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ABSTRACT 
 

The Evolution of Antibacterial Chemotherapy: 
Targeting RecA to Sabotage Antibiotic Tolerance and Resistance Mechanisms 

  
by 
 

Tim J. Wigle 

Antibiotic resistant bacteria are rendering the current supply of available antibacterial 

drugs ineffective at an alarming rate and there is a dearth of novel drug targets for the 

treatment of bacterial infectious diseases.  New strategies are required to combat pathogenic 

bacteria and in this context RecA has emerged as an intriguing candidate for inhibition 

studies.  In the bacterial kingdom, the RecA protein is a highly conserved recombinase 

enzyme that mediates DNA repair and horizontal gene transfer and across all species it 

almost uniformly regulates the SOS response to DNA damage.  Recent evidence suggests 

that these RecA-controlled processes are responsible for an increased tolerance to antibiotic 

chemotherapy and they up-regulate pathways which ultimately lead to full-fledged antibiotic 

resistance.  We propose targeting RecA with small molecules to sabotage the molecular 

mechanisms which are believed to cause antibiotic chemotherapy to fail.  Towards the goal 

of validating RecA as an important and novel target for the chemotherapeutic treatment of 

bacterial infectious diseases we have studied the interaction of metal–dithiols, nucleotide 

analogs and drug-like small molecules with the RecA protein.  Upon activation RecA binds 

ssDNA and performs ATP hydrolysis, therefore we observed either a reduction of RecA-

ssDNA binding or ATP hydrolysis in the presence of potential inhibitors using fast and 

 ii



efficient screening assays.  As the size and complexity of the compound libraries increased in 

our studies, the methods we employed to identify inhibitors evolved to meet the demand they 

imposed.  In all, more than 64,000 compounds were assayed against RecA and we identified 

several lead structures which were active against RecA in Escherichia coli cell cultures.  We 

demonstrate that cell-permeable inhibitors of RecA are capable of abrogating the SOS 

response and potentiate the toxicity of bactericidal antibiotics, e.g. ciprofloxacin.  The results 

of this study suggests that RecA may serve as a novel antibacterial drug target not belonging 

to any class of currently prescribed antibiotics, and which has not previously been examined 

in this regard. 
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CHAPTER I 
 

INTRODUCTION 

 

The significance of bacterial drug resistance 

 Bacteria are ubiquitous unicellular organisms that have evolved to inhabit every 

imaginable environment, including extremely harsh ones such as thermal vents in the Earth’s 

crust with temperatures of up to 85 °C, deep ocean trenches with pressures 1000 times that of 

the atmosphere, and sites of radioactive contamination with 1500 times the dose of radiation 

considered lethal to humans.  Although bacteria cover almost every square inch of the 

planet’s surface, many species have evolved to preferentially invade and multiply within 

animals, making them a potential threat to the host if they cause a persistent infection that 

leads to debilitating illness or death.  In and on the human body alone, commensal bacteria 

outnumber host cells 10:1, but these bacteria prevent colonization and infection by 

pathogenic bacteria and even facilitate digestion and the uptake of essential nutrients.[7]  

Unfortunately, even commensal bacteria, which are normally kept in check by the host’s 

immune system, can become pathogenic under opportunistic conditions. 

Humans have been at odds with bacteria throughout history. The discovery of 

Penicillin,[8] a natural product secreted by Penicillium mold, by Fleming, Florey and Chain in 

the 1930’s was a landmark in the war on bacteria.  Prior to this period, humans relied on 

personal hygiene, public sanitation, a few crude chemotherapeutics and their immune 

systems to combat microorganisms, but Penicillin offered a revolutionary way to approach 



the treatment of infectious bacteria.  The acid test for Penicillins came in World War II when 

an estimated 15% of wounded soliders were saved and an untold number of amputations of 

gangrenous limbs were prevented by the heavy use of these newly mass-produced wonder 

compounds.  For their pioneering work in the field of antibiotics, Fleming, Florey and Chain  

were awarded a Nobel Prize in 1945.  In his Nobel Laureate speech, Fleming made an 

ominous prediction:  he guaranteed that bacteria would develop resistance to Penicillins and 

the next-generation antibiotics under development at the time, and he stated that the misuse 

of antibiotics would exacerbate this problem,   

   

“…I would like to sound one note of warning.  Penicillin is to all intents and 
purposes non-poisonous so there is no need to worry about giving an 
overdose and poisoning the patient.  There may be a danger however, 
though, in underdosage.  It is not difficult to make microbes resistant to 
penicillin in the laboratory by exposing them to concentrations not sufficient 
to kill them, and the same thing has occasionally happened in the body.  The 
time may come when penicillin can be bought by anyone in the shops.  Then 
the danger is the ignorant man may easily underdose himself and by 
exposing his microbes to non-lethal quantities of the drug make them 
resistant.  Here is a hypothetical illustration.  Mr. X has a sore throat.  He 
buys some penicillin and gives himself, not enough to kill the streptococci 
but enough to educate them to resist penicillin,  He then infects his wife.  
Mrs. X gets pneumonia and is treated with penicillin.  As the streptococci 
are now resistant to penicillin the treatment fails.  Mrs. X dies.  Who is 
responsible for Mrs. X’s death?  Why Mr. X, whose negligent use of 
Penicillin changed the nature of the microbe.  Moral: If you use penicillin, 
use enough.”  – excerpt from Alexander Fleming’s Nobel Laureate speech, 
December 11th, 1945. 
 

Fleming’s prophecy was stunningly accurate, such that today, at the beginning of the 

21st century, a myriad bacterial strains display resistance to at least one antibiotic, and some 

strains exist which display resistance to nearly all of the almost 100 available antibiotics.  

Novel antibiotics rapidly become obsolete as bacteria quickly develop resistance, 
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leaving medical professionals with limited treatment options in some cases. Figure 1.1[1] 

summarizes the relationship between the introduction of new antibiotics and the timeframe in 

which resistance was first observed. 

 
Figure 1.1.  The timeline of antibiotic deployment vs. the observation of resistant strains.  This figure was 
reproduced from Clatworthy et al, (2007).[1] 
 

The rate at which bacteria are developing resistance to current therapeutics is 

increasing uncontrollably, while the economic challenges of antibacterial research and 

development over the past 25 years has resulted in the downsizing, and in some cases 

complete elimination of Big Pharma’s antibiotic pipeline.[9]  Coupled together, the alarming 

rise in antibiotic resistant bacterial strains and a diminishing supply of new antibiotics are 

disturbing trends that are intersecting with dangerous consequences (Figure 1.2).  Several 

factors such as international travel, bioterrorism, and antibiotic misuse are destined to 

exacerbate this dilemma.  The Infectious Diseases Society of America states that bacterial 

infections claimed approximately 600% more lives in the year 2006 than they did in 1992, 

and the treatment of bacterial infections costs the U.S. health care system in the vicinity 

 3



 of $30 billion a year.  Indeed, in the United States, MRSA alone results in over 18,000 

deaths each year, outpacing AIDS as the most lethal infectious disease in this country.[10]    

The goal behind the work undertaken in this dissertation aimed to increase our knowledge of 

the role of RecA in bacterial infectious diseases and potentially present RecA as a novel 

therapeutic target in the treatment of these diseases. 

Figure 1.2.  Dangerous antibiotic-related trends.  Left Panel: The % incidence increase in nosocomial 
infections involving Methicillin-Resistant Staphylococcus aureus (MRSA), Vancomycin-Resistant Enterococci
(VRE) and Fluoroquinolone-Resistant Pseudomonas aeruginosa (FQRP) in the past 25 years.  Right Panel:  The 
decreasing number of approved antibiotics in the past 20 years.  This figure was obtained from the Infectious 
Diseases Society of America website, http://www.idsociety.org/. 

     
 

 

The molecular origins of antibiotic resistance 

Antibiotic resistance may either be intrinsic to the organism or acquired via adaptive 

mutations and the transfer of DNA encoding drug-resistant proteins.[11]  While intrinsic 

resistance is naturally present in a bacterial species without any further genetic modifications, 

acquired resistance occurs through the natural selection of individual mutants that arise 

during exposure to one or more particular antibiotics.  Acquired resistance employs one of 

these common molecular strategies[12] Figure 1.3):  (1) drug inactivation, (2) modification of 
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the drug target, (3) decreasing the amount of drug reaching the target (usually by modifying 

influx/efflux pump expression), and (4) altering a metabolic pathway. 

 

 

 

Figure 1.3.  Molecular bases for antibiotic resistance.  A heritable change in a bacterium’s DNA causes 
a bacteria to become antibiotic resistant by altering the target of the drug, altering a metabolic pathway, 
creating an antibiotic inactivating enzyme or modifying drug permeability.  RecA has been implicated in 
the mutation and horizontal gene transfer pathways which lead to the expression of these modified 
proteins and/or protein expression profiles. 

In each of these cases, a heritable change in a cell’s DNA must be made, either 

through mutation or the acquisition of foreign DNA elements.  Antibiotic-induced metabolic 

stress has been shown to increase the frequency and efficacy of these evolutionary 

activities[3, 13, 14] and RecA has emerged as a key player in both pathways.[15-21] 

 

The physiology of the RecA protein 

 Living organisms must achieve a dynamic balance between the need to preserve 

genetic information to maintain a functional genome and the need to vary that same genetic 

information for adaptive purposes.  Among bacteria, RecA is a highly conserved protein that 

mediates important processes on both sides of this equilibrium and is elemental to the 
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survival and viability of the organism.[5, 22]  RecA, discovered over 40 years ago by Clark and 

Margulies,[23] is classically known to be activated by DNA damaging elements, but its 

activation is not limited to UV- and chemical-induced damage.  Many factors such as 

antibiotic treatment, starvation, oxidative stress, heat shock and pressure cause metabolic and 

physiologic stress which indirectly lead to DNA damage, exposing persistent stretches of 

ssDNA, the rare substrate which activates RecA.[24-28] 

 

 

 
Figure 1.4.  The dynamic balance mediated by RecA.  The activated RecA-ssDNA filament initiates 
signaling of the SOS response and mediates several motor-like recombination activities, eloquently 
balancing the tendencies of bacteria towards preserving or varying genomic information. 

RecA is an unusual protein in that a monomer of RecA has no relevant biological 

activity, but hundreds to thousands of monomers homopolymerize in the presence of ssDNA, 

a hallmark of DNA damage, and ATP to form an activated nucleoprotein filament (NPF) that 

possesses inherent signaling and ATP-hydrolysis dependent activities.[5]  The activated RecA 

NPF initiates the SOS response to DNA damage by stimulating LexA repressor 

autoproteolysis[29-31] and also carries out ATP-hydrolysis driven recombinational motor 
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activities[32, 33] necessary for horizontal gene transfer and recombinational DNA repair, 

including the re-start of stalled replication forks.[34]  The outcomes of RecA-mediated SOS 

signaling and recombination activities can both act to maintain a high fidelity genome, or 

serve to create advantageous mutations which enable species survival and proliferation under 

adverse conditions (see Figure 1.4).  

 

RecA and the SOS response to DNA damage 

 The bacterial SOS response is a graded response to DNA damage that initially up-

regulates DNA-excision repair and recombination repair processes, then eventually promotes 

cell-cycle arrest and global mutagenesis if the DNA damage persists (see Figure 1.5).  The 

LexA repressor is a dimeric protein that binds to a specific set of related sequences – the SOS 

box – in the promoter region of SOS genes and prevents access of RNA polymerase to their 

promoter.[35]  Upon activation, the RecA nucleoprotein filament causes LexA to undergo 

autoproteolytic cleavage, a signaling-like function of RecA which is dependent on the 

formation of an ATP·RecA·ssDNA nucleoprotein filament but which does not require ATP 

hydrolysis.[36-38]  The RecA filament can be considered a sentinel of the SOS response, as its 

activation and ability to interact with LexA require recognition and binding to ssDNA, a 

rather rare substrate occuring only when DNA damage has occurred or when DNA synthesis 

is interrupted and stalled replication forks are observed.[39]  The cleavage of LexA 

sequentially de-represses up to 40 genes involved in DNA repair and mutagenic translesion 

DNA synthesis.[25, 31, 40-43]  The order in which they are de-repressed depends upon the 
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sequence of their SOS box and the position and strength of their promoter, but they can 

generally be classified as early, middle and late SOS genes[40, 42-44] (see figure 1.5). 

 
Figure 1.5.  The SOS response to DNA damage.  In the SOS response in Escherichia coli up to 40 early, 
middle and late genes are temporally expressed upon RecA-stimulated autoproteolysis of the LexA repressor. 
The genes expressed in the early and middle stages are instrumental to the repair of DNA damage, while the 
genes expressed in the late stages facilitate global mutagenesis of the bacterial genome. 

 Initially, the products of the early SOS genes uvrA, uvrB, uvrD and the exonuclease 

uvrC catalyze nucleotide excision repair (NER) to fix small amounts of DNA damage 

without fully committing the organism to a full-fledged SOS response.[35]  If the DNA 

damage persists after roughly 20 min, pools of LexA are further diminished and the middle 

phase SOS genes are heavily transcribed.[45]  Notable genes involved in the middle phase of 

the SOS response encode the double-stranded break repair proteins RecBCD and RecA 

itself.[35]  The proteins expressed in the middle phase are able to repair large amounts of 

DNA damage by exchanging strands containing thousands of bases worth of homologous 

DNA.  The damaged DNA strand can either be paired with a sister chromatid or can be 

paired with homolgous DNA acquired from another organism.  The middle phase of the SOS 

response leads to a spike in the level of RecA in an organism from 8000-10,000 molecules 
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per cell to 70,000 per cell,[5] which translates to 1-2% of the total protein.[45]  The end result 

is the perpetuation the SOS response at an accelerated rate. 

Finally, about 40 min into the SOS response, if the aggravating DNA damage has not 

been tempered by nucleotide excision or recombinational DNA repair, the late genes 

encoding the mutagenic Y-family polymerases are expressed.[35]  This includes the 

expression of DNA Polymerase IV (PolIV) and UmuC & UmuD which form the DNA 

polymerase V holoenzyme (PolV).  Akin to its interaction with LexA, RecA directly controls 

the activity of PolV by stimulating UmuD to undergo autoproteolytic cleavage,[39] and the 

by-product binds UmuC in a 2:1 ratio to form DNA Polymerase V.  Both PolIV and PolV 

lack a proof-reading function but they are useful to the bacteria for two different reasons.[16]  

PolV is essential in lesion bypass DNA synthesis, allowing for a gap across from the site of a 

lesion to be filled by any nucleotide.[46]  In contrast, PolIV has poor lesion bypass activity 

and rather its major function likely is the production of mutations during times of metabolic 

stress which severely hinder growth.[47-49]  Furthermore, in the late stages of the SOS 

response, SulA is expressed and arrests cell division by binding to FtsZ,[50] a key cytoskeletal 

element responsible for abutting the membrane during cell division to form two new 

daughter bacteria.[51]  Arresting cell division is crucial to divert the bacterium’s resources 

towards stress bypass and to allow the mutagenic Y-family polymerases supplemental time to 

introduce stationary phase mutations which provide bacteria with an evolutionary “escape 

pod” in the face of metabolic and genomic stress. 

The SOS response appears to be almost universally conserved in the bacterial 

kingdom and is essential for the repair of spontaneous and environmentally-induced DNA 

damage.[19, 20, 35, 52-54]  While most bacteria demonstrate a DNA damage inducible SOS 
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response, a small number of bacteria are known to lack this feature.  Bacteria in this class 

seem to have evolved to colonize animals, and it is advantageous to forgo the SOS response 

for reasons such as their localization to internal anaerobic environments such as the intestinal 

tract and reproductive system which are essentially free of DNA-damaging elements such as 

UV light and oxygen radicals.[52]  Members of this class include Neisseriaceae,[52, 55] 

Acinetobacter calcoaceticus,[56] Thiobacillus ferrooxidans,[57] and Bacteroides fragilis.[58]  

Even though these bacterial species lack a defined SOS response, RecA remains highly 

conserved and its recombinational activity is nonetheless still crucial to the repair of DNA 

damage and remains an integral component in aspects of pathogenicity and virulence.  Some 

of these unique organisms will be more closely examined in the following section on the 

recombinational activity of RecA. 

  

RecA and recombination 

 Recombinase proteins are ubiquitous in all living organisms,[59, 60] and RecA is the 

archetypal member of this superfamily of enzymes.  While much is now known of RecA and 

its contributions to the SOS response, RecA was first identified as “Recombinase A”, the 

most widely studied and biologically important recombinase enzyme in bacteria.[23]  In 

general, all recombinases share a universal structural organization when activated, forming a 

spiraling homopolymer that coats the substrate DNA, and this entire complex is referred to as 

the nucleoprotein filament or presynaptic complex.[61]  What makes RecA unique is that 

unlike its homologs, there is a requirement for a motor function powered by ATP hydrolysis 

for the strand exchange reaction to proceed in vitro.  The initial pairing of homologous DNAs 

only requires ATP-binding, and the subsequent cooperative hydrolysis of this bound ATP by 
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individual RecA monomers in the filament makes the strand exchange reaction 

unidirectional, permits the reaction to proceed past substantial structural barriers present in 

the target DNAs and can involve up to four strands of DNA.[62]   

 RecA-mediated recombinational DNA repair (RDR) is essential for the survival of 

bacteria in the face of stalled or collapsed replication forks, double-stranded DNA breaks and 

cross-linked DNA strands.[5]  It has been observed that even in conditions of ideal aerobic 

growth in rich media, between 10% and 50% of replication forks encounter a DNA lesion or 

double-stranded break.[63]  Each type of aforementioned DNA damage exposes ssDNA or is 

processed to ssDNA by other accessory proteins.  Stalled or collapsed replication forks 

naturally expose ssDNA[64] (see Figure 1.6A).  Upon DNA cross-link damage, the UvrABC 

exonuclease system nicks and removes small stretches of DNA from one strand of the 

damaged duplex before and after the site of cross-linking, leaving a short ssDNA gap[65] (see 

Figure 1.6B).  The RecBCD protein is activated in the presence of double-stranded breaks, 

and uses a combination of helicase and exo- and endonuclease activities to unwind and 

degrade one of the strands to expose ssDNA.[66]  RecBCD utilizes “recombination hotspots” 

consisting of a short conserved 8-base sequence known as a chi site as a reference point when 

creating these large ssDNA gaps[67] (see Figure 1.6C).  In each of these 3 cases, RecA 

recognizes this ssDNA as its cue to activate and hundreds to thousands of RecA monomers 

coat the ssDNA, forming a nucleoprotein filament.  The activated RecA NPF searches out 

homologous DNA (usually from a sister chromatid present during replication) and facilitates 

a local strand invasion of the ssDNA substrate into the homologous duplex DNA, forming a 

Holliday-type structure[68] (Figure 1.6).  Branch migration is perpetuated by the RuvA, B and 

C proteins and this processive activity rapidly exchanges the strands.[69]  It is interesting to 
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note that RecA is capable of resolving the new DNA products in vitro in the absence of the 

RuvA, B and C proteins but in the presence of single-stranded DNA binding protein 

(SSB).[70] 

 
Figure 1.6.  RecA-mediated recombinational DNA repair pathways.  A) Once a DNA polymerase (usually 
PolIII) becomes stalled, RecA quickly forms a nucleoprotein filament on the exposed ssDNA.  In this pathway, 
the newly synthesized DNA on the opposite side of the replication fork becomes the dsDNA substrate used in 
the recombination reaction.  B) In double-stranded cross-link repair, the UvrABCD system nicks one strand 
several bases up and down of the damaged site.  Nucleases remove the segment of strands between the nicks, 
exposing a short gap of ssDNA on which RecA forms a nucleoprotein filament.  C) In double-stranded break 
repair, RecBCD finds the site of the break, and travels across the duplex with 3′  5′  and 5′  3′ exonuclease 
activity.  Once the chi site is reached (shown in red), the RecBCD enzyme has enhanced 5′  3′ exonuclease 
activity and 3′  5′ activity is inhibited, producing a free ssDNA 3′-OH end to which RecA binds.  In all cases, 
the activated RecA nucleoprotein filament will search out homologous duplex DNA and form a Holliday-type 
structure which quickly undergoes branch migration perpetuated by the RuvABC proteins.  (This figure was 
adapted from Roca & Cox, 1997[5]). 
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While recombinational DNA repair by RecA is formally a non-mutagenic process by 

which bacteria resolve problems arising from DNA damage, RecA-mediated recombination 

can also serve to incorporate foreign or “mutant” genes originating from exogenous 

homologous DNA into the host genome in a process known as horizontal gene transfer.[16, 49, 

71]  Bacteria are capable of taking up duplex DNA from bacteria of the same or different 

species by the processes of conjugation, transduction and transformation and when searching 

out homologous dsDNA for recombination, RecA may pair ssDNA from the host bacteria 

with this dsDNA.  The impact that horizontal gene transfer has on bacterial evolution is 

embodied by the fact that foreign DNA may represent up to one-fifth of a given bacterial 

genome.[72] 

In the rare bacterial species which lack a defined SOS response, the expression of 

RecA is generally still DNA damage-inducible,[73] with only those few exceptions noted 

above.[56-58]  In SOS-deficient Neisseria gonorrhoeae and Neisseria meningitidis, RecA plays 

an immense role in the repair of DNA damage and is essential for several processes relating 

to pathogenicity.  Both species of Neisseria have been shown to be extremely transformation 

competent, with normal transformation frequencies of 10-3-10-2, but which can reach as high 

as 50% when large amounts of cloned gonococcal DNA are available.[74]  Unlike other 

bacterial species, Neisseriaceae are extremely transformation competent for their entire life 

cycle,[75] and use the recombinational activities of RecA to incorporate this transformed DNA 

into their genome to enhance their ability to survive in the human body.  Moreover, in their 

co-evolution with humans, Neisseriaceae have come to rely heavily on RecA-mediated 

recombination for surface antigen variation to enhance their ability to evade the human 

immune system.[55] 
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Other roles of RecA in pathogenicity 

Additionally, RecA-mediated recombination has also been shown to play a role in the  

colonization of host environments,[76] induction of toxin biosynthesis,[77, 78] competence,[13, 79] 

virulence factor production[80] and the genetic diversification of biofilms.[81]  Therefore, in 

many diverse bacterial species, and even in those lacking a defined SOS-like system, RecA 

and its associated recombinase activity play an important role in survival and pathogenicity. 

 

RecA and tolerance to antibiotic chemotherapy 

The ability to respond to and repair DNA damage is an essential process required by 

all forms of cellular life.  Bacteria often colonize harsh environments and are continually 

subjected to DNA-damaging phenomena such as UV light, oxygen radicals and chemical 

agents.  The SOS response is a programmed response that allows bacteria to cope with the 

effects of this DNA damage.  RecA is the mastermind of the SOS response, using the 

exposed ssDNA as a template to form active RecA filaments that control the state of the 

LexA repressor to orchestrate a timed series of events which escalate the actions taken 

towards any DNA damage that threatens the organism.  In the early and middle stages of the 

SOS response the bacterium overexpresses proteins, including RecA, involved in the repair 

of DNA damage.  If this attempt at DNA repair is not successful, the late stage of the SOS 

response is initiated and the production of the mutagenic Y-family polymerases, PolIV and 

PolV, allows the organism to introduce mutations until it has adapted to the stressful 

environment, providing bacteria with a last-ditch attempt at proliferating in less than ideal 

conditions which promote DNA damage. 
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The ability of the SOS response to enhance bacterial survival in the face of 

environmental assaults on DNA fidelity has enormous pharmacotherapeutic implications.  

While many naturally occurring phenomena are capable of stimulating RecA to initiate the 

SOS response, it has been shown that antibiotic treatment also serves as a powerful instigator 

of the SOS response.[3, 11, 14-16, 19, 20, 49, 82-100] For example, ciprofloxacin is a fluoroquinolone-

based inhibitor of bacterial type II DNA topoisomerases, including gyrase and topoisomerase 

IV, which targets a protein-DNA intermediate leading to double-stranded DNA breaks and 

stalled replication forks.   As outlined earlier (see Figure 1.6), double-stranded breaks are 

processed by RecBCD to ssDNA and stalled replication forks inherently expose ssDNA.  

This ssDNA substrate resulting from exposure to ciprofloxacin activates RecA which in turn 

jump-starts the SOS response.[19, 20, 84] 

While the ability of ciprofloxacin to stimulate the SOS response is obvious given its 

DNA-specific mechanism of action, the power of antibiotic chemotherapy to stimulate SOS 

activation extends to other classes of antibiotics.  Currently prescribed antibiotics can be 

divided into at least 6 traditional classes distinguished by their cellular target (see Figure 1.7).  

Among these antibiotics, β-lactams have been shown to activate SOS expression through a 

two-component signaling pathway,[86] and trimethoprim starves bacteria of dTTP, creating 

SOS-activating disruptions of DNA synthesis.[82]  Antibiotics can further be categorized into 

two general categories based on their mode of action[101]: (1) bactericidal antibiotics, which 

kill bacteria with an efficiency of >99.9%, and (2) bacteriostatic antibiotics, which inhibit 

growth and allow the immune system to clear the infection.  Recently, the Collins group at 

Boston University has successfully demonstrated that all bactericidal antibiotics induce a 
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common mechanism of cellular death whereby they stimulate the formation of lethal amounts 

of hydroxyl radicals via the Fenton reaction.[3]  In their insightful study, Collins and 

coworkers found that quinolones, β-lactams and aminoglycosides, all bactericidal antibiotics 

with different cellular targets, converge downstream upon the tricarboxylic acid (TCA) cycle 

and induce a rapid accumulation of NADH.  This overproduction of NADH hyperactivates 

the electron transport chain, producing superoxide as it is rapidly depleted.  Superoxide then 

de-stabilizes iron-sulfur clusters, leeching away ferrous iron that becomes available for 

oxidation by the Fenton reaction, ultimately resulting in the formation of hydroxyl radicals 

that destroy protein, lipids and importantly, DNA (see Figure 1.8 for an overview of this 

pathway).   

 
 
Figure 1.7.  Targets of currently prescribed antibiotics.   Antibiotics are traditionally classified into 6 
groups depending on their mode of action.  An inhibitor of RecA would not fit the profile of one of these 
current therapeutic classes, but may increase their potency and delay the onset of resistance to them. 
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Figure 1.8.  The hydroxyl radical pathway stimulated by bactericidal antibiotics.  The primary drug-
target interactions (aminoglycoside with the ribosome, quinolone with DNA gyrase, and β-lactam with 
cell wall proteins) stimulate overproduction of NADH, hyperactivating the electron transport chain and 
ultimately resulting in superoxide formation. Superoxide damages iron-sulfur clusters, making ferrous 
iron available for oxidation by the Fenton reaction. The Fenton reaction leads to hydroxyl radical 
formation, and these radicals damage DNA, proteins, and lipids, which results in cell death. The oxidative 
DNA damage activates RecA, allowing bacteria to tolerate higher doses of the antibiotic and stimulates 
the pathways leading to drug resistance.  This figure was adapted from Kohanski et al, (2007).[3] 

Additional experiments performed by the Collins group demonstrate the link between 

bactericidal antibiotics, oxidative radicals, the SOS response and RecA.  SOS induction was 
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measured using a GFP reporter and found to substantially increase in the presence of 

quinolones and β-lactams, but the experiment was inconclusive for the aminoglycosides as 

the assay relies on expression of the reporter protein GFP, yet aminoglycosides inhibit 

protein expression (Figure 1.9, left).  An additional experiment demonstrating the 

potentiation of these three classes of bactericidial antibiotics in ∆recA E. coli further clarified 

this issue.  In each case, the ∆recA E. coli were 100- to 1000-fold more senstitive to 

bactericidal antibiotics, highlighting the importance of RecA and a DNA-damage inducible 

repair system for mitigating the effects of bactericidal antibiotics (Figure 1.9, right).  

Irregardless of the mechanism of action by which antibiotics induce the SOS response, the 

end result is the same: an increased tolerance to antibiotic treatment by enhancing the repair 

of DNA damage that ultimately accumulates from metabolic and oxidative stress.  

 

  . 

 

 
Figure 1.9.  The importance of the SOS response and RecA for mitigating the effects of bactericidal 
antibiotics.  Left panel: Activation of the SOS response was measured by RecA/LexA-controlled GFP 
expression in the presence of norfloxacin (Nor), ampicillin (Amp) and kanamycin (Kan). The quinolone 
norfloxacin and the β-lactam ampicillin activated SOS, but this was not detected for the amnioglycoside 
kanamycin due to its effect on protein expression.  Right panel: ∆recA E. coli are 100- to 1000-fold more 
sensitive to the same three bactericidal antibiotics examined for SOS activation in the left panel. This figure is 
reproduced from Kohanski et al, (2007).[3] 
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RecA and resistance to antibiotic chemotherapy 

Stress-induced mutation, encompassing both error-prone DNA synthesis and 

recombination, is much more efficient at producing antibiotic resistance genes than if the 

organism were to rely on spontaneous mutation.[102]  While RecA-mediated processes 

initially serve to repair DNA damage arising in the course of antibiotic chemotherapy, these 

same processes eventually promote a hypermutable phenotype that facilitates the de novo 

development and transmission of antibiotic resistance genes.   

In the late stages of the DNA-damage inducible SOS response, the low-fidelity Y-

family DNA polymerases are expressed and create resistance-conferring mutations.  The 

mutagenic action of these polymerases may only create mutations sufficient to bestow 

resistance in a small fraction of the bacterial population, but this small subset of the 

population proliferates exponentially until the entire bacterial population is composed of 

resistant bacteria.  

Bacteria may also follow a different route towards becoming drug-resistant, acquiring 

resistance genes from exogenous DNA taken up through one of the extensively characterized 

processes of conjugation, transformation and transduction in a phenomenon known as 

horizontal gene transfer.  The first evidence of horizontal gene transfer facilitating the 

dissemination of antibiotic resistance came from an experiment by Hotchkiss,[103] in which he 

demonstrated that DNA from heat-killed penicillin-resistant Streptococcus pneumoniae 

cultures was capable of conferring a penicillin-resistant phenotype on cultures of 

Streptococcus pneumoniae which previously displayed no resistance to the antibiotic.  

Resistance genes may either be expressed from conjugative plasmids[104] or may be 

integrated into the host genome by the recombinational activity of RecA.[15, 105]  Additionally, 
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in Streptococcus pneumoniae, RecA has been shown to be instrumental in stimulating the 

production of competence factors when the bacteria are under antibiotic-induced stress.[13]  

These competence factors greatly enhance the up-take of exogenous DNA, which is 

eventually integrated into the chromosome by RecA-mediated recombination.[13]  Recent 

findings have also provided concrete evidence that in Bacillus subtilis, RecA is part of a 

complex of 6 proteins which enhance transformation competence.[106]  This group of soluble 

and membrane-bound proteins co-localize into large complexes at the cell poles[106] and 

mediate the binding and uptake of foreign DNA, protecting it from cellular nucleases and 

stimulating its recombinational integration into the recipient chromosome.[79, 106]  See Figure 

1.10 for an overview of this process. 

