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ABSTRACT

DONGQIUYE PU: Quantitative Structure-Toxicity Relationship Moxglof Organic
Compounds and Nanoparticles
(Under the direction of Dr. Alexander Tropsha)

Safety issues are considered the single largest reasortodiay’s drug
development failures. It is both costly and time-consuming for édogical evaluation of
materials. This dissertation focuses on computational modeling offispexicity-
related endpoints against chemical compounds and nanoparticles. Wetredaasn the
application of cheminformatic and QSAR approaches in predictingxingty profile for
small molecules as well as nanoparticles. Extensive efiais been made in terms of
data collection, data curation, QSAR modeling and virtual screeniegtefal libraries
for biologically benign molecules or nanoparticles.

Firstly, QSAR analysis has been applied to a group of organlecules to
predict their skin sensitization toxicities. Combinatorial QS&Rlysis was utilized to
boost the final model performance. 5-fold external cross-validation -aaddgpmization
processes were also applied to validate the robustness of the midekelnal models
achieved prediction accuracy as high as 83% (for khitdi and RF models) after the
implementation of applicability domain.

Secondly, we illustrated successful application of QSAR in nuglel
nanoparticles with two case studies. In both cases, the objecerdateonsist of
nanoparticles with same core structure yet different surfadecoar modifiers. In the
first study, computational models were developed for cellulakkegteoperty of a series



of nanoparticles possessing same core structure (cross-linkedxic®) with different
surface functional groups. Regression models were successfuéioped with & as
high as 0.77 with KNN method after the implementation of applitgpbdomain.
Descriptor analysis suggests that the hydrophobicity of the sunfatecule may have
significant impact on the cellular uptake of iron oxides by paticreancer cells. The
second study takes this concept a step further. Besides buildirggically significant
computational models for predicting the protein binding and acutatiogpioperties of a
series of carbon nanotubes, an external chemical library cogs$t240,000 molecules
were virtually screened in seeking for biologically benign nanmbes. Moreover, the
virtual hit list resulting from the virtual screening exseciwas shared with our
collaborators for experimental testing. The final results confine high prediction
accuracy (80% for acute toxicity and 85% for carbonic anhydrasenimshdpoint) of
the established models. This is also the first-ever study irard@ of nanotoxicity to
successfully utilizing computational models for prioritizing nanoglag for

experimental testing.
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Chapter 1.

Introduction

1.1. Overview

Although poor pharmacokinetic properties were major causes ofoattiiti 1990s,
safety issues are considered the single largest causeléyrd drug development failure [1].
Despite of the fact that the vivo toxicity testing remains the gold standard for identifying
the side effects induced by a drug, it is now believed thataghpgoach alone could not
prevent the large failure rate in the late stage of climicals. Extensive animal toxicity
studies will usually not start before the preclinical candidttge, and human toxicity
studies will start even later. When one of these studies resigalficant toxicity and causes
project termination, a significant amount of time has already lspent optimizing the
potency and the pharmacokinetic profile of the compound, and huge amounts ofravaey
been invested in clinical trials. Eventually, all the money and tme tnvested are
completely lost. Moreover, under the pressure of reducing the amount of in vivo exsrim
extensive development of newu vivo test is not an option. It is expected that the right
combination ofin vitro, in vivo and computational toxicology applied as early as possible
during the drug development process will help reduce the numbefety sssues, at least
enabling to identify poor drug candidates at early stages of the project.

Toxicity testing is not only challenging for drug candidates,abs for environmental

agents as well. In recent decades, health protection agencies apdbtite alike have



experienced increasing frustration with the failure of toxicagting to provide timely,
relevant information to support informed regulation of environmental agéht Current
toxicity testing strategies rely primarily on the obsevatof adverse health responses in
laboratory animals treated with high doses of these agents.noésrabout risks to human
populations based on such observations require uncertain extrapolationesaf,arhe U.S.
Environmental Protection Agency (EPA) and the U.S. National instiof Environmental
Health Sciences (NIEHS) asked the U.S. National Research CqWR{T) to provide
guidance on new directions in toxicity testing, incorporating rieehnologies such as
genomics and computational systems biology into a new vision foitiotesting [3]. The
final report of the toxicity testing committee (NRC, 2007) oudirgesign criteria for a
modern approach to toxicity testing. In choosing among various toxesting options, the
NRC committee sought to define a paradigm that would (1) achiened ksoverage of
chemicals, chemical mixtures, outcomes, and life stages, (2) redaceost and time
required for toxicity testing, (3) develop a more robust scientifisis for assessing health
effects of environmental chemicals, and (4) minimize use of dimaesting. Inevitably,
the community promotes expanded use of in silico methods for estgmati predicting

physical and toxicological properties of compounds from their chemical chazation.

This dissertation focuses on computational modeling of specific typxelated
endpoints against chemical compounds and nanoparticles. Traditionallgxittiey models
were tuned to predict global toxicity endpoints, such as carcinogeniciutagenicity [4].
However, their broad applicability domain results in lower acgurathich hampered their

wide application. It is generally deemed that the lack of acgusadue to the complexity of
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the modeled endpoints, rather than to the statistical methods. Therefore, the erioigiomets
were trying to model in this dissertation are specific and mechanism based.
1.2. Computational Toxicology
Many computational approaches are available to predict thetjografile of small

molecules based on their chemical structures. These appragetezally fall into two major
categories: expert systems and statistical modeling. Exgystems, such as Derek for
Windows [5], are a repository of expert knowledge. The computer stheesexpert
knowledge by human experts. Therefore the software performance depetidstime and
resources devoted by human experts and on the availability of highy gdatasets.
Although the information collected in such systems is usually ideresi as reliable,
predictions made by the expert systems typically suffer fpoor sensitivity missing side
effects induced by drugs. On the other hand, statistical modeieifpods, such as
guantitative structure-activity relationship modeling (QSAR), &nanalyze existing data
and build objective models reducing the effect of human interventiabdbic assumption
behind QSAR analysis is that the chemically similar compounds shshdde similar
biological or toxicological properties. THenearest neighbor algorithm developed by Dr.
Tropsha’s group reflects this philosophy in that it predicts thgitycof a compound based
on its structural similarity with the training set compounds.
1.3. Quantitative Structure-Activity Relationship (QSAR)

Previous studies (e.g., SAR analysis) have shown that struttatalres of small
molecules impact their physicochemical, biological and toxicolgoroperties. Compared
with conventional SAR analysis, the QSAR analysis intends to quamiyaexplain the

relationship between chemical structures and the correspondingtyactivioxicity. The
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QSAR analysis is based on the assumption that compounds with satniatures are
expected to exhibit similar properties (the Similarity PropBrinciple [6]). This assumption
serves as a foundation behind experimental SAR studies by médiceraists, as well as
the basis for computational QSAR studies since the 1960s when Dr.inCblansch
established the very first QSAR analysis to predict chenso#lbility. However, the
definition of similarity is not straightforward because thenested degree of similarity
depends on a number of underlying factors such as molecular descupt@ble selection
methods, and the similarity metrics.
To briefly explain the fundamental concepts, any QSAR method cagemherally

expressed in the following form:
P =K(Dy, D, K ,D)eceeeerereresnns L)

Where Ris the biological activity of molecule | (dependent variabl®), D, ..., D,
are independent variables, which are either calculated molealdgcriptors or
experimentally measured properties of molecule i, lgy) is a function that relate the
descriptors to the biological activity.R(D;) could be either linear (whose output is directly
proportional to its input variables) or nonlinear (whose output is not in@aiportional to
its input variables) function, depending on the expected relationshigdretive descriptor
values D (input variables) and target property P (output). In essdhoggachine learning
techniques aim to find such mathematical representatiéDof that would best reproduce
the trend in biological or toxicological activities.

The recent explosive growth of experimental data due to the tegiralladvances in
High Throughput Screening (HTS) calls for the use of fast Q$Wdthods to establish

QSAR models of large and complex data sets. During the pasiefeades of development,
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the field of QSAR has grown rapidly in terms of novel molecukescdptors, nonlinear
regression methods and applications of QSAR to model toxicity andEADAbsorption,
Distribution, Metabolism, and Excretion). The differences amomnigws QSAR approaches
mainly depend on the descriptors used to characterize the molecdethea machine
learning methods used to establish relationships between inputipti@saralues and
biological activities. To list a few popular methods, nonlinear appesaof multivariate
analysis include the Decision Trees, Random Forest (RF), AatiNieural Networks (ANN),
k Nearest Neighbor&iN), and Support Vector Machines (SVM).

1.4. Thesis Outline

This dissertation focuses on application of cheminformatic and Q&ppiRoaches in
predicting the toxicity profile for small molecules as wadlnanoparticles. Extensive efforts
have been made in terms of data collection, data curation, QSAR ngpaeid virtual
screening of external libraries for biologically benign moleculesaooparticles.

Chapter 2 presents a successful application of QSAR methoddintipige the skin
toxicity of small molecules tested in vivo animal model. Allergic contact dermatitis, which
is the clinical manifestation of skin sensitization, is developdwrwindividuals are
repeatedly exposed to reactive small molecules. The possibleamgsms of this toxicity
process have been shown before which laid ground for possible modelings.studie
Combinatorial QSAR analysis was utilized to boost the final mpdelormance. 5-fold
external cross-validation and y-randomization processes weayeapfdied to validate the
robustness of the models. Finally, statistically significant nsodelre applied to an external

library of chemicals to further prove the usefulness of the models.
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Chapter 3 and 4 illustrates successful application of QSAR in mgd&inoparticles,
which is much more complex than organic molecules. In both casespjibet datasets
consist of nanoparticles with same core structure yet diffewafidce molecular modifiers.
This makes it possible to transform the problem to much simpl@itional QSAR problem.
In chapter 3, computational models were developed for cellular uptakerty of a series of
nanoparticles possessing same core structure (cross-linked ic®) oxih different surface
functional groups. Regression models were successfully developeckdiztpthe actual
cellular uptake value tested in thevitro pancreatic cancer cell line. Chapter 4 takes this
concept a step further. Besides building statistically sigmficammputational models for
predicting the protein binding and acute toxicity properties of aseifi carbon nanotubes,
an external chemical library consisting of 240,000 molecules wetgaNy screened in
seeking for biologically benign nanoparticles. Moreover, the vitiiidist resulting from the
virtual screening exercise was shared with our collaboréorexperimental testing. The
final results confirm the high prediction accuracy of the eslabdl models. This is also the
first-ever study in the area of nanotoxicity to successfullizug computational models for

prioritizing nanopatrticles for experimental testing.
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Chapter 2.

Quantitative Structure-Activity Relationship Modeling of Skin Sensitirafiested by
Local Lymph Node Assay

2.1. Introduction

Occupational skin diseases and disorders compose the prevailegpreeg of
nontrauma-related occupational illnesses in the United StateBh@$e skin diseases include
contact allergy, contact urticaria, eczema, skin cancer, and athditions. Among them,
contact allergy is by far the most common form of occupational ilkiess comprising 90-
95% of cases of work-related dermatoses [8]. Allergic cordactnatitis, which is the
clinical manifestation of contact allergy, is developed when indiNsdaae repeatedly
exposed to reactive small molecules. It is usually consideredtgse IV hypersensitivity
(delayed hypersensitivity) reaction, which is mediated byriplyocytes [7]. Chemicals with
small molecular weight and appropriate hydrophobicity could penatratam corneum and
induce local immune response through conjugating with skin proteirsswitlely accepted
that during the conjugation reaction, small molecules (or their bhoktes) act as
electrophiles, while macromolecules like proteins, act as nucleophiles [9, 10].

To test the skin sensitization potential of small molecules,rakewe vivo animal
models have been developed. The most recently invented local lymph ssage(BLNA)
could provide both qualitative and quantitative measurements of skin zansitipotency of

chemicals [11, 12]. Stimulation index (Sl) is a quantitative parandet@ved from the assay



[13], which records the ratio of lymphocytes proliferation inducedtdsted chemicals
relative to control experiments. A tested compound can then befielhss a sensitizer if it
could achieve Sl value at least to 3.

