate and most precise 

stratified estimate within each co-factor category in order to avoid duplication.  We applied a 

half-integer continuity correction when 0 transmission events were reported.  

 

Extraction of information about study methodological features 

We extracted information about the following study methods corresponding to each 

population’s most precise overall estimate: 1)  partnership status of susceptible individuals 

(independent individual versus partner of a person known to be HIV-infected); 2) timing of 

exposure and outcome assessment (cross-sectional versus longitudinal); 3) method for 

defining the index case’s infection date (if used to determine the start of HIV exposure); 4) 

exclusion or inclusion of susceptible individuals reporting sexual contacts outside the 

defined index case set; 5) exclusion or inclusion of susceptible individuals reporting possible 

blood exposures to HIV; 6) length of the interval between HIV tests in longitudinal analyses, 

7) exclusion or inclusion of condom-protected acts; 8) exclusion or inclusion of adjustment 

for self-report error; and 9) type of analytical model.     
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Aim 1 Analyses – Relationship between overall estimates and study methods 

To relate the overall infectivity estimates to the study methods of interest, we first calculated 

a pooled, random-effects estimate of infectivity within each study design or analysis 

category.  We used stratified homogeneity tests to examine the consistency of estimates 

within categories, based on the stratum-specific p-value for Cochran’s Q.  Next, we 

conducted a series of univariable random-effects meta-regression analyses, each with 

overall infectivity as the dependent variable.  In each meta-regression, a particular study 

design or analysis feature was the independent variable.  To determine whether any 

infectivity estimates were particularly influential on our results, we conducted a series of 

repeat meta-regression analyses, excluding one estimate from the analyses in each series.  

 

Aim 1 Analyses – Relationship between co-factors and infectivity 

We used a similar approach to examine differences in infectivity according to transmission 

co-factors. For each co-factor, we performed stratified meta-analyses and univariable meta-

regression analyses (this time with stratified estimates), again using a random effects model 

and the p-value for Cochran’s Q to assess the consistency of estimates within a category.  

To assess the independent effect of each transmission co-factor (controlling for other 

factors), we also created one multiple meta-regression model for each combination of co-

factors with at least one infectivity estimate available for each stratum.   Due to the limited 

number of stratified estimates, we did not perform influence analyses around transmission 

co-factor results.      

 

Aim 1 Analyses – Effect Measures 

In each meta-regression analysis, the regression coefficient represented the average 

“infectivity difference” associated with a particular study method or transmission co-factor.  

In the analysis of study methods, the infectivity difference was the absolute difference in 
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(weighted) average infectivity comparing studies using one type of method (e.g., longitudinal 

measurements) with studies at a “reference” level (e.g., cross-sectional measurement). In 

the co-factor analysis, the infectivity difference compared infectivity for populations at one 

co-factor level (e.g., 100% GUD) with infectivity for populations at a “reference” level (e.g., 

0% GUD).       

 

We used Stata software (StataCorp., College Station, Texas), version 9.2, to conduct all 

meta-analyses, using restricted maximum-likelihood to estimate the among-population 

variance in each meta-regression.   

 

Aim 1 Limitations 

Due to the ethical and logistical challenges of conducting infectivity studies, current 

estimates are limited, both in terms of quantity and quality.  Therefore, our ability to calculate 

accurate pooled estimates and to quantify the effects of study methods and transmission co-

factors were limited by the available data.  As described in greater detail in Chapter 4, the 

independent effect of a given study method or co-factor of interest could therefore differ 

considerably from the value we calculated.     

 

Aim 1 Strengths 

Our study is the first systematic review and meta-analysis of the heterosexual infectivity of 

HIV-1, and as such, provides a current and comprehensive summary of this parameter.  Our 

analyses quantify the potential effects of transmission co-factors at the per-contact level, 

such that future epidemic models can select the most appropriate infectivity estimates for a 

given setting, and risk communication messages can be appropriately tailored to a particular 

audience.  Additionally, our careful detailing of study methods and their potential effects on 

infectivity estimates provides a critical framework with which to understand these estimates.  
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Heterosexual partnership patterns (Aim 2) 

 

Data sources 

The data for this aim were collected at the baseline and one-week follow-up visits of a 

longitudinal study of HIV viral dynamics conducted at KCH STI Clinic.   

 

Study setting 

The KCH STI Clinic is a free-standing public clinic that sees approximately 10,000 patients 

per year. HIV seroprevalence among KCH STI Clinic patients is approximately 40%, and 

prevalence of acute HIV infection (AHI) is approximately 1.5%.  Approximately 14% of KCH 

STI clinic patients present with genital ulcer disease, 27% of males present with urethral 

discharge, and 68% of females present with abnormal vaginal discharge or lower abdominal 

pain.   

 

Study population 

The study population comprised adults presenting to the outpatient KCH STI Clinic in 

Lilongwe, Malawi from February 27, 2003 through October 21, 2004.  During this time, 

trained clinical officers invited all eligible clinic attendees to be screened for enrollment.   

 

Eligibility for screening 

In order to be eligible for enrollment, interested participants had to be 18 years of age or 

older, antiretroviral naïve, presenting with a condition not requiring inpatient care, able and 

willing to provide informed consent, willing to be HIV tested, and prepared to return for follow 

up at seven days and periodically for up to four months.  Patients living too far from 

Lilongwe to make regular return visits were discouraged from enrolling.   
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Recruitment into longitudinal study 

As the primary aim of the longitudinal study was to compare HIV viral dynamics in patients 

with AHI versus chronic HIV infection (CHI), recruitment for the longitudinal study focused on 

identifying individuals with positive HIV p24 antigen results at baseline.  These p24-positive 

participants were considered “likely acute cases” at enrollment.  For each enrolled p24-

positive patient, a target of three individuals with negative p24 results were identified, along 

with one HIV-antibody-positive patient (matched on sex).  The secondary analyses in this 

dissertation include all patients who were recruited into the longitudinal study and returned 

for the one-week follow-up visit. 

 

Data collection 

At the baseline visit, trained HIV counselors provided HIV pre-test counseling and drew 

blood for HIV testing after written informed consent was obtained.  Clinical staff then 

administered a brief questionnaire with items related to demographics, sexual history, and 

medical history.  Next, a brief physical examination was performed, including a genital 

examination with speculum in women, and patients were treated for STIs according to the 

Malawi Syndromic Management Guidelines.  All patients were asked to return the next week 

for follow-up of STI symptoms.     

  

At the one-week follow-up visit, an additional questionnaire sought the following information 

on a maximum of three sexual partners with whom the participant reported sexual contact in 

the prior two months:  type of partner, number of months since the first sexual contact with 

the partner, and number of days since the most recent sexual contact with the partner.   

 

HIV testing 
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HIV antibody testing was performed in accordance with the Malawi AIDS Counseling and 

Resource Organization scheme.  Serum was tested in the STI clinic by with two, parallel, 

rapid tests: Determine (Abbott Laboratories, Abbott Park, IL) and Unigold (Trinity Biotech, 

Wicklow, Ireland).  Clients with concordant positive rapid tests were counseled as HIV 

infected, and were referred to the Lighthouse HIV Clinic.  Clients with concordant negative 

rapid tests were counseled as HIV uninfected, but were asked to return to the STI clinic in 

one week to receive the results of RNA and p24 testing.  Patients with discordant rapid test 

results were informed that their results were indeterminate, and were also asked to return in 

one week to obtain results from RNA and p24 tests.     

 

PCR testing was performed at the UNC Project Laboratory in Lilongwe, Malawi, which was 

certified by the NIH-sponsored Virus Quality Assurance Laboratory for Roche Monitor RNA 

testing. Plasma from all patients with discordant or dual-negative rapid tests were manually 

pooled using a 50:5:1 scheme.  Each master pool of plasma from 50 individuals was tested 

with the Ultrasensitive Roche Monitor HIV RNA Assay, Version 1.5 (Pleasanton, CA), 

following the manufacturer’s package insert.  If a master pool was found positive for HIV 

RNA, then its component, intermediate pools were tested with the same assay.  All 

individual specimens in positive intermediate pools were then tested with the standard 

Roche Monitor assay to identify the infected individual.  HIV p24 tests were performed with 

the Perkin-Elmer p24 antigen assay, and Western Blot was performed using a standard kit 

(Bio-Rad Laboratories).      

 

HIV status determination 

We classified subjects with concordant-positive rapid tests as being chronically HIV-infected 

(CHI).  We classified subjects with discordant or dual-negative rapid tests and negative PCR 

results as HIV-negative.  We classified subjects who had detectable HIV RNA and who met 
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one of the following three criteria as acutely HIV-infected (AHI): 1) dual-negative rapid tests, 

2) discordant rapid tests and negative or indeterminate Western Blot, or 3) discordant rapid 

tests and weakly positive Western Blot with subsequent Western Blot evolution.  To confirm 

that subjects classified as AHI were truly infected, we asked these patients to return for 

rapid test and Western Blot at weeks 1, 2, 4, 8, 12, and 16 after baseline, in order to 

establish seroconversion in these patients.   

 

Data management 

Data from the questionnaire, physical examination, and HIV tests were collected on paper 

forms and double-entered into Microsoft Access or Excel (Microsoft Corporation, Redmond, 

WA).  We converted the single-entry databases to SAS System for Windows, Version 9.1 

(SAS Institute, Inc., Cary, NC) and checked them against one another.  We consulted paper 

forms to reconcile all discrepancies between the two entries in order to create a validated 

dataset.  We conducted all analyses involving generalized estimating equations (GEE) with 

Stata 9.2 and all other analyses with SAS 9.1.   

 

Aim 2 Analyses - Probability of Selection 

Because study participants were selected based (in part) on their sex and HIV test results, 

we weighted analyses by participants’ inverse probabilities of selection, calculated as the 

reciprocal of:  the number of enrolled participants of a given sex and HIV status, divided by 

the total estimated number of patients of that sex and HIV status visiting the STI clinic during 

the study period.  The estimates of the number of patients within a sex and HIV status 

category visiting the clinic were based on administrative data collected separately from this 

study.  

 

Aim 2 Analyses - Partnership Lengths 
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To calculate the length of each reported partnership, we first converted the time since first 

sex into days by multiplying the reported number of months M by 30.  We then calculated 

the partnership length as the number of days between the first and most recent sexual 

contact with the partner (Figure 5.1A in Chapter 5).  Partnerships defined by a single contact 

were assigned partnership lengths of zero. 

 

We estimated the mean partnership length and corresponding 95% confidence interval 

across participants, both overall and according to selected predictor variables, using GEE to 

account for the possibility of multiple partnerships per participant.  We used inverse-

probability-of-selection weighting and specified an exchangeable working correlation matrix.  

The predictor variables of interest were sex, age (18-24 years, 25-29 years, 30+ years), 

marital status (married vs. unmarried), partner type (spouse/live-in partner, non-cohabitating 

boyfriend/girlfriend, casual acquaintance, transactional partner), partnership pattern in the 

prior 2 months (<2 partners, concurrency, consecutive – see definitions below), travel in the 

prior 2 months (any vs. none), transactional sex in the prior 2 months (any vs. none), 

baseline HIV status (negative, AHI, EHI), baseline genital ulcer disease (GUD) status (GUD 

vs. no GUD), and baseline urethral discharge (UD) status in males (UD vs. no UD).    

 

Because mean partnership lengths can be heavily influenced by extreme values, we also 

calculated weighted median partnership lengths in the overall population and in each 

subgroup, along with the corresponding weighted maxima, minima, and 25th and 75th 

percentiles.   These calculations did not account for multiple partnerships per participant. 

 

To compare partnership lengths across predictor categories, we calculated partnership 

length differences (PLDs) as the weighted mean partnership length in a comparison group 

minus the corresponding value in a referent group, and partnership length ratios (PLRs) as 
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the former divided by the latter.  The corresponding 95% confidence intervals were 

calculated using empirical covariance values from the GEE output. 

 

Aim 2 Analyses – Gap and overlap lengths      

Among those reporting contact with two or more partners in the two months prior to the STI 

clinic visit, we also calculated the “gap length” between each set of partners as the number 

of days since the most recent sexual contact with the less-recently-contacted partner minus 

the number of days since the first sex with the more-recently-contacted partner (Figure 5.1 

in Chapter 5).   Positive gap lengths characterized consecutive partnerships (no overlap), 

and zero or negative gap lengths characterized concurrent partnerships (overlap).   

 

Among those with negative gap lengths (i.e., concurrency), we calculated the overlap length 

across each set of partners in one of two ways.  If one partnership was entirely contained 

within another, we calculated the overlap length as the time of first sex with the less-

recently-contacted partner minus the time of most recent sex with that partner (Figure 5.1B 

in Chapter 5).  If the partnership with the less-recently-contacted partner began prior to the 

partnership with the more-recently-contacted partner, we calculated the overlap length as 

the time of first sex with the latter minus the time of most recent sex with the former (Figure 

5.1C in Chapter 5).  If these two acts occurred on the same day, the overlap length was zero 

(Figure 5.1D in Chapter 5).   

 

Among those with positive gap lengths (i.e., consecutive partnerships), we calculated the 

average gap length using negative binomial regression with generalized estimating 

equations, again with inverse-probability-of-selection weights and an exchangeable working 

correlation matrix.  We used analogous methods to calculate average overlap lengths 
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among those with negative gap lengths (i.e. concurrency).   There were too few participants 

reporting multiple partners to compare gap and overlap lengths across predictor categories. 

 

Aim 2 Analyses – Partnership Patterns 

We calculated the proportion of participants in each of the following categories, based on 

reported sexual behavior in the two months prior to the STI clinic visit: a) fewer than two 

partners, b) two or more consecutive partnerships (gap length>0), or c) two or more 

concurrent partners (gap length≤0).  We combined those with 0 or 1 partner into a single 

category (a) to improve estimation efficiency, as these individuals are relatively similar with 

respect to onward transmission risk (compared with those reporting multiple partners).   

 

To assess the associations of these partnership patterns with the predictor variables of 

interest, we conducted two rounds of multinomial logistic regression, again using inverse-

probability-of-selecting weighting.  In the first round, category (a) (< 2 partners) was the 

referent category; in the second round, category (b) (consecutive partnerships) was the 

referent.      

 

Aim 2 Limitations 

The data collection methods utilized in this and similar studies have important implications 

for measuring partnership, gap, and overlap lengths and for classifying partnership patterns.  

First, we did not have information about whether partnerships continued beyond the time of 

the clinic visit.  Our method of calculating partnership lengths assumed that the most recent 

contact was the final (partnership-ending) contact; however, some partnerships are likely to 

have continued beyond the time of the STI clinic visit.  Therefore, the partnership lengths 

reported in this dissertation reflect the time since participants began having sex with each 

partner (i.e., the current partnership duration), but likely underestimate the entire duration of 
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the partnership from beginning to end (Figure 3.1A ; Figure 2.1 in Chapter 2).  Only with 

information about whether partnerships were ongoing, along with Kaplan-Meier survival 

analysis methods, could we have obtained more accurate partnership length values.   

 

Second, because the most recent contact with each reported partner must have occurred 

within the “look-back period” of two months, each gap between consecutive partners had to 

be fully contained within that period.  Therefore, the maximum allowable gap length that 

could be measured in this study was 60 days.    

 

Third, the collection of dates of first sex in terms of months instead of days prior to the clinic 

visit, along with our method of calculating the number of days as 30 times the number of 

months, could have biased (in either direction) our partnership and gap length 

measurements (Figures 3.1B – 3.1E).  These methods could also have led to 

misclassification of both consecutive and concurrent partnerships (Figures 3.1B – 3.1E).    

 

Although the mean and median partnership lengths estimated in each subgroup are likely to 

be underestimates, given the likelihood of right-censoring of at least some of the 

partnerships, the PLDs and PLRs that we calculated provide unbiased comparisons 

between groups if certain conditions hold.   Specifically, if partnership lengths were 

censored by the same absolute amount in each category, then the PLDs will be valid 

estimates of the absolute differences between groups.  If partnership lengths were instead 

censored by the same relative amounts, then the PLRs will be valid estimates of the relative 

differences between groups.  

 

In addition to the measurement issues related to data collection that we have discussed, we 

also note that the necessary reliance on self-reported data may have introduced recall error 
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and social desirability bias.  The former may have biased results in either direction, while the 

latter is likely to have resulted in deflated estimated proportions of those engaging in 

multiple partnerships.    Additionally, because we collected information only on partners 

contacted in the two months prior to an STI clinic visit, generalizability to longer-term trends 

and other types of populations is uncertain.  Finally, because the data were cross-sectional 

and the small sample size precluded multivariable analyses, we were unable to assess 

causal relationships between predictors and the parameters of interest.  However, the main 

goals of these analyses were descriptive in nature.   

 

Aim 2 Strengths 

Detailed data on sexual behavior patterns are limited, particularly among sub-Saharan 

African populations.  Our results provide parameter estimates for certain types of 

mathematical models that have seen limited use previously due to insufficient data; in 

particular, our Aim 2 results were used in our Aim 3 modeling analyses.  The results of our 

analyses also highlight the need to consider the variety of forms that sexual partnerships 

can take when describing HIV transmission risk.   

 

We also note that we carefully tailored our analytical approach to the particular features of 

the primary data that we were analyzing:  we used GEE to account for multiple partnerships 

per participant, we compared mean and median partnership lengths to assess the effects of 

extreme values, and we calculated PLDs and PLRs to provide valid comparisons of 

partnership lengths in the presence of censoring.   

 

The contribution of EHI and its potential as a target for prevention interventions (Aim 
3) 
 

Study population 
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We based our model development and analyses on a single, representative population from 

an urban, sub-Saharan African setting: the population of Lilongwe, Malawi.  As in much of 

sub-Saharan Africa, the HIV epidemic is mature, hyperendemic, and generalized in Malawi, 

and heterosexual contact is the primary mode of transmission.  The dominant viral subtype 

is clade C.  We chose the population of Lilongwe based on our long-standing research, 

training, and care collaborations with the Malawi Ministry of Health and the KCH.  These 

collaborative activities have generated large amounts of high-quality data to directly inform 

our model structure and parameter values.  

 

Data sources 

Four general parameter types were important in our modeling: 1) sexual behavior patterns, 

2) probabilities of HIV transmission, 3) durations of HIV stages, and 4) demographic rates.  

We derived values for sexual behavior parameters from the analyses we described above 

for Aim 2. We based transmission probabilities and HIV stage durations on the results of 

Aim 1, other published literature, and observed patterns of viral load in our research 

setting.12, 19, 22, 145  We derived birth and death rates from Malawi census data.146  We 

describe the use of these data sources for deriving parameter values in greater detail in 

Chapter 6 and its associated Appendices (Appendices Two – Seven).  

 

Aim 3 Analyses – Model Structure 

In real populations, HIV will become “trapped” within a monogamous partnership of two 

infected individuals, and will be “excluded from” a monogamous partnership of two 

susceptibles, for the entire duration of the relationship.  If sexual contacts occur outside of 

these partnerships, however (i.e., if a partnership is not mutually monogamous), then HIV 

can “escape” or “enter” the partnership.  To describe HIV transmission dynamics in 

Lilongwe, we used a modeling approach that explicitly included sexual contacts occurring 
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within steady partnerships, as well as casual, one-off contacts occurring outside of these 

partnerships.  We describe this type of model as a “hybrid,” as it combines certain features 

of “mixing models” (which allow only casual, one-off contacts) and “pair models” (which 

allow contacts only within steady, monogamous partnerships).  By combining features from 

both types of model, the “hybrid” model provides an improved representation of reality over 

that provided by either type of model alone.  Appendix Two contains a diagram of a 

simplified hybrid model; we show this simple model for ease of illustration, and we describe 

our modifications to the model below.     

 

To reflect the natural history of HIV, we extended the hybrid model to allow changes in the 

probability of secondary HIV transmission over the course of infection.  To capture the 

meaningful intervals at which individuals can be detected during early infection, as well as 

the relationship between viral load and transmission probabilities over time, we divided the 

early period into five separate intervals (Appendix Three).  Additionally, we allowed an 

increased death rate during AIDS relative to overall (“baseline”) population mortality, and we 

included two separate risk groups to reflect heterogeneity in risk.  These modifications are 

described in detail in the Chapter 6. 

 

Aim 3 Analyses – Bayesian Melding Procedure 

We used a Bayesian Melding approach to account for uncertainty in model input parameters 

and to express uncertainty about the predicted contribution of EHI to epidemic spread.  This 

approach combines prior information about the model inputs (e.g., sexual behavior, HIV 

transmission probabilities) with data about one of the primary outputs (HIV prevalence).  The 

sources of prior information on model inputs are described above.  For the data on model 

output, we used HIV prevalence estimates collected at Lilongwe antenatal clinics (ANC) 

over the period 1987 – 2005.  While ANC data must be calibrated to account for biases 



 

 43  

toward urban prevalence when applied to model predictions of national HIV prevalence,145, 

147 our model pertains only to the urban setting of Lilongwe, so we used the Lilongwe ANC 

data without calibration. We describe the details of our Bayesian Melding analyses in 

Chapter 6 and Appendix Five. 

