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Abstract
Xiaoxiao Liu: Shape-correlated Statistical Modeling and Analysis for

Respiratory Motion Estimation.
(Under the direction of Stephen M. Pizer.)

Respiratory motion challenges image-guided radiation therapy (IGRT) with location uncer-

tainties of important anatomical structures in the thorax. Effective and accurate respiration

estimation is crucial to account for the motion effects on the radiation dose to tumors and

organs at risk. Moreover, serious image artifacts present in treatment-guidance images such

as 4D cone-beam CT cause difficulties in identifying spatial variations. Commonly used non-

linear dense image matching methods easily fail in regions where artifacts interfere.

Learning-based linear motion modeling techniques have the advantage of incorporating

prior knowledge for robust motion estimation. In this research shape-correlation deformation

statistics (SCDS) capture strong correlations between the shape of the lung and the dense

deformation field under breathing. Dimension reduction and linear regression techniques are

used to extract the correlation statistics. Based on the assumption that the deformation

correlations are consistent between planning and treatment time, patient-specific SCDS trained

from a 4D planning image sequence is used to predict the respiratory motion in the patient’s

artifact-laden 4D treatment image sequence.

Furthermore, a prediction-driven atlas formation method is developed to weaken the con-

sistency assumption, by integrating intensity information from the target images and the SCDS

predictions into a common optimization framework. The strategy of balancing between the

prediction constraints and the intensity-matching forces makes the method less sensitive to

variation in the correlation and utilizes intensity information besides the lung boundaries.

This strategy thus provides improved motion estimation accuracy and robustness.

The SCDS-based methods are shown to be effective in modeling and estimating respiratory

motion in lung, with evaluations and comparisons carried out on both simulated images and

patient images.
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Chapter 1

Introduction

1.1 Motivation

Lung cancer, the leading lethal cancer type, causes 1.3 million deaths each year world-

wide (WHO, 2006). More than half of those diagnosed with non-small cell lung cancer

will receive radiation therapy during their treatments. The goal for any cancer radia-

tion therapy is to attain the highest probability of cure with the least morbidity. To

increase this therapeutic ratio with radiation is to expose all cancer cells with sufficient

doses of radiation while sparing surrounding healthy tissues to reduce the probability of

complications.

Over the past decade enormous progress has been made in improving radiation ther-

apy techniques. On the one hand, the application of radiography (x-ray imaging), com-

puted tomography, magnetic resonance imaging, ultrasound, positron emission tomog-

raphy, and electronic portal imaging have greatly improved the possibility of identifying

tumors and organs at risk. On the other hand, high-precision dose delivery systems, such

as intensity-modulated radiation therapy (IMRT), which utilizes computer-controlled

linear accelerators to deliver precise radiation, enable more and more accurate dose

distributions.

Accurately identifying and localizing the target objects are crucial. In image-guided



radiation therapy (IGRT) applications, the intended area for treatment is usually out-

lined on a set of diagnostic images by radiation oncologists at the time of planning.

Another set of images is then acquired during the time of treatment, immediately prior

to the radiation delivery, to adjust the patient position with respect to the planning data

set. Achieving spatial accuracy of the radiation dose relies on achieving a close match

between the anatomic evidence from the planning and treatment images, respectively.

For target areas such as the head and neck or the prostate, which are static during

each imaging, the misalignment between the planning and the treatment images can

be removed by image alignment or registration. For the thorax and abdomen regions,

respiratory motion challenges the standard treatment planning procedure. Sizable errors

in organ volume, position, and shape can occur during breathing, which can significantly

affect the calculation of dose-volume histograms (Balter et al., 1996). In fact, positional

uncertainties caused by the respiratory motion have been shown to have a large impact

on radiation dose (Minohara et al., 2000; Keall et al., 2006). Efficient respiratory motion

modeling and analysis is necessary for removing the motion-induced uncertainties.

The advances in 4D imaging, with respiration phase as the fourth dimension, enables

capturing and storing the motion in the form of a phase-stamped 3D image sequence. In

this thesis a 4D image sequence refers to a respiration-correlated image sequence. Each

3D image volume is respiratory-phase-stamped. The phase is determined by a gating

device that monitors the breathing with measurements used for sorting the projection

data for 3D reconstruction (see Section 2.2.2 for details).

How to accurately and efficiently identify objects of interest and track their spatial

changes for IGRT with respiratory motion is the driving problem for this thesis. From

the anatomy and the physics points of views, strictly repeatable breathing patterns

are unrealistic assumptions even for healthy patients, due to the hysteresis effects, i.e.,

different trajectories during inhalation and exhalation. Regular breathing varies from

cycle to cycle with different amounts of contraction and expansion. Thus, although the

2



breathing motion is periodic, the conformation of objects in the thorax does not remain

associated with a fixed time point in the breathing cycle. Respiratory motions could be

approximated by periodic functions of surrogate signals measured by monitoring devices

during the breathing cycle. Still, for patients with irregular breathing a periodic function

is inadequate to describe the internal organ motion (Vedam et al., 2003; Neicu et al.,

2003; Nehmeh et al., 2004).

Recognizing the potential benefits of respiratory motion models that do not assume

reproducible respiration patterns, various motion models have been developed for char-

acterizations of breathing motions from 4D image data (Low et al., 2005; Yang et al.,

2008; Zeng et al., 2007; Dirk et al., 2003; Zhang et al., 2007). A greater challenge for

the respiratory motion estimation arises when various imaging artifacts are present. For

example, severe streak imaging artifacts appear in cone-beam CT images due to the

limited angle reconstruction at each respiratory phase. The reconstruction artifacts can

lead to uncertainties in computing the motion trajectory from those images.

In situations where the image intensities are not very informative, a learning-based

approach is a natural choice for introducing proper constraints and useful knowledge.

Especially for medical image analysis where sophisticated geometry and mobility re-

side in various anatomical structures, statistical models extracted from training samples

are extremely valuable and often necessary. However, considering both anatomical and

pathological variations in terms of the breathing patterns, training statistics collected

from other patients are significantly less useful than patient-specific data. For each pa-

tient the CT image sequence acquired prior to the treatment offers good contrast and

resolution for the purposes of diagnosis and planning. It therefore can be used as the

training data for predicting the motion during treatment time for the same patient. The

underlying assumption for the learning-based approach is that the breathing pattern ex-

tracted for a specific patient is consistent between the planning and the treatment time.

The consistency emphasizes the stability of the mobility for the anatomical structures.

3



In modeling with surrogate signal, the correlation between the surrogate signal and the

image deformation is assumed to be consistent between planning time and treatment

time.

This dissertation proposes a statistical shape-correlated deformation system for patient-

specific respiratory motion modeling and estimation in the thorax for 4D image-guided

radiotherapy. There are three primary contributions in this thesis:

1. A shape-correlated deformation statistics (SCDS) framework is developed to model

the respiratory motion with three components: a Fréchet mean atlas image, the

diffeomorphic trajectories from all the phases to the atlas image, and the linear

correlations between the deformations of the shape surrogate and the deformations

of the whole image space.

2. The SCDS is applied to predict the respiratory motion from 4D cone-beam CT

images with image reconstruction artifacts.

3. A prediction-driven atlas formation method is developed for a robust respiratory

motion estimation, by integrating SCDS prediction constraints into the intensity-

based Fréchet mean atlas formation framework.

1.1.1 Shape-correlated deformation statistics (SCDS)

Recognizing the hysteresis of respiration and irregular breathing patterns, various aux-

iliary tracking devices, such as the pencil-beam navigator (Dirk et al., 2003) and the

spirometer (Low et al., 2005), have been used to obtain external motion parameters for

motion estimation. The diaphragm position of the lung has also been used as an internal

motion parameter for modeling (Zhang et al., 2007). These various motion parameters

are surrogates of the underlying motion: the amount of positional change of the surro-

gate is correlated to the amount of the geometric change of the moving structures in the

image.
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In thorax images air-filled lung regions provide high-contrast boundaries that can be

accurately detected by image processing techniques. The shape of the lung can therefore

be used as an internal surrogate for the respiratory motion. Also, due to lung’s large area

within the imaging field, the lung boundary can be used to model localized details of the

respiratory motion. The idea of the SCDS model is to model the image deformations as

a function of the shape surrogate. Statistical analyses of the shape variation space and

the image deformation space as well as of the correlations between the two are carried

out in SCDS.

Shape modeling of anatomical objects has been studied for decades to fit geometric

models to image intensity profiles. In this spatio-temporal problem it is equally critical

that the shape models across the breathing cycle have nice geometric correspondence

to assure the tightness of the statistics. A state-of-the-art point-based correspondence

system is adopted in this thesis to efficiently build the point distribution models (PDMs)

from the 4D image sequence with satisfactory group-wise correspondence. This surface

shape representation allows the object to have arbitrary topology, making this method

widely applicable to various anatomical structures.

To quantify the deformation over the whole image space, non-linear image registra-

tions are often used to compute the trajectories of the motion. A reference image is

usually used for contouring the regions of interest and repositioning the patient prior to

the treatment. The breathing motion can be characterized by the non-linear transfor-

mations that bring those time-stamped images onto the reference image. This reference

image should be consistent in different acquisitions. The end expiration (EE) phase is

usually used as the reference phase for registration due to its relatively stable repeata-

bility. The total amount of transformations to bring all other images to the EE phase

image is much larger than to any of the phases in the middle of inspiration of expira-

tion. Computationally, small deformations are preferred in terms of both accuracy and

efficiency. A Fréchet mean image that has the minimized the total amount of transfor-
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mations to all phases represents an averaged spatial configuration over the breathing

cycle. Note that the Euclidean mean of all the image intensities is inappropriate and

leads to blurred edge features. The Fréchet mean (non-linear mean) image is calculated

by minimizing the sum of geodesic distance-squared among images on the manifold con-

structed by diffeomorphic deformations. In the process of generating the Fréchet mean

image, the deformations that transform all the phases to the mean image are optimized.

From the statistical modeling point of view, although the correlation in this sophisti-

cated breathing motion is certainly non-linear, a linear approximation is sufficient when

the phase-to-phase deformation is not large. The challenge of building SCDS is the high

dimensional low sample size (HDLSS) nature of the data representations: both shape

and image deformations are characterized by large-dimension (on the order of thousands

and millions, respectively) vectors. However, the sample size (number of phases during

one breathing cycle) is usually no more than 10, determined by the 4D imaging pro-

tocol. Dimension reduction techniques are therefore necessary to avoid prohibitive and

sampling-noise-sensitive computations.

1.1.2 Respiratory motion prediction

In 4D IGRT two different imaging modalities are often used for planning and treatment,

respectively. Standard multi-slice respiration-correlated CT (RCCT) scans are usually

taken for diagnosis and planning, for its good contrast and high resolution and large

field of view. Immediately prior to each treatment, another set of images is acquired

for radiation guidance and dose calculation. Factors such as the speed of the scan, the

imaging dose and the configuration of the treatment devices determine the feasibility of

a certain image modality being adopted at treatment time.

Cone-beam CT (CBCT) exploits flat panel technology to integrate the imaging sys-

tem directly into the treatment accelerator, allowing acquisition of a volumetric image

in the treatment position (Jaffray et al., 2002). However, degradation of image qual-
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ity (Figure 1.1) during the image reconstruction resulting from sparse projections at

each respiratory phase imposes limitations on its IGRT application (Sonke et al., 2005).

Nanotube stationary tomosynthesis (NST) technology can provide unprecedented imag-

ing speed and good spatial resolution in the plane perpendicular to the radiation field

(Maltz et al., 2009). However, the resulting tomographically reconstructed images have

interfering patterns in comparison to the standard CT scans, making the soft tissue

appear with low contrast and with blur (Figure 1.2).

Figure 1.1: 4D Cone-beam CT image artifacts. Left: The axial, coronal and
sagittal views of a diagnostic CT image at the end of inspiration (EI) phase taken
at the treatment planning time. Right: The axial, coronal and sagittal views of a one-
minute CBCT scan at the EI phase, having significant streak artifacts due to the limited
angle reconstruction.

In order to apply the trained correlation to the artifacts-laden images, accurate sur-

rogate extraction is the key. Since there are artifacts interfering with the lung bound-

aries, simple thresholding is not sufficient for shape extraction. This thesis introduces

a learning-based approach to regularize the segmentation against the artifacts. With
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Figure 1.2: Nanotube Stationary Tomosynthesis (NST) image artifacts. Left:
The axial, coronal and sagittal views of a diagnostic CT scan taken at the end of
inspiration (EI) phase taken at the treatment planning time. Right: The axial, coronal
and sagittal views of a NST image at EI phase, having interfering blurry patterns due
to the limited angle reconstruction.

the planning data available, a shape prior is trained from the segmentations of the RC-

CTs via principal component analysis (PCA) . And a posterior probability optimization

scheme is used to generate the shape models that fit into enhanced edge features in the

treatment images while staying within the trained shape space.

1.1.3 Prediction-driven deformation atlas formation

When using the proposed SCDS prediction, the correlation between surrogate deforma-

tions and underlying image deformations among the training data is assumed to be the
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same as among the target data. This assumption simplifies the complicated breathing

system and enables the estimation method of applying the training statistics to tar-

get data. However, the assumption is too simplistic for patients who have difficulty

in regularizing their breathing. Besides, noise kept in the SCDS trained from HDLSS

data might result in predictions that are not consistent with the actual anatomical con-

formations in some local regions. Facing both problems, improvement of the motion

estimation can be made by utilizing intensity features in the target data beyond the

shape surrogate for better intensity matching.

A prediction-driven deformation atlas formation method driven by a combination of

prediction constraints and the image matching force is developed in this thesis. The

deformations predicted from the SCDS model are used as a soft constraint during the

optimization. The balancing force between the prediction and the noisy intensity profile

can be adjusted via a weighting factor, selected upon the credibility of the training

statistics and the quality of the treatment images.

1.2 Thesis and Contributions

Thesis: To account for respiratory motion effects on the radiation dose to tumors and

organs at risk in image-guided radiotherapy for lung cancer, shape-correlated deformation

statistics (SCDS) trained from planning CT images can be used to effectively estimate

the respiratory motion in artifact-laden treatment images, when breathing patterns are

consistent between planning time and treatment time. A more robust motion estimation

can be achieved by combining the SCDS-prediction constraints and intensity-matching

forces into a unified atlas formation framework.

The contributions of this dissertation are as follows:

1. I use the shape of the lung as the surrogate for respiratory motion estimation in

the thorax. The high contrast of the air-filled lung regions provides comprehensive
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motion evidence.

2. I apply an entropy-based particle system to 4D lung CT images to obtain surface

lung models with group-wise correspondence. The surface correspondence across

the 4D sequence is crucial for statistical shape modeling.

3. I apply a Fréchet mean image formation method to generate the respiratory motion

atlas from 4D respiratory CT images. The motion atlas contains an atlas image

and the transformations that match each individual phase image to the atlas.

4. I present shape-correlated deformation statistics (SCDS) to capture correlations

between the shape deformation and the dense image deformation fields from a 4D

CT sequence.

5. I apply patient-specific SCDS trained from planning 4D CT images in predicting

the respiratory motion from cone-beam CT images that contain artifacts due to

image reconstructions with sparse projections.

6. I present a prediction-driven atlas formation method that combines SCDS-prediction

constraints and intensity-matching forces into a unified framework for robust res-

piratory motion estimation.

1.3 Overview of Chapters

The remainder of this dissertation is organized as follows:

Chapter 2 introduces the background of the thesis work, including the clinical ap-

plication of 4D image-guided radiotherapy, the respiratory motion mechanism and the

large-deformation diffeomorphic image registration method used for characterizing the

motion, and the statistics of multivariate Gaussian distributions.

Chapter 3 introduces the core method of the thesis, shape-correlated deformation

statistics (SCDS), for approximating a linear correlation between the shape deforma-
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tions of the surrogate object and dense image deformations. Techniques used for shape

modeling with group-wise correspondence and the motion characterization using the

Fréchet mean image are introduced in detail. Various statistical correlation methods

are investigated. The effectiveness of the SCDS is demonstrated using planning CT

images.