Despite the fact that the animal models could provide a relbéns for testing the
skin sensitization potential of compounds, it is a remarkably tomsuming and costly to
screen the large amount of potentially toxic chemicals th&t en the environment.
Alternatively, computational approaches, such as QSAR or quantitatideacross analysis,
have been employed to build statistical models for screengmichl libraries and prioritize
suspicious skin toxicants. Quantitative read across analysis tendsimplify the
interpretation of computational models by merely utilizing the prapasest relevant
physicochemical properties or substructures to group chemRalsently, Enoch and his
colleagues performed a quantitative and mechanistic read atwdgsof a group of alkenes
for their skin sensitizing properties [14]. However, challenge® w30 stated, such as the
difficulty of calculating chemical reactivity of compounds that was ss@g@do be critical for
their skin sensitization potential. Meanwhile, the oversimplifiedl recross models may not
be able to capture the molecular structures and features contribtdingheir
biological/toxicological effects (skin sensitization potential this case). For regulatory
purpose, the Organization for Economic Co-operation and Development (QEEDjope
is developing a QSAR toolbox which incorporates multiple toxicold@nrdpoints including
skin sensitization. QSAR toolbox employs the read-cross methochelsther hand, QSAR
analysis intends to find quantitative relationship between cheminattwes and their
biological effect (skin sensitization in this case) by apgytomplex statistical algorithms,

such ask nearest neighbor&NN) or random forest (RF). In the field of skin sensitization
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research, due to good understanding of skin sensitization mechaitismas, possible to
develop mechanism-based QSAR models [14-16]. In these studies, calsermere
empirically grouped into several clusters according to their mesinaof reaction with
proteins. Various modeling approaches were then applied to eacler ctasgenerate
individual skin sensitization model. These models could make predictiorfgpounds
whose reactive mechanism were clarified. To make these mmaets practically useful, a
recent work was conducted to explicitly classify compounds intoifgpenechanistic
applicability domain before mechanism-based models were applied If16jated that
complicated hierarchical modeling should be employed when utilizinghamesm-based
models in practice.

To expand the scope and reduce the complexity of computational moldélal g
statistical QSAR models have been developed. In a recent reMiBly Patlewicz
summarized the modeling work completed on skin sensitization before 2@ statistical
(global) QSAR models were extensively used. Although globakttal models would less
likely produce sound mechanistic interpretation than class/mechaéaisad models, such
models have broader potential application in screening and prioritizxng compounds for
regulatory purposes. To make them useful in practice, theselsrgittruld be thoroughly
validated. In a very recent work [11], Golla conducted a modeling wotke largest dataset
at that time and the results held promise in building global madetskin sensitization.
However, the downside of this research lies in the lack of robtetnek validation and y-
randomization procedure.

In this study, we have built global QSAR models of skin sensiizand compared

their performance in terms of external predictivity with the nodkeveloped using read
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across method (as implemented in the ORCD QSAR toolbox). We baliecabothkNN
algorithm, which has been widely investigated in our group [16-19], andld&Bification
algorithm to a dataset of 471 compounds, which was obtained from ther204 eeport of
Interagency Coordinating Committee on the Validation of Alternatiethibds (ICCVAM)
program in NIEHS [20]. The results showed that the sensitivitygifsgiy and correct
classification rate (CCR) for external validation datasedipten were 89%, 69% and 79%
for kKNN models and 81%, 73% and 77% for RF models. Both kNN and RF models ha
explicitly incorporated the applicability domain (AD). Furttmere, result of y-
randomization and 5-fold external validation demonstrated the robustressalility of the
QSAR models. We also applied the OECD toolbox predictor to makenakpeedictions for
comparison. The results showed significant advantage of our QSAR novdelhe OECD
toolbox in terms of predictive accuracy. In the end, we applied thdels to a group of
chemicals that are suspected to be toxic to skin and sense.drpan®sult further proves

the usefulness of the developed QSAR models in prioritizing compounds for toxitity tes

Table 2-1 Number of compounds tested in each individual vehicle.

Vehicle type No. of Sensitizers No. of Nonsensitizers  Total
ACE 31 14 45
AOO 178 51 229
dH,O 2 2 4
DMF 27 40 67
DMSO 15 16 31

PG 8 6 14
Pluronic L92(1%) 5 2 7
Others 7 4 11
Total 273 135 408

Abbreviations: AOO, acetone&olive oil (4:1 by volume); ACE, acetone; DMF, dirhethy
formamide; DMSO, dimethyl sulfoxide; PG, propylene glycol.
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2.2. Materials and Methods
2.2.1. Data Compilation

The dataset used in this study was obtained from the ICCVANEréigency
Coordinating Committee on the Validation of Alternative Methods) te20]. An original
set of 471 compounds in the report was compiled. Structures of cleme® represented
by smiles strings, which were retrieved from eitRabChem or SciFinder database based on
Chemical Abstracts Service (CAS) registry number. Chemioe¢re removed if the
structures could not be found. Polymers, mixtures, natural productgamorsalts and small
gas molecules were also removed standard chemical descaptddsnot be computed for
such substances. In this dataset, the skin sensitization potentitdstes based on LLNA,
and each individual compound was designated as sensitizer/nonsensdimeoudds were
tested in different vehicles to achieve optimal solubility and pkimetration property. Table
2-1 shows the details regarding the number of compounds tested in baxtd. Vidhere were
cases where the same compound was tested in multiple vehiclethegindere deleted if
conflicting classification results based on different vehicleseeweund. Otherwise, one of
them was kept. Duplicates were then checked and only one of themetaiagd if existed.
After all, 381 (253 sensitizers, 128 nonsensitizers) unique data emgresemployed for
further modeling process.

Based on previous finding [21] biased modeling set (unbalanced &wtivactive
ratio) will result in QSAR models with biased predictivity. Teom this, we applied a
dataset balance procedure prior to further modeling. Insteachddmdy removing a certain
proportion of sensitizers from the dataset, we performed a dimilsearch relying on

nonsensitizers as a starting point to search the active podtdotusally similar compounds.
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This exercise was carried out as followed: (1) generate gtande/dissimilarity matrix
based on the nonsensitizers by calculating Euclidean distance ebheteaeh pair of
nonsensitizers; (2) select structurally similar sensitibased on Euclidean distance between
each sensitizer to the center of chemical space defined bynsdims. After this

procedure, the dataset was reduced to 128 nonsensitizers and 134 sensitizers.

2.2.2. Dragon Descriptors

Smile denotation for each compound in the dataset was generatbd wi
ChemBioDraw software (Ultra, 11.0, Cambridge Software). A &fe2489 theoretical
molecular descriptors were generated using DRAGON 5.5 softwatet¢, Milan, Italy).
The typology of the included molecular descriptors is: OD-conistitat descriptors, 1D-
functional group counts, 2D-topological descriptors, 2D-walk and path dessrifzD-
connectivity indices, 2D-autocorrelations, 2D-edge adjacency mdic2D-burden
eigenvalues, 2D-topological charge indices, 2D-eigenvalue-basedsn@io-atom-centered
fragments, 2D-molecular properties, 2D-binary fingerprints andr@fuency fingerprints.
The initial pool of 2489 molecular descriptors was processed as éalldwirst, descriptors
that have constant or close to constant values for all modelingodetutes were removed.
Secondly, redundant descriptors were searched by analyzingottedation coefficients
between all pairs of descriptors; if the correlation coefliicigetween two descriptors was
higher than 0.99, one of them was removed. After all, the number of didagonptors used

for modeling was reduced to around 700.

2.2.3. Generation of Training, Internal Test and External Validation Sets
It has been widely accepted that the external validatiortig@al step of any QSAR
modeling [22]. Models relying only on training and internal test aetsncapable of proving
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their robustness and usefulness in virtual screening. Furthermorepidm@ateoon of external

validation set should be independent of any modeling process. Therefthes study, the

external validation set was generated by randomly selectingp2@&mpounds in the whole
dataset, while the rest of them were used as modeling sehefmore, to prove the
consistency of the dataset, external validation process wasrmed for five times. The
general principle is that the whole dataset was randomlgetivinto five subgroups at first,
and during each time of external validation, one of them was treated asabx&idation set

while the remaining four subgroups were combined and used as modeliBgdeexercise

was repeated for five times so that each subgroup was predscexdesnal validation set
once. Specifically in this study, in order to maintain the sepsit@-nonsensitizer ratio in
the external validation set to avoid any bias of statistiedults, sensitizers and
nonsensitizers were separately divided into five subsections and tihesh wdh each other

to form the final 5 subgroups. Therefore, the sensitizer-to-nonzemgiditio in the external
validation set was the same as in the modeling set.

Modeling set was further subdivided into multiple training and inteles sets for
internal validation purpose. Sphere exclusion algorithm developed in rowp gvas
employed in this study [23, 24]. The procedure implemented in the pstadgtbegins with
the calculation of the distance matrix D between points that seprecompounds in the
descriptor space. Let Dmin and Dmax be the minimum and maximemests of D,
respectively. N probe sphere radii, R, are defined by the folgpfarmulas: Rmin = R1 =
Dmin, Rmax = RN = Dmax/4, Ri = R1 + (i-1)*(RN-R1)/(N-1), where 2, ..., N-1. Each
probe sphere radius corresponds to one division in the training and tlsetteAt sphere-

exclusion algorithm used in the present study consisted of tlosviod steps: (i) randomly
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select a compound; (ii) include it in the training set; (mhstruct a probe sphere around this
compound; (iv) select compounds from this sphere and include them altein&dethe
internal test and training sets; (v) exclude all compounds fromnatitis sphere from further
consideration; and (vi) if no more compounds are left, stop. Otherwise let m be the number of
probe spheres constructed and n be the number of remaining compoundg(iEét.djm;
j=1,...,n) be the distances between the remaining compounds and the probecsptezse
Select a compound corresponding to the lowest dij value and ggot@istdhis algorithm
guarantees that at least in the entire descriptor spap(gsentative points of the test set
are close to representative points of the training set (tesbsgiounds are within the AD
defined by the training set); (ii)) most of the representaioiats of the training set are close
to representative points of the test set; and (iii) the trgiset represents the entire modeling
set (i.e., there is no subset in the modeling set that is nosesped by a similar compound
in the training set) [24]. Consequently, the sphere exclusion algodtiutd maximize the
diversity of the training/internal test sets in the descripp@ace used for modeling. Because
of the stochastic nature of the algorithm, the composition of trasmlginternal test sets is
different for different original data set divisions.
2.2.4. k Nearest Neighbors Approach

The KNN QSAR method employs the kNN classification principle and a vafiahale
descriptor) selection procedure. Briefly, a subset of nvar (numbegl@fted descriptors)
descriptors is selected randomly at the onset of the calculalibasavar is set to different
values, and the training set models are developed with leave-onesesitvalidation (LOO-
CV), where each compound is eliminated from the training settamategory is predicted

as the averaged category of k most similar molecules, wheraline of k is optimized as
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well (k=1-5). The similarity is characterized by Euclidedistance between compounds in
multi-dimensional descriptor space. A method of simulated anneaithgthe Metropolis-
like acceptance criteria is used to optimize the selectiaesdriptors. The objective of this
method is to optimize nvar and k values to obtain the best possibi®Q\D correct
classification rate (CCR) by optimizing the nvar and k. The amfditidetails of the method
can be found elsewhere. In developikiN- QSAR models, we followed our general
predictive QSAR modeling workflow methodology, which places speamphasis on model
validation. Briefly, we start by dividing the original data sehdomly into a (bigger)
modeling set and a (smaller) external validation set; therlast not used for model
development at all, and the former is designated as a moddindgllse modeling set
compounds are divided multiple times into training and test sets t@rfgphere Exclusion
approach, which ensures that both training and test sets are alhehiverse. The models
are developed using training set data, and their performance nactehezed with the
standard LOO-CV CCR for the training sets and for the test $&e model acceptability
threshold values of the LOO-CV accuracy of the training setshengrediction accuracy for
test sets were both set at no less than 0.7. Models that did nabetfeétaining and test set
cutoff criteria were discarded. Models that passed thesehtidesriteria were used to
predict the skin sensitization activity of the external valatatet to ensure their external

predictive power as discussed in the Results and Discussion section.

2.2.5. Random Forest
In machine learning, RF is an ensemble classifier that certdishany decision trees
and outputs the prediction that combines outputs from individual trees. gowthtah for

inducing a RF was developed by Breiman [25] and Cutler. In thdystue used the R
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implementation of RF (http://cran.r-project.org/web/packages/randastfiodex.html).
During the RF modeling procedure, n resamples (number of treespresucted from the
modeling dataset, each of which is obtained by random sampliny neglacement
(bootstrapping method). Each individual tree is built based on m dessri@dnitrarily
defined) and optimized using Out-Of-Bag (OOB) estimate of esdarget function [26]. In
each step of modeling generation, the number of descriptors to chowsim feach tree node

is tuned to achieve the lowest OOB estimate of error.

2.2.6. Validation of QSAR Models

External validation set, which was randomly selected from origiatset, was used
to verify the predictive power of QSAR models that have been buiitalse multiple
models were built, consensus prediction technique was used by agdtagpredicted value
from each individual model. Therefore, the predicted value for eaohp@und was a
continuous number between 0 and 1. Furthermore, 5-fold external craksivaliprocedure

was performed against the entire dataset to verify the robustness of the QSAR model

2.2.7. Applicability Domain

Each QSAR model should have an applicability domain (AD) since tueintould
only cover a limited range of the entire chemical space. $qadbyifin this study, the AD of
each model is defined by measuring the similarity between compaunreddernal dataset
and ones in training set.