 

 

Figure 1.10.  Antibiotic treatment induces RecA-mediated competence and recombination.  Antibiotic-
induced stress activates RecA, and as a result competence genes are expressed.  This gives rise to the 
enhanced transformability of the bacteria, culminating in the uptake of exogenous DNA which is processed 
to ssDNA.  RecA meets the ssDNA inside the cell, coating it and integrating it into the genome via 
recombination.  The consequences of these processes are ultimately genetic diversification; thus, antibiotics
have the potential to drive the acquisition resistance to themselves by stimulating natural transformation and 
recombination through the activation of RecA. 
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RecA and the overall antibiotic response 

In summary, antibiotics are capable of activating RecA by directly causing DNA 

damage or by virtue of their downstream metabolic effects, including the induction of a 

common pathway which leads to the production of DNA-damaging hydroxyl radicals.  Once 

activated, RecA controls the balance of ostensibly antagonistic pathways which attempt to 

restore normal function by repairing DNA damage or which are programmed to hypermutate 

genomic DNA and accelerate adaptive evolution in response to stress.  This suggests that 

RecA, whose expression ultimately leads to antibiotic tolerance and resistance (see overview 

 
 
 
 

Figure 1.11.  RecA and the antibiotic response.  Antibiotic treatment can activate RecA by directly 
assaulting DNA or activates metabolic feedback pathways whose downstream effects lead to DNA damage. 
RecA is activated to repair DNA and protect the genome, or to promote diversification of the genome to 
escape antibiotic-induced stress.  The repair pathways enhance tolerance to bactericidal antibiotics, while the 
mutational pathways may lead to a drug-resistant phenotype.  Inhibiting RecA could potentiate the 
effectiveness of known antibiotics and prevent the evolution and transmission of resistance genes. 
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in Figure 1.11), and which has also been shown to enhance aspects of pathogenicity, may be 

a novel druggable target in the war on infectious bacteria.  An inhibitor of RecA would not 

fall into any of the established classes of antibiotics and may have several outcomes as 

described in the next sections. 

 

The necessity of RecA 

RecA has been shown to be required for the steady proliferation of bacterial 

populations, especially for its role in replication fork re-start and DNA repair.[63]  RecA– 

bacteria can be grown ex vivo in a laboratory setting using rich media, but the absence of the 

recA gene significantly impacts the rate of DNA replication and cell division leading to an 

overall reduction in bacterial viability.[107-110]  More relevant to the purpose of our research is 

the fact that to this day no RecA– bacteria have been successfully isolated from naturally 

occuring sources, and recA has been identified as belonging to a minimal set of genes 

required for cellular life.[111, 112]  Taken together, this indicates that in the wild RecA– bacteria 

are not competitive with their counterparts having a functional recA gene. 

 

RecA as a novel target for the chemotherapy of bacterial infectious diseases 

Antibiotic resistance is a “catch-22” problem in the chemotherapy of bacterial 

infectious diseases[113-115] and creates a health-care dilemma: from an industry perspective the 

profitability of developing new antibacterial chemotherapeutics is undermined by the short 

time frame in which drug resistant bacterial populations arise.[116]  Genes endowing drug 

resistance are either created by the increased rates of genetic mutation during the late stages 

of stress induced DNA repair,[14, 117-119] effectively accelerating the rate at which evolution 
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occurs, or they are acquired via the uptake and incorporation of resistance genes into the 

genome.[15, 120]  Novel strategies are required to counter these phenomena and in this context 

the bacterial RecA protein has emerged as an intriguing target for the small molecule 

suppression of antibiotic tolerance and resistance. 

The ability to selectively control the activities of RecA would permit the dissection of 

bacterial DNA repair pathways and would expose their contributions to stress-induced 

mutagenesis and adaptive mutation.  A small molecule inhibitor of RecA would therefore 

enable a greater understanding of the role of RecA in the bacterial stress response.  While it 

may be possible to target other components of these pathways, such as LexA or the Y-family 

polymerases, small molecule control of RecA may prove to be even more effective as RecA 

controls LexA and PolV in a switch-like manner and RecA actively participates in DNA 

repair and horizontal gene transfer by virtue of its recombinational activities.  We have 

hypothesized that targeting RecA for antibiotic chemotherapy will ultimately prevent the 

induction of the SOS response, impacting both DNA repair and stress-induced mutagenesis 

pathways which are activated as a result of exposure a wide array of antibiotics.  In a 

pharmacotherapeutic context, we propose that RecA may be a novel druggable target in the 

war on bacterial infectious diseases and we expect that an inhibitor of RecA activities may 

lead to one or more of the following outcomes (see Figure 1.12): 

 

(1) An inhibitor of RecA may serve as an adjuvant to bactericidal antibiotic chemotherapy by 

potentiating the toxicity of the primary antibiotic.  The RecA-controlled SOS response is 

stimulated by bactericidal antibiotic exposure and up-regulates DNA repair processes, 

including RecA-mediated recombinational DNA repair, to overcome substantial barriers to 
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growth and enhance drug tolerance.  It has been shown that RecA– bacteria are susceptible to 

much lower doses of a wide variety of antibiotics than are their wild-type counterparts.[3]  A 

small molecule inhibitor would synergistically enhance the killing effect of currently 

therapeutically useful antibiotics, (e.g. creating “Super-Cipro”) and the use of lower effective 

doses of antibacterials may allow the re-examination of the potential applications of 

antibiotics deemed too cytotoxic for use in humans. 

 

(2) An inhibitor of RecA serve as an adjuvant to traditional antibiotic chemotherapy by 

reducing the rate at which resistance genes emerge or are transferred.  RecA– bacteria have 

been shown to have a reduced or non-existent capacity for developing drug resistance 

(Singleton, unpublished results).  RecA stimulates the induction of the SOS response, 

promoting global mutagenesis of a bacterial genome to create resistant proteins and RecA 

also participates in horizontal gene transfer, a process by which resistant genes are shared 

among bacteria of the same and different species.  Inhibition of one or both of these activities 

will delay or completely prevent the onset of antibiotic resistance evolution and transmission. 

 

(3) An inhibitor of RecA could be a standalone antibiotic.  The inability of RecA– bacteria to 

compete with their wild-type counterparts[111, 112] in a natural setting suggests that 

environmental stress in a bacteria having a chemical knockout of RecA would lead to 

persistent stalled replication forks and oxidative DNA damage would naturally accumulate to 

debilitating levels, arresting proliferation.  The bacteria would be in a weakened state and 

would be more easily cleared by the host’s immune system. 
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 When developing an inhibitor of any protein, especially in the context of 

pharmaceutical research, the obvious desire is to create a chemotherapeutic agent that is 

selective for one target only.  Off-target effects greatly increase the potential toxicity of a 

particular chemical agent and convolute the interpretation of the phenotype resulting from 

exposure to the agent.  An inhibitor of RecA with potential therapeutic applications must not 

interfere with homologous eukaryotic DNA repair machinery.  All eukaryotic cells do 

possess RecA orthologs, chiefly Rad51 and its paralogs.  The nature of the relationship 

between RecA and Rad51 is mostly functional, as evolution has rendered these proteins 

structurally and biochemically distinct.[121, 122]  They share only one domain in common, the 

core ATP-binding domain, and even these domains are only modestly similar.  Additionally, 

Rad51 does not rely on ATP hydrolysis for its main recombinational duties.[33]  Across 

bacterial species, RecA is a very highly conserved protein, both structurally and functionally 

and the likelihood that an inhibitor of RecA from one bacterial species will cross-inhibit the 

RecA from another bacterial species is very high. 

Figure 1.12:  Three possible therapeutic outcomes of RecA inhibitor treatment.  (A) An inhibitor of 
RecA could act synergistically with a frontline antibiotic such as Ciprofloxacin to increase its potency.  (B)
An inhibitor of RecA could delay the occurrence of antibiotic resistance to a frontline antibiotic such as 
ciprofloxacin. (C) An inhibitor of RecA could act as a standalone antibiotic by leaving the bacteria 
vulnerable to naturally occurring DNA damage.   

As RecA is an ATPase whose functions rely upon active nucleoprotein filament 

formation stimulated by the simultaneous binding of ATP and ssDNA, we envisaged two 
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major approaches towards targeting RecA for inhibition: (1) inhibitors that interact with the 

inactive conformation of RecA and prevent active nucleoprotein filament assembly, and (2) 

inhibitors that interact with structural features of the DNA-bound active nucleoprotein 

filament.  Inhibitors of the former class would negate both the SOS-signaling and processive 

recombinational activities of RecA by preventing the assembly of the active filament 

altogether.  Inhibitors of the latter class would potentially permit the SOS-signaling function 

of RecA but would prevent the ATP hydrolysis dependent motor activities that result in 

recombination.  Such functionally selective inhibitors of the RecA-mediated stress response 

would permit a greater understanding of the antibiotic-induced bacterial stress response. 

We have hypothesized that the activities of RecA are required to mitigate the effects 

of bactericidal antibiotics and enhance the development and transmission of antibiotic 

resistance.  Furthering this hypothesis, we predict that an inhibitor of RecA would allow us to 

demonstrate that RecA is indeed a novel candidate for the development of a new class of 

pharmacotherapeutics that would synergistically enhance the lethality of antibiotic-induced 

DNA damage.  However, to date, no natural product inhibitors of RecA have been 

successfully identified and with this dearth of known molecular modulators of RecA, our 

laboratory’s research efforts are driven to meet this demand imposed by our hypothesis.  

Towards this end, our research group has screened and rationally developed select metal 

cations,[123] nucleotide analogs,[17, 124] polysulfated naphthyl compounds[21] and alpha helical 

peptides[125] as inhibitors of RecA.  Recent findings in our laboratory also suggest that RecA 

is inhibited by a few scaffolds from combinatorial synthetic libraries.  This dissertation will 

examine all of these inhibitor classes with the exception of alpha-helical peptides. 
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Our efforts to develop inhibitors of RecA 

Inspired by recent reports from Harold Kohn’s laboratory on the inhibition of the rho 

transcription terminator by zinc and bismuth metal cations,[126-128] we explored the effects of 

several different metal cations free in solution and in organometallic complexes against the 

activity of RecA.  The rationale for this investigation is rooted in the fact that rho is 

structurally homolgous to RecA.[61]  Both enzymes are nucleic acid binding molecular motors 

driven by the hydrolysis of ATP.  Several metal cations including both zinc and bismuth 

were capable of inhibiting RecA and these findings are presented in Chapter 2.  This work 

has been prepared as a manucscript that we expect to submit to the Journal of Inorganic 

Biochemistry. 

As RecA depends on the binding and hydrolysis of ATP for its in vivo activities, we 

investigated several classes of nucleotide analogs as potential inhibitors of RecA.  Nucleotide 

analogs were first segregated according to their ability to act as substrates for hydrolysis, and 

all non-substrate nucleotides were classified into 3 groups based on whether they (1) had no 

inhibitory effect at all, (2) inhibited RecA by stabilizing the inactive conformer of the 

protein, or (3) inhibited RecA by binding to the activated filament and competitively 

inhibiting ATP hydrolysis.  The results of this study provide insights into the structural 

intricacies of the RecA ATP-binding site in both the active and inactive conformations of the 

protein and resulted in the discovery of several nucleotide analogs which were able to inhibit 

the in vitro activities of RecA with low micromolar affinity.  We summarize the 

conformationally selective binding and inhibition of RecA by nucleotide analogs in Chapter 

3.  We have published the NTP hydrolysis data in Biochemistry (2006 Apr 11;45(14):4502-

13) and the inhibition data was submitted for publication to ChemBioChem. 
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In search of more “drug-like” small molecules, we went about screening libraries of 

both natural product and synthetic small molecules for their abilities to inhibit ATP 

hydrolysis by RecA.  As discussed in Chapter 4, we initially focused our screening efforts on 

a small, directed library of molecules hypothesized to interfere with bacterial DNA repair and 

recombination machinery, or which were known inhibitors of related proteins.  Two novel 

enzyme-linked fluorescent ATPase assays relying on a resorufin reporter were developed and 

used to screen this library.  The work presented in this chapter has been peer-reviewed and 

published in Bioorganic and Medicinal Chemistry Letters (2007 Jun 15;17(12):3249-53). 

While the biased library of carefully selected small molecules provided a convenient 

starting point for our studies, we eventually expanded our screening efforts to include 

thousands of small molecules from larger libraries of both synthetics and natural products.  In 

a collaboration with the Biomanufacturing Research Institute and Technology Enterprise 

(BRITE Center) at North Carolina Central University, a total of 2180 compounds from the 

National Cancer Institute, 33,600 compounds from Biogen Idec and 28,800 compounds from 

Asinex were screened for their ability to inhibit RecA ATPase activity.  Chapter 5 presents 

initial results from the screen of the National Cancer Institute and Biogen Idec compounds.  

The intitial screening results have been prepared for submission to the Journal of 

Biomolecular Screening and an in-depth analysis of the biological activity of one class of hits 

will be prepared as a manucscript for submission to a high-impact journal (TBA). 

 A search for inhibitors of any protein begins with one or more assays which are 

capable of detecting the influence that a small molecule has on the activity of that protein, be 

it in an in vitro or in vivo setting.  We chose to develop and optimize several in vitro assays 

capable of detecting the inhibition of either DNA binding or ATPase activity and applied 
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these assays to the libraries comprised of the molecular classes listed above to mine any 

potential inhibitors.  An analysis of the results from both the DNA-binding and ATPase 

assays provided a means to deduce the potential mechanism of inhibition of a particular 

compound, be it by preventing filament formation or by interfering with the assembled 

filament.  As the size and complexity of the libraries increased from metal cations to 

nucleotide analogs to synthetic small molecules, the in vitro assays employed in the 

screening process were either selected, adapted or specifically designed to deliver 

reproducible and accurate results in reaction volumes of as little as 30 μL, to facilitate use 

with potentially optically active compounds and to avoid prohibitive screening expenses.  

The inhibition assays were employed mainly as single-point screens, but all were nonetheless 

trivially configured to rigorously examine the influence of the ligand on RecA by reporting 

kinetic data over a specific timecourse, or at various substrate and RecA concentrations, 

enabling the reporting of competitive and non-competitive inhibition constants including Ki 

and IC50 values.  Once the hits were verified, they were subjected to in vivo testing using 

loss-of-phenotype and protein expression monitoring assays.   

 While all of the above inhibitor studies were performed on E. coli RecA, we have 

also undertaken the purification and characterization of RecA from other species of 

notoriously pathogenic bacteria using harmless E. coli lab strains as expression vessels.  With 

these purified RecAs in hand, we have the capability to extrapolate the activity of a particular 

inhibitor of E. coli RecA against the RecA protein from strains of bacteria which are 

potentially hazardous to work with.  In addition to permitting an investigation on the 

universality of RecA inhibitors, the in vitro study of RecA from these pathogenic bacterial 
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species will afford functional and evolutionary comparisons of RecA from several clades of 

the bacterial kingdom.   

The long range goal of this project is to discover a new group of antibiotic 

chemotherapeutics which will prevent the de novo development and transmission of 

antibiotic resistance genes and which will either act as standalone antibiotics and/or increase 

the toxicity of currently available antibiotics against a broad spectrum of bacterial species.  

The projects outlined in this dissertation provide methods for detecting the inhibition of 

RecA and have resulted in the discovery of several classes of molecules which exert an 

inhibitory effect on RecA.  Our RecA-focused approach towards understanding and 

inhibiting antibiotic tolerance and resistance has attracted the attention of several private 

enterprises and has emerged as an intriguing alternative antibacterial chemotherapeutic 

avenue for exploration. 
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CHAPTER II 

 
BISMUTH–DITHIOL AND METAL–CATION MEDIATED INHIBITION OF RECA 

 

In Escherichia coli, RecA has been shown to be necessary for the robust viability of 

an individual bacterium and to facilitate the stress-induced adaptation of entire bacterial 

populations through stimulation of the SOS response and by performing a strand exchange 

reaction which is the basis for homologous recombination.  In a health sciences context, these 

RecA-mediated activities increase the tolerance of E. coli to antibiotic chemotherapy and are 

also implicated in the de novo development and horizontal transfer of antibiotic resistance 

genes.  Due to the high conservation of RecA across bacterial species and its important roles 

in overcoming antibacterial chemotherapy, RecA has become an attractive target for 

pharmacological study.  However, at the time this project began, there were no known 

natural product inhibitors of RecA; only native bacterial proteins, antibodies raised against 

RecA and a few select synthetic nucleotide analogs comprised a short list of modulators of 

RecA. 

In search of new classes of inhibitors of RecA, we were inspired by the work of the  

Kohn laboratory, who had previously demonstrated that certain metal cations and metal–

dithiol complexes were capable of inhibiting the E. coli transcription termination factor, rho.  

Kohn and coworkers found that Be2+, Cd2+, Ni2+, Zn2+ and Bi3+ metal cations were capable of 

inhibiting rho, and the inhibitory effect of these metal cations was increased when the metal 

was complexed with a small dithiol ligand.[126-128]  The rho protein is a structural and 
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functional homolog of RecA,[129] self-associating into a hexamer of six identical subunits 

which acts as an RNA-dependent, ATP-hydrolysis driven molecular motor responsible for 

releasing nascent mRNA transcripts.[130]  Analogous to rho, RecA is a DNA-dependent ATP-

hydrolysis driven molecular motor.  Unlike rho, RecA is active as a nucleoprotein filament of 

hundreds to thousands of monomers stoichiometrically coating DNA, but in vitro the RecA 

protein from several species of bacteria have been observed to adopt a hexameric structure 

common to other bacterial ATPases such as helicases and the F1-ATPase.[131-133]  While it 

remains to be seen if this hexameric structural state of RecA possesses any biological 

activity, it provides an additional analogy between these two bacterial nucleic acid motor 

proteins. 

On account of the similarities between between the two proteins, we explored the 

possibility that, like rho, RecA could be inhibited by transition metals and their 

organometallic complexes.  Our initial work revealed that RecA is inhibited in vitro by the 

divalent cations Zn2+, Hg2+ and Cu2+.[123]  These transition metals appeared to inhibit RecA 

by irreversibly binding to the protein and causing the formation of RecA aggregates, thereby 

preventing its ability to assemble into active nucleoprotein filaments and perform ATP 

hydrolysis.  This effect was specific to the identity of the metal, as Ca2+, Ba2+, Mn2+, Co2+ 

and Ni2+ had no adverse effect on RecA activity.  We expanded upon this last investigation 

and employed a light-scattering assay to rapidly screen various species of metals for the 

aggregation of RecA.  Through this process, we additionally identified Ag+, Cd2+ and Bi3+ as 

metals capable of binding to and irreversibly inactivating RecA.  While the bacterial 

toxicities of several metals have long been known,[134-137] the inhibition of RecA by bismuth 

warranted further investigation for the reasons discussed below. 
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Bismuth is a highly insoluble and relatively non-toxic heavy metal, and bismuth (III) 

complexes, including bismuth–dithiols, are known to be antibacterial agents which 

potentially exert their effect through several mechanisms.[128, 138-141]  Additionally bismuth is 

selectively toxic to prokaryotic cells, and the absence of acute toxic side effects in eukaryotic 

cells has allowed it to replace the use of lead in many commercial products such as solder, 

lubricants, shotgun ammunition and fishing tackle.[142]  Some of the earliest reports of 

bismuth usage were for the treatment of gastrointestinal disorders and many stomach ulcers 

are now treated with bismuth derivatives, such as orally available antacids containing 

bismuth subsalicylate (i.e. Pepto-Bismol), which is known to be active against H. pylori.[143]  

Taken together with its usage as a therapeutic agent, the unusual mode of action of bismuth 

on RecA described below led us to study the action of bismuth as a RecA inhibitor in more 

depth. 

The bismuth cation aggregated RecA under wholly different circumstances than any 

of the other inhibitory metals and appeared to selectively discriminate between different 

conformational states of RecA.  We were intrigued by the activity of the bismuth cation 

against RecA, as bismuth compounds have long been known to be medicinally relevant 

compounds,[144] and particularly, bismuth–dithiol compounds have been shown to elicit 

potent antibacterial effects[128, 139, 145-147] while demonstrating very little toxicity in eukaryotic 

cells.  The mode of action of bismuth agents are not entirely known, but prior studies indicate 

that the Bi3+ cation may interfere with iron transport[140, 141] or bind thiol-containing 

proteins.[128]  In this study, we propose adding RecA to the list of biological targets of 

bismuth and we suggest that organometallic bismuth complexes may be developed into novel 

adjuvants for antibacterial chemotherapy. 
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Screening metal cations for irreversible inactivation of RecA 

We have previously shown that Zn2+, Cu2+ and Hg2+ irreversibly inactivate E. coli 

RecA by inducing the formation of insoluble protein aggregates.  This effect was specific to 

the identity of the metal as Mg2+, Ca2+, Ba2+, Mn2+, Co2+ and Ni2+ did not exert the same 

effect on the RecA protein.[123]  In these studies, we employed a light-scattering assay[148] to 

monitor the level of RecA aggregation caused by the addition of the metallic salts as RecA 

was actively hydrolyzing ATP.  While the metal cations were administered as their chloride 

salts, further analysis of the zinc cation indicated that the inhibitory activity of the metals 

could be improved with a thiol-containing organic ligand such as DTT.  Expanding upon 

these previous studies, we utilized the light-scattering assay as a rapid screen to determine if 

other metal cations were able to aggregate the E. coli RecA protein.  The metals were 

selected to span a range of electronic configurations, preferred coordination geometries, 

hard/soft Lewis Acid character and ionic size.  Before its use, RecA was purified using size-

 

Figure 2.1.  Metal-cation induced RecA aggregation under conditions of active ATP hydrolysis. (A)
Light-scattering spectra for Cd(II), Ag(I), and Bi(III) which aggregate RecA (B) Light-scattering spectra for 
metal cations observed to have no effect on RecA solubility.  Reactions were carried out in aqueous buffer 
tailored to the metal being assayed (see Materials and Methods).  A stable baseline was measured for 
approximately 5 min, then the metal was added followed by rapid mixing of the cuvette’s contents.  The 
increase in OD350 was monitored for 40 min following addition of the metal. 
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exclusion chromatography to remove DTT, a potential metal-chelating agent from the 

protein’s storage buffer.  Light-scattering assays performed on RecA that was actively 

hydrolyzing ATP using conditions as described in our previous effort[123] were performed, 

and we determined that AgNO3, CdCl2 and Bi(NO3)3 caused aggregation of RecA while 

Co[(NH3)6]Cl3, Al(NO3)3, FeCl2, FeCl3, CdCl2, and InCl3 did not cause any aggregation (see 

Figure 2.1).  Appropriate controls were performed to ensure that the metal cations were not 

precipitating by themselves and that they were causing the aggregation of RecA and not of 

poly(dT), ATP, Mg2+ or its counterion, acetate. 

The irreversible inactivation of RecA observed here and in our previous work[123] 

occurred under conditions where RecA was actively hydrolyzing ATP.  While Ag2+ and Cd2+ 

caused a maximal level of precipitation immediately, Bi3+ caused an increasing amount of 

precipitation over the course of 40 min.  This suggested that the kinetics of irreversible 

inactivation of RecA by the bismuth cation was specific to a particular conformation of RecA 

being attained as the RecA filament was turning over ATP.   

 

Investigating the dependence of ATPase cofactors for RecA aggregation 

To determine whether the inactivation of RecA by the metals assayed here and in our 

previous effort[123] was discriminate for the presence of RecA complexed to one or more of 

its substrates or cofactors, we performed the light-scattering assay using only RecA in 

aqueous buffer, leaving out all other components.  We observed that Ag2+, Zn2+, Hg2+, Cu2+ 

and Cd2+ still induced significant aggregation of RecA alone, and only Bi3+ did not 

precipitate RecA alone (data not shown).  Therefore, we concluded that Bi3+ inhibited RecA 

by a mechanism that differed from the other five metal species.  It is interesting to note that 
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bismuth belongs to group VB, while the other five metals arbitrarily aggregating RecA are 

exclusively group IB and IIB transition metals, which can be characterized as soft Lewis 

Acids.[144, 149]   

 

Effect of thiol ligands on RecA inhibition by the bismuth cation 

Several considerations led us to explore the effect of several thiol-containing ligands 

on the activity of bismuth.  Bismuth–dithiols are stable complexes in aqueous 

environments[145] and are known to be modest antibacterials.[87]  While it is hypothesized that 

organic thiol-containing ligands enhance the lipophilicity of bismuth to improve its 

antibacterial activity,[145-147, 150] thiol-containing ligands are also suspected to enhance the 

overall solubility and stability in aqueous environments.[145]    In addition, the previous 

studies of our lab and that of the Kohn group demonstrate that the in vitro inhibition effected 

by the zinc cation was increased when it was complexed with DTT.[151]  Kohn and coworkers 

have also recently demonstrated demonstrated that BiBAL, bismuth (III) complexed to 2,3-

dimercapto-1-propanol, a thiol-containing ligand also known as British anti-Lewisite (BAL), 

was a potent inhibitor of the E. coli transcription termination factor rho.[128]  Since the ratio of 

Bi3+ to dithiol ligand was optimized for activity against rho at 3 to 1, we used the same 

formulation in our studies. 

We chose to examine bismuth complexed to four thiol-containing ligands including 

one monothiol, two 1,2-dithiols and a 1,3-dithiol (Figure 2.2, left) to determine if the 

inhibitory activity of bismuth against RecA is sensitive to the identity of the bismuth 

complex.  On the day of use, fresh complexes of bismuth–thiols were made such that the 

ratio of the bismuth cation to thiol ligand was kept constant at 3 Bi3+ to 2 thiol groups: 
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Bi3BME2, Bi3BAL, Bi3DTT and Bi3LPA.  When supplied with poly(dT), Mg2+ and ATP, 

RecA forms an activated nucleoprotein filament that hydrolyzes ATP with a steady state kcat 

of approximately 20 min-1,[124, 152, 153] thus ATPase activity serves as a reliable indicator of 

RecA activation.  We assayed the inhibition RecA ATPase activity in the presence of 0-40 

μM of the bismuth–thiol solutions indicated above, and we included the nitrate salt of 

bismuth for the no-ligand control (Figure 2.2, right).  Again, the DTT present in the RecA 

storage buffer was removed using size exclusion chromatography.  The assay buffer was 

supplemented with 10% (v/v) 1,2-propanediol to enhance the solubility and stability of the 

bismuth cation.  Control experiments indicated that the addition of 10% (v/v) 1,2-propanediol 

had no effect on RecA activity.  Likewise, the enzymes of the kinetic coupling system for the 

 
 
Figure 2.2.  Left Panel: Thiol ligands assayed for enhancement of ATPase inhibition by the bismuth 
cation.  We investigated the ability of one monothiol, two 1,2-dithiols and a 1,3-dithiol to enhance the 
inhibitory activity of bismuth against RecA.  The ratio of bismuth to the thiol groups was kept constant at 3 
Bi3+ to 1 thiol for all bismuth–dithiol complexes. Right Panel: Relative single-stranded DNA-dependent 
ATP hydrolysis of RecA in the presence of the ligands depicted in the left panel.  The inhibition of 
steady-state ATP hydrolysis by Bi(NO3), Bi3BME2, Bi3DTT, Bi3BAL and Bi3LPA was measured using an 
NADH-coupled spectrophotometric assay to detect the release of ADP.  The average of three trials is plotted 
and the mean standard deviation is represented by the error bar in the top right corner of the plot.  Control 
experiments (not shown) were performed to ensure that the metal complexes, 1,2-propanediol and absence 
of DTT did not affect the enzymatic coupling system of the assay.   
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spectrophotometric ATPase assay, pyruvate kinase and lactate dehydrogenase, were able to 

fully catalyze their respective reactions in up to 1.2 mM Bi3+ and were not affected by the 

presence of the 10% (v/v) 1,2-propanediol. 

We observed a modest increase in ATPase inhibition when the bismuth cation was 

complexed to BAL, DTT and LPA than when it was in a complex with BME or was present 

as naked Bi3+.  From these studies it becomes apparent that Bi3+ more effectively inhibits 

RecA ATPase activity when complexed to a dithiol than when it is complexed to a monothiol 

or no thiol at all.  It has been stated that dithiols form more stable complexes with bismuth 

than do monothiols[154] and there is a correlation between our observations and this claim.  Of 

the 4 thiol-containing ligands tested, the BAL ligand potentiated the inhibitory effect of 

bismuth on RecA to the greatest extent.  We conclude that Bi3BAL, which has already been 

identified as a potent inhibitor the E. coli nucleic acid motor protein rho,[128] was also the 

most potent inhibitor of E. coli RecA. 

 

Mechanism of RecA inhibition by Bi3BAL 

 Further insight into the mechanism by which Bi3BAL inhibits RecA was achieved by 

analyzing poly(dT)-dependent RecA ATPase assay kinetics and by examining the conditions 

which were able to cause significant precipitation of the RecA protein.  To evaluate whether 

the mechanism of inhibition of RecA by Bi3BAL was competitive in nature, we separately 

titrated Bi3BAL with the two substrates of RecA, ssDNA and ATP, in ATPase assays.  As 

described earlier, the assay buffer was supplemented with 10% (v/v) 1,2-propanediol to 

enhance bismuth stability and DTT was removed from the RecA storage buffer.  Bi3BAL 

was titrated from 0-20 μM and ATP and poly(dT) were individually titrated from 0-1 mM 
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and 0-15 μM nts, respectively.   In the ATPase assays where ATP was titrated, as the 

Bi3BAL concentration was increased, the S0.5
ATP was seen to increase in linear fashion while 

the Vmax was seen to decrease linearly (Figures 2.3A and 2.3B).  Conversely, in the ATPase 

assays where poly(dT) was titrated, the Kd
ssDNA was seen to increase linearly as Bi3BAL 

concentration was increased, but again, there was a linear inverse relationship between Vmax 

 

Figure 2.3.  (A & B) The affinity of RecA for ATP decreases while the maximal rate of ATP hydrolysis 
decreases as Bi3BAL concentration is increased.  ATP hydrolysis by RecA in the presence of various 
concentrations of Bi3BAL and ATP with the the poly(dT) present at a fixed concentration.  Steady-state 
ATP hydrolysis was measured using an NADH-coupled spectrophotometric assay to detect ADP 
production.  (C & D) The affinity of RecA for ssDNA decreases while the maximal rate of ATP 
hydrolysis decreases as Bi3BAL concentration is increased.  ATPase assays were performed in identical 
fashion as in (A) & (B), except that the ATP concentration was fixed and poly(dT) was titrated from 0-15 
μM nts.  Assays were performed in triplicate and averages are plotted with the error bars representing the 
standard deviation of three experiments. 
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and Bi3BAL concentration (Figures 2.3C and 2.3D).  The modulation of Vmax, S0.5
ATP and 

Kd
ssDNA by Bi3BAL suggest that it is neither competitive with ATP or ssDNA binding and 

this is an agreement with the mechanism of action of a non-competitive irreversible enzyme 

inactivator.   

 

Conformationally selective inhibition of RecA by Bi3BAL 

Under the conditions of the light-scattering assay in Fig. 1, when Bi3BAL > 50 μM, 

visible precipitation of RecA can be seen in the assay cuvette, again demonstrating that 

Bi3BAL is an irreversible inactivator of RecA that causes the protein to form insoluble 

aggregates.  RecA undergoes conformational changes upon binding ssDNA & ATP or 

ADP[155] and it is possible that bismuth targets one or more of these states.  Having 

demonstrated that RecA alone in aqueous buffer is not aggregated by Bi3BAL, we 

endeavoured to determine which ATPase cofactors render RecA susceptible to aggregation.  

