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ABSTRACT 

Siying Li: Methods in Randomization Based ANCOVA for Novel Crossover Designs and 

Sensitivity Analysis for Missing Data 

(Under the direction of Gary G. Koch) 

 In clinical trials, statistical inference is preferably conducted with less stringent 

assumptions. This dissertation proposes a non-parametric method for dichotomous and ordinal 

missing data, and it proposes a structure for the hypothesis testing and estimation for innovative 

crossover designs.  

            When data missing not at random (MNAR) arise from randomized multi-visit, multi-

center clinical trials, sensitivity analyses to address possibly informative missing are needed. We 

propose a closed form point and variance matrix estimation for dichotomized missing data by 

probabilistically redistributing missing counts, adjusting for a stratification factor and/or baseline 

covariables. The parameter estimates are computed via weighted least squares asymptotic 

regression through randomization based methods. We further extend the methods to sensitivity 

analyses for ordinal endpoints.  

A novel crossover design, the sequential parallel comparison design (SPCD), where 

information from placebo responders in the second period are excluded, serves as a design for 

studies with high placebo response. Estimators for sources of comparison in the traditional SPCD 

design, as well as other sources of information that are available, are constructed with methods 

based on the randomization distribution of the observed population using the nonparametric 
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mean and variance estimates under the null hypothesis, which control Type I error well in 

hypothesis testing. Baseline imbalance is adjusted by randomization-based ANCOVA. 

Simulations are performed to study the statistical properties of the proposed methods, which are 

compared to those of a repeated measures model proposed by Doros et al. (2013).  

Point and confidence interval estimation is also addressed by assuming the study 

population comes from a simple random sample of an almost infinite population. A consistent 

covariance matrix estimator is constructed and properties of the proposed estimators are studied 

with simulations, particularly for coverage of confidence intervals. The nominal coverage level is 

achieved with a t distribution for the approximation to the asymptotic distribution when the 

sample size is not sufficiently large.  

The methodologies are extended to the two-way enrichment design (TED) introduced by 

Ivanova and Tamura (2011), and to a related bilateral design that applies the four sequence group 

design to two sides of the same subject instead of two periods.
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 CHAPTER 1 INTRODUCTION 

 In clinical trials, statistical inference is preferably conducted with less model 

assumptions. This dissertation proposes a nonparametric method to handle dichotomous and 

ordinal missing data, and proposes a structure for hypothesis testing and estimation in innovative 

crossover designs.  

 Handling Random Imbalance of Baseline Covariables 

In the statistical analysis plan of a clinical trial, the statistical methods to determine if there 

is a significant treatment effect need to be stated in an a priori way before the clinical trials are 

actually carried out. Oftentimes, assumptions have to be made for certain statistical models to be 

valid, and they are difficult to test before data analysis. Therefore, methods requiring fewer 

assumptions are more desirable than those complicated ones, especially in the regulatory setting. 

This consideration led to the development of nonparametric randomization based analysis 

of covariance (ANCOVA). In randomized clinical trials, the covariable imbalances (if any) 

between treatment and control groups are due to random chance, since the treatment assignment 

is random. 

The details about nonparametric randomization based ANCOVA for analyzing 

randomized clinical trials can be found in (Koch et al., 1998b; LaVange, Durham and Koch, 

2005). Briefly, differences between treatment groups with respect to outcome variables and 

covariables are analyzed simultaneously using weighted least squares (WLS), restricting the 

covariables differences to be zero. As mentioned before, in a randomized clinical trial, the 

expected value of such differences for covariables would in fact be equal to zero. 
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Let 𝑦𝑔𝑖 be the outcome of subject 𝑖 in group 𝑔, and let 𝒙𝑔𝑖 = (𝑥𝑔𝑖1, … , 𝑥𝑔𝑖𝑚)
′
 be the pre-

specified vector of m covariables, and let 𝒇𝑔𝑖 be the response-covariable (m+1) dimensional 

vector (𝑦𝑔𝑖, 𝒙𝑔𝑖
′ )′. Then the sample mean of the outcome and covariables of treatment 𝑔 is 𝑦̅𝑔 =

1

𝑛𝑔
∑ 𝑦𝑔𝑖

𝑛𝑔

𝑖=1
 and  𝒙̅𝑔 =

1

𝑛𝑔
∑ 𝒙𝑔𝑖

𝑛𝑔

𝑖=1
. And 𝒇̅𝑔 =

1

𝑛𝑔
∑ 𝒇𝑔𝑖 = (𝑦̅𝑔,

𝑛𝑔

𝑖=1
𝒙̅𝑔

′ )′  is the sample mean of the 

response-covariables of subjects in group 𝑔 and 𝒇̅ =
1

𝑛
∑ ∑ 𝒇𝑔𝑖

𝑛𝑔

𝑖=1
2
𝑔=1  is the sample mean of all 

subjects in the trial. Let 𝒅 = (𝑑𝑦, 𝒅𝒙
′ )′ be the vector of differences in means, where 𝑑𝑦 = (𝑦̅1 −

𝑦̅2) and 𝑑𝑥 = (𝒙̅1 − 𝒙̅2). 

There are two ways to estimate the variance of the difference 𝒅. One is through the 

randomization distribution of 𝒅 for the finite population selected for the clinical trial assuming 

the strong null hypothesis 𝐻0: 𝑦1𝑖 = 𝑦2𝑖 = 𝑦∗𝑖 that each patient would have the same outcome 

regardless of the assigned treatment. Under this null hypothesis, the covariance matrix for the 

difference  𝒅 is expressed as 

𝑽𝟎 =
𝑛

𝑛1𝑛2(𝑛 − 1)
∑ ∑[𝒇𝑔𝑖 − 𝒇̅][𝒇𝑔𝑖 − 𝒇̅]′

𝑛𝑔

𝑖=1

2

𝑔=1

                 (1.1). 

Since 𝑽𝟎  is the covariance matrix for  the randomization distribution of 𝒅, permuting all 

possible randomized assignments to the two treatments for the patients in the clinical trial, it is a 

matrix of known constant values (rather than random variables), with a conditional nature that 

the response of this finite population is known.  

Alternatively, under the assumption that the patients in the clinical trial are a simple 

random sample of a very large population, and thus are representative of this large population, an 

unbiased estimator for the unconditional covariance matrix of the difference 𝒅 as  shown in (1.2). 
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𝑽𝑺 = ∑
1

𝑛𝑖(𝑛𝑖 − 1)
∑[𝒇𝑔𝑖 − 𝒇̅𝑔][𝒇𝑔𝑖 − 𝒇̅𝑔]′

𝑛𝑔

𝑖=1

                  (1.2).

2

𝑔=1

 

In this case, the covariance matrix 𝑽𝑺 is a random matrix instead of a constant matrix, in 

a sense that the randomness comes from the variability of the simple random sample of patients 

and the random assignment of treatment groups, regardless of 𝐻0.  

Applying the non-parametric analysis of covariance to 𝒅, it has the form of a linear 

regression as below, 

𝒅 = [
𝑑𝑦

𝒅𝒙
] ≜ 𝒁𝑏 = [

1 
 𝟎𝑝

] 𝑏                                             (1.3) 

where ≜ denotes “is estimated by”, 𝟎𝑝 denotes a 𝑝 dimensional vector, 𝒁 = [1 𝟎𝑝
′ ]′, and 𝑏 is the 

adjusted mean difference for the response, i.e., the adjusted version of 𝑑𝑦. 

Applying WLS, determination of 𝑏 can be obtained by, 

𝑏 = (𝒁′𝑽−𝟏𝒁)−𝟏𝒁′𝑽−𝟏𝒇 = 𝑑𝑦 − 𝑽𝒚𝒙
′ 𝑽𝒙𝒙

−𝟏𝒅𝒙           (1.4) 

where 𝑽 = [
𝑽𝒚𝒚 𝑽𝒚𝒙

′  

𝑽𝒚𝒙 𝑽𝒙𝒙
]   and V can be either  𝑽0 or 𝑽𝑆 defined above. 

An estimator for the covariance of 𝑏 is expressed as, 

𝑉𝑏 = (𝒁′𝑽−1𝒁)−1 = 𝑉𝑦𝑦 − 𝑽𝒚𝒙
′ 𝑽𝒙𝒙

−1𝑽𝒚𝒙       (1.5) 

When 𝑽𝟎 is used in place of 𝑽, 𝑽𝒃 is an exact variance of the randomization distribution 

of the adjusted treatment difference b; and when 𝑽𝑆 is used, 𝑉𝑏 is a random matrix and a 

consistent estimator of the covariance matrix of b. 

Since the variance 𝑉𝑏 of the adjusted mean difference 𝑏 is smaller than its counterpart 𝑉𝑦𝑦 

of the variance of the unadjusted mean difference 𝑑𝑦, the test based on the adjusted difference 𝑏 
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is more powerful than that based on 𝑑𝑦, and the confidence interval of 𝑏 is narrower than that of 

𝑑𝑦. The variance reduction of 𝑏 relative to 𝑑𝑦 is based on the correlation between the response 

and the covariable, and the stronger this correlation, the more variance reduction produced (Koch 

et al., 1998). 

The nonparametric ANCOVA can be extended to multivariate response variables, and 

other types of data including dichotomized, ordinal, and time to event data (Tangen and Koch, 

1999). 

 Handling Missing Data 

In public health studies, repeated measurements of the same subject over time are useful in 

a number of different contexts, including, but not limited to, reliable estimation by several 

measurements close in time, testing for a change over time in an experimental study, or 

comparisons for a difference between treatment groups over time.  

In a clinical trial, missing data were planned to be collected but are not present in the 

database. No matter how well designed and conducted a trial is, some missing data is almost 

always unavoidable. The consequences of missing data can be wide-ranging in that they might 

lead to a perceived or real reduction in trial quality and validity, and a reduction in the statistical 

power of the study.  

When missing data are unavoidable and exist in the collected data, assumptions about the 

missing data can be made. Often, dropout is due to some specific reasons, related (i.e. adverse 

events, or lack of efficacy) or unrelated (i.e., move out of the neighborhood) to the treatment. 

Investigators are urged to collect as much information about the reasons of withdrawal as 

possible when missing data are unpreventable.  
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 The validity of many statistical models that can handle missing data relies heavily on the 

assumptions for the missing data. For example, generalized estimating equations (GEE) must be 

carried out along with the missing completely at random (MCAR) assumption and the mixed 

models for repeated measures with a missing at random (MAR) assumption. These assumptions 

might not be realistic in real life, and possibly not even verifiable.  

 With the withdrawal reasons, assumptions of missingness could be checked; or when the 

assumptions could not be verified, sensitivity analyses could be performed under different 

scenarios to test against the robustness of a study result. 

 Besides the assumptions of the missingness, the handling of missing data is complicated 

by the form of the study outcome, for example, non-normality of data, such as dichotomous data, 

ordinal data, or skewed continuous data. 

1.2.1 Missing Data Mechanism 

We now review the mechanisms that lead to missing data, and in particular the question 

of whether the variables that are missing are related to the underlying values of variables that are 

observed or not observed in the dataset. It is crucial to understand the missing data mechanism 

before any analyses are carried out since the properties of missing data methods rely heavily on 

the nature of the dependencies in these mechanisms. 

The role of these mechanisms was largely ignored in the analysis of missing values until 

these concepts were formalized in the theory of Rubin (1976), through treating the missing data 

indicators as random variables and constructing a joint distribution among values of interest and 

the missing indicators. The following notation and terminology is based on the standard missing 

data framework of Carpenter and Kenward (2012), which is developed from the original paper of 

Rubin (1976) but is modified to fit the modern statistics literature on missing data. 
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Notation 

In the context of a longitudinal trial, we assume that measurements are obtained at J visits 

at times 𝑗 = 1,⋯ , 𝐽 for independent subjects 𝑖, 𝑖 = 1,⋯ , 𝑛. 

Let 𝒀 = (𝑦𝑖𝑗) denote an (𝑛 × 𝐽) rectangular data matrix of the measurements without 

missing values, with the 𝑖-th row 𝒚𝑖 = (𝑦𝑖1, ⋯ , 𝑦𝑖𝐽) being the complete data vector of outcomes 

for subject 𝑖. 

Additionally, let 𝑿𝑖 be the design matrix of covariates for subject 𝑖. 

Let 𝒓𝑖 = (𝑟𝑖1, ⋯ , 𝑟𝑖𝐽) be the missing data indicator vector. Specifically, let 𝑟𝑖𝑗=1 if 𝑦𝑖𝑗 is 

observed and 𝑟𝑖𝑗=0 otherwise. 

Given the missing data indicator 𝒓𝑖, we can partition 𝒚𝑖 into (𝒚𝑖
𝑂, 𝒚𝑖

𝑀), with 𝒚𝑖
𝑂 being the 

observed measurements in 𝒚𝑖 and 𝒚𝑖
𝑀 being the missing measurements. 

The joint distribution of the data and the missing indicator can be formulated as follows 

and factored into two parts: 

𝑓(𝒚𝑖
𝑂 , 𝒚𝑖

𝑀, 𝒓𝑖|𝑿𝑖, 𝜽, 𝝍) = 𝑓(𝒚𝑖
𝑂, 𝒚𝑖

𝑀|𝑿𝑖, 𝜽)𝑓(𝒓𝑖|𝒚𝑖
𝑂 , 𝒚𝑖

𝑀, 𝑿𝑖 , 𝝍)               (1.6) 

where 𝜽 denotes the parameter vectors for the data and 𝝍 denote the parameter vectors for the 

missing data mechanism. The first factor on the right-side is the marginal density of the 

measurements, and the second factor is the conditional density of the missingness on the 

measurements.  

Missing Completely at Random (MCAR) 

Under MCAR, the missingness is assumed to be unrelated to either the observed 

information or the missing, i.e., 
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 𝑓(𝒓𝑖|𝒚𝑖
𝑂 , 𝒚𝑖

𝑀, 𝑿𝑖 , 𝝍) = 𝑓(𝒓𝑖|𝝍) (1.7) 

Note that this assumption doesn’t mean that the missingness itself is random, but rather 

that this distribution does not depend on the data values. 

Therefore, the joint distribution simplifies to  

 𝑓(𝒚𝑖
𝑂 , 𝒚𝑖

𝑀, 𝒓𝑖|𝑿𝑖 , 𝜽, 𝝍) = 𝑓(𝒚𝑖
𝑂 , 𝒚𝑖

𝑀|𝑿𝑖 , 𝜽)𝑓(𝒓𝑖|𝝍) (1.8) 

which indicates the measurement and the missingness are independent. 

The missing data 𝒚𝑖
𝑀 can be now integrated out from the joint distribution, and so the 

joint distribution of the observed measurement and the missing indicator becomes 

𝑓(𝒚𝑖
𝑂, 𝒓𝑖|𝑿𝑖, 𝜽, 𝝍) = 𝑓(𝒚𝑖

𝑂|𝑿𝑖, 𝜽)𝑓(𝒓𝑖|𝝍)                  (1.9) 

And thus estimation of 𝜽 can be solely based on the observed information 𝒚𝑖
𝑂 and does 

not depend on the nuisance parameter 𝝍. 

Missing at Random (MAR) 

An assumption less restrictive than MCAR is that missingness depends only on the 

components that are observed, i.e., 𝒚𝑖
𝑂, and not on the components that are missing, i.e., 𝒚𝑖

𝑀. 

Under MAR, conditional on the observed data, the missingness is independent of the 

missing measurements, which is, 

𝑓(𝒓𝑖|𝒚𝑖
𝑂 , 𝒚𝑖

𝑀, 𝑿𝑖 , 𝝍) = 𝑓(𝒓𝑖|𝒚𝑖
𝑂, 𝑿𝑖, 𝝍)      (1.10) 

Therefore, the full data density becomes 

𝑓(𝒚𝑖
𝑂 , 𝒚𝑖

𝑀, 𝒓𝑖|𝑿𝑖, 𝜽, 𝝍) = 𝑓(𝒚𝑖
𝑂 , 𝒚𝑖

𝑀|𝑿𝑖, 𝜽)𝑓(𝒓𝑖|𝒚𝑖
𝑂 , 𝑿𝑖 , 𝝍)                (1.11) 

The joint distribution of the observed measurements and the missing indicators can again 

integrate out the missing data and become 
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𝑓(𝒚𝑖
𝑂 , 𝒓𝑖|𝑿𝑖 , 𝜽, 𝝍) = 𝑓(𝒚𝑖

𝑂|𝑿𝑖, 𝜽)𝑓(𝒓𝑖|𝒚𝑖
𝑂 , 𝑿𝑖 , 𝝍)                               (1.12) 

With MAR assumption, the model 𝑓(𝒓𝑖|𝒚𝑖
𝑂 , 𝑿𝑖 , 𝝍)  does not need to be specified to 

obtain valid likelihood based inferences, and only the model 𝑓(𝒚𝑖
𝑂 , 𝒚𝑖

𝑀|𝑿𝑖 , 𝜽) is needed.  

