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ABSTRACT 

BRIAN PACHKOWSKI:  Functional Studies of Accessory Factors Associated with Base 
Excision Repair 

(Under the direction of James A. Swenberg, D.V.M., Ph.D.) 
 

Exposure to environmental and cellular mutagens is ubiquitous and, as a 

consequence, DNA is constantly faced with the possibility of becoming damaged.  Base 

excision repair (BER) removes some of this damage to limit the impact of these exposures on 

cell physiology and ultimately human health.  The function of core BER enzymes may be 

enhanced by other protein accessory factors, namely poly(ADP-ribose) polymerase-1 

(PARP-1) and x-ray repair cross complementing gene 1 (XRCC1).  The main hypothesis of 

this research was that genetic approaches using cellular knockout and complementation 

models can evaluate whether the accessory proteins PARP-1 and XRCC1 are determinants of 

BER efficiency. 

While numerous biochemical studies have implicated PARP-1 in BER, the role of 

this protein in BER is somewhat uncertain.  The first aim of this research was to evaluate the 

role of PARP-1 in BER in vertebrate cells.  Chicken cells lacking PARP-1 were treated with 

an alkylating agent under different scenarios with subsequent endpoint measurements.  

PARP-1 was necessary as a survival factor during chronic exposure but did not appear 

relevant in acute exposures until the late stages of BER.  In the absence of exposure, the 

DNA lesions measured were equal between PARP-1 proficient and deficient cells. 

XRCC1 acts as a scaffold for numerous protein interactions necessary for proficient 

BER.  However, the presence of polymorphic forms of XRCC1 in the human population may 
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influence DNA repair and disease susceptibility.  The second aim of this research was to 

demonstrate the applicability of using transgenic cells in a combined study design for 

determining the biological significance of XRCC1 polymorphisms.  Isogenic, mammalian 

cells lacking XRCC1 were transfected with various forms of the human XRCC1 gene, 

exposed to different genotoxicants, and assessed for single strand break repair capacity.  

Only cells expressing the 280His variant showed a repair defect.  Subsequently, evaluation of 

data from the Carolina Breast Cancer Study demonstrated associations between XRCC1 

280His, smoking, and breast cancer. 

 Together these studies demonstrate that accessory factors can influence BER 

efficiency and illustrate the importance of a multi-disciplinary approach for investigating the 

link between genes, the environment, and disease risk.
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CHAPTER 1.  INTRODUCTION 

 DNA damage represents an inevitable and ubiquitous event because of exposure to 

endogenous and environmental agents.  Various repair pathways correct modifications to 

DNA in order to ensure genomic integrity, which can ultimately prevent adverse health 

effects.  Of the many types of genetic lesions, base modifications and DNA single strand 

breaks (SSBs) occur as some of the most frequent insults to DNA.  The base excision repair 

(BER) pathways act to limit such damage.  Because of the frequency and potential lethality 

of BER intermediates, understanding the basic mechanisms of their repair and potential 

impact on human disease has attracted much attention.  While not core pathway members, 

the proteins poly(ADP-ribose) polymerase-1 (PARP-1) and x-ray repair cross 

complementing gene 1 (XRCC1) have accessory roles that may affect BER efficiency.  

PARP-1 acts as a sensor of DNA breaks and generates signals that, in part, help to initiate 

DNA repair.  However, the exact role of PARP-1 in BER within cells remains somewhat 

obscure.  XRCC1 functions as a scaffolding factor and modulator of certain aspects of DNA 

repair.  The existence of polymorphic forms of XRCC1 may compromise DNA repair 

proficiency and ultimately have implications on human disease risk.  The present 

investigation explores the functional significance of PARP-1 and XRCC1 within BER to 

better ascertain their potential impacts at the cellular and population levels. 

 



1.1  DNA Damage and BER 

Various physical and chemical agents present in the environment can deleteriously 

modify DNA structure (Pitot and Dragan, 1996).  Additionally, the generation of reactive by-

products from cellular processes, including the immune response and xenobiotic metabolism 

(Marnett, 2000), leads to constitutive levels of DNA damage (Beckman and Ames, 1997; 

Nakamura and Swenberg, 1999).  Chemical bonds within DNA, including those that attach 

DNA bases to the sugar-phosphate backbone or those within DNA bases, are inherently 

unstable and subject to spontaneous hydrolysis (Duncan and Miller, 1980; Lindahl, 1993).  

Together, the above phenomena lead to an array of damage products including: base adducts, 

abasic sites, deoxyribose fragments, strand breaks, as well as DNA-DNA and DNA-protein 

crosslinks (Pitot and Dragan, 1996). 

Cells encumbered with DNA lesions must possess an adequate damage response to 

assure genomic integrity for continued viability, the accurate transmission of genetic 

material, and prevention of tumorigenesis.  A number of DNA repair pathways, each 

consisting of a cadre of proteins responsible for the removal of classes of lesions, are charged 

with the abatement of DNA damage (Hoeijmakers, 2001).  For example, nucleotide excision 

repair (NER) removes major distortions to the DNA helix (Mitchell et al., 2003) while BER 

repairs small, non-bulky modifications to DNA bases and discontinuities in the DNA strand 

(Barnes and Lindahl, 2004; Sweasy et al., 2006).  Base mismatches formed by erroneous 

replication or by spontaneous events are corrected by mismatch repair (MMR) (Kunkel and 

Erie, 2005) and, through a single step mechanism, direct reversal removes methyl groups 

from O6-methylguanine (Mishina et al., 2006).  When double strand breaks (DSBs) form, the 

homologous recombination (HR) and non-homologous end joining (NHEJ) pathways repair 
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such damage (Helleday et al., 2007).  While the individual pathways do show preference 

toward certain types of DNA damage, there is evidence that pathways can overlap or 

compensate for another to ensure the integrity of genetic material (Swanson et al., 1999; 

Pascucci et al., 2005). 

Since these pathways are fallible, DNA lesions can escape repair and ultimately have 

deleterious effects.  Damage to DNA can be converted to mutations, which if they were to 

occur in critical genes can lead to tumorigenesis.  Unprocessed DNA damage can also 

promote cell death, a continuation of this phenomena over time can lead to degenerative 

diseases and affect longevity (Hasty, 2005).  Inheritable defects occur in some repair 

pathways thereby causing cancer, premature aging, or neurological defects (Bohr, 2002).  In 

contrast to these extreme conditions, much subtler alterations, as will be discussed below, 

exist in repair proteins that can affect an individual’s response to a chemical exposure. 

Of the different repair mechanisms, BER pathway acts as the sentinel against the 

hydrolytic, oxidative, and alkylation damage to DNA commonly arising from endogenous 

processes and some environmental exposures (Barnes and Lindahl, 2004; Sweasy et al., 

2006).  Intact BER appears to be a requisite biochemical process since complete abrogation 

of some BER genes, such Ape, Xrcc1, and Polβ confers embryonic lethal phenotypes in mice 

(reviewed in Larsen et al., 2007).  The classical BER pathway has been reconstituted in vitro 

with 4 enzymes (Kubota et al., 1996) and could be summarized by five core steps involving: 

(i) removal of a damaged base via spontaneous hydrolysis or glycosylase activity with 

apurinic/apyrimidinic (AP) site formation; (ii) incision of the DNA strand on the 5′ side of 

the AP site by AP endonuclease (APE) to form a 5′-deoxyribose phosphate (5′-dRP) moiety; 

(iii) replacement of the appropriate nucleotide by polymerase β (POLβ); (iv) removal of the 
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nicked AP site by the dRP lyase activity of POLβ; and (v) DNA strand ligation by DNA 

ligase IIIα (LIGIIIα) (Srivastava et al., 1998) (Figure 1.1).  These steps are believed to occur 

via a series of DNA-protein and protein-protein interactions and exchanges that occur as a 

series of repair complexes.  In essence, BER intermediates are handed off from one protein to 

the next in a “pass the baton” fashion, which limits the exposure of the repair site to the 

surrounding environment (Wilson and Kunkel, 2000).  In reality, BER is a much more 

complex process involving accessory factors, such as PARP-1 and XRCC1.  Such factors do 

not cut, synthesize, or ligate DNA as do the core BER enzymes, rather PARP-1 and XRCC1 

are believed to enhance pathway efficiency through posttranslational modifications or 

protein-protein interactions, respectively (Fan and Wilson, 2005).  

The number of sub-pathways and the spectrum of lesions processed by BER increase 

the complexity of this pathway.  Recently, a model has been proposed in an attempt to unify 

the different BER sub-pathways (Almeida and Sobol, 2007).  This model is based on 

dividing BER into three general processes, each consisting of unique repair complexes or 

chemical events contingent on the BER substrate present.  Accordingly, BER can be 

described as consisting of: (i) lesion recognition and/or strand scission as the ingress into 

BER; (ii) DNA gap tailoring to allow for nucleotide replacement; and (iii) DNA synthesis 

and/or ligation for repair completion.  Of the different known BER sub-pathways short-patch 

(SP), long-patch (LP), and SSB repair (SSBR) will be discussed. 

Entry into SP BER generally commences with the formation of alkylated bases such 

as N3-methyladenine (N3-meA) or N7-methylguanine (N7-meG), which are cleaved by a 

mono-functional glycosylase such as N-methylpurine DNA glycosylase (MPG).  

Alternatively, the glycosidic bond attaching the adducted base to the DNA backbone can 
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spontaneously hydrolyze to form an AP site.  This lesion is cleaved on the 5′ side by APE to 

form a SSB with 5′-dRP and 3′-hydroxyl termini prior to gap tailoring initiated by POLβ.  

The dRP lyase activity of POLβ removes the 5′ terminal lesion allowing for the one 

nucleotide synthesis by POLβ with final strand ligation by DNA LIGIIIα.  An additional 

entry into SP is with bifunctional glycosylases, which can recognize oxidative base damage 

and remove the damaged base while cutting the resulting AP site on the 3′ side for 

subsequent gap tailoring by APE (Wilson and Bohr, 2007).  Completion of repair through 

DNA synthesis and ligation reactions can proceed with proteins associated with SP or the LP 

sub-pathway. 

Similar to SP, entry into LP BER proceeds with the removal of damaged bases by 

glycosylase activity.  However, during gap tailoring some BER intermediates may be 

refractory to β-elimination by the dRP lyase domain of POLβ.  The presence of the oxidized 

abasic site 2-deoxyribonolactone (Sung and Demple, 2006), reduced AP sites formed by 

bifunctional glycosylases, or a massive accumulation of 5′-dRP lesions may cause a switch 

away from the complement of DNA synthesis and ligation enzymes used in SP.  

Accordingly, LP BER proceeds with the incorporation of 2 to 15 nucleotides at the damage 

site by POLβ or the replicative polymerases δ or ε.  This synthesis occurs in conjunction with 

proliferating cell nuclear antigen (PCNA) and flap endonuclease-1 (FEN-1), which cleaves 

the oligonucleotides displaced by polymerase activity.  Strand closure then precedes with 

DNA ligase I (LIGI) activity. 

For SSBR, entry into this BER sub-pathway starts with the formation of frank DNA 

SSBs resulting from the oxidation of deoxyribose through hydrogen abstraction by reactive 

oxygen species (ROS).  In addition to sugar fragmentation and base loss, deoxyribose 
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oxidation typically causes strand scission with the formation of characteristic DNA strand 

termini (Pogozelski and Tullius, 1998).  These terminal lesions can lack the conventional 3′-

hydroxyl and 5′-phosphate groups necessary for the ligation of a broken DNA strand 

(Caldecott, 2001).  Gap tailoring events by APE and polynucleotide kinase phosphatase 

(PNKP) remove damaged termini subsequent to SSB detection by PARP-1 and XRCC1 

recruitment.  The remainder of SSBR consists of DNA synthesis and ligation by the activities 

of POLβ and LIGIIIα, respectively. 

The proposition of removing base adducts via BER comes at the expense of 

generating intermediates, namely AP sites and SSBs, that have the potential of being more 

deleterious to the cell than the initial base lesion (Rinne et al., 2005).  The spontaneous 

generation of AP sites is believed to be high in a cell, with 9000 AP sites generated each day 

(Nakamura et al., 1998), such a level is only exacerbated by the removal of non-bulky base 

damage formed by genotoxic agents.  Without the presence of a nucleobase, AP sites have 

the potential to cause point mutations with a general rule that an adenine is inserted opposite 

these non-informative lesions during DNA replication (Simonelli et al., 2005).  AP sites also 

elicit cytotoxicity by blocking DNA synthesis (Guillet and Boiteux, 2002).   

The processing of AP sites to restore the DNA sequence involves the formation of 

SSBs.  In addition to this indirect route of formation, SSBs form through a direct mechanism 

involving oxidative strand scission (Pogozelski and Tullius, 1998).  Discontinuities in the 

DNA strand threaten cell function and overall survival.  As suggested by a prokaryotic 

model, RNA polymerases may skip over SSBs in a template strand leading to the formation 

of mRNA transcripts with deletions, in effect causing a transcriptional mutagenesis 

(Saxowsky and Doetsch, 2006).  SSBs may also block RNA polymerase II (Kathe et al., 
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2004), thereby affecting gene expression levels.  The accumulation of stalled RNA 

polymerases at SSBs has also been speculated to induce apoptotic cell death, particularly in 

non-dividing cells (Wilson and Mattson, 2007).  In cells that divide, SSBs can lead to 

replication fork collapse and the formation of cytotoxic DSBs (Kuzminov, 2001).   

