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ABSTRACT 

Jason Carter: Automatic Difficulty Detection 

(Under the direction of Prasun Dewan) 

 

Previous work has suggested that the productivity of developers increases when they help 

each other and as distance increases, help is offered less.  One way to make the amount of help 

independent of distance is to develop a system that automatically determines and communicates 

developers’ difficulty.  It is our thesis that automatic difficulty detection is possible and useful.  

To provide evidence to support this thesis, we developed six novel components: 

 programming-activity difficulty-detection 

 multimodal difficulty-detection 

 integrated workspace-difficulty awareness 

 difficulty-level detection 

 barrier detection 

 reusable difficulty-detection framework 

Programming-activity difficulty-detection mines developers’ interactions. It is based on 

the insight that when developers are having difficulty their edit ratio decreases while other ratios 

such as the debug and navigation ratios increase.  This component has a low false positive rate 

but a high false negative rate. 

The high false negative rate limitation is addressed by multimodal difficulty-detection. 

This component mines both programmers’ interactions and Kinect camera data.  It is based on 

the insight that when developers are having difficulty, both edit ratios and postures often change.
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Integrated workspace-difficulty awareness combines continuous knowledge of remote 

users’ workspace with continuous knowledge of when developers are having difficulty. Two 

variations of this component are possible based on whether potential helpers can replay 

developers’ screen recordings.  One limitation of this component is that sometimes, potential 

helpers spend a large amount of time trying to determine if they can offer help.   

Difficulty-level and barrier detection address this limitation.  The former is based on the 

insight that when developers are having surmountable difficulties they tend to perform a cycle of 

editing and debugging their code; and when they are having insurmountable difficulties they tend 

to spend a large amount of time a) between actions and b) outside of the programming 

environment.  Barrier detection infers two kinds of difficulties: incorrect output and design.  This 

component is based the insight that when developers have incorrect output, their debug ratios 

increase; and when they have difficulty designing algorithms, they spend a large amount of time 

outside of the programming environment.  

  The reusable difficulty-detection framework uses standard design patterns to enable 

programming-activity difficulty-detection to be used in two programming environments, Eclipse 

and Visual Studio. These components have been validated using lab and/or field studies. 
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Chapter 1. Introduction 

This thesis is about collaborative software development.  In such development, 

programmers interact with each other for a variety of reasons such as to get clarification on tasks, 

divide tasks, and resolve conflicts.  A relatively unexplored form of such interaction is 

developers helping each other.  When developers help each other, they stop their own work to 

help others.  If this is true, helping teammates may decrease team productivity.  However, three 

research results imply that helping teammates could actually improve team productivity. 

The first result by Herbsleb et al. [27] found that the productivity of co-located teams, 

teams that are in the same building but sit in different cubicles, was higher than that of 

distributed teams, teams that are in geographically dispersed locations. The reason was that co-

located teammates helped more than remote teammates.  An earlier study by Herbsleb and 

Grinter suggests one reason for this phenomenon.  They found that distributed developers are 

less comfortable asking each other for help because they interact with each other less than co-

located developers [25]. If this is true, then as people get more opportunities to interact with each 

other, their productivity should increase. 

Teasley et al. found that this indeed was the case.  They found that radically co-located 

teams, teams in a single building that work in a war-room or bull-pen, were more productive than 

co-located teams because they saw and overheard each other's activity [55]. This enabled them to 

interject and provide help when they noticed that someone was having difficulty.
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More concretely, if someone was having difficulty with some aspect of code, another 

developer in the war-room who is “walking by [and] seeing the activity over their shoulders, 

would stop to provide help.”  However, if developers are not nearby, sometimes they miss 

opportunities to help. 

Conversely, constantly monitoring developers to see if they need help may increase their 

interactivity to an even greater degree.  This is exactly what happens in pair programming where 

two programmers sit next to each other, with one programmer, called the driver, writing code, 

and the other programmer, called the navigator, offering help. Williams and Cockburn [9] found 

that student pair programming teams were more productive than solo programmers.  They 

measured productivity using the following equation: 

 

                                 
 

where task completion time is the amount of time it took to complete assignments and bug fix 

time is the amount of time it took to fix bugs.  

Together, these studies suggest that a) developers’ productivity increases when they help 

each other and b) as distance increases, help is offered less.  One way to increase the amount of 

help when teammates are not face-to-face is to make help independent of distance.  To make 

help independent, we model the help-giving process.  The first step in such a model is for 

potential helpers to become aware that developers need help (Figure 1.1).  There are two ways 

they can become aware of teammates’ difficulties.  Developers can either explicitly ask for help, 

or teammates can detect or passively notice the need for help. 
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In some cases, asking for help is more efficient than passively noticing the need for help 

because askers do not have to wait for helpers to notice that they need help and helpers do not 

have to monitor teammates to determine if they need help.  For example, in a classroom with 

hundreds of students and four teaching assistants, it is much more efficient for students to ask for 

help than for teaching assistants to notice that students need help.  On the other hand, passively 

noticing the need for help is more efficient if developers delay asking for help.  Two recent 

studies show that sometimes developers do indeed delay asking for help.   

 

Figure 1.1: First step in help-giving model. 

Begel and Simon found that students and new programmers are often late to use help 

while Latoza et al. found that programmers often exhaust other forms of help such as code or 

documentation before asking a teammate for help [3,39]. Thus, both requesting help and 

passively noticing the need for help are important.  However, as mentioned earlier, as distance 

increases a) people are less willing to ask for help and b) fewer passive awareness scenarios are 

possible.  The solution is to make help independent of distance.  There are two ways to do so:  

reduce the need for developers to ask for help, and promote help. 

Herbsleb et al. propose two solutions that reduce the need for developers to ask for help 

[25]. The first is to design software components to be as modular as possible and assign only 
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components that do not depend on each other to different locations.  The second is to only split 

the development of only well-understood software components.  

Social and technical solutions promote help. Social solutions enable developers and 

potential helpers to interact with each other without using special help-promotion tools.  These 

solutions are important, because, as mentioned above, distributed developers sometimes delay 

asking for help. Herbsleb et al. proposed a social solution that addresses this problem [25]. Their 

solution is to bring distributed teammates who need to communicate together at the beginning of 

projects. These initial meetings enable distributed teammates to get to know each other. 

Technical solutions enable distributed developers and potential helpers to use special help-

promotion tools to interact with each other. There are many technical solutions that promote both 

actively asking for help and passively noticing the need for help (Figure 1.2). 

 

Figure 1.2: Help Independent of Distance. 

 

One way to promote asking for help is to enable teammates who need help to use Elvin to 

post messages which are continuously shown to collaborators in a ticker tape [18].  These 

Make help independent of 
distance 

Help-need reduction 
Project 

management/Process 

Modular Software Design 

Stable Software Module 
Distribution 

Help promotion 

Social Initial Meetings 

Technical 

Actively Asking for help 

Elvin, RVM, 
Facebook,Email, Twitter, 

CollabVS, Jazz, Help-Need 
Button 

Passively noticing the need 
for help 

Dual Screen Monitoring, 
Video Walls, Automatic 

Difficulty Detection   
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messages indicate teammates’ need for help.  Herbsleb et al. also created a similar tool, Rear 

View Mirror  (RVM), which provides distributed teammates two ways to ask for help [26]. 

Teammates can a) change a status message that is displayed to collaborators after some period of 

keyboard and mouse inactivity or use a more direct approach and b) send an instant message to 

collaborators.  The features of these two early research tools, Elvin and Rear View Mirror, can 

also be found in modern state-of-the-practice tools. For example, programmers can send an 

email, tweet, instant message, or Facebook messages to potential helpers, or ask a question on a 

discussion forum.  

These tools, including Elvin and Rear View Mirror, require developers who are 

interacting with a programming environment to switch to a separate tool to ask for help. A more 

lightweight approach is to provide the capabilities of the tools within the user interface of the 

programming environment.  Both Jazz and CollabVS use this approach [8,24].  Jazz enables 

distributed developers to a) change a status message that is displayed to collaborators and b) send 

an instant message to each other within the Eclipse programming environment [8].  CollabVS 

enables distributed developers to send an instant message to each other within the Visual Studio 

programming environment [24]. 

Due to the large number of technical approaches that make asking for help independent 

of distance, as shown below in Figure 1.3, it was not clear if we could contribute to this area.  

Thus, making asking for help independent of distance is a high hanging fruit.  The only thing we 

can imagine is to integrate a button into the user interface of a programming environment that 

when pressed changes a status field that is displayed to potential helpers. Therefore, developers 

only have to press a button instead of writing a status or instant message.   
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Figure 1.3: Relationship between tools that make asking for help independent of distance 

and the amount of overhead of each tool.  

Two problems with this approach are a) developers who manually change their status are 

not likely to set it back, just as people forget to change their busy status in an IM tool and b)  this 

approach alone is arguably not enough work for a thesis, even though it is the most lightweight 

when compared to other approaches.  For all of these reasons, our focus is making passively 

noticing the need for help independent of distance rather than actively asking for help.  

Nonetheless, we have implemented a need help button into the Eclipse programming 

environment to enable distributed developers to ask for help.  As explained later this button has 

to do less with promoting actively asking for help and more with passive awareness of help-need. 

Given a physical coupling, one way to make passively noticing the need for help 

independent of distance is to virtually simulate a tighter physical coupling such as pair 

programming.  This should give developers who are further apart, such as distributed teammates, 

the feeling of “being there” in the same room.  One way to go towards being there is to have a 

potential helper watch two screens: one of a developer and the other of that developer’s screen.  

They could use this information to determine when developers are having difficulty.  However, 

this approach does not scale, because helpers can be aware of, at most, only a few developers. 
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A more scalable approach is to use video walls, walls that show the activities of remote 

teammates in one room, which simulate radical co-location [1]. However, as in radical co-

location, teammates may miss opportunities to help each other.   

A fundamental problem of both of these approaches is that they go towards “being there.”  

“Being there” gives collaborators the feeling of being face-to-face.  Hollan and Stornetta  have 

argued that if collaboration technology is to be successful, it should go “beyond being there” by 

providing capabilities not available in face-to-face interaction [28].  In our case, this means 

creating a mechanism that detects when developers are having difficulty and communicates this 

to teammates, making teammates aware that developers need help.  

1.2 Baseline Approaches 

No work has addressed automatic difficulty detection, but there are three obvious 

approaches. These approaches are a) a randomized approach, which predicts one label 50% of 

the time and the other label 50% of the time, b) a modal approach, which always predicts the 

label that occurs most often, and c) a data distribution approach, which makes predictions based 

on the distribution of labels (e.g. making progress, having difficulty).  In this dissertation, we 

compare the baseline approaches to the programming-activity difficulty-detection component, 

the multi-modal difficulty-detection component, and the difficulty-level and barrier detection 

components. More specifically, we compare the true positive rate and true negative rate of each 

baseline to the true positive rate and true negative rate of the programming-activity difficulty-

detection component. The reason we do not compare the false positive and false negative rate is 

that these rates can be computed using the true positive and true negative rates.   
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1.3 Evaluation Metrics  

In our work, the true positive rate identifies how often difficulty detection modules 

correctly predicted developers were having difficulty, the true negative rate identifies how often 

these modules correctly predicted developers were making progress, the false negative rate 

identifies how often these modules predict developers are making progress when they are 

actually having difficulty, and false positive rate indicates how often these modules predict 

developers are having difficulty when they are actually making progress. The following 

equations specify these metrics more precisely. 

The true positive rate (TPR) is: 

                   

                                          
 

The true negative rate (TNR) is: 

                   

                                          
 

The false negative rate (FNR) is: 

                    

                                          
 

The false positive rate (FPR) is: 

                    

                                          
 

1.4 Thesis 

It is our thesis that automatic difficulty detection is possible and useful.  In particular, our 

thesis verifies the following sub-theses: 
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I. Programming Activity Difficulty Detection Sub-Theses (Sub-thesis I): It is possible to 

develop an approach that a) uses developers' interactions with their programming 

environment to determine whether developers are having difficulty with their task and 

b) performs better than baseline measures. 

II. Implementation Sub-Theses (Sub-thesis II): It is possible to develop a common set of 

difficulty detection modules for different programming environments that have 

significantly fewer lines of code than difficulty detection modules written specifically 

for each programming environment. 

III. Multimodal Difficulty Detection Sub-Theses (Sub-thesis III): It is possible to develop 

an approach that a) combines programming activity and body posture recognition to 

predict when developers are having difficulty with their tasks and b) has greater 

accuracy and a lower false negative rate (predicting stuck) than existing approaches 

that only use programming activities to determine when developers are having 

difficulty with their tasks. 

IV. Context Awareness Sub-Theses (Sub-thesis IV): Replaying the programming actions 

of developers who are stuck takes potential helpers longer to decide if they can offer 

help, but potential helpers prefer replaying programming actions to not having the 

ability to replay them. 

V. Difficulty Level and Barrier Detection Sub-Theses (Sub-thesis V): It is possible to 

develop an approach that, using developers’ interactions with their programming 

environment, a) automatically determines the barrier that is blocking programmers 

from making progress, b) automatically determines the level of difficulty 
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programmers are having with their tasks, and c) performs better than baseline 

measures. 

VI. Field Study Sub-theses (Sub-theses VI): It is possible to build a difficulty detection 

tool that is successfully used to offer help to students. 

1.5 Definition of Having Difficulty  

As having difficulty is a human characteristic it is difficult to define and measure.  A 

variety of prior work in detecting human characteristics such as frustration and interruptibility 

has also faced this problem.  Despite this obstacle, prior work has been successful in predicting 

human characteristics.  In particular, Fogarty et al. faced this issue while developing a tool that 

uses developers’ interactions with the programming environment to determine if they are 

interruptible.  Their solution was to randomly interrupt users to determine how interruptible they 

were.  We cannot use this approach, as it is likely that no random interruption would find a 

developer is having difficulty – the results of our studies show that having difficulty is an 

exceptional event.  Therefore, an alternative approach is to allow participants to report when they 

are having difficulty.  Kapoor et al. use this approach to allow students to indicate their 

frustration level. 

In this thesis, we use a variation and extension of Kapoor’s approach, which is to allow a) 

developers to correct an incorrect difficulty status and b) observers’ to report when developers 

are having difficulty.  Having difficulty is developers’ or observers’ perceptions that developers 

are making slower than normal progress.  We use both of these perceptions as ground truth.  The 

argument for using developers’ perceptions is that they are programming and perhaps are in the 

best position to know whether they are having difficulty.  Observers cannot read the minds of 

developers to actually determine if they are having difficulty.  On the other hand, people tend to 
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underestimate their problems [52].  This means that developers may not always admit when they 

are having difficulty, which is the reason for using observers.  In some studies, we only use 

developers as ground truth, in some, we only use observers as ground truth, and in some, we use 

both.  In field studies, we only use developers as ground truth because there were no screen 

recordings for observers to view.  However, in lab studies, there are screen recordings; therefore, 

we use both observers and developers.  There were some lab studies where we only used 

observers.  More specifically, in the difficulty level and barrier detection lab studies, we only 

used observers because developers do not indicate their difficulty level or barrier even though we 

provided tools that allowed them to indicate this information. 

1.6 Summary 

In this chapter, we introduced motivations and techniques for increasing the amount of 

help in software development. Each of these techniques had benefits and limitations, which led 

to our focus, automatic difficulty detection. It is our thesis that automatic difficulty detection is 

possible and useful.  To provide evidence to support this thesis, we decompose it into several 

sub-theses and provide evidence for each sub-thesis in the following chapters.  The chapters are 

organized as follows.  Chapter 2 describes in greater detail, the motivation and techniques for 

increasing the amount of help in software development. Chapter 3 provides evidence for sub-

theses I and II.  Chapter 4 provides evidence for sub-thesis III.  Chapter 5 provides evidence for 

sub-thesis IV, V, and VI.  Finally, Chapter 6 presents conclusions and future work.
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Chapter 2. Comparison with Related Work 

2.1 Overview 

In this chapter, we present previous techniques and motivations to promote help.  These 

motivations and techniques come from a combination of computer science fields: collaborative 

software engineering, data mining, human-computer interaction, and computer science 

education. 

The rest of this chapter is organized as follows.  Next, we present previous work that 

provides the motivation for encouraging programmers to help each other.  Following this, we 

discuss techniques to promote help.  Then, we present work on making developers aware that 

their teammates need help.  Finally, we end with a summary. 

2.2 Motivation for Encouraging Programmers to Help Each Other 

A variety of previous work shows that increasing the amount of help in a software 

development team also increases the productivity of the team.  

Herbsleb et al. [27] conducted a field study to compare the productivity of co-located 

teams (teams that are in the same building but sit in different cubicles) and distributed teams 

(teams that are in geographically dispersed locations).  Productivity was measured as the amount 

of time it takes to fix bugs, update software, and add new functionality.  To measure this time, 

they used data from a change management system and a survey. The data from the change 

management system was taken from modification requests, which are requests for new
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 functionality, bug fixes, or software updates.  A modification request has a record of the 

date of the request, the date a change was made to the code, the requestor.  They created two 

measures using the date of the request and the dates a change was made to the request.  The first 

measure, work interval, was the difference between the date of the first code change and the date 

of the last code change.  This measure was an approximation of how much time it took to 

complete the work.  The second measure, full interval, was the difference between the date the 

request was made and the date of the last change.  The full interval includes the work interval 

and the time taken to assign the work and for developers to start the work.  The data from the 

survey was participants’ approximation of the number of times their work was delayed in the last 

month and the average duration in days of these delays.  Participants gave approximations for 

both participants’ local and remote teammates.  Figure 2.1 shows the results from the 

modification data. 

 

Figure 2.1: Comparative statistics on productivity measures taken from [27]. 

This figure shows that the work interval modification requests that involved distributed 

teams took 2.5 times as long to complete than modification requests that only involved co-

located teams.  Their survey data also support these findings.  On average, participants reported 
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fewer delays when working with distributed teammates, but the length of these delays were on 

average 1.5 days longer.  These results show that co-located teams were more productive than 

distributed teams.  To determine which factors caused delays in productivity, they surveyed 

members of distributed and co-located teams and found that several breakdowns made it difficult 

to find co-workers, get timely information about plan changes, have clearly formed plans, agree 

about plans, be clear about assigned tasks, and have co-workers provide help beyond the call of 

duty.  However, the perception of received help was the only factor that correlated with 

productivity.  An earlier study by Herbsleb and Grinter suggests one reason developers had this 

perception.  They found that distributed developers are less comfortable asking each other for 

help because they interact with each other less than co-located developers [25].  If this is true, 

then as people get more opportunities to interact with each other, their productivity should 

increase. 

Teasley et al. found that this indeed was the case.  They conducted a field study to 

compare the productivity of six radically co-located teams, teams that are in single building that 

work in a war-room or bull-pen (Figure 2.2), to teams at the same company who were spread out 

in different cubicles (co-located teams) [55]. Productivity was measured as function points per 

staff month and cycle time.  A function point is a standard software metric that measures the size 

of a software project by adding the weighted sum of inputs, outputs, logical files, queries, and 

interfaces.  A staff month is the average available work hours in a month per person.  Cycle time 

is the number of months from start of the project to the time when the project is completed.  

They normalized the cycle time for the size of the projects: the number of months per 1000 

function points.  The paper did not explicitly indicate whether co-located teams and radically co-

located teams were the same size. 
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Figure 2.2: One of the war-rooms taken from [55]. 

Table 2.1 shows the productivity results for both the radically co-located and co-located 

teams (company's baseline).  Radically co-located teams produced twice as many function points 

per staff month as co-located teams and their cycle time was one-third lower than the company 

baseline.  These results show that radically co-located teams were more productive than co-

located teams.  One reason was that radically co-located teammates saw and overheard each 

other's activity [55], which enabled them to interject and provide help when they noticed that 

someone was having difficulty.  More concretely, if someone was having difficulty with some 

aspect of code, another developer in the war-room that is “walking by [and] seeing the activity 

over their shoulders, would stop to provide help.”  However, if developers are not nearby, they 

may miss opportunities to help.  Conversely, constantly monitoring developers to see if they 

need help may increase their interactivity to an even greater degree.   
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Table 2.1: Comparative statistics on productivity measures taken from [55]. 

 Radically co-located teams Co-located teams (company 

baseline) 

Function points per staff 

month (Higher is better) 

29.49 14.35 

Cycle Time (lower is better) 7.64 19.47 

This is exactly what happens in pair programming where two programmers sit next to 

each other, with one programmer, called the driver, writing code, and the other programmer, 

called the navigator, offering help.  Cockburn and Williams conducted a lab study to determine 

whether student pair programming teams were more productive than solo student programmers 

[9].  Eighteen students  programmed alone while 28 students completed their assignments with a 

partner.  They measured productivity across three assignments using the following equation: 

 

                                       
    

Their results show that after taking into account "jelling" time, the time taken for pairs to 

get used to each other, pairs spent 15% more time on their programs than individuals.  However, 

pairs’ resulting code had 15% fewer bugs.  The percentage of bugs was equal to the percentage 

of the instructor’s test cases students’ code passed.  Figure 2.3 shows the percentage of the 

instructor’s post-development test cases the students’ code passed for each program.  The 15% 

increase in assignment completion time is recovered in the reduction of bugs. More specifically, 

assuming certain values for the amount of bugs programmers inject per line of code and the 

amount of time spent to fix these bugs, the study claims that pairs are more productive than solo 
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programmers. The study also claims that pair programmers learned different coding strategies 

from each other and the design of their code improved.  Williams and Cockburn report that 

"pairs often find that seemingly "impossible" problems become easy or even quick, or at least 

possible, to solve when they work together [9]". 

Together, these studies provide some evidence that a) developers’ productivity increases 

when they help each other and b) as distance increases, help is offered less.  These results can be 

taken as a given of our research.  One way to address this problem is to make help independent 

of distance.  There are two ways to do so:  reduce the need for help and promote help. 

  

Figure 2.3: The percentage of post-development test cases solo and pair programmers 

passed on three assignments. 

2.3 Techniques to Reduce the Need for Help 

Project management/process solutions reduce the need for developers to get help by 

structuring how software is designed and developed.  Herbsleb et al. propose two such solutions 

[25]. The first is to design software components to be as modular as possible and assign only 
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components that do not depend on each other to different geographical locations.  The second is 

to only split the development of only well-understood software components among teams.  

Social and technical solutions promote help. Social solutions enable developers and 

potential helpers to interact with each other without using special help-promotion tools.  These 

solutions are important because, as mentioned above, distributed developers are less comfortable 

asking for help than co-located developers.  Herbsleb et al. proposed a social solution that 

overcomes this problem [25]. Their solution was to bring distributed teammates who need to 

communicate together at the beginning of projects. These initial meetings enable distributed 

teammates to get to know each other, which could make them more comfortable with each other. 

Technical solutions enable distributed developers and potential helpers to use special help-

promotion tools to interact with each other. There are many technical solutions that promote both 

actively asking for help and passively noticing the need for help. 

 

Figure 2.4: A screenshot of the ticker tape taken from [10]. 

 

Figure 2.5:A screen shot of the Rear View Mirror Tool taken from [16]. 
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2.4 Techniques to Promote Actively Asking Help 

One way to promote actively asking for help is to enable teammates to use a ticker tape, 

implemented in Elvin, to post messages that are continuously shown to collaborators [18].In their 

work, a ticker tape, shown in Figure 2.4, is a resizable rectangular window that displays colored 

messages that scroll from right to left.   Teammates can use a ticker tape to write messages that 

indicate a need for help.  Herbsleb et al. also created a similar tool shown in Figure 2.5, Rear 

View Mirror (RVM), which provides distributed teammates two ways to ask for help [26]. 

Teammates can a) change a status message that is displayed to collaborators after some period of 

keyboard and mouse inactivity or b) send an instant message to collaborators.  The features of 

these two early research tools, Elvin and Rear View Mirror, can also be found in modern state of 

the practice tools.  For example, programmers can send an email, tweet, instant message, or 

Facebook message to potential helpers, or ask a question on question and answer sites such as 

Stack Overflow. 

These tools, including Elvin and Rear View Mirror, require developers who are 

interacting with a programming environment to switch to a separate tool to ask for help. A more 

lightweight approach is to provide the capabilities of the tools within the user interface of the 

programming environment.  Both Jazz and CollabVS use this approach.  Jazz enables distributed 

developers to a) change a status message that is displayed to collaborators and b) send an instant 

message to each other within the Eclipse programming environment [8].  CollabVS enables 

distributed developers to send an instant message to each other within the Visual Studio 

programming environment [24]. 

However, there are several apparent problems with each of the previously mentioned 

approaches. As mentioned before a study investigating the coordination and communication 
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breakdowns that occur in distributed software teams found that developers are less comfortable 

asking remote rather than co-located software developers for help [25]. This lack of trust occurs 

because distributed software teams do not interact with each other as often as co-located teams.  

This result is consistent with previous work [13] which found that subjects doing side-by-side 

programming were willing and found it socially acceptable to interrupt a partner to ask for help, 

while in radically-co-located programming, they were afraid of disturbing the same partner. 

Moreover, studies show students and new programmers are late to use help [3,12] and 

programmers often exhaust other forms of help before contacting a teammate. Even those who 

are willing to manually change their status are likely to not set it back, just as people forget to 

change their busy status in an IM tool or turn off the “call steward” light in a plane. One way to 

address these problems is to have teammates passively notice the need for help. 

2.5 Techniques to Promote Passively Noticing the Need for Help 

By passive, we mean that developers do not have to take explicit steps to communicate 

that they need help, but observers monitor developers to determine if they need help.  One way 

to make passively noticing the need for help independent of distance is  to enable a pair of 

developers to passively monitor the progress of each other, using local [44] or distributed side-

by-side programming [13]. Another approach is to use passive awareness mechanisms.  Several 

passive awareness mechanisms have been developed to enable collaborators to become aware of 

a teammate’s activities.  These mechanisms can be classified into two categories: syntactic and 

semantic.  Such mechanisms provide information to remote collaborators that co-located 

collaborators could observe by sitting next to their teammates. 

Mechanisms in the syntactic category do not make inferences about the data they capture.  

Mechanisms in the semantic category make inferences about the data they capture.  The 
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PortHoles  [17] system developed by Dourish and Bly is in the syntactic category. PortHoles 

periodically communicates images of users to their collaborators with the goal of increasing 

increase awareness in distributed teams. One participant inferred interruptibility of his teammates 

by looking to see if they were talking to someone, while another participant inferred progress of 

a distributed student by noticing that he worked many late nights.  Being aware of the 

teammate’s presence led them to become aware of the progress on his dissertation. 

 One kind of passive awareness is workspace awareness [23], which is knowledge of 

another person’s interactions with a shared workspace. Gutwin and Greenberg argue that this 

information is useful for several types of activities: mixed-focus collaboration -- collaboration 

where a distributed team member switches between both group and individual work-- 

simplifying communication, coordination, anticipation of collaborators’ actions, and helping 

collaborators with their tasks.  Workspace awareness supports distributed mixed-focus 

collaboration because it enables collaborators who are working individually to monitor and keep 

track of the rest of the group's activity. Similarly, it simplifies communication because 

collaborators can view information about a task without the need to explicitly ask teammates for 

that information.  Collaborators monitoring the activities of others can also use this information 

to anticipate when teammates will have a need and fulfill it.  Finally, collaborators can use 

information about teammates’ tasks to determine if they should offer help and the type of help 

that is required. 

One way to provide information about developers’ tasks is to share a) programming 

artifacts such as current files being edited and b) programming activities such as debugging. 

CollabVS [24] provides collaborators with this information, which could be used with other 

related project information to help determine if a teammate is stuck. For example, [24] gives a 
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scenario in which Bob, on seeing Alice stuck on debugging a particular class, deduces she could 

use help, and offers it. 

