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ABSTRACT
Siying Li: Methods in Randomization Based ANCOVA for Novel Crossover Designs and

Sensitivity Analysis for Missing Data
(Under the direction of Gary G. Koch)

In clinical trials, statistical inference is preferably conducted with less stringent
assumptions. This dissertation proposes a non-parametric method for dichotomous and ordinal
missing data, and it proposes a structure for the hypothesis testing and estimation for innovative

crossover designs.

When data missing not at random (MNAR) arise from randomized multi-visit, multi-
center clinical trials, sensitivity analyses to address possibly informative missing are needed. We
propose a closed form point and variance matrix estimation for dichotomized missing data by
probabilistically redistributing missing counts, adjusting for a stratification factor and/or baseline
covariables. The parameter estimates are computed via weighted least squares asymptotic
regression through randomization based methods. We further extend the methods to sensitivity

analyses for ordinal endpoints.

A novel crossover design, the sequential parallel comparison design (SPCD), where
information from placebo responders in the second period are excluded, serves as a design for
studies with high placebo response. Estimators for sources of comparison in the traditional SPCD
design, as well as other sources of information that are available, are constructed with methods

based on the randomization distribution of the observed population using the nonparametric



mean and variance estimates under the null hypothesis, which control Type I error well in
hypothesis testing. Baseline imbalance is adjusted by randomization-based ANCOVA.
Simulations are performed to study the statistical properties of the proposed methods, which are

compared to those of a repeated measures model proposed by Doros et al. (2013).

Point and confidence interval estimation is also addressed by assuming the study
population comes from a simple random sample of an almost infinite population. A consistent
covariance matrix estimator is constructed and properties of the proposed estimators are studied
with simulations, particularly for coverage of confidence intervals. The nominal coverage level is
achieved with a t distribution for the approximation to the asymptotic distribution when the

sample size is not sufficiently large.

The methodologies are extended to the two-way enrichment design (TED) introduced by
Ivanova and Tamura (2011), and to a related bilateral design that applies the four sequence group

design to two sides of the same subject instead of two periods.
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CHAPTER 1 INTRODUCTION
In clinical trials, statistical inference is preferably conducted with less model

assumptions. This dissertation proposes a nonparametric method to handle dichotomous and
ordinal missing data, and proposes a structure for hypothesis testing and estimation in innovative
crossover designs.
1.1  Handling Random Imbalance of Baseline Covariables

In the statistical analysis plan of a clinical trial, the statistical methods to determine if there
is a significant treatment effect need to be stated in an a priori way before the clinical trials are
actually carried out. Oftentimes, assumptions have to be made for certain statistical models to be
valid, and they are difficult to test before data analysis. Therefore, methods requiring fewer

assumptions are more desirable than those complicated ones, especially in the regulatory setting.

This consideration led to the development of nonparametric randomization based analysis
of covariance (ANCOVA). In randomized clinical trials, the covariable imbalances (if any)
between treatment and control groups are due to random chance, since the treatment assignment

is random.

The details about nonparametric randomization based ANCOVA for analyzing
randomized clinical trials can be found in (Koch et al., 1998b; LaVange, Durham and Koch,
2005). Briefly, differences between treatment groups with respect to outcome variables and
covariables are analyzed simultaneously using weighted least squares (WLS), restricting the
covariables differences to be zero. As mentioned before, in a randomized clinical trial, the
expected value of such differences for covariables would in fact be equal to zero.

1



Let y,; be the outcome of subject i in group g, and let xg; = (xgil, ...,xgim)' be the pre-
specified vector of m covariables, and let f;; be the response-covariable (m+1) dimensional

vector (g, x4;)". Then the sample mean of the outcome and covariables of treatment g is ¥, =
=" yiand X, = —Y 9 x. And fo = — 300 foi = (9, %,) is the sample mean of the
ng 2i=1Ygi 9 = ny Zi=1%gl- 9 = ny %=1l gt = Wgr Xg p

response-covariables of subjects in group g and f = %Z§=12?jl fgi is the sample mean of all

subjects in the trial. Let d = (d,, d)’ be the vector of differences in means, where d,, = (¥; —
y2) and d, = (%1 — X5).

There are two ways to estimate the variance of the difference d. One is through the
randomization distribution of d for the finite population selected for the clinical trial assuming
the strong null hypothesis Hy: v1; = y2; = V., that each patient would have the same outcome
regardless of the assigned treatment. Under this null hypothesis, the covariance matrix for the

difference d is expressed as

n 2 Mg B .
Vo= iy 2. Do = Al = 7 (1.1),

g=1i=1
Since V, is the covariance matrix for the randomization distribution of d, permuting all
possible randomized assignments to the two treatments for the patients in the clinical trial, it is a
matrix of known constant values (rather than random variables), with a conditional nature that

the response of this finite population is known.

Alternatively, under the assumption that the patients in the clinical trial are a simple
random sample of a very large population, and thus are representative of this large population, an

unbiased estimator for the unconditional covariance matrix of the difference d as shown in (1.2).



2 1 ng
V:z—z = follfgi = fol 1.2).
$ — ni(ni_l) L [fgz fg][fgl fg] ( )
g=1 i=1
In this case, the covariance matrix Vg is a random matrix instead of a constant matrix, in

a sense that the randomness comes from the variability of the simple random sample of patients

and the random assignment of treatment groups, regardless of H,,.

Applying the non-parametric analysis of covariance to d, it has the form of a linear

regression as below,

d= [ZZ] 2 7Zb= [ép] b (1.3)

where 2 denotes “is estimated by”, 0,, denotes a p dimensional vector, Z = [1 0,]’, and b is the
adjusted mean difference for the response, i.e., the adjusted version of d,,.
Applying WLS, determination of b can be obtained by,

b=ZV1D)ZVIf=d, -V, Vad, (1.4)

Vyy Vyx : -
where V = Vov and V can be either V, or V5 defined above.
yx ¥V xx

An estimator for the covariance of b is expressed as,
Vo = @Z'V'Z)t =V, =V, VixVye  (1.5)
When V, is used in place of V, V, is an exact variance of the randomization distribution

of the adjusted treatment difference b; and when V is used, V}, is a random matrix and a

consistent estimator of the covariance matrix of b.

Since the variance V), of the adjusted mean difference b is smaller than its counterpart V,,,,

of the variance of the unadjusted mean difference d,,, the test based on the adjusted difference b



is more powerful than that based on d,,, and the confidence interval of b is narrower than that of
d,,. The variance reduction of b relative to d,, is based on the correlation between the response

and the covariable, and the stronger this correlation, the more variance reduction produced (Koch

etal., 1998).

The nonparametric ANCOVA can be extended to multivariate response variables, and
other types of data including dichotomized, ordinal, and time to event data (Tangen and Koch,
1999).

1.2 Handling Missing Data

In public health studies, repeated measurements of the same subject over time are useful in
a number of different contexts, including, but not limited to, reliable estimation by several
measurements close in time, testing for a change over time in an experimental study, or

comparisons for a difference between treatment groups over time.

In a clinical trial, missing data were planned to be collected but are not present in the
database. No matter how well designed and conducted a trial is, some missing data is almost
always unavoidable. The consequences of missing data can be wide-ranging in that they might
lead to a perceived or real reduction in trial quality and validity, and a reduction in the statistical

power of the study.

When missing data are unavoidable and exist in the collected data, assumptions about the
missing data can be made. Often, dropout is due to some specific reasons, related (i.e. adverse
events, or lack of efficacy) or unrelated (i.e., move out of the neighborhood) to the treatment.
Investigators are urged to collect as much information about the reasons of withdrawal as

possible when missing data are unpreventable.



The validity of many statistical models that can handle missing data relies heavily on the
assumptions for the missing data. For example, generalized estimating equations (GEE) must be
carried out along with the missing completely at random (MCAR) assumption and the mixed
models for repeated measures with a missing at random (MAR) assumption. These assumptions

might not be realistic in real life, and possibly not even verifiable.

With the withdrawal reasons, assumptions of missingness could be checked; or when the
assumptions could not be verified, sensitivity analyses could be performed under different

scenarios to test against the robustness of a study result.

Besides the assumptions of the missingness, the handling of missing data is complicated
by the form of the study outcome, for example, non-normality of data, such as dichotomous data,
ordinal data, or skewed continuous data.

1.2.1 Missing Data Mechanism

We now review the mechanisms that lead to missing data, and in particular the question
of whether the variables that are missing are related to the underlying values of variables that are
observed or not observed in the dataset. It is crucial to understand the missing data mechanism
before any analyses are carried out since the properties of missing data methods rely heavily on

the nature of the dependencies in these mechanisms.

The role of these mechanisms was largely ignored in the analysis of missing values until
these concepts were formalized in the theory of Rubin (1976), through treating the missing data
indicators as random variables and constructing a joint distribution among values of interest and
the missing indicators. The following notation and terminology is based on the standard missing
data framework of Carpenter and Kenward (2012), which is developed from the original paper of

Rubin (1976) but is modified to fit the modern statistics literature on missing data.



Notation

In the context of a longitudinal trial, we assume that measurements are obtained at J visits
attimesj = 1,---,J for independent subjects i, i = 1, -+, n.

Let Y = (y;;) denote an (n X J) rectangular data matrix of the measurements without
missing values, with the i-th row y; = (y;4, -+, ¥;;) being the complete data vector of outcomes
for subject i.

Additionally, let X; be the design matrix of covariates for subject i.

Let r; = (71,-+-,7i;) be the missing data indicator vector. Specifically, let ;=1 if y;; is
observed and r;;=0 otherwise.

Given the missing data indicator r;, we can partition y; into (y?, y™), with y? being the
observed measurements in y; and y* being the missing measurements.

The joint distribution of the data and the missing indicator can be formulated as follows

and factored into two parts:

F? i ril X, 0,9) = f(y7,y11X0, 0)f (rily?, yi' Xi, W) (1.6)
where @ denotes the parameter vectors for the data and ¥ denote the parameter vectors for the
missing data mechanism. The first factor on the right-side is the marginal density of the
measurements, and the second factor is the conditional density of the missingness on the
measurements.

Missing Completely at Random (MCAR)

Under MCAR, the missingness is assumed to be unrelated to either the observed

information or the missing, i.e.,



f(rily?'y?/l'xi'lp) = f(rlllp) (17)
Note that this assumption doesn’t mean that the missingness itself is random, but rather

that this distribution does not depend on the data values.
Therefore, the joint distribution simplifies to
fy?. ¥V rilX., 0,9) = f(y?, y"1X:,0)f (i) (1.8)
which indicates the measurement and the missingness are independent.

The missing data ¥ can be now integrated out from the joint distribution, and so the

joint distribution of the observed measurement and the missing indicator becomes

f?.rilX:, 0,%) = f(y71X:, 0)f (i) (1.9)
And thus estimation of @ can be solely based on the observed information y? and does
not depend on the nuisance parameter .
Missing at Random (MAR)

An assumption less restrictive than MCAR is that missingness depends only on the

components that are observed, i.e., ¥?, and not on the components that are missing, i.e., y™.

Under MAR, conditional on the observed data, the missingness is independent of the

missing measurements, which is,
fQridy?, v, X ) = f(rily? . Xo ) (1.10)
Therefore, the full data density becomes
f?. vl 71X, 0,9) = f(y?, y!'1X, 0)f (rily?, X, ¥) (1.11)
The joint distribution of the observed measurements and the missing indicators can again

integrate out the missing data and become



Fy?. 71X, 0,9) = F(y?1X:,0)f (rily?, Xi. ) (1.12)

With MAR assumption, the model f(r;|y?,X;, %) does not need to be specified to
obtain valid likelihood based inferences, and only the model f(y?,y{”|Xi, 9) IS needed.

MCAR and MAR are often referred to as ignorable missing. The ignorability refers to the
fact that once f(r;|y;, X;) not depending on y can be established, f(r;|y;, X;) can be ignored
and a valid likelihood based inference can be obtained given that we model f(y?,y’i”|Xl-, 9)
correctly.

Not Missing at Random (NMAR)

If the measurements are NMAR, which means r; depends on ¥, the joint distribution

can no longer have y integrated out. No simplification of the joint distribution is possible.

Under the MNAR assumption, the probability of an observation being missing depends

on the underlying missing value, and the joint distribution has to be written as in (1.13),

FO2. X, 0,9) = [ f(y?2, y¥|X 0)f (rily?, ¥, X )yl (1.13)
and inferences could only be made by making further assumptions (Molenberghs and Kenward,

2007).
Monotone versus Non-Monotone Missingness

If the data are arranged as one record per subject, with each record containing outcomes
of all visits of a subject, the monotone missing pattern applies when variables can be arranged so
that missing values are always occurring as one block at the end of data records; in the case of a
non-monotone missing pattern, missing values cannot to be arranged in this way and may happen

anywhere in a study record.



In the clinical trials setting, monotone missingness happens when a study subject
withdraws from the trial prematurely and doesn’t come back to the study, which is commonly
referred to as dropout or loss to follow up in longitudinal studies; while non-monotone missing is
the case when a subject misses one or more intermediate visits but does come back to provide
subsequent measurements (O’Kelly and Ratitch, 2014). A dataset is considered as monotone
missing only when all the subjects in the study have a monotone pattern, but it is considered as
non-monotone missing if there is intermediate missingness in at least one subject.

1.2.2 Approaches for Handling Dropouts by Parametric Model

Complete Case Analysis

One approach to handling missing data is to have analyses that exclude all data from any
subject who drops out. This method is referred to as a complete-case analysis, which is
performed by excluding any subjects that missed any intended measurement. It is emphasized
that this method is very problematic and is rarely an acceptable approach in most occasions
(Fitzmaurice, Laird and Ware, 2012). It will yield unbiased estimates of the mean response
trends only when the dropout can be assumed as MCAR. When dropout is MCAR, the study
completers are a random subsample of the original sample from the population. However, even
in occasions where the MCAR assumptions might hold, a complete-case analysis is not an
appealing one since it leads to reduction in the number of subjects and hence results in reduction

in statistical power.
Generalizing Estimating Equations (GEE)

GEE is a semiparametric method that models a known function of the marginal
expectation of a clustered dependent variable via a linear or non-linear link function for a linear

function of one or more explanatory variables (Liang and Zeger, 1986). It is based on the concept



of estimating equations and the use of a non-linear link function for the marginal model of the

correlated response can facilitate the analyses of continuous or discrete responses.

The correlation of the clustered dependent variable can be specified via a working
correlation matrix and the consistency of parameter estimates do not rely on correct specification
of the correlation. The dependent variable doesn’t need to have the same number of elements
across clusters and thus in the longitudinal data context, missing data is allowed. However, if the
data is MAR, as GEE methods only require a model for the mean response but do not specify the
multivariate joint distribution for the response vector, the standard GEE methods do not provide

valid estimates of the regression parameters (Fitzmaurice et al., 2012).

An adaption of GEE methods for the MAR assumption is to model the missingness
f(r;ly;, X;) and weighting the analysis by including it in the estimating equations accordingly
(Robins, Rotnitzky and Zhao, 1995).

Mixed Model for Repeated Measures (MMRM)

MMRM is a likelihood based method that assumes a multivariate normal distribution for
the repeated measurements. The mean structure can take into account the time effect and thus the
time effect within subjects at different measurements can be modeled. The correlation within
subjects can also be modeled by the covariance structure of the repeated measurements through
assumptions of dependence among the different measurements. This approach includes all
subjects with at least one observed measurement, and the missing measurements are assumed to
have the same distribution as the observed. Since MMRM is likelihood based, it provides valid
inference on the model if the data are MAR when the joint distribution of the responses is

correctly specified (O’Kelly and Ratitch, 2014).
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1.2.3 Approaches for Handling Dropouts by Imputation
Ad-hoc Single Imputation

Imputation replaces the missing values with plausible ones. There are many approaches
to do single imputation. The missing values could be filled in from an individual imputation,
where these values are coming from the same individual with the actual missing values, or from
a group imputation, in which information from the entire sample or a portion of the sample is

used to fill in for the missing value of an individual (Fitzmaurice et al., 2012).

Two of the most commonly used individual imputations are, baseline observation carried
forward (BOCF) and last observation carried forward (LOCF), where either the baseline value or
the last observed value is substituted for the missing values of the study subject. For example, in
the LOCF case, if an individual was supposed to have five measurements but only the first three
measurements were observed, the last two missing measurements would be filled in with the
third value as it was the last observed value before the loss to follow up. The assumption of
BOCF or LOCEF is conservative in estimating the missing outcome if a subject does benefit from
the trial. The imputation using BOCF or LOCF would underestimate the variability of the
estimation and result in smaller standard errors estimate. Other single imputation includes the
individual mean substitution, the group mean substitution, the individual worst case substitution,

or the interpolation of last and next observed values if the missingness is not monotonic.
Multiple Imputation (M)

Multiple imputation was first introduced by Rubin (1987) to handle missing data in sample
surveys, and has been developed to spread to other areas including observational studies and
randomized clinical trials. The application of multiple imputation has become very popular in

recent years as many analysts become familiar with it, and as many software packages such as
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SAS, R, and Stata have included procedures or packages to deal with it, which reduces the
computational burden and complexity. Multiple imputation is a more flexible and powerful tool
to handle incomplete data than the other parametric methods such as GEE and MMRM, in that it
has both an imputation model and an analysis model and these two don’t have to be the same,

and it is more acceptable in most settings than the single imputation.

Multiple imputation adopts a three-step approach to fill in the incomplete data and
analyze the resulting data structure. First, an imputation model is assumed for the missing
outcomes, and plausible values for missing observations are imputed with a draw from the
imputation model, usually as a posterior distribution of the missing values conditioning on the
imputation model covariates and any previous visits is assumed. This process is repeated to
reflect uncertainty about the missing values, resulting in the creation of a number of complete
datasets. The number of needed imputations depends on the fraction of missing data, and usually
a number of K>5 would be sufficient for most applications to obtain acceptable properties (that
is, correct confidence interval coverage) (Carpenter and Kenward, 2012). Second, each of these
K complete datasets is analyzed with an analysis model, which need not be the same as the
imputation model. Finally, the results are combined for overall inference using Rubin’s

combination rule (Rubin, 1987).

Rubin’s combination rule is as follows. Assume the parameter of interest of the complete
data analysis is 6 and denote 8, and 7, as the point estimate and variance estimate of 8 from the
k-th imputed dataset, k = 1, ..., K. Then the MI estimate of 8 can be expressed as the average of

the estimates from the K complete datasets,

K
~ 1 ~
Oy = — .
W=z 6 (114)
k=1
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The measure of precision for 8,,; consists of two parts, the between imputation variance
and the within imputation variance. Define
K
W= z 7. (L15
k=1
to be the average within imputation variance, and
1 K
B=2) B=0uw) (116)
k=1
to be the between imputation variance. Then an estimate of the variance of 8, is given by
. B 1\ .
Vi =W + (1 + E) B (117)

A few practical considerations occur in the first step of multiple imputation. Imputation
can be performed in a variety of different ways, depending on the type of the missing data
pattern (monotone or non-monotone), and depending on the type of missing variables (i.e.
continuous or categorical). One of the common practical considerations is to impute the non-
monotone missing data to monotone. When all response variables are continuous for data with
non-monotone missingness, imputation can be done by drawing from a Bayesian posterior for
the multivariate normal distribution, with a Markov Chain Monte Carlo (MCMC) simulation.
MCMC will impute data partially, filling in only those missing values that have a non-monotone
pattern (O’Kelly and Ratitch, 2014). This method is most suitable when all variables included in
the imputation model are continuous, however, this approach has also been applied when some
variables are categorical; and it is usually the case that the covariates in a model include both

continuous and categorical variables. To apply MCMC imputation, nominal categorical values

can be dummy-coded as a set of binary variables, while ordinal variables can sometimes be
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treated as continuous in this partial imputation step. However, in the clinical trial setting, when
multiple clinical centers need to be adjusted for, and when the number of centers is large (>10),
the center variable might have to be removed from the multivariate normal model for the partial
imputation. This assumption could be reasonable if the non-monotone missingness doesn’t vary
by center, otherwise the imputed values would not have taken into account the variability
introduced by study center.
1.2.4 Sensitivity Analyses

Sensitivity analysis in missing data situations is usually carried out through stressing the
assumption of MAR. It is important to examine the sensitivity of statistical inferences when
departures from the MAR assumption are in question, because this assumption cannot be verified
using the data (O’Kelly and Ratitch, 2014). In this regard, the primary purpose of a sensitivity
analysis in a clinical trial is to seek to answer the question that if plausible unfavorable outcomes
happen to the withdrawal in the experimental treatment, does the significant results drawn from

the primary analysis remain credible or not?