To limit the potential mutagenic, cytotoxic, or clastinogenic effects from AP sites and 

SSBs, proficient BER is needed for the quick resolution of these repair intermediates.  A 

departure from proficient repair, as demonstrated by the knocking out of certain BER genes, 

illustrates the profound effect of unrepaired BER intermediates.  Gene deletions for BER 

proteins that are active post base removal, where AP sites and SSBs exist, show the most 

extreme phenotypes.  For example, cells lacking POLβ are hypersensitive to methylating and 

ethylating agents that cause BER substrates (Horton et al., 2003).  The etiology of such a 

phenotype is hypothesized to be due to a lack of dRP lyase activity, which allows for the 

persistence of SSBs formed during the normal course of BER (Sobol et al., 2000). 

Similarly, the deletion of other downstream BER genes, such as XRCC1 and PARP-1, 

lead to phenotypes consistent with a decrease in DNA repair capacity.  While mice lacking 

XRCC1 die during development (Tebbs et al., 1999), such a phenotype is observed in PARP-

1 mice only in conjunction with a deletion of PARP-2 (Menissier de Murcia et al., 2003).  

Regardless of this discrepancy in embryonic viability, when models deficient in either 

XRCC1 or PARP-1 are treated with alkylating agents they exhibit a similar phenotype 

consisting of hypersensitivity, an impaired capacity to repair SSBs, and increases in deletion 

mutations (Thompson et al., 1982; Trucco et al., 1998; Op het Veld et al., 1998; Shibata et 

al., 2005).  These observations imply that XRCC1 and PARP-1 work toward the repair of a 

similar repair intermediate.  As will be discussed below, the functions of PARP-1 and 
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XRCC1 also appear to promote BER activities.  Considering that the repair of mutagenic and 

cytotoxic lesions, which are constantly being formed, is potentially contingent on PARP-1 

and XRCC1, understanding the functions of these proteins in living cells may provide a 

better understanding of the mechanisms involved in maintaining DNA integrity. 

 

1.2  PARP-1 in BER 

PARP-1 is considered to be the prototypical member of a family of enzymes capable 

of using NAD+ as a substrate for the synthesis of poly(ADP-ribose) (PAR) for the 

posttranslational modification of certain nuclear proteins (Ame et al., 2004).  Of the 18 

separate genes associated with the PARP family, PARP-1 accounts for a majority of PAR 

synthesis (Shieh et al., 1998).  PARPs and the ribosylation reactions they catalyze are linked 

to a number of cellular processes related to DNA metabolism including repair, transcription, 

and cell division (Schreiber et al., 2006).  Such reactions may also have repercussions at the 

organismal level through their reported involvement in cancer, aging, and inflammation (Kim 

et al., 2005).  

The human ADPRT gene resides on chromosome 1q41-q42 and encodes a 113 kDa 

PARP-1 peptide (Herzog et al., 1989).  PARP-1 consists of four structural elements with 

known function: a N-terminal DNA binding domain (DBD), a bipartite nuclear localization 

signal (NLS), a central interaction/automodification domain, and a C-terminal catalytic 

domain (D’Amours et al., 1999).  Two zinc finger motifs within the DBD allow for PARP-1 

binding to primarily SSBs and DSBs but also undamaged and supercoiled DNA (Petrucco, 

2003).  As inherent to these sequences, the bipartite NLS directs nascent PARP-1 to the 

nucleus (Schreiber et al., 1992).  Another notable amino acid sequence, a caspase cleavage 
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site, resides amid the NLS (Lazebnik et al., 1994).  Within the interaction/automodification 

domain exist leucine zipper and BRCA1 C-terminal (BRCT) motifs that act as interfaces for 

protein-protein interactions (Alber, 1992; Bork et al., 1997).  Additionally, this domain 

consists of glutamic acid residues that serve as PAR acceptors (Duriez et al., 1997).  The 

catalytic domain, which possesses a NAD+ binding site, initiates the synthesis of PAR as well 

as elongation and PAR branching reactions (Figure 1.2). 

To become active in PAR synthesis, PARP-1 must bind a SSB.  A “PARP shuttling” 

model can then describe the molecular events associated with PARP-1 activity (D’Amours et 

al., 1999).  As a homodimer, PARP-1 binding to a SSB increases polymerase activity up to 

500-fold (Simonin et al., 1993).  With activation, PARP-1 mainly targets itself for the 

attachment of PAR polymers, which can reach up to 200 ADP-ribose units long (Ogata et al., 

1981).  The accumulation of PAR polymers during automodification builds a negative charge 

around PARP-1 causing dissociation from the anionic DNA polymer.  With PARP-1 

dissociation, ribosylation reactions cease until PARP-1 binds to additional SSBs.   

PARP-1 also ribosylates over 30 protein substrates that participate in nucleic acid 

metabolism (D’Amours et al., 1999).  The covalent addition of PAR polymers to glutamate 

or aspartate residues on acceptor proteins can lead to structural and functional alterations.  

Two prominent acceptors of PAR polymers are histones H1 and H2B (Ogata et al., 1980a; 

Ogata et al., 1980b).  Such histone modification relaxes chromatin structure (Poirier et al., 

1982), potentially increasing access to SSBs.  In addition, certain proteins with PAR binding 

motifs can non-covalently interact with PAR polymers (Pleschke et al., 2000); such 

interactions may regulate protein interactions, localization, and degradation.  The existence 

of PAR polymers, whether attached to an acceptor protein or PARP-1, is transient.  The 
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enzyme poly(ADP-ribose) glycohydrolase hydrolyzes PAR polymers with such rapidity that 

the polymers have a half-life less than 1 minute when generated in response to DNA damage 

(Wielcken et al., 1983). 

Due to its proclivity for binding to DNA SSBs, PARP-1 has garnered the reputation 

of being a molecular nick sensor and an active member in maintaining genomic stability (de 

Murcia and Menissier de Murcia, 1994).  Since SSBs are formed during and repaired by 

BER, investigations have attempted to determine whether PARP-1 participates in this 

pathway.  Initial approaches for assessing PARP-1 in DNA repair relied on a variety of 

methods including the use of chemical PARP inhibitors, antisense strategies, and the over-

expression of a dominant-negative version of PARP (Burkle et al., 2000).  However, the 

generation of viable Parp-1 knockout mice provided an animal model for assessing the role 

of PARP-1 in BER (Shall and de Murcia, 2000).  These animals exhibit a hypersensitive 

phenotype towards ionizing radiation and alkylating agents (de Murcia et al., 1997; Wang et 

al., 1997).  Though PARP-1 deficient mice experience increased cancer susceptibility to 

agents that alkylate DNA (Tsutsumi et al., 2001; Nozaki et al., 2003), they resist tumor 

formation after exposure to chemicals that induce bulky DNA adducts (Gunji et al., 2006; 

Ogawa et al., 2006).  Cells derived from PARP-1 knockout animals display similar 

hypersensitivities to ionizing radiation and alklyating agents, and show evidence of 

chromosomal damage (de Murcia et al., 1997; Trucco et al., 1998; Masutani et al., 1999). 

However, conflicting reports exist for whether PARP-1 is in fact required for proficient 

repair in vivo after exposure to alkylating agents (Trucco et al., 1998; Vodenicharov et al., 

2000). 
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SSB formation and PARP-1 activation has been shown to recruit XRCC1 and other 

PARP-1 molecules to damage sites in living cells (El-Khamisy et al., 2003; Mortusewicz et 

al., 2007).  Additional investigations using cell extracts or purified proteins have also 

established putative mechanisms by which PARP-1 could participate in BER.  PARP-1 can 

bind to a structural analog of the 5′-dRP terminus formed by APE incision, and such a 

structure may be a source of competition between the two enzymes (Lavrik et al., 2001; 

Cistulli et al., 2004).  PARP-1 interacts with POLβ (Dantzer et al., 2000) and, along with 

FEN-1, can also stimulate POLβ-dependent strand displacement synthesis necessary for LP 

BER (Prasad et al., 2001).  LIGIIIα also participates in a functional and physical interaction 

with PAR and poly(ADP-ribosyl)ated PARP-1, which leads to increased strand ligation 

(Leppard et al., 2003). 

When compiled, data regarding PARP-1 in BER suggest that the protein has the 

ability to: decondense chromatin; signal and recruit repair apparatus; protect repair 

intermediates; and enhance enzyme activity.  Defining the role of PARP-1 in BER is further 

complicated since PARP-1 overactivation from extremely high levels of DNA damage 

causes massive depletions in NAD+ and ATP levels leading to cell necrosis (Ha and Snyder, 

1999). 

 

1.3  XRCC1 and Polymorphisms 

XRCC1 was first fully identified during gene complementation studies where the 

human XRCC1 gene corrected the SSBR defective phenotype and high sister chromatid 

exchange levels observed in EM9 cells (Thompson et al., 1990).  The EM9 model, a mutant 

of AA8 Chinese hamster ovary (CHO) cells was initially characterized by an enhanced 
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sensitivity to and mutagenesis by ethyl methanesulfonate (Thompson et al., 1982).  

Additionally, EM9 cells are sensitive to cell killing by a number of SSB inducing chemicals 

including: methylating agents, hydrogen peroxide (H2O2), camptothecin, and ionizing 

radiation (Thompson and West, 2000).  Molecular analysis later established that the reason 

for the EM9 phenotype was due to a frameshift mutation at codon 220 in the XRCC1 gene, 

which produces a truncated peptide about one-third the size of the wild-type protein (Shen et 

al., 1998a).  Collectively, these data initially established XRCC1 as a central component for 

the efficient repair of SSBs. 

The human XRCC1 gene resides on chromosome 19q13.2 and encodes a 69.5 kDa 

peptide (Lamerdin et al., 1995).  XRCC1 consists of an N-terminal domain and two BRCT 

domains, where one is located centrally (BRCTI) and the other at the C-terminal domain 

(BRCTII).  These BRCT domains, which are found among a number of DNA repair and cell 

cycle checkpoint proteins, serve as modules for protein interactions (Huyton et al., 2000).  

Interspersed between these two BRCT domains are two linker regions and a NLS.  Specific 

protein and DNA interactions have been assigned throughout the different XRCC1 domains  

(Caldecott, 2003b) (Figure 1.3). 

While no known enzymatic activity has been described for XRCC1, this accessory 

factor is believed to function as a scaffold for the numerous protein-protein and protein-DNA 

interactions necessary for BER (Caldecott, 2003b).  Through its various interaction domains, 

XRCC1 either stimulates, recruits, or stabilizes every core member of the BER pathway.  In 

vitro experiments demonstrated that XRCC1 physically interacts with and stimulates a 

number of DNA glycosylases including 8-oxoguanine glycosylase (Marsin et al., 2003; 

Campalans et al., 2005).  XRCC1 has been implicated in modulating the incision of AP sites 
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through a physical interaction with APE (Vidal et al., 2001).  With a stabilizing effect, 

XRCC1 appears to be necessary for maintaining normal levels of LIGIIIα (Caldecott et al., 

1994; Caldecott et al., 1995).  An interaction between XRCC1 and POLβ has been described 

to be necessary for efficient SP BER (Dianova et al., 2004).  However, such an interaction 

may also hinder POLβ strand displacement needed for LP BER (Kubota et al., 1996).  In 

addition to the core members of BER, XRCC1 has been demonstrated to interact with a 

number of other BER related proteins including PNKP (Whitehouse et al., 2001), PCNA 

(Fan et al., 2004), aprataxin (APTX; Clements et al., 2004), tyrosyl DNA phosphodiesterase 

(TDP; Plo et al., 2003), and PARP-2 (Schreiber et al., 2002).  An interaction between PARP-

1 and XRCC1 has been described where activated PARP-1 recruits XRCC1 to damage sites 

in an effort that is believed to initiate or enhance repair (Masson et al., 1998; El-Khamisy et 

al., 2003).  The ability of XRCC1 to interact with multiple partners allows for a model in 

which preformed repair complexes exist within the cell.  While there is evidence for these 

XRCC1 complexes, a more likely scenario involves the conditional recruitment of BER 

proteins depending on the origin (i.e. direct versus indirect SSB formation) of the site to be 

repaired (Caldecott, 2003a; Luo et al., 2004)  

The in vivo requirement for XRCC1 is quite evident.  Animal studies have 

demonstrated that loss of the Xrcc1 gene in mice leads to an embryonic lethal phenotype 

(Tebbs et al., 1999), which is rescued by transgene-complementation (Tebbs et al., 2003).  In 

two separate studies the use of RNA interference established a need for XRCC1 in human 

cells.  The resulting decrease in XRCC1 levels caused hypersensitivity, a decrease in SSBR 

capacity, and increased formation of micronuclei following chemical exposure (Brem and 

Hall, 2005; Fan et al., 2007).  While the above manipulations of XRCC1 do not occur 
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naturally, more subtle human variations exist for this protein.  These genetic variants may 

alter the influence XRCC1 has on BER and ultimately human health.   

During the course of human evolution, mutations at single base pairs have occurred 

and been maintained in the population (Brookes, 1999; Sunyaev et al., 2000).  These single 

nucleotide polymorphisms (SNPs), which by convention have an allelic frequency of 1% or 

greater, occur at a rate of 1 in 1000 base pairs and account for over 90% of genetic variation 

in the human genome (Brookes, 1999).  While a number of SNPs exist within the XRCC1 

gene, three major SNPs have been identified within exons 6, 9, and 10, which correspond to 

amino acid positions 194, 280, and 399 of the XRCC1 protein, respectively (Shen et al., 

1998b; Ladiges, 2006).  Molecular analysis suggests that the allele frequencies for the SNPs 

within exons 6, 9, and 10 may be 0.25, 0.08, and 0.38, respectively (Shen et al., 1998b; Wang 

et al., 2003).   