MCAR and MAR are often referred to as ignorable missing. The ignorability refers to the 

fact that once 𝑓(𝒓𝑖|𝒚𝑖, 𝑿𝑖) not depending on 𝒚𝑖
𝑀 can be established,  𝑓(𝒓𝑖|𝒚𝑖, 𝑿𝑖) can be ignored 

and a valid likelihood based inference can be obtained given that we model 𝑓(𝒚𝑖
𝑂 , 𝒚𝑖

𝑀|𝑿𝑖, 𝜽) 

correctly.  

Not Missing at Random (NMAR) 

If the measurements are NMAR, which means 𝒓𝑖 depends on 𝒚𝑖
𝑀, the joint distribution 

can no longer have 𝒚𝑖
𝑀 integrated out. No simplification of the joint distribution is possible.  

Under the MNAR assumption, the probability of an observation being missing depends 

on the underlying missing value, and the joint distribution has to be written as in (1.13), 

𝑓(𝒚𝒊
𝑶, 𝒓𝒊|𝑿𝒊, 𝜽, 𝝍) = ∫ 𝑓(𝒚𝒊

𝑶, 𝒚𝒊
𝑴|𝑿𝒊, 𝜽)𝑓(𝒓𝒊|𝒚𝒊

𝑶, 𝒚𝒊
𝑴, 𝑿𝒊, 𝝍)𝑑𝒚𝒊

𝑴        (1.13) 

and inferences could only be made by making further assumptions (Molenberghs and Kenward, 

2007). 

Monotone versus Non-Monotone Missingness 

If the data are arranged as one record per subject, with each record containing outcomes 

of all visits of a subject, the monotone missing pattern applies when variables can be arranged so 

that missing values are always occurring as one block at the end of data records; in the case of a 

non-monotone missing pattern, missing values cannot to be arranged in this way and may happen 

anywhere in a study record.  
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In the clinical trials setting, monotone missingness happens when a study subject 

withdraws from the trial prematurely and doesn’t come back to the study, which is commonly 

referred to as dropout or loss to follow up in longitudinal studies; while non-monotone missing is 

the case when a subject misses one or more intermediate visits but does come back to provide 

subsequent measurements (O’Kelly and Ratitch, 2014). A dataset is considered as monotone 

missing only when all the subjects in the study have a monotone pattern, but it is considered as 

non-monotone missing if there is intermediate missingness in at least one subject. 

1.2.2 Approaches for Handling Dropouts by Parametric Model 

Complete Case Analysis 

One approach to handling missing data is to have analyses that exclude all data from any 

subject who drops out. This method is referred to as a complete-case analysis, which is 

performed by excluding any subjects that missed any intended measurement. It is emphasized 

that this method is very problematic and is rarely an acceptable approach in most occasions 

(Fitzmaurice, Laird and Ware, 2012). It will yield unbiased estimates of the mean response 

trends only when the dropout can be assumed as MCAR. When dropout is MCAR, the study 

completers are a random subsample of the original sample from the population. However, even 

in occasions where the MCAR assumptions might hold, a complete-case analysis is not an 

appealing one since it leads to reduction in the number of subjects and hence results in reduction 

in statistical power.  

Generalizing Estimating Equations (GEE) 

GEE is a semiparametric method that models a known function of the marginal 

expectation of a clustered dependent variable via a linear or non-linear link function for a linear 

function of one or more explanatory variables (Liang and Zeger, 1986). It is based on the concept 
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of estimating equations and the use of a non-linear link function for the marginal model of the 

correlated response can facilitate the analyses of continuous or discrete responses.  

The correlation of the clustered dependent variable can be specified via a working 

correlation matrix and the consistency of parameter estimates do not rely on correct specification 

of the correlation. The dependent variable doesn’t need to have the same number of elements 

across clusters and thus in the longitudinal data context, missing data is allowed. However, if the 

data is MAR, as GEE methods only require a model for the mean response but do not specify the 

multivariate joint distribution for the response vector, the standard GEE methods do not provide 

valid estimates of the regression parameters (Fitzmaurice et al., 2012). 

An adaption of GEE methods for the MAR assumption is to model the missingness  

𝑓(𝒓𝑖|𝒚𝑖, 𝑿𝑖) and weighting the analysis by including it in the estimating equations accordingly 

(Robins, Rotnitzky and Zhao, 1995).  

Mixed Model for Repeated Measures (MMRM) 

MMRM is a likelihood based method that assumes a multivariate normal distribution for 

the repeated measurements. The mean structure can take into account the time effect and thus the 

time effect within subjects at different measurements can be modeled. The correlation within 

subjects can also be modeled by the covariance structure of the repeated measurements through 

assumptions of dependence among the different measurements. This approach includes all 

subjects with at least one observed measurement, and the missing measurements are assumed to 

have the same distribution as the observed. Since MMRM is likelihood based, it provides valid 

inference on the model if the data are MAR when the joint distribution of the responses is 

correctly specified (O’Kelly and Ratitch, 2014). 
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1.2.3 Approaches for Handling Dropouts by Imputation 

Ad-hoc Single Imputation 

 Imputation replaces the missing values with plausible ones. There are many approaches 

to do single imputation. The missing values could be filled in from an individual imputation, 

where these values are coming from the same individual with the actual missing values, or from 

a group imputation, in which information from the entire sample or a portion of the sample is 

used to fill in for the missing value of an individual (Fitzmaurice et al., 2012).  

Two of the most commonly used individual imputations are, baseline observation carried 

forward (BOCF) and last observation carried forward (LOCF), where either the baseline value or 

the last observed value is substituted for the missing values of the study subject. For example, in 

the LOCF case, if an individual was supposed to have five measurements but only the first three 

measurements were observed, the last two missing measurements would be filled in with the 

third value as it was the last observed value before the loss to follow up. The assumption of 

BOCF or LOCF is conservative in estimating the missing outcome if a subject does benefit from 

the trial. The imputation using BOCF or LOCF would underestimate the variability of the 

estimation and result in smaller standard errors estimate. Other single imputation includes the 

individual mean substitution, the group mean substitution, the individual worst case substitution, 

or the interpolation of last and next observed values if the missingness is not monotonic.  

Multiple Imputation (MI) 

Multiple imputation was first introduced by Rubin (1987) to handle missing data in sample 

surveys, and has been developed to spread to other areas including observational studies and 

randomized clinical trials. The application of multiple imputation has become very popular in 

recent years as many analysts become familiar with it, and as many software packages such as 
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SAS, R, and Stata have included procedures or packages to deal with it, which reduces the 

computational burden and complexity. Multiple imputation is a more flexible and powerful tool 

to handle incomplete data than the other parametric methods such as GEE and MMRM, in that it 

has both an imputation model and an analysis model and these two don’t have to be the same, 

and it is more acceptable in most settings than the single imputation.  

Multiple imputation adopts a three-step approach to fill in the incomplete data and 

analyze the resulting data structure. First, an imputation model is assumed for the missing 

outcomes, and plausible values for missing observations are imputed with a draw from the 

imputation model, usually as a posterior distribution of the missing values conditioning on the 

imputation model covariates and any previous visits is assumed. This process is repeated to 

reflect uncertainty about the missing values, resulting in the creation of a number of complete 

datasets. The number of needed imputations depends on the fraction of missing data, and usually 

a number of K>5 would be sufficient for most applications to obtain acceptable properties (that 

is, correct confidence interval coverage) (Carpenter and Kenward, 2012). Second, each of these 

K complete datasets is analyzed with an analysis model, which need not be the same as the 

imputation model. Finally, the results are combined for overall inference using Rubin’s 

combination rule (Rubin, 1987). 

Rubin’s combination rule is as follows. Assume the parameter of interest of the complete 

data analysis is 𝜃 and denote  𝜃𝑘 and 𝑉̂𝑘 as the point estimate and variance estimate of 𝜃 from the 

k-th imputed dataset, 𝑘 = 1,… , 𝐾. Then the MI estimate of 𝜃 can be expressed as the average of 

the estimates from the  𝐾 complete datasets, 

𝜃𝑀𝐼 =
1

𝐾
∑ 𝜃𝑘

𝐾

𝑘=1

         (1.14) 
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The measure of precision for 𝜃𝑀𝐼 consists of two parts, the between imputation variance 

and the within imputation variance. Define  

𝑊̂ =
1

𝐾
∑ 𝑉̂𝑘

𝐾

𝑘=1

        (1.15) 

to be the average within imputation variance, and 

𝐵̂ =
1

𝐾
∑(𝜃𝑘 − 𝜃𝑀𝐼)

2

𝐾

𝑘=1

        (1.16) 

to be the between imputation variance. Then an estimate of the variance of 𝜃𝑀𝐼 is given by  

𝑉̂𝑀𝐼 = 𝑊̂ + (1 +
1

𝐾
) 𝐵̂        (1.17) 

 A few practical considerations occur in the first step of multiple imputation. Imputation 

can be performed in a variety of different ways, depending on the type of the missing data 

pattern (monotone or non-monotone), and depending on the type of missing variables (i.e. 

continuous or categorical). One of the common practical considerations is to impute the non-

monotone missing data to monotone. When all response variables are continuous for data with 

non-monotone missingness, imputation can be done by drawing from a Bayesian posterior for 

the multivariate normal distribution, with a Markov Chain Monte Carlo (MCMC) simulation. 

MCMC will impute data partially, filling in only those missing values that have a non-monotone 

pattern (O’Kelly and Ratitch, 2014). This method is most suitable when all variables included in 

the imputation model are continuous, however, this approach has also been applied when some 

variables are categorical; and it is usually the case that the covariates in a model include both 

continuous and categorical variables. To apply MCMC imputation, nominal categorical values 

can be dummy-coded as a set of binary variables, while ordinal variables can sometimes be 
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treated as continuous in this partial imputation step. However, in the clinical trial setting, when 

multiple clinical centers need to be adjusted for, and when the number of centers is large (>10), 

the center variable might have to be removed from the multivariate normal model for the partial 

imputation. This assumption could be reasonable if the non-monotone missingness doesn’t vary 

by center, otherwise the imputed values would not have taken into account the variability 

introduced by study center. 

1.2.4 Sensitivity Analyses 

Sensitivity analysis in missing data situations is usually carried out through stressing the 

assumption of MAR. It is important to examine the sensitivity of statistical inferences when 

departures from the MAR assumption are in question, because this assumption cannot be verified 

using the data (O’Kelly and Ratitch, 2014). In this regard, the primary purpose of a sensitivity 

analysis in a clinical trial is to seek to answer the question that if plausible unfavorable outcomes 

happen to the withdrawal in the experimental treatment, does the significant results drawn from 

the primary analysis remain credible or not? 

 For example, the loss to follow up outcomes that are suspected to be different from what 

would have happened if remaining in the study, could be made worse by a clinically significant 

value, if the outcome is continuous, or by an odds ratio if the outcome is categorical. This is 

often known as the delta adjustment method (National Research Council Panel, 2010), where 

delta is the clinically important difference, or odds ratio. Delta adjustment could be applied to all 

the treatment groups, or it might be of more interest to be used to penalize the withdrawals in the 

experimental treatment (O’Kelly and Ratitch, 2014). Tipping point analysis is the application of 

a sequence of delta adjustments, by positing a wide range of assumptions from less pessimistic to 

more pessimistic to explore the influence of missingness on the study conclusion (National 
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Research Council Panel, 2010). The tipping point in this range of assumptions is the value that 

overturns the conclusion from being favorable to the experimental treatment, to being not 

different from the reference group. In terms of hypothesis testing of a treatment effect, the 

tipping point is the value at which the p value of the test changes from significant to non-

significant. 

 Crossover Studies 

Crossover studies are experimental designs for which each subject is randomly assigned 

to receive a sequence of treatments during consecutive periods for some response variables. 

There are many possible designs of crossover studies, depending on the number of treatments to 

compare, the number of periods of each treatment, and the aim of the trials (Jones and Kenward, 

2014). 

1.3.1 Traditional Crossover Designs 

One of the most well-known crossover designs is the one with two sequence groups for 

two treatments in two periods. This is also the simplest crossover design, which is known as the 

2×2 design, or the two-period two-treatment design. The main advantage of the crossover study 

is that treatments are compared within subjects, where every subject provides two periods of 

different treatments and thus removal of the subject effect is enabled by direct comparison within 

subject (Jones and Kenward, 2014).  

Secondly, since every subject provides two response measurements in the two periods, at 

a fixed sample size, the power of the treatment comparison is improved. In addition, since all the 

patients would receive the experimental treatment in one period or another, the dropout rate in 

this design could be minimized, at least for the first study period. For example, Pincus et al. 

(2001) performed a randomized crossover trial of an experimental drug versus active control in 
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ambulatory patients with osteoarthritis of the hip or knee and achieved a low dropout rate. Of the 

227 enrolled patients, 218 (96.0%) patients completed the first treatment period and 181 (79.7%) 

completed both treatment periods.   

 However, the feature of repeated measurements in crossover designs brings 

disadvantages along with its advantages; for example, the possibility that the effect of an earlier 

period would be carried into the later period, and the potential risk of more dropouts due to 

longer study duration compared to a single period trial. 

Statistical Methods for 2×2 Design 

 Tudor and Koch (1994) review nonparametric methods for analyzing the traditional 

crossover studies comparing two treatments with small sample sizes and the parametric 

counterparts when sample sizes are sufficiently large. The methods apply to various types of 

outcome including continuous, dichotomous, ordinal, and censored time-to-event response. 

 In particular, for a 2x2 crossover design with a univariate continuous outcome, the 

structure for the inference is as shown in Table 1.1. 

Table 1.1 2×2 Design Parameters 

Group Period 1 Period 2 

AB 𝜇 + 𝜋1 + 𝜏𝐴 𝜇 + 𝜋2 + 𝜏𝐵 + 𝜆𝐴 

BA 𝜇 + 𝜋1 + 𝜏𝐵 𝜇 + 𝜋2 + 𝜏𝐴 + 𝜆𝐵 

 

𝜏𝐴 and 𝜏𝐵 are direct treatment effects of treatment A and treatment B, and 𝜋1 and 𝜋2 are 

period effects of periods 1 and 2, and 𝜆𝐴 and 𝜆𝐵 are carryover effects of treatment A and 

treatment B respectively. 

With small sample sizes, observed statistics are compared to permutation distributions to 

provide 𝑝 values for the hypothesis testing of similarity of treatment effects 𝐻0𝜏: 𝜏𝐴 = 𝜏𝐵 using 
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data from both periods in a few steps. In the first step, one would test 𝐻0, where 

𝐻0: 2(𝜏𝐵 − 𝜏𝐴) − (𝜆𝐵 − 𝜆𝐴) = 0. If the 𝐻0 is contradicted, one moves on to test the equality of 

carryover effects 𝐻0𝜆: 𝜆𝐴 = 𝜆𝐵; and if this similarity is not contradicted, one could have 

confidence that the contradiction of 𝐻0 is mainly due to the difference in treatment effects 𝜏𝐴 and 

𝜏𝐵 and the equivalence of testing 𝐻0 and 𝐻0𝜏; or if this equality of carryover effects 𝐻0𝜆 is 

contradicted, meaning there are different carryover effects by the two treatments, which may 

partly account for the contradiction of 𝐻0, one would have to move on to compare the difference 

between treatments only using data from Period 1,  which does not depend on the carryover 

effects.  

 The above tests in each step could be replaced by the asymptotic tests with approximate 

distributions when the sample size is sufficiently large (sample size per sequence ≥15).  

A more comprehensive review of analyses in the traditional 2x2 design and other higher 

order designs is provided in Jones and Kenward (2014). 

1.3.2 Innovative Two-Period Crossover Designs 

Innovative crossover designs can have multiple designs embedded within them, which 

are also in the general class of re-randomization designs. Instead of re-randomization at the 

beginning of the second period, randomization before the trial could be performed to get the 

randomized sequences. Without loss of generality, this literature review limits the scope of the 

discussion to the design with fixed randomization sequences at the initiation of the study without 

re-randomization later.  

 With a two-period design comparing test treatment (T) to placebo treatment (P), four 

sequence groups P:P, P:T, T:P, and T:T could be of interest. Designs with some combination of 

those sequence groups have provided useful features for the studies of different patient 



18 
  

populations. Other advances of crossover designs with this structure could be made use of with 

other added design features, such as enrichment. 

Enriched Two-Sequence Design 

 Common crossover designs that use two of four sequence groups are the T:P, and P:T 

design (the 2×2 design), the T:P and T:T design, and the P:P and P:T design. The latter two-

sequence designs are usually used with enrichment features. 