 

We used the Berkeley Madonna software package for all modeling analyses.  The Berkeley 

Madonna package allows easy entry of model equations and parameter inputs, and 

provides both tabular and graphical outputs showing the results of model simulations.  We 

used SAS 9.1 to perform all statistical analyses on model output.  

 

Aim 3a Analyses – Calculating the Proportion of New Cases Attributable to EHI 

The model outputs included the number of individuals in each model compartment (i.e., the 

number of individuals who were singles and paired by infection status and stage) at discrete, 

closely spaced time points over the period modeled.  To determine the proportion of new 

cases attributable to EHI index cases, we included code to calculate the cumulative number 

of incident infections attributable to index cases in each infection stage, and from those 

output we then calculated the proportion of new infections attributable to early-stage index 

cases during each time step.      

 

Aim 3b Analyses – Estimating Intervention Impact 

We modeled three general intervention scenarios: 1) scenarios where an intervention acted 

only during EHI, 2) scenarios where an intervention acted only during CHI, and 3) scenarios 

where an intervention acted during both EHI and CHI.  The intervention was assumed to act 

by reducing the per-contact transmission probability to 0.000033 in those receiving it.  This 

value was calculated based on estimates in the presence of completely suppressed viral 

loads,148 but it can also represent transmission probability from another highly effective 
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intervention, such as effective condom use.  We explored the various intervention scenarios 

by varying the proportion of infected individuals in EHI or CHI who received the intervention. 

 

We assumed that an intervention acting within a particular infection period began early in 

that period and remained effective throughout the remainder of the period.  All interventions 

were assumed to begin in 2010.  Our primary measure of intervention effect was the 

predicted reduction in HIV prevalence between 2010 and 2040 (compared to no 

intervention).  We also examined the predicted proportion of new cases averted over a 

shorter time period (2010-2015).  The intervention analyses are described in greater detail in 

Chapter 6 and its associated Appendices. 

  

Aim 3 Limitations 

Mathematical models are simplified representations of complex phenomena, and the 

accuracy of their results directly depends on how well the model structure and parameters 

reflect reality. As described above, the hybrid model that we constructed is likely to 

correspond more closely with reality than simpler “mixing” or “pair” models; however, an 

important limitation of current HIV transmission models (including our own) is the relative 

scarcity of valid, reliable estimates for partnership formation and dissolution rates, as well as 

for per-contact transmission probabilities over the course of HIV infection.  Our analyses for 

Aim 2 provided detailed parameters for our Aim 3 model, allowing us to base partnership 

dynamics on data from the setting of interest. However, as described in the section 

corresponding to Aim 2, these analyses had a number of limitations.         

 

Aim 3 Strengths 

Most previous models have been limited to simpler structures and/or have had to rely on 

data from settings other than the population being studied.  We used data directly from 
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Lilongwe for almost all model parameters, allowing us to capture sexual contact patterns 

and to describe the natural history of HIV with greater realism and resolution than has been 

possible previously.  Additionally, we formally assessed uncertainties in input parameters 

through our use of a Bayesian Melding approach.  This approach allowed us to use HIV 

prevalence data to “filter” the plausible a priori parameter ranges, producing a set of the 

most likely parameter values given observed HIV prevalence.  This approach also allowed 

us to express uncertainties in model outputs, producing likely ranges for: 1) the contribution 

of EHI, and 2) the predicted effects of interventions initiated at various points within the 

natural history of infection.   

 

Although the scope of the proposed modeling effort was limited to Lilongwe, Malawi, many 

of the processes and parameter values included in our models are likely to be similar to 

those in other urban centers in sub-Saharan Africa. Therefore, while the quantitative values 

produced by our model are directly applicable only to Lilongwe, our qualitative findings are 

likely to be generalizable to other southern and eastern African settings with mature, 

heterosexually transmitted epidemics and limited ART access.  Furthermore, parameter 

values in the model can be changed readily in future work to correspond more closely with 

specific settings outside of Lilongwe.          
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Figure 3.1  Effects of data collection methods on measuring lengths and classifying patterns   
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Solid and dashed bars represent measured and true partnership lengths, respectively.  Bars 
with upward and downward diagonal hatching represent measured and true overlap lengths, 
respectively.  Figure 3.1A represents the effect of missing censoring information on 
partnership length measurements.  Because no information was available to indicate 
whether a partnership continued beyond the STI clinic visit, it was not possible to determine 
whether the most recent act was the LAST (partnership-ending) act with a given partner.  If 
a partnership continued beyond the time of the STI clinic visit, as depicted for partner A, 
then the measured partnership length will be an underestimate of the true partnership 
length.  Figures 3.1B-3.1E illustrate the effects of collecting the time of first contact Fpartner in 
terms of number of months prior to the clinic visit, assuming that participants reported the 
number of months correctly within 0.5 month (15 days) and reported without error the 
number of days since the most recent contact (MRpartner).  FB represents the number of days 
prior to the STI clinic visit that the first contact with partner B occurred, as calculated in our 
analyses:  the reported number of months M prior to the visit, multiplied by 30 days.  In 
Figures 3.1B and 3.1C, FB

’ represents a date of first contact that was 15 days earlier than M 

× 30 days and that the participant rounded down to M rather than up to M + 1.  In this type of 
situation, FB will have underestimated by 15 days the number of days prior to the visit, 
resulting in a measured partnership length 15 days shorter than the true partnership length 
(Figures 3.1B, 3.1C).  If the most recent contact with partner A (MRA) occurred within 15 
days of FB (Figure 3.1C), then we also will have misclassified the pattern as being 
consecutive, rather than concurrent.  In Figures 3.1D and 3.1E, FB

’’ represents a date of first 

contact that was 15 days later than M × 30 days that the participant rounded up to M rather 
than down to M - 1.  In this type of situation, FB will have overestimated by 15 days the 
number of days prior to the visit, resulting in a measured partnership length 15 days longer 
than the true partnership length.   In this situation, we either will have overestimated by 15 
days the overlap length in a truly concurrent set of partners (if MRA < FB

’’; Figure 3.1D), or 
we will have misclassified a set of consecutive partnerships as concurrent (if MRA > FB

’’; 
Figure 3.1E).  For participants reporting a third partner in the prior two months (partner C), 

and for actual dates that differed by fewer than 15 days from M × 30, the effects of these 
data collection methods will have been analogous. 



CHAPTER 4:  RETHINKING THE HETEROSEXUAL INFECTIVITY OF HIV-1: A 

SYSTEMATIC REVIEW AND META-ANALYSIS 

 

ABSTRACT 

Background:  Studies of cumulative HIV incidence suggest that co-factors such as genital 

ulcer disease (GUD), HIV disease stage, and circumcision influence HIV transmission; 

however, the heterosexual infectivity of HIV-1 is commonly cited as a fixed value (~0.001, or 

1 transmission per thousand contacts). We sought to estimate transmission co-factor effects 

on the heterosexual infectivity of HIV-1 and to quantify the extent to which study methods 

have affected infectivity estimates. Methods: We conducted a systematic search (through 

April 2008) of PubMed, Web of Science, and relevant bibliographies to identify articles 

estimating the heterosexual infectivity of HIV-1.  We used meta-regression and stratified 

random-effects meta-analysis to assess differences in infectivity by co-factors and study 

methods. Findings:  Infectivity estimates were extremely heterogeneous, ranging from zero 

transmissions after more than 100 penile-vaginal contacts in some sero-discordant couples 

to one transmission for every 3.1 episodes of heterosexual anal intercourse. Estimates were 

only weakly associated with methodological features of the studies producing them. 

Infectivity differences (95% confidence intervals), expressed as number of transmissions per 

1000 contacts, were 8 (0-16) comparing uncircumcised to circumcised male susceptibles, 6 

(3-9) comparing susceptible individuals with and without GUD, 2 (1-3) comparing late-stage 

to mid-stage index cases, and 3 (0-5) comparing early-stage to mid-stage index cases. 

Interpretation:  Commonly cited values for the heterosexual infectivity of HIV-1 fail to reflect 

the substantial variation associated with important co-factors.  Co-factor effects are 
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important to include in epidemic models and policy considerations.  Prevention messages 

should emphasize that HIV-1 can be transmitted efficiently through heterosexual contact. 

 

INTRODUCTION 

Over 33 million people are HIV-infected worldwide, with 2.5 million new infections arising in 

the past year alone 149. Every HIV infection results from a transmission event, and one of the 

fundamental parameters driving the spread of HIV is its infectivity, defined as the probability 

of transmission during a single potentially infectious contact between an infected and an 

uninfected individual.  A commonly cited 3-7 value of ~0.001 for the heterosexual infectivity of 

HIV-1 has led to claims in biomedical reports, prevention education materials, policy 

recommendations, and the popular press that HIV cannot be transmitted efficiently through 

heterosexual contact.  These claims are difficult to reconcile with the large numbers of HIV 

infections that have been acquired through heterosexual contact since the epidemic began 

149-152.   

 

Infectivity estimation requires an accurate count of the transmission events resulting from a 

defined number of potentially infectious exposures experienced by a specified population of 

susceptible individuals. Reliable counts of potentially infectious sexual exposures are 

extremely difficult to obtain. Often, it is possible to estimate only an approximate number of 

unprotected sex acts occurring between one individual who is presumed to be infectious and 

another who is presumed to be susceptible over some specified interval of time. 

Overestimation of the number of potentially infectious exposures will deflate infectivity 

estimates; underestimation will have the opposite effect.   

   

Infectiousness and susceptibility may be influenced by multiple factors, such as direction of 

transmission (male-to-female vs. female-to-male)  8, type of sexual act 9, 10,  viral load 12, 153, 
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circumcision 13, 14, 44, 154, vaginal flora 15, age 16, and sexually transmitted infections (STI) 17, 18, 

155. The effects of these transmission co-factors on cumulative HIV incidence have been 

characterized; however, efforts to quantify their effects at the per-contact level have been 

rare, and practical applications of infectivity estimates often ignore the possibility of co-factor 

influence.     

 

Accurate, detailed estimates of the heterosexual infectivity of HIV are essential for 

understanding the epidemic, evaluating potential interventions, and communicating risk. We 

undertook a systematic review and meta-analysis of observational studies estimating the 

heterosexual infectivity of HIV-1 to: 1) summarize existing infectivity estimates, 2) relate 

these estimates to methodological features of the studies producing them, 3) quantify co-

factor effects on infectivity, and 4) identify gaps in understanding.     

 

METHODS 

 

Study Selection 

We conducted a literature search in four steps. First, we searched the PubMed/Medline and 

Web of Science Databases through April 27, 2008 with the following terms:  (HIV OR 

"human immunodeficiency virus") AND ((transmission AND (probability OR efficiency OR 

rate)) OR (transmission AND risk AND ((per AND contact) OR (per AND act))) OR infectivity 

OR infectiousness OR transmissibility) AND (sexual OR heterosexual OR coital). Second, 

we examined the resulting abstracts (or titles if the abstract was unavailable) to identify 

articles that: 1) mentioned any type of transmission probability estimate, 2) described 

mathematical models that could have used transmission probability estimates as inputs, 3) 

related frequency of heterosexual contact to HIV transmission, or 4) referred generally to 

heterosexual transmission in the title (if the abstract was unavailable). Third, we conducted 
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a detailed, manual review of the text and bibliographies of articles meeting these criteria to 

identify articles that produced estimates of the per-heterosexual-contact probability of HIV 

transmission. Finally, we excluded articles that provided only: 1) per-contact transmission 

probability estimates that were not conditional on HIV exposure, 2) graphical displays of 

continuous infectivity functions produced with data that were used in other articles to 

generate point estimates, or 3) upper and lower infectivity limits (but no point estimates) 

produced with data that were used in other articles to generate point estimates.   

 

Data Extraction 

For each study population in each article, we extracted two types of estimates (where 

available): 1) the most precise overall (whole-sample) infectivity estimate, and 2) the most 

precise stratified estimate within each co-factor category. The co-factors of interest were 

genital ulcer disease (GUD), any (non-specific) STI, male circumcision, female bacterial 

vaginosis (BV), age, HIV-1 subtype, disease stage, viral load, antiretroviral (ARV) use, 

contact type, geographic region, and transmission direction.  In articles with all male or all 

female index cases, the “overall” estimate and the estimate stratified by transmission 

direction were one and the same.      

 

We included estimates produced specifically for HIV-1, as well as type-nonspecific estimates 

derived outside of West Africa, since HIV-1 predominates outside of that region 144.  If an 

estimate was not reported but could be calculated from the available data, we used 

Equation 1 (Appendix One) to calculate the estimate.  For each infectivity estimate that we 

extracted or calculated, we also recorded the corresponding standard error. If the standard 

error was not reported, we calculated an approximate value with the methods described in 

Appendix One. We applied a half-integer continuity correction when 0 transmission events 

were reported.   
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  Multiple articles could share (partially or wholly) a single study population. To avoid 

duplication, we included from each study population only the most precise overall estimate 

and most precise stratified estimate within each co-factor category. For each population’s 

most precise overall estimate, we also extracted information about the following 

methodological features of the corresponding study: 1)  partnership status of susceptible 

individuals (independent individual versus partner of a person known to be HIV-infected); 2) 

timing of exposure and outcome assessment (cross-sectional versus longitudinal); 3) 

method for defining the index case’s infection date (if used to determine the start of HIV 

exposure); 4) exclusion or inclusion of susceptible individuals reporting sexual contacts 

outside the defined index case set; 5) exclusion or inclusion of susceptible individuals 

reporting possible blood exposures to HIV; 6) length of the interval between HIV tests in 

longitudinal analyses, 7) exclusion or inclusion of condom-protected acts; 8) exclusion or 

inclusion of adjustment for self-report error; and 9) type of analytical model.     

       

Statistical Analyses 

 

Assessing Heterogeneity 

To assess the consistency of the overall (whole-sample) estimates, we examined the p-

value for Cochran’s Q, a standard homogeneity test statistic.   

 

We conducted two main types of analyses to relate the overall infectivity estimates to the 

study methods of interest. First, we calculated a pooled, random-effects estimate of 

infectivity within each study design or analysis category, using stratified homogeneity tests 

to examine the consistency of estimates within categories. Second, we conducted a series 

of univariable random-effects meta-regression analyses, each with overall infectivity as the 

dependent variable and a particular study design or analysis feature as the independent 
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variable.  As a form of influence analysis, we conducted a series of repeat meta-regression 

analyses, excluding one estimate from the analyses in each series.  

 

We used a similar approach to examine differences in infectivity according to transmission 

co-factors. For each co-factor, we performed stratified meta-analyses and univariable meta-

regression analyses (this time with stratified estimates) with the same methods we used for 

the study design and analysis characteristics.  Additionally, to assess the independent effect 

of each transmission co-factor, we created one multiple meta-regression model for each 

combination of co-factors with at least one infectivity estimate available for each stratum.   

Due to the limited number of stratified estimates, we did not perform influence analyses 

around transmission co-factor results.      

 

We used Stata software (StataCorp., College Station, Texas), version 9·2, to conduct all 

meta-analyses, using restricted maximum-likelihood to estimate the among-population 

variance in each meta-regression.   

 

Effect Measures 

The coefficients produced by the meta-regression analyses represent average “infectivity 

differences” (ID) associated with study methods or transmission co-factors. In the analysis of 

study methods, the ID is the absolute difference in (weighted) average infectivity contrasting 

studies using one type of method (e.g., longitudinal measurements) with studies at a 

“reference” level (e.g., cross-sectional measurement). In the co-factor analysis, the ID 

compares infectivity for populations at one co-factor level (e.g., 100% GUD) with infectivity 

for populations at a “reference” level (e.g., 0% GUD).  For example, a weighted average 

infectivity of 15 transmission events per thousand contacts among those with a co-factor, 

compared with a value of 10 transmission events per thousand contacts among those 
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without the co-factor, corresponds to an infectivity difference of 5 (=15-10) transmission 

events per thousand contacts.  In other words, an average of 5 more transmission events 

per thousand contacts occurred in the group with the co-factor than in the group without the 

co-factor.      

 

RESULTS 

 

Literature Search  

The literature search produced 5089 articles. Of these, 4652 did not meet the eligibility 

criteria for detailed review. The abstracts or titles of these ineligible articles addressed 

various topics – including HIV prevalence, risk behaviors, and risk factors – but did not 

indicate production or use of per-contact transmission probability estimates. Of the 437 

articles that were eligible for detailed review, 31 produced per-heterosexual-contact 

transmission probability estimates. Two 156, 157 estimated transmission probabilities that were 

not conditional on exposure to HIV, one 158 provided only graphical representations of 

continuous infectivity functions produced with data used in other (included) articles to 

generate point estimates, and one 159 produced only upper and lower infectivity limits from 

data used in other (included) articles to generate point estimates, so our final set contained 

27 articles 21, 35, 44-67, 160. The 27 articles reported on a total of 15 unique study populations 44, 

57, 58, 62, 64, 65, 161-169.  

 

Data Extraction  

 

Overall estimates 
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We identified 32 overall (whole-sample) estimates (Table 4.1), but included in our analyses 

only the single most precise overall estimate (highlighted in gray in Table 4.1) from each of 

the 15 study populations.   

 

Study design and analysis features 

Studies based infectivity calculations on two types of events experienced by susceptible 

individuals: transmission events and heterosexual HIV exposures. The number of 

transmission events was defined by the number of susceptible individuals found (cross-

sectionally or longitudinally) to be HIV-infected.  Counts of heterosexual HIV exposures 

were estimated from the reported number of sexual contacts occurring between susceptible 

individuals and index cases over a period (retrospective or prospective) when susceptible 

individuals were assumed or known to be HIV-uninfected and index cases were assumed or 

known to be HIV-infected. In contexts where index cases were not specifically identifiable 

(e.g., studies in which the susceptible individuals were commercial sex workers or their 

clients), infectivity calculations included an additional term for the probability of HIV 

exposure in a contact, estimated as the HIV prevalence among the population with which 

susceptible individuals had contact.    

 

Thirteen of the 15 overall estimates were generated by one of four basic study designs 

(Figure 4.1). Four 21, 57, 58, 64 were generated by “discordant couples studies,” that is, 

longitudinal studies of susceptible individuals who were partners of a known HIV-positive 

index case. Three 63, 65, 160 were produced by longitudinal studies of susceptible and 

presumptively HIV-exposed individuals (e.g. sex workers or their clients) recruited without 

specific index cases. In each of the longitudinal study types, susceptible individuals were 

HIV-seronegative at enrollment, and exposures and transmission events were measured 

prospectively. Five 48, 50, 54, 56 estimates (including two from different study populations in 50) 
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were from cross-sectional studies of susceptible individuals who were partners of a known 

HIV-positive index case. One 51 estimate was produced by a cross-sectional study of 

susceptible and presumptively HIV-exposed individuals recruited without specific index 

cases. In each of the cross-sectional study types, HIV exposures were assessed 

retrospectively and the number of transmission events was assessed as the number of 

prevalent cases. The two estimates not from basic study designs were from “hybrid” 

designs: one 44 measured HIV outcomes longitudinally among seronegative individuals 

reporting (retrospectively) a single sex worker contact just prior to enrollment. The other 45 

measured exposures and transmission events both cross-sectionally and longitudinally 

among partners of known HIV-infected individuals, and provided only an aggregate 

infectivity estimate across time periods.  

 

Of the six studies that calculated the start of infectious contacts as the index case's infection 

date, two 48, 50 (including the estimate using O’Brien data in 50) were able to determine the 

index infection date as the date of blood transfusion. The remaining four 45, 50, 54, 56 (including 

the estimate using California Partner Study data in 50) used roughly estimated index infection 

dates based on epidemic curves or incubation periods from previous studies. In longitudinal 

analyses, the length of the interval between HIV tests ranged from 2 weeks to 10 months. 