Within the coding region of the XRCC1 gene, the presence of SNPs that change the 

amino acid sequence of the resulting gene product are of particular concern.  In general, these 

nonsynonymous SNP (nsSNPs) may be functional by altering the stability, substrate 

specificity, catalytic ability, and interaction sites of the resulting variant protein (Sunyaev et 

al., 2001; Kelada et al., 2003).  The three major XRCC1 polymorphisms are all 

nonsynonymous, where the wild-type amino acid arginine (Arg) is replaced with a 

tryptophan (Trp), histidine (His), or glutamine (Gln) at codons 194, 280, and 399, 

respectively.  Each nsSNP may interfere with a specific XRCC1-protein interaction, which 

could then modulate DNA repair capacity and lead to the formation of mutations and 

possibly cancer (Figure 1.3).  Polymorphisms, such as XRCC1 variants, are generally 

considered low penetrance because they likely have a mild affect on disease risk, but occur in 
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an appreciable proportion of the population.  Since certain gene variants can modify the 

effect of a chemical exposure this gives rise to the notion of a gene-environment interaction.  

Accordingly, individuals who possess certain genetic variants may be considered susceptible 

to certain diseases from environmental exposures.   

To demonstrate the significance of XRCC1 polymorphisms, population based studies 

have attempted to show a link between the different XRCC1 SNPs and cancer.  Data are 

mixed for the codon 399 polymorphism with observed increases for breast and stomach 

cancers and decreases in esophageal and bladder cancers (reviewed in Goode et al., 2002 and 

Hung et al., 2005).  The codon 194 variant may be slightly protective with observed 

decreases in breast, lung, and bladder cancers (reviewed in Goode et al., 2002 and Hung et 

al., 2005).  The relatively few studies regarding the codon 280 polymorphism, which were 

hampered by small sample sizes, did not suggest any associations with cancer (reviewed in 

Goode et al., 2002 and Hung et al., 2005).  These epidemiology data are not definitive, and 

like association studies for other genes, may suffer from low statistical power; be confounded 

by polymorphisms in other DNA repair genes; represent a false positive result; or fail to 

consider environmental exposures (Hung et al., 2005).   

Mechanistic data generated through laboratory and other approaches may help clarify 

the biological importance of XRCC1 polymorphisms.  While in silico approaches have been 

developed to assess the significance of variant gene products, laboratory based functional 

assays have played a major role in attempting to confirm or refute epidemiologic findings 

regarding polymorphic genes and cancer risk (Au et al., 2003; Ng and Henikoff, 2006).  

These experimental approaches challenge genotyped human tissues with a mutagen and then 

compare biomarkers of DNA damage to determine relative repair proficiency.  Since DNA 
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repair pathways consist of multiple proteins, each with potentially a number of variants, 

complex genotypes arise that may confound observations for a single variant of interest.  To 

circumvent some of the issues inherent with measuring human samples (Berwick and Vineis, 

2000; Mohrenweiser et al., 2003), a simpler model involving isogenic cells may be able to 

discern the functionality of a variant protein. 

 

1.4  Rationale and Specific Aims 

Efficient BER is necessary for maintaining cell viability and genomic integrity.  

Numerous studies report that PARP-1 and XRCC1 acts as accessory factors in BER.  

Accordingly, the activities of these proteins appear to enhance the efficiency of BER.  The 

exact role of PARP-1 in BER remains under some debate.  Conversely, the role of XRCC1 in 

BER is more established; however, the presence of polymorphic forms of XRCC1 may 

influence DNA repair.  Some approaches that employ purified proteins or use human samples 

to assess these issues may not provide a precise representation of actual nuclear events or 

protein functionality.  We hypothesize that genetic approaches using cellular knockout and 

complementation models can evaluate whether the accessory proteins PARP-1 and XRCC1 

are determinants of BER efficiency.  This hypothesis will be tested with the specific aims 

below.   

 

To evaluate the role of PARP-1 in BER in vertebrate cells 

The role of PARP-1 in BER has generated much controversy.  To clarify this debate, 

cell free models have been employed to gain insight regarding the biochemical events 

associated with PARP-1 activity in BER.  Such approaches, while informative, may not be 
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relevant to PARP-1 activity within living cells.  Issues such as the interaction of PARP-1 

with non-chromatin repair substrates such as plasmids and oligonucleotides; enzyme and 

DNA stoichiometry; and exogenous supplementation of NAD+ may diminish the relevance 

of observations gleaned from in vitro approaches (D’Amours et al., 1999; Sukhanova et al., 

2005).  We hypothesize that PARP-1 is necessary for efficient BER during methyl 

methanesulfonate (MMS) exposure in vertebrate cells.  To address this hypothesis, DT40 

chicken cells and their isogenic PARP-1 null counterparts will be treated with MMS to 

generate BER substrates.  Subsequent endpoint analyses for markers of DNA damage will 

determine whether PARP-1 influences cell survival and whether certain BER intermediates 

accumulate in the absence of PARP-1.  Such an approach is expected to identify processes 

within BER that may be directly or indirectly affected by PARP-1 activity in response to 

chemical exposure. 

 

To demonstrate the applicability of using transgenic cells in a combined study design for 

determining the biological significance of XRCC1 polymorphisms 

The presence of XRCC1 polymorphisms in the human population represents a 

potential concern to public health.  At the cellular level, the functional significance of 

XRCC1 variant proteins remains poorly understood, in part because of the use of 

experimental models with heterogeneous genetic backgrounds.  Determining whether genetic 

polymorphisms enhance disease risk ultimately requires a multi-disciplinary approach 

linking biological plausibility with relevance to the human population (Costa and Easton, 

2006).  However, conventional study designs have been limited to either laboratory or 

population based approaches.  We hypothesize that coupling laboratory and epidemiologic 
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data will provide a robust study design for identifying detrimental repair protein variants and 

for determining gene-environment interactions.  Testing this hypothesis will initially be 

accomplished with the use of isogenic, XRCC1 deficient EM9 cells transfected with different 

polymorphic forms of the human XRCC1 gene.  These cells will then be evaluated based on 

their ability to repair SSBs caused by exposure to different genotoxicants.  These functional 

analyses are expected to allow for the generation of a hypothesis that certain XRCC1 

genotypes are associated with disease risk from a relevant environmental exposure.  This 

hypothesis will then be evaluated using an epidemiologic dataset, the Carolina Breast Cancer 

Study (Newman et al., 1995), to determine whether there are associations between any 

purported repair deficient genotypes, tobacco smoke exposure, and breast cancer risk. 
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Figure 1.1.  Classical BER pathway.  Pathway event denoted on left with corresponding 

lesion, process, or protein in parenthesis.
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Figure 1.2.  Schematic view of PARP-1. 
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Figure 1.3.  Schematic view of XRCC1 and protein interactions.
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CHAPTER 2. ASSESSING A PARP-1 DEFICIENT PHENOTYPE 

2.1  Abstract 

Poly(ADP-ribose) polymerase-1 (PARP-1) is a BER protein that binds to DNA single 

strand breaks (SSBs) and subsequently synthesizes and transfers poly(ADP-ribose) polymers 

to various nuclear proteins.  Numerous biochemical studies have implicated PARP-1 as a 

modulator of BER; however, the role of PARP-1 within BER in living cells remains unclear.  

To test the hypothesis that PARP-1 is necessary for efficient BER during methyl 

methanesulfonate (MMS) exposure in vertebrate cells, intact DT40 chicken cells and their 

isogenic PARP-1 null counterparts were challenged with different exposure scenarios for 

phenotypic characterization.  With chronic treatment, PARP-1 null cells exhibited sensitivity 

to MMS but with an acute treatment did not accumulate base lesions or AP sites to a greater 

extent than wild-type cells.  However, an increase in SSB content in PARP-1 null cell DNA, 

as indicated by glyoxal gel electrophoresis, suggested the presence of intermediates awaiting 

final strand ligation.  These data suggest that during exposure, PARP-1 impacts the late 

stages of BER.  We also propose that the function of PARP-1 in BER may be dependent on 

the relationship between the levels of DNA damage and intracellular NAD+ concentration. 

 

2.2  Introduction 

Base excision repair (BER) limits DNA damage formed through spontaneous or 

oxidative processes associated with endogenous metabolism (Barnes and Lindahl, 2004).  

Additionally, BER removes non-bulky base damage, such as N7-methylguanine (N7-meG), 



caused by exposure to mono-functional alkylating agents (Wyatt and Pittman, 2006).  With 

formation of such alkylative damage, entry into BER can proceed with the removal of the 

adducted base from the DNA strand via spontaneous depurination or by the mono-functional 

methyl purine glycosylase.  The resulting intact apurinic (AP) site is incised by AP 

endonuclease  (APE), thereby generating a single strand break (SSB) with a 5′-

deoxyribosephosphate (5′-dRP) terminus.  Subsequently, polymerase β (POLβ) removes the 

5′-dRP moiety and replaces the appropriate nucleotide to the DNA sequence.  DNA ligase 

IIIα (LIG IIIα) finally seals the DNA strand to complete this sequence of events, which is 

commonly referred to as short-patch (SP) BER.  Alternatively, the long-patch (LP) sub-

pathway, which consists of a different complement of enzymes, can also operate to remove 

5′-dRP residues and ligate DNA.  Following the binding of proliferating cell nuclear antigen, 

POLβ or the replicative polymerases δ or ε participate in strand displacement synthesis 

creating a 2 to 8 nucleotide flap that is excised from DNA by flap endonuclease-1 (FEN-1).  

DNA ligase I subsequently closes the DNA strand (Fortini and Dogliotti, 2007). 

A perturbation in BER enzyme activity can have profound cellular consequences.  

Cells deficient in the core BER enzyme, POLβ, are hypersensitive to chemicals such as 

methyl methanesulfonate (MMS), which induce BER substrates (Sobol et al., 2000).  Such a 

phenotype is believed to be due to a lack of dRP lyase activity that causes an imbalance in 

BER, which then allows for the persistence of SSBs with a 5′-dRP margin formed during the 

normal course of BER.  If not repaired prior to replication, SSBs can be converted to 

cytotoxic double strand breaks (DSBs) (Kuzminov, 2001).  To increase pathway efficiency 

and limit the persistence of SSBs and other intermediates, a number of posttranslational 

modifications and accessory factors participate in BER (Fan and Wilson, 2005).  One such 

 22



factor is the non-enzymatic protein x-ray repair cross complementing group 1 (XRCC1), 

which interacts with core BER enzymes and  (Caldecott et al., 1995; Kubota et al., 1996; 

Vidal et al., 2001; Campalans et al., 2005) acts as a scaffold for the congregation of 

necessary repair enzymes around SSBs (Caldecott, 2003b).  The influence of such accessory 

factors on DNA repair proficiency has been demonstrated by the hypersensitive and 

decreased repair phenotype of cells with mutant XRCC1 (Thompson et al., 1982). 

A posttranslation modification believed to limit genotoxic stress is the synthesis and 

covalent addition of poly(ADP-ribose) (PAR) polymers to acceptor proteins associated with 

DNA metabolism (Schreiber et al., 2006).  These ribosylation reactions are largely attributed 

to the nuclear protein poly(ADP-ribose) polymerase-1 (PARP-1), the archetypal member of a 

diverse family of a proteins capable of such reactions (Ame et al., 2004).  PARP-1 surveys 

DNA for strand disruptions, binds to them, and synthesizes PAR polymers, through NAD+ 

consumption, for attachment to itself and other proteins such as histones.  While PAR 

polymers have a transient existence due to degradation by poly(ADP-ribose) glycohydrolase 

(PARG), ribosylation reactions influence chromatin structure and protein activity.  

Additionally, charge repulsion causes the dissociation of polyribosylated PARP-1 from DNA 

with the subsequent cessation of PAR synthesis. 

The development of viable Parp-1 knockout mice provided a model from which 

subsequent investigations could elucidate the necessity of PARP-1 in DNA repair.  Cells 

from these animals are hypersensitive to alkylating agents and ionizing radiation, suggesting 

the participation of PARP-1 in BER (Shall and de Murcia, 2000).  However, the requirement 

for PARP-1 in the processing of BER related damage remains tenuous due to the existence of 

conflicting observations (Trucco et al., 1998; Vodenicharov et al., 2000).  To resolve this 
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disparity, biochemical studies have attempted to establish a role of PARP-1 in BER.  PARP-1 

can physically interact with and recruit XRCC1 to SSBs (Masson et al., 1998; El-Khamisy et 

al., 2003).  Since interactions of XRCC1 with POLβ (Dantzer et al., 2000) and LIGIIIα 

(Leppard et al., 2003) have also been demonstrated, a model has emerged where PARP-1 

activity could lead to the formation of a repair complex at SSBs, which consists of XRCC1, 

POLβ, and LIGIIIα (Leppard et al., 2003).  PARP-1 also heterodimerizes with PARP-2, a 

functional homolog that possesses similar interaction capabilities, but lacks the affinity for 

SSBs and the capacity for PAR synthesis (Schreiber et al., 2002; Schreiber et al., 2006). 

In an attempt to further solidify a requirement for PARP-1 in BER, we assessed the 

PARP-1 null phenotype in intact cells.  We hypothesized that PARP-1 is necessary for 

efficient BER during MMS exposure in vertebrate cells.  DT40 chicken cells and isogenic 

PARP-1 null cells were employed for this study.  The DT40 based cell model employed here 

naturally lacks PARP-2 (Hochegger et al., 2006), allowing for an investigation without the 

contribution of this PARP-1 homolog to the genotoxic response. Cell lines were challenged 

under different MMS exposure scenarios for subsequent evaluation of endpoints, including 

survival and the accumulation of BER substrates throughout this pathway.  We observed an 

influence of PARP-1 on BER at the later stages of this pathway, but PARP-1 did not appear 

necessary for constitutive BER. 