To measure the similarity, the compound is designated as a point in m-dimensional
space (m is the number of descriptors used in each QSAR model). The molecular
dissimilarity of any pair of compounds is characterized by quantitatingubkdean

distance between their representative points in the multi-dimensional spacearfptes for
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compound i and j, the Euclidean distance between them in M-dimensional space can be

calculated with the following equation:

M
dij = Z(Xin — Xjn)2 (1)
n=1

whereXin, Xin (n=1, ..., M) are the values of descriptors for compound i and j. Compounds
will be considered structurally similar if the Euclidean distance latwleem is small.
Therefore, the similarity between external and internal compounds could baideteby
calculating the Euclidean distance between them. The distance thresholdsalsed for
defining AD could be derived as follows:
Dr=y+Zo (2)

wherey is the average Euclidean distance between all compounds and their k nearest
neighbors (k was set to 1 in this process) in the set of nonsensiizetbe standard
deviation of these Euclidean distance, and Z is the tuning parameter to contioiifdré\s
level. Euclidean distand®; between training set compounds and external dataset compounds
in multidimensional chemical space were calculated and compared®wiithe compound
was considered as an outlieDif > D.

For RF algorithm, the chemical similarity was measured wigighted Euclidean

distances using the equation below:

M
2
di,j = Z(anin - Wann) 3)
n=1

WhereW,, is the weight of the nth descriptor, which is the decrease of predictive accuracy

when the descriptor values were permuted for all of the modeling set clemical
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2.2.8. Robustness of QSAR Models

Y-randomization is a widespread technique for validating the robustie@SAR
models. It consists of rebuilding the models using randomized azsiwfi the training set
and subsequent assessment of the model statistics. In this samdiard one-tail hypothesis
test was used to validate the statistical significance AR)&odels. It is expected that
models obtained from the training set with randomized activiesild have significantly
lower predictivity than the models built using training set with real dietsvilf this condition
is not satisfied, real models built based on this training sehat reliable and should be
discarded. Specifically for KNN algorithm, 10 split of training and interrstlgets were used
for the test. In each split, activities of training set compounds weshuffled for 10 times
and then reassigned to each compound. Then, Z score was calculatedrbasediction
accuracy of internal test set according the following formula:

Z=(h—pu)/o (4)
whereh is mean prediction accuracy of QSAR model, p arate the mean and standard
deviation of the prediction accuracy of y-randomization models. Foralgérithm, the
activities of whole modeling set compounds were permuted for 10 anteshen subjected
to build multiple trees. Z score was calculated based on OOB estimrat®wnfBoth Z scores

were compared with tabular values of Zc to obtain statistigalue [17].

2.2.9. OECD Toolbox

OECD has carried out a quantitative structure-activity relationshipscptojéacilitate
practical application of (Q)SAR approaches in regulatory contexts byrgoeets and
industry and to improve their regulatory acceptance. The goal was to devel@?dR(Q)

application toolbox which could provide a means of making this technology readily
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accessible for regulatory use. This toolbox was designed to incorporatets véri

information of chemicals from multiple sources and group these chemicat$ drasheir
molecular structures, features and relevant biological/toxicologieaitefthey exert. Skin
sensitizing property is one of the endpoints included in the toolbox, and thus enables us to
make comparison with QSAR models developed in this study. The toolbox was downloaded
from the OECD website

(http://lwww.oecd.org/document/54/0,3343.,en 2649 34379 42923638 1 1 1 1)Y0.html

and was implemented according to the introductory material attached to it.€Bldeatross”
method in the toolbox was applied to make predictions for the same set of external

compounds used in QSAR model development process.

2.3. Results and Discussion
2.3.1. Model Generation and Validation Using kNN and RF Algorithm

kNN and RF models were developed based on the same modeling seingposist
209 compounds. For kNN models, modeling dataset was split into multiptegbanaining
sets and internal test sets (see Methodology). Models vesatapped based on training sets
and were selected by making predictions for compound of interrialetts. Models with
CCR greater than 0.7 for both training and internal test sets gaalified for further
validation. Table 2-2 summarizes the information of the top 10 repgegs® models.
Altogether, the number of models which satisfied the criteria is 220.

RF models were developed based on the entire modeling datasetimber of trees
built at each modeling step was set at 500. The number of descrgidesmly sampled as
candidates at each tree was optimized using OOB estimateoofas target function and it

was set at 64 with OOB estimate of error at 0.27.
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Table 2-2 Statistical characteristics of the 10 most significant KNNR)®Adels

Model ID Pred. -trn Pred.-test NNN

1 0.827 0.975 3
2 0.819 0.962 3
3 0.819 0.900 3
4 0.841 0.899 4
5 0.841 0.899 3
6 0.834 0.899 3
7 0.830 0.886 4
8 0.808 0.886 3
9 0.878 0.883 4
10 0.871 0.874 5
Average 0.838 0.899 4

Abbreviations: N-trn, number of compounds in the training set; Pred.-trn, the overall
predictivity of the training set; N-test, number of compounds in the test edt:test, the
overall predictivity of the test set; NNN, number of nearest neighbors used datijore
External Validation is a critical step of any QSAR asmly As previous work
demonstrated [22], no correlation between internal and external pregyotwver was found.
In this study, external validation dataset was formed by randteutise and was used for
validation of QSAR models with good internal predictivity. For kNN msdekedictions
were made for these external compounds by all the 220 models tdneh passed the
criteria in the model selection process. Consensus predictionsnvegle by averaging the
predictive values (0 or 1) from individual model. For RF models, ptieds were made by
collecting classifications from all 500 decision trees. Table &8 2-4 summarize the
statistical results of external validation for kNN and RF, respaly. As shown in figure 2-1,
the sensitivity, specificity and CCR of external validation are (8% and 0.79 for kNN

and 0.81, 0.73, 0.77 for RF.

Table 2-3 Results of external dataset validation for 53 compounds with kNN algorithm

Model Consensus Prediction w/o AD Consensus Prediction With AD
Characteristics Exp. Sens. | Exp. Non-sen Exp. Sens| Exp. Non-sens

U7
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Pred. Sens. 24 8 24 5
Pred. Non-sens 3 18 3 16
Sensitivity (%) 89 89
Specificity (%) 69 76

CCR 79 83
Coverage (%) 100 91

Table 2-4 Results of external dataset validation for 53 compounds with RF algorithm

Model Consensus Prediction w/o AD Consensus Prediction With A
Characteristics Exp. Sens. Exp. Non-sens Exp. Sens Exp. Non-s
Pred. Sens. 22 7 21 4
Pred. Non-sens 5 19 3 15
Sensitivity (%) 81 88
Specificity (%) 73 79
CCR (%) 77 83
Coverage (%) 100 81

D
ens

Abbreviations: w/o, without; AD, applicability domain; Exp. Sens., experimeetalitzers;
Exp. Non-sens., experimental sensitizers; Pred. Sens., predicted sen&iterdon-sens,
predicted non-sensitizers; CCR, correct classification rate.

— EKNN
RF

sensitivity

specificity

CCR

Figure 2-1 Comparison of KNN and RF in external validation. The modeling and external
validation set were the same in this comparison.
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Table 2-5 Examples of improvement of prediction with KNN models after applyimgRhe

Without AD With AD
Compounds No.Mod | ConsPred Pred No.Mgd ConsPred Pred
OH
oH 207 0.61 | Sensitizer 47 0.47 | nonsensitize
Propylene glycol
Exp. Cat.: nonsensitize|
OH
177 0.76 | Sensitizer 12 0.48 | nonsensitizg
Isopropanol
Exp. Cat.: nonsensitize
/\/\
Succinic acid ® 1 190 0.72 | Sensitizer 29 0.49 | nonsensitizg
Exp. Cat.: nonsensitize|

=

=

=

Abbreviations: AD, applicability domain; Exp.Act., experimental categor (0os-
sensitizer and 1 as sensitizer); No.Mod., number of models used to make consensus
predictions; Pred., predicted category.

Furthermore, to prove the stability of the dataset, 5-fold eakerross-validation

procedure (see Methodology) was performed and the results are shbigarm 2-2. In the

case of KNN models, the CCR ranges from 0.72 to 0.83. And for RF mdaelSCR ranges

from 0.73 to 0.83 which also supports the hypothesis that the model was stable.

2.3.2. Implementation of the Applicability Domain

1.00

0.80 —

v 0.60

C

© 0.40 -

0.20 -

0.00 - .

_lkNN
E kNN w/ AD
RF
—ORF w/ AD

|

Fold-1 Fold-2 Fold-3 Fold-4 Fold-5

Figure 2-2 Result of 5-fold external cross-validation procedure for KNN ar@FHR

models
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The dataset used for QSAR analysis only covers limited chespeae. Therefore,
each QSAR model should have a well-defined AD within which relipt#dictions could be
made. In this study, AD was explicitly implemented when apph@®AR models for
external validation or virtual screening exercise. For bdtN and RF QSAR models, as
shown on the right part of Tables 2-3 and 2-4, the implementation afoAldl increase the
reliability of prediction (CCR was increased from 0.79 to 0.83 foNkBnd from 0.77 to
0.83 for RF) at the expense of decreasing the number of compounds farpsddictions
could be made. This was further supported by applying AD in 5-foldrreadt cross-
validation exercise where the implementation of AD could incr€&3R for external dataset
in most cases (figure 2-2). As expected, nearly all the samrsitfell into the AD of each
model since most of the structurally dissimilar sensitizeese removed during the data
balancing procedure.

2.3.3. Robustness of QSAR Model

Y-randomization (randomization of activities) was performed toumnsthe
robustness of QSAR models. For kNN algorithm, figure 2-3 shows thelatoon of
prediction accuracy between training set (x axis) and irtéestset (y axis) of all models
generated from both kNN-QSAR procedure and Y-randomization. Standardailone-
hypothesis test was performed and Z score was 2.81, which reauioe less than 0.01.
Subsequently, predictions were made for external compounds usimglgmrzed models.
The result showed that sensitivity was 0.5, and specificity was Wit CCR of 0.46. For
RF models, OOB estimate of error is the target function fomaghg multiple decision
trees. Z score was calculated to be 5.63 based on OOB esbmertror, which result i

value less than 10 Predictions were also made for the same external set of compounds
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which showed that prediction accuracy was 0.44. Therefore, the aboves rebujt

randomization demonstrate the robustness of both kNN and RF models.

* QSAR_model
* Y-randomization

Prediction Accuracy for Internal

0.6 0.7 0.8 0.9 1

Prediction Accuracy for Training Set

Figure 2-3 Statistical distribution of models developed from KNN-QSAR asdlysie dots)
and Y-randomization process (red dots).

2.3.4. Comparison of Prediction Accuracy With OECD Toolbox

To make fair comparison, “read across” models in the OECD toallagxemplyed to make
predictions for the same external validation set used in the Q@A&el development
process of this study. The predicted values for each externglocm ranged from -1 to 2.
According to their criteria, compounds 1) with EAB were assigned to 2; 2) with
10<EC3100 were assigned to 1 and 3) with EC3>100 were assigned to -1. Thenefore
were unable to find a threshold to classify compounds according tpreékected values.
However, figure 2-4 shows the distribution of predicted values fopoamds in the external
set which demonstrates the biased predictivity. Specifically,ymmamsensitizers were

predicted greater than 1 which will lead to low specificityrdgulatory perspective, this will
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result in high false positive rate while applying this prediéborscreening chemical library.
were labeled differently in these two datasets. SpecifickiBromononane, Tartaric acid, 1-
Bromobutane were labeled as nonsensitizers in ICCVAM report vdsilesensitizers in
OECD dataset. These may due to the different experimentalcptetadopted by different
agencies. However, inclusion of these compounds could be potentially foskPSAR
model development

Additionally, by comparing the experimental labels of externséhs#d compounds

between OECD dataset and ICCVAM dataset, we found 3 conflictions where compounds

2.5 1

2.0 4

1.5 1

1.0 -

0.5 A

0.0 4

36912151821¥2730333639424548515457
T ¢ T )
-1.0 - nonsensitizer sensitizer

Compoundsin the external validation set

-0.5 }

Predicted value by OECD toolbox

Figure 2-4 Predictions made by OECD toolbox for the same external validetiosesl for
QSAR model development.

37



a. 1-Bromononane Nearest neighbors in the modeling set

P N N NN
/\/\/\/\/\/ Br y

Exp. Cat: sensitizer

P U U Exp. Cat: sensitizer
EC3(%)=19.6 EC3(%)=17.7

Exp. Cat: nonsensitizer
(25% could achieve Sl 0f 2.8) | -~ T g | T T T T

Exp. Cat: sensitizer Exp. Cat: sensitizer
EC3(%)=9.2 EC3(%)=5.1
b. 2-Acetylcyclohexanone Nearest neighbors in the modeling set
o
o O
o o
=
OH N Exp. Cat: nonsensitizer
0 Exp. Cat: nonsensitizer
(o} © OH

Exp. Cat: 1
Exp. Cat: sensitizer oH
EC3(%)=5.6 Exp. Cat: nonsensitizer

Figure 2-5 Examples of misclassified compounds in the external set and Hrestne
neighbors in the modeling set.