Chapter 4 applies the SCDS model in predicting the breathing motion from 4D

cone-beam CT (CBCT) at treatment time. The key for the prediction is an accurate

segmentation of the shape from CBCT images that contain severe imaging artifacts. A

posterior deformable model segmentation method is presented to account for the imaging

artifacts. Experiments are carried out and results are evaluated on both phantom and

real patient data.

Chapter 5 presents an prediction-driven atlas formation method for respiration-

motion, which integrates the SCDS prediction results into the intensity-based Fréchet

mean formation framework. It aims to combine the advantages of the SCDS-prediction

method and a pure intensity-based motion estimation method towards more robust es-

timation results.

Chapter 6 contains a discussion of the contributions of this thesis and an outline of

future work.
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Chapter 2

Background

2.1 Radiation Therapy: From 3D to 4D

Traditionally, 3D medical images are reconstructed from 2D tomography using vari-

ous imaging systems. Each of the slices is treated independently and is acquired as a

self-contained data set. In efforts to improve the temporal resolution of 3D imaging tech-

niques, the basic imaging element has been changed from 2D slice imaging to 3D slab

imaging. There are two different imaging techniques in 3D CT: multi-slice CT (MSCT)

and cone beam CT (CBCT). MSCT can simultaneously acquire and reconstruct 16 to

64 slices (Takuya et al., 2006). Anatomical regions can be imaged within a second

per gantry rotation. CBCT uses an x-ray source that diverges both longitudinally and

laterally, coupled with a flat-panel detector array in order to simultaneously image the

entire volume (Endo et al., 2003). Depending on the 3D reconstruction algorithms, some

artifacts, such as distortion or aliasing may occur in CBCT images (Köhler et al., 2002).

4D radiation therapy (4DRT) aims to track and compensate for target motion, such

as respiratory motion, during radiation treatment. Motion compensation can therefore

minimize normal tissue damage, especially critical structures adjacent to the target

region, while maximizing radiation dose to the target. The fourth dimension is the time

during the imaging process. Involuntary and voluntary patient motion has become a



major obstacle for achieving high-fidelity medical imaging and high precision radiation

therapy (HPRT). The common goal of all the advances in intensity-modulated radiation

therapy (IMRT), adaptive radiation therapy (ART) and image-guided radiation therapy

(IGRT) is to precisely localize the target in space and in time to achieve HPRT (Keall,

2004; Sanghani & Mignano, 2006; Zerda et al., 2007; Xing et al., 2006). With the

progress in image-guided radiation delivery systems, such as IMRT, on-board CBCT,

helical tomotherapy and robotic linear accelerators, 4D radiation therapy, although still

in the research phase, is promising to improve the therapeutic ratio.

2.2 Imaging of Respiratory Motion

2.2.1 Breathing mechanism

Human respiration is a process of exchanging air between the lung and the environment.

It involves the motion of the diaphragm, heart, liver, stomach, spleen, thoracic cage,

and lungs (Segars, 2001; Siebenthal, 2008). The pressure within the lungs and their

volume is changed by the motion of the diaphragm and the ribsfor illustration of the

anatomy in thorax). During exhalation, the diaphragm contracts to force the abdominal

contents downward and forward and thereby increases the volume of the thorax. During

inhalation the diaphragm relaxes and the abdominal contents move upward and inward

and thus decrease the volume of the lung. The level of the diaphragm can move up

and down from 1 to 10 cm during different levels of breathing (Fig.2.1) (Segars, 2001).

The diaphragm moves about 1-2 cm during normal tidal breathing (West 1995). During

respiration the lungs inflate and deflate with changes in the volume of the thoracic

cavity. Besides the diaphragm, the ribs rotate about an axis through their costal necks

to affect the anteroposterior and transverse diameters of the thoracic cavity (Fig.2.2).
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Figure 2.1: Motion of the diaphragm during respiration. During inspiration the
diaphragm contracts, increasing the volume of the thoracic cavity. During expiration
the diaphragm relaxes, decreasing the volume of the thoracic cavity. At the end of
expiration (EE) phase (left), the thoracic volume decreases to the minimum, and at the
end of inspiration (EI) phase (right), the lung volume increases to the maximum.

Figure 2.2: Motion of the ribs during respiration. During inspiration the exter-
nal intercostal muscle contracts, pulling the ribs upward and forward increasing the
transverse and anteroposterior diameters of the thorax.

Respiratory motion often has Irregular amplitude, frequency, and shape of the breath-

ing trajectory (Siebenthal, 2008). Frequent causes of irregular motion are changes in

the tension of the muscles involved in respiration, but also emotional changes, sighing,

or coughing. For such irregular motion, which is often observed during free breathing,

a sinusoidal function (Lujan et al., 2003) is a very coarse approximation.

2.2.2 Retrospective imaging

Two different interventional strategies have evolved to reduce the effect of respiratory

motion in radiation treatments: controlled patient breathing and respiration gating of

the accelerator while the patient breathes normally. In the former approach, breathing is
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altered either voluntarily by instructing the patient or assisted by means of an occlusion

valve . In the latter approach, a device monitors patient breathing and allows delivery of

radiation only during certain time intervals, synchronous with the patient’s respiratory

cycle. However, roughly one-third to one-half of eligible patients could not perform deep

inspiration breath-hold (DIBH) technique satisfactorily, and average session times for

simulation and treatment of the initial patients were nearly double that for free-breathing

treatment .

There are two categories of methods to carry out 4D imaging in free-breathing res-

piratory motion. One is prospective imaging, which obtains image projections using

respiratory-gated image acquisition in reference to an external motion indicator, pro-

ducing a single “motion-free” 3D image at the selected respiratory phase. The other,

which is more true to the name “4D”, is retrospective imaging, which acquires image

projections from all respiratory phases and sorts them into appropriate phase bins based

on the external motion indicator, producing a series of motion-free 3D images at differ-

ent phases of the breathing cycle (Li et al., 2008). The fourth dimension refers to the

respiration phase. The 4D data used in this work are all respiration-correlated data.

Each 3D volume of the 4D data is reconstructed at different temporal phases of a

breathing cycle sorted according to a certain gating device, such as spirometry mea-

surement (Lu et al., 2005), elastic belt amplitude (Guckenberger et al., 2007), video

respiration monitor (Mageras et al., 2004), etc. Figure 2.3 illustrates the sorting scheme

for RCCT reconstruction.
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Amplitude

time

Figure 2.3: Respiration-correlated CT reconstruction diagram. The respiration-
correlated CT reconstructed by retrospective sorting the amplitude of a sensor signal:
the image projections acquired at a corresponding phase of the breathing cycle are used
for a 3D reconstruction of that phase/time-point.

2.2.3 Respiration-correlated CBCT

The advent of large area flat panel x-ray detectors has led to the development of kilo-

voltage image guidance systems in the treatment room (Balter et al., 2002; Hammoud

et al., 2005). Several commercial in-room CT systems have become available, providing

volumetric patient images for soft tissue identification (Barker et al., 2004; Uematsu

et al., 2000). Recent developments in cone-beam CT mounted on the linear accelerator

makes it possible to acquire patient images in the 1treatment room just prior to treat-

ment (Jaffray et al., 2002; Oldham et al., 2005; Chang et al., 2006). CBCT potentially

provides sufficient image quality for evaluating and improving the accuracy of patient

treatment.

As with conventional CT, 3D CBCT is heavily influenced by respiratory motion.

Respiration-correlated CBCT reduces respiratory motion artifacts. However, due to the

significantly reduced number of CB projections used to reconstruct each 3D CBCT im-

age, the resulting image quality is often degraded by view-aliasing artifacts easily seen in
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the axial view. Acquisitions using multiple gantry rotations or slow gantry rotation can

increase the number of projections and substantially improve the 4D images. However,

the extra cost of the scan time may set fundamental limits to their applications in clin-

ics. Motion-compensated CB reconstruction techniques have been proposed, enabling

the use of all the acquired projections (Li et al., 2007; Rit et al., 2008). These methods

require prior knowledge of the motion present during CB acquisition.

The gated radiotherapy system used for acquiring RC-CBCTs used in this thesis is

the Real-Time Position Management (RPM) Respiratory Gating System, Varian Medi-

cal Systems (see Figure 2.4). It permits breathing-synchronized fluoroscopy on a treat-

ment simulator, as well as gated treatment on a linear accelerator. The system uses a

breathing monitor, consisting of a video camera and passive infrared reflective markers

placed on the patients thorax, to synchronize radiation from a linear accelerator with

the patients breathing cycle (Mageras et al., 2001).

Figure 2.4: RPM Respiratory gating system. a) Mechanical motion phantom and
reflective marker block. b) Comparison of the marker position waveform vs. time from
the gating system camera, with the BB position observed from fluoroscopic images.
(Image courtesy of Varian Medical Systems).

2.3 Image Registration for Motion Description

4D image registration, a series of 3D deformable image registrations, has been applied

to capture the trajectories of image volumes in space from phase to phase within the

17



breathing cycle. Various 3D deformable image registration algorithms have been de-

veloped for matching anatomical structures, such as b-spline-based image registration

(Rueckert et al., 2006), free-form deformation (Lu et al., 2004), optical flow based reg-

istration (Naqa et al., 2003), non-parametric Demons-based image registration (Ver-

cauteren et al., 2007), the viscous fluid model (Foskey et al., 2005), etc. To handle

relatively large deformations while maintaining spatial smoothness, large-deformation

diffeomorphic (LDD) registration methods are desirable. In this thesis fluid-based LDD

image registration is used to describe the 4D motion of the lung (chapter 3). The com-

putation of the atlas image within a 4D sequence is built on top of the LDD registration

scheme (chapter 5).

2.3.1 Large-deformation diffeomorphic image registration

For medical images diffeomorphic deformation of the image coordinates is used to de-

scribe the geometric deformation of the anatomical structures represented by the image

intensities. The analysis of image deformations detects and quantifies shape changes or

geometric differences in the objects of interest. The algebraic and differential geometric

structure of diffeomorphisms provides a metric that has a well-defined notion of “the

amount of geometric change” (Davis, 2008).

Large-deformation diffeomorphic image registration has originated in the pattern

theory field (Grenander, 1996) and has been actively developed over the past decade

by Christensen et al. (1996), Dupuis et al. (1998), Grenander & Miller (1998), Miller

& Younes (2001), Beg et al. (2005), Miller et al. (2006), Hart et al. (2009) and more.

The analysis of image deformations provides insight into shape changes or geometric

differences in the underlying geometric structures. The image registration framework

and its mathematical notions that are used later in Chapter 3 & 5 are introduced here

in detail following the conventions in Davis’s PhD thesis (Davis, 2008).
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Manifold structures of LDD

Images are modeled as real-valued L2 functions on the domain Ω ⊂ R3 . Spatial trans-

formations are used to deform images by deforming the underlying coordinate space of

Ω. These transformations φ are elements of a subgroup of diffeomorphisms DiffV (Ω),

φ : Ω → Ω. They are generated by flows of smooth, and time-varying velocity fields,

which enable LDD transformations while maintaing the diffeomorphic property.

These velocity flows vt with a simulated time parameter t ∈ [0, 1], are generated

from velocity fields that are elements of a Hilbert space V with associated inner product

< , >V . For u, v ∈ V , this inner product is defined using a linear differential operator

L (with associated adjoint L† ):

< u, v >V ≡ < Lu,Lv >L2 = < L†Lu, v >L2 =

∫
Ω

< L†Lu(x), v(x) >E3 dx (2.1)

where < ·, · >E3 is the Euclidean inner product. This inner product on velocity fields

induces the norm ‖v‖V ≡
√
< v, v >V . The form of the differential operator L is taken

from fluid mechanics (Christensen et al., 1996; Dupuis et al., 1998) to be

L = α∇2 + β(∇·)∇+ γ, (2.2)

where the parameters α and β control the viscous properties of the deforming medium

and γ ensures that L is invertible.

The operator L is associated with the compact self-adjoint operatorK by< u, v >L2=

< Ku, v >V , which implies that u = KL†Lu . The flow vt is related to the diffeomor-

phism φ via the Lagrangian ODE

d

dt
φt(x) ≡ φ̇t = vt(φt(x)). (2.3)
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In particular, φ is generated from vt according to

φt(x) = x+

∫ t

0

vt ◦ φt(x)dt, (2.4)

subject to

φ0(x) = x, φ(x) = φ1(x), φ̇t(x) = vt ◦ φt(x), (2.5)

for all x ∈ Ω.

A differentiable manifold structure is defined for DiffV (Ω), where V is the tangent

space at the identity IdDiffV (Ω) . The combination of group structure and differentiable

structure allows DiffV (Ω) to behave very much like a Lie group. In particular, a right-

invariant Riemannian distance is defined on DiffV (Ω) based on < , >V at the identity:

dDiffV (Ω)(IdDiffV (Ω), φ) = inf
v:φ̇t=vt(φt)

∫ 1

0

√
< vt, vt >V dt = inf

v:φ̇t=vt(φt)

∫ 1

0

‖vt‖V dt, (2.6)

subject to

φ(x) = x+

∫ 1

0

vt ◦ φt(x)dt for all x ∈ Ω. (2.7)

The distance between any two elements of DiffV (Ω)is defined by

dDiffV (Ω)(φ1, φ2) = dDiffV (Ω)(IdDiffV (Ω), φ2 ◦ φ−1
1 ). (2.8)

With this structure the length of curves can be measured along the manifold DiffV (Ω).

This distance provides a metric space structure for DiffV (Ω).
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LDD image registration

The LDD metric described above can be applied to computing transformations that

warp one image to another. Intuitively, the distance between two images is given by

the amount of deformation required for one image to match the other. Consider a

diffeomorphism φ ∈ DiffV (Ω), the action of φ on an image I ∈ I is defined by

Iφ ≡ I ◦ φ−1. (2.9)

Given fixed and moving (to-be-deformed) images, IF and IM in I, the image regis-

tration goal is to generate a deformation φ that best aligns IMφ with IF . It is common to

allow some mismatching between the image pair, considering exact matching too ideal

for most real applications. An image dissimilarity metric can be defined based on image

modalities and image noise models. For the the same image modality, the L2 norm is

often used for its simplicity:

d2(IF , IM) = inf
v:φ̇t=vt(φt)

∫ 1

0

‖vt‖2
V dt+

1

σ2
‖IMφ − IF‖2

L2 (2.10)

where σ controls the relative weight of the two terms. Small values of σ increase the

importance of the image dissimilarity metric, forcing the images to match as well as

possible; large values of σ produce deformations that require less “energy” according

the metric on DiffV (Ω).

Greedy solution for the image registration

Beg et al. (2005) derived the LDD Metric Mapping (LDDMM) solution for Equation

(2.10) using the Euler-Lagrange equations for the energy functional:

2vt −K(
2

σ2
|Dφt,1|∇IMφ0,t − I

F
φ1,t

) = 0, (2.11)
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where Dφt,1 is the 3 × 3 Jacobian matrix of the transformation φt,1 ≡ φ1 ◦ φ−1
t . For

any particular time point t ∈ [0, 1] the gradient of the energy functional is

∇vtEt = 2vt −K(
2

σ2
|Dφt,1|∇IMφ0,t − I

F
φ1,t

) (2.12)

Christensen et al. (1996) proposed a greedy solution to equation (2.10). This solu-

tion separates the time dimension of the problem from the space dimensions. At each

iteration, a new velocity is computed that optimizes the functional in (2.10) given that

the current deformation is fixed (i.e., the past velocity fields are fixed). Unlike the

LDDMM approach, this optimization does not update velocity fields once they are first

estimated; nor does it take future velocity fields into account. Using a step-size ε, these

velocity fields are integrated to produce the final deformation. In this case the gradient

is

vt = K(
2

σ2
∇IMφ0,t − I

F
φ1,t

) (2.13)

From the view points of implementation, computation storage and speed, the greedy

solution is often preferred to LDDMM solution.