 

2.3  Materials and Methods 

Culture conditions and dish exposures 

The generation of and culture conditions for DT40 and PARP-1 null cells were as 

described previously (Hochegger et al., 2006; Tano et al., 2007).  For chemical exposure, 
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wild-type (PARP-1 proficient) and mutant DT40 (PARP-1 deficient) cells were seeded into 

10 cm dishes with complete medium and allowed to incubate overnight to obtain the desired 

cell density (1×106/mL).  Without changing medium, MMS (Aldrich) treatment solution 

(100×) was added to the cultures and cells were incubated at 39.5 °C for appropriate time 

points.  After exposure, cells were harvested, washed with cold 1× PBS, pelleted, and then 

stored at -80°C until DNA isolation. 

 

Cytotoxicity assay 

Colony formation was determined in medium containing methylcellulose as described 

previously (Yamamoto et al., 2003). 

 

DNA extraction 

DNA isolation was performed with modification to the PureGene DNA extraction kit 

(Gentra Systems Inc., Minneapolis, MN, USA) as described previously (Nakamura et al., 

2000). 

 

Immuno-slot blot for ring opened N7-meG 

Levels of N7-meG were measured based on the alkaline conversion of the adduct to 

2,6-diamino-4-hydroxy-5-N-methyl-formamidopyrimidine (roN7-meG) with subsequent 

immuno-slot blot analysis (Elder et al., 1998; Rinne et al., 2005). 

 

AP site assay  
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AP sites were measured as previously described (Nakamura et al., 1998) by aldehyde 

reactive probe (ARP, Dojindo Molecular Technology, Gaithersburg, MD, USA) labeling and 

slot blot analysis. 

 

NAD(P)H depletion assay 

During continuous MMS treatment, an imbalance in BER for DT40 cell lines was 

assessed in real-time by a colorimetric assay monitoring intracellular NAD(P)H (Tano et al., 

2007).  NAD(P)H depletion served as a proxy for NAD+ consumption, an indicator of PARP-

1 activation from SSB accumulation (Nakamura et al., 2003).  To confirm the activation of 

PARP-1 during continuous MMS exposure, cells were also co-exposed in the presence of the 

PARP inhibitor 3-aminobenzamide (3-AB, 10 mM, Sigma). 

 

Glyoxal gel electrophoresis assay 

To qualitatively assay the extent of SSB formation in genomic DNA from treated 

cells, single stranded DNA was fractionated by neutral electrophoresis as previously 

described with modification (Drouin et al., 1996).  Briefly, equal amounts of DNA (3 - 10 

µg) samples to be compared were first denatured in 1.5 M glyoxal (Fluka), DMSO (50% 

(v/v); Sigma), and 10 mM sodium phosphate (pH 7) for 1 h at 50°C.  Loading buffer, which 

consisted of 3.5% low melting agarose (Cambrex, Rockland, ME, USA), 0.01% 

bromophenol blue (Sigma), 0.01% xylene cyanol (Sigma), and 10 mM sodium phosphate 

(pH 7), was added to each sample prior to loading and separation of the DNA fragments on 

0.7% agarose gels (Fisher) in 10 mM sodium phosphate (pH 7) for 16 h (30 V) at 4°C.  Gels 
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were stained with acridine orange (5 µg/mL; Fisher) for 1 h and then destained in deionized 

water for subsequent visualization. 

 

Integrating endpoint measurements for determining an imbalance in BER 

To determine the number of N7-meG adducts associated with an imbalance in BER in 

DT40 cells exposed to MMS, NAD(P)H depletion values were log transformed (base 10) and 

plotted against their corresponding cumulative dose, defined here as the product of the MMS 

concentration and exposure time.  The start of an imbalance in BER was defined as the point 

of departure from proficient BER, which was graphically depicted as the intersection of the 

linear regression line for the log NAD(P)H values with y = 2 (i.e. log 100% NAD(P)H 

relative to controls).  The corresponding value along the x-axis was then designated as the 

cumulative dose that initiated an imbalance in BER.  This cumulative dose was then applied 

to the response curve of N7-meG formed in DT40 cells during MMS exposure to determine 

the number of lesions present during the imbalance in BER. 

 

Statistical analyses 

Adduct and AP site data were log transformed to approximate linearity.  Analysis of 

covariance (ANCOVA) was then performed to test for differences in the mean intercept and 

in the slopes of the linear dose-response curves between DT40 and PARP-1 null cells. 

 

2.4  Results 

 27



Influence of PARP-1 on cell survival during MMS exposure 

In this study, DT40 cells and their isogenic PARP-1 null counterparts served as an 

experimental model to investigate the in vivo role of PARP-1 in various aspects of BER.  

Since they lack PARP-2, DT40 cells allow for the investigation of the PARP-1 null 

phenotype without confounding by PARP-2 (Hochegger et al., 2006).  When challenged with 

MMS for 10 days, PARP-1 null cells exhibited extreme hypersensitivity to cell killing 

(Figure 2.1).  The consistency between this observation with previous analyses in vertebrate 

and mammalian cell models (Trucco et al., 1998; Hochegger et al., 2006) reaffirmed the role 

of PARP-1 as a survival factor after alkylative stress, presumably by limiting the 

accumulation of cytotoxic BER intermediates. 

 

roN7-meG as an exposure marker 

Subsequent experiments aimed to identify any BER defects in PARP-1 null cells, 

which may allow for the accumulation of repair intermediates that may ultimately elicit 

alkylation sensitivity.  To rule out dissimilar MMS treatments between cell lines, N7-meG, 

the predominant lesion formed by this methylating agent (Wyatt and Pittman, 2006), served 

as a marker of exposure.  Treating genomic DNA from MMS exposed cells with alkaline 

conditions causes imidazole ring opening (Tudek, 2003) of N7-methylpurines thereby 

allowing roN7-meG quantitation by an immuno-slot blot technique (Rinne et al., 2005).  

Over the exposure period, both cells lines showed similar formation of N7-meG with 

increasing exposure time (Figure 2.2).  These adduct data show that the presence or absence 

of PARP-1 does not greatly influence the accumulation of base damage, particularly with 

increased exposure duration.  These data confirmed the generation of N7-meG adducts with 
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MMS exposure and provide confidence for the interpretation of subsequent results that 

PARP-1 status, rather than inconsistent exposure conditions, would be the cause of any 

phenotypic differences between wild-type and mutant cells.  Additionally, the proportional 

increase in adduct number with exposure time suggests that MMS was stable over this 

exposure time. 

 

AP site measurement  

AP sites were directly measured to determine whether a PARP-1 deficiency affected 

the accumulation of these lesions.  The number of endogenous AP sites present in DT40 and 

PARP-1 null cells were similar (Figure 2.3).  Both DT40 and PARP-1 null cells showed 

equivalent increases in AP site number with MMS exposure (Figure 2.3).  Together, these 

data suggest that PARP-1 status does not influence AP site accumulation during continuous 

MMS exposure. 

 

Determining SSB formation from MMS exposure 

With MMS exposure, the accumulation of SSBs as intermediates of BER can lead to 

PARP-1 overactivation and NAD+ consumption with depletion in intracellular NAD(P)H 

(Nakamura et al., 2003).  In DT40 cells, as exposure time increased, levels of intracellular 

NAD(P)H decreased in a dose dependent manner (Figure 2.4A).  Simultaneous treatment to 

MMS and the PARP inhibitor, 3-AB, protected against major depletions in NAD(P)H, 

confirming an active PARP-1 response to continuous MMS treatments (Figure 2.4B).  These 

data suggest the synthesis of PAR by wild-type DT40 cells as an indicator of an imbalanced 

BER response to DNA alkylation. 
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PARP-1 null cells exposed to MMS in the presence or absence of 3-AB resisted a 

decrease in NAD(P)H of similar magnitude as wild-type DT40 cells treated under similar 

conditions (Figures 2.4C and D).  This observation was expected due to the lack of PARP-1 

and -2 activities in the null cells and was consistent with the response previously reported for 

PARP-1 null mouse embryonic fibroblasts (Nakamura et al., 2003).  The relatively mild 

NAD(P)H depletion in PARP-1 null cells was unlikely to be attributable to a reduction in cell 

number, since no enhanced cell toxicity was observed by trypan blue exclusion when cells 

were exposed to 1 mM MMS for 4 h (data not shown).  NAD(P)H depletion may have 

reflected the activity of other NAD+ consumers, such as sirtuins, in response to genotoxic 

stress or mitochondrial dysfunction (Zhang, 2003).  Regardless of the lack of a massive 

NAD(P)H depletion with MMS exposure in PARP-1 null cells, the observation from DT40 

cells challenged under similar conditions suggests that mutant cells also experienced SSB 

accumulation during imbalanced BER. 

While the NAD(P)H depletion assay provided an indication of SSB accumulation, we 

employed an electrophoretic method to visualize strand disruptions in the DNA of PARP-1 

proficient and deficient cells exposed to MMS.  When exposed to 1 mM MMS for up to 4 h, 

the migration of DNA from wild-type DT40 cells did not appear to increase with time 

(Figure 2.5A).  Conversely, DNA from PARP-1 null cells did show greater migration with 3 

to 4 h of MMS exposure.  When cells were exposed to a range of MMS concentrations for 4 

h, DNA from PARP-1 null cells migrated to a greater extent than that from wild-type cells, 

starting at 0.25 mM MMS and as a function of dose (Figure 2.5B).  These gel data, 

particularly at long and high dose MMS treatments, provided evidence for SSB formation in 

PARP-1 null cells, which failed to show a major decrease in NAD(P)H due to a lack of 
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inherent PARP-1 activity.  These data suggest greater formation of SSBs in PARP-1 null 

cells compared to DT40 cells, as demonstrated by enhanced DNA migration.  

 

Determining an imbalance in BER 

The cumulative dose of MMS that caused an imbalance in BER was determined to be 

0.55 mM×hr (Figure 2.6).  In calculating this cumulative dose, only data for 0.5, 0.7, 1 mM 

MMS were used and extreme exposure levels (1.4 and 2 mM) were excluded (Figure 2.4A).  

When applied to the regression equation (y = 82.85x) generated from the measurement of 

N7-meG adducts in DT40 cells (Figure 2.2), it was determined that such a cumulative dose 

had formed 46 N7-meG adducts per 106 nucleotides.  At this adduct level, 6.1 N3-meA 

adducts per 106 nucleotides could be expected to occur when considering an approximate 

ratio of one N3-meA to eight N7-meG adducts formed during MMS exposure (Beranek, 

1990). 

 

2.5  Discussion 

BER is tasked with the enormous burden of repairing DNA damage caused by the 

constant generation of endogenous genotoxicants and exposures to environmental agents.  

The basic requirement for active BER is evident since the singular disruption of most BER 

genes in mice leads to embryonic lethality, while a Parp-1 Parp-2 double knockout is needed 

to produce such a lethality (Menissier de Murcia et al., 2003; Larsen et al., 2007).  In its 

simplest form, BER can be reconstituted with four core enzymes in vitro: uracil-DNA 

glycosylase, APE, POLβ, and LIGIIIα  (Kubota et al., 1996); however, the presence of 

accessory factors, such as PARP-1, are believed to modulate repair efficiency within cells 
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(Fan and Wilson, 2005).  Much debate has centered on the significance of PARP-1 in BER, 

with proponents arguing that PARP-1 causes a positive or negative effect on BER capacity.  

Early cell free studies suggested that PARP-1 binding to SSBs inhibits repair by denying 

repair proteins access to damage sites (Satoh and Lindahl, 1992; Satoh et al., 1993).  

Conversely, the generation of mice deficient in PARP-1 and their exposure to alkylating 

agents and ionizing radiation established a need for PARP-1 in BER (Wang et al., 1995; de 

Murcia et al., 1997; Masutani et al., 1999).  The use of intact cells or cell extracts from such 

animals produced mixed results, with some studies indicating a requirement for PARP-1 in 

BER (Trucco et al., 1998; Dantzer et al., 2000; Le Page et al., 2003; Parsons et al., 2005), 

while others showed no need for PARP-1 (Vodenicharov et al., 2000; Allison et al., 2003).  

Other studies, which have employed biochemical or in vivo models, have discovered possible 

roles for PARP-1 within BER (Lavrik et al., 2001; El-Khamisy et al., 2003; Leppard et al., 

2003; Sukhanova et al., 2005; Mortusewicz et al., 2007). 

We hypothesized that PARP-1 is necessary for efficient BER during MMS exposure 

in vertebrate cells.  We chronically treated PARP-1 proficient and deficient DT40 cells to 

MMS for 10 days as our initial characterization of the PARP-1 null phenotype in this model.  

With acute MMS treatments we systematically evaluated aspects of BER to help clarify the 

significance of PARP-1 within this pathway.  Since DT40 cells inherently lack PARP-2 

(Hochegger et al., 2006), a functional homolog of PARP-1, this report is the first 

characterization of BER in cells lacking both PARP-1 and PARP-2, as well as, the first 

systematic evaluation covering the entirety of BER function (from base adduction to the 

presence of SSBs immediately before ligation) within living cells.  PARP-1 null cells 

exhibited a hypersensitive phenotype when chronically treated with MMS.  During an acute 
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treatment, both PARP-1 proficient and deficient cells had a similar accumulation of N7-meG 

and AP sites.  However, cells lacking PARP-1 appeared to have a greater extent of SSB 

formation demonstrated by enhanced DNA migration during electrophoresis.  Yet in the 

absence of MMS treatment, endogenous levels of AP sites were similar between cell lines. 