The randomized withdrawal design, with the T:P and T:T sequence groups, makes use of 

only the patients who respond to the drug in the first period for continuation to the second period. 

This design is helpful when there is heterogeneity in the patient population itself to respond to a 

treatment. For example, Temple (1994) discusses situations where the gold standard randomized, 

double-blind, placebo-controlled study design with continuous treatment might not be able to 

provide an optimal study when certain diseases are treated, such as irritable bowel syndrome 

(IBS), a gastrointestinal disorder, which he suggested might be due to IBS being a “common 

response to a diverse group of abnormality”. The FDA has proposed to conduct clinical trials to 

include only IBS patients identified by their clinicians as responders to the study treatment 

(Dunger-Baldauf, Racine, and Koch 2006).  

The P:P and P:T design, usually known as the placebo lead-in design, has the other two 

sequence groups of the four as compared to randomized withdrawal design. In this design, only 

the patient who doesn’t respond to placebo in the first period remains in the study. This design is 

practical in studies such as drugs to treat disease in the central nerve system, where there are 

many placebo responders. The placebo response rate in antidepressant and antipsychotic trials is 

reported to increase overtime in meta analyses of trials between 1985 and 2000 (Khan et al., 

2005). With only the placebo nonresponders identified in the first period continuing in the 
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second period to receive either experimental treatment or placebo, the treatment effect is 

maximized since patients who do not respond to the first period are not expected to become 

placebo-responders in the second period (Fava et al., 2003).  

 

 

Figure 1.1 Randomized Withdrawal Design 

  

 

Figure 1.2 Placebo Lead-In Design 

Three-Sequence Design 

 Designs with three or more sequence groups could provide additional benefits to the two-

sequence designs mentioned above.  

One design in this class to improve completeness of data with this crossover structure 

was proposed by Koch, Davis, and Anderson (1998). This design has three of the four sequence 

groups, P:T, T:P, and T:T; as shown in Figure 1.3, it provides T during the second period to 

patients with P during the first period, and provides continued treatment of T to some fraction of 

the patients who received T during the first period. This design embeds the comparison that is 

capable in the 2×2 design and the randomized withdrawal design.  
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Figure 1.3 P:T, T:P, and T:T Sequence Design 

 Another design with attractive features also has three sequence groups as P:P, P:T, and 

T:T, and it is commonly known as the randomized delayed-start design . In this design, patients 

are initially randomized to placebo or test drug in the first period, and patients who are in the 

placebo group in the first period would receive either placebo or test drug in the second period, 

while patients who receive test drug in the first period remain on the same treatment. This design 

is suitable to evaluate treatments for disease with long term progression to distinguish the 

symptomatic improvement from the true disease modifying effect. The effect of the active 

treatment in the first period compared to placebo could be due to either the symptomatic 

improvement or the true effect on modifying the disease, but in the second period when the 

delayed-start P:T sequence patients receive the active treatment, if the early-start T:T sequence 

patients show benefits from being in the trial longer than the P:T sequence, it indicates a disease 

modifying effect of the active treatment. If these two sequence groups are showing similar 

improvement from baseline, then the active treatment might only reflect a symptomatic relief in 

the course (Dunger-Baldauf, Racine and Koch, 2006) (Clinical Trial Design in Parkinson's 

Disease 2013 p3). 
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Figure 1.4 Randomized Delayed-Start Design 

 These two three-sequence designs both have an advantage over the two-sequence 

randomized withdrawal design in that there is a higher chance in receiving the better treatment in 

the second period, which might provide a favorable impact on the patient retention and reduce 

non-compliance with the protocol, at least at the end of the first period (Dunger-Baldauf, 2007). 

Enriched Multiple-Sequence Design 

 Another study design that has the same sequence groups as the randomized delayed-start 

design is the sequential parallel comparison design (SPCD). SPCD design was proposed by Fava 

et al. (2013), and it is different from the delayed-start design in that only the placebo non-

responders of the first period in the P:P and P:T groups continue into the second period. SPCD 

serves similar purposes as the two-sequence placebo lead-in design in psychiatric clinical trials 

with a high placebo response rate, except that it has an additional T:T sequence. And thus 

besides sharing the high compliance benefit of the three sequence design mentioned above, it 

also eliminates the potential risk brought by the placebo lead-in design that it is more difficult to 

identify placebo-responders when it is hard to hide from the clinicians that only placebo is given 

in the first period (Fava et al., 2003; Ivanova, Qaqish and Schoenfeld, 2011; Doros et al., 2013). 
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Figure 1.5 SPCD Design 

The original paper of Fava et al. (2003) focused on the study outcome as dichotomized 

data. Other methods have been proposed for the analyses of binary outcomes in the context of 

SPCD designs by Huang and Tamura (2010), Ivanova, Qaqish and Schoenfeld (2011), and 

Huang, Tamura, and Boos (2011).  

Recent uses of the SPCD design have been extended to continuous or ordinal outcome as 

it arises more naturally than the dichotomizing of a continuous measurement. Huang and Tamura 

(2010) considered seemingly unrelated regression (SUR) to account for the correlation between 

subjects in the two periods of the trial. Chen et al (2011) proposed an ordinary least squares 

approach and Doros et al. (2013) proposed a repeated measures model that includes all possible 

outcome data collected in the trial. 

The two-way enrichment design (TED), introduced by Ivanova and Tamura (2011), has all four 

sequence groups, P:P, P:T, T:P, and T:T, but in the second period, only the non-responders to the 

placebo in the first period of the P:P and P:T sequences, and the responders to the active 

treatment in the first period of the T:P and T:T sequences remain in the study. And thus the TED 

design has the advantage of both the placebo lead-in design and the randomized withdrawal 

designs. This design is suitable to study the maintenance of efficacy of an active treatment 
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(through the randomized withdrawal design) for a disease with a high placebo response rate. For 

example, for generalized anxiety disorder (GAD), which is a central nerve system disease with a 

high placebo response rate, and a chronic disease for which worsening would quickly occur after 

discontinuation from an active treatment, a trial to evaluate an active treatment versus placebo 

would benefit from the TED design.  

 

Figure 1.6 TED Design 

Bilateral Design 

 Besides the studies mentioned above, the four sequence group design could also be 

applied to two sides of the same subject, instead of two periods. For example, Kawaguchi and 

Koch (2009) studied the two eyes of the same patients with four sequence group, with the 

treatments assigned to the two eyes instead of the two periods respectively. 

 Summary 

This literature review covers many aspects of clinical trials. The existing methodology for 

handling missing data in different missing data scenarios is reviewed and different designs and 

usage of crossover studies is discussed. Also, this chapter discusses a nonparametric way to 

handle the random imbalance in covariables, as well as its usefulness in reducing the variability 

of estimation. 
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The following chapters are organized as follows. In Chapter 2, we discuss a method for 

sensitivity analyses of estimation in favorable proportion for missing dichotomous data. Chapter 

3 extends the method in Chapter 2 to outcome data with an ordinal nature. Chapter 4 presents a 

method for statistical inference under the null for SPCD trials and Chapter 5 further studies the 

point and confidence interval estimation under the alternative of this design. And Chapters 6 and 

7 provides an outline and statistical planning for topic in hypothesis testing for TED trials and 

bilateral design.  
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 CHAPTER 2: SENSITIVITY ANALYSIS OF FAVORABLE PROPORTION FOR 

MISSING DICHOTOMOUS DATA IN MULTI-VISIT RANDOMIZED CLINICAL 

TRIAL 

 Introduction 

 In clinical trials, the dichotomous endpoint only has two possible outcomes for an 

observation, either directly or via categorization of an ordinal or continuous observation. 

However, missing data often occur for one or more visits during a multi-visit study. No matter 

how well designed and conducted a trial is, some missing data can almost always be expected 

(O’Kelly and Ratitch, 2014). Oftentimes, missing data are due to some specific reasons, and they 

can be related to the treatment for a patient (e.g., adverse events, or lack of efficacy) or unrelated 

(e.g., move from the community for treatment).  

 When loss to follow-up occurs, investigators are urged to collect as much information as 

possible for the withdrawal reasons. Given the withdrawal reasons, sensitivity analyses could be 

performed under different scenarios. In the regulatory setting, a tipping point analysis is usually 

needed to assess what conditions would overturn the statistical significance of the claimed 

treatment difference and whether such pivotal conditions are potentially possible in the real trial 

(National Research Council Panel, 2010). 

 In the situations for missing data in a clinical trial, the two quantities of primary interest 

are the treatment comparison estimate under different assumptions and its corresponding 

variance. They can be obtained through imputation for missing data, or with statistical models 

with some assumptions for the missingness and covariance structure for the data. In the statistical 
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analysis plan of the clinical trial, the statistical methods need to be stated a priori for the 

assessment of the treatment comparison before the clinical trials are actually conducted. 

Oftentimes, possibly unrealistic assumptions are required for the validity of certain statistical 

models, and they are difficult to evaluate before data analysis. Therefore, methods requiring 

fewer assumptions are desired rather than those with complex assumptions, especially in the 

regulatory setting. 

 In this paper, we propose a method that mathematically redistributes the missing counts 

as favorable or unfavorable under different specifications for the missing data, so as to provide 

resulting estimates for the treatment comparisons in a multi-visit clinical trial and a 

corresponding covariance matrix. Also, adjustment for covariates is possible through 

randomization-based analysis of covariance (ANCOVA) so as to provide variance reduction and 

offset random imbalances. Section 2.2 introduces the data set up and the methodology, and the 

methods are illustrated with an example in Section 2.3. Chapter 3 provides an extension to an 

ordinal categorical outcome. 

 Methods 

 Consider a study comparing a test treatment and a control treatment for a favorable 

outcome or not through assessments at each of several visits. For the dichotomous outcome with 

possibly missing data, there are three possible responses, favorable, unfavorable, or missing, 

although the outcome for missing could be expanded to include the applicable reason. While 

outcome and response are often interchangeable in the literature, here we make a distinction 

between outcome categories and response categories, where the former could only have two 

outcomes and the latter includes missing as a category. 
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2.2.1 Notation 

 Let 𝑦𝑔ℎ𝑖𝑗𝑘 be the indicator variable for the response of subject 𝑖 in group g and stratum ℎ 

at visit 𝑗 being 𝑘, where group 𝑔 = 1, 2 index the test treatment and control treatment 

respectively; stratum ℎ = 1, 2,⋯ ,𝐻 index the stratum for the subject; subject 𝑖 = 1, 2,⋯ , 𝑛𝑔ℎ; 

visit 𝑗 = 1, 2,⋯ , 𝐽, and response 𝑘 = 1, 2, 3, where 1, 2 and 3 index favorable, unfavorable, and 

missing response respectively. If there were 3 potential reasons for missing such as lack of 

efficacy, unacceptable tolerability, and other, then 𝑘 = 1, 2, 3, 4, 5 could apply; but throughout 

this paper, only one missing category is mainly considered. We define a three-dimensional 

vector 𝒀𝑔ℎ𝑖𝑗∗ = (𝑦𝑔ℎ𝑖𝑗1, 𝑦𝑔ℎ𝑖𝑗2, 𝑦𝑔ℎ𝑖𝑗3)
′ to combine the three indicators. For example, 𝑌1111∗ =

(0,1,0) means Subject 1 for the test treatment and Stratum 1 at time point 1 has unfavorable 

outcome. Accordingly, we further define a data vector that includes all visits as 𝒀𝑔ℎ𝑖∗∗ =

(𝒀𝑔ℎ𝑖1∗
′ , ⋯ , 𝒀𝑔ℎ𝑖𝐽∗

′ )
′
= (𝑦𝑔ℎ𝑖11, 𝑦𝑔ℎ𝑖12, 𝑦𝑔ℎ𝑖13, … , 𝑦𝑔ℎ𝐽11, 𝑦𝑔ℎ𝐽12, 𝑦𝑔ℎ𝐽13)

′
. 

2.2.2 Data Structure 

For subjects in treatment group 𝑔 and stratum ℎ, the observed data can be arranged in a 

contingency table format as in Table 2.1. After including missing as a category, the number of 

Table 2.1 Data Structure 

            Response 

Time 
Fav UnFav Missing Total 

1 𝑛𝑔ℎ11(𝑝𝑔ℎ11) 𝑛𝑔ℎ12(𝑝𝑔ℎ12) 𝑛𝑔ℎ13(𝑝𝑔ℎ13) 𝑛𝑔ℎ 

⋮ ⋮ ⋮ ⋮ 𝑛𝑔ℎ 

𝐽 𝑛𝑔ℎ𝐽1(𝑝𝑔ℎ𝐽1) 𝑛𝑔ℎ𝐽2(𝑝𝑔ℎ𝐽2) 𝑛𝑔ℎ𝐽3(𝑝𝑔ℎ𝐽3) 𝑛𝑔ℎ 

 

subjects at each visit is fixed as 𝑛𝑔ℎ. The cell count 𝑛𝑔ℎ𝑗𝑘 is 𝑛𝑔ℎ𝑗𝑘 = ∑ 𝑦𝑔ℎ𝑖𝑗𝑘
𝑛𝑔ℎ

𝑖=1
, and cell 

proportion 𝑝𝑔ℎ𝑗𝑘 is 𝑝𝑔ℎ𝑗𝑘 =
𝑛𝑔ℎ𝑗𝑘

𝑛𝑔ℎ
. The counts vector at row 𝑗 of the table is expressed as  
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𝑛𝑔ℎ𝑗 = (𝑛𝑔ℎ𝑗1, 𝑛𝑔ℎ𝑗2, 𝑛𝑔ℎ𝑗3), which follows a multinomial distribution, 

𝒏𝑔ℎ𝑗~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑛𝑎𝑙(𝑛𝑔ℎ, 𝝅𝑔ℎ𝑗), where 𝝅𝑔ℎ𝑗 = (𝜋𝑔ℎ𝑗1, 𝜋𝑔ℎ𝑗2, 𝜋𝑔ℎ𝑗3)
′
 is the marginal 

multinomial probability vector of response for the 𝑗-th visit. From the properties of multinomial 

distributions, the unbiased estimator of the multinomial probability 𝝅𝑔ℎ𝑗, is the proportion vector 

at row 𝑗, 𝒑𝑔ℎ𝑗 = (𝑝𝑔ℎ𝑗1, 𝑝𝑔ℎ𝑗2, 𝑝𝑔ℎ𝑗3)
′
. Combining across all time points, 𝒑𝑔ℎ =

(𝒑𝑔ℎ1
′ , … , 𝒑𝑔ℎ𝐽

′ )
′
 and 𝝅𝑔ℎ = (𝝅𝑔ℎ1

′ , … , 𝝅𝑔ℎ𝐽
′ )′ apply to the correlated multinomial distributions 

for the 𝒏𝑔ℎ𝑗 for the 𝐽 visits. The estimated covariance matrix of 𝒑𝑔ℎ as the mean of the 𝒀𝑔ℎ𝑖∗∗ is 

shown in (2.1). 

𝑽𝑝𝑔ℎ
=

1

𝑛𝑔ℎ(𝑛𝑔ℎ − 1)
∑(𝒀𝑔ℎ𝑖∗∗ − 𝒑𝑔ℎ)(𝒀𝑔ℎ𝑖∗∗ − 𝒑𝑔ℎ)

′

𝑛𝑔ℎ

𝑖=1

    (2.1) 

2.2.3 Favorable Probability Estimation 

 Now the estimation of interest is for the probability of favorable outcome. For this 

purpose, the missing response category is redistributed to the favorable and unfavorable 

outcomes according to a missing outcome specification.  

 Let 𝑞𝑔ℎ𝑗 be the probability estimator that a subject in group g and stratum h would have a 

favorable outcome at visit 𝑗. The redistributed favorable outcome proportion under a missing 

completely at random (MCAR) specification is shown in (2.2). 

𝑞𝑔ℎ𝑗 = 𝑝𝑔ℎ𝑗1 +
𝑝𝑔ℎ𝑗1

𝑝𝑔ℎ𝑗1 + 𝑝𝑔ℎ𝑗2
𝑝𝑔ℎ𝑗3      (2.2) 

 It is also an “observed case” estimate which has the assumption that patients with missing 

status have the same probability of favorable outcome as those with observed status as shown in 

(2.3). 
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𝑞𝑔ℎ𝑗 =
𝑝𝑔ℎ𝑗1

𝑝𝑔ℎ𝑗1 + 𝑝𝑔ℎ𝑗2
                             (2.3) 

2.2.4 Sensitivity Analysis 

 So far we have assumed the missing responses are MCAR-like. However, in clinical 

trials, the discontinued patients could have withdrawn from the study due to reasons related to 

the unobserved outcome, which renders the data non-ignorable missing (NMAR); see Little and 

Rubin (2014). 