Nine 21, 44, 45, 48, 50, 54, 58, 64 of the 15 estimates were from studies that specified some exclusion 

criteria based on possible outside exposures to HIV (including two from different populations 

in 50), but only eight 48, 50, 57, 58, 64, 65, 160 (including two from different populations in 50) 

accounted for condom-protected acts or noted that condom use was rare, and only three 

overall estimates were adjusted for self-report error 21, 54, 57. Seven 21, 44, 56-58, 64, 160 of the 

estimates were calculated as the number of transmission events divided by the total number 

of exposures, five 48, 51, 54, 63, 65 were calculated with a Bernoulli model (Appendix One), and 

three 45, 50 (including two in 50) were calculated as failure probabilities (Appendix One). 
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Transmission co-factors 

We included six estimates stratified by type of act, nine by susceptibles’ GUD status, three 

by susceptibles’ (non-specific) STI status, four by male susceptibles’ circumcision status, ten 

by index disease stage, and 16 by direction of transmission. Eight 45, 48, 50, 54, 56, 58, 64 overall 

estimates (including two in 50) were obtained in the US or Europe, six 21, 44, 57, 63, 65, 160 in 

Africa, and one 51 in Asia. Estimates stratified simultaneously by more than one co-factor 

ranged from approximately 0 among susceptible males without GUD, most of whom were 

circumcised 44, to 0.32 (one transmission event for every 3.1 contacts) for penile-anal sex 

between late-stage male index cases and susceptible females (half of whom had an STI). 55     

 

Information was available in fewer than two study populations for susceptible BV and for 

index STI, GUD, BV, viral load, ARV use, and viral subtype. We were unable to include 

these co-factors in our analyses, but we included disease stage and geographic region as 

proxy measures for viral load and subtype, respectively.   

       

Meta-analyses 

Overall heterogeneity 

As illustrated in Figure 4.1, the overall infectivity estimates were extremely heterogeneous 

(p<0.0001 on homogeneity test).   

 

Study design features 

Our meta-analyses revealed only weak associations between overall infectivity estimates 

and the design and analysis features of the studies that produced them (Table 4.2). Only 

one infectivity difference (ID) was larger than one transmission event per thousand contacts:  

among longitudinal studies, infectivity was inversely associated with the HIV testing interval. 

Also among longitudinal analyses, studies of independent individuals produced higher 
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infectivity estimates than did studies of partners of known HIV cases (ID: 1.0 event per 

thousand contacts; 95% CI: 0.8-1.3) (results not shown in Table 4.2).  Influence analyses 

did not reveal any undue influence of any single study on the meta-regression results.      

 

Transmission co-factors 

Numerous transmission co-factors were associated with increased infectivity (Table 4.3, 

Figure 4.2).  In meta-regression analysis, the co-factors most strongly associated with 

infectivity were GUD in susceptible individuals (ID vs. no GUD: 6.0, 95% CI:3.3-8.8), lack of 

circumcision in susceptible males (ID vs. circumcised males: 8.1, 95% CI: 0.4-15.8), early-

stage infection in index cases (ID vs. mid-stage: 2.5, 95% CI: 0.2-4.9), and late-stage 

infection in index cases (ID vs. mid-stage: 1.9, 95% CI: 0.9-2.8).  Infectivity was only weakly 

associated with geographic region (Africa vs. US/Europe), direction of transmission, and 

mean susceptible age.  The limited data available for type of contact, susceptible STI status, 

and mean index age suggest that infectivity is higher for penile-anal (vs. penile-vaginal) sex, 

for susceptibles with (vs. without) STI, and for older (vs. younger) index cases; however, 

there were insufficient data to conduct meta-regression analyses on these co-factors.  The 

single estimate produced in an Asian setting was considerably higher than estimates 

produced in the US or Europe.  

 

We were able to fit only four multiple meta-regression models, due to missing co-factor 

information, the limited number of studies, and collinearities among variables. Most 

associations in the multivariable analyses were in the same direction as in univariable meta-

regression, with some attenuation or amplification (results not shown).     

 

DISCUSSION 
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The use of a single, “one-size-fits-all” value for the heterosexual infectivity of HIV-1 obscures 

important differences associated with transmission co-factors. Perhaps more importantly, 

the particular value of 0.001 (i.e., 1 infection per 1,000 contacts between infected and 

uninfected individuals) that is commonly used appears to represent a lower bound. As such, 

it dramatically underestimates the infectivity of HIV-1 in many heterosexual contexts. Of the 

11 overall estimates near or below 0.001 identified in this study, 9 were produced in 

analyses of stable couples with low prevalences of high-risk co-factors. In other contexts – 

particularly if the susceptible partner has an STI or is uncircumcised, if contact is penile-

anal, or if the index case is in early- or late-stage infection – heterosexual infectivity can 

exceed 0.1 (1 transmission per 10 contacts) or even 0.3 (1 transmission per 3 contacts) 44, 48, 

51, 55, 65. Claims in both the popular media 170, 171 and the peer-reviewed literature 6, 7 that HIV 

is extremely difficult to transmit heterosexually are dangerous in any context where the 

possibility of HIV exposure exists.    

 

Observation of co-factor effects at the level of cumulative incidence has been critical to the 

development of interventions designed to reduce HIV incidence.  Understanding co-factor 

effects at the per-contact level is also important, as HIV exposure and transmission occur 

during discrete contacts between infected and uninfected individuals, and many epidemic 

models rely on parameter inputs at the per-contact level.  Our results, which relate to 

transmission at the per-contact level, are consistent with numerous studies of cumulative 

HIV incidence showing that STIs, decreased age, and lack of circumcision increase 

susceptibility; that increased age and both early- and late-stage index infection amplify 

transmissibility 12-14, 17, 18, 44, 153-155; and that heterosexual transmission is more efficient 

through penile-anal contact than through penile-vaginal contact 9, 10. Additionally, our finding 

that penile-anal transmission is more efficient than penile-vaginal is consistent with infectivity 

studies conducted among men who have sex with men 172, 173. The sharply increased 
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infectivity reported in an Asian setting may reflect differences by subtype, disease stage, or 

unmeasured or poorly measured co-factors; the infectivity study 51 conducted in Asia took 

place at the start of the epidemic when a large proportion of index cases were in early 

stages of infection 51, 52.  We also note that the study was conducted among commercial sex 

workers’ clients; therefore, HIV prevalence estimates among the commercial sex worker 

population were required to estimate the probability of HIV exposure in infectivity 

calculations.  If prevalence were underestimated in these calculations, the infectivity would 

have been biased upward.   

 

The reduced infectivity observed among circumcised male susceptibles is consistent with 

results of randomized trials of circumcision for HIV prevention 13, 174, 175.  The observed 

increases in infectivity associated with STI are less readily compared to community-

randomized trials of STI treatment on HIV incidence.  While one such trial achieved a 40% 

reduction in HIV incidence through syndromic STI management 29, other trials of STI 

treatment interventions have failed to show effects on HIV incidence 31, 168, 176.  Various 

explanations have been offered for the lack of intervention effects, including insufficient 

power 31, convergence of treatment intensity between groups 168, and high prevalences of 

HSV-2 in both intervention and control communities 31, 168.  Because the “STI” group in our 

analysis was not restricted specifically to those with the same treatable STI targeted in the 

intervention trials, the results of STI treatment trials are not directly comparable to the STI-

related results shown here.   

 

The observed differences in infectivity according to index disease stage deserve particular 

attention.  The estimates produced for “mid-stage” infection were very homogeneous, and 

the pooled estimate for this stage (0.7 transmissions per 1000 acts) is approximately equal 

to the commonly cited value of 1 transmission per 1000 acts. The probability of transmission 
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is likely much higher outside of this period, especially during acute (pre-seroconversion) 

HIV, when viral loads are sharply elevated, acquired immunity in acutely infected individuals’ 

partners is absent, and a substantial portion of transmission events occur 111. No study has 

directly measured transmission during the brief acute phase. The “early” infectivity estimate 

of Leynaert et al 55 was based on a retrospective exposure period with crudely estimated 

dates of index infection, and the estimate of Wawer et al 21 corresponded to the period up 

through 5 months after seroconversion. As others have noted 21, 177, couples in whom 

transmission occurs during the brief acute phase cannot be selected for “discordant 

couples” studies, which follow susceptible partners only after the index partner has 

developed HIV antibodies. Our finding that longitudinal couples studies have produced lower 

estimates than longitudinal analyses of individuals is consistent with this phenomenon.   

 

Most infectivity studies have not explicitly accounted for all important cofactors, producing 

“population-average” estimates that do not capture variations in infectivity. Additionally, most 

study designs have been subject to at least one potential bias in determining the number of 

potentially infectious exposures experienced by susceptible individuals. Estimates from both 

cross-sectional and longitudinal studies of independent individuals (rather than partners of 

known HIV-infected index cases) have relied on HIV prevalence estimates to calculate the 

probability of exposure during a sexual contact. Overestimates of the prevalence will have 

underestimated infectivity; underestimated prevalence will have had the opposite effect. 

Cross-sectional analyses have relied on reported sexual contacts that occurred well before 

the cross-section, and in most of these studies, the start of the exposure period was based 

on a very crude estimate of the index case’s infection date. In several studies, the earliest 

possible index infection date was used, likely resulting in the inclusion of sex acts that 

occurred prior to the true index infection date. Inclusion of these non-exposures in infectivity 

calculations will have resulted in deflated estimates.   
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A number of biases common to all study designs also could have affected infectivity 

estimates.  First, unadjusted inclusion of condom-protected acts in the count of potentially 

infectious exposures could bias estimates downward. Additionally, infectivity estimates could 

be biased upward if any transmission occurs through “external” (blood or sexual) contacts 

that are not included in the count of potentially infectious contacts. All but one study 21 

assumed (without molecular analysis) that transmission events occurred via exposure to 

index partners, but molecular analysis in other studies has revealed that 10% or more of 

apparent transmission events within couples result from exposure to an additional sexual 

partner. Self-report error in the number of sexual contacts could also bias estimates; this 

bias could be in either direction. Additionally, no studies included separate counts of oral-

genital contacts. Because transmission via oral-genital contact is believed to be extremely 

inefficient 178, though, the failure to account for oral-genital contact in estimating penile-anal 

and penile-vaginal infectivity is unlikely to have resulted in substantial bias. Finally, because 

all studies have used antibody tests to detect transmission to susceptible individuals, those 

with acute infections at the time of testing would have been misclassified as uninfected, 

resulting in underestimated infectivity.              

 

We also note that there were insufficient data to conduct even univariable stratified and 

meta-regression analyses of several co-factors, such as viral load, viral subtype, and ARV 

use; however, we have some information for assessing these variables. In the single 

population for which viral load was analyzed 66, infectivity increased from 1 transmission per 

thousand acts to 2.3 transmissions per thousand acts as serum viral load increased from 

<1700 copies/ml to >38500 copies/ml. In this same population, infectivity was similar across 

the subtypes (A, D, and V3) analyzed. The increased infectivity values associated with 

early- and late-stage infection and with the Thai population at the beginning of the epidemic 

indirectly suggest amplifying effects of high viral load.  Higher infectivity among the Thai 
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population is also consistent with the possibility of increased infectivity associated with 

subtype E. All studies were conducted prior to the advent or widespread use of ARV, so the 

estimates reported here correspond to infectivity in the absence of therapy.    

 

In some co-factor and study method strata, the difference between the estimate obtained 

from stratified meta-analysis and the estimate produced with meta-regression is quite 

pronounced.  Each estimate obtained from stratified meta-analysis made use only of the 

data in a particular subgroup, whereas each estimate obtained from meta-regression also 

made use of the data from the other stratum (or strata), and thus involved modeling or 

smoothing.  The stratified estimates are less precise and less model-dependent; the meta-

regression estimates are more precise and more model-dependent.  The difference between 

the two methods’ estimates tends to be greater when the data are relatively sparse, which 

can occur from small sample sizes within studies, from small numbers of studies within 

strata, or both.  The potential for differences is accentuated by the use of random-effects 

meta-regression, which involves estimation of an among-studies variance.  In the meta-

regression analyses, this variance is estimated from all studies in either stratum; in the 

stratified analyses, it is estimated separately within each stratum 

 

We have focused on one key parameter in HIV transmission dynamics:  the conditional 

probability of HIV transmission given exposure during a single contact.  The overall 

probability of HIV transmission also depends upon the probability of exposure to HIV, which 

is determined by such factors as HIV prevalence, partner change rate, sexual network 

position, and contact with partners who are involved in concurrent relationships.  These 

factors, which are outside the scope of this analysis, represent additional, important 

determinants of HIV transmission.    
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HIV infectivity studies are extremely difficult to conduct for both logistical and ethical 

reasons. As a result, information about infectivity is limited, in terms of both the number of 

existing estimates and the quality of those estimates. Because of the small number of 

infectivity studies, the shortage of estimates stratified by co-factors, and the methodological 

issues of existing studies, the true independent effects of co-factors and study features may 

differ substantially from the estimates that we obtained. Given these limitations of the 

existing data, we caution against interpreting any quantitative value reported here as “the” 

infectivity for a particular study design or co-factor stratum, just as we have cautioned 

against using a value of 0.001 as “the” overall heterosexual infectivity of HIV-1.  Caution is 

especially warranted for estimates associated with particularly sparse co-factor strata (e.g., 

estimates stratified by STI status), as well as pooled estimates within strata where 

heterogeneity exists. In cases where heterogeneity within a stratum is substantial, the 

results of the random-effects meta-regression analyses (which account for across-study 

variance) should be used to assess infectivity within, and compare infectivity across, strata. 

In addition to study limitations resulting from shortcomings of the literature, it is possible that 

we inadvertently excluded some existing infectivity estimates or misclassified some 

variables, despite a thorough literature search and careful data extraction process.  

Furthermore, for some infectivity estimates, we were able to obtain only approximate 

standard errors.         

 

Despite these limitations, our study represents a comprehensive summary and systematic 

analysis of the current literature on the heterosexual infectivity of HIV-1, a fundamental 

determinant of the epidemic’s spread.  Our findings suggest that in many contexts – 

particularly in the absence of male circumcision or in the presence of STIs, anal sex, or early 

or late infection – the heterosexual infectivity of HIV-1 may exceed the commonly cited value 

of 0.001 by more than an order of magnitude. The vast extent of the current epidemic is 
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more easily understood in the context of these biological co-factors, which create a more 

favorable environment for HIV transmission. Our results highlight the need for further 

infectivity research and reinforce the importance of including co-factor effects in HIV 

epidemic models, policy considerations, and prevention messages.  Future infectivity 

studies should carefully count infectious exposures and rigorously account for transmission 

cofactors. Improved infectivity estimates –  especially more detailed estimates that quantify 

the amplifying effects of biological co-factors – will allow us to grasp the magnitude of the 

HIV epidemic, accurately communicate the level of risk involved in heterosexual sex, and 

identify the optimal intervention strategies for slowing the epidemic’s spread.   
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Table 4.1.  Overall (whole-sample) estimates of heterosexual infectivity of HIV-1 by study population 
 

Study population Setting 
Susceptible 

type 
1st Author 

(year published) 
Number of 

susceptiblesa 

Most precise 
overall infectivityb 

estimate 

Standard 
errorb 

Cameron 44 Kenya FSW clients Cameron (1989) 44 73 96.7c 37.55d 

Fischl 161 USA 
Partners of 

HIV+ 
Longini (1989) 45 45 1.0 0.2 

Peterman 162 USA 
Partners of 

HIV+ 

Wiley  (1989) 46 53 1.39 0.44 

Kaplan (1990) 47 53 1.4 0.41e 

Kim (1990) 48 80 1.02 0.3 

Kramer (1990) 49 55 1.3 0.41d 

Shiboski (1998) 50 51 0.8 0.41e 

Thai military 
conscripts 163 

Thailand FSW clients 
Mastro (1994) 51 673 31.0 3.8e 

Satten (1994) 52 673 31.0 3.8e 

European  
Study  

Group 164 
Europe 

Partners of 
HIV+ 

DeVincenzi (1994) 
53 

121 1.0 0.31e 

Downs (1996) 54 525 0.5 0.08e 

Leynaert (1998) 55 499 0.9 0.1 

Kramer (2002) 56 525 0.5c 0.08d 

Hira 57 Zambia 
Partners of 

HIV+ 
Hira (1997) 57 110 3.9c 1.0d 

Saracco 58 Italy 
Partners of 

HIV+ 
Saracco (1997) 58 627 0.6 0.13e 

California  
Partners  
Study 165 

USA 
Partners of 

HIV+ 

Wiley  (1989) 46 59 0.78 0.25 

Jewell (1990) 59 159 1.0 0.16d 

Jewell (1994) 60 88 1.29 0.34 
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Study population Setting 
Susceptible 

type 
1st Author 

(year published) 
Number of 

susceptiblesa 

Most precise 
overall infectivityb 

estimate 

Standard 
errorb 

Padian (1997) 61 360 0.9 0.13e 

Shiboski (1998) 50 302 0.6 0.10e 

O’Brien 166 USA Partners of HIV+ Shiboski (1998) 50 31 0.9 0.41e 

Ragni 167 USA 
Partners of 

HIV+ 
Kramer (2002) 56 45 0.55c 0.23d 

Senegal cohort 62 Senegal FSW 
Donnelly (1993) 62 780 0.27 0.08d 

Gilbert (2003) 63 1948 0.56 0.05d 

Marincovich 64    Spain 
Partners of 

HIV+ 
Marincovich (2003) 

64 
74 0.17 0.17d 

Baeten 65 Kenya 
Male truck 

drivers 
Baeten (2005) 65 745 6.3 1.43e 

Rakai study 168 Uganda 
Partners of 

HIV+ 

Gray (2001) 66 174 1.1 0.18e 

Corey (2004) 35 174 1.1 0.18e 

Wawer (2005) 21 235 1.2 0.15e 

Nairobi cohort 169 Kenya FSW 

Hayes (1995) 67 117 2.6c 0.30d 

Kramer (2002) 56 232 1.54c 0.14d 

Kimani (2008) 160  687 0.63 0.04d 

FSW = Female sex worker 
 
The most precise estimate and corresponding standard error within each study population are shaded in grey. 
 
a Total included in overall infectivity calculation.  Stratified analyses were conducted in subsets containing fewer individuals.  

b Transmission events per 1000 exposures   

c Calculated from reported data using Eq. 1 (see Appendix One)   
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d Calculated using method 1 in Appendix One  

e Calculated from reported confidence limits (see Appendix One) 
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Table 4.2. Results of stratified meta-analysis and meta-regression based on study design and analysis characteristics 
 

   Stratified Meta-Analysis Results Univariable Meta-Regression Results 

Characteristic Category # ests 
Homogeneity 
p  

Infectivitya,b (95% 
CI) 

Infectivitya,c  (95% 
CI) 

Infectivitya difference 
(95% CI) 

Partnership 
status 

Partner of known HIV+ 10 <0.0001 0.73 (0.51-0.96) 0.63 (0.54-0.73) 0. 

Independent individual 5 <0.0001 0.96 (0.42-1.50) 0.61 (0.54-0.68) -0.02 (-0.14-0.10) 

Outcome 
ascertainment 

Any cross-sectional 8 <0.0001 0.88 (0.38-1.38) 0.61 (0.49-0.72) 0. 

All longitudinal 7 <0.0001 0.71 (0.48-0.94) 0.62 (0.56-0.69) 0.01 (-0.11-0.14) 

Index infection 
dated 

Crude estimate 4 0.1 0.61 (0.44-0.79) 0.59 (0.46-0.71) 0. 

Transfusion date 2 0.8 0.98 (0.50-1.45) 0.98 (0.50-1.46) 0.39 (-0.10-0.89) 

External sex 
exposurese 

Some exclusions 8 0.0001 0.71 (0.49-0.92) 0.68 (0.52-0.85) 0. 

No exclusions 2 0.002 2.05 (0.00-5.27) 0.78 (0.24-1.31) 0.10  (-0.47-0.65) 

Blood 
exposures 

Some exclusions 9 <0.0001 0.71 (0.48-0.95) 0.63 (0.53-0.73) 0. 

No exclusions 6 <0.0001 0.97 (0.52-1.42) 0.61 (0.54-0.68) -0.02 (-0.14-1.04) 

HIV testing 
intervalf 

> 3 months 6 0.0001 0.67 (0.50-0.84) 0.63 (0.56-0.69) 0. 

≤ 3 months 3 0.02 5.36 (0.84-9.89) 4.73 (3.10-6.37) 4.10 (2.47-5.74) 

Condom-
protected acts 

Some protection 5 <0.0001 1.11 (0.35-1.88) 0.70 (0.57-0.83) 0. 
Protection rare or 
adjusted for 8 <0.0001 0.70 (0.44-0.97) 0.62 (0.53-0.70) -0.08 (-0.24-0.08) 

Self-report error 

Not corrected or 
mentioned 12 <0.0001 0.71 (0.47-0.95) 0.61 (0.54-0.67) 0. 

Corrected 3 <0.0001 1.19 (0.40-1.97) 0.67 (0.53-0.82) 0.06 (-0.09-0.22) 

Analytical 
modelg 

Bernoulli model 5 <0.0001 1.13 (0.50-1.77) 0.56 (0.48-0.64) 0. 