For example, the loss to follow up outcomes that are suspected to be different from what
would have happened if remaining in the study, could be made worse by a clinically significant
value, if the outcome is continuous, or by an odds ratio if the outcome is categorical. This is
often known as the delta adjustment method (National Research Council Panel, 2010), where
delta is the clinically important difference, or odds ratio. Delta adjustment could be applied to all
the treatment groups, or it might be of more interest to be used to penalize the withdrawals in the
experimental treatment (O’Kelly and Ratitch, 2014). Tipping point analysis is the application of
a sequence of delta adjustments, by positing a wide range of assumptions from less pessimistic to

more pessimistic to explore the influence of missingness on the study conclusion (National
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Research Council Panel, 2010). The tipping point in this range of assumptions is the value that
overturns the conclusion from being favorable to the experimental treatment, to being not
different from the reference group. In terms of hypothesis testing of a treatment effect, the
tipping point is the value at which the p value of the test changes from significant to non-
significant.
1.3 Crossover Studies

Crossover studies are experimental designs for which each subject is randomly assigned
to receive a sequence of treatments during consecutive periods for some response variables.
There are many possible designs of crossover studies, depending on the number of treatments to
compare, the number of periods of each treatment, and the aim of the trials (Jones and Kenward,
2014).
1.3.1 Traditional Crossover Designs

One of the most well-known crossover designs is the one with two sequence groups for
two treatments in two periods. This is also the simplest crossover design, which is known as the
2x2 design, or the two-period two-treatment design. The main advantage of the crossover study
is that treatments are compared within subjects, where every subject provides two periods of
different treatments and thus removal of the subject effect is enabled by direct comparison within

subject (Jones and Kenward, 2014).

Secondly, since every subject provides two response measurements in the two periods, at
a fixed sample size, the power of the treatment comparison is improved. In addition, since all the
patients would receive the experimental treatment in one period or another, the dropout rate in
this design could be minimized, at least for the first study period. For example, Pincus et al.

(2001) performed a randomized crossover trial of an experimental drug versus active control in
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ambulatory patients with osteoarthritis of the hip or knee and achieved a low dropout rate. Of the
227 enrolled patients, 218 (96.0%) patients completed the first treatment period and 181 (79.7%)

completed both treatment periods.

However, the feature of repeated measurements in crossover designs brings
disadvantages along with its advantages; for example, the possibility that the effect of an earlier
period would be carried into the later period, and the potential risk of more dropouts due to
longer study duration compared to a single period trial.

Statistical Methods for 2x2 Design

Tudor and Koch (1994) review nonparametric methods for analyzing the traditional
crossover studies comparing two treatments with small sample sizes and the parametric
counterparts when sample sizes are sufficiently large. The methods apply to various types of

outcome including continuous, dichotomous, ordinal, and censored time-to-event response.

In particular, for a 2x2 crossover design with a univariate continuous outcome, the
structure for the inference is as shown in Table 1.1.

Table 1.1 2x2 Design Parameters

Group Period 1 Period 2
AB U+m+ 1y U+m, +15+ Ay
BA U+m+ 1 U+T, +14+ Ap

T, and T are direct treatment effects of treatment A and treatment B, and ; and m, are
period effects of periods 1 and 2, and A, and A5 are carryover effects of treatment A and
treatment B respectively.

With small sample sizes, observed statistics are compared to permutation distributions to

provide p values for the hypothesis testing of similarity of treatment effects Hy,: 74 = t5 using
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data from both periods in a few steps. In the first step, one would test H,, where
Hy:2(t5 — t4) — (A5 — A4) = 0. If the H, is contradicted, one moves on to test the equality of
carryover effects Hy,: 44 = Ap; and if this similarity is not contradicted, one could have
confidence that the contradiction of H, is mainly due to the difference in treatment effects t, and
7 and the equivalence of testing H, and H,; or if this equality of carryover effects Hy, is
contradicted, meaning there are different carryover effects by the two treatments, which may
partly account for the contradiction of H,, one would have to move on to compare the difference
between treatments only using data from Period 1, which does not depend on the carryover
effects.

The above tests in each step could be replaced by the asymptotic tests with approximate
distributions when the sample size is sufficiently large (sample size per sequence >15).

A more comprehensive review of analyses in the traditional 2x2 design and other higher
order designs is provided in Jones and Kenward (2014).
1.3.2 Innovative Two-Period Crossover Designs

Innovative crossover designs can have multiple designs embedded within them, which
are also in the general class of re-randomization designs. Instead of re-randomization at the
beginning of the second period, randomization before the trial could be performed to get the
randomized sequences. Without loss of generality, this literature review limits the scope of the
discussion to the design with fixed randomization sequences at the initiation of the study without
re-randomization later.

With a two-period design comparing test treatment (T) to placebo treatment (P), four
sequence groups P:P, P:T, T:P, and T:T could be of interest. Designs with some combination of

those sequence groups have provided useful features for the studies of different patient
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populations. Other advances of crossover designs with this structure could be made use of with
other added design features, such as enrichment.
Enriched Two-Sequence Design

Common crossover designs that use two of four sequence groups are the T:P, and P:T
design (the 2x2 design), the T:P and T:T design, and the P:P and P:T design. The latter two-

sequence designs are usually used with enrichment features.

The randomized withdrawal design, with the T:P and T:T sequence groups, makes use of
only the patients who respond to the drug in the first period for continuation to the second period.
This design is helpful when there is heterogeneity in the patient population itself to respond to a
treatment. For example, Temple (1994) discusses situations where the gold standard randomized,
double-blind, placebo-controlled study design with continuous treatment might not be able to
provide an optimal study when certain diseases are treated, such as irritable bowel syndrome
(IBS), a gastrointestinal disorder, which he suggested might be due to IBS being a “common
response to a diverse group of abnormality”. The FDA has proposed to conduct clinical trials to
include only IBS patients identified by their clinicians as responders to the study treatment

(Dunger-Baldauf, Racine, and Koch 2006).

The P:P and P:T design, usually known as the placebo lead-in design, has the other two
sequence groups of the four as compared to randomized withdrawal design. In this design, only
the patient who doesn’t respond to placebo in the first period remains in the study. This design is
practical in studies such as drugs to treat disease in the central nerve system, where there are
many placebo responders. The placebo response rate in antidepressant and antipsychotic trials is
reported to increase overtime in meta analyses of trials between 1985 and 2000 (Khan et al.,

2005). With only the placebo nonresponders identified in the first period continuing in the
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second period to receive either experimental treatment or placebo, the treatment effect is
maximized since patients who do not respond to the first period are not expected to become

placebo-responders in the second period (Fava et al., 2003).

Test

Test Placebo

SO,

Figure 1.1 Randomized Withdrawal Design

Placebo

Test

SO

Placebo

Figure 1.2 Placebo Lead-In Design
Three-Sequence Design

Designs with three or more sequence groups could provide additional benefits to the two-
sequence designs mentioned above.

One design in this class to improve completeness of data with this crossover structure
was proposed by Koch, Davis, and Anderson (1998). This design has three of the four sequence
groups, P:T, T:P, and T:T; as shown in Figure 1.3, it provides T during the second period to
patients with P during the first period, and provides continued treatment of T to some fraction of
the patients who received T during the first period. This design embeds the comparison that is

capable in the 2x2 design and the randomized withdrawal design.
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Figure 1.3 P:T, T:P, and T:T Sequence Design

Another design with attractive features also has three sequence groups as P:P, P:T, and
T:T, and it is commonly known as the randomized delayed-start design . In this design, patients
are initially randomized to placebo or test drug in the first period, and patients who are in the
placebo group in the first period would receive either placebo or test drug in the second period,
while patients who receive test drug in the first period remain on the same treatment. This design
is suitable to evaluate treatments for disease with long term progression to distinguish the
symptomatic improvement from the true disease modifying effect. The effect of the active
treatment in the first period compared to placebo could be due to either the symptomatic
improvement or the true effect on modifying the disease, but in the second period when the
delayed-start P: T sequence patients receive the active treatment, if the early-start T:T sequence
patients show benefits from being in the trial longer than the P:T sequence, it indicates a disease
modifying effect of the active treatment. If these two sequence groups are showing similar
improvement from baseline, then the active treatment might only reflect a symptomatic relief in
the course (Dunger-Baldauf, Racine and Koch, 2006) (Clinical Trial Design in Parkinson's

Disease 2013 p3).
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Figure 1.4 Randomized Delayed-Start Design

These two three-sequence designs both have an advantage over the two-sequence
randomized withdrawal design in that there is a higher chance in receiving the better treatment in
the second period, which might provide a favorable impact on the patient retention and reduce
non-compliance with the protocol, at least at the end of the first period (Dunger-Baldauf, 2007).
Enriched Multiple-Sequence Design

Another study design that has the same sequence groups as the randomized delayed-start
design is the sequential parallel comparison design (SPCD). SPCD design was proposed by Fava
et al. (2013), and it is different from the delayed-start design in that only the placebo non-
responders of the first period in the P:P and P:T groups continue into the second period. SPCD
serves similar purposes as the two-sequence placebo lead-in design in psychiatric clinical trials
with a high placebo response rate, except that it has an additional T:T sequence. And thus
besides sharing the high compliance benefit of the three sequence design mentioned above, it
also eliminates the potential risk brought by the placebo lead-in design that it is more difficult to
identify placebo-responders when it is hard to hide from the clinicians that only placebo is given

in the first period (Fava et al., 2003; lvanova, Qagish and Schoenfeld, 2011; Doros et al., 2013).
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Figure 1.5 SPCD Design

The original paper of Fava et al. (2003) focused on the study outcome as dichotomized
data. Other methods have been proposed for the analyses of binary outcomes in the context of
SPCD designs by Huang and Tamura (2010), lvanova, Qaqish and Schoenfeld (2011), and
Huang, Tamura, and Boos (2011).

Recent uses of the SPCD design have been extended to continuous or ordinal outcome as
it arises more naturally than the dichotomizing of a continuous measurement. Huang and Tamura
(2010) considered seemingly unrelated regression (SUR) to account for the correlation between
subjects in the two periods of the trial. Chen et al (2011) proposed an ordinary least squares
approach and Doros et al. (2013) proposed a repeated measures model that includes all possible
outcome data collected in the trial.

The two-way enrichment design (TED), introduced by lvanova and Tamura (2011), has all four
sequence groups, P:P, P:T, T:P, and T:T, but in the second period, only the non-responders to the
placebo in the first period of the P:P and P:T sequences, and the responders to the active
treatment in the first period of the T:P and T:T sequences remain in the study. And thus the TED
design has the advantage of both the placebo lead-in design and the randomized withdrawal

designs. This design is suitable to study the maintenance of efficacy of an active treatment
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(through the randomized withdrawal design) for a disease with a high placebo response rate. For
example, for generalized anxiety disorder (GAD), which is a central nerve system disease with a
high placebo response rate, and a chronic disease for which worsening would quickly occur after
discontinuation from an active treatment, a trial to evaluate an active treatment versus placebo

would benefit from the TED design.

@ Test
Test Placebo
Placebo @
Test
Placebo

Figure 1.6 TED Design

Bilateral Design

Besides the studies mentioned above, the four sequence group design could also be
applied to two sides of the same subject, instead of two periods. For example, Kawaguchi and
Koch (2009) studied the two eyes of the same patients with four sequence group, with the
treatments assigned to the two eyes instead of the two periods respectively.
1.4 Summary
This literature review covers many aspects of clinical trials. The existing methodology for
handling missing data in different missing data scenarios is reviewed and different designs and
usage of crossover studies is discussed. Also, this chapter discusses a nonparametric way to
handle the random imbalance in covariables, as well as its usefulness in reducing the variability

of estimation.
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The following chapters are organized as follows. In Chapter 2, we discuss a method for
sensitivity analyses of estimation in favorable proportion for missing dichotomous data. Chapter
3 extends the method in Chapter 2 to outcome data with an ordinal nature. Chapter 4 presents a
method for statistical inference under the null for SPCD trials and Chapter 5 further studies the
point and confidence interval estimation under the alternative of this design. And Chapters 6 and
7 provides an outline and statistical planning for topic in hypothesis testing for TED trials and

bilateral design.
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CHAPTER 2: SENSITIVITY ANALYSIS OF FAVORABLE PROPORTION FOR
MISSING DICHOTOMOUS DATA IN MULTI-VISIT RANDOMIZED CLINICAL
TRIAL

2.1 Introduction

In clinical trials, the dichotomous endpoint only has two possible outcomes for an
observation, either directly or via categorization of an ordinal or continuous observation.
However, missing data often occur for one or more visits during a multi-visit study. No matter
how well designed and conducted a trial is, some missing data can almost always be expected
(O’Kelly and Ratitch, 2014). Oftentimes, missing data are due to some specific reasons, and they
can be related to the treatment for a patient (e.g., adverse events, or lack of efficacy) or unrelated
(e.g., move from the community for treatment).

When loss to follow-up occurs, investigators are urged to collect as much information as
possible for the withdrawal reasons. Given the withdrawal reasons, sensitivity analyses could be
performed under different scenarios. In the regulatory setting, a tipping point analysis is usually
needed to assess what conditions would overturn the statistical significance of the claimed
treatment difference and whether such pivotal conditions are potentially possible in the real trial
(National Research Council Panel, 2010).

In the situations for missing data in a clinical trial, the two quantities of primary interest
are the treatment comparison estimate under different assumptions and its corresponding
variance. They can be obtained through imputation for missing data, or with statistical models

with some assumptions for the missingness and covariance structure for the data. In the statistical
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analysis plan of the clinical trial, the statistical methods need to be stated a priori for the
assessment of the treatment comparison before the clinical trials are actually conducted.
Oftentimes, possibly unrealistic assumptions are required for the validity of certain statistical
models, and they are difficult to evaluate before data analysis. Therefore, methods requiring
fewer assumptions are desired rather than those with complex assumptions, especially in the
regulatory setting.

In this paper, we propose a method that mathematically redistributes the missing counts
as favorable or unfavorable under different specifications for the missing data, so as to provide
resulting estimates for the treatment comparisons in a multi-visit clinical trial and a
corresponding covariance matrix. Also, adjustment for covariates is possible through
randomization-based analysis of covariance (ANCOVA) so as to provide variance reduction and
offset random imbalances. Section 2.2 introduces the data set up and the methodology, and the
methods are illustrated with an example in Section 2.3. Chapter 3 provides an extension to an

ordinal categorical outcome.

2.2  Methods

Consider a study comparing a test treatment and a control treatment for a favorable
outcome or not through assessments at each of several visits. For the dichotomous outcome with
possibly missing data, there are three possible responses, favorable, unfavorable, or missing,
although the outcome for missing could be expanded to include the applicable reason. While
outcome and response are often interchangeable in the literature, here we make a distinction
between outcome categories and response categories, where the former could only have two

outcomes and the latter includes missing as a category.
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2.2.1 Notation

Let y4niji be the indicator variable for the response of subject i in group g and stratum h
at visit j being k, where group g = 1, 2 index the test treatment and control treatment
respectively; stratum h = 1, 2,---, H index the stratum for the subject; subject i = 1,2, -+, ng;
visitj =1,2,---,], and response k = 1, 2, 3, where 1, 2 and 3 index favorable, unfavorable, and
missing response respectively. If there were 3 potential reasons for missing such as lack of
efficacy, unacceptable tolerability, and other, then k = 1, 2, 3, 4, 5 could apply; but throughout
this paper, only one missing category is mainly considered. We define a three-dimensional
vector Y gpije = (Vgnij1r Ygnijzr Ygnijz)' to combine the three indicators. For example, Y144, =
(0,1,0) means Subject 1 for the test treatment and Stratum 1 at time point 1 has unfavorable

outcome. Accordingly, we further define a data vector that includes all visits as ¥ ;.. =

(Yéhil*: " Y;hi]*)’ = (thin: Yghi12) Yghi13, - Yghj11» Yghj12 ygh]13),-
2.2.2 Data Structure

For subjects in treatment group g and stratum h, the observed data can be arranged in a
contingency table format as in Table 2.1. After including missing as a category, the number of

Table 2.1 Data Structure

Response Fav UnFav Missing Total

Time

1 Ngn11(Pgn11) Ngh12(Dgh12) Ngn13(Pgn13) gh
) ) ) h

] Ngnj1(Pgnj1) Ngnj2(Pgnj2) Ngny3(Pgny3) gh

. - ey . . n
subjects at each visit is fixed as ngp,. The cell count ngp, i is ngpj = Zl.jf Ygnijk, and cell

Nghjk
Tlgh

proportion pypj IS Dgnjk = The counts vector at row j of the table is expressed as
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Ngnj = (Mgnj1, Ngnjz, Ngnjz), Which follows a multinomial distribution,
ngp;~Multinominal (ngy, yp,), Where mwyy,; = (nghjl,nghjz,nghjg)’ is the marginal
multinomial probability vector of response for the j-th visit. From the properties of multinomial
distributions, the unbiased estimator of the multinomial probability 7, ;, is the proportion vector
at row j, Pgnj = (Pgnj1 Pgnjz Panjs) - Combining across all time points, p g, =

(Pyn1 ...,p;h])' and 1y, = (Typy, ..., Typ;)" @pply to the correlated multinomial distributions
for the ngj,; for the J visits. The estimated covariance matrix of p,, as the mean of the Y g, is

shown in (2.1).

Tlgh
1 !
v =—§ Yghier — Pgn) Yghiee — 21
P ngn(ngn — 1) i=1( onis = Pgn) Vonins =Pgn)  (21)

2.2.3 Favorable Probability Estimation

Now the estimation of interest is for the probability of favorable outcome. For this
purpose, the missing response category is redistributed to the favorable and unfavorable
outcomes according to a missing outcome specification.

Let q4n; be the probability estimator that a subject in group g and stratum h would have a

favorable outcome at visit j. The redistributed favorable outcome proportion under a missing
completely at random (MCAR) specification is shown in (2.2).

pghjl

dgnj = Pgnj1 T Pgnjz  (2.2)

pghjl + pghjz
It is also an “observed case” estimate which has the assumption that patients with missing
status have the same probability of favorable outcome as those with observed status as shown in

(2.3).
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pghjl

Qgnj = (2.3)

Pghj1 t Pgnj2
2.2.4 Sensitivity Analysis

So far we have assumed the missing responses are MCAR-like. However, in clinical
trials, the discontinued patients could have withdrawn from the study due to reasons related to
the unobserved outcome, which renders the data non-ignorable missing (NMAR); see Little and
Rubin (2014).

For the subsequent discussion in this section, we omit the notation for group g and
stratum h for simplicity of presentation, although they can always be included without loss of
generality. Now let n;, nj,, and n;; represent the counts of the favorable, unfavorable, and
missing responses at visit j, and nj; + n;; + n;3 = n;. We further divide the missing counts n;3
into n;3, and n;3,, Where n;3; and n;;, represent the unobserved counts with a favorable and
unfavorable outcome if missing responses were actually observed. Also, p;q, pj,, and p;; are the
corresponding proportion estimators. Thus, we have the data structure shown in Table 2.2. Also,
Table 2.2 could be expanded to account for counts for two or more reasons for missing
responses.

Table 2.2 Data Structure for Missing Counts Redistribution

Visit Fav UnFav Missing Total
J nj Njo Nj3 = Nyjzq + N3y n;

The odds ratio ratio 8; comparing the favorable to the unfavorable outcome in the
patients with missing status versus observed patients is shown in (2.4); and the solution it implies
for nj3, is shown in (2.5).

Nj31 | Ny
0, =-1= /L (2.4)

Nj3zz My
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5y = =213 2.5
n]31 9]11]1 + an ( )

Thus, there can be determination of total favorable outcome counts through an assumed
specification of the odds ratio 6;. Also, separate 6;’s could address two or more reasons for
missing responses.

If 6; = 1, the missing responses are assumed to be MCAR-like; if 6; > 1 the missing
responses are regarded as more likely to have better outcome than those observed; if 6, < 1, the
missing responses are regarded as more likely to have worse outcome, as is often the case for
patients who discontinue the test treatment. Through adjusting for different 6;, different
specifications of the possible outcomes for the missing response can be obtained, and thus we
call the 6; the sensitivity parameters for missingness.