Providing virtual channels that give distributed users the feeling of “being there” in a 

single location is an important goal of CSCW. However, Hollan and Stornetta have argued that if 

CSCW is to be truly successful, it should go “beyond being there” by providing capabilities not 

available in face-to-face interaction [28].  Dewan [16] surveyed several software engineering 

tools, which provide “beyond being there” capability to collaborators.  For example, systems by 

Schummer and Haake, Dewan and Hegde, and Sarma et al. automatically try to determine if the 

activities of members of a team conflict and make collaborators aware of these conflicts 

[15,48,49].  One such capability not provided by the previously mentioned systems [15,48,49], is 

to infer when developers need help.  Previous work has [4] argued that inferring when 

developers need help could increase useful group awareness among large development teams, 

and enable new programmers to get help from their mentors [5,12]. 

2.6 Automatic Detection of Difficulty 

Previous research has taken a step toward developing mechanisms that explicitly or 

implicitly infer developers’ progress status. A status is a semantic inference of interest to 

collaborators about the state of developers such as having difficulty, being interruptible, or the 

level of interruptibility.  Each work uses a different technique to make this inference.  First, we 

present a technique that uses non-standard equipment, second, one that uses logs from 

developers’ interactions with a version control system, newsgroup, and wiki; third, one that 

monitors programming environment activities; fourth intelligent tutoring systems, and finally 

one that monitors changes in code.  
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2.6.1 Mining Interactions with Non-Standard Equipment 

Kapoor et al. [35] use classification, a data mining technique, to infer when kids are 

frustrated. The goal of classification is to associate labels (in their case frustrated or not 

frustrated) with new input data based on known labels of preexisting data.  The input data are 

sets of attributes or features that are in some way correlated with the labels.  In the case of the 

labels, frustrated and not frustrated, an attribute could be the amount of pressure put on a mouse.  

A general approach to classification consists of four steps.  First, training data, preexisting data 

with known labels, is gathered.  Next, training data are used as input to an algorithm to create a 

function or model that identifies the relationship between attributes and labels.  Then, new 

attributes are used as input to the model, which outputs the predicted values of labels.  Finally, 

the performance of the model is evaluated. There are several ways to measure the performance of 

models.  One such measure is accuracy, the number of correct predictions divided by the total 

number of predictions. 

Kapoor et al. [35] used this general approach to predict when kids were frustrated. Their 

intuition was that frustration would correlate with changes in body posture, facial expressions, 

pressure applied to a mouse, and skin conductance.  To test their intuition, they collected these 

attributes from cameras, posture seating chairs, pressure mice, and wireless Bluetooth skin 

conductance tests while 24 middle school students solved a Tower of Hanoi problem. To create 

training data, participants clicked on an “I’m frustrated” button.  When participants did not click 

the “I’m frustrated” button, they were labeled as not frustrated.   
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Table 2.2: Example of attributes and labels. 

Amount of Pressure on Mouse (Attributes) Labels 

.9 N I’m frustrated 

.1 N I’m not frustrated 

1.0 N I’m frustrated 

.2 N I’m not frustrated 

.3 N I’m not frustrated 

 

They trained several classification algorithms to output models.  One such algorithm is 

Support Vector Machines (SVMs), which find a hyper-plane, a plane in n-dimensional space, 

which best separates records into groups.  To illustrate, let us assume that Table 2.2 shows an 

example of attributes taken from the equipment with mouse pressure data as an attribute and 

“I’m frustrated” or “I’m not frustrated” as a label.  Figure 2.6 shows a hyper-plane based on 

Table 2.2 that separates the mouse pressure data.  Data on one side of the hyper-plane represents 

the “I’m Frustrated” label and data on the other side represents the “I’m Not Frustrated” label.  

Many hyper-planes could be drawn to separate the data, but the best one represents the largest 

separation between groups of data and has the greatest distance between the nearest data point on 

each side of the hyper-plane. 

 

Figure 2.6: Hyper plane that separates mouse pressure data into two groups. 
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To train SVMs, they aggregated data from all participants except the participant whose 

label they were trying to predict.  The exclusion was meant to test if SVMs trained by one set of 

participants could be used to predict the label of another.  This approach was used to predict the 

label of each participant.  To determine the accuracy of the model’s predictions, they summed 

the number of times the algorithm predicted the correct label and divided the sum by the total 

number of participants.  Their results show that SVMs algorithm was accurate 70% of the time.  

A problem with their approach is the overhead of using non-standard equipment. 

2.6.2 Mining Interactions with Components 

An alternative approach to infer difficulty is to log developers’ interaction with some 

component of their systems.  Liu and Stroulia take an important step in this direction.  They 

developed a tool that monitors students’ interactions with CVS and newsgroups to calculate the 

workloads and work-status of students [40]. Several CVS operations such as adding a file, 

checking out a file, removing a file, and modifying a file were used to determine students’ 

workloads.  In particular, the number of file modifications was used to compare the workloads of 

two student groups to infer which group preformed the most work.  This information could 

potentially be used to determine if students were having difficulty, but this awareness would be 

provided, not when they had the difficulty, but later, when they checked in the files or posted to 

newsgroups.  Developers may struggle for a long time before they take these actions, and for 

certain problems, would not expect a response from the Internet. Providing earlier awareness 

requires mining interactions with the programming environment.  

2.6.3 Mining Interactions with Programming Environments 

Previous work has explored, to some degree, the idea of mining developers’ interactions 

with their programming environment.  Fogarty et al. mined developers’ interactions with their 
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programming environment and used classification to determine whether they were interruptible 

[20].  Their intuition was that a) the longer it took developers to respond to an interruption, the 

less interruptible they were and b) the specific actions developers perform right before they were 

interrupted would correlate with being interruptible.  To test their intuition, they created an 

Eclipse plug-in to log developers' actions and randomly interrupted developers while they were 

performing maintenance tasks. Interruptibility was measured using the following equation:  

                                                                                         

They used this information along with developers’ actions to create training data (labels 

and attributes).  To create labels, they clustered the amount of time it took for developers to 

respond to an interruption using the expectation–maximization (EM) algorithm as implemented 

in the WEKA toolkit [59].  Given a set of values (the time taken to respond to an interruption) 

and a number of clusters to produce, the algorithm computes the mean and standard deviation of 

each cluster and the probability that each value belongs to a cluster.  They experimented with the 

number of clusters and decided to use three clusters because the standard deviation of one cluster 

was large when using two clusters.  This large standard deviation indicated that some values in 

that cluster were significantly further away from the mean than other values.  Therefore, they 

increased the number of clusters to three with the hope that those values that were significantly 

further away from the mean would form their own cluster. This was indeed the case.  They found 

that three clusters represented a better division of the data and that four clusters offered no 

improvement over three.  The three clusters represented the labels: interruptible, engaged, and 

deeply engaged.  Developers who were interruptible/engaged/deeply engaged responded on 

average within 2.2/6.9/43 seconds to an interruption.  
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To determine what actions indicate that developers are interruptible, engaged, or deeply 

engaged, they analyzed the logs of developers' actions to compute attributes.  The goal of their 

analysis was to a) find actions that occurred within some time prior to an interruption and b) 

determine how frequent these actions occurred within that same time.  They used these actions 

and their frequency as attributes.  Some of their attributes are the number of edit events that 

occurred 15 seconds prior to an interruption, whether the Eclipse programming environment lost 

focus 5 seconds prior to an interruption, and whether developers stopped typing 15 to 20 seconds 

prior to an interruption.  These attributes were combined with their labels to form training data. 

The labels engaged and interruptible were combined to form one label: engaged/interruptible.  

They input this training data into the naïve Bayes classification algorithm, which 

computes the conditional probability for all possible values of labels and uses this probability to 

predict labels.  The predicted label is the one with the highest probability.  For example, in their 

case, the algorithm computed the probability that a label is engaged/interruptible and deeply 

engaged given that developers made no edits, one edit, or multiple edits 15 seconds prior to an 

interruption.  To train the naïve Bayes algorithm, they used a standard technique, ten-fold cross-

validation, which executes 10 trials of model construction and splits the logged data so that 90% 

of the data are used to train the algorithm and 10% of the data are used to test it.  The accuracy of 

the model is computed during each test phase and averaged to determine the final accuracy of the 

model.  Their results show that the naïve Bayes algorithm was accurate 71.8% of the time and 

had 14.7% false negatives and 13.5% false positives. Fogarty et al. did not explore the use of the 

interruptibility status in the context of collaborative software development, the subject of this 

thesis.  
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However, several tools [31,41,42,46] have explored logging programming activities and 

computing metrics using these activities. One such metric is the time spent programming, which 

could be used to infer when developers have difficulty.  For example, if student programmers are 

expected to finish an assignment in ten hours, but one student is taking longer to complete the 

assignment, one can infer that the student is having difficulty.  There are several ways to 

compute the time spent programming. 

2.6.4 Computing Time Spent Using Programming Environment Events 

McKeogh and Exton  developed Eclipse Watcher [41], an Eclipse plug-in that logs 

students’ programming activities such as editing (insertions and deletions) code and navigating 

between files,  the timestamp of these programming activities, the line number of a specific edit, 

and the file being edited. They used this logged data to compute the time spent editing on each 

line of code and the time spent editing and navigating.  The goal of their work was to determine 

if these metrics could be used to determine the lines of code and files that are causing developers 

to have difficulty.  This information could be used to find complex code and refactor it.  

To compute the time students spent editing and navigating, the timestamp of the previous 

programming activity is subtracted from the timestamp of the current programming activity.  A 

problem with this approach is that periods of inactivity could lead to inaccurate calculations of 

time spent.  To overcome this problem, the timestamp of the current programming activity is 

disregarded if it occurs more than five minutes after the timestamp of the previous programming 

activity.  This threshold was chosen arbitrarily.  The time spent programming equals:   

∑                                
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where n is the number of programming activities, x is the timestamp of a programming activity, 

xi is the i
th

 timestamp of a programming activity, xi+1 is the  i
th

 + 1 timestamp of a programming 

activity, and y is the number of minutes. To illustrate, consider the example log we created 

shown in Table 2.3 and Equation 3. The total time spent editing and navigating is 12 minutes. 

Table 2.3: Our example of a programming activity log captured by Eclipse Watcher [41]. 

Id Timestamp Programming 

Activity 

Line 

Number 

File 

Name 

1 3:40 pm Editing 1 Test.java 

2 3:41 pm Navigating n/a n/a 

3 3:50 pm Navigating n/a n/a 

4 3:51 pm Editing 1 Test.java 

5 3:52 pm Editing 1 Test.java 

6 3:53 pm Editing 2 Test.java 

7 3:56 pm Editing 2 Test.java 

8 3:59 pm Navigating n/a n/a 

9 4:10 pm Editing 2 Test.java 

10 4:13 pm Editing 2 Test.java 
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This paper did not give any indication of how to compute the time spent editing on each 

line of code in a file, but it provided a table, Table 3 taken from [41], which shows the amount of 

time a student spent editing on each line of code in a file. Rows represent a file and columns 

represent five lines of code.  Based on Table 2.4, we assume that time spent on each line of code 

is computed by a) modifying Equation 2 to only subtract the timestamps of edit events if both 

occur in the same file and on the same line, b) summing the computed time of edits with the 

same file name and line number, and c) summing the result of the previous step for every five 

lines of code. For example, using Table 2.3, if we perform steps (a) and (b), the total time spent 

editing code on line 1 is 2 minutes and on line 2 is 6 minutes.  If we perform step (c), the total 

time editing lines 1 through 5 is 8 minutes. 

Table 2.4: Amount of time editing each line of code [41]. Rows represent a file and columns 

represent five lines of code. 

 

To evaluate their tool, they logged three student programmers with varying levels of 

experience while working on a maintenance task.  Their preliminary results show that their tool 

could be used to explain the navigation behavior of the students.  More specifically, the student 

with the most experience spent the least amount of time navigating code.  One possible reason is 

that the most experienced student understood the code faster than the inexperienced students.  

Norris et al. [46] also used time spent to understand student programmers’ difficulty, but 

instead of focusing only on students’ navigation behavior, they focused on students’ compilation 
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and edit  behavior.  To realize this goal they created ClockIt [46], an extension of the BlueJ 

programming environment that a) monitors compilations, edits (insertions and deletions), and the 

number of lines of code and comments written, b) computes the number and percentage of failed 

compilations, time spent on an assignment, and project growth, and c) graphically displays this 

information to students and instructors through a web interface. This paper gave no indication of 

how time spent is computed, but we assume they use Equation (2). Project growth is computed 

daily using the following equation: 

               
                                           

   
 (4) 

To determine the usefulness of these metrics, they logged and computed metrics for 75 

students working on lab assignments.  However, they only reported the results of three of those 

students.  Their results show that a) the student with the least amount of time spent writing code 

wrote the least amount of code and got the worst grade of the three students and b) two of the 

students spent nearly the same amount of time writing code, but the student with the best grade 

wrote less code. The student with the best grade encountered fewer compiler errors and did not 

encounter the same types of compiler errors as the other two students.  These metrics could be 

used to answer questions common to instructors teaching a CS1 course.  Examples of questions 

are: a) how much time are students spending on their assignments?  and b) what types of errors 

do students make? 

Retina [42], a related tool, provides preliminary answers to these questions.  It monitors 

students’ compilations and also their run time errors to a) estimate the amount of time students 

spent on assignments, b) predict how much time students would take on assignments, c) compute 

the total number of compilations, d) compute the total number of compilation errors, e) compute 
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the percentage of successful compilations, and f) compare these metrics for an individual student 

against the class’s average of these metrics. 

  Time spent is estimated by grouping compilation events that occur within a fixed time, 

e.g. 30 minutes, into individual programming sessions and summing the time spent on each 

individual session for an assignment.  The time spent programming for a session can be 

computed using Equation 3 if we set y equal to a fixed time.  Thus, the amount of time spent 

programming for all sessions equals: 

∑     

 

   

    

where n is the number of sessions, x is the time spent programming computed for a session using 

Equation 1, and xi is the i
th 

session. The example log we created in Tables 2.5a, 2.5b, and 2.5c 

show that a) a student had two programming sessions for an assignment , b) the same student 

spent 80 minutes programming during the first session (Table 2.5a) and 25 minutes during the 

second (Table 2.5b), and c) the sum of both programming sessions for an assignment is 105 

minutes (Table 2.5c).  
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Table 2.5a: Student’s programming activity log 

for session 1. 

Table 2.5b: Student’s programming activity log 

for session 2. 

Programming Activity Timestamp 

compilation event 3:40 PM 

compilation event 3:45 PM 

compilation event 3:54 PM 

compilation event 4:00 PM 

compilation event 4:15 PM 

compilation event 4:38 PM 

compilation event 4:50 PM 

compilation event 5:45 PM 

Total Time Spent: 80 minutes 

 

Programming 

Activity Timestamp 

compilation 

event  5:49 PM 

compilation 

event  6:04 PM 

compilation 

event  6:13 PM 

compilation 

event  6:14 PM 

compilation 

event  6:55 PM 

Total Time 

Spent: 25 minutes 

 

 

  



33 

Table 2.5c: The sum of the time spent for sessions 1 and 2 on an assignment. 

Time spent  

Session 1 

80 

minutes 

Time spent  

Session 2 

25 

minutes 

Total Time  105 

minutes 

Retina estimates the amount of time it would take a student to finish an assignment based 

on how much time (a) students in a previous offering of a course took on their assignments and 

(b) students in a current offering of the course took on previous assignments. Let Sc denote all 

students in the current semester, Sp all students in the previous semester, j the student whose time 

is being estimated, and n the assignment for which time is being estimated.  The estimated 

amount of time it would take j to finish n is computed by a) averaging the amount of time Sc took 

on previous assignments, b) ranking j’s average time spent on previous assignments with respect 

to Sc, c) averaging and ranking the amount of time Sp spent on all assignments, and d) finding the 

time it took similarly-ranked Sp to complete n. For example, a student with Id of 2 in Table 2.6a 

a) ranked 2
nd

 in terms of average time spent on all previous assignments, b) spent a similar 

average time on assignments as a student with an Id of 3 in a previous semester (Table 2.6b), and 

c) is predicted to spend approximately 107 minutes on an assignment, which is the same time 

that a student with an Id of 3 spent on that assignment (Table 2.6c). 

To evaluate Retina, they a) logged 48 students doing class assignments and b) asked a 

small number of students and three instructors to comment on the usefulness of the tool.  

Students liked using the tool because it helped them compare themselves to their classmates and 
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determine that their classmates also struggled with the material.  Instructors used to tool to a) 

determine the types of compilation errors that caused students to have difficulty, b) anticipate the 

questions students would ask, and c) tailor their help based on students’ compilation errors.  

They focused on compiler errors because student programmers often struggle with getting their 

programs to compile correctly [37]. 

Table 2.6a: Average time 

students spent on all 

assignments. 

Table 2.6b: Average time 

students taking a previous 

offering of a course spent on 

all assignments. 

Table 2.6c: The time students 

spent on an assignment in a 

previous offering of the course. 

Current Semester 

Student Id Average time 

spent on previous 

assignments  

1 165 minutes 

2 175 minutes 

3 177 minutes 

4 179 minutes 

 

Previous Semester 

Studen

t Id  

Average time 

spent on previous 

assignments  

1 150 minutes 

2 165 minutes 

3 172 minutes 

4 185 minutes 

 

Previous Semester 

Student 

Id  

 Time spent on 

assignment in previous 

semester  

1 95 minutes 

2 105 minutes 

3 107 minutes 

4 113 minutes 

 

2.6.5 Automatically Determining Compiler Error Difficulties 

One reason students struggle is compiler errors can be cryptic making them difficult to 

understand.  To determine the amount of difficulty students have with compiler errors, Jadud 

created the Error Quotient (EQ) metric [32].  The intuition behind this metric is that students in 

introductory programming courses spend the majority of their time editing and compiling code to 
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make their programs syntactically correct. The EQ metric could be used to determine when 

students are having difficulty. It is computed using the following algorithm: 

Given a session of compilations, e1 through en: 

(1) Pair consecutive compilations (e1, e2), (e3, e4), (e5, e6)…..(en-1, en) 

(2) Assign a numerical penalty to pairs with compilation errors 

a. Assign a penalty of 8 if both pairs have a compilation error 

b. Assign an additional penalty of 3 if both pairs have the same compilation error 

(3) Divide the score assigned to each pair by 11 (the maximum value possible for each pair) 

(4) Sum the scores for each pair of compilation 

(5) Divide the sum by the total number of pairs 

They determined numerical values for penalties by experimenting with multiple numerical 

values. A perfect error quotient is 0.0, which means students were able to fix syntax errors as 

they had them. Conversely, an error quotient of 1.0 implies that each time a student compiled 

code, the compilation ended in the same syntax error. To determine how well the EQ metric 

indicated the amount of difficulty students had with their assignments they, a) extended the 

BlueJ programming environment to log compilations and compilation errors, b) logged 96 

students working on homework assignments, c) computed the EQ metric for each student, and d) 

determined if there was a correlation between students’ EQ metric and the average grade of 

homework assignments and exams.  Their results show that there is a correlation between the EQ 

metric and the average grade of homework assignments and exams. 
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2.6.5 Difficulties with Logic Errors 

After student programmers get their program syntactically correct, they may also have 

problems getting their programs to output the correct information.  We refer to these types of 

problems as logic errors.  One reason students struggle with logic errors is that they do not give 

a warning like compiler errors.  Therefore, students have to a) detect that the output is incorrect, 

b) find the code that is responsible for the error, c) understand the cause of the error, and d) 

modify the code to remove the error.  This process is debugging and can often be difficult and 

time-consuming [58].  One way to ease the difficulty and reduce the amount of time students and 

even experienced developers spend debugging is to use debugging tools. 

2.6.6 Using Breakpoint Debuggers to Overcome Logic Errors 

One such tool, breakpoint debuggers, enables developers to a) pause a program’s execution 

at specified lines, b) inspect the value of variables of the paused program, and c) step through the 

program’s execution.  Breakpoint debuggers are a standard part of modern programming 

environments, but novice student programmers may hesitate to use them or may not be aware 

that they exist.  More importantly, these tools require developers to guess which line of a 

program is causing an error.  If developers guess incorrectly, the tools provide them with 

incorrect information.  One way to reduce this speculation is to help developers find the line(s) 

of code that is causing an error, show developers the line(s) of code that is causing an error, 

explain the reason for the error, and fix the error. 

Ko et al. take a step towards this direction.  They created a tool, the WhyLine, which enables 

developers to ask “why” or “why not” questions about a program’s output and identify the parts 

of code responsible for the output [43].  Their results showed that participants who used the 

WhyLine completed more debugging tasks and took less time on their tasks than participants 
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who used a breakpoint debugger.  One possible reason is that the WhyLine helped participants 

find the code that was responsible for an error.  However, some participants still struggled with 

understanding the reason for their errors and thus, had trouble fixing them.  

 One way to overcome this problem is to anticipate the problems students will have and offer 

hints to students about why their programs are incorrect and how to fix them.  This is exactly 

how Intelligent Tutoring Systems (ITS) helps students. 

2.6.7 Intelligent Tutoring Systems 

One example of an ITS is the LISP Tutor [2], which helps students who write code in the 

LISP programming language overcome compiler and logic errors.  Since we have discussed an 

approach to detect compiler errors, we do not consider them from now on.  To help students 

overcome logic errors, the tutor must model students’ progress.  It does this by monitoring 

students’ individual keystrokes and determining whether students’ input will produce the correct 

output. The tutor monitors individual keystrokes using a structured editor that a) only enables 

one line of code to be entered at a time, b) automatically balances parenthesis, and c) provides 

placeholders that structure methods into segments.  These segments are: a) the parameters of a 

method, b) initialization of variables, and c) the body of the method.  

To determine whether students’ input will produce the correct output, the tutor must 

know a) what the correct output is and b) whether students have deviated from it.  The LISP tutor 

does this by giving students small tasks to solve such as combining two lists into a single list and 

checking students’ input against a set of rules. There are two types of rules: buggy rules, which 

represent the logic errors that students may make while solving a problem and correct rules, 

which represent the correct output. For example, if the goal is for a student to combine two lists, 

a correct rule would be: “if the goal is to combine list1 and list2 into a single list, then use the 
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function append”, while a buggy rule would be  “if the goal is to combine list1 and list2 into a 

single list, then use the function add, add is the incorrect function name, should use the function 

append.” 

If students’ input follows a buggy rule, the tutor determines the exact error and offers 

help to students. It offers two types of help.  First, it gives students hints in natural language. It 

constructs hints using the buggy rules and the segment of the code where students are editing.  

For example, if the task is to define a method that takes two numbers as parameters and returns 

the sum of those numbers, and students write a method that returns the difference of two 

numbers, the tutor would suggest that students use addition instead of subtraction. Second, after 

students make a certain number of errors, usually two, the tutoring module gives students the 

correct code piece of code, which enables them to continue solving the problem instead of 

staying stuck and giving up.  One problem with Intelligent Tutoring Systems is that they 

constrain students' input, which limits their ability to explore and try different ways of solving a 

problem.  

2.6.8 Mining Code Changes  

This limitation is overcome to some extent by Piech et al. who enable students to use the 

Eclipse programming environment, a non-structured editor, to invoke methods that are defined 

by instructors and use statistical models to automatically determine the amount of difficulty 

students had with their assignments [47]. 

The goal of their work was to automatically monitor students’ progress through 

assignments and determine where they are having difficulty. Their intuition was that a) 

incremental submissions of students’ programs can be automatically assigned a label such as 
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“the student has just started”, b) students transitions from label to label could be graphically 

modeled to show how students transition through assignments, and c) the amount of difficulty 

students had on assignments was based on the number of code submissions it took before they 

moved to the next label. 

To test their intuition, they created an Eclipse plug-in to log students’ code when they 

saved or compiled their program. Since labels were not predefined, they needed a way to a) 

automatically convert incremental code submissions into labels and b) predict the likelihood that 

students will transition to the next label.  To create labels, they clustered 2000 code submissions 

from different students using the K-Mediods algorithm. Given n versions of code and k (the 

initial number of clusters to produce), they asked the algorithm to partition the code into clusters 

based on the median distance between versions of code.  In their case, n was 2000 and k was 26. 

Since there is no well-known measure for determining similarity between two pieces of code, 

they created three measures.  

The first measure, Bag of Words Difference, uses histograms to represent the frequency 

that key words appear in two versions of code and the Euclidean distance between two 

histograms as a measure of difference between the two versions of code. The second measure, 

Application Program Interface (API) Call Dissimilarity, is computed by a) executing students' 

programs to capture the sequence of API calls, b) finding sequences of API calls that do not 

match using the Needleman-Wunsch global DNA alignment algorithm [45], and c) using the 

number of sequences that do not match as the difference between two programs. The last 

measure, Abstract Syntax Tree (AST) Change Severity, is computed by first creating AST 

representations of two programs.  An abstract syntax tree is a tree representation of programs 

where each tree node contains programming syntax. The term “abstract” means some 
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programming syntax is excluded from the tree such as parentheses. The next step is to determine 

the Evolizer change severity score, which is the minimum number of changes needed to 

transform an AST from one program to the AST of another program. Finally, they use the 

Evolizer change severity score to determine the difference between two programs. 

To evaluate each measure, they a) selected 90 pairs of programs where each pair was 

from the same student, b) computed each measure for each pair of programs, c) recruited five 

experts to label each pair of programs as either similar or different based on style and functional 

rules given to them, and d) compared the experts’ assessment to each measure. The API Call 

Dissimilarity and the AST Change Severity metric preformed best. Therefore, they created a 

weighted sum of both metrics. We refer to the weighted sum of these metrics as code distance 

because they determine the amount of difference between two versions of code. They used the 

K-Mediods algorithm to partition the code submissions clusters based on the code distance. A 

manual inspection of the clusters confirmed that code submissions that were clustered together 

were similar in functionality and intuitively made sense. 

To graphically model students’ transitions they used Hidden Markov Models (HMMs), 

which is a probabilistic finite state machine shown in Figure 2.7.  The term “hidden” means that 

states or labels, are not explicitly labeled, but are inferred using data that correlates with states. 

In their case, data is incremental code submissions.  Each label is a node in the finite state 

machine and the HMM provides the probability of transitioning from one label to the next and A 

computes the probability that a code submission is a label given X.   The final step is to 

determine the amount of difficulty students had using the graphical model. 

To find patterns, they compared students’ transitions through the various labels in the 

HMM by clustering their paths using the K-Means algorithm.  Given the transitions through the 
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various labels and k (the number of clusters to produce), they asked the algorithm to partition the 

sequences into clusters based on the average probability that one student’s path could be 

produced by another student’s HMM and vice versa.  They found that there were several clusters 

where students submitted several versions of code, but remained in the same label.  The number 

of times students remained in the same label indicated the amount of difficulty students had 

while programming.  Interestingly, once students were having difficulty, there was a high 

probability that they would continue being stuck.   

 

Figure 2.7: Hidden Markov Model of state transitions for a student. “Code” nodes 

represent a version of a student’s code at a particular time and “State” nodes represent the 

high-level label the student is in at that same time. N represents the number of states and 

versions of code for a student. 

2.7 Notification of Status 

So far, we have discussed mechanisms that explicitly or implicitly infer developers’ 

progress status. One question left unanswered is, how do we display these inferences to 

collaborators?  One way to display inferences is to use standard notifications; however, 

notifications may be disruptive if they occur too frequently.  One way to address disruptions is to 

enable observers to poll for a developer’s status through an IM status or newsfeed during their 

activity breakpoints [30] to learn about status changes.  The Jazz [8] and CollabVS [24] 

programming environments embody this approach. Both systems continuously update a view of 

collaborators’ programming activities.  The difficulty status of a teammate could be added to this 

view, similar to an IM status, to enable collaborators to view the status. In both the CollabVS 
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[24] and Jazz [8] programming environments, the view is located in the user interface of the 

programming environment.  Alternatively, this information could be presented in a separate tool.  