The culmination of previous investigations supports an active role of PARP-1 in 

BER.  During the repair of N7-meG or its depurinated sites, APE incision of AP sites forms 

SSBs with 5′-dRP termini.  With low levels of damage, processing of 5′-dRP could proceed 

via a PARP-1 independent manner through a highly coordinated series of enzymatic steps 

involving XRCC1, POLβ, and LIGIIIα in which BER intermediates are handed off for 

subsequent processing to complete repair (Wilson and Kunkel, 2000).  When DNA damage 

levels are high, 5′-dRP lesions may saturate the dRP lyase activity of POLβ and become 

uncoupled from the repair apparatus leading to an accumulation of SSBs, which may 

ultimately lead to cytotoxicity (Sobol et al., 2000).  PARP-1 appears to have the ability to 

bind 5′-dRP moieties based on in vitro studies with a lesion of analogous structure (Lavrik et 

al., 2001). The events subsequent to PARP-1 binding and the initiation of ribosylation 

reactions could be an attempt to compensate for an imbalance in BER, by switching to LP or 

stimulating SP.  Within the context of SP BER, PAR foci around the SSBs could serve as a 

recruitment signal for XRCC1 (El-Khamisy et al., 2003).  With its arrival at the SSB, 

XRCC1 acts as a scaffold for the formation of a repair complex containing POLβ and 

LIGIIIα for the completion of BER (Caldecott et al., 1996).  XRCC1 recruitment represents 

an apparently critical event since mutation of the XRCC1 BRCT1 domain, which interacts 

with PARP-1 and PAR, decreases SSB repair capacity and increases sensitivity to MMS 

(Taylor et al., 2002).  Such observations were recapitulated in XRCC1 deficient cells treated 
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with MMS in the presence of a PARP inhibitor (Horton et al., 2008).  Previously, PARP-1 

was implicated in the LP sub-pathway since PARP-1 null cell extracts had inefficient LP 

capacity (Dantzer et al., 2000).  Subsequent in vitro data suggest that PARP-1 binding to 5′-

dRP is an active mediator in sub-pathway selection, allowing for the switch from the 

predominant SP to LP (Prasad et al., 2001).  That study also demonstrated that a functional 

interaction between PARP-1 and FEN-1 stimulates POLβ strand displacement during LP. 

In relation to our study, the resistance of PARP-1 proficient DT40 cells to chronic 

MMS exposure could reflect the ability of PARP-1 to enhance SP and eventually cause a 

switch to LP in an effort to limit toxic BER intermediates.  At low levels of DNA damage, 

wild-type cells may solely rely on PARP-1 independent BER in which substrates are 

efficiently handed to sequential repair enzymes (APE, POLβ, and LIGIIIα) for complete 

repair without disruption.  From our acute exposure, we detected a slight increase in AP sites 

at 1 mM MMS for 30 min and NA(D)PH depletion analysis showed that 1 mM MMS 

exposure theoretically starts NAD(P)H depletion at 33 min of exposure (calculated from 0.55 

mM MMS).  These results suggest that at such damage levels, 5′-dRP lesions may saturate 

dRP lyase capacity, become uncoupled from the repair apparatus, and then serve as 

substrates for PARP-1.  With PARP-1 binding and NAD+ consumption, the ribosylation of 

histones opens up the local DNA environment and automodification causes PARP-1 to 

dissociate from DNA, collectively facilitating repair enzyme access to damage sites.  The 

generation of PAR within the vicinity of the SSB could further enhance SP by recruiting the 

XRCC1, POLβ, and LIGIIIα repair complex and stimulate LIGIIIα (Leppard et al., 2003) by 

acting as a source of ATP for strand ligation (Oei and Ziegler, 2000).  With high levels of 

damage and continued PARP-1 binding, intracellular NAD+ levels may not support the 
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efficient PAR synthesis needed for PARP-1 dissociation from DNA.  This scenario could 

serve as the molecular switch to initiate LP BER, allowing for the functional interaction 

between PARP-1 and FEN-1 that stimulates strand displacement synthesis.  Previously, the 

stimulatory effect of PARP-1 on LP was ablated when NAD+ was added to an in vitro 

system, suggesting that the abortive dissociation of PARP-1 from DNA is critical for LP 

(Prasad et al., 2001).  Under massive levels of DNA damage, the resulting depletion in NAD+ 

would result in necrotic cell death.  In contrast, the hypersensitivity of PARP-1 null cells 

could be explained by the fact that such cells are strictly limited to PARP-1 independent 

BER, which upon saturation would lead to an accumulation of uncoupled SSBs that are 

eventually converted to toxic DSBs. 

We also employed a strategy of an acute, continuous MMS treatment of intact DT40 

cells to determine when during the course of BER a repair defect could occur due to a lack of 

PARP-1.  The direct analysis of DNA base damage and AP sites resulting from MMS 

exposure, the first such analysis to our knowledge, showed similar levels of each lesion 

regardless of PARP-1 status.  The influence of a PARP-1 deficiency only became evident 

when analyzing markers of DNA damage occurring after SSB formation by APE activity.  

We assessed NAD(P)H depletion as a marker of NAD+ consumption and PAR synthesis.  

Relative to PARP-1 proficient DT40 cells, PARP-1 null cells did not exhibit a similar extent 

of NAD(P)H depletion during MMS treatment, as expected due to the reliance of this assay 

on PARP activity.  However, DNA from PARP-1 null cells appeared to have a greater SSB 

content than that from wild-type cells, as determined by an electrophoretic approach.  Such 

an occurrence is supported by previous observations for increased SSBs in MMS treated cells 

with inhibited PARP activity, as demonstrated by the single cell electrophoresis assay 
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(Horton et al., 2008).  Interestingly, in our study a difference in the extent of SSB formation 

was not reflected in AP site numbers, where both cells lines had similar levels.  This 

observation suggests that in both cell lines, AP sites are processed with similar efficiency up 

to and including their removal by the dRP lyase activity of POLβ.  Subsequently, the 

resulting intermediates awaiting ligation may be sealed with greater efficiency in wild-type 

cells than in PARP-1 null cells.  A lack of both PAR synthesis and the eventual production of 

PAR degradation products associated with ATP synthesis could explain the SSB repair defect 

in PARP-1 null cells.  Additionally, while demonstrated after hydrogen peroxide treatment, 

perturbation of the relationship between PARP-1 and PARG decreases SSB repair (Fisher et 

al., 2007), further suggesting a need for PAR anabolism and break down reactions for the 

complete repair of SSBs. 

With the measurement of multiple DNA damage endpoints corresponding to 

individual stages of BER, we attempted to calculate the number of base adducts present 

during an imbalance in BER.  By determining the start of a BER imbalance, as indicated by 

the initiation of NAD(P)H depletion in PARP-1 proficient DT40 cells, we correlated that 

MMS exposure level to the N7-meG response curve.  Accordingly, our data suggest that 46 

N7-meG adduct per 106 nucleotides, which corresponds to a level of 6.1 N3-meA per 106 

nucleotides, were present during an imbalance in BER in DT40 cells when continuously 

exposed to MMS.  To our knowledge, this calculation from empirical data represents the first 

association between adduct number and an imbalance in BER.  Such an approach could 

prove informative when comparing different repair phenotypes and genotoxicants. 

In summary, using an isogenic cell system we attempted to link the phenotype of 

PARP-1 deficient DT40 cells with previous biochemical studies to better define the role of 
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PARP-1 in BER.  We conclude that PARP-1 enhances BER in vivo, particularly at the late 

stages during MMS treatment; however, PARP-1 may be dispensable during the processing 

of certain endogenous BER substrates.  We also propose a model in which there is an ordered 

selection of BER sub-pathways that is predicated on the inverse relationship between 

intracellular NAD+ levels and BER substrates.  When substrate levels are low, PARP-1 

independent SP predominates in lesion processing.  As damage levels increase, PARP-1 

becomes active in BER to enhance SP.  In situations where levels of BER substrates continue 

to increase, the resulting decrease in NAD+ levels from PARP-1 overactivation prohibits 

PARP-1 dissociation from DNA allowing for a switch to LP repair. Together the 

observations strengthen the positive role of PARP-1 in BER for preventing the accumulation 

of genotoxic lesions during chemical exposure. 
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Figure 2.1. Sensitivity of DT40 and PARP-1 null cells to MMS.  Survival curves of DT40 

(PARP-1 proficient) and DT40-derived PARP-1 null cell exposed to MMS for 10 days.  Each 

point represents the mean and S.D. (bars) from three independent experiments. 
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Figure 2.2. Measurement of ring-opened N7-meG as a marker of MMS exposure.  Genomic 

DNA from DT40 and PARP-1 null cells exposed to 1 mM for up to 4 h was subjected to 

alkaline conditions to induce a ring-opened form of N7-meG for subsequent immuno-slot 

blot analysis.  Each point represents the mean of four independent measurements.  Bars 

indicate S.D. 
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Figure 2.3. Measurement of AP sites in DT40 and PARP-1 null cells exposed to MMS. 

Genomic DNA from DT40 and PARP-1 null cells exposed to 1 mM for up to 4 h was reacted 

with ARP for slot blot analysis of AP sites. Each point represents the mean of four 

independent measurements.  Bars indicate S.D. 
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Figure 2.4. Depletion of intracellular NAD(P)H in DT40 and PARP-1 null cells.  NAD(P)H 

levels in (A) DT40 and (C) PARP-1 null cells continuously exposed to various 

concentrations of MMS for up to 4 h.  NAD(P)H depletion in (B) DT40 and (D) PARP-1 null 

cells exposed to various MMS concentrations for 4 h in the presence or absence of 3-AB (10 

mM). 
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Figure 2.5. Gel electrophoresis analysis of glyoxal denatured DNA from DT40 and PARP-1 

null cells exposed to MMS.  (A) The migration of genomic DNA from wild-type DT40 (left) 

and PARP-1 null (right) cells exposed to 1 mM MMS for up to 4 h.  (B) The migration of 

genomic DNA from wild-type DT40 (+) and PARP-1 null (-) cells exposed to various MMS 

concentrations for 4 h.  Gels are representative of two independent experiments. 
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Figure 2.6. Determining the number of N7-meG adducts present at an imbalance in BER. 

Log transformed NAD(P)H values (from Figure 2.4A) for DT40 cells were plotted against 

the corresponding cumulative dose (the product of mM MMS and exposure time).  The x 

value corresponding to the intersection of the resulting linear regression line and y = 2 (i.e. 

log 100% NAD(P)H relative to controls) was determined to be the start of an imbalance in 

BER.  This cumulative dose was then applied to the response curve of N7-meG formed in 

wild-type DT40 cells during MMS exposure (Figure 2.2) to determine the number of lesions 

present at the beginning of an imbalance in BER.
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CHAPTER 3. FUNCTIONAL STUDIES AND EPIDEMIOLOGIC DATA FOR 

XRCC1 POLYMORPHISMS 

 (Reproduced with permission from Cancer Research 2006, 66:2860-8.  Copyright 

2006 American Association for Cancer Research, Inc.) 

3.1 Abstract 

Tobacco smoke produces oxidative and alkylative DNA damage that necessitates repair 

by base excision repair (BER) coordinated by X-ray cross-complementing gene 1 (XRCC1).  

We investigated whether polymorphisms in XRCC1 alter DNA repair capacity and modify 

breast cancer risk associated with smoking.  To demonstrate the functionality of the 280His 

variant, we evaluated single strand break repair (SSBR) capacity of isogenic Chinese hamster 

ovary (CHO) cells expressing human forms of XRCC1 after exposure to hydrogen peroxide 

(H2O2), methyl methanesulfonate (MMS), or camptothecin by monitoring NAD(P)H.  We 

used data from the Carolina Breast Cancer Study (CBCS) a population-based, case-control 

study, which included 2077 cases (786 African Americans and 1281 whites) and 1818 

controls (681 African Americans and 1137 whites) to examine associations among XRCC1 

codon 194, 280, and 399 genotypes, breast cancer, and smoking.  Odds ratios (ORs) and 95% 

confidence intervals (CIs) were calculated by unconditional logistic regression.  Only cells 

expressing the 280His protein accumulated SSBs, indicated by NAD(P)H depletion, from 

both H2O2 and MMS exposures.  In the CBCS, positive associations were observed between 

breast cancer and smoking dose for participants with XRCC1 codon 194 Arg/Arg (Ptrend = 

0.046), 399 Arg/Arg (Ptrend = 0.012) and 280 His/His or His/Arg (Ptrend = 0.047) genotypes.  



The 280His allele was in strong linkage disequilibrium with 194Arg (Lewontin’s D′ = 1.0) 

and 399Arg (D′ = 1.0).  These data suggest that less common, functional polymorphisms may 

lie within common haplotypes and drive gene-environment interactions. 

 

3.2 Introduction 

Polymorphisms in genes responsible for maintaining genomic integrity appear to be 

potential modifiers of disease risk (Berwick and Vineis, 2000; Vodicka et al., 2004).  

Consequently, a number of laboratory (Berwick and Vineis, 2000) and epidemiologic (Goode 

et al., 2002) investigations have attempted to show a link between polymorphic DNA repair 

genes and a variety of malignancies.  With breast cancer being the most frequently diagnosed 

malignancy in women, there is enormous interest in demonstrating whether chemical 

exposures, genetics, or a combination of both are among the risk factors for this disease 

(Duell et al., 2001; Moullan et al., 2003; Kadouri et al., 2004; Kennedy et al., 2005).  The 

role of cigarette smoking and breast cancer risk is controversial, with some epidemiologic 

studies showing positive associations, while others showed inverse associations or no 

association (Palmer and Rosenberg, 1993).  A recent literature review concluded that breast 

cancer risk may be increased by smoking of long duration and by exposure to passive 

smoking, also referred to as environmental tobacco smoke (ETS) (Terry and Rohan, 2002).  