The adjusted favorable proportion estimator can be expressed in terms of the observed

proportions for the responses and the 6; as shown in (2.6).

g = — 5 (2.6
qj@ n: n: p]3 ( )

Njq +le31 _ 1 <
J J

ijj1
+—2 o) =p, +—L
' ]3> R

By construction, the g are comparable to what might be expected by random multiple
imputation of the missing responses via (2.5), but they are alternatively produced from
mathematical redistribution as in (2.5). From (2.6), it follows that the adjusted odds of favorable

versus unfavorable outcome at time j has the structure shown in (2.7).

ajo _ nj(8ms +njp + Gimys)
L=qjo  njp(Gmy +my, +mj3)

_Pja (9ij1 +pj,+6;(1—pjs— sz))
Dj2 (9ij1 +p+(1—pjy — sz))
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_ Pj1 (sz +6;(1- sz))
Dj2 (ijjl +(1- Pj1))

2.7)

If 6;,=1, which is the MCAR-like case, :i = ﬂ with this indicating that the adjusted

dje  DPj2
odds of favorable outcome versus unfavorable is the same as the odds for the observed outcomes.
2.2.5 Covariance Matrix Estimation

Let gy = (qlg, s CI]Q) denote the j-dimensional vector of adjusted outcome proportion
estimators. In order to use the linear Taylor series methods discussed in Koch et al. (1977), as
well as summarized Stokes et al. (2012, Chapter 14), to produce a consistent estimate for the

covariance matrix of the adjusted proportion vector g4, we express qg in the form of compound

functions of the unadjusted proportion vector p = (p'l, s p})' and sensivity parameter 6 as
shown in (2.8).
qo = AzexplA; log(A,9p)] (2.8)
In (2.8), log() denotes the element-wise vector operation that transforms a vector to the
corresponding vector of natural logarithms, and exp[] denotes the element-wise vector operation

that transforms a vector to the corresponding vector of exponentiated values, and matrices A4y,

A,, and A3 are shown in (2.9) for which bdiag,(L]-) denotes a diagonal matrix of J blocks, with

100
0

6; 0

. ; . 10 00 .
A9 = bdiag, 61 0 JAy = bdlag](o 1 -1 1),A3 = bdiag;(1 1) (2.9)

001
matrix L; on the j-th diagonal block j = 1, ..., . By applying the linear Taylor series methods in

Koch et al. (1977), we can obtain a consistent estimator for the covariance matrix of g4 as shown

in (2.10).
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V,, =BoV,By  (2.10)

For (2.10), By is the elementwise first partial derivative of vector g4 with respect to
vector p and is obtained by applying the chain rule, as shown in (2.11) for which a9 = A1¢p,

0qp 0qg O0azg 0azg dase

Bo = dp 0daszy da,y da,y Op

A,D 1 A (2.11)

aig

== A3D

asg

a9 = log(aqg), azg = exp[Aza,g], and qg = Azase, and DL is a diagonal matrix with the

aie

reciprocals of the elements of the vector a,4 on the main diagonal and D, is the diagonal

aze
matrix with the elements of the vector ag on the main diagonal.
Now we reconsider group g and stratum h, for which the adjusted favorable proportion

estimate is shown in (2.12).

0iDgnjr

dghjo = Pgnj1 + ) Dgnjz (2.12)

iPghj1 T Pghj2
The covariance estimate of q g, Where qgpe = (qghlg, s qghjg), is shown in (2.13).
ngha = thgvpghB'lghg (2.13)

The selection of the sensitivity parameter 6,,; could be based on knowledge for the trial
being conducted and the nature of disease; see Zhao et al. (2014). In many cases, it can
correspond to fractions of the reciprocal for a known odds ratio for the effect of a useful
treatment versus placebo.

Typically, the 6,,; are the same for all strata in group g, i.e., 8,,; = 84;, and they could
vary at different visits j and j'. In addition, one could expect missing responses for patients in the
placebo group to have a similar outcome distribution as the observed patients, which corresponds

to 6,5 = 1 for any h and any visit j in the placebo group.
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2.2.6 Treatment Comparison
Treatment Difference

The treatment difference A = (4,,---, ;) between test and placebo visits 1 to j could be
estimated using the corresponding adjusted proportion differences, and they can be weighted by

NnypNan/(Map+nzp)
H
Zh,zlnlh:nzh:/(nlh/ +n2hr)

the Mantel-Haenszel weights w;, = { }for the combined strata. The

treatment difference estimator at visit j for 4; is d;g as shown in (2.14).

H

djg = z wh(q1njo — Gznje) (2.14)
h=1

Letting dg = (d1p,**,d;p), the consistent covariance matrix estimator of dg can be

obtained using the covariance matrix estimator V of q4ne In (2.13), and it is expressed as

dghe

(2.15).

M=

Vd:

\ WE (Vaguo +V (2.15)

lhhje)
h=1

Adjusted Treatment Difference via Randomzation-Based ANCOVA

In a randomized clinical trial, baseline covariables are expected to have the same
distribution in the randomized groups. Baseline covariables could include the baseline
measurement of the outcome, demographic variables, or other variables. However, random
imbalances in the baseline covariables could occur as each treatment group is a finite sample of
the randomized population, and covariance adjustment for them can offset such imbalances.

Covariance adjustment can also provide variance reduction for treatment comparison
estimation when applied in a randomization-based way (Koch et al., 1998; Tangen and Koch,

2001; LaVange et al., 2005). The motivation behind the variance reduction is that the parameter
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estimate that is associated with the imbalance would be corrected to offset the direction of the
imbalance. The estimation is through randomization-based ANCOVA, which is an approach that
applies weighted least squares methods to evaluate differences between treatment groups with
respect to outcome variables and covariables simultaneously (Koch et al., 1998).

Here, we introduce some notations for the covariables. Suppose each subject has M
li iabl _ ! — _ 1 Ngh is th
baseline covariables xgp;, Xgni = (xghil, ...,xghiM) ,and Xz = @Zi:l X gni 1S the mean

vector of the prespecified covariables.

We define fgn; = (¥ ghiver x'ghi)' as a (3 x J + M) dimensional response-covariable

ngh

I . R
icq fgni = (p’g,,, f’gh) is the mean of the response-covariable vector.

- 1
vector, and f g, = @Z

Further, we transform f g, t0 Fgpg = (qne Efqh)', then Fype =

(A3 exp[Azlog(A1epgn)]. Xyn) -
Also, we denote u = Y ¥_, wy, (%, — X,5) as the covariable difference weighted across

the H strata and combine the J treatment differences and M covariable difference to get Go =
(dy,u').

The consistent covariance matrix estimator Vfgh of fgh can be obtained as in (2.16).

1 & ) o
Vi, = m;fgm—fgh)(fgm—fgh) (2.16)

And then the covariance matrix VE 1o of Fyng and Vg 0f Gy can be obtained as (2.17)

and (2.18).

Vi

B 0 B’ 0
__[Pgne ],M]V_ [ghe 3],Ml (2.17)

gho 0M,3] IM fgh OM,] IM
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H
Veo = Z WE(VE e + Vig) (2.18)
h=1

Then the differences between means for covariables for the two treatment groups are
restricted to zero, as is expected by randomization of patients to the two treatments; this
constraint can be expressed as shown in (2.19).

E(u) =0, (2.19)

Randomization-based covariable adjustment for the treatment comparison estimator dg

with respect to u can be invoked by fitting the linear model in (2.20) by weighted least squares

)

| bo |

0 | (2.20)
k ‘)

regression with weights based on VG‘; in (2.18) and with “£” meaning “is estimated by.”

1
E(Gg) 2 [01\;]] bg = Zbg ==

The weighted least squares regression for the specification in (2.20) produces the
estimator for the covariable-adjusted treatment comparisons by in (2.21), with a consistent
estimator for the covariance matrix of by, as in (2.22).

be = (2'V5z) ' Z2'V5i6, (2.21)
vy, = (2v5iz)™ (2.22)
Hypothesis Testing
For testing H,: CA = 0, the test statistic in (2.23) is applicable where A is the

Qca = A'C'(CVzC)7ICA (2.23)
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corresponding estimator dg or covariable-adjusted estimator by, and C is the desired full rank

contrast matrix with rank r(C). Under H,, QCA~)(E(C) when the sample size is sufficiently large,
where )(E(C)is the central Chi-square distribution with 7 (C) degrees of freedom.

2.3  Example

The proposed method for sensitivity analysis is illustrated with an example of a double-
blind, randomized, placebo-controlled, parallel-group study to assess the safety and efficacy of a
test medicine for weight loss in obese patients. The sample data consist of 1000 patients in a
bootstrap sample from an obesity trial like that discussed in Smith et al. (2010).

One of the co-primary endpoints of this weight loss study is the proportion (%) of
patients who achieve >5% weight loss from baseline to week 52. The study participants were
followed every 4 weeks until the end of the study. The primary assessment was body weight at
Week 52, and other important assessment visits were at Week 12, Week 24, and Week 36. These
4 visits are numbered Visits 1 to 4 in chronological order.

Substantial numbers of patients withdrew from the study and didn't return for follow up.
In this bootstrap sample, at Week 52, 45.5% and 53.1% of patients had missing responses for the
test and placebo group respectively; at all visits, more missingness happened in the placebo
group than in the test group, as shown in Table 2.3.

Table 2.3 Missing Percentages of Assessment Visits

Visit
Group 1 2 3 4
Test 10.9% 28.8% 38.5% 45.5%
Placebo 21.8% 34.2% 43.2% 53.1%
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Two strata according to gender were considered; and baseline weight, age, and baseline
body mass index (BMI) were covariables with adjustment through randomization-based
ANCOVA as discussed in Section 2.2.6.

One question of regulatory interest for this example is whether there are 15% or more
responders for test treatment than placebo. If missing responses cannot be assumed to be
ignorable, how robust the results are if challenged by a sequence of sensitivity parameters 6 is a
question of interest.

The hypotheses are Hyj: Ij4A < 15% versus Hy;: I 4A > 15% for j = 1,2,3,4 of the 4
visits, where I; , denote the jt" row of the identity matrix I,, and it will be addressed with the
direct treatment difference estimator and the covariables-adjusted treatment difference estimator
respectively. For sequential testing to address multiplicity, the primary assessment Visit 4 H,
would be addressed as a first step with two-sided hypothesis testing at the « = 0.05 level, and if
significant, H,; would be addressed, etc.

The methodology can accommodate different sensitivity parameters for different visits,
strata and treatment groups. But for convenience of illustration, we only consider different
sensitivity parameters for the test and placebo treatment, and assume 6,,; = 6, for g = 1,2 for
test medicine and placebo groups, h = 1, 2 for females and males, j = 1, 2, 3, 4 for visits 1 to 4.
For the placebo group, one would typically use 8, = 1, which could be a realistic assumption
since patients would usually experience similar results as if they remained in the placebo group.
The values of 6, < 1 for the test medicine group could address the assumptions that the post-
withdrawal experience of a test drug patient was less favorable than for a patient remaining in the
study. As a tipping point analyses, we use a sequence of 8; values to see under what assumptions

the result of rejection of the null hypothesis would remain unchanged (at the two-sided
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significance level of 0.05), although the attention can additionally be given to the point estimate
and confidence interval. The estimates of unadjusted and adjusted treatment differences, and
their standard errors (SE), and the Chi-Square values and corresponding p-values of the testing
for the hypothesis H, above are listed in Table 2.4.

Table 2.4 Results of Sensitivity Analyses for Treatment Comparison Estimators

Sensitivity Visit Unadjusted Adjusted
parameter 6 d SE ChiSq p value b SE ChiSq pvalue
0, =1 1 0.266 0.0309 14.007 0.0002 0.266 0.0306 14.235 0.0002
2 0339 0.0358 27.825 <0.0001 0.341 0.0353 29.354 <0.0001
3 0.331 0.0390 21.466 <0.0001 0.333 0.0384 22.611 <0.0001
4  0.313 0.0424 14.817 0.0001 0.315 0.0418 15.496 0.0001
6, =0.5 1 0248 0.0306 10.146 0.0014 0.247 0.0304 10.231 0.0014
2 0294 0.0362 15.880 0.0001 0.296 0.0356 16.797 <0.0001
3 0.272 0.0398 9.312 0.0023 0.273 0.0391 9.880 0.0017
4  0.241 0.0434 4.387 0.0362 0.242 0.0427 4.634 0.0313
6, =1/3 1 0239 0.0304 8547 0.0035 0.238 0.0302 8.571 0.0034
2 0269 0.0361 10.851 0.0010 0.270 0.0355 11.478 0.0007
3 0.237 0.0398 4.742 0.0294 0.238 0.0390 5.056 0.0245
4 0198 0.0431 1.255 0.2627 0.199 0.0423 1.342 0.2467
Note: 8, = 1

When the missingness is MCAR in either the test group or placebo group with 6, = 6, =
1, the conclusion that the test treatment had 15% or more responders than the placebo treatment
is well supported, at all follow-up visits. As we place more stringent penalties on the missing
data in the test treatment while keeping the placebo missingness as MCAR, the estimated
treatment difference becomes smaller, particularly for visits 3 and 4 where missing data are
much more extensive. At visit 4, when the assumption is made that the test treatment's missing
response has only (1/3) the odds for favorable outcome as observed responses, the test treatment
has about 20% more responders than the placebo, with standard error at about 4%, and the
conclusion of 15% more responders for comparing test to placebo no longer holds. The results of
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the estimates of the unadjusted difference dg and covariable adjusted difference by are similar.
And the standard errors of the adjusted difference by estimator are only slightly smaller than
those of the unadjusted dg.
2.4 Discussion

For situations where MNAR missing dichotomous response data exist for a randomized
clinical trial, this paper discusses how the mathematical re-distribution of missing responses can
provide useful sensitivity analyses to address the robustness of treatment comparisons from
methods with possibly unrealistic assumptions such as MCAR. The tipping point, which is the
sensitivity parameter that turns a significant result into a nonsignificant one, can be examined to
see whether it is realistic or not relative to knowledge about the nature of the treatment and
disorder being studied. Also, the sensitivity analyses are applicable with Mantel-Haenszel
adjustment for strata and/or covariables through randomization-based ANCOVA. An extension

of the methods in this paper to an ordered categorical outcome is in Chapter 3.
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CHAPTER 3: SENSITIVITY ANALYSIS IN TREATMENT COMPARISON FOR
MISSING ORDINAL DATA IN MULTIE-VISIT RANDOMIZED CLINICAL TRIAL

3.1 Introduction

The methodology in Chapter 2 is extended to an ordinal outcome with the comparison
between treatments utilizing the Mann Whitney probability estimator for the ordinal nature of the
outcome. Section 3.2 will introduce the data set up and the methodology for ordinal data, and
they will be illustrated with an example in Section 3.3.
3.2 Methods
3.2.1 Notation

Consider a study comparing a test treatment and a control treatment for an ordinal
outcome with Kcategories and assessments at each of the J visits. For an ordinal outcome with
missing data, there are (K + 1) possible responses, with these being the K ordered outcome
categories plus the missing category. While outcome and response are sometimes
interchangeable in the literature, here we make a distinction between outcome categories and
response categories, where the former could only have K outcomes and the latter includes
missing as a category.

Let y4;jx be the indicator variable for the response of subject i in group g at visit j being
k, where group g = 1, 2 index the test treatment and control treatment respectively; subject i =
1,2,-,ng; visitj =1,2,---,],and response k = 1,2,---,K,K + 1, where 1, ..., K index the 1 to

K outcomes and (K + 1) indexes missing response respectively. We define a (K + 1)-
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dimensional vector Yy;;, = (Vgi11, " Vgitk Ygir(x+1)) 10 combine the (K + 1) indicators. For
example, Y511, = (0,-+-,1,0) means Subject 1 in the test treatment at time point 1 has outcome

category as K. Accordingly, we further define a data vector that includes all visits as Yy, =

( giler T gl]*) = (ygill;"'rygilK'ygil(K+1)' "-’ygijli"'!ygi]K’ygi](K+1)) .
3.2.2 Data Structure
For subjects in treatment group g, the observed data can be arranged in a contingency

table format as Table 3.1 below. After including missing as a category, the number of subjects at

each visit is fixed as n,.

Table 3.1 Data Structure

Response
Time 1 K K+1 Total
1 Ng11(Pg11) Ng1ik(Pg1k)  Ngrk+1)Pgrx+1)) ng
: : : : ng
] ng]l(pgjl) Ngix (pg]K) ng](K+1)(pg](K+1)) ng

The counts vector at row j of the table is expressed as ng; = (ngj1, ***, Ngnjx, Nghjk+1))
which marginally follows a multinomial distribution, ng;~Multinominal(ng, Tg4;), Where 1t g;
is the marginal multinomial probability vector of responses. From the properties of the
multinomial distribution, the unbiased estimator of the multinomial probability 74, is the

proportion vector at row j, pg; = (pgjl, ,png,pgj(K+1)). Combining across all time points,

= (py1, - Pyy)  and w, = (), ..., ;) . Extensions to allow strata would proceed

similarly to the methods discussed in Chapter 2 for dichotomous outcomes. An unbiased
estimator of the covariance matrix of the probability estimator p, containing the marginal

proportions of the correlated multinomial distributions in the rows of Table 3.1 is shown in (3.1).
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ng
1 '
V =—ZY fex — Y i — 3.1
Pg ng(ny — 1) i=1( giss = Pg) (Y girs = Pyg) (3.1

3.2.3 Multinomial Probability Estimation

The objective of the estimation is the distribution of outcomes; and for an ordinal
outcome, cumulative probabilities are usually considered. Without loss of generality, assume
lower values of the ordinal outcome are more favorable, i.e., k = 1 is the most favorable
outcome. Under MCAR, the cumulative favorable proportion of the first [ categories for visit j is
expressed in (3.2).

l !
Z%c=1p ik Zi’:ﬁ? ik

Z Agjk = K g]l = Z Pgjk T Tx g]. Pgjk+1) (3.2)

=1 k=1 pgjk =1 k=1 pg}k

As MCAR, (3.2) implies that the probability of each outcome category in the patients

with missing responses is the same for those with responses observed.

3.2.4 Sensitivity Analysis

For the subsequent discussion, we omit the notation for group g for simplicity of
presentation. Now let nj;,++, njg, and n; x4y represent the counts of the K ordinal outcome
categories and the missing responses at visit j, and nj; + -+ + njx + njx+1) = n;. We further
divide the missing counts n; k1) into the counts of the K outcome categories
njk+1)1 " Nk +1)k, and they represent the counts among the patients with missing status for

the K outcome categories respectively if their missing status did not occur, and so we have the

data structure as Table 3.2.
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Table 3.2 Data Structure for Missing Counts Redistribution

Visit 1 K Missing Total
J Njy o | Nk Nik+1) = M1 + o+ Mk n;

The odds ratio comparing the first [ categories to the last (K — 1) categories in the
patients with missing responses versus those with observed responses as shown in (3.3), which

implies (3.4) for the redistribution to the first | categories combined.

Yk Y. n
0, = Kk 1" (K+Dk Kk 1%k =1, (K—-1). (3.3)
z:k=l+1nj(K+1)k Zk=l+1njk
l 0 Zl ,
jl Zak=1 K
Nik+Dk = Nik+1 (34)
kz=1 A ejl Z%(:lnjk +Zg=l+1njk J(K+1)

If6;, =1foralll =1,---,(K — 1), an MCAR-like structure applies; if 8;, > 1, the
patients with missing status are assumed to be more likely to have better outcome than those
observed; if 6, < 1, the patients with missing status are assumed to be more likely to have worse

outcome Furthermore, if 8;; = --- = 6;x—1), K = 2, a proportional odds assumption is imposed.

Through adjusting for different 6, different specifications of the possible outcomes in the
missing observations could be attained, and thus we call 8 the sensitivity parameter for
missingness. The adjusted cumulative proportion estimator could be expressed in terms of the

unadjusted proportions p and 6;; as shown in (3.5).

! !
Yhe1 Mk + D1 Mane 1 61 Lhe=1 Mk
djke = =— Njk + Mj(K+1)

. . T
=1 1 i\ Ot Zk=1Mje + Zk=1+1 e

l

0,3 _ip;

Jjl 4k=1Fjk

= pk+ p.K 1 l:lll(K_l) (35)
; ! 9jlz%€=1p1k +ZII§=I+1ij JUHD)

(K-1)

qjke =1 — Z djke
k=1
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Now we consider group g, and we express the adjusted cumulative proportion vector
dg0 = (d510, ...,q:q,e)' with g6 = (q4j10, - qnge)'in the form of compound functions of the
unadjusted proportion vector p, and sensitivity parameters @ as shown in (3.6) in order to use
qgo = AsAzexp|Azlog(Aizep,)]| + ¢ (3.6)
linear Taylor series methods to produce a consistent estimator for the corresponding matrix. For

(3.6), matrices Ay 49, A2, A3, and A4, and (JK X 1) vector ¢ are shown in (3.7) and (3.8).

A1g0 = bdlag](Alg]g)

[ A1gj1e ]
A
Aqgjo = | 1‘?]20 | (3.7)
lAlgj(K‘1)‘9J3(1<'—1)><(1<’+1)
1,04 O
A1gjke = Ogjkli 1y O k=1, (K—-1).
00k Ogjk 3x(K+1)
. . 10 O
A, = bdiag, {bdlag(K_l) (1 _1 1)} (3.8)

A; = bdiag;{bdiagy_1,(11) }

-11 00 00
Ay = bdiag,'k (:) . 1...1.0 09

/10 00 00

\.
00 00—11/
00 00 0-1/gxx-1)

¢=0(0,0,..,0,1, e, e, .., 0,0, .0, ){speery

48



By applying linear Taylor series, we can obtain a consistent estimator for the covariance

matrix of g4 as shown in (3.9) and (3.10) where B, 4¢ is the elementwise first partial derivative
Vaso = BigoVp,Bige (3.9

B. . — 0950 0qg49 0azg 0ayy 0aqg
196 — apg B aagg 6a29 6a19 apg

= A4A3D4,,A;D, Ay g (3.10)

ase aig

of vector q4¢ With respect to vector p, and is obtained by the chain rule, with a;g9 = A1g9Pg,

Azg0 = 108(a149), A3g9 = eXP[A20,40], aNd g9 = (A4A3a34 + ¢), and D, is a diagonal

matrix with the reciprocals of the elements of the vector a,4¢ on the main diagonal and Dg,,, IS
the diagonal matrix with the elements of the vector azz9 on the main diagonal.