2.4 Statistics of Multivariate Gaussian Distribution

In probability theory and statistics, the multivariate normal distribution or multivari-

ate Gaussian distribution is a generalization of the one-dimensional (univariate) normal

distribution to higher dimensions. A random vector is said to be multivariate normally

distributed if every linear combination of its components has a univariate normal distri-

bution. A vector of n dimensions x drawn from the multivariate Gaussian distribution
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is expressed by

x ∼ N(µ,Σ), (2.14)

whereµ is the mean and Σ is the non-singular covariance matrix. The probability density

function (PDF) for this distribution is

p(x) =
1

(2π)N/2|Σ|1/2
exp(−1

2
(x− µ)TΣ−1(x− µ)). (2.15)

The Mahalanobis distance, which is denoted by dmahal, can be calculated by using

the logarithm of the PDF above as follows:

− log(p(x)) = log((2π)k/2|Σ|1/2) +
1

2
(x− µ)TΣ−1(x− µ) (2.16)

dmahal(x) =
√

(x− µ)TΣ−1(x− µ) (2.17)

d2
mahal(x) = (x− µ)TΣ−1(x− µ) (2.18)

= 2(− log(p(x))) + Constant

The Mahalanobis distance is a statistical measurement of the distance from a sample

to a population mean. It accounts for the anisotropy and orientation of the population’s

distribution. It also has a straightforward interpretation in applications of principal

component analysis (PCA) reviewed in the following.

2.4.1 Principal component analysis

Principal component analysis (PCA) is a mathematical procedure that transforms pos-

sibly correlated variables into a smaller number of uncorrelated variables called principal

components. The first principal component (PC) accounts for as much of the variability

in the data as possible, and each succeeding PC accounts for as much of the remaining
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variability as possible.

PCA is a tool for learning a probability distribution from a set of training samples

that are are assumed to be drawn from a multivariate Gaussian distribution. PCA

projects the data onto a set of orthogonal bases such that the projection coefficients

are standard (zero mean, unit variance), independent, univariate Gaussian random vari-

ables. This formulation is useful in a generative setting, as independent samples from a

standard univariate Gaussian distribution can be combined to create new data instances.

It is also useful in a discriminative setting where the Mahalanobis distance is a natural

measure on the data.

Suppose X = [x1...xN ] is a set of N samples and each sample xi is written as a M

element column vector. The full set of data is written as an M ×N matrix. To compute

PCA, the data needs to be centered by subtracting the mean µ from each of them as

X ′ = [x1− µ, ...,xN − µ]. The M ×M sample covariance matrix of the centered data is

a symmetric and positive semi-definite matrix, computed by

Σ =
1

M − 1
X ′X ′T . (2.19)

The eigenvectors and eigenvalues of the sample covariance matrix can be computed by

singular value decomposition (SVD):

Σ = V ΛV T and Λij =

{λi; i=j
0; i 6=j

, (2.20)

where V is a matrix composed of the eigenvectors ei and Λ is the diagonal matrix whose

diagonal entries are the eigenvalues λi of Σ. The eigenvectors and the eigenvalues are

paired and sorted in descending order of the eigenvalues.
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Related to Equation (2.19), the square Mahalanobis distance can be written as

d2
mahal(x) =

M∑
i=1

(< x− µ, ei >)2

λi
. (2.21)

It follows that given a data instance a that is represented by a = µ+
∑M

i=1 α
√
λiei, its

square Mahalanobis distance can be computed as

d2
mahal(a) =

M∑
i=1

α2. (2.22)
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Chapter 3

Shape-correlated Deformation Statistics

(SCDS)

3.1 Introduction

In 4D image-guided radiation therapy (IGRT) two different imaging modalities are often

used at planning time and treatment time, respectively. Standard multi-slice respiration-

correlated CT (RC-CT) scans are usually acquired at the planning time for diagnosis

and dose planning purposes. RCCT images have good intensity contrast, high resolution

and large field of view in general. Immediately prior to radiation treatment delivery,

another imaging procedure is needed for in-room image guidance and dose validation.

Factors such as the speed of the scan, the imaging dose and the spatial configuration of

the treatment devices determine the feasibility of adopting a certain image modality at

the treatment time.

Advanced in-room imaging technologies have became active research areas, and dif-

ferent imaging modalities have been applied in various radiation treatment applications.

Due to the low image quality provided by megavoltage (MV) portal images, implanted

gold markers are commonly used for treatment setup verification of tumors treated with

high-dose, single-fraction radiotherapy (Kriminski et al., 2008). As mentioned in the

introduction chapter (Section 1.1.2), cone-beam CT (CBCT) and nanotube stationary



tomosynthesis (NST), have shown great potential for clinical adoption with good local-

ization accuracy during the treatment while eliminating the needs for implanted mark-

ers. However, the imaging qualities of both CBCT and NST degrade from tomographic

reconstructions with limited spatial coverage of the projection data.

For respiratory image sequences, motion reduction techniques can be used to enhance

those low-quality images for treatment image guidance. One technique is to compute

an atlas image by averaging all the images after warping them onto a common reference

image (Zhang et al., 2010). If the spatial transformations successfully co-register the

geometries of all the images, the contrast-to-noise ratio of the anatomical structures

will be increased in the resulting atlas image. The key is to accurately estimate the

deformations from those artifact-laden treatment images.

There are two different categories of methods commonly used to compute the respi-

ratory motion trajectory. One category is intensity-based image matching or tracking.

Various non-linear dense image registrations can be used to calculate the spatial changes

of each voxel between images by matching their intensity profiles (Reinhardt et al., 2007;

Ehrhardt et al., 2008). However, when image artifacts are present, common image reg-

istration optimizations often get trapped in local minima resulting from over-fitting to

the image artifacts.

The other category is motion prediction via surrogate-correlated linear modeling.

Recognizing the hysteresis of respiration, various external and internal surrogate signals

have been used for motion modeling and prediction in lung. Multiple pencil-beam

navigators have been used for 3D affine respiratory motion model calibration in coronary

MR angiography (Dirk et al., 2003). A function of five degrees of freedom, including

tidal volume and its temporal derivative airflow, has been used to model the breathing

motion in CT (Low et al., 2005). The diaphragm position of the lung has been used as

the internal surrogate for motion prediction in CBCT-guided radiation therapy (Zhang

et al., 2007). External skin markers have been used as the surrogate for motion prediction
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for MR respiratory motion images (Gao et al., 2008).

In this thesis the shape of the lung is used as the surrogate for the respiratory

motion modeling. The spatial changes of the lung boundaries during the respiration are

the most visible evidence of motion due to the high-contrast between the intensities of

the air-filled region and its surrounding tissues. Compared to the surrogates represented

by several landmarks’ positions, there are several main advantages in using the shape of

the lung as the surrogate: 1) The large volume coverage of the lungs in thorax makes the

shape of the lungs a global motion signal. 2) The dense point-sampling on the surface

of the lungs enables detailed correlation descriptions of the respiratory motion. 3) The

shape of the lung can be segmented from images automatically via its intensity contrast.

In this chapter the framework of shape-correlated deformation statistics (SCDS)

is introduced to extract the linear correlation between the shape surrogate and the

underlying dense image deformation fields, using planning 4D CTs of a specific patient.

The learned-correlations will then be used to predict the motion from image sequences

acquired at treatment time for the same patient.

The following section presents the system for training the SCDS. Specifically, section

3.2.1 presents methods to obtain surface models with group-wise correspondence from

the training CT images. Section 3.2.2 describes an iterative image atlas formation

method to characterize the dense image deformations from the training CT images.

Section 3.2.3 introduces the linear correlation regression analysis to calculate the SCDS.

Section 3.3 shows experimental results as to the effectiveness of the SCDS. The motion

prediction techniques for CBCT treatment images are introduced separately in Chapter

4.
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3.2 Methodology

Shape-correlated deformation statistics (SCDS) is designed to reveal the respiratory

motion correlations between the surrogate object (the lung) and the overall dense de-

formation fields from a breathing sequence of time-stamped CTs acquired at planning

time.

In the SCDS model, the boundary of the lung is automatically extracted and used as

the surrogate object. The intensity differences among the sequence of images are mainly

caused by underlying non-linear spatial deformations of the anatomical structures in

motion. The residual differences are imaging noises and artifacts. The spatial changes

of all anatomical structures can be tracked voxel by voxel via dense image registration.

To prepare relating the shape deformations to the the image deformations, PCA

(Section 2.4.1) is used to first reduce the dimensionality of both representations. Then

a linear regression is carried out to reveal the strong correlation between the lung shape

deformation and the dense image deformation. The result of the regression is a matrix

that maps a lung shape to its corresponding dense deformation field.
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Figure 3.1: SCDS pipeline diagram. The pipeline diagram for computing the SCDS
is shown with three major modules: the shape deformation extraction, the dense image
deformation fields extraction and the linear correlation analysis.

The pipeline for training the SCDS from planning CT images is shown in the diagram

in Figure 3.1. Under the assumption that the breathing patterns of the same patient are

consistent between the planning time and the treatment time, the correlation statistics

trained from the planning time can be then directly applied to treatment time images

for prediction.

3.2.1 Shape modeling with group-wise correspondence

In my method lungs are automatically segmented from the gray-scale CT images, similar

to the approach in Heuberger et al. (2005). First, an intensity threshold is chosen

carefully to exclude airway regions. A 3D mathmorphological “ball rolling” operator fills

the holes after thresholding and removes unnecessary details in the connecting regions

of bronchial structures, airways and lungs. An example of resulting lung segmentations

is illustrated in Figure 3.2.
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(a)

(b)

Figure 3.2: Lung segmentation from planning CTs. a) The axial, sagittal and
coronal views of a lung segmentation from the EI phase of the 4D respiratory-correlated
CT images. b) The axial, coronal and sagittal views of the binary segmentation of the
EE (white) on top of the EI (gray) phase.

The shape of lung at the ith phase of the breathing sequence (usually 10 CT phases

are collected in one breathing cycle) is represented by a surface point distribution model

(PDM), denoted by

Pi = [xi1, y
i
1, z

i
1, x

i
2, y

i
2, z

i
2..., x

i
M , y

i
M , z

i
M ], (3.1)

where [xij, y
i
j, z

i
j] is the jth point’s coordinates on the surface of phase i, and M is the

total number of surface points for each shape object.

In order to produce tight shape statistics from a breathing sequence of shapes, the

geometrical correspondence over the sampling population is crucial. A group-wise corre-

spondence can be implicitly or explicitly enforced using different techinques. An implicit
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approach generates all the shape models via warping a common initial model. As long

as the deformations are not very large, and the topologies of the shapes are the same,

the group-wise correspondence is implicitly enforced by the geometric configuration of

the initial shape model. An explicit approach directly measures and maximizes the

group-wise correspondence condition while generating the shape models for the entire

group at once. Both approaches have been tried for the 4D lung models in the following

sections, using a m-rep (medial representation) based surface diffusion method and an

entropy-based particle system, respectively.

An implicit approach: m-rep surface diffusion

A single-figure m-rep model is a sheet of medial atoms represented by a quadrilateral

mesh of atoms (see Figure 3.3), which carries geometric properties such as the object

widening, bending and tapering, with the locality scale given according to the grid

spacing (Pizer et al., 2003). Each atom controls two opposing local boundary regions

implied by its spokes’ end points.

Figure 3.3: M-rep model. An m-rep model: An interior medial atom (left) with two
spokes and an object (right). The object is composed of multiple medial atoms. Interior
atoms have two spokes each. Exterior atoms (on the crest region) have three spokes
each.

M-rep modeling has been successfully applied to various statistical shape analysis

(Styner & Gerig, 2001) and challenging medical image segmentation tasks (Pizer et al.,

2006; Siddiqi & Pizer, 2008). Given a group of binary lung images, the surface group-

wise correspondence of the m-rep models is implicitly enforced by deforming an initial

32



model to fit each segmented lung.

A semi-manual generated m-rep model of the lung is generated and used as the

initialization model, as shown in Figure 3.4a. A diffusion process deforms the surface

along the surface normal directions to obtain a good fit to the lung boundary. The

m-rep provides a fixed number of sparse surface points (the spoke ends) with surface

normals (unit spoke vectors) for the diffusion process. The set of surface vertices of each

diffused mesh is a PDM, as shown in Figure 3.4c). In the experiments each lung pair

(the left lung and the right lung) has 900 surface points.

(a) m-rep (b) normal diffusion (c) PDM

Figure 3.4: M-rep lung diffusion. a) A posterior view of the initial m-rep model: the
medial sheet of atoms is shown for the left lung, and the surface mesh is shown for the
right lung; b) The diffusion surface normals illustrated on the left lung; c) An anterior
view of a resulting surface PDM after the diffusion process.

An explicit approach: entropy-based particle system

A state-of-the-art entropy-based surface modeling method has been developed to con-

struct compact shape models with group-wise surface correspondence, which is explicitly

quantified and optimized in its objective function (Cates et al., 2007; Oguz et al., 2008).

No surface parameterizations are required for applying this method. In this algorithm

ordered point sets defining the shape-to-shape correspondences are modeled as sets of

dynamic particles whose positions on the objects’ surfaces are subject to entropy op-

timization. A fixed number of particles per lung are automatically generated for lung

segmentations of all phases at once with a quick optimization convergence.
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A surface S ∈ R3 is sampled using a discrete set of surface points, called particles.

They are considered to be random variables drawn from a probability density function

(PDF). The tightness of the probability distribution is measured by so called entropy,

which is computed as

H[X] = −
∫
S
p(x) log p(x)dx = −E{log p(x)}), (3.2)

where E{·} denotes expected value, and p(x) is the probability of the particle x being at

the position indicated by the current configuration. This entropy measures the spread

of the particles across the surface of an object, and it is referred as surface entropy in

the algorithm. p(x) can be estimated via a nonparametric Parzen windowing method.

Details of the optimization realization can be found in Cates et al. (2007).

To measure and enforce the group-wise correspondence, an ensemble Z is defined as

a collection of N surfaces each with their own set of particles zk. The ordering of the

particles on each shape implies a correspondence among shapes. zk is regarded as an

instance of a random variable Z. The overall entropy-based particle system is designed

to minimize the combined ensemble and surface entropy cost function:

Q = H(Z)−
N∑
k=1

H(zk), (3.3)

which favors a compact ensemble representation balanced against a uniform distribution

of particles on each surface.

In summary, the optimization of the particle system moves the particles on the

surfaces along the direction of the gradient of an energy functional that balances between

an even point-sampling on each surface (characterized by a surface entropy) and a high

spatial similarity of the corresponding samples across the population (characterized by

an ensemble entropy). The particle system is initialized with two seed particles on the

surface of the lungs (one on the left lung and the other on the right lung), which then
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are recursively split into two to produce the desired number of particles. Please refer to

Oguz (2009) for details of the method.

An example of the entropy-based particle optimization results is shown in Figure

3.5. Users can control the sampling density on the surface of the shape. A less dense

sampling on the surface leads to a shorter optimization time but a coarser representation.

Our experiments suggest that 1024 surface points for a lung pair are dense enough to

represent the variation details in respiratory motion.

(a)

(b)

Figure 3.5: PDMs resulting from the entropy-based particle system. a) The
axial, coronal and sagittal views of the particle sets at EE phase; b) Particles are shown
on the surface of the lungs at the EE and EI phase with correspondence indicated by
colors.

Compared with the deformable m-rep modeling, the entropy-based correspondence

method has several advantages in modeling the lung shape: 1) it explicitly optimizes a

group-wise correspondence measurement, which produces a more reliable correspondence

condition that is crucial for statistical analysis; 2) it handles arbitrary topology, which

makes the task of modeling two lungs at the same time much easier; 3) no initialization

model is needed, and the surface sampling density can be adjusted as needed. The

computation of the point-based optimization is also efficient, and it generates all the
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training models at the same time. In the following studies of this dissertation , the

entropy-based particle system is adopted for SCDS computation.

3.2.2 Motion atlas formation

To quantify the breathing motion from images, non-linear dense image registrations are

often used to compute the spatial changes for each voxel in the image (Holden, 2008).