If a requirement for specific cofactors for aggregation was observed, we could then 

extrapolate the conformer of RecA to which Bi3BAL was preferentially binding.  Therefore, 

to probe this apparent conformationally selective inhibition, we performed light-scattering 

assays in the presence of all permutations of ssDNA, Mg2+, and either ADP or ATP (Figure 

2.4).  In the assays Bi3BAL was present at 50 µM, the threshold concentration at which 

visible precipitation of RecA is observed to be caused. 

 We observed that RecA was vulnerable to aggregation by Bi3BAL when ADP and 

Mg2+ were present, irrespective of the presence of ssDNA.  This is evident by the high level 

of aggregation of RecA observed immediately upon mixing with ADP, Mg2+ and Bi3BAL in 

the presence or absence of ssDNA (Figure 2.4).  Under these circumstances, the aggregation 
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Figure 2.4.  Mechanistic exploration of inactivation of RecA by Bi3BAL using a light-scattering assay 
to measure protein aggregation.  RecA was incubated with the indicated components.  All reactions were 
monitored for 5 min to ensure a stable baseline, and the aggregation assays were initiated by adding 50 µM 
Bi3BAL and the OD350 was recorded for 120 min.  The light-scattering effect for the curves corresponding to 
RecA-Mg2+-ADP and RecA-Mg2+-ADP-ssDNA appear to decrease at around 40 min, but this is due to the 
precipitated RecA falling to the bottom of the cuvette and out of the light path of the spectrophotometer.

occurs rapidly and completely and although the light-scattering effect decreases at around 40 

min, this is due to the aggregated RecA–bismuth precipitating from solution and  out of the 

path of light in the spectrophotometer.  In the absence of Mg2+, RecA and ADP alone are not 

sufficient to cause precipitation by Bi3BAL. 

 In comparison to the results with ADP, a slowly increasing amount of aggregation is 

also observed when RecA, ATP, Mg2+ and Bi3BAL are present but when ssDNA is excluded, 

conditions not permitting hydrolysis of the bound ATP.  These results suggest that Bi3BAL 

more than likely binds a nucleotide-bound conformation of RecA, but has a much higher 

affinity for the ADP-bound RecA (Figure 2.5).   
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Figure 2.5.  Cartoon depicting the conformational states of RecA which are targeted by bismuth.
Bismuth has a much higher affinity for the inactive ADP-bound conformation, but can still cause 
aggregation of the inactive ATP-bound conformation.  Bismuth is unable to target RecA that is actively 
hydrolyzing ATP, but readily targets the ADP-bound RecA that is the by-product of ATP hydrolysis. 
 

 When RecA is present with ATP, Mg2+, ssDNA and Bi3BAL, we observed 

aggregation to increase steadily as the assay progressed (Figure 2.4).  These conditions 

promote the hydrolysis of ATP to ADP and we attribute this result to the aggregation of 

RecA-ADP-Mg2+ by Bi3BAL as this complex builds up when ADP is generated by the 

ATPase activity of RecA.  Furthermore, based on our observation that Mg2+ is required to 

form a complex that is susceptible to aggregation, it is unlikely that Bi3+ is simply displacing 

Mg2+ from its native binding site on RecA. 

We conclude a RecA-ADP-Mg2+ complex must be present that for aggregation to 

occur, and we suspect this structure adopts a preferable conformation in which key residues 

are exposed and subsequently interact with the Bi3+ cation (Figure 2.5).   
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In vivo studies of Bi3BAL vs. RecA: using a reporter gene assay to follow SOS induction 

 The in vitro activities of Bi3BAL against RecA ATPase activity led us to examine the 

effect of sublethal Bi3BAL doses against RecA using GY7313 E. coli.  This species contains 

the lacZ gene encoding β-galactosidase regulated by the sfiA promoter on the chromosomal 

DNA, in addition to housing the E. coli recA gene on a plasmid.  RecA activation and its 

subsequent stimulation of the SOS response can be monitored using a well-characterized 

reporter-gene assay where the sfiA promoter is activated in the late stages of the SOS 

response, leading to expression of varying levels of β-galactosidase.  The amount of  β-

galactosidase expressed is quantified by the cleavage of o-nitrophenyl-β-D-galactopyranose 

(ONPG), which is a colorometric substrate for β-galatosidase.[156-158] 

The GY7313 E. coli were exposed to Bi3BAL and mitomycin C, a DNA-damaging 

agent known to induce the SOS response.  We hypothesized that if Bi3BAL could inhibit 

RecA in vivo, then the level of apparent SOS induction by mitomycin C would be reduced in 

the presence of Bi3BAL.  The GY7313 E. coli were exposed to 0-4 μM Bi3BAL and 0.5 

μg/mL mitomycin C.  Control reactions were performed using cells lacking the plasmid 

containing the E. coli recA gene and in the absence of Bi3BAL and mitomycin C such that all 

combinations of RecA, Bi3BAL and mitomycin C were covered and the results are displayed 

in Figure 2.6A. 

 Cells capable of expressing RecA showed the highest level of SOS induction when 

exposed to mitomycin C.  Bi3BAL effected a modest reduction in SOS induction when given 

to the cells 15 min following mitomycin C treatment.  The level of SOS induction decreased 

linearly as the concentration of Bi3BAL was increased up to 4 μM.  Control experiments with 

cells lacking the plasmid expressing RecA showed that in the absence of any RecA, SOS was 
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not induced above background levels.  At a concentration of 4 μM Bi3BAL yields an 

approximate 25% reduction in SOS induction by mitomycin C.   

 
Figure 2.6.  (A) In vivo experiments exploring the effect of Bi3BAL on SOS induction.  GY7313 E. coli
with or without a plasmid harboring the recA gene were subjected to treatment with 0.5 μg/mL mitomycin
C, 2 μM Bi3BAL or both.  Induction of SOS by RecA results in expression of β-galactosidase is quantified 
by monitoring the cleavage of ONPG by the cell lysate following 2.5 h incubation with mitomycin C and 
Bi3BAL.  A linear relationship between increasing Bi3BAL concentration and decreasing SOS induction is 
observed to occur (inset).  The data plotted is the average of 3 trials and the standard error is indicated.  (B) 
(B) Antibacterial syngerism of Bi3BAL and mitomycin C administration.  JM107 E. coli were subjected 
to treatment with 0.5 μg/mL mitomycin and 2 μM Bi3BAL, or both.  Following 30 minutes of incubation 
with the compounds, the cells were plated onto LB-agar media and grown overnight at 37 °C.  Colonies 
were counted and compared to the condition with no inhibitor to determine the % survival of the JM107 E. 
coli to determine if an antibacterial synergy could be observed between mitomycin C and Bi3BAL.
 

While this assay provides a direct measure of the level of SOS induction caused under 

specified conditions, we can not confirm that this was due to the action of Bi3BAL on RecA 

alone.  Other members of the RecA family of ATPases and nucleic acid motor proteins may 

be a target of Bi3BAL, a fact that is exemplified by its inhibition of rho activities.[128]  

Despite the lack of certainty about the molecular target(s),  we can conclude that Bi3BAL 

mitigates induction of the SOS response. 
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In vivo studies of Bi3BAL: antibacterial synergism with mitomycin C 

 The SOS induction assay indicated that Bi3BAL interferes with the SOS response to 

DNA damage, possibility through the inactivation of RecA, which is responsible for 

initiating the SOS response.  To determine if there is an antibacterial synergy between 

Bi3BAL and a DNA-damaging agent, we exposed a culture of JM107 E. coli cells containing 

the wild-type E. coli recA gene to 0.5 μg/mL mitomycin C and 2 μM Bi3BAL.  Following 30 

min of exposure to both of these of agents, the viability of the cells was assayed by plating 

them onto LB-agar media and counting the resulting colonies after 24 h of growth.  

Similarly, the influence of mitomycin C and Bi3BAL on cell viability were separately 

measured to allow comparisons with the effect seen when both agents were present (Figure 

2.6B). 

 Consistent with our expectation, there was an apparent antibacterial synergy between 

Bi3BAL and mitomycin C.  2 μM Bi3BAL alone only reduced cell viability by ~20%, and 0.5 

μg/mL mitomycin C alone reduced cell viability by ~65%.  When both were administered 

simultaneously, no colonies were visible on the LB-agar media after plating and incubation.  

These results indicate that Bi3BAL appears to enhance the cell death resulting from a 

chemical DNA-damaging agent such as mitomycin C.  In conjunction with the results seen in 

Figure 2.6B we hypothesize that the lessened ability of GY7313 E. coli to survive DNA 

damage may be in part due to the inactivation of RecA by Bi3BAL, leading to a reduction of 

its effective cellular concentration, therefore reducing the level of SOS induction, a cellular 

response which is crucial to the repair of this damage. 
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Conclusions 

Our studies indicate that Bi3BAL is an inhibitor of Escherichia coli RecA that is 

neither competitive with respect to ATP or ssDNA, and that functions by irreversibly 

inactivating the RecA protein.  Bi3BAL appears to discriminately target a RecA-nucleotide-

Mg2+ complex, particularly when the nucleotide is ADP.  This implies that particular residues 

in the RecA-nucleotide-Mg2+ complex targeted by bismuth are exposed in a conformation of 

RecA that is readily attained when the identity of the nucleotide bound is ADP.  Bi3BAL also 

acts synergistically with the DNA damaging agent mitomycin C to prevent induction of the 

SOS response and inhibit bacterial growth, potentially by reducing the effective cellular 

concentration of RecA.  These findings have identified RecA as a potential cellular target of 

bismuth–dithiols in addition to the Escherichia coli transcription termination factor rho.  

Bismuth–dithiols are therefore simple lead compounds for the design of new RecA inhibitors 

and may certainly have more than one biological target. 

 

Materials and Methods 

Materials and equipment 

The Escherichia coli RecA protein was purified as previously described[159] to ≥ 97% 

homogeneity and stored in aqueous buffer [25 mM Tris·HCl (pH 7.5), 1 mM DTT and 5% 

glycerol] at −80 °C.  The protein concentration was determined using a monomer extinction 

coefficient of 2.2 ×  104 M-1 cm-1 at 280 nm.  Bio-Spin 6 size exlusion chromatography 

columns were purchased from Bio-Rad (Hercules, CA). Poly(dT) (average length of 319 

nucleotides) was purchased from Amersham Biosciences (Piscataway, NJ).  Clear 96-well 

flat-bottom microplates were purchased from Evergreen Scientific (Los Angeles, CA).  
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JM107 E. coli cells were purchased from American Type Culture Collection (Manassas, 

VA).  All other reagents were obtained from Sigma-Aldrich at the highest level of purity 

possible.  All light-scattering assays were performed on a Perkin Elmer Lambda 20 UV/Vis 

spectrophotometer with a thermojacketed 6-cell changer regulated by a Peltier temperature 

control system.  RecA ATPase kinetics assays were performed on a Perkin Elmer HTS7000 

Plus Bioassay Reader with a 380 ± 10 nm band-pass filter (Corion).  

 

Screening metal cations for irreversible inactivation of RecA 

The precipitation of RecA was measured by recording the increase in optical density 

(OD) at a wavelength of 350 nm at 37 °C in a 0.4 x 1.0 cm cuvette in 600 µL total assay 

volume.  RecA was passed through a Bio-Spin 6 size-exclusion chromatography column 

prior to use to remove dithiothreitol (DTT) from the storage buffer.  RecA (1 µM) was 

incubated in the presence of combinations of 10 mM MgOAc2, 3 mM ATP, 3 mM ADP and 

15 µM (nts) poly(dT) so that all permutations were covered.  If ATP was being added to the 

reaction it was added last and was not present for more than 5 min before the metal was 

added.  Buffers for the reaction were selected such that the metal species being assayed as a 

precipitator of RecA was stable to precipitation itself in the reaction media.  The metals were 

added at the following final concentrations and in the indicated buffers: AgNO3 was 

dissolved in 25 mM HEPES (pH 7.5) with 5% (v/v) glycerol at a final concentration of 400 

µM.  FeCl2 was dissolved in 25 mM Bis-Tris·HOAc, 5% glycerol (pH 7.1) at a final 

concentration of 400 µM.  CuOAc2, CdCl2, HgCl2, ZnCl2, Co[(NH3)6Cl3, Al(NO3)3, FeCl3 

and InCl3 were dissolved in 25 mM Tris·HOAc (pH 7.5) with 5% (v/v) glycerol at a final 

concentration of 400 µM.  Bi(NO3)3·5 H2O and Bi3BAL were dissolved in 25 mM 
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Tris·HOAc (pH 7.5) with 5% (v/v) glycerol and 10% (v/v) 1,2-propanediol at a final 

concentration of 150 µM and 50 μM respectively.  A stable baseline was measured for 

approximately 5 minutes, then the metal was added, followed by rapid mixing of the 

cuvette’s contents.  The increase in the OD350 of the solution in the cuvette was then 

monitored for at least 40 minutes following addition of the metal.  Cuvettes were also 

visually inspected following the light-scattering assay to ensure the increase in OD350 was 

due to precipitation of RecA–metal complexes and not due to absorbance properties of the 

metal. 

 

Preparation of bismuth–thiol solutions 

 Bi3BAL was prepared fresh before use essentially as previously described.[127, 128, 139, 

145]  Bi(NO3)3·5 H2O (0.03 g) was dissolved in 1,2-propanediol (412 µL) at a final 

concentration of 150 mM.  A 50 mM solution of 2,3-dimercapto-1-propanol (BAL) was 

made by adding 3 µL of BAL to 997 µL of autoclaved deionized water.  5 mM Bi3BAL in 

10% (v/v) 1,2-propanediol was made by adding 10 µL of 150 mM Bi(NO3)3 and 10 µL of 50 

mM BAL to 80 µL of autoclaved deionized water.  Upon mixing of the Bi(NO3)3 and BAL, 

which are both colourless, a bright yellow precipitate forms and then redissolves, yielding a 

faint yellow solution. 

 Bismuth–ß-mercaptoethanol (3:2) (Bi3BME2) was prepared similarly.  Bi3BME2 was 

obtained at a concentration of 5 mM in 10% (v/v) 1,2-propanediol by mixing 10 µL of 150 

mM Bi(NO3)3 with 10 µL of 100 mM ß-mercaptoethanol and 80 µL of autoclaved deionized 

water. 

 48



 Bismuth–DTT (3:1) (Bi3DTT) was prepared at a final concentration of 5 mM in 10% 

(v/v) 1,2-propanediol by mixing 10 µL of 150 mM Bi(NO3)3 with 10 µL of 50 mM DTT and 

80 µL of autoclaved deionized water. 

 Bismuth–lipoic acid (3:1) (Bi3LPA) was prepared at a final concentration of 5 mM in 

10% (v/v) 1,2-propanediol by mixing 10 uL of 150 mM Bi(NO3)3 with 10 uL of 50 mM 

reduced lipoic acid and 80 uL of autoclaved deionized water. 

 

Effect of ligands on the inhibition of RecA ATPase activity by bismuth–thiols 

The spectrophotometric ATPase kinetic measurements were carried out essentially as 

previously described[160, 161] at 37 °C in buffer containing 25 mM Tris·HOAc (pH 7.5), 5% 

(v/v) glycerol and 10% (v/v) 1,2-propanediol.  DTT was removed from RecA storage buffer 

as described in the preceding section.  Reactions (100 µL) were initiated in a microplate by 

adding ATP (3 mM) to solutions of the selected bismuth–thiol (0-40 µM), RecA (1 µM), 

MgOAc2 (10 mM), poly(dT) (15 µM nts), NADH (2 mM), phosphoenolpyruvate (2.3 mM), 

pyruvate kinase (5 U/ml) and lactic dehydrogenase (5 U/ml).  The decrease in A380 was 

measured as a function of time for 30 minutes.  The v°obs values of steady-state ATP 

hydrolysis were determined using Δε380 = 1210 M-1·cm-1 and the % inhibition was calculated 

relative to the velocity in the absence of any added inhibitor. 

 

Mechanism of action of Bi3BAL vs. RecA 

The hydrolysis of ATP was measured similarly to the method described in the 

previous sections.  DTT was removed from the RecA storage buffer as described in the 

preceeding sections.  Reactions (100 µL) were initiated in a microplate by adding a solution 
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containing RecA (1 µM), MgOAc2 (10 mM), NADH (2 mM), phosphoenolpyruvate (2.3 

mM), pyruvate kinase (5 U/ml) and lactic dehydrogenase (5 U/ml) in 25 mM Tris·HOAc (pH 

7.5), 5% (v/v) glycerol and 10% (v/v) 1,2-propanediol and Bi3BAL (0-20 µM).  Depending 

on the nature of the titrant, ATP was varied from 0-960 μM while poly(dT) was kept constant 

at 15 μM nts or poly(dT) was varied from 0-15 μM nts while the concentration of ATP was 

held constant at 3 mM.  The change in A380 was monitored in a microplatereader at 37 °C for 

30 minutes.  The v°obs values of steady-state ATP hydrolysis were determined using Δε380 = 

1210 M-1·cm-1.  The ATP and Bi3BAL titration was analyzed using a Michaelis-Menten 

equation modified for substrate cooperativity as described previously[162, 163]: 
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where Vmax is the maximum velocity of the reaction, R0 is the total concentration of protein in 
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the reaction, D0 is the total DNA concentration in nucleotides, n is the DNA/RecA 

stoichiometry (nts per monomer), and Kd is the apparent dissociation constant for DNA 

binding (usually set to zero).  The value n was too small to measure with precision in our 

platereader, but the Vmax is reliably measured in the poly(dT) titration.  The Vmax (kcat) was 

plotted against [Bi3BAL] to determine the relationship between increasing Bi3BAL 

concentration and these parameters describing RecA ATP hydrolysis kinetics.   

 

In vivo studies of Bi3BAL vs. RecA: using a reporter gene assay to follow SOS induction 

 Assays of the ability of Bi3BAL to inhibit SOS induction were performed essentially 

as previously described.[160]  GY7313 cells[156] containing the E. coli recA gene on a plasmid 

derived from pTrc99A plasmid (Amersham Biosciences) were grown to saturation overnight.  

The saturated culture was inoculated into 5 mL of fresh LB-ampicillin media and grown to 

an OD600 > 0.6.  In 12 x 75 mm tubes, the cells were diluted to OD600 = 0.3 in 2 mL of LB in 

the presence or absence of 0-4 μM Bi3BAL and 0.5 μg/mL mitomycin C.  After a 2.5 h 

incubation at 37 °C, 2 mL of cells was pelleted in 1.5 mL microcentrifuge tubes and 

resuspended in 0.5 mL of Z buffer (60 mM Na2HPO4, 40 mM NaH2PO4, 10 mM KCl, 1 mM 

MgSO4 and 50 mM 2-mercaptoethanol at pH 7.0).  The cells were lysed by sonication (10 

pulses, 75 W) and spun down at 10,000 rpm for 1 min at 4 °C to remove the membrane 

fraction.  The clarified lysate was removed to a new 1.5 mL microcentrifuge tube and 

assayed for ONPG cleavage and total protein concentration. 

 ONPG cleavage was measured in a 96-well microplate.  To each well was added 50 

μL of Z buffer, 50 μL of clarified lysate, and 20 μL of 4 mg/mL ONPG.  Reactions were 

incubated at room temperature for 6 min to cleave ONPG and were quenched with 50 μL of 1 
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M Na2CO3.  The absorbance was recorded at 405 nm using a Perkin Elmer HTS7000+ 

Bioassay Reader equipped with a 405 ± 10 nm band-pass filter (Corion).  Total protein 

concentration was determined by Bradford assay using Bio-Rad Protein Assay Reagent in a 

96-well microplate format with a 595 ± 25 nm band-pass filter (Corion).  The SOS induction 

is measured in Activity Units (A.U.) using the following equation: 
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where x is the total amount of protein (µg) present in the 1mL of clarified lysate, VONPG is the 

volume (µL) of clarified lysate assayed for ONPG cleavage, VBradford is the volume (µL) of 

clarified lysate assayed in the Bradford assay, and TONPG is the time for the ONPG cleavage 

reaction to develop. 

 

In vivo studies of Bi3BAL: antibacterial synergism with mitomycin C 

 JM107 cells were grown at 37 °C overnight in LB media to saturation.  Fresh 5 mL 

LB cultures were inoculated to an OD600 = 0.05 with the overnight cultures and grown at 37 

°C to an OD600 = 0.6.  2 mL of cells were then added to a 12 x 75 mm tube with or without 

0.5 μg/mL mitomycin C and incubated at 37 °C without shaking for 15 min.  Bi3BAL was 

added to a final concentration of 2 μM and the cells were incubated at 37 °C without shaking 

for 30 min.  The cells were then diluted 105 in LB and 150 μL of this dilution was spread 

onto an LB plate and grown overnight at 37 °C.  Bacterial colonies were counted using a 

Syngene GeneGenius photodocumentation system with Genetools software (Frederick, MD) 

and compared to the condition without any inhibitor to determine % survival. 
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CHAPTER III 

THE NUCLEOTIDE BINDING SPECIFICTY OF ESCHERCHIA COLI RECA: 

 

A LIGAND-BASED ANALYSIS OF THE ATP-BINDING SITE  

AND THE DESIGN OF FUNCTIONALLY SELECTIVE NUCLEOTIDE ANALOG INHIBITORS 

 

 Antibiotic resistance is an ever-increasing problem in the modern chemotherapy of 

bacterial infectious diseases.[113-115]  Although the mechanisms that facilitate the de novo 

development, clonal spread and horizontal transfer of resistance factors are not fully 

understood, the rapid rate at which antibiotic-resistant bacteria arise is largely due to 

mutations introduced during stress-induced DNA repair[14, 117-119] and gene transfer between 

organisms.[15, 120]  Recently, RecA has emerged as a crucial player in these phenomena.[15, 117-

120]  Moreover, RecA has long been known to influence the ability of bacteria to overcome 

the metabolic stress induced by a range of antibacterial agents,[3, 15, 20, 77, 80, 82, 164-176] and 

RecA-mediated functions are important for many aspects of bacterial pathogenicity.[13, 55, 76, 

77, 80, 81, 177] Although RecA is highly conserved and likely plays similar roles in many 

bacteria,[22, 178] RecA-dependent processes have not been elucidated in many pathogens of 

interest and no small molecule natural product inhibitors of RecA have been identified 

 Bacteria are continuously challenged by DNA damage, and must resolve a dynamic 

conflict between the needs to preserve and vary their genetic information in the face of these 

assaults: DNA repair is essential for the maintenance of heritable genetic information while 
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genetic variation drives evolutionary adaptation.[119]  RecA is at the center of these 

dichotomous pathways, detecting the influence of environmental stress on DNA replication 

and initiating the SOS response by stimulating LexA repressor autoproteolysis in a switch-

like signaling manner.[35, 37, 38]  The SOS response to DNA damage consists of a programmed 

gene expression profile that initially up-regulates DNA repair activities, but if DNA damage 

persists error-prone DNA synthesis is initiated to promote global genome-wide mutagenesis. 

[53, 178-181]  RecA expression is also activated during the SOS response to amplify this 

pathway, and to perform motor-like recombinational duties which are the basis for large-

scale DNA repair and horizontal gene transfer.[16, 49, 71]  In essence, both the signaling and 

motor activities of RecA are capable of either maintaining or mutating genetic information. 

 In spite of the remarkably diverse set of biological activities mediated by RecA, all of 

the protein’s known functions require the formation of an active RecA-DNA filament 

comprising multiple ATP-bound monomers of RecA stoichiometrically coating DNA to form 

a multimeric right-handed helical filament with about 6 RecA monomers and 18 DNA bases 

per turn.[182]  A pair of active filaments (pitch ≈ 95 Å) with high affinity for DNA form in the 

presence of ATP or its unhydrolyzable isosteres (i.e. ATPγS).  Of the active states of the 

RecA protein, the A-state is observed when ATP-bound RecA assembles on ssDNA, while 

the P-state (pairing-enhanced) is observed when RecA is complexed with multiple strands of 

DNA during recombination.  Both forms of the active RecA filament are capable of ATP 

hydrolysis.  An inactive collapsed filament (pitch = 75 Å) with lower affinity for ssDNA 

forms in the absence of ATP or in the presence of ADP.  
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Figure 3.1.  Nucleotides can be classified based on their mode of inhibition of RecA.  The roles of RecA 
in both DNA repair and mutagenesis resulting in antibiotic resistance could be better understood with 
functionally selective inhibitors capable of separating the switch- and motor-like activities of RecA.  While 
inhibitors of the active conformation would negate the recombinational activities of RecA dependent on 
ATP-hydrolysis, inhibitors targeting the inactive conformation would deny both the induction of the SOS 
response and the recombinational activities of RecA. 

 

The development of ATP-competitive inhibitors represents a conceptually 

straightforward approach to attenuating RecA function:  the conformational states of the 

RecA filament and their corresponding activities depend upon ATP binding and hydrolysis, 

therefore a structural analog of ATP can be employed to prevent access of ATP to its binding 

site.  Towards the goal of developing potent ATP-competitive inhibitors of RecA we 

describe: (1) a structural overview of RecA including an in-depth analysis of the ATP-

binding site, (2) a ligand-based analysis of the NTP hydrolysis substrate specificity of RecA, 

and (3) the analytical segregation of non-substrate nucleotides into ligands capable of 

inhibiting RecA by binding either the active or inactive conformations of RecA (or 

nucleotides which do not bind RecA at all).  Our results provide insight into the design of a 

bioorthogonal set of functionally selective inhibitors which may be used to independently 
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investigate the roles of RecA-mediated SOS-signaling and recombination in the evolution 

and acquisition of drug resistance (see Figure 3.1). 

 

Criteria for ATP-competitive inhibitor design 

 The design of potent and target-selective ATP-competitive inhibitors is not a trivial 

exercise.  Considering the myriad ATP-binding proteins known in both prokaryotic and 

eukaryotic proteomes, achieving selectivity is paramount: non-specific binding would result 

in off-target effects, convoluting the understanding of the compound’s biological activity and 

would result in increased toxicity if said compound was intended for use as a therapeutic.   

With respect to the design of ATP-competitive inhibitors of ATP-dependent enzymes 

such as protein kinases, the potential for selectivity can be rationalized in terms of the overall 

differences between the ATP-binding sites in the proteins, the conformation of the bound 

nucleotide and the interactions of the adenosine nucleotide and the amino acid side chains 

present in the ATP-binding site.[183]  Therefore selectivity is dependent upon the exploitation 

of structural differences of the ATP-binding site, and this mantra of ATP-competitive 

inhibitor design is greatly enhanced by targeting a unique conformation of the ATP-

dependent enzyme.  While a high level of structural similarity in the ATP-binding site can be 

detected among the active conformers of ATP-dependent enzymes, striking structural 

differences emerge when their inactive conformers are compared[183] (see Figure 3.2).  

Therefore, ATP-competitive inhibitors designed to interact with the inactive conformer of a 

protein may offer more opportunities for the optimization of binding selectivity. 
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Figure 3.2.  Targeting the inactive vs. active conformations of NTP-binding proteins.  While the NTP-
binding site in the active conformation more closely resemble one another, the same region can be grossly 
different in the proteins’ inactive conformations and offer opportunity for selectivity. 

Despite the limitations of homology which must be considered for designing an 

inhibitor binding to the active conformation targeting the ATP-binding site of the active 

conformation has its advantages.  It can be said that the ATP-binding site of the active 

conformation requires conservation of 3D structure and therefore is less tolerant to mutations 

which may confer resistance to the inhibitor.  Also, the ATP-binding site in the active 

conformation may still contain less conserved features such as unique residues and additional 

pockets which may be exploited in inhibitor design.[183]  To account for both structural 

rationales relating to conformationally selective binding specificity, we considered features 

of the ATP-binding site in both the inactive and active conformers of RecA for our inhibitor 

design. 

 

Structural analysis of the RecA ATP-binding site 

Whereas the structural features of the inactive RecA conformer have been extensively 

characterized, a high-resolution structure of the active conformation of RecA has not been 
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reported.  However, the groups of Egelman and Campbell recently reported an 18-Å EM 

reconstruction of the extended NPF from which they developed a pseudoatomic model 

depicting the activated A-state of RecA.[6]  A remarkable feature of the model, which has 

 
 
Figure 3.3.  Structural models of the RecA ATP binding site.  RecA is depicted in the inactive (panels A 
and C) and active (panels B and D) filament conformations with adjacent RecA monomers during filament 
assembly.  Each panel depicts a RecA dimer wherein one subunit is colored according to its domain structure 
and the second monomer is gray.  The domain coloring is as follows:  N-terminal domain is green (residues 1-
33), core/ATP-binding domain (residues 34-260) is yellow, C-terminal domain (residues 271-323) is red, and 
the tether between the core and C-terminal domains (residues 261-270) is magenta.  (A) A RecA dimer from 
the crystal structure of the inactive filament state.[2]  The proteins are rendered as their Connolly surfaces and 
the bound ADP molecule as a stick model. (B) A RecA dimer from the VanLoock et al. structural model[6] of 
the active filament state, rendered as in panel A.  (C) An enhanced view of an ATP binding site from the 
crystal structure of the inactive filament state.  The proteins are rendered as ribbon cartoons.  The individual 
residues involved in interactions with the bound nucleotide are shown as stick models and labeled (see text for 
details). (D) An enhanced view of an ATP binding site from the VanLoock et al. structural model[6] of the 
active filament state, rendered as in panel C. 
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been substantiated by analyses of the crystal structures of RecA homologs in extended 

filaments,[2, 155, 184] is the reorientation of RecA monomers with respect to their 

crystallographic locations such that the ATP-binding site is now located between adjacent 

monomers and comprises highly conserved residues on both monomers (Figure 3.3).  

Specifically, the model of the A-state RecA nucleoprotein filament describes the complete 

ATP-binding site as being composed of two neighboring RecA monomers, such that ATP 

interacts with the P-loop and several key residues of one RecA monomer (the primary site), 

and the adjacent RecA subunit completes the binding pocket around the adenine moiety 

(Figure 3.3D and Figure 3.4D).[6]  Importantly, this structural model of the ATP-binding site 

of the A-state filament is more similar to that of other ATP-binding proteins in that the 

adenine moiety is fully enveloped by protein sidechains (see Figure 3.3D). 

 

Comparative analysis of the RecA ATP-binding site 

As outlined above, in order to facilitate the design of nucleotide-based ATP-

competitive inhibitors of RecA, a complete understanding of the protein in its inactive and 

active conformations is required, particularly with regards to the features of the ATP-binding 

site in these conformational states.  To this end we comparatively analyzed the ATP-binding 

site of E. coli RecA against those of homologous ATP-binding motor proteins to identify 

unique structural elements which may be exploited in the design potent and selective 

inhibitors targeting this region of the protein. 

A wealth of high-resolution structural information is available for the E. coli RecA 

protein in an inactive conformation.[5, 155, 185] We comparatively analyzed the RecA ATP-

binding site with those of homologous motor proteins, such as F1-ATPase, T7 helicase, and 
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the rho transcription terminator, as well as other NTPases and kinases possessing a P-loop. 