Typically, if we assume 6, ;, are the same for all categories k, i.e., 64, = 8,4;, and they
could vary at different visits j and j’, and so a proportional odds assumption is made. In addition,
one often could expect missing responses for patients in the placebo group to have a similar
outcome distribution as the observed patients, which means 6, ;, = 1 for any visit j in the

placebo group could be specified.

3.2.5 Treatment Comparison

Mann-Whitney Probability for Treatment Difference

A Mann-Whitney probability estimator (MW estimator) can be used for the treatment
comparison for a strictly ordinal outcome. Comparing the outcome of test treatment to placebo,
the Mann-Whitney probability estimates the probability that a randomly selected patient with the
test treatment has better outcome than a randomly selected patient with placebo. If the two
treatments are equally effective, the chance of having a better response for the test treatment

would be 0.5.
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Denote the Mann-Whitney probability as ¢; for visit j. The null hypothesis for comparing

the test treatment with the placebo is Hy;: §; < 0.5 versus Hy;:¢; = 0.5,,j = 1,--,].

Denote T,; as the outcome for a subject in group g at visit j. If a smaller value of the
outcome is better, the probability &; of test treatment being better than placebo at visit j is
expressed in (3.11).

Denote T,; as the outcome for a subject in group g at visit j. If a smaller value of the
outcome is better, the probability &; of test treatment being better than placebo at visit j is

expressed in (3.11).
X 1
§=P(Ty; <Ty) = Z P(Ty; = k) [P(sz > k) —EP(TZJ- = k)] (3.11)
k=1

Then the Mann-Whitney probability estimator 74 of ¢; at visit j, for the sensitivity

analysis is expressed as shown in (3.12).
K K 1
Tig = Z q1jk6 (Z A2jke ~ 5 q2jke) (3.12)
k=1 l=k
Letting g = (rle, ---,rﬂ,)', the Mann-Whitney probability estimator could be expressed

as the compound function of the proportions qo = (g1, g2¢)" @s shown in (3.13) where matrices

As, Ag, and A~ are defined in (3.14) where Ty isa K X K upper triangular matrix with all
rg = A7 expldq log(Asqe)] (3.13)

1 =< Ik 0y

>2K]x2K]
elements on or below the diagonal equal to 1.
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We apply the chain rule again in (3.15) to obtain the first partial derivative matrix of &

By = or0 = 07 00600500s _ |y 4eD;lAs  (3.15)
20 a‘Ie aa66a56a4aqo 7% ag?t6 Pas 115 .

with respeCt to qe with QAug = A5q9, Qsg = log(a49),a69 = exp[A6a59], and Tg = A7a69.
Thus, a consistent estimator for the covariance matrix V,., of ¢ is obtained on the basis

of linear Taylor series approximations, and it is expressed in (3.16) where V,, =
bdiag(Vy,, V,,)-

V., = B2gV,,Bjg (3.16)
Adjusted Treatment Difference via Randomization-Based ANCOVA

In a randomized clinical trial, baseline covariables are expected to have the same
distributions in the randomized groups. Baseline covariables could include the baseline
measurements of the outcome, demographic variables, or other variables to be taken into
account. However, random imbalances in the baseline covariables could occur as each treatment

group is a finite sample of the randomized population.

Covariance adjustment can provide variance reduction in estimation for treatment
comparisons, together with correction for random imbalances between treatments (Koch et al.,
1998b; Tangen and Koch, 2001; LaVange et al., 2005). The motivation behind the variance
reduction is that the parameter estimator that is associated with the imbalance is corrected to

offset the imbalance in covariables.

The estimation is through nonparametric ANCOVA, which is an approach that applies
weighted least squares methods to evaluate comparisons between treatment group with respect to

outcome variables and covariables simultaneously (Koch et al., 1998b).
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Here, we introduce some notation for the covariables.
- - - ’ —
Suppose each subject has M baseline covariables xg;, Xgp; = (xgil' ...,xgiM) ,and x, =

21 1 Xgi 1s the mean vector of the prespecified covariables.

We define fg; = ’i)' asa ((K + 1) x J + M) dimensional response-covariable

- ( gl**’

vector, and f, = g = anh fgi = (pfq,f’g)' is the mean of the responses-covariables.

We define a (J + M) dimensional vector Gg = (rg, u")’ to include both the treatment
comparisons r 4 and the covariable differences u = x; — X;.

The consistent covariance matrix estimator Vfg of fg can be obtained nonparametrically
as shown in (3.17).

For f = (p1. %1, P2, %), we have V; = bdiag(Vy,, V;,). Also, we let f =

I =l =l

(P, P X1, %) and so f = Bff with (3.18), the covariance matrix estimator V¢, of G4 can be

obtained as (3.19) where B1g = bdiag(By16, B12¢) and V7 = BsV;Bj.

Lk O+ Ojk+)yk+1) Opk+1),m

g. — | Y&snjan Oacrnm Iyk+1) Opk+1),m (3.18)
4 Omjk+1) Im Omjk+1) Omm '
Omjk+1) Omm Omjk+1) Im /
2((K+1)J+M)x2((K+1)J+M)
ByyBiy O 0 BygB1y O 0, u1
Ve = 20 D1g ]M ]M] [ 20D1¢ ]M ],M] (3.19)
o 02y m —Iy 025 m —Iy

Weighted least squares regression can be applied to G4 so as to account for the
constraints for the expected differences of means for covariables between the two treatment
groups to be zero on the basis of randomization of patients to the two treatments; such

constraints are expressed in (3.20).
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E(w) =0, (3.20)
Randomization-based covariable adjustment for the treatment comparison estimator ry

with respect to u can be invoked by fitting the linear model in (3.21) by weighted least squares

;
\;/

regression with weights based from VE; in (3.19) and with “£” meaning “is estimated by.”

I
E(Gg) = [01;]] b=2Zb= (3.21)

The weighted least squares regression yields the estimator by in (3.22) for the
be = (2'V5Z) ' Z'V5lGy (3.22)
covariable-adjusted treatment comparisons, and the consistent estimator for the covariance
matrix of bg is V,, in (3.23).
vy, = (2v5iz)" (3.23)

Hypothesis Testing

For the hypothesis Hy: C€ = 0, we have the test statistic in (3.24) where € is the

Qe = EC'(CVC) T CE (3.24)

corresponding treatment comparison estimator rg or covariable-adjusted estimator by of the

Mann Whitney criteria &, and C is the specified contrast matrix. Under H,, ch~X3ank(C) when
the sample size is sufficiently large, where )(fank(c)is the central Chi-square distribution with

rank(C) degrees of freedom, and rank(C) is the rank of the full rank contrast matrix C.
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3.3 Example
The proposed method is illustrated with an example based on an adaptation of data in
Stanish et al [1978]. The clinical trial was to evaluate the efficacy of a new drug relative to

placebo for skin conditions.

One of the endpoints for this skin condition study is disease condition improvement from
baseline at visit 3. The study participants were followed for 3 visits and the ordinal outcome is
1=Rapidly Improving, 2=Slowly Improving, 3=Stable, 4=Slowly Worsening, 5=Rapidly
worsening.

The study had three visits. Sample sizes were 88 (test) and 84 (placebo) respectively. The

missing data count in each visit is shown in Table 3.3.

Table 3.3 Missing Counts of Assessment Visits

Visit
Group 1 2 3
Test 2 9 15
Placebo 1 7 15

The question of interest is whether patients in the test treatment improved more than
those in the placebo treatment. If the loss to follow-up cannot be assumed to be ignorable, the

robustness of the results to challening by a sequence of sensitivity parameters 6 is of interest.

The hypotheses are Hyj: Ij 3§ < 0.5 versus Hyj: ;38 > 0.5 for j = 1, 2, 3 of the 3 visits,
where I; 3 denotes the j** row of the identity matrix I3, and it will be addressed with the direct
treatment comparison estimator and the covariable adjusted treatment comparison estimator
respectively. For sequential testing, the primary assessment Visit 3 for H,3 would be addressed
as a first step with two-sided a = 0.05, and if significant, H,, would be addressed, etc.

The methodology can accommodate different sensitivity parameters for different visits

and treatment groups and different specifications for the odds among the ordinal categories. But
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for convenience of illustration, we only consider different sensitivity parameters for the test and
placebo treatment with the proportional odds assumption, and specify 8,,; = 6, for g = 1,2 for
test and placebo groups and j = 1, 2, 3 for visits 1 to 3. For the placebo group, one would
typically use 8, = 1, which could be a realistic assumption if patients with missing outcomes
would usually experience similar results as if they remained in the placebo group. The values of
0, < 1 for the test group could address the specifications that the post-withdrawal experience of

a test drug patient was less favorable than patients with observed outcomes.

As a tipping point analysis, we use a sequence of 8, values to see under what
specifications the result of rejection of the null hypothesis would remain unchanged (at the two
sided significance level of 0.05). The estimates for unadjusted and adjusted treatment
comparisons, and their standard errors (SE), and the chi-square values and corresponding p

values of the testing for the hypothesis H, above are listed in Table 3.4.

When the loss to follow-up is MCAR in either the test group or the placebo group with

6, = 6, = 1, the conclusion that the test treatment is better than the placebo treatment is well
supported at the primary assessment visit (Visit 3), but not so significant at Visits 2 and 1. As we
place more stringent penalties on the missing data for the test treatment while keeping the
placebo missingness as MCAR, the estimator for the treatment comparison becomes closer to
0.5. At Visit 3, when the specification is made that the odds for missing outcomes is only (1/3) as
good as for observed outcomes for the test treatment, the probability for test being better than
placebo is 0.589 with a standard error at about 0.047, and the conclusion that the test treatment is

better than the placebo no longer holds.
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The results of the estimates for the unadjusted comparisons rg and the covariable
adjusted comparisons by are similar. And the standard errors of the adjusted comparison by are

only slightly smaller than those of the unadjusted r.

Table 3.4 Results of Sensitivity Analyses

Sensitivity Unadjusted Adjusted
parameter  Visit Chi- Chi-
0 rSE Sq \F;alue b SE Sq Salue
6, =1 1 0.565 0.0429 2.294 0.130 0.562 0.0426 2.121 0.145
2 0.581 0.0449 3.294 0.070 0.580 0.0448 3.171 0.075
3 0.614 0.0457 6.249 0.012 0.615 0.0457 6.272 0.012
6, = 0.5 1 0.563 0.0429 2.128 0.145 0.560 0.0427 1.960 0.162
2 0.570 0.0452 2.409 0.121 0.568 0.0451 2.276 0.131
3 0.598 0.0464 4.490 0.034 0.598 0.0464 4.473 0.034
6, =1/3 1 0.561 0.0429 2.038 0.153 0.558 0.0427 1.872 0.171
2 0.563 0.0453 1952 0.162 0.561 0.0452 1.818 0.178
3 0.589 0.0467 3.597 0.058 0.588 0.0467 3.564 0.059
Note: 6, =1
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CHAPTER 4: RANDOMIZATION-BASED ANCOVA FOR HYPOTHESES TESTING IN
THE SEQUENTIAL PARALLEL COMPARISON DESIGN (SPCD)

4.1 Introduction

Crossover designs have been utilized in addition to the gold standard randomized
parallel-group placebo-controlled trial for the assessment of efficacy for drugs intended for
regulatory submission. There are many possible designs of crossover studies, depending on the
number of treatments to compare, the number of periods of each treatment, and the aim of the

trials (Jones and Kenward, 2014b).

There are several benefits of crossover designs compared to the traditional parallel-group
trial. One of them is that the power of the treatment comparison is improved at a fixed sample
size, mainly because every subject provides multiple response measurements of the outcome in
the multiple periods. Another feature is that its use could reduce the dropout rates, at least for the
first period, because the subjects in the placebo group could expect a treatment no worse than the
first period if they continue (Koch, Davis and Anderson, 1998a). For example, Pincus et al.
(2001) performed a randomized crossover trial of the experimental drug versus active control in
ambulatory patients with osteoarthritis of the hip or knee and achieved a low dropout rate for the
first period. Of the 227 enrolled patients, 218 (96.0%) patients provided data for the first

treatment period and 181 (79.7%) provided data for both treatment periods.

With a two-period design comparing test treatment (T) to placebo treatment (P), four
sequence groups P:P, P:T, T:P, and T:T could be of interest. Designs with some combination of

those sequence groups have useful features for studies of different patient populations. Also,
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other extensions of crossover designs with this structure could be achieved with other added
design features such as enrichment. Designs with a crossover structure are in the general class of
re-randomization designs, for which subjects could be re-randomized at the start of the second
period. Alternatively, rather than re-randomization at the beginning of the second period,
randomization before the first period could be performed to produce the multiple randomized

sequences.

One of the popular crossover designs with the enriched feature is the randomized
withdrawal design with the T:P and T:T sequence groups, and it focuses on only the patients who
respond to the drug in the first period and continue to the second period. This design is helpful
when there is heterogeneity in the patient population itself to respond to a treatment (Dunger-

Baldauf et al., 2006; Dunger-Baldauf, 2007).

The P:P and P:T design, usually known as the placebo lead-in design, has the other two
sequence groups in contrast to the randomized withdrawal design. In this design, only the
patients who do not respond to placebo in the first period continue to the second period in the
study. This design is practical in studies to treat disorders in the central nerve system, where
there are many placebo responders (Fava et al., 2003). The placebo response rate in
antidepressant and antipsychotic trials has been reported to increase over time in meta analyses
of trials between 1985 and 2000 (Khan et al., 2005). With only the placebo nonresponders
identified in the first period continuing in the second period to receive either experimental
treatment or placebo, the treatment effect is maximized since patients who do not respond to the
first period are not expected to become placebo-responders in the second period (Fava et al.,

2003).
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The design of interest for this paper is the one with three sequence groups, P:P, P:T, and
T:T, and it is sometimes known as the sequential parallel comparison design (SPCD) (Fava et al.,
2003). Another popular design that has these three sequence groups is the randomized delayed-
start design (RDSD), which is useful to evaluate treatments for disease with long term
progression by distinguishing the symptomatic improvement from the true disease modifying
effect (Dunger-Baldauf et al., 2006). The SPCD, with the P:P, P:T, and T:T sequences, serves
similar purposes as the two-sequence placebo lead-in design in psychiatric clinical trials with
high placebo response, except that it has an additional T:T sequence, which can be useful for
masking the treatment in the first period, reducing the dropout rate during the first period, and

enabling a treatment comparison during the first period.

The original paper by Fava et al. (2003) focused on a dichotomized outcome for a study;
and other methods have been proposed for the analysis of dichotomous outcomes in the context
of SPCD designs by Huang and Tamura (2010, 2011), and Huang, Tamura, and Boos (2011).
Recent uses of the SPCD design have extensions to continuous or ordinal outcomes as they arise
more naturally than the binary outcomes with dichotomization of a continuous measurement.
Huang and Tamura (2010) considered seemingly unrelated regression (SUR) to account for the
correlation between subjects in the two periods of the trial. Chen et al (2011) proposed an
ordinary least squares approach, and Doros et al. (2013) proposed a repeated measures model

that more extensively includes the outcome data collected in the trial.

In this paper, we consider sources of information for the comparison between a test
treatment and placebo that are provided in the traditional SPCD design, i.e., the first period

treatment difference in the overall population and the second period treatment difference in the
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placebo non-responders; and we also evaluate the potential role of other sources of information

that are available in this design and that could be of potential interest.

For the analysis of the SPCD design with scope for outcomes in both placebo non-
responders and responders, we propose in Section 4.2 a hypothesis testing method based on the
randomization distribution of the observed population using the randomization-based mean and
variance estimates under the null hypothesis to control Type I error. Further, with this method,
adjustment is possible for covariables at baseline for all patients and at the beginning of the
second period for patients in the P:P and P:T groups so as to produce variance reduction and to
eliminate random imbalances for the covariables. In this regard, we introduce a randomization-
based ANCOVA as opposed to a traditional model-based ANCOVA (Koch et al. 1998). In
Section 4.3, we report results from simulation studies for the statistical properties of the proposed
methods, and we compare their performance with applicable counterparts from the repeated
measures model of Doros et al. (2013). A hypothetical study with the three SPCD sequence
groups is provided to illustrate the use of the method.

4.2 Methods

For a randomized clinical trial to compare a test treatment T to placebo P during two
periods for patients with a chronic (or recurrent) disorder, such as osteoarthritis (or migraine
headache), leti = 1, 2,3 index P:P, P:T, T:T as the sequence groups for the two treatments in the
two periods; and let k = 1, 2, ..., n index the population of patients who are eligible for inclusion
in the clinical trial and who are randomly assigned to the three sequence groups. In this regard,
let U;;, denote a random variable which has the value 1 for the assignment of the k-th patient to

the i-th group and the value 0 otherwise. The specification for the {U;;} has n; patients randomly
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assigned to the i-th group according to simple random sampling without replacement. Thus, the
{U;.} have the expected values and covariance structure shown in (4.1).
E{U;,} = Pr{U;, = 1} = (n;/n) forall i, k

Var{Uy} = n;(n —n;)/n? forall i,k

Cov{U, Uy} = {[Pr(Uix = Uy = D] = Pr(Uy, = 1) Pr(U;rpr = 1)} (4.1)
nin; nin; .. ,
=0- —=—— fori zi'andk =k
n n

n;(n; —1) nf n;(n —n;) o
St M M TR fori = itwith k # K

D w2 ey ori =i'wi +*

nini’ nini’ ninil

:n(n—l)_ n2 :nz(n—l) fori #i'and k # k

Let U, = (Uyk, Usk, Usx)' and let n = (ny, ny, n3)’. From (4.1), it then follows that the
U, have the expected values and covariance structure shown in (4.2) where D,, is a diagonal
E{U..} = (n/n)
Var{U,,} = (nD,, —nn')/n?> =Vy forallk (4.2)

Vy

forallk # k'
n—1

Cov{U,,,U, '} =—

matrix with diagonal elements n.

Let j = 0,1, 2 index the baseline, period 1, and period 2. Let y;;;, denote the constant that
corresponds to the observed response for the k-th patient during the j-th period according to a
non-negative numeric (or ordinal) scale if their random assignment is to the i-th sequence group.
Also, y, jx = >3 Ui yi jk represents the random response of the k-th patient during the j-th
period with the U;;, being the basis of its randomness. In this regard, y1ox = Y20k = Y30k = Yxok

since the baseline response for the k-th patient is the same regardless of their randomly assigned
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group; Moreover, y,1x = Y1 Since the k-th patient receives placebo in period 1 if randomly
assigned to either the P:P group or the P:T group. Let i = Viok, Yiikr Vizk)' With no missing
data being assumed for all patients. Under the global null hypothesis H, that each patient has the
same responses for the three periods regardless of their randomly assigned sequence group (and

thereby their randomly assigned treatment), the specification y,x = Y.x = ¥3x = Y.« applies.

Let z;;, be a dichotomous responder variable for period 1 such that z;;, = 1 if the k-th
patient has favorable response during period 1 in the sense that (y;;;, < L) if their random
assignment is to the i-th group with its corresponding treatment for period 1 versus z;;, = 0 if
(yi1x > L); alternatively the {z;;} could be based on change (or percent change) from baseline.
Let fijx = ZikYiji SO as to equal y;;, for period j = 1, 2 for responders in period 1 and be equal
to O for non-responders in period 1; and let g, = (Vizk — fizi) = (1 — zi)Vizk SO as to equal
V21 for period 2 for period 1 non-responders and to equal O for period 1 responders. Let F;;, =
Viok» Viikr Ziker fiiks Yizko fizie)” With the assumption of no missing data for its components. Under
Hy, F,, = F,, = F5, = F,;, applies as a consequence of the y,; = ¥ax = V3x = Y.k Als0, Fy,
could be expanded to include one or more other covariables x,; at baseline, such as age (in
addition to y,); but the presentation is more straightforward and sufficient without this

extension because the same considerations apply to both y.,x and x,.