 For the subsequent discussion in this section, we omit the notation for group 𝑔 and 

stratum ℎ for simplicity of presentation, although they can always be included without loss of 

generality. Now let 𝑛𝑗1, 𝑛𝑗2, and 𝑛𝑗3 represent the counts of the favorable, unfavorable, and 

missing responses at visit 𝑗, and 𝑛𝑗1 + 𝑛𝑗2 + 𝑛𝑗3 = 𝑛𝑗. We further divide the missing counts 𝑛𝑗3 

into 𝑛𝑗31 and 𝑛𝑗32, where 𝑛𝑗31 and 𝑛𝑗32 represent the unobserved counts with a favorable and 

unfavorable outcome if missing responses were actually observed. Also, 𝑝𝑗1, 𝑝𝑗2, and 𝑝𝑗3 are the 

corresponding proportion estimators.  Thus, we have the data structure shown in Table 2.2. Also, 

Table 2.2 could be expanded to account for counts for two or more reasons for missing 

responses. 

Table 2.2 Data Structure for Missing Counts Redistribution 

Visit Fav UnFav Missing Total 

j 𝑛𝑗1 𝑛𝑗2 𝑛𝑗3 = 𝑛𝑗31 + 𝑛𝑗32 𝑛𝑗  

 

 The odds ratio ratio 𝜃𝑗  comparing the favorable to the unfavorable outcome in the 

patients with missing status versus observed patients is shown in (2.4); and the solution it implies 

for 𝑛𝑗31 is shown in (2.5). 

𝜃𝑗 =
𝑛𝑗31

𝑛𝑗32
 /  

𝑛𝑗1

𝑛𝑗2
                        (2.4) 
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𝑛𝑗31 =
𝜃𝑗𝑛𝑗1𝑛𝑗3

𝜃𝑗𝑛𝑗1 + 𝑛𝑗2
                   (2.5) 

Thus, there can be determination of total favorable outcome counts through an assumed 

specification of the odds ratio 𝜃𝑗 . Also, separate 𝜃𝑗’s could address two or more reasons for 

missing responses.  

 If 𝜃𝑗 = 1, the missing responses are assumed to be MCAR-like; if 𝜃𝑗 > 1 the missing 

responses are regarded as more likely to have better outcome than those observed; if 𝜃𝑗 < 1, the 

missing responses are regarded as more likely to have worse outcome, as is often the case for 

patients who discontinue the test treatment. Through adjusting for different 𝜃𝑗 , different 

specifications of the possible outcomes for the missing response can be obtained, and thus we 

call the 𝜃𝑗  the sensitivity parameters for missingness.  

              The adjusted favorable proportion estimator can be expressed in terms of the observed 

proportions for the responses and the 𝜃𝑗  as shown in (2.6). 

𝑞𝑗𝜃 =
𝑛𝑗1 + 𝑛𝑗31

𝑛𝑗
=

1

𝑛𝑗
(𝑛𝑗1 +

𝜃𝑗𝑛𝑗1

𝜃𝑗𝑛𝑗1 + 𝑛𝑗2
𝑛𝑗3) = 𝑝𝑗1 +

𝜃𝑗𝑝𝑗1

𝜃𝑗𝑝𝑗1 + 𝑝𝑗2
𝑝𝑗3      (2.6) 

              By construction, the 𝑞𝑗𝜃 are comparable to what might be expected by random multiple 

imputation of the missing responses via (2.5), but they are alternatively produced from 

mathematical redistribution as in (2.5). From (2.6), it follows that the adjusted odds of favorable 

versus unfavorable outcome at time 𝑗 has the structure shown in (2.7). 

𝑞𝑗𝜃

1 − 𝑞𝑗𝜃
=

𝑛𝑗1(𝜃𝑗𝑛𝑗1 + 𝑛𝑗2 + 𝜃𝑗𝑛𝑗3)

𝑛𝑗2(𝜃𝑗𝑛𝑗1 + 𝑛𝑗2 + 𝑛𝑗3)
 

=
𝑝𝑗1 (𝜃𝑗𝑝𝑗1 + 𝑝𝑗2 + 𝜃𝑗(1 − 𝑝𝑗1 − 𝑝𝑗2))

𝑝𝑗2 (𝜃𝑗𝑝𝑗1 + 𝑝𝑗2 + (1 − 𝑝𝑗1 − 𝑝𝑗2))
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=
𝑝𝑗1 (𝑝𝑗2 + 𝜃𝑗(1 − 𝑝𝑗2))

𝑝𝑗2 (𝜃𝑗𝑝𝑗1 + (1 − 𝑝𝑗1))
                (2.7) 

              If 𝜃𝑗=1, which is the MCAR-like case, 
𝑞𝑗𝜃

1−𝑞𝑗𝜃
=

𝑝𝑗1

𝑝𝑗2
, with this indicating that the adjusted 

odds of favorable outcome versus unfavorable is the same as the odds for the observed outcomes. 

2.2.5 Covariance Matrix Estimation 

 Let 𝒒𝜃 = (𝑞1𝜃, … , 𝑞𝐽𝜃) denote the 𝑗-dimensional vector of adjusted outcome proportion 

estimators. In order to use the linear Taylor series methods discussed in Koch et al. (1977), as 

well as summarized Stokes et al. (2012, Chapter 14), to produce a consistent estimate for the 

covariance matrix of the adjusted proportion vector 𝒒𝜽, we express 𝒒𝜽 in the form of compound 

functions of the unadjusted proportion vector 𝒑 = (𝒑1
′ , … , 𝒑𝐽

′ )
′
 and sensivity parameter 𝜃 as 

shown in (2.8). 

𝒒𝜽 = 𝑨𝟑𝒆𝒙𝒑[𝑨𝟐 𝒍𝒐𝒈(𝑨𝟏𝜽𝒑)]                                  (2.8) 

 In (2.8), log() denotes the element-wise vector operation that transforms a vector to the 

corresponding vector of natural logarithms, and exp [] denotes the element-wise vector operation 

that transforms a vector to the corresponding vector of exponentiated values, and matrices 𝑨𝟏𝜽, 

𝑨𝟐, and 𝑨𝟑 are shown in (2.9) for which 𝒃𝒅𝒊𝒂𝒈𝑱(𝑳𝒋) denotes a diagonal matrix of J blocks, with  

𝑨𝟏𝜽 = 𝒃𝒅𝒊𝒂𝒈𝑱 (

1  0  0 
𝜃𝑗  0  0

𝜃𝑗  1  0

0  0 1

) , 𝑨𝟐 = 𝒃𝒅𝒊𝒂𝒈𝑱 (
1  0  0  0 
 0  1 − 1  1

) , 𝑨𝟑 = 𝒃𝒅𝒊𝒂𝒈𝑱(1  1)         (2.9) 

matrix 𝑳𝒋 on the 𝑗-th diagonal block 𝑗 = 1,… , 𝐽. By applying the linear Taylor series methods in 

Koch et al. (1977), we can obtain a consistent estimator for the covariance matrix of 𝒒𝜽 as shown 

in (2.10).  
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𝑽𝑞𝜃
= 𝑩𝜃𝑽𝒑𝑩𝜃

′          (2.10) 

 For (2.10), 𝑩𝜃 is the elementwise first partial derivative of vector 𝒒𝜽 with respect to 

vector 𝒑 and is obtained by applying the chain rule, as shown in (2.11) for which 𝒂𝟏𝜽 = 𝑨𝟏𝜽𝒑, 

𝑩𝜽 =
𝝏𝒒𝜽

𝝏𝒑
=

𝝏𝒒𝜽

𝝏𝒂𝟑𝜽
 
𝝏𝒂𝟑𝜽

𝝏𝒂𝟐𝜽
  
𝝏𝒂𝟐𝜽

𝝏𝒂𝟏𝜽
 
𝝏𝒂𝟏𝜽

𝝏𝒑
= 𝑨𝟑𝑫𝒂𝟑𝜽

𝑨𝟐𝑫𝒂𝟏𝜽
−𝟏 𝑨𝟏𝜽   (2.11) 

𝒂𝟐𝜽 = log (𝒂𝟏𝜽), 𝒂𝟑𝜽 = exp [𝑨𝟐𝒂𝟐𝜽], and 𝒒𝜽 = 𝑨𝟑𝒂𝟑𝜽, and 𝑫𝒂𝟏𝜽
−𝟏   is a diagonal matrix with the 

reciprocals of the elements of the vector 𝑎1𝜃 on the main diagonal and 𝑫𝒂𝟑𝜽
 is the diagonal 

matrix with the elements of the vector 𝒂𝟑𝜽 on the main diagonal.  

 Now we reconsider group 𝑔 and stratum ℎ, for which the adjusted favorable proportion 

estimate is shown in (2.12).  

𝑞𝑔ℎ𝑗𝜃 = 𝑝𝑔ℎ𝑗1 +
𝜃𝑗𝑝𝑔ℎ𝑗1

𝜃𝑗𝑝𝑔ℎ𝑗1 + 𝑝𝑔ℎ𝑗2
𝑝𝑔ℎ𝑗3    (2.12)  

The covariance estimate of 𝒒𝒈𝒉𝜽, where 𝒒𝒈𝒉𝜽 = (𝑞𝑔ℎ1𝜃, … , 𝑞𝑔ℎ𝐽𝜃)
′
 is shown in (2.13). 

𝑽𝒒𝒈𝒉𝜽
= 𝑩𝒈𝒉𝜽𝑽𝒑𝒈𝒉

𝑩𝒈𝒉𝜽
′                           (2.13) 

The selection of the sensitivity parameter 𝜃𝑔ℎ𝑗 could be based on knowledge for the trial 

being conducted and the nature of disease; see Zhao et al. (2014). In many cases, it can 

correspond to fractions of the reciprocal for a known odds ratio for the effect of a useful 

treatment versus placebo. 

Typically, the 𝜃𝑔ℎ𝑗 are the same for all strata in group 𝑔, i.e., 𝜃𝑔ℎ𝑗 = 𝜃𝑔𝑗 , and they could 

vary at different visits 𝑗 and 𝑗′. In addition, one could expect missing responses for patients in the 

placebo group to have a similar outcome distribution as the observed patients, which corresponds 

to 𝜃2ℎ𝑗 = 1 for any ℎ and any visit 𝑗 in the placebo group. 
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2.2.6 Treatment Comparison 

Treatment Difference 

 The treatment difference Δ = (Δ1,⋯ , Δ𝐽) between test and placebo visits 1 to 𝑗 could be 

estimated using the corresponding adjusted proportion differences, and they can be weighted by 

the Mantel-Haenszel weights 𝑤ℎ = {
𝑛1ℎ𝑛2ℎ (𝑛1ℎ+𝑛2ℎ)⁄

∑ 𝑛1ℎ′𝑛2ℎ′ (𝑛1ℎ′+𝑛2ℎ′)⁄𝐻
ℎ′=1

} for the combined strata. The 

treatment difference estimator at visit 𝑗 for Δ𝑗 is 𝑑𝑗𝜃 as shown in (2.14). 

𝑑𝑗𝜃 = ∑ 𝑤ℎ(𝑞1ℎ𝑗𝜃 − 𝑞2ℎ𝑗𝜃)

𝐻

ℎ=1

         (2.14) 

 Letting  𝒅𝜽 = (𝑑1𝜃,⋯ , 𝑑𝐽𝜃), the consistent covariance matrix estimator of 𝒅𝜽 can be 

obtained using the covariance matrix estimator 𝑽𝒒𝒈𝒉𝜽
 of 𝒒𝒈𝒉𝜽  in (2.13), and it is expressed as 

(2.15).  

𝑽𝒅𝜽
= ∑ 𝑤ℎ

2 (𝑽𝒒𝟏𝒉𝒋𝜽
+ 𝑽𝒒𝟐𝒉𝒋𝜽

)

𝐻

ℎ=1

          (2.15) 

Adjusted Treatment Difference via Randomzation-Based ANCOVA 

 In a randomized clinical trial, baseline covariables are expected to have the same 

distribution in the randomized groups. Baseline covariables could include the baseline 

measurement of the outcome, demographic variables, or other variables. However, random 

imbalances in the baseline covariables could occur as each treatment group is a finite sample of 

the randomized population, and covariance adjustment for them can offset such imbalances. 

 Covariance adjustment can also provide variance reduction for treatment comparison 

estimation when applied in a randomization-based way (Koch et al., 1998; Tangen and Koch, 

2001; LaVange et al., 2005). The motivation behind the variance reduction is that the parameter 
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estimate that is associated with the imbalance would be corrected to offset the direction of the 

imbalance. The estimation is through randomization-based ANCOVA, which is an approach that 

applies weighted least squares methods to evaluate differences between treatment groups with 

respect to outcome variables and covariables simultaneously (Koch et al., 1998).  

 Here, we introduce some notations for the covariables. Suppose each subject has 𝑀 

baseline covariables 𝒙𝒈𝒉𝒊, 𝒙𝒈𝒉𝒊 = (𝑥𝑔ℎ𝑖1, … , 𝑥𝑔ℎ𝑖𝑀)
′
, and 𝒙̅𝒈𝒉 =

1

𝑛𝑔ℎ
∑ 𝒙𝒈𝒉𝒊

𝑛𝑔ℎ

𝑖=1
 is the mean 

vector of the prespecified covariables. 

 We define 𝒇𝒈𝒉𝒊 = (𝒀𝒈𝒉𝒊∗∗
′ , 𝒙𝒈𝒉𝒊

′ )
′
 as a (3 × 𝐽 + 𝑀) dimensional response-covariable 

vector, and 𝒇̅𝒈𝒉 =
1

𝑛𝑔ℎ
∑ 𝒇𝒈𝒉𝒊

𝑛𝑔ℎ

𝑖=1
= (𝒑𝒈𝒉

′ , 𝒙̅𝒈𝒉
′ )

′
 is the mean of the response-covariable vector.  

 Further, we transform 𝒇̅𝒈𝒉 to 𝑭𝒈𝒉𝜽 = (𝒒𝒈𝒉𝜽
′  , 𝒙̅𝒈𝒉

′ )
′
, then 𝑭𝒈𝒉𝜽 =

(𝑨𝟑 𝐞𝐱𝐩[𝑨𝟐 𝐥𝐨𝐠(𝑨𝟏𝜽𝒑𝒈𝒉)] , 𝒙̅𝒈𝒉
′ )

′
.  

 Also, we denote 𝒖 = ∑ 𝑤ℎ(𝒙̅1ℎ − 𝒙̅2ℎ)𝐻
ℎ=1  as the covariable difference weighted across 

the 𝐻 strata and combine the J treatment differences and 𝑀 covariable difference to get 𝑮𝜽 =

(𝒅̂𝜃
′ , 𝒖′)

′
.  

 The consistent covariance matrix estimator 𝑽𝒇̅𝒈𝒉
 of 𝒇̅𝒈𝒉 can be obtained as in (2.16).  

𝑽𝒇̅𝒈𝒉
=

1

𝑛𝑔ℎ(𝑛𝑔ℎ − 1)
∑(𝒇𝒈𝒉𝒊−𝒇̅𝒈𝒉)(𝒇𝒈𝒉𝒊−𝒇̅𝒈𝒉)′ 

𝑛𝑔ℎ

𝑖=1

    (2.16) 

 And then the covariance matrix 𝑉𝐹𝑔ℎ𝜃
 of 𝐹𝑔ℎ𝜃 and 𝑉𝐺𝜃 of 𝐺𝜃 can be obtained as (2.17) 

and (2.18).  

𝑽𝑭𝒈𝒉𝜽
= [

𝑩𝒈𝒉𝜽 𝟎𝑱,𝑴 

𝟎𝑴,𝟑𝑱 𝑰𝑴
] 𝑽𝒇̅𝒈𝒉

[
𝑩𝒈𝒉𝜽

′ 𝟎𝟑𝑱,𝑴 

𝟎𝑴,𝑱 𝑰𝑴
]                (2.17) 
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𝑽𝑮𝜽 = ∑ 𝑤ℎ
2(𝑽𝑭𝟏𝒉𝜽

+ 𝑽𝑭𝟐𝒉𝜽
)

𝐻

ℎ=1

          (2.18) 

 Then the differences between means for covariables for the two treatment groups are 

restricted to zero, as is expected by randomization of patients to the two treatments; this 

constraint can be expressed as shown in (2.19).  