2.3.5. Investigation of Mis-Classified Compounds in the External Dataset

For compounds which were incorrectly predicted, it is interestingvestigate their
nearest neighbors in the modeling set. In this study, eight compaenesnis-classified by
both kNN and RF models. Figure 2-5 shows two examples of mis-predmtepounds in
the external validation set and their nearest neighbors in the mpdseét. For 1-
Bromononane (compound 19), structurally similar compounds could be found in the
modeling set which only differ in the number of carbon atoms. Not isunghy, 1-
Bromononane is predicted as a sensitizer since its neareBboeign the modeling set are

all sensitizers. It is clear from the LLNA data thatlas number of carbon atoms increases,
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the skin sensitization potential will also increase, which is atdat by the decrease of EC3
value. Actually, in LLNA test, 1-Bromononane could achieve Sl to 2.8 wésted in the
concentration of 25%, which implies that it could be a potential skinitigens 2-
Acetylcyclohexanone, which was predicted as a non-sensitizerexgeerimentally classified
as sensitizer. Its nearest neighbors in the modeling setalsreshown in figure 2-5, and
they are chemically dissimilar with each other, especiallyome functional groups. Since
the reactivity profile of compounds contribute the most to its skmsization potential,
chemicals that differ significantly in functional groups will rhdikely have distinct skin
sensitization potential. However, due to the limited chemicalespathe modeling set, it is
unavoidable that not so similar compounds will be considered as neagtgione which
may lead to incorrect predictions. This situation could be possibbved when we include

more data points in proximity to that compound.

2.3.6. Descriptor Analysis of QSAR Models

It is important to analyze the descriptors which were consideeethbst important to
QSAR models. This analysis could help discovering the molecularrésathat were most
relevant to the endpoint being studied. For kNN models, the importanceéestaptor was
measured by its frequency of occurrence in the statistisailyificant models. Table 2-6
shows the names and descriptions of descriptors that were mosintheaised among all
220 KNN-QSAR models developed. Among those, many were related toabenpe of
alkene. The C-C double bond is vulnerable to nucleophilic group presentedtémngr
especially when neighboring an electron withdrawing group. Also, gésiiB02[C-Cl]
and BO1[C-CI] describe the chloride neighboring an aliphatic chhat makes the

neighboring carbon partially positive, which then becomes vulnerable teopides. This
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condition was also discussed in another study [10]. Besides, thagradecarboxylic acids,
esters and hydroxyl groups can also render one carbon electron deplhtel, can
subsequently be approached by electron-enriched amino acid side ichairtgeins. As
previously discussed in the literature [10, 27], several reaction msaia including
Michael additions can be involved in the reaction between haptenskandgrsteins.
Therefore, the presence of electron-depleting functional groupsah siolecules is critical
for their conjugation with proteins

For RF models, the importance of a descriptor was measuredchiatag the mean
decrease of prediction accuracy when all the values for thaifispdescriptor were
permuted [25]. Table 2-7 lists the descriptors that were coesidbe most important to RF
model. In this case, molecular features such as polar surfaeg laydrophilic factor,
electronegativity were considered critical in categorizing camge towards skin

sensitization endpoint.

Table 2-6 Descriptors used most frequently in the KNN-QSAR models

Descriptor Name Frequency of Occurrence(%) Description
nCeoni 15 Number of non-aromatic
I conjugated C (sp2)
14.1 presence/absence of C-Cl at
B02[C-CI] topological distance 02
i presence/absence of C-Cl at
BO1[C-CI] 13.2 topological distance 01
nRCOOR 11.8 number of esters (aliphatic
topological polar surface ared
TPSA(NO) 114 using N,O polar contributions
AR=Cs 95 number of aliphatic secondary
C(sp2)
ARCOOH 91 number of.carb.oxyhc acids
(aliphatic)
nROH 8.6 number of hydroxyl groups
mean atomic Sanderson
Me 8.2 electronegativity (scaled on
Carbon atom)
C-041 7.3 X-C(=X)-X
C-019 6.4 (=CRX)
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Table 2-7 Descriptors considered important in RF-QSAR models

Descriptor Name Mean Decrease Accuracy Description
AAC 1.72 Mean information index on
atomic composition
TPSA(NO) 1.65 Topological polar surface arga
using N, O polar contributions|
SEige 1.30 Eigenvalue sum from

electronegativity weighted
distance matrix

DELS 1.13 Molecular electrotopological
variation
SEigv 1.07 Eigenvalue sum from van ddr
Waals weighted distance matrix
ZM1V 1.05 First Zagreb index by valence
vertex degrees
Hy 1.04 Hydrophilic factor
IC1 1.00 Information content index
(neighborhood symmetry of 11
order)
MAXDN 0.89 Maximal electrotopological
negative variation
MATS2v 0.83 Moran autocorrelation — lag2|/

weighted by atomic van der

Waals volumes
Me 0.82 Mean atomic Sanderson
electronegativity (scaled on

Carbon atom)

Therefore, the analysis of molecular descriptors in statlticsignificant and
externally predictive models reveals important chemical featuwontributing to skin
sensitization potential. In agreement with the previous findings rigess reflecting the
presence of electron-depleting carbons showed up frequently. Bedasesiptors which
capture the overall physical property and reactivity also presgigorting the fact that the
reactivity of molecules is a major contributing factor relati@ chemicals’ skin sensitization
potential.

2.3.6. Application of QSAR Models to a Dataset Including Possible Sasis Organ

Toxicants
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To further apply the QSAR models developed in this study and to prove thei
usefulness, we performed a second external prediction exercise. We obtairesdafoan a
website called “Scorecard” which compiles environmental chemgaspicious to be skin

and sense organ toxicants (http://www.scorecard.org/healthstfieeiicals-

2.tcl?short_hazard_name=skin&all p=Altogether, 786 chemicals along with their CAS

registry numbers were collected. After removing moleculeswieatould not calculate the
descriptor values for, 607 chemicals were employed for the pedieikercise. Every
compound from this dataset has evidence from multiple sources wheas ffiound to be
potentially toxic. To further confirm the evidence, we checked the expaiahassification
of compounds from “Scorecard” which have already been testetl Mg methods (in fact,
143 chemicals on “Scorecard” were already included in the ICC\Y&pbrt). By checking
their experimental classifications, we found that 130 of thene wensitizers while the rest
13 were nonsensitizers. From this, we assumed that more than 908 obrhpounds
included on “Scorecard” were skin sensitizers. The results €figuB) showed that after
removing the structural outliers, approximately 75% of the moleocnks® classified as
potential skin sensitizers when applying kNN and RF QSAR modsgrectively (182 out of
242 for KNN, 175 out of 227 for RF). Therefore, the results of the secoathaktataset
prediction have further proved the usefulness of the QSAR modei®iitizing compounds

with potential skin toxicity.
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Figure 2-6 Apply bottkNN (a) and RF (b) QSAR models for predicting the skin sensitization
potential of compounds in the second external dataset.

2.4. Conclusions

In this study, we employed conventional QSAR approach to analyzeltt®mship
between small molecule structures and their skin sensitizatient@d$ tested by the LLNA
method. After data curation, QSAR modeling based on the remaining 262 compsurgls
kNN and RF statistical algorithms showed good performance on bothahtest set and
external validation set. The robustness and predictivity of QSARela were subsequently

validated by y-randomization and 5-fold cross-validation procedure. Appiigadomain of
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QSAR models’ for both methods was explicitly defined and impleedemturing both
external dataset prediction exercises. Also, we identifiedrigéss which were considered
important in the modeling process. This information further enhancesirmerstanding
towards the relationship between molecular structure and skin sensitization endpoint.
Validated models were applied to a set of chemicals, which are likeky toxic to skin
and sense organs. Approximately 75% of the chemicals were taggedential toxicants by
QSAR models, which proves their accuracy and usefulness. Therdfer@ SAR models
developed in this study could be further used to screen chemicalsnusedmetics and

research labs where the skin toxicity of chemical reagents is a bigronce

44



Chapter 3.

Modeling of MNPs’ Uptake in PaCa2 Cancer Cells

3.1. Introduction

More than 1000 manufacturer-identified nanotechnology-based consumer pra@ucts
now available on the market. Green nanotechnology is particutaiemand to develop
efficient and less-polluting energy sources. However, at |sashe Manufactured
NanoParticles (MNPs) intended for industrial applications are stespéo have potential
toxicities in humans [28, 29] and the public concern about the safetyN&sNs on the rise.
Biological effects could result from exposure and subsequent albsogdtultrafine MNPs
via different routes [30]. Understanding the effects of systemposre to MNPs is of
paramount importance since such exposure may result in their pyemtetrimental
delivery to critical organs. MNPs gaining entry into the systecirculation can immediately
interact with blood cells and then be either distributed throughout the bodyaptured
quickly by macrophages of the reticuloendothelial system. Acutepwated exposure to
MNPs present in commercial products may thus potentially carggemic, cellular, and/or
genomic toxicities.

Experimental nanotoxicology is a very young field [31-35]. Therearemsignificant
scientific gaps in our understanding of the toxicology of nano-baséeriaia that are(i)
already contained in commercial products that are not intendedufoan exposure(ii)

could contaminate the environment while also not intended for human expasdi@))



intended for biomedical applications such as drug delivery, imagingensing. Regardless
of the source or intended application of the nanomaterial, nhpenative that we develop a
much more comprehensive and hopefully predictive knowledge of the effedtsesd
nanomaterials on environment as well as animals and human beingsugkitsome data
exist on the absorption properties and associated toxicities w@iincéypes of NPs after
exposure via the pulmonary, oral, and topical routes, little is known dabeusystemic
distribution, metabolism, elimination, and health effects once thielpa reach the systemic
circulation. There were several reports on the deleterious sftdcimanufactured and
environmental NPs on humans and wildlife. For instance, Radomski[@6pteported that
both multi-wall and single-wall carbon nanotubes caused platelet afjgregnd accelerated
vascular thrombosis. Harhagi al. showed that even at the ‘high dose’ of 1 ug/mL, the C60
fullerenes caused reactive-oxygen species-mediated necrditidareage [37] and thus
proposed C60 fullerenes as an anti-cancer agent [38]. Kane euat that silica NPs
directly interacted with plasma and lysosomal membranes leadim@&* influx, ATP
depletion, and cell death [39]. Kang et al. observed that nanp€tied ROS stress and
DNA damage in lymphocytes [40]. Leonard et al. showed that Ppga@icles resulted in
ROS generation and upregulation of NF-kappaB and AP-1 in RAW 264.7 [d&lls
Pulskamp et al. reported that several carbon NPs (multi-waltegle-avalled, carbon black,
guartz) increased ROS and decreased mitochondrial membrane pateatimse- and time-
dependent manner in rat macrophages and human A549 lung cells [42]. Donaklzlsatset
investigated some carbon nanotubes [43] that reached the lungs okinetehave inhaled
NPs. A remarkable review on the subject of nanotoxicity waantcpublished [44] listing

a few examples of known toxic effects of MNPs.

46



There are numerous difficulties in modelling nanoparticles. Rhstavailability of
data concerning MNPs is sparse in the public domain, making difffeidevelopment and
the validation of computational models requiring relatively largeuwnts of data to obtain
reasonable predictive abilities. Moreover, because of the highwtldiversity of MNPs, it
is a real challenge to develop quantitative parameters tkablde to characterize the
structural and chemical properties of MNPs. Systematic phgsiemical, geometrical,
structural and biological studies of NPs are nearly absent duadtcat and commercial
issues. Therefore computational modeling of nanoparticles is onigrineg to emerge and
first attempts suggest that successful modeling studies onmllf be realized in close
collaboration with experimental scientists. To the best of our kmmelecomputational
nanotoxicology is almost non-existent. Most likely, the comprehensomaputational
nanotoxicology effort would require the integration of several computtiechniques such
as quantum mechanics, molecular dynamics simulations [44-47] andnébemnatics [47,
48]. For instance, Liu et al. clearly demonstrated the usefulnessolgfcular dynamics
simulations i) to reveal the overall changes in the structure of cellnEnbranes caused by
the insertion of carbon nanotubes [45] as welligst¢ estimate the affinity of drug-like
molecules to carbon nanotubes in an aqueous environment [46]. In arsoider study by
Shaw et al. [49], 51 MNPs have been thoroughly testedtro against four cell lines in
different assays to study the biological effects induced ésetiparticles. Different common
statistical techniques have been applied in order to find thelabons between the activity
profiles of nanomaterials, and thus, to discover some hidden structyreryrrelationships.
It is fully expected that, similar to other more traditionaltenals based on organic

molecules, the experimental body of knowledge concerning the lialogffects of MNPs
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will substantially increase in the near future. An example pflaaned large scale study is
provided by the joint project between EPA, NIEHS, and the NIH Clrantenomics
Center. We believe that similar to other chemical and biologdisalplines, the application
of high-throughput assay technologies to test nanoparticlebadtime increasingly popular
in the near term, resulting in a lot of new data and thus enabling large-scalexqnodel

Recently, Puzyn et al. [47] advocated for the utiliy of QSAR modedrgan
important computational nanotoxicology approach. The authors illustrategtringtural
diversity of nanomaterials and concluded that no universal "nano-QSA&&Irman be build
to assess the toxicity of all possible nanoparticles. Puzyh alisa emphasized the need of
experimentally measured parameters such as the size algsmend suggested using these
parameters as valuable variables for the modelling. In the last partraketiew, the authors
report a few QSAR models mainly developed for carbon nanotubes der@ries to assess
either their solubility or lipophilicity. However these multi-limeamodels were developed
using very small datasets (usually less than 20 particles) arenet validated according to
rigorous statistical methods. Up to now, there have been no sighiBtasies for large
experimental nanoparticle datasets to model their induced biologfieaits and validate
these models with external predictions.