Let F; = 8o, UFi /1) = Fio» Vir» Zi» fir, Viz» fiz)| denote the vector of the means for
the i-th sequence group. From (4.2), it follows that the randomization distributions of the F; have

expected values and covariance structure as shown in (4.3).
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E{Fi}=< Fini/nin>=lil
kZl 5

n
— 1 n;(n—n;) , n;(n —n;) .
Var{Fi}:E[Z#FikFik— Z nz(n )FikFikl
Ulk=1 kzk'

(n-n) [N
n—n; Z
= — N (Fae— ) (Fic — 1)
nin(n _ 1) & ik i ik i
(n—ny) ( 1 1)
=——Vp=(—-—=)VF, 4.3
nin F; ni n F; ( )
— = 1 [x n;n;s ,
CO'U{FL',FL-I} = Z lkFl'k + Z lkFilkI
il k=1 k+kr
n(n _ 1) Z(Flk ”l)(Fl’k ”ll) - Fi’Fi’

In (4.3), u; is the mean vector for the F;;, in the finite population of the n randomized
patients and V, is the corresponding finite population covariance matrix. Since Fy; = Fy; =
Fsi = Foo = Vaoks Yotk Zekr fo1ko Yezior fr21)' Under Hy, it follows that (4.3) simplifies to (4.4)

under H,.

n
E{F; | H,} = <Z F*kni/nin> =R = (Ho,#w,#zo,ﬂflo,#zorﬂfzo) )

“(ma)ve wo

i

n
_ 1 1
Var(F; | Ho} = (; - ;) D Fok = ) Fupe = )
t k=1

_ _ 1
Cov{F; F; | Ho} = _EVF,O-

Thus, for F = (F, F), F3)' it follows that E{F | Hy} = 1;® ., Where 15 is the (3 x 1)

vector of 1’s and ® denotes the right Kronecker product for the multiplication of each element of
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the vector on the left by the vector on the right; and the covariance structure of F under H, is as

shown in (4.5).

1 1 1 1
(n_1 - H) n n
_ 1 1 1 1
VF,O = Var{F I HO} = - E (Tl_z - E) —E ® VF,O (45)
1 1 1 1
n n (n_3_5>

= [Dy' — (1315/n)] @ V.
In this regard, E{F | Hy} and Var{F | H,} pertain to the randomization distribution of F
under H, for re-randomizations of the finite population of the n randomized patients. Since Vg
is singular through Y;7_; n,F;/n = p.o (or m'® I) Vg (n ® I) = 06 With 04 ¢ being a

matrix of 0’s), assessment of H, with F is through a = AF as shown in (4.6), and the

_ -1 1 0661= F,—F
a=AF=[ 16 6 6,6] _ [(F; 1) (4.6).
—Ig

06 I¢ B (F; — F))

corresponding covariance structure of a under H, is shown in (4.7).

[ 1 1 1 ]

Gm) w

Voo =Var{a|H} = AVroA'=| " | % " [®Vko (4.7)
PG
ny ny nNng

For the assessment of H, without adjustment for y;ox = Y20k = Vaok» Y11k = Y21k
Z1k = Zyk, and fi1x = fo1k, the potential comparisons of interest are shown in (4.8), and they are

linear functions ¢ = Ca = CAF of a with € shown in (4.9); also, u,, = Xk=1 z2a& /1), Uy, =
(ko1 faar/M), and pyo = (Tieq Vear/n). The rationale for c; is that (u,, fiz — up,,zi)/ 1z, for

i = 1,2 is the mean of deviations (u,, fizx — Ky, Zix )/ 12, Which equal O when z;;, = 0, and so
its behavior is through the (ink — (ufzo/uZO))//,LZO when zy, = 1; also, (uy, fiz — tp2i) /12, =
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(zi/uz)[(fiz/ 2:) — (us,e/ 1z, )], and SO c5 addresses the difference between the means of period
2 responders and their population counterparts (,uf20 /Mzo) under H, in a rescaled linearized way.

Similar considerations pertain to c,.

o = {_ _ nyyi; + n23_’21}
1 Y31 —(n1 +n,)
¢ = (F32 — ¥12) (4.8),

3 = {(fzz - ]iz)/lizo} - {'ufzo (Z_Z - Z_1)/H§0}

Cy = {()_’22 — faz = V12 + ]E12)/(1 - .Uzo)} - {(l«lzo - .ufzo)(z_l - Z_z)/(l — .Uzo)z}

- 0 0 1.0 0 0 0]
(n14+ny)
0 0 0 0 0 0 00 0 10
c=l0 o Ez= 9 0 1 000 0 0 0 (4.9)
Hzg Hzy
0 o ot g 1 ! 00 0 00 O
(1—u20)2 (1-#z)  (1-bz,)

Under Hy, E{c | Hy} = 0,; and the covariance structure for c under Hy is V.o = CV4,C".
For ¢ = (¢4, ¢y, ¢35, ¢4)', the comparison c; pertains to T versus P in period 1; the comparison c,
pertains to T:T versus P:P in period 2; the comparison c5 pertains to P:T versus P:P in period 2
for responders to placebo in period 1; c, pertains to P:T versus P:P in period 2 for non-
responders to placebo in period 1; and both c; and ¢, have linearized adjustments for the
corresponding influences of differences in responder proportions for the P:P and P:T groups.
Univariate test statistics for H,, and thereby for the comparison between T and P, can be based
on weighted linear combinations c,, = Y.#_; wyc, Where w = (wy, w,, w3, w,)’ is a vector of

weights such that all w, > 0 and YX7_, w;, = 1. In this regard, all w;, = 0.25 corresponds to

. -1 . . . .
equal weights and w;,,,, = (1’V;51) 1’V;3 corresponds to inverse covariance matrix weights,

with the latter being optimal in the sense of minimum variance and potentially statistical power
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under the alternatives to H, whereby the c;, express similar non-null differences between T and

P. With the weights w, the test statistic for the global null hypothesis H,, at the one-sided

significance level a is T, . = w’c/(w’chow)O's. Under Hy, T, . approximately has a standard
normal distribution with mean 0 and variance 1. If the one-sided p-value for T, . significantly
contradicts H, in the sense that p < a for some specified type 1 error level, such as @ = 0.025,
then the closed testing methods of Lehmacher et al. (1991) can be used to test H, for subsets of
the ¢, through counterparts of T, . for weighted averages of subsets of the c,. In this regard, if

p < a for such test statistics for all subsets that include ¢y, then statistical significance applies to
cp, in its own right for contradicting H, with strong control of type 1 error for the corresponding
scope of multiple comparisons. Also, in some situations, a subset of the c;, is of more interest for
the assessment of H,, than all components of ¢, and so it can be assessed directly in its own right
with particular cases of interest being c; and ¢, for the SPCD design, and perhaps c,, ¢,, and c,

for other versions of the crossover design with P:P, P:T, and T:T sequence groups.

The constraints ¢, = Coa = C,AF for a with null expected values regardless of whether

H, applies are shown in (4.10) with C, in (4.11).
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Letc, = [c',cp]’ = [C', Cy]'a = €, a denote the combined set of comparisons ¢
pertaining to H, and constraints ¢,. Under Hy, the covariance structure for ¢, isV,, o =
C.V,0C. Since E{cy} = 05 regardless of whether H,, applies, randomization-based covariance
adjustment for ¢ with respect to the constraints c, is invoked by fitting the linear model shown in

(4.12) by weighted least squares with weights based on V_ jo, and with “£” meaning
I,
E{C+} — [0 ]bo = Xbo (412)
5,4
“is estimated by.” To account for other covariables x, at baseline, ¢, in (4.10) is expanded to
InC|Ude (720 - 210) and (730 - 210) Where fio == %22=1 Uikx*()k.

For the model in (4.12), by = (by1, bo2, bo3, bos)' are covariance adjusted counterparts of
c,and by = (X’V;jOX)_lX’ =o€+ ; also, the covariance matrix for by is Vy,, = (X’V;J},OX)_l.
As a consequence of the structure of X in (4.12), by and V,, can be expressed as shown in (4.13)

! 1
by = c - (CVa,oCo)(CoVa,oco) Co
l "1 /
Vi =Veo — (C€Via0CH)(CoVaoCh) (CoViayoC') (4.13)
i N /
=C [Va,O - Va,OCO(COVa,OCO) COVa,O] C

so as to show the nature of randomization-based covariance adjustment. Covariance adjusted test
statistics for H, can be based on weighted linear combinations b,, o = Y.5_; wiby, o in ways

similar to those discussed for c. In this regard, T,,, , = w’bo/(w’Vbow)O'S approximately has
the normal distribution with mean 0 and variance 1 under H,. Finally, the unadjusted test
statistics based on ¢ and their randomization-based covariance adjusted counterparts with respect

to by are applicable to transformations of the elements of the y,, that apply under H, such as
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ranks across subjects in the pooled groups or to dichotomous indicators with the value 1 if some
criterion, such as (y., < L* < L), is satisfied for j = 1, 2 and the value 0 if otherwise.
4.3  Simulation Study
4.3.1 Simulation Setup

The Type | errors and powers of the methods discussed in this chapter were evaluated
with simulation studies. The responses Y;; of patients in the i-th group for the j-th period, where

i =P:P, P:T, T:T were randomly generated in the manner shown in (4.14) for which Z;; is an

Y; €io $o
Vi = | en |+ £t (4.14)
Y; €i2 Zin&in + (1 — Zi1)éi3

indicator for a period 1 responder in the i-th group with Z;; = 1if Y;; <L, Z;; =0if Y;; > L
for L as the specified criterion for a responder or not. In (4.14), the e; = (e;, €j1, €j2) are
independently generated, random errors from the trivariate normal distribution with 05 as the
common mean for all three groups, and with A in (4.15) as the common covariance matrix for all
1 poi Poz
A= co? [Po1 1 Plzl (4.15)
Poz Pz 1

three groups where o is the common variance for all three periods and p; ; is the correlation for
periods j and j'. Additionally, &, is the common mean at baseline for all three groups; &;; is the
mean for period 1 for the i-th group; &;, is an i-th group shift parameter that applies to period 2
for period 1 responders; and &;5 is an i-th group shift parameter that applies to period 2 for period
1 non-responders.

For all simulation studies, the specified covariance matrix A had a2 = 36, with the scope
of correlations being p;, = p13 = py3 = 0.3, 0.5 as exchangeable structures and p;, = pa3 =

p%2 = 0.5,0.7 as autoregressive structures. The specifications for the assessments of type 1 error
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were & = 40, &ppy = éprs = $1er1 = 35, $pip2 = $per2 = $ror2 = 32, a0d $pp3 = Epirz =
éror3 = 35, with Y;; < L = 33 being the criterion for a period 1 responder in the i-th group.
Also, with m; = E{Z;,} as the probability of responder status for group i, it follows from

¢pp1 = &p11 = éro11 = 35 that mp.p = mp.r = mr.p = 0.37 for the assessments of type 1 error
under the global null hypothesis H, as specified in Section 4.2.

The specifications of the &;4, &;,, and &;5 for the assessments of statistical power are
shown in Table 4.1. Also, &, = 40 and p.p = mp.r = 0.37, but m.T = 0.47 so that the
difference in period 1 responder rates for the T:T group versus the P:P and P:T groups is about
0.10. From Table 4.1, it follows that Ay = (&7 — &pip) = —1.5, Ag= (&p.ra — Epipz) =
—1.0,and A,= (&pir3 — Epipz) = —2.0. Since E{Yj,} = {m;&;, + (1 — m)&i3} = n;, it follows
that A,= (.7 — np.p) = (32.1 — 33.9) = —1.8. Thus, (A;,A,, A3, A,) = (—1.5,—-1.8,—1,—2)
is the specification that corresponds to the assessments of statistical power with respect to
(1,9, ¢3,¢4) and (bqg, byg, b3g, bao); and (A4, A5, A5, A,) = (0,0,0,0) corresponds to the
assessments of type 1 error.

Table 4.1 Specifications for Assessments of Statistical Power

. Period 2 for
. Period 2 for _
Group Period 1 . Period 1 Non-
Period 1 Responder

Responder

P:P $p.pp = 35 $p:p2 = 32 $p.p3 = 35

P:T $p.r1 = 35 $p.r2 = 31 $p.r3 = 33
T STt = 33.5 $ter,2 = 30.5 $tir3 = 33.5

The simulations were performed with equal sample sizes n, = 40,80, 160 patients per
group, with the total sample sizes respectively being 3n, = 120, 240, 480. For each simulation,

the responses of the baseline, period 1, and period 2 are generated via (4.14) with the previously
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noted specifications. For testing the hypothesis Hy: A, = 0 versus Hy: A, # 0 in
correspondence to c,, or b, ,,, the determination of p value for the test statistic T, . or T, is
based on reference of its squared value to the chi-square value x7,_, where « is the specified
significance level and we chose a to be 0.05. The simulation results are based on 50,000
replicates for the specifications previously stated. The results of Type | error and power from the
simulations are means of indicator variables for whether p < a applies for testing H,, and the
empirical standard deviation (ESD) is taken as the square root of the variance of the estimated c,,
or by, o across all simulations, and the average of the estimated standard error (ASE) of c¢,, or

by, inthe simulations is provided.

4.3.2 Simulation Results

The results that only address A; and A,, as is usually the case of interest in the SPCD
design under the null hypothesis, are displayed in Table 4.2. As shown there, under the null
hypothesis, the unadjusted and adjusted methods provide unbiased point estimates and
reasonable estimates of the standard errors of the estimators, as the ASE and ESD are similar.
Type | errors under all scenarios are well-controlled at the nominal 0.05 level regardless of the
sample sizes using the unadjusted ¢ or covariable adjusted by. The MMRM approach of Doros et
al. (2013) also had its type 1 error evaluated with the simulation studies, and it provided good
control when the sample size per group is 80 and 160; but it had an elevated type one error when
the sample size is 40 per group, under each of the different correlation specifications.
Additionally, the covariable adjusted method b provides variance reduction of 10% to 45%,

depending on the correlation levels and sample sizes, as shown in the efficiency column.

Under H, for no treatment differences, results that additionally address A,, the treatment

difference between P:P and T:T sequences, in addition to the usual A; and A, for the SPCD
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design, are shown in Table 4.3. These results also show good control of the Type I error. For
utilizing all available information from a study, a weighted statistic can address all A, to A4, with
equal weighting or inverse variance weighting, and Table 4.4 shows that it controls the type |

error well at the 0.05 significance level.

Under the alternative parameter specification in Table 4.1, the powers with the three
methods are presented in Table 4.5. The covariable adjusted method b, and MMRM approach of
Doros et al. (2013) for addressing A, and A, have similar power, with both having higher power
than the unadjusted method c. Under the specification of A, for Table 4.1, when taking A, into
account in addition to A, and A,, the powers are slightly better than without addressing A.,.
When considering all the available sources of information with equal weights, the power
decreases due to smaller A; compared to A4, A,, A,. But when inverse variance weighting is
used, the power is similar to that when A5 is not addressed, mainly because the weight

corresponding to A is smaller than those corresponding to A;, A,, A,.
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Table 4.2 Results from 50, 000 replicate simulations for the test statistics of Hy: 4; = 4, =0under4;, =4, =4; =4, =0

Unadjusted Adjusted MMRM Efficiency
n; Weight
P l : Bias  ASE  ESD L"r‘r’sr' Bias ASE  ESD Teyrfsr' Bias ASE ESD Teyrfsr' a/u  a/m
40  Equal -0.0031 1005 1009 0.0491 -0.0013 0956 0956 0.0490 -0.0014 0973 0977 00520  0.90 0.96
Inwar  -0.0030 0.944 00950 0.0499 -0.0009 0.898 0.899 0.0490 0.0085 0.908 0919 00526  0.90 0.96
80  Equal -0.0045 0712 0716 0.0500 -0.0042 0.680 0.683 0.0505 -0.0042 0.684 0.688 00513 091 0.98
03 (EX) Inwar  -0.0029 0670 0671 0.0500 -0.0029 0.639 0.640 0.0492 00020 0.641 0.645 0.0515 091 0.99
160  Equal 00037 0504 0503 0.0488 00025 0482 0.482 00497 0.0027 0483 0482 00494  0.92 1.00
Inwar  0.0030 0.474 0.473 0.0494 0.0019 0454 0453 00500 00042 0.453 0454 00506  0.92 1.00
40  Equal -0.0027 0974 0980 0.0493 -0.0038 0.878 0.883 0.0500 -0.0037 0912 0928 00542  0.81 0.91
Inwar  -0.0038 0929 00937 0.0495 -0.0052 0.820 0.824 0.0506 00021 0.838 0.854 0.0552  0.77 0.93
s 5 Equal -0.0026 0.689 0.693 0.0499 -0.0031 0.624 0627 00516 -0.0021 0642 0.648 00540  0.82 0.93
Inwar  -0.0015 0659 0661 00504 -0.0029 0583 0583 0.0509 00016 0592 0597 00528  0.78 0.96
160  Equal 00029 0488 0486 0.0488 00032 0443 0.442 00497 0.0026 0453 0454 00509  0.83 0.95
Inwar  0.0029 0.466 0.465 0.0495 0.0037 0.413 0413 0.0499 00052 0.419 0420 00519  0.79 0.97
40  Equal -0.0032 0974 0980 00519 -0.0014 0.857 0.864 00514 -0.0022 0.865 0.873 00538  0.78 0.98
Inwar  -0.0026 0929 0936 00510 -00012 0.810 0816 00515 00061 0.816 0.829 00561  0.76 0.97
05 (EX) 80  Equal 00011 0689 0692 00504 00008 0.609 0613 0.0508 0.0016 0.609 0.612 00509  0.78 1.00
Inwar  0.0019 0.659 0.660 00504 0.0006 0576 0578 0.0502 00050 0.576 0580 00519  0.77 0.99
160  Equal 00010 0488 0.484 00476 -0.0002 0432 0.430 0048 0.0001 0.429 0427 00489  0.79 1.02
Inwar  0.0006 0.466 0.464 0.0474 0.0000 0.409 0407 0.0488 00020 0.407 0.406 0.0496  0.77 1.00
40  Equal 00003 0923 0928 00512 00011 0724 0725 00492 00001 0752 0758 0.0533 0.6l 0.91
Inwar  -0.0011 0909 0917 00523 0.0005 0678 0679 0.0502 00052 0.690 0700 0.0536  0.55 0.94
80  Equal -0.0017 0.654 0655 00486 -0.0016 0515 0516 00501 -0.0010 0529 0533 00519  0.62 0.94
07 (AR) Inwar  -0.0003 0.645 0.644 0.0483 -0.0009 0.482 0481 0.0491 00018 0.488 0490 00508  0.56 0.96
160  Equal 00046 0462 0460 0.0483 00025 0365 0364 00501 -0.0009 0373 0376 00518  0.63 0.94
Inwar  0.0037 0.457 0.454 00486 0.0018 0342 0341 0.0498 00005 0.345 0346 00516  0.56 0.97

Note: Bias = mean of (estimate-true value); Type | error = rejection rate of null hypothesis (when Z2, > xZ,:); ASE=average standard error;

ESD=empirical standard deviation. a/u=(adjusted variance) / (unadjusted variance); a/m = (adjusted variance) / (MMRM variance)
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Table 4.3 Results from 50, 000 simulations for the test statistics of Hy: 4, = 43 = 4, = 0under4; =4, =4; =4, =0

Unadjusted Adjusted Efficiency
poom WA AsE EsD P! s Ase  Esp TP alu
error error
40 Equal  -0.0013 1.009 1.015 0.0504  0.0009 0.940 00942  0.0494 0.86
InvWar  -0.0030 0.931 0937 0.0503 -0.0006 0.875 0.877  0.0503 0.88
0.3 80 Equal -0.0016 0.714 0.716  0.0506 -0.0014 0.668 0.670 0.0496 0.87
(EX) InvVar -0.0019 0.661 0.663 0.0500 -0.0014 0.623 0.624 0.0491 0.89

160 Equal 0.0022 0.505 0.505 0.0496 0.0009 0.474 0.474  0.0492 0.88

Invwar ~ 0.0024 0.468 0.467  0.0502 0.0009  0.443  0.443  0.0496 0.90

40 Equal -0.0053 1.023 1.030 0.0506 -0.0061 0.919 0.922  0.0497 0.80

Invwar  -0.0035 0.926 0.933 0.0500 -0.0049 0.816 0.821  0.0500 0.77

05 80 Equal -0.0013 0.724 0.725 0.0504 -0.0024 0.653  0.654  0.0490 0.81

(AR) Invwar  -0.0016 0.657 0.660 0.0504 -0.0030 0.582  0.583  0.0510 0.78
160 Equal 0.0034 0.512 0.510 0.0497 0.0037 0.463  0.462 0.0493 0.82

InvVar 0.0029 0466 0.465 0.0495 0.0037 0.413  0.413  0.0496 0.79

40 Equal -0.0051 1.023 1.031 0.0512 -0.0039 0.859 0.865  0.0513 0.70

InvvVar  -0.0030 0.926 0.933 0.0513 -0.0029 0.799  0.805 0.0518 0.74

05 80 Equal 0.0010 0.724 0.726  0.0500 -0.0001 0.610 0.613  0.0500 0.71
(EX) InvVar 0.0018 0.657 0.659  0.0496 0.0002 0.569  0.571 0.0508 0.75

160 Equal 0.0023 0512 0.508 0.0477 0.0014  0.433 0.430 0.0470 0.71
Invwar ~ 0.0006 0.466 0.463 0.0476 0.0006  0.404  0.402  0.0489 0.75

40 Equal 0.0007 1.026 1.033 0.0505 0.0028 0.794  0.795 0.0496 0.59

Invwar ~ -0.0014 0.884 0.890 0.0515 -0.0005 0.665 0.667 0.0496 0.56

0.7 80 Equal 0.0002 0.726 0.726 0.0495 -0.0001 0.564 0.563 0.0488 0.60
(AR) Invvar  -0.0016 0.628 0.628 0.0492 -0.0015 0.474 0474 0.0500 0.57
160 Equal 0.0030 0.514 0.512 0.0494 0.0009 0.400  0.400 0.0500 0.61