For example, an update to the Jazz programming environment [21] provides newsfeeds, which 

are implemented in dashboards, a separate tool, to enable developers to passively monitor 

collaborators’ programming activities.   

Yet another alternative is a manager polling for status during a “walk around”.  

Management by physically walking around is a well-known practice devised at HP by Dave 

Packard and Bill Hewlett.  Sharma et al. [50] create a virtual analog of this technique to enable 

such management of remote offices. Their system, Virtual Office, is a 3D environment that 

mimics the layout of a physical office and supports audio and text chat, screen sharing, and 

navigation.  To make the system even more realistic, only users that are within a certain distance 

of each other can communicate.  Sharma et al. [50] envision several uses of this tool such as 

enabling employees who are at home to meet with collaborators who are either physically or 

virtually at the office and enable managers to remotely manage virtual offices. Combining a 

virtual office with difficulty status predictions could enable a manager visiting a worker to see, in 

addition to other information, the current difficulty status, and an aggregation of the status values 

of the worker computed since the last walk around. 

These techniques inform collaborators of developers’ progress status.  To our knowledge, 

no work in the literature explores the use of developers’ progress status.  One possible use is 

teammates helping developers when they become aware that developers are having difficulty.  

However, before they offer to help, collaborators must first determine if they can indeed help.  

To answer this question, collaborators need information about teammates’ context [57].  
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2.8 Context Awareness 

One approach to share programming context is screen awareness, continuous knowledge 

of remote developers’ screens.  Teammates can use this information to see what is blocking 

developers from completing their tasks.  Previous work has explored, to some degree, the idea of 

screen awareness.  Tee et al. implemented screen awareness in the Community Bar tool as a 

sidebar that contained thumbnails of remote users’ screens [56].  Collaborators used these 

thumbnails to monitor each other and when a change in a teammate’s thumbnail indicated a 

potentially interesting event, they expanded the thumbnail to show that teammate’s full screen.  

Experience with the Community Bar found that observers used the tool to determine remote 

users’ availability, and to monitor how much progress a co-author, using track changes, was 

making on a shared document. In particular, the same thumbnail image for a period of time 

implied that the associated user was not available; and the degree of progress of a user was 

determined by how much tracked text in the document had the user’s color. However, screen 

awareness alone may not provide enough information for potential helpers to determine if they 

can offer help, because it only shows the current information on developers’ screens.  Previous 

work found that teammates needed to know what developers have done (so far) to try to solve 

their problem [57].  We can model this problem as the classic latecomer problem, which 

generally occurs in scheduled meetings where individuals invited to a meeting join late and need 

to catch up on information they missed.  

The most recent work on this topic, by Junuzovic and colleagues, records audio of 

meetings, video of the participants’ faces, and a shared workspace (presentations) and transcribes 

the audio recording so that latecomers can replay this information to catch up [34].  The goal of 

their work was to determine whether replaying audio, video, shared workspace, and transcript 



44 

was better than only replaying audio. To achieve this goal, they compared the amount of 

information (facts, explanations, and the identity of the speaker in the meeting) that latecomers 

could recall after replaying audio only and different combinations of audio, video, transcript, and 

shared workspace.  Their results show that participants who replayed audio, video, shared 

workspace, and transcript and audio and workspace combinations recalled more information than 

audio alone and any other combination.  This suggests that replaying audio, video, transcript, and 

workspace actions are useful in helping latecomers get up to date.  

However, their work did not show that replaying workspace actions, transcripts, or video 

alone was useful.  Therefore, their results do not apply to developers who work alone because 

there is no video or transcript to replay.  The reason is that developers work alone until they get 

stuck and the only information available to replay is developers' screens.  

Replaying developers' screen activities provides syntactic awareness to potential helpers, 

which means they are not provided with inferences about developers' context.  Therefore, 

potential helpers must manually look at developers' screens to determine context, which could 

cause them to spend a large amount of time trying to determine if they can offer help.  This 

means that sometimes potential helpers waste a significant amount of their time.  This problem 

can be addressed by inferring not only developers’ progress status, but also their programming 

context. 

2.9 Programming Context 

Two types of programming context that may be useful to potential helpers are 

developers’ difficulty level and the barriers that cause them to have difficulty.  Ko et. al 

categorized barriers student programmers faced based on explicit help requests.  To do this they 
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a) asked students to report what they were stuck on, how they became stuck, and how they tried 

to overcome being stuck and b) found similarities in this reported data.  Two of the authors 

independently classified each barrier. The six barriers they identified are: not being able to 

design algorithms, unable to combine Application Programming Interfaces (APIs), not 

understanding compiler or runtime errors, unable to find documentation for APIs, and unable to 

find tools within the programming environment [37]. They showed that for most barrier kinds, 

about half of its instances were insurmountable, thereby suggesting two levels of difficulties 

(insurmountable and surmountable) [37].   

Difficulties where students explicitly asked a collaborator, in their case a teaching 

assistant, for help were labeled insurmountable.  When students asked for help, as mentioned 

previously, the helpers asked students how they became stuck and found that students had earlier 

difficulties. These earlier difficulties were labeled surmountable because students overcame 

them using other forms of help such as code examples or guessing the solution.  When students’ 

guesses were incorrect or they had trouble adapting these examples to fit their code, they were 

faced with insurmountable difficulties. For example, students had to design an alarm clock that 

could be set to ring at a certain time, but they had difficulty trying to get their program to keep 

time.  This difficulty occurred because they were not aware of the timer API.  To overcome this 

surmountable difficulty, they used the code of other students as examples, but adapting this code 

caused an insurmountable difficulty. 

2.10 Multi-level Classification of Developers’ Status 

Previous work has also explored multi-level classification of developers’ status. Fogarty 

et al. [19] determined levels of interruptibility by randomly interrupting participants to rank their 

interruptibility on a scale from 1 (most interruptible) to 5 (least interruptible). Analogous work 
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by Iqbal and Bailey [30] determined levels of breakpoints by using external observers/coders to 

view samples of participants’ videos and identify breakpoints and their types.  Horvitz et al. [29] 

provide a novel way to address the degree of difficulty issue.  They asked users to quantify their 

willingness to receive a notification based on how much money (scaled from 0 to 1) they would 

be willing to give to not receive a notification.  A similar scheme could be used for quantifying 

difficulty – how much money would one be willing to pay to make the difficulty go away. 

2.11 Summary  

A significant amount of previous work has motivated the idea of increasing the amount of 

help in software development.  These motivations arguably show that the closer developers are 

the easier it is for developers to become aware that teammates need help.  More important, 

previous work suggests that an increase in help also provides an increase in productivity.  Given 

this motivation, in this chapter, we describe how techniques stemming from prior work that 

implicitly or explicitly infer developers’ progress status.  This chapter provides a basis for our 

work and an avenue for extending it.
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Chapter 3: Programming Activity Difficulty Detection and Implementation 

3.1 Introduction 

In the previous chapter, we present related work that infers frustration using non-standard 

equipment. In this chapter, we describe an approach that logs developers’ interactions with 

standard equipment such as programming environments and inputs these actions into a difficulty 

detection module that predicts whether developers are having difficulty or making progress 

(Figure 3.1) would be useful because it does not have the overhead associated with using non-

standard equipment, reduces privacy concerns, and provides earlier awareness than non-standard 

equipment.  The use of programming environments overcomes all the problems mentioned above 

because developers routinely use some form of a programming environment such as editors or 

debuggers.  In this chapter, we develop a programming-activity difficulty-detection component 

that embodies such an approach.  

 

Figure 3.1: Block diagram of our difficulty detection module that takes as input developers’ 

actions an outputs a prediction as to whether developers are having difficulty or making 

progress.
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To show how well this approach works in practice, we needed to implement a difficulty 

detection module into a programming environment. We implemented a difficulty detection 

module into Eclipse because it is a popular programming environment at UNC-Chapel Hill. 

However, half of the developers that were willing to participate in our studies used Visual Studio 

and refused to use Eclipse.  Therefore, we implemented a difficulty detection module in both 

programming environments, which increased programming time and effort because as the 

difficulty detection algorithm changed; code had to be changed in both the Eclipse and Visual 

Studio implementations.  Existing difficulty detection systems also faced this problem and their 

solution was to avoid logging interactions with the programming environment.  In this chapter, 

we address this problem by developing a reusable difficulty detection framework, which is a 

common set of difficulty detection modules for the Visual Studio, and Eclipse programming 

environments. 

The rest of this chapter is organized as follows.    First, we describe how we use 

developers’ interactions to predict whether developers were having difficulty or making 

progress.  Second, we describe experiments conducted with this approach.  Third, we describe 

how we implemented the common set of difficulty detection modules.  Following this, we 

describe experiments we conducted with the common set of difficulty detection modules.  

Finally, we present limitations and a brief summary.  

3.2 Issues, Approach, and Evaluation 

As mentioned above, previous work has explored automatic difficulty detection.  A 

problem with this research, described above, is the overhead of using non-standard equipment.  

An alternative approach would be to determine developers’ difficulty status by logging their 

interaction with some component of the system. As mentioned above, an important step in this 
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direction is taken in [40], which describes a tool that monitors students’ interactions with CVS 

and newsgroups to calculate the workloads and work-statuses of students.  This information 

could potentially be used to determine if students were having difficulty, but this awareness 

would be provided, not when they had the difficulty, but later, when they checked in the files or 

posted to newsgroups.  Developers may struggle for a long time before they take these actions, 

and for certain problems, would not expect a response from the Internet.  Providing earlier 

awareness, as in the two scenarios above, requires logging interactions with the programming 

environment.  

Previous work has explored, to some degree, the idea of mining developers’ interactions with 

their programming environment.  Fogarty et al. [20] show that it is possible to develop a tool that 

uses developers’ interactions with the programming environment to determine if they are 

interruptible.  The challenge for us was to train and evaluate a system that tries to determine if 

someone is having difficulty.  Fogarty et al. also faced this problem, and their solution was to 

randomly interrupt users to determine how interruptible they were.  We cannot use this approach, 

as it is likely that no random interruption would find a developer is having difficulty - by 

definition having difficulty is an exceptional event.  

We built on the approach taken by Kapoor et al. [35].  The participants indicated their 

frustration level by clicking on “I’m frustrated” or “I need help” buttons.  These buttons are 

useful only for the training phase.  Even in this phase, it may be useful to run an initial naïve 

algorithm that actively guesses the progress status, whose predictions can be corrected by the 

developers.  The reason is that developers are more apt to correct a guessed status than to 

remember to press the buttons to indicate their status.  This is the first approach we took, and 

Figure 3.2 shows the user-interface for correcting the status.  The “Eureka” button was intended 
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to capture those situations in which developers did not realize they had been having an unusual 

problem until they had solved it.  However, none of our subjects used it.  The “Notifications 

Enabled” button enabled developers to determine if they received status change notifications. 

 
Figure 3.2: Buttons developers press to indicate their status. 

 

Creating a naïve algorithm for the training phase requires some top down thinking about 

how having difficulty could be inferred. The basic intuition is to monitor progress of developers, 

and when this progress is less than some threshold, indicate that they are having difficulty. 

Progress is related to productivity but is also fundamentally different.  It is measured while 

programmers are writing code, while productivity is usually measured after programmers have 

done so.  There are several measures for productivity such as time to market. However, little 

work has been done on measuring progress. 

The only one we found was one done by Kersten and Murphy [36], which provides a tool 

for automatically showing to developers items related to their tasks, thereby reducing the need to 

manually navigate to these items.  They measure the success of their tool by determining how the 

tool changes developers’ edit ratio, which is the ratio of number of editing commands to the 

number of navigation commands.  Instead of using this metric to evaluate the performance of an 

algorithm, as in [36], we used it as an input to the design of our naïve algorithm for determining 

status changes. If the edit ratio and number of debugs is less than a low threshold, the algorithm 

notifies the developers that they are having difficulty.  If a correction is made, the threshold is 

increased.  As in [36] , we have extended an Eclipse plug-in [51] to log developers’ interaction 

with it and compute the edit ratio. We logged three freshmen doing class assignments, and three 
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graduate students doing class and research assignments.  We equated being stuck and needing 

help with having difficulty.  

All but one programmer pressed the “Stuck” button to indicate lack of progress.  The 

naïve algorithm did not predict the progress status well. Our next step was to explore the logs 

and corrections to derive a better algorithm. 

 

 

Figure 3.3: Participant 1’s programming activity over an hour. 

3.3 Deriving Mining Algorithm 

We analyzed the logs to determine if there are patterns that occur when developers 

indicate they are having difficulty. To determine the patterns, we must determine values known 

as features that change when programmers are making progress and having difficulty. 

A manual inspection of the logs showed that, consistent with the assumption of the naïve 

algorithm, the frequency of certain edit commands decreased when developers were having 

difficulty. Depending on the developer, the frequency of execution of other commands increased.  
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Based on these data, we grouped the commands into five categories (Table 3.1): 

  Navigation 

  Edit (text insertion/deletion) 

 Remove (methods and/or classes) 

  Debug 

  Focus 

We calculated, for different segments of the log, the ratio of the occurrences of each category of 

commands in that segment to the total number of commands in the segment as percentage, and 

used these percentages as features over which patterns are identified. 

Table 3.1: Programming action categories and their explanations. 

Programming Action Category Explanation 

Navigation User switches from one file to another file. 

Edit  User inserts or deletes text. 

Remove User removes entire methods or classes. 

Debug User explicitly debugs code using the debugger. 

Focus User switches between Eclipse and other open windows. 

As programmers work at different rates, the log was segmented based on the number of 

events executed instead of time. The size of these segments is an important issue - if the size is 

too large, then both kinds of patterns might occur in a single segment, and if it is too small, there 

might not be sufficient information to determine whether developers were having difficulty.  To 

illustrate, it is undesirable to have segment size that is one or the size of the complete log.  After 

experimenting with several values of it, we found a segment size of 50 to be the best. 

To determine how indicative the features are of programmers’ behavior we graphed the 

programming behavior of all six programmers.  In each graph, the x-axis is session time and y-
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axis is the percent for each feature.  Figures 3.3 and 3.4 are portions of the graphs created for 

participant 1 and 2, respectively, illustrating both commonalities and differences in the behavior 

of programmers.  In both cases, when the programmers indicated they were having difficulty, the 

edit percentages decreased and other percentages increased.  

 

Figure 3.4: Participant 2’s programming activity over an hour. 

 When participant 1(2) was stuck, the navigation (debug and focus) percentage increased.  

Participant 2’s edit (debug and focus) percentages continued to decrease (increase) for a while 

after he indicated he was stuck, which was not true in the case of participant 1.  This seems to 

indicate that participant 1 was quicker in detecting, or at least informing the system, that he was 

having difficulty.  Thus, the two graphs validate our feature choice. 

There are several standard ways to build a general model.  In particular, we tried the 

naïve Bayes model as it is the one used in [20] for predicting the interruptibility status.  

Interruptibility and progress seem to be related as they both indicate the status of developers. 

More interestingly, there may be a correlation between the two – the more progress developers 
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are making, the less interruptible they might be. 

On the other hand, there is also reason to believe that progress and interruptibility 

statuses are fundamentally different because having difficulty is a rare event.  In our 

experiments, developers indicated they were stuck only for 76 of the 2288 (3%) total segments 

(Figure 3.5).  This leads to the class imbalance problem, which occurs when trying to detect a 

rare but important event such as having difficulty.  The accuracy of traditional classification 

algorithms are biased towards the more common event, making progress, and will not recognize 

the rare event, having difficulty.  The SMOTE [7] algorithm implemented in the WEKA toolkit 

[59] overcomes this problem.  It replicates rare data, having difficulty, until that data are equal to 

the more common data, making progress.  Therefore, we used this scheme, which converted the 

76 rare records to 1216 replicated ones. 

 

 

Figure 3.5: The number of progress and difficulty status events. 
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algorithms to build statistical models.  The performance of each model is shown as a confusion 

matrix.  The rows represent the actual times developers were stuck and the columns represented 

the values predicted by the model.  The confusion matrix in Table 3.2 shows the results of the 

naïve Bayes algorithm.  The accuracy of this algorithm is 73%, the true positive rate is 63%, the 

true negative rate is 77%, the false negative rate is 37%, and the false positive rate is 23%.  

These results show that the algorithm missed 37% of the time when developers were having 

difficulty and 23% of the time when they were making progress.  The decision tree algorithm, 

described in [59],  gave better results (Table 3.3).  

Table 3.2: Confusion matrix for naïve Bayes algorithm with the smote algorithm applied. 

 Predicted Stuck Predicted Progress 

Actual Stuck  769 (True 

positives) 

 447 (False negatives) 

Actual Progress 504 (False 

positives) 

 1708 (True negatives) 

 

Table 3.3: Confusion matrix for decision tree algorithm with the smote algorithm applied. 

 Predicted Stuck Predicted Progress 

Actual Stuck  1101  (True 

positives) 

 115 (False negatives) 

Actual Progress 158 (False 

positives) 

 2054 (True negatives) 

 It correctly predicted making progress 92% (true negative rate) of the time and having 

difficulty 91% (true positive rate) of the time.  By themselves, these numbers are not very 
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impressive, because simply guessing that the developer is always making progress would have 

been correct 97% of the time, but would never correctly predict when developers were having 

difficulty.  More interestingly, our scheme identified 91% of the having-difficulty statuses. 

To determine these numbers, we used a standard technique, known as k-fold cross 

validation, which executes 10 trials of model construction, and splits the logged data so that 90% 

of the data are used to train the algorithm and 10% of the data are used to test it.  

There were times when the model was early or late in its prediction, which is consistent 

with the fact that developers differed in how quickly they indicated they were stuck.  These were 

counted as incorrect predictions.  

We also tried an algorithm, Classification by Clustering [59], which is designed to 

identify rare events without replicating records.  The confusion matrix in Table 3.4 shows the 

results of this algorithm.  The accuracy of this algorithm is 65%, the true positive rate is 79%, the 

true negative rate is 65%, the false negative rate is 21%, and the false positive rate is 35%.  

These results show that the algorithm identified when developers were having difficulty 79% of 

the time (true positive rate). 

Table 3.4: Confusion matrix for classification via clustering algorithm. 

 Predicted Stuck Predicted Progress 

Actual Stuck  60 (True positives)  16 (False negatives) 

Actual Progress 766 (False 

positives) 

 1446 (True negatives) 
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3.4.1 Comparison of Mining Algorithm Results to Baselines 

These results show that the decision algorithm correctly identified more times when 

developers were having difficulty and making progress than the naïve Bayes and classification 

via clustering algorithm.  To provide evidence to support our Programming Activity Difficulty 

Detection sub-thesis, we compare the results of the decision algorithm to the baselines we 

described in section 3.3.  To compute each baseline we a) use the same data given to the decision 

tree algorithm and b) assume that the distribution of the actual having difficulty and making 

progress statuses follow the distribution of the having difficulty and making progress statuses for 

each baseline.   

To compute the random baseline, we assume that a) half of the actual having difficulty 

statuses were predicted as having difficulty, b) half of the actual having difficulty statuses were 

predicted as progress, c) half of the actual progress statuses were predicted as progress, and d) 

half of the actual progress statuses were predicted as having difficulty.  Figure 3.6 shows the 

distribution of data for the random baseline.  To compute the modal baseline, we assume that a) 

none of the actual having difficulty statuses was predicted as having difficulty, b) all of the 

actual having difficulty statuses were predicted as progress, c) none of the actual progress 

statuses was predicted as having difficulty, and d) all of the actual progress statuses were 

predicted as progress.  Figure 3.7 shows the distribution of data for the modal baseline.  To 

compute the last baseline, data distribution, we use the distribution of the actual having difficulty 

and progress statuses, which is 35% and 65% respectively.  More specifically, we assume that a) 

35% of the actual having difficulty statuses were predicted as having difficulty, b) 65% of the 

actual stuck having difficulty were predicted as progress, c) 65% of the actual progress statuses 

were predicted as progress, and d) 35% of the actual progress statuses were predicted as having 
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difficulty.  Figure 3.8 shows the distribution of data for the data distribution baseline.  We use 

this approach to create baselines in chapter 5. 

 

Figure 3.6: The distribution of data for the random baseline (decision tree data). 

 

Figure 3.7: The distribution of data for the modal baseline (decision tree data). 
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Figure 3.8: The distribution of data for the data distribution baseline (decision tree data). 

Similar to the decision tree algorithm, the results of each baseline are shown as confusion 

matrices.  Table 3.5 shows the results for the random baseline.  The accuracy of this baseline is 

50%, the true positive rate is 50%, the true negative rate is 50%, the false negative rate is 50%, 

and the false positive rate is 50%.  This baseline identifies 50% of the time when developers are 

making progress and 50% of the time when they are having difficulty.  To determine whether 

there is a significant statistical difference between the performance of the random and data 

distribution baselines and the decision tree algorithm, we use the binomial test.  We do not use a 

significance test to compare the modal baseline to our approach because it never identifies when 

developers are having difficulty (TPR=0%), which means the true positive rate is clearly 

different.  The binomial test determines whether there is a significant difference between an 

observed experimental value, the results from the decision tree algorithm, and a fixed value, the 

results of each baseline.  The decision tree algorithm performs significantly better than the 

random baseline (TPR=91% vs. TPR=50%, p < .001) (TNR=93% vs. TNR=50%, p < .001). 
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Table 3.5: Confusion matrix for random baseline. 

 Predicted Stuck Predicted Progress 

Actual Stuck  608 (True 

positives) 

 608 (False negatives) 

Actual Progress 1106 (False 

positives) 

 1106 (True negatives) 

Table 3.6 shows the results for the modal baseline.  The accuracy of this baseline is 65%, 

the true positive rate is 0%, the true negative rate is 100%, the false negative rate is 100%, and 

the false positive rate is 0%.  This baseline always identifies when developers are making 

progress, but never identifies when they are having difficulty.  As mentioned above, we do not 

use a significance test to compare the modal baseline to our approach.  The true positive rate 

(91%) of the decision tree algorithm is better than true positive rate (0%) of the modal baseline. 

Table 3.6: Confusion matrix for modal baseline. 

 Predicted Stuck Predicted Progress 

Actual Stuck  0 (True positives)  1216 (False negatives) 

Actual Progress 0 (False positives)  2212 (True negatives) 

Table 3.7 shows the results for the data distribution baseline.  The accuracy of this 

baseline is 65%, the true positive rate is 35%, the true negative rate is 65%, the false negative 

rate is 35% and the false positive rate is 35%.  This baseline identifies 65% of the time when 

developers are making progress, but only identifies 35% of the time when they are having 
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difficulty.  The decision tree algorithm performs significantly better than the data distribution 

baseline (TPR=91% vs. TPR=50%, p < .001) (TNR=93% vs. TNR=50%, p < .001). 

Table 3.7: Confusion matrix for data distribution baseline. 

 Predicted Stuck Predicted Progress 

Actual Stuck  426 (True 

positives) 

 790 (False negatives) 

Actual Progress 774 (False 

positives) 

 1428 (True negatives) 

 

3.4.2 Discussion 

Our results are promising because it a) recognizes with high accuracy when student 

programmers are having difficulty even though having difficulty is a rare event and b) performs 

better than the random, modal, and data distribution baselines.  These results provide partial 

evidence to support sub-thesis I, which we restate here. 

Programming Activity Difficulty Detection Sub-Theses (Sub-thesis I): 

It is possible to develop an approach that a) uses developers' interactions with their 

programming environment to determine whether developers are having difficulty with their task 

and b) performs better than baseline measures. 

Iterative Approach 

Our exploration of a programming-activity difficulty-detection algorithm yielded an 

iterative process, which consists of the following steps: 

1. Develop an initial naïve algorithm for predicting the having difficulty status.  
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2. Implement the algorithm in one or more programming environments.  

3. Ask selected developers in lab and/or field experiments to correct the predictions 

made by the current algorithm.  

4. Analyze the logs to refine the set of features.  

5.  Input these features to existing selected log-mining algorithms.  

6. If none of these algorithms makes a significant improvement, stop.  

7. Make the algorithm that gives the best results the current algorithm. 

We have carried out the first iteration of the process, but our work so far leaves several 

important questions unanswered. 

1. Is it possible to develop a common set of extensible prediction modules for 

different programming environments? 

2. Is it possible for the modules to have no impact on the response times perceived 

by the developers? 

3. How well does the previous algorithm work when industrial programmers use 

it? 

4. Is it better to train the modules using logs of the individual developer whose 

status is predicted, or some group of programmers that excludes him/her? 

5. What is the correlation between the perceptions of the developers and their 

observers regarding whether the developers are having difficulty?  
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6. If these perceptions differ, how well can the predictions made by a tool 

correlate with the perceptions of human observers? 

3.5 Initial Evaluation and Adaptations  

To determine how well our programming-activity difficult- detection algorithm works in 

practice, we took two additional implementation and evaluation steps.  (1) We incorporated the 

algorithm in both the Eclipse and Visual Studio programming environments.  (2) Some members 

of our research group, and one industrial software developer, used the Eclipse and Visual Studio 

implementations for their daily work.  We gained important lessons from these steps.  

The industrial developer complained about frequent false positives while building a new 

product – a workflow system.  In particular, when he started a new session, the tool gave a 

relatively high number of false positives because of the navigations performed to build the 

working set of files.  He also needed more time to determine if the predicted change of status 

was correct, and, thus, often was not sure about his status.  

My advisor identified two additional problems.  The cost of processing incremental input 

events was noticeable, and sometimes intolerable, on his 3-year old laptop.  Moreover, even 

when the tool accurately predicted he was having difficulty, seeing the status message hurt his 

ego, as he felt that the change in progress was caused by the difficulty of the problem rather than 

lack of appropriate skills!  

A final problem had to do with the implementation architecture: the Visual Studio and 

Eclipse implementations performed the same functions, but did not share code. Therefore, when 

a change was made to the code in the Eclipse implementation, the code in Visual Studio had to 

also change. Put in another way, there would need to be a different implementation of the tool 



64 

per programming environment, which increases programming time and effort. In particular, the 

Eclipse implementation had 11,000 lines of code and the Visual Studio implementation had 

9,096. 

We took several steps to address these problems. To address the “hurt ego” issue, we 

changed the status message from “Having Difficulty” to “Slow Progress.” In addition, we 

enabled developers to customize the message so that my advisor could, for instance, report it as 

“Complex Programming.” 

To address the false positives faced by the industrial programmer, we developed a label 

aggregation technique that complemented the event aggregation technique. As before, we 

computed the status every 50 events. However, we notified the developer every 250 events – the 

value reported was the dominant status in the last five segments. 

Together, the two aggregation techniques take into account the fact that the status of a 

developer does not change instantaneously.  In addition, we added an “indeterminate” status 

value to capture the fact that developers need time to decide if they are stuck. At startup, before 

250 events were input, the tool reported the indeterminate value. We also enabled the developer 

to correct a predicted status to indeterminate. 
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Table 3.8: Field Study of Industrial Software Developer. 

Status Guessed # Corrected Accuracy 

 

Difficulty 

 

17 2 88% 

 

Making Progress 

 

69 7 89% 

Indeterminate 2 0 100% 

 

Table 3.8 shows that the changes resulted in a high accuracy for the industrial developer.  

However, the table shows that the aggregation scheme results in a large number of false 

negatives.  In particular, it missed 7 of the 22 cases when the developer was having difficulty.  