The breathing motion can be quantified by the non-linear deformations that match each

time-stamped image in a breathing cycle to an atlas image or a reference image. The

atlas image, together with the deformations, form the respiratory motion atlas for this

patient.

There are several aspects to be considered in choosing a proper atlas image. First

of all, due to the large anatomical variations between patients, it is more practical for

the atlas image to be patient-specific. Secondly, to be used for motion prediction, the

conformation of the atlas image should be stable between the planning time and the

treatment time. Thirdly, the total amount of transformations should be minimum for

low total computation time and high computation accuracy.

The Fréchet mean image has the property that it minimizes the sum of squared

distances on the Riemannian manifold of diffeomorphic transformations to a group of

images. It represents an averaged spatial configuration of that group (Davis et al., 2007).

Therefore, the patient-specific Fréchet mean image well satisfies the aforementioned

criteria, and it is used in this thesis as the atlas image.

The EE phase has been commonly used as the reference image for registration due to

its relatively stable repeatability (Zhang et al., 2010; Ehrhardt et al., 2008). Compared

with the Fréchet mean image, it takes much larger total transformations to co-register

all the input images. As a result, the PCA statistics of the deformation fields are also

less tight. An experiment of improved statistics by using the Fréchet mean is given in

Figure 3.12 of Section 3.2.3. Details of Fréchet mean image formation are introduced as
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follows.

Fréchet mean image formation

The notion of Fréchet mean has been used to define the mean shape in the nonlinear

shape space that has a metric space structure. It is a generalization of the statistical

mean from a Euclidean space to a manifold. The mean in statistics captures the notion of

central location, and the arithmetic mean is easily computed from data that are elements

of a vector space. However, anatomical shape changes are not well described by vector

spaces, and the naive approach of averaging an image voxel-wise clearly neither produces

a realistic anatomical image nor captures the notion of mean geometric configuration.

Davis et al. (2007) proposed a Fréchet mean image framework for constructing a

representative anatomical configuration for a population, using a geodesic distance met-

ric measuring the large-deformation diffeomorphic (LDD) transformation (introduced in

Section 2.3.1). They have successfully applied the regression of random design image

data to study non-linear geometric changes and variabilities of anatomical structures.

Given a group of time-stamped images, geometric changes over time are represented

as the actions of a group of diffeomorphisms on images. Let DiffV (Ω) be the group of

diffeomorphisms that are isotopic to the identity. Each element φ : Ω → Ω in DiffV (Ω)

transforms an image I to another image I ◦ φ.

The Fréchet mean Î is the image that requires the least amount of deformation to

map onto the group of input images:

Î = argmin
I∈I

N∑
i=1

d(I, I i)2. (3.4)

A diagram of the Fréchet mean on the manifold is illustrated in Figure 3.6.
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Figure 3.6: A diagram of the Fréchet mean. The filled circles represent individual
point pi on the Riemannian manifoldM. The Fréchet mean (filled square) is the point
µ on the manifold that minimizes the sum of squared distances to the observations.
Distances are measured along the manifold. Excerpt from Davis (2008).

The geodesic distance between a pair of images on the manifold is defined by the

LDD image matching measure:

d2(IF , IM) = argmin
φ

∫ 1

0

||vt||2V dt+
1

σ2
||IM ◦ φ− IF ||2L2, (3.5)

subject to φ(x) = x +
∫ 1

0
vtdt, as described in in Section 2.3.1. The first term defines

a metric on the space of diffeomorphisms that are generated by integrating velocity

fields. The second term penalizes residual image dissimilarity. Integrating the geodesic

distance definition into (3.4), the optimization problem can be rewritten as

Î , φ̂i = argmin
I,φ̂i∈I×DiffV (Ω)N

N∑
1

[∫ 1

0

||vit||2V dt+
1

σ2
||I − I i ◦ φi||2L2

]
,

subject to φi0 = Id, φi(x) = x+

∫ 1

0

vit(φ
i
t(x))dt. (3.6)

The Fréchet mean image formation framework is implemented via an iterative proce-

dure of continuous joint alignment of the input images: these images iteratively deform

towards the evolving mean, as demonstrated in Figure 3.7. Starting from the identity

transformation, the deformations are fixed first, and the mean image is updated; then
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the mean image is fixed, and the N deformations are updated by taking incremental steps

according to the velocities. These two steps are iteratively carried out until convergence.

The details of the algorithm are listed in Algorithm 3.1.

Figure 3.7: Fréchet mean formation of breathing-spheres. Iterative Fréchet mean
image construction framework illustrated on images of spheres with varying radii. The
mean image in the middle minimizes the sum of squared deformation distances required
to match all the input images.

Algorithm 3.1 Fréchet mean image formation algorithm: A greedy solution
(Davis, 2008)

Input: A collection of N imaegs : {Ii}Ni=1

Output: A Fréchet mean image Î and a collection of diffeomorphic deformations φNi=1

that map Ii to Î .

Initialize deformation with identity
1: for i=1:number of images do
2: φi ← IdDiffV (Ω)

3: end for
4: repeat
5: Î = 1

M

∑M
i=1 I

i
φi

6: for i=1:number of images do
7: vinc ← K( 2

σ2∇I iφi0,1(I
i
φi0,1
− Î))

8: φi ← Expφi(εvinc)
9: end for

10: until convergence

A simple test and a comparison of the Euclidean mean and the Fréchet mean are
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shown in Figure 3.8. A sequence of 3D images with sphere objects are used as the input

data. The radius of the sphere objects changes along a sinusoidal wave, simulating the

breathing scenario in 4D lung CTs. The Euclidean mean represents the intensity average

of the images, while the Fréchet mean represents the geometry average that matters in

analyzing the respiratory motion.

(a)

(b) (c)

Figure 3.8: Comparison between the Fréchet mean and the Euclidean mean
of a breathing-sphere images: a) A sequence of 3D images of sphere objects with
radii varying along a sinusoidal wave; b) The Euclidean mean of the sequence; c) The
Fréchet mean of the sequence.

3.2.3 SCDS computation

After extracting the shape deformation and dense image deformation separately from the

planning 4D CT images, linear statistical analysis is carried out to model the correlation

between them. Considering that both spaces are of high dimensionality, any covariance

analysis between the two spaces is computationally prohibitive. Therefore, PCA (Section

2.4) is used for dimension reduction before the correlation regression. Discussions of more

sophisticated statistical methods designed specifically for high-dimensional-low-sample-

size (HDLSS) data can be found in Lee (2007).
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PCA Dimension Reduction

Both shape surrogates and dense deformation fields require dimension reduction. The

dimension of the shape representation for one lung pair is typically 1024 × 3 (the

number of points × 3). The dense deformation field for a 3D CT image is typically

512× 512× 100× 3 (the image grid × 3).

The PCA reparameterizations of the shape and dense image deformation spaces are

formalized as

pi = µp +

kp∑
j=1

xjσp,jep,j = µp +X iEp, (3.7)

ui = µu +
ku∑
j=1

yjσu,jeu,j = µu + Y iEu, (3.8)

where p denotes the shape, u denotes the dense displacement vector field (DVF), i

is the phase number, µ is the sample mean, e·,j is the jth normalized eigenvector, xj

and yj are the corresponding coefficients or the projection scores of the data in the jth

eigendirections, σ·,j is the standard deviation of the jth principal component, E· is the

matrix form of the eigenvectors, and k is the number of eigenmodes. With N training

samples (at N respiratory phases), N-1 eigenmodes for both the shape deformation and

image deformation spaces are resulting from the PCA calculation.

Given shape models with good group-wise correspondence, PCA treats each model as

a sample point in a high dimensional shape space and produces uncorrelated directions,

called principal component (PC) directions. The first principal component accounts for

as much of the variability in the sampling data as possible, and each succeeding compo-

nent accounts for as much of the remaining variability as possible. For both the shape

and image deformations, the resulting first 1-3 PCs usually capture the majority of the

total variation. In this thesis the decision on the number of PCs kept for reparameteri-

zation is made upon the minimum number of PCs that contain 90% of total variation.

41



The residual variation is regarded as sampling noise.

The PCA results from one patient data set, containing 10-phase planning CTs in

one breathing cycle, are shown in Figure 3.9, Figure 3.10 and Figure 3.11. After the

PCA calculation, the training samples are projected back to the first three principal

modes to visualize the distributions of the 10 training phases in the training space. The

three-dimensional spaces are spanned by their first three principal component directions,

whose score units are normalized by the standard deviations of each principal mode. For

example, the coordinate (1.0, 0.0, 0.0) in the PCA space represent an object that is one

standard deviation away from the mean along the first PC direction. In the shape

variation space the first, second and third modes take up 76.2%, 15.5% and 3.6% of the

total variation, respectively; while in the image variation space the first three modes take

67.1%, 19.2% and 4.7% of the total variation. Strong linear correlation between the two

spaces can be revealed from the first two modes that cover most of the variation. The

correlation coefficient between PC scores of the the shape and the image deformation is

0.98 for the first PC and 0.96 for the second PC.
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Figure 3.9: PCA space of lung shapes trained from one sequence of planning
CTs. The first, the second and the third principal components’ coefficients/scores of
each shape are shown in the 3D coordinate. The numbers tagged along each point are
the phase numbers within the breathing cycle.
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Figure 3.10: Lung shapes generated from the trained PCA space. Overlapping
2D slices of the lung shapes at mean+1.5 standard deviation of PC-1(in red), the mean
(in blue) and mean-1.5 standard deviation of PC-1 (in black) in the training shape space.
Left: An axial view. Right: A coronal view.
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Figure 3.11: PCA space of dense deformation fields trained from planning
CTs. The first, the second and the third principal components’ coefficients are shown
in the 3D coordinate. The numbers tagged along the points are the phase numbers
within the breathing cycle.

Figure 3.12 shows a comparison of the PCA results of using different reference or

atlas images for computing the motion atlas. The improvement in terms of the tightness

of the statistics supports the strategy of adopting the Fréchet mean as the motion atlas

image.
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Figure 3.12: Statistics advantage of using Fréchet mean image as the atlas
image. Tighter statistics are produced using the Fréchet mean as the atlas image (in
red), compared with the results using the largest sphere image (the end inspiration phase
in breathing) as the atlas image (in blue).

Linear Correlation Analysis

Linear correlation between the surrogate and the respiratory motion has been hypothe-

sized for modeling the respiratory dynamics. Multiple linear regression (MLR) has been

used to calculate the correlation parameters between the surrogate and the dense image

deformation (Dirk et al., 2003; Zhang et al., 2007). Alternatives to MLR for analyzing

the correlation statistics include canonical correlation analysis (CCA) and partial least

square method (PLS) (Borga et al., 1997). A brief introduction to the three methods

are given below.

MLR MLR, also referring to ordinary least squares (OLS), attempts to model the

relationship between regressor (input) data X and response (output) data Y by fitting

a linear transformation to observed data. Every value of the independent variable is

associated with a value of the dependent variable via Y = βX + ε, where ε is the sum

of squares of the residual data that is minimized during the regression. The parameter

matrix β can be estimated through β̂ = (XTX)−1XTY . MLR is the most common and

convenient way for estimating the regression parameters .
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CCA CCA finds two sets of basis vectors, one for X and the other for Y , such that

the correlations between the projections of the variables onto these basis vectors are

mutually maximized. The canonical correlation basis A and B are calculated by solving

the eigenvalue equations:

 C−1
XXCXY C−1

Y Y CY XA = ρ2B

C−1
Y Y CY XC−1

XXCXY A = ρ2B,
(3.9)

where CXX and CY Y are the within-sets covariance matrices, CXY and CY X are the

between-sets covariance matrices of X and Y . The eigenvalue ρ2 is the squared canonical

correlation defined as ρ = ATCXY B√
ATCXXABTCY Y B

. CCA has been recently used in biomedical

image analysis fields, especially for predictive modeling of brain anatomical structures

in neuroscience (Liu et al., 2004; Fillard et al., 2007; Gao et al., 2008).

PLS PLS searches for a set of components (called latent vectors) that perform a

simultaneous decomposition of X and Y with the constraint that these components

explain as much as possible of the covariance between X and Y . It is used to predict

Y from X and to describe their common structure. Both X and Y are decomposed

using factors extracted from the Y TXXTY matrix (Wold, 1976). PLS is often used

in situations where the use of MLR is severely limited, such as when there are fewer

observations than predictor variables.

In summary, MLR, CCA and PLS find the subspaces of minumum square error,

maximum correlation and maximum covariance, respectively. The three methods, re-

lating one group of data with the other, can be unified into the following generalized

eigenproblem or two-matrix eigenproblem form (Borga et al., 1997):

Mw = λNw. (3.10)

The corresponding covariance matrices used for M and N are shown in Table 3.1.
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Table 3.1: Two-matrix problem foumula for MLR, CCA and PLS

M N

MLR
(

0 Cxy
Cyx 0

) (
Cxx 0
0 I

)

CCA
(

0 Cxy
Cyx 0

) (
Cxx 0
0 Cyy

)

PLS
(

0 Cxy
Cyx 0

) (
I 0
0 I

)

When dimension reductions via PCA are first carried out on both data sets (X and Y)

before calculating the correlation, Cxx and Cyy are therefore both scaled to the identity

matrix I, which makes all the three methods deliver equivalent results.

The maximum correlation directions defined in CCA provide intuitions in under-

standing the correlations between the variation spaces of shape surrogate and the defor-

mation fields. The maximum correlation coefficients also provide a direct measurement

of the strength of the correlation. CCA is therefore used in the thesis for better inter-

perating the correlations. The implementation details of the correlation analysis using

CCA is presented as follows.

After the PCA dimension reduction, the canonical correlation (CC) between the

two multidimensional variables Xt and Yt is maximized via the following canonical

transformation. Given data matrices X = [X0 − X̄, ..., Xt − X̄, ..., X1 − X̄] and Y =

[Y0 − Ȳ , ..., Yt − Ȳ , ..., Y1 − Ȳ ], where X̄ and Ȳ are the mean vectors of the training

sample, the canonical variables α and β are calculated by projecting the data onto the

basis matrices A and B :

α = XTA, β = YTB. (3.11)
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The maximized correlation coefficient ρ indicates how strong the correlation between

the surrogate shape deformation and the entire image deformation is. To use the statis-

tics for predicting the dense image deformation û∗ of a target image at phase ∗, the

following steps are carried out:

(1) Reparameterize the shape p∗ via PCA: X∗ = (p∗ − µp)ET
p ;

(2) Calculate the CC variate of the shape: α∗ = (X∗ − X̄)A;

(3) Compute the CC variate of the image displacement vector field: β∗ = α∗ρ;

(4) Compute the PCA score of displacement vector field: Y ∗ = β∗B−1 + Ȳ ;

(5) Finally, calculate the predicted displacement vector field: û∗ = µu + Y ∗Eu.

3.3 Experimental Results

In our experiments the respiration-correlated CT data sets are provided by a 4-slice

scanner (LightSpeed GX/i, GE Medical System), acquiring a time series of CT pro-

jections for a complete respiratory cycle at each couch position while recording patient

respiration (Real-time Position Management System, Varian Medical Systems). The CT

projections are retrospectively sorted (GE Advantage 4D) and reconstructed to produce

a series of 3D images at 10 respiratory time points. The time resolution is 0.5 s. The CT

slice thickness is 2.5 mm. For each time point, tumor contours by experts’ delineation

are used as the ground truth.

3.3.1 Intra-session study: leave-one-phase-out

A leave-one-phase-out (LOPO) study was carried out for each of the five patients.

Namely, the statistics that were used on each target phase image were trained from

the other 9 phases from the same breathing cycle.
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Figure 3.13: Leave-one-phase-out study on 5 patients. Left: The 99th percentile
Euclidian distance between the predicted displacement field and the “true” displace-
ment field; Right: The Euclidian distance on the center of gravity (COG) between the
deformed GTV and the delineation truth. Each notched box contains 50 prediction
results.

In Figure 3.13 I show the LOPO prediction results on five patients (50 predictions in

total). Standard boxplots are used for statistical comparisons. The Euclidean distance

between the predicted displacement fields and “true” displacement fields were measured.