Additionally, functional and observational approaches have focused on interactions between 

polymorphisms of DNA repair genes and smoking (Duell et al., 2001; Shi et al., 2004; 

Kennedy et al., 2005), as an example of gene-environment interactions involved in the 

etiology of breast cancer. 
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X-ray cross-complementing gene 1 (XRCC1) acts as a scaffolding protein for base 

excision repair (BER) and single strand break repair (SSBR) (Caldecott, 2003a; Caldecott, 

2003b).  These overlapping pathways participate in the constitutive response to endogenous 

mutagens and exogenous exposures including tobacco smoke.  Specifically, XRCC1-

mediated pathways repair damage to DNA bases, from oxidation or covalent binding of non-

bulky electrophiles, and to the deoxyribose-phosphate backbone.  Quick resolution of this 

genetic damage is imperative since repair intermediates, such as abasic sites and single strand 

breaks (SSBs), are generally more genotoxic and cytotoxic than the initial lesion (Sobol et 

al., 2003).  Three common polymorphisms within the XRCC1 gene have been identified at 

codons 194, 280, and 399 (Arg194Trp, Arg280His, and Arg399Gln) (Shen et al., 1998b).  

These nonconservative amino acid changes may alter XRCC1 function. This change in 

protein biochemistry leads to the supposition that variant alleles may diminish repair kinetics 

thereby influencing susceptibility to adverse health effects including cancer (Rebbeck et al., 

2004). 

Laboratory experiments and epidemiologic studies have failed to reach a consensus 

regarding the functional effects of XRCC1 polymorphisms (Hung et al., 2005).  Some 

laboratory investigations of XRCC1 codon 399Gln functionality in human cells suggested 

that this polymorphism is associated with increased levels of DNA damage after exposure to 

various mutagens (Lunn et al., 1999; Au et al., 2003; Wang et al., 2003).  Other reports 

offered conflicting evidence suggesting that the 399Gln polymorphism has no adverse effect 

on DNA repair (Pastorelli et al., 2002; Tuimala et al., 2002; Kiuru et al., 2005).  The 194Trp 

variant protein does not appear to negatively alter the DNA repair capacity of human cells 

(Tuimala et al., 2002; Wang et al., 2003).  Functional studies using lymphocytes suggested 
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that the 280His polymorphism diminishes genomic stability (Pastorelli et al., 2002; Tuimala 

et al., 2002). 

In the present study we further characterized and confirmed the ability of isogenic 

mammalian cells transfected with human XRCC1 cDNA to amend SSBs caused by genotoxic 

stress.  We directly assessed the functionality of the 280His and 399Gln variant proteins 

through their expression within EM9 cells, a theoretical XRCC1 knockout model (Thompson 

and West, 2000), and comparison with repair proficient cells.  The choice of chemicals for 

exposure, hydrogen peroxide (H2O2) and methyl methanesulfonate (MMS), qualitatively 

mimics some of the genotoxic events resulting from tobacco smoke exposure, namely DNA 

oxidation and purine alkylation by N-nitrosamines.  As a result, we could infer how BER and 

SSBR capacity in humans would be affected by XRCC1 variants after exposure to tobacco 

smoke.  Additionally, exposure to the topoisomerase 1 inhibitor camptothecin allowed for the 

novel functional evaluation of XRCC1 variants within tyrosyl-DNA phoshodiesterase1 

(TDP1)-mediated pathways (Barrows et al., 1998; Park et al., 2002).  We then applied our 

observations to a population-based, case-control study to evaluate the hypothesis that the 

XRCC1 280His allele increases the risk of breast cancer from exposure to tobacco smoke.  

We found that combining the use of transgenic cells and a novel screening assay for DNA 

repair capacity with a traditional epidemiologic approach proved to be an effective union for 

providing an increased understanding of gene-environment interactions. 

 

3.3 Materials and Methods 

Cell Line Preparation and Cell Culture 
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 Preparation of EM9 cells expressing the human wild-type (EM9-WT), 280His (EM9-

280His) or 399Gln (EM9-399Gln) variant proteins, or an empty pCMV vector (EM9-V) and 

culture conditions were described previously (Nakamura et al., 2003; Takanami et al., 2005).  

After reaching 90-100% confluency, cells were harvested by trypsin (Sigma) for subculturing 

or chemical exposure.   

 

Chemicals 

 Unless noted, all chemicals used for cell exposures and the NAD(P)H assay were 

purchased from Sigma.  MMS was obtained from Aldrich (Milwaukee, WI).  Dosing and 

control solutions of chemicals were prepared with 1× phosphate-buffered saline (PBS, pH 

7.4; Invitrogen).   

 

Chemical Exposures and NAD(P)H Assay 

Exposed cells were analyzed for an imbalance of SSBR by non-invasively monitoring 

intracellular NAD(P)H levels using a colorimetric assay (Nakamura et al., 2003) with 

modification.  Briefly, prior to chemical exposures cells were seeded onto a 96-well plate (5 

× 103 cells/50 µL/well) in Dulbecco’s modified Eagle medium with nutrient mixture F-12 

(DMEM/F-12, Invitrogen) supplemented with 10% fetal bovine serum (FBS) and 1% 

penicillin and streptomycin (Invitrogen) for an overnight incubation.  For continuous 

exposures (ie. MMS and camptothecin), each well had been adjusted to a volume of 110 µL 

with complete medium, dye, and test chemical.  For H2O2 exposures, cells were exposed to 

H2O2 for 30 minutes at 37 °C after replenishment with 50 µL of serumless DMEM/F-12 
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medium.  To quench the oxidation reactions, DMEM/F-12 containing 20% FBS, catalase (18 

units/mL) and dye were added to each well to give a final volume of 110 µL. 

NAD(P)H levels were then monitored as previously described (Nakamura et al., 

2003).  Statistical evaluation of functional assay data was preformed using SAS 9.1 (SAS 

Institute, Cary, NC).  Due to the approximate negative exponential decay with increasing 

dose, NAD(P)H values were log transformed for multiple linear regression.  For each 

chemical exposure, two-sided t tests were performed comparing the regression coefficients 

for the wild-type response and the regression coefficient of each of the other cell lines to 

determine statistical significance with an alpha level of 0.05.  

 

Carolina Breast Cancer Study 

 The Carolina Breast Cancer Study (CBCS) is a population-based, case-control study 

of invasive and in situ breast cancer conducted in 24 counties of central and eastern North 

Carolina (Newman et al., 1995).  Incident cases were identified using a Rapid Case 

Ascertainment System in cooperation with the North Carolina Central Cancer Registry.  

Controls were selected from Division of Motor Vehicles (women younger than 65 years old) 

and United States Health Care Financing Administration lists (women 65 years old or 

greater).  In-person interviews were conducted to obtain blood samples and information on 

potential breast cancer risk factors (Newman et al., 1995; Millikan et al., 1998). 

 Cases of invasive breast cancer were enrolled in two phases (Phase 1: 1993-1996, 

Phase 2: 1996-2001), with over-sampling of African American and younger women 

(Millikan et al., 2003).  Controls were frequency matched to cases based upon age and race 

(± 5 years) using randomized recruitment (Weinberg and Sandler, 1991).   Cases of in situ 
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breast cancer were enrolled between 1996 and 2001, and included women with ductal 

carcinoma in situ (DCIS) and DCIS with microinvasion to a depth of 2 mm.  All cases of in 

situ breast cancer were eligible, with no over-sampling according to age or race.   Controls 

were frequency matched to in situ cases based upon age (± 5 years) and race.   Race was 

classified according to self-report.  Less than 2% of participants reported Native American or 

other race, and were classified as white.    

 A total of 1803 cases (787 African Americans, 1016 whites) and 1564 controls (718 

African Americans, 846 whites) were enrolled in the invasive study, and a total of 508 cases 

(107 African Americans, 401 whites) and 458 controls (70 African Americans, 388 whites) 

were enrolled in the in situ study.  Contact and cooperation rates for the CBCS, and 

characteristics of cases and controls, have been published previously (Millikan et al., 2003).  

Response rates for blood draws and obtaining DNA were 90% for cases and 90% for 

controls.  DNA samples were available for a total of 2077 cases (786 African Americans and 

1281 whites) and 1818 controls (681 African Americans and 1137 whites).  Odds ratios 

(ORs) for breast cancer risk factors did not differ significantly between persons who gave 

DNA and those who did not (data not shown).  XRCC1 codon 194 and 399 results for part of 

Phase 1 of the CBCS were published previously (Duell et al., 2001).  The present results 

combine genotypes from the entire CBCS (Phase 1 and 2 and in situ studies).  Results did not 

differ for African Americans and whites, or for invasive and in situ disease, so results are 

combined to increase precision. 
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Genotype Analysis 

DNA was extracted from peripheral blood lymphocytes by standard methods using an 

automated ABI-DNA extractor (Nuclei Acid Purification System, Applied Biosystems, 

Foster City, CA) in the UNC SPORE Tissue Procurement Facility.  Genotyping was 

conducted using the ABI 7700 Sequence Detection System, or "Taqman"™ assay (Applied 

Biosystems, Foster City, CA).  The following loci were genotyped: XRCC1 codon 194 (rs 

1799782), codon 280 (rs 25489) and codon 399 (rs 25487).  Primer and probe sequences as 

well as annealing temperatures for each genotyping assay are listed in Appendix A.  Probes 

were labeled on the 5′ end with either FAM or VIC (Applied Biosystems, Foster City, CA).  

Probes were labeled on the 3′ end with the quencher dye 6-carboxy-N,N,N′,N′-

tetramethylrhodamine (TAMRA). 

PCR reactions were performed in 15 µL reaction volumes.  Reactions contained 0.7X 

Universal Master Mix (Applied Biosystems, Foster City, CA), 200 nM of each allele specific 

probe, 900 nM of each primer, and 15 ng of genomic DNA.  After reactions tubes were set 

up, amplification was performed using a Perkin-Elmer GenAmp 9700 thermocycler. 

Reaction tubes were placed into the thermocycler after the temperature reached 50 °C.  PCRs 

were carried out using the following conditions:  50 °C for 2 minutes (AmpErase UNG 

Activation), 95 °C for 10 minutes (AmpliTaq Gold Activation), and 40 cycles of 92 °C for 15 

seconds (denature) and the temperature listed in Appendix A for 1 minute (anneal/extend).  

Samples that failed to amplify were repeated.  Those samples that failed to amplify on the 

second run were scored as missing.  Missing genotypes for each loci were as follows: XRCC1 

codon 194 (22 cases, 1 control), codon 280 (41 cases, 8 controls) and codon 399 (72 cases, 

20 controls).  A 10% random sample of genotypes were repeated for each locus, and results 
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were identical to the initial analysis.  For each genotyping assay, DNA samples from the 

Coriell tissue repository (Coriell Institute for Medical Research, Camden, NJ) that had 

previously been sequenced at the National Cancer Institute (www.nci.snp500.gov) were used 

as positive controls. 

 

Statistical Methods 

Departures from Hardy-Weinberg equilibrium were evaluated by calculating expected 

genotype frequencies among controls based on observed allele frequencies and comparing 

the expected frequencies to observed genotype frequencies using χ2 tests.  Differences 

between allele or genotype frequencies in cases and controls were estimated using χ2 tests or 

Fisher’s Exact tests when expected counts were less that 5.  Tests for statistical significance 

were two-sided with an alpha level of 0.05.  SAS Genetics (version 8.2; SAS, Cary, NC) was 

used to estimate XRCC1 codon 194 + 280 + 399 haplotype frequencies, and to compare 

haplotype frequencies in cases and controls.  Haplotype estimates from SAS Genetics are 

based upon the EH algorithm (Zhao et al., 2000). Lewontin’s D′ value, an estimate of the 

extent of linkage disequilibrium, was calculated using SAS Genetics for pair-wise 

comparisons of XRCC1 codon 194 and 280, and 280 and 399.    

Unconditional logistic regression was used to calculate ORs for breast cancer and 

95% confidence intervals (CIs).  PROC GENMOD in SAS (version 8.2; SAS Institute, Cary, 

NC) was used to incorporate offsets derived from sampling probabilities used to identify 

eligible participants (Weinberg and Sandler, 1991) and to adjust for race (African American, 

white) and age (as an 11-level ordinal variable that reflected 5-year age categories).   
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 Analysis of smoking effects used a common referent group of women who were not 

exposed to active or passive smoking.  Ever active smokers were defined as women who 

smoked at least 100 cigarettes in their lifetime.  Exposure to passive smoking was defined as 

living with a smoker after the age of 18 (ETS after 18).  Women who smoked on the 

reference date (date of diagnosis for cases or date of selection for controls) were classified as 

current smokers, while those women who no longer smoked on the reference date were 

designated former smokers.  Women were asked about the amount of cigarettes smoked 

(packs per day) and the duration of smoking (the total number of years the participant 

smoked regularly).  Information on duration of smoking was obtained by asking participants, 

"Keeping in mind that you may have stopped and started several times, overall how many 

years have you smoked regularly?"  Dose of smoking was obtained by asking, "On average, 

how many cigarettes did you smoke per day?"  Odds ratios for smoking dose and duration 

were calculated separately for current smokers and former smokers, and these groups were 

combined in the present analysis since positive associations were observed in both groups.  

Information regarding dose and duration of smoking was missing for 3 white cases.  

Multivariable logistic regression was used to adjust for potential confounding factors.  