To develop a more accurate scheme, we gathered more data points through a user study.  

3.6 Reusable Difficulty Detection Framework 

Before this step can be taken, it was important to address the performance and 

implementation overhead of the Eclipse and Visual Studio implementations. Liu and Stroulia 

also faced this problem and their solution was to avoid logging interactions with the 

programming environment.  Instead, they logged student programmers’ interactions with version 

control systems, wikis, and newsgroups to calculate their workloads and work statuses [40]. This 

information could be used to determine when students are having difficulty.  The authors of this 

work admit that a drawback of this approach is the additional work involved in using wikis and 

newsgroups for programming tasks.  Even more important, potential helpers would not become 

aware of students’ difficulties until they checked in certain files or posted to newsgroups.   
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Students may struggle a long time before they take either of these actions. Although the 

authors of [40] were aware of at least the first drawback of their approach, they decided to use it 

because “many students have a preferred programming environment and establishing a common 

one would be a challenge.”  

One way to overcome this problem is to create a common set of difficulty detection 

modules for mainstream programming environments.  This approach reduces the amount of 

programming time and effort.  A reusable architecture is crucial for this research because of its 

iterative nature.  We were able to apply certain standard design patterns and existing libraries to 

address the reuse issue.  To address the performance issue, we offloaded event processing to a 

separate process that worked asynchronously from the programming environment. 

Figure 3.9 shows the architecture.  Naturally, a separate module is needed per 

programming environment to intercept its events.  In addition, a separate module is needed per 

programming environment to display the current status, which is done by using a Google talk 

plug-in. Thus, in our implementation we use two different event-interception and status-display 

modules – one pair for Eclipse, and one for Visual Studio. 

An event-interception module asynchronously forwards the events to a separate process, 

which makes the predictions. As the process was written in C#, serialized events could be sent 

directly from Visual Studio to this process. Java events, on the other hand, require conversion, 

and we were able to use standard (WOX and IKVM) libraries to do so. 

Consider now the modules in the predicting process. Events are received by the 

“communication director” of the system, the mediator, which mediates between a pipeline of 

other modules.  The mediator gives the received event to the first module in the pipeline. In 
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addition, it receives output from each of these modules and feeds it as input the next module, if 

such a module exists.  

 

Figure 3.9: System Architecture. 

The first module to receive input from the mediator is the event aggregator module. This 

module aggregates 50 events and passes these events to the mediator. The mediator passes these 

events to the feature extractor module, which computes the ratios that are used to predict a status. 

The feature extractor passes the ratios to the mediator, and the mediator gives these ratios to the 

prediction manager. The prediction manager includes the decision tree algorithm (used in section 

3.4), which uses previous data and the ratios to predict a status. This status is passed to the status 

aggregator, which aggregates each status and gives a final prediction to the mediator. The 

mediator delivers this status to the status displayer of the appropriate programming environment. 

The benefit of using the mediator pattern is that it enables modules to be loosely coupled 

so that any change in the flow of communication would not require a change to a module. For 

example, if the status manager had to be omitted, the mediator would have to change. However, 

the other modules in the system would stay the same. 
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The iterative nature of this research requires the ability to easily change also the behavior of 

each of the individual modules in this pipeline. We used the standard Strategy pattern to achieve 

this goal. We give below specific uses for it in our context by considering each of the phases in 

the pipeline, and showing that multiple algorithms could be used in each phase. 

 

1. Event aggregator: There are at least two algorithms that can be run to aggregate events. The 

current algorithm uses discrete, independent chunks of 50 events. An alternate option is to 

use a gradual sliding window approach similar to the approach used in TCP/IP. The code 

below shows the use of the strategy pattern to easily switch between the two, assuming both 

are implemented: 

EventAggregator ea = new EventAggregator();    

      ea.setEventAggregationStrategy(new SlidingWindow()); 

ea.setEventAggregationStrategy(new DiscreteChunks()) 

 

2. Feature extractor: It currently extracts features based on the number of events. For example, 

the edit ratio it computes is the number of edits divided by the total sum of all actions 

including editing. It would also be useful extract features based on time such as editing 

time/total time. Another useful feature that was observed while watching developers solve 

problems is the number of exceptions per run.  

3. Prediction manager: It currently uses two machine learning algorithms, decision tree and 

classification via clustering, to predict developers’ status. In the future, we plan to test other 

classification or clustering algorithms, and perhaps build our own algorithm.  

4. Status manager: There are at least two ways to aggregate statuses. Currently, it aggregates 

five statuses and takes the most dominant status.  This algorithm is similar to aggregating 

events in discrete chunks. Another approach is to use a sliding window, which corresponds to 

using a sliding window to aggregate events. 
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Our experience with the new architecture showed that (a) as expected, when multiple strategy 

objects were implemented for a stage, it was indeed trivial to replace one with the other, (b) the 

asynchronous processing did not result in perceptible delays in user-response times, and (c) the 

number of lines of code to implement the architecture, 4,643 is significantly less than the number 

of lines of code to implement difficulty detection modules written specifically for Visual Studio 

and Eclipse. These results provide evidence to support sub-thesis II, which we restate here. 

Implementation Sub-thesis (Sub-thesis II): It is possible to develop a common set of difficulty 

detection modules for different programming environments that have significantly fewer lines of 

code than difficulty detection modules written specifically for each programming environment. 

We were now ready to do a controlled user study to evaluate the adapted algorithm and 

investigate additional adaptations based on this study. 

3.7 User and Coding Study 

In a controlled user study, the problems must be chosen carefully.  Our previous work, 

section 3.4, found that having difficulty is a rare event.  Thus, we must try to ensure that 

developers face difficulty in the small amount of time available (1-4 hours) for a lab study, and 

yet do not find the problems impossible. 

We used problems from the Mid-Atlantic ACM programming competition.  These 

problems are attractive because they have varying difficulty.  We piloted several problems to 

find problems that were difficult but not impossible to solve by the subjects.  Based on these 

pilots, we settled on the problems shown in Table 3.9.  The table characterizes the difficulty of 

each problem by showing the number of teams that solved the problem, the total number of 

teams, and the fraction of teams that solved the problem.  The number of teams that solved the 

problem determined the difficulty level of each problem.  For example, 100% of teams that 
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attempted the Simple Question of Chemistry problem solved it, while only 16% of teams that 

attempted the Balanced Budget Initiative Problem solved it. 

Five industrial and nine student programmers participated in the study. Participants were 

instructed to correct an incorrect prediction by the system using status-correction buttons 

discussed in section 3.4 (Figure 3.5).  By measuring how often the developers corrected their 

status, we could, as in section 3.4, measure the accuracy of our approach with respect to the 

perceptions of the developers. 

However, there is a question as to whether participants would accurately report their 

status, given the hurt ego problem faced by my advisor. Moreover, it is useful to compare the 

tool’s predictions about a developer’s status with that of a third party manually observing the 

developer. Therefore, two independent coders and I observed participants' programming 

activities and made an independent determination of their status. To enable coders to 

independently and asynchronously observe participants' programming activities, we used 

Microsoft Live Meeting® to record the participants' screens.  Live Meeting® also enabled me to 

observe remote sessions. In fact, Tang et al. [54] argued that screen recording is an effective and 

unobtrusive technique when subjects do not feel it invades their privacy.  
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Table 3.9: ACM problems from Mid-Atlantic contest. 

Year 
Problem 

Title 

# of teams that solved 

problem 
# of teams %  correct 

 

2006 

 

Shrew-

ology 
43 138 

 

31% 

2004 

 

Balanced 

Budget 

Initiative 

23 142 

 

16% 

2002 

A Simple 

Question 

of 

Chemistry 

124 124 

 

100% 

 

 
Figure 3.10: Video Coding Tool 

We obtained participants' consent to record their screens. We recorded 40 hours and 44 

minutes of video. To relieve coders from watching hours of video, we created a video 

observation tool, shown in Figure 3.10.  This video tool shows all segments where the 

participant, system, or myself (while observing the experiments and later when randomly 

sampling the video), indicated the participant was having difficulty or not sure of their status 

(indeterminate). As it turned out, in our study, there was one indeterminate segment (indicated 

by a participant). We shall refer to these segments as “stuck” segments. 
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As there were few such segments, we asked the coders to classify each of these segments. 

It was not reasonable, however, to ask them to classify all of the other segments, which would 

have involved watching over forty hours of video. We could use a statistical sampling approach 

to reduce the number, but because having difficulty is a rare event, we would have had to sample 

the vast majority of segments to capture the false negatives. 

Therefore, we used the following, somewhat arbitrary approach to choose the “making 

progress” segments. We randomly chose these segments, and made the number of randomly 

sampled points about the same as the number of having difficulty or indeterminate segments. If 

there were fewer than three having difficulty or indeterminate segments, we randomly sampled 

three segments. We shall refer to the randomly sampled segments as “random segments.” 

Each segment was two minutes of video. Coders were not aware of the status of each 

segment and had to classify the segment as making progress or slow progress. They were shown 

the video that corresponded to a particular participant and problem. If there were any segments 

for the coder to classify, they were shown on a line below the track bar. The segments on the line 

corresponded with the particular point in the video the coder needed to classify. 

To classify segments, coders right clicked on the segment to label it as “slow progress” 

(the message displayed for “having difficulty”), and left clicked to label it "making progress.” 

An image of a mouse was provided to remind coders what each mouse button meant, and a 

legend was also provided to help coders remember that a black segment meant the segment was 

unlabeled, a red segment meant slow progress, and a green segment meant making progress. 

Two coders and I classified 26 stuck segments and 36 random segments.  

3.8 User and Coding Study Results 

After the user study and coding phases were complete, we were able to answer the 

following questions: What is the correlation between (a) predictions of the two coders; (b) 
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developers’ and coders’ perception of status, (c) predictions of the tool and the developers’ 

perception of the status, and (d) predictions of the tool and the coders’ perception of the status?  

As we see below, the answers depended on whether the segment involved was one of the “stuck” 

segments or random segments. 

Table 3.10 shows that coders agreed 88% of the time with each other on stuck segments, 

and 83% of the time on random segments, and overall they agreed 85% of the time.  To 

determine the level of agreement within the stuck (random) segments we counted the number of 

times observers agreed with each other and divided that by the total number of stuck (random) 

segments observed.   

The confusion matrix in Table 3.11 shows the results of using coders as ground truth. The 

accuracy of this system based on coders’ perceptions is 79%, the true positive rate is 63%, the 

true negative rate is 100%, the false negative rate is 37%, and the false positive rate is 0%.  To 

understand the high false negative rate, we asked coders their reason for classifying developers 

as having difficulty during random segments.  Coders seemed to take the inactivity of developers 

as having difficulty.  More specifically, we noticed that coders seemed to have a difficult time 

classifying participants when they were idle and apparently thinking.  The tool uses developers' 

actions to predict their status and does not take into account think times or when developers are 

idle. Therefore, we consider the fifteen random segments as “making progress” when computing 

the accuracy of the tool.  

So what did the participants themselves feel about their status in case of random 

segments?  Table 3.13 provides an answer to this question.  The accuracy of this system based on 

developers' perceptions is 97%, the true positive rate is 76%, the true negative rate is 100%, the 

false negative rate is 24%, and the false positive rate is 0%.  By definition, participants agreed 
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completely with the predicted status for random segments, as these were the segments that were 

classified by the tool, participant, and me as “making progress” segments. 

Consider now the non-random or “stuck segments.”  Again, these are the segments 

classified by either me, the participant, or the tool as “having difficulty.” These segments tell a 

very different story. Table 3.12 shows the agreement of the coders with the tool, the author, and 

the participants for these segments.  Interestingly, coders agreed with the tool 100% of the time 

that participants were stuck. Perhaps even more interestingly, participants never corrected a 

“having difficulty” status predicted by the tool. 

In four of these segments, participants corrected the “making progress” prediction of the 

tool. Three of those times, participants indicated they were having difficulty, and one of those 

times participants indicated that they were not sure of their status (indeterminate.) In nine of 

these segments, I classified the “making progress” prediction of the tool as actually “having 

difficulty.”  The coders agreed with seven of these observations (77%). Coders agreed with the 

participant 75% of the time. The coders disagreed with the participant who indicated 

indeterminate as the status. I also reviewed this disagreement and agreed with the coders that the 

participant was indeed having difficulty. 

Several (preliminary) conclusions can be drawn from these results.  What is perhaps most 

remarkable is that when the tool predicts programmers are having difficulty, all three types of 

humans involved in making the prediction – the participants, the coders, and I, also think they 

are having difficulty.  Thus, the tool does not seem to give a false positive, which is a very strong 

result and a significant improvement over the decision tree algorithm results in section 3.6. 
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Table 3.10: Observer's agreement with each other. 

Segment 

Type 

 

# of 

Agreements 

 

# of 

Observations 

% 

Agreement 

 

Stuck 

segments 

 

23 26 88% 

 

Random 

segments 

 

30 36 83% 

Total 53 62 85% 

 

Table 3.11: Confusion matrix for programming environment component using observers as 

ground truth. 

 Predicted Stuck Predicted Progress 

Actual Stuck  26 (True positives)  15 (False negatives) 

Actual Progress 0 (False positives)  21 (True negatives) 

 

Table 3.12: Coders’ agreement with the tool, me, and participants (stuck segments). 

Entity 

 

# of 

Agreements 

 

# of 

Observations 

% 

Agreement 

 

Tool 

 

13 13 100% 

 

Me 

 

7 9 77% 

Participant 3 4 75% 

Total 23 26 88% 
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Moreover, if we take the participants’ perceptions as ground truth, the tool also gives 

negligible false negatives – only four segments out of 1222 segments in the entire study were 

corrected. On the other hand, if we take the coders’ agreements as ground truth, the results are 

not so good, and it seems, based on our sampling, the tool missed half of the positives (stuck 

status).  

Table 3.13: Confusion matrix for programming environment component using developers 

as ground truth. 

 Predicted Stuck Predicted Progress 

Actual Stuck  13 (True positives)  4 (False negatives) 

Actual Progress 0 (False positives)  1205 (True negatives) 

There are two ways to interpret these data. The first relies on the viewpoint of the 

participants rather than the coders. The argument for doing so is that the observers could not read 

the mind of the participants, and were probably looking only at idle times to deduce the 

developer status. Idle times, alone, are not sufficient to distinguish between thinking and having 

difficulty. Our tool, on the other hand, keeps track of and computes a larger number of factors, 

such as the navigation, edit, and focus ratios, and thus agrees more with the participants. In fact, 

when asked about the accuracy of the tool, participants commented that they were happy with it 

(Table 4).  The numbers shown in the table are represented by the following two comments:  "I 

think it worked pretty well; It's non-intrusive, and only pops up with information when the status 

changes." " It knew when I was having issues cause it switched to slow progress and when I was 

flyin doing all the class design it said progress." 
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The other interpretation relies on the observers (coders and me) rather than the participants.  

The rationale for doing so is that participants tend to underreport [52]. The false negatives of the 

tool can be explained by two factors: 

1. The tool uses developers' actions to predict their status, and does not take into account idle 

times, which should probably be considered in a future algorithm.  

2. The training set consisted of data from the six student programmers logged section 3.4, who 

used the tool during normal “field work” consisting of assignments and research projects. 

The behavior of these programmers was different in some ways from those of several of the 

programmers in this lab study.  The first group primarily used the Internet to look for help 

when they were having difficulty.  The participants in this study did not use the Internet often 

because of the type of tasks and duration of this study.  The only times they used the Internet 

was to remember syntax or look at the Java or .NET API.  Moreover, the two groups solved 

different types of problems, and the group in this study also included industrial programmers.  

One piece of objective data seems to indicate that the type of programmer may be a factor in 

automatic status prediction. For three student participants, the automatic predictions were 

completely in agreement with the perceptions of the coders, when the coders agreed. 

Even under this interpretation, our tool seems useful because of the zero false-positive rates. 

It seems that if a choice has to be made between low false positives and negatives, the former is 

more desirable, as it does not unnecessarily waste the time of the developers and those who offer 

help. Missing some “having difficulty” statuses is no worse than the current practice of not 

having any automatic predictions.  Our tool did give several positives (thirteen), which were all 

correct under this interpretation.  Thus, if it is considered desirable to automatically let others 



78 

know about developers’ difficulties – an assumption of this research based on previous work - 

then it seems better to use our tool than not use it. 

Naturally, it is attractive to try to reduce the false negative rate (under the second 

interpretation) without increasing the false positive rate. One way to do so is train the system 

using the observers’ conclusions rather than developer corrections (assuming the former are 

true). Moreover, the accuracy can be further improved if the training data involved the same 

exercises as the ones used in the testing phase.  We could build either a group model, in which 

the data of multiple developers is aggregated during the training phase, or an individual model, 

where no aggregation is done.  (The approach described so far was also a group model, but in it, 

the training group was smaller and solved different problems)  Therefore, we decided to, next, 

explore these directions.   

3.9 Predicting Observer Status 

To build the individual and our group models, we assumed the following ground truth. 

All segments classified by the participants as stuck, were indeed stuck segments. Participants 

implicitly classify segments as stuck when they do not correct a stuck prediction of the tool. 

They explicitly classify them as stuck when they correct a “making progress” segment as “slow 

progress.” 

Of the remaining segments, if the two coders and I classified a segment as stuck, then it 

was also a stuck segment, regardless of how the participant classified it. All other segments were 

making progress.  
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Figure 3.11a: Accuracy of tool (participants 1-6) 

To build and evaluate the individual model, we used a standard technique, known as 

cross validation, which executes 10 trials of model construction, and splits the data so that 90% 

of the data are used to train the algorithm and 10% of the data are used to test it. In some of the 

participant's training sets, the number of “making progress” segments vastly outnumbered the 

number of “having difficulty” segments, resulting in low accuracy in predicting the "having 

difficulty" segments.  This is an example of the class imbalance problem in classification 

algorithms, wherein the accuracy of predicting an event can decrease as the frequency of a rare 

but important event decreases.  The SMOTE [7] algorithm implemented in the WEKA toolkit 

[59] overcomes this problem by replicating rare data records until that data are equal to the more 

common data. 

Therefore we used this scheme in the data sets of those participants who experienced the 

class imbalance problem.  In our case, we used an accuracy threshold of 90% to determine if a 
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participant experienced this problem, which was the accuracy of our previous approach. The 

accuracy of the model without SMOTE was 66% or less for participants who had difficulty 

20% or less of the time.  For participants who had difficulty more than 20% of the time, the 

accuracy of the model without SMOTE was 94% or more.  Thus, according to our threshold, 

participants who had difficulty less than 20% of the time faced the class imbalance problem.  For 

these participants, we used SMOTE to replicate the “having difficulty” segments.  In the case of 

the remaining participants,” having difficulty” was either less or about as frequent as “making 

progress.”  Thus, there was never a need to use SMOTE to replicate the “making progress” 

segments.  Three of the twelve participants faced so much difficulty that they did not complete 

two of the three exercises. 
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Figure 3.11b.  Accuracy of tool (Participants 7-12) 

 

To build the model for a particular individual, we used that individual's data as both the 

training and test set. To build the group model, we aggregated the data from all of our 

participants except data from the participant whose status we were trying to automatically 

predict. The exclusion was meant to test if a tool trained by one set of developers could be used 

to predict the status of another. We used the group data to predict the status of each individual.  

The group data set did not suffer from the class imbalance problem because some of the 

participants had difficulty just as much as they were making progress. As mentioned before, even 
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those who made relatively smooth progress experienced some difficulty.  The decision tree 

algorithm [59] was used to build both the individual and group models. 

Figures 3.11a and 3.11b show the accuracy of the tool. We considered four accuracies: 

(a) group stuck: the accuracy of the group model when predicting having difficulty, (b) 

individual stuck: the accuracy of the individual model when predicting having difficulty, (c) 

group overall: the accuracy of the group model when predicting both making progress and 

having difficulty, and (d) individual overall: the accuracy of the individual model when 

predicting both making progress and having difficulty.  The accuracies are shown for all but two 

participants. These two participants were not included because their data was not collected 

correctly. 

We expected each individual's model to be more accurate than the group model, but 

surprisingly, the group model was more accurate in predicting both “having difficulty” and 

“making progress” than the individual model.  This unintuitive result is likely because the group 

model has more data than the individual model.  It is possible that with more training, the 

individual model would perform better. 

Even then, it may not be the preferable approach because participants, probably, would 

not like training the tool.  In fact, during the debrief one participant commented that pressing 

buttons "stopped my flow of thought" and another participant felt that pressing buttons "sort of 

broke my concentration.” 

We asked participants if they preferred to speak their status because this could help 

reduce breaking their concentration (Table 3.14).  Participants did not like this feature either, and 

felt it would be disruptive to those around them. 
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Table 3.14: Survey Questions and Results (Scale: 1 = Strongly Disagree to 7 = Strongly 

agree). 

  Survey Question  Me

an  

Medi

an 

STDD

EV 

Q

1  

 I felt that the tool 

was accurate.  

6  6  .95  

Q

2  

I would prefer to 

use a speech 

interface (speaking 

your status) instead 

of pressing buttons 

to correct the status.  

2.83  3  1.53  

There were two participants whose accuracy was 50% or below.  We examined these 

cases and determined that the tool believed these participants were making progress while human 

observers believed the participants were stuck. In each case, the participants were performing 

significant edits, which indicated to the tool that they were making progress. However, these 

edits involved a large number of deletions. This kind of activity suggests that, when extracting 

features, editing actions should be split into two categories: insertion and deletion of text. 

3.9.1 Comparison of Group Model Results to Baselines 

The evaluations above show that it is possible to increase the agreement between a tool 

and a set of observers by (a) keeping the exercises the same in the training and evaluation set, 

and (b) using the judgments of these observers in the training set. Additional iterations are 

required to determine if (a) a tool trained using one set of exercises can be used to predict the 

status for another set of tasks, and (b) judgments of one set of observers can be used to agree 

with the judgments of another set of observers.  To provide more evidence to support our 

Programming Activity Difficulty Detection sub-thesis, we compare the results of the group model 

based on both observers’ and developers’ perceptions to the baselines described in section 3.3.  

The reason is the group model outperformed the individual model. 
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We use the same approach described in section 3.6.1 to compute each baseline.  Table 

3.15 shows the results for the random baseline.  The accuracy of this baseline is 50%, the true 

positive rate is 50%, the true negative rate is 50%, the false negative rate is 50%, and the false 

positive rate is 50%.  This baseline identifies 50% of the time when developers are making 

progress and 50% of the time when they are having difficulty.  As mentioned above, we use the 

binomial test to determine if there is a significant statistical difference between the random and 

data distribution baselines and the group model that uses observers’ perceptions as ground truth.  

The group model that uses observers’ perceptions as ground truth performs significantly better 

than the random baseline (TPR=76% vs. TPR=50%, p < .02) (TNR=100% vs. TNR=50%, p < 

.001). 

Table 3.15: Confusion matrix for random baseline (observers’ data group model). 

 Predicted Stuck Predicted Progress 

Actual Stuck  38 (True positives)  38 (False negatives) 

Actual Progress 1106 (False 

positives) 

 1106 (True negatives) 

 

Table 3.16 shows the results for the modal baseline.  The accuracy of this baseline is 

97%, the true positive rate is 0%, the true negative rate is 100%, the false negative rate is 100%, 

and the false positive rate is 0%.  This baseline always identifies when developers are making 

progress, but never identifies when they are having difficulty.  The true positive rate (76%) of the 

group model that uses observers’ perceptions as ground truth is better than true positive rate 

(0%) of the modal baseline. 
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Table 3.16: Confusion matrix for modal baseline (observers’ data group model). 

 Predicted Stuck Predicted Progress 

Actual Stuck  0 (True positives)  76 (False negatives) 

Actual Progress 0 (False positives)  2212 (True negatives) 

 

Table 3.17 shows the results for the data distribution baseline.  The accuracy of this 

baseline is 58%, the true positive rate is 4%, the true negative rate is 97%, the false negative rate 

is 96%, and the false positive rate is 3%.  This baseline identifies 97% of the time when 

developers are making progress, but only 4% of the time when they are having difficulty. There 

is no significant difference between the true positive rate based on observers’ perceptions as 

ground truth and the data distribution baseline (TPR=76% vs. TPR=4%, p > .56). There is a 

significant difference between the true negative rate of the group model that uses observers’ 

perceptions as ground truth and the data distribution baseline (TNR=100% vs. TNR=58%, p < 

.001). 

Table 3.17: Confusion matrix for data distribution baseline (observers’ data group model). 

 Predicted Stuck Predicted Progress 

Actual Stuck  2 (True positives)  74 (False negatives) 

Actual Progress 66 (False positives)  2146 (True negatives) 
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These results show that the group model based on observers’ perception performs better 

than the baseline measures.  To determine whether the group model based on developers’ 

perceptions performs better than baseline measures, as before, we compute each baseline using 

the model’s data. 

Table 3.18 shows the results for the random baseline.  The accuracy of this baseline is 

50%, the true positive rate is 53%, the true negative rate is 50%, the false negative rate is 47%, 

and the false positive rate is 50%.  This baseline identifies 50% of the time when developers are 

making progress and 53% of the time when they are having difficulty.  As mentioned above, we 

use the binomial test to determine if there is a significant statistical difference between the 

baselines and the group data model that uses developers’ perceptions as ground truth.  The group 

model based on developers’ perceptions performs significantly better than the random baseline 

(TPR=76% vs. TPR=50%, p < .004) (TNR=93% vs. TNR=50%, p < .001). 

Table 3.18: Confusion matrix for random baseline (developers’ data group model). 

 Predicted Stuck Predicted Progress 

Actual Stuck  9 (True positives)  8 (False negatives) 

Actual Progress 603 (False 

positives) 

 602 (True negatives) 

 

Table 3.18 shows the results for the modal baseline.  The accuracy of this baseline is 

97%, the true positive rate is 0%, the true negative rate is 100%, the false negative rate is 100%, 

and the false positive rate is 0%.  This baseline always identifies when developers are making 

progress, but never identifies when they are having difficulty. The true positive rate (76%) of the 
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group model based on developers’ perceptions as ground truth is better than true positive rate 

(0%) of the modal baseline. 

Table 3.18: Confusion matrix for modal baseline (developers’ data group model). 

 Predicted Stuck Predicted Progress 

Actual Stuck  0 (True positives)  17 (False negatives) 

Actual Progress 0 (False positives)  1205 (True negatives) 

 

Table 3.19 shows the results for the data distribution baseline.  The accuracy of this 

baseline is 94%, the true positive rate is 6%, the true negative rate is 96%, the false negative rate 

is 94%, and the false positive rate is 4%.  This baseline identifies 96% of the time when 

developers are making progress, but only 6% of the time when they are having difficulty. The 

group model that uses developers’ perceptions as ground truth performs significantly better than 

the data distribution baseline (TPR=76% vs. TPR=6%, p < .001) (TNR=100% vs. TNR=.93%, p 

< .001). 
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Table 3.19: Confusion matrix for data distribution baseline (developers’ data group 

model). 

 Predicted Stuck Predicted Progress 

Actual Stuck  1 (True positives)  16 (False negatives) 

Actual Progress 54 (False positives)  1168 (True negatives) 

3.10 Privacy 

So far, we have assumed that letting others know about difficulties of others is good. This 

assumption is probably true when the observers are mentors/advisors, as suggested in [3].  

However it is possible to have observers who judge programmers without actually helping them.  