The “true” displacement fields were computed via diffeomorphic registration. The 90%

quantile surface distance accounts for large discrepancies. Using clinicians’ delineations

as the ground truth, the predicted GTV is evaluated in terms of the center of gravity

(COG) location errors. To estimate the mobility of the tumor region, the location

errors without motion correction (static GTV) are calculated using the reference GTV

for evaluating all phases. I also plot the estimation errors of directly applying the image

deformations calculated by image registrations for comparison.

The LOPO studies show that the SCDS-prediction effectively corrects the tumor

motion and achieves the same accuracy of the image registration. The maximum error

of 0.25 cm surface distance is in fact within one voxel size, 0.1 cm × 0.1 cm × 0.25 cm. In

all the patients the prediction substantially reduces the estimation error from the static

(no motion correction) scenario. An example of predicted tumor volume overlapped

with clinicians’ manual segmentations is shown in Figure 3.14.
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Figure 3.14: An example of tumor evaluation of the leave-one-phase-out study.
A median case (from the 50 predictions in terms of the COG error) of predicted GTV in
sequential 2D slices. Blue: predicted tumor volume; Red: manual delineation; Yellow:
overlapping volume. This predicted GTV has a COG error of 1.9 mm and a Dice’s
coefficient of 0.86.

3.3.2 Inter-session study

The LOPO studies in the previous section were carried out using a single RCCT sequence

where both shape and image deformation statistics were fairly tight. On the contrary,

in this inter-session study a planning RCCT sequence obtained on one day was used to

predict the motion from the images acquired at a different day. Although it is assumed

that the breathing patterns of the same patient are repeatable to a certain degree, it is

not surprising to observe noticeable variations between sequences taken days, months

or years apart. Without extra knowledge introduced to the statistics, the current SCDS

model is not designed to handle inconsistent motion patterns between the training and

the test scan.

In the following experiments, a primary planning RCCT sequence and a secondary

RCCT sequence of the same patient were taken with different imaging protocols. Besides

lower image resolution, the secondary RCCT sequence has a much smaller imaging region

and only four phase bins reconstructed. The coverage in the longitudinal direction of the

second session is about 6 to 10 cm, centered around the tumor region, as shown in Figure

3.15. The four phases sample the whole breathing cycle with roughly equal intervals,

with the EE and EI phases acquired. In predicting the motion for the secondary session,

the statistics trained from all ten phases of the primary session were used.

Before applying SCDS, there are some pre-processing steps. A rigid registration

based on the bony anatomy is necessary to align the secondary session images to the
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primary session images. The pre-calculated displacement field and binary lungs at each

phase from the primary session needed to be down-sampled and cropped to match the

resolution and the size of the secondary scans.

The correlation statistics modeling process is not much different than previous intra-

session study. With the same RCCT imaging modality, the same binary segmentation

scheme can be used. The only notable difference is that the shape of the surrogate

extracted from the secondary-session scan is no longer the full set of lungs due to the

limited field of view. The secondary-session lung regions contain the bottom parts of

the lungs and a cut plane on top. Since the entropy-based correspondence algorithm

does not depend on topology, the points on the top plane are not treated differently

and therefore forced to be matched across the phases, which introduces some artificial

variations. Also, the real in-and-out-of-plane motion variations during the breathing

will not be constructed into the statistics due to the cut-off. As a result, the statistical

model in this setting is expected to be less robust than the intra-session study.

Figure 3.15: Shape models used for inter-session study. Left: The second session
EI phase image is shown on top of the first session EI phase mage: a coronal view, the
intersection region is the darker region on the bottom part of the lungs; Right: The
PDM of the partial lung shape, composed of 64 surface points, shown with the surface
of the lungs at EE phase and at EI phase with group-wise correspondence.

The preliminary tests were evaluated on 3 patients in terms of the tumor location

errors (COG error), see Figure 3.16. Clinicians’ delineations of the tumors were pro-

vided on the EI and EE phases of the secondary-session scans. The predicted image

deformation propagated the tumor volume from the reference image (EE phase of the
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primary scan). The prediction results were able to correct some of the tumor motions

as large as 1.5 cm.
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Figure 3.16: Inter-session study on 3 patients (each has 10 first-session images for
training): The COG errors of the predicted GTV are compared with the clinician’s
delineations on EE and EI phases.

3.3.3 Surrogate comparison

In the earlier work of Zhang et al. (2007), the diaphragm position along the longitudinal

axis was used as a distinctive one-dimension surrogate signal, which can be manually

labeled in 3D. The one dimensional surrogate might be capable of navigating the major

breathing motion, but it is overly simple for accurately estimating complicated respi-

ratory motion. The farther away the region is to the diaphragm, the less accurate the

deformation might become. Especially in cases where the tumors are located in the

upper part of the lung, the deformation around a tumor might not correlate well with

the diaphragm.

In SCDS a lot more features are used by utilizing the shape of the overall lung region,

which therefore is designed to be more comprehensive and robust for the respiratory

motion prediction. In order to quantitatively understand the advantages of engaging the

more complicated surrogate, I compared the prediction results by replacing the shape

model with the diaphragm position that were manually specified. Linear regression was
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computed to map the diaphragm position to the dense image deformation field. I carried

out the LOPO studies using two patients’ 4D RCCT sequences in which the tumors are

located in the neighborhood region of the diaphragms. The evaluations in terms of

the prediction errors on the displacement field, lung boundaries and GTV are shown in

Figure.3.17. As a local feature the diaphragm position is shown to be less capable of

predicting the nonrigid deformation of the entire imaging field.
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Figure 3.17: Surrogates comparison evaluated on tumor. Comparison of the
surrogates on 2 patients (20 predictions in each notched box). Left: The 99th percentile
Euclidian distance between the predicted and the true displacement field is plotted
to show the large discrepancies.Right: The center of gravity of the predicted GTV is
compared with the clinician’s delineation.

3.4 Conclusion

The proposed shape-correlated deformation statistics (SCDS) was introduced to predict

patient-specific respiratory motion efficiently. In training the SCDS, each phase in the

planning 4D sequence is treated as an independent sample. No temporal correlations

among the time-stamped phases are assumed, which makes the method applicable to

irregular breathing patterns often seen in reality. The PCA dimension reduction in both

image and shape deformation spaces not only retains anatomically relevant variation

but also reduces sampling noise. The hypothesis of strong linear correlation between

the shape and the image deformation space has been shown to be effective. The leave-

one-phase-out study on both phantom data and patient data demonstrated that the

SCDS is able to estimate the within-sequence image deformation accurately.
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It is possible to extend the methodology to inter-patent studies to include more train-

ing samples in the hope of obtaining more robust statistics. However, the inter-patient

variation can be very large due to various factors, including the different breathing

patterns and different sizes of the anatomical structures etc. In terms of predicting

individual patients’ respiratory motion, a patient-specific model is more helpful.

Provided with the SCDS trained from planning respiration-correlated CTs, the next

chapter presents the techniques used for the motion prediction from treatment cone-

beam CTs with imaging artifacts.
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Chapter 4

Respiratory Motion Prediction using SCDS

4.1 Introduction

In the previous chapter SCDS was introduced to model deformation correlations between

lung shapes and dense image deformation fields from planning RCCT images. It was

shown that linear statistics is able to effectively capture respiratory motion patterns.

In order to apply patient-specific statistics trained from planning time to image

guidance at treatment time, consistent motion patterns between the planning time and

the treatment time are assumed. This consistency assumption provides the basis for all

surrogate-invovled motion prediction techniques (Dirk et al., 2003; Zhang et al., 2010;

Gao et al., 2008). To be more specific for the SCDS-based prediction, the correlation

parameters between the lung shape and the image deformation field are assumed to

be the same at both times. The motion prediction accuracy relies on this consistency

condition.

Another factor that determines the accuracy of the motion prediction is the sur-

rogate extraction/measurement accuracy from the treatment images. When using the

lung as the surrogate, severe artifacts in the treatment images certainly challenge the

segmentation task. And the segmentation errors would directly result in errors in the

predicted dense deformation fields.



To account for those image artifacts, a probabilistic deformable segmentation scheme

has been developed to fit deformable surface models to the treatment images while

staying in a trained shape space. The SCDS introduced in Section 3.2.3 uses PDMs

generated from the entropy-based particle system. The PDMs are isolated point sets

sampled on each surface object. The point-based representation is sufficient for statis-

tical computations. However, a richer geometric description of the surface is needed

for deformable model segmentation; a surface mesh structure from which the surface

normals and curvatures can be computed serves the purpose.

In this chapter a surface interpolation method is introduced to construct surface

meshes using the surface points generated from the planning images. The interpola-

tion scheme is designed so that the resulting mesh vertices maintain good group-wise

correspondences. After computing SCDS using the training meshes, the deformable seg-

mentation optimization is initialized with the mean shape and optimized via a posterior

probability energy function till convergence. The predicted motion is then calculated

using the trained SCDS.

The rest of the chapter is organized as follows. Section 4.2.1 introduces the surface

mesh interpolation method. Section 4.2.2 presents the probabilistic deformable segmen-

tation method. Section 4.3 shows the experimental results on cone-beam CT images

from computational phantom data and real patient data. Section 4.4 concludes this

chapter.

4.2 Methodology

4.2.1 Surface mesh interpolation

In the inter-session prediction study of Section 3.3.2, both the target and the training

data are high-quality RCCT images. The entropy-based particle system described in

Section 3.2.1 produces PDMs from a sequence of binary segmented images. The points
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with the same index on the resulting PDMs correspond to each other.

However, for treatment images such as CBCT and NST, the thresholding-based bi-

nary segmentation method is no longer applicable due to the interfering image artifacts.

Therefore, the particle system can not be used to obtain PDMs from the treatment

images. Instead, deformable model segmentations can be used to fit surface models into

noisy images using the shape statistics trained from the planning images. Since the fitted

models are all deformed from a common initial model, the group-wise correspondence

is kept.

Theoretically it is possible and convenient to use a PDM as the deformable model

representation. However, a typical PDM for a pair of lungs contains about 1000 points

distributed on the surface. The sparse points set representation is lacking detailed

geometrical descriptions of the shape, such as surface normal and surface curvatures,

which are important features to use for accurate segmentation. The deformable model

fitting accuracy is therefore limited. It is also hard to evaluate the credibility of the

segmentation results with sparsely distributed points.

A detailed surface mesh representation that contains rich geometric attributes is

desired for accurate surrogate segmentation. Oguz (2009) has proposed an interpolation

scheme to reconstruct surface meshes from the PDMs generated from the entropy-based

particle system. Given the PDMs and their corresponding-phase the binary lung images,

there are five steps to obtain the surface meshes:

1. Generate surface meshes from the input binary image sequence using the marching

cubes algorithm.

2. An arbitrary phase number is selected, and the surface mesh of that phase is used

as the template mesh.

3. For each vertex of the template surface mesh, three nearest points from its corresponding-

phase PDM are located. Using barycentric coordinates, the interpolation coeffi-
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cients that interpolate the vertex position from the three points’ positions are

computed. Figure 4.1 illustrates the scenario.

4. For all other phases, the interpolation coefficients calculated from Step 3 are used

to locate their interpolated mesh vertices from the corresponding-phase PDMs.

5. Finally, the interpolated vertices are projected onto the original surface for each

phase to compensate for discrepancies.

Figure 4.1: Surface interpolation. Surface interpolation from PDMs with group-wise
correspondence. Given the desired surface sample set, the closest points Ai;Bi;Ci to
each sample point vi are identified, and the barycentric coordinates of vi in this triangle
are computed. Then, the corresponding sample location vi on a different surface can be
obtained by interpolating using these barycentric coordinates in the triangle 4A′i,B′i,
C ′i, where A′i;B

′
i;C
′
i are the points corresponding to Ai;Bi;Ci, respectively. Excerpt from

Oguz (2009).

However, this method is limited to smooth surface shapes. In highly curved lung

shape edge regions, the discrepancy can be significant, causing holes or spikes in the

interpolated meshes as illustrated in Figure 4.2a. To improve the quality of the surface

interpolation, a thin-plate splines (TPS) warping (Bookstein, 1989) scheme is used to

achieve more smoother surface interpolation. In this TPS-based method, the particles

are used as the control points of thin-plate splines to calculate a smooth transformation

that warps each surface to the template surface. The resulting meshes are therefore

much more smoother, as demonstrated in Figure 4.2b.
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(a) Non-smoothing surface interpolation results.

(b) Improved surface interpolation results with TPS warping.

Figure 4.2: Surface interpolation results with TPS warping. The original surface
interpolation results are shown in row a, and the improved results using the TPS warping
are shown in row b. Three different visualizations are shown for comparison: (Left) The
interpolated surfaces at the EE phase, shown as wireframes; (Middle) The interpolated
surfaces at the EE phase, shown as rendered surfaces; (Right) The interpolated surfaces
(in blue) overlapped with the original EE phase surfaces (in light gray). Overall, the
TPS result is smooth and fits the original surface better.

Using this interpolation method, the mesh representation of the surrogate can be

generated from the training/planning images. When computing the shape prior for

treatment image segmentation, the coordinates of the mesh vertices are used as the

input data of PCA. Since the group-wise correspondence is maintained during the inter-

polation process, there is no noticeable difference in the outcome of correlation statistics

comparing to the PDM representation. During the deformable segmentation, the con-

nectivity (triangulation) among the vertices is kept stable while the positions of the

vertices are optimized.
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4.2.2 Probabilistic deformable model segmentation

A posterior probabilistic optimization scheme has been adopted to calculate the de-

formable mesh models that fit into the target images while staying in the trained shape

space. This probabilistic framework incorporates a prior distribution of the surface

shape model and provides a measure of the uncertainty of the estimated shape after

fitting the model to treatment image data (Szeliski, 1990).

In the following formulation J i (in contrast to the planning image I i) denotes the

treatment image at phase i and qi (in contrast to the planning shape model pi) denotes

the shape model extracted from the image J i. The posterior probability p(qi|J i) can be

expressed by Bayes’ rule:

p(qi|J i) =
p(J i|qi)p(qi)

p(J i)
, (4.1)

where p(J i|qi) is the conditional probability or the likelihood of producing image J i for

a given model qi. The true model qi for an image can be inferred by maximizing the

posterior probability, that is, by finding a model qi that has the maximum posterior

probability given the image data J i:

p(q̂i|J i) = max
qi

p(qi|J i) = max
qi

p(J i|qi)p(qi)
p(J i)

(4.2)

This kind of optimization is known as the maximum-a-posterior (MAP) estimation.

The expression can be simplified by taking the log and leaving out the prior distribution

of the image data p(J i) that is equal for all qi. Therefore, it is equivalent to the

maximization expressed in

q̂i = arg max
qi

[log p(J i|qi) + log p(qi)]. (4.3)

The shape prior is measured by its Mahalanobis distance (refer to Section 2.4) in the
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PCA space trained from the planning data, computed as

log p(qi) = −1

2

N∑
j=1

x2
j = −1

2

N∑
j=1

(
< qi − µp, ej;p >

σj;p

)2

, (4.4)

where xj is the score of the jth principal direction. The Mahalanobis distance evaluates

how far the deformed model qi is from the training mean in the trained shape space.

It is worth emphasizing that in real patient experiments the training (RCCT) shape

variation space and the target (CBCT) shape variation space can be quite different even

for the same patient, due to the different patient set-up positions during two different

imaging procedures. However, after rigidly aligning the two image sequences based on

the bone structures in a pair of images at the same reference phase (e.g., EE phase), I

assume that the two spaces are approximately the same. As a result of using the shape

prior, the CBCT shape models (qi) maintain the group-wise surface correspondence

with the training models (pi).

The image-match term or the likelihood term is the driving force that pulls the

surface to match the boundaries of the anatomical object. This force component is

represented here as the sum of second-order gradient magnitudes, which is a common

feature used for deformable surface model segmentations (chapter 9.4.4 of Ibanez et al.