InvVar 0.0046 0.445 0.442 0.0489 0.0024 0.337 0.335 0.0491 0.57

Note: Bias = mean of (estimate-true value); Type | error = rejection rate of null hypothesis (when Z2 > xZ,:); ASE=average standard error;
ESD=empirical standard deviation. a/u=(adjusted variance) / (unadjusted variance).
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Table 4.4 Results from 50, 000 replicate simulations for the test statistics of Hy: 4 = 4; = A; = A4, =0under4; =4, =43 =4, =0

. Unadjusted Adjusted Efficiency
p n; Weight - -
Bias ~ASE ESD  Typel Bias ASE  ESD  Typel alu
40 Equal -0.0006 0.980 0.985 0.0505 0.0004 0917 0.920  0.0496 0.87
Invwar  -0.0026 0.857 0.862 0.0511 -0.0012 0.809 0.811  0.0504 0.89
0.3 80 Equal -0.0018 0.694 0.694 0.0477  -0.0007 0.653 0.653  0.0491 0.88
(EX) Invwar ~ -0.0026 0.610 0.610 0.0500 -0.0017 0578 0.578  0.0493 0.90

160  Equal  0.0022 0491 0490 0.0489  0.0013 0464 0464  0.0488 0.89

Invwar  0.0028 0.432 0431 0.0499 00017 0411 0411  0.0497 0.91

40 Equal  -0.0084 0.965 0.968 0.0496 -0.0100 0.881 0.883  0.0505 0.83

Invar ~ -0.0050 0.827 0.833 00514 -0.0067 0.738 0.743  0.0517 0.79

05 80 Equal  -0.0014 0.683 0.682 00491 -0.0014 0.627 0.627  0.0480 0.84
(AR) Invwar  -0.0021 0.588 0.590 0.0509  -0.0025 0.527  0.527  0.0501 0.80
160  Equal ~ 0.0030 0483 0481 0.0482 0.0037 0445 0443  0.0489 0.85

Invwar  0.0025 0.417 0416 00500 0.0036 0375 0.374  0.0493 0.81

40 Equal  -0.0060 0.964 0.970 0.0501 -0.0050 0.824 0.829  0.0499 0.73

Invwar ~ -0.0036 0.827 0.831 0.0505 -0.0033 0725 0.729  0.0509 0.77

05 80 Equal 00005 0.683 0.685 00509 0.0002 0587 0.590  0.0501 0.74
(EX) Invwar  0.0014 0588 0592 00508 0.0006 0518 0.522  0.0511 0.78
160  Equal  0.0021 0483 0481 0.0492 0.0013 0416 0415 0.0494 0.74

Invwar ~ 0.0004 0.417 0416 00510 00001 0369 0.367  0.0489 0.78

40 Equal ~ 0.0023 0929 0935 00498 0.0027 0748 0.750  0.0491 0.64

Invwar ~ 0.0006 0.761 0.764 00513 -0.0002 0591 0592  0.0508 0.60

(2-;) 80 Equal  -0.0020 0.658 0.658 0.0491 -0.0015 0.532 0.532  0.0498 0.65
Invwar  -0.0035 0.541 0541 0.0500 -0.0026 0422 0422  0.0489 0.61

160  Equal  0.0018 0466 0465 0.0495 0.0006 0.378 0.378  0.0493 0.66

Invwar ~ 0.0036 0.384 0.383 00503 0.0022 0300 0.300 0.0497 0.61

Note: Bias = mean of (estimate-true value); Type | error = rejection rate of null hypothesis (when Z2, > yZ,:); ASE=average
standard error; ESD=empirical standard deviation. a/u=(adjusted variance) / (unadjusted variance).
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Table 4.5 Results from 50,000 replicate simulations for power of test statistics under the alternative specified in Table 4.1

. A;and A, Ay, Ay and A, Ay, Ay, Az and A,

P i Weight Unadjusted  Adjusted MMRM  Unadjusted  Adjusted  Unadjusted  Adjusted
40 Equal 0.418 0.438 0.443 0.426 0.460 0.368 0.396
InvVar 0.426 0.448 0.451 0.434 0.464 0.427 0.459
03 80 Equal 0.688 0.721 0.723 0.698 0.745 0.631 0.673
(EX) InvVar 0.699 0.736 0.733 0.712 0.757 0.712 0.755
160 Equal 0.931 0.948 0.950 0.936 0.959 0.900 0.927
InvVar 0.938 0.955 0.954 0.943 0.963 0.945 0.964
40 Equal 0.441 0.501 0.491 0.418 0.477 0.379 0.424
InvVar 0.435 0.510 0.506 0.435 0.506 0.436 0.511
0.5 80 Equal 0.716 0.791 0.775 0.689 0.765 0.644 0.708
(AR) InvVar 0.711 0.801 0.793 0.714 0.801 0.723 0.807
160 Equal 0.946 0.974 0.969 0.932 0.966 0.909 0.944
InvVar 0.943 0.977 0.976 0.946 0.977 0.951 0.980
40 Equal 0.443 0.519 0.529 0.416 0.527 0.376 0.472
InvVar 0.434 0.525 0.535 0.436 0.535 0.437 0.539
0.5 80 Equal 0.716 0.805 0.815 0.686 0.815 0.642 0.763
(EX) InvVar 0.711 0.816 0.820 0.714 0.825 0.722 0.829
160 Equal 0.948 0.980 0.982 0.933 0.983 0.908 0.968
InvVar 0.945 0.982 0.983 0.947 0.984 0.952 0.986
40 Equal 0.478 0.655 0.643 0.414 0.588 0.398 0.541
InvVar 0.445 0.656 0.663 0.462 0.662 0.478 0.680
0.7 80 Equal 0.763 0.917 0.907 0.686 0.873 0.676 0.839
(AR) InvVar 0.727 0.920 0.919 0.750 0.923 0.778 0.935
160 Equal 0.964 0.997 0.997 0.932 0.992 0.926 0.987
InvVar 0.950 0.997 0.997 0.960 0.997 0.970 0.998

Note: Power = rejection rate of null hypothesis (when Z2 > x&45).



44 Example

A hypothetical placebo-controlled pre-randomized two-period study that makes use of the
P:P, P:T, and T:T sequence groups is created to illustrate an application of the proposed methods
and to compare them to those from the MMRM method proposed by Doros et al. (2013). The
example has 240 subjects which are equally assigned to the three sequence groups. Assessments
of responses occur at the baseline, end of period 1 and period 2, with a lower outcome score
being more beneficial. At period 1, a score less than 33 is considered as a responder to the
treatment. The means and standard deviations of the responses are provided in Table 4.6. The
means of responses at baseline are similar across the three sequence groups, with a slightly larger
mean in the T:T group. There are 31%, 34%, and 39% of responders in the three groups
respectively, as shown in the Z row, with only 6% more responders in the test treatment group
than the placebo group at Period 1. And as the trial continues to the second period, the mean
responses there for the P:T and T:T groups are almost the same, and the P:P group is slightly
worse.

Table 4.6 Mean and Standard Deviation of Outcome

Statistics P:P P:T TT

7, 4054 40.45 40.80
SD 536 557 6.91
7, 3515 3492 34.24
SD 617 572 648
z 031 034 039
v, 33.98 3244 32.39
SD 560 504 6.13

The estimates using the proposed unadjusted and adjusted methods as well as the
MMRM method are shown in Table 4.7. The standard errors of the estimates increase as the

sample sizes decrease, as those pertaining to A, have the smallest standard errors and those
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pertaining to A; have the largest standard errors (since only 30% to 40% of patients are
responders in period 1). The covariable-adjusted method and the MMRM method provide similar
estimates for A, the treatment difference at the end of the first period with a value of 0.95,
whereas the unadjusted estimate is somewhat closer to the null. For the period 1 treatment
difference only, the p values of 0.289, 0.111, and 0.130 for the unadjusted method, the adjusted

method, and the MMRM method, respectively, similarly fail to contradict the null hypothesis.

Table 4.7 Estimates of A; to A,

2
Method  Statistics Ay A, As A, @_;) p value

Unadjusted Etimate -0.791 -1.591 -0.666 -1.731 1.126  0.289
SE 0.745 1.033 1440 1.091

Adjusted Estimate -0.960 -1.600 -0.467 -1.838 2535 0.111
SE 0.603 0951 138 1.035

MMRM  Estimate -0.951 NA -0.111  -1909 2488 0.130
SE 0.603 NA 1546  1.051

Equal: equal weights; InvVar: Inverse variance weighting.

Importantly, the estimate pertaining to A, for the treatment difference at the end of the
second period for the placebo non-responders in period 1 is twice as large as that pertaining to A;
and at least three times bigger than that pertaining to A5 as the difference for the placebo
responders; and this indicates that the placebo non-responders, when given the test treatment, are
more informative than the placebo responders. The comparison that addresses A, for the
difference between the T:T group and the P:P group also show better improvement than that for
the first period, and this consideration could possibly contribute to the overall treatment
comparison if taken into account.

As shown in Table 4.8, all of the statistics provided by the unadjusted method, except for

the one accounting for A, with equal weight, fail to contradict the null hypothesis at the 0.05
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level, mainly due to somewhat larger variance; but the adjusted method, with any specification

for A’s, and the MMRM method considering A, and A,, similarly show significant results at the
0.05 level.

Table 4.8 Estimates of Weighted Statistics

Method  Statistics A;and A, A, Ayand A, Aq, A, Azand A,
Equal Invwar Equal InvVar Equal InvVar

Unadjusted "Vel9Ned 4 961 1000 -1371 -1.082 -1.195 -0.967
estimate

SE 0.661 0.615 0.696 0.615 0.669 0.560
Pvalue 0056 0.077 0049 0.079 0.074 0.084

Adjusted VOO g 209 1199 1466 -1167 -1.216 -1.041
estimate
SE 0599 0521 0631 0520 0620 0.480
Pvalue 0020 0022 0020 0025 0050 0.030
MMRM  Welghted a1 188

estimate
SE 0.606  0.523
Pvalue 0.025 0.031
Equal: equal weights; InvVar: Inverse variance weighting.
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CHAPTER 5: RANDOMIZATION-BASED ANCOVA FOR POINT AND CONFIDENCE
INTERVAL ESTIMATION IN SEQUENTIAL PARALLEL COMPARISON DESIGN
(SPCD)

5.1 Introduction

When the global null hypothesis H, for the SPCD design is contradicted by test statistics
in Chapter 4 such as T, . or T, , , or is not expected to apply, randomization-based covariance
adjustment can proceed for confidence interval estimation for comparisons between T and P
through the expansion of the population for inference to an almost infinitely large population of
N patients so that the n randomized patients included in the trial are conceptually representative
of this large population in a simple random sampling sense (Koch et al., 1998).
5.2 Methods

In the above setting, the randomization process is comparable to the random assignment
of n; patients to the i-th sequence group for i = 1, 2,3 and (N — n) patients to a group without
random selection for inclusion in the clinical trial. Accordingly, u; and Vg, in (4.3) become the
population mean vector and population covariance matrix for the population of N patients which
the n; patients in the i-th group are assumed to represent if all N patients received the i-th
sequence of treatments. Also, with n replaced by N in (4.1), (4.2), and (4.3), ; and Vg, have the

structure shown in (5.1).

N N
1 1
pi = N; Fip, Vp, = mel(Fik — u)(Fye — pyr)’ (5.1)

Also, the sample mean estimator for the i-th group F; = (XX_, Ui Fi./1;) applies,

although the summation only includes the n; patients randomized to the i-th group.
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As N — oo, the covariance matrix of the sample mean simplifies to (5.2).
Var(F;) = (Vi,/n;) (5.2)
Cov(F;,F;) = 0.

An unbiased estimator for Var(F,) is Vg, is as shown in (5.3), since E{Vr,} = Var(F))

Vg, = Z Ui (Fye — F)(Fy — F)'/ni(n; — 1) (5.3)
k=1
N
1
m{z lk(Flk ”l)(Flk ﬂl) ] [n (F ﬂl)(F ﬂl) ]}
¢ k=1
can be derived in (5.4), regardless of the large population size N.
N —n)Vg;
E(Vz) { Z (Fue = ) P =)' /N g = )| - 28 } (5:4)

VFl

N —1) (Vgi/n;) = Var(F))

sfoo-23)
Thus, Vz = Diag(Vz,, Vr,, Vg, ) is the block diagonal estimated covariance matrix for F
with the {V'z;} as its diagonal blocks.

Let F; denote the transformation of F; whereby the ﬁ-j for j = 1, 2 are replaced by ﬁ-,- =
(fij/z:), and Gi, = (¥, — fiz) /(1 — Z;) is also included, as shown in (5.5), with matrices Ry, 7,
Fi = (}_’io’}_’ibz_i:fip}_’iz'fiz’giz), (5.5)

= exp[R;, log(R,F; + 1)],

and R, as shown in (5.6).
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(100 00 0 0] 100 000001
010 00 0 0
00100 0 0 010 00000
001000 0 001 00000
R, = , r= , R,=100-1 0 1000 (5.6)

00010 0 0

000 00100
000 01 0 0

00-10 0010
000001 0 000 -1000 1.
00 0 01 -1/ n

By linear Taylor series methods as discussed in Koch et al. (1977), a consistent estimate

for the covariance matrix of F; is Vz, = L,V L; for which L; = D R,Dy 7. ,,,R; and
(RyFi+1) = (371'0'371'1;Z_i, (1= 2), f, iz, fizr (Viz — fiz) )
Let F = (F, F3, F5)'. A consistent estimate for the covariance matrix of F is the block

diagonal matrix Vi = Diag(Vz,, Vy,, Vi,) with the V;, as its diagonal blocks.

The difference between sequence groups @ = [(Tv"z ~-F), (Fs - Tv‘l)']l = AF is

constructed as shown in (5.7), and a consistent estimate for the covariance matrix of @

6 I6 066] ’I‘;’v (57)

~ 1
a=AF=[
_16 066 16

isVz = AV#A’ as shown in (5.8).

a

Ve 4Ts T
[ FEVER VR l 5.8)
szl Vfl + VT;3

For the assessment of H, without adjustment for y,ox = Y20k = Vaok: Y11k = Y21k
Zik = Zyk, and fi1x = f21k, the potential comparisons of interest for this crossover design are

shown in (5.9), and they are linear functions ¢ = Ca = CAF of @ with matrix C as shown in

(5.10).
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& =15 _(n1}711+n2}721)
G Oy

¢, = (}_’32 - }712)
C3 = (fzz - fz1) (5.9)

€, = (g~22 - 5721)

na

07250 000001000 00

= o "™ 000000000100

¢=fo g 000100000000 0
0 o 0000100000 O00O

A consistent estimate for the covariance matrix of & is V; = CV;C'. Also, under Hy,
E,{¢| H,} = 0, where E,{ } denotes asymptotic expected value with respect to the distribution
of ¢ through the assumed random sampling of patients and the invoked randomization for
sufficiently large sample size to support its statistical behavior through its linear Taylor series
approximation.

Similarly to the previous chapter, for ¢ = (¢, ¢,, ¢5,¢,)’, the comparison ¢; pertainsto T
versus P in period 1; the comparison ¢, pertains to T:T versus P:P in period 2; the
comparison ¢ pertains to P:T versus P:P in period 2 for responders to placebo in period 1; ¢,
pertains to P:T versus P:P in period 2 for non-responders to placebo in period 1. Univariate test
statistics for H, and thereby for the comparison between T and P can be based on weighted linear
combinations ¢,, = Y#_, w, &, Where w = (wy,w,, w3, w,)’ is a vector of weights such that all
wy, = 0and Yi_, w, = 1. With the weights w, the test statistic for the global null hypothesis H,,
at the two-sided significance level a is T, ; = w'¢/(W'Vw)°5. Under Hy, T,, z approximately

has a standard normal distribution with mean 0 and variance 1. A confidence interval based
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~ ~ ~ - (24
on ¢, can be constructed as [cw — Z% Ve Cwt Z%,/ Véw], where Z% is the (1 — E)th
percentile of the standard normal distributionand V. = w'Vs w.

The constraints &, = C,a = C,AF for @ with E,{¢,} = 0 regardless of whether H,

applies are shown in (5.11).

[(F20 — ¥10)]

V20 =¥ 100000000000 0 O
|50=¥10)] j0o 0 0 000010000 0 O

& =|(P21—¥)|=[0 1. 0 0 0 0 0 000 00 0 ol
|(z‘2—z-1)||l00100000000000JI
|(fu—f,)l 000 10000000000
= Cod (5.11)

Lete, = [¢,&] = [C',C,] @ = C,a denote the combined set of comparisons &
pertaining to H, and constraints ¢,. The estimated covariance structure for ¢, is ?a, =C.V4C,.

Since E{¢,} = 0 regardless of whether H, applies, randomization-based covariance adjustment

for ¢ with respect to the constraints &, is invoked by fitting the linear model shown in (5.12) by

E{¢c,} = [01:4] b=Xb (5.12)

weighted least squares with weights based on ng and with “£” meaning “is estimated by”’; and
b = (by, b,, b3, b,)" are covariance adjusted counterparts of ¢ and b = (X’ngx)_lx’Agjm;
also, the covariance matrix for b is V3 = (X’T/ng)_l. Covariance adjusted test statistics for H,

can be based on weighted linear combinations b, = Y% _, w,,by, in ways similar to those

discussed for ¢.
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5.3 Simulation Study
5.3.1 Simulation Setup

The Type | errors and powers of the methods discussed in this chapter were evaluated
with simulation studies. The responses Y;; of patients in the i-th group for the j-th period, where

i =P:P, P:T, T:T, were randomly generated in the manner shown in (5.13) for which Z;; is an

Yio €io $o
Yo |=|en|+ i1 (5.13)
Y; €i2 Zi1&in + (1 = Zi1)é53

indicator for a period 1 responder in the i-th group with Z;; = 1if Y;; <L, Z;; =01f Y;; > L
for L as the specified criterion for a responder or not. In (5.13), the e; = (e;, €j1, €j2) are
independently generated, random errors from the trivariate normal distribution with 05 as the

common mean for all three groups, and with A in (5.14) as the common covariance matrix for all

1 po1 Po2
A=0c%|po1 1 pr2 (5.14)
Po2 P12 1

three groups where o2 is the common variance for all three periods and p;j is the correlation for
periods j and j'. Additionally, &, is the common mean at baseline for all three groups; &;; is the
mean for period 1 for the i-th group; &;, is an i-th group shift parameter that applies to period 2
for period 1 responders; and &;5 is an i-th group shift parameter that applies to period 2 for period

1 non-responders.

For all simulation studies, the specified covariance matrix A had o2 = 36, with the scope
of correlations being p;, = p13 = p,3 = 0.3, 0.5 as exchangeable structures and p;, = py3 =
p%? = 0.5,0.7 as autoregressive structures. The specifications for the assessments of type 1

error were & = 40, $pp1 = Eprn = $1om1 = 35, Epippy = Epirz = rr2 = 32, and Epip 3 =

87



épr3 = 113 = 35, with Yy < L = 33 being the criterion for a period 1 responder in the i-th
group. Also, with ; = E{Z;;} as the probability of responder status for group i, it follows from
¢pp1 = &p11 = ér11 = 35 that mp.p = mp.r = mr.p = 0.37 for the assessments of type 1 error
under the global null hypothesis H, as specified in Section 4.2.

The specifications of the &;4, &;,, and &;5 for the assessments of statistical power are
shown in Table 5.1. Also, ¢, = 40 and p.p = mp.r = 0.37, but m.T = 0.47 so that the
difference in period 1 responder rates for the T:T group versus the P:P and P:T groups is about
0.10. From Table 5.1, it follows that Ay = (ép.1; — &p.p1) = —1.5, Az= (&pry — Eppa) =
—1.0,and A,= (&pir3 — Epipz) = —2.0. Since E{Yj,} = {m;&;, + (1 — m)&is} = n;, it follows
that A,= (.7 — Np.p) = (32.1 — 33.9) = —1.8. Thus, (A, A,, Az, A,) = (—1.5,—1.8,—1,—2)
is the specification that corresponds to the assessments of statistical power with respect to
(c¢1,€9,¢3,¢4) and (bq, by, b3, by); and (A4, A5, A5,A,) = (0,0,0,0) corresponds to the
assessments of Type 1 error.