Confounding was evaluated by determining whether adding a variable to a model resulted in 

a change in the beta coefficient of at least 10% for the exposure of interest.  The following 

confounding variables were identified for the association of smoking and breast cancer:  age 

at menarche (<12, ≥12 years), a composite term for age at first full-term pregnancy and 

parity (nulliparous, parity = 1 and age at first full-term pregnancy < 26, parity = 1 and age at 

first full-term pregnancy ≥ 26, parity ≥ 2 and age at first full-term pregnancy < 26, parity ≥ 2 

and age at first full-term pregnancy ≥ 26), family history of breast cancer (yes/no for first-
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degree relative), and alcohol consumption (never/ever).  ORs for XRCC1 genotypes and 

breast cancer were unchanged after adjusting for smoking and the other covariates listed, and 

thus are presented adjusted for offsets (sampling probabilities), age and race only.  

Participants with missing values for any of the variables in a regression model were omitted 

from the analysis. 

Stratified analyses were used to investigate modification of ORs for smoking and 

breast cancer by XRCC1 genotype. ORs for smoking were calculated according to each 

XRCC1 genotype separately.  In addition, we wished to estimate effects for XRCC1 codon 

194 and 399 separately, while ignoring codon 280 genotype, in order to compare our results 

with previous epidemiologic studies of XRCC1.  Tests for trend for smoking dose and 

duration were conducted by calculating P-values for the beta coefficient in logistic regression 

models with smoking dose or duration coded as an ordinal variable. Results were similar for 

African American and white participants, therefore only combined results are shown.  The 

term "Any genotype" refers to one or more copies of the less common allele, e.g. XRCC1 

codon 194 "Any Trp" refers to "Arg/Trp or Trp/Trp genotype." 

Interactions between XRCC1 genotypes and smoking on a multiplicative scale were 

evaluated using likelihood ratio tests (LRTs).  An alpha value of 0.20 was used for statistical 

significance to account for the lower power of the test (Selvin, 1996). 

Interactions on an additive scale were assessed by estimating independent and joint 

effects for XRCC1 genotypes and smoking using a single referent of never smokers and low 

risk XRCC1 genotype.  Departures from additive effects were assessed using interaction 

contrast ratios (ICRs).   ICRs greater than zero imply greater than additive effects, or synergy 

(Rothman and Greenland, 1998). 
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3.4  Results 

Data from our functional evaluation of the 280His polymorphism support the 

hypothesis that some polymorphisms in DNA repair genes can alter the efficiency of repair 

pathways.  To determine the phenotypic response to oxidative stress, the transfected EM9 

cell lines were exposed to H2O2 (Figure 3.1).  At the concentration range tested, the EM9-

WT cells showed no depletion in NAD(P)H.  However, the EM9-V cells exhibited a dose-

dependent decrease in NAD(P)H to levels less than 40% of controls at the highest dose.  

Likewise, the EM9-280His cells showed a similar response with a 50% decrease in 

NAD(P)H after 4 hours of recovery.  EM9-399Gln cells showed a slight reduction in 

NAD(P)H levels (83% of control level) at the highest dose.   

During MMS exposures (Figure 3.1) we observed clear differences in terms of SSBR 

proficiency between the EM9 cell lines.  After 4 hours of continuous exposure to MMS, 

EM9-280His cells showed greater NAD(P)H depletion than EM9-WT cells at a 

concentration as low as 62.5 µM.  These data strongly suggest that the efficient removal of 

alkylated bases and other repair intermediates may be hindered by the expression of the 

XRCC1 280His genotype.  EM9-399Gln cells appeared to have a similar depletion of 

intracellular NAD(P)H as EM9-WT cells in the cellular response to alkylative stress.  EM9-V 

cells showed a massive reduction in NAD(P)H with only 30% of control levels at the highest 

dose.    

To determine the influence of XRCC1 polymorphisms on interactions with proteins 

involved in a TDP1-mediated pathway, we exposed the transfected cell lines to the 

topoisomerase 1 inhibitor camptothecin (Figure 3.1).  After 4 hours of continuous exposure 
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the EM9-WT, EM9-399Gln, and EM9-280His cell lines showed less than 10% decreases in 

NAD(P)H relative to controls, indicating  no influences of XRCC1 genotypes on this repair 

pathway.  The repair deficient EM9-V cells showed a 25% decrease in NAD(P)H  at the 

highest dose level. 

Because data indicated that the XRCC1 280His variant was a functionally detrimental 

polymorphism, we evaluated XRCC1 genotype and smoking history data from the CBCS.  

Genotype frequencies, allelic frequencies and ORs for breast cancer for XRCC1 codon 194, 

280, and 399 genotypes are presented in Table 3.1.  Allele and genotype frequencies were 

similar in African Americans and whites and between cases and controls within each racial 

group with respect to XRCC1 codons 194 and 280.  The frequency of the codon 399Gln 

variant was greater in white controls (q = 0.35) than African American controls (q = 0.14).  

Genotypes for each XRCC1 locus were observed to be in Hardy Weinberg equilibrium 

among African American cases, African American controls, white cases and white controls 

(data not shown).  For each locus, comparisons between the Arg/Arg genotype and the 

variant genotypes did not yield any statistically significant increases in ORs for breast cancer.  

Haplotype frequencies for XRCC1 in African American and whites are presented in Table 

3.2.  Haplotype frequencies did not differ between cases and controls for either racial group.  

The 194Arg + 280Arg + 399Arg haplotype was the most common in both African Americans 

and whites.  The 280His allele was in strong linkage disequilibrium with 194Arg (D′ = 1.0) 

and 399Arg (D′ = 1.0) in both racial groups.  Results for non-African Americans were not 

affected by exclusion of the 2% of participants who were non-white. 

Odds ratios for breast cancer and smoking stratified by XRCC1 codon 194 genotypes 

are presented in Table 3.3. Results are presented combining African Americans and whites, 
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and are adjusted for race.  Former smokers with the Arg/Arg genotype showed an increased 

risk for breast cancer (OR = 1.4, 95% CI = 1.1 to 1.7).   Participants with the Arg/Arg 

genotype showed statistically significant trends for increasing breast cancer risk with 

increased smoking dose (P = 0.046) and duration (P = 0.017).  LRTs were significant for the 

interaction of smoking duration with codon 194 genotype (Table 3.3). ICRs for codon 194 

Arg/Arg genotype and smoking status, dose, and duration were 0.35, 0.39, and 0.39, 

respectively.  No associations were observed for participants with 194 Any Trp genotype.    

ORs for smoking and breast cancer stratified by XRCC1 codon 280 genotype are 

presented in Table 3.4.  A statistically significant positive association between passive and 

former and breast cancer was observed for participants with the 280 Any His genotype.  

Although the test for trend was statistically significant only for smoking dose (P = 0.047), 

ORs were elevated for all levels of smoking dose and duration, as well as current and former 

smoking and passive smoking.  LRTs were significant for the interaction of smoking status, 

dose and duration with XRCC1 codon 280 genotype (Table 3.4). ICRs for XRCC1 codon 

280 Any His and smoking status, dose, and duration were 0.87, 0.65, and 0.80, respectively.  

Results for smoking and XRCC1 codon 399 genotype are presented in Table 3.5.  

ORs for former smoking and trend tests for smoking dose (P = 0.012) and duration (P = 

0.001) were statistically significant among participants with codon 399 Arg/Arg genotype.  

LRTs were significant for the interaction of smoking duration with XRCC1 codon 399 

genotype (Table 3.5). ICRs for XRCC1 codon 399 Arg/Arg genotype and smoking status, 

dose, and duration were 0.17, 0.32, and 0.39, respectively.  There was no association among 

participants with codon 399 Any Gln genotype. 
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3.5  Discussion 

In our functional evaluation of XRCC1 polymorphisms, we determined that relative 

to the wild-type protein the 280His variant decreased the DNA repair capacity of mammalian 

cells exposed to chemical stresses, such as oxidation and alkylation, associated with tobacco 

smoke.  This observation that the 280His variant is functionally relevant guided the 

subsequent evaluation of data from the CBCS for a potential gene-environment interaction 

between XRCC1 genotypes and exposure to tobacco smoke.  Several epidemiologic studies 

have implicated the XRCC1 399Arg allele in the etiology of bladder, head and neck, and 

lung cancer (David-Beabes et al., 2001; Stern et al., 2001; Olshan et al., 2002).  However, 

our functional assay demonstrated that the XRCC1 399Arg allele appears to be functionally 

competent like the 194Arg allele as demonstrated in previous studies (Taylor et al., 2002; 

Tuimala et al., 2002; Takanami et al., 2005), suggesting that another genetic modifier may be 

the causative factor that increases breast cancer risk.  The less common 280His variant 

appears only within the 194Arg + 399Arg haplotype of XRCC1 (Table 3.2).  Because ORs 

for smoking and breast cancer were stronger for XRCC1 codon 280 His-containing 

genotypes, compared to codon 194 Arg/Arg or codon 399 Arg/Arg, our results suggest that 

codon 280His is the relevant functional polymorphism in XRCC1 with respect to smoking 

and breast cancer.  Other complex phenotypes have been shown to be influenced by less 

common and rare alleles within common haplotypes (Cohen et al., 2004).  These phenomena 

demonstrate the importance of investigating less common alleles that lie within common 

haplotypes in human populations. 

Here we demonstrated that the XRCC1 280His variant attenuated the DNA repair 

capacity of transgenic cells after exposure to oxidative stress.  Additionally, our functional 
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evaluation substantiated a previous observation (Takanami et al., 2005) that the 280His 

variant hinders the efficient repair of DNA damage from alkylative stress.  These 

observations were evident from greater NAD(P)H depletions caused by PARP-1 

overactivation in response to the accumulation of SSBs.  Relative to the EM9-WT and EM9-

399Gln cells, NAD(P)H depletions in EM9-280His cells were greater after exposure to H2O2 

or MMS (Figure 3.1), suggesting an inability to efficiently amend DNA damage.  Because 

NAD(P)H depletion in EM9-399Gln cells was similar to that in EM9-WT cells, it appears 

that the 399Gln variant protein does not negatively impact XRCC1-mediated repair.  When 

exposed to the topoisomerase 1 inhibitor camptothecin all cell lines, excluding the repair 

deficient EM9-V line, had levels of NAD(P)H near 100% of control levels (Figure 3.1).  

These data suggest that the functionality of XRCC1 polymorphisms is relevant only to the 

removal of damaged bases or frank SSBs and not abortive topoisomerase 1 activity. 

Prior functional studies in human and rodent cell models support our observations 

regarding the XRCC1 399Gln and 280His variants.  Human cells with the 399Gln allele were 

not sensitive to bleomycin-induced DNA damage compared to lymphocytes with the codon 

399 Arg/Arg genotype (Tuimala et al., 2002).  Expression of the 399Gln variant protein in an 

EM9 background restored DNA repair capacity and cell survival to a level similar to that of 

EM9-WT cells after exposure to MMS (Taylor et al., 2002).    Lymphocytes from individuals 

carrying the 280His allele showed increased genetic damage from bleomycin exposure 

relative to 280 Arg/Arg homozygotes (Tuimala et al., 2002).  The 280His polymorphism was 

also associated with increased chromosomal aberrations in lymphocytes (Kiuru et al., 2005).    

While not assessed in this study, prior investigations of the Arg194Trp variant protein in 

human cells have demonstrated that this protein does not alter DNA repair capacity from 
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bleomycin exposure (Tuimala et al., 2002).  Additionally, after MMS exposure EM9 cell 

lines expressing the 194Trp variant protein (EM9-194Trp) as well as EM9-WT and EM9-

399Gln cells responded similar to repair proficient AA8 cells in terms of survival (Takanami 

et al., 2005). 

A decrease in DNA repair capacity precipitated by the 280His variant appears to be 

biologically plausible.  The 280 codon of the XRCC1 polypeptide lies within the AP 

endonuclease (APE) binding domain (Caldecott, 2003a).  The nonsynonymous Arg280His 

polymorphism causes the replacement of arginine with histidine, which changes the amino 

acid sequence of XRCC1. This change in protein biochemistry could potentially alter 

XRCC1 structure and its ability to interact with APE.  The 280His protein only appears to 

have a negative effect during the course of BER or SSBR induced by either base damage or 

DNA oxidation, processes which both involve APE.  During the repair of SSBs formed by 

camptothecin exposure, a process independent of APE activity, EM9-280His cells show a 

phenotypic response similar to that of EM9-WT cells (Figure 3.1).  Additionally, when 

expressed in EM9 cells the 280His variant protein failed to localize to DNA damage foci 

with the same efficiency as the wild-type protein (Takanami et al., 2005). 

The association of XRCC1 genotypes and breast cancer has been examined in thirteen 

epidemiologic studies (Kim et al., 2002; Han et al., 2003; Moullan et al., 2003; Shu et al., 

2003; Smith et al., 2003a; Smith et al., 2003b; Deligezer et al., 2004; Figueiredo et al., 2004; 

Forsti et al., 2004; Sigurdson et al., 2004; Chacko et al., 2005; Metsola et al., 2005; Shen et 

al., 2005), in addition to a previous report from Phase 1 of the CBCS (Duell et al., 2001).  

Only the CBCS included significant numbers of African Americans.  For codon 194, positive 

associations were observed for Trp-containing genotypes in four studies (Smith et al., 2003a; 
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Smith et al., 2003b; Sigurdson et al., 2004; Chacko et al., 2005), an inverse association in one 

study (Han et al., 2003), and no association in five studies (Kim et al., 2002; Moullan et al., 

2003; Deligezer et al., 2004; Forsti et al., 2004; Shen et al., 2005;).  Increased risk for codon 

280 His-containing genotypes was observed in one study (Moullan et al., 2003) and no 

association in three studies (Sigurdson et al., 2004; Chacko et al., 2005; Metsola et al., 2005).  