(2005)). The input image is passed into the filter that computes the magnitude of the

image gradient. The resulting scalar image is then passed to another gradient filter. The

output of this second gradient filter is a vector field, in which every vector points to its

closest edge in the image, and it has a magnitude proportional to the second derivative

of the image intensity (see Figure 4.3).

Since this vector field is computed using Gaussian derivatives, it is possible to adjust

the smoothness of the vector field by the sigma assigned to the Gaussian. Large values

of sigma result in large capture radii but with poor precision in locating the edges. A

coarse-to-fine strategy may involve the use of large sigmas for the initial iterations of the
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model and small sigmas to refine the model when it is close to the edges. When fitting

lung models to a typical respiratory image sequence, the maximum surface distance

between the initial model (the mean model of the training data) and the target model

is less than 1.5 cm (rigid registration is carried out first to align the test data to the

training data via bony structures). Sigmas of 5-10 mm usually perform equally well.

The whole pipeline of the probabilistic deformable model segmentation is summarized

in Figure 4.3. The target RC-CBCT images are aligned with the training RCCT images

first based on the bony structures in the image. Usually a pair of EE-phase images

are used to calculate the rigid alignment parameters. Starting from the training mean

model, the edge-enhanced gradient images are used for the deformable segmentations.

Figure 4.3: Diagram of the probabilistic deformation segmentation pipeline.

Figure 4.4 shows an example of the segmentation results on simulated CBCT images

using Nurbs-based Cardiac-Torso (NCAT) computational phantoms.
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Figure 4.4: An example of CBCT deformable model segmentation. Left: The
axial, coronal and sagittal slices of a NCAT CBCT (at EE phase) image. Right: The
axial, coronal and sagittal slices of the second-order-gradient magnitude image are shown
with the final segmentation contours (in red) and the initial mean shape model (in
white).

4.2.3 Image deformation prediction and evaluation

The following three steps are carried out to estimate the image deformation represented

by the dense vector field (DVF) ui for CBCT image J i at phase i:

1. Training SCDS: Obtain the image deformations in the planning CTs by the

intensity-based Fréchet mean formation method (Section 3.2.2), and extract the

surface mesh models of the lung from each CT phase images (Section 4.2.1). Then

calculate the linear regression matrix C that maps the shape surrogate p to its

corresponding dense image deformation u, such that u = C · p + ε, where ε is the

regression error.

2. Surrogate Segmentation: Segment lung shapes (qi) from CBCT images (J i)

using the probabilistic deformable segmentation scheme (Section 4.2.2).
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3. Linear mapping: Calculate the image deformation ui of each phase of the CBCT

sequence J i by ui = C · qi.

With the predicted DVF ui, the corresponding diffeomorphic transformation ϕi for

phase i is approximated by

ϕ̂i ≈ x+ ui. (4.5)

Then the atlas image can be calculated by averaging all the intensity images after

warping them using the transformations, expressed in

Ĵ =
N∑
i

J i ◦ ϕ̂i. (4.6)

The accuracy of the prediction can be measured on the contours of the tumor regions

or other anatomical structures of interest by applying the predicted transformations.

Usually the contour of the EE phase treatment image is manually segmented and used

as the base/template contour Ob . The contour on the atlas image needs to be computed

first, as Ô = Ob ◦ (ϕb)−1. Then the predicted contour of the treatment image at phase

i can be calculated by

Oi = Ô ◦ ϕi = (Ob ◦ (ϕb)−1) ◦ ϕi. (4.7)

4.3 Experimental Results on CBCTs

4.3.1 NCAT data

4D NURBS-based Cardiac-Torso (NCAT) phantom thorax CTs were produced (Segars

et al., 2001) at 10 phases sampled in one breathing cycle. A corresponding CBCT

sequence was reconstructed from the NCAT CTs using the protocol of a gantry-mounted

63



KV on-board imaging system (Varian Medical Systems) (Kriminski et al., 2008) used in

one-minute-scan patient radiation therapy guidance. An example image pair is given in

Figure 4.5. The streak artifacts in real patient CBCT data are realistically produced.

Since the CBCT is reconstructed from the CT images, both the training and the test

sequences have the exact same underlying respiratory motion but at different phases.

The CTs are generated at 10 time points, and the CBCTs are reconstructed at 6 time

points. Time points in both sequences are evenly distributed within one breathing cycle.

Figure 4.5: CBCT images reconstructed from NCAT CTs. Left: The axial,
coronal and sagittal views of NCAT CT images. Right: The axial, coronal and sagittal
views of NCAT CBCT images. The bright spherical object that can be seen from all
three views is the tumor.

Two data sets were simulated with different physical parameters to vary the motion

pattern. As introduced in Section 2.2.1, the diaphragm motion and the anterior-posterior

motion are the major deformations that change the cavities of the lungs. The first NCAT

data set has a maximum of 2.0 cm diaphragm motion and 0.5 cm anterior-posterior

motion. The second NCAT data set has a maximum of 1.5 cm diaphragm motion and
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1.5 cm anterior-posterior motion. All other parameters for the two phantom sets are

the same. The tumor in the image moves along with its nearby tissues smoothly.

In both studies the prediction results were evaluated in terms of tumor location errors

and entire image deformation fields’ estimation errors. The tumor location estimations

were calculated by propagating a template contour (usually provided at EE phase) to all

the phases using the predicted image deformations. In order to evaluate the estimation

errors of the overall image deformation fields, the ground truth of the deformations were

obtained by linear interpolations from planning CT deformations according to their

phase numbers in the breathing cycle.

The evaluations are shown in Figure 4.6 and Figure 4.7 for the two NCAT data sets

separately. The accumulated PC variance in percentage is shown for both the shape

space and the image deformation space from training. Depending on how many PCs it

took to capture more than 90% total variance, usually one or two PCs were kept for

SCDS computation. If only one PC was kept there was no need to carry out multivariate

canonical correlation analysis (CCA). A simple linear regression is used instead.

The “shape PC-1 score” plot shows the first PC scores of the extracted surrogate

shapes at each phase (of RCCT and CBCT) in the training PCA space. Since the under-

lying deformation spaces are the same for the computational phantom data, the small

discrepancies between the two curves reflect the segmentation errors of the CBCT due

to image artifacts. The DVF discrepancies are the direct results of the shape discrep-

ancies via the linear correlation mapping (that maps each shape to its corresponding

DVF). The “shape CV-1” plot shows the first canonical variable values (the scores on

the maximum correlation direction) of the shapes. Since the correlations between the

shape and the deformation fields are close to 1 in the studies, the corresponding “DVF

CV-1” plot look almost identical.

For the convenience of understanding the statistics plots in the following experiments,

I list the common measurements and their meanings in Table 4.1.
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Table 4.1: Statistical measurements reference.

shape PC variance The cumulative percentage variation of the PCs for the shape.
shape PC-1 score The first PC score of the shape.
shape PC-2 score The second PC score of the shape.

DVF PC variance
The cumulative percentage variation of the PCs for the
image deformation.

DVF PC-1 score The first PC score of the image deformation.
DVF PC-2 score The second PC score of the image deformation.
shape CV-1 The first canonical variable of the shape.
DVF CV-1 The first canonical variable of the image deformation.

Error analysis In both experiments the tumor location errors are reduced signifi-

cantly. In terms of the overall image deformation errors, the SCDS prediction is shown

to be much more effective than the pure-intensity-based image matching approach in

the presence of image artifacts. In comparison, the NCAT test 2 in Figure 4.7 contains

more remaining error than the NCAT test 1 in Figure 4.6. The main reason is the seg-

mentation error showing in the “shape PCA-1 score” and the “DVF PC-1 score” plots.

The maximum of discrepancy of the “DVF PC-1 score” between the RCCT phase and

CBCT phase is about 0.1 standard deviation for the NCAT test 2. Another factor is

the tightness of the linear statistics. The deformation spaces are more complicated in

NCAT test 2 due to two distinctive motions (large mobility in both AP and diaphragm

motions). Therefore the PCA statistics is less tight, and it takes two PCs to cover

the majority of the variation. Errors or noise kept in the statistics directly affect the

prediction results.
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(a) Shape PC variance
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(b) Shape PC-1 score

(c) DVF PC variance
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(d) DVF PC-1 score
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(e) Tumor COG error
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Figure 4.6: NCAT CBCT SCDS-prediction error evaluation 1. This NCAT data
set contains 0.5 cm anterior-posterior motion and 2.0 cm diaphragm motion. Only the
first PC is used for SCDS calculation. a)-d) Please refer to List 4.1. e) The tumor center
of gravity (COG) prediction errors are shown for all CBCT phases. The fourth-phase
contour is used as the template contour. The static measurement illustrates the mobility
of the tumor by using the template contours for all phases. f) The magnitude of the
dense deformation prediction error averaged over the voxels in the image. The results
from pure intensity-based image matching are measured for comparison.
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(a) Shape PC variance
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(b) Shape PC-1 score
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(c) Shape PC-2 score

(d) DVF PC variance
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(e) DVF PC-1 score
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(f) DVF PC-2 score
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(g) Shape CV-1
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(h) DVF CV-1
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(i) Tumor COG error
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Figure 4.7: NCAT CBCT SCDS-prediction error evaluation 2. This NCAT
data set contains 1.5 cm anterior-posterior motion and 1.5 cm diaphragm motion. Two
PCs are used for the SCDS calculation. a)-h) Please refer to List 4.1. i) The tumor
COG prediction errors are shown for all CBCT phases. The fourth-phase contour is
used as the template contour. The static measurement illustrates the mobility of the
tumor by using the template contours for all phases. j) The magnitude of the dense
deformation prediction error averaged over the voxels in the image. The results from
pure intensity-based image matching are measured for comparison.
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4.3.2 Patient data

Respiration-correlated CT (RC-CT) data sets were provided by a 4-slice scanner (Light-

Speed GX/i, GE Medical System), acquiring CT images for a complete respiratory cycle

at each couch position while recording patient respiration (Real-time Position Manage-

ment System, Varian Medical Systems). The CT images were retrospectively sorted (GE

Advantage 4D) to produce a series of 3D images at different respiratory time points.

The CBCT scans were five-minute scans acquired using a gantry-mounted KV on-board

imaging system (Varian Medical Systems).

The following experiments evaluated the motion estimation results in terms of tumor

location errors. The manual tumor contour of the fourth phase image (EE phase) was

propagated to all phases for validation. The tumor contours of all the other phases of the

CBCT image sequence were also provided for error measurements. Figure 4.8 shows the

results from a patient with a diaphragm mobility up to about 1.5 cm and little anterior-

posterior motion. The three views in Figure 4.8a illustrate the maximum discrepancy

caused by respiratory motion. The static measurement illustrates the mobility of the

tumor by using the template contour for all phases. The fourth-phase contour is used as

the template contour. Figure 4.9 shows the results from a data set with a tumor region

in the mediumstinum. The diaphragm region is out of the imaging field.

Error analysis Both patients show obvious respiratory motions, especially near the

diaphragm region. The evaluated tumor region in patient 1 (Figure 4.8) is inside the

bottom lung region and moves along the diaphragm motion up to 1.5 cm. The average

tumor location errors are decreased by half, from 7.2 mm to 3.1 mm. The tumor region

of patient 2 (Figure 4.9) is in the mediastinum region and thus only has about 3 mm

maximum mobility. The correction of the location error is therefore marginal.

Unlike the NCAT data, in which the underlying motion between the training and

testing data are exactly the same, the real patient data contains motion pattern varia-
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tion. The discrepancies shown in the “shape PC scores” and the “DVF PC scores” are

mainly the true motion variations. For example, patient 1 has a shallower breathing

in the CBCT imaging time than the planning RCCT time, which are reflected in the

discrepancies of about 0.5 standard deviations in the “DVF PC-1 score”.

In fact, the correlation parameters between the shape surrogate and the deformation

fields can not be exactly the same between the planning time and the treatment time. For

example, when the patient breathing with different amplitudes, the interactions between

the lung and its surrounding tissues also undergo certain variation accordingly. The non-

avoidable correlation variations will therefore contribute to the overall estimation errors.
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(a) Overlapping RCCTs at EE and EI phase
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(b) Shape PC variance
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(c) Shape PC-1 score
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(d) Shape PC-2 score
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(e) DVF PC variance
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(f) DVF PC-1 score
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(g) DVF PC-2 score
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(h) Shape CV-1
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(i) DVF CV-1

(j) Tumor location
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Figure 4.8: Real patient CBCT SCDS-prediction error evaluation 1. Two PCs
are used for SCDS calculation. a) Three views of the overlapping image of the EE
(green) and the EI (red) phases of the training CT. b)-i) Please refer to List 4.1. j) The
tumor is located near the diaphragm region of the lung. k) The tumor COG prediction
errors are shown at all 6 CBCT phases. 71



(a) Overlapping CTs of EE and EI phase
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(b) Shape PC variance
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(c) Shape PC-1 score
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(d) Shape PC-2 score
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(e) DVF PC variance
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(f) DVF PC-1 score
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(g) DVF PC-2 score
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(h) Shape CV-1
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(i) DVF CV-1

(j) Tumor location
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(k) Tumor COG error

Figure 4.9: Real patient CBCT SCDS-prediction error evaluation (2). Two
PCs are used for SCDS calculation. a) Three views of the overlapping image of the EE
(green) and the EI (red) phases of the training CT. b)-i) Please refer to List 4.1. j) The
tumor is located near the diaphragm region of the lung. k) The tumor COG prediction
errors are shown at all 6 CBCT phases. 72



4.4 Conclusion

In this chapter the SCDS trained from the planning CT sequence was applied for res-

piratory motion prediction for the CBCT image sequence acquired at treatment time.

The posterior deformable segmentation method was used to segment the lungs from the

noisy images with satisfactory accuracy, which enabled the learning-based strategy to

effectively estimate the respiratory motion.

For improving the error margin, the trained SCDS could be made tighter with a

better surface correspondence condition of the shape models and better image registra-

tion results, and the segmentation errors could be minimized by carefully tuning the

segmentation parameters. But the unavoidable breathing pattern variation (the incon-

sistency between the planning time and the treatment time) is inherently determined by

the breathing mechanisms of specific patients. In the following chapter a new motion

estimation method that is less sensitive to the inconsistency between the planning data

and the treatment data is presented for improved robustness.
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Chapter 5

Prediction-driven Respiratory Motion

Atlas Formation

5.1 Introduction

In previous chapters (Chapter 3 & 4) the learning-based SCDS model has been in-

troduced and applied for 4D CBCT respiratory motion prediction. The underlying

assumption of the model is that the correlations between the surrogate and the image

deformation are the same for both planning time and treatment time. The assump-

tion provides the foundation for directly incorporating the training information into the

target prediction. However, the correlations can not be exactly the same between the

planning time and the treatment time, especially for lung cancer patients who have

difficulties in stabilizing their breathing over time. Besides, noise present in the SCDS

trained from HDLSS data might result in predictions that are not consistent with the

actual anatomical conformations in some local regions. Improvement of the SCDS-based

motion estimation can be made by including more intensity information from the target

images besides lung boundaries.

Recall that a pure-intensity-based image matching or a non-learning based method

has the over-fitting problem when image artifacts are present. However, RC-CBCT

images still contain many intensity features that are informative and can be utilized.



Beyond the lung boundary features (used in the surrogate object extraction), other

high-contrast intensity features such as the bony rib cage, bronchial structures and the

tumor region itself are helpful in estimating the respiratory motion.

To fully utilize both the learning-based prediction method and the intensity-based

matching method while avoiding their limitations, a respiratory motion atlas formation

method driven by a combination of prediction matching forces and image matching forces

is developed in this chapter. On the one hand, the motion prediction can help regularize

the intensity matching from over-fitting. On the other hand, meaningful image features

can be utilized to reduce prediction errors due to the moderate inconsistency condition.

The deformations predicted from the SCDS model are used as soft constraints during

the optimization. The balancing force between the prediction force and the intensity

force can be adjusted via a weighting factor that is selected upon the credibility of the

training statistics and the quality of the treatment images.