The main objective of the work in this chapter is to develop predictive Quantitative
Nanostructure-Activity Relationships (QNAR) or Quantitative Nanostra€tioxicity
Relationships (QNTR) following the same principles of classical QSARNows [50].
However, due to the lack of appropriate theoretical descriptors and available three
dimensional structures, we proposed to build hybrid models involving a combination of

experimentally measured and novel calculated descriptors (see Figueagl3-2). The
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overall objective of QNAR models is to relate a set of NP descriptors toratgnget

property like their potential toxicity (expressed as a binary property wexinon-toxic) or

their cellular uptake (expressed as a continuous value). Such models could then becapplied t
newly-designed or commercially available NPs in order to quickly andezffig assess their
potential biological effects. It is of importance to notice that QSAR modelsafmagic

bullets' at all: the more data we can access to build and validate our models, the more

efficient and accurate they will be.
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Figure 3-1 Comprehensive modeling of nanostructure-toxicity relationshipsRQusing
physical/chemical and/or computed descriptors, cell based assays, or aat@mnlmf both
to predict in vitro activities and ultimately, human effects of MNPs. (CoudEBr. Denis
Fourches)
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Figure 3-2 QSAR modeling of NP biologic profiles using mixed fingerprint®lving both
experimentally measured as well as computationally calculated ptessrisee the text for
details). (Courtesy of Dr. Denis Fourches)

As a proof-of-concept, we describe a case study that involvesgea sEnanoparticles
that have been tested for their effects in differanitro cellular based assays. The series [51]
includes 109 NPs with the same core but different surface madifge have applied
conventional cheminformatics techniques such as QSAR modeling toisstqbhntitative
links between available nanoparticle descriptors and their bialogiofiles; by analogy
with QSAR we termed the latter approach QNAR where therlétt® stands for
nanoparticles. The case study could be regarded close to a conve@Qi8ARI study since
109 nanoparticles had the same core and therefore they weaetehaed by conventional

chemical descriptors calculated for each organic compound used & suddifiers. In this
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study our QNAR calculations led to validated and externally ptigdimodels: these models
relate quantitatively the chemical, physical and geometpogperties of MNPs with their
biological effects measurad vitro in different assays for diverse cell lines. We believe that
this study, which to the best of our knowledge was then the firgtFQahalysis of relatively
large datasets, successfully demonstrates the high potentiahoihébrenatics approaches to

improve experimental design and prioritize toxicity testing of novel MNPs

3.2. Materials and Methods
3.2.1. Datasets

Weissleder et al. [49] recently investigated whether theivalént attachment of
small organic molecules into the same nanoparticles can inctieeisespecific binding
affinity to certain cells and thus have high potential for use in édical applications to
target certain cell lines specifically. The authors achiekiedparallel synthesis of a library
comprising 109 nanoparticles (Cross-Linked Iron Oxide with amieipg, CLIO-NH)
decorated with different synthetic small molecules. Nanopartielese made magneto-
fluorescent with the addition of FITC (fluorescein isothiocyanate)ecules on their
surfaces to enable their cellular measurement. This libraflpafescent magnetic particles
was screened against different cell lines: PaCa2 human eadiccicancer cells, U937
macrophage cell line, resting and activated primary human magegphand HUVEC
human umbilical vein endothelial cells. Unlike the other cell links, RaCa2 pancreatic
cancer cells showed very diverse cellular uptakes for the alffeNPs enabling the

application of QSAR modeling approach to this data.

51



3.2.2. QSAR Modeling

Cheminformatics technologies such as QSAR modeling are widelgdpplmodern
drug discovery workflow. Fundamental principles behind QSAR modelling regrewed in
the introductory chapter.

To quantify the relationships between chemical descriptors aneta groperty (e.g.,
binding affinity, agueous solubility, cellular toxicity etc), QSARdrIling employs complex
machine leaning algorithms (such as Support Vector Machines &rNsarest Neighbors)
that take as inputs the descriptor matrix of compounds and output atguiedatue for the
modeled property. Our group recently published a detailed descriptiopretiative QSAR
workflow [50] as well as various applications of QSAR modelling [52-54].

The QSAR modeling workflow can be divided into three major stepsa dat
preparation (selection of compounds and descriptors), data analysiods)etand model
validation (including the evaluation of its Applicability Domain — ADractically, an
ensemble of curated compounds for which experimental activity is knswemdomly split
into several training and test sets. Models are built usingrdimeng set compounds only,
and then applied to assess the properties of test set compounds.t@menajor goals of a
QSAR procedure is to minimize the error between predicted andvebsectivities.
Thereafter, according to rigorous tests (leave one-many eold rCross-Validation, Y-
randomization etc.) and well defined statistical parametepsesging the robustness and
accuracy, certain models are selected if they have reasqmalietion performances both
for the training (assessed by cross-validation procedures) strgets [22]. On the last stage
of calculations, those selected models are applied to the extafig@tion set compounds in

order to predict their properties.
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We used different statistical parameters to evaluate tHerpemnce of models. For

binary classification problem (like case study 1 — see section 3.1), thegfered as:

Accuracy = (TP + TN) / (NA + NI) (1)
Sensitivity = TP / NA (2)
Specificity = TN / NI 3)
CCR = 0.5 (Sensitivity + Specificity) (4)

Where NA is the total number of actives (or class 1), Nhéstbtal number of inactives (or
class 0), TP is the number of true positives (experimentdilyeacpredicted as actives), TN
is the number of true negatives (experimentally inactives festas inactives), CCR is the
Correct Classification Rate.

For continuous activities, we used.R (squared correlation coefficient — for test set
compounds), &y (squared leave-one-out cross-validation correlation coefficiefior—
training set compounds) and MAE (mean absolute error) for the looeselation between
predicted (¥red and experimental (¥, data (here, Y = Paca2 cellular uptake); these

parameters [22, 54] are defined as follows:

Razbs =1- Z(Yexp _Ypred )2/z (YeXp_ <Y >exp)2 (5)

Qazbs =1- z (Yexp _YLOO)Z/Z (Yexp_ <Y >e><p)2
Y Y

/n

The regression models were considered acceptabfe,if*0.6 and Rys> 0.6.

(6)

MAE =YY =Y,
v (7)

Y-randomization (randomization of response) is a widely used apptoastablish
the model robustness. It consists of rebuilding the models using randorix&tea of the
modeling set and subsequent assessment of the model statigicsxpected that models
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obtained for the modeling set with randomized activities should hawdicagtly lower
predictivity for the external validation set than the models lbgilig modeling set with real
activities. If this condition is not satisfied, models built for tlmedeling set are not reliable
and should be discarded. This test was applied to all data divisions considered inyhis stud
3.2.3. Chemical Descriptors

To enable their computational treatment, chemical structuregegresented by
descriptors that are calculated solely from both composition and ¢iuiiydoetween atoms.
Thousands of descriptors can be calculated using many public or coalnssftware
packages; most popular descriptors include constitutional (e.g., numbrygen atoms in
the molecule), geometrical (e.g., total surface area, molegolame), topological (e.qg.,
average vertex degree, Kier & Hall indices), fragmental.,(eignber of fragments C-C-O,
number of rings), electrostatic, etc. Additional information abbatrdcal descriptors can be
found elsewhere [55].

Molecular Operating Environment (MOE) [56] is one of the commabycavailable
software that affords computation of a wide range of chemicsdriggiors of molecular
structures. In our case study, we used so called two-dimengRIDRIMOE descriptors
including physical properties, surface areas, atom and bond countg, Kedl connectivity
indices, kappa shape indices, adjacency and distance matrix descrgtarmacophore

feature descriptors and molecular charges.

3.2.4.k Nearest Neighbor Regression Analysis
The KNN QSAR method [17, 57] is based on the idea that the activity gifem
compound is predicted by averaging the activitiek abmpounds from the modeling set

which are considered as iksmost chemically similar neighbors. Briefly, our algorithm
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employs the kNN classification principle and the variable delegirocedure: it generates
both an optimum k value and an optinmsar subset of descriptors that afford a QSAR
model with the highest training set model accuracy as estimatethe G.ps Statistical
parameter. A subset oar (number of selected variables) descriptors is selected randomly
at the onset of the calculations. Thar is set to different values, and the training set models
are developed with Leave-One-Out cross-validation, where each compwhidhinated
from the training set and its biological activity is predictes the average activity of the k
most similar molecules, where the value of k is optimized dis(kve 1-5). The similarity is
characterized by the Euclidean distance between compounds in muischme descriptor
space. A method of simulated annealing with the Metropolis-likeptance criteria is used
to optimize the selection of variables. The objective of this method is to obtain thedvest
one-out cross-validated?@s possible by optimizing nvar and k. The additional details of the

method can be found elsewhere [50].

3.2.4. Applicability Domain

Every QSAR model is closely linked to its training set in saigtay that its ability to
extrapolate outside the region of the chemical space defipethi$ training set is not
obvious to assess. The Applicability Domain (AD) of a model isnddfin order to
determine if a given model could or could not be applied to predicdtmty of a query
compound [50-53]. Formally, a QSAR model can predict the target profartyany
compound for which chemical descriptors can be calculated. Howéwercampound is
dissimilar from all compounds of the modeling set, its predictégity is unreliable. In this
study, the AD was defined as a threshold distancdoddween a query compound and its

closest nearest neighbors in the training set, calculated as follows:
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D; =y+Zo 4)

wherey is the average Euclidean distance between each compound kmeatest

neighbors in the training set (whekels the parameter optimized in the course of QSAR
modeling and the distances are calculated using descriptecteskby the optimized model
only), o is the standard deviation of these Euclidean distanceg, isreh arbitrary parameter
to control the significance level. We set the default value sfghrameter Z at 0.5, which

formally places the allowed distance threshold at the mean plus one-half @irntierd

Table 3-1 QSAR modeling of PaCa2 cell uptake for 109 MNPs with different surface
attachment.

ile %%prug?ﬁlllty With Applicability Domain
Modeling External #
el Set Set models C

R | MAE | Rl | MAE overage

(%)
1 87 22 371 0.65 0.18 0.67 0.18 86
2 87 22 282 0.67 0.14 0.73 0.13 91
3 87 22 266 0.72 0.22 0.75 0.21 82
4 87 22 183 0.75 0.19 0.9 0.14 64
5 88 21 145 0.8 0.16 0.78 0.17 76

0.72 0.18 | 0.77 | 0.17 80

deviation. Thus, if the distance of the test compound from any ofntsakest neighbors in
the training set exceeds the threshold, the prediction is considerdidhlareThe detailed

description of the algorithm to define the AD is given elsewhere [50].