The structures were aligned using the Cα atoms of the consecutive residues in the super-

secondary structural element containing the phosphate-binding loop (P-loop):  specifically, 

the residues of the P-loop, the α-helix preceding it, and the β-strand following the P-loop 

Figure 3.4.  Comparative analysis of the RecA ATP-binding site.  (A) The inactive RecA crystal structure 
model depicting two adjacent monomers with bound ADP exposed on the surface cavity of one monomer.  (B)
F1-ATPase showing two adjacent monomers.  (C) A detailed view of the internal cavity near the ribose 2′ and 
3′ hydroxyls.  (D)  A model of the active RecA filament showing two adjacent monomers with the bound 
nucleotide at the monomer-monomer interface.  Note that the orientation of the bound ADP in the shallow 
cleft on the surface of one RecA monomer in the inactive filament (panel A) and sandwiched between two 
monomers in the active filament (panel D) is opposite to the relative to the orientation of the ADP buried 
between two monomers in the F1-ATPase (panel B).  This difference in orientation of the bound nucleotide 
offers two cavities near N6 and the 2′ and 3′ positions which may be exploited by introducing modifications 
increasing both the selectivity and affinity of a potential inhibitory ligand directed at the ATP-binding site. 

 60



were included.  The orientation of the adenosine nucleotide relative to the P-loop that defines 

this super-family of enzymes could then be visualized (Figure 3.4).  To facilitate comparison, 

the F1-ATPase, an important component of a crucial metabolic complex and a close structural 

homolog of RecA, is also depicted in Figure 3.4B.  Importantly, the ATP-binding site of the 

F1-ATPase is largely representative of those of the other proteins mentioned above. 

 

ADP is bound in an unusual orientation 

Steitz and coworkers reported the first observation that the relative orientation of 

ADP bound to protein in RecA crystals was different from those of nucleotides bound to 

related NTP-binding proteins.[186] We have now extended that investigation to include many 

structurally related enzymes. In RecA, the adenosine moiety is located in a wide, shallow, 

solvent-accessible cleft on the surface of the protein (Figure 3.4A) rather than having adenine 

buried in a hydrophobic pocket as in other ATP-binding proteins[187] (Figure 3.4B). This 

difference provides an important rationale for our proceeding observation that the inactive 

conformation of RecA has a more relaxed specificity for nucleotide binding than does the 

activated A-state filament.  

 

Internal cavity adjacent to ADP 

A second important difference between the ATP-binding site of RecA and those of 

related enzymes was revealed by analysis of the surfaces of the proteins and their internal 

cavities using Swiss-PDB Viewer.  An unusual cavity was identified near the ribose 2' and 3' 

hydroxyl functional groups in the RecA crystal structure (Figure 3.4C).  This cavity is also 

proximal to the protein residues Phe260, Ile262, and Tyr264.  All three residues are highly 
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conserved[5] and mutational analysis has shown that Tyr264 is crucial for proper RecA 

function.[188, 189]  When either Phe260 or Ile262 are replaced by alanine or glycine residues, 

the resulting mutant proteins have significant deficits in several in vivo RecA activities as 

well as in vitro DNA-dependent ATP hydrolysis (Wigle & Singleton, unpublished 

observations).  The untolerated mutations of the amino acid residues surrounding the unique 

cavity suggest that it may be a functionally important feature of the RecA ATP-binding site. 

 

Merging structural knowledge of RecA ATP-binding site with nucleotide analog 

binding data 

Based on our analysis of the RecA ATP-binding site, we were able to hypothesize 

that the inactive conformer RecA would have a much higher tolerance for binding binding 

nucleotides and their modified analogs than would the active conformation.  To test these 

predictions for the purpose of further understanding how subtle differences in the active 

conformation and more pronounced differences in the inactive structural state affect the 

binding of nucleotide analogs to the ATP-binding site of RecA, we developed a stratagem for 

segregating nucleotides into those binding the active vs. inactive conformations.   In terms of 

nucleotide analogs we examined for binding to RecA, there were three main classes 

considered.  As RecA, like most ATP-binding proteins, also binds ADP strongly, we 

examined both NTPs and NDPs.  Additionally we investigated the binding of nucleotide-like 

analogs bearing neither a di- or triphosphate moiety to the ATP-binding site.   
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Figure 3.5. Flowchart for analyzing the binding of nucleotide analogs to RecA.  (A) NTP are first 
examined for their ability to serve as substrates for hydrolysis. If an NTP was not a substrate it was grouped 
with NDPs and nucleotide-like analogs and assayed for inhibition of (B) ATP hydrolysis or (C) RecA-DNA 
filament formation. 

NTPs were first screened for their potential to be hydrolyzed by RecA and the 

resulting hydrolysis kinetic data inferred on the ability of an NTP analog to bind and activate 

RecA.  If an NTP was not able to activate RecA and undergo hydrolysis, it was grouped with 

other analogs incapable of acting as substrates, namely NDPs and nucleotide-like analogs.  

This group of analogs was then subjected to assays measuring the inhibition of RecA-DNA 

filament formation or inhibition of ATP hydrolysis and segregated into those which 

respectively bound to either the inactive or active conformations of RecA (see Figure 3.5).  

Taken together, the data collected from this screen was used to identify the structural 

determinants of nucleotide analogs which may serve as leads for the design of ATP-

competitive inhibitors of RecA. 
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Probing the substrate specificity of RecA 

 Our initial work explored the extent to which modification of the nucleotide base or 

ribose functional groups affected the ability of RecA to hydrolyze NTPs.  We chose to 

examine 28 analogs of the eight canonical ribo- and 2′-deoxyribonucleotides that span a 

range of steric and electronic modifications on the purine and pyrimidine heterocycles and 

the 2′ and 3′ positions of the ribose ring (Figure 3.6). 

Normally, active nucleoprotein filament formation occurs when RecA is 

simultaneously bound to ATP and ssDNA, and results in ATP hydrolysis.  Hence, ssDNA-

dependent NTP hydrolysis serves as a useful indicator that an NTP promotes active filament 

formation in vitro.  We monitored the steady-state kinetics of the poly(dT)-dependent 

NTPase activity of RecA using a known enzyme-coupled continuous spectrophotometric 

assay for the detection of inorganic phosphate.[190]  Quantitative control experiments to 

evaluate the potential influence of the substrates or products of the coupled reaction on the 

steady-state kinetic parameters for ATP turnover by RecA revealed no measurable effects on 

Vmax, S0.5 for ATP, or Kd
app for poly(dT) binding.  Further control experiments for each NTP 

confirmed that the hydrolysis activity was poly(dT)-dependent and that the enzyme of the 

coupling system, PNP, was not affected by the NTP (data not shown).  For each of the 28 

NTPs, the initial steady-state rates of Pi formation were plotted as a function of the total NTP 

concentration, and non-linear least squares curve fitting using eq. 1 yielded the rate constant 

for catalytic turnover, kcat, and the NTP concentration required for half-maximal velocity, S0.5 

(Table 3.1).  To facilitate comparisons among the NTPs, specificity constants relative to that 

of ATP were also tabulated.  Considering the data for the 20 NTPs that were hydrolyzed at a 

measurable rate, it is clear that the S0.5 values span a much wider range (> 40-fold) than that 
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of the kcat values (2-fold).  Interestingly, nine NTPs were not hydrolyzed under the 

experimental conditions, even at concentrations as high as 1 mM (20-fold greater than S0.5 for 

ATP).  The structure-activity relationships summarizing the key structural elements that 

influence the hydrolysis of purine- or pyrimidine-based NTP analogs are illustrated in Figure 

3.7. 

 

 
 

R1 R2 R3 R4 Entry Nucleoside R5 Abbreviation 
ATP Analogs 

1 araadenosine OHa OH H NH2 H Ara-ATP 
2 2′-O-methyladenosine OMe OH H NH2 H 2′OMe-ATP 
3 3′-O-methyladenosine OH OMe H NH2 H 3′OMe-ATP 
4 2′-aminoadenosine NH2 OH H NH2 H 2′NH2-ATP 
5 2′-fluoroadenosine F OH H NH2 H 2′F-ATP 
6 6-chloropurineriboside OH OH H Cl H 6-Cl-PTP 
7 2,6-diaminopurineriboside OH OH NH2 NH2 H 2-NH2-ATP 
8 8-bromoadenosine OH OH H NH2 Br 8-Br-ATP 
9 N6-phenyladenosine OH OH H NHPh H N6Phe-ATP 

10 N6-benzyladenosine OH OH H NHCH2Ph H N6Bn-ATP 
11 N6-1-naphthyladenosine OH OH NH-1-

Naphthyl 
H N6Np-ATP H 

O6-methylguanosine OH OH NH2 12 OMe H O6Me-GTP 
        

CTP Analogs 
13 5-methylcytidine OH – − − Me 5-Me-CTP 

    
UTP Analogs 

14 2′-O-methyluridine OMe − − − H 2′OMe-UTP 
15 5-methyluridine OH − − − Me 5-Me-UTP 
16 5-propynyl-2′-

deoxyuridine 
OH − − − C≡CCH3 5-propynyl-

dUTP 
 
Figure 3.6.  Non-natural nucleotide triphosphate analogs examined as substrates for hydrolysis by 
RecA.  The abbreviation “PPP” indicates that a triphosphate moiety (P3O7

4–) is appended at the 5'-O-
position of each depicted nucleotide.  a The stereochemistry of this OH is opposite that of the representative 
purine NTP shown. 
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Table 3.1:  Kinetics of NTP Hydrolysis by the RecA Proteina

Nucleotide kcat  (min-1) S0.5 (µM) (kcat/S0.5)rel  
ATP 20 ± 1  50 ± 2 1.0 
dATP 22 ± 1  39 ± 1 1.4 
Ara-ATP 22 ± 1  86 ± 8 0.65 
2′OMe-ATP n.d.b >1000 – 
3′OMe-ATP        19 ± 1  56 ± 8 0.82 
2′NH2-ATP        27 ± 2  110 ± 20 0.62 
2′F-ATP        15 ± 1  110 ± 30 0.33 
6-Cl-PTP        17 ± 1  99 ± 8 0.42 
2-NH2-ATP        27 ± 1  54 ± 5 1.2 
8-Br-ATP 18 ± 1  140 ± 10 0.33 
N6Ph-ATP 24 ± 3  49 ± 6 1.2 
N6Bn-ATP 33 ± 1  280 ± 30 0.29 
N6Np-ATP n.d. >1000 – 
GTP 15 ± 1  1400 ± 200 0.03 
dGTP 21 ± 1  620 ± 30 0.08 
O6Me-GTP n.d. >1000 – 
ITP 22 ± 1  240 ± 10 0.23 
dITP 21 ± 1  600 ± 20 0.09 
CTP 21 ± 1  290 ± 20 0.09 
dCTP 25 ± 1  200 ± 10 0.32 
5-Me-CTP n.d. >1000 – 
UTP 25 ± 1  350 ± 40 0.09 
dUTP 25 ± 1  110 ± 30 0.58 
5-propynyl-dUTP n.d. >1000 – 
5-Me-UTP n.d. >1000 – 
TTP n.d. >1000 – 
2′OMe-UTP n.d. >1000 – 
     a Kinetics of ATP hydrolysis were measured using the MESG/PNP 
system to detect release of free phosphate.  Each kinetic parameter was 
determined in triplicate and the error shown is the standard deviation of 
three trials. b n.d. denotes hydrolysis was not detected at concentrations 
of 1000 µM. 

 

 For the eight canonical (r,d)NTPs, the data obtained using the PNP-coupled system 

recapitulated previously reported conclusions.[191]  Specifically, the order of decreasing 

kcat/S0.5 was (r,d)ATP > UTP > (r,d)CTP > (r,d)GTP >> TTP.  While ATP is the preferred 

substrate, it is not necessarily the purine ring that leads to the selectivity.  GTP and ITP, both 

of which are purine nucleotides, were only able to stimulate RecA activation with S0.5 values 

of 240 µM and 1400 µM, respectively.  ITP and GTP have a carbonyl group at position C6 in 

lieu of the exocyclic amine of ATP and this appears to attenuate the ability of those 
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nucleotides to activate RecA.  Previous studies by the Bryant laboratory have suggested that 

the specificity of RecA for ATP was due in part to a hydrogen bond between the Asp100 

carboxylate and the exocyclic 6-amino group of ATP.[192]  We have observed that the 

specificity for ATP over GTP and ITP does not appear to be entirely related to hydrogen 

bonding as 6-Cl-PTP, which is unable to hydrogen bond with the D100 position, is an 

efficient substrate of RecA.  

 
 
Figure 3.7.  Analysis of structure-activity relationships for RecA-catalyzed NTP hydrolysis of ATP 
analogs (A), UTP analogs (B), and CTP analogs (C).  The kinetic constants are compared to that of ATP 
using krel = (kcat/S0.5)NTP/(kcat/S0.5)ATP (see Table 1).  Modifications abrogating all RecA NTPase activity are 
shown in red. 
 

Several aspects of the kinetic results (Figure 3.7) are not readily explained by 

examination of the open ATP-binding site observed in crystal structures of RecA bound to 

different nucleotides.[2, 186, 193]  For example, ATP modifications such as 2'-F or 2'-NH2, 

 67



which change the electronic character but not the steric size of the 2′ position, were well 

tolerated by RecA.  However, the slight steric increase arising from the replacement of the 2′-

OH group with 2′-OMe abolished the hydrolytic activity of RecA.  Hydrogen bonding by the 

C2′ substituent was not a requirement for RecA’s NTPase activity as dATP and Ara-ATP 

resulted in hydrolysis kinetics essentially identical to those of ATP.  Remarkably, the effect 

of the OH  OMe change was restricted to C2′:  when the 3′-OH group was replaced with a 

3′-OMe group, there was no substantial change in the kinetic parameters of NTP hydrolysis.  

The inability of RecA to hydrolyze NTPs modified with groups larger than a hydroxyl at the 

C2′ position also extended to pyrimidines as 2′OMe-UTP was not turned over by RecA.  

Moreover, MANT-ATP, which was utilized as a mixture of regioisomers with an aromatic 

substituent at either the ribose 2′ or 3′ hydroxyl was not a substrate for RecA NTPase 

activity.   

 The substitution of a methyl group for the hydrogen atom at the C5 position of 

pyrimidine NTPs also eliminated the ability of RecA to utilize such nucleotides as substrates.  

Indeed, the natural nucleotide TTP, as well as the C5-substituted nucleotides 5-Me-UTP, 5-

Me-CTP, and 5-propynyl-dUTP were not RecA substrates.  Presumably, the 5-methyl groups 

of such pyrimidine NTPs occupies an area of space corresponding to the likely positions of 

prospective substituents at the N7 and C8 positions of a purine NTP.  The idea that a similar 

effect would be produced by adding a CH3-sized substituent at N7 or C8 of ATP was only 

partially confirmed:  we observed 8-Br-ATP to be a modest substrate of RecA NTPase 

activity. 

 Contrary to the tight tolerances on the size of substituents at C2′ of all NTPs and at 

C5 of pyrimidine NTPs, RecA was able to accomodate aromatic modifications at the N6 

 68



position of adenosine.  A phenyl ring appended to the N6-amino group had essentially no 

effect on hydrolysis, while a benzyl group at the N6 position, which has more rotational 

degrees of freedom than the phenyl substituent, increased kcat significantly but also increased 

S0.5.  A naphthyl substitution at the N6 position yielded an adenosine nucleotide that was not 

hydrolyzed by RecA. 

 Although the active site for ATP hydrolysis can accommodate sterically demanding 

substituents as large as a benzyl group, replacement of the exocylic –NH2 group by an –OMe 

group at position 6 of a purine to produce O6Me-GTP abrogated ATP hydrolysis.  Three 

trivial structural rationales for this observation can be ruled out by internal controls.  First, 

the presence of an exocyclic –NH2 group at C2 of O6Me-GTP likely has little influence on its 

resistance to hydrolysis by RecA because the same functional group in the context of the 

adenine heterocycle (2-NH2-ATP) had only modest effects on the kinetic parameters.  A 

second possible explanation for the 6-NH2
 to 6-OMe effect is the removal of a hydrogen 

bond donor.  However this possibility is ruled out as replacement of the NH2 group by a Cl 

atom (6-Cl-PTP) had only a modest effect on RecA’s NTPase activity.  Likewise, purine 

riboside-5'-O-triphosphate, which has no exocyclic functional groups, has been shown to be a 

substrate for RecA-catalyzed hydrolysis.[194]  Finally, the potential impact of a syn glycosidic 

torsional preference for unbound O6Me-GTP[195] is minimized by the observation that 8-Br-

ATP which has a similar syn preference[196, 197] was hydrolyzed similarly to ATP. 

 The molecular determinants of attenuation of the DNA-dependent NTPase activity of 

RecA can be summarized as follows.  Substitution at the C2' position of the ribose ring with 

groups larger than a hydroxyl moiety prevented both purine- and pyrimidine-based NTPs 

from acting as substrates for RecA NTPase activity.  Replacement of N6-amino group of the 
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adenine ring with aromatic groups larger than benzyl disrupted the ability of RecA to use the 

NTP as a substrate.  Likewise, addition of a methyl group or propynyl group at the C5 

position of pyrimidine NTPs produced the same effect. 

Of the 28 NTPs tested a potential substrates for hydrolysis by RecA, 9 were unable to 

activate the protein.  Our results demonstrate that the activation of the RecA protein by 

modified NTP analogs is exquisitely sensitive to modifications at certain positions and 

surprisingly tolerant to others.  While these 9 NTPs were unhydrolyzable by RecA, we 

hypothesized that there was still the possibility that they could bind RecA without activating 

it, and potentially inhibit the protein.  We envisioned two possibilities (Figure 3.5): (1) if 

non-substrate NTPs were able to bind and stabilize the inactive state of the protein, then they 

would prevent formation of RecA-DNA filament assembly or (2) if non-subtrate NTPs were 

able to bind the active conformation without activating RecA hydrolysis, then they would 

allow filament formation but would competitively inhibit ATP hydrolysis.  To assess the 

ability of these NTPs to inhibit RecA by either one of these mechanisms, we developed a 

systematic approach that rapidly allowed us to screen and delineate the effect of non-

substrate NTPs on the conformational state of RecA.  The results of this study allowed us to 

refine our understanding of the structure-activity relationship between nucleotide analogs and 

RecA as described below. 

 

Probing the ability of non-substrate nucleotide analogs to bind and inhibit RecA 

 In addition to probing the ability of the non-substrate NTPs to bind and inhibit RecA, 

we were interested in the examining the effect of nucleotides which are inherently unable to 

act as substrates for RecA.  Nucleotides of this class included diphosphates and nucleotide-
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like molecules, all of which lack a hydrolyzable γ-phosphate group.  As mentioned in the 

preceeding section, we predicted that non-substrate nucleotides could potentially exert an 

inhibitory effect on RecA by binding either the inactive or active conformation of the protein 

and out-competing ATP.  ADP and ATPγS can be considered as exemplary members of two 

orthogonal sets of functionally selective RecA inhibitors that attenuate the function of RecA 

by binding different states of the protein.[198] ADP stabilizes the inactive conformer and 

inhibits the assembly of active RecA-DNA filaments.[124, 148, 191, 199-202] Inhibitors of this type 

would abrogate all activities of the RecA-DNA filament, including both signaling and 

processive recombinational activities.  In contrast, ATPγS induces the structural changes 

necessary to achieve an active conformation, but is a competitive inhibitor of ATP-

hydrolysis.[203]  As a result, ATPγS supports the biochemical activities necessary for SOS 

induction but prevents ATP-hydrolysis driven RecA motor activities.[203] 

 

Application of selectivity filters to ADP and ATP analogs 

Expanding upon this last observation regarding ADP and ATPγS, we examined the 

ability of a total of 46 non-substrate nucleotides to bind either conformation of RecA and 

inhibit the protein.  Based on our structural analysis of the ATP-binding site and coupled 

with the observations that certain purine nucleotides are unhydrolyzable by RecA, we 

reasoned that the adenosine scaffold could be modified to yield a potent RecA-specific 

inhibitor.  This led us to consider the two groups of prospective RecA inhibitors depicted in 

Figure 3.8 and 3.9. 

As described in the analysis of the ATP-binding site, the inactive RecA conformer 

binds ADP in an unusual configuration wherein the adenine N6 position appears to be 
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Figure 3.9.  Ribose-modified purine analogs examined as inhibitors of RecA.  Modifications at the 2′
and 3′position of an adenosine scaffold were examined for their ability to exploit the internal cavity on the 
primary RecA monomer formed by F260, I262 and Y264, directing substituents capturing positive 
interactions with the hydrophobic side chains of these residues. 

 
 
Figure 3.8.  N6-modified purine analogs examined as inhibitors of RecA.  Modifications at the 6 position 
of an adenosine scaffold were examined for their ability to exploit the fact that RecA appears to be uniquely 
tolerant of binding nucleotides with added bulk in this location. 
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directed into the solvent and away from the protein (Figures 3.3 & 3.4). Thereby, we 

reasoned that the ATP-binding site of inactive RecA could accomodate sterically demanding 

substituents on the purine ring. In contrast, the ATP-binding sites of other ATPases and 

kinases maintain close contact with the edge and both faces of adenine, mitigating their 

potential interactions with many modified adenosine nucleotide analogs.[204-206] We chose to 

evaluate the ability of a variety of N6-substituted ADP and ATP analogs to inhibit RecA 

(Figure 3.8). 

The observation that mutations surrounding the unique cavity near the 2' and 3' 

hydroxyl groups of ADP bound in the inactive conformer (see Figure 3.4C) are untolerated 

suggests that it may be a functionally important feature of the RecA ATP-binding site. We 

therefore chose to evaluate putative inhibitors that direct space-occupying substituents into 

the cavity.  Based on our observation that ATP derivatives bearing 2'-O-alkyl or -aryl 

substituents bind to the RecA ATP-binding site but do not serve as substrates for hydrolysis 

by RecA (Table 3.1), we chose to evaluate 2'-O- and 3'-O-substituted ADP and ATP analogs 

(Figure 3.9). 

These first two approaches towards the design of a selective inhibitor of RecA rely on 

the principles of negative design: specificity is achieved by the introduction of substituents 

that prevent inhibition of non-targeted enzymes. Our preliminary observation that N6Np-ADP 

selectively inhibits RecA provided important proof that addition of a naphthyl group at the N6 

position of an adenosine nucleotide creates a selective RecA inhibitor.[202] Affinity for the 

ATP-binding site can be generated by the introduction of substituents on the adenosine 

nucleotide scaffold that capture new interactions with proximal amino acid side-chains. 
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Select members of the groups of nucleotide analogs depicted in Figures 3.8 and 3.9 may 

serve as leads for future rational modification procedures using positive design principles. 

 

Prospective inhibitors in other structural classes 

In addition to analogs of the adenosine nucleotides, we elected to investigate two 

other groups of nucleotide-like compounds as prospective inhibitors of RecA.  First, a 

number of TTP analogs were chosen and screened for inhibitory activities (Figure 3.10).  

This group was selected based on our previously reported observation that TTP binds RecA 

but is not hydrolyzed (Table 3.1).  In the absence of any structural data for RecA-TTP 

interactions, the structure-activity data gathered for these compounds would help elucidate 

the structural basis for RecA inhibition by TTP. 

 

 

 
Figure 3.10. TTP analogs screened as potential inhibitors of RecA. 

An important consideration in the design of prospective RecA inhibitors is to 

synthesize ATP competitors that could be effective in live bacteria. Unfortunately, di- and 

triphosphates are likely to be of little utility in this regard due to membrane-impermeability 

caused by the negative charges on the 5'-di- and triphosphate moieties at physiological pH.  

However, substantial progress has been made in the development of effective strategies for 
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the intracellular delivery of nucleotide prodrugs (pronucleotides), particularly for use as 

anticancer and antiviral therapeutics.[207-211] As an initial attempt to characterize potential 

inhibitors with modified phosphate groups, we chose to investigate a number of phosphate 

mimics and replacements as shown in Figure 3.11. 

 

 
Figure 3.11.  Nucleotide analogs with di- and triphosphate replacements screened as potential 
inhibitors of RecA.  These molecules were examined to understand the effect of modifying the phosphate 
group.  Some compounds were specifically chosen to examine the effect of an electrically neutral 
phosphate replacement. 

Molecular screening assays for RecA activities  

 The purpose of the second phase of our study was to identify and characterize 

nucleotide-based inhibitors of RecA-DNA filament assembly, ATP hydrolysis, or both.  

Towards this goal we have developed a complementary pair of rapid microplate assays which 
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detect binding of nucleotides to either the inactive RecA conformer or the activate A-state 

conformation.[17, 124]  These assays were adapted as high-throughput molecular screening 

assays to detect the inhibition of RecA-DNA filament assembly and the inhibition of DNA-

dependent hydrolysis of ATP by RecA, respectively.  A set of nucleotides deemed to be 

unhydrolyzable by RecA or which are inherently able to act as substrates for hydrolysis were 

subjected to this two-tier screen.  The nucleotides were carefully selected based on a 

stucture-activity profile predicted from a structural analysis of the ATP-binding site or from 

our initial efforts to describe the potential of NTPs to activate the RecA protein.   Altogether, 

46 compounds (Figures 3.8 – 3.11) were investigated for inhibitory activities using the two-

Figure 3.12.  Activities of nucleotide analogs screened against RecA in the ATPase and filament 
assembly assays.  The nucleotide analogs were examined at a concentration of 100 μM to inhibit either 
activity.  The % ATPase inhibition is represented by the blue bars (left), and the % inhibition of RecA-DNA 
filament assembly is represented by the red bars (right). 
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tiered screening assay to determine whether they significantly affected RecA DNA-

dependent ATPase activity or perturbed the RecA-DNA filament assembly. 

The relative inhibition of ATPase activity and RecA-DNA filament assembly effected 

by each compound is plotted in Figure 3.12.  By comparing the length of the activity bars in 

Figure 3.12, it may be generally concluded that the compounds do not possess equivalent 

inhibitory activities in the two different screening assays. In the following sections, the 

structure-activity relationships elucidated by these inhibition data are described. 

  

Inhibition of RecA-DNA filament ATPase activity 

The first step in both RecA-mediated SOS induction and recombinational DNA repair 

is the binding of RecA to ATP and ssDNA to form an active RecA-DNA filament.  Active 

filament assembly is necessary for signaling SOS induction and normally results in the ATP 

hydrolysis which is required to drive recombinational activities.  As a result, ATP hydrolysis 

serves as a useful indicator of filament activity, and the abrogation of ATPase activity would 

be an important aspect of RecA inhibition.  We have previously optimized and quantitatively 

validated methods which rapidly and accurately detect the influence of a potential inhibitor 

on RecA by detecting one of the by-products of ATP hydrolysis, ADP and inorganic 

phosphate (Figure 3.13).[212-214]  The fractional ATPase activity of the RecA-DNA filament 

measured over the course of 30 min in the presence of 100 µM putative inhibitor (final 

concentration) manifests its ability to bind and inhibit the A-state filament.  For each NTP 

assessed using this method, it was first established that the NTP did not serve as a substrate 

for hydrolysis by RecA at concentrations at or below 500 μM.[212]  
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Figure 3.13.  MESG-coupled ATPase assay used to screen for nucleotide analog inhibitors of ATP 
hydrolysis by RecA.  The free phosphate generated when RecA hydrolyzes ATP enzymatically reacted 
with 2-amino-6-mercapto-7-methylpurine riboside (MESG) to produce ribose-1-phosphate and 2-amino-7-
mercapto-7-methylpurine, which has an absorbance maximum of 360 nm.  The absorbance at 360 nm can be 
measured periodically over time to construct a kinetic ATPase curve or can be measured in endpoint mode 
to determine the fractional inhibition of ATPase activity. 

Like many ATPases, RecA is inhibited by ADP in a natural feedback mechanism.  

Accordingly, in the rapid screening assay ADP inhibited RecA DNA-dependent ATPase 

activity by 36%. The unhydrolyzable ATP isostere, ATPγS was even more effective than 

ADP, inhibiting the RecA-DNA filament ATPase by nearly 80%.  The 5′-O-diphosphates 

corresponding to other canonical NTPs which are not well-tolerated substrates for hydrolysis 

by RecA were poor inhibitors of ATPase activity. Specifically, GDP, IDP, UDP, CDP and 

TDP did not significantly reduce the RecA ATPase activity in our screen (Figure 3.12). 

Substitutions at the adenine N6 position did not result in adenosine nucleotide analogs 

with abilities to bind and inhibit the A-state filament. Although N6Np-ADP and N6AB-ADP, 

two ADP analogs with sterically encumbering substituents at the N6 position, inhibited ATP 

hydrolysis by 27% and 39%, respectively, none of the other analogs in this group (Figure 

3.8) were as potent as ADP. 

Nucleotides with aromatic groups substituted at either C2' or C3' were among the 

most effective inhibitors of RecA poly(dT)-dependent ATPase activity. Indeed, MANT-
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ADP, MANT-ATP, MANT-GDP, TNP-ADP, TNP-ATP, BODIPY-ADP and BzBz-ATP all 

inhibited RecA poly(dT)-dependent ATPase activity more strongly than ATPγS.  An 

aromatic group substitution at one ribose hydroxyl appears to greatly enhance the binding 

affinity of a nucleotide for the active filament ATP-binding site.  This effect is further 

established by a comparison of the ATPase inhibition effected by GDP and its analog 

MANT-GDP.  While GDP has no detectable impact on RecA ATPase activity, addition of a 

MANT group to the O2'(O3') position results in an extremely potent inhibitor of RecA 

ATPase activity.  This may indicate that the aromatic ribose modification may not be 

sufficient to create a RecA-specific inhibitor and a nucleotide analog inhibitor of RecA 

would require additional modifications to generate specificity.  Purine nucleotides having 

MANT group substitutions have previously been shown to inhibit adenylate cyclase enzymes 

with Ki values of less than 1 μM[215, 216], and have been used as fluorescent reporter molecules 

to measure the binding kinetics of ATP and GTP to various purine NTP-binding enzymes,[217, 

218] including Escherichia coli replication machinery such as DnaB, DnaC and RepA.[219-225]  

Of the 11 members of this group (Figure 3.9), only 2'OMe-ATP, PrmTP, and BODIPY-

AMPPNP are less potent than ADP. It is interesting that all three are triphosphates (or 

isosteres thereof).  PrmTP is the only nucleotide analog with a substituent fixed at O3'.  With 

the exception of 2'OMe-ATP, all the other analogs with substituents on the ribose ring can 

exist as a mixture of regioisomers due to migration of the ester or activated phenyl 

substituents. We speculate that RecA may accommodate 2'- but not 3'-substituted ribose.  