Transmissions / acts 7 <0.0001 0.71 (0.39-1.03) 0.64 (0.57-0.70) 0.08 (-0.03-0.18) 

Failure probability 3 0.2 0.76 (0.47-1.06) 0.69 (0.52-0.87) 0.13 (-0.06-0.32) 
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a Transmissions per 1000 exposures.    
 
b Random-effects estimate pooled within a given stratum of study characteristic.   
 
c From random-effects models with overall infectivity as dependent variable and study feature as independent variable.    
 
d Applies only to studies basing exposure period start on index infection date.  
 
e Applies only to studies of couples.  
 
fApplies only to studies with any longitudinal HIV testing to detect incident cases among susceptibles.  
 
g See Appendix One.  
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Table 4.3. Results of stratified meta-analysis and meta-regression based on transmission co-factor characteristics  
 

   Stratified Meta-Analysis Results Univariable Meta-Regression Results 

Characteristic Category # ests 
Homogeneity 
p  Infectivitya,b  (95% CI) 

 
Infectivitya,c (95% 
CI) 

Infectivitya difference 
(95% CI) 

Region 

USA / Europe 8 0.05 0.59 (0.44-0.75) 0.56 (0.46-0.66) 0. 

Africa  6 <0.0001 0.91 (0.59-1.22) 0.64 (0.57-0.71) 0.08 (-0.04-0.20) 

Asia 1 N/A 31.00 (25.00-40.00)d  N/Ae  N/Ae 

Type of act 
Penile-vaginal 5 0.0002 0.84 (0.51-1.17)  N/Ae N/Ae 

Penile-anal 1 N/A 33.80 (18.51-49.09)d  N/Ae  N/Ae 

Transmission 
direction 

Male-to-Female 10 0.001 0.66 (0.54-0.79) 0.64 (0.57-0.72) 0. 

Female-to-Male 6 <0.0001 2.76 (1.19-4.33) 0.64 (0.45-0.84) -0.002 (-0.21-0.21) 

Susceptible 
GUD statusf 

No GUD 4 <0.0001 3.72 (0.70-6.75) 1.46 (0.94-1.97) 0. 

GUD 5 <0.0001 30.55 (11.27-49.84) 7.46 (4.75-10.17) 6.00 (3.25-8.76) 

Susceptible 
STI statusf 

No STI 1 N/A 12.00 (6.00-25.00)d  N/Ae N/Ae 

STI 2 0.1 55.86 (4.43-107.29)  N/Ae  N/Ae 

Susceptible 
circum. status 

Circumcised 2 0.4 5.13 (3.37-6.89) 5.13 (3.36-6.89) 0. 

Not circumcised 2 0.02 97.33 (0.00-295.16) 13.21 (5.70-20.72) 8.08 (0.37-15.80) 
Mean 
susceptible 
age 

≥ 30 years 6 <0.0001 1.06 (0.56-1.56) 0.94 (0.71-1.16) 0. 

< 30 years 2 <0.0001 15.71 (0.00-45.20) 0.99 (0.58-1.40) 0.05 (-0.41-0.52) 

Index disease 
stage 

Mid 4 0.9 0.71 (0.57-0.85) 0.71 (0.57-0.85) 0. 

Early 2 0.05 4.67 (0.00-10.46) 3.25 (0.93-5.56) 2.54 (0.22-4.86) 

Late 4 0.02 3.18 (0.94-5.42) 2.56 (1.58-3.53) 1.85 (0.86-2.83) 

Mean index 
age 

< 30 years 1 N/A 0.90 (0.70-1.10)d  N/Ae N/Ae 

≥ 30 years 3 0.02 1.31 (0.66-1.96)  N/Ae  N/Ae 
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a Transmissions per 1000 exposures    
 
b Random-effects estimate pooled within a given stratum of transmission co-factor.   
 
c From random-effects models with infectivity as dependent variable and transmission co-factor as independent variable. 
 
d Estimate based on single study only. 
 
e Meta-regression results computed only when the number of estimates exceeded 1 in the comparison group and in the referent 
stratum. 
 
f Before or during study period
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Figure 4.1.  Forest plot of overall (whole-sample) estimates by study design 

 
 
 
Study-specific infectivity estimates and 95% confidence intervals. For symmetry of 
confidence intervals on the log axis, the plotted values were calculated from logit-
transformed transmission probabilities and their corresponding confidence limits. 
Untransformed values were used in all meta-analyses. aRagni data; bO’Brien data; 
cCalifornia Partners Study data.
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Figure 4.2.  Forest plot of estimates stratified by selected transmission co-factors 

 
Study-specific and pooled infectivity estimates and 95% confidence intervals stratified by 
GUD status, male susceptibles’ circumcision status, index infection stage, and type of 
sexual contact.  For symmetry of confidence intervals on the log axis, the plotted values 
were calculated from logit-transformed transmission probabilities and their corresponding 
confidence limits.  Untransformed values were used in all meta-analyses.   
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Chapter 4 is reprinted from The Lancet Infectious Diseases, Volume 8, Kimberly A. Powers, 
Charles Poole, Audrey E. Pettifor, and Myron S. Cohen, “Rethinking the heterosexual 
infectivity of HIV-1: a systematic review and meta-analysis,” pages 553-563, Copyright 2008, 
with permission from Elsevier. 



CHAPTER 5:  SEXUAL PARTNERSHIP PATTERNS IN MALAWI: IMPLICATIONS FOR 

HIV/STI TRANSMISSION 

 

ABSTRACT 
 
Objective:  Concurrent sexual partnerships are believed to play an important role in HIV 

transmission in sub-Saharan Africa, but the contribution of concurrency depends on the 

details of relationship patterns.   To contribute to the understanding of sexual partnership 

patterns in this region, we estimated partnership lengths, temporal gaps between partners, 

and periods of overlap across partners at an STI clinic in Lilongwe, Malawi.  Design:  

Secondary analysis of data collected at the baseline and one-week follow-up visits in a 

longitudinal study.  Methods:  Participants underwent physical examinations and HIV tests, 

and responded to questionnaires about demographics and risk behaviors, including detailed 

questions about a maximum of 3 sexual partners in the previous 2 months. We calculated 

partnership length as the time between the first and most recent sexual contact with a 

partner, and gap length as the time between the most recent contact with one partner and 

the first contact with the next. We defined concurrent and consecutive partnerships as gap 

length≤0 days and gap length>0 days, respectively.  Results:  The study population (n=183) 

had a mean partnership length of 858 days (median=176 days).  Eighty-six percent reported 

<2 partners, 5% reported consecutive partnerships, and 9% reported concurrency.  Gaps 

between consecutive partnerships were short (mean=21 days), and overlaps across 

concurrent partners tended to be long (mean=246 days).  Conclusions:  Multiple sexual 

partnerships were uncommon, and partnerships were long on average.  Among those 

reporting multiple recent partners, patterns ranged from long-term concurrency to narrowly 
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spaced consecutive partnerships, presenting a substantial risk for efficient transmission of 

HIV and classical STIs. 

 

INTRODUCTION 

Transmission of sexually transmitted infections (STIs), including HIV, depends on behavioral 

and biological factors.  When sexual partnerships are completely separated by “gaps” in 

time, an infected index case can transmit infection to only one person while a partnership 

remains intact.  Furthermore, an individual’s earlier partners are at no risk of acquiring 

infections introduced by an individual’s subsequent partners.  When partnerships are 

concurrent (overlapping in time), neither of these limitations is present, and HIV/STI 

transmission can be amplified.  However, the details of these partnership patterns matter 

greatly, because the transmission event is constrained by biological rules unique to each 

pathogen.  For example, consecutive partnerships may have similar transmission risk as 

concurrent partnerships if an earlier partner introduces an STI and the gap between 

partnerships is shorter than the infectious period for that pathogen.70, 71  Partnership lengths 

are also important, as longer partnerships generally present a greater number of 

transmission opportunities.  The combination of “gap length” and partnership duration helps 

to determine the rate of epidemic spread.72    

 

The role of sexual partner concurrency in explaining the severe HIV epidemic in sub-

Saharan Africa has been debated vigorously.74-78   Mathematical models have suggested the 

potential for concurrency to magnify transmission,69, 79-81 and some investigators have 

reported that concurrency is common in sub-Saharan Africa.82, 83  However, studies 

estimating the empirical association between concurrency and HIV have had mixed 

results,179-181 partly due to the considerable variation in operational definitions of 

concurrency.76, 78  To address some of these issues, the UNAIDS Reference Group on 
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Estimates, Modelling, and Projections recently issued a consensus definition for concurrent 

sexual partnerships,86 an action that will facilitate comparison of concurrency across 

settings.   While this standard measure is immensely useful, concurrency takes many 

different forms,182 and a detailed understanding of the predominant partnership patterns in a 

particular setting is critical for designing interventions to prevent HIV and other STIs.    

 

In this study, we examined sexual partnership patterns in an STI clinic population in 

Lilongwe, Malawi.   We analyzed partnership durations, gaps between consecutive partners, 

and overlaps across concurrent partners, and we examined predictors of consecutive 

partnerships and concurrency.    Our findings identify ways in which specific contact patterns 

may have contributed to the efficient spread of HIV and other STIs in sub-Saharan Africa. 

 

METHODS 

 

Study Design, Setting, and Population 

We performed a secondary analysis of data collected at the baseline and one-week follow-

up visits in a longitudinal study of HIV viral dynamics conducted at Kamuzu Central Hospital 

STI Clinic in Lilongwe, Malawi (2003-2004).  As described previously,19, 139, 141 study 

screening began with two parallel rapid HIV antibody tests, followed by HIV p24 and 

batched HIV RNA testing in all individuals with negative or discordant antibody results.   

Individuals with positive p24 results were invited to enroll in the longitudinal study.  For each 

enrolled p24-positive patient, three p24-negative controls were screened for enrollment, 

along with one HIV-antibody-positive patient (matched by sex).   

 

Data Collection   
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Participants completed a verbally-administered questionnaire and underwent a physical 

examination (including genital examination) at baseline.  The questionnaire included items 

about demographics and recent risk behaviors.  One week later, a follow-up questionnaire 

sought the following information on up to 3 sexual partners contacted in the prior two 

months:  partner type (spouse or co-habiting boyfriend/girlfriend; non-cohabiting 

boyfriend/girlfriend; transactional partner; or casual acquaintance), number of months since 

the first sexual contact, and number of days since the most recent sexual contact.   

 

Data were recorded on paper forms and double-entered into electronic databases.  We 

consulted the original paper forms to reconcile discrepancies between electronic entries.   

  

Data Analysis 

 

We used Stata 9.2 (StataCorp, College Station, Texas, USA) for analyses with generalized 

estimating equations (GEE), and SAS 9.1 (SAS Institute, Cary, North Carolina, USA) for all 

other analyses. 

 

HIV Status Determination 

Patients with negative or discordant antibody results and detectable HIV RNA were 

considered to have acute HIV infection (AHI).  Patients with negative or discordant antibody 

tests and undetectable HIV RNA were classified as HIV-negative.  Participants with positive 

antibody results were classified as having chronic (post-acute) HIV infection (CHI).     

 

Probability of Selection into the Study 

Because participants were not sampled at random, it was necessary to account for the 

participant selection process before drawing inferences about the entire clinic population.  
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To account for selection based on sex and HIV test results (described under “Study Design, 

Setting, and Population” above), we calculated participants’ inverse probabilities of selection 

as the reciprocal of:  the number of enrolled participants of a given sex and HIV status, 

divided by the estimated number of patients of that sex and HIV status visiting the clinic 

during the study period.  For example, thirty-seven HIV-negative women were enrolled in 

our study, and an estimated 2171 HIV-negative women attended the clinic in the twenty 

months during which the study took place.  The corresponding probability of selection for an 

HIV-negative woman was 37/2171 = 0.017 and the corresponding inverse probability of 

selection was 1/0.017 = 58.8.  The estimated numbers of patients attending the clinic during 

the study period (2171 in this example) were based on administrative data collected 

separately from the study protocol.   

 

Partnership Lengths 

To calculate the length of each reported partnership, we converted the time since first sex 

into days by multiplying the reported number of months (M) prior to the visit by 30.  We 

calculated the partnership length as the number of days between the first and most recent 

sexual contact with the partner (Figure 5.1A).  Partnerships defined by a single contact were 

assigned a length of zero days. 

 

We estimated mean partnership lengths and corresponding 95% confidence intervals with 

negative binomial regression, using GEE to account for the possibility of multiple 

partnerships per participant.  We used inverse-probability-of-selection weighting and an 

exchangeable working correlation matrix.  Predictor variables related to participant 

characteristics included sex, age (18-24, 25-29, 30+ years), marital status (unmarried vs. 

married), partnership pattern in the prior 2 months (<2 partners, multiple concurrent 

partnerships, multiple consecutive partnerships – defined below), travel in the prior 2 months 
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(any vs. none), transactional sex in the prior 2 months (any vs. none), and baseline HIV 

status (negative, AHI, CHI), genital ulcer disease (GUD) status (GUD vs. no GUD), and 

urethral discharge status (discharge vs. no discharge, males only).  We also examined 

participants’ classifications of partner type (spouse/live-in partner, non-cohabiting 

boy/girlfriend, casual acquaintance, or transactional partner) as a predictor variable.    

 

Because extreme values can influence mean partnership lengths, we calculated weighted 

median partnership lengths and weighted maxima, minima, and 25th and 75th percentiles as 

complementary measures of partnership length distributions.   These calculations did not 

account for multiple partnerships per participant. 

 

To compare partnership lengths across predictors, we calculated partnership length 

differences (PLDs) as the weighted mean partnership length in a comparison group minus 

the corresponding value in a referent group, and partnership length ratios (PLRs) as the 

former divided by the latter.   

 

Gap and overlap lengths      

Among those reporting contact with ≥2 partners in the prior two months, we calculated the 

“gap length” between each set of partners as the number of days since the most recent 

sexual contact with the less-recently-contacted partner minus the number of days since the 

first sex with the more-recently-contacted partner (Figure 5.1).   Positive gap lengths 

characterized consecutive partnerships (Figure 5.1A).  Zero or negative gap lengths 

characterized concurrency (Figures 5.1B-5.1D).  Any partnership pattern (<2 partners, 

multiple consecutive partners, multiple concurrent partners) could include partners of any of 

the following participant-reported types:  spouse or cohabiting boyfriend/girlfriend, non-

cohabiting boyfriend/girlfriend, transactional partner, or casual acquaintance.  We described 
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partnerships with positive gaps as “consecutive” rather than “serially monogamous” to avoid 

any connotation that partnerships meeting this definition were necessarily stable and long-

term.   

 

Among those with negative gap lengths (concurrency), we calculated the overlap length 

across each set of partners in one of two ways (Figures 5.1B and 5.1C), depending on 

whether one partnership entirely contained another.  If one partnership ended and another 

began on the same day, the overlap length was zero (Figure 5.1D).   

 

Among those with positive gap lengths (consecutive partnerships), we calculated the mean 

gap length using the same GEE approach used for mean partnership lengths.  We used 

analogous methods to calculate mean overlap lengths among those with non-positive gap 

lengths (concurrency).   There were too few participants reporting multiple partners to 

compare gap and overlap lengths across predictors. 

 

Partnership Patterns 

We calculated the proportion of participants in each of the following categories, based on 

reported behavior in the prior two months: <2 partners, ≥2 consecutive partners, or ≥2 

concurrent partners.    To assess associations of partnership patterns with predictors, we 

conducted two rounds of weighted multinomial logistic regression: one with <2 partners as 

the referent, and one with consecutive partners as the referent.      

 

RESULTS 

      

Population demographics and HIV status 
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A total of 183 participants were eligible for these analyses.  All results reported below take 

selection weights into account to adjust for the non-random sampling of participants (see 

Methods).  The population was predominantly female, and evenly split according to marital 

status (Table 5.1).  The mean age (95% CI) was 27.0 (25.9, 28.1) years and the median age 

(interquartile range) was 25 (22-30) years.   

 

Partnership Lengths 

Overall, the mean partnership length was 858 days and the median was 176 days (Table 

5.2).  Partnership lengths were greater among those who were female, older, married, or 

free of urethral discharge (males); or who reported just one partner, no travel, or no 

transactional sex in the prior two months (Table 5.2).    Partnerships that participants 

classified as being with spouses/cohabiting partners were longer (mean partnership length 

=1424 days) than partnerships reported to be with non-cohabiting girlfriends/boyfriends (216 

days), transactional partners (38 days), and casual acquaintances (14 days).   Partnerships 

were longer, on average, among those who were HIV-negative or free of GUD, but these 

estimates were imprecise. 

 

As described in the Methods section, a small number of extremely long partnerships can 

elevate the mean partnership length above the median, and both measures are useful in 

understanding partnership length distributions.  For every predictor variable that we 

examined, the order of mean partnership lengths across sub-groups was the same as the 

order of medians (Table 5.2), with two exceptions.  While the mean partnership length 

increased directly with age, the median was considerably higher in the middle age group 

(25-29 years) than in the other groups.  Additionally, while the mean partnership length was 

greatest for HIV-negative participants (935 days) and intermediate for CHI patients (753 

days), the corresponding medians were reversed (152 days and 556 days, respectively).  



 

 84  

These results reflect the relatively greater presence of extremely long partnerships among 

older and HIV-negative patients, elevating the mean to a greater extent in these groups.     

 

Partnership patterns, gap lengths, and overlap lengths 

Overall, 86% of the population reported <2 partners in the previous two months:  77% 

reported one partner and 9% reported zero partners. Five percent reported ≥2 consecutive 

partnerships; and 9% reported ≥2 concurrent partnerships (Table 5.3).  Many of the 

consecutive partnerships were short (Figure 5.2A), with 27% comprising only a single 

contact.  Gap lengths among participants reporting consecutive partnerships were also 

short, with a mean (95% CI) of 21 (13, 29) days and a maximum of 50 days.  By contrast, 

partnership lengths among those with concurrency were long (Figure 5.2B), with long 

periods of overlap on average (mean = 246 days).  Among those reporting consecutive or 

concurrent partnerships, we observed four basic patterns:  consecutive partnerships 

comprising one-off contacts only (Figure 5.2A rows A1-A9), consecutive partnerships with at 

least one partnership of duration >1 week (Figure 5.2A rows A10-A16), sporadic 

concurrency only (Figure 5.2B rows B1-B6), and longer-term concurrency with or without 

additional sporadic concurrency (Figure 5.2B rows B7-B19).         

 

Consecutive partnerships (vs. <2 partners) were associated with male sex, being unmarried, 

reporting travel or transactional sex in the prior two months, having GUD, and having 

urethral discharge (males) (Table 5.3).  Participants aged 25-29 years were also more likely 

to report consecutive partnerships (vs. <2 partners) than younger or older participants.       

 

Most factors associated with consecutive partnerships were also associated with an 

increased odds of concurrency (vs. <2 partners) (Table 5.3); however, the strength of the 

positive association was somewhat weaker for male sex, being unmarried, reporting travel in 
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the prior 2 months, reporting transactional sex in the prior 2 months, and having GUD.  In 

other words, participants in each of these categories were less likely to report concurrent 

than consecutive partnerships.  The association between age 25-29 years and concurrency 

was in the opposite direction than the corresponding association with consecutive 

partnerships.     

 

Detailed comparisons of partnership patterns by HIV status were hindered by small 

numbers, but those with AHI or CHI were more likely to report concurrency than <2 partners.  

Those with AHI were also more likely to report consecutive partnerships (vs. <2 partners), 

but the measure was imprecise.  In general, AHI was associated with multiple recent 

partnerships (odds ratio with “concurrent” and “consecutive” categories collapsed:  2.5, 95% 

CI = 1.0 – 6.3; result not shown in Table 5.3).   

 

DISCUSSION  

We have presented an analysis of sexual partnership patterns – including durations of 

partnerships, gaps, and overlaps – among STI clinic patients in Lilongwe, Malawi.   We 

found that most partnerships were long and monogamous, that concurrent partnerships 

were infrequent but tended to have long periods of overlap, and that consecutive 

partnerships had short intervening gaps that could facilitate rapid HIV/STI spread.  These 

results highlight the variability of sexual partnership patterns, and provide new information 

about determinants of HIV/STI transmission in a semi-urban, sub-Saharan African 

population.   

 

Most participants in the “high-risk” STI clinic population that we studied reported <2 partners 

in the two months prior to their clinic visits.   This result underscores the fact that the number 

of recent partners is not the only determinant of STI/HIV acquisition (as nearly all 
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participants presented with STIs), and highlights the importance of partner characteristics 

(such as partners’  patterns  of contact with others) in determining an individual’s STI risk.96    

The idea that HIV/STI acquisition risk depends not only on one’s own behavior, but on the 

behavior of one’s partners (and one’s partners’ partners), has been recognized as an 

important transmission prevention message in some sub-Saharan African settings.183, 184  

Our results indicate the importance of including this message in Malawian prevention 

campaigns.       