3.3. Results and Discussion
All NPs included in the dataset possessed exactly the sanaé gcost. As a result,

each particle was then represented by a unique organic compounddl@tenacally bound
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to its surface. MOE descriptors were calculated for all th@8eorganic compounds. Overall,
150 MOE descriptors were selected after the removal of gessiwith zero variance and
highly correlated ones. Cellular uptakes were expressed &sgdréhms of the numbers of
particles per cell and varied from 2.23 to 4.44. Next, classic?iRQRBvestigation was
performed along with descriptor analysis trying to uncover mdjdbuates responsible for
cellular uptake. External 5-fold cross validation exercise s@ased out as in the case study
1, but employing k Nearest Neighbors (kNN) approach as modedicignique. Results
showed that prediction performances expressed as absolute eatdfiof correlation Ry
ranged from 0.65 to 0.80 for each fold external set (see Table Thé&ye results were
slightly improved (0.67~0.90) by taking into account the applicability domiamodels and
thus removing compounds that are outside models' AD. Y-randomization proeetuadso
performed and no statistically significant model was retdeyeoving the robustness of
QSAR models built on this dataset. To analyze the descriptors ipewlged in statistically
significant models, we investigated the most frequently used pessriand their average
values in nanoparticles showing the highest and the lowest caljptiakes (see Figure 3-
3(a)). Significant differences between top 20 (highest uptake) and bdftglowest uptake)

nanoparticles were revealed by this analysis. Lipophilicity wasd to be the most
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Figure 3-3 Analysis of descriptors used most frequently in KNN-QSAR mod&@9of
nanoparticles. (a) Average descriptor values in MNPs with highest and lca@s? Rellular
uptakes. (b) Example of a lipophilicity related descriptor (GCUT_SLOGSigfificantly
discriminating particles with highest and lowest PaCaz2 cellular uptakes.

determinant factor that discriminates between particles: ralevdescriptors like
GCUT_SLOGP_0, SlogP_VSAO, BCUT _SLOGP_0, and SlogP_VSAl are expressing
particles' lipophilicity. As one could expect, particles with lipdiphsurface modifiers are
likely to have higher cellular uptake (see Figure 3-3(b)). Howthis phenomenon is only
found in Paca2 cell lines. In the other cell lines tested bisdMeler et al. [51], cellular
uptakes measured for the same series of NPs did not reveaigoigitant variations as a
function of particle structural properties. Other descriptoke Imolecular refractivity
(GCUT_SMR_0), specific Van der Waals surface area (basicbase, acidic vsa_acid, and
donor vsa_don), and electrostatic descriptors can distinguish betwemtepaossessing
high or low Paca2 cellular uptakes. Additional investigations amragress to map these
discriminative properties on structures and detect key structumgiménts that most
influence the cellular uptake. These findings imply that a ratiaesign of organic

compounds attached to the surface of nanoparticles is possible usikig Q&dels and
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descriptor analysis. Overall, models assessing the poteeliidlac uptake for particular cell

lines may be of high importance to design novel cell-targetingcjes that can deliver drugs
to these cells specifically. We believe this study is tret €xample of successful QSAR
modeling of NP cellular uptakes. Additional studies are currentlyprisgress in our

laboratory to develop models for other cell lines and particles.aifeto develop an

ensemble of models that could be used as efficient filters foputmmaided nanoparticle
design and thus prioritize synthesis of NPs with the desired biological profile

Challenges of computer-aided nanotoxicology are numerous because cdntipéex

nature of nanoparticles. Although QSAR methodology is well known and hasrzssively
applied in the areas of drug discovery [50] and chemical toxicibgeating [54], its

application to model the biological effects of nanoparticles presentsal challenge for
several reasons:

(1) NPs are complex assemblage of inorganic and/or organic elemensorastimes,
mixed or coated with diverse organic compounds (the exact stoidnyoragying
from one particle to another); classical molecular descriptershas not appropriate
any more.

(2) The composition of a given MNP is not exactly known or may not corregpatie
information provided by the vendors.

(3) Three-dimensional nanostructures including thousands of atoms are ¢toghbjex.
Many computational approaches (lide initio quantum chemistry methods) where it
is challenging even to handle small drug-like organic compouadsot treat such

large systems at all.
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This high structural diversity of MNPs as well as the spavsdélability of data on structure
and biological activity of nanoparticles in the public domain makegulifithe development
and validation of computational QNAR models. Systematic physicoichéngeometrical,
structural and biological studies of NPs are nearly absent. dher@mputational modeling
of nanoparticles is only beginning to emerge but some studies alpzadted out the
usefulness of molecular dynamics simulation and QSAR modelingd {50 assess
biological properties of MNPs. A public database comprisingailable data concerning
nanoparticles from their chemical characterization to thgieemental testing results would
definitely help to initiate and/or speed up the development of currerftiamd researches in
computational nanotoxicology.

The overall goal of our research is to demonstrate the potearafits of using
cheminformatics approaches such as QSAR modeling to obtain prediobwledge of the
chemical, physical, and geometrical properties of MNPs tifi@ttehuman cells and utilize
this knowledge for improved MNP experimental design and prioritized tox@sting. There
are four fundamental hypotheses that drive this research study:

(1) The effects of MNPs on different types of human cells dependhen

physical/chemical/geometrical properties of the MNiRg implies that all such properties,

i.e., composition, size, shape, aspect ratio, surface area, cigégmosphology, zeta potential,
chemical reactivity, structural descriptors should be explieg®perimentally characterized
and/or computed (if possible) in order to understand their individual orbioeoh

contributions that define the biological effects of MNPs. Maleré the nano-scale may
have very different properties in comparison to the same mnla#rtae micron or macro

scale. However, the field has been constrained by the lack ohahtiation of possible
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relationships between these properties and the resulting biolagnchdoints including
toxicity. Confounding this problem is that MNPs often have propediifésrent than those
stated on Certificate of Analysis, and further, these MNPs noftendergo
aggregation/agglomeration in the presence of salts/buffers/medd insthe biological
assays.

(2) High-throughput cellular-based assays with endpoints withirh@ués provide

useful and predictive information about long term biological propediddNPs including

systemic, cellular, and genomic effects. Nano-bio interactioth tmuman cells occur
relatively rapidly, but the effects of these interactions yatibn, production of free radicals,
inflammation, etc.) are manifested over much longer time periodaetty, the field of

nanotechnology is creating new materials far too rapidly teencanventional toxicological
testing feasible and/or practical.

(3) Toxicological data obtained fronm-vitro cellular-based toxicity assays may

correlate reasonably withn-vivo findings It is too expensive, slow, and ethically

guestionable to use animal models to devefopivo screening paradigm for hundreds of
MNPs. In addition, to understand the toxicological implications of MMPHe body, one
would have to have a quantitative bioassay for each tested MNRrdfiese to focus on
liver toxicology, and specifically macrophages, to correlateikeytro findings toin vivo
implications. It relies on the well-known rapid accumulation of plagicin liver
macrophages, part of the reticuloendothelial system, as a meamelo@ vitro/in vivo
correlations.

(4) Development of predictive Quantitative Nanostructure — Act{@MAR) models

using physical/chemical characterization and toxicologica&ests for an ensemble of MNPs.
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OQNTR models correlating descriptors derived from the structured a
physical/chemical/geometrical properties of nanomateridls some toxicological endpoints
will allow the field to both prioritize existing MNPs for tizity testing and to rationally
design benign MNPs for various applications.

Our approach addresses, both in the near- and long-term, a signpiioafgm that
exists in studying the biological activity, and especially,idibx of nanoparticles. The
problem relates to the complexity, time, and cost associatadpaiforming sub-chronic and
chronic toxicity studies of novel nanomaterials in animals [58].p8imthese types of
comprehensive studies are impossible. Thus, high-throughput cellular-bagety tassays
that provide critical and predictive data in just a few hours wouldobgpelling. Moreover,
using well-characterized key physical/chemical propertied structural parameters of
nanoparticles, it would be possible to develop Quantitative NanostruaMreity
Relationship (QNTRs) models to correlate these structural argigalighemical descriptors
of nanomaterials with a known toxicological endpoint. Similar to mtealitional
computational toxicology, these models can be used to predict tomicitgwly designed
nanomaterials and bias the design and manufacturing towards safer products.

In the case study, 109 nanoparticles composed of the sameractarstbut carrying
diverse organic molecules on their surfaces were screenatstaddierent cell lines [51].
PaCa2 cell line was selected for in-depth QSAR study beadube suitable variance of
cellular uptakes among all tested nanoparticles. Each individu@l@aras represented by
the structure of the organic molecule attached to its surfactsti&ly robust QSAR
models linking chemical descriptors and NP cellular uptakes wexelaped and validated

using 5-fold external validation procedure.

62



An important component of data collection and preliminary evaluatidmeisearch
for potential “signal” indicating the presence of implicit stawe-activity relationships. We
must stress that MNPs are complex chemical materials dodebembarking on the huge
task of predictive computational nanotoxicology, we had to prove thattiste and data-
mining techniques could indeed uncover the non-spurious nanostructure — activity
correlations using measured properties of MNPs as structwsaligters. Our preliminary
analysis of these two datasets provides a clear indicatibnuhapproach could indeed bear
fruit.

In summary, the trends in experimental nanotechnology and nanotgyigelguire
not only to explore and rationalize the experimental nanostructur@tyorelationships but,
most importantly, develop models that will help both designing theamaentally benign
nanomaterials and prioritize existing and developing MNPs for tgxiegting. Integrated
data obtained from the characterization of the MNPs and the higingthput cell-based
toxicological screens could enable the development of predictiveRQNddels to correlate

descriptors with a toxicological endpoint.

3.4. Conclusion

Challenges of computational nanotoxicology are numerous. To establish aoldust
predictive models to accurately predict biological responses iagsbcwith a given
nanoparticle, we have considered the Quantitative Nanostructure-Ackelkationships
(QNAR) approach. Using limited available published data we havelajsed statistically
robust QNAR models that can successfully predict the biologifeadte of NPs solely from
their descriptors either experimentally measured or theolgtzalculated. To increase both

accuracy and impact of models on the experiments, we would neesl systematic
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experimental data (structural and biological) that can be lsgdto build and to validate
computational models. Using this data, QNAR approaches will allétned design or
prioritization of novel NPs with desired target (physical and bickdyiproperties. Such
projects enable collaborations between specialists in nanotechinatud) nanobiology,
toxicology, cheminformatics and computer science. The unique blend of canfdim

expertise needed to advance this new challenging field calledatevelopment of rigorous
and extensible interdisciplinary framework that is bound to sigmflg create new forms of
knowledge and advance the field of nanotoxicology. We also call for ansiintel

collaboratory between industrials and academic institutionsngilio share their data:
computational tools can clearly help collecting, mining and sbasialuable MNPS’

experimental data.
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Chapter 4.

QNAR Modeling and Virtual Screening of CNTs for Benign Nanoparticles

4.1. Introduction

This chapter continues the concept of the work in chapter 3 but takes mew level
of innovation and sophistication. We carried on the work on modeling nanogsaxtith the
same core structure but different surface modification moleautech are called functional
nanoparticles. In this case, we are studying the biological ancblogical properties of
carbon nanotubes in varioirsvitro experimental settings.

Single-walled carbon nanotubes are hollow cylinders of carbon vétheders on the
order of one nanometer, lengths ranging from tens of nanometeestimeters, and walls
that are one atomic-layer thick [31]. Like other nanomaterials,ptoperties of carbon
nanotubes depend on their size and atomic structure. Carbon nanotubes haweld&lgen
studied for their potential application in biology and medicine. Whentegeoto an animal,
they enter various organs and cellular departments and bind to @moteIDNA molecules.
These properties offer functionalized nanotubes tremendous opportunitieactmn as
intracellular probes, drug carriers, imaging agents, DNA maalslaiand other medical
devices on the condition that they are biocompatible. In general, thetibiyaof a
nanomaterial is modulated by its surface chemistry, among fattters [59]. Single-walled

carbon nanotubes modified by different types of organic moleculededitac their surfaces



were shown to have noticeably different cellular location and behavluplogical systems
[60]. However, the lack of knowledge on the adverse effect of carbon ub&soton
biological systems and human has impeded the application of thewseialea Some
researchers are fundamentally against using nanomaterials incimeedind in the
environment while others are in favor. The important point herbais liecause there are
many nanomaterials with multiple different uses, it is diftii to test all of them and estimate
their effects on human health. Therefore, some scientists béiav®INP side effects are
acceptable. Considering all factors, testing the effectauodmaterials on mammals and the
environment is necessary. Only with more research, and using fsciestidence,
microscopy tools, and modern analysis methods, can we discover the agesgarr
disadvantages of their applications. Currently, macrophage is one dhrée in vitro
systems that are widely used in the cytotoxicity evaluatiorCHiTs because of their
relationship with respiratory, dermatological and immunologdigzicity [61]. The toxicity
results depend on the purity of CNT preparation and the assay method utilized.

In order to discover biologically benign nanotubes witreoptiori knowledge of the
related targets or mechanism, our collaborators at St. Jude é@fslddospital (Dr. Bing
Yan’'s group) recently decided to expose the biological targetdesest with the maximum
surface structural diversity of nanotubes through combinatorial nanthraey synthesis
[62]. The physicochemical properties of the surface molecules eadculated usinm silico
methods beforehand, and 80 molecules were chosen for chemical syhbesiise their
surface molecules have the most diverse molecular and physidoahproperties based on
the computational results. These molecules were synthesizettactted onto the surface of

CNTs'. The purity of the final products was rigorously tested to achievectieptable range.
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The CNT library was then tested in various in vitro systemsydnag) protein binding assays,
acute toxicity assay, and immunotoxicity assay. And all thia denerated was generously
shared with us to enable computational analysis of the experimental data.