For codon 399, positive associations were observed for Gln-containing genotypes in three 

studies (Kim et al., 2002; Sigurdson et al., 2004; Chacko et al., 2005), and no association in 

nine studies (Kim et al., 2002; Moullan et al., 2003; Shu et al., 2003; Smith et al., 2003a; 

Smith et al., 2003b; Deligezer et al., 2004; Figueiredo et al., 2004; Forsti et al., 2004; 

Metsola et al., 2005; Shen et al., 2005).  A meta-analysis by Hung et al. (2005) combined 

results from ten breast cancer studies (Duell et al., 2001; Kim et al., 2002; Han et al., 2003; 

Moullan et al., 2003; Shu et al., 2003; Smith et al., 2003a; Smith et al., 2003b; Deligezer et 

al., 2004; Forsti et al., 2004; Chacko et al., 2005).  Summary odds ratios were close to the 

null for codon 194 and 399 genotypes and breast cancer (Hung et al., 2005).   Three 

epidemiologic studies of breast cancer analyzed XRCC1 haplotypes (Han et al., 2003; 

Moullan et al., 2003; Chang-Claude et al., 2005), and results were consistent with the 

presence of the less common codon 280 His allele solely on the codon 194 Arg + codon 399 

Arg chromosomal background. 

Four breast cancer studies examined interactions between XRCC1 genotypes and 

smoking (Han et al., 2003; Figueiredo et al., 2004; Metsola et al., 2005; Shen et al., 2005).  

Han et al. (Han et al., 2003) reported a trend of increasing breast cancer risk with increasing 

duration of smoking among study participants with the codon 194 Arg/Arg genotype, but not 

among codon 194 Trp-carriers, consistent with the results of our study.   For codon 399, 
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Metsola et al. (2005) and Shen et al. (2005) reported interactions between Gln-containing 

genotypes and smoking, but no interactions were observed by Figueriedo et al. (2004) and 

Han et al. (2003).  Metsola et al. (2005) reported a stronger association for codon 280 His-

containing genotypes and breast cancer among heavy smokers.   A meta-analysis by Hung et 

al. (2005) of tobacco-related cancers (lung, upper aerodigestive tract, bladder, stomach, liver, 

pancreas, and myeloid leukemia) found a protective effect for codon 194 Trp-containing 

genotypes among ever smokers.   Codon 399 Gln-containing genotypes were associated with 

increased risk of tobacco-related cancers among light smokers, but a decreased risk among 

heavy smokers (Hung et al., 2005).  These results are compatible with our observation of a 

stronger association between breast cancer and increased duration and dose of smoking 

among study participants with codon 194 Arg/Arg and codon 399 Arg/Arg genotypes.  Hung 

et al. (Hung et al., 2005) reported a summary odds ratio close to the null for codon 280 His-

containing genotypes and tobacco-related cancers, but the data was too sparse to stratify on 

smoking history.   For results of additional epidemiologic studies of XRCC1, see Hung et al. 

(2005) and Goode et al. (2002). 

Evaluating gene-environment interactions using a transgenic cell system as a screen 

for functional polymorphisms has advantages over human cell-based functional assays.  The 

use of isogenic EM9 cells expressing human XRCC1 protein allowed for direct functional 

characterization of variant proteins without confounding by other genetic modifiers.  

Additionally we found this CHO model to be preferable over genetically matched 

lymphocyte cell lines from cases and controls carrying the 280His allele since human lines 

exhibit different rates of growth (data not shown), a potential source of confounding and a 

concern for assay variability.  The use of a sensitive, real-time NAD(P)H assay to assess 

 65



BER/SSBR capacity afforded us the flexibility to reproducibly test a number of exposure 

scenarios in a relatively short amount of time.  The stable transfection of plasmids harboring 

human cDNA of other polymorphic genes into isogenic knockout cells would extend the 

applicability of this approach.  Our combined study design provides a robust examination of 

the biological significance for XRCC1 polymorphisms.  The precise functional evaluation of 

XRCC1 polymorphisms through a laboratory study lends biologic plausibility to the findings 

from an epidemiologic study of breast cancer susceptibility.  The strategy could prove useful 

for clarifying the biological significance of other genetic polymorphisms in DNA repair 

genes, particularly those with low allelic frequencies.   

In summary, we further characterized the functionality of the XRCC1 280His 

polymorphism and used these observations to clarify the relationship between this allele, 

breast cancer, and smoking.  The XRCC1 codon 280His allele is in linkage disequilibrium 

with the more common variants for two other XRCC1 polymorphisms at codon 194 and 399. 

Functional and epidemiologic data suggest that the XRCC1 codon 280His allele may be 

more important than codon 194 or 399 alleles with respect to smoking and breast cancer.  

Haplotype analyses, particularly using anonymous tagSNPs, may prove useful for identifying 

genetic heterogeneity when functional alleles are unknown.  However, identification of 

functionally relevant alleles within defined haplotypes, as presented here, will also contribute 

important information for understanding gene-environment and gene-gene interactions. 
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Figure 3.1. Graphical representation of NAD(P)H data as an indirect indicator of SSB 

accumulation. EM9 cells expressing human forms of XRCC1 including wild-type (EM9-WT, 

), the 399Gln (EM9-399Gln, ) or 280His (EM9-280His, ) polymorphisms, or an empty 

vector (EM9-V, ) were exposed A) for 30 minutes to hydrogen peroxide (H2O2), B) 

continuously to methyl methanesulfonate (MMS), or C) continuously to camptothecin.  

NAD(P)H levels were monitored in real-time for 4 hours during (MMS and camptothecin) or 

after exposure (H2O2).  NAD(P)H data for exposed wells were represented as a percentage 

relative to NAD(P)H levels (100%) in corresponding control wells of the same cell line 

dosed with PBS.  Chemical exposures were conducted in triplicate and expressed as mean 

with standard deviation and were repeated on different days.  Asterisks indicate significant 

difference from wild-type line; *, P < 0.05; **, P < 0.01 
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CHAPTER 4. GENERAL DISCUSSION 

4.1  Summary and Conclusions 

Previous research has shown that a deficiency in a BER enzyme can lead to a 

decrease in the ability of a cell to repair DNA damage.  The goal of this study was to 

investigate the functionality of PARP-1 and XRCC1 as accessory factors in BER.  For 

PARP-1, some reports have questioned the need for this enzyme in BER.  With regards to 

XRCC1, previous investigations to assess whether polymorphic forms confer a defective 

repair phenotype have yielded mixed results.  We demonstrate that both of these accessory 

factors can influence DNA repair efficiency, particularly in response to a genotoxic exposure. 

Even with data from a number of different models suggesting a positive role of 

PARP-1 in BER, debate continues regarding its participation in this pathway.  Therefore, the 

impetus for chapter 2 was to explore the necessity of PARP-1 in BER.  When DT40 cells 

lacking PARP-1 were chronically exposed to MMS they showed extreme hypersensitivity 

suggesting a general need for PARP-1 in limiting the adverse effects of alkylative DNA 

damage.  During an acute exposure both PARP-1 proficient and deficient cells showed an 

equal accumulation of N7-meG and AP sites thereby confirming that PARP-1 is relevant 

only to the late stages of BER in this avian system.  Under similar exposure conditions, an 

imbalance in BER was determined to occur in cells with PARP-1, as determined by 

NAD(P)H depletion, an indirect indicator of PARP-1 activation.  PARP-1 deficient cells 

exposed to MMS lacked the extreme NAD(P)H depletion observed in their PARP-1 

proficient counterparts, but by virtue of analogous exposure conditions should have 



experienced an imbalance in BER.  For PARP-1 null cells, electrophoretic analysis 

qualitatively demonstrated enhanced DNA migration from MMS exposure suggesting SSB 

accumulation.  Similar time and dose dependent increases were not observed in PARP-1 

proficient cells.  These observations suggest that the repair defect in PARP-1 deficient cells 

is associated with events downstream of SSB formation, particularly the ligation of SSBs.  

This study demonstrated that PARP-1 does influence the efficiency of BER in vertebrate 

cells during exposure to an alkylating agent.  Since DT40 cells inherently lack PARP-2, we 

provide an assessment of BER efficiency without the contribution of this functional homolog 

of PARP-1.  The data generated from this chicken cell model also support results derived 

from mammalian cell systems, confirming a requirement for PARP-1 in BER across taxa. 

In chapter 3, through a multi-disciplinary approach, we provide evidence that XRCC1 

polymorphisms influence DNA repair at the cellular level and modify cancer risk with an 

environmental exposure within a human population.  CHO cells that inherently lack XRCC1 

were transfected with human polymorphic forms of XRCC1 and exposed to genotoxicants 

known to induce SSBs.  Cells expressing the 280His variant showed a decrease in repair 

capacity toward damage caused by MMS and H2O2.  Alone these data provide basic 

information regarding the significance of XRCC1 polymorphisms at the cellular level.  

However, these cellular data also allowed for the generation of a hypothesis assessing 

whether a variant allele had relevance to human cancer risk.  Through a collaborative effort, 

analysis of data from the CBCS showed an association between the 280His polymorphism 

and breast cancer when there was exposure to tobacco smoke.  Because of its low frequency, 

not many studies have been able to assess the risk associated with the 280His polymorphism.  

These data lend further evidence for a genetic and environmental link in the etiology of 
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breast cancer. This study also provided a “proof of principle” for a unique study design, 

which employed both a transgenic model and human data, that may further help to determine 

the significance of genetic variation on disease risk. 

Overall, these studies demonstrate that the accessory factors PARP-1 and XRCC1 can 

play a significant role in determining BER efficiency in response to chemical exposures. 

 

4.2  Significance of Study 

The findings from this study may help improve the scientific basis for the assessment 

of risk from environmental exposures.  Some environmental carcinogens act through a 

genotoxic mode of action that involves DNA alkylation or oxidation, which can be processed 

by BER.  The induction of BER genes has been demonstrated to be a potential biomarker for 

some chemical exposures (Rusyn et al., 2004), thereby further illustrating the importance of 

this pathway.  Basic research regarding BER members, such as PARP-1, provides greater 

insight about the underlying molecular events responsible for the proficiency of this defense 

mechanism.  Additionally, understanding the basis for interindividual responses and 

susceptibility to environmental exposures is a challenging endeavor in public health research.  

However, identifying functional genes variants and their relevance at the cellular and 

population levels, such as in the case of the XRCC1 280His polymorphism, may improve 

upon linking genetic variation and different environmental exposures to the etiology of 

certain diseases. 

 

4.3  Future Studies 
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Quantitation of SSBs in DT40 cells 

Our analysis of PARP-1 proficient and deficient cells determined that both cell lines 

accumulated an equal amount of AP sites during MMS exposure.  However, DNA from 

PARP-1 deficient cells appeared to have a higher SSB content based on increased DNA 

migration during GGE analysis.  The qualitative analysis suggests that the BER step after AP 

site removal, namely strand ligation, may be hindered in the absence of PARP-1.  In follow 

up research, a more quantitative analysis of SSB formation via single cell gel electrophoresis 

(Comet assay) should provide more robust evidence in support of our assertion that PARP-1 

positively impacts DNA ligation at the end of BER.   

A criticism of the Comet assay has been the inadvertent conversion of alkali labile 

sites, such as AP sites, into SSBs, which would lead to an overestimation of SSB formation 

(Nakamura et al., 2003).  In the case of PARP-1 proficient and deficient cells, this occurrence 

would be irrelevant since AP site levels were equal as determined by slot blot analysis and 

therefore would not confound SSB analysis by the Comet assay.  However, in instances 

where the number of AP sites may be different between cell lines or unknown, analysis by 

the Comet assay may require careful interpretation.  A strategy to circumvent this issue 

would be to protect AP sites from alkaline cleavage, thereby preventing their contribution to 

SSB measurements.  Hydroxylamines including methoxyamine can bind AP sites and 

prevent β-elimination reactions and the resulting strand scission caused under alkaline 

conditions.  Ultimately, extension of the Comet assay protocol to include the use of 

hydroxylamines administered to cells prior to their lysis may lead to the analysis of SSBs 

without the contribution of alkali labile sites. 
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Applying BER imbalance data 

In assessing the phenotypic difference between PARP-1 proficient and deficient cells, 

endpoint measurements were made for the different steps within BER, including the number 

of N7-meG adducts formed during chemical exposure.  NAD(P)H depletion was also 

assessed to indicate an imbalance in BER during exposure.  We were able to determine what 

cumulative dose (0.55 mM × hr) had initiated an imbalance in BER and the corresponding 

number of N7-meG adducts formed at this level of exposure.  The future application of this 

approach may involve comparing cell lines with different DNA repair mutations for 

assessing the relative significance of certain repair defects.  For example, preliminary results 

suggest that DT40 cells deficient in POLβ experience an imbalance in BER at a cumulative 

dose of 15.5 µM × hr, which is about 35 times lower than that in wild-type DT40 cells. 

 

Further characterization of XRCC1 variant functionality 

Our study in conjunction with data from a previous report demonstrated that with a 

chemical exposure the 280His variant of XRCC1 increased sensitivity to cell killing and 

decreased SSB repair within an EM9 background (Takanami et al., 2005).  With the use of 

additional isogenic models, examination of the 280His variant in other cell types would 

provide additional information regarding the significance of this polymorphism.  Humanized 

mouse models expressing XRCC1 variants may provide such a platform for assessing the 

significance of these polymorphisms at the cellular, tissue, and whole animal levels (Ladiges, 

2006).  Mathematical models have also been devised to understand the effect of BER 

polymorphisms (Sokhansanj and Wilson, 2006).  Ultimately, data from the above cellular
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and animal systems may further refine these models to increase the understanding of the 

biological significance of XRCC1 polymorphisms.
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