These judgers can use information about developers being stuck repeatedly in a negative manner, 

which could cause programmers to lose respect in their team. Even when observers can be 

trusted, the developers may want more time to investigate their problems.   There are several 

ways to solve this problem.  One approach is to block judgers, a feature readily available in 

Google Talk and other IM clients.  The problem with this approach is that blocked judgers can 

realize that they are blocked, which could cause them to become hostile.  Therefore, a superior 

approach is to enable programmers to decide which status they want to report.  Figure 6 shows a 

preliminary scheme we have implemented to support this feature, which is also used by 

developers to train the system.  This interface reports two statuses – the true status and the 

reported status.  Buttons are provided to change both statuses. 
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Figure 3.12: Training user interface that show actual versus report status. 

The buttons that change the true status are used to train the system and the buttons that 

change the reported status determine what others on their buddy lists see.  The true status field is 

automatically copied to the reported status field after a certain time lag.  During this time, 

developers can manually disable the copying.  Assuming that having difficulty is indeed a rare 

event, this user-interface does not impose substantial overhead.  

We have not formally evaluated these privacy controls, but we have gotten some initial 

feedback from those who have used them.  Users would indeed like to customize not only what 

status is reported, but also when it is reported, and to whom it is reported. Thus, this scheme 

must be extended to control the nature and timing of reported status for different classes of 

observers such as (a) human observers and tools, (b) a team member sitting on the next seat, 

radically co-located, and distributed, (c) a close friend, mentor, and boss, and (d) team members 

who have and do not have the expertise to help solve a problem. 

Such elaborate customization could make the overhead required to use the tool high. 

Future versions of this scheme must enable for setting user-specific defaults. For example, the 

number of IM messages with team members can be used to identify close friends; organization 

charts can be used to find mentors and bosses; location information can be used to find the 

physical distance between developers and various observers; and the difficulty each team 

member has with different pieces of a project can be used to find expertise.  In addition, the tool 

can adapt how developers morph the reported status.  For instance, if they always report the 

indeterminate status to their boss, then the tool could ask them if they wish to set this value 

automatically for this observer. 
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3.11 Limitations 

 A central limitation in this chapter is the size of both studies. 

Size of studies: Both studies in this chapter had a limited sample size, which could limit 

the generalizability of the studies.  The first study had six developers and the second study had 

14 developers.  The number of participants in the second study is typical for studying software 

developers.   

 Developer experience: Developers in the first study were students, which could limit the 

findings to education.  Developers with more industry experience may perform different 

programming actions when they are having difficulty.  The second study partially addresses this 

limitation by using five industrial participants.  However, as mentioned above, this study also 

had a limited sample size (14 developers). 

Maintenance tasks: In both of our studies, developers implemented programs from 

scratch, which could mean our results may not apply to maintenance tasks.  Maintenance tasks 

can be expected to have more navigation for the same difficulty degree.   

 Difficulty-Detection Algorithm Performance: A limitation of the difficulty detection 

algorithm is that it has a high false negative rate.  This limitation can be addressed in a number of 

ways.  One way is to determine the most accurate machine learning algorithm.  In this chapter, 

we tried several machine learning algorithms and showed that the decision tree algorithm 

performed the best.   Another way is to investigate different approaches that address the class 

imbalance problem.  We use the SMOTE algorithm, which is a form of oversampling, increasing 

the size of the minority class (in our case, having difficulty).  There are additional approaches 

such as undersampling, decreasing the size of the majority class (in our case, making progress) 

and cost-sensitive learning.  In a two-class problem, as in our case, cost sensitive learning assigns 

a cost to both classes (making progress and having difficulty).  Difficulty detection modules can 
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use these cost to a) change the distribution of the data set according to the costs or b) only predict 

the high-cost class when the module is confident about the prediction.  It would also be useful to 

investigate different log segmentation methods such as segmenting the log based on time or 

using a sliding window approach.  An alternative is to investigate additional features such as idle 

time, the amount of pressure on a mouse or keyboard, or features that can be computed from 

non-standard equipment such as body posture.  The performance of the difficulty detection 

algorithm is addressed in the next chapter.   

 Ground Truth: Another limitation is using developers’ as ground truth.  The argument for 

using developers’ perceptions is that they are programming and should know whether they are 

having difficulty.  However, people tend to underestimate their problems, which could mean  

developers may not always admit when they are having difficulty.  Given that having difficulty is 

a rare event and that developers may not admit when they are having difficulty, we could miss 

collecting a large amount of data.  To reduce the chance of missing a large amount of data, our 

study involved three observers.  The first observer, I, watched participants while they were 

programming and labeled times when I thought they were having difficulty.  Studies that rely on 

the experimenter to label data for difficulty detection modules are subject to experimenter’s bias.  

To reduce this bias, we recruited two additional observers who were not associated with the 

experiment to blindly label the making progress and having difficulty moments indicated by the 

first observer and participants.  

 Privacy:  We did not formally evaluate privacy controls, but we have gotten some initial 

feedback on users’ preferences. 

3.12 Summary 

To summarize, we have described our programming-activity difficulty-detection 

component.  This component overcomes the overhead and privacy limitations of previous 
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approaches by logging developers’ interactions with programming environments and inputting 

these actions into a difficulty detection module that predicts whether developers are having 

difficulty or making progress.  To evaluate this component, we describe several performance 

metrics, define three baselines, and conduct a small field study (6 participants).  Our results show 

that the component performs better than baseline measures. 

 

We also evaluate this component in a lab study (14 participants) with more participants 

than our field study (6 participants).  Our results show that the framework performs better than 

baseline measures when using the perceptions of observers and developers as ground truth.  

These results combined with the results from our field study provide evidence to support sub-

thesis I, which we restate here. 

Programming Activity Difficulty Detection Sub-Theses (Sub-thesis I): 

It is possible to develop an approach that a) uses developers' interactions with their 

programming environment to determine whether developers are having difficulty with their task 

and b) performs better than baseline measures. 

To determine how well programming-activity difficulty-detection works in practice, we 

develop the reusable difficulty detection framework, which uses standard design patterns, 

Mediator and Strategy, to enable the component to be used in two programming environments.  

Our results show that the number of lines of code to implement the reusable difficulty detection 

framework, 4,643 is significantly less than the number of lines of code to implement difficulty 

detection modules written specifically for Visual Studio (9,096) and Eclipse (11,000).  These 

results provide evidence to support sub-thesis II, which we restate here. 
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Implementation Sub-Theses (Sub-thesis II): It is possible to develop a common set of difficulty 

detection modules for different programming environments that have significantly fewer lines of 

code than difficulty detection modules written specifically for each programming environment
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Chapter 4: Multimodal Difficulty Detection 

4.1 Introduction 

Our evaluation of the programming activity-detection component, in the previous chapter 

shows that the component gives a high false negative rate.  A high false negative rate is an 

important issue because developers who are having difficulty may not get help when they need 

it.  Thus, they may waste a significant amount of time having difficulty. 

To address this limitation, we follow the iterative process developed in the previous 

chapter.  In particular, we start at step 4 in the iterative process, which is refining our set of 

features.  We refine the programming activity feature set based on suggestions in the previous 

chapter.  Specifically, we implement two new features, insertion and deletion ratios, and evaluate 

these features with our other programming activity features mentioned in the previous chapter. 

Next, we combine the refined programming activity features with features from non-standard 

equipment.  As mentioned before, a limitation of non-standard equipment is the overhead of 

using it.  However, some developers may be willing to use it. 

As mentioned above, previous work has used many types of non-standard equipment 

such as posture seating chairs, wireless Bluetooth skin conductance tests, pressure mice, and 

video cameras for predicting frustration.  In particular, Kapoor et al. showed that posture, 

captured by posture seating chairs was the most predictive feature.  Based on this result, we 

decided to use non-standard equipment that captured developers’ postures to predict whether 

they were having difficulty.  Using posture to predict developers’ difficulty status is novel 

because to our knowledge, no other work has used it to predict difficulty.  However, we did not 
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use posture seating chairs because we did not have access to them and more important, 

they are not widely available.  If we use non-standard equipment that is more widely available 

our work can be applied to a greater number of domains.   

A particularly interesting form of non-standard equipment that is a) novel for difficulty 

detection because to our knowledge, it has not been used in previous work, b) more widely 

available than posture seating chairs, and c) captures data about users’ posture is the Microsoft 

Kinect camera.  Another interesting form of non-standard equipment that is novel and was made 

available to us is the Creative® Interactive Gesture camera.  We use both of these cameras as 

non-standard equipment. 

Given that our small field study and lab study in the previous chapter only use 

programming environments, we need to conduct a new lab study with the Microsoft Kinect 

camera and Creative® Interactive Gesture camera.  In this chapter, we describe a lab study and 

evaluation we conducted using both programming environments and non-standard equipment.  

The rest of this chapter is organized as follows.  First, we describe the new user study. 

Second, we present results of using two additional features, insertion and deletion ratio to 

determine when programmers are having difficulty.  Third, we discuss the results from using 

body posture as a feature.  Fourth, we discuss the results from combining both body posture and 

programming activity features.  Fifth, we discuss limitations of our work.  Finally, we end with a 

brief summary. 

4.2 User Study 

To provide evidence to support our Multimodal Difficulty Detection Sub-theses, we 

performed a controlled lab study.  As in the previous chapter, we had to choose our tasks 

carefully because having difficulty is a rare event.  Therefore, we must ensure developers face 

difficulty in the small amount of time available (1-2 hours) for a lab study, and yet do not find 



96 

the problems impossible.  

After experimenting with different tasks, we chose the tasks that required participants to 

use the AWT/SWT toolkit.  To ensure that developers would face difficulty during the study, but 

the tasks would not be too difficult to solve, we performed several pilot studies.  Based on these 

studies, we settled on the tasks shown in Table 4.1.   

Table 4.1: Participants’ tasks. 

Tasks 

 Create a program that visually represents a car 

with a red body and two black tires. 

Enable the user to use arrow keys to move around 

the car in any direction (up, forward, left, and 

right) by 10 pixel decrements/increments. 

 Enable the user to make the car a bus by clicking 

anywhere on the screen. A bus has an extra body 

that should be colored black. It should be 

positioned directly on top of the car. When the 

extra body is on top of the car, it should move 

with the rest of it. 

Enable the user to make the bus a car by pressing 

the ‘r’ key. The extra body should be removed 

Enable the user to scale up the car/bus 2X, each 

time they press the ‘m’ key 

Enable the user to scale down the car/bus 2X, 

each time they press the ‘s’ key 

Draw a transparent square (not a rectangle) with 

yellow borders. The car/bus should be inside the 

square. 

Do not allow the car/bus to go outside of the 

square (when moving and resizing the vehicle). 

 

Ten student programmers participated in the study. They were given an hour and a half to 

complete their tasks and were free to use the Internet.  We logged participants’ programming 

activities using our difficulty detection tool.  This tool also predicted whether students were 

having difficulty or making progress during the study.  Participants were instructed to correct an 
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incorrect prediction by the system using status-correction buttons shown in Figure 4.1.  

Additionally, participants could ask for help, by pressing the “I am asking someone for help” 

button.  After participants pressed this button, they were instructed to discuss their issue with me.  

Help was given in the form of URLs to API documentation or code examples.  By measuring 

how often the developers corrected their status, we could, as in the previous chapter, measure the 

accuracy of our approach with respect to the perceptions of the developers.  

 

Figure 4.1: Status correction and indication buttons. 

However, as in the previous chapter, there is a question as to whether participants would 

accurately report their status.  Shrauger and Osberg [52] found that participants tend to 

underreport their problems. Therefore, I observed participants' programming activities and made 

an independent determination of their status. We used Cisco WebEx Web Conferencing® to 

observe participants' programming activities and Camtasia Studio® to record participants' 

screens.  The screen recordings were used during the debrief to show participants portions of the 

screen recording where I indicated they were having difficulty and to enable them to confirm or 

deny.  Their confirmations, button corrections, and explicit help requests were used as ground 

truth.   

4.3 Programming Activity Results 

There were 814 predictions during the study.  To evaluate, the programming activity 

algorithm we use the metrics in Chapter 3 (accuracy, true positive rate, true negative rate, false 
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positive rate, and false negative rate).  The confusion matrix, shown in Table 4.2, shows the 

results. 

Table 4.2: Confusion matrix for initial programming activity algorithm. 

 Predicted Stuck Predicted Progress 

Actual Stuck 11 (True positives) 44 (False negatives) 

Actual Progress 0 (False positives) 759 (True negatives) 

Participants had difficulty 55 times during the study and never corrected the tool when it 

predicted that they were having difficulty (11 times).  Thus, the false positive rate is 0%. 

However, the false negative rate is 80%, which means, the tool missed 80% (44/55) of the times 

developers were having difficulty.  More specifically, participants corrected the tool’s making 

progress predictions 47% (26/55) of the time and agreed with me that they were having difficulty 

33% (18/55) of the time.  These results are consistent with difficulty detection results in Chapter 

3.  Naturally, it is attractive to try to reduce the false negative rate without increasing the false 

positive rate.  In Chapter 3, we gave two possible reasons that the tool missed more than half the 

times that participants in their experiments had difficulty. 

First, participants who were having difficulty made a significant number of edits, which 

indicated to the tool that they were making progress.  However, these edits involved a large 

number of deletions.  This kind of activity suggests that when computing features, editing actions 

should be split into two categories: insertion and deletion of text. 

During our study, I also observed that participants made a large number of deletions 
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when they were having difficulty. Therefore, we analyzed data for all participants to confirm 

these observations.  To show our findings, we graph the results for one participant.  In the graph 

(Figure 4.1), the x-axis is the session time and the y-axis is the percentage for the edit, insertion, 

and deletion ratios.  Figure 4.2 shows that participant 1’s edit ratio is high even though he is 

having difficulty and when the edit ratio is split into insertion and deletion ratios that deletions 

make up the majority of the edit ratio.  This analysis led us to a) split the edit ratio into insertion 

and deletion ratios and b) re-evaluate the programming activity algorithm with the new features.  

To re-evaluate the programming activity algorithm, we used k-fold cross validation, as described 

in the previous chapter, where k is equal to 10. 

 
Figure 4.2: A comparison of participant 1’s edit, insertion, and deletion ratio. 

Table 4.3, the improved programming activity algorithm confusion matrix, shows our 

results.  When compared to the original programming activity algorithm, the false negative rate 

decreased from 80% to 27%, the false positive rate increased slightly from 0% to 3%, and the 

accuracy of the algorithm increased from 20% to 72% (40/55).  These results are a significant 

improvement over the results from the previous algorithm. However, the improved algorithm 
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still missed 27% of the time that participants had difficulty. 

Table 4.3: Confusion matrix for improved programming activity algorithm. 

 Predicted 

Stuck 

Predicted Progress 

Actual 

Stuck 

40 (True 

positives) 

15 (False 

negatives) 

Actual 

Progress 

20 False 

positives) 

739 (True 

negatives) 

The second reason we gave for the tool missing more than half the times participants had 

difficulty is that the tool does not consider idle time, which may be important. Idle time may 

indicate that participants are not sure of how to proceed on their tasks.  

A problem with idle time is that it is difficult to distinguish between different types of 

idle time.  For example, developers may be idle because they are thinking, taking a break, or 

truly having difficulty.  In our case, because we performed a lab study with a time limit and 

developers did not take a noticeable break.  However, we would still have to distinguish between 

developers thinking and having difficulty. 

4.4 Tracking Body Posture 

An alternative approach is to use non-standard equipment to determine difficulty.  

Previous work has used this approach to determine developers’ emotional state such as 

frustration or confusion.  Our goal is to use non-standard equipment to determine when 

developers are having difficulty.  To meet this goal, we also logged participants’ images and 

postures using the Creative® Interactive Gesture Camera and the Microsoft Kinect camera.  We 

first describe the results from the Creative® Interactive Gesture Camera and second we describe 

the results from the Microsoft Kinect Camera.  

4.4.1 Creative® Interactive Gesture Camera 

Figure 4.3 shows the placement of the Creative® Interactive Gesture Camera in our 
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experimental setup.  This camera captured facial positions, shown in Figure 4.4 at 30 fps.  The 

white square is shown when the camera has captured the facial positions.  White is the default 

color of the square, but we changed it to red. 

 
Figure 4.3: Experimental setup that shows placement of the Creative® Interactive Gesture 

Camera. 

 

 
Figure 4.4: Facial positions measured by the Creative® Interactive Gesture Camera. 

There were a few times, shown in Figure 4.5, where the camera did not capture the facial 

positions correctly.  In the left picture, the participant leans in very close to the camera. In the 

middle picture, the participant puts his hand on his mouth.  In the right picture, the camera 
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recognizes the participant’s hand as her face.  Despite these limitations, we were able to capture 

most facial positions correctly. 

   
Figure 4.5: Examples of when the camera did not capture facial positions. 

Given the facial positions, we computed posture as mouth distance, right eye distance, 

and left eye distance.  Mouth/right eye/left eye distance is the difference between the left and 

right corners of the mouth/right eye/left eye.  The intuition behind these metrics is that the bigger 

the mouth, right eye, and left eye distance, the closer participants are to the camera and the 

smaller the mouth, right eye, and left eye distance, the further away participants are from the 

camera.  D’Mello and Grasser have shown that body lean correlated with students’ affective 

states such as boredom or delight  [10]. More specifically, when participants are confused or 

frustrated, they tend to lean forward and when they are bored they tend to lean back.  In our case, 

the hope is that body lean would correlate with participants who are having difficulty.  

Therefore, we used these distance measures to capture whether participants were leaning 

forward, normal, or leaning backward.  By normal, we mean participants are not leaning forward 

or leaning back.  

To convert mouth, right eye, and left eye distances to body lean (leaning forward, normal, 

leaning back) we averaged each participants’ distance measure per minute and clustered each 

participants’ data individually using the K-means clustering algorithm.  Given the distance 

values and k, the number of clusters to produce, the algorithm partitions values into clusters 

based on the average Euclidean distance between them.  We examined the algorithms’ output 

with two, three, and four clusters.  We decided to present the output with three clusters because 
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a) as mentioned above, previous work has shown that leaning back, normal, and leaning forward 

correlated with affective states, b) the standard deviation of one cluster was large when using two 

clusters, and c) four clusters offered no improvement over three. 

To understand the clustered data, we looked for examples of participants’ postures in the 

images taken by the camera.  Figure 4.6 shows examples of each type of posture from three 

participants.  

Leaning Back Normal Leaning 

Forward 

   

   

   

Figure 4.6: Examples of participants’ leaning back, normal, and leaning forward postures 

(Creative® Interactive Gesture camera). 

We used each developer’s posture per minute as features.  Before we could feed this data 

into a machine learning algorithm, we had to determine, as we did in the previous chapter, 

whether we would use individual models where training data for a developer is only used for that 

developer or a group model that developers do not need to train.  Our intuition was to use an 

individual model because no developers may be in the same posture when they are having 

difficulty.  However, we chose to try both individual and group models to evaluate which model 

would perform better. 

First, we built individual models for each developer, which consisted of feeding each 



104 

developer’s postures per minute into the decision tree algorithm and using 10-fold cross 

validation to evaluate it.  The confusion matrix in Table 4.3 shows the results of the individual 

models.  The accuracy of this model is 57%, the true positive rate is 82%, the true negative rate 

is 31%, the false negative rate is 18%, and the false positive rate is 69%.  These results show that 

the model missed 18% of the time when developers were having difficulty and 69% of the time 

when developers were making progress.  

Table 4.3: Confusion matrix for Creative® Interactive Gesture camera (individual model). 

 Predicted Stuck Predicted 

Progress 

Actual 

Stuck 

378 (True 

positives) 

81 (False 

negatives) 

Actual 

Progress 

306 (False 

positives) 

 135(True 

negatives) 

 

Next, we built a group model.  To do this, we labeled all postures that were leaning back 

or leaning forward as “NOT NORMAL” and all normal postures were labeled as “NORMAL.”  

We fed this information into a decision tree algorithm.  The confusion matrix in Table 4.4 shows 

results of the group model.  The accuracy of this model is 23%, the true positive rate is 33%, the 

true negative rate is 12%, the false negative rate is 67%, and the false positive rate is 88%.  

When compared to the individual model, the accuracy decreased from 57% to 23%, the true 

positive rate decreased from 82% to 33%, the true negative rate decreased from 31% to 12%, the 

false negative rate increased from 18% to 67% and the false positive rate increased from 69% to 

88%.  These results show that the model missed 67% of the time when developers were having 

difficulty and 88% of the time when developers were making progress.   

The individual model has a high false negative rate and the group model has a high false 

negative and false positive rate.  None of these results is good.  One possible reason is that mouth 
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distance, left eye distance, and right eye distance, are not good measures of body lean.  Another 

reason could be the limitations of the Creative® Interactive Gesture camera mentioned above.  

One way to overcome these limitations is to use a camera that better measures body lean. One 

such camera is the Kinect, which measures users’ physical distance from the camera in meters.  

Table 4.4: Confusion matrix for Creative® Interactive Gesture camera (group model). 

 Predicted Stuck Predicted 

Progress 

Actual 

Stuck 

153 (True 

positives) 

306 (False 

negatives) 

Actual 

Progress 

387 (False 

positives) 

 54 (True 

negatives) 

 

4.4.2 Microsoft Kinect Camera 

Figure 4.7 shows the placement of the Microsoft Kinect camera in our experimental 

setup.  This camera captures the x, y, and z coordinates of 20 joints shown in Figure 4.8 at 5 fps.  

These joints represent the human body.  The Kinect camera could not capture all of the joints 

because the desk that developers sat at occluded their lower body.  This limitation made it 

difficult for the camera to capture any of the lower body joints.  To support users who are sitting 

at a desk, the Kinect also has a seated mode, which is designed to track users who sit, and does 

not attempt to capture joints below the hip.  Figure 4.9 shows the difference between the standing 

and seated modes.  We used the seated mode to capture participants’ joints in our study. 
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Figure 4.7: Experimental setup that shows placement of the Microsoft Kinect camera. 

 

 

Figure 4.8: The 20 joints captured by the Kinect camera.  



107 

 

Figure 4.9: Differences between joints in standing and seat mode.  

There were times where the Kinect camera did not capture the arm and shoulder joints 

well, but it did capture the head joint correctly the majority of the time. Therefore, we used the 

distance from the head joint to the Kinect camera to measure body lean. This distance was the z 

coordinate of the head joint in meters.  To convert the head joint distance to body lean, we used 

the same process as the Creative® Interactive Gesture camera (using K-means to cluster the 

data).  To better understand the clustered data, we looked for examples of participants’ postures 

in the images taken by the camera.  Figure 4.10 shows examples of each type of posture from 

three participants.  As with the Creative® Interactive Gesture camera data, we used each 

developer’s posture per minute as features and built individual models for each developer and 

group models. 
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Leaning Back Normal Leaning Forward 

  

 

  
 

   

Figure 4.10: Examples of participants’ leaning back, normal, and leaning forward postures 

(Kinect camera). 

 

The confusion matrix in Table 4.5 shows the results of the individual model.  The 

accuracy of this model is 74%, the true positive rate is 73%, the true negative rate is 75%, the 

false negative rate is 27%, and the false positive rate is 25%.  When compared to the individual 

model from the Creative® Interactive Gesture camera, the accuracy increased from 57% to 74%, 

the true positive rate decreased from 82% to 75%, the true negative rate increased from 31% to 

75%, the false positive rate decreased from 69% to 28%, and the false negative rate increased 

from 16% to 30%.  These results show that the Kinect camera individual model has a lower false 

positive rate and a slightly higher false negative rate than the Creative® Interactive Gesture 
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camera model.  The latter is more desirable because it does not unnecessarily waste the time of 

the developers and those who offer help. 

Table 4.5: Confusion matrix for Kinect camera (individual model). 

 Predicted 

Stuck 

Predicted Progress 

Actual 

Stuck 

 333 (True 

positives) 

126 (False 

negatives) 

Actual 

Progress 

108  (False 

positives) 

333 (True 

negatives) 

We also evaluated a group model and used the same technique mentioned in the previous 

section to create it.  Table 4.6 shows the results of the group model.  The accuracy of this 

algorithm is 62%, the true positive rate is 69%, the true negative rate is 55%, the false negative 

rate is 31%, and the false positive rate is 45%. None of these results is good when compared to 

the programming activity approach. One possible reason is that frustration is not equal to 

difficulty. More specifically, some people are calm and do not change posture when in difficulty, 

while some people are fidgety and change posture when making progress. So was this a wasted 

effort?  

Alone, the body posture approach does not work well, but we combine group data from 

the programming activity and the body posture approaches to determine if this combination will 

give greater accuracy and fewer false negatives than the programming activity approach.  More 

specifically, we will use the Kinect camera for the body posture approach because it gives better 

results than the Creative® Interactive Gesture camera and combine it with the improved 

programming activity approach because it gives better results than the original programming 

activity approach. 
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Table 4.6: Confusion matrix for Kinect camera (group model). 

 Predicted 

Stuck 

Predicted Progress 

Actual 

Stuck 

 315 (True 

positives) 

144 (False 

negatives) 

Actual 

Progress 

198  (False 

positives) 

243 (True 

negatives) 

 

4.5 Combining Body Posture and Programming Activity Tracking 

One way to combine the posture and programming activity approaches is to use the 

features from both approaches together. In the individual approaches, the two kinds of 

features were computed at different moments - every 50 events for programming activity 

and every minute for body posture. In the combined approach, we still computed the 

programming environment features every 50 events, and we computed the body posture feature 

only when there was a programming activity feature. We fed these features as input to a decision 

tree algorithm.  To evaluate this algorithm, we use k-fold cross validation, where k is equal to 10.  

The confusion matrix in Table 4.7 shows our results.  The accuracy of this algorithm is 95%, the 

true positive rate is 93%, the true negative rate is 95%, the false negative rate is 7%, and the false 

positive rate is 5%. More specifically, the accuracy increased from 72% to 95%, the false 

negative rate decreased from 27% to 4%, and the false positive rate slightly increased from 3% 

to 4%.   

Table 4.7: Confusion matrix for improved programming activity algorithm and posture. 

 Predicted 

Stuck 

Predicted Progress 

Actual 

Stuck 

 53 (True 

positives) 

4 (False negatives) 

Actual 

Progress 

35  (False 

positives) 

724 (True 

negatives) 
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4.6 Limitations 

There are three limitations that affect the performance of posture detection modules: 

equipment, posture, and choice of machine learning algorithm. 

Equipment Limitation: The Creative® Interactive Gesture camera/Kinect camera had 

difficulty capturing participants’ facial/body positions correctly.  There are many reasons for this 

difficulty such as lighting conditions and device limitations.   

Posture Limitation: A limitation of using posture in our work is that it can negatively affect 

the performance of difficulty detection modules.  One way to address this limitation is to use 

other standard equipment such as keyboards or mice to detect difficulty.  For example, Kapoor et 

al. showed that pressure on a mouse could be used to detect frustration [35].  Similarly, the 

amount of pressure put on each key of a keyboard may also be used. Despite this limitation, our 

posture difficulty detection module gave good results. 

 Choice of machine learning algorithm: In this chapter, we used the decision tree 

algorithm to build a posture model.  It may be possible that an alternative model would give 

better performance.  One such model is a hidden Markov model (HMM).  HMMs, described in 

chapter 2, section 2.6.8, are probabilistic finite state machines.  Each label (having difficulty or 

making progress) is a node in the finite state machine and the HMM provides a) the probability 

of transitioning from one label to the next and b) the probability that a given posture is a label. 

 To determine whether HMM performs better than the decision tree algorithm, we used a 

variation of HMM, HMM -based sequencer classifier, as implemented in the Accord.NET 

Framework [6].   The HMM-based sequencer classifier is trained individually on sequences of 

having difficulty and making progress postures; thus creating two classifiers.  After each 

classifier is individually trained, both classifiers are given test data (sequences of postures with 

no label).  The classifiers compute the probability that the test data belongs to it.  The classifier 
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that outputs the highest probability is used to determine the label for the test data.  After 

changing several parameters of the classifier such as the length of sequences and transition 

probabilities, we could only achieve an accuracy of 44%, a true positive rate of 57%, a true 

negative rate of 31%, a false negative rate of 43%, and a false positive rate of 69%.  The decision 

tree gave better results. 