𝑬(𝒖) = 𝟎𝑴      (2.19) 

 Randomization-based covariable adjustment for the treatment comparison estimator 𝒅𝜃 

with respect to 𝒖 can be invoked by fitting the linear model in (2.20) by weighted least squares  

𝐸(𝑮𝜽) ≜ [
𝐼𝐽

0𝑀,𝐽
] 𝒃𝜽 = 𝒁𝒃𝜽 =

(

 
 
 

𝒃1𝜃

⋮
 𝒃𝐽𝜃

0
⋮
0 )

 
 
 

             (2.20) 

regression with weights based on 𝑉𝐺𝜃

−1 in (2.18) and with “≜” meaning “is estimated by.” 

 The weighted least squares regression for the specification in (2.20) produces the 

estimator for the covariable-adjusted treatment comparisons 𝒃𝜽 in (2.21), with a consistent 

estimator for the covariance matrix of 𝒃𝜽, as in (2.22). 

𝒃𝜽 = (𝒁′𝑽𝑮𝜽

−𝟏𝒁)
−𝟏

𝒁′𝑽𝑮𝜽

−𝟏𝑮𝜽               (2.21) 

𝑽𝒃𝜽
= (𝒁′𝑽𝑮𝜽

−𝟏𝒁)
−𝟏

                   (2.22) 

Hypothesis Testing  

 For testing 𝐻0: 𝑪𝚫 = 0, the test statistic in (2.23) is applicable where 𝚫̂ is the  

𝑄𝑪𝚫 = 𝚫̂′𝑪′(𝑪𝑽𝚫̂𝑪′)−𝟏𝑪𝚫̂    (2.23) 
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corresponding estimator 𝒅𝜽 or covariable-adjusted estimator 𝒃𝜽, and  𝑪 is the desired full rank 

contrast matrix with rank 𝑟(𝑪). Under 𝐻0,  𝑄𝑪𝚫~𝜒𝑟(𝑪)
2  when the sample size is sufficiently large, 

where 𝜒𝑟(𝑪)
2 is the central Chi-square distribution with 𝒓(𝑪) degrees of freedom.  

 Example 

 The proposed method for sensitivity analysis is illustrated with an example of a double-

blind, randomized, placebo-controlled, parallel-group study to assess the safety and efficacy of a 

test medicine for weight loss in obese patients. The sample data consist of 1000 patients in a 

bootstrap sample from an obesity trial like that discussed in Smith et al. (2010).  

 One of the co-primary endpoints of this weight loss study is the proportion (%) of 

patients who achieve ≥5% weight loss from baseline to week 52. The study participants were 

followed every 4 weeks until the end of the study. The primary assessment was body weight at 

Week 52, and other important assessment visits were at Week 12, Week 24, and Week 36. These 

4 visits are numbered Visits 1 to 4 in chronological order. 

 Substantial numbers of patients withdrew from the study and didn't return for follow up. 

In this bootstrap sample, at Week 52, 45.5% and 53.1% of patients had missing responses for the 

test and placebo group respectively; at all visits, more missingness happened in the placebo 

group than in the test group, as shown in Table 2.3.  

Table 2.3 Missing Percentages of Assessment Visits 

             Visit 

Group 
1 2 3 4 

Test 10.9% 28.8% 38.5% 45.5% 

Placebo 21.8% 34.2% 43.2% 53.1% 
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 Two strata according to gender were considered; and baseline weight, age, and baseline 

body mass index (BMI) were covariables with adjustment through randomization-based 

ANCOVA as discussed in Section 2.2.6.  

 One question of regulatory interest for this example is whether there are 15% or more 

responders for test treatment than placebo. If missing responses cannot be assumed to be 

ignorable, how robust the results are if challenged by a sequence of sensitivity parameters 𝜃 is a 

question of interest.  

 The hypotheses are 𝐻0𝑗: 𝑰𝒋,𝟒𝚫 ≤ 15% versus 𝐻𝐴𝑗: 𝑰𝒋,𝟒𝚫 > 15% for 𝑗 = 1, 2, 3, 4 of the 4 

visits, where 𝑰𝒋,𝟒 denote the 𝑗𝑡ℎ row of the identity matrix 𝑰𝟒, and it will be addressed with the 

direct treatment difference estimator and the covariables-adjusted treatment difference estimator 

respectively. For sequential testing to address multiplicity, the primary assessment Visit 4 𝐻04 

would be addressed as a first step with two-sided hypothesis testing at the 𝛼 = 0.05 level, and if 

significant, 𝐻03 would be addressed, etc. 

 The methodology can accommodate different sensitivity parameters for different visits, 

strata and treatment groups. But for convenience of illustration, we only consider different 

sensitivity parameters for the test and placebo treatment, and assume 𝜃𝑔ℎ𝑗 = 𝜃𝑔 for 𝑔 = 1,2 for 

test medicine and placebo groups, ℎ = 1, 2 for females and males, 𝑗 = 1, 2, 3, 4 for visits 1 to 4. 

For the placebo group, one would typically use 𝜃2 = 1, which could be a realistic assumption 

since patients would usually experience similar results as if they remained in the placebo group. 

The values of 𝜃1 ≤ 1 for the test medicine group could address the assumptions that the post-

withdrawal experience of a test drug patient was less favorable than for a patient remaining in the 

study. As a tipping point analyses, we use a sequence of 𝜃1 values to see under what assumptions 

the result of rejection of the null hypothesis would remain unchanged (at the two-sided 



41 
  

significance level of 0.05), although the attention can additionally be given to the point estimate 

and confidence interval. The estimates of unadjusted and adjusted treatment differences, and 

their standard errors (SE), and the Chi-Square values and corresponding p-values of the testing 

for the hypothesis 𝐻0 above are listed in Table 2.4.  

Table 2.4 Results of Sensitivity Analyses for Treatment Comparison Estimators 

Sensitivity 

parameter 𝜃 
Visit 

Unadjusted Adjusted 

𝑑 SE ChiSq p value 𝑏 SE ChiSq p value 

𝜃1 = 1 1 0.266 0.0309 14.007 0.0002 0.266 0.0306 14.235 0.0002 
 2 0.339 0.0358 27.825 <0.0001 0.341 0.0353 29.354 <0.0001 
 3 0.331 0.0390 21.466 <0.0001 0.333 0.0384 22.611 <0.0001 
 4 0.313 0.0424 14.817 0.0001 0.315 0.0418 15.496 0.0001 

𝜃1 = 0.5 1 0.248 0.0306 10.146 0.0014 0.247 0.0304 10.231 0.0014 
 2 0.294 0.0362 15.880 0.0001 0.296 0.0356 16.797 <0.0001 
 3 0.272 0.0398 9.312 0.0023 0.273 0.0391 9.880 0.0017 
 4 0.241 0.0434 4.387 0.0362 0.242 0.0427 4.634 0.0313 

𝜃1 = 1/3 1 0.239 0.0304 8.547 0.0035 0.238 0.0302 8.571 0.0034 
 2 0.269 0.0361 10.851 0.0010 0.270 0.0355 11.478 0.0007 
 3 0.237 0.0398 4.742 0.0294 0.238 0.0390 5.056 0.0245 
 4 0.198 0.0431 1.255 0.2627 0.199 0.0423 1.342 0.2467 

Note: 𝜃2 = 1 

 

When the missingness is MCAR in either the test group or placebo group with 𝜃1 = 𝜃2 =

1, the conclusion that the test treatment had 15% or more responders than the placebo treatment 

is well supported, at all follow-up visits. As we place more stringent penalties on the missing 

data in the test treatment while keeping the placebo missingness as MCAR, the estimated 

treatment difference becomes smaller, particularly for visits 3 and 4 where missing data are 

much more extensive. At visit 4, when the assumption is made that the test treatment's missing 

response has only (1/3) the odds for favorable outcome as observed responses, the test treatment 

has about 20% more responders than the placebo, with standard error at about 4%, and the 

conclusion of 15% more responders for comparing test to placebo no longer holds. The results of 
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the estimates of the unadjusted difference 𝑑𝜃 and covariable adjusted difference 𝑏𝜃 are similar. 

And the standard errors of the adjusted difference 𝑏𝜃 estimator are only slightly smaller than 

those of the unadjusted 𝑑𝜃. 

 Discussion 

 For situations where MNAR missing dichotomous response data exist for a randomized 

clinical trial, this paper discusses how the mathematical re-distribution of missing responses can 

provide useful sensitivity analyses to address the robustness of treatment comparisons from 

methods with possibly unrealistic assumptions such as MCAR. The tipping point, which is the 

sensitivity parameter that turns a significant result into a nonsignificant one, can be examined to 

see whether it is realistic or not relative to knowledge about the nature of the treatment and 

disorder being studied. Also, the sensitivity analyses are applicable with Mantel-Haenszel 

adjustment for strata and/or covariables through randomization-based ANCOVA. An extension 

of the methods in this paper to an ordered categorical outcome is in Chapter 3.  
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 CHAPTER 3: SENSITIVITY ANALYSIS IN TREATMENT COMPARISON FOR 

MISSING ORDINAL DATA IN MULTIE-VISIT RANDOMIZED CLINICAL TRIAL 

 Introduction 

 The methodology in Chapter 2 is extended to an ordinal outcome with the comparison 

between treatments utilizing the Mann Whitney probability estimator for the ordinal nature of the 

outcome. Section 3.2 will introduce the data set up and the methodology for ordinal data, and 

they will be illustrated with an example in Section 3.3.  

 Methods 

3.2.1 Notation 

 Consider a study comparing a test treatment and a control treatment for an ordinal 

outcome with 𝐾categories and assessments at each of the J visits. For an ordinal outcome with 

missing data, there are (𝐾 + 1) possible responses, with these being the K ordered outcome 

categories plus the missing category. While outcome and response are sometimes 

interchangeable in the literature, here we make a distinction between outcome categories and 

response categories, where the former could only have 𝐾 outcomes and the latter includes 

missing as a category. 

Let 𝑦𝑔𝑖𝑗𝑘 be the indicator variable for the response of subject 𝑖 in group 𝑔 at visit 𝑗 being 

𝑘, where group 𝑔 = 1, 2 index the test treatment and control treatment respectively; subject 𝑖 =

1, 2,⋯ , 𝑛𝑔; visit 𝑗 = 1, 2,⋯ , 𝐽, and response 𝑘 = 1, 2,⋯ , 𝐾, 𝐾 + 1, where 1,… , 𝐾 index the 1 to 

𝐾 outcomes and (𝐾 + 1) indexes missing response respectively. We define a (𝐾 + 1)-



45 
  

dimensional vector 𝑌𝑔𝑖𝑗∗ = (𝑦𝑔𝑖11,⋯ , 𝑦𝑔𝑖1𝐾, 𝑦𝑔𝑖1(𝐾+1))′ to combine the (𝐾 + 1) indicators. For 

example, 𝑌111∗ = (0,⋯ ,1,0) means Subject 1 in the test treatment at time point 1 has outcome 

category as 𝐾. Accordingly, we further define a data vector that includes all visits as 𝑌𝑔𝑖∗∗ =

(𝑌𝑔𝑖1∗
′ , ⋯ , 𝑌𝑔𝑖𝐽∗

′ )
′
= (𝑦𝑔𝑖11, ⋯ , 𝑦𝑔𝑖1𝐾, 𝑦𝑔𝑖1(𝐾+1), … , 𝑦𝑔𝑖𝐽1, ⋯ , 𝑦𝑔𝑖𝐽𝐾, 𝑦𝑔𝑖𝐽(𝐾+1))

′
. 

3.2.2 Data Structure 

 For subjects in treatment group 𝑔, the observed data can be arranged in a contingency 

table format as Table 3.1 below. After including missing as a category, the number of subjects at 

each visit is fixed as 𝑛𝑔. 

Table 3.1  Data Structure 

           Response 

Time              
1 ⋯ 𝐾 𝐾 + 1 Total 

1 𝑛𝑔11(𝑝𝑔11) ⋯ 𝑛𝑔1𝐾(𝑝𝑔1𝐾) 𝑛𝑔1(𝐾+1)(𝑝𝑔1(𝐾+1)) 𝑛𝑔 

⋮ ⋮  ⋮ ⋮ 𝑛𝑔 

𝐽 𝑛𝑔𝐽1(𝑝𝑔𝐽1) ⋯ 𝑛𝑔𝐽𝐾(𝑝𝑔𝐽𝐾) 𝑛𝑔𝐽(𝐾+1)(𝑝𝑔𝐽(𝐾+1)) 𝑛𝑔 

 

 The counts vector at row 𝑗 of the table is expressed as 𝒏𝒈𝒋 = (𝑛𝑔𝑗1, ⋯ , 𝑛𝑔ℎ𝑗𝐾 , 𝑛𝑔ℎ𝑗(𝐾+1)), 

which marginally follows a multinomial distribution, 𝒏𝒈𝒋~𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑛𝑎𝑙(𝑛𝑔, 𝝅𝒈𝒋), where 𝝅𝒈𝒋 

is the marginal multinomial probability vector of responses. From the properties of the 

multinomial distribution, the unbiased estimator of the multinomial probability 𝝅𝒈𝒋, is the 

proportion vector at row 𝑗, 𝒑𝑔𝑗 = (𝑝𝑔𝑗1, ⋯ , 𝑝𝑔𝑗𝐾, 𝑝𝑔𝑗(𝐾+1)). Combining across all time points, 

𝒑𝒈 = (𝒑𝒈𝟏
′ , … , 𝒑𝒈𝑱

′ )
′
, and 𝝅𝒈 = (𝝅𝒈𝟏

′ , … , 𝝅𝒈𝑱
′ )

′
. Extensions to allow strata would proceed 

similarly to the methods discussed in Chapter 2 for dichotomous outcomes. An unbiased 

estimator of the covariance matrix of the probability estimator 𝒑𝒈 containing the marginal 

proportions of the correlated multinomial distributions in the rows of Table 3.1 is shown in (3.1). 
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𝑽𝒑𝒈
=

1

𝑛𝑔(𝑛𝑔 − 1)
∑(𝒀𝒈𝒊∗∗ − 𝒑𝒈)(𝒀𝒈𝒊∗∗ − 𝒑𝒈)

′

𝑛𝑔

𝑖=1

            (3.1) 

3.2.3 Multinomial Probability Estimation 

 The objective of the estimation is the distribution of outcomes; and for an ordinal 

outcome, cumulative probabilities are usually considered. Without loss of generality, assume 

lower values of the ordinal outcome are more favorable, i.e., 𝑘 = 1 is the most favorable 

outcome. Under MCAR, the cumulative favorable proportion of the first 𝑙 categories for visit 𝑗 is 

expressed in (3.2).  

∑ 𝑞𝑔𝑗𝑘 =
∑ 𝑝𝑔𝑗𝑘

𝑙
𝑘=1

∑ 𝑝𝑔𝑗𝑘
𝐾
𝑘=1

=

𝑙

𝑘=1

∑ 𝑝𝑔𝑗𝑘

𝑙

𝑘=1

+
∑ 𝑝𝑔𝑗𝑘

𝑙
𝑘=1

∑ 𝑝𝑔𝑗𝑘
𝐾
𝑘=1

 𝑝𝑔𝑗(𝐾+1)       (3.2) 

 As MCAR, (3.2) implies that the probability of each outcome category in the patients 

with missing responses is the same for those with responses observed.  

3.2.4 Sensitivity Analysis 

 For the subsequent discussion, we omit the notation for group 𝑔 for simplicity of 

presentation. Now let 𝑛𝑗1,⋯, 𝑛𝑗𝐾, and 𝑛𝑗(𝐾+1) represent the counts of the 𝐾 ordinal outcome 

categories and the missing responses at visit 𝑗, and 𝑛𝑗1 + ⋯+ 𝑛𝑗𝐾 + 𝑛𝑗(𝐾+1) = 𝑛𝑗. We further 

divide the missing counts 𝑛𝑗(𝐾+1) into the counts of the 𝐾 outcome categories 

𝑛𝑗(𝐾+1)1, ⋯ , 𝑛𝑗(𝐾+1)𝐾, and they represent the counts among the patients with missing status for 

the 𝐾 outcome categories respectively if their missing status did not occur, and so we have the 

data structure as Table 3.2.  
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Table 3.2 Data Structure for Missing Counts Redistribution 

Visit 1 ⋯ 𝐾 Missing Total 

𝑗 𝑛𝑗1 ⋯ 𝑛𝑗𝐾 𝑛𝑗(𝐾+1) = 𝑛𝑗(𝐾+1)1 + ⋯+ 𝑛𝑗(𝐾+1)𝐾 𝑛𝑗  

 The odds ratio comparing the first 𝑙 categories to the last (𝐾 − 𝑙) categories in the 

patients with missing responses versus those with observed responses as shown in (3.3), which 

implies (3.4) for the redistribution to the first l categories combined. 