 

Recent partnerships in our study were long on average, and partnership lengths differed 

predictably across subgroups.   The mean partnership lengths fall within the range of values 

obtained in other African settings, where estimates have varied from 3.2 months for 

Tanzanian males’ non-marital partners90 to 239 months for Ugandan spouses.81     Notably, 

the mean overlap in concurrent partnerships was also long, as has been observed 

elsewhere in sub-Saharan Africa.83  We note that none of the concurrent partnerships 

reported in this population was polygynous, consistent with the relatively low levels of 

polygyny reported in population-based surveys from Malawi.185  Polygyny is one type of 

long-term concurrency that may have a relatively benign effect on HIV/STI spread, as it can 

trap infection in small, isolated network components.183, 186            

 

The patterns of consecutive partnerships observed in this study could lead to transmission 

amplification similar to that expected with some types of concurrency, as the mean gap (21 

days) among those reporting consecutive partnerships  was shorter than the infectious 

period of many STIs.187   Although gap lengths among African populations have not been 

previously characterized, short gaps between consecutive partnerships have been observed 

in the US.70, 71, 87    In our study, all gaps were ≤50 days, a result that is related to constraints 

in our measurement methods:  because the most recent contact with each partner must 
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have occurred within the “look-back period” of two months, each gap had to be fully 

contained within that time frame.   Despite this limitation in estimating mean gap lengths, the 

occurrence of numerous consecutive relationships in rapid succession suggests 

considerable transmission potential.   

 

Those who were male or unmarried, or who had traveled or had transactional sex recently, 

were more likely to report multiple consecutive or (to a lesser extent) concurrent 

partnerships (vs. having <2 partners).  Our finding that individuals in the middle age group 

(25-29 years) were more likely than those in the adjacent age groups to report consecutive 

partnerships  – but less likely to report concurrency – may be explained by a greater 

likelihood of those in the middle group to be unmarried (result not shown), and hence more 

likely to engage in consecutive partnerships than concurrency.  Elsewhere in sub-Saharan 

Africa, elevated levels of concurrency among many of these same subgroups have been 

observed,88, 188 although definitions of concurrency have varied.  In fact, some definitions 

have simply required the existence of multiple partnerships in a given interval, without 

directly assessing whether there was any overlap.76  Many of the partnerships that we 

considered to be “consecutive” would have been classified as “concurrent” using this less 

precise definition.      

 

Although this study was conducted in an STI clinic population and therefore focused on 

individuals whose recent behavior resulted in STI acquisition, this study was not designed to 

determine which specific behaviors led to infection in these participants.  Essentially all 

participants had some STI symptoms, leaving no “STI-free” group to serve as a referent for 

evaluating various behaviors as risk factors for participants’ STI acquisition.  Additionally, 

these data are cross-sectional, so causality between participants’ behaviors and HIV/STI 

acquisition cannot be confirmed. Instead, the associations among partnership patterns 
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(consecutive, concurrent) and HIV, GUD, or urethral discharge are best interpreted with 

respect to the risk of onward transmission from these infected individuals.84, 85 In our 

population, the greater odds of having multiple recent partners among those with GUD or 

urethral discharge suggests considerable potential for onward transmission, whether by 

concurrency or back-to-back consecutive partnerships.  These results suggest that 

prevention messages should address both concurrency and rapid partner change in this 

setting.   

 

HIV transmission deserves special consideration.  Because the infectious period for HIV is 

lifelong after infection acquisition, short gaps between partnerships would seem to be of only 

minor importance to HIV transmission.  However, the transmissibility of HIV is most highly 

concentrated during the first weeks or months of infection, as well as during an STI co-

infection.21, 22, 104 Therefore, the short gaps observed in this study would certainly create 

great risk for onward transmission of HIV.  The increased likelihood of concurrency among 

those with CHI, and of multiple recent partnerships in general among those with AHI, 

suggests substantial HIV transmission risk from these individuals.       

       

 As with all sexual behavior studies, the necessary reliance on self-reported data may have 

introduced recall error, which could bias results in either direction, and social desirability 

bias, which would likely deflate the estimated proportions engaging in multiple partnerships, 

especially among women.    Additionally, we did not have information about whether 

partnerships continued beyond the time of interview, a common problem in studies of 

partnership dynamics71, 72, 87 that can result in underestimated partnership lengths.  Despite 

this possibility of bias in our estimated means and medians, the PLDs and PLRs reported in 

Table 5.2 provide unbiased comparisons between groups if certain conditions hold.   

Specifically, if partnership lengths were censored by the same absolute amount in each 
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category, then the PLD is a valid estimate of the absolute difference between groups.  If 

partnership lengths were instead censored by the same relative amount, then the PLR is a 

valid estimate of the relative difference between groups.  Finally, we note that although our 

results are based on a relatively small number of participants, these findings contribute to 

our limited understanding of partnership patterns in sub-Saharan Africa.         

 

A lack of empirical data linking specific sexual partnership patterns to HIV transmission lies 

at the heart of the debate about the role of concurrency in spreading HIV.  To address this 

issue, the UNAIDS Reference Group on Estimates, Modelling, and Projections recently 

issued a consensus definition of concurrency:  “overlapping sexual partnerships in which 

sexual intercourse with one partner occurs between two acts of intercourse with another.”86  

While this suggestion will facilitate comparisons of this particular measure across settings, 

this limited definition is unlikely to capture the rich and variable characteristics of sexual 

partnerships.  We have described additional features of sexual partnerships, including 

relationship durations, gap lengths, and overlap lengths, in an STI clinic population in 

Lilongwe, Malawi.  Additional descriptions of these characteristics are essential, as a 

detailed understanding of sexual behaviors in a given context is necessary for the optimal 

design of prevention interventions.  Without improved descriptions of the predominant 

sexual partnership patterns in various settings, we will be limited in our understanding of 

HIV/STI transmission dynamics throughout the world.      
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Figure 5.1. Measuring partnership durations, gap lengths, and overlap lengths  

 

 
 

We calculated the partnership length for each reported partnership as the time between the 
first sexual contact (Fpartner) and the most recent sexual contact (MRpartner) with that partner 
(Figure 5.1A).  For participants reporting two partners in the prior two months, we calculated 
the gap length between partners A and B as MRA – FB.  Because times of first and most 
recent sex were reported as (or converted to) the number of days before the clinic visit, 
earlier events have larger values.  Therefore, positive gap lengths correspond to situations 
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of consecutive partnerships (Figure 5.1A).  Figures 5.1B and 5.1C illustrate situations of 
concurrency in which the most recent contact with partner A (MRA) occurred after the first 
contact with partner B (FB).  In these situations, FB > MRA and the gap length <0.  In Figure 
5.1B, one partnership is entirely contained within another, and the overlap length (diagonally 
hatched bar) is equal to the partnership length of the subsumed partnership.  In Figure 5.1C, 
overlap is only partial; the overlap length is equal to FB – MRA.  Figure 5.1D illustrates a 
situation of concurrency in which the most recent contact with partner A (MRA) occurred on 
the same day as the first contact with partner B (FB).  In these situations, FB = MRA; 
therefore, the gap length =0 = the overlap length.  For participants reporting a third partner 
in the prior two months (partner C), the gap lengths between – and overlap lengths across – 
partners B and C were calculated analogously.
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Figure 5.2.  Patterns of consecutive and concurrent partnerships among those reporting multiple partners 
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Partnership patterns are shown for each of the 35 participants whose patterns in the two months prior to the STI clinic visit could be 
categorized as either exclusively consecutive (Figure 5.2A) or having one or more sets of concurrent partners (Figure 5.2B).  For 
ease of presentation, the time axis is left-truncated at 100 days prior to the STI clinic visit.  The horizontal white, black, and dark gray 
bars represent the partners contacted most recently, second-most-recently, and third-most-recently, respectively.  The four 
participants who reported 2 or more partners but could not be classified as having consecutive vs. concurrent partnerships (due to 
missing data) are excluded. 
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Table 5.1. Characteristics of Kamuzu Central Hospital STI Clinic population  
 
  
 N (weighted %) 

Overall  183 (100.0) 
Sex  

Female 50 (56.9) 
Male 133 (43.1) 

Age  
18-24 years  86 (44.4) 
25-29 years  54 (29.4) 
30+ years  43 (26.2) 

Marital status  
Married  76 (49.7) 
Unmarried  107 (50.3) 

Travel in last 2 months  
No  125 (74.7) 
Yes  57 (25.3) 

Transactional sex in last 2 
months 

 

No  117 (72.2) 
Yes  65 (27.8) 

HIV status  
HIV-negative  130 (58.0) 
CHI  37 (41.7) 
Acute HIV  16 (0.3) 

Current GUD status  
No GUD  123 (76.0) 
GUD  60 (24.0) 

Current discharge status (males)  
No urethral discharge  72 (52.7) 
Urethral discharge  61 (47.3) 

GUD = genital ulcer disease; CHI = chronic (post-acute) HIV infection; AHI = acute HIV infection
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Table 5.2. Partnership lengths among those with ≥1 partner in the overall population and by predictor variables  
 
Characteristic 

Patients 
N 

Partnerships 
N 

Weighted median  
PL in days (IQR) 

Weighted mean  
PL in days (95% 
CI) PLD in days (95% CI) PLR (95% CI) 

Overall 161 204 176 (30, 898) 858 (630, 1169)  --- --- 
 
Sex 
 

      

Female 
 

42 46 646 (147, 1780) 1126 (748, 1696) 0. 1. 

Male 119 158 48 (0, 357) 557 (374, 827) -569 (-1081, -59) 0.5 (0.3, 0.9) 
 
Age 
 

      

18-24 years 
 

75 94 152 (35, 657) 405 (280, 584) 0. 1. 

25-29 years 
 

47 57 771 (16, 1780) 1029 (706, 1500) 624 (209, 1040) 2.5 (1.5, 4.3) 

30+ years 39 53 173 (30, 2369) 1525 (877, 2651) 1120 (264, 1976) 3.8 (1.9, 7.3) 
 
Marital status 
 

      

Married 
 

69 84 771 (130, 2309) 1414 (1013, 1974) 0. 1. 

Unmarried 92 120 106 (16, 272) 314 (173, 569) -1100 (-1607, -593) 0.2 (0.1, 0.4) 
 
Partner type 
 

      

Spouse / live-in 
partner 
 

80a 81 777 (353, 1799) 1424 (1043, 1945) 0. 1. 

Non-cohabiting 
girl/boyfriend 
 

73a 88 40 (21, 174) 216 (108, 431) -1208 (-1686, -731) 0.2 (0.1, 0.3) 
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Characteristic 
Patients 

N 
Partnerships 

N 
Weighted median  
PL in days (IQR) 

Weighted mean  
PL in days (95% 
CI) PLD in days (95% CI) PLR (95% CI) 

Transactional 
partner 
 

6a 7 0 (0, 0) 38 (6, 262) -1386 (-1837, -936) 0.03 (0.004, 0.2) 

Casual 
acquaintance 

23a 26 0 (0, 10) 14 (4, 49) -1410 (-1855, -965) 0.01 (0.003, 0.04) 

 
Partnership pattern 
 

      

1 partner 
 

122 122 358 (113, 1673) 1006 (720, 1407) 0. 1. 

Consecutive 
multiple 
 

16 34 0 (0, 9) 140 (54, 362) -866 (-1229, -504) 0.1 (0.05, 0.4) 

Concurrent 
multiple 

19 44 159 (30, 556) 635 (312, 1291) -371 (-935, 191) 0.6 (0.3, 1.4) 

 
Travel in last 2 
months 
 

      

No 
 

106 133 419 (80, 1128) 1033 (735, 1452) 0. 1. 

Yes 54 69 69 (11, 616) 428 (295, 732) -605 (-1025, -185) 0.4 (0.2, 0.8) 
 
Transactional sex in 
last 2 months 
 

      

No 
 

98 114 625 (60, 1431) 1105 (790, 1548) 0. 1. 

Yes 62 89 106 (8, 186) 398 (198, 802) -707 (-1172, -242) 0.4 (0.2, 0.8) 
 
HIV status 
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Characteristic 
Patients 

N 
Partnerships 

N 
Weighted median  
PL in days (IQR) 

Weighted mean  
PL in days (95% 
CI) PLD in days (95% CI) PLR (95% CI) 

HIV-negative 
 

112 142 152 (21, 1012) 935 (615, 1424) 0. 1. 

CHI 
 

34 39 556 (120, 777) 753 (490, 1158) -182 (-692, 327) 0.8 (0.4, 1.5) 

AHI 15 23 15 (0, 346) 436 (202, 942) -499 (-1016, 18) 0.5 (0.2, 1.1) 
 
Current GUD status 
 

      

No GUD 
 

107 128 346 (39, 898) 882 (614, 1267) 0. 1. 

GUD 54 76 130 (0, 712) 786 (437, 1413) -96 (-657, 465) 0.9 (0.4, 1.8) 
 
Current discharge 
status (males) 
 

      

No urethral 
discharge 
 

61 84 117 (0, 1128) 868 (565, 1334) 0. 1. 

Urethral 
Discharge 

58 74 30 (0, 138) 252 (111, 574) -616 (-1043, -189) 0.3 (0.1, 0.7) 

a Numbers sum to more than 161 because participants could have more than one type of partner. 
 
CHI = chronic (post-acute) HIV infection; AHI = acute HIV infection; GUD = genital ulcer disease; PL = partnership length; PLD = 
partnership length difference; PLR = partnership length ratio 
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Table 5.3.  Association of partnership patterns with demographic and risk predictors  
 
 N (weighted %)a Weighted odds ratios 
 <2 

partners 
Consecutive 

multiple 
Concurrent 

multiple 
Consecutive 
multiple vs. 
<2 partners 

Concurrent 
multiple 

vs. <2 partners 

 Concurrent vs. 
consecutive 

multiple  
Overall 144 (86.5) 16 (4.6) 19 (8.9) N/A N/A  N/A 
Sex        

Female 46 (92.5) 1 (1.5) 2 (6.0) 1. 1.  1. 
Male 98 (78.5) 15 (8.8) 17 (12.7) 6.8 (5.1, 9.0) 2.5 (2.1, 3.0)  0.4 (0.3, 0.5) 

Age        
18-24 years  70 (85.1) 7 (3.3) 8 (11.6) 1. 1.  1. 
25-29 years  44 (90.2) 6 (7.8) 3 (2.0) 2.2 (1.7, 2.9) 0.2 (0.1, 0.3)  0.07 (0.05, 0.1) 
30+ years  30 (84.4) 3 (3.4) 8 (12.2) 1.1 (0.8, 1.5) 1.1 (0.9, 1.3)  1.0 (0.7, 1.5) 

Marital status        
Married  62 (92.0) 4 (2.3) 8 (5.7) 1. 1.  1. 
Unmarried  82 (81.1) 12 (6.9) 11 (12.0) 3.3 (2.6, 4.3) 2.4 (2.0, 2.9)  0.7 (0.5, 1.0) 

Travel in last 2 months        
No  99 (88.1) 8 (3.6) 14 (8.3) 1. 1.  1. 
Yes  45 (82.7) 7 (6.8) 5 (10.5) 2.0 (1.6, 2.6) 1.4 (1.1, 1.6)  0.7 (0.5, 0.9) 

Transactional sex in last 2 
months 

       

No  101 (89.2) 7 (3.3) 7 (7.5) 1. 1.  1. 
Yes  42 (78.0) 9 (8.7) 12 (13.3) 3.0 (2.4, 3.8) 2.0 (1.7, 2.4)  0.7 (0.5, 0.9) 

HIV status        
HIV-negative 102 (85.5) 14 (8.0) 11 (6.5) 1. 1.  1. 
CHI 31 (87.9) 0 (0.0) 5 (12.1) N/Ab 1.8 (1.5, 2.2)  N/Ab 
Acute HIV 11 (70.7) 2 (11.7) 3 (17.6) 1.8 (0.5, 6.9) 3.3 (1.0, 10.3)  1.9 (0.4, 9.3) 

Current GUD status        
No GUD  104 (89.1) 9 (3.4) 9 (7.5) 1. 1.  1. 
GUD  40 (77.9) 7 (8.8) 10 (13.3) 3.0 (2.4, 3.8) 2.0 (1.7, 2.4)  0.7 (0.5, 0.9) 

Current discharge status 
(males) 

       

No urethral discharge 53 (80.1) 8 (7.8) 9 (12.1) 1. 1.  1. 
Urethral discharge  45 (76.6) 7 (10.0) 8 (13.4) 1.3 (1.0, 1.7) 1.2 (0.9, 1.5)  0.9 (0.6, 1.2) 



 

 

 

9
9
 

a Row percents 
 
b Estimates accounting for zero cells from weighted multinomial logistic regression are unavailable. 
 
Note:  Omitted from this table are 4 participants reporting ≥2 partners who did not have sufficient information to categorize their 
patterns as consecutive or concurrent.   
 
CHI = chronic HIV infection, AHI = acute HIV infection, GUD = genital ulcer disease



 

 

 

CHAPTER 6:  THE ROLE OF ACUTE AND EARLY HIV IN THE SPREAD OF HIV IN 

LILONGWE, MALAWI: IMPLICATIONS FOR TRANSMISSION PREVENTION 

STRATEGIES 

 

ABSTRACT 

Background:  HIV transmission risk during acute and early HIV infection (EHI) is sharply 

elevated, but the contribution of EHI to epidemic spread is not well-defined.  In settings 

where EHI is responsible for a large proportion of secondary transmissions, EHI is an 

important target for prevention efforts.  We estimated the contribution of EHI to HIV 

incidence in Lilongwe, Malawi, and we predicted the future impact of a hypothetical 

intervention affecting EHI only, chronic HIV infection (CHI) only, or both stages.  Methods:  

We developed a deterministic mathematical model describing heterosexual HIV 

transmission, using detailed behavioral and viral load data from our work in Lilongwe.  We 

included sexual contact within and outside of steady pairs, and we divided the infectious 

period into multiple intervals to allow for changes in transmissibility by infection stage.  We 

used a Bayesian Melding approach to fit the model to longitudinal HIV prevalence data from 

Lilongwe antenatal clinics.  We assumed that the intervention reduced the per-contact 

transmission probability to 0.00003 in those receiving it, and we varied the proportion of 

individuals receiving the intervention in each stage.  Results:  Our analyses suggest that 

38.4% (95% CI: 18.6%-57.5%) of ongoing HIV transmissions in Lilongwe can be attributed 

to EHI index cases.  Interventions acting only during EHI substantially reduced HIV 

prevalence, but did not lead to elimination, even with 100% coverage.  Interventions acting 

only during CHI essentially eliminated HIV within 20 years, but only with 100% coverage.  In 

scenarios with <100% CHI coverage, additional interventions reaching 25%-75% of EHI 
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cases led to sizable further reductions in prevalence.      Conclusions:  EHI plays an 

important role in HIV transmission in this semi-urban, sub-Saharan African setting with a 

mature epidemic.  Without 100% coverage, interventions during CHI will have incomplete 

effectiveness unless complemented by strategies targeting the heightened transmission risk 

of EHI. 

 

INTRODUCTION 

The earliest weeks of HIV infection represent a potentially important target for transmission 

prevention, as viral factors68 and greatly elevated viral loads19, 20 result in an exceptionally 

high risk of onward transmission during this period.21, 22, 189, 190   However, because 

detectable antibodies are absent during the initial (acute) portion of this period,20 identifying 

cases of early HIV infection (EHI) for potential interventions is challenging.  Additionally, the 

population-level effect of interventions initiated during this period will vary across settings, 

depending on the contribution of EHI index cases to epidemic spread.  Estimates of this 

contribution have varied widely,22-27, 109-111, 114, 191 as the role of EHI is a complex function of 

multiple site-specific factors, including patterns of risk behavior and the current stage of the 

local HIV epidemic.   Allocation of limited resources toward the more complex and expensive 

RNA or p24 antigen tests required to detect acute HIV infection (AHI) may be difficult to 

justify in settings where EHI plays only a minor role.       

 

While HIV prevention programs have led to declining HIV incidence in some settings, 2.7 

million individuals worldwide became newly infected in 2008.1  Recently, universal “Test-

and-Treat” strategies have received considerable attention as potentially effective measures 

for turning the tide on HIV.192   The effectiveness of these strategies will depend to some 

extent on the role of EHI in epidemic spread.  If EHI plays a major role, the effectiveness of 



 

 102      

Test-and-Treat strategies will be limited.  Therefore, the contribution of EHI must be 

elucidated when considering such interventions.   