The rest of the chapter is organized as follows. Section 5.2 introduces the framework

of the proposed prediction-driven deformation atlas formation. Section 5.3 presents

the experimental results on simulation data, NCAT data and real patient CBCT data.

Section 5.4 concludes this chapter with discussions.

5.2 Methodology

5.2.1 Prediction-driven respiratory motion atlas formation

A prediction-driven deformation atlas formation method has been designed to combine

SCDS-prediction constraints and intensity matching forces into a unified framework.

Recall that the original intensity-based Fréchet mean atlas formation (Section 3.2.2),

which is used to match the individual planning phase-images to their Fréchet mean atlas,
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has the energy function:

Ĵ , ϕ̂i = argmin
J,ϕ̂i∈I×DiffV (Ω)N

N∑
1

[∫ 1

0

||vit||2V dt+
1

σ2
||I − J i ◦ ϕi||2L2

]
,

subject to ϕi0 = Id, ϕi(x) = x+

∫ 1

0

vit(ϕ
i
t(x))dt, (5.1)

where J i denotes the noisy treatment image at phase i, Ĵ is the atlas image and ϕi

refers to the image deformation that matches the individual CBCT phase image J i to

the atlas image Ĵ .

Based on this formula, the prediction-driven deformation atlas formation method

appends SCDS-prediction term as a soft constraint in this iterative Fréchet mean image

optimization as follows:

Ĵ , ϕ̂i = argmin
J,ϕ̂i∈I×DiffV (Ω)N

N∑
1

[∫ 1

0

||vit||2V dt+
1

σ2
1

||J − J i ◦ ϕi||2L2 +
1

σ2
2

d2
R(ϕi, φ(qi))

]
,

subject to ϕi = x+

∫ 1

0

vitdt, (5.2)

where qi is the lung shape segmented from J i using the deformable segmentation method

introduced in Section 4.2.2. dR(ϕ, φ(qi)) is the distance between the varying deformation

ϕ and the prediction φ(qi). It is measured via the Riemannian manifold metric dR, which

is defined by

dR(ψ1, ψ2) = inf
γ:[0,1]−>M,γ(0)=ψ1,γ(1)=ψ2

∫ 1

0

√
< ˙γ(t), ˙γ(t) >V dt, (5.3)

where the Riemannian distance between two points ψ1 and ψ2 on M is defined as the

infimum of this integral over all piecewise smooth curves γ that connect ψ1 and ψ2.

This distance can be alternatively computed by dR(ψ1 ◦ψ−1
2 , id), where id is the identity

transformation.

To directly use the resulting deformation represented by DVFs computed from the
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SCDS-prediction, a Euclidean approximation of the Riemannian distance is given by

d2
R(ϕi, φ(qi)) ≈ ||uϕi − uφ(qi)||2L2 , (5.4)

where uψ denotes the dense DVFs resulting from the diffeomorphic transformation ψ,

and the SCDS-predicted deformation uφ(qi) is computed by linear mapping uφ(qi) =

C · qi. The Euclidean deformation space is only an approximation of the Riemannian

deformation manifold. However, when deformations are not very large, the Euclidean

space can be thought of as the tangent plane of the Riemannian manifold at the Fréchet

mean, so the linear approximation is sensible.

The balancing force between the prediction and the noisy intensity profile can be

adjusted via the weighting factors σ1 and σ2, selected upon the credibility of the training

statistics and the quality of the treatment images. Normally the weighting factors

should make the two forces have the same order of magnitude. Built on top of the

original intensity-based atlas formation method, the new energy term of the prediction

is treated as an extra feature channel.

The prediction-driven motion atlas optimization is summarized in Algorithm 5.1.

In the implementation of integrating the SCDS-prediction constraints to the original

intensity-based atlas formation framework, a DVF vector-channel is simply appended

to the intensity channel of each phase image. Since this DVF constraint itself is a three-

dimensional vector that measures the displacements in the three coordinate directions,

it takes three times the memory space as the intensity-based atlas formation. The

optimization steps are exactly the same.
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Algorithm 5.1 Prediction-driven atlas formation algorithm.

Input: A sequence of N-phase CBCT respiratory images: {Ji}Ni=1 and their correspond-
ing predicted deformations {uφ(qi)}Ni=1 (predicted from the SCDS of planning CT
images)

Output: A CBCT atlas (Fréchet mean) image Ĵ and a collection of diffeomorphic
deformations ϕNi=1 that transform Ji to Ĵ .

Initialize deformation with identity
1: for i=1:N do
2: ϕi ← IdDiffV (Ω)

3: end for
4: repeat
5: Ĵ = 1

N

∑N
i=1 J

i
ϕi

6: for i=1:N do
7: vintinc ← K( 2

σ2
1
∇J i

ϕi
0,1

(J i
ϕi
0,1
− Ĵ))

8: vpredinc ← K( 2
σ2
2
(∇uxϕi(uxϕi−uxφ(qi))+∇uy

ϕi(u
y
ϕi−uy

φ(qi)
)+∇uzϕi(uzϕi−uzφ(qi))))

9: vinc ← vintinc + vpredinc

10: ϕi ← Expϕi
(εvinc)

11: end for
12: until convergence

5.3 Experimental Results

5.3.1 Breathing spheres

To test the prediction-driven atlas formation method, I started with the same simulated

breathing spheres data used in Chapter 3 (see Figure 3.8). The sequence of sphere images

with varying radius were designed to mimic the breathing scenario. The radii follow a

sinusoidal curve to simulate the breathing pattern of a volume enlarging process followed

by a volume shrinking (see Figure 3.8 for illustrations of the Euclidean mean image and

the Fréchet mean image). To simulate image artifacts, independent Gaussian noise with

0.0 mean and 0.25 standard deviation was added to each voxel of the binary image,

which has 0.0 as the background intensity value and 1.0 as the foreground intensity

value. The results are shown in Figure 5.1a.

Given the noisy breathing sphere images, I first compared the effectiveness of the
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SCDS-prediction method to the intensity-based atlas formation method. Since the only

difference between the training data and test data is the added Gaussian noise, the un-

derlying linear correlations of the two are identical. Figure 5.1c shows that the intensity-

based atlas formation method tends to over-fit the noise, while the SCDS prediction

(Figure 5.1d) is only determined by the training statistics.

(a) noisy input images

(b) Euclidean mean (c) Fréchet mean (d) SCDS-prediction atlas

Figure 5.1: Noisy breathing spheres test: a) 2D slices of the ten input noisy breath-
ing sphere images. b) The Euclidean intensity mean of the noisy test sequence image.
c) The Fréchet mean atlas image of the test data using pure-intensity-based atlas for-
mation. d) The resulting atlas image of the test data using the SCDS-prediction.

To simulate inconsistent correlation patterns between the training set and the test

set, the correlation regression parameters obtained from the training data were per-

turbed slightly before they were used for predicting the motion in the test data. The

perturbation amount added to each regression parameter was randomly generated by

uniform distribution selected between -20% and 20% of the parameter value by a ran-

dom number generator. As shown in Figure 5.2a, the resulting “DVF-PC1 score” has a

maximum 0.2 standard deviation difference. The results of three methods are shown in

Figure 5.2. The SCDS prediction is affected by artificial correlation perturbation and

produces errors mostly visible at the edge of the atlas sphere. The intensity-only Fréchet
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mean atlas (the same image shown in Figure 5.1c) is placed beside for convenience of

comparisons. It is shown that the prediction-driven deformation has the best visual

results among the three. The signal-to-noise ratio both inside and outside the sphere

objects appear to be higher than the intensity atlas, and the edge of the sphere does

not contain the thick-ring artifact shown in the SCDS-prediction atlas.
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(a) Perturbed DVF PC-1 score

(b) Intensity (c) SCDS-prediction (d) Prediction-driven

Figure 5.2: Noisy breathing spheres test results with perturbed correlation.
a) The resulting perturbation on the predicted deformations measured in terms of the
first principal component coefficients in its training deformation space. b) The intensity-
based Fréchet mean atlas image. c) The atlas image from the SCDS-predicted deforma-
tions. d) The prediction-driven atlas image.

The SCDS-prediction forces, the intensity-matching forces and the deformation es-

timation errors for the same data are shown at each iteration step in Figure 5.3 for

detailed investigation. Since the SCDS-prediction is directly computed without itera-

tive optimizations, it is shown as the constant value line for comparison. Figure 5.3a

and Figure 5.3b show that the prediction-driven atlas converges to an intermediate level
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between the intensity atlas and the SCDS-prediction in both energy measurements. The

best estimation result is achieved by the prediction-driven atlas formation method as

shown in Figure 5.3a.
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(a) DVF differences
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(b) Intensity differences
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(c) DVF Errors

Figure 5.3: Noisy breathing spheres test with perturbed correlation. Com-
parison curves of the optimization iterations. a) Average DVF differences between the
optimizing DVF and the predicted DVF. b) Average image intensity force at each iter-
ation. The intensity-based matching method is shown to over-fit the noise. c) Average
DVF errors at each iteration, with the ground truth deformations calculated from the
training images.

5.3.2 NCAT data

The same NCAT data sets used in Section 4.3.1 were used to test the prediction-driven

atlas formation method. Since the NCAT CBCT data was reconstructed from the

81



RCCT, the correlation consistency between the CBCT and RCCT is guaranteed. As

shown in the results of Section 4.3.1, the SCDS-prediction results are satisfactory. In

order to test the prediction-driven atlas formation method in this chapter, inconsistent

breathing correlation patterns between the training data and the test data were simu-

lated by adding perturbations to the correlation regression parameters with a random

change in value up to 20% ( the same perturbation scheme used for the breathing sphere

data in Figure 5.2) .

The NCAT data in Figure 5.4 has a maximum of 2.0 cm diaphragm motion and 0.5

cm anterior-posterior motion. The intensity-based atlas formation results, the SCDS

motion prediction results and the prediction-driven atlas formation results are compared

in terms of the center of gravity (COG) location errors of the tumor region, see Figure

5.4b. Also the overall DVF errors of the three methods are compared in Figure 5.4c.

Figure 5.5 illustrates the resulting atlas images from all three methods.

In Figure 5.4b, the intensity-based atlas does a much better job than the SCDS-

prediction in terms of the tumor region estimation. The reason is that the tumor region

after the CBCT reconstruction still has a quite strong contrast respect to its surrounding

tissue despite the global streak artifacts. In real patient CBCT images, less contrast on

the tumors is expected. On the other hand, in terms of the overall deformation field

estimation the SCDS-prediction performs better than the intensity-based atlas method,

as shown in Figure 5.4c. The prediction-driven atlas method shows a balanced overall

DVF estimation between the two as a result of the combination. These measurements are

confirmed from the visual comparison of the atlas images in Figure 5.5. The prediction-

driven atlas (Figure 5.5d) has less global signal-to-noise ratio (SNR) compared to the

intensity atlas (Figure 5.5b), and it has a sharper tumor boundary than the SCDS-

prediction atlas (Figure 5.5c).
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(b) Tumor COG error
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(c) DVF error

Figure 5.4: Tumor evaluation of prediction-driven atlas formation method
on NCAT (1). a) CBCT prediction contains artificial perturbations to simulate the
inconsistency. b) Three methods are compared in terms of the tumor COG estimation
error, with the static measurement indicating the mobility of the tumor. The fourth
phase is used as the base phase to propagate the tumor contour to other phases. c)
Three methods are compared in terms of the average DVF estimation error per voxel;
the ground truth DVF is obtained by linear interpolation from the RCCT DVFs.

5.3.3 Patient data

The same patient data sets used in Chapter 4 were used to test the prediction-driven

atlas formation method, with comparisons to the intensity-based atlas formation method

and the SCDS-prediction method. Motion estimation results were evaluated on a mock

tumor region, as shown in Figure 5.6a. Manual segmentations were provided for each

CBCT image for error measurements. The manual tumor contour of the fourth phase

image (the end-expiration phase) was propagated to all the other phases. The three
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methods are compared in terms of the COG location errors in Figure 5.6b. The average

COG errors of the 5 phases for the three approaches are 3.5 mm (Intensity-based atlas),

2.3 mm (SCDS prediction) and 1.7 mm (prediction-driven atlas).

(a) Tumor illustration
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(b) Tumor location error

Figure 5.6: Tumor evaluation of prediction-driven atlas formation method on
real patient images (1). Three methods are compared in terms of the COG estimation
error, with the static measurement indicating the mobility of the tumor. a) Axial slices
of the estimated tumor contours at the fifth phase from the three methods, with the
same colors tagged in the bar figure on the right. The manual segmentation of the tumor
contours is shown in white. b) The tumor COG errors for the four methods. The fourth
phase is used as the base phase.

The prediction-driven atlas method outperforms both the other two approaches in

half of the phases. Figure 5.7 illustrates the resulting atlas image near the tumor region

from the three methods.
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(a) Intensity Euclidean Mean

(b) Intensity Atlas

(c) SCDS-prediction Atlas

(d) Prediction-driven Atlas

Figure 5.7: Real patient CBCT tumor region in atlas image: a comparison.
a) The Euclidean mean of the CBCT sequence. b) The Fréchet mean atlas image of the
CBCT sequence. c) The atlas image from the SCDS-prediction results. d) The atlas
image from the prediction-driven atlas formation method.

Another patient’s results are given in Figure 5.8. This patient has relatively stable

tumor motion with a maximum of 3 mm mobility. The SCDS-prediction reasonably

predicted the small motion, while the intensity-based atlas method was greatly affected

by the intensity artifacts. The intensity-prediction-combined optimization provided the

best estimation results for 4 out of the 6 phases. For the voxel size of 1.52 mm × 1.52

mm × 1.52 mm, the SCDS-prediction achieved sub-voxel accuracy. The prediction-
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driven atlas is shown to be stable with marginal improvement. The tumor contour in

the fourth phase was used as the base contour to propagate to the other phases through

Fréchet mean. The errors showed in the fourth phase was caused by the interpolation

errors during the inverse transform.
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Figure 5.8: Tumor evaluation of prediction-driven atlas formation method on
real patient images (2). Three methods are compared in terms of the COG estimation
errors, with the static measurement indicating the mobility of the tumor. The tumor
COG errors for the four methods. The fourth phase is used as the base phase.

5.4 Conclusion

The prediction-driven atlas formation framework has the advantage of utilizing high-

contrast intensity information from the target images while constrained by the shape-

correlated prediction results. The overall image deformation is balanced between the

intensity-driven deformation and the SCDS-predicted deformation. The anatomical

structures that have high intensity contrasts contribute to a more accurate local motion

estimations.

Based on the preliminary studies on both simulated phantom data and RC-CBCT

data, the prediction-driven atlas method was shown to be more robust for modeling

and estimating sophisticated respiratory motion in lung than both the intensity-based

atlas method and the learning-based SCDS-prediction method. More patient studies

are needed to fully validate and quantify the robustness of the method.
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(a) Intensity Mean (Euclidean mean)

(b) Intensity Atlas (Fréchet mean)

(c) SCDS-Prediction Atlas

(d) Prediction-driven Atlas

Figure 5.5: Atlas image comparison on NCAT data set. a) The Euclidean mean
of the CBCT sequence. b) The Fréchet mean atlas image of the CBCT sequence. c) The
atlas image from the SCDS-prediction results. d) The atlas image from the prediction-
driven atlas formation method.
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Chapter 6

Discussion

6.1 Summary of Contributions

In this section the thesis claims presented in Chapter 1 are revisited. Following each

claim is a discussion that relates to the claim and summarizes how that claim is addressed

in this dissertation.

The contributions of this dissertation are as follows:

1. I use shape of the lung as the surrogate for respiratory motion estimation in the

thorax. The high contrast of the air-filled lung regions provides comprehensive

motion evidence.