Crystal structures of other enzymes had revealed that they may select one of the two possible 

regioisomers.[226] 
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The ability to bind competitively to the ATP-binding site of RecA and inhibit its 

ATPase function was restricted to nucleotides bearing di- or triphosphate moieties or their 

isosteres. Indeed, RecA ATPase activity was not inhibited by the monophosphate species 

AMP, cAMP and dibutyryl-cAMP.  Moreover, neither of the adenosine derivatives 5′-

aminosulfonylbenzoyladenosine (5′-ASBA) or cycloSal adenosine monophosphate (cSal-

AMP), which contain 5'-benzenesulfonamide and 5'-cyclosaligenyl phosphotriester groups, 

respectively (Figure 3.11), inhibit RecA to any appreciable extent.  The lack of inhibition by 

5′-ASBA, which can be considered the sulfonamide derivative of the known irreversible 

inhibitor 5'-fluorosulfonylbenzoyladenosine (5′-FSBA),[227-229] demonstrates the importance 

of the interaction between the phosphate ester anion and the P-loop macrodipole for binding 

to the ATP-binding site. 

 

Inhibition of RecA-DNA filament assembly 

The second assay was designed to evaluate the inhibition of RecA-DNA filament 

assembly by direct monitoring of the protein released from a ssDNA substrate resulting from 

the addition of a putative inhibitor.  Our laboratory recently reported the optimization and 

validation of a method to assess the effects of small molecules on the binding of RecA to 

ssDNA.[212, 213]  Briefly, (dT)36 covalently attached to biotin (biotin-(dT)36) was incubated 

with RecA and putative inhibitor was added to a final concentration of 100 µM.  The biotin-

(dT)36, with any RecA remaining bound to it, was pulled down using streptavidin-coated 

paramagnetic particles, while the supernatant was assessed for protein content.  The amount 

of RecA remaining in the supernatant reflected the affinity of the ligand for the inactive 
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RecA conformer and the extent to which it inhibited RecA-DNA filament assembly (Figure 

3.14). 

Figure 3.14.  Biotin-dT36 magnetic pull-down assay used to screen for inhibitors of RecA-DNA 
filament assembly.  A 36mer oligonucleotide is incubated with RecA to allow filament assembly, then a 
putative inhibitor (in this case ADP) is added.  If filament assembly on the biotin-dT36 is disrupted any RecA 
remaining in the supernatant can be detected by and quantified by Coomassie staining after the RecA-bound 
biotin-dT36 is pulled down using streptavidin-coated paramagnetic particles. 

It is established that the addition of ADP to a complex of RecA with an 

oligonucleotide results in disassembly of the complex.[199]  In accord with this observation, 

ADP inhibits RecA-DNA filament assembly by 34% in the rapid molecular screening assay. 

Among the nucleotide analogs screened as potential inhibitors of RecA, a greater fraction 

were effective for inhibition of RecA-DNA filament assembly than were able to impede ATP 

hydrolysis.  

In vitro, RecA-DNA filaments can hydrolyze NTPs other than ATP, but the substrate 

tolerance is exquisitely sensitive to certain modifications of the nucleoside scaffold.[124]  The 

RecA-DNA filament assembly assay indicates that non-substrate nucleotide triphosphates 

bind RecA but fail to activate it for DNA binding.  Indeed, dGTP and TTP are more effective 

at inhibiting filament assembly than ADP. Moreover, the diphosphate products of RecA 

NTPase substrates also bind RecA and prevent RecA-DNA filament assembly.  RecA 

hydrolyzes UTP and CTP with essentially identical kcat, and UDP and CDP cause 42% and 
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38% RecA-ssDNA dissociation, respectively.  The diphosphates of the poorest RecA NTPase 

substrates, GTP and ITP, are less effective as inhibitors of RecA-DNA filament assembly (< 

30%). 

Analogs of ADP with modifications at the N6 position show potential as efficacious 

inhibitors of RecA-DNA filament assembly.  In particular, N6Ph-ADP, N6Np-ADP, and 

O6Me-GTP showed inhibition levels substantially higher than that of ADP: 70%, 82%, and 

87%, respectively.  ADP analogs bearing larger substituents at N6 were not as effective, 

especially when the C atom bonded to N6 was not aromatic.  This indicates that the steric or 

electronic character of the N6 substituent is important not only to the binding affinity of the 

ADP analog for the inactive conformation ATP-binding site, but also for the efficacy of the 

RecA-ssDNA dissociation induced as a result of this binding.  It is also noteworthy that the 

triphosphates were generally not as efficacious as the diphosphates.  One exception to this 

generalization is exemplified by O6Me-GTP.  We have previously reported that the substrate 

tolerance by active RecA-DNA filaments is sensitive to subtle electronic and steric effects. 

The relative inhibitory efficacy of this modified GTP suggests that non-adenine-like 

electronic configurations of the purine heterocycle may be useful in future inhibitor designs. 

ADP analogs with aromatic groups substituted at either C2' or C3' were also effective 

inhibitors of RecA-DNA filament assembly. Indeed, all but one member of Group 2 (Figure 

3.9) inhibited the filament assembly activity at least as strongly as ADP.  The only exception 

to this rule, BODIPY-AMPPNP, lacks a true triphosphate moiety. 

It appears that most NTP analogs containing modifications that prevent their 

hydrolysis by RecA in its active state are capable of inhibiting RecA-DNA filament 

assembly.  For example, a substitution larger than a hydroxyl at the C2' position of a 
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nucleotide such as a 2'-OMe group prevents its usage as an NTPase substrate and results in a 

good inhibitor of RecA-ssDNA binding.  This is apparent for 2'OMe-ATP and 2'OMe-UTP 

which are not hydrolyzed and actually cause 71% and 86% inhibition of RecA-ssDNA 

association despite their parent molecules, ATP and UTP, being turned over readily.  The 

structural analogs of UTP modified at position C5 with a methyl or propynyl group are also 

non-hydrolyzable and cause an appreciable level of RecA-ssDNA dissociation.  This is 

exemplified by TTP, 5Me-UTP, 5propynyl-dUTP and 5Me-CTP which cause 90%, 72%, 

74% and 60% RecA-ssDNA dissociation respectively.  This suggests that uridine analogs 

may be also useful in future inhibitor designs. 

 

Inhibition of RecA-mediated DNA three-strand exchange reaction 

RecA-mediated homologous genetic recombination involves multiple processes.[230] 

After the formation of an A-state RecA-DNA filament, the filament’s DNA strand is paired 

with a segment of homologous dsDNA to create a RecA-tsDNA filament in the P 

conformational state.  In the subsequent phases of recombination, several hundred bases of 

heteroduplex product DNA are formed as the base-pairing between strands is rapidly 

switched, the heteroduplex regions are extended, and the nascent ss- and dsDNA products are 

resolved.[231] Importantly, the latter two processes require the hydrolysis of ATP by the P-

state filament. While both the A- and P-state RecA-DNA filaments actively hydrolyze ATP, 

the screening assays described above only evaluate ATPase activity of the A-state filament. 

Thus, it was necessary to assess the ability of ATPase inhibitors to modulate the activity of 

RecA in the P state.  
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The recombinational activity of RecA can be reconstituted in vitro and when supplied 

with linear dsDNA, circular cssDNA and ATP, RecA promotes an ATP-dependent DNA 

strand exchange reaction[232, 233] that provides a biochemical paradigm for RecA’s role in the 

physiologic processes of homologous recombination and recombinational DNA repair.[34]  

ATP hydrolysis has been shown to be necessary to resolve the two new products of this 

reaction, nicked circular dsDNA and linear ssDNA.[62] To demonstrate that a small-molecule 

inhibitor of RecA ATP hydrolysis could prevent the recombinational activity of RecA, we 

performed the strand exchange reaction in the absence and presence of 100 μM TNP-ADP. 

As demonstrated by Figure 3.15, TNP-ADP abrogates RecA-mediated DNA strand 

exchange, even over the course of 90 min in the presence of 3 mM ATP. 

 

 

 
 
 

Figure 3.15.  Inhibition of RecA-mediated three-strand exchange assay by TNP-ADP.  In the absence 
of inhibitor, the formation of joint molecules (JM) and new nicked circular dsDNA product (P) from 
circular dsDNA (S) and homologous ssDNA is observed.  In the presence of TNP-ADP however, JM and 
P are not observed until 90 minutes, and are only present at low levels. 
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Functionally selective inhibition of RecA 

We envisaged the two screening assays as a coupled pair that would serve to provide 

complementary information on two of RecA’s coincident functions: (1) signaling activities 

inducing the cellular SOS response, and (2) ATP-hydrolysis driven motor activity resulting 

in recombination.  This feature is critical to the strategic development of functionally 

selective ligands that would allow separation of the motor-like and signaling functions of 

RecA, and thereby permit dissection of resistance gene development and transmission 

pathways in bacterial pathogens.  To assess the degree to which the nucleotide analog 

inhibitors are selective, a correlation plot was constructed (Figure 3.16) comparing the extent 

 
 

Figure 3.16.  Functionally selective inhibition of RecA. The inhibitory activities of each nucleotide analog 
can be separated in a two-dimensional scatter plot.  Canonical nucleotide diphosphate are shown as black 
downward triangles, and their triphosphate counterparts are shown as black upward triangles. Nucleotide 
analog diphosphates are represented as half squares, while the triphophates are fully shaded squares and 
these correspond to the following colour scheme: N6-modified nucleotide analogs are show in red, 2′ and 3′ 
modified nucleotide analogs are shown in blue, pyrimidine nucleotide analogs are shown in green. 
Nucleotides possessing phosphate isosteres are shown as white squares. 
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to which each nucleotide analog inhibited RecA’s ATPase activity with the extent to which 

the compound inhibited RecA-DNA filament assembly.  The inhibitory properties of ADP 

were used as a reference for comparison of the activities of each nucleotide analog inhibitor. 

Nucleotide analogs that were less inhibitory than ADP in both screening assays 

(Cartesian quadrant III, lower left) can be disregarded as “inactive”.  This quadrant is largely 

populated by the nucleotide-like compounds that lack a di- or triphosphate moiety (Figure 

3.11).  The failure to discover a RecA inhibitor among these compounds suggests that the 

binding of such ligands to the RecA ATP-binding site relies on interactions between the 

anionic di- or triphosphate moiety and the positive macrodipole of the α-helix preceding the 

P-loop.  Furthermore, the requirement for a 5'-O-diphosphate (or -triphosphate) suggests that 

the development of an inhibitor with potent in vivo activity will not be a trivial exercise. 

Of higher interest are those nucleotide analogs that are more inhibitory than ADP in 

the ATPase assay (quadrant II, upper left), including ATPγS, MANT-ADP, MANT-ATP, 

BzBz-ATP, and BODIPY-ATP (see Figure 3.8).  ATP-competitive ATPase inhibition 

constants (Kic), were measured for these nucleotides. The Kic for ADP is similar to that of the 

S0.5 for ATP, being measured as 63 μM and 50 μM, respectively. Nucleotides that abrogated 

RecA’s ATPase activity in the rapid screening assay were found to bind RecA with an 

affinity 40-100 fold higher than ADP as measured by their Kic values, but generally were 

observed to be incapable of preventing RecA-DNA filament assembly. These compounds 

only weakly bind RecA in its inactive conformation, but are high-affinity binders of the 

active RecA-DNA filament.  

Nucleotide analogs that were more inhibitory than ADP in both screening assays 

(quadrant I, upper right) suppressed all RecA activities, including both RecA-DNA filament 
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assembly and ATP hydrolysis. Inhibitors in this quadrant included TNP-ADP, TNP-ATP, 

and MANT-GDP (see Figure 3.9).  These compounds prevent the assembly of active RecA-

DNA filaments altogether, presumably by stabilizing the inactive RecA conformer.  Indeed, 

as described above, TNP-ADP completely suppressed the three-strand exchange reaction.  As 

it relates to inhibition of filament assembly, the superiority of the 2′ modified nucleotides 

over their counterparts such as MANT-ADP, MANT-ATP, BODIPY-ADP and Bz-Bz-ATP 

lies in the nature of the substitution and the electronic character of the nucleobase.  TNP-AxP 

analogs can exist with the trinitrophenyl moiety in aromatic form, isolated to either the 2′ or 

3′ hydroxyl of the ribose, or as a Meisenheimer complex simultaneously bound to both 

hydroxyls.  This is in contrast to the other above mentioned analogs which may only exist on 

the 2′ or 3′ hydroxyl, but not both simultaneously.  In the case of MANT-GDP, the guanine 

nucleobase presents a substantially different electronic configuration than does the adenine 

scaffold. 

Nucleotide analogs that were more inhibitory than ADP in the filament assembly 

assay but not the ATPase assay (quadrant IV, lower right) − N6Np-ADP, N6Ph-ADP, O6Me-

GTP, 2'OMe-UTP, 2′OMe-ATP, TTP, 5Me-UTP, and 5Propynyl-UTP − provide additional 

insight.  Although such compounds apparently prevent RecA-DNA filament assembly 

without inhibiting the subsequent ATP hydrolysis, this cannot be the true interpretation 

because RecA-DNA filament assembly is obligatory for ATP hydrolysis. Consideration of 

the ATP concentration in the different screening assays is important for unraveling this 

apparent conundrum.  In particular, the ATPase assay is conducted in the presence of 0.5 mM 

ATP, while the filament assembly assay is conducted with only sub-stoichiometric ATPγS (2 

µM).  Indeed, quantitative inhibition assays with these nucleotides revealed Kic values greater 
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than S0.5 for ATP in each case.  We conclude that nucleotide analogs found in quadrant IV 

are capable of selectively stabilizing the inactive RecA conformer, but can be competed off 

by ATP at elevated concentrations.  This further suggests that such compounds are likely to 

be weakly-binding competitive inhibitors. Although compounds in this group will not be 

good candidates for in vivo inhibition, their properties will be important for the elucidation of 

structure-activity relationships among ligands for the inactive RecA conformation.  

While a di- or triphosphate moiety is required for inhibition of either ATPase activity 

or RecA-DNA filament assembly, the type of inhibition effected by a particular nucleoside 

scaffold does not depend on whether the 5' substituent is a di- or triphosphate moiety. This is 

exemplified by MANT-, TNP-, and N6Np-substituted ADP/ATP pairs.  The group of 

nucleotides which inhibited RecA-DNA filament assembly were also found to consist of a 

mix of di- and triphosphates. This pattern can be generalized to the following statements: (1) 

non-substrate NTP analogs  were effective inhibitors of RecA-DNA filament assembly; and 

(2) NDPs derived from good RecA NTPase substrates were effective inhibitors of RecA-

DNA filament assembly. 

A principle conclusion of this work is that analogs of NDPs and NTPs can be readily 

segregated into two classes of RecA inhibitors based on their activities in a complementary 

pair of molecular screening assays: (1) those that preferentially bind the active RecA-DNA 

filament and competitively inhibit ATP hydrolysis (Figure 3.16; quadrant II); (2) those that 

preferentially bind the inactive RecA conformation and inhibit RecA-DNA filament 

assembly (Figure 3.16; quadrants I and IV). Importantly, the abilities of inhibitors in the 

former class to modulate the ATP turnover that is required for RecA’s recombinational motor 

activities would allow the motor-like function of RecA to be segregated from its signal-like 
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functions (see Figure 3.1). In contrast, those inhibitors of the latter class possessing sufficient 

affinity to compete with ATP for a common binding site (Figure 3.16; quadrant I) will 

abrogate both signaling and processive recombinational activities of RecA. Clearly, key 

nucleotide functional groups, in combination with those of specific residues in the RecA 

protein, provide the molecular basis for the functional selectivity exhibited by the different 

classes of inhibitors and this has important implications as discussed below. 

 

Structural bases for inhibition by ADP and ATP analogs 

In the first phase of our study on the interation of nucleotide analogs with the RecA 

ATP-binding site, we demonstrated the exquisite sensitivity of the A-state conformation of 

RecA towards utilizing modified nucleotide triphosphates analogs as substrates for 

hydrolysis.[212]  In the second phase of this study, we have extended these observations to 

non-substrate nucleotide di- and tri-phosphates and their abilities to discriminately bind and 

inhibit the inactive and inactive conformers of RecA.  As described above, we identified two 

structural features of RecA’s ATP-binding site in the inactive conformation that could be 

exploited for the design of selective ATP-competitive inhibitors. These features were the 

open, shallow cleft in which the adenine moiety binds and the internal cavity located near the 

ribose hydroxyl groups and protein residues Phe260, Ile262, and Tyr264. These features 

were respectively probed using N6-modified nucleotide analogs (Figure 3.8) and 2'(3')-

modified nucleotide analogs (Figure 3.9). The relative efficacies of these nucleotide analogs 

for selectively binding the inactive RecA conformer and inhibiting active RecA-DNA 

filament assembly could be evaluated from the dispersion of data points in the horizontal 

dimension of the correlation plot (Figure 3.16). Both N6-modified (red symbols) and 2'(3')-
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modified (blue symbols) ADP/ATP analogs span activities from 10% to nearly 100%. Taken 

together, these data provide evidence that both structural features can be exploited for the 

development of ATP-competitive RecA inhibitors. 

We have observed that only N6Ph-ATP and N6Bn-ATP were efficient substrates for 

hydrolysis,[124] while ATP analogs bearing larger N6 substituents such as 1-naphthyl, 4-

biphenyl, 1-tetrahydronaphthyl and 2-phenethyl do not serve as substrates. Most of the N6-

substituted ADP analogs were not efficacious as competitive inhibitors of ATP hydrolysis. 

(The exceptions are N6Np-ADP and N6AB-ADP.) These observations demonstrate that the 

ATP-binding site of the A-state RecA-DNA filament is exquisitely sensitive to the size of the 

substituent and only permits N6-substituents of limited size. In contrast, the observation that 

N6-substituted ADP analogs are all effective inhibitors of RecA-DNA filament assembly 

suggests that the ATP-binding site of the inactive RecA conformer accomodates large 

substituents at the 6-position of the purine heterocycle.  This observation can be rationalized 

by examination of the crystallographic structure of the inactive filament and the 

pseudoatomic model of the active filament:  in the inactive structure, N6 groups would be 

accommodated in a shallow cleft, while in the A-state filament such groups would create a 

steric clash with the residues from the neighboring RecA monomer that form the adenine-

binding pocket.  The ability to bind to and stabilize the inactive conformer of RecA prevents 

assembly of active RecA-DNA filaments in the conformational A state. 

The efficacy of most of the N6-substituted ADP analogs can be ascribed to the steric 

occlusion of RecA’s ATP-binding site. An additional structural feature may be exploited by 

N6AB-ADP, which is the only N6-modified ADP bearing a formal positive charge on the 

substituent.  We have previously hypothesized that Coulomb forces between adjacent 
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filament subunits, dominated by the negatively charged Asp100 residue of one RecA 

monomer and the positively charged Lys and Arg residues of its neighbor, regulate the 

transduction of ATP binding into conformational activation for DNA binding and higher-

order processes.[234]  We speculate that the ammonium cation of N6AB-ADP may disrupt 

electrostatic complementarity between adjacent RecA monomers, thereby preventing access 

to the fully active conformation of the filament. 

In addition to the inhibitory activity effected by substituents on the purine 

heterocycle, the abilities of both pyrimidine and purine nucleotides to inhibit RecA’s 

activities were extremely sensitive to modifications of the ribose. In particular, substituents at 

the ribose 2' position abrogated the abilities of NTPs to serve as RecA substrates and 2'(3')-

substituted NDPs and NTPs were effective inhibitors of RecA ATPase activity. These 

observations may be rationalized by considering the proximity of the ADP 2'- and 3'-

hydroxyl groups to the unusual cavity observed near residues Phe260, Ile262, and Tyr264 in 

the RecA-ADP cocrystal structure (Figure 3.4C).  Of these residues, Tyr264 is the closest to 

the 2' and 3' positions of the ribose moiety and is part of a loop that connects RecA’s ATPase 

domain with its C-terminal domain. It has been suggested that the C-terminal domain acts as 

regulatory switch that modulates RecA’s DNA-binding and ATP-hydrolysis activities.[155, 186, 

235-237]  Moreover, analysis of low-resolution structures from EM have revealed that the state 

of the bound nucleotide is correlated with the relative orientation of the C-terminal domain, 

and Egelman and coworkers have speculated that allosteric coupling between the ATPase 

and C-terminal domains may be communicated in both directions.[6]  We speculate that the 

Tyr264-containing tether may provide a means of transmitting allosteric information between 

the ATP binding site and the regulatory C-terminal domain. Nucleotides substituted at the 2' 
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position with groups at least as large as a methyl group could suppress the conformational 

changes in the Tyr264-containing tether that facilitate the rearrangement of the C-terminal 

domain. 

It is interesting to note that substituents at the ribose 3' position are tolerated 

differently from those at the 2' position.  For example, we observed that 3'-O-methyl-ATP is 

an efficient substrate for hydrolysis by RecA while its regioisomer, 2'OMe-ATP is not 

hydrolyzed at all.[212]  In the present study, we noted that PrmTP, which is modified at the 3' 

position (Figure 3.9), is not an effective RecA inhibitor while 2'(3')-modified ADP and ATP 

analogs bearing ester or activated phenyl substituents that can migrate are generally effective.  

We hypothesize that the 2’-O-modified nucleotide is the high-affinity regioisomer, and 

experiments are underway to test this theory. 

 

Implications for future rational modification procedures 

The purpose of the present study was to elucidate the structural requirements for the 

development of potent and selective ATP-competitive inhibitors of RecA.  We identified two 

unusual structural features of the ATP-binding site of the inactive RecA conformer, and a 

number of nucleotide analogs were evaluated for their abilities to exploit these features.  This 

approach tests a principle of negative design whereby inhibitor specificity is achieved by the 

introduction of substituents that prevent the formation of complexes with non-targeted 

enzymes.  In addition, the evaluation of a range of substituents on the adenosine nucleotide 

scaffold was designed to identify inhibitor structure-activity relationships that would reveal 

new interactions with the protein’s sidechains. 
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While modifications at both the N6 and C2' positions of an adenylate nucleotide, 

which were directed to the shallow adenine-binding cleft and the internal cavity, respectively, 

produced effective inhibitors, the potency and conformational selectivity of the inhibition 

depended on the position of the substituent (see Figure 3.17).  For example, while N6Ph-

ADP, N6Np-ADP, and O6Me-GTP were among the most effective inhibitors of RecA-DNA 

filament assembly, none of the three was more effective than ADP at inhibiting ATP 

hydrolysis.  In contrast, TNP-ATP, TNP-ADP, and MANT-GDP were effective inhibitors of 

both filament assembly and ATPase activities.  We tentatively conclude that this difference 

between the two groups arises from differences in their relative affinities for the ATP-

binding site: 2'-modified nucleotides compete effectively with ATP under the experimental 

conditions whereas 6-modified nucleotides do not. 

 

 

 
 
 

Figure 3.17.  Adenosine scaffold substitutions create conformationally selective inhibitors.  Large 
N6 modifications target the shallow adenine binding cleft and increase affinity for the inactive 
conformer.  Large aromatic 2′ modifications target an internal cavity in the ATP-binding site and 
increase affinity for the active conformer. 
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We speculate that π-stacking interactions between an aromatic group at the 2' position 

of a nucleotide analog and the phenol sidechain of Tyr264 may enhance the affinity of the 

nucleotide analog, allowing it to more effectively compete for the ATP-binding site. 

Nucleotides with smaller non-aromatic substituents at 2' (e.g., 2'OMe-ATP) or substituents at 

3' (e.g., PrmTP) apparently interact with ATP-binding site of the inactive RecA conformer 

without garnering sufficient additional interactions to compete with ATP. 

Substituents at the ribose 2' position lead to nucleotide analogs with enhanced 

abilities to inhibit RecA’s activities relative to ADP.  It is noteworthy that 2'(3')-modified 

purine nucleotides such as TNP-ATP and MANT-GTP also bind other ATP- and GTP-

dependent enzymes.[219, 226, 238, 239]  Thus, unless the affinity of a specific modified nucleotide 

is selectively enhanced for RecA, 2'(3') modifications are generally unlikely to afford 

selective RecA inhibitors. 

Whereas nucleotide analogs bearing substituents at the 2' position can effectively 

compete with ATP for a common binding site on RecA, 6-modified nucleotide analogs do 

not. Indeed, the ATP-competitive ATPase inhibition constants (Kic) measured for such 

nucleotide analogs were essentially identical to the S0.5 value for ATP[198, 200, 240, 241] and 

within the range of Kd and Ki values for ADP.[198, 242, 243]  The observation that the affinities 

of a variety of 6-substituted adenosine nucleotides, ADP, and ATP are similar recapitulates 

the guiding negative design principle.  N6-modified ATP analogs have been successfully used 

to control the functions of bioengineered (mutant) myosins, protein kinases, and kinesins.[204-

206]  In part, the utility of these compounds stems from the fact that they do not bind the wild-

type enzymes.  The superiority of N6-substituted adenosine nucleotides for the inhibition of 

wild-type RecA likely results from its shallow surface crevice in which the modified 
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nucleotides are accommodated.  This conclusion extends our preliminary observation that 

N6Np-ADP (300 μM) led to no reduction in the rates of the ATP hydrolysis reactions 

catalyzed by E. coli rho transcription terminator, chicken muscle myosin, and rabbit muscle 

pyruvate kinase.[202] 

Taken together, the conclusions elaborated above suggest that substituents at the 

adenosine nucleotide ribose 2' position can lead to high-affinity ATP-competitive inhibitors 

of RecA while substituents at the purine 6 position can lead to high-specificity inhibitors.  In 

the context of future rational modification procedures, it is interesting to note that MANT-

GDP was characterized by more potent inhibitory activities than MANT-ATP or MANT-

ADP.  This suggests that the structural and energetic perturbations effected by ribose 

substituents may be coupled with those effected by purine substituents. 

Conclusions 

In summary, we have throroughly probed the ATP-binding site of RecA using 

nucleotide analogs and rapid microplate screening assays.  As a result, we have identified 

two unusual structural features of the ATP-binding site of the inactive RecA conformer and 

discovered structure-activity patterns in the binding profiles of RecA to nucleotide analogs 

with inhibitory implications.  Non-substrate nucleotide analogs were readily segregated into 

two classes based on their activities in the complementary pair of molecular screening 

assays: (1) those that preferentially bind the active RecA-DNA filament and competitively 

inhibit ATP hydrolysis; (2) those that preferentially bind the inactive RecA conformation and 

inhibit RecA-DNA filament assembly. 
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The development of inhibitors of RecA remains an important step towards fully 

understanding the roles of RecA within bacterial pathogens. Importantly, the abilities of 

inhibitors in the first class to modulate the ATP turnover that is required for RecA’s 

recombinational motor activities would allow the motor-like function of RecA to be 

segregated from its signal-like functions. In contrast, those inhibitors of the second class 

possessing sufficient affinity to compete with ATP for a common binding site will abrogate 

both signaling and processive recombinational activities of RecA. 

A further product of this effort was the elucidation of structural requirements for the 

development of potent and selective ATP-competitive inhibitors of RecA. Indeed, key 

nucleotide functional groups, in combination with those of specific residues in the RecA 

protein, were identified as providing the molecular basis for the functional selectivity 

exhibited by the different classes of inhibitors. 

These structure-activity relationships may be exploited in future rational modification 

procedures for the synthesis of microbiological tools to tease apart the roles of RecA in 

various aspects of pathogenicity.  We envision that such inhibitors may be developed into 

novel adjuvants for antibiotic chemotherapy that moderate the development and transmission 

of antibiotic resistance genes and increase the antibiotic therapeutic index. 

 

Materials and Methods 

 

Source of nucleotides used in this work.  The compounds used in this project were obtained 

from the commercial sources listed in the following table or were synthesized as described 

below. 
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Table 3.2.  Commercial Sources of Nucleotides Used 

Nucleotide Source 
ATP Sigma-Aldrich 
dATP Sigma-Aldrich 
Ara-ATP Tri-Link Biotechnologies 
8-Br-ATP Sigma-Aldrich 
2′-F-ATP Tri-Link Biotechnologies 
2′NH2-ATP Tri-Link Biotechnologies 
2′OMe-ATP Tri-Link Biotechnologies 
3′OMe-ATP Tri-Link Biotechnologies 
MANT-ATP AXXORA 
Bz-ATP Sigma-Aldrich 
TNP-ATP AXXORA 
N6Bn-ATP AXXORA 
N6Ph-ATP AXXORA 
PrmTP Tri-Link Biotechnologies 
6-Cl-PTP Tri-Link Biotechnologies 
ATPγS Sigma-Aldrich 
ATPγS-BODIPY Molecular Probes 
ATPγS-AmNS Molecular Probes 
BODIPY-AMPPNP Sigma-Aldrich 
MANT-AMPPNP Molecular Probes 
ADP Sigma-Aldrich 
MANT-ADP AXXORA 
BODIPY-ADP Molecular Probes 
TNP-ADP Molecular Probes 
N6-PE-ADP AXXORA 
N6-Bn-ADP AXXORA 
N6-Ph-ADP AXXORA 
α,β-CH2-ADP AXXORA 
AMP Sigma-Aldrich 
butyryl-cAMP Sigma-Aldrich 
dibutyryl-cAMP Sigma-Aldrich 
GTP Sigma-Aldrich 
dGTP Sigma-Aldrich 
O-Me-GTP Tri-Link Biotechnologies 
GDP Sigma-Aldrich 
MANT-GDP AXXORA 
ITP Sigma-Aldrich 
dITP Sigma-Aldrich 
IDP Sigma-Aldrich 
UTP Sigma-Aldrich 
5-Me-UTP Tri-Link Biotechnologies 
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5-propynyl-dUTP Tri-Link Biotechnologies 
TTP Sigma-Aldrich 
TDP Sigma-Aldrich 
CTP Sigma-Aldrich 
dCTP Sigma-Aldrich 
5-Me-CTP Tri-Link Biotechnologies 
CDP Sigma-Aldrich 

 

Synthesis of 5′-modified nucleotide analogs. 

2′,3′-O-Isopropyliden-5′-O-(4-sulfamoylbenzoyl)adenosine:  To a well-stirred, ice-cooled 

solution of 2′,3′-O-isopropylidene adenosine (1.226 g, 3.99 mmol) and 4-sulfonamidobenzoic 

acid (0.883 g, 4.39 mmol) in anhydrous DMF (10 mL) was added DMAP (0.049 g, 0.399 

mmol).  Then a solution of DCC (0.905 g, 4.39 mmol) in DMF (2 mL) was added dropwise.  

The ice-bath was removed and the reaction mixture was warmed to room temperature and 

stirred for 14 h.  The white precipitate was filtered and washed with DMF (5 mL).  The 

filtrate was diluted with chloroform (50 mL) and water (100 mL).  The organic layer was 

separated, washed with water (3 x 100 mL) and concentrated on a rotary evaporator to about 

50 mL when the product precipitated as white solid.  This was filtered, dried and used in the 

next step without further purification (1.267 g, 2.58 mmol, 65%).  Rf (CH3OH/CH2Cl2: 

10/90) = 0.438.  1H NMR (300 MHz, DMSO-d6): δ = 8.31 (s, 1H), 8.13 (s, 1H), 8.09 (dd, J = 

8.8, 1.9 Hz, 2H), 7.94 (dd, J = 8.8, 1.9 Hz, 2H), 7.59 (s, 2H), 7.37 (s, 2H), 6.23 (d, J = 2.5 

Hz, 1H), 5.56 (dd, J = 6.3, 2.5 Hz, 1H), 5.21 (dd, J = 6.3, 3.3 Hz, 1H), 4.62–4.45 (m, 3H), 

1.57 (s, 3H), 1.36 (s, 3H).  13C NMR (75 MHz, DMSO-d6): δ = 164.3, 156.0, 152.6, 148.7, 

148.0, 139.8, 131.9, 129.9, 125.9, 119.1, 113.5, 89.0, 83.3, 83.0, 80.7, 79.1, 64.6, 26.9, 25.2.  