Table 5.1 Specifications for Assessments of Statistical Power

: Period 2 for
. Period 2 for i
Group Period 1 . Period 1 Non-
Period 1 Responder

Responder

P:P $p.py = 35 $p:p2 = 32 $p.p3 = 35

P:T $p.t1 = 35 $p.r2 = 31 $p.r3 = 33
T:T ET:T,I - 335 fT:T,Z - 305 ET:T,?) - 335

The simulations were performed with equal sample sizes n, = 40, 80, 160 patients per
group, with the total sample sizes respectively being 3n, = 120, 240, 480. For each simulation,
the responses of the baseline, period 1, and period 2 are generated via (5.13) with the previously
noted specifications. For testing the hypothesis Hy: A, = 0 versus Hy: A, # 0 in

correspondence to c,, or b, the determination of p value for the test statistic T,, . or T,,,, is
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based on reference of its squared value to the chi-square value x7,_, Where « is the specified
significance level and we chose « to be 0.05. The simulation results are based on 50,000
replicates for the specifications previously stated. The results of Type I error and power from the
simulations are means of indicator variables for whether p < a applies for testing H,, and the
empirical standard deviation (ESD) is taken as the square root of the variance of the estimated c,,
or by, o across all simulations, and the average of the estimated standard error (ASE) of c,, or
by, inthe simulations is provided.
5.3.2 Simulation Results

The results that address A; and A, only, which is usually the case of interest in the SPCD
design, under the null hypothesis, are displayed in Table 5.2 with equal weighting and inverse
variance weighting; and the results under the null that address A;, A, and A,, and all A, to A,,
are as shown in Tables 5.3 and 5.4 respectively.

For closer to nominal control of Type 1 error at the two-sided 0.05 level and closer to

nominal coverage for the two-sided 0.95 confidence interval, the estimator I7E+ for the variance
of ¢, has multiplication by % where the subtraction of m corresponds to the number of

sample means estimated from the 3 sequence groups combined; for example, m = 7 and m = 12
for the unadjusted approach and covariate-adjusted approach when the test statistic is based on a
weighted mean to address A; and A, with (m = 9, 14 for addressing A, A,, A, and m = 11,16
for addressing all A, to A,). Accordingly, an approximate F distribution with d.f.=(1, N — m) for
the p value of hypothesis testing and t-distribution with d.f.= (N — n) for confidence interval
determination is used.

As shown in Table 5.2, under the null hypothesis, all three methods provide unbiased

point estimates and reasonably accurate corresponding standard errors, as the ASE and ESD are
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similar. When equal weights are used, Type I errors range from 0.0467 to 0.0501 for the
unadjusted approach, and from 0.0485 to 0.0533 for the covariate adjusted approach, and 0.0489
to 0.0542 for the MMRM approach of Doros et al. (2013), with the larger Type | errors occurring
at the n = 40 per group and the somewhat smaller than nominal Type | errors at n=160 per
group for all three approaches. Similar results are observed in the inverse variance weighting to
the parameters. As shown in the efficiency column, the covariate adjusted and MMRM methods
have similar variances for estimation, with these being smaller than that for the unadjusted
method; and thus there is better precision and narrower confidence interval estimation. As shown
in Table 5.2 vertically, as correlation among the outcomes increases, the variance for the
estimation decreases in all three approaches of estimation, with a bigger impact in the covariate-
adjusted and MMRM estimators than the unadjusted.

Under H, for no treatment differences, results that address A, the treatment difference
between P:P and T:T sequences (in addition to the traditional SPCD design that addresses only
A; and A,) are shown in Table 5.3. Results with inclusion of A, also have good control of the
Type | error. For utilizing all available information from the study, a weighted statistic that
addresses all A; to A,, with equal weighting or inverse variance weighting, is also considered,
and there is control for the type I errors at the 0.05 significance level, as shown in Table 5.4.

Under the alternative parameter specification in Table 5.1, the nominal coverage of 95%
confidence interval and the power with the three methods, under scenarios of different sample
sizes and correlations among outcomes, are presented in Table 5.5. The coverage with equal
weighting for addressing A; and A, by the unadjusted, adjusted, and MMRM each range from
0.949 t0 0.953, and 0.947 to 0.952, and 0.946 to 0.951, respectively, and they all indicate good

coverage of the target parameter.
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Table 5.2 Results from 50, 000 replicate simulations for the test statistics of Hy: 4, = 4, =0under4, =4, =4;=4,=0

. Unadjusted Adjusted MMRM Efficiency

P i Weight Bias ASE ESD Type | Bias ASE ESD Type | Bias ASE ESD Typel alu a/m
n=40  Equal | -0.0030 1.021 1.014 0.0479 | 0.0034 0.985 0.992 0.0515 | -0.0014 0.973 0.977  0.0520 0.96 1.03
Invwar | 0.0105 0958 0961 0.0495 | 0.0175 0921 0941  0.0543 0.0085 0.908 0.919  0.0526 0.96 1.05
0.3 n=80  Equal | -0.0047 0.717 0.718 0.0493 | -0.0017 0.690 0.696 0.0523 | -0.0042 0.684 0.688  0.0513 0.94 1.02
(EX) Invwar | 0.0040 0.674 0675 0.0501 | 0.0065 0.647 0.654  0.0518 0.0020 0.641 0.645  0.0515 0.94 1.03
n=160  Equal 0.0038 0,506 0.503 0.0486 | 0.0037 0.486 0.487  0.0502 0.0027 0483 0482  0.04% 0.93 1.02
Invwar | 0.0065 0476 0475 0.0492 | 0.0063 0456 0.458  0.0507 0.0042  0.453 0.454  0.0506 0.93 1.02
n=40  Equal | -0.0026 0.989 0.985 0.0478 | -0.0007 0.905 0.915 0.0512 | -0.0037 0.912 0.928  0.0542 0.86 0.97
Invwar | 0.0096 0942 0946  0.0489 | 0.0088 0.841 0.858  0.0539 0.0021 0.838 0.854  0.0552 0.82 1.01
0.5 n=80  Equal | -0.0026 0.695 0.694  0.0494 | -0.0012 0.634 0.637 0.0517 | -0.0021 0.642 0.648  0.0540 0.84 0.97
(AR) Invwar | 0.0052 0.663 0.664 0.0500 | 0.0046 0590 0595  0.0525 0.0016 0592  0.597  0.0528 0.80 0.99
n=160  Equal 0.0029 0490 0487 0.0482 | 0.0038 0.446 0.446  0.0502 0.0026  0.453 0.454  0.0509 0.84 0.97
Invwar | 0.0062  0.468 0.467 0.0490 | 0.0070 0416 0418  0.0513 0.0052 0.419 0420 0.0519 0.80 0.99
n=40  Equal | -0.0031 0.989 0985 0.0501 | 0.0019 0.884 0.897 0.0533 | -0.0022 0.865 0.873  0.0538 0.83 1.06
Invwar | 0.0106 0942 0945 0.0504 | 0.0139 0.831 0.851  0.0555 0.0061 0.816 0.829  0.0561 0.81 1.05
05 n=80  Equal 0.0010 0.695 0.694 0.0490 | 0.0028 0.619 0.623  0.0517 0.0016 0.609 0.612  0.0509 0.81 1.04
(EX) Invwar | 0.0086 0.663 0.663 0.0498 | 0.0085 0.583 0590  0.0523 0.0050 0576 0.580  0.0519 0.79 1.03
n=160 Equal 0.0009 0.489 0485 0.0467 | 0.0005 0.435 0.433 0.0485 0.0001  0.429 0.427  0.0489 0.80 1.03
Invwar | 0.0040 0.468 0.465 0.0477 | 0.0036 0.411 0411  0.0489 0.0020  0.407 0.406  0.0496 0.78 1.02
n=40  Equal 0.0002 0938 0933 0.0489 | 0.0036 0.748 0.751  0.0507 0.0001 0.752 0.758  0.0533 0.65 0.98
Invwar | 0.0113  0.922 0924 0.0515 | 0.0104 0.697 0.706  0.0527 0.0052 0.690 0.700  0.0536 0.58 1.02
0.7 n=80  Equal | -0.0017 0.659 0.656  0.0473 | 0.0002 0.524 0.524  0.0505 | -0.0010 0.529  0.533  0.0519 0.64 0.97
(AR) Invwar | 0.0061 0.650 0.647 0.0477 | 0.0046  0.488 0.489  0.0504 0.0018 0.488 0.490  0.0508 0.57 1.00
n=160 Equal 0.0046  0.464 0.461 0.0482 | 0.0032 0.368 0.367 0.0503 | -0.0009 0.373 0.376  0.0518 0.64 0.96
Invwar | 0.0069 0.458 0.455 0.0486 | 0.0043 0.344 0.344  0.0499 0.0005 0.345 0.346  0.0516 0.57 0.98

Note: Bias = mean of (estimate-true value); Type | error = rejection rate of null hypothesis (when Z2, > x245); ASE=average standard error;

ESD=empirical standard deviation. a/u=(adjusted variance) / (unadjusted variance); a/m = (adjusted variance) / (MMRM variance).
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Table 5.3 Results from 50, 000 replicate simulations for the test statistics of Hy: 4; = 43 =4, =0under4, =4, =4;=4,=0

Unadjusted Adjusted Efficiency
Bias ASE  ESD  Typel Bias ASE  ESD  Typel alu
n=40 | Equal | -0.0012 1.033 1.018 0.0466 | 0.0065 0.976 0.974 0.0491 0.92
InvWar | -0.0077 0.948 0.958 0.0516 | 0.0023 0.902 0.926 0.0563 0.94
0.3 n=80 | Equal | -0.0017 0723 0.717 0.0485 | 0.0016 0.680 0.681  0.0498 0.90
(EX) InvWar | -0.0035 0.667 0.670 0.0507 | 0.0008 0.633 0.641 0.0518 0.92

n=160 | Equal | 0.0023 0508 0.505 0.0488 | 0.0022 0.478 0.479 0.0487 0.90
InvWar | 0.0015 0.471 0.469 0.0501 | 0.0017 0.446 0.448 0.0511 0.91
n=40 | Equal | -0.0052 1.048 1.032 0.0468 | -0.0017 0.955 0.953  0.0490 0.85
InvWar | -0.0004 0.943 0.954 0.0511 | 0.0031 0.842 0.867 0.0562 0.83
05 n=80 | Equal | -0.0014 0.733 0.726 0.0478 | 0.0004 0.665 0.664 0.0487 0.84
(AR) InvWar | -0.0003 0.663 0.667 0.0509 | 0.0016 0.591 0.598  0.0531 0.80

n=160 | Equal | 0.0034 0.515 0510 0.0486 | 0.0047 0.467 0.466 0.0491 0.83
InvWar | 0.0035 0.468 0.467 0.0495 | 0.0055 0.416 0.419 0.0523 0.80
n=40 | Equal | -0.0050 1.048 1.034 0.0474 | 0.0006 0.892 0.896  0.0502 0.75
InvWar | -0.0004 0.943 0.953 0.0526 | 0.0012 0.824 0.850 0.0571 0.80
0.5 n=80 | Equal | 0.0009 0.733 0.727 0.0485 | 0.0026 0.622 0.622 0.0496 0.73
(EX) InvWar | 0.0029 0.664 0.666 0.0502 | 0.0026 0.578 0.586 0.0528 0.77

n=160 | Equal | 0.0022 0.515 0508 0.0467 | 0.0023 0.437 0.433 0.0473 0.73
InvWar | 0.0012 0.468 0.466 0.0481 | 0.0015 0.407 0.407  0.0499 0.76
n=40 | Equal | 0.0007 1.051 1.036 0.0467 | 0.0075 0.825 0.821 0.0486 0.63
Invvar | 0.0068 0.901 0.909 0.0520 | 0.0075 0.688 0.703  0.0553 0.60

p n; Weight

(2';) n=80 Equal 0.0002 0.735 0.727 0.0476 | 0.0025 0.575 0.571 0.0487 0.62
Invvar | 0.0030 0.634 0.635 0.0495 | 0.0032 0.482 0.486 0.0516 0.59

n=160 | Equal 0.0030 0.517 0.513 0.0485 | 0.0022 0.403 0.403 0.0504 0.62

Invvar | 0.0067 0.447 0.444 0.0487 | 0.0044 0.339 0.339 0.0499 0.58

Note: Bias = mean of (estimate-true value); Type | error = rejection rate of null hypothesis (when Z2, > xZ4:);
ASE=average standard error; ESD=empirical standard deviation. a/u=(adjusted variance) / (unadjusted variance).
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Table 5.4 Results from 50, 000 replicate simulations for the test statistics of Hy: 4y = 4; = A; = A, =0under4; =4, =43 =4, =0

) Unadjusted Adjusted Efficiency
p n; Weight - -
Bias ASE ESD Typel | Bias ASE ESD  Typel alu
n=40 Equal | -0.0011 1.011 0.994 0.0468 | 0.0036 0.958 0.965 0.0518 0.94
Invwar | -0.0050 0.878 0.892 0.0532 | 0.0036 0.839 0.870 0.0586 0.95
0.3 n=80 Equal | -0.0020 0.705 0.698 0.0465 | 0.0018 0.667 0.668 0.0491 0.92
(EX) Invwar | -0.0030 0.617 0.621 0.0508 | 0.0017 0.589 0.598 0.0534 0.93
n=160 | Equal | 0.0022 0.495 0.492 0.0476 | 0.0024 0.468 0.469 0.0495 0.91
Invwar | 0.0024 0435 0435 0.0499 | 0.0030 0415 0.417 0.0511 0.92
n=40 Equal | -0.0088 0.995 0.977 0.0457 | -0.0072 0.920 0.926 0.0514 0.90
Invwar | -0.0080 0.848 0.863 0.0529 | -0.0037 0.765 0.796 0.0589 0.85
0.5 n=80 Equal | -0.0011 0.693 0.685 0.0469 | 0.0009 0.641 0.641 0.0492 0.88
(AR) Invwar | -0.0030 0.596 0.600 0.0514 | -0.0001 0.537 0.545 0.0534 0.82
n=160 | Equal | 0.0029 0.487 0.482 0.0468 | 0.0044 0.450 0.448 0.0490 0.87
Invwar | 0.0020 0.420 0.420 0.0498 | 0.0044 0.378 0.380 0.0515 0.82
n=40 Equal | -0.0062 0.995 0.979 0.0461 | -0.0018 0.861 0.871 0.0510 0.79
Invwar | -0.0061 0.848 0.860 0.0527 | 0.0005 0.752 0.782  0.0582 0.83
0.5 n=80 Equal | 0.0002 0.694 0.689 0.0488 | 0.0022 0.600 0.603 0.0503 0.77
(EX) Invwar | -0.0001 0.596 0.602 0.0514 | 0.0026 0.528 0.539  0.0549 0.80
n=160 | Equal | 0.0020 0.487 0.482 0.0484 | 0.0019 0.421 0.419 0.0496 0.76
Invwar | -0.0002 0.420 0.420 0.0513 | 0.0010 0.372 0.373  0.0506 0.79
n=40 Equal | 0.0021 0.959 0.941 0.0456 | 0.0062 0.782 0.784  0.0497 0.69
Invwar | -0.0027 0.780 0.790 0.0527 | 0.0015 0.614 0.633 0.0582 0.64
(&;) n=80 Equal | -0.0021 0.669 0.660 0.0461 | 0.0002 0.544 0.544 0.0497 0.68
Invwar | -0.0049 0.548 0550 0.0499 | -0.0013 0.430 0.435 0.0517 0.63
n=160 | Equal | 0.0019 0.469 0.466 0.0483 | 0.0015 0.382 0.382  0.0492 0.67
Invwar | 0.0027 0.386 0.387 0.0506 | 0.0026 0.303 0.304 0.0514 0.62

Note: Bias = mean of (estimate-true value); Type | error = rejection rate of null hypothesis (when Z2, > xZ4:);
ASE=average standard error; ESD=empirical standard deviation. a/u=(adjusted variance) / (unadjusted variance).
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Table 5.5 Results from 50,000 replicate simulations for the coverage of confidence intervals and power of test statistics under the
alternative specified in Table 5.1

Ajand A, Ay, A, and A, Ay, Ay, Ag and A,
p n; Weight Unadjusted Adjusted MMRM Unadjusted Adjusted Unadjusted Adjusted
CR Power CR Power CR Power | CR Power CR Power | CR Power CR  Power
n=40 Equal | 0.952 0.403 0.948 0425 0948 0443 | 0.954 0395 0951 0431 | 0953 0.334 0.948 0.368
Invwar | 0.950 0410 0945 0435 0946 0451 | 0948 0426 0943 0457 | 0944 0423 0939 0454
0.3 n=80 Equal | 0.951 0.679 0948 0.710 0949 0.723 | 0.952 0681 0950 0.729 | 0953 0.605 0.951 0.647
(EX) Invwar | 0.950 0.691 0948 0.724 0947 0.733 | 0949 0706 0.947 0.748 | 0947 0.707 0.945 0.747
n=160 | Equal | 0.951 0929 0950 0945 0951 0950 | 0.951 0933 0951 0956 | 0952 0.887 0.951 0.916
Invwar | 0.950 0936 0.949 0.952 0948 0.954 | 0.950 0943 0949 0961 | 0948 0.943 0.947 0.962
n=40 Equal | 0.952 0422 0949 0486 0946 0491 | 0.953 0385 0951 0450 | 0954 0.343 0.948 0.395
Invwar | 0951 0419 0946 0495 0944 0506 | 0948 0425 0943 0498 | 0945 0433 0.939 0.506
0.5 n=80 Equal | 0.951 0.707 0948 0.782 0946 0.775 | 0.952 0.670 0951 0.750 | 0953 0.618 0.951 0.683
(AR) Invwar | 0.950 0.702 0.947 0.793 0946 0.793 | 0.949 0708 0.947 0.794 | 0947 0.721 0.943 0.803
n=160 | Equal | 0.952 0945 0950 0.972 0948 0969 | 0.952 0928 0951 0.963 | 0953 0.899 0.951 0.935
Invwar | 0.950 0941 0948 0975 0948 0976 | 0950 0945 0.948 0976 | 0948 0.950 0.947 0.980
n=40 Equal | 0.950 0.424 0947 0505 0.946 0529 | 0953 0.384 0.950 0.499 | 0954 0.342 0.949 0437
Invwar | 0949 0417 0943 0510 0943 0535 | 0947 0426 0942 0526 | 0.945 0434 0940 0.530
05 n=80 Equal | 0.951 0.708 0948 0.797 0.949 0815 | 0951 0.667 0.950 0.802 | 0951 0.615 0.950 0.737
(EX) Invwar | 0950 0.702 0.947 0.807 0947 0820 | 0.949 0.708 0947 0819 | 0946 0.721 0942 0.825
n=160 | Equal | 0.951 0946 0952 0979 0.951 0982 | 0951 0928 0.952 0981 | 0952 0.898 0.951 0.962
Invwar | 0950 0944 0950 0981 0949 0983 | 0.950 0.946 0950 0.983 | 0.948 0.952 0.947 0.985
n=40 Equal | 0.951 0456 0949 0.637 0.947 0643 | 0953 0.380 0.952 0558 | 0955 0.364 0.950 0.507
Invwar | 0949 0427 0946 0.639 0946 0663 | 0.948 0449 0944 0649 | 0946 0476 0939 0.671
(2;) n=80 Equal | 0.953 0.754 0950 0912 0.946 0907 | 0952 0666 0.952 0.863 | 0954 0.651 0.951 0.822
Invwar | 0952 0717 0949 0914 0946 0919 | 0951 0.744 0947 0918 | 0947 0.779 0946 0.931
n=160 | Equal | 0.952 0963 0950 0997 0949 0997 | 0951 0927 0950 0.991 | 0.952 0917 0951 0.984
Invwar | 0951 0949 0949 0.997 0947 0997 | 0.952 0.959 0950 0997 0.948 0.971 0946 0.998

Note: CR = 2 sided coverage rate of the nominal 95% confidence interval; Power = rejection rate of null hypothesis (when Z2 > x3 os).




54 Example

A hypothetical placebo-controlled pre-randomized two-period study that makes use of the
P:P, P:T, and T:T sequence groups is created to illustrate an application of the proposed methods
and to compare them to counterparts from the MMRM method proposed by Doros et al. (2013).
The example has 240 subjects which are equally assigned to the three sequence groups. The
means and standard deviations of the outcomes are provided in Table 5.6. Assessments of
outcomes occur at the baseline, end of period 1 and period 2, with a smaller outcome score being
more beneficial. At period 1, a score less than 33 is considered as a responder to the treatment.
The means of measurements at baseline Y, are similar across the three sequence groups, with a
slightly larger mean in the T:T group. There are 31%, 34%, and 39% of responders in the three
groups respectively, as shown in the Z row, with only 6% more responders in the test treatment
group than the placebo group. And as the trial continues to the second period, the mean
measurements at the end of this period for the P:T and T:T groups are almost the same, and the
P:P group is slightly worse than the P:T or T:T group overall.

Table 5.6 Mean and Standard Deviation of Outcome

Statistics P:P P:T TT

7, 4054 4045 40.80
SD 536 557 6.91
¥, 3515 3492 34.24
SD 617 572 648
z 031 034 0.39
7, 33.98 3244 32.39
SD 569 504 6.13

The estimates using the proposed unadjusted and adjusted methods as well as the

MMRM method are shown in Table 5.7. The standard errors of the estimates increase as the

sample sizes decrease, as A, has the smallest standard error and A; has the largest standard error
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(as it only uses about 30% (i.e., the placebo responders) of the sample size in the P:P and P:T
groups). The covariable-adjusted method provides similar estimates for A,, the treatment
difference at the end of the first period, with a value of 0.95, whereas the unadjusted difference is
slightly smaller because it does not correct for the slight random imbalance of the measurement
at baseline. For the period 1 treatment difference only, the p values are 0.271 for the unadjusted
method, 0.098 for the adjusted method, and 0.115 for the MMRM method, and they fail to
contradict the null hypothesis of no treatment difference.