𝜃𝑗𝑙 =
∑ 𝑛𝑗(𝐾+1)𝑘

𝑙
𝑘=1

∑ 𝑛𝑗(𝐾+1)𝑘
𝐾
𝑘=𝑙+1

  /   
∑ 𝑛𝑗𝑘

𝑙
𝑘=1

∑ 𝑛𝑗𝑘
𝐾
𝑘=𝑙+1

, 𝑙 = 1,⋯ , (𝐾 − 1).         (3.3) 

∑ 𝑛𝑗(𝐾+1)𝑘 =

𝑙

𝑘=1

 
𝜃𝑗𝑙 ∑ 𝑛𝑗𝑘

𝑙
𝑘=1

𝜃𝑗𝑙 ∑ 𝑛𝑗𝑘
𝑙
𝑘=1 + ∑ 𝑛𝑗𝑘

𝐾
𝑘=𝑙+1

 𝑛𝑗(𝐾+1)       (3.4) 

 If 𝜃𝑗𝑙 = 1 for all 𝑙 = 1,⋯ , (𝐾 − 1), an MCAR-like structure applies; if 𝜃𝑗𝑙 > 1, the 

patients with missing status are assumed to be more likely to have better outcome than those 

observed; if 𝜃𝑗𝑙 < 1, the patients with missing status are assumed to be more likely to have worse 

outcome  Furthermore, if 𝜃𝑗1 = ⋯ = 𝜃𝑗(𝐾−1), 𝐾 ≥ 2, a proportional odds assumption is imposed. 

 Through adjusting for different 𝜃, different specifications of the possible outcomes in the 

missing observations could be attained, and thus we call 𝜃 the sensitivity parameter for 

missingness. The adjusted cumulative proportion estimator could be expressed in terms of the 

unadjusted proportions 𝒑 and 𝜃𝑗𝑙  as shown in (3.5).  

∑ 𝑞𝑗𝑘𝜃

𝑙

𝑘=1

=
∑ 𝑛𝑗𝑘

𝑙
𝑘=1 + ∑ 𝑛𝑗(𝐾+1)𝑘

𝑙
𝑘=1

𝑛𝑗
=

1

𝑛𝑗
(∑ 𝑛𝑗𝑘

𝑙

𝑘=1

+
𝜃𝑗𝑙 ∑ 𝑛𝑗𝑘

𝑙
𝑘=1

𝜃𝑗𝑙 ∑ 𝑛𝑗𝑘
𝑙
𝑘=1 + ∑ 𝑛𝑗𝑘

𝐾
𝑘=𝑙+1

 𝑛𝑗(𝐾+1) ) 

= ∑ 𝑝𝑗𝑘

𝑙

𝑘=1

+
𝜃𝑗𝑙 ∑ 𝑝𝑗𝑘

𝑙
𝑘=1

𝜃𝑗𝑙 ∑ 𝑝𝑗𝑘
𝑙
𝑘=1 + ∑ 𝑝𝑗𝑘

𝐾
𝑘=𝑙+1

 𝑝𝑗(𝐾+1),      𝑙 = 1,⋯ , (𝐾 − 1)        (3.5) 

𝑞𝑗𝐾𝜃 = 1 − ∑ 𝑞𝑗𝑘𝜃

(𝐾−1)

𝑘=1
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 Now we consider group 𝑔, and we express the adjusted cumulative proportion vector 

𝒒𝒈𝜽 = (𝒒𝒈𝟏𝜽
′ , … , 𝒒𝒈𝑱𝜽

′ )
′
 with 𝒒𝒈𝒋𝜽 = (𝑞𝑔𝑗1𝜃, … , 𝑞𝑔𝑗𝐾𝜃)

′
in the form of compound functions of the 

unadjusted proportion vector 𝒑𝒈 and sensitivity parameters 𝜽 as shown in (3.6) in order to use  

𝒒𝒈𝜽 = 𝑨𝟒𝑨𝟑𝒆𝒙𝒑[𝑨𝟐 𝒍𝒐𝒈(𝑨𝟏𝒈𝜽𝒑𝒈)] + 𝒄                                  (3.6) 

linear Taylor series methods to produce a consistent estimator for the corresponding matrix. For 

(3.6), matrices 𝑨𝟏𝒈𝜽, 𝑨𝟐, 𝑨𝟑, and 𝑨𝟒, and (𝐽𝐾 × 1) vector 𝒄 are shown in (3.7) and (3.8).  

𝑨𝟏𝒈𝜽 = 𝒃𝒅𝒊𝒂𝒈𝑱(𝑨𝟏𝒈𝒋𝜽)                           

𝑨𝟏𝒈𝒋𝜽 = 

[
 
 
 

𝑨𝟏𝒈𝒋𝟏𝜽

𝑨𝟏𝒈𝒋𝟐𝜽

⋮
𝑨𝟏𝒈𝒋(𝑲−𝟏)𝜽]

 
 
 

3(𝐾−1)×(𝐾+1)

                    (3.7) 

𝑨𝟏𝒈𝒋𝒌𝜽 = (

𝟏𝒌
′  𝟎𝑲−𝒌

′ 0 

 𝜽𝒈𝒋𝒌𝟏𝒌
′  𝟏𝑲−𝒌

′ 0

𝟎𝒌
′ 𝟎𝑲−𝒌

′  𝜃𝑔𝑗𝑘

)

3×(𝐾+1)

, 𝑘 = 1,⋯ , (𝐾 − 1). 

 

𝑨2 = 𝒃𝒅𝒊𝒂𝒈𝑱 {𝒃𝒅𝒊𝒂𝒈(𝑲−𝟏) (
1 0 0
1 − 1 1

) }                      (3.8) 

𝑨3 = 𝒃𝒅𝒊𝒂𝒈𝑱{𝒃𝒅𝒊𝒂𝒈(𝑲−𝟏)(1 1) }  

𝑨𝟒 = 𝒃𝒅𝒊𝒂𝒈𝑱

(

  
 

10 00 00
−11 00 00
0 − 1 10 00
⋮ ⋯ ⋯⋯ ⋯ ⋮
00 00 − 11
00 00 0 − 1)

  
 

𝐾×(𝐾−1)

    

𝒄 = (0, 0, … , 0, 1, … ,… ,… , 0, 0, … , 0, 1)(𝐽𝐾×1)
′  
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 By applying linear Taylor series, we can obtain a consistent estimator for the covariance 

matrix of 𝒒𝒈𝜽 as shown in (3.9) and (3.10) where 𝑩1𝑔𝜃 is the elementwise first partial derivative 

𝑽𝒒𝒈𝜽
= 𝑩1𝑔𝜃𝑽𝒑𝒈

𝑩1𝑔𝜃
′          (3.9) 

𝑩𝟏𝒈𝜽 =
𝝏𝒒𝒈𝜽

𝝏𝒑𝒈
=

𝝏𝒒𝒈𝜽

𝝏𝒂𝟑𝜽
 
𝝏𝒂𝟑𝜽

𝝏𝒂𝟐𝜽
  
𝝏𝒂𝟐𝜽

𝝏𝒂𝟏𝜽
 
𝝏𝒂𝟏𝜽

𝝏𝒑𝒈
= 𝑨𝟒𝑨𝟑𝑫𝒂𝟑𝜽

𝑨𝟐𝑫𝒂𝟏𝜽
−𝟏 𝑨𝟏𝒈𝜽   (3.10) 

of vector 𝒒𝒈𝜽 with respect to vector 𝒑𝒈 and is obtained by the chain rule, with 𝒂𝟏𝐠𝜽 = 𝑨𝟏𝐠𝜽𝒑𝒈, 

𝒂𝟐𝐠𝜽 = 𝐥𝐨𝐠 (𝒂𝟏𝐠𝜽), 𝒂𝟑𝐠𝜽 = 𝐞𝐱𝐩 [𝑨𝟐𝒂𝟐𝐠𝜽], and 𝒒𝒈𝜽 = (𝑨𝟒𝑨𝟑𝒂𝟑𝐠𝜽 + 𝒄), and 𝑫𝒂𝟏𝐠𝜽
−𝟏   is a diagonal 

matrix with the reciprocals of the elements of the vector 𝒂1g𝜃 on the main diagonal and 𝑫𝒂𝟑𝐠𝜽
 is 

the diagonal matrix with the elements of the vector 𝒂𝟑𝐠𝜽 on the main diagonal. 

 Typically, if we assume 𝜃𝑔𝑗𝑘 are the same for all categories 𝑘, i.e., 𝜃𝑔𝑗𝑘 = 𝜃𝑔𝑗, and they 

could vary at different visits 𝑗 and 𝑗′, and so a proportional odds assumption is made. In addition, 

one often could expect missing responses for patients in the placebo group to have a similar 

outcome distribution as the observed patients, which means 𝜃2𝑗𝑘 = 1 for any visit 𝑗 in the 

placebo group could be specified. 

3.2.5 Treatment Comparison 

Mann-Whitney Probability for Treatment Difference  

 A Mann-Whitney probability estimator (MW estimator) can be used for the treatment 

comparison for a strictly ordinal outcome. Comparing the outcome of test treatment to placebo, 

the Mann-Whitney probability estimates the probability that a randomly selected patient with the 

test treatment has better outcome than a randomly selected patient with placebo. If the two 

treatments are equally effective, the chance of having a better response for the test treatment 

would be 0.5.  
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 Denote the Mann-Whitney probability as 𝜉𝑗 for visit 𝑗. The null hypothesis for comparing 

the test treatment with the placebo is 𝐻0𝑗: 𝜉𝑗 < 0.5 versus 𝐻𝐴𝑗: 𝜉𝑗 ≥ 0.5, , 𝑗 = 1,⋯ , 𝐽. 

Denote 𝑇𝑔𝑗 as the outcome for a subject in group 𝑔 at visit 𝑗. If a smaller value of the 

outcome is better, the probability 𝜉𝑗 of test treatment being better than placebo at visit 𝑗 is 

expressed in (3.11). 

Denote 𝑇𝑔𝑗 as the outcome for a subject in group 𝑔 at visit 𝑗. If a smaller value of the 

outcome is better, the probability 𝜉𝑗 of test treatment being better than placebo at visit 𝑗 is 

expressed in (3.11). 

𝜉𝑗 = 𝑃(𝑇1𝑗 ≤ 𝑇2𝑗) = ∑ 𝑃(𝑇1𝑗

𝐾

𝑘=1

= 𝑘) [𝑃(𝑇2𝑗 ≥ 𝑘) −
1

2
𝑃(𝑇2𝑗 = 𝑘)]   (3.11) 

Then the Mann-Whitney probability estimator  𝑟𝑗𝜃 of 𝜉𝑗 at visit 𝑗, for the sensitivity 

analysis is expressed as shown in (3.12).  

𝑟𝑗𝜃 = ∑ 𝑞1𝑗𝑘𝜃(∑𝑞2𝑗𝑘𝜃 −
1

2
𝑞2𝑗𝑘𝜃) 

𝐾

𝑙=𝑘

𝐾

𝑘=1

   (3.12) 

Letting 𝒓𝜽 = (𝑟1𝜃, ⋯ , 𝑟𝐽𝜃)
′
, the Mann-Whitney probability estimator could be expressed 

as the compound function of the proportions 𝒒𝜽 = (𝒒𝟏𝜽
′ , 𝒒𝟐𝜽

′ )′ as shown in (3.13) where matrices 

𝑨𝟓, 𝑨𝟔, and 𝑨𝟕 are defined in (3.14) where 𝑇𝐾 is a 𝐾 × 𝐾 upper triangular matrix with all  

𝒓𝜽 = 𝑨𝟕 𝐞𝐱𝐩[𝑨𝟔 𝒍𝒐𝒈(𝑨𝟓𝒒𝜽)]   (3.13) 

𝑨𝟓 = (
𝑰𝑱𝑲 𝟎𝑱𝑲,𝑱𝑲

𝟎𝑱𝑲,𝑱𝑲 𝒃𝒅𝒊𝒂𝒈𝑱(𝑻𝑲 − 0.5𝑰𝑲)
)

2𝐾𝐽×2𝐾𝐽

, 𝑨𝟔 = (𝑰𝑱𝑲, 𝑰𝑱𝑲)
𝐾𝐽×2𝐾𝐽

, 𝑨𝟕

= 𝒃𝒅𝒊𝒂𝒈𝑱(𝟏𝑲
′  )𝐽×𝐾𝐽   (3.14) 

elements on or below the diagonal equal to 1. 
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We apply the chain rule again in (3.15) to obtain the first partial derivative matrix of  𝜉  

𝑩𝟐𝜽 =
𝝏𝒓𝜽

𝝏𝒒𝜽
= 

𝝏𝒓

𝝏𝒂𝟔

𝝏𝒂𝟔

𝝏𝒂𝟓

𝝏𝒂𝟓

𝝏𝒂𝟒

𝝏𝒂𝟒

𝝏𝒒𝜽
= 𝑨𝟕𝑫𝒂𝟔

𝑨𝟔 𝑫𝒂𝟒
−𝟏𝑨𝟓           (3.15) 

with respect to 𝒒𝜽 with 𝒂𝟒𝜽 = 𝑨𝟓𝒒𝜽, 𝒂𝟓𝜽 = 𝐥𝐨𝐠(𝒂𝟒𝜽),𝒂𝟔𝜽 = 𝐞𝐱𝐩[𝑨𝟔𝒂𝟓𝜽], and  𝒓𝜽 = 𝑨𝟕𝒂𝟔𝜽. 

Thus, a consistent estimator for the covariance matrix 𝑽𝒓𝜽
 of 𝒓𝜽  is obtained on the basis 

of linear Taylor series approximations, and it is expressed in (3.16) where 𝑽𝒒𝜽
=

𝒃𝒅𝒊𝒂𝒈(𝑽𝒒𝟏𝜽
, 𝑽𝒒𝟐𝜽

). 

𝑽𝒓𝜽
= 𝑩𝟐𝜽𝑽𝒒𝜽

𝑩𝟐𝜽
′                  (3.16) 

Adjusted Treatment Difference via Randomization-Based ANCOVA 

 In a randomized clinical trial, baseline covariables are expected to have the same 

distributions in the randomized groups. Baseline covariables could include the baseline 

measurements of the outcome, demographic variables, or other variables to be taken into 

account. However, random imbalances in the baseline covariables could occur as each treatment 

group is a finite sample of the randomized population.  

 Covariance adjustment can provide variance reduction in estimation for treatment 

comparisons, together with correction for random imbalances between treatments (Koch et al., 

1998b; Tangen and Koch, 2001; LaVange et al., 2005). The motivation behind the variance 

reduction is that the parameter estimator that is associated with the imbalance is corrected to 

offset the imbalance in covariables. 

 The estimation is through nonparametric ANCOVA, which is an approach that applies 

weighted least squares methods to evaluate comparisons between treatment group with respect to 

outcome variables and covariables simultaneously (Koch et al., 1998b).  
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 Here, we introduce some notation for the covariables. 

 Suppose each subject has 𝑀 baseline covariables 𝒙𝒈𝒊, 𝒙𝒈𝒉𝒊 = (𝑥𝑔𝑖1, … , 𝑥𝑔𝑖𝑀)
′
, and 𝒙̅𝒈 =

1

𝑛𝑔ℎ
∑ 𝒙𝒈𝒊

𝑛𝑔ℎ

𝑖=1
 is the mean vector of the prespecified covariables. 

 We define 𝒇𝒈𝒊 = (𝒀𝒈𝒊∗∗
′ , 𝒙𝒈𝒊

′ )
′
 as a ((𝐾 + 1) × 𝐽 + 𝑀) dimensional response-covariable 

vector, and  𝒇̅𝒈 =
1

𝑛𝑔ℎ
∑ 𝒇𝒈𝒊

𝑛𝑔ℎ

𝑖=1
= (𝒑𝒈

′ , 𝒙̅𝒈
′ )

′
 is the mean of the responses-covariables.  

 We define a (𝐽 + 𝑀) dimensional vector 𝑮𝜽 = (𝒓𝜽
′ , 𝒖′)′ to include both the treatment 

comparisons 𝒓𝒈𝜽 and the covariable differences 𝒖 = 𝒙̅𝟏 − 𝒙̅𝟐. 

 The consistent covariance matrix estimator 𝑽𝒇̅𝒈
 of 𝒇̅𝒈 can be obtained nonparametrically 

as shown in (3.17). 