4.7 Summary 

To summarize, we a) split the edit ratio into insertion and deletion ratios, b) added body 

posture as a feature, and c) evaluated the programming activity algorithm with this new feature 

set.  Our results show that the programming activity algorithm that uses the refined feature set 

gives less false negatives than the programming activity algorithm developed in Chapter 3.  

Given the success of these results, we combine the new programming activity feature set with 

body posture to create multimodal difficulty detection.  These results provide evidence to support 

sub-thesis III, which we restate here: 

Multimodal Difficulty Detection Sub-theses (Sub-thesis III): It is possible to develop an 

approach that a) combines programming activity and body posture recognition to predict when 

developers are having difficulty with their tasks and b) has greater accuracy and a lower false 

negative rate (predicting stuck) than existing approaches that only use programming activities to 

determine when developers are having difficulty with their tasks.
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Chapter 5. Help Promotion 

5.1 Introduction 

In Chapter 3, we presented a) an approach that uses programming activity features to 

determine when developers were having difficulty, b) a common set of difficulty detection 

modules for two programming environments, and c) results that show the difficulty detection 

modules perform better than baseline measures.  In the following chapter, we a) refined the 

programming activity feature set, b) combined the refined programming activity feature set with 

a body posture feature set, and c) presented results that show this combined approach has greater 

accuracy and a lower false negative rate than an approach that uses the refined programming 

activity feature set. 

 One question left unanswered, so far is: what are the potential benefits of difficulty 

awareness?  Three potential benefits are estimating an individual’s progress, clustering problems 

according to their difficulty, and teammates helping each other when they become aware of 

developers’ difficulties.  In this chapter, we focus on help promotion, the last benefit, for two 

reasons.  First, we motivated help promotion in the introduction chapter and second and more 

important, to our knowledge, no work in the literature explores how manual or automatic 

difficulty detection can be used for help promotion. 

 To explore how difficulty detection can be used for help promotion, we perform two lab 

studies and a field study.  In the first lab study, we investigate how teammates determine if they
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 can or should offer help.  To make this determination, they need more information about 

teammates’ context [57].  One way to provide context is screen awareness, continuous 

knowledge of remote users’ screens with help awareness.  The idea of screen awareness is not 

new.  Tee et al. implemented screen awareness as a sidebar that contained thumbnails of remote 

users’ screens [56].  It is not clear if this semantic awareness is manifested visually in a 

thumbnail.  More important, having difficulty is a rare event.  Therefore, observers would have 

to continually monitor remote developers’ screens looking for when developers are stuck, 

essentially searching for a “needle in a hay stack‟.  

This problem can be addressed by our programming-activity detection-component, 

described in chapter 3, which infers users' help status from their interaction with the 

programming environment and communicates this inference as help awareness to others.  

Observers can use such awareness to offer help when developers are stuck.  Combining screen 

awareness with help awareness enables observers to view collaborators’ screens only when they 

need help.  This novel combination is our integrated workspace-difficulty awareness component.  

In a field study of this component, students were successfully offered help in a CS1 class.  

The rest of this chapter is organized as follows.  We first describe and evaluate integrated 

workspace-difficulty awareness.  Next, we describe a classroom field study conducted with this 

component.  Finally, we end  a brief summary. 

5.2 Context Awareness 

As mentioned above, before teammates offer help, they must first determine if they can 

or should help.  To make this determination, teammates need more information about 

developers’ context, which is the second step in our help-giving model. 

One way for teammates to make this determination is to use screen awareness, 

continuous knowledge of developers’ screens.  Teammates can use this information to see what 
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is blocking developers from completing their tasks. Tee et al. implemented screen awareness as a 

sidebar that contained thumbnails of remote users’ screens [56].  Collaborators used these 

thumbnails to monitor each other, and when a change in a teammate’s thumbnail indicated a 

potentially interesting event, they expanded the thumbnail to show that teammate’s full screen.   

Sometimes, screen awareness alone does not provide enough information for potential helpers to 

determine if they can or should offer help because it shows only the current information on 

developers’ screens and previous work found that teammates needed to know what developers 

have done to try to solve their problem [57]. We can model this problem as the classic latecomer 

problem, which generally occurs in scheduled meetings where individuals invited to a meeting 

join late and need to catch up.  

The most recent work on this topic, by Junuzovic and colleagues, records audio of 

meetings, video of the participants’ faces, and a shared workspace (presentations) and transcribes 

the audio recording so that latecomers can replay this information to catch up  [34]. The goal of 

their work was to determine whether replaying audio, video, shared workspace, and transcript 

was better than only replaying audio.  To achieve this goal, they compared the amount of 

information (facts, explanations, and the identity of the speaker in the meeting) that latecomers 

could recall after replaying audio only and different combinations of audio, video, transcript, and 

shared workspace.  Their results show that participants who replayed the combinations of audio, 

video, workspace actions, and transcript and audio and workspace actions combinations recalled 

more information than audio alone and any other combination.  This suggests that replaying 

audio, video, transcript, and workspace actions are all useful in helping latecomers get up to date.  

However, their work did not show that replaying workspace actions, transcripts, or video 

alone was useful.  Therefore, their results do not apply to our latecomer scenario because there is 
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no video or transcript to replay.  The reason is that developers work alone until they get stuck 

and the only information available to replay is developers' screens. 

5.2.1 Semi-Structured interviews 

To test our intuition about the usefulness of simple screen-help awareness, viewing 

developers’ screen without the ability to pause and replay, and buffered screen-help awareness, 

replaying developers’ screens, in promoting help giving, we focused on the intern/mentor 

scenario and interviewed eight subjects - four mentor/intern pairs - in a large organization. The 

subjects had professional experience ranging from 3 months to 20 years.  Some of the subjects 

were not employed as programmers, but programming played a major part of their job role.  To 

determine the usefulness of simple and buffered screen-help awareness, we asked participants if 

they could give examples of simple and buffered screen-help awareness would have been useful 

in previous help giving interactions.  To give participants a concrete idea of how simple and 

buffered screen-help awareness would be implemented, we showed them a prototype that replays 

the audio and video of meetings [34]. 

All subjects liked the general idea of simple and buffered screen-help awareness.  For 

example, one intern reported that he liked that his mentor would be able to watch over his 

shoulder when he needed help. Similarly, one mentor reported that the tool would eliminate the 

overhead of scheduling multiple project status meetings with interns. 

5.2.2 User Study 

Encouraged by the results of the interviews, we decided to perform studies that evaluated 

simple and buffered screen-help awareness. A field study of simple and buffered screen-help 

awareness would give the most reliable evaluation, but requires robust implementations and 

long-term usage of these implementations. Therefore, we decided to do a lab study to motivate 

such implementations and usage.  
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There are many ways to simulate developers and observers in a lab study. One approach 

is to use “live” developers and observers, wherein the latter monitor developer activities as they 

are performed.  This was the approach used in  [11] in a game playing activity designed to 

support help giving. However, this approach has several problems when applied to traditional 

software development.  First, as getting stuck is a rare event, this means an observer must wait or 

perform some other activity irrelevant to our study until the next stuck point.  Enabling a subject 

to monitor the activities of multiple developers can ameliorate this problem, but the observers 

and developers must be scheduled at the same time. More important, the study must involve 

multiple developers and subjects to reduce the impact of subject and observer idiosyncrasies, and 

ways must be found to make them familiar with the developers’ tasks and give the observers 

some expertise so they can play a potential helper (mentor/teacher) role.  

 

(a) 

 

(b) 

 

 

(c) 

Figure 5.1: “Stuck Point” Video Observation Tool simulating two modes: (a) buffered and 

(b) simple with (c) answer interface. 

An alternative simulation approach – the one we followed – is to perform a two phase 

study in which subjects play the role of developers in the first phase and observers in the second 

phase. In the first phase, developers’ screens are recorded and the stuck points marked. In the 

second phase, observers are shown screen recordings of other subjects using simulations of the 

simple and buffered screen-help awareness.  All developers are given the same problems in the 

first phase. As a result, when they play the role of observers in the second phase, they are 
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familiar with the problems and have some expertise to solve them.  As mentioned below, our 

developers used different languages and created different solutions for the same problems.  

Moreover, several months elapsed between the two phases.  Thus, arguably, this approach 

simulates the teaching assistant/student mentor/protégé scenario where the former is helping the 

latter with a similar problem they have solved before.  

Yet another issue is what it means for observers to determine if they can help. A reliable 

solution is for them to actually develop a working solution, but without the code base it is not 

possible for them to do so, and more important, this approach is overkill as our help giving 

model assumes that after making this determination, they communicate or work with the 

developer to help them get unstuck.  Therefore, we asked them to instead outline the solution, 

and used two coders and I to check if it is correct. A problem with using only this approach in a 

lab study is that sometimes the observers lacked certain knowledge (such as the file API of a 

programming language with which they were unfamiliar) to solve the problem. Rather than have 

them search for this information, which is unrealistic if they were real experts, we asked them to 

also describe the problem the developers were having.  If the coders found this description to be 

correct, then, we assumed that with the right knowledge, they were in a position to help.  We 

built a special tool for these coders’ evaluation (Figure 5.2). 

We used problems from the Mid-Atlantic ACM programming competition as in chapter 

3.  In the first phase, fourteen participants solved the three ACM programming problems while 

using the programming-activity difficulty-detection component. We recorded more than 40 hours 

of developer activities.  I identified 16 stuck points in these recordings based on the inferences 

made by the help awareness mechanism and manual monitoring of developers’ actions, which 

were confirmed by two coders.  
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The second phase involved ten of the fourteen initial subjects who were able to 

participate again. To simulate screen and help awareness, we created a stuck point video 

observation tool shown in Figure 5.1.  This tool only shows a five minute video segment of each 

developer’s stuck point.  We chose five minutes segments after doing some pilot studies because 

participants were able to determine the fix to a problem, on average, within five minutes. 

Each participant viewed the stuck segments under one of two conditions: either without 

rewind and pause (simple) or with rewind and pause (buffered).  Participants did not view their 

own stuck points. For each participant, we assigned conditions to tasks randomly.  We trained 

participants using one of the 16 stuck points, leaving 15 total stuck points.  Two observers did 

not view 11 stuck points because of time constraints.  

Participants were given an unlimited amount of time to describe a problem and determine 

how to fix it. The help determination time was calculated based on the time users pressed a 

button to view the video minus the time users pressed a button to submit the fix and explanation 

(Figure 5.1). 

 

Figure 5.2: Coder Agreement Tool. 

5.2.3 Metrics and Study Results 

We computed several metrics to evaluate the effectiveness of the two mechanisms. We 

differentiated between temporary and permanent stuck points, based on whether the developers 
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were able to recover or not from the stuck point.  We determined the success rate of the 

observers for all temporary and permanent stuck points.  From Coder 1’s viewpoint, observers 

were correct 56% (127) of the time on (total) stuck points, while from Coder 2’s viewpoint; 

observers were correct 51% (127) of the time.  The coders agreed 95% of the time.  We 

computed Cohen’s Kappa coefficient to take into account the agreement occurring chance 

(k=0.84).  According to previous work (k > .60) is reliable and (k > .75) is excellent [38].  

To better understand the impact of these results, we compared the amount of time 

developers spent overcoming difficulties to the average amount of time observers spent trying to 

solve developers’ difficulties.  On average, developers spent 16 minutes and 30 seconds trying to 

overcome their problems.  Experts spent who solved developers difficulties spent 8 minutes and 

46 seconds solving developers’ problems.  To determine whether there is a significance 

difference between the amount of time both developers and observers spent, we used an 

independent two means t-test.  There was a significant difference between the amount of time 

both developers and observers spent (t = 3.104, p<0.05). 

On average, observers spent 20% more time on each stuck point in the buffered 

condition.  One of the reasons participants spent more time in the buffered condition is because 

they wanted to make sure they were giving the right advice.  In fact, in the debriefing, a 

participant commented, "I used rewind to rewatch some portion [of the video] and make sure I 

was correct." 

There was no significant difference in the success rate between the buffered and simple 

conditions.  However, subjects overwhelmingly preferred using rewind and pause (Table 5.1).  

One participant made an unsolicited comment, after the study, stating that, "when I couldn't 

pause or rewind it was frustrating because sometimes I couldn't remember exactly what 
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happened.”  Another participant commented that, "by rewinding I could see what they did to get 

them into trouble in the first place. 

Table 5.1: Survey Questions and Results  (Scale: 1 = Strongly Disagree to 7 = Strongly 

Agree). 

   Survey Question Mean Median STD. DEV. 

Q1 

I preferred to use 

rewind/pause than 

not using it (just 

watching the 

video). 

5.63 5.5 .74 

Q2 

I was confident in 

my answers when 

using 

rewind/pause. 

6.38 7 1.06 

 

We logged participants' actions with the stuck point video observation tool and found that 

on average, a participant used rewind 10 times and pause 14 times.  Thus, from these results, we 

can conclude that a) combining screen and help awareness is a promising direction, motivating 

implementation of the two simulated mechanisms and field studies of them on bigger problems 

and b) they provide evidence to support sub-thesis IV, which we restate here. 

Context Awareness Sub-Theses (Sub-thesis IV): Replaying the programming actions of 

developers who are stuck takes potential helpers significantly longer to decide if help can be 
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offered, but potential helpers prefer replaying programming actions to not having the ability to 

replay them. 

5.3 Classroom Field Study 

So far, all studies of help promotion have been in the lab.  In this section, we explore help 

promotion in a field study.  This exploration raises several intriguing design, implementation, 

privacy, usability, and usefulness questions: (a) Usability: Is it possible to build a usable 

environment that enables instructors to push help to students in a programming course?  (b) 

Privacy: Would students have privacy concerns regarding such a tool?  (c) Helpability: Would 

students who used the tool feel they were effectively helped?  (d) Learnability: Students may 

learn more if they fix problems without assistance. What, if any, is the relationship between the 

amount of help students get and their final grade?  (e) Context: What kind of context can be 

automatically given to potential helper to enable them to determine if they can or should help?  

These questions are related.  For example, it does not matter how much a programmer 

can be assisted if the programmer has privacy concerns preventing use of the tool, or the help 

interferes with learning.  In the rest of the chapter, we answer these questions. 

5.3.1 Field Studies in Education 

As part of the UNC computer science department’s Ph.D. requirement, I taught a course 

on object-oriented programming, which was taken by 35 students.  We made use of this 

opportunity to do a two-part field study on education application of difficulty-detection.  The 

main component of the study involved actual usage of our difficulty detection and context 

awareness tool.  The other part was a “pre-tool” study to motivate the educational use. 
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5.3.2 Help vs. Grade 

In educational settings, students may learn more if they fix problems without assistance. 

What, if any, is the relationship between the amount of help students get and the amount they 

learn?  

To answer this question, we determined the number of times the students in the course 

were given help.  Students were observed during office hours and email for six weeks, and 

special help sessions for two weeks.  Help sessions were different from office hours because 

students could receive help in a small group (3 people) as opposed to a potentially large group in 

office hours.  These help sessions were offered because a) some students did not feel comfortable 

asking questions during office hours or class, and b) a few of these students sent the instructor 

emails asking for one-on-one help.  More than half of class (21 out of 35) met the instructor 

during office hours and asked questions through email (21 out of 35) while a little less than half 

(17 out of 35) of the class attended help sessions. 

During office hours and help sessions, with students’ permission, we recorded audio with 

a voice recorder, and later, immediately after office hours and help sessions, transcribed the 

audio.  These recordings together with email logs enabled us to get the help data we needed.  

Through email, help sessions, and office hours, 27 students received help 190 times. 

Help was given only after students attempted to solve problems and failed.  To determine 

the correlation between the amount of help students received and the degree to which they 

learned the subject, we determined the relationship between the sum of the number of times 

students received help (in email, office hours, and help sessions) and their letter grade converted 

to a numerical value in the range 1..10 with a uniform step size of 1: A = 11, A- = 10, B+ = 9,…, 

D = 2, and F = 1. 
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Figure 5.2 shows that, for the vast majority of students, as the amount of help received 

increases, the final grade of the student tends to increase.  We say “for the vast majority” because 

this pattern does not hold true for 29% of the students (10 out of 35).  However, the remaining 

students performed just as well or better than some who received less help, which is consistent 

with the intuition that the stellar students would require little help. As the figure shows, several 

students who received an “A” also received help. 

 

Figure 5.3: Grades vs. amount of help received. 

As is common in such data, the cause and effect are not separated, and two possible 

conclusions are: (1) students with higher grades ask for and receive more help, or (2) students 

who ask for and receive more help get higher grades.  Either way, the data show the importance 

of providing help, even to stellar students.  In section 3, we showed that help giving can lead to 

time saving.  Here, we show that for the vast majority of students, it does not have an adverse 

effect on learning, and may even have a positive impact if help giving was the cause and the 

grade was the effect in Figure 5.3.  
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5.3.3 Screen vs. Model Sharing 

The next question: is it possible to build a usable and useful collaborative tool in an 

educational setting? 

As mentioned earlier, such a tool must enable potential helpers to share the developers’ 

programming context to determine if and how they should offer help. Based on our study of 

integrated screen awareness, we combined our difficulty-detection mechanism with a custom 

screen-sharing component. 

We expected that most students (in the course taught by me) would install the screen-

sharing help tool for two reasons.  First, students would receive extra help.  Second, participants 

who used the screen sharing feature in Community Bar were comfortable with enabling co-

workers to view their complete screen [56].  

Surprisingly, none of the 35 students was willing to use a tool that shared their screens. 

When the instructor asked for the reason, most of them stated that they perform activities other 

than programming, and would not want that information to be shared. For example, one student 

remarked: “I don’t want you looking at my Facebook page.” Even after the instructor mentioned 

that the tool would only record the Eclipse window, students were hesitant and would not install 

it.  

This experience forced us to take a step back and consider the ways in which a 

programming context can be shared between two users. The context can be shared at multiple 

levels of abstraction such as the frame-buffer, windows, toolkit widget, and model; and the level 

of the ideal shared abstraction goes down with the coupling or divergence between the actions of 

the collaborators [6, 9]. Our screen-sharing help tool essentially provided window sharing. Based 

on the privacy concerns of the students, we decided to replace window sharing with Eclipse 

model sharing.  We refer to this version of the tool as the Eclipse Helper.  
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Figures 5.4 and 5.5 show the student and instructor view, respectively, of Eclipse Helper.  

The student view contains buttons that enable students to manually indicate their status. The 

instructor view displays a) a notification when a student has difficulty (predicted automatically 

or indicated manually by the student), b) a status button that changes from green to red when a 

student has difficulty and back to green when the student is making progress, and c) a View 

Project button that opens up the instructors’ programming environment and displays students’ 

edits (model) in an editor window.  

 

Figure 5.4: Student’s view. 

This time we had much more success with adoption - the majority of students (30 out of 

35) installed Eclipse Helper.  Thus, our work shows, surprisingly, that the level of sharing is a 

function of not only the coupling between the tasks of the collaborators but also the perceived 

privacy risks of the users. 

5.3.4 Distributed Tool Use 

Eclipse Helper gave students a fourth avenue for receiving help - they could now receive 

distributed assistance when their status showed that they were facing difficulty. Students used the 

tool for the last four of nine assignments. 

For the first monitored assignment, students were required to manually indicate their 

status to ask for help, because the instructor was afraid the difficulty detection tool would give 

false positives.  However, only one student pressed the ‘slow progress’ button to indicate a need 
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for help.  This was surprising because some of the students did not perform well on the 

assignment.  

When the instructor asked for the reason, the most common responses were: (a) they did 

not want to bother the instructor, (b) they were not sure if the instructor was available to help, 

and (c) when they were in difficulty they did not remember to press a button because they were 

trying to solve their problem.   

One way to address this problem is for instructors to announce their availability and 

willingness to help, as we did with the first monitored assignment.  However, this approach 

resulted in students asking for help with problems they were expected to solve alone.  Therefore, 

we turned on automatic difficulty detection in the tool, and the instructor stopped announcing 

when he would be available for help.  We wondered if students would be unnerved with help 

seeming to "come from nowhere" at unanticipated times, but the students who were helped 

indicated that this was not a problem, as they knew it was possible to receive help when they 

were having difficulty. 

 

Figure 5.5: Instructor’s view. 

If the instructor decided that help should be offered, he entered into an email discussion 

with the student.  Usually, the first message in the email exchange had the subject of “Help” and 

contained information specific to the students’ difficulty.  The type of help offered was in either 
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the form of references to background material or a description of how specific errors could be 

fixed.  

To illustrate this process, in one case, after watching a student attempt to fix compiler 

errors for several minutes, the instructor sent an email to the student asking if she needed help. 

Several minutes later the student responded saying, 

“Yes! I am having a few problems. I'm getting an error message and it won't recognize 

that I'm using methods from the AVehicle class.” 

The instructor sent an email asking her to: 

 “review how to write a method that takes parameters and how to call a method with 

parameters.” 

The student emailed back a few minutes later saying: 

“thanks that fixed my problem. I struggled with that for over an hour.” 

Several students were appreciative of not only the specific help offered but also the 

instructor’s willingness to help and a tool that enabled such help to be offered, as illustrated by 

the following response to a help inquiry: 

 “Cool to see that the helper is working! Thanks for asking me what is wrong!” 

Even though students had a positive experience and appreciated the help, there was one 

case where a student, having trouble with conditionals, could not overcome the difficulty. To 

help the student, the instructor sent the following message: 

 “Are you having issues with your if statements in your while loop?” 

The student responded to the email two hours later saying, 

“I am having issues with my while loop and if statements.  I'm not exactly sure what I am 

doing wrong. It only lets me enter commands once and after that it doesn't print anything.” 
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After several email exchanges, the student did not solve the problem. One reason was that 

she had difficulty explaining her problem, and would have preferred if the instructor would have 

been able to see her screen so that she could point to it and explain the problem. Nonetheless, she 

still appreciated the attempt to help her.  

Before the last assignment of the semester, we surveyed students to see if they would be 

more willing to install the screen sharing tool. Half (20 out of 35) of the students in the class 

were now willing to install the tool. The students gave two reasons for changing their minds. 

First, they said that they trusted the instructor more now than at the beginning of the semester. 

Second, students who were helped with Eclipse Helper indicated that it should be much easier to 

point at something on their screen to explain their problem than trying to explain it through 

email. After the last assignment, the most difficult one, we surveyed students again to see if they 

would be more willing to install the screen sharing tool. Almost all (31 out of 35) of the students 

in the class were now willing, which provides some evidence for our intuition that window 

sharing is a useful abstraction in a help session. 

The instructor was able to offer help 9 times to 8 different students over the last three 

assignments.  There were some instances where Eclipse Helper did not predict that students had 

difficulty, but the next day students came to office hours for help. However, each time the tool 

predicted a student was in difficulty and the student was asked if they needed help, the student 

answered in the affirmative.  This result is consistent with our previous lab studies of the tool, 

which also showed the lack of false positives but the presence of false negatives. Thus, this tool 

augments but does not replace existing avenues for help such as email and help sessions.  

5.4 Summary 

To summarize, we have described integrated workspace-difficulty awareness.  It 

combines continuous knowledge of remote users’ screens, with difficulty detection, which 
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enables potential helpers to provide help; the moment developers are having difficulty.  Two 

variations of this component are possible based on whether potential helpers can replay 

developers’ screen recordings.  A lab study of this component shows that potential helpers prefer 

replaying the programming actions of developers who are stuck, but replaying these actions takes 

them longer to decide if they can offer help (Context Awareness Sub-Theses (Sub-thesis IV).  In a 

field study of this component, students were successfully offered help in a CS1 class.  In 

particular, this thesis provides evidence to support our Field Study Sub-theses (Sub-theses VI): It 

is possible to build a difficulty detection tool that is successfully used to offer help to students. 
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Chapter 6. Difficulty Level and Barrier Detection 

In the previous chapter, we show that replaying the programming actions of developers 

who are stuck takes potential helpers significantly longer to decide if they can offer help, but 

potential helpers prefer replaying the programming actions to viewing the programming actions. 

Replaying developers' programming actions provides syntactic awareness to potential helpers, 

which means they are not provided with inferences about developers' context.  Therefore, 

potential helpers must manually look at developers' screens to determine context, which causes 

them to spend a large amount of time trying to determine if they can offer help.  This means that 

potential helpers may waste a significant amount of their time.  In this chapter, we address this 

problem, by inferring not only developers’ progress status, but also their programming context.  

Two types of programming context that may be useful to potential helpers are 

developers’ difficulty level and the barriers that cause them to have difficulty.  Ko et al. 

categorized barriers student programmers faced based on explicit help requests and manually 

determined their difficulty level  [37]. These barriers are: 

 not being able to design algorithms 

  unable to combine Application Programming Interfaces (APIs) 

  not understanding compiler or runtime errors, unable to find documentation for 

APIs 

 unable to find tools within the programming environment.
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 They showed that for most barrier kinds, about half of its instances were insurmountable, 

thereby suggesting two levels of difficulties (insurmountable and surmountable).  As mentioned 

above, both barriers and difficulty levels can provide useful context to potential helpers.  For 

example, instructors should be able to help students on all barriers, but they may not want to help 

them on certain ones that students are expected to overcome alone. On the other hand, in 

industry, where the goal is to maximize productivity, potential helpers can help developers on 

insurmountable problems. 

The difficulty-level detection component tracks sequences of interactive commands 

executed by the programmers to determine whether their difficulties are surmountable or 

insurmountable.  The barrier detection component tracks both the ratios of various interactive 

commands executed by the programmer and the rates at which these commands are executed to 

distinguish between difficulties involving incorrect output from those involving design problems. 

The rest of this chapter is organized as follows.  We describe and evaluate difficulty-level 

and barrier detection and end with a brief summary. 

6.1 Barrier Detection 

As mentioned above, Ko et al. [37] have identified several barriers. Our own data 

involving the students we monitored in help sessions, suggested a simpler classification scheme: 

algorithm design issues and difficulty with correcting incorrect output.  However, by the time the 

difficulty studies were done in the course, issues with using this tool has been ironed out. 

Therefore, we decided to determine if it was possible to automatically distinguish between 

design and incorrect output barriers. 

Our recordings of the help sessions provided us with the data required to make this 

distinction.  As before, we used coders to derive this information.  To enable this process, we 
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developed a variation of the video observation tool of Figure 3.13 (chapter 3), which shows all 

segments where participants asked for help, and enables observers to identify the barriers the 

participants face.  The coders agreed on 44 out of 50 difficulty points (k=0.79).   66% of these 

were classified as design barriers and 34% as incorrect output.  

Now that we had ground truth, we had to identify appropriate features to automatically 

detect the barriers.  Based on our observations of the recordings around difficulty points, we 

found the following: When programmers had incorrect output, the frequency of debug 

commands increased and the frequency of edit commands decreased.  When they had design 

problems, they spent a large amount of time outside of the programming environment. 

The feature set of our difficulty detection tool had been deliberately chosen to ignore 

wall-clock time.  The reason was that we wanted to prevent our mechanism from classifying idle 

phases as difficult ones.  Based on the observations above, it seemed we now had to consider the 

passage of time.  We envisioned a two-phase difficulty detection scheme in which, first our 

previous time-independent detection features are used to determine difficulties, and then a new 

set of classification features is used to identify the barrier.  

We included all of the previous detection features in the second classification set.  In 

addition, we added features measuring the rate of interaction with the programming environment.  