 

In this study, we estimate the contribution of EHI to HIV incidence in Lilongwe, Malawi, 

where HIV is hyper-endemic and transmission is mainly through heterosexual contact.  We 

also assess the population-level impact of interventions affecting only EHI, only chronic 

(post-“early”) HIV infection (CHI), or both EHI and CHI.  To address these aims, we 

developed a mathematical model describing heterosexual HIV transmission, using detailed 

data from our work in Lilongwe.19, 193  We conducted our model analyses within a Bayesian 

Melding framework145, 147  to fit our model to empirical HIV prevalence data and to reflect 

uncertainty surrounding model inputs and predictions.    

 

METHODS 

 

Basic model structure 

We constructed a compartmental, deterministic mathematical model that explicitly describes 

the formation and dissolution of heterosexual partnerships (Appendix Two).  Following the 

modifications of Xiridou et al114 on the classic pair-formation model,73 sexual contact was 

assumed to occur in three separate contexts:  1) at a constant frequency within steady 

partnerships, 2) as casual, one-off contacts by paired individuals outside of their steady 

partnerships, and 3) as casual, one-off contacts by singles.   We chose this structure to 

capture phenomena that are especially important in the context of HIV, given its time-

varying infectivity.   More specifically, HIV is “trapped” within a pair as long as each infected 

member is monogamous, but HIV can “escape” if the partnership dissolves or the infected 

member(s) has sexual contact outside of the pair.  Additionally, pairs of uninfected 
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individuals are “sheltered” from HIV as long as each partner is monogamous, but HIV can 

“enter” through outside contacts.      

 

To achieve greater resolution in the variation of HIV transmission probabilities over time, we 

extended earlier models by dividing HIV into four periods:  EHI, asymptomatic HIV, pre-

AIDS, and AIDS.  We defined EHI as the initial one- to six-month period of sharply elevated 

infectivity, based on the best available estimates of transmission rates by stage of 

infection,22 calculated among HIV-serodiscordant couples in Rakai, Uganda (Appendix 

Three).21  To allow changes in transmission probabilities related to evolving viral loads within 

this period, we further divided EHI into five intervals (intervals 1-5) (Appendix Three).   The 

first four intervals (intervals 1-4) had durations of one week each to capture the most rapid 

changes in viral load.  We sampled the fifth interval from a uniform distribution of 1.4 week to 

5 months, corresponding to the total assumed EHI duration of ~1 to ~6 months (Appendix 

Three).22   We note that under this approach, the duration of EHI is based on the period of 

elevated infectivity from studies of transmission,21, 22 rather than the estimated period of 

greatest viral loads.19      

 

Following others,145 we represented the subsequent asymptomatic period as a series of 

three equal intervals (intervals 6-8) of 1.8 to 3.3 years each to approximate observed 

survival time distributions.  We based the durations of the final two stages, “pre-AIDS” 

(interval 9) and “AIDS” (interval 10), on the analyses of Rakai data.22      

 

As an additional extension, we stratified our model population into two groups to 

accommodate heterogeneity in sexual behavior.  Steady partnerships were assumed to be 

of longer duration in the “lower-risk” group than in the “higher-risk” group, and singles in the 

“lower-risk” group were assumed to have lower rates of sexual contact than singles in the 



 

 104      

“higher-risk” group (Appendix Four).  The model did not include movement between groups 

or formation of steady pairs across groups; however, one-off contacts with casual partners 

were chosen at random (without restriction to a single group).  The model also allowed for 

increased transmission probabilities in the higher-risk group, corresponding to an assumed 

greater likelihood of transmission-amplifying cofactors, such as ulcerative STIs or anal 

intercourse.  Sexual contact rates for a given group did not vary by HIV status or infection 

interval.        

 

Individuals entered the model population as singles, and exited after an average sexual 

lifespan of 35 years, with additional mortality due to AIDS among those in the final stage of 

infection.      

 

Statistical analyses 

 

We used a Bayesian Melding approach145, 147 to fit the model to empirical HIV prevalence 

data, to account for uncertainty in model input parameters, and to express uncertainty about 

model outputs.  This approach combines prior information about the model inputs (e.g., 

sexual behavior, HIV transmission probabilities) with data about one of the primary outputs 

(HIV prevalence).  The sources of prior information on model inputs are described in the 

next section.  For data on model output, we used HIV prevalence estimates collected at 

Lilongwe antenatal clinics (ANC) over the period 1987 – 2005.194  While ANC data must be 

calibrated to account for biases toward urban prevalence when applied to model predictions 

of national HIV prevalence,145, 147 our model pertains only to the urban setting of Lilongwe, 

so we used uncalibrated data.  We implemented a sample-importance-resample algorithm to 

identify the sets of input parameters that produced epidemic curves most closely matching 

the observed ANC data, a procedure that we detail in Appendix Five.  Briefly, we ran 
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100,000 model simulations, sampling randomly from the prior distributions of the input 

parameters in each simulation.  Next, we weighted each simulation according to its 

likelihood-based compatibility with ANC data, and then we resampled (with replacement) 

from the simulations, with probability of selection proportional to the assigned weight.   

Under this approach, the simulation resampled most frequently (i.e., the simulation most 

compatible with empirical HIV prevalence data) represents the estimated mode for the 

output parameters of interest.  The 2.5th and 97.5th percentiles correspond to 95% credible 

limits.       

 

We used the Runge-Kutta 4 algorithm in Berkeley Madonna 8.0.1 (Berkeley, California, 

USA) to solve the model numerically in each run.  We calculated sampling weights, 

performed the resampling procedure, and conducted all statistical analyses with SAS 

version 9.1 (Cary, North Carolina, USA). 

 

Parameter values 

We based the initial size of the adult (ages 15-49) population on Malawi census data146 

(Table 6.1), and specified a range of 1960-1985 for the time of the very first HIV case in 

Lilongwe, reflecting the substantial uncertainty around this time.     

 

We based the constant per-contact transmission probability for the asymptomatic period, 

along with the presumed effects of transmission amplifying co-factors, on meta-analysis 

estimates189, 190  (Appendix Three).  To calculate an average per-contact transmission 

probability for EHI, we multiplied the asymptomatic-period estimate by the transmission rate 

ratio comparing EHI to asymptomatic infection from the Rakai data (Table 6.1, Appendix 

Three).22  We then used longitudinal viral load data from AHI cases in Lilongwe,19 along with 

relative transmission rates according to blood viral load,12 to estimate separate transmission 
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probabilities within each EHI interval, subject to the constraint that the weighted average 

transmission probability across intervals equaled the overall EHI-period average.   We also 

calculated the transmission probability for pre-AIDS from relative transmission rates 

according to disease stage (Appendix Three).22   The transmission probability for AIDS was 

assumed to be 0, reflecting an assumption of no sexual activity due to illness during this 

stage.22  

 

We estimated sexual behavior parameter values from data we collected at Kamuzu Central 

Hospital STI Clinic in Lilongwe19, 193 (Appendix Four).  These data included detailed 

information about sexual partnership durations and sexual contact frequency by both marital 

status and partner type, allowing us to carefully characterize the various sexual behavior 

parameters in the setting of interest.   

 

Estimating the proportion of new HIV infections due to contact with EHI index  

We calculated the annual numbers of new infections by index infection period, along with 

the corresponding proportions attributable to EHI transmitters, from model equations 

tracking cumulative numbers of incident infections according to index infection period.   

 

Predicting the effect of prevention interventions according to time of initiation 

We explored the potential effects of a generic HIV prevention intervention, such as condom 

use or antiretroviral therapy, designed to reduce per-contact transmission probabilities.  We 

considered three general scenarios:  an intervention acting during EHI only, an intervention 

acting during chronic (post-“early”) HIV infection (CHI) only, or an intervention acting during 

both EHI and CHI.  We explored these scenarios by varying the proportion of individuals in 

whom transmission probabilities were reduced in each period (0%, 25%, 50%, 75%, or 

100%).  Among those receiving any intervention, the per-contact transmission probability 
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was assumed to be 0.000033.  This value is the midpoint of male-to-female and female-to-

male transmission probabilities calculated under the assumption of complete viral 

suppression,148  but can also approximate very effective condom use or other highly 

effective interventions. 

 

To compare the maximum possible benefits of interventions acting in each period, we 

assumed that interventions began early in a given period.  More specifically, interventions 

during EHI were assumed to start in week 3 (interval 3) and to continue through the end of 

EHI.  This assumption, which is based on our experience with detection of AHI cases in 

Lilongwe (Irving Hoffman, personal communication), allows for a blood draw in the second 

week of infection and an additional week to return a positive HIV RNA or p24 result to the 

patient.  Interventions acting in CHI were assumed to start at the beginning of the earliest 

CHI interval (interval 6) and to continue through AIDS.  While this assumption likely reflects 

diagnosis and treatment earlier than the stage at which many cases are currently treated,195 

it approximates a hypothetical Test-and-Treat program with annual HIV tests.  All 

interventions were assumed to begin in 2010 (at a mature epidemic phase), and were added 

to the model equations through the insertion of intervention terms (Appendix Two).  Our 

primary measure of intervention effect (versus no intervention) was the predicted reduction 

in HIV prevalence over the years 2010-2040.  As a complementary analysis, we predicted 

the percentage of new infections averted between 2010 and 2015. 

 

For “base case” analyses, we used the input parameters from the modal simulation (see 

Statistical Analyses above).  To explore the likely range of intervention effects in situations 

with a greater or lesser importance of EHI, we used input parameters from the runs that 

most closely matched the upper and lower 95% credible limits of the estimated proportion of 

new cases attributable to EHI in 2010.   
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RESULTS 

Our Bayesian Melding procedure produced a posterior distribution of 380 unique epidemic 

curves that were in good agreement with empirical ANC data on HIV prevalence (Figure 

6.1).  From the modal simulation (see Methods), we estimated that HIV prevalence in the 

general adult population of Lilongwe peaked at 24.7% in 1996, and that current prevalence 

is 14.3%.  For comparison, ANC prevalence estimates peaked at 27.0% (95% CI: 22.7%, 

31.6%) in 1996 and declined to 18.6% (16.0%, 21.3%) in 2005, the time of the most recent 

survey. 

 

Our results suggest that 38.4% (18.6%, 57.5%) of ongoing incident HIV infections are 

attributable to contact with an EHI index, and that this proportion is approaching a steady 

state (Figure 6.2).  The best-fitting EHI duration corresponding to these estimates was 4.9 

months (calculated with Appendix Three equations using posterior mode estimates in Table 

6.1), and the best-fitting per-contact transmission probabilities ranged from 0.003 to 0.04 

across the EHI period in the low-risk group (see Methods for risk group definitions).  

Transmission probabilities were estimated to be five times as great in the higher-risk group 

as in the lower-risk group, corresponding to a greater presence of transmission co-factors in 

the former group. 

 

Intervention effects on HIV prevalence 

Figure 6.3 displays the results of intervention analyses, with the colored lines representing 

changes in prevalence due to different levels of coverage during EHI only (1st column), CHI 

only (2nd column), or both periods (3rd column).   In base-case analyses where 38.4% of 

incident HIV infections were attributable to contact with an EHI index (top row of Figure 6.3), 

intervention strategies acting only during EHI (with no residual effect during CHI) 

substantially reduced HIV prevalence in Lilongwe, but did not lead to HIV elimination, even 
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with 100% coverage (solid green line in Figure 6.3A).  For example, the predicted 

prevalence after 30 years was 12.3% with no intervention, 8.9% with 75% EHI coverage, 

and 6.3% with 100% EHI coverage.   By contrast, CHI-only interventions initiated 

approximately 6 months after infection and lasting through the remainder of CHI were 

predicted to essentially eliminate HIV within 20 years, but only if 100% of CHI cases were 

reached (dashed green line in Figure 6.3B).  In scenarios with less than 100% coverage 

during CHI (e.g., dashed blue line in Figure 6.3C), the addition of interventions during EHI 

(dotted lines in Figure 6.3C) provided the extra reduction in prevalence needed to bring the 

epidemic toward elimination.   

 

We observed the same general patterns in sensitivity analyses where EHI was assumed to 

contribute just 18.6% (our lower 95% credible limit) of ongoing transmissions (middle row of 

Figure 6.3).  In these scenarios, interventions acting only during EHI had little effect on 

prevalence (Figure 6.3D), and interventions reaching 100% of CHI cases again led to HIV 

elimination (figure 6.3E).  However, interventions acting in EHI were still necessary to bring 

the epidemic toward elimination if 100% coverage during CHI was not achieved (Figure 

6.3F).   

 

The impact of interventions during EHI was especially important in sensitivity analyses 

where EHI was assumed to contribute 57.5% of new infections (our upper 95% credible 

limit) (bottom row of Figure 6.3).  In this context, interventions acting only during EHI (Figure 

6.3G) were more effective than those acting at the same level of coverage only during CHI 

(Figure 6.3H).  Interventions acting only during CHI could not achieve elimination, even with 

100% coverage (Figure 6.3H), and interventions during EHI were critical to sustaining 

reductions in HIV prevalence (Figure 6.3I).   

 



 

 110      

Intervention effects on HIV incidence 

In a complementary analysis examining the effects of interventions on HIV incidence, we 

estimated that the reduction in incident cases resulting from an intervention reaching 100% 

of only EHI cases (black triangle in Figure 6.4) was approximately equal to the assumed 

proportion of new infections due to EHI index cases (38.4%, our mode value).  By contrast, 

although CHI index cases were responsible for 61.6% (=100% - 38.4%) of new infections, 

the predicted reduction in incidence resulting from an intervention reaching 100% of CHI 

cases was much greater than 61.6% (black star in Figure 6.4).  In this latter case, the basic 

reproductive number R0 (defined as the number of secondary infections resulting from one 

index infection in an entirely susceptible population) was driven below 1.  Below this 

threshold value, an epidemic cannot be sustained (dashed green line in Figure 6.3B).  

 

Some combinations of interventions reaching both periods were predicted to be more 

effective than interventions reaching a higher level of coverage within a single period only.  

For example, an intervention reaching 25% of CHI cases and 75% of EHI cases was 

predicted to avert 43% of new infections (black dot in Figure 6.4), while a CHI-only 

intervention at 50% coverage was predicted to avert 38% of new infections (black square in 

Figure 6.4), and an EHI-only intervention at 100% coverage was predicted to avert 37% of 

new infections (black triangle in Figure 6.4).    We found similar relationships in sensitivity 

analyses using input parameters from the runs that most closely matched the upper and 

lower 95% credible limits of the estimated proportion of cases attributable to EHI in 2010 

(Appendix Six).          

 

DISCUSSION 

Using detailed behavioral and viral load data from our work in Lilongwe, we have developed 

an extended pair-formation model to examine the contribution of EHI to epidemic spread in 
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this setting.  Our analyses suggest that EHI continues to play an important role in this 

generalized HIV epidemic, several decades after its start.  As a result, prevention 

approaches acting across HIV disease stages are likely to have the greatest, most durable 

effect on the HIV epidemic in this setting.   

 

Our estimates of the current proportion of new HIV infections resulting from EHI cases in 

Lilongwe ranged from approximately 20% to 60%, with a mode estimate of 38.4%.  These 

estimates are consistent with the wide range of results from other mathematical models22-27, 

73, 113, 114 (Appendix Seven), which have differed considerably in terms of their structures, 

populations, epidemic phases, and analysis methods.  Endemic-phase estimates from sub-

Saharan Africa in particular have ranged from 7% to 31%.22, 27  Differences in two important 

parameters are likely to be at least partially responsible for the higher estimates in our study:  

the longer duration of EHI (~5 versus ~3 months) and the higher relative transmissibility 

during this period (~30 versus ~26).  Although the ranges that we specified for these 

parameters were consistent with the previous studies from this region, the estimated modes 

that we obtained from our fit to observed HIV prevalence data were slightly larger.  We also 

note that the estimated five-month period of elevated infectivity is considerably longer than 

the 10-week period of elevated viral loads that we have observed in Lilongwe.19   This 

finding is consistent with virologic and modeling studies suggesting that viral load is not the 

only determinant of increased infectivity during this period.22, 68  As future research specifies 

the mechanisms and temporal profiles of these additional factors, our model can readily 

accommodate alternative patterns of infectivity, allowing us to adapt our predictions to our 

evolving understanding of early HIV.       

 

Our model is unique in several regards.  First, it explicitly incorporates both steady pairs and 

casual, one-off contacts, allowing us to model specific contact patterns relevant to HIV 
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transmission dynamics.  More specifically, the inclusion of steady pairs allows uninfected 

couples to be “sheltered” from HIV and enables HIV to be “trapped” within discordant 

couples while the partnerships are intact and monogamous.  The inclusion of casual, one-off 

contacts enables HIV transmission by unpaired individuals, as well as by paired individuals 

who have sexual contact outside of a steady partnership.  Second, our model is based 

directly on sexual behavior data from Lilongwe,193 allowing us to define contact patterns 

specific to the setting of interest.  Additionally, we have used detailed viral load data from 

AHI patients in Lilongwe,19 allowing a high level of resolution in the time-course of 

transmission probabilities during the most infectious period.  Finally, we have used a 

Bayesian Melding approach to fit our model to empirical HIV prevalence data and to account 

for the substantial uncertainty around input parameters and model results.  To our 

knowledge, our study is the first to include all of these features in addressing the 

contribution of EHI to epidemic spread, and we believe the results accurately reflect the 

contribution of EHI in this setting.           

 

Taken together, our results reinforce the idea that EHI should not be ignored,196 and support 

calls for interventions across HIV disease stages.27   Our results suggest that even if the true 

contribution of EHI to epidemic spread is as low as ~20% (our lower credible limit), 

interventions acting only during CHI will not eliminate the epidemic unless 100% coverage 

throughout the entire CHI period is achieved.  When EHI plays a larger role in perpetuating 

the spread of HIV, the addition of interventions reaching even a small percentage of EHI 

cases can lead to a dramatic improvement over CHI-only interventions.  In general, we 

found that strategies reaching approximately 75% of CHI and EHI cases provide the 

greatest chance for durable, significant reductions in HIV prevalence.     
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In our model, we assumed that interventions acting during CHI (reliable condom use or 

suppressive antiretroviral therapy) were virtually completely effective in blocking 

transmission from the very beginning of CHI (~5 months after infection acquisition) through 

the remainder of the infectious period among those receiving the intervention.   Therefore, 

the “CHI-only” strategy approximates a “Test-and-Treat” program that encourages annual 

HIV antibody tests, as annual testing will detect cases an average of six months (the testing 

interval midpoint) after infection.  This scenario represents a hypothetical ideal, as current 

HIV testing behaviors likely result in diagnoses much later in the time-course of infection.195  

Therefore, the additional benefits of EHI detection and intervention under current conditions 

are likely to be greater than the benefits that we predicted by adding EHI interventions to the 

idealized CHI intervention schemes in the model. 

 

Interventions initiated during EHI may have additional benefits and challenges that are not 

explicitly captured in our model.   Compliance with interventions initiated during EHI is likely 

to remain high at least through the most infectious period, minimizing the detrimental effect 

of waning compliance over time that has been observed with interventions that must be 

sustained for life.134, 135  Additionally, early initiation of treatment may result in improved 

individual-level prognoses.197  While standard antibody tests may detect some EHI cases 

toward the end of the early period, a “Test-and-Treat” approach to EHI detection will miss 

many of these cases unless the testing interval is brief (~3-6 months).  As large-scale 

programs of quarterly or semi-annual HIV testing would be extremely difficult to implement 

and sustain, intervention strategies intended for EHI will require more targeted recruitment 

approaches, such as contact tracing or partner notification.  Campaigns aimed at 

encouraging HIV testing among individuals with recent risky behavior, sexually transmitted 

infections, and acute retroviral symptoms103  should also be considered.  These case-finding 

strategies, in combination with pooling of blood samples139 and/or targeted HIV RNA 
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screening,141 could detect large numbers of EHI cases, even in resource-limited settings.  

The feasibility of this approach would be enhanced further with the availability of point-of-

care rapid tests for EHI detection in the field. 

 

Although we based our model structure and parameters on the best available data from the 

setting of interest, all models are necessarily oversimplified.  In our model, individuals and 

pairs were restricted to a given risk group, and only a very simple form of concurrency – 

one-off encounters outside of pairs – was captured.   Nevertheless, our division of EHI into 

numerous intervals, our inclusion of more than one risk group, and our incorporation of both 

steady and casual contacts may reflect transmission dynamics more accurately than 

previous models.    Additionally, most of the data informing our input parameters were 

collected in a “high-risk” population of STI clinic attendees; however, none of the parameter 

estimates was particularly extreme.   In general, our input parameters had considerable 

uncertainty, due to the inherent difficulties of collecting sexual behavior data and estimating 

transmission probabilities.  To account for these uncertainties, we used a Bayesian Melding 

approach to specify plausible ranges and then identify the sets of parameters most 

compatible with empirical HIV data.  Future HIV modeling efforts would benefit from more 

detailed, reliable estimates of HIV transmission probabilities and sexual behavior 

parameters.   Finally, we note that the purpose of our simple analysis was to identify the 

relative levels of coverage required to substantially reduce HIV prevalence in this setting.  