 For 𝒇̅ = (𝒑𝟏
′ , 𝒙̅𝟏, 𝒑𝟐

′ , 𝒙̅𝟐)
′, we have 𝑽𝒇̅ = 𝒃𝒅𝒊𝒂𝒈(𝑽𝒇̅𝟏

, 𝑽𝒇̅𝟐
). Also, we let  𝒇̃ =

(𝒑𝟏
′ , 𝒑𝟐

′ , 𝒙̅𝟏
′ , 𝒙𝟐

′ )′, and so  𝒇̃ = 𝑩𝒇𝒇̅ with (3.18), the covariance matrix estimator 𝑽𝑮𝜽
 of 𝑮𝜽 can be 

obtained as (3.19) where 𝑩𝟏𝜽 = 𝒃𝒅𝒊𝒂𝒈(𝑩𝟏𝟏𝜽, 𝑩𝟏𝟐𝜽) and 𝑽𝒇̃ = 𝑩𝒇𝑽𝒇̅𝑩𝒇
′ . 

𝑩𝒇 =

(

 
 

𝑰𝑱(𝑲+𝟏) 𝟎𝑱(𝑲+𝟏),𝑴   𝑶𝑱(𝑲+𝟏),𝑱(𝑲+𝟏) 𝟎𝑱(𝑲+𝟏),𝑴

𝑶𝑱(𝑲+𝟏),𝑱(𝑲+𝟏) 𝟎𝑱(𝑲+𝟏),𝑴 𝑰𝑱(𝑲+𝟏) 𝟎𝑱(𝑲+𝟏),𝑴

𝟎𝑴,𝑱(𝑲+𝟏) 𝑰𝑴 𝟎𝑴,𝑱(𝑲+𝟏) 𝑶𝑴,𝑴

𝟎𝑴,𝑱(𝑲+𝟏) 𝑶𝑴,𝑴 𝟎𝑴,𝑱(𝑲+𝟏) 𝑰𝑴 )

 
 

𝟐((𝑲+𝟏)𝑱+𝑴)×𝟐((𝑲+𝟏)𝑱+𝑴)

     (3.18) 

𝑽𝑮𝜽
= [

𝑩𝟐𝜽 𝑩𝟏𝜽 𝟎𝑱,𝑴 𝟎𝑱,𝑴

 𝟎𝟐𝑱,𝑴 𝑰𝑴 −𝑰𝑴
]𝑽𝒇̅ [

𝑩𝟐𝜽𝑩𝟏𝜽 𝟎𝑱,𝑴 𝟎𝑱,𝑴

 𝟎𝟐𝑱,𝑴 𝑰𝑴 −𝑰𝑴
]
′

                         (3.19) 

 Weighted least squares regression can be applied to 𝑮𝜽 so as to account for the 

constraints for the expected differences of means for covariables between the two treatment 

groups to be zero on the basis of randomization of patients to the two treatments; such 

constraints are expressed in (3.20). 
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𝑬(𝒖) = 𝟎𝑴      (3.20) 

 Randomization-based covariable adjustment for the treatment comparison estimator 𝒓𝜽 

with respect to 𝒖 can be invoked by fitting the linear model in (3.21) by weighted least squares 

𝐸(𝑮𝜽) ≜ [
𝑰𝑱

𝟎𝑴,𝑱
] 𝒃 = 𝒁𝒃 =

(

 
 
 

𝒃1

⋮
 𝒃𝐽

0
⋮
0 )

 
 
 

             (3.21) 

regression with weights based from 𝑽𝑮𝜽

−𝟏 in (3.19) and with “≜” meaning “is estimated by.” 

The weighted least squares regression yields the estimator 𝒃𝜽 in (3.22) for the  

𝒃𝜽 = (𝒁′𝑽𝑮𝜽

−𝟏𝒁)
−𝟏

𝒁′𝑽𝑮𝜽

−𝟏𝑮𝜽               (3.22) 

covariable-adjusted treatment comparisons, and the consistent estimator for the covariance 

matrix of 𝒃𝜽 is 𝑽𝒃𝜽
 in (3.23). 

𝑽𝒃𝜽
= (𝒁′𝑽𝑮𝜽

−𝟏𝒁)
−𝟏

                   (3.23) 

Hypothesis Testing 

 For the hypothesis 𝐻0: 𝑪𝛏 = 𝟎, we have the test statistic in (3.24) where 𝛏̂ is the  

𝑄𝑪𝛏 = 𝛏̂′𝑪′(𝑪𝑽𝛏̂𝑪
′)

−𝟏
𝑪𝛏̂    (3.24) 

corresponding treatment comparison estimator  𝒓𝜽 or covariable-adjusted estimator 𝒃𝜽 of the 

Mann Whitney criteria 𝝃, and  𝑪 is the specified contrast matrix. Under 𝐻0,  𝑄𝑪𝛏~𝜒𝑟𝑎𝑛𝑘(𝑪)
2  when 

the sample size is sufficiently large, where 𝜒𝑟𝑎𝑛𝑘(𝑪)
2 is the central Chi-square distribution with 

𝑟𝑎𝑛𝑘(𝑪) degrees of freedom, and 𝑟𝑎𝑛𝑘(𝑪) is the rank of the full rank contrast matrix 𝑪.  
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 Example 

 The proposed method is illustrated with an example based on an adaptation of data in 

Stanish et al [1978]. The clinical trial was to evaluate the efficacy of a new drug relative to 

placebo for skin conditions. 

 One of the endpoints for this skin condition study is disease condition improvement from 

baseline at visit 3. The study participants were followed for 3 visits and the ordinal outcome is 

1=Rapidly Improving, 2=Slowly Improving, 3=Stable, 4=Slowly Worsening, 5=Rapidly 

worsening. 

 The study had three visits. Sample sizes were 88 (test) and 84 (placebo) respectively. The 

missing data count in each visit is shown in Table 3.3. 

Table 3.3 Missing Counts of Assessment Visits 

             Visit 

Group 
1 2 3 

Test 2 9 15 

Placebo 1 7 15 

 The question of interest is whether patients in the test treatment improved more than 

those in the placebo treatment. If the loss to follow-up cannot be assumed to be ignorable, the 

robustness of the results to challening by a sequence of sensitivity parameters 𝜃 is of interest.  

The hypotheses are 𝐻0𝑗: 𝑰𝒋,𝟑𝛏 ≤ 0.5 versus 𝐻𝐴𝑗: 𝑰𝒋,𝟑𝛏 > 0.5 for 𝑗 = 1, 2, 3 of the 3 visits, 

where 𝑰𝒋,𝟑 denotes the 𝑗𝑡ℎ row of the identity matrix 𝑰𝟑, and it will be addressed with the direct 

treatment comparison estimator and the covariable adjusted treatment comparison estimator 

respectively. For sequential testing, the primary assessment Visit 3 for 𝐻03 would be addressed 

as a first step with two-sided 𝛼 = 0.05, and if significant, 𝐻02 would be addressed, etc. 

              The methodology can accommodate different sensitivity parameters for different visits 

and treatment groups and different specifications for the odds among the ordinal categories. But 
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for convenience of illustration, we only consider different sensitivity parameters for the test and 

placebo treatment with the proportional odds assumption, and specify 𝜃𝑔ℎ𝑗 = 𝜃𝑔 for 𝑔 = 1,2 for 

test and placebo groups and 𝑗 = 1, 2, 3 for visits 1 to 3. For the placebo group, one would 

typically use 𝜃2 = 1, which could be a realistic assumption if patients with missing outcomes 

would usually experience similar results as if they remained in the placebo group. The values of 

𝜃1 ≤ 1 for the test group could address the specifications that the post-withdrawal experience of 

a test drug patient was less favorable than patients with observed outcomes.  

               As a tipping point analysis, we use a sequence of 𝜃1 values to see under what 

specifications the result of rejection of the null hypothesis would remain unchanged (at the two 

sided significance level of 0.05). The estimates for unadjusted and adjusted treatment 

comparisons, and their standard errors (SE), and the chi-square values and corresponding p 

values of the testing for the hypothesis 𝐻0 above are listed in Table 3.4. 

When the loss to follow-up is MCAR in either the test group or the placebo group with 

𝜃1 = 𝜃2 = 1, the conclusion that the test treatment is better than the placebo treatment is well 

supported at the primary assessment visit (Visit 3), but not so significant at Visits 2 and 1. As we 

place more stringent penalties on the missing data for the test treatment while keeping the 

placebo missingness as MCAR, the estimator for the treatment comparison becomes closer to 

0.5. At Visit 3, when the specification is made that the odds for missing outcomes is only (1/3) as 

good as for observed outcomes for the test treatment, the probability for test being better than 

placebo is 0.589 with a standard error at about 0.047, and the conclusion that the test treatment is 

better than the placebo no longer holds. 
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The results of the estimates for the unadjusted comparisons 𝒓𝜽 and the covariable 

adjusted comparisons 𝒃𝜽 are similar. And the standard errors of the adjusted comparison 𝒃𝜽 are 

only slightly smaller than those of the unadjusted 𝒓𝜽. 

Table 3.4 Results of Sensitivity Analyses 

Sensitivity 

parameter 

𝜃 
Visit 

Unadjusted Adjusted 

𝑟 SE 
Chi-

Sq 

p 

value 
𝑏 SE 

Chi-

Sq 

p 

value 

𝜃1 = 1 1 0.565 0.0429 2.294 0.130 0.562 0.0426 2.121 0.145 

 2 0.581 0.0449 3.294 0.070 0.580 0.0448 3.171 0.075 

 3 0.614 0.0457 6.249 0.012 0.615 0.0457 6.272 0.012 

𝜃1 = 0.5 1 0.563 0.0429 2.128 0.145 0.560 0.0427 1.960 0.162 

 2 0.570 0.0452 2.409 0.121 0.568 0.0451 2.276 0.131 

 3 0.598 0.0464 4.490 0.034 0.598 0.0464 4.473 0.034 

𝜃1 = 1/3 1 0.561 0.0429 2.038 0.153 0.558 0.0427 1.872 0.171 

 2 0.563 0.0453 1.952 0.162 0.561 0.0452 1.818 0.178 

 3 0.589 0.0467 3.597 0.058 0.588 0.0467 3.564 0.059 

Note: 𝜃2 = 1 
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 CHAPTER 4: RANDOMIZATION-BASED ANCOVA FOR HYPOTHESES TESTING IN 

THE SEQUENTIAL PARALLEL COMPARISON DESIGN (SPCD) 

 Introduction 

 Crossover designs have been utilized in addition to the gold standard randomized 

parallel-group placebo-controlled trial for the assessment of efficacy for drugs intended for 

regulatory submission. There are many possible designs of crossover studies, depending on the 

number of treatments to compare, the number of periods of each treatment, and the aim of the 

trials (Jones and Kenward, 2014b). 

There are several benefits of crossover designs compared to the traditional parallel-group 

trial. One of them is that the power of the treatment comparison is improved at a fixed sample 

size, mainly because every subject provides multiple response measurements of the outcome in 

the multiple periods. Another feature is that its use could reduce the dropout rates, at least for the 

first period, because the subjects in the placebo group could expect a treatment no worse than the 

first period if they continue (Koch, Davis and Anderson, 1998a). For example, Pincus et al. 

(2001) performed a randomized crossover trial of the experimental drug versus active control in 

ambulatory patients with osteoarthritis of the hip or knee and achieved a low dropout rate for the 

first period. Of the 227 enrolled patients, 218 (96.0%) patients provided data for the first 

treatment period and 181 (79.7%) provided data for both treatment periods.   

With a two-period design comparing test treatment (T) to placebo treatment (P), four 

sequence groups P:P, P:T, T:P, and T:T could be of interest. Designs with some combination of 

those sequence groups have useful features for studies of different patient populations. Also,
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other extensions of crossover designs with this structure could be achieved with other added 

design features such as enrichment. Designs with a crossover structure are in the general class of 

re-randomization designs, for which subjects could be re-randomized at the start of the second 

period. Alternatively, rather than re-randomization at the beginning of the second period, 

randomization before the first period could be performed to produce the multiple randomized 

sequences.  

One of the popular crossover designs with the enriched feature is the randomized 

withdrawal design with the T:P and T:T sequence groups, and it focuses on only the patients who 

respond to the drug in the first period and continue to the second period. This design is helpful 

when there is heterogeneity in the patient population itself to respond to a treatment (Dunger-

Baldauf et al., 2006; Dunger-Baldauf, 2007).  

The P:P and P:T design, usually known as the placebo lead-in design, has the other two 

sequence groups in contrast to the randomized withdrawal design. In this design, only the 

patients who do not respond to placebo in the first period continue to the second period in the 

study. This design is practical in studies to treat disorders in the central nerve system, where 

there are many placebo responders (Fava et al., 2003). The placebo response rate in 

antidepressant and antipsychotic trials has been reported to increase over time in meta analyses 

of trials between 1985 and 2000 (Khan et al., 2005). With only the placebo nonresponders 

identified in the first period continuing in the second period to receive either experimental 

treatment or placebo, the treatment effect is maximized since patients who do not respond to the 

first period are not expected to become placebo-responders in the second period (Fava et al., 

2003). 
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The design of interest for this paper is the one with three sequence groups, P:P, P:T, and 

T:T, and it is sometimes known as the sequential parallel comparison design (SPCD) (Fava et al., 

2003).  Another popular design that has these three sequence groups is the randomized delayed-

start design (RDSD), which is useful to evaluate treatments for disease with long term 

progression by distinguishing the symptomatic improvement from the true disease modifying 

effect (Dunger-Baldauf et al., 2006). The SPCD, with the P:P, P:T, and T:T sequences, serves 

similar purposes as the two-sequence placebo lead-in design in psychiatric clinical trials with 

high placebo response, except that it has an additional T:T sequence, which can be useful for 

masking the treatment in the first period, reducing the dropout rate during the first period, and 

enabling a treatment comparison during the first period.  

The original paper by Fava et al. (2003) focused on a dichotomized outcome for a study; 

and other methods have been proposed for the analysis of dichotomous outcomes in the context 

of SPCD designs by Huang and Tamura (2010, 2011), and Huang, Tamura, and Boos (2011). 

Recent uses of the SPCD design have extensions to continuous or ordinal outcomes as they arise 

more naturally than the binary outcomes with dichotomization of a continuous measurement. 

Huang and Tamura (2010) considered seemingly unrelated regression (SUR) to account for the 

correlation between subjects in the two periods of the trial. Chen et al (2011) proposed an 

ordinary least squares approach, and Doros et al. (2013) proposed a repeated measures model 

that more extensively includes the outcome data collected in the trial. 

In this paper, we consider sources of information for the comparison between a test 

treatment and placebo that are provided in the traditional SPCD design, i.e., the first period 

treatment difference in the overall population and the second period treatment difference in the 
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placebo non-responders; and we also evaluate the potential role of other sources of information 

that are available in this design and that could be of potential interest.  

For the analysis of the SPCD design with scope for outcomes in both placebo non-

responders and responders, we propose in Section 4.2 a hypothesis testing method based on the 

randomization distribution of the observed population using the randomization-based mean and 

variance estimates under the null hypothesis to control Type I error. Further, with this method, 

adjustment is possible for covariables at baseline for all patients and at the beginning of the 

second period for patients in the P:P and P:T groups so as to produce variance reduction and to 

eliminate random imbalances for the covariables. In this regard, we introduce a randomization-

based ANCOVA as opposed to a traditional model-based ANCOVA (Koch et al. 1998). In 

Section 4.3, we report results from simulation studies for the statistical properties of the proposed 

methods, and we compare their performance with applicable counterparts from the repeated 

measures model of Doros et al. (2013). A hypothetical study with the three SPCD sequence 

groups is provided to illustrate the use of the method. 

 Methods 

 For a randomized clinical trial to compare a test treatment T to placebo P during two 

periods for patients with a chronic (or recurrent) disorder, such as osteoarthritis (or migraine 

headache), let 𝑖 = 1, 2, 3 index P:P, P:T, T:T as the sequence groups for the two treatments in the 

two periods; and let 𝑘 = 1, 2, … , 𝑛 index the population of patients who are eligible for inclusion 

in the clinical trial and who are randomly assigned to the three sequence groups. In this regard, 

let 𝑈𝑖𝑘 denote a random variable which has the value 1 for the assignment of the k-th patient to 

the i-th group and the value 0 otherwise. The specification for the {𝑈𝑖𝑘} has 𝑛𝑖 patients randomly 
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assigned to the i-th group according to simple random sampling without replacement. Thus, the 

{𝑈𝑖𝑘} have the expected values and covariance structure shown in (4.1).  