The notion of “surrogate” has been used in two different contexts of 4D IGRT appli-

cations. In retrospective imaging (introduced in Section 2.2.2), surrogates such as the

marker position in the RPM system (Figure 2.4) are used to provide the respiration-

phase gating information to sort the projection images for 3D reconstruction. In surrogate-

correlated respiratory motion modeling discussed throughout the dissertation, surrogates

are the group of parameters used to model the respiratory motion. Given a 4D (phase-

stamped) image sequence, the modeling surrogates are usually a few internal or external

landmarks, such as the diaphragm apex points used in Zhang et al. (2007) and the skin



markers used in Gao et al. (2008). The positional changes of the landmarks are corre-

lated with the whole image deformation field. In this dissertation the lung boundary is

used as the surrogate object that is shown to be more effective in modeling the respi-

ratory motion than sparse local landmarks. A surrogate comparison study is given in

Section 3.3.3.

2. I apply an entropy-based particle system to 4D lung CT images to obtain surface

lung models with group-wise correspondence. The surface correspondence across

the 4D sequence is crucial for statistical shape modeling.

In order to extract tight statistics from the shape variation during a respiratory cy-

cle, good group-wise geometrical correspondence is required. A state-of-the-art entropy-

based particle system has been adopted for this purpose in Section 3.2.1. For complicated

anatomical motion variations, the non-parameterized point distribution model (PDM)

representation is desired. To be more specific, when modeling lung surfaces, it is of-

ten useful to include the bronchial structure that connects the left lung and the right

lung due to its high-contrast intensity profile. Especially when the diaphragm region

is not included in the imaging field, spatial changes of the bronchial structure usually

provide the strongest motion evidence. The particle system can easily incorporate arbi-

trary topology of the shape such as the highly-curved tubular surfaces of the bronchial

structures and can provide credible point sampling on the bronchial surface without

reparamterization.

Another advantage of the surface particle system is its ability to incorporate new

features or attributes of the sampling points. The common features used to distribute

the surface sampling points are the x, y and z coordinates. In the application of cerebral

cortical surface modeling (Oguz et al., 2008), local curvature features such as Gaussian

and mean curvatures have been shown to be useful for improving the group-wise cor-

respondence. In the experiments with the lung models, the positional features seem to

be sufficient to produce good correspondence results; this sufficiency is validated by the
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tightness of the principal component analysis (PCA) results. Usually the first principal

component captures more than 90% of the total variation (see Figure 3.9). Also, by vi-

sual inspection the principal component intuitively reflects the respiratory motion (see

Figure 3.10). Nevertheless, it is an interesting research topic to explore other geometrical

features that might further improve the tightness of the statistics.

3. I apply the Fréchet mean image formation method to generate the respiratory mo-

tion atlas from respiration-correlated CT images. The motion atlas contains an

atlas image and the transformations that match each individual phase image to the

atlas.

A respiratory motion atlas for a sequence of respiratory phase images contains an

atlas/reference image and the transformations that match each individual phase image

to the atlas image. Usually the end expiration (EE) phase image has been chosen to be

the atlas image due to its stability in the breathing cycle. However, from the statistical

point of view, an atlas image with “averaged” geometry gives the tightest probability

distribution of the deformations. The Fréchet mean atlas formation method introduced

in Section 3.2.2 has the property of requiring the least amount of total deformations.

A comparison in Figure 3.12 demonstrates the improved statistics by using the Fréchet

mean atlas image [???] . Since the statistics of the deformation fields is a crucial part

of the statistical modeling of the respiratory motion, this improvement in the tightness

of the statistics matters.

Computationally the Fréchet mean atlas formation process is intensive both in mem-

ory consumption and computation time. The dominating computation of each opti-

mization iteration is a Fast Fourier Transform. The order of the algorithm is MNnlogn,

where M is the number of iterations, N is the number of images, and n is the number of

voxels along the largest dimension of the images. A multi-threaded C++ implementa-

tion on an eight-processor system takes about 20 minutes to compute a sequence of 10

images of the size 196 × 196 × 100 and requires at least about 1 GB memory. A graphics
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programming unit (GPU) implementation could potentially accelerate the computation

by a factor of 50 (Muyan-Ozcelik et al., 2008; Shams et al., 2010).

The Fréchet mean atlas formation is used for quantifying the dense spatial variations

in planning RCCT images. The resulting displacement vector fields are used as the in-

put to compute the shape-correlated deformation statistics SCDS (that are discussed

in the next list item). The distance metric used in the Fréchet mean image formation

framework is measured on the Riemannian manifold of the diffeomorphic transforma-

tions. A fluid-flow based diffeomorphic image matching method (Section 2.3) is used to

bring input images to the atlas while the atlas is updated at each iteration.

It is ideal to save the whole geodesic path of the deformations to characterize the

diffeomorphisms completely. However, the need for memory is too high for that to be

practical. Therefore, only the displacement vector fields (DVF) are recorded as the final

image deformation results. For typical breathing motion, the maximum spatial variation

for a voxel is normally less than 2 cm or 10 voxel units. Therefore, the DVF is typically

a good approximation of the actual geodesic path. To pursue real-time performance, it

might be sufficient to use an elastic image matching scheme (Holden, 2008) rather than

the diffeomorphic one.

4. I present shape-correlated deformation statistics (SCDS) to capture correlations

between the shape deformation and the dense image deformation fields from the

RCCT image sequence.

Shape-correlated deformation statistics (SCDS) is a novel concept (introduced in Section

3.2.3) that contains the statistics of shape variation, the statistics of dense deformation

field variation, and the correlation between the two. To predict motions from artifact-

laden treatment images, SCDS is extracted from the planning RCCT images that have

high image quality in terms of the contrast to noise ratio (CNT). In computing the

SCDS, the shape surrogate is represented by the surface point sets resulting from the

entropy-based particle system, and the dense deformation field is represented by the DVF
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resulting from the Fréchet mean formation. Both representations are high dimensional,

on the order of thousands and millions, respectively. In order to carry out correlation

analysis, PCA is used to reduce their dimensions (Section 3.2.3). In the experiments

carried out in the thesis, two PCs are shown to be sufficient to capture the majority of

the variation for both spaces.

After the PCA reparameterization, linear correlation analysis is carried out to model

the low-dimensional image deformation as a function of the low-dimensional shape sur-

rogate. It was shown in Section 3.2.3 that after removing the multicollinearity via PCA,

all three correlation methods: canonical correlation analysis (CCA), multilinear regres-

sion (MLR) and partial least squares (PLS), deliver the same correlation results under

a unified eigenproblem formulation. The CCA implementation has been used due to

its direct interpretation of the maximum correlations. All experiments in this thesis re-

ported maximum correlation coefficients that are close to 1.0, indicating a strong linear

correlation between the two spaces.

In the SCDS-prediction, phase-stamped training samples for both the shape and

the DVF are assumed to have Gaussian distributions in order to use PCA dimension

reduction. Also, the correlation between the two variation spaces is assumed to be

linear. The linear assumption greatly simplifies the motion modeling. However, the

complicated interactions among the anatomical organs are non-linear in nature. The

Gaussian distribution assumption and linear approximations therefore may eventually

limit the motion estimation accuracy.

5. I apply patient-specific SCDS trained from planning CT images to predict the res-

piratory motion from cone-beam CT images that contain artifacts due to image

reconstructions with sparse projections.

In order to apply SCDS trained from planning images to treatment-guidance im-

ages of the same patient, accurately extracting the surrogate shape from the treatment

images is crucial. To account for serious RC-CBCT image artifacts, a probabilistic
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deformable segmentation scheme (maximum-a-posteriori probability estimation) is de-

veloped in Section 4.2.2. The shape prior is provided by the PCA on the shape models

from the planning images. The model-to-image-match is evaluated on edge-enhanced

second-order gradient images. The shape prior offers a good initial model (the mean

model from training) and prevents the segmentation process from overfitting the image

artifacts. Depending on how artifacts interfere with the lung boundary, segmentation

errors could occur in local regions where artifacts dominate. Those segmentation er-

rors will directly result in prediction errors via the linear mapping, which maps the

segmented shape to its corresponding image deformation.

A series of experiments on respiration-correlated CBCT images from both compu-

tational phantoms (NCAT) and patients were carried out in Section 4.3. The results

demonstrated the effectiveness of the SCDS-prediction in terms of tumor location ac-

curacy and overall deformation field estimation accuracy. In the NCAT experiments,

the RC-CBCT sequence was reconstructed from the simulated RCCT projection im-

ages. Therefore, the target RC-CBCT images and the training RCCT images have the

exact same respiratory motion inherently. The prediction errors are therefore mainly

caused by CBCT segmentation errors due to the artifacts. In the patient experiments,

another error source besides the CBCT segmentation errors is the inconsistent motion

patterns between the training (RCCT) data and the target (RC-CBCT) data. To be

more specific, the correlation patterns between the shape and the image deformation

might change. As a result, the correlation parameters trained from the RCCT data may

not fit RC-CBCT well enough for predictions.

6. I present a prediction-driven atlas formation method that combines SCDS-prediction

constraints and intensity-matching forces into a unified framework for robust res-

piratory motion estimation.

In order to reduce the SCDS-prediction method’s sensitivity to the correlation incon-

sistency, as well as to compensate statistical errors and segmentation errors, a prediction-
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driven atlas formation method is presented in Chapter 5 towards robust respiratory mo-

tion estimation. In this method the SCDS-prediction results are used as soft constraints

in a Fréchet mean atlas formation framework. By including intensity information (be-

sides the shape surrogate) from the target images, useful high contrast features such

as the vascular structures, the rib cage and the tumor itself are utilized for improved

local estimation accuracy. Based on the relative credibility of the image quality and

the correlation consistency, the weights between the intensity forces and the prediction

forces can be adjusted accordingly.

However, it is difficult to quantify the credibility, which makes the weight tuning

mostly empirical. Here are some heuristics to follows. Assuming the signal-to-noise

ratio of the image intensity is stable, if the motion patterns of the RCCT and the RC-

CBCT data observed from their principal component scores (after projection onto the

PCA space) are highly consistent, the weight on the SCDS-prediction force should be

higher than the intensity-matching forces. On the other hand, if large discrepancies in

motion patterns are observed, the weight on the SCDS-prediction force should be lower.

Experimental results on both the NCAT data and the patient data (Section 5.3)

showed improved performance using the prediction-driven atlas formation method, com-

pared to the pure intensity-based atlas method and the SCDS-prediction method. Com-

putationally, in comparison to the intensity-based atlas method, the prediction-driven

atlas method takes more time to compute the gradient for the extra prediction con-

straints. On the other hand, because of the prediction constraints fewer iterations are

typically required for convergence.

Thesis: To account for the motion effects on the radiation dose to tumors and or-

gans at risk in image-guided radiotherapy for lung cancer, shape-correlated deformation

statistics (SCDS) trained from planning CT images can be used to effectively estimate

the respiratory motion in artifact-laden treatment images, when breathing patterns are

consistent between planning time and treatment time. A more robust motion estimation
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can be achieved by combining the SCDS-prediction constraints and intensity-matching

forces into a unified atlas formation framework.

Respiratory motion challenges image-guided radiation therapy (IGRT) with location

uncertainties of important anatomical structures in the thorax. Effective and accurate

respiration estimation is crucial to account for the motion effects on the radiation dose

to tumors and organs at risk. Moreover, severe image artifacts in treatment-guidance

images such as 4D cone-beam CT cause difficulties in estimating the deformation. Com-

monly used non-linear dense image matching methods easily fail in regions where arti-

facts interfere.

Learning-based linear motion modeling techniques have the advantage that training

knowledge can be introduced to predict the motion. This dissertation has proposed a

mathematical system for effectively extracting the shape-correlated deformation statis-

tics (SCDS) from 4D images. SCDS obtained from the RCCT planning images efficiently

captures the variation correlations between the lung shape and the overall image defor-

mation (Chapter 3). It is then used to predict the respiratory motion for treatment time

via the lung shape segmented from the RC-CBCT treatment images (Chapter 4). To

increase the robustness of the SCDS-prediction, an SCDS-prediction-driven atlas forma-

tion framework has been presented. The strategy of balancing between the prediction

constraints and the intensity-matching forces makes the method less sensitive to vari-

ation in the correlation and utilizes intensity information besides the lung boundaries

(Chapter 5).

6.2 Extended Applications

Validation with more patient data

In this thesis the RC-CBCT patient images used for experiments are five-minute-duration

scans that are acquired using a slowly rotating gantry-mounted KV on-board imag-
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ing system, which are used mainly for research purposes. One-minute scans are more

practical within patient treatments for reduced scan time and radiation dose. Those

one-minute scans contain more streak artifacts and more blurring due to fewer projec-

tions used for 3D reconstructions (Jaffray et al., 2002; Li & Xing, 2007). Validations of

the SCDS-based methods on one-minute RC-CBCTs are going to be carried out in the

future.

Real-time respiratory motion prediction

The ultimate goal for this respiratory motion estimation is to apply it to on-line treat-

ment guidance immediately prior to dose delivery. Therefore, real-time computation is

required. A great computational advantage of learning-based SCDS-prediction (Chapter

4) is that all the statistics calculations are carried out off-line. Once the prior statistics

is ready, the on-line prediction during the treatment can be done through a correlation

regression linear mapping (matrix multiplication), which is O(1) in computation com-

plexity when computed for each voxel in parallel using a GPU implementation. As for

the prediction-driven atlas formation method (Chapter 5), a GPU-accelerated imple-

mentation could reduce the computation time by a factor of 50. For 10 input images

with image size of 196 × 196 × 100, the atlas optimization therefore could presumably

converge within a minute.

SCDS for other applications

Although SCDS is designed for CBCT image-guidance radiation therapy in this thesis,

the mathematical framework itself is widely applicable to respiratory motion estimations

using other image modalities. For example, MR imaging has been used for respiratory

motion monitoring in the lung (Gao et al., 2008). Without the imaging radiation dose

limit, a longer imaging time of MRI is allowed to acquire 4D data of multiple respiratory

cycles. The increased number of training samples should be able to increase the accuracy
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and the robustness of the SCDS. Similar to CBCT, nanotube stationary tomosynthesis

(NST) images will have limited usability due to the blurring artifacts (see Figure 1.2)

caused by limited angle reconstruction (Chang et al., 2009; Chou et al., 2010). SCDS

trained from planning CT images can directly apply to NST-guidance images in the

lung for respiratory motion estimation. The lung boundaries could be segmented from

the NST images using the same probabilistic deformable segmentation scheme. The

model-to-image-match measurements other than the second-order gradients might need

to be designed according to the intensity patterns in NST.

In this thesis SCDS-prediction is applied to thorax images, and the lung is the shape

surrogate object. Respiratory motion estimation in the abdomen is also an important

and active research field (Rohlfing et al., 2004; Guckenberger et al., 2008). Due to the

relatively low contrast of the liver tissue (compared with lung), it could be challenging to

accurately segment the liver surface from the images. An easier surrogate object could

be the surface of the diaphragm on top of the upper liver part. Since the entropy-based

particle system (Section 3.2.1) supports arbitrary shape topology, it can be directly used

to extract the open surface of the diaphragm with group-wise correspondence.

Beyond respiratory motion, SCDS has the potential to be used for studying corre-

lations among deformable objects in other medical image analysis or computer vision

applications. SCDS can be used to discover how deformable objects are interacting with

each other during certain motions or over time. For example, brain MR images collected

over time provide evidence of the aging development of various structures in the brain

(Xu et al., 2008). Whether certain diseases are caused by shape variation in a single

structure or several structures, and how those structures might relate to each other

require a correlation study on the longitudinal data. SCDS could provide statistical

quantifications for these correlation studies and could be further applied for predictive

studies.

97



Prediction-driven atlas formation for other applications

The prediction-driven atlas formation method (Chapter 6) combines the prediction infor-

mation and the intensity information into a unified framework. The SCDS-prediction is

used as a soft constraint that prevents the optimization from deviating too much from the

prior knowledge. In fact, any other kind of deformation constraints could be plugged into

the atlas formation framework in the same way. For example, a landmark-matching con-

straint defined on the image grid could be used to enforce landmark matching among the

input images. In applications where landmark features are easily detectable, the land-

mark constraints can drive the deformations towards matching locations. The weights

between the intensity forces and the landmark forces could be adjusted accordingly.
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