Prior to implementation of a specific intervention package, a number of considerations, such 

as drug resistance, side effects, behavioral disinhibition, and cost, must be addressed. 

 

Our results suggest that EHI plays an important role in sustaining the mature, generalized 

HIV epidemic of Lilongwe, Malawi.   Interventions that fail to address the substantial risk of 

onward transmission during the earliest period of infection are therefore unlikely to achieve 
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the desired result – elimination of HIV transmission.  Transmission prevention strategies 

should not be confined to a single infection stage, but should instead marry interventions 

that act in chronic HIV infection with those acting in the earliest period of infection, when the 

danger of onward transmission is greatest.   

 

 



 

      

1
1
6
 

Table 6.1.  Model input parameter definitions, prior distributions, and posterior distributions 
 

Parameter Definition Input value /  
Prior distributiona 

Posterior distribution 
Mode (95% CI) 

Demographic parameters   

µ Rate of leaving sexually active population 
 

0.029/year N/A 

n Initial size of entire Lilongwe population 
 

976,625 N/A 

θ Proportion of initial population in 15-49-year age group 
 

Uniform (0.43,0.48) 0.44 (0.43, 0.48) 

τ Year of first HIV infection in Lilongwe 
 

Uniform (1960,1985) 1969 (1961, 1981) 

Sexual behavior parametersb 
π0

 Proportion of initial population in low-risk group 
 

Uniform (0.1,0.9) 0.6 (0.5, 0.8) 

Q0  Proportion of low-risk individuals in a steady partnership 
 

Uniform (0.6,0.9) 0.6 (0.6, 0.9) 

σ0 Rate of steady pair separation in low-risk group (separations 
per year) 
 

Uniform (0.05, 0.47) 0.4 (0.06, 0.45) 

φ0 Unprotected contact frequency in low-risk pairs (contacts/year) 
 

Normal (65.1, 18.6) 33.1 (24, 96) 

s0 Rate of low-risk singles having one-off, casual contacts (casual 
partners/year) 
 

Uniform (0,6) 3.0 (0.2, 5.7) 

χ0 Rate of low-risk paired individuals having one-off, casual 
contacts (casual partners/year) 
 

Normal (2.1, 0.97) 2.4 (0.2, 3.6) 

Q1  Proportion of high-risk individuals in a steady partnership 
 

Uniform (0.1, 0.9) 0.8 (0.3, 0.9) 

σ1 Rate of steady pair separation in high-risk group (separations 
per year) 
 

Uniform (0.2, 26.1) 9.0 (1.6, 25.8) 
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Parameter Definition Input value /  
Prior distributiona 

Posterior distribution 
Mode (95% CI) 

φ1 Unprotected contact frequency in high-risk pairs 
(contacts/year) 
 

Uniform (16,45) 33.5 (17, 44) 

s1 Rate of high-risk singles having one-off, casual contacts 
(casual partners/year) 
 

Uniform (0,24) 0.8 (0.7, 24) 

χ1 Rate of high-risk paired individuals having one-off, casual 
contacts (casual partners/year) 
 

Uniform (0,24) 2.1 (0.8, 24) 

Parameters related to per-contact HIV transmission probabilitiesc 
VL1 Log10 viral load in early HIV, interval 1 

 
Normal (1.709, 0.5) 1.7 (0.8, 2.7) 

VL2 Log10 viral load in early HIV, interval 2 
 

Normal (5.273, 0.5) 5.5 (4.2, 6.2) 

VL3 Log10 viral load in early HIV, interval 3 
 

Normal (6.769, 0.5) 6.7 (5.8, 7.8) 

VL4 Log10 viral load in early HIV, interval 4 
 

Normal (6.157, 0.5) 6.2 (5.2, 7.0) 

VL5 Log10 viral load in early HIV, interval 5 
 

Normal (5.219, 0.3) 4.5 (4.7, 5.7) 

h6,0, h7,0, 
h8,0 

Low-risk per-contact transmission probability in Asymptomatic 
HIV (intervals 6-8) 
 

Normal (0.0007, 0.00007) 0.0007 (0.0006, 
0.0009) 

h10 Per-contact transmission probability in AIDS (interval 10) 
 

0 N/A 

ln(rE) Natural log of relative transmission rate: early vs. 
asymptomatic HIV 
 

Normal (3.26, 0.37) 3.4 (2.8, 4.1) 

ln(rL) Natural log of relative transmission rate: pre-AIDS vs. 
asymptomatic HIV 
 

Normal (1.97, 0.32) 2.0 (1.3, 2.7) 

ln(rv) Natural log of relative transmission rate per log10 increase in 
viral load 

Normal (0.896, 0.145) 0.9 (0.6, 1.2) 
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Parameter Definition Input value /  
Prior distributiona 

Posterior distribution 
Mode (95% CI) 

 
c Relative change in transmission probabilities in high-risk group 

 
Uniform (1,6) 5.4 (2.5, 6.0) 

HIV infection interval durationsc 

1/γ1, 1/γ2, 
1/γ3, 1/γ4 

Duration of each of first 4 intervals of early HIV (intervals 1-4) 
 
 

1 week each N/A 

1/γ5 Duration of early HIV, interval 5 (years) 
 

Uniform (0.026, 0.42) 0.33 (0.06, 0.41) 

1/γ6, 1/γ7, 
1/γ8 

Duration of each interval of asymptomatic HIV (intervals 6-8) 
(years) 
 

Uniform (1.83, 3.17) 1.9 (1.9, 3.1) 

1/γ9 Duration of pre-AIDS (interval 9) (years) 
 

Normal (0.75, 0.2) 0.9 (0.3, 1.1) 

1/γ10 Duration of AIDS (interval 10) (years) Normal (0.83, 0.12) 1.1 (0.6, 1.1) 
 
a For parameter values that varied across model runs, distributions are given as: Uniform(lower limit, upper limit), Normal(mean, 
standard deviation).  Parameters not specified in this format were held constant at the listed value across runs.     
 
b These parameters are described in detail in Appendix Four. 
 
c These parameter are described in detail in Appendix Three.
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 Figure 6.1.  HIV ANC prevalence data and posterior distribution of output prevalence curves 

 

HIV prevalence data from the sentinel surveillance site in a Lilongwe antenatal clinic are 
shown as points, with the corresponding 95% credible intervals as bracketed vertical lines.  
HIV prevalence output generated from the mode (i.e., most frequently resampled) set of 
input parameters is shown as the solid curve.  The dashed curves were generated from the 
2.5th and 97.5th percentile values from the entire posterior set of model-produced prevalence 
predictions at each time point. 
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Figure 6.2.  Estimated proportion of incident HIV infections attributable to contact with EHI 
index case 

 

The solid curve represents the annual proportion of incident HIV infections attributable to 
contact with an EHI index case predicted by the mode set of input parameters.  The dashed 
curves were generated from the 2.5th and 97.5th percentile values from the entire set of 
model-produced predictions at each time point.  
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Figure 6.3.  Predicted effects of interventions during EHI only, CHI only, or both periods 
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HIV prevalence in Lilongwe is shown for scenarios with no intervention (solid black curve) and for interventions initiated in 2010 with 
various levels of coverage in early HIV infection (EHI) and/or chronic HIV infection (CHI).  The figures in the top row (6.3A-6.3C) 
correspond to input parameters from the modal simulation.  The figures in the second and third rows result from simulations 
corresponding most closely to the lower (6.3D – 6.3F) and upper (6.3G – 6.3I) 95% credible intervals of the predicted proportion of 
new infections due to contact with EHI index cases, respectively.  Figures 6.3A, 6.3D, and 6.3G compare the “no-intervention” 
scenario with “EHI-only” interventions reaching 25%, 50%, 75%, and 100% of those with EHI.  Figures 6.3B, 6.3E, and 6.3H compare 
the “no-intervention” scenario with “CHI-only” interventions reaching 25%, 50%, 75%, and 100% of those with CHI.  Figures 6.3C, 
6.3F, and 6.3I compare the “no-intervention” scenario with four different strategies in which 75% of CHI cases are reached: one that 
reaches only CHI cases, one that also reaches 25% of EHI cases, one that also reaches 50% of EHI cases, and one that also 
reaches 75% of EHI cases.
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Figure 6.4. Predicted effects of interventions by coverage level and time of initiation within 
the natural history of HIV infection 
 

 

Shaded contours represent the range of model-predicted proportions of new HIV infections 
averted in the years 2010 (start of intervention) to 2015 with the input parameters from the 
modal simulation (see Methods).  The horizontal and vertical axes give the proportion of CHI 
and EHI cases, respectively, in whom per-contact transmission probabilities are reduced to 
0.000033 (a value approximating transmission probabilities under complete viral 
suppression or condom use).  The points where contour lines meet the horizontal axis 
represent the proportion of new HIV infections averted if CHI-only interventions (i.e., 
coverage in EHI=0%) are used.  For example, the black square represents 50% CHI 
coverage and 0% EHI coverage, and the black star represents 100% CHI coverage and 0% 
EHI coverage.  The points where contour lines meet the vertical axis represent that 
proportion if EHI-only interventions (i.e., coverage in CHI=0%) are used.  For example, the 
black triangle represents 100% EHI coverage and 0% CHI coverage.  All other points on the 
graph represent interventions that cover intermediate proportions of each period.   For 
example, an intervention achieving 25% CHI coverage and 75% EHI coverage averts 43% 
of new infections; the corresponding black dot lies in the band representing the values 0.4 to 
0.5.



 

 

 

CHAPTER 7: DISCUSSION 

 

HIV has reached pandemic proportions, leading to widespread devastation in many parts of 

the world.1, 28  Although the international scientific, medical, and public health communities 

have made tremendous progress in the detection, treatment, and prevention of this disease, 

a cure for HIV eludes us and new cases continue to outpace the numbers of infected 

individuals receiving treatment.2  Again and again, trials of seemingly promising prevention 

methods have had disappointing results.30-32, 36-41  At this critical juncture in the epidemic, 

there is a necessity for improved understanding of the fundamental drivers of the epidemic, 

as well as an urgent need for innovative interventions against HIV.  This dissertation has 

focused on two of these fundamental drivers – the heterosexual infectivity of HIV-1 and the 

details of sexual partnership patterns – as well as the power of interventions initiated during 

early HIV infection (EHI).       

 

The heterosexual infectivity of HIV-1 (Aim 1) 

 

Summary of findings 

In our systematic review and meta-analysis, we found that current estimates of the 

heterosexual infectivity of HIV-1 are extremely heterogeneous.  Estimates ranged from 

nearly zero in some studies of HIV-serodiscordant couples to almost one transmission for 

every three acts of anal intercourse.  While infectivity estimates were only weakly associated 

with methodological features of the studies producing them, we found strong associations 

between infectivity and certain transmission-modifying cofactors.  For example, infectivity 
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differences (expressed as transmission events per thousand unprotected sexual contacts) 

were 8.1 (95% CI:  0.4-15.8) comparing uncircumcised to circumcised susceptible men; 6.0 

(3.3-8.8) comparing susceptibles with and without genital ulcer disease; 1.9 (0.9-2.8) 

comparing late-stage index cases to mid-stage index cases; and 2.5 (0.2 – 4.9) comparing 

early-stage index cases to mid-stage index cases.  Infectivity estimates stratified by co-

factors were relatively sparse, and most studies were hampered by a number of biases, 

likely due to the ethical and logistical challenges of conducting infectivity studies.      

 

Interpretation 

Existing infectivity estimates should be interpreted with care, given the study biases that we 

identified and the transmission co-factor effects that we observed.  While the heterosexual 

infectivity of HIV-1 may be as low as one transmission event per thousand contacts in some 

exposures, the presence of certain co-factors can amplify this probability by more than an 

order of magnitude.  Continued use of a single, small, “one-size-fits-all” estimate for the 

heterosexual infectivity of HIV-1 will perpetuate the dangerous misconception that HIV 

cannot be transmitted efficiently via heterosexual contact.     

 

Public health significance 

Our systematic review and meta-analysis represents one of the most comprehensive, 

detailed, and up-to-date analyses of the heterosexual infectivity of HIV-1.   Estimates of this 

parameter have numerous public health applications.  Perhaps most importantly, these 

estimates are used to communicate the level of risk involved in heterosexual exposure to 

HIV, and can therefore affect the types and levels of risky behavior in which susceptible and 

infected individuals engage.  Additionally, infectivity estimates are critical inputs in 

mathematical models of the HIV epidemic.  Because these mathematical models can inform 

policy decisions and resource allocation, accurate and detailed infectivity estimates are 
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essential to maximizing the public health benefits of these decisions.  Finally, estimates that 

account for transmission-modifying co-factors allow us to better understand how 

heterosexual contact could have fueled the HIV epidemic to its current magnitude.   

             

 

Future research directions 

The ethical and logistical challenges of conducting infectivity studies will continue to limit the 

number of studies estimating this parameter; however, the ongoing HIV Prevention Trials 

Network 052 Study (HPTN 052) is one study that is expected to make a substantial 

contribution to our understanding of this quantity.  HPTN 052 is a Phase III, randomized, 

controlled trial designed to determine the effectiveness of antiretroviral therapy in preventing 

HIV transmission within serodiscordant couples.  The study aims to enroll 1750 couples on 

four continents, each followed for five years.  The results of this study are anticipated to 

provide the most valid and reliable estimates of the heterosexual infectivity of HIV-1 to date.    

 

Heterosexual partnership patterns (Aim 2) 

 

Summary of findings 

In our analysis of partnership patterns and partnership, gap, and overlap lengths among STI 

clinic attendees Lilongwe, Malawi, we found that most participants (86%) did not engage in 

multiple recent partnerships.  Additionally, we found that partnerships were long on average 

(mean=858 days), and that overlaps among those reporting concurrency were also long 

(mean=246 days).  Among those reporting recent serial monogamy, the mean gap between 

consecutive partnerships was short (21 days). 

 

Interpretation 
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Our findings highlight the fact that risk of HIV/STI acquisition is not only a function of one’s 

own behavior, but also the behavior of one’s partner(s) and beyond.183  Most of the 

individuals presenting to our STI clinic had not engaged recently in sexual behaviors that are 

typically considered “high-risk.”  However, among the minority of participants who did report 

multiple recent partnerships, the patterns of concurrency and narrowly spaced serial 

monogamy that we observed suggest a substantial risk of onward HIV/STI transmission.  

   

Public health significance 

Sexual behavior patterns are one of the fundamental determinants of HIV/STI spread, and 

as such, these parameters are critical inputs in mathematical models describing epidemic 

dynamics and predicting the impact of potential interventions.  Unfortunately, the types of 

models that can be used in a given setting are limited by the level of detail in the available 

data.  Detailed estimates of partnership lengths, gaps, and overlaps enable the use of more 

sophisticated models that can capture transmission dynamics more realistically than simper 

models.  Of particular note, without the estimates that we obtained in Aim 2, we would have 

been limited to a much simpler (and less realistic) model for the analyses in Aim 3. 

 

The role of concurrency in the spread of HIV has been a topic of recent debate.74-78  While 

mathematical models have established that concurrency could accelerate HIV 

transmission,79-81 empirical evidence of an association between concurrency and HIV has 

been limited.  Some ecological studies have suggested that HIV prevalence tends to be 

higher in areas with greater levels of sexual partner concurrency,82, 83 but results of these 

studies have been mixed.  Only with a more detailed understanding of sexual partnership 

patterns in various settings will we be able to understand HIV/STI transmission dynamics 

throughout the world.  Detailed data of this type from sub-Saharan Africa – the region hit 

hardest by HIV/AIDS – are relatively sparse.  Our study has contributed new information 
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about sexual partnership patterns, durations of partnerships, gaps between partnerships, 

and overlaps across partnerships in this region.          

    

Future research directions 

To improve our understanding of HIV/STI transmission dynamics in a variety of contexts, 

additional estimates of partnership lengths, gaps, and overlaps from other settings are 

required.  As described in the Background and Methods chapters of this dissertation, 

partnership dynamics studies have suffered from some common limitations.  For improved 

estimates of these parameters, future studies should:  1) carefully ascertain whether 

partnerships are likely to continue; 2) account for censoring in estimating partnership 

lengths; 3) consider the effects of the “look-back” period, the number of partners on whom 

information is assessed, and the time unit chosen for reporting of contact dates; 4) compare 

concurrency estimates across multiple measures; and 5) carefully assess condom use in 

different types of contacts.      

 

The contribution of EHI and its potential as a target for prevention interventions (Aim 
3) 
 

Summary of findings 

In our mathematical modeling study of the HIV epidemic in Lilongwe, Malawi, we estimated 

that 38.4% (95% CI:  18.6%-57.5%) of ongoing incident HIV infections in this setting are due 

to contact with an EHI index case.  Additionally, we found that an intervention suppressing 

transmission only during EHI could not eliminate HIV, even if 100% of EHI cases were 

successfully reached by the intervention.  By contrast, an intervention suppressing 

transmission in 100% of CHI cases could lead to HIV elimination, but lower levels of CHI 

coverage did not result in elimination.  The addition of EHI interventions to programs of sub-
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optimal CHI coverage provided the additional reduction in prevalence needed to bring the 

epidemic toward elimination.    

  

Interpretation 

Interventions acting across all stages of HIV infection will be needed to produce substantial, 

durable reductions in HIV incidence and prevalence. 

 

Public health significance 

Although the probability of onward transmission is greatest during the earliest weeks of 

infection, most interventions designed to prevent HIV transmission from HIV-positive 

individuals have focused on individuals in the chronic phase of infection.  One such 

intervention, a universal “Test-and-Treat” strategy, has received much recent attention as 

potentially powerful approach to eliminating the HIV epidemic.192  Our analyses suggest that 

unless transmission can be suppressed in 100% of chronically infected individuals for the 

entire duration of the chronic period, this strategy will fail to have its desired effect.  As it is 

extremely unlikely that these conditions can be met, our study indicates that interventions 

targeting the entire infectious period of HIV – from the earliest weeks of infection onward – 

are needed to achieve lasting, powerful reductions in HIV incidence and prevalence.        

 

Future research directions 

We are actively engaged in additional studies of acute and early HIV infection in Lilongwe.  

We are currently developing a program to identify and inform persons with acute HIV 

infection (AHI) in a number of clinical sites.  As part of this program, we will evaluate a short-

term, combined behavioral and antiretroviral therapy (ART) intervention to prevent HIV 

transmission among persons with AHI.  Additionally, we are planning further mathematical 

modeling studies to determine the potential individual and combined impact of each 
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component of the intervention.  We will use the mathematical model that we have 

constructed for these dissertation analyses to conduct some of these future analyses, and 

we will use this model as the foundation for additional, more complex models designed to 

address further research questions related to early and acute HIV.  
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APPENDIX ONE:  CALCULATING INFECTIVITY AND CORRESPONDING STANDARD 
ERRORS 

 
Calculating infectivity 

Studies estimated the infectivity (β) in one of five ways: by dividing the total number of 

susceptibles who became infected by the total number of unprotected sex acts occurring in 

the study population during the risk period (Eq. 1); by estimating the transmission rate per 

unit time during the risk period and then converting the rate into a failure probability (Eq. 2); 

by fitting the “Bernoulli model” (Eq. 3a) to individual-level sexual contact data with maximum-

likelihood methods to estimate β; by substituting population-average sexual contact data into 

the Bernoulli model (Eq. 3b) and solving for β; or by fitting population-level incidence and 

sexual contact data to compartmental, dynamic models containing β as a free parameter.           
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In these equations, the variable x represents susceptible individuals and the variable s 

represents unprotected sex acts.   If susceptible individual i becomes HIV-infected during 

the risk period, then  xi=1, and if susceptible individual i remains uninfected during the risk 
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period, then xi=0; therefore, 
1

n

i

i

x
=

∑   represents the total number of transmission events 

observed among the N susceptible individuals in a population. The parameter sI is the 

number of unprotected sex acts for a given susceptible individual during the risk period, λ(t) 

is the transmission rate per unit time, ( )s t  is the average number of sex acts per unit time 

during the risk period, s  is the average number of sex acts occurring during the entire risk 

period, and ϕ is the probability that a susceptible individual’s partner is HIV-infected.  When 

a susceptible individual is the partner of someone known to be HIV-positive, ϕ=1; when the 

index case is not specifically identifiable, ϕ is estimated as the population prevalence of HIV-

1.   

Calculating standard errors 

When 95% confidence limits were reported for an infectivity estimate, we calculated the 

corresponding standard error as (upper confidence limit – lower confidence limit) / 3.92.  