ESI-MS: m/z 491.5 [M+H]+, 513.0 [M+Na]+. 
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5′-O-(4-Sulfamoylbenzoyl)adenosine:  2′,3′-O-Isopropyliden-5′-O-(4-sulfamoylbenzoyl)-

adenosine (0.664 g, 1.35 mmol) was dissolved in trifluoroacetic acid (9 mL) and water (1 

mL), and the resulting solution was stirred at room temperature for 1 h.  The excess of 

trifluoroacetic acid was removed by blowing argon gas through the flask.  The remaining 

reaction mixture was neutralized with concentrated ammonium hydroxide solution, 

concentrated in vacuo, dissolved in methanol and purified by flash chromatography using 10-

12% CH3OH/CH2Cl2 to afford the desired product as light yellow solid (0.421 g, 0.935 

mmol, 69%).  Rf (CH3OH/CH2Cl2: 10/90) = 0.111.  1H NMR (300 MHz, CD3OD): δ = 8.28 

(s, 2H), 8.26 (s, 1H), 8.23 (s, 2H), 8.09 (s, 1H), 8.07 (d, J = 8.8 Hz, 2H), 7.95 (d, J = 8.8 Hz, 

2H), 6.02 (d, J = 4.1 Hz, 1H), 4.75 (dd, J = 12.0, 3.3 Hz, 1H), 4.63–4.55 (m, 2H), 4.38–4.37 

(m, 1H), 3.34 (s, 1H).  13C NMR (75 MHz, CD3OD): δ = 166.4, 165.6, 156.1, 152.0, 151.1, 

149.2, 142.3, 134.2, 131.2, 127.4, 91.0, 83.5, 74.9, 71.8, 65.4.  ESI-MS: m/z 451.0 [M+H]+. 

N6-naphthyl-2′,3′-O-benzylidene adenosine:  To a well-stirred suspension of N6-

naphthyladenosine (0.491 g, 1.25 mmol) and benzaldehydedimethyl acetal (0.94 mL, 6.24 

mmol) in anhydrous acetonitrile at 0 °C was added freshly distilled POCl3 (0.23 mL, 2.50 

mmol) dropwise. The resulting yellow coloured suspension was stirred at 0 °C for 1 h and 

upon warming to room temperature fully dissolved to yield a yellow solution.  Stirring was 

continued for the next 1 h when, TLC examination showed that the starting material had 

completely disappeared. At this point saturated aqueous NaHCO3 solution was added (100 

mL). The solution was extracted with EtOAc (3 x 50 mL), and the combined organic layer 

was washed with brine, dried over Na2SO4 and concentrated by rotoevaporation. The crude 

residue was then purified by flash chromatography on silica gel using EtOAc to obtain the 

desired product as white foam (0.376 g, 0.781 mmol, 63%), Rf (EtOH/EtOAc: 2/98) = 0.531. 
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1H NMR (300 MHz, CDCl3): δ = 8.42 (s, 1H), 8.21 (s, 1H), 8.05–8.01 (m, 2H), 7.91–7.89 

(m, 1H), 7.83 (s, 1H), 7.79 (d, J = 8.2 Hz, 1H), 7.60–7.47 (m, 8H), 6.66 (dd, J = 11.5, 1.9 Hz, 

1H), 6.08 (s, 1H), 6.01 (d, J = 4.9 Hz, 1H), 5.38 (dd, J = 6.0, 4.9 Hz, 1H), 5.24 (dd, J = 6.3, 

0.8 Hz, 1H), 4.73 (s, 1H), 4.05–4.00 (m, 1H), 3.89–3.84 (m, 1H). 13C NMR (75 MHz, 

CDCl3): δ = 154.1, 152.8, 148.2, 140.5, 135.9, 134.4, 132.6, 130.0, 128.7, 128.6, 128.4, 

126.6, 126.5, 126.4, 126.2, 125.7, 122.0, 121.9, 121.5, 107.6, 94.0, 85.6, 83.9, 82.9, 77.2, 

63.4. ESI-MS: m/z 482.2 [M+H]+. 

cyclo-Saligenyl-5′-O-[(N6-1-naphthyl)-2′,3′-O-benzylideneadenosine]-phosphate:  To a well-

stirred solution of N6-(1-naphthyl)-2′,3′-O-benzylideneadenosine (0.311 g, 0.646 mmol) in 

anhydrous acetonitrile (10 mL) at 0 °C was added cyclo-salphosphoramidite (0.360 g, 1.42 

mmol) causing the clear solution to become turbid. Then, imidazolium triflate (0.564 g, 2.58 

mmol) was added with continued stirring and within 10 min the reaction mixture turned 

clear. Then stirring was continued for the next 1.5 h at 0 °C when a TLC examination 

showed complete disappearance of the starting adenosine derivative. Then, tert-

butylhydroperoxide (0.15 mL, 1.36 mmol) was added dropwise and stirring was continued at 

0 °C for 1 h at which point reaction was found to be incomplete as seen from TLC. Hence, an 

additional 0.1 mL (0.7 eq) of tert-butylhydroperoxide was added and stirring continued for 

30 min when the reaction went to completion. Concentration of the solvent followed by flash 

chromatography (silica gel, EtOAc) afforded the desired product as white solid (0.203 g, 

0.313 mmol, 49%), Rf (EtOH/EtOAc: 1/99) = 0.611. 1H NMR (two diastereomers, 300 MHz, 

CDCl3): δ = 8.41 (s, 1H), 8.40 (s, 1H), 8.20 (d, J = 7.1 Hz, 1H), 8.09 (d, J = 6.9 Hz, 1H), 

8.10–8.04 (m, 2H), 7.90 (d, J = 6.3 Hz, 1H), 7.86 (s, 1H), 7.85 (s, 1H), 7.80 (d, J = 6.6 Hz, 

1H), 7.59–7.40 (m, 18H), 7.23–6.88 (m, 7H), 7.06 (dd, J = 6.3, 1.1 Hz, 1H), 6.23 (dd, J = 
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3.6, 1.9 Hz, 1H), 6.16 (dd, J = 3.3, 1.9 Hz, 1H), 6.03 (s, 1H), 6.01 (s, 1H), 5.68 (dd, J = 6.6, 

1.9 Hz, 1H), 5.64 (dd, J = 6.6, 1.9 Hz, 1H), 5.27–5.15 (m, 8H), 4.49–4.42 (m, 4H). 31P NMR 

(120 MHz, CDCl3): δ = -8.42, -8.47, -8.50 and -8.56 (4s, diastereomeric mixture).  ESI-MS: 

m/z 672.2 [M+Na]+. 

cyclo-Saligenyl-5′-O-[(N6-1-naphthyl)adenosine]phosphate:  To a well-stirred solution of 

cyclo-Saligenyl-5′-O-[(N6-1-naphthyl)-2′,3′-O-benzylideneadenosine]phosphate (0.053 g, 

0.082 mmol) in methanol (3 mL) at room temperature was added 2 mL of trifluoroacetic acid 

(50% aqueous solution). The resulting solution was stirred overnight, until a TLC 

examination showed the reaction to be complete. The solvent was removed and the residue 

was purified by flash chromatography (silica gel, CH3OH/CH2Cl2: 5/95) to afford the product 

as oil (0.028 g, 0.05 mmol, 61%), Rf (CH3OH/CH2Cl2: 5/95) = 0.163. 1H NMR (300 MHz, 

DMSO-d6): δ = 9.10 (s, 1H), 8.50 (s, 1H), 8.49 (s, 1H), 8.16 (d, J = 7.4 Hz, 1H), 8.01–7.99 

(m, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.63–7.43 (m, 4H), 7.23–7.01 (m, 4H), 5.94 (d, J = 5.2 Hz, 

1H), 5.51–5.50 (m, 1H), 5.35 (s, 1H), 5.24–5.22 (m, 1H), 5.22–5.19 (m, 2H), 3.80–3.62 (m, 

3H). 31P NMR (120 MHz, DMSO-d6): δ = -5.49 and -5.52 (2s, diastereomeric mixture). ESI-

MS: m/z 562.2 [M+H]+. 

Synthesis of N6-modified nucleotide analogs 

General methods for the preparation of N6-modified adenosines:  [244] 6-Chloro-2′,3′-bis(O-

Benzoyl)Adenosine was prepared according to the previously reported procedures [245, 246] 

Analysis of the product (1H NMR in CDCl3) was identical to previously reported data.[246] 

The corresponding amine (4.85 mmol, 6.0 eq) was added to a stirred suspension of 6-chloro-

2′,3′-bis(O-benzoyl)adenosine (1) (0.4 g, 0.8 mmol, 1.0 eq) in ethanol (10 mL).  The reaction 
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mixture was refluxed for 3–11 h, and then cooled to room temperature to crystallize the 

product.  If crystallization did not occur upon cooling to room temperature, the reaction 

mixture was placed at 4 °C overnight to encourage crystallization. The crystallized product 

was filtered and washed with cold ethanol and hexanes. The analytical data (1H NMR, 13C 

NMR and ESI-MS) for each N6-substituted adenosine derivative is shown below. 

N6-[1-(1,2,3,4-Tetrahydronaphthyl)]adenosine-2′,3′-O-dibenzoate:  Light pink solid (0.334 

g, 0.55 mmol, 68%). 1H NMR (300 MHz, DMSO-d6): δ = 8.49 (s, 1H), 8.33 (s, 1H), 8.25 (d, 

J = 8.2 Hz, 1H), 8.01 (d, J = 7.1 Hz, 2H), 7.82 (d, J = 7.1 Hz, 2H), 7.71 (t, J = 7.4 Hz, 1H), 

7.66–7.49 (m, 3H), 7.45–7.36 (m, 2H), 7.24–7.02 (m, 4H), 6.59 (d, J = 6.6Hz, 1H), 6.34 (t, J 

= 6.0 Hz, 1H), 5.95 (dd, J = 5.5, 2.2 Hz, 2H), 5.66 (s, 1H), 4.58 (d, J = 2.2 Hz, 1H), 3.94–

3.76 (m, 1H), 2.84–2.7 (m, 2H), 2.1–1.68 (m, 4H). 13C NMR (75 MHz, DMSO-d6): δ = 

164.9, 164.4, 154.4, 152.8, 139.8, 137.9, 134.0, 129.4, 129.3, 128.9, 128.7, 128.3, 127.7, 

126.6, 125.7, 85.9, 84.0, 73.4, 72.5, 61.4, 48.3, 47.7, 29.6, 28.9. ESI-MS: m/z 606.1 [M+H+]. 

N6-(4-Phenylbenzyl)adenosine-2′,3′-O-dibenzoate:  White solid (0.50 g, 0.78 mmol, 96%). 

1H NMR (300 MHz, DMSO-d6) δ = 8.66 (s, 1H), 8.52 (s, 1H), 8.29 (s, 1H), 8.00 (dd, J = 7.1, 

1.4 Hz, 2H), 7.79 (dd, J = 8.2, 1.4 Hz, 2H), 7.73–7.66 (m, 1H), 7.65–7.50 (m, 7H), 7.48–7.30 

(m, 7H), 6.57 (d, J = 6.6 Hz, 1H), 6.32 (t, J = 6.1 Hz, 1H), 5.94 (dd, J = 5.3, 2.5 Hz, 1H), 

5.87 (dd, J = 7.1, 4.7 Hz, 1H), 4.82–4.70 (m, 2H), 4.56 (q, J = 2.8 Hz, 1H), 3.92–3.74 (m, 

2H). 13C NMR (75 MHz, DMSO-d6) δ = 164.8, 164.4, 154.6, 152.7, 148.4, 140.0, 139.9, 

139.1, 138.6, 133.9, 129.3, 129.2, 128.8, 128.7, 128.2, 127.7, 127.2, 126.6, 126.5, 119.8, 

85.9, 84.0, 73.4, 72.4, 61.3, 42.6. ESI-MS: m/z 642.2 [M+H+]. 
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N6-(4-Biphenyl)adenosine-2′,3′-O-dibenzoate:  White solid from CH2Cl2/hexanes (0.230 g, 

0.43 mmol, 53%). 1H NMR (300 MHz, CDCl3) δ = 8.56 (s, 1H), 8.24–8.00 (m, 3H), 7.96–

7.79 (m, 5H), 7.68-7.26 (m, 13H), 6.79 (d, J = 10.2 Hz, 1H), 6.51–6.42 (m, 1H), 6.30 (d, J = 

7.4 Hz, 1H), 6.10 (d, J = 5.2 Hz, 1H), 4.63 (s, 1H), 4.18–3.94 (m, 2H). 13C NMR (75 MHz, 

CDCl3) δ = 165.6, 165.0, 152.9, 148.6, 140.8, 140.5, 137.6, 137.1, 133.9, 130.0, 129.4, 

129.0, 128.8, 128.7, 127.9, 127.3, 127.1, 122.2, 121.2, 89.3, 86.8, 73.8, 73.7, 63.0. ESI-MS: 

m/z 628.2 [M+H+], 650.1 [M+Na+]. 

N6-(2-Naphthyl)adenosine-2′,3′-O-dibenzoate:  White solid from CH2Cl2/hexanes (0.307 g, 

0.51 mmol, 56%). 1H NMR (300 MHz, CDCl3) δ = 8.58 (s, 1H), 8.44 (d, J = 1.9 Hz, 1H), 

8.41 (s, 1H), 8.10–8.03 (m, 2H), 7.92 (s, 1H), 7.88–7.72 (m, 6H), 7.66–7.26 (m, 8H), 6.45 

(dd, J = 7.7, 5.5 Hz, 1H), 6.30 (d, J = 7.7 Hz, 1H), 6.10 (dd, J = 5.5, 1.1 Hz, 1H), 4.94 (s, 

1H), 4.63 (d, J = 1.1 Hz, 1H), 4.14–3.95 (m, 2H). 13C NMR (75 MHz, CDCl3): δ = 165.6, 

165.0, 152.9, 148.5, 140.4, 135.9, 134.1, 133.9, 130.7, 129.9, 129.4, 129.0, 128.8, 128.6, 

127.9, 127.8, 126.7, 125.1, 122.1, 121.0, 117.4, 89.2, 86.8, 73.8, 62.9. ESI-MS: m/z 602.1 

[M+H+]. 

N6-(1-Naphthyl)adenosine-2′,3′-O-dibenzoate:  White solid from EtOH (0.236 g, 0.392 

mmol, 49%). 1H NMR (300 MHz, DMSO-d6): δ = 10.16 (s, 1H), 8.62 (s, 1H), 8.20 (s, 1H), 

7.99 (t, J = 7.4 Hz, 3 H), 7.94–7.85 (m, 3H), 7.82 (d, J = 7.1 Hz, 2H), 7.75–7.37 (m, 10H), 

6.61 (d, J = 6.6 Hz, 1H), 6.35 (t, J = 5.8 Hz, 1H), 5.96 (dd, J = 2.8, 2.8 Hz, 1H), 4.58 (d, J = 

2.8 Hz, 1H), 3.92–3.76 (m, 2H). 13C NMR (75 MHz, DMSO-d6): δ = 164.8, 164.4, 154.3, 

152.3, 149.3, 140.5, 134.4, 133.9, 133.8, 130.0, 129.3, 129.2, 128.8, 128.7, 128.2, 128.0, 
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126.2, 126.0, 125.9, 125.6, 124.3, 123.4, 119.9, 85.8, 83.9, 73.4, 72.3, 61.3. ESI-MS: m/z 

602.2 [M+H+], 624.4 [M+Na+]. 

General procedure for the preparation of the N6-substituted adenosine triphosphates[247]: A 

solution of salicylphosphochloridite (55.6 mg, 0.275 mmol, 1.1 eq) in CH2Cl2 (0.4 mL) was 

slowly added dropwise under argon to a solution of the corresponding N6-substituted 

adenosine derivative (0.25 mmol, 1.0 eq) in DMF (1.5 mL) and pyridine (0.1 mL). The 

reaction mixture was stirred for 15 min and then a freshly prepared 0.5 M solution of bis(tri-

n-butylammonium)pyrophosphate (0.375 mmol, 1.5 eq) in DMF and tri-n–butylamine (0.24 

mL, 1 mmol, 4.0 eq) were simultaneously injected into the reaction flask. The reaction 

mixture was stirred for 10 min followed by addition of a 5.0–6.0 M solution of tert-butyl 

hydroperoxide in decane (0.06 mL, 0.275 mmol, 1.1 eq). The reaction mixture was stirred at 

room temperature for 1 h, then de-ionized water (1 mL) was added and the organic solvents 

were removed by rotoevaporation. The reaction mixture was diluted with de-ionized water 

(10 mL) and extracted with diethyl ether (3 x 10 mL). The aqueous layer was frozen and 

lyophilized.  A solution of aqueous ammonia (7 mL) was added to the lyophilized residue 

and the reaction mixture was stirred overnight at room temperature.  After rotoevaporation of 

the solvent, the residue was purified by the ion-exchange chromatography (DEAE DE-52 

cellulose, 0.005–1.0 M ammonium bicarbonate buffer, pH 8). The nucleotide-containing 

fractions were frozen and lyophilized.  The solid was dissolved in de-ionized water and 

subjected to a salt exchange column (Dowex 50WX8-200, Na+ form). The aqueous solution 

containing the sodium salt of the NTP analog was frozen and lyophilized.  The analytical 

data (1H NMR, 31P NMR and ESI-MS) for each N6-substituted adenosine triphosphate analog 

is shown below. 
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N6-[1-(1,2,3,4-Tetrahydronaphthyl)]adenosine-5′-O-triphosphate:  White solid (0.035 g, 

0.056 mmol, 22%). 1H NMR (300 MHz, D2O): δ = 8.39 (s, 1H), 8.23 (s, 1H), 7.28–6.85 (m, 

4H), 6.11 (d, J = 5.5 Hz, 0.2H), 6.06 (d, J = 5.8 Hz, 0.8H), 5.26 (s, 1H), 4.80–4.66 (m, 2H), 

4.59 (t, J = 4.7 Hz, 1H), 4.48–4.40 (m, 1H), 4.38–4.28 (m, 2H), 2.88–2.60 (m, 2H), 2.04–

1.75 (m, 4H). 31P NMR (120 MHz, D2O): δ = -8.32 (d, J = 18.9 Hz), -9.29 (d, J = 19.9 Hz), -

20.64 (t, J = 19.4 Hz). ESI-MS: m/z 726.4 [M+H+]. 

N6-(4-Phenylbenzyl)adenosine-5′-O-triphosphate:  White solid (0.009 g, 0.013 mmol, 5%). 

1H NMR (300 MHz, D2O): δ = 8.46 (s, 1H), 8.10 (s, 1H), 7.54–7.30 (m, 10H), 6.05 (d, J = 

4.9 Hz, 1H), 4.80–4.64 (m, 3H), 4.62–4.54 (m, 1H), 4.44–4.36 (m, 1H), 4.36-4.20 (m, 2H); 

31P NMR (120 MHz, D2O): δ = -7.60 (d, J = 17.8 Hz), -10.16 (d, J = 19.6 Hz), -21.43 (t, J = 

19.5 Hz). ESI-MS: m/z 762.0 [M+H+]. 

N6-(4-Biphenyl)adenosine-5′-O-triphosphate:  White solid (0.061 g, 0.083 mmol, 33%). 1H 

NMR (300 MHz, D2O): δ = 8.38 (s, 1H), 7.99 (s, 1H), 7.26–7.02 (m, 9H), 5.92 (d, J = 3.6 

Hz, 1H), 4.68–4.44 (m, 2H), 4.43–4.22 (m, 3H). 31P NMR (120 MHz, D2O): δ = -8.14 (d, J = 

17.8 Hz), -9.96 (d, J = 20.76 Hz), -21.06 (t, J = 17.8 Hz). ESI-MS: m/z 749.1 [M+H+], 770.9 

[M+Na+]. 

N6-(2-Naphthyl)adenosine-5′-O-triphosphate:  White solid (0.014 g, 0.020 mmol, 8%). 1H 

NMR (300 MHz, D2O): δ = 8.44 (s, 1H), 8.04 (s, 1H), 7.93 (s, 1H), 7.70–7.54 (m, 3H), 7.47 

(d, J = 9.1 Hz, 1H), 7.38–7.26 (m, 2H), 6.00 (d, J = 5.2 Hz, 1H), 4.80–4.73 (m, 1H), 4.63 (t, 

J = 3.8 Hz, 1H), 4.46–4.39 (m, 1H), 4.37–4.22 (m, 2H). 31P NMR (120 MHz, D2O): δ = -6.67 

(d, J = 20.8 Hz), -10.05 (d, J = 17.8 Hz), -20.99 (t, J = 20.8 Hz). ESI-MS: m/z 722.0 [M+H+], 

743.9 [M+Na+]. 
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N6-(1-Naphthyl)adenosine-5′-O-triphosphate:  White solid (0.069 g, 0.095 mmol, 38%). 1H 

NMR (300 MHz, D2O): δ = 8.47 (s, 1H), 7.84 (s, 2H), 7.81–7.64 (m, 2H), 7.57 (d, J = 7.1 

Hz, 1H), 7.50–7.34 (m, 3H), 6.06 (d, J = 5.2 Hz, 1H), 4.82–4.62 (m, 2H), 4.50–4.22 (m, 3H). 

31P NMR (120 MHz, D2O): δ = -4.72 (d, J = 20.8 Hz), -9.87 (d, J = 20.8 Hz), -20.23 (t, J = 

20.8 Hz). ESI-MS: m/z 722.0 [M+H+], 744.0 [M+Na+]. 

1H and 13C NMR were recorded using a Varian Gemini 300 MHz spectrometer and 31P 

NMR were recorded using a Varian 500 spectrometer.  Electrospray ionization mass 

spectroscopy (ESI-MS) was recorded using a Thermofinnigan ion trap detection instrument. 

 

Other reagents 

The E. coli RecA protein was purified as described[159] to ≥ 97% homogeneity and stored in 

aqueous buffer (25 mM Tris·HCl, pH 7.5, 1 mM DTT, 5% glycerol) at –80 °C.  The protein 

concentration was determined using the monomer extinction coefficient 2.2 x 104 M–1·cm–1 

at 280 nm.[248]  The EnzChek Phosphate Assay Kit, which includes purine nucleoside 

phosphorylase enyzme (PNP) and 7-methyl-thioguanosine substrate (MESG), was purchased 

from Invitrogen (Carlsbad, CA).  Poly(dT) ssDNA (average length = 319 nts) was purchased 

from Amersham Biosciences (Piscataway, NJ).  Biotin-(dT)36 was purchased desalted from 

Sigma Genosys (The Woodlands, TX) and used without further purification.  Streptavidin 

Paramagnetic Particles (SA-PMP) were from Promega (Hercules, CA).  Clear 96-well flat-

bottom microplates were purchased from Evergreen Scientific (Los Angeles, CA).  Unless 

otherwise stated all reagents used in the synthesis of the nucleotide analogs were obtained 
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from Sigma-Aldrich (St. Louis, MO).  All solvents employed in the reactions were obtained 

from Sigma-Aldrich (St. Louis, MO) and anhydrous solvents were used without distillation.   

Assays & other procedures 

Nucleotide Triphosphate Hydrolysis Assays.  The hydrolysis of NTPs by RecA was measured 

using a published enzyme-coupled continuous spectrophotometric assay for inorganic 

phosphate release.[190] Reactions (100 µL final volume) were initiated in a 96-well microplate 

by adding a pre-incubated solution containing 0.5 µM RecA, 10 mM Mg(OAc)2, 1 mM DTT, 

15 µM-nts poly(dT), 0.3 mM MESG, and 1 U/mL PNP  in 25 mM Tris·HOAc, pH 7.5 at 25 

°C, 5% (v/v) glycerol, to various concentrations of nucleotide triphosphate (0 – 1000 µM).  

The A360 was monitored every 30 s in the microplate reader at 37 °C for 30 min using a 

Perkin-Elmer HTS 7000+ Bioassay Reader with a 360 ± 5 nm bandpass filter.  The initial, 

steady-state reaction velocity (v°obs, µM·min-1) for each NTP was calculated from the change 

in absorbance as a function of time (∂A/∂t) using Δε360 = 6.0 x 10-4 µM-1 as measured in the 

microplate reader. Each set of data, corresponding to a range of NTP concentrations, was 

analyzed using a Michaelis-Menten equation modified for substrate cooperativity as 

described previously[162, 163]: 

 

  
vobs

o = kcat ⋅ R0 ⋅
NTP[ ]3

NTP[ ]3 + S0.5
3

          (1) 

 

where R0 is the total concentration of RecA and S0.5 is the [NTP] when the velocity is half of 

its maximum value. 
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Inhibition of ATPase Activity by Selected Nucleotides.  A solution containing 0.5 µM RecA, 

100 µM nucleotide, 10 mM Mg(OAc)2, 1 mM DTT, 0.3 mM MESG and 1 U/mL PNP in 25 

mM Tris·HOAc, pH 7.5 at 25 °C, with 5% (v/v) glycerol for 5 min at 37 °C.  The ATPase 

reactions were initiated by the addition of a solution containing ATP and poly(dT) (500 µM 

and 1.5 μM-nts final concentrations, respectively) to achieve a final reaction volume of 600 

µL.  The change in A360 was recorded for 30 min at 37 °C in a Perkin Elmer Lambda 20 

UV/Vis spectrophotometer with a thermojacketed 6-cell changer regulated by a Peltier 

temperature control system.  The v°obs values were determined using Δε360 = 1.1 × 104 M-

1·cm-1 and the % inhibition was calculated relative to the velocity in the absence of any added 

inhibitor using the following equation: 

 

1001% ×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

none

inh

V
V

inhibition  (2) 

 

where Vinh is the velocity of the reaction in the presence of inhibitor and Vnone  is the velocity 

of the reaction in the absence of added inhibitor. 

 

Inhibition of ssDNA Binding by Selected Nucleotides.  RecA (4 µM) was incubated at 37 °C 

for 20 min with 100 µM nucleotide, 18 µM-nts biotin-(dT)36, 2 µM ATPγS, 60 mM NaCl, 

and 1 mM DTT in 1X Assay Buffer (25 mM Tris·HOAc, pH 7.5 at 25 °C, 5% (v/v) glycerol, 

10 mM Mg(OAc)2) in a total volume of 50 µL.  In optimization trials, the inclusion of NaCl 

and sub-stochiometric amounts of ATPγS were found to maximize the signal-to-background 

ratio for the assay, where the signal is defined as the amount of RecA released in the 
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presence of 100 μM ADP and the background is defined as the amount of RecA released in 

the absence of any additional nucleotide (data not shown).  SA-PMP beads were washed 

three times with 1X Assay Buffer by resuspension in buffer followed by pelleting with a 

magnet and removal of the supernatant.  The entire 50 µL reaction volume was added to the 

washed SA-PMP beads and was mixed thoroughly to ensure coating of the beads with the 

reaction mixture.  The reactions with beads were incubated for 20 min at 37 °C in an 

Eppendorf Thermomixer R microplate incubator.  After the incubation period, the SA-PMP 

beads were pulled down with a microplate magnet and 10 µL of supernatant was removed to 

a second microplate.  To this supernatant was added 200 µL of Protein Assay Reagent 

(Biorad), and the absorbance of the resulting solution was measured in the microplate reader 

using a 595 ± 25 nm bandpass filter.  The A595 value was converted to [RecA] by comparison 

with a RecA standard curve to quantify the RecA remaining in the supernatant.  The apparent 

dissociation constants (Kd
app) were determined by nonlinear least squares analysis of the 

resulting titration isotherms using the following equation: 

 

A595 = Amin + (Amax − Amin ) ⋅
NTP[ ]

NTP[ ]+ Kd
app                (3) 

 

where Amin and Amax are the minimum and maximum absorbance values, respectively. 

 

RecA-mediated strand exchange inhibition assay:  Circular φχ174 cssDNA and dsDNA were 

from New England Biolabs.  The φχ174 dsDNA was linearized to RFI form using XhoI 

endonuclease (New England Biolabs).  Single-stranded DNA binding protein (SSB) was 

purchased from Promega.  RecA protein was purified as previously described.[159]  Strand 
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exchange promoted by RecA was monitored essentially as described.[232, 233]  RecA (10 µM) 

was incubated at 37 °C for 10 min with φχ174 cssDNA (20 µM-nts) in 1X Reaction Buffer 

(25 mM Tris·HOAc, 5% glycerol, pH = 7.5) with Mg(OAc)2 (10 mM), phosphocreatine (12 

mM), creatine phosphokinase (10 U/mL) and in the presence or absence of TNP-ADP (100 

µM).  After the initial incubation, φχ174 linear dsDNA form III (20 µM-nts) was added and 

the mixture was incubated for another 10 min at 37 °C.  During this second incubation, 10 µL 

was removed as the 0 min aliquot and added to RecA stop dye (60 mM EDTA, 5% (w/v) 

SDS, 25% (w/v) glycerol, 0.2% bromophenol blue) (3.3 µL) to inactivate the RecA and stop 

the strand exchange reaction.  A cocktail of ATP (3 mM) and SSB (2 µM) was added to the 

reaction which was allowed to proceed at 37 °C.  Aliquots (10 µL) were taken at 10, 30, 60 

and 90 min after the addition of ATP.  The aliquots were run on a 0.8% agarose gel for 12 h. 

at 30 V, and the gel was stained for 1.5 h with 1X Sybr Gold (Molecular Probes) for 

visualization. 

Molecular model building for active filament conformation.   

The all-atom model of the active RecA filament was constructed by superimposing the Cα 

backbone of the Xing and Bell crystal structure (PDB code 1XMV;[2]) onto the Cα backbone 

of two adjacent RecA-filament subunits of the Egelman laboratory electron microscopy 

model of the active filament (PDB code 1N03;[6]).  A simple minimization of the 

superimposed, all-atom structure was then performed using Insight II (Accelrys) to relieve 

steric clashes between residues due to adjustments in their position made during alignment. 
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CHAPTER IV 

DIRECTED MOLECULAR SCREENING FOR RECA ATPASE INHIBITORS 

 

Drug resistance is an ever-increasing problem in the chemotherapy of bacterial 

infectious diseases.  The de novo development and clonal spread of drug-resistant bacteria, 

and the horizontal transfer of resistance factors among bacteria have resulted in a dramatic 

increase in the incidence of drug-resistant infections.  One strategy to improve the efficacy of 

existing antibacterial drugs involves countering bacterial mechanisms of drug resistance.  In 

this context, RecA has emerged as a potential target because its activities allow bacteria to 

overcome the metabolic stress induced by a range of antibacterial agents, and promote the de 

novo development and transmission of antibiotic resistance genes.[15, 16, 117-119] Although 

potent and selective inhibitors of RecA could be used to modulate its activities in the 

development of antibiotic resistance, no small-molecule natural product inhibitor of RecA’s 

activities has been reported.  Herein, we report the development of two novel enzyme-

coupled fluorescent ATPase assays detecting the generation of either free phosphate or ADP.  