Table 5.7 Estimates of A; to A,

2
Method  Statistics A, A, Ag A, (%) p value

Unadjusted Etimate -0.791 -1.591 -0.677 -1.664 1.211 0.271
SE 0.719 1.033 1504 1.074

Adjusted  Estimate -0.955 -1.585 -0.530 -1.749 2.732 0.098
SE 0.578 0937 1468 1.022

MMRM  Estimate -0.951 NA -0.111  -1.909 2.488 0.115
SE 0.603 NA 1546  1.051

Importantly, estimates for addressing A, for the difference at the end of the second period
for the placebo non-responders in period 1 are twice as large as those addressing A;, and at least
three times bigger than those addressing A5, the difference for the placebo responders; and these
considerations show that the placebo non-responders, when given the test treatment, are more
informative than the placebo responders. The comparisons between the T:T and P:P sequences at
the second period, which corresponds to A, also show better improvement than that at the first

period, and this could possibly contribute to the overall treatment comparison if taken into

consideration.
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As shown in Table 5.8, none of the statistics provided by the unadjusted method succeed
in contradicting the null hypothesis at the 0.05 level, due to a smaller weighted statistic or a
slightly larger variance; but the adjusted method, except for the one also accounting for A; with
equal weight, shows significant results at the 0.05 level, and the MMRM method accounting for

A; and A, also shows significant p-values.

Table 5.8 Estimates of Weighted Statistics

Method Statistics A and A, Ay, Ayand A, Aq, Ay Azand A,
Equal Invvar Equal Invvar Equal InvVar
Unadjusted Weighted -1227 -1.054 -1.349 -1.063 -1.181 -0.944
SE/F 0657 0607 0691 0610 0697 0.566
Pvalue 0063 0084 0052 0083 0.091 0.096
Adjusted ~Weighted -1.352 -1.150 -1.430 -1.132 -1.205 -1.016
SE/F 0611 0524 0636 0526 0662 0.495
Pvalue 0028 0029 0026 0032 0070 0.041

MMRM  Weighted -1.430 -1.188

SE 0606 0523

Pvalue 0.025 0.031

SE/F: estimated standard error inflated by the F distribution factor
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CHAPTER 6: RANDOMIZATION-BASED ANCOVA FOR INFERENCE IN TWO-WAY
ENRICHMENT DESIGN

6.1 Introduction

This chapter presents extensions of the methods in Chapter 5 to the two-way enrichment
design (TED) discussed by Ivanova and Tamura (2011). For this purpose, leti = 1, 2, 3, 4 index
P:P, P:T, T:P, T:T as the sequence groups for test treatment T and placebo P in the two periods.
For this design, treatment comparisons between T and P during the second period are of
particular interest for placebo non-responders during the first period (i.e., P:T vs. P:P) and test
treatment responders during the first period (i.e., T:T vs. T:P).
6.2 Methods

Among n patients who are eligible for inclusion in the clinical trial, let n; denote the
number of such patients who are randomly assigned to the i-th sequence group. Also, the n =
Y+ . m; patients in the clinical trial are assumed to represent an essentially infinite target
population in a sense that is conceptually comparable to a simple random sample with
replacement. Let j = 0, 1, 2 index the baseline, period 1, and period 2 for the clinical trial; and let
Y; i, denote the observed random response during the j-th period for the k-th patient in the i-th
sequence group according to a non-negative numeric scale. Let Z;;, be a dichotomous responder
variable for period 1 such that Z;, = 1 if the k-th patient in the i-th group has favorable response
during the first period in the sense that (0 < Y;;; < L) versus Z;, = 0 if (Y;1x > L);

alternatively, the {Z;,} could be based on change (or percent change) from baseline. Let F;;, =
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ZixYijk SO as to equal Y;;, for j = 1, 2 for responders in period 1 and to equal O for non-
responders in period 1, and let G, = (Yo — Fiox) = (1 — Z;3.) Y2, SO as to equal Y;,,, for period
2 for period 1 non-responders and to equal O for period 1 responders. Let F;;, =
Yior> Yiirr Zier Fivior Yizio Fizi ) With the assumption of no missing values for its components.
Also, the F;;, could be expanded to include one or more other covariables X, at baseline, such
as age (in addition to Y;y); but the presentation is more straightforward without this extension
because the same considerations apply to both Y;q; and X;o.

Let F; = (XpL, Fi/n:) = (Yo, Yia, Zy, Fiy, Vi, Fip)' denote the vector of the means of the

F;;, for the i-th group; and let ?,—pi denote the unbiased estimate for its covariance matrix in (6.1).

Vs, = Z (Fye —F)(Fy — F)'/ni(n; — 1) (6.1)
k=1

Let F = (F{, F,, F5,F})" and let Vr = Diag(Vz, Vr,, Vr,, Vr,) denote its block diagonal
covariance matrix so as to account for the statistical independence of the {F;} and their
corresponding estimated covariance matrices ?,—pl_.

6.2.1 Estimates for Treatment Comparisons

Let F; denote the transformation in (6.2) whereby the Fl-j for j = 1,2 are replaced by

™ 2 > ~ = ~ ~ !
F; = (YiO'Yilfzi»FilfYiZ’Fiz'Giz) (6.2)
F;; = (F;/Z;) and Gy, = (Y, — Fi2)/(1 — Z;) is also included. In order to apply the linear
Taylor series methods discussed in Koch et al. (1977) to produce a consistent estimator ?Tﬂ- for

the covariance matrix of F;, the transformation of F; to F; is expressed as in (6.3) with R, 7,
F; = exp[R, log(R,F; + 1)] (6.3)

and R, as shown in (6.4) and with log (and exp) being the operation that transforms a vector to
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10 0 00 O 107 10 0 0000 07

01 0 00 O 0 01 0 00O0O0OO

00 1 00 O 0 00 1 000O0O
R,=100 -100 Ofl,r=|1,R,=]100-1 01000 (6.4)

00 0 10 O 0 00 0 00100

00 0 01 O 0 00-1 00010

00 0 01-1 -0- 00 0—-1000 1

the corresponding vector of natural logarithms (and exponentiated values).

It then follows from Koch et al. (1977) that Vi = L;V,L; for which L; =
DT?iRzD(_RlJ:lH)R1 and (R F, +1) = (Yo, ¥4, Z;, (1 = Z), Fi1, Vi, Fip, (Vi — Fiz))’ is a
consistent estimator for the covariance matrix of F;. Accordingly, for F = (F}, F,, F3, F,)', the
block diagonal matrix V = Diag(Vg,, Vi, V., Vz,) is a consistent estimator for the
corresponding covariance matrix.

For treatment comparisons between T and P, the estimators of interest are shown in (6.5),

(n3 +ny) (ny +ny)

o = {n3731 +n,Y niYy n21721}
L=

¢y = (Yap — Y13)
c3 = (Fpp — Fyy) (6.5)
¢ = (Gzy — Gyy)
cs = (Fip — F33)
C = (Gaz — G32)

and they are linear functions ¢ = CF of F with the matrix C as shown in (6.6) for which &, ,, is a

[—P1072 287, D387, Pab77]
—875 07 07 75
P 66
—67,; 7,7 0; 07
0’ 0, =676 876
0{7 0{7 - ,7,7 ’7,7 |
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(7 x 1) vector with 1 in the u-th position and p; = ny/(ny + ny), p, = (1 —p1), 3 =

ns/(n3 +ny), s = (1 — p3). A consistent estimator for the covariance matrix of ¢ is V, =
CV3C'. For ¢ = (cq,¢y,C3,C4,C5,Cg)', the comparison c¢; pertains to T versus P in the first
period; the comparison c, pertains to T:T versus P:P in period 2; the comparison c; pertains to
P:T versus P:P in period 2 for responders to placebo in period 1; c, pertains to P:T versus P:P in
period 2 for non-responders to placebo in period 1; the comparison cc pertains to T:T versus T:P
in period 2 for responders to T in period 1; and the comparison c¢ pertains to T:T versus T:P for
non-responders to T in period 1. Univariate test statistics for the overall comparison between T
and P can be based on weighted linear combinations ¢y, = Y.5_; wy,c, Where w =

(wy, Wy, Wi, Wy, ws, we)' is a vector of weights such at all w, > 0 and X5_, w;, = 1. With the
weights w, the test statistic for the overall null hypothesis H,, for E 4{c} = 0, where E 4{ }
denotes asymptotic expected value, is T, . = w'c/ (W’Vcw)o's. Under Hy,, T,, . approximately
has the normal distribution with mean 0 and variance 1. A (1 — a) two-sided confidence interval
based on c,, can be constructed as [c,, — Zg/21/Pc,,, Cw + Zaja+/Pc,, | Where Z,, , is the

(1 — a/2) percentile of the standard normal distribution and 7, = w'V.w. Since the
comparisons of principal interest for the two-way enrichment design are c¢,, ¢4, and cg, a
specification of equal weight for them and 0 weight for c,, c3, and ¢4 isws = ((1/3),0,

0,(1/3),(1/3),0). Alternatively, the use of other weights for other subsets for c is passible,
with the scope including both equal weights and inverse covariance matrix weights.
6.2.2 Randomization-Based Covariance Adjusted Estimators

The constraints ¢, = CoF with E 4{c,} = 0 regardless of whether the previously noted

overall null hypothesis H, applies are shown in (6.7) with the matrix C, shown in (6.8).
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[(Y20 = Yi0)]
(Y30 — Y10)
(Ya0 — Y10)
(Y21 — Y11)
(Va1 — Y31)
(Zy — Z1)
(Zy — Z5)
(Fo1 — Fi1)
-(F'41—ﬁ31)-
(=671 87, 07 0]
=671 0; 671 07
—87, 07 0; &7,
-85, 67, 0; 0
0, 0; —67, 67,
8 8y 0 0
0, 0; —8;5 675
-85, 74 07 07
[ 0, 07 —&7, 67,

I
E {c.} = [0966] b = Ab
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6.7)

(6.8)

Let c, = [c’,cy] = [C',Cp]" = C.F denote the combined set of comparisons ¢ pertaining
to H, and constraints c,. The estimated covariance structure for c, is ?C+ = C,VzC,. Since
E 4{c,} = 0 regardless of whether H, applies, randomization-based covariance adjustment for ¢

with respect to the constraints c, is invoked by fitting the linear model in (6.9) by weighted least

(6.9)

squares with weights based on ?C+ and with “=” meaning “is estimated by”.

Accordingly, b = (b4, b,, b3, by, bs, bg)' are covariance adjusted counterparts of ¢. More

‘g = -1, . . . .
specifically, b = (A’V;jA) A’V;jc+. Also, a consistent estimator for the covariance matrix of

bisV, = (A’V; +1A)_1. Covariance adjusted test statistics for H, can be based on weighted

linear combinations b,, = ¥5_, wy, b, in ways similar to those discussed for ¢ in Section 2. In



this regard, test statistics based on b,, can have better power than those based on c,, because of

their smaller variance via the structure shown in (6.10) for V.

Uy = Ve — (CV3Co)(CoV3Cy) (CoVFC) (610
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CHAPTER 7: RANDOMIZATION-BASED ANCOVA FOR INFERENCE IN
BILATERAL DESIGN

7.1 Introduction

This chapter presents adaptions of the methods in Chapter 6 to the bilateral design in
clinical settings such as dermatology whereby patients receive alternative treatments on opposite
sides of their bodies. For this purpose, leti = 1,2, 3,4 index P:P, P:T, T:P, T:T as the groups for
test treatment T and placebo P on the left and right sides. For this design, treatment comparisons
between T and P on one side are of particular interest for placebo non-responders on the opposite
side and for test treatment responders on the opposite side.
7.2 Methods

Among n patients who are eligible for inclusion in the clinical trial, let n; denote the
number of such patients who are randomly assigned to the i-th group. Also, the n = Y}, n;
patients in the clinical trial are assumed to represent an essentially infinite target population in a
sense that is conceptually comparable to a simple random sample with replacement. Let j = 1,2
index the left and right sides for a patient; and let Y;;;, denote the observed random response for
the j-th side of the k-th patient in the i-th group according to a non-negative numerical scale; and
let Y; o denote the baseline counterpart of Y; ;.. Let Z; ;. be a dichotomous responder variable for
the j-th side of the k-th patient in the i-th group such that Z;;, = 1 corresponds to favorable
response in the sense that (0 < Y;j, < L) versus Z;j;, = 0 if (Y;j, > 0); alternatively, the Z;

could be based on change (or percent change) from baseline. Let F;j. = Z;;7,.Y;j for j* # j so as
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to equal Y;;, for responders on the j’-th side and to equal 0 for non-responders on the j’-th side;
and let G;j = (Yijx — Fiji) = (1 — Z;j1;.)Yiji 50 as to equal Y;, for non-responders on the j'-th
side and to equal O for responders on the j'-th side. Let F;;, =
(Yiiko0, Yiiks Zitko Fiiko Yizko» Yizko Zizker Fizx )" With the assumption of no missing values for its
components. Also, the F;;, could be expanded to include one or more covariables X at
baseline, such as age (in addition to Y;,); but the presentation is more straightforward without
this extension because the same considerations apply to both the Y;j;, and X .

Let F; = (3L, Fir) = (Vinwo Yir, Zin, Fia, Viguo, Viz, Zia, Fiz)' denote the vector of means
of the F;;, for the i-th group; and let ?pi denote the unbiased estimator for its covariance matrix

in (7.1).
Vs, = Z (Fye —F)(Fy — F)'/ni(n; — 1) (7.1)
k=1

Let F = (Fy, Fy, F4, F))' and let Vg = Diag(Vr,, V,, Vr,, Vi, ) denote its block
diagonal estimated covariance matrix so as to account for the statistical independence of the {F;}
and their corresponding estimated covariance matrices Vfi.

7.2.1 Estimates for Treatment Comparisons
Let F; denote the transformation in (7.2) whereby the F; ; are replaced by
Fi = ()7i1*0: Yi1, Zis, Fip 5i1,Yi2*0' Y2, Ziz, Fiz' Giz), (7.2)
Fj = (Fj/Z;y) and the G;; = (V;; — F;;)/(1 — Z;;+) are also included. In order to apply the
linear Taylor series methods discussed in Koch et al. (1977) to produce a consistent estimator
?pi for the covariance matrix of F;, the transformation of F; to F; is expressed as in (7.3) with

F; = exp[R, log(R,F; + 1)] (7.3)
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R, r,and R, as shown in (7.4) and with log (and exp) being the operation that transforms a

10 0 0 00 0 O 0

010 0000 O 0 10 0 00000 O 0O 00O
001 0000 O 0 010 000000 O0O00O
00-10 000 O 1 001 000000 O0O00O
000 1000 O 0 000 01000-1000
01 0-1000 0 0 000 001000 —-100

Rl_ooo01000’r_0'R2_000000100 000(7'4)

000 0010 O 0 000 000010 O0O0O
000 00010 0 000 000001 000
000 0 00-10 1 00-10 00000 010
000 0 00O 1 0 00 0-10000 0 0 0 14
00 0 001 0 —1- L0 -

vector to the corresponding vector of natural logarithms (and exponentiated values). It then
follows that from Koch et al. (1977) that Vi, = L;V7,L; for which L; = Dz R, Dy 5 . R: and
(R1F1 +7) = ( 71'1*0; ?ilrz_il» (1- Z_i1):Fi1: (711 - Fi1): 17i2*0' 17i2:Z_i2' (1- Z_iz):Fiz' (712 -
Fiz))' is a consistent estimator for the covariance matrix of F;. Accordingly, for F =

(F, Fy, F3, F,) , the block diagonal matrix 7 = Diag(Vy ,Vz,, Vi, Vg, ) is a consistent
estimator for the corresponding covariance matrix.

For treatment comparisons between T and P, the estimators of interest are shown in (7.5),

_(F31 - F11)_
[€1] (531 - 611)
C3 (1?41 - F:21)
Cy (G41 - 621)

Cc = = - - 7.5
Es (Fzz - F12) (7.2)
Ci (G}z - ?12)
cgl | (Faz — F32)
| (G2 — G32)]

and they are linear functions ¢ = CF of F with the matrix C as shown in (7.6) where &8, is a
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N\ ’ ’ I
10,4 10 10,4 10
! ! 1 !
—010,5 10 10,5 10
1] —N! ’ !
10 104 07, 10,4
! 4 ! !
C = 010 9105 03 610,5 76
B ! 0! ! ( ' )
10,9 10,9 10 10
14 ! ! 14
—010,10 510,10 010 10
! !
0o 0’y 9109 9109
! ! ! li
L 03 05, —9610,10 10,101

(10 x 1) vector with a 1 in the u-th position.

A consistent estimate for the covariance matrix of ¢ is V., = CV3C'. For ¢ =
(1, €2, €3,€4,Cs, Co,C7,Cg)", the comparison ¢; and c, respectively pertain to T versus P on the
left for responders and non-responders to P on the right; the comparisons cs and c, respectively
pertain to T versus P on the right for responders and non-responders to P on the left; the
comparisons c5 and c, respectively pertain to T versus P on the left for responders and non-
responders to T on the right; and the comparisons c; and cg respectively pertain to T versus P on
the right for responders and non-responders to T on the left. Univariate test statistics for the
overall comparison between T and P can be based on weighted linear combinations c,, =
Y wrcp, Where w = (wq, Wy, Ws, Wy, Ws, We, W, Wg)' is a vector of weights such at all wy, = 0
and Y:8_, w,, = 1. With the weights w, the test statistic for the overall null hypothesis H,, for
E4{c} = 0, where E4{ } denotes asymptotic expected value, is T}, . = w’c/(w’Vcw)O's. Under
Hyc, T,y . approximately has the normal distribution with mean 0 and variance 1. A (1 — «) two-
sided confidence interval based on c,, can be constructed as [cw = Zaja\ Ve Cw + Zay24/ Ve, ]
where Z, /, is the (1 — a/2) percentile of the standard normal distribution and 9., = w’VCWw.

Since the comparisons of principal interest for the bilateral design are c,, c3, ¢, and c;, a

specification of equal weight for them and 0 weight for ¢4, c,4, cg,and cg isw, =
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(0,0.25,0.25,0,0,0.25,0.25, 0). Alternatively, the use of other weights for other subsets for c is

passible, with the scope including both equal weights and inverse covariance matrix weights.

7.2.2 Randomization-Based Covariance Adjusted Estimators

The constraints ¢, = CoF with E 4{c,} = 0 regardless of whether the previously noted

overall null hypothesis H, applies are shown in (7.7) with the matrix €, shown in (7.8), although

_(1221*0 - 1211*0)_
(1!31*0 - 1111*0)
(Y2140 — Y1140)

(721 - )711)
(Z_Zl - Z_ll)
(74-1 - 731)
(Z_41 - Z_31)

(?22*0 - 212*0)
(Z32*0 - ZlZ*O)
(Y4-2*0 - Y12*0)

(Y3, — Y1)
(Z32 — Z12)
(Yap — Y33)
(Zyz — Z33) |
—&! ’
810,1 10,1
!
=801 07,
! 14
—08101 07
A A
_810,2 10,2
A A
_810,3 10,3
! !
10 10
0 0
10 10
N /
10,6 910,6
A A
—0106 019
i !
—010,6 10
7 A
—010,7 0,10
! 0
_810,8 }0
0’10 _810,7
!
| 0}, —%iog
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this specification does assume that the treatment on the left side does not affect the response on
the right side, and vice versa. Let ¢, = [c, cy] = [C', C,]'F = €. F denote the combined set of
comparisons c pertaining to H, and constraints c¢,. The estimated covariance structure for c, is
VC+ = C,V#C,. Since E 4{c,} = 0, randomization-based covariance adjustment for ¢ with

respect to the constraints ¢, is invoked by fitting the linear model in (7.9) by weighted least
Ig
E,fc,) = [0 ]b — Ab (7.9)
14,8
squares with weights based on Vz ! and with “=” meaning “is estimated by”.
Accordingly, b = (b4, by, b3, by, bs, b, b;, bg)' are covariance adjusted counterparts of c.
More specifically, b = (A’?;jA)_lA’V;jc+. Also, a consistent estimator for the covariance

matrix of b is V, = (A’?;jA)_l. Covariance adjusted test statistics for H, can be based on

weighted linear combinations b,, = Y.5_, wy, b, in ways similar to those discussed for ¢ in
Section 7.2. In this regard, test statistics based on b,, can have better power than those based on
c,, because of their smaller variance via the structure shown in (7.10) for ¥V, (Kawaguchi et al.,

2009).

Vy = Ve — (CPCH)(CoVFC)) T (CoPRC)  (7.10)
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