Besides establishing statistically significant relationsihigsveen structural features
of nanopatrticles and their activities, we applied the developed modelstually screening
an in glico designed chemical library consisting of 240,000 molecules which were
considered attachable to the surface of CNTs’ by our collabsraarthermore, the list
containing top-scoring chemical hits was shared with our cobétws for experimental
validation. The results of the experimental validation were then kack to us for

performance analysis. The workflow of this study is summarized ind-#yar

Original dataset
from Dr. Yan

Generate Chemical o
— 5-fold crossvalidatior

G NN NN NN NN NN NN NN NN NN NN NN EENEEEEEEEEEEEEEEEEE,
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Domair molecules

.
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virtual hits
Multiple Multiple test Activity Or\:\ll)i/tr? Cizzitcrtri]:r?els
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Statistical analysis
ONAR of experimental
mode"ng results
Y-randomization

Figure 4-1 The workflow of QNAR model building, validation, virtual screening and
experimental validation applied to the CNT datasetiarsdico designed library.
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4.2. Materials and Methods
4.2.1. Data Source

The data contains a series of 84 particles with the same core structWMT{MNnulti-
walled nanotube) but different surface modifications which aredegiainst six endpoints
including protein binding (BSA, carbonic anhydrase (CA), chymotrypach hemoglobin),
acute toxicity and immune toxicity [62]. Dataset was collecad formatted to enable
subsequent descriptor calculation and model development according torctdatkset
curation procedure [50]. Each CNT was represented by a singleotas surface modifier,
for which chemical descriptors (Dragon and MOE) have been caldulaescriptor values
were range-scaled across all CNTs so that the resultingsvare from 0 to 1. In the case of
multi-task learning, the joint activity matrix was formed bymply concatenating the
experimental values (protein binding) of each endpoint into a singlexmahus, unlike

STL the data matrix included descriptor columns as well as three targéiyaiumns.

4.2.2. Multi-task Learning Algorithm

Multi-task learning is a special machine learning algorithm, wbjatimizes a model
with respect to multiple target properties (unlike more comnmgiestask learning when the
model is optimized to achieve the highest accuracy of prediction of the singgdepewperty).
In QSAR/QNAR settings, MTL is useful in modeling relatiwedmall and structurally
diverse datasets tested in multiple assays. In this study, theetlaontains 84 CNTs with
different surface modifiers that were tested in six diffel@okogical or toxicological assays
(protein binding, acute toxicity, and immune toxicity). More spealfy, CNTs were tested
in bovine serum albumin, carbonic anhydrase, chymotrypsin and hemoglolgim fiioding

assaysn vitro.
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Figure 4-2 Virtual screening of external library result in virtual dleairhits which are
considered as CA non-binders or non-toxic when attached to surface of CNTs'efgairt
Dr. Denis Fourches)

4.2.3. Virtual Screening

Statistically significant QNAR models were utilized to wally screen ann silico
designed library consisting of 240,000 molecules which are considerectiadigable to the
surface of CNTs by our collaborators (Dr. Bing Yan’s group af®&te Children’s Research
Hospital). The biological endpoints are Carbonic Anhydrase (Q#Jithg and acute toxicity.
Each CNT was represented by a single copy of the attadhewchical modifier. The
workflow for virtual screening using QNAR models is shown in Fegdr7. First, we used
similarity search to decrease the number of candidates, wieereih-binder of CA (or non-
toxic) CNTs were used as probes and structurally highlyairndmpounds were selected as

potential hits for further consideration. We also used conservativealpiity domain (AD)
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to ensure the high reliability of top-ranked hits during predictkid.is defined by applying
a distance threshold such that an external compound is considered as out of AD ifape ave
distance between this compound and any compound in the modeling sedtes ¢ginan the
distance threshold. Any compound falling out of AD is considered asuiable to be
predicted by current QNAR models. The final list of compounds pretiotéave low/high

CA binding and low/high toxicity was shared with our collaborators for expatah&esting.

4.2.4. Experimental Testing and Validation

Prioritized molecules were tested experimentally in CA bmdind acute toxicity
experiments by our collaborators. To validate the performanceNé&RQmodels as well as
the virtual screening procedure, we applied the threshold used in mosdeting classify
CNTs as CA non-binders and binders or toxic and non-toxic. Then, surstaéisfics (e.g.,
predictive accuracy) was calculated and statistical west performed to confirm the

powerfulness of the result.

4.3. Results and Discussion
4.3.1. Pairwise Correlation of Protein Binding Profile

Before multi-task learning analysis, we checked the correlanoong the endpoints
that the models will be trained against, namely, BSA, CA, CT dgbtdtein binding. This
is important since it will be difficult for the algorithm tedrn a variety of tasks which are
relatively independent with each other. By pair-wise comparisorffef@int protein binding
assays, we found that the results of CNT’s binding to CA, CTHcre relatively highly
correlated (Figure 4.2). However, CNT binding to HB had poor comelatith the other
three proteins. Therefore, we trained the model to simultaneousty@il’s binding with

CA, CT and HB.
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Figure 4-3 84 CNTs were tested in four protein binding assays and pairwidataorseare
shown. CA, CT and HB have reasonable correlation with each other, whereas BSat@wbrr
poorly with other three proteins.

4.3.2. Single-task and Multi-task Regression Analysis on Protein Binding Profile

QNAR models were constructed for three protein binding endpoints, HB, CA, and CT,
using MTL approach (where models were trained towards multiple dededeotein binding
endpoints simultaneously) in comparison with STL approach applied to tmget
independently. Continuous models were constructed usimgarest neighbor approach
adapted to deal with MTL cases. The results of 5-fold externatevalidation are shown in
comparison with the results from single-task learning approaghr@#.3). Apparently the
results are mixed: none of the models had very high external predacicuracy but some

are statistically significant and acceptable. The latter (withv&ues of ca. 0.5) include
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Figure 4-4 Plots of actual vs. predicted protein binding for the external daé@seaged
over 5-fold external cross validation experiments for hemoglobin (HB), carbamyciase
(CA) and chymotrypsin (CT) binding using single-task learning (A, C, E) and-tasik
learning (B, D, F). Coefficients of determination (regression through theoRgf) are
shown for each plot.
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models for hemoglobin, HB (both STL and MTL) as well as chymotny@Si (only MTL).
No good models were generated for the carbonic anhydrase, CA.tHdofMdTL provided
no improvement vs. STL for both HB and CA but afforded very significaptovement in

case of CT binding.

4.3.3. Unsupervised Hierarchical Clustering Analysis

For qualitative SAR (structure-activity relationship) trend wsial we utilized
unsupervised hierarchical clustering analysis, which allows us tovendhe structural
patterns in the dataset without using the labeling information. @aéstructures of surface
modifiers were characterized with Dragon software. After thestering analysis was
completed, the result was combined with activity information. Thidysisaidentified
specific functional groups leading to high (or low) protein binding prdfligure 4.4). BSA
binding of CNTs correlated rather poorly with other protein binding of €N herefore, we

have considered clusters of CNTs with consistent binding activity against CAn«CHB.
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BSA CA cT HB

Figure 4-5 Unsupervised hierarchical clustering analysis uncoupstant chemical
functional groups that define whether a compound would have high or low protein binding
profile.
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Table 4-1 Summary of statistical results of QNAR modeling for CA binding. Guatdial
QNAR modeling was performed by combining a variety of machine learning technique
(KNN, SVM and RF) with different sets of chemical descriptors (Dragon and)MOE

le:;;n SVM-Dragon RF-Dragon kKINN-MOE SVM-MOE RF-MOE

Sens. 0.70 0.70 0.70 0.70 0.70 0.70

FO Spec. 0.83 0.83 0.83 0.83 0.67 0.83
Acer. 0.75 0.75 0.75 0.75 0.69 0.75

Sens. 0.80 0.60 0.80 0.80 0.70 0.80

F1 Spec. 1.00 1.00 1.00 1.00 0.67 1.00
Accr. 0.88 0.75 0.88 0.88 0.69 0.88

Sens. 0.88 0.75 0.75 0.50 0.63 0.75

F2 Spec. 0.63 0.44 0.75 0.63 0.50 0.50
Acer. 0.75 0.63 0.75 0.56 0.56 0.63

Sens. 0.86 0.86 0.86 0.86 0.86 0.43

F3 Spec. 0.67 0.56 0.67 0.67 0.44 0.67
Accr. 0.75 0.69 0.75 0.75 0.63 0.56

Sens. 0.63 0.63 0.63 0.63 0.50 0.63

F4 Spec. 0.64 0.64 0.55 0.45 0.64 0.55
Accr. 0.63 0.63 0.58 0.53 0.58 0.58

Sens. 0.77 0.70 0.74 0.70 0.67 0.67

Overall  Spec. 0.73 0.68 0.73 0.68 0.58 0.68
Accr. 0.75 0.69 0.73 0.69 0.63 0.67

4.3.4. QNAR Classification Modeling for CA Binding and Acute Toxicity

QNAR classification models for each individual biological endpointewsamstructed using
our standard workflow for predictive QSAR modeling [50]. Stat#ly significant models

were developed for carbonic anhydrase (CA) binding (Table 4.1) @nd #oxicity tested

with WST-1 assay (Table 4.2). In case of CA binding, arbitranyigcthreshold was chosen
at 2.00 (FO/F1, FO is the protein intrinsic fluorescence before Chding and F1 is the one
after CNT binding). Thus, CNTs were grouped into two clagsAshinders and non-binders
(Figure 4.5). Note that any CNT without surface modification iscoosidered for QNAR

modeling. Combinatorial QNAR approach was applied; i.e., different individual
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Table 4-2 Summary of statistical results of QNAR modeling for acuteityxic
Combinatorial QNAR modeling was performed by combining a variety of mataneing
techniques (KNN, SVM and RF) with different sets of chemical descriptoag@D and
MOE).

KNN-Dragon SVM-Dragon RF-Dragon KNN-MOE SVM-MOE RF-MOE

Sens. 0.8 0.88 0.88 0.88 0.88 0.88
FO  Spec.  0.50 0.67 0.50 0.50 0.50 0.50
Acc. 071 0.79 0.71 0.71 0.71 0.71
Sens.  0.80 0.80 1.00 0.80 0.80 0.80
FI  Spec.  0.56 0.67 0.56 0.44 0.44 0.56
Acct.  0.64 0.71 0.71 0.57 0.57 0.64
Sens.  0.71 0.71 0.71 0.57 0.57 0.57
F2  Spec. 0.7 0.71 0.86 0.71 0.57 0.71
Acct. 071 0.71 0.79 0.64 0.57 0.64
Sens.  0.78 0.89 1.00 0.78 0.67 0.60
F3  Spec.  0.80 0.80 0.80 0.80 0.80 0.67
Accr.  0.79 0.86 0.93 0.79 0.71 0.64
Sens. 044 0.67 0.44 0.44 033 0.33
F4 Spec. 0.8 0.88 0.88 0.75 0.75 0.75
Acct. 065 0.76 0.65 0.59 0.53 0.53
Sens. .71 0.79 0.79 0.68 0.63 0.63
OV Spec.  0.69 0.74 0.69 0.63 0.63 0.63
Accr. 0.70 0.77 0.74 0.66 0.63 0.63

machine learning techniqudd\N, SVM, RF) were combined with different sets of chemical
descriptors (Dragon and MOE) to develop six types of QNAR modelsséhisus prediction
was applied during external prediction where final score of eagipaund is calculated by
averaging the predictive values from all six QNAR models merdiai®ve. Calculated
summary statistics from 5-fold external cross-validationsi®wn in Table 4.1. The
cumulative external prediction accuracy was found to be as high%asn the case diNN-

Dragon models. In case of acute toxicity, the arbitrary threshold was4é¥tagurvival
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Figure 4-6 Distribution of CA binding of 84 CNTs in the dataset. Arbitrary threshasgd w
chosen at 2.00 for classification purpose.

percentage (Figure 4.5). Similar approaches were adopted as asthefcCA binding, and

the cumulative external prediction accuracy was found to be as high as 77%4(2able

CNTs between 0.38 and 0.42 were removed before modeling
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Figure 4-7 Distribution of acute toxicity tested in WST-1 assay for 840N 1he dataset.
Arbitrary threshold was chosen at 0.40 for classification purpose. CNTs with survival
percentage between 0.38 and 0.42 are considered as marginally toxic or non-toxiceand we
removed before modeling.
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4.3.5. Virtual Screening of a Chemical Library Consisting of 240, 000 Molecules
Statistically significant QNAR models have been developed foeri@ss of CNTs
against multiple toxicological endpoints (CA binding and acute toxicity). QNAR Inedth
acceptable external predictivity (prediction accuracy>70%) weesl for virtual screening.
In silico designed library containing 240,000 chemicals proposed by the cotlagora
experimental group (Bing Yan’'s group at St. Jude children’s resé@spital) was screened,
seeking for CA non-binders and non-toxic CNTs (Figure 4.6). Firstusel similarity
search to decrease the number of candidates, where the non-binder (of @@&n-toxic)
CNTs were used as probes and structurally highly similar compoweds selected as
potential hits for further consideration. We also used conservativealpiity domain (AD)
to ensure the high reliability of top-ranked hits during predictkid.is defined by applying
a distance threshold such that an external compound is considered as out of AD ifape ave
distance between this compound and any compound in the modeling sedtes ¢ginan the
distance threshold. Any compound falling out of AD is considered asuiable to be
predicted by current QNAR models. Final hit list containing aroundh&dnaals for each

endpoint was sent to the Dr. Yang’s group for experimental testing

4.3.5. Experimental Testing and Validation of High-Score Hits

Prioritized molecules were tested experimentally in CA bindind acute toxicity
experiments by our collaborators (Dr. Bing Yan’s group).