When 95% confidence limits were not reported for an infectivity estimate, we calculated an 

approximate standard error as follows:   
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After solving the system of equations, we used the cii command in Stata with the 

stratum-specific numerators and denominators to estimate the stratum-specific standard 

error. 
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APPENDIX TWO: MODEL DESCRIPTION 

 
Figure A2.1  Simplified diagram of model structure 

 
Unshaded boxes represent single (unpaired) individuals; shaded boxes represent steady 
partnerships.  As detailed by the accompanying labels, arrows represent flows from one 
compartment to another via demographic processes (entering & exiting the population), 
partnership formation and dissolution, or HIV transmission.   For ease of illustration, the 
diagram does not illustrate the two separate risk groups, and it represents HIV infection with 
a single compartment.  In the model, twenty separate equations represent singles in the ten 
assumed intervals of infection in the two risk groups, and 132 separate equations represent 
the 66 possible HIV infection interval/status combinations within steady pairs in the two risk 
groups.
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Basic Model Equations 
 

Let 0

k
X  be the number of HIV-uninfected singles in risk group k (k=0 for low-risk group, k=1 

for high-risk group), and i

k
X be the number of HIV-infected singles in risk group k and 

infection interval i (i = 1 to 10).  Let ji

k
P

, be the number of pairs of individuals where one 

partner is in infection interval i=0..10 and the other in infection stage j=0..10 (with i=0=j 

representing HIV-uninfected status).  For notational convenience we assume symmetry of 

pairs, i.e., that ij

k

ji

k
PP

,, =
.
 

 
Following Kretzschmar & Dietz73 and Xiridou et al,114 the model is described by the following 

differential equations: 
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∑
=

=
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0i

i

kk XX   is the total number of singles in group k; 

00 θπµν n= and )1( 01 πθµν −= n are the population recruitment rates, which assume 

constant population size in the absence of HIV; 
 

kjh , is the per-contact transmission probability from an index in infection interval j and 

group k; 
 

kρ is the rate of pair formation in group k; 
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kφ  is the rate of unprotected sexual contact within steady pairs in group k; 

 

hkk
′×= χϖ  is the force of infection from a casual, one-off contact on a paired 

individual in risk group k;  
 

hskk
′×=λ  is the force of infection from a casual, one-off contact on a single in risk 

group k; 
 

kχ  is the rate at which paired individuals in group k have casual, one-off contacts;  

 

ks  is the rate at which singles in risk group k have casual, one-off contacts; and 

 
h′  is the weighted average per-contact transmission probability across HIV intervals and 
risk groups: 
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is the probability of selecting a casual contact who is in risk group k and 

interval j of HIV infection; 
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kkkj PPXs χη  is the number of casual contacts on offer by 

those in group k and interval i of HIV infection; 
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kkkk PXs χη is the total number of casual contacts on offer in the 

population (including by susceptibles); and 

∑
≥
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kk PP
, is the total number of pairs in subgroup k. 

Interventions 

To model the impact of a generic intervention targeted at individuals at different stages of 

infection, we simply reduce the per-contact transmission probability in interval j and group k  

among those receiving an intervention to: 

5

, 103.3 −×=kjh  
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The intervention is given to a proportion iε of individuals in a given interval i of HIV infection 

who receive an intervention.  In the intervention scenarios, iε =0 until the time of intervention 

start (calendar year 2010), and )1 0.75, 0.5, 0.25, 0,(=iε thereafter, depending on the 

intervention scenario. 

 

For scenarios with interventions in EHI only, the reduction in transmission probabilities 

occurs in infection intervals 3 to 5, while for scenarios with interventions in CHI only, the 

reduction in transmission probabilities applies to infection intervals 6 to 10.   
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APPENDIX THREE:  DERIVING TRANSMISSION PROBABILITIES 

 

To describe changes in transmission probabilities across stages of infection, we:   

1. Identified four broad periods of infection: “early” HIV, “asymptomatic HIV,” “pre-

AIDS,” and “AIDS;” 

2. Identified a mean per-contact transmission probability for low-risk index cases in the 

asymptomatic period;  

3. Generated an expression for the mean per-contact transmission probability during 

“early” HIV in the low-risk group, using published relationships between early-period 

and asymptomatic-period transmission rates; 

4. Generated an expression for the mean per-contact transmission probability during 

“pre-AIDS” in the low-risk group, using a similar method as that described in step 3 

for early HIV; 

5. Divided the “early” period into five intervals;  

6.  Calculated the mean log10 viral load among EHI patients in Malawi during each early 

interval; 

7. Related viral loads to transmission probabilities using a published functional 

relationship between changes in viral load and transmission probabilities;  

8. Combined these sources of information to calculate per-contact transmission 

probabilities for each interval of early HIV; and 

9. Identified estimates for the amplifying effect of a putative co-factor in the high-risk 

group. 

 

We describe steps 2-9 in more detail below. 
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Step 2:  Identifying a mean per-contact transmission probability for asymptomatic HIV 

in low-risk group 

We represented the asymptomatic period as a set of three intervals (i = 6,7,8) to 

approximate observed survival time distributions.  Each interval was assumed to have the 

same duration and transmission probability.  We identified a mean per-contact transmission 

probability of 0,6h = 0,7h = 0,8h = 0.0007 (SD = 0.00007) for this period in the low-risk group, 

based on meta-analysis estimates.189, 190  The range of durations for the asymptomatic 

period given in Table 6.1 was based on Hallett et al.145 

 

Step 3:  Generating an expression for the mean per-contact transmission probability 

during early HIV 

We related the mean per-contact transmission probability across the entire EHI period in the 

low-risk group (hearly,0) to the mean transmission probability in the low-risk group during 

asymptomatic infection (h6,0), using the transmission rate ratio (rE) comparing EHI to 

asymptomatic infection in Hollingsworth et al:22 

 hearly,0 = rE × h6,0 , (Equation A3.1) 

As indicated in Table 6.1, we specified prior distributions around both h6,0 and ln(rE) in the 

model, and sampled from those distributions in model simulations.  The mean and standard 

deviation for h6,0 are described in Step 2 above; the mean and standard error for ln(rE) were 

taken from Hollingsworth et al.22       

 

Step 4:  Generating an expression for the mean per-contact transmission probability 

during pre-AIDS 

We generated a similar expression for the per-contact transmission probability during pre-

AIDS in the low-risk group (h9,0): 

 h9,0 = rL × h6,0 , (Equation A3.2) 
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where rL = the transmission rate ratio comparing pre-AIDS to asymptomatic infection in 

Hollingsworth et al.22  We specified a normal distribution around ln(rL), based on the mean 

and standard deviation in Hollingsworth et al.22  We also note that the mean and standard 

deviation for the duration of this interval, as well as the duration of AIDS, were based on 

estimates from Hollingsworth et al.22   

 

Step 5:  Dividing the early period into intervals 

We divided the early period into five intervals (i =1 to 5) , roughly based on the times at 

which different types of tests are capable of detecting infection (Table A3.1): 

Table A3.1.  Intervals of early HIV: durations and available tests 
Interval Duration Available tests 

1 1 week None 

2 1 week HIV RNA only 

3 1 week RNA or p24 antigen 

4 1 week RNA or p24 antigen 

5 Duration of “highly infectious period” estimated in 
Hollingsworth et al, less the first 4 weeks 

RNA or HIV antibody 

 

We specified a prior distribution on the duration of interval 5 based on the mean and 

standard error calculated by Hollingsworth et al,22 minus the first four weeks contained by 

intervals 1 through 4.   
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We define the relative duration rdi, of each early interval i as: 

 rdi=
D

d i   , where D = the duration of the entire EHI period. (Equation A3.3) 

We note that the mean per-contact transmission probability hearly,0 calculated in Step 3 can 

be expressed as the sum of the individual interval transmission probabilities (hi,0), each 

weighted by their relative durations: 

 hearly ,0= rE × h6,0 = 0,

5

1

i )(rd i

i

h×∑
=

  (Equation A3.4) 

 
 

Step 6:  Calculating the mean blood viral load during each early interval 

We used a function describing longitudinal measurements of blood viral load in Lilongwe 

EHI patients19 to calculate the area under the curve (AUC) for each early-period interval.   

Then we calculated the constant log10 viral load (VLi) having the same AUC in each interval i 

(Figure A3.1).  We specified each VLi as normally distributed in the model, with means 

specified at the constant values just described, and standard errors matching those reported 

in Pilcher et al.19 

 
Figure A3.1. Blood viral load curve for early HIV patients and corresponding constant viral 
loads 
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* Note:  while this figure represents the fifth interval as ending at week 13; this duration was 

sampled from a uniform distribution of 1.3 weeks to 4 months (see Methods section of main 

text). 

 

Step 7:  Relating viral loads to transmission probabilities 

Next, we used the constant viral loads in Figure A3.1, along with the relationship (rV) 

between viral load and transmission probability published in Quinn et al12 to obtain the 

following equations: 

 

h2,0 = rV  × logdiff2 × h1,0 

h3,0 = rV  × logdiff3 × h1,0 

h4,0 = rV  × logdiff4  × h1,0 

h5,0 = rV  × logdiff5  × h1,0 
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where logdiffi  is the log10 difference in viral loads comparing interval i to interval 1.  We 

specified ln(rV) as normally distributed in the model , using the mean and standard error 

published in Quinn et al.12 

 

Step 8:  Combining information 

Finally, substituting the right-hand terms from this last set of equations A3.5 for h2,0 through 

h5,0 in Equation A3.4 and collecting terms, we obtain the following expression for h1,0: 

 

∑
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××+

×
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i

iiv diffrdr

h

.

 Equation A3.6 

All of the terms on the right-hand side of A3.6 were either sampled directly in a given run, or 

could be calculated directly from sampled parameters, allowing us to solve for h1,0.  The 

value of h1,0 can then be entered into equations A3.5, along with the sampled logdiffi and rV  

values to calculate the transmission probabilities for the other intervals of early HIV.  

 

Step 9:  Identifying range for co-factor effects 

To incorporate a possible increase in transmission risk due to transmission-amplifying co-

factors (such as concomitant STIs or anal intercourse), we incorporated a multiplicative term 

c corresponding to every sexual contact with a “high-risk” individual (as we assumed a 

greater presence of these co-factors in this group).  The effect was assumed to be fixed 

across the entire infectious period (i.e., for each interval i):   

0,1, ii hch ×= . 

In identifying the range of values for the prior uniform distribution on this parameter, we 

specified a lower limit of 1, corresponding to no change in transmission probabilities across 

groups.  We specified an upper limit of 6, corresponding to meta-analysis values between 5 
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and 6 comparing the per-contact heterosexual HIV transmission risk among groups with 

genital ulcer disease to groups without genital ulcer disease.189, 190        
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APPENDIX FOUR:  DERIVING SEXUAL BEHAVIOR PARAMETERS 

 

We defined two separate risk groups, indexed by k in the model:  1) a “lower-risk” group 

(k=0)  in which casual, one-off contacts by singles were assumed to occur (on average) less 

frequently and “steady pairs” were  longer , and 2) a “higher-risk” group (k=1) in which 

casual, one-off contacts by singles occurred (on average) more frequently and steady pairs 

were shorter.   Parameter values for steady pairs in the “lower-risk” group were based on 

analyses of marital/cohabiting partnerships, and parameter values for steady pairs in the 

“higher-risk” group were based on analyses of non-spousal, non-cohabiting partnerships.  

With no information with which to determine the proportion of the initial population in the low-

risk group (π0), we specified a very wide range (0.1, 0.9).  We calculated the five sexual 

behavior parameters in each risk group as follows, with all calculations based on data from 

our previous work at KCH STI Clinic:193 

 
The rate of steady pair dissolution (σk) 
 
The mean rate of steady pair dissolution is equal to the inverse of the mean steady pair 

duration.  In the “lower-risk” group, then, we defined σ0 based on the length of marital / 

cohabiting partnerships calculated among KCH STI clinic patients.  Given the likelihood that 

our partnership length estimates were biased downward due to unmeasured censoring (see 

Powers et al193), we assumed that the estimated median partnership length for 

marital/cohabiting pairs (2.13 years) represented a lower bound.   Therefore, we used the 

inverse of this value (0.47 per year) as the upper limit of the prior distribution for σ0.  With 

very little data to inform the upper bound on partnership lengths, we selected a high value 

(20 years) to reflect the considerable uncertainty in this parameter.  The corresponding 

lower bound on σ0 was 0.05 per year (= 1/20 years).    
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In the “higher-risk” group, we assumed a lower bound of 2 weeks for the mean partnership 

length (under the assumption that anything shorter would be more similar to a one-off 

contact than a true, steady partnership); the corresponding upper bound on σ1 in this group 

was 26.1 per year.  We placed an upper limit of 5 years on partnership lengths in this group, 

roughly based on the measured non-marital / non-cohabiting partnership length of 3.33 

years in our data (with some additional time added to account for censoring).  The 

corresponding lower bound for σ1 was 0.2 per year.   

 
The rate of steady pair formation (ρk) 
 

Since we did not have any direct data on the rate of steady pair formation, we specified ρk 

with the following equation: 

ρk = Qk(σk + 2µ) / (1 – Qk),   Equation A4.1 

where σk = the rate of steady pair dissolution (described above), Qk = the proportion of 

group k currently in a steady pair, and µ = the underlying rate of population exit (defined in 

Table 6.1 of the main text as 0.029 / year = the inverse of the assumed sexual lifespan).     

 

In the lower-risk group, Q0 = the proportion of group 0 that is in a marital / cohabiting pair.  

Malawi Demographic and Health Survey estimates of the proportion of the entire population 

currently in a married or cohabiting pair range from ~60% to ~70%.185  We hypothesized that 

the corresponding proportion in our “low-risk” group, which corresponds to the group that 

gives rise to marital/co-habiting pairs, would be higher than the proportion in the whole 

population. Therefore, we placed a range of 0.6 to 0.9 on Q0.    

 

In the higher-risk group, Q1 = the proportion of group 1 that is in a non-marital / non-

cohabiting pair.  With no data on which to base this value, we specified a very broad range 

of 0.1 to 0.9. 
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The frequency of unprotected sexual contact within steady pairs (φk) 

For φ0, we first calculated the mean number of unprotected contacts in a 4-week period in 

each marital / cohabiting pairs, based on the reported number of unprotected contacts in 

such pairs in the two four-week periods immediately prior to interview.  We multiplied this 

mean by 13 to estimate the number of unprotected contacts within each marital/cohabiting 

pair per year.  We then calculated the overall mean and standard error (reported in Table 

6.1).  

 

We used a similar method to calculate φ1, using numbers of unprotected contacts reported 

by unmarried/non-cohabiting participants within steady, non-marital and non-cohabiting 

partnerships. 

 

The annual number of casual partners for each single individual (sk) 

To calculate the annual number of casual partners for each single individual, we obtained 

the reported number of new partners in the prior two months for each individual who 

reported being unmarried and non-cohabiting at the time of interview, and we multiplied that 

value by six.  Based on the assumption that singles who ultimately form longer-term pairs 

(i.e., “low-risk” singles) tend to exhibit lower-risk behavior between partners, we specified the 

range for the low-risk group as the lower limit of these reported values (0 per year) to the 

median (6 per year).  We specified the range for the high risk group as the entire range 

reported among study participants (0 to 24 partners per year).  

 

The annual number of casual, one-off contacts among individuals in steady pairs (χk) 

For χ0, we calculated the mean and standard deviation for the number of partners in the 

previous year reported by marital/cohabiting individuals (minus their spouse or co-habiting 
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partner).  For χ1, we used the same range that we used for s1, since we did not have more 

specific data with which to define this value. 
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APPENDIX FIVE: BAYESIAN MELDING PROCEDURE 

 

Following others,145, 147 we denote the simulation model described in Appendix Two as M, 

the input parameters (described in the main text) as θ, and the model-predicted prevalence 

output as ρ =M(θ).  We denote the prior distribution for each model parameter as q(θ).  We 

denote the data on model output (that is, the ANC prevalence data) as W, and the 

associated likelihood on the model outputs as L(ρ) = p(W|ρ).  The posterior distribution of 

inputs, then, can be expressed as:   p(θ) α q(θ) L(ρ) .  

 

We implemented a sample-importance-resample algorithm (Rubin 1988) to approximate the 

posterior distribution, as the model is not invertible and an analytic solution with which to 

calculate the posterior distribution is not possible.  First, we generated a set of input 

parameters θ(i) by randomly sampling from their respective prior distributions, and then we 

evaluated the model using that set of parameters: ρ(i) = M(θ(i)).   Next, we calculated the 

sampling weight for the model run as L(ρ(i)), and then repeated the entire process 100,000 

times.  From the resulting discrete distribution of epidemic simulations, we resampled (with 

replacement) 11,000 times, with probability of selection proportional to the sampling 

weights.  The resulting set of model runs approximates the posterior distribution for the 

inputs, which translates to an induced posterior on model outputs.  Under this approach, 

output from the simulation resampled most frequently (i.e., the simulation most compatible 

with empirical HIV prevalence data) represents the estimated mode for the output 

parameters of interest.  The 2.5th and 97.5th percentiles correspond to 95% credible limits.
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APPENDIX SIX:  SENSITIVITY ANALYSES OF INTERVENTION EFFECTS ON HIV 
INCIDENCE 

 
 

We repeated the analysis of intervention effects on new infections from 2010 to 2015 using the 

input parameters corresponding most closely to the 2.5th and 97.5th percentile values of the 

predicted contribution of EHI in 2010.  We found that the relative impact of interventions initiated 

during EHI increased with the assumed contribution of EHI to ongoing transmission.   When EHI 

was assumed to contribute 18.6% of new transmissions (Figure A6.1), these proportions ranged 

from 0% to 98% for CHI-only interventions and from 0% to 16% for EHI-only interventions.  In 

scenarios where EHI was assumed to contribute 57.5% of new transmissions (Figure A6.2), 

these proportions ranged from 0% to 86% for CHI-only interventions and from 0% to 60% for 

EHI-only interventions. 

 
Figure A6.1. Predicted effects of interventions over period 2010-2015 by coverage level and 
time of initiation within the natural history of HIV infection using 2.5th percentile of EHI 
contribution 
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Shaded contours represent the range of model-predicted proportions of new HIV infections 
averted in the years 2010 (start of intervention) to 2015 with the input parameters from the 
simulation most closely matching the 2.5th percentile of the predicted contribution of incident 
infections due to EHI in 2010 (see Methods).  The horizontal and vertical axes give the 
proportion of CHI and EHI cases, respectively, in whom per-contact transmission probabilities 
are reduced to 0.000033 (a value approximating transmission probabilities under complete viral 
suppression or condom use).  The points where contour lines meet the horizontal axis represent 
the proportion of new HIV infections averted if CHI-only interventions (i.e., coverage in EHI=0%) 
are used.  The points where contour lines meet the vertical axis represent that proportion if EHI-
only interventions (i.e., coverage in CHI=0%) are used.  All other points on the graph represent 
interventions that cover intermediate proportions of each period.    
 
Figure A6.2 Predicted effects of interventions over period 2010-2015 by coverage level and time 
of initiation within the natural history of HIV infection using 97.5th percentile of EHI contribution 
 

  
 
Shaded contours represent the range of model-predicted proportions of new HIV infections 
averted in the years 2010 (start of intervention) to 2015 with the input parameters from the 
simulation most closely matching the 97.5th percentile of the predicted contribution of incident 
infections due to EHI in 2010 (see Methods).  The horizontal and vertical axes give the 
proportion of CHI and EHI cases, respectively, in whom per-contact transmission probabilities 
are reduced to 0.000033 (a value approximating transmission probabilities under complete viral 
suppression or condom use).  The points where contour lines meet the horizontal axis represent 
the proportion of new HIV infections averted if CHI-only interventions (i.e., coverage in EHI=0%) 
are used.  The points where contour lines meet the vertical axis represent that proportion if EHI-
only interventions (i.e., coverage in CHI=0%) are used.  All other points on the graph represent 
interventions that cover intermediate proportions of each period.    
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APPENDIX SEVEN:   SUMMARY OF EXISTING MODELING RESULTS 

 
* Range of estimates reflects the proportion of all transmissions during an individual’s entire infectious period that occur during EHI.  
The extent to which this proportion corresponds with the proportion of all transmissions that occur during EHI at the population level 
will depend on the epidemic phase and the distribution of sexual contact patterns in the population. 
 
**  Transmission probabilities were drawn from the population category shown, but the reported estimates result from a range of 
hypothetical sexual behavior parameters that do not necessarily reflect a specific population.  
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† The range of estimates shown was extracted from the endemic-phase portion of graphs showing the time-course of the proportion 
due to EHI.
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