The assays were optimized as microvolume molecular screening assays and implemented in 

the directed screening of prospective inhibitors of RecA’s ATPase activity. 

 

Selection of a focused mini-library of potential inhibitors 

We have previously demonstrated that select NDP and NTP analogs inhibit RecA 

ATP hydrolysis (see Chapter 3).[17, 124, 213]  Because nucleotide analogs are largely unsuited 
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Figure 4.1.  Five classes of compounds screened for RecA inhibition.  Group 1 compounds have been 
predicted to inhibit RecA in microbiological assays.  Group 2 compounds are nucleotide-like compounds 
examined for their ability to extend upon our previous success with nucleotide analogs.  Group 3 
compounds are inhibitors of GHL-family ATPases examined for their ability to cross-inhibit RecA. 
Group 4 compounds are protein kinase inhibitors inhibitors examined for their ability to cross-inhibit 
RecA.  Group 5 compounds are inhibitors or related compounds known to inhibit purine nucleotide 
receptors and examined for their ability to cross-inhibit RecA. 
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for use in cell-based assays, we screened a small, focused set of commercially available 

compounds to discover non-nucleotide inhibitors of RecA.  The compounds we elected to 

study were carefully selected to slant the odds of finding an inhibitor in our favor and they 

are ordered into five groups (Figure 4.1).  The first group comprises vanillin,[249-251] 

cinnamaldehyde,[252] curcumin,[253] and the soy-derived compounds genistin and 

genistein,[254] all of which have been predicted to inhibit RecA based on their activities in 

microbiological assays.  The second group includes adenosine nucleotide-like compounds[227, 

255] that may extend upon our previous success with nucleotide analogs.  The third group is 

composed of inhibitors of the gyrase-Hsp90-like (GHL) family of ATPases.[256, 257] The 

fourth group includes adenine-like inhibitors of protein kinases.[258] The fifth group 

comprises compounds related to the non-nucleotide inhibitors of purine nucleotide receptors, 

suramin and PPADS. [259, 260] 

 

Development of novel HTS-compatible fluorescent ATPase assays 

High-throughput screening is a useful method for the identification of novel 

inhibitory scaffolds.  Recently, we reported a coupled enzyme assay that was optimized for 

determination of E. coli RecA’s ssDNA-dependent ATPase activity,[124, 213] which is a useful 

indicator of active RecA-DNA filament assembly (refer to Figure 3.13 for MESG/PNP assay 

scheme).  It was undesirable to use this assay to screen a larger, more diverse library because 

many of the compounds may be UV active at 360 nm and this interfering absorbance would 

lead to false negatives in a high-throughput screening project. 

To address this concern, we developed two robust and reproducible microplate assays 

for RecA’s ATPase activity that are suitable for screening collections of small molecules as 
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prospective RecA inhibitors without the potential for signal interference generated by UV-

active compounds (Figure 4.2).  Each variation of the assay utilizes one product of ATP 

 
 
 

Figure 4.2.  Two fluorescent ATPase assays developed to monitor ATP hydrolysis by RecA in the 
presence of small molecules which may be UV-active.  In the top scheme, inorganic phosphate resulting 
from ATP (or NTP) hydrolysis reacts with inosine and purine nucleoside phosphorylase, yielding 
hypoxanthine and ribose-1-phosphate.  The hypoxanthine undergoes O2-dependent oxidation in the presence 
of xanthine oxidase, producing uric acid and H2O2, the latter of which is used to horseradish peroxidase to 
to oxidize amplex red to resorufin.  In the bottom scheme, the ADP produced from ATP hydrolysis and 
phosphoenolpyruvate serve as substrates for the enzyme pyruvate kinase to regenerate ATP and produce 
pyruvate, the latter of which undergoes O2-dependent oxidation by pyruvate oxidase, yielding 
acetylphosphate and H2O2.  Identical to the top scheme, horseradish peroxidase uses H2O2 to oxidize amplex 
red to resorufin.  The resorufin fluorophore has an excitiation maximum at 485 nm and an emission 
maximum of 595 nm, which makes it ideal for use with UV-active compounds. 
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hydrolysis, either ADP or Pi, as a substrate for commercially available enzymes and, for 

every molecule of ATP hydrolyzed by RecA, one molecule of amplex red is ultimately 

oxidized to resorufin, which has a unique fluorescence emission at 595 nm.[261]  In one 

variant of the assay, Pi and inosine serve as substrates for PNP in the production of 

hypoxanthine and ribose-1-phosphate.  In turn, the O2-dependent oxidation of hypoxanthine 

by xanthine oxidase produces uric acid and H2O2, the latter of which is used by horseradish 

peroxidase to oxidize amplex red to resorufin.  In the other assay variant, ADP and 

phosphoenolpyruvate serve as substrates for the commercially available enzyme pyruvate 

kinase to produce ATP and pyruvate, the latter of which is a substrate for O2-dependent 

oxidization by pyruvate oxidase in the production of acetylphosphate and H2O2.[262]  Identical 

to the first assay, horseradish peroxidase uses H2O2 to catalyze the oxidation of amplex red to 

resorufin. 

   

 
 
Figure 4.3.  The resorufin ADP/Pi reporter molecule provides a convenient colorometric indicator that 
the reaction is complete.  On the left, a complete positive control reaction is dark pink at the end of the 
experiment, while on the right, a negative control reaction is essentially colourless. 

It is to the advantage of the screener to use a spectrophotometric reporter such as 

resorufin that has an emission maximum of 595 nm.  Obersving the extreme red-shifted 
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emission of the resorufin reporter rather than a reporter molecule’s absorbance in the 260-

500 nm range avoids the pitfall of an interfering signal from the compound being screened as 

an inhibitor.  This was the case with the 2-amino-6-mercapto-7-methylpurine reporter in the 

MESG/PNP assay, whose aborption maximum at 360 nm overlaps with several compounds 

we attempted to screen.  Another estbalished ATPase assay that has been well-characterized 

for use with RecA where NADH is stoichiometrically oxidized to NAD+ for every ATP 

molecule hydrolyzed[161] relies on the disappearance of an aborbance signal at 380 nm, and 

UV-active compounds in this range would create false positives.  A further useful feature of 

the resorufin reporter molecule lies in the fact that amplex red is nearly colourless and when 

it undergoes oxidation, and the resulting resorufin is bright pink, providing a convenient 

colorometric indicator that is visible to the human eye (see Figure 4.3). 

 
To determine if these novel fluorescent ATPase assays were suitable for high-

throughput screening, we assessed their robustness and reproducibility using statistical 

analysis.[263]  In our hands, the ADP-linked ATPase assay was more useful as a screening 

assay because the Pi-linked assay was sensitive to variations in the residual phosphate 

contaminating enzyme and DNA preparations.  For the ADP-linked ATPase assay optimized 

for 96-well microplates, positive and negative control experiments were performed on three 

different days with 48 wells per condition to simulate the day-to-day and well-to-well 

variability between assays (Figure 4.4).  Statistical evaluation of the results yielded a 

reproducible Z′ factor of 0.83, demonstrating the excellent utility of the assay for 

reproducibly differentiating normal activity from inhibition.  Furthermore, the inclusion of 

the two most potent NTP-analog inhibitors discovered in our previous work described in 
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Chapter 3, verified that known RecA ATPase inhibitors would prevent resorufin production 

using this assay system (Figure 4.4). 

 

 

 
 
Figure 4.4.  Interday and intercolumn precision for the ADP-linked fluorescent ATPase assay.  The 
raw fluorescence measurements are represented as a scatter plot fot the positive and negative control 
reactions.  The previously characterized nucleotide analog inhibitors MANT-ADP and TNP-ADP were 
assayed at a concentration of 100 μM to ensure that the assay would identify a known inhibitor of ATP 
hydrolysis.  The Z′ factor for the fluorescent ATPase HTS assay is 0.87. 

Screening the focused library 

With a suitable ATPase assay in hand, we assessed the abilities of the 18 compounds 

in our directed mini-library (Figure 4.1) to inhibit RecA’s ATPase activity at 100 µM.  The 

fractional inhibition observed in the presence of each compound was obtained by comparing 

the total fluorescence in wells containing the reaction in the presence and absence of inhibitor 

(Figure 4.5).  Only curcumin from Group 1 and the polysulfated naphthyl compounds, 

suramin, Congo Red and bis-ANS, from Group 5, appeared to inhibit RecA’s ATPase 

activity under these conditions. 
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Figure 4.5.  Results of the directed screen of 18 selected compounds against RecA ATP hydrolysis 
activity.  Reactions (100 μL) proceeded for 25 min at 37 °C, and contained RecA (0.5 μM), polyd(T) 
ssDNA (5 μM nts), ATP (0.5 mM) and an enzyme-linked reporter system as indicated in the materials and 
method section.  The resorufin emission signal was detected in a microplate reader using an excitation filter 
of 485 nm and a emission filter of 595 nm. 
 

Upon the identification of molecules that attenuated resorufin production, it was 

necessary to determine whether these compounds were selectively inhibiting RecA or other 

components of the coupled assay system.  Therefore, four compounds were evaluated in 

subsequent control reactions in the presence of 500 µM ADP, but in the absence of RecA.  

Because all four of these compounds also inhibited pyruvate kinase in the control assay, we 

evaluated their abilities to inhibit RecA’s ATPase activity using the Pi-linked fluorescence 

ATPase assay described above. Suramin, Congo Red, and bis-ANS, but not curcumin, 

inhibited ATP hydrolysis by RecA.  

It is important to note that none of the compounds expected to inhibit RecA based on 

prior biological activity studies (Group 1) inhibited RecA’s ATPase activity in vitro.  

Possible explanations for the apparent inconsistency include the following:  (1) these 
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compounds may inhibit RecA-associated proteins rather than RecA itself; or (2) these 

compounds may interfere with RNA or protein synthesis.  Of additional importance is the 

observation that no known inhibitor from Group 2, 3 or 4 substantially inhibited RecA’s 

ATPase activity.  The failure to discover a RecA inhibitor among these compounds suggests 

that the development of a potent RecA inhibitor will not be a trivial exercise.  However, the 

same lack of cross-inhibition of RecA by known inhibitors of other ATP-dependent enzymes 

also suggests the likelihood of ultimately discovering a specific inhibitor of RecA’s 

activities. 

 

Insights into the mechanism of inhibition by polysulfated naphthyl compounds 

Although we did not observe inhibition of RecA by any of the molecules in Groups 1, 

2, 3, or 4, we did find that the polysulfated naphthyl compounds, Congo Red, suramin, and 

bis-ANS, strongly inhibited the ATPase activity of RecA.  The nature of the inhibition by 

these compounds is reputed to be promiscuous.  Indeed, it has been established that, in 

aqueous solution, Congo Red self-assembles into supramolecular aggregates[264, 265] that can 

result in apparent inhibition by the reversible sequestration of enzyme.[266, 267]  In contrast, 

suramin, which is also active against many different enzymes[268] and is structurally similar to 

Congo Red, does not form aggregates and does not inhibit model enzymes that are sensitive 

to supramolecular ligands.[266, 267] The possibility that suramin may be a structure- or 

mechanism-specific inhibitor of RecA is supported by the observation that PPADS does not 

inhibit RecA’s ATPase activity, despite the fact that both compounds are potent antagonists 

of the P2X1 nucleotide receptors.[260]  Finally, it is noteworthy that select transition metal 

cations trap inactive RecA as insoluble aggregates,[123] but no visible precipitates were 
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formed in the presence of suramin, Congo Red, or bis-ANS. 

To probe this class of polysulfated naphthyl compounds further, we characterized the 

nature of the inhibition of RecA by suramin.  While suramin inhibited RecA’s ATPase 

activity with an IC50 of approximately 2 µM, the inhibition was not competitive with respect 

to ATP or ssDNA binding (data not shown). We speculate that suramin modulates RecA’s 

activity by binding to an allosteric region of the protein and trapping the protein in its 

inactive conformation. 

 

 
 

Figure 4.6.  Suramin inhibits the RecA-mediated DNA three strand exchange reaction.  In the absence 
of inhibitor, the formation of joint molecules (JM) and new nicked circular dsDNA product (P) from circular 
dsDNA (S) and homologous ssDNA is observed.  In the presence of suramin however, JM and P are not 
observed until 90 minutes, and are only present at low levels. 

Importantly, we demonstrated that suramin interferes with the RecA-mediated DNA 

strand exchange reaction, an established RecA activity that serves as an in vitro model for its 

physiologic recombinational functions.[34]  It is known that RecA must hydrolyze ATP in 

order to carry out the strand exchange reaction between φχ174 cssDNA and homologous, 

linear dsDNA (S) to yield a nicked circular dsDNA product (P), which migrates more slowly 

under electrophoretic conditions than the substrate DNA molecules.  The presence of 
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suramin (100 µM) in this reaction completely abrogated the formation of nicked circular 

dsDNA product, even over the course of 90 min (see Figure 4.6). 

Conclusions 

In conclusion, we have reported two new fluorescence-based assays for screening 

potential inhibitors of RecA’s ATPase activity.  We previously developed HTS-compatible 

screening assays for RecA’s ATPase and filament assembly activities,[17, 124, 213] and the new 

molecular screening assays complement and extend the previous assays by providing an 

observable parameter that is not influenced adversely by UV-active compounds.  Moreover, 

the assays reported herein were optimized for use with RecA based on its production of 

either free phosphate or ADP.  We further reported that suramin, Congo Red, and bis-ANS 

strongly inhibit RecA’s ATPase assay and compose a new structural class of RecA inhibitors. 

We expect that polysulfated naphthyl compounds such as these are likely to be of little 

therapeutic utility due to membrane-impermeability caused by their negative charges. 

Nonetheless these compounds may be used in future rational modification procedures for the 

synthesis microbiological tools to tease apart the roles of RecA in various aspects of 

pathogenicity.  We envision that such inhibitors may ultimately be developed into novel 

adjuvants for antibiotic chemotherapy that moderate the development and transmission of 

antibiotic resistance genes and increase the antibiotic therapeutic index. 

 
 
Materials and Methods 
 

Source of reagents used:  The E. coli RecA protein was purified as described[159] to ≥ 97% 

homogeneity and stored in aqueous buffer (25 mM Tris·HCl, pH 7.5, 1 mM DTT, 5% 
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glycerol) at –80 °C.  The protein concentration was determined using the monomer 

extinction coefficient 2.2 x 104 M–1·cm–1 at 280 nm.[248]  Poly(dT) ssDNA (average length = 

319 nts) was purchased from Amersham Biosciences (Piscataway, NJ).  Black 96-well flat-

bottom microplates were purchased from Corning (Corning, NY).  ATP, Amplex red, 

inosine, phosphoenolpyruvate, horseradish peroxidase, pyruvate kinase (type VII from rabbit 

muscle), bacterial pyruvate oxidase and xanthine oxidase were purchased from Sigma-

Aldrich (St. Louis, MO).  Purine nucleoside phosphorylase was obtained from Invitrogen 

(Carlsbad, CA).  Φχ174 DNA and XhoI endonuclease were obtained from New England 

Biolabs (Ipswich, MA).  Creatine phosphokinase and phosphocreatine were obtained from 

Sigma-Aldrich (St. Louis, MO).   

 

Table 4.1.  Commercial sources of the focused library 

Compound Source 
Genistein Sigma-Aldrich 
Genistin Sigma-Aldrich 
Cinnamaldehyde Sigma-Aldrich 
Vanillin Sigma-Aldrich 
Curcumin K.H. Lee (UNC) 
Methotrexate Sigma-Aldrich 
PMPA Drug Bank 
5′-FSBA Synthesized (Chapter 3) 
Coumermycin Sigma-Aldrich 
Novobiocin Sigma-Aldrich 
Radicicol Sigma-Aldrich 
PP2 AG Scientific 
PP3 AG Scientific 
Suramin Sigma-Aldrich 
ANS Sigma-Aldrich 
Bis-ANS Sigma-Aldrich 
Congo Red Sigma-Aldrich 
PPADS Sigma-Aldrich 
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Fluorescent ATPase Assays 

The conditions for the endpoint based fluorescent ATPase assays are described 

below.  Positive control reactions were performed in the absence of any inhibitor and 

negative control reactions lacked polyd(T) ssDNA to simulate the complete inhibition of 

ATP hydrolysis.  Note that these assays were optimized for use as endpoint inhibitor screens 

with RecA in 100 μL volume in 96-well blackplates, but they have also been optimized for 

use in kinetic mode in 25 μL volumes in 384-well blackplates (data not shown). 

ADP-linked ATPase assay for RecA activity.  Reactions (100 μL) were carried out in 

96-well blackplates and contained RecA (0.5 μM), polyd(T) ssDNA (5 μM-nts), MgOAc2 

(10 mM), ATP (500 μM), phosphoenolpyruvate (250 μM), amplex red (200 μM), pyruvate 

kinase (1 U/mL), pyruvate oxidase (1 U/mL), horseradish peroxidase (1 U/mL), 5% glycerol 

and 25 mM Tris·HOAc, pH = 7.5.  After a 25 min incubation of all the reagents at 37 °C the 

reaction was excited at 485 nm and emission was observed at 595 nm in a BMG Polarstar 

microplatereader. 

Phosphate-linked NTPase assay for RecA activity.  Reactions (100 μL) were carried 

out in 96-well blackplates and contained RecA (0.5 μM), polyd(T) ssDNA (5 μM-nts), 

MgOAc2 (10 mM), ATP (500 μM), inosine (1 mM), amplex red (200 μM), purine nucleoside 

phosphorylase (1 U/mL), xanthine oxidase (1 U/mL), horseradish peroxidase (1 U/mL), 5% 

glycerol and 25 mM Tris·HOAc, pH = 7.5.  After a 25 min incubation of all the reagents at 

37 °C the reaction was excited at 485 nm and emission was observed at 595 nm in a BMG 

Polarstar microplatereader. 

For both variations of the fluorescent ATPase assay the % inhibition effected by each 

compound was calculated using the following formula: 
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where Em595 is the emission measured at 595 nm in the presence of inhibitor, μmin is the plate 

average minimum Em595 signal control value, and μmax is the plate averaged maximum Em595 

signal control. 

 To assess the quality of the assay for HTS applications, the Z′ factor was determined 

using the following formula[263]: 
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where σmax and σmin is the standard deviation for the respective positive and negative controls 

and μmax and μmin are the average values of the respective positive and negative controls. 

 

RecA-mediated strand exchange inhibition assay 

The φχ174 dsDNA was linearized to RFI form using XhoI endonuclease.  Single-

stranded DNA binding protein (SSB) was purchased from Promega.  RecA protein was 

purified as previously described.[159]  Strand exchange promoted by RecA was monitored 

essentially as described.[232, 233]  RecA (10 µM) was incubated at 37 °C for 10 min with 

φχ174 cssDNA (20 µM-nts) in 1X Reaction Buffer (25 mM Tris·HOAc, 5% glycerol, pH = 

7.5) with Mg(OAc)2 (10 mM), phosphocreatine (12 mM), creatine phosphokinase (10 U/mL) 

 124



and in the presence or absence of suramin (100 µM).  After the initial incubation, φχ174 

linear dsDNA form III (20 µM-nts) was added and the mixture was incubated for another 10 

min at 37 °C.  During this second incubation, 10 µL was removed as the 0 min aliquot and 

added to RecA stop dye (60 mM EDTA, 5% (w/v) SDS, 25% (w/v) glycerol, 0.2% 

bromophenol blue) (3.3 µL) to inactivate the RecA and stop the strand exchange reaction.  A 

cocktail of ATP (3 mM) and SSB (2 µM) was added to the reaction which was allowed to 

proceed at 37 °C.  Aliquots (10 µL) were taken at 10, 30, 60 and 90 min after the addition of 

ATP.  The aliquots were run on a 0.8% agarose gel for 12 h. at 30 V, and the gel was stained 

for 1.5 h with 1X Sybr Gold (Molecular Probes) for visualization. 
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CHAPTER V: 

 
HIGH-THROUGHPUT SCREENING FOR INHIBITORS OF RECA 

 

 

Antibiotic resistant bacteria are rendering the current supply of available antibacterial 

drugs ineffective at an alarming rate and there is a dearth of novel drug targets for the 

treatment of bacterial infectious diseases.  Recent evidence suggests that RecA-controlled 

processes are responsible for an increased tolerance to antibiotic chemotherapy and in 

pathways which ultimately lead to full-fledged antibiotic resistance.  A small molecule 

capable of inhibiting RecA would impact these pathways which include DNA repair, SOS 

mutagenesis and recombination-based horizontal gene transfer.  It has been shown that 

bacteria having loss-of-function mutations in the recA gene are exquisitely sensitive to 

antibiotic treatment and develop resistance much more slowly or not at all.[3]  A 

chemotherapeutic agent imparting this phenotype could act synergistically with currently 

prescribed antibiotics, greatly enhancing their potency and preventing the accumulation of 

populations which are resistant to them.  Therefore, cell-permeable small molecules which 

specifically target RecA are required to demonstrate that RecA holds potential as a new 

druggable target in the treatment of bacterial infections; however, no such natural products or 

synthetic small molecules are known to exist. 

High-throughput screening (HTS) is recognized as a powerful tool in drug discovery, 

and represents a blunt-force approach in the identification of target-specific lead compounds. 
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While HTS was previously only accessible to drug companies with sufficient resources to 

support screening endeavours, the continued establishment of private and academic HTS-

screening centres and companies tailoring their services to these enterprises has made it 

increasingly feasible for academic laboratories to gain access to this drug discovery tool.  In 

the Research Triangle area, one such screening centre has been created at the 

Biomanufacturing and Research Institiute and Technology Enterprise (BRITE) located at 

North Carolina Central University (NCCU).  We have been fortunate to collaborate with the 

Director Li-An Yeh and Professor Jonathon Sexton of the BRITE Center in our efforts to 

identify chemical probes which target RecA.  Towards the goal of validating RecA as an 

important and novel target for the chemotherapeutic treatment of bacterial infectious 

diseases, we have screened 35,780 small molecules against RecA at the BRITE Center. 

As ssDNA-dependent ATP hydrolysis is a useful indicator that the RecA protein is 

active, we elected to screen the compounds using a phosphomolybdate blue ATPase assay to 

identify compounds which prevented the generation of inorganic phosphate from ATP.  In 

total, 80 small molecules were identified as primary hits and could be clustered in five groups 

based on molecular structure.  The most potent class of hits was further examined in 

microbiological assays, and compound A1 was found to effect a reduction in RecA-

dependent SOS expression in K-12 Escherichia coli and enhanced cell-killing efficacy of 

ciprofloxacin up to 10,000-fold in SC30RP Escherichia coli.  Compound A1 represents the 

first small molecule demonstrating an ability to inhibit the bacterial SOS and is evidence that 

small molecule inhibitors of RecA hold enormous potential as synergistic antibacterial 

agents. 
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Assay optimization and validation 

Once a target has been established, the next step in HTS is the development and 

optimization of a robust assay suited to screening thousands of compounds in a short period 

of time.  The assay must minimize the cost and occurrence of false positives and negatives, 

while maximizing the speed efficiency with which inhibitors are indentified.  Since RecA is 

activated in the presence of ssDNA and ATP, forming a nucleoprotein filament that 

hydrolyzes ATP, ssDNA-dependent ATP hydrolysis serves as a useful indicator of RecA 

activation and we chose to monitor the reduction of ATPase activity as a diagnostic for 

small-molecule mediated inhibition of RecA.  The in vitro screening was performed using a 

phosphomolybdate blue (PMB) phosphate detection assay to identify compounds that 

abrogated ATP hydrolysis by RecA.[269, 270]  The PMB ATPase assay relies on the interaction 

of a molybdate-ascorbic acid complex with inorganic phosphate to produce an aggregate 

phosphomolybdate complex having a strong absorbance in the 600-700 nm range (Figure 

5.1).  This assay has the advantage of being more cost effective than the fluorescent ATPase 

assay presented in Chapter 4. 

 

 
 

Figure 5.1.  PMB ATPase assay used to identify inhibitors of RecA.  In the assay, Pi generated from ATP 
hydrolysis by RecA forms a complex with molybdate and is reduced by ascorbic acid. The resulting 
phosphomolybdate complex absorbs strongly in the 600-700 nm region. 
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To identify compounds binding RecA with reasonable affinity we had to first 

consider an appropriate concentration of compound to screen in our adapted assay.  To 

optimize the assay for detection of ATP hydrolysis by RecA, we determined that 0.5 μM 

RecA and 0.75 mM ATP reacted in the presence of saturating poly(dT) (5 μM nucleotides) 

for 35 min at 37 °C would keep the results in the linear range of detection of the system.  Due 

to the fact that RecA is only active as a filament and is present at a relatively high 

concentration in the assay (0.5 μM), we elected to screen all compounds at a concentration of 

17 μM so that for every RecA monomer there were approximately 34 molecules of potential 

inhibitor.  DNA was present at a concentration of 5 μM nucleotides (nts), and RecA binds 

DNA with an approximate stoichiometry of 3 nucleotides to 1 monomer of RecA, therefore 

RecA was saturated nearly 3.3-fold by poly(dT) ssDNA.  In our microplate reader, the A650 

 
 

Figure 5.2.  Optimization of the phosphomolybdate blue ATPase adapted for use with RecA.
Inorganic phosphate (Pi) was titrated with phosphomolybdate blue dye, while various concentrations of 
ATP were reacted in the presence of RecA (0.5 μM) and polyd(T) ssDNA (5 μM nts) for 1 h at 37 °C to 
generate Pi.  While the A650 signal remains linear until at least 1.25 mM for the Pi titration (open circles), 
the signal for Pi generated from ATP only remains linear until 0.75 mM ATP (filled circles) due to the 
build-up of ADP, a natural feedback inhibitor of RecA. 
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signal of the PMB phosphate detection assay remains linear to at least 1.25 mM Pi, but we 

needed to tailor the ATP concentration using this phosphate detection system as an ATPase 

assay with RecA.  We established that beyond 0.75 mM ATP, the absorbance signal at 650 

nm corresponding to generation of free phosphate increases non-linearly with increasing Pi 

concentration, due to the build-up of ADP, a natural feedback inhibitor of RecA (see Figure 

5.2).  Therefore an ATP concentration of 0.75 mM was selected so that we could have the 

maximum amount of ATP in the assay that would allow our results to remain in the linear 

range of detection of the system. 

The quality of the PMB HTS ATPase assay for RecA activity was assessed by 

determining its Z′ factor[263], which defines the difference between the positive and negative 

controls of the dynamic signal being measured and the data variation of that signal.  Robust 

and reproducible assays have a Z′ factor ranging from 0.5 to 1.  Consistent with a high-

quality assay, the Z′ factor was 0.73 (see Figure 5.3). 

 

 
 

Figure 5.3.  Z′ factor determination for the phosphomolybdate blue ATPase assay adapted for use with 
RecA.  A scatter plot of the A650 data used to calculate the Z′ factor is shown for the positive and negative 
control reactions at the end of 35 min.  The negative control reaction does not contain polyd(T) ssDNA, an 
essential component for RecA-mediated ATP hydrolysis. 
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PMB ATPase assay trial run on the National Cancer Insititute Libraries 

Once the PMB assay was validated for use with RecA by virtue of robust and 

reproducible controls, the assay was further validated by screening 2180 compounds 

combined from the National Cancer Institute (NCI) Challenge, Diversity and Natural Product 

library sets.  The three NCI libraries were screened using the previously validated fluorescent 

ATPase assay in Chapter 4, and the results obtained were compared to those obtained with 

the PMB ATPase assay.  The PMB ATPase assay had a 0.32% hit rate, yielding seven 

primary hits above 50% inhibition, four of which were confirmed as true hits in an IC50 study 

(Figure 5.4A).  Of the four confirmed hits, three were found in common between both 

screening  attempts of the NCI libraries employing the fluorescent ATPase assay and the 

PMB ATPase assay and they appear to share a remarkably similar scaffold (Figure 5.4B).  

 

 
 
Figure 5.4.  Scatter plot of the ATPase inhibition effected by 2180 NCI compounds.  Reactions 
proceeded for 35 min at 37 °C and contained RecA (0.5 μM), polyd(T) ssDNA (5 μM nts), ATP (0.75 
mM) and compounds were assayed at a final concentration of 17 μM.  The screening results are 
represented as a scatter plot of inhibition (%) effected by each compound.  There were 7 primary hits 
above a threshold of 50% inhibition. 
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The IC50 values for these compounds spanned a range of 4-8 μM, but unfortunately they 

possessed no biological activity against bacterial cultures.  Nevertheless, the ability of the 

PMB assay and fluorescent ATPase assay[214] to mine the same hits from the NCI library 

reveals that the PMB ATPase assay is also a reliable method which may be employed to 

search for inhibitors of RecA in multi-thousand compound libraries. 

 

Screening a 33,600 compound library against RecA 

The ability to efficiently identify the above mentioned NCI compounds as inhibitors 

of RecA (IRAs) using the PMB ATPase assay prompted us to screen a 350,000-compound 

library donated to the BRITE Center by Biogen Idec.  Using compound and reagent 

concentrations identical to those described above, we performed a screen of 33,600 

representative compounds selected to represent the overall diversity of the parent library. 

 

Figure 5.5.  Statistical analyses of each 384-well plate to determine the quality of the HTS assay 
performed on the donated Biogen Idec compounds.  (A) Z′ factor analysis was performed on each plate 
and the average Z′ factor value was 0.83.  (B) A Z factor analysis was performed on each plate and the 
average Z factor value was 0.67.  Three plates had a Z factor below 0.4 and were rejected during data 
analysis. 
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Figure 5.7.  Four classes of hits mined in the Biogen library.  Of the 73 total hits, 69 could be placed 
into one of the four groups, labeled A-D.  There were the following number of hits belonging to the 
following classes: A – 34, D – 20, C – 10 and D – 5. 
 

 
 

Figure 5.6.  A total of 33,600 compounds were screened using the phosphomolybdate blue ATPase 
assay.  Reactions proceeded for 35 min at 37 °C and contained RecA (0.5 μM), polyd(T) ssDNA (5 μM 
nts), ATP (0.75 mM) and compounds were assayed at a final concentration of 17 μM.  The screening 
results are represented as a scatter plot of inhibition (%) effected by each compound.  There were 73 
primary hits above a threshold of 50% inhibition 
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The HTS assay had an average Z′ factor of 0.83 and a Z factor of 0.67, demonstrating 

robust and reproducible behaviour from plate to plate (see Figure 5.5).  Three plates had a Z 

factor below 0.4 and were rejected during data analysis.  Again, using a threshold of 50% 

inhibition, there were 73 hits for a hit rate of 0.22% (Figure 5.6).  Interestingly, 69 of the 73 

hits could be categorized into four classes based on their scaffold similarity and shared 

pharmacophores and we will refer to these classes as groups A-D, with 34, 20, 10 and 5 

compounds in groups A-D, respectively (Figure 5.7).  It would appear that the screen 

effectively mined the library, systematically identifying molecules belonging to one of these 

4 groups.  

Select representative members from 3 of the 4 scaffold classes were independently 

synthesized and were successfully confirmed as validated hits in IC50 analyses (see Figure 

5.8 - Figure 5.10).  Extrapolating these observations to the rest of the compounds belonging 

to the four scaffold classes, it appears that the false-positive rate was remarkably low. 