For acute toxicity endpoint, 10 toxic and 10 non-toxic hits (predidbgd
computational models) were tested in WST-1 assay. The cytotoxicitgloiGMT was tested
in THP-1 cells in quadruplicate. The statistical test (one sstiedent’s t-test)p<0.0001)

showed that average cell viability of non-toxic hits was sigaifily higher than that of toxic
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hits. Moreover, all predicted non-toxic CNTs have higher survival peage compared with
that of predicted toxic CNTSs.

Similarly, 10 CA binders and 10 non-binders (also predicted by congmaht
models) were tested usingvitro protein binding assays. Each CNT was tested in duplicates.
To calculate the summary statistics (e.g., predictive accyrdaegshold used in modeling set
was applied to classify CNTs as CA non-binders and binders mr @oxl non-toxic. Note
that one of CNTs in the modeling set was re-tested in ordermnoatize the surface density.
The calculated statistics are shown in Tables 4.3 and 4.4. Bf@flgcute toxicity endpoint,
all 10 CNTs predicted to be non-toxic are verified as non-toxic, Gaodit of 10 CNTs
predicted to be toxic are verified as toxic (total accuracy)86%r CA binding endpoint, all
10 CNTs predicted as binders are verified as binders, and 7 out of 18 WNGh are

predicted to be non-binders are verified as non-binders (total accuracy 85%).

Table 4-3 Summary of experimental validation results for cytotoxicitylettas hits.
Threshold of 40% was applied to classify CNTs as non-toxic or toxic. CNTsbatedaas “0”
(non-toxic) if their cell viability are greater than 40% and “1” (toxidheir cell viability are
smaller than 40%. The calculated statistics showed that sensitivity=108f6 (6
specificity=71% (10/14), prediction accuracy=80% (16/20).

CNT ID II-1 -2 -3 -4 II-5 -6 -7 11-8 11-9 11-10
Average cell viability (%) 48 51 51 46 48 55 58 62 58 49
Standard Deviation (%) 5 3 3 3 2 10 6 7 3 6
Class 0 0 0 0 0 0 0 0 0 0
Predicted Class 0 0 0 0 0 0 0 0 0 0
CNT ID 11-11 11-12 11-13 I-14 11-15 1I-16 11-17 11-18 1I-19 11-20
Average cell viability (%) 29 39 36 39 42 31 41 39 45 40

STDEV (%) 9 8 5 8 11 5 9 11 10

7
Class 1 1 1 1 1 1
Predicted Class 1 1 1 1 1 1
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Table 4-4 Summary of experimental validation results for selected CA biaddmon-

binders. The threshold was set at 2.00 (FO/F1) in the modeling process, and CNTdeate labe
as “0” (non-binder) if their CA bindings are smaller than 2.00 and “1” (binder) if @i
bindings are greater than 2.00. Calculated sensitivity is 77% (10/18ifiapeis 100% (7/7)

and prediction accuracy is 85% (17/20).

CNT ID 11-21 11-22 11-23 -24  1I-25 1I-26  1I-27 k28 11-29 11-30
Average protein binding (FO/F1)  1.68 1.66 1.92 1.72 183 260 174 201 160 265
Standard Deviation 0.05 0.06 0.02 0.03 0.02 0.02.020 0.01 0.06 0.02
Class 0 0 0 0 0 0 0
Predicted Class 0 0 0 0 0 0 0
CNT ID 11-31 11-32 11-33 11-34  1I-35 11-36  1I-37  11-38 1I-39  [I-40
Average protein binding (FO/F1)  4.29 2.78 2.48 2.51 259 3.69 2.37 277 3.41 2.90
STDEV 0.03 0.05 0.08 0.01 0.04 000 0.02 0.06 0.05 0.11
Class 1 1 1 1 1 1 1 1 1 1
Predicted Class 1 1 1 1 1 1 1 1 1 1

4.4. Conclusions

This study presents the first example of a non-proprietary ige¢isin when the
complete cycle of initial data generation, QNAR model building, medeloitation for
virtual screening and computational hit identification, and experehdmni validation was
successfully realized in the area of nanotoxicity screeninge 8xperimental data was
initially retrieved from literature by searching in the pubtiatabase (e.g., pubmed) and
subsequently compiled to be appropriate for cheminformatic and QNAR/senaBy
simplifying the system from modeling complex nanoparticlentmleling organic molecules,
we were able to apply classic QSAR methods to search forlyimdeprinciples that relates
the structural features of nanoparticles with their biologiodl taxicological behavior imn
vitro testing system.

Unsupervised clustering analysis uncovers the functional groups on fheesaof
CNTs’ which are important for their protein binding properties. Subseoquéegmtitative
modeling analysis not only generates statistically signifiGdAR models, but also enables

virtually prioritizing compounds for experimental testing. The hagreement between
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virtually screened hits and their experimental testing resalidates the effectiveness of our
research methods. Our proof-of-concept studies suggest that QNARsnardeindeed
extremely useful for rational discovery of CNTs with the amkiproperties (i.e., reduced

toxicity and low protein binding).
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Chapter 5.

Conclusions and Future Directions

5.1. Quantitative Structural-Activity Relationship Modeling of Skin 8eradion Tested by
Local Lymph Node Assay

Although skin diseases may not be fatal, they severely indenfigh people’s normal
life and decrease the living quality of the patients. Moreover, deefor accurately testing
the skin toxicity potential of compounds using animal models isregtyehigh. According
to the NIEHS report on testing skin toxicity of chemicals [20],diamdard protocol has been
changed from three dose points to only one maximum dose point in oméelute the cost
of testing as well as animal ethic. Therefore, it calisthe development of rigorous and
applicable computational tools for forecasting the toxicity potemtiasmall chemicals.
Previous studies have been carried out to achieve this goal, howekieobwvious flaws
either from limited chemical space coverage or low prediction performance

At the time when this study was performed, it was the mostpegimnsive
computational modeling study on skin sensitization endpoint. We retrssxedompiled the
largest dataset consisting of 409 compounds tested in local lymph nedg. dhe
compounds in the dataset cover a great amount of chemical space withisoblisters
representing a variety of different underlying mechanisms.elgyoving compounds which
were considered structurally significantly different from thgon cluster of compounds, the

QSAR models afford predictive accuracy as high as 83%, forkhtithand RF algorithms,



which was one of highest among all relevant studies. Moreover, dpjycaomain of
QSAR models was explicitly defined for each algorithm to avokrary extrapolation of
the predictions for compounds whose structural scaffolds were noticdiffierent from the
training set compounds.

Besides developing and validating theoretical computational mod#ts existing
data, we also applied the statistically significant modelantexternal dataset which was
obtained from a public website. The performance was validated on thevadapping
portion of the external data. The prediction accuracy was asaBigtb%. This proves the
practical usefulness of our models, which was the ultimate target of eS&iR &udy.

According to the OECD standards for performing QSAR studiesdé® reporting
acceptable value of statistical metric (i.e., residual sungywére), each study needs sound
mechanistic interpretation of the computational models, which wdlate the
physicochemical properties of compounds to the target activitytefeist. In this case, we
analyzed the relative importance of chemical descriptors useacin computational model.
In fact, many descriptors involved with the presence of electrontadeptgroups were found
most frequently appeared in the statistically significant nsd€his also conforms to
previous findings that the presence of electron-depleting groups olnsohatules is critical

for conjugation reaction to occur with proteins.

5.2. QNAR Modeling and Virtual Screening of MNPs for Biologically Benigmbparticles
Chapters 3 and 4 focus on applying QSAR philosophy to model complex naslepart

system trying to understand as well as predict their behasiobiological settings.

Nanoparticles exert special properties compared to theirriaized analogues because of

their size. Manufactured nanoparticles refer to a categorynupaaticles were specifically
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engineered to achieving certain special properties, mosthctve to practical use of human
beings. However, the safety concerns of MNPs only cameaeantiaih during the last 5-10
years when there was a major boom in the application of nanotechnologaily every
field, ranging from energy source to cosmetics. The experitnewngduation of toxicity of
nanoparticles is costly and time-consuming, calling for the deveoprof efficient
computational tools capable of predicting biological events caused NysMrom their
structural and physical chemical properties. However, thrgerno@stacles impeded the
improvement in modeling nanopatrticles: (1) the availability ojdascale datasets, which
reflects the lack of sufficient attention on experimentally lweateng the toxicity of
nanoparticles; (2) structural complexity of nanoparticles, which adsignificant layer of
difficulty in modeling these substances; (3) lack of computationat twoldescribing the
structural properties of nanoparticles, which result from both tkedfattention in this field
and the complexity of the structures. Obviously, close collaboratiomebat experimental
and computational scientists would facilitate the process ofdillne data gap. Data sharing
among research laboratories and institutions is equally importaoteating large scale
datasets for computational studies.

Aiming at trying to resolve the above issues in the field ootaicity, chapter 3
carried out the first ever systemic study on computational modefinganoparticles as a
proof-of-concept. A library of 109 nanoparticles (cross-linked iron owitle amine groups)
decorated with different synthetic small molecules was shaithdus by our experimental
collaborators at Broad Institute of Harvard and MIT. It was prapabat the surface
chemistry of nanoparticles may be critical in determiningnhetro andin vivo behavior of

nanoparticles. The library of nanoparticles was tested inraewevitro cell lines and the

83



results with human pancreatic cancer cell showed the most vigyianitl were considered
most suitable for QSAR modeling. Regression analysis using pseesndescribing the
structural features of surface molecules demonstrated acaeptabstical results. This was
further validated by 5-fold external cross-validation and y-randation procedure.
Chemical descriptors with most discriminative power were alskedi up and provided
insights into the mechanism of action of nanoparticles. However, wemnvet able to have a
chance to test the computational models against other datasets for expenai@fatbn.

To further prove our working philosophy and modeling workflow, chapter 4 describes
a study with similar concepts as Chapter 3, but with additionaiaViscreening exercise and
experimental testing of virtual hits. In the case, we weralgothting with Dr. Yan’s group
from St. Jude Children’s Research Hospital in terms of datanghanodel development,
virtual screening and experimental validation. Similarly, 84 carbotohes (CNT) were
decorated with different surface chemicals. These are Bmichinctional CNTs. It was
proposed that the surface change of CNTs will alter their biological and tgicall profiles.
In this case, not only were statistically significantly meduuilt, but these models were also
applied to screen an external library (also shared by Dr. Yiamipy containing 240,000
small molecules which are considered attachable to the swfaCelTs. The virtual hits
were again sent to collaborators for experimental testing.fiffal analysis on the testing
results indicated that our models are powerful in discriminatiogejr binders and non-
binders as well as toxic and non-toxic CNTSs.

In these two studies, we have established the workflow incorporatliaparative
relationship with an experimental group for data sharing and iexgatal testing to virtual

screening ofn silico designed library for biologically benign nanopatrticles. Dudéhuge
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amount of resources needed for this or even larger scale of stwdiesticipate that more
and more opportunities will stem from collaboration between a velgtiarge number of
laboratories and institutions.

Regarding the technical improvement needed to boost the performamoelels of
this sort, we need more comprehensive tools to describe thetuséd features of
nanoparticles, besides surface chemistry. For instance, shapedistribution and zeta
potential are among many features which have also been consmdaj@dcontributors to
nanoparticles’ biological behavior. By taking into account the surtaesnistry, we were
able to explain the biological variability to a certain degke®vever, to achieve the goal of
incorporating computational models as an official operating proceduevaluating the
biological or toxicological profile of nanoparticles, more strudturBormation needs to be
gathered.

In summary, the chief contribution of this work is the demonstratiah gredictive
modeling of nanoparticles in terms of relating their propertietheo biological effects is
feasible. We hope that this study is promoting collaborative oekttip between
experimental and modeling scientists to enable more comprehensilessbn identifying

behavioral properties of nanoparticles in biological environment.
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