The result was the following set of features. An asterisk indicates the previous detection features. 

Classification Features 

(1) *Insertion ratio = # of insertions / # of total events.  

(2) *Deletion ratio = # of deletions/ # of total events.  

(3) *Navigation ratio = # of navigations/ # of total events. 
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(4) *Debug ratio = # of debugs / # of total events.  

(5) *Focus ratio = # of focus changes/ # of total events.  

(6) Mean time between events = total time / # of total events.  

(7) Mean insertion time = total insertion time/# of insertion events. 

(8) Mean deletion time = total deletion time / # of deletion events.  

(9) Mean focus time = total focus time/# of focus events.  

(10) Mean navigation time = total navigation time/ # of navigation events.  

(11) Mean debug time = total debug time / # of debug events.  

All of these times were measured in milliseconds.  As before, we divided a log into 50-

command segments, and computed these features independently for each segment.  

To determine how indicative the detection and classification features are of 

programmers’ behavior we graphed the programming behavior of six programmers. In each 

graph, the x-axis is session time and y-axis is the percent or time (in milliseconds) for each 

feature.  Figure 6.1 shows portions of the graphs created for participant 1 and 2, respectively, 

illustrating commonalities in the behavior of the programmers when they are having difficulty 

correcting incorrect output.  In both cases, participants’ debug percentages increased, and the edit 

(insertion and deletion) percentages decreased.  Figure 6.2 shows commonalities in the behavior 

of participant 2 and 4 when they are having algorithm design issues.  In both cases, the 

participants spent a large amount of time outside of the programming environment, which is 

indicated by the mean focus time.  In particular, participant 3 (4) spent 120 (350) seconds outside 

of the programming environment.  Thus, the four graphs validate our feature choice. 
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Figure 6.1: Programming activities when participants are correcting incorrect output. 
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Figure 6.2: Programming activities when participants are having issues designing 

algorithms. 

We fed to our decision tree algorithm the features of (a) each segment during which the 

programmer had explicitly indicated difficulty, which we refer to as an explicit segment, and (b) 

each segment that preceded an explicit segment and occurred within two minutes of the explicit 

segment, which we refer to as an implicit segment.  The reason for (b) is that, on average, coders 

took two minutes to determine the barrier, and we assumed an algorithm would need the same 

amount of information.  

We used a standard technique known as cross validation, which executes 10 trials of 

model construction, and splits the logged data so that 90% of the data are used for training and 
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10% for evaluation.  We used a group model, as in chapter 3, in which the data of multiple 

programmers was aggregated during the training phase.  

Results 

The confusion matrix of Table 6.1 shows the results of the using the decision tree 

algorithm on the group model.  The positive is Incorrect output and Design is the negative.  The 

accuracy of this algorithm is 82%, the true positive rate is 73%, the true negative rate is 86%, the 

false negative rate is 27%, and the false positive rate is 14%.  These results show that the 

algorithm correctly classified 25 of the 29 (86%) design barriers, and 11 of the 15 (73%) 

incorrect output barriers.  To provide evidence to support part (a) of sub-thesis V, we compare 

the results of the decision tree algorithm to the baselines described in chapter 3.  We use the 

same approach described in chapter 3 to compute each baseline. 

Table 6.1: Barrier Confusion Matrix for Help Sessions. 

 Predicted Incorrect 

Output 

Predicted Design 

Actual Incorrect 

Output 

 11 (True positives)  4 (False negatives) 

Actual Design 4 (False positives)  25 (True negatives) 

 

Table 6.2 shows the results for the random baseline.  The accuracy of this baseline is 

53%, the true positive rate is 53%, the true negative rate is 52%, the false negative rate is 47%, 

and the false positive rate is 48%.  This baseline correctly identifies 53% of incorrect output 

barriers and 52% of the design barriers.  As in chapter 3, we use the binomial test to determine if 

there is a significant statistical difference between each baseline and the results of our decision 
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tree algorithm.  The decision tree algorithm performs significantly better than the random 

baseline (TPR=73% vs. TPR=53%, p < .05) (TNR=86% vs. TNR=52%, p < .001). 

Table 6.2: Confusion matrix for random baseline. 

 Predicted Incorrect 

Output 

Predicted Design 

Actual Incorrect 

Output 

 8 (True positives)  7 (False negatives) 

Actual Design 14 (False positives)  15 (True negatives) 

 

Table 6.3 shows the results for the modal baseline.  The accuracy of this baseline is 66%, 

the true positive rate is 0%, the true negative rate is 100%, the false negative rate is 100%, and 

the false positive rate is 0%.  This baseline correctly identifies all of the design barriers, but 

never identifies the incorrect output barriers.  As mentioned in chapter 3, we do not use a 

significance test to compare the modal baseline to our approach.  The true positive rate (73%) is 

better than the true positive rate (0%) of the modal baseline. 
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Table 6.3: Confusion matrix for modal baseline. 

 Predicted Incorrect 

Output 

Predicted Design 

Actual Incorrect 

Output 

 0 (True positives)  15 (False 

negatives) 

Actual Design 0 (False positives)  29 (True negatives) 

 

Table 6.4 shows the results for the data distribution baseline.  The accuracy of this 

baseline is 55%, the true positive rate is 33%, the true negative rate is 66%, the false negative 

rate is 67%, and the false positive rate is 34%.  This baseline identifies 66% of the design 

barriers, but only 33% of the incorrect output barriers.  The decision tree algorithm performs 

significantly better than the data distribution baseline (TPR=73% vs. TPR=33%, p < .001) 

(TNR=86% vs. TNR=66%, p < .001). 

Table 6.4: Confusion matrix for data distribution baseline. 

 Predicted Incorrect 

Output 

Predicted Design 

Actual Incorrect 

Output 

 5 (True positives)  10 (False 

negatives) 

Actual Design 10 (False positives)  19 (True negatives) 
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6.2 Difficulty Level Detection 

Before we could detect whether students’ difficulties were surmountable or insurmountable, 

we had to first define these terms.  A surmountable difficulty is one in which the observers' 

perception is that developers are having difficulty, but developer are later able to overcome the 

programming barrier without help.  They overcome the difficulty by increasing the available 

resources or reducing the required resources such as looking at documentation or code samples.  

An insurmountable difficulty is one in which the observers' perception is that developers are 

having difficulty, but developers are unable to overcome the difficulty in the time given to them.   

To determine whether students’ difficulties were surmountable or insurmountable, we 

analyzed the video screen recordings from the Toolkit study in Chapter 4.  This analysis occurred 

in three steps.  First, we determined participants’ barriers using the method in section 6.1.  

Coders agreed on 87% (48/55) difficulty points (k=0.70).  Second, we went to the moment in the 

video where participants indicated or confirmed they were having difficulty and scanned 

backward in the video to find the moment when participants started having difficulty.  These 

moments were identified when participants had an explicit error such as a compiler error or 

exception, searched the web, executed their programs, or spent a large amount of time outside of 

their programming environment.  For example, if developers had incorrect output, we scanned 

backward to where they first started executing their program to test the behavior they were 

modifying or implementing in their current task.  Third, we scanned forward in the video to find 

whether participants overcame their difficulty or switched tasks.  These moments were identified 

based on no longer seeing the programming barrier or seeing participants start to implement a 

different task.  For example, if participants had difficulty with incorrect output, we scanned 

forward in the video until we saw correct output.  
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We found that some barriers had the same start and end time.  Therefore, we grouped these 

barriers together and counted them as one barrier.  If participants overcame these barriers, we 

labeled them as surmountable.  If participants could not overcome the barriers, switched tasks, or 

the user study ended before participants overcame the barrier, we labeled these barriers as 

insurmountable.  There were 21 surmountable difficulties and 10 insurmountable difficulties.  A 

coder and I performed these analyses together on approximately 45 hours of videos. 

Now that we had ground truth, we had to identify appropriate features to detect the 

difficulty levels.  Based on our observations of the recordings around difficulty points, we found 

the following: Developers who had surmountable difficulties tended to perform a cycle of editing 

and debugging their code, whereas those with insurmountable difficulties tended to spend a large 

amount of time between actions and outside of the programming environment. Given these 

observations, we now had to consider the order/sequence of programming actions. As before 

with barrier detection, we envisioned a two-phase difficulty detection scheme in which, first, our 

previous time-independent detection features are used to determine difficulties, and then the 

order/sequence of programming actions is used to identify the difficulty level.  The detection 

features are shown in Table 3.1.  The programming actions we used can be found in Table 6.5.  

Programming actions marked with an asterisk are new programming actions, while the others are 

ones we have used before.  



142 

Table 6.5: Programming actions and their explanations (an asterisk denotes new 

programming actions). 

Programming Action Explanation Single Character 

Representation 

*Content Assist User invokes intellisense. A 

Insertion User inserts a line of text. B 

Deletion User deletes a line of text. C 

*Exception User has an exception. D 

*Wait User pauses for 1 second between 

programming actions. 

E 

Run User executes the program. F 

*Compilation/Save Code User saves the program, which also 

compiles the program.   

G 

Navigation User switches from one file to another. H 

Gain/Lose Focus User switches from or to the Eclipse 

programming environment  

I 

Break Point User creates a break point. J 

Debug User invokes the debugger. K 

*Url Hit User goes to a url in the browser.  L 

 



143 

To predict whether developers’ difficulties are surmountable or insurmountable, we fed the 

sequences of programming actions into the k-nearest neighbor algorithm.  The intuition behind 

using this algorithm is that it makes predictions using the labels of training data, the sequences of 

programming actions excluding the sequence we are trying to predict, which are closest or more 

similar to the testing data, the sequence we are trying to predict.  More specifically, given an 

input sequence and k the algorithm a) determines the similarity of k sequences to the input 

sequence and b) classifies the input sequence as the most frequently occurring label in k 

sequences.  

To measure similarity between two sequences of programming actions, the k-nearest 

neighbor algorithm needs a real number that reflects the degree to which the sequences are 

similar.  Therefore, we could not use common distance metrics such as the Euclidean distance, 

because these metrics take numeric values.  Given that our input is two sequences of 

programming actions, we need a metric that can measure the similarity of two string values.  

Two such metrics are the Hamming distance and Levenshtein distance.  Hamming distance 

only works with strings of the same length.  The Levenshtein distance can determine the 

similarity of variable length strings.  The Levenshtein distance is the minimum number of edits 

needed to change one string into another string.  Before we could use this distance metric with 

the k-nearest neighbor algorithm, we need to determine a value for k. 

Choosing the value of k is still an open research problem.  However, the value of k is also 

important because this value affects the algorithm’s performance.  We experimented with 

different values of k.  This experiment consisted of five steps.  First, we converted each 

programming activity into a single character, shown in the single character column in Table 6.5.  

Second, we divided the log, a sequence of programming actions, into segments.   
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One can segment the log based on the number of events, as we did in chapter 3.  More 

specifically, after experimenting with different segment sizes, we found a segment size of 50 to 

be the best.  Instead of experimenting, a bottom up approach, we did some top down thinking 

about how to determine the segment size.  The basic intuition, used by Piech et al. [47], is to 

segment the log such that programming actions in each segment represent a unit of work.  In our 

case, a unit of work is a group of related programming actions.   We found the longest common 

subsequence between surmountable and insurmountable sequences.   

Our intuition behind using the longest common subsequence is that the neighbors found 

by the k nearest neighbor algorithm would be a subsequence of the longest common 

subsequence.  We implemented this algorithm and found that the longest common 

surmountable/insurmountable subsequence was content assist, insertion of text, deletion of text, 

content assist, content assist, insertion of text, insertion of text.  We segmented the log every 

seven programming actions, the length of the longest common sequence, and every save.  There 

were 295 surmountable sequences and 121 insurmountable sequences split by save; and 24142 

surmountable sequences and 8245 insurmountable sequences split by the length of the longest 

common subsequence.  In total, there were 416 surmountable and insurmountable sequences split 

by save and 32387 surmountable and insurmountable sequences split by the length of the longest 

common subsequence. 

 Now that we have two ways to segment the programming activity logs, the third step is to 

choose an odd value for k to avoid ties when determining the most frequently occurring label.  

The initial value for k was 1.  Fourth, we used 10-fold cross validation to compute the 

performance metrics.  Finally, we repeated step two, but increase the value of k by 2, and step 

three until we find the optimal value of k. 
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Results 

Figure 6.3 show graphs where the x-axis is the values of k and the y-axis is the performance 

metric when segments are split by saves. The value of each performance metric no longer 

increases or decreases after k equals 25. Therefore, we chose 25 as a value for k. The confusion 

matrix of Table 6.6 shows the results when k is equal to 25. The positive is surmountable and 

insurmountable is the negative.  The accuracy of the k nearest algorithm is 80%, the true positive 

rate is 96%, the true negative rate is 63%, the false negative rate is 4%, and the false positive rate 

is 37%.  These results show that the algorithm correctly identified 96% of the surmountable 

difficulties and 63% of the insurmountable difficulties. 

 

Figure 6.3a: The accuracy of the k nearest neighbor algorithm per number of neighbors 

when segments are split by save. 
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Figure 6.3b: The true positive rate of the k nearest neighbor algorithm per number of 

neighbors when segments are split by save. 

 

 

Figure 6.3c: The true negative rate of the k nearest neighbor algorithm per number of 

neighbors when segments are split by save. 

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50

Tr
u

e
 p

o
si

ti
ve

 r
at

e
 

Number of neighbors 

True positive rate - Split by Save 
 

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50

Tr
u

e
 n

e
ga

ti
ve

 r
at

e
 

Number of neighbors 

True negative rate - Split by Save 



147 

 

Figure 6.3d: The false postive rate of the k nearest neighbor algorithm per number of 

neighbors when segments are split by save. 

 

 

Figure 6.3e: The false negative of the k nearest neighbor algorithm per number of 

neighbors when segments are split by save. 
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Table 6.6: Confusion matrix for k-nearest neighbor algorithm when k is 25 and segments 

are split by save. 

 Predicted 

Surmountable 

Predicted Insurmountable 

Actual 

Surmountable 

 281 (True 

positives) 

 14 (False negatives) 

Actual 

Insurmountable 

 45 (False positives) 76 (True negatives) 

Figure 6.4 shows graphs where the x-axis is the values of k and the y-axis is the 

performance metric when segments are split by the length longest common subsequence.  As 

with segments that are split by save,  the value of each performance metric no longer increases or 

decreases after k equals a certain value. In this case, the value is 29. The confusion matrix of 

Table 6.7 shows the results when k is equal to 29. The accuracy of the k nearest algorithm is 

77%, the true positive rate is 93%, the true negative rate is 3%, the false negative rate is 7%, and 

the false positive rate is 97%.  These results show that the split by longest common subsequence 

algorithm correctly identified 93% of the surmountable difficulties, but only 3% of the 

insurmountable difficulties.  
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Figure 6.4a: The accuracy of the k nearest neighbor algorithm per number of neighbors 

when segments are split by the length of the longest common subsequence. 

 

 
 

Figure 6.4b: The true positive rate of the k nearest neighbor algorithm per number of 

neighbors when segments are split by the length of the longest common subsequence. 
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Figure 6.4c: The true negative rate of the k nearest neighbor algorithm per number of 

neighbors when segments are split by the length of the longest common subsequence. 

 

 
 

Figure 6.4d: The false positive rate of the k nearest neighbor algorithm per number of 

neighbors when segments are split by the length of the longest common subsequence. 
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Figure 6.4e: The false negative rate of the k nearest neighbor algorithm per number of 

neighbors when segments are split by the length of the longest common subsequence. 

 

Table 6.7: Confusion matrix for k-nearest neighbor algorithm when k is 29 and segments 

are split by the length of the longest common subsequence. 

 Predicted 

Surmountable 

Predicted Insurmountable 

Actual 

Surmountable 

22470 (True 

positives) 

 1672 (False negatives) 

Actual 

Insurmountable 

 7997 (False 

positives) 

 248 (True negatives) 

To provide evidence to support part (b) of sub-thesis V, we compare the results of the k 

nearest neighbor algorithm when k is 25 and segments are split by saves to the baselines 

described in chapter 3.  We use the same approach described in chapter 3 to compute each 

baseline. 

Table 6.8 shows the results for the random baseline.  The accuracy of this baseline is 
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and the false positive rate is 48%.  This baseline correctly identifies 50% of the surmountable 

barriers and 52% of the insurmountable barriers.  As in chapter 3, we use the binomial test to 

determine if there is a significant statistical difference between each baseline and the results of 

our decision tree algorithm.  The k-nearest neighbor algorithm (with sequences split by save) 

performs significantly better than the random baseline (TPR=95% vs. TPR=50%, p < .001) 

(TNR=63% vs. TNR=50%, p < .001). 

Table 6.8: Confusion matrix for random baseline (split by save). 

 Predicted 

Surmountable 

Predicted 

Insurmountable 

Actual 

Surmountable 

 148 (True positives)  147 (False 

negatives) 

Actual 

Insurmountable 

60 (False positives)  61 (True negatives) 

 

Table 6.9 shows the results for the modal baseline.  The accuracy of this baseline is 71%, 

the true positive rate is 0%, the true negative rate is 100%, the false negative rate is 100%, and 

the false positive rate is 0%.  This baseline correctly identifies all of the surmountable barriers, 

but never identifies the insurmountable barriers.  As in chapter 3, we do not use a significance 

test to compare the modal baseline to our approach.  The true positive rate (95%) of the k-nearest 

neighbor algorithm is better than true positive rate (0%) of the modal baseline. 
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Table 6.9: Confusion matrix for modal baseline (split by save). 

 Predicted 

Surmountable 

Predicted 

Insurmountable 

Actual 

Surmountable 

 295 (True positives)  0 (False negatives) 

Actual 

Insurmountable 

121 (False positives)  0 (True negatives) 

 

Table 6.10 shows the results for the data distribution baseline.  The accuracy of this 

baseline is 41%, the true positive rate is 29%, the true negative rate is 71%, the false negative 

rate is 71%, and the false positive rate is 29%.  This baseline identifies 71% of the 

insurmountable barriers, but only 29% of the surmountable barriers.  The true positive rate of the 

k-nearest neighbor algorithm (with sequences split by save) is significantly better than the data 

distribution baseline (TPR=95% vs. TPR=29%, p < .001).  There is not a significant difference 

between the true negative rate of the k-nearest neighbor algorithm (with sequences split by save) 

and the data distribution baseline (TNR=63% vs. TNR=71%, p < .001). 

Table 6.10: Confusion matrix for data distribution baseline (split by save). 

 Predicted 

Surmountable 

Predicted 

Insurmountable 

Actual 

Surmountable 

 86 (True positives)  209 (False 

negatives) 

Actual 

Insurmountable 

35 (False positives)  86 (True negatives) 
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So far, we have discussed how teammates can become aware that developers’ need help 

of a certain level and how they can gain context to determine if they can help developers.  If they 

decide that they can help, the last step in our model is for them to collaborate with developers to 

provide help.  We do not provide special solutions to help developers collaborate because they 

can use existing mechanisms such as online-meeting software or meet with each other face-to-

face. 

6.3 Limitations 

Effectiveness of difficulty level and barrier detection: We motivated difficulty level and 

barrier detection, but did not address the effectiveness. 

Barrier Detection: As in the related work chapter, previous work has identified five 

barriers: not being able to design algorithms, unable to combine Application Programming 

Interfaces (APIs), not understanding compiler or runtime errors, unable to find documentation 

for APIs, and unable to find tools within the programming environment.  In this chapter, we only 

infer two: incorrect output and design.  It may be possible to detect a broader range of barriers 

such as API.  We attempted to detect API difficulties, but could not distinguish them from design 

difficulties.  The reason was that in both design and API difficulties, participants tended to spend 

a large amount of time outside of the programming environment.  Additional features are needed 

to distinguish between API and design difficulties. 

6.4 Summary 

To summarize, we have described and evaluated difficulty-level and barrier detection. 

Our evaluation of these components show that they perform better than baseline measures.  

These results provide evidence to support sub-thesis V, which we restate below. 

Difficulty Level and Barrier Detection Sub-Theses (Sub-thesis V): It is possible to develop an 

approach that, using developers’ interactions with their programming environment, a) 
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automatically determines the barrier that is blocking programmers from making progress, b) 

automatically determines the level of difficulty programmers are having with their tasks, and c) 

performs better than baseline measures.
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Chapter 7.  Conclusions and Future Work 

In addressing the goal of making help independent of distance, this thesis makes several 

innovations. 

Automatic difficulty detection as a first class research area: It is the first work to show 

that automatic difficulty detection is possible and useful.  

Motivation for automatic difficulty detection: It surveys previous work that suggests a) 

that the closer developers are to each other the easier it is for them to become aware that 

teammates need help and b) an increase in help provides an increase in productivity.  This thesis 

also identifies several techniques to increase the amount of help in software development. 

Manual approaches enable developers to indicate their need for help.  Automatic approaches 

infer when developers are having difficulty.  To provide this automatic ability, the strengths and 

limitations of several mining techniques are explored.   

Components of automatic difficulty detection: This thesis describes and evaluates six 

novel components: basic programming-activity difficulty-detection, multimodal difficulty-

detection, integrated workspace-difficulty awareness, difficulty-level detection, barrier detection, 

and reusable difficulty-detection framework.  

Basic programming activity difficulty detection:  Programming-activity difficulty-

detection builds on the work of previous difficulty detection approaches by logging developers’ 

interactions with programming environments and inputting these actions into a difficulty 

detection module that predicts whether developers are having difficulty or making progress.  It is 
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based on the insight that when developers are having difficulty their edit ratio decreases 

while other ratios such as the debug and navigation ratios increase.  This thesis provides 

evidence to support the Programming Activity Difficulty Detection Sub-Theses (Sub-thesis I) that 

it is possible to develop an approach that a) uses developers' interactions with their programming 

environment to determine whether developers are having difficulty with their task and b) 

performs better than baseline measures.  A limitation of this component is a high false negative 

rate. 

Multimodal difficulty detection:  Multimodal difficulty-detection addresses this 

limitation.  It determines whether developers are having difficulty by using their body posture 

and interactions with their programming environment.  It is based on the insight that when 

developers are having difficulty, both command ratios and postures can change.  This thesis 

provides evidence to support our Multimodal Difficulty Detection Sub-Theses (Sub-thesis III): It 

is possible to develop an approach that a) combines programming activity and body posture 

recognition to predict when developers are having difficulty with their tasks and b) has greater 

accuracy and a lower false negative rate (predicting stuck) than existing approaches that only use 

programming activities to determine when developers are having difficulty with their tasks.   

Integrated workspace-difficulty awareness:  Integrated workspace awareness shows that 

difficulty detection is useful.  It combines previous workspace awareness techniques with 

difficulty detection.  In particular, it combines screen awareness, continuous knowledge of 

remote users’ screens, with difficulty detection, which enables potential helpers to provide help, 

the moment developers are having difficulty. Two variations of this component are possible 

based on whether potential helpers can replay developers’ screen recordings. A lab study of this 

component shows that potential helpers prefer replaying the programming actions of developers 
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who are stuck, but replaying these actions takes them longer to decide if they can offer help 

(Context Awareness Sub-Theses (Sub-thesis IV). In a field study of this component, students 

were successfully offered help in a CS1 class. In particular, this thesis provides evidence to 

support our Field Study Sub-theses (Sub-theses VI): It is possible to build a difficulty detection 

tool that is successfully used to offer help to students. One limitation of this component is that 

potential helpers may spend a large amount of time trying to determine if they can offer help. 

Difficulty-level and barrier detection:  To address the time-spent issue potential helpers 

face while trying to determine if they can offer help, this thesis develops difficulty-level and 

barrier detection.  Both components automatically provide potential helpers with context.  The 

former is based on the insight that when developers are having surmountable difficulties they 

tend to perform a cycle of editing and debugging their code; and when they are having 

insurmountable difficulties they tend to spend a large amount of time a) between actions and b) 

outside of the programming environment.  Barrier detection predicts determines whether 

developers’ are having difficulty with incorrect output or designing algorithms.  This component 

is based the insight that when developers have incorrect output, their debug ratios increase; and 

when they have difficulty designing algorithms, they spend a large amount of time outside of the 

programming environment.  This thesis provides evidence to support our Difficulty Level and 

Barrier Detection Sub-Theses (Sub-thesis V): It is possible to develop an approach that, using 

developers’ interactions with their programming environment a) automatically determines the 

barrier that is blocking programmers from making progress, b) automatically determines the 

level of difficulty programmers are having with their tasks, and c) performs better than baseline 

measures.  



159 

To show how well difficulty-detection works in practice, we implemented a difficulty 

detection module into the Eclipse and Visual Studio programming environments.  Both 

implementations increased programming time and effort, because as the difficulty detection 

algorithm changed, code had to be changed in both the Eclipse and Visual Studio 

implementations.  

Reusable difficulty-detection framework:  The reusable difficulty-detection framework 

addresses the cost of multiple implementations. It uses standard design patterns to enable 

programming-activity difficulty-detection to be used in two programming environments, Eclipse 

and Visual Studio.  This thesis provides evidence to support our Implementation Sub-Theses 

(Sub-thesis II): It is possible to develop a common set of difficulty detection modules for 

different programming environments that have significantly fewer lines of code than difficulty 

detection modules written specifically for each programming environment. In particular, the 

Eclipse implementation had 11,000 lines of code and the Visual Studio implementation had 

9,096. The number of lines of code to implement the framework is 4,643, which is significantly 

less than the number of lines of code to implement difficulty detection modules written 

specifically for Visual Studio and Eclipse. 

This work suggests several new directions for future work. 

 Help and productivity study:  Previous work has suggested that the productivity of 

developers increase when they help each other and as distance increases, help is offered less.  

However, none of these studies directly compares productivity with help and without help.  This 

comparison could provide even more evidence to demonstrate the relationship between help and 

productivity.  The data from our study in section 5.2.2 could be used to more directly compare 

productivity with help and without help. 
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Accuracy increase:  It would be useful to increase the accuracy of the basic programming-

activity difficulty detection component.  One way would be to investigate additional features 

such as idle time, the amount of pressure on a mouse or keyboard, or features that can be 

computed from non-standard equipment such as the facial expressions.  An alternative is to 

investigate different approaches that address the class imbalance problem.  As in chapter 3, we 

use the SMOTE algorithm, which is a form of oversampling.  There are additional approaches 

such as undersampling and cost-sensitive learning.  It would also be useful to investigate 

different log segmentation methods such as segmenting the log based on time or using a sliding 

window approach.  These approaches may lead to greater performance. 

Other applications of difficulty detection:  As in chapter 5, help promotion is only one 

potential application of difficulty detection. It would be useful to explore other applications such 

as (a) informing developers in difficulty about actions of others who earlier overcame similar 

difficulties so that they can take similar actions; (b) enabling those who carry out (educational or 

industrial) assignments to anticipate the kind of difficulties they would encounter and thus be 

better prepared for the assignment; and  (c) providing those (e.g. supervisors, mentors, 

instructors) who assign tasks an understanding of the inherent difficulty level of the task, which 

can lead to redefinition or better explanation of the assignment. It may be possible to address 

application (a) by using collaborative filtering techniques where, the actions of multiple users are 

used to infer information about a user. 

Manual help: In addition to investigating other applications of difficulty detection, it would 

be useful to explore whether barrier detection can be applied to situations in which help is 

requested explicitly.  In particular, it may be possible and useful to automatically associate a 

question in a question and answer site, such as Piazza or Stack Overflow, with the detected 



161 

barrier and browsable screen recordings of the problem.  This approach could enable potential 

helpers to better determine whether they can or should offer help.  