Figure 5.8.  IC50 study for selected scaffold class A compounds.   Four representative Group A 
compounds from a pool of 34 hits were synthesized were subjected to IC50 analysis using the PMB ATPase 
assay.  Group A compounds had the most potent IC50 values, with all IC50’s < 25 μM.  Compound A1 was 
found to have an effect on the viability of E. coli cell cultures and was further examined in microbiological 
assays for in vivo inhibition of RecA.  The error bars represent the standard deviation of three experiments.  
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Figure 5.9.  IC50 study for selected scaffold class B compounds.   Four representative compounds from 
group B from a pool of 20 hits were synthesized and subjected to IC50 analysis using the PMB ATPase 
assay.  Group B compounds possessed no biological activity against E. coli cell cultures and was this class 
of compounds was not studied further.  The error bars represent the standard deviation of three experiments. 
 

 
 

Figure 5.10.  IC50 study for selected scaffold class C compounds.  One representative compound from a 
pool of 10 hits was synthesized and subjected to IC50 analysis.  Group C compounds possessed no biologi
cal activity against E. coli cell cultures and was this class of compounds was not studied further.  The 
error bars represent the standard deviation of three experiments.  
 

 135



Compounds in group A had the most potent IC50 values (all below 25 μM) and this 

class was studied in further detail to determine their mode of action against RecA and were 

found to be active against live cell cultures as described below. 

 

Investigating the mechanism of action of Group A compounds 

From our efforts to confirm the four classes of compounds as authentic inhibitors by 

quantifying their IC50 values, we determined that compound class A, consisting of 

heterocycles with molecular weights less than 550 g/mol, had the largest inhibitory effect 

against RecA in vitro.  The most potent inhibitor from scaffold group A, compound A1 

having an IC50 of 8 ± 1 μM, was found to effect a reduction in bacterial viability in 

combination with ciprofloxacin using a single-point microbiological screening assay (data 

not shown) and was examined more closely to elucidate the method by which it was 

inhibiting the ATPase activity of RecA.  To explore the possible mode of action of group A 

compounds against RecA, we separately titrated ATP and poly(dT) with A1 in ATP 

hydrolysis assays (Figure 5.11).  When ATP and A1 were titrated, we observed the S0.5
ATP to 

Figure 5.11.  Determining if A1 is competitive with respect to ATP or ssDNA.  (A) A1 and ATP were 
titrated, while the poly(dT) concentration was held constant.  The S0.5

ATP (left y-axis) and the Vmax was (right 
y-axis) were plotted as a function of A1 concentration.  (B) A1 and poly(dT) were titrated while ATP was 
held constant.  The Kd

ssDNA (left y-axis) and Vmax (right y-axis) were plotted as a function of A1 
concentration.  The standard error of three experiments is indicated by the error bars. 
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increase as the concentration of A1 was increased, and likewise when poly(dT) was titrated 

with A1, the Kd
ssDNA increased monotonically.  In both cases Vmax decreased monotonically 

as the A1 concentration was increased.  From these experiments we conclude that A1 is 

neither competitive with respect to ATP or ssDNA.  In addition a RecA-DNA binding assay 

described previously[124, 271] was performed and indicated that A1 did not prevent the 

interaction of RecA and ssDNA, but rather enhanced it.  From these experiments we 

concluded that A1 is neither competitive with ATP or ssDNA.  Rather, A1 appears to bind 

the A-state filament at an allosteric site,  preventing cooperative activation of RecA to the 

transition state required for ATP hydrolysis.    

We further examined the ability of A1 to inhibit the DNA strand exchange reaction 

catalyzed by RecA using an in vitro assay which provides a paradigm for the in vivo 

recombinational activity of RecA.[34]  In the assay, RecA is supplied with ATP, linear 

dsDNA, circular ssDNA and resolves the two DNA substrates into nicked circular dsDNA 

 
 

Figure 5.12.  RecA mediated three-strand exchange is inhibited by A1.  In the absence of inhibitor, the 
formation of joint molecules (JM) and new nicked circular dsDNA product (P) from circular dsDNA and 
homologous cssDNA substrates (S) is observed.  In the presence of A1 (25 μM) however, JM and P are not 
observed even after course of 90 minutes and higher molecular weight structures which migrate very slowly 
under electrophoretic conditions are observed near the wells. 
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and linear ssDNA using ATP-hydrolysis induced conformational rearrangements to facilitate 

the formation of three-stranded joint molecules (JM) and perpetuate branch migration, 

yielding a new nicked circular dsDNA product that migrates more slowly in agarose 

electrophoresis than does intact cssDNA.    The presence of 25 μM A1 completely inhibited 

this reaction, and judging by the higher molecular weight structures visible on the agarose gel 

on which the reaction was analyzed, it appears that a RecA-DNA aggregate is formed in the 

presence of A1 (see DNA staining near wells in Figure 5.12).  Taken together with the DNA 

binding assay, and the ATP- and poly(dT)-dependent titrations, these results suggest that A1 

strongly induces the formation of a RecA-DNA aggregate incapable of performing ATP 

hydrolysis and the associated DNA strand exchange reaction that is the basis for the 

physiologic recombinational activities of RecA. 

 

Group A compounds effect a reduction in RecA-dependent SOS expression 

After demonstrating that group A compounds were the most effective in vitro 

inhibitors of RecA discovered from the PMB ATPase screen, compound A1 was subjected to 

an analysis of its ability to effect a RecA-dependent reduction in SOS induction in E. coli cell 

cultures.  The Sandler group recently reported the ability to measure SOS expression in K-12 

E. coli having a sulA-gfp fusion reporter gene inserted into the chromosomal DNA (strain 

SS996).[4]  The sulA promoter is LexA-regulated, and the gene product of sulA is thought to 

bind FtsZ to inhibit cell division until DNA damage can be repaired.[272] LexA is known to 

bind the sulA promoter much more tightly than other SOS promoters SulA is expressed 100-

fold during the SOS response.[4]  We used these SS996 E. coli to determine the differential 

SOS expression effected by A1 following treatment with ciprofloxacin, a GyrA specific 
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DNA-damaging antibiotic known to stimulate SOS (see Figure 5.13 for assay scheme).[20]  

The RecA-dependent expression of GFP could be individually measured among single cells 

in a population of bacteria exposed to ciprofloxacin and comparatively analyzed to GFP 

expression among cells given a combination of ciprofloxacin and A1. 

 
 

Figure 5.13.  The ciprofloxacin-induced SOS response measured by a GFP reporter gene expression 
assay.  We obtained K-12 E. coli engineered by the Sandler group[4] which have the GFP reporter gene 
inserted into the chromosomal DNA under the control of the sulA promoter.  In the late stages of the SOS 
response, the sulA promoter is normally activated when RecA cleaves LexA, and in this engineered strain, this 
results in the large scale expression of GFP which can be measured using epifluorescence confocal 
microscopy. 

Mid-log phase (OD600 = 0.3) cultures of SS996 E. coli were given either no 

compound, A1 only, ciprofloxacin only or a combination of varying doses of A1 (0-100 μM) 

and a fixed amount of ciprofloxacin (25 ng/mL), then allowed to incubate for 90 min at 37 

°C.  The bacteria were fixed with formaldehyde and stained with Hoechst dye, then examined 

by high-content epifluorescence microscopy using a 40X objective and filters selected for 

Hoechst and GFP (see Figure 5.14, Left panel).  The fluorescence intensities in the Hoechst 

and GFP channels was analyzed and a ratio of GFP/Hoechst intensities was calculated to 
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determine the relative GFP expression per cell.  There was a noticeable decrease in SOS 

expression in the presence of A1, and this phenomenon was dose-responsive (see Figure 5.14 

Right panel). 

 
 Figure 5.13.  Inhibition of SOS induction by A1.  (Left) Superimposition of the GFP and Hoechst 
channel images.  All bacteria are stained with Hoechst dye, and an image is taken of the Hoechst (red) and 
GFP (green) channels.  The relative GFP/Hoechst ratio is be calculated to determine the level of RecA-
controlled SOS induction per cell (see Figure 5.14).  A1 completely inhibits the cipro-inducible GFP 
expression at 100 μM.  Controls reactions contained either no compounds at all, 100 μM A1 only or 25 
ng/mL cipro only.  (Right) The SOS response measured by sulA-GFP expression shows is attenuated 
with increasing doses of A1. All cultures are given 25 ng/mL cipro and varying doses of A1.  The relative 
GFP/Hoechst ratio is be calculated to determine the level of RecA-controlled SOS induction per cell (see 
Figure 5.13).  A1 completely inhibits the cipro-inducible RecA-controlled GFP expression at 100 μM and 
this effect decreases as A1 is reduced to 1 μM.  Controls reactions contained either no compounds at all, 100 
μM A1 only or 25 ng/mL cipro only.  The error bars represent the standard deviation in > 250 individual 
bacteria defined as individual regions of interest. 
 

From our results it was clearly apparent that A1 effected a dose-dependent decrease 

in the expression of GFP resulting from ciprofloxacin exposure (see Figure 5.14).  E. coli 

exposed to ciprofloxacin showed a higher level of SOS expression than untreated bacteria 

(1.15 to 0.76 as measured by relative GFP intensity).  In the presence of the highest 

concentration of A1, bacteria both treated and untreated with ciprofloxacin were 

characterized by a very similar SOS expression profile (~0.54 as measured by relative GFP 
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intensity) and this ratio was observed to increase as the A1 concentration was reduced.  

Taken together, this indicates that A1 was capable of abrogating the induction of the SOS 

under conditions simulating natural environmental stress and also under conditions of 

enhanced stress stimulated by the antibiotic ciprofloxacin.  The effect seen in the presence of 

A1 can not be attributed to cytotoxicity or inhibition of protein translation as 100 μM A1 on 

alone was found to have a neglible impact on the growth rate or viability of E. coli cultures 

as described in the proceeding section.  Overall, these results represent the first evidence that 

a selective small molecule inhibitor targeting RecA will mitigate a powerful inhibitory effect 

on the SOS response in vivo.   

 

Group A compounds display antibacterial synergism with ciprofloxacin 

After demonstrating that group A compounds were the most effective in vitro 

inhibitors of RecA discovered from the PMB ATPase screen, compound A1 was subjected to 

a bacterial viability study[273] to determine if it possessed biological activity against RecA 

activities in live E. coli cell cultures.  The Collins group demonstrated that RecA– SOS-

deficient E. coli were ultra-sensitive to ciprofloxacin than wild-type E. coli.  Extending this 

observation, we hypothesized that a small-molecule inhibitor of RecA that diminishes the 

SOS response would result in a ciprofloxacin-sensitive phenotype.  To evaluate this 

hypothesis, cultures of SC30RP E. coli were given either no compound, 100 μM A1 only, 25 

ng/mL ciprofloxacin only or a combination of varying amounts of A1 (1-100 μM) and 25 

ng/mL ciprofloxacin and their growth was monitored by observing the optical density (OD) 

of the culture over a period of 8 h.  In addition, the number of viable bacteria in the bacterial 
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cultures was quantified at the same time intervals by plating a sample of the culture on LB-

agar media (see Figure 5.15).  The OD of the control cultures with no antibiotic or containing 

only A1 increased exponentially and showed a constant number of colony forming units per 

milliliter per OD unit (CFU·mL-1·OD-1).  We conclude that A1 has no impact on bacterial 

growth and viability, as evident by the neglible decrease in OD and CFU parameters.  The 

cultures containing ciprofloxacin or the combination of ciprofloxacin and A1 showed 

severely impeded growth rates; however the culture containing the combination of both 

compounds (having at least 33 μM A1) showed an approximate 100-10,000 fold decrease in 

number of CFU·mL-1·OD-1.  While the optical density of these two cultures was similar, we 

speculate that the decrease of viable bacteria in the culture treated with both ciprofloxacin 

and higher concentrations of A1 suggests the presence of a higher number of lysed cells 

 

 
 

Figure 5.15.  Compound A1 synergistically enhances the toxicity of ciprofloxacin in E. coli.  All 
cultures were given 25 ng/mL cipro and varying doses of A1 (with the A1 dose listed in the brackets) and 
then incubated for 8 h.  At 2 h intervals, the optical densities (OD) of the cultures were checked and an 
aliquot was plated on LB-agar media to count to the number of viable colony forming bacteria per OD/mL 
(CFU/OD/mL).  Control reactions lacked both cipro and A1 (none), had only 100 μM A1 or had only 25 
ng/mL cipro.   
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having released their cellular contents into the growth media.  The reduction in viability of 

ciprofloxacin-treated bacteria by A1 was dose responsive and compound A1 can be said to 

synergistically enhance the antibacterial effect of ciprofloxacin as predicted. 

 

Conclusions 

 In summary, current antibiotic chemotherapeutics inherently stimulate the 

development of resistance, most likely in part to the activation RecA-dependent processes.  

Therefore, current antibiotics could have their effective shelf lives extended and have their 

potency increased by a small molecule inhibitor of RecA.  We have screened 35,780 small 

molecules for inhibition of RecA using a phosphomolybdate blue ATPase assay to detect the 

generation of free phosphate.  The hits obtained could be classified into one of five groups 

based on scaffold similarity and shared pharmacophores.  Compound A1, having the most 

potent effect on RecA in vitro, was tested in live E. coli cultures and abrogated the SOS 

response, both under naturally occurring conditions and resulting from exposure to 

ciprofloxacin, an antibiotic agent known to upregulate SOS expression.  Moreover, 

compound A1 potentiated the effect of a low dose of ciprofloxacin, and this cocktail of 

compounds killed bacteria with an efficiency of up to 10,000 times that of ciprofloxacin by 

itself.  Compounds represented in class A display a unique biological activity previously 

unseen in known antibacterial chemotherapeutics and may serve as lead candidates for the 

development of adjuvants for the treatment of bacterial infectious diseases.  More 

importantly, using a cell-permeable small molecule exerting control over RecA, we have 

provided proof-of-principle that RecA may be a novel target for antibacterial chemotherapy 

not belonging to the traditional classes of traditional antibiotics. 
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Materials and Methods 

 

RecA and ATPase reagents 

 RecA was purified as previously described.[159]  Poly(dT) single-stranded DNA 

(average length = 319 bases) was purchased from Amersham Biosciences (Piscataway, New 

Jersey).  Crystalline L-Ascorbic acid and sulfuric acid were purchased from Fisher Scientific.  

φχ174 circular single-stranded DNA (cssDNA) and double stranded DNA (dsDNA) were 

purchased from New England Biolabs (Ipswich, MA).  Unless otherwise stated all other 

reagents were purchased from Sigma-Aldrich (St. Louis, MO) at the highest level of purity 

possible.  K-12 E. coli containing the sulA-gfp reporter gene (SS996 strain)[4] were a 

generous gift from Dr. Steven Sandler at the University of Massachusetts at Amherst. 

 The phosphomolybate blue dye was made as a 10X stock by mixing 87 mL 

concentrated sulfuric acid to 50 mL autoclaved MilliQ de-ionized water, adding 30 g 

ammonium molybdate and adjusting the final volume to 250 mL with autoclaved MilliQ de-

ionized water.  On the day of use, fresh 1X phosphomolybdate blue dye was made by 

diluting the 10X stock in autoclaved MilliQ de-ionized water and ascorbic acid and SDS 

were added to final concentrations of 10% w/v and 1% w/v respectively. 

 

Compound libraries 

The Challenge, Diversity and Natural Product library sets were obtained from the 

National Cancer Institute (NCI), Drug Synthesis and Chemistry Branch (Bethesda, MD) as 

10 mM stocks in DMSO.  A 1 mM stock was made in DMSO using a TOMTEC 96-channel 

pipet tower (TOMTEC, Hamden, CT). 
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The BRITE compound collection consists of a library of ~350,000 compounds 

generated by combinatorial chemistry synthetic routes, which was donated from Biogen-Idec 

in 2006. Upon acquisition, compounds were placed into 100% DMSO at an initial 

concentration of 10 mM.  All of the compound plates were stored in polypropylene deep-well 

blocks at 4 °C without humidity controls. Using a Biomek NX unit (Beckman-Coulter, 

Fullerton, CA), 0.5 μL of a 1 mM stock of library compounds in DMSO was pre spotted onto 

Costar clear flat-bottom 384-well assay plates (Corning, Lowell, MA).  In the left and right 

two columns of the assay plates 0.5 μL DMSO was spotted for the respective negative and 

positive control reactions. 

 

Phosphomolybdate blue ATPase assay 

The ATPase reactions were carried out in the 384-well plates that the compounds 

were spotted in, and the final volume in each well was 30.5 μL, giving final concentrations of 

17 μM for the library compounds and 1.6 % for DMSO.  A 2.25 mM stock of ATP was 

prepared in H2O and 10 μL of this was added to all wells of the assay plates using a Thermo 

Multidrop 384-well dispenser (Thermo Fisher, Waltham, MA), yielding a final ATP 

concentration of 0.75 mM.  To columns 3-24 of the assay plates, using a Thermo Multidrop 

384-well dispenser, was added 20 μL of a cocktail of containing RecA, poly(dT) ssDNA, 

MgOAc2 and Tris·Glycerol buffer (pH = 7.5) such that the final concentrations were 0.5 μM 

RecA, 5 uM nts poly(dT), 10 mM MgOAc2, 25 mM Tris·HOAc and 5 % v/v glycerol.  For 

the negative control, 20 μL of an identical solution containing no poly(dT) was added to 

columns 1 and 2 using a Thermo Multidrop 384-well dispenser.  The assay plates were 

processed in batches of 20, and upon addition of all reagents the plates were transferred to a 
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37 °C air incubator and the ATPase reaction was allowed to proceed for 35 min.  

Subsequently, the plates were removed from incubator and 30 μL of the 1X 

phosphomolybdate blue dye was added to all wells using a Thermo Multidrop 384-well 

dispenser.  After 5 min of incubation at room temperature, the plates were scanned for 

absorbance at 650 nm using a Spectramax Plus384 (Molecular Devices, Sunnyvale, CA).  

Screening data informatics were processed using ActivityBase, XLfit (ID Business Solutions, 

Bridgewater, NJ) and Microsoft Excel 2003 (Microsoft, Redmond, WA). The percent-

inhibition of RecA ATPase activity was analyzed on a plate-to-plate basis by comparing the 

A650 value per compound well with the plate-averaged control wells using the following 

relationship (1):  
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where A650 is the absorbance value at 650 nm in the presence of inhibitor, μmin is the plate 

average minimum A650
 signal control value, and μmax is the plate averaged maximum A650

 

signal control. 

 To assess the quality of the assay for HTS applications, the Z′ factor and Z-factor was 

determined using the following formulas (2) and (3) [263]: 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+

−=′
minmax

minmax 33
1

μμ
σσ

Z  (2) 

 

 146



where σmax and σmin is the standard deviation for the respective positive and negative controls 

and μmax and μmin are the average values of the respective positive and negative controls; and 
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σCMPD is the standard deviation in the compound data, σPC is the standard deviation in the 

100% inhibition control, μCMPD and μPC are the average values for the compound data and the 

100% inhibition control.  

 

Small molecule inhibition of RecA-mediated three-strand exchange reaction 

The φχ174 dsDNA was linearized to the RFI form using XhoI endonuclease (New 

England Biolabs).  Single-stranded DNA binding protein (SSB) was purchased from 

Promega.  Strand exchange promoted by RecA was monitored essentially as described.[232, 

233]  RecA (10 µM) was incubated at 37 °C for 10 min with φχ174 cssDNA (20 µM-nts) in 

1X Reaction Buffer (25 mM Tris·HOAc, 5% glycerol, pH = 7.5) with Mg(OAc)2 (10 mM), 

phosphocreatine (12 mM), creatine phosphokinase (10 U/mL) and in the presence or absence 

of A1 (25 µM).  After the initial incubation, φχ174 linear dsDNA form III (20 µM-nts) was 

added and the mixture was incubated for another 10 min at 37 °C.  During this second 

incubation, 10 µL was removed as the 0 min aliquot and added to RecA stop dye (60 mM 

EDTA, 5% (w/v) SDS, 25% (w/v) glycerol, 0.2% bromophenol blue) (3.3 µL) to inactivate 

the RecA and stop the strand exchange reaction.  A cocktail of ATP (3 mM) and SSB (2 µM) 

was added to the reaction which was allowed to proceed at 37 °C.  Aliquots (10 µL) were 
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taken at 10, 30, 60 and 90 min after the addition of ATP.  The aliquots were run on a 0.8% 

agarose gel for 12 h at 30 V, and the gel was stained for 1.5 h with 1X Sybr Gold (Invitrogen, 

Carlsbad, CA) for visualization. 

 

Small molecule inhibition of RecA-dependent SOS activation 

 We assessed the ability of compound A1 to impact the RecA-dependent induction of 

the SOS response using K-12 E. coli having the sulA SOS promoter fused to the green 

fluorescent protein (gfp) reporter gene inserted at attλ on the chromosome (strain SS996)[4].  

Fresh 2 mL LB cultures were inoculated with saturated overnight cultures of SS996 K-12 E. 

coli to OD600 = 0.3 in the presence and absence of 25 ng/uL Ciprofloxacin and 0-100 μM A1.  

The highest final concentration of DMSO attained from the addition of these compounds was 

0.15% and considered negligible.  The cultures were grown in a shaking incubator at 37 °C 

for 90 min.  At the end of this incubation, the cells were stained for 5 min at 25 °C directly in 

the LB medium with the addition of 3.7% formaldehyde and 10 μg/mL Hoechst stain or 10 

μg/mL 4',6-diamidino-2-phenylindole (DAPI).  Following staining, 1.6 mL of cells was 

centrifuged at 13000 rpm (RCF?) for 1 min and the supernatant was removed.  The cells 

were washed three times with 10 mM MgSO4 (1 mL) and finally resuspended in 10 mM 

MgSO4 (500 μL).  The cells were diluted (1:10) in clear, flat-bottom 384-well imaging 

microplates (Greiner, Monroe, NC) in a volume of 50 μL, sealed and centrifuged for 15 min 

at 3000 rpm and imaged in a BD pathway 855 high-content epifluorescence confocal 

microscope, equipped with an Olympus 40X/0.90NA objective and a Hamamatsu Orca CCD 

camera.  Multiplexed two-color images were acquired using the following filters; GFP: 

488nm/10nm bandwidth excitation filter, FURA/FITC epifluorescence dichroic and 515 LP 
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emission filter.  DAPI:  380nm/10nm bandwidth excitation filter, 400dclp dichroic and 

435nm long-pass emission filter.  Bacterial cell binary masks were generated using the 

Attovision software  (BD Biosciences, San Jose, CA) to delineate the cell boundaries using 

the DAPI channel.  A normalized GFP intensity was calculated by integrating the GFP signal 

divided by the integrated DAPI intensity within the cell boundary.  The average normalized 

GFP response per bacterium for a particular well was calculated and compared to other wells. 

 

Growth inhibition and quantitation of viable E. coli 

 We assessed the ability of A1 to impact the viability and growth rates of SC30RP E. 

coli[274] using a modified procedure described by Elwell et al.[273]  Fresh 25 mL LB cultures 

were inoculated with SC30RP E. coli to OD600 = 0.05 in the presence and absence of 25 

ng/uL Ciprofloxacin and 0-100 μM A1.  The cultures were grown in a shaking incubator at 

37 °C and samples were removed at various time intervals over 12 h to monitor the OD600 

and diluted for plating (30 μL) onto LB-agar.  The amount of viable cells were quantified by 

counting the colonies formed after 24 h incubation at 37 °C so that the CFU-1·mL-1·OD could 

be determined. 
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CHAPTER VI: 
 

CONCLUSIONS 
 
 

  
 The introduction and widespread use of antibiotics beginning in the World War II era 

led the health community to believe that humanity was rid of it’s greatest and most persistent 

threat, disease-causing bacteria.  But today, just over 50 years later, the ever-increasing 

number of bacterial strains that display resistance to antibiotics indicates that this struggle is 

far from over.   While antibiotics are traditionally classified into 6 categories based on their 

mode of action, only 2 of these classes of antibiotics have been introduced in the past 40 

years, and the most currently prescribed work-horse antibiotics are now available as generics 

and misused to the point where resistance has slowly eroded their utility.[275]  Exacerbating 

this problem is the tepid enthusiasm with which Big Pharma has approached the development 

of new antibacterials.  From their point of view, why spend billions of dollars and 10-20 

years developing a new FDA-approved antibiotic if it will become in obsolete in a matter of 

years due to resistance?[9]  In this regard, new drug targets and novel strategies are required 

in the chemotherapeutic intervention of bacterial infectious diseases.  Towards this end, we 

have proposed inhibiting the bacterial RecA protein to ultimately target the underlying 

mechanisms behind antibiotic tolerance and resistance. 

RecA’s involvement in DNA repair, stress-induced mutagenesis and horizontal gene 

transfer contributes to the ability of bacteria to evade antibacterial chemotherapy, and in the 

absence of any known natural product inhibitors, we sought to develop small molecule 
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inhibitors of RecA to dissect and further understand the importance of these pathways.  This 

dissertation has examined two approaches towards the discovery of such molecules: (1) 

directed screening of small compound libraries predicted to have a high probability of 

interacting with RecA, and (2) random screening of large compound libraries to discover lead 

compounds and scaffolds which interact with RecA.  The search for an inhibitor of any 

protein begins with an assay capable of detecting the influence that a small molecule has on 

the activation state of protein.  Over the course of this dissertation, several assays have been 

employed to identify RecA inhibitors.  As RecA is a DNA-dependent ATPase, we have used 

assays monitoring RecA-DNA binding or ATP hydrolysis to determine the effect of small 

molecules on RecA.  As the size and complexity of the libraries increased, we had to tailor 

our assays to meet the requirements they imposed, and known assays were adapted 

appropriately or novel original assays were developed specifically to meet our needs. 

The first compound class looked at as inhibitors was metal cations, specifically 

bismuth–dithiols.  Inspired by the inhibition of the E. coli rho transcription terminator by zinc 

and bismuth cations,[126-128] we examined the effects of several metal cations on RecA.  

Several metial cation species were found to irreversibly inactivate RecA by aggregating the 

protein, including bismuth.  We found that bismuth preferentially targeted an ADP-bound 

conformation of RecA and that its inhibitory activity was enhanced when it was complexed 

to dithiol-containing ligands.  In vivo testing indicated that bismuth–dithiols were moderately 

effective at reducing the SOS response and that they displayed antibacterial synergism with 

the DNA-damaging agent mitomycin C.  It is known that bismuth compounds have multiple 

biological targets and that they have long been known to possess antibacterial activity, and 

we add RecA to the list of cellular targets of bismuth. 
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Next, we examined nucleotide analogs as inhibitors of RecA.  This compound class 

was selected as RecA requires the binding and hydrolysis of ATP to perform it’s biological 

activities.  Nucleotide analogs were first segregated based on their ability to act as substrates 

for hydrolysis by RecA, and the non-substrates were further segregated on their abilities to 

bind and inhibit the inactive or the active conformation of the protein.  The former class of 

inhibitors was identified using a RecA-DNA binding assay, while the latter class of inhibitors 

was identified using an ATPase inhibition assay.  We demonstrate that N6-modified 

adenosine analogs are well-tolerated by the RecA ATP-binding site (but not by the ATP-

binding sites of many other ATP-binding proteins) and that aromatic 2′-O modifications 

greatly increases the affinity of nucleotide analogs for the RecA ATP-binding site.  Our 

findings lend support to a structural model of the active RecA filament where a cooperative 

ATP-binding site comprising two adjacent RecA monomers is the active site for hydrolysis.  

Additionally we identify several features of the ATP-binding site in both the active and 

inactive conformation ATP-binding site which can be exploited in the design of potent and 

selective ATP-competitive inhibitors.  More importantly we demonstrate the ability to 

discern the preferred conformation to which a ligand binds to inhibit RecA and we speculate 

that conformationally selective inhibitors can be used to dissect the roles of RecA-mediated 

SOS induction and RecA-mediated recombination in antibiotic tolerance and resistance. 

In search of more “drug-like” small molecule inhibitors of RecA, we went about 

screening a small, focused library of 18 compounds predicted to interact with RecA based 

their ability to inhibit related proteins or which have been reported to inhibit RecA based on 

their ability to interfere with bacterial DNA repair and recombination machinery in 

microbiological assays.  We discovered that suramin and structurally related polysulfated 
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naphthyl compounds indeed inhibit RecA, although these compounds are likely to be of little 

therapeutic utility as they are charged and do not traverse biological membranes.  

Nevertheless, they may serve as lead compounds in future rational design procedures for the 

development of biologically active tools to examine the roles of RecA in the antibiotic 

response and in pathogenicity.  Addtionally, two novel fluorescent ATPase assays relying on 

a resorufin reporter were developed specifically for this project, and may be of value to other 

researchers attempting to measure the rates of ATP hydrolysis or Pi generation by other 

proteins. 

In my last project, I was fortunate to have the opportunity to perform high-throughput 

screening of several large libraries of small molecules against RecA.  In total, I screened over 

64,000 molecules from several sources against RecA using a phosphomolybdate blue 

ATPase assay.  The compounds comprised 2180 synthetics and natural products from the 

National Cancer Instititute repositories, 33,600 small molecules from a Biogen Idec library 

and 28,000 small molecules from Asinex.  While the NCI and Biogen Idec screening results 

are presented in this dissertation, the results from the Asinex library are of commercial 

interest and are not discussed here.  Compound group A from the Biogen Idec library was the 

most potent group of small molecules against the in vitro activities of RecA, and more 

importantly this inhibition carried over to in vivo studies.  The most potent compound, A1 

(IC50 = 8 ± 1 μM), was studied in great detail and found to reduce the induction of the SOS 

response as measured using a strain of K-12 E. coli having a sulA-GFP reporter fusion.  

Bacterial cultures exposed to ciprofloxacin and A1 were observed in high-content 

epifluoresence microscopy and as the dose of A1 was increased, the GFP expression 

corresponsing to SOS induction was seem to diminish.  After determining that A1 limited the 
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RecA-mediated SOS induction in live bacteria exposed to ciprofloxacin, we sought to test the 

hypothesis that such a small molecule may act synergistically with a bactericidal antibiotic 

such as ciprofloxacin to kill bacteria.  Experiments monitoring bacterial growth and viability 

confirm this hypothesis: A1 increased the toxicity of ciprofloxacin up to 10,000-fold.  

Compound A1 sabotaged the ability of bacteria to withstand exposure to ciprofloxacin, 

presumably by blocking the SOS response and the DNA repair pathways which repair 

ciprofloxacin induced double-stranded DNA breaks.  Therefore, compound A1 displays a 

previously unseen and unique biological activity and may serve as a lead compound for the 

design of adjuvants for the treatment of bacterial infectious diseases.   

Taken together, the work presented in this dissertation provides a foundation for 

future studies on the inhibition of the RecA protein.  More importantly, we provide proof-of-

principle that RecA is a potentially modern and exciting new “druggable” target in the 

treatment of bacterial infectious diseases.  We hope that this work will continue to evolve and 

that one day health care professionals will uniformly prescribe antibiotic cocktails which 

include a RecA inhibitor to prevent the occurrence of drug tolerance and resistance that 

currently causes regimens of antibiotic chemotherapy to fail. 
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