Effectiveness of difficulty level and barrier detection:  Additionally, we did not address the 

effectiveness of automatic barrier and difficulty level detection.  It would be useful to perform 

both lab and field studies to compare a) the amount of time it takes potential helpers to determine 

whether they can help and b) the quality of their judgments with and without automatic barrier 

and difficulty detection.  

Barrier detection use:  This thesis shows that it is possible to detect incorrect output and 

design barriers.  It would be useful to detect a broader range of barriers – in particular API 

barriers. It would also be useful to explore whether barrier kinds can be used to triage questions 

in a large class and assign them to appropriate instructors.  More specifically, it would enable 

instructors to answer incorrect output questions first, which may require quick fixes.  Similarly, 

assign design problems to a professor, who may be less likely to blurt out the complete answer, 

and an incorrect output problem to a TA, who may be quicker with debugging tools. 

Help promotion environment:  Also, it would be interesting to extend our help promotion 

environment described in chapter 5.  It may be possible to enable smooth transitions between 

screen and model sharing, perhaps using the ideas in flexible coupling [14,22]. 

Maintenance tasks:  In all of our studies, developers implemented programs from scratch.   

Maintenance tasks can be expected to have more navigation for the same difficulty degree.  It 

would be useful to explore if it is possible to develop a single mechanism for detecting difficulty 

in both development of new software and maintenance of existing software. 

Privacy:  As in chapter 3, we did not formally evaluate privacy controls, but we have gotten 

some initial feedback from those who have used them.  Users would indeed like to customize not 
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only what status is reported, but also when it is reported, and to whom it is reported.  Thus, this 

scheme must be extended to control the nature and timing of reported status for different classes 

of observers such as (a) human observers and tools, (b) a team member sitting on the next seat, 

radically co-located, and distributed, (c) a close friend, mentor, and boss, and (d) team members 

who have and do not have the expertise to help solve a problem. 

Applicability of results:  Finally, another important future work direction is to determine 

whether our results apply to (a) a broader range of software engineering courses, (b) industrial 

training and mentoring, and (c) teams of peer programmers in educational and industrial settings.   

This thesis provides a basis and motivation for carrying out these future research directions.
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APPENDIX A: LAB STUDY TASKS (CHAPTER 3) 

Problem H: Shrew-ology 

Dr. Montgomery Moreau has been observing a population of Northern Madagascar Pie-bald 

Shrews in the wild for many years. He has made careful observations of all the shrews in the 

area, noting their distinctive physical characteristics and naming each one. 

He has made a list of significant physical characteristics (e.g., brown fur, red eyes, white feet, 

prominent incisor teeth, etc.) and taken note of which if these appear to be dominant (if either 

parent has this characteristic, their children will have it) or recessive (the children have this 

characteristic only if both parents have it). 

Unfortunately, his funding from the International Zoological Institute expired and he was forced 

to leave the area for several months until he could obtain a new grant. During that time a new 

generation was born and began to mature. Upon returning, Dr. Moreau hopes to resume his 

work, starting by determining the likely parentage of the each member of the new generation. 

Input 

The first line of input will containing a sequence of 1 to 80 consecutive ’D’ and ’R’ characters 

describing a list of physical characteristics, indicating whether each is dominant or recessive. 

After this line will follow several lines, each describing a single adult shrew. Each shrew is 

described by a name of 1-32 non-blank characters terminated by a blank space, then a single M 

or F character indicating the gender of the animal, another blank space, then a list of consecutive 

0 or 1 characters, describing the animal. A 1 indicates that the animal possesses that physical 

characteristic, a 0 indicates that it does not. The list of adults is terminated by a line containing 

only the string “***”. 
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This is followed by one or more lines describing juvenile animals. These contain a name and 

description, each formatted identically to those for the adults, separated by a blank space. The list 

of juveniles is terminated by a line containing only the string “***”. 

Output 

For each juvenile animal, print a single line consisting of the animal’s name, the string “ by ”, 

then a (possibly empty) list of all possible parents for that animal. A set of parents should be 

printed as the name of the mother, a hyphen, then the name of the father. If the animal has 

multiple pairs of possible parents, these pairs should be printed in alphabetic (lexicographic) 

order first by the mother’s name, then by the father’s name among pairs where the mother is the 

same. Each pair should be printed separated by the string “ or ”. 

Example 

Input: 

RDDR 

Speedy M 0101 

Jumper F 0101 

Slowpoke M 1101 

Terror F 1100 

Shadow F 1001 

*** 

Frisky 0101 

Sleepy 1101 

*** 

Output: 

Frisky by Jumper-Slowpoke or Jumper-Speedy or Shadow-Speedy 

Sleepy by Shadow-Slowpoke 

 

Problem H: Balanced Budget Initiative 

After bouncing 10 checks last month, you feel compelled to do something about your financial 

management. Your bank has started providing you with your statement online, and you believe 
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that this is the opportunity to get your account in order by making sure you have the money to 

cover the checks you write. 

Your bank provides you with a monthly statement that lists your starting balance, each trans- 

action, and final balance. Your task is to compare the statement with the transactions from your 

checkbook register over the same time interval. You will identify transactions that appear in only 

the statement or register, as well as incorrect amounts recorded in the register (naturally the 

bank’s statement is always correct) and math mistakes in your register. 

Input 

The bank statement appears first. It begins and ends with lines of the form: 

balance <X> 

with the first line indicating the starting balance and the second line indicating the final balance. 

In between the balances is the list of transactions, one per line, in the form: 

{check|deposit} <N> <X> 

Where N is the integer check or deposit number (the same check or deposit number will only 

appear once, although the same number can apply to both a check and deposit), and X is the 

amount of the transaction. 

Following the final balance the register entries appear. The first line of the register is the starting 

balance 

<X> 

Following are pairs of lines, with the next transaction appearing followed by the balance you 
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calculated by hand after entering the transaction. 

{check | deposit} <N> <X> 

<X> 

The pairs repeat until the end of the input file. For all input numbers and intermediates, |X| < 

1000000. All dollar amounts are given to the 

penny (0.01). 

Output 

For ease correcting your register, the output for each transaction occurs in the order it appears in 

the register. Each register entry receives exactly one line in the output. 

If the register entry is entirely correct, meaning that it is found in the statement for the same 

amount, the math in the register is correct, and it is not a duplicate entry for a transaction 

previously found in the register, then output the line 

{check|deposit} <N> is correct 

 

However, if the transaction is not entirely correct, you will output a single line beginning with 

the transaction type and number, and one or more of the following mistakes, whitespace 

separated, in this order: 

• is not in statement the transaction type and number do not occur in the statement  

• repeated transaction the transaction has occurred previously in the register  

• incorrect amount the register amount is different than the statement amount  
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• math uses correct value the math uses the value from the statement, although the actual 

transaction amount is recorded incorrectly in the register. This can only appear if 

incorrect amount is also displayed.  

• mathmistaketheregisterbalanceafterthetransactionmatchesneitherthestatementamount for the 

transaction, nor the register entry for the transaction (if different than the statement 

amount)  Following the line for the final entry in the register, a listing of all transactions 

missing from  

the register will be printed. These items may be printed in any order, one per line: 

missed {check|deposit} <N> 
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Problem A: A Simple Question of Chemistry 

Your chemistry lab instructor is a very enthusiastic graduate student who clearly has forgotten 

what their undergraduate Chemistry 101 lab experience was like. Your instructor has come up 

with the brilliant idea that you will monitor the temperature of your mixture every minute for the 

entire lab. You will then plot the rate of change for the entire duration of the lab. 

Being a promising computer scientist, you know you can automate part of this procedure, so you 

are writing a program you can run on your laptop during chemistry labs. (Laptops are only 

occasionally dissolved by the chemicals used in such labs.) You will write a program that will let 

you enter in each temperature as you observe it. The program will then calculate the difference 

between this temperature and the previous one, and print out the difference. Then you can feed 

this input into a simple graphing program and finish your plot before you leave the chemistry 

lab. 

Input 

The input is a series of temperatures, one per line, ranging from -10 to 200. The temperatures 

may be specified up to two decimal places. After the final observation, the number 999 will 

indicate the end of the input data stream. All data sets will have at least two temperature 

observations. 

Output 

Your program should output a series of differences between each temperature and the previous 

temperature. There is one fewer difference observed than the number of temperature 

observations (output nothing for the first temperature). Differences are always output to two 

decimal points, with no leading zeroes (except for the ones place for a number less than 1, such 
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as 0.01) or spaces. 

After the final output, print a line with “End of Output” 

Example 

Input: 

10.0 

12.05 

30.25 

20 

999 

Output: 

2.05 

18.20 

-10.25 

End of Output 
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APPENDIX B: FIELD STUDY TASK (CHAPTER 5) 

Comp 110-003 - Assignment 9: MVC and Animation 

In this assignment, you will strengthen your knowledge of the MVC programming paradigm and 

get practice with animations. As in the previous two assignments, you will continue to improve 

your structured object programming skills. 

Start this assignment with all of your code from the previous assignment! 

Part 1: Turning Rectangle, Oval, and Highway into observables 

Extend your Rectangle and Oval classes from the previous assignments by making them an 

observable that follows the Java Beans observable pattern. There are three steps that you must 

do: 

• 1)  Define a PropertyChangeListener history  

• 2)  Implement the standard addPropertyChangeListener method in AHighway  

• 3)  After you change a value of one of the Rectangle/Oval properties, notify all observers  

For help on completing these steps, read the “Variations in Observer/Observable 

Communication” section in the MVC chapter notes. You can find additional examples in the 

AnAnimatingShuttleLocation discussion in the Array chapter notes. 

Recall that the object that is actually changed is the one that must notify the observers. For 

example, when a car location is modified, it should be Rectangle and Oval instances making up 

the car that notify observers. 

You do not have to implement PropertyChangeEvent and PropertyChangeListener. Instead, you 

can need to import them from the java.beans package. To do so, include the following two lines 

in every class that uses PropertyChangeEvent and PropertyChangeListener instances: 
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import java.beans.PropertyChangeListener; import java.beans.PropertyChangeEvent; 

 
Part 2: Moving the rabbit in all directions 

Extend your AHighway by adding a moveRabbitLeft, moveRabbitRight, moveRabbitUp, and 

moveRabbitDown operations, which move the rabbit left, right, up, and down, respectively, by 

RabbitMoveDistance (defined in previous assignment). This should not take long because you 

have already defined moveRabbit in the previous assignment, which moved the rabbit vertically 

by MoveRabbitDistance. As was the case with moveRabbit in the previous assignment, each one 

of the new move operations must also check if the rabbit is colliding with any of the cars and 

update the RabbitStatus property accordingly. 

If in the previous assignment, you moved the cars or the rabbit whenever the corresponding 

move distance properties changed, you will have to correct your assignment. The rabbit and the 

cars need to move when you or a user (which can be another object) calls moveAllCar or 

moveRabbit(Left/Right/Up/Down). 

Also, if in the previous assignment, you used the move distance property values as offsets, you 

will need to correct your assignment. These properties stored by how much the cars and the 

rabbit should move, not to what location they should move. 

Part 3: AConsoleHighwayController 

Implement a console-based controller for AHighway, called AConsoleHighwayController. It 

should implement the following interface: 

public interface HighwayController { public void setModel(Highway model); public void 

processInput(); 

} The processInput command accepts user input from the console. Assume the user can enter the 
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following commands only (hence, no erroneous input checking is required): 

. 1)  ‘a’ to move the rabbit left  

. 2)  ‘d’ to move the rabbit right  

. 3)  ‘w’ to move the rabbit up  

. 4)  ‘s’ to move the rabbit down  

. 5)  ‘q’ to stop entering commands  

Each command must be followed by Enter. This is a somewhat awkward input interface, but it 

makes the code you have to write a little less complex. So to move the rabbit up twice, the user 

would type first w, then Enter, then w again, and then Enter again. 

Part 4: Animating AHighway 

Define two editable integer properties, AnimationDistance and AnimationPause, in AHighway. 

Then implement a startGame operation in AHighway that has an infinite loop that does the 

following: 

. 1)  Move the cars by AnimationStepSize to the left  

. 2)  Sleep for AnimationPauseTime time  

NOTE: After a while, all of the cars on the highway will move off the screen. This behavior is 

acceptable. Part 5: AHighwayDriver 

Implement your main method in AHigwayDriver. The method is responsible for: 

. 1)  instantiating AHighway (the model)  

. 2)  instantiating AConsoleBasedHighwayController (the controller)  

. 3)  Connecting the model and the controller  

. 4)  Calling bus.uigen.ObjectEdtitor.edit to display the highway  
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AHighwayDriver also sets up the highway for the game as follows: 

. 1)  Sets MoveCarDistance to 10  

. 2)  Sets PreviousCarDistance to 150  

. 3)  Sets MoveRabbitDistance to 35  

. 4)  Sets AnimationStepSize to 10  

. 5)  Sets AnimationPauseTime to 30  

. 6)  Adds 30 cars to the highway, each of which is of width 100 and height 30  

Playing the Game 

1) The user first runs AHighwayDriver. The following screen should appear. 

2) Once the highway is displayed in an ObjectEditor window, the user invokes the StartGame 

operation on the Highway as shown below. 

3) Then the user enters commands to move the rabbit. 
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Finishing the Game 

There are two ways to finish the game. 

1)  Rabbit crosses the road without getting hit: In this case, you need to display a 

“Congratulations! You live to play another day” message in a JOptionPane.  

2)  Rabbit gets hit: In this case, you need to display a “Splat! Please try again” message in a 

JOptionPane.  

When a finishing condition is reached, you do not have to stop the cars from moving. The reason 

for the latter is that in the real-world, cars on a highway will not stop because of a rabbit. Also, 

assume that the user will not enter any more commands once the finish message is displayed. In 

other words, you do not have to write any code to explicitly prevent the user from entering 

anything but a non ‘q’ command. 

Bonus 

For the past few months, the bunny world has been hopping. A rumor has been spreading that the 

legend of Bravehops will be fulfilled on Dec 5, 2007. For those of you who have not heard of 

Bravehops, it is a legend of a rabbit who escapes the Land Below the Highway and reaches the 

world beyond. Rabbits from the farthest reaches of the Land Below the Highway have gathered 
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in the grassy area just inside the border of their world in anticipation of the fulfillment of the 

legend. If Bravehops manages to reach the other side, they will all stand up and clap their ears. 

But if Bravehops does not reach the other side, they will quietly leave without ever being seen. 

Your bonus, should you choose to complete it, is to draw the spectators once Bravehops crosses 

the highway. The number of spectators you need to draw the n
th 

number in the Fibonacci 

sequence. The value of n is stored in an editable integer property of AHighway, called 

FibonacciNumber. You must use recursion to calculate the number of spectators from the 

FibonacciNumber value. The n
th 

number in the Fibonacci sequence is calculated as follows: 

F(1) = 1 F(2) = 1 F(n) = F(n-1) + F(n-2) 

if n = 1 if n = 2 if n > 2 

While the exact locations of and the separation between the spectators is not important, an 

outside observer should be able to count the exact number of spectators. In other words, do not 

draw them all in the same location because it will appear to an outside observer that there is only 

one spectator regardless of how many you actually draw
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APPENDIX C: PARTICIPANT DIFFICULTIES 

1.1 Lab Study Difficulties (Chapter 3) 

Participant Id Problem Explanation of Error 

4 B Logic error: in the for loop the user had greater than or equal to, the user 

changes the condition to > than, and later changes it to less (<) than. The 

user set breakpoints to find the logic error. After a cycle of editing and 

debugging the user determined the cause of the logic error and fix it. 

5 B User had a logic error. The user set a breakpoint where they believed the 

issue existed. The user debugged the code several times before determining 

there was an error with a for statement. . for(int pos = 0; pos < 

MAX_SIZE; i++) The i++ in the for statement should be pos++. 

5 C User had a logic error in their if statement. The user set a breakpoint and 

debugged the code to determine why their logic was incorrect. The user 

changed !true to true in an if statement. If(!inRegister to if(inRegister 

5 C The user had a logic error in an if/else branch. The user ran the code and 

determined that the output was incorrect. After debugging the code, the 

user determined that an else statement should be an else if statement. The 

user also determined that they forgot a variable assignment.  

6 A User knew which libraries to use for reading in a file, but she did not 

understand how to use them. The user looked up on the web how to read 

input from a file. The user copied and pasted example code and modified 

the code. The user could not get the example code to read input. 

6 B User searched the web for a data structure that did not enable duplicate 

items. The user changed data structures multiple times, but could not find 

the data structure the user was looking for. 

6 C User got a NullPointer exception when reading input in from a file. The 

user looked at the BufferedReader class in the Java API. More specifically 

the user looked at the readLine method in BufferedReader. The user 

checked for null: inLine.equals(null) || inLine.equalsIgnore(null) 

6 C User could not get the correct output. The user debugged the code to 

determine where the logic error existed. The user believed he/she found the 

logic error and cut/pasted an if else statement and changed the condition in 

the if statement. The user tested their error and still got incorrect output. 

The user proceeded to continue debugging and editing the code where the 

user believed there was an error. 

6 C User got a NumberFormat exception, changed Integer.parseInt to 

Double.parseDouble. The user believed that this line was causing the 

exception. User ran the code again and still got the same exception. User 

changed another line of code, the index of a substring. This fixed the user's 

NumberFormat Exception, but the user ran into a NullPointer. 

 

9 B Used the List API incorrectly list[i] is not correct for adding something to a 

list, changed list[i] to list.add after looking at the code completion drop 

down list 

10 A User had a NumberFormatException. The user was trying to parse a string 

into an int. The string was a floating point number e.g. "4.01", hence the 

NumberFormatException. The user parsed the string to a float and got rid 

of the NumberFormatException. 
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10 B The user had a logic error. The user was reading input from a file. The user 

wanted to put two different types of input into two separate arrays. The 

input was read correctly into one array, but the input was not read into the 

second array. This lead to a NullReference Exception 

10 B The user had a Null Reference Exception 

11 A User compiled the program and got several compiler errors. The user read 

the compiler errors and could not figure out the problem. The user was also 

using an unfamiliar API and assumed the errors were caused by the API 

call. Therefore, the user looked up the API using Google and looked at 

example code to ensure the API was being used correctly. The user made 

changes to the API call, but undone the changes because the user was sure 

the API was used correctly. The user commented out the API call to see if 

the program would compile with no errors. The user immediately noticed 

the error after the program compiled with no errors and he could focus on 

the code without the API call. 

11 B The user had a logic error. The user debugged the code to determine the 

location of the logic error. After the user found the logic error, the user 

edited the code, but still could not get the correct output. The user tested 

the edited code, but the logic was still incorrect. The user debugged the 

code to determine why the edits did not produce the correct output. The 

user added additional code and tested the additional code to ensure the 

output was correct. 

14 C User had several compiler errors after compiling the program. The user 

was trying to read input in from a file. The user looked at examples on the 

web of how to read input from a file and copied the examples verbatim. 

After looking on the web and comparing examples, the user was able to fix 

his syntax error 

14 C The user modified example code from the web that read input from a file. 

The user had several compiler errors after compiling the program. The user 

could not figure out what errors were introduced after the modifications to 

the example code. The user looked for new examples and compared the 

modified example code to the new example code to fix the compiler errors. 

14 C User had a syntax error, cannot covert parameter 1 from substring to 

substring[]. The user modified the line where the compiler told the user the 

error occurred. The user's modification introduced more compiler errors. 
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1.2 Field Study Difficulties (Chapter 5) 

What is student trying to do? What is causing the difficulty? 

create a new type of Point 

given an x and y value 

They don't understand how to create the new type 

create a new type of Point 

given an x and y value 

They don't understand how to create the new type 

create a new type of Point 

given an x and y value 

They don't understand how to create the new type 

create a new type of Point 

given an x and y value 

They don't understand how to create the new type 

create a getter and setter for 

Rectangle (object) unsure 

what to return in her getter 

Unsure how to get code to do 

what she needs it to do 

The student does not understand how to create an object type 

 ex. Rectange myRectangle or what to return in a getter 

create a new type of Point 

given an x and y value 

They don't understand how to create the new type 

create a new type of Point 

given an x and y value 

They don't understand how to create the new type 

create a new type of Rectangle not sure of where to put the code to create the Rectangle 

draw two Rectangles on the 

screen 

the student had two incorrect assignment statements (had initialWidth 

= width and initialHeight =height, should have had weight = 

initialWidth, height=initialHeight 

 the student did not get the correct output 

pass variables into the 

AVehicle constructor to run 

the program (trying to test 

program) 

the student passed in the incorrect number of parameters and the 

incorrect types for 

 the parameters into the constructor, student has a syntax error but 

does not 

 understand how to fix it 

create a new Rectangle using an interface instead of a class to create an object in AVechicle, 

student  

has a syntax error but does not understand how to fix it 

create a constructor that takes 

two Point and two Oval 

parameters student did not 

understand the syntax error 

message 

the student imported java.Oval instead of the Oval interface they 

created and  

Eclipse was suggesting to create a new constructor in the AVechicle 

class, this 

 suggestion would not have helped the student student was not sure of 

how import java.Oval got there, see if i can figure this out from the 

logs 

make the Rectangle cabin in 

the AVechicle class centered 

on the Rectangle body in the 

AVehicle constructor 

the student's output is incorrect, the cabin is not centered over the 

body because 

the user is changing the X coordinate in the body constructor instead 

of the cabin's constructor 

use a scale factor to increase 

the height and width of the 

Rectangle cabin in the 

setScaleFactor method 

the student is getting a syntax error that says the width and height 

variables are not recognized in the setScaleFactor method, the student 

is trying to use the height and width parameters in the AVechicle 

constructor in the setScaleFactor method, the student should either 

create height and width variables in the setScaleFactor method or 

create instance variables for height and width and set their values 
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equal to the height and width variables in the AVehicle constructor, 

then the student can use the instance variables height and width in the 

constructor 

implement the Vehicle 

interface in the AVehicle class 

the student is getting a syntax error that is telling him he has to 

implement every method in the interface, the student has written the 

method headers but did not include curly braces around each method 

scale the car look at the logs 

scale the car look at the logs 

scale the car look at the logs 

scale the car look at the logs 

scale the car look at the logs 

draw the cabin and the body the student is testing the program but the location of the body and 

cabin are not the location she manually entered in the ARecantgle 

constructors for cabin and body, the problem was that the 

ACartesianPoint class was not completely implemented, the student 

copied and pasted the incorrect ACartesianPoint class from the notes 

create a static int property 

that is increased each time a 

new AVehicle object is created 

the student did not understand what the static keyword does for a 

method or a variable 

create a static int property 

that is increased each time a 

new AVehicle object is created 

the student did not understand what the static keyword does for a 

method or a variable 

return the ARectangle cabin 

object using a getter and 

create an instance of that 

object in the AVehicle 

constructor 

the student created The ARectangle cabin variable in the constructor 

and is trying to reference that variable in the getter method getCabin(), 

the student should create an instance variable named cabin and create 

the instance in the constructor and return the instance in the getter 

implement the Vehicle 

interface in the AVehicle class 

had a syntax error because he created a method without curly braces 

{} had: 

public Point getLocation() 

return location; 

 

should have had: 

public Point getLocation() 

{ 

return location; 

} all of his methods in the class were like this 

draw an Oval shape it was 

only drawing points 

i am not sure, i rewrote his Oval constructor to take two ints as x and 

y coordinates instead of a point 

create a Rectangle object 

named cabin 

syntax error - she was using width1 varible in the getCabin, getBody, 

getFrontTire, getBackTire methods, but the width1 variable is a 

paramter in the AVechicle Constructor, she also had width and height 

instance variables, she should have been using the width instance 

variable 

create an Oval Constructor 

that takes a point, a width, and 

a height 

did not understand the syntax error message the student imported 

java.Oval instead of the Oval interface they created and Eclipse was 

suggesting to create a new constructor in the AVechicle class, this 

suggestion would not have helped the student student was not sure of 

how import java.Oval got there, see if i can figure this out from the 

logs 

get object editor to display the had everything correct, but for the method getBody he had Body and 
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vehicle for the methods getCabin he had Cabin, for getFrontTire he had 

FrontTire, for getBackTire he had BackTire, object editor enabled him 

to call the methods, but did not display the car, after creating getters, 

his code worked 

trying to get object editor to 

display two rectangles 

Had a void return type on constructors she also had syntax errors, look 

for those in the logs 

scale the vehicle look at the logs 

scale the vehicle look at the logs 

scale the vehicle look at the logs 

scale the vehicle look at the logs 

test the program to see if the if 

statements work 

the student is using == with strings instead of .equals() if(command 

== "move") //do stuff else if(command == "scale") 

get the Vehicle to display with 

a different width and height 

when she enters in a new width 

and height from the console 

passed in width and height into the AVehicle constructor, but did not 

use the width and height variables when creating the Rectangles that 

represent the body and cabin of the vehicle 

Get the program to recognize 

when she enters in a command 

(move, scale), the program 

runs and when she enters 

"move", it skips her if 

statements 

student has a semi-colon after each if statement 

if(command.equals("move")); 

create a tire syntax errors: private Oval createTires" saying that the constructor 

AnOval(int, int, int, int) student is calling the constructor and passing 

it 4 integers, but the AnOval constructor takes a Point and two ints 

create a tire syntax errors: private Oval createTires" saying that the constructor 

AnOval(int, int, int, int) student is calling the constructor and passing 

it 4 integers, but the AnOval constructor takes a Point and two ints 

create the body and cabin private Oval createBodyandCabin saying that the constructor 

Rectangle(int, int, int, int), but the Rectangle constructor takes a Point 

location, and two ints 

create the body and cabin private Oval createBodyandCabin saying that the constructor 

Rectangle(int, int, int, int), but the Rectangle constructor takes a Point 

location, and two ints 

test the program to see if the if 

statements work 

the student is using == with strings instead of .equals() if(command 

== "move") //do stuff else if(command == "scale") 

enable a user to enter 

commands until the type quit 

the student did not understand how while statements worked, the 

student had the while keyword where if statements should have been 

display the vehicle and print 

information to the console 

the student was calling ObjectEditor.edit(object), in the while loop, 

the student did not know how to create a Vehicle object and change 

the properties of the object 

make the while loop stop when 

the user enters quit 

the student created a method readAction which reads input from the 

console, the student called while(readAction()) and in the if 

statements he also had if(readAction(), the student was reading input 

in the while and if statements, the student should just read input once 

in the while statement 

draw tires as ovals, the ovals 

were being drawn as points 

the student had getInitWidth and getInitHeight in her oval class 

instead of getWidth and getHeight, Object Editor expects getWidth 

and getHeight 

get the while loop to work the student doesn't understand while loops and also had some syntax 

errors 
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move the vehicle offSetX and 

offSety 

the student had two incorrect assignment statements (had y = offSetY 

and x =offSetX, should have had offSetX= x, offSetY=y the student 

did not get the correct output, when the student tried to set the offSetX 

and offSEtY values via ObjectEditor, the values always changed back 

to 0 

take the values a user entered 

for offSetX and offSetY and 

enter those values into the 

offsetX and offSetYvalues for 

a car 

the student is not sure how to set teh value, the student did not know 

that he could call car.setOffSetX and car.setOffSetY 

the student is trying to print 

out information about the car 

the student got a nullpointer exception, because the student was not 

setting the values of cabin, body, frontTire, or backTire, in the 

constructor, to solve the problem, i inserted ObjectEditor.edit and the 

name of the AVehicle variable, ObjectEditor calls the getters, 

getCabin, getBody, etc. and in those methods is where the students 

create new instances of cabin, body, etc. the student says that 

everything just comes out zero, the student also tried to debug, but 

said he doesn't fully understand the debugger 
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APPENDIX D: EXAMPLE CORRECT OUTPUT FOR TASKS (CHAPTER 4) 
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