𝐸{𝑈𝑖𝑘} = 𝑃𝑟{𝑈𝑖𝑘 = 1} = (𝑛𝑖 𝑛⁄ ) for all 𝑖, 𝑘 

𝑉𝑎𝑟{𝑈𝑖𝑘} = 𝑛𝑖(𝑛 − 𝑛𝑖) 𝑛2⁄  for all 𝑖, 𝑘 

𝐶𝑜𝑣{𝑈𝑖𝑘, 𝑈𝑖′𝑘′} = {[𝑃𝑟(𝑈𝑖𝑘 = 𝑈𝑖′𝑘′ = 1)] − Pr(𝑈𝑖𝑘 = 1)Pr(𝑈𝑖′𝑘′ = 1)}                    (4.1) 

= 0 −
𝑛𝑖𝑛𝑖′

𝑛2
= −

𝑛𝑖𝑛𝑖′

𝑛2
 for 𝑖 ≠ 𝑖′and 𝑘 = 𝑘′ 

=
𝑛𝑖(𝑛𝑖 − 1)

𝑛(𝑛 − 1)
−

𝑛𝑖
2

𝑛2
= −

𝑛𝑖(𝑛 − 𝑛𝑖)

𝑛2(𝑛 − 1)
 for 𝑖 = 𝑖′with 𝑘 ≠ 𝑘′  

=
𝑛𝑖𝑛𝑖′

𝑛(𝑛 − 1)
−

𝑛𝑖𝑛𝑖′

𝑛2
=

𝑛𝑖𝑛𝑖′

𝑛2(𝑛 − 1)
 for 𝑖 ≠ 𝑖′and 𝑘 ≠ 𝑘′ 

Let 𝑼∗𝑘 = (𝑈1𝑘, 𝑈2𝑘, 𝑈3𝑘)′ and let 𝒏 = (𝑛1, 𝑛2, 𝑛3)′. From (4.1), it then follows that the 

𝑼∗𝑘 have the expected values and covariance structure shown in (4.2) where 𝑫𝒏 is a diagonal 

𝑬{𝑼∗𝑘} = (𝒏 𝑛⁄ ) 

𝑽𝒂𝒓{𝑼∗𝑘} = (𝑛𝑫𝒏 − 𝒏𝒏′) 𝑛2⁄ = 𝑽𝑼   for all 𝑘                   (4.2)   

𝑪𝒐𝒗{𝑼∗𝑘 , 𝑼∗𝑘′} = −
𝑽𝑼

𝑛 − 1
for all 𝑘 ≠ 𝑘′ 

matrix with diagonal elements 𝒏. 

 Let 𝑗 = 0, 1, 2 index the baseline, period 1, and period 2. Let 𝑦𝑖𝑗𝑘 denote the constant that 

corresponds to the observed response for the k-th patient during the j-th period according to a 

non-negative numeric (or ordinal) scale if their random assignment is to the i-th sequence group. 

Also, 𝑦∗𝑗𝑘 = ∑ 𝑈i𝑘
3
𝑖=1 𝑦𝑖𝑗𝑘 represents the random response of the k-th patient during the j-th 

period with the 𝑈i𝑘 being the basis of its randomness. In this regard, 𝑦10𝑘 = 𝑦20𝑘 = 𝑦30𝑘 = 𝑦∗0𝑘 

since the baseline response for the k-th patient is the same regardless of their randomly assigned 



63 
  

group; moreover, 𝑦11𝑘 = 𝑦21𝑘 since the k-th patient receives placebo in period 1 if randomly 

assigned to either the P:P group or the P:T group. Let 𝒚𝑖𝑘 = (𝑦𝑖0𝑘, 𝑦𝑖1𝑘, 𝑦𝑖2𝑘)′ with no missing 

data being assumed for all patients. Under the global null hypothesis 𝐻0 that each patient has the 

same responses for the three periods regardless of their randomly assigned sequence group (and 

thereby their randomly assigned treatment), the specification 𝒚1𝑘 = 𝒚2𝑘 = 𝒚3𝑘 = 𝒚∗𝑘 applies.  

 Let 𝑧𝑖𝑘 be a dichotomous responder variable for period 1 such that 𝑧𝑖𝑘 = 1 if the k-th 

patient has favorable response during period 1 in the sense that (𝑦𝑖1𝑘 ≤ 𝐿) if their random 

assignment is to the i-th group with its corresponding treatment for period 1 versus 𝑧𝑖𝑘 = 0 if 

(𝑦𝑖1𝑘 > 𝐿); alternatively the {𝑧𝑖𝑘} could be based on change (or percent change) from baseline. 

Let 𝑓𝑖𝑗𝑘 = 𝑧𝑖𝑘𝑦𝑖𝑗𝑘 so as to equal 𝑦𝑖𝑗𝑘 for period 𝑗 = 1, 2 for responders in period 1 and be equal 

to 0 for non-responders in period 1; and let 𝑔𝑖𝑘 = (𝑦𝑖2𝑘 − 𝑓𝑖2𝑘) = (1 − 𝑧𝑖𝑘)𝑦𝑖2𝑘 so as to equal 

𝑦𝑖2𝑘 for period 2 for period 1 non-responders and to equal 0 for period 1 responders. Let 𝑭𝑖𝑘 =

(𝑦𝑖0𝑘, 𝑦𝑖1𝑘, 𝑧𝑖𝑘, 𝑓𝑖1𝑘 , 𝑦𝑖2𝑘, 𝑓𝑖2𝑘)
′ with the assumption of no missing data for its components. Under 

𝐻0, 𝑭1𝑘 = 𝑭2𝑘 = 𝑭3𝑘 = 𝑭∗𝑘 applies as a consequence of the 𝒚1𝑘 = 𝒚2𝑘 = 𝒚3𝑘 = 𝒚∗𝑘. Also, 𝑭𝑖𝑘 

could be expanded to include one or more other covariables 𝒙∗0𝑘 at baseline, such as age (in 

addition to 𝑦∗0𝑘); but the presentation is more straightforward and sufficient without this 

extension because the same considerations apply to both 𝑦∗0𝑘 and 𝒙∗0𝑘.  

 Let 𝑭̅𝑖 = (∑ 𝑈𝑖𝑘𝑭𝑖𝑘 𝑛𝑖⁄𝑛
𝑘=1 ) = (𝑦̅𝑖0, 𝑦̅𝑖1, 𝑧𝑖̅ , 𝑓𝑖̅1, 𝑦̅𝑖2, 𝑓𝑖̅2)′ denote the vector of the means for 

the i-th sequence group. From (4.2), it follows that the randomization distributions of the 𝑭̅𝑖 have 

expected values and covariance structure as shown in (4.3).  
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𝑬{𝑭̅𝑖} = (∑ 𝑭𝑖𝑘𝑛𝑖 𝑛𝑖⁄

𝑛

𝑘=1

𝑛) = 𝝁𝑖 

𝑽𝒂𝒓{𝑭̅𝑖} =
1

𝑛𝑖
2 [∑

𝑛𝑖(𝑛 − 𝑛𝑖)

𝑛2

𝑛

𝑘=1

𝑭𝑖𝑘𝑭𝑖𝑘
′ − ∑

𝑛𝑖(𝑛 − 𝑛𝑖)

𝑛2(𝑛 − 1)
𝑘≠𝑘′

𝑭𝑖𝑘𝑭𝑖𝑘′
′ ] 

=
(𝑛 − 𝑛𝑖)

𝑛𝑖𝑛(𝑛 − 1)
[∑(𝑭𝑖𝑘 − 𝝁𝑖)

𝑛

𝑘=1

(𝑭𝑖𝑘 − 𝝁𝑖)
′]                   

=
(𝑛 − 𝑛𝑖)

𝑛𝑖𝑛
𝑽𝑭𝑖

= (
1

𝑛𝑖
−

1

𝑛
)𝑽𝑭𝑖

                                  (4.3) 

𝑪𝒐𝒗{𝑭̅𝑖, 𝑭̅𝑖′} =
1

𝑛𝑖𝑛𝑖′
[∑

−𝑛𝑖𝑛𝑖′

𝑛2

𝑛

𝑘=1

𝑭𝑖𝑘𝑭𝑖′𝑘
′ + ∑

𝑛𝑖𝑛𝑖′

𝑛2(𝑛 − 1)
𝑭𝑖𝑘𝑭𝑖′𝑘′ 

′

𝑘≠𝑘′

] 

=
−1

𝑛(𝑛 − 1)
[∑(𝑭𝑖𝑘 − 𝝁𝑖)(𝑭𝑖′𝑘 − 𝝁𝑖′)

𝑛

𝑘=1

] = −
1

𝑛
𝑽𝑭𝑖,𝑭𝑖′

 

In (4.3), 𝝁𝑖 is the mean vector for the 𝑭𝑖𝑘 in the finite population of the 𝑛 randomized 

patients and 𝑽𝑭𝑖
 is the corresponding finite population covariance matrix. Since 𝑭1𝑘 = 𝑭2𝑘 =

𝑭3𝑘 = 𝑭∗𝑘 = (𝑦∗0𝑘, 𝑦∗1𝑘, 𝑧∗𝑘, 𝑓∗1𝑘, 𝑦∗2𝑘, 𝑓∗2𝑘)
′ under 𝐻0, it follows that (4.3) simplifies to (4.4) 

under 𝐻0.  

𝑬{𝑭̅𝑖 | 𝐻0} = (∑ 𝑭∗𝑘𝑛𝑖 𝑛𝑖𝑛⁄

𝑛

𝑘=1

) = 𝝁∗0 = (𝜇0, 𝜇10, 𝜇𝑧0
, 𝜇𝑓10

, 𝜇20, 𝜇𝑓20
)
′
, 

𝑽𝒂𝒓{𝑭̅𝑖 | 𝐻0} = (
1

𝑛𝑖
−

1

𝑛
) [∑(𝑭∗𝑘 − 𝝁∗0)(𝑭∗𝑘 − 𝝁∗0)

′

𝑛

𝑘=1

] = (
1

𝑛𝑖
−

1

𝑛
)𝑽𝐹,0,         (4.4) 

𝑪𝒐𝒗{𝑭̅𝑖, 𝑭̅𝑖′ | 𝐻0} = −
1

𝑛
𝑽𝐹,0. 

Thus, for 𝑭̅ = (𝑭̅1
′ , 𝑭̅2

′ , 𝑭̅3
′ )′ it follows that 𝑬{𝑭̅ | 𝐻0} = 𝟏3⨂ 𝝁∗0 where 𝟏3 is the (3 x 1) 

vector of 1’s and ⨂ denotes the right Kronecker product for the multiplication of each element of 
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the vector on the left by the vector on the right; and the covariance structure of 𝑭̅ under 𝐻0 is as 

shown in (4.5).  

𝑽𝑭̅,0 =  𝑽𝒂𝒓{𝑭̅ | 𝐻0} =

[
 
 
 
 
 
 (

1

𝑛1
−

1

𝑛
) −

1

𝑛
−

1

𝑛

−
1

𝑛
(

1

𝑛2
−

1

𝑛
) −

1

𝑛

−
1

𝑛
−

1

𝑛
(

1

𝑛3
−

1

𝑛
)
]
 
 
 
 
 
 

 ⨂ 𝑽𝑭,0           (4.5) 

= [𝑫𝒏
−1 − (𝟏3𝟏3

′ 𝑛)⁄ ] ⨂ 𝑽𝑭,0. 

In this regard, 𝑬{𝑭̅ | 𝐻0} and 𝑽𝒂𝒓{𝑭̅ | 𝐻0} pertain to the randomization distribution of 𝑭̅ 

under 𝐻0 for re-randomizations of the finite population of the 𝑛 randomized patients. Since 𝑽𝑭̅,0 

is singular through ∑ 𝑛𝑖𝑭̅𝑖 𝑛⁄3
𝑖=1 = 𝝁∗0 (or (𝒏′⨂ 𝑰6) 𝑽𝑭̅ (𝒏 ⨂ 𝑰6) = 𝟎6,6 with 𝟎6,6 being a 

matrix of 0’s), assessment of 𝐻0 with 𝑭̅ is through 𝒂 = 𝑨𝑭̅ as shown in (4.6), and the 

𝒂 = 𝑨𝑭̅ = [
−𝑰6 𝑰6 𝟎6,6

−𝑰6 𝟎6,6 𝑰6
] 𝑭̅ = [

(𝑭̅2 − 𝑭̅1)

(𝑭̅3 − 𝑭̅1)
]            (4.6). 

corresponding covariance structure of 𝒂 under 𝐻0 is shown in (4.7).  

𝑽𝒂,0 = 𝑉𝑎𝑟{𝒂 | 𝐻0} = 𝑨𝑽𝑭̅,𝟎𝑨′ =

[
 
 
 (

1

𝑛1
+

1

𝑛2
)

1

𝑛1

1

𝑛1
(

1

𝑛1
+

1

𝑛3
)
]
 
 
 

⨂ 𝑽𝑭,0            (4.7) 

For the assessment of 𝐻0 without adjustment for 𝑦10𝑘 = 𝑦20𝑘 = 𝑦30𝑘, 𝑦11𝑘 = 𝑦21𝑘, 

𝑧1𝑘 = 𝑧2𝑘, and 𝑓11𝑘 = 𝑓21𝑘, the potential comparisons of interest are shown in (4.8), and they are 

linear functions 𝒄 = 𝑪𝒂 = 𝑪𝑨𝑭̅ of 𝒂 with 𝑪 shown in (4.9); also, 𝜇𝑧0
= (∑ 𝑧∗𝑘 𝑛⁄𝑛

𝑘=1 ), 𝜇𝑓20
=

(∑ 𝑓∗2𝑘 𝑛⁄𝑛
𝑘=1 ), and 𝜇20 = (∑ 𝑦∗2𝑘 𝑛⁄𝑛

𝑘=1 ). The rationale for 𝑐3 is that (𝜇𝑧0
𝑓𝑖̅2 − 𝜇𝑓20

𝑧𝑖̅) 𝜇𝑧0
2⁄  for 

𝑖 = 1, 2 is the mean of deviations (𝜇𝑧0
𝑓𝑖2𝑘 − 𝜇𝑓20

𝑧𝑖𝑘) 𝜇𝑧0
2⁄  which equal 0 when 𝑧𝑖𝑘 = 0, and so 

its behavior is through the (𝑦𝑖2𝑘 − (𝜇𝑓20
/𝜇𝑧0

)) 𝜇𝑧0
⁄  when 𝑧𝑖𝑘 = 1; also, (𝜇𝑧0

𝑓𝑖̅2 − 𝜇𝑓20
𝑧𝑖̅) 𝜇𝑧0

2⁄ =
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(𝑧𝑖̅ 𝜇𝑧0
⁄ )[(𝑓𝑖̅2 𝑧𝑖̅⁄ ) − (𝜇𝑓20

𝜇𝑧0
⁄ )], and so 𝑐3 addresses the difference between the means of period 

2 responders and their population counterparts (𝜇𝑓20
𝜇𝑧0

⁄ ) under 𝐻0 in a rescaled linearized way. 

Similar considerations pertain to 𝑐4.  

𝑐1 = {𝑦̅31 −
𝑛1𝑦̅11 + 𝑛2𝑦̅21

(𝑛1 + 𝑛2)
}                                

𝑐2 = (𝑦̅32 − 𝑦̅12)                                                                                                          (4.8), 

𝑐3 = {(𝑓2̅2 − 𝑓1̅2) 𝜇𝑧0
⁄ } − {𝜇𝑓20

(𝑧2̅ − 𝑧1̅) 𝜇𝑧0
2⁄ } 

𝑐4 = {(𝑦̅22 − 𝑓2̅2 − 𝑦̅12 + 𝑓1̅2) (1 − 𝜇𝑧0
)⁄ } − {(𝜇20 − 𝜇𝑓20

)(𝑧1̅ − 𝑧2̅) (1 − 𝜇𝑧0
)
2

⁄ } 

𝐶 =

[
 
 
 
 
 

0    −
𝑛2

(𝑛1+𝑛2)
        0         0           0            0               0     1    0     0     0    0

0           0            0            0           0            0              0      0     0     0      1    0

0         0         −
𝜇𝑓20

𝜇𝑧0
2           0           0           

1

𝜇𝑧0

           0     0     0      0       0     0

0        0      
(𝜇20−𝜇𝑓20)

(1−𝜇𝑧0)
2     0    

1

(1−𝜇𝑧0)
    −

1

(1−𝜇𝑧0)
   0     0     0     0    0     0

]
 
 
 
 
 

           (4.9) 

Under 𝐻0, 𝑬{𝒄 | 𝐻0} = 𝟎4; and the covariance structure for 𝒄 under 𝐻0 is 𝑽𝒄,0 = 𝑪𝑽𝒂,0𝑪
′. 

For 𝒄 = (𝑐1, 𝑐2, 𝑐3, 𝑐4)
′, the comparison 𝑐1 pertains to T versus P in period 1; the comparison 𝑐2 

pertains to T:T versus P:P in period 2; the comparison 𝑐3 pertains to P:T versus P:P in period 2 

for responders to placebo in period 1; 𝑐4 pertains to P:T versus P:P in period 2 for non-

responders to placebo in period 1; and both 𝑐3 and 𝑐4 have linearized adjustments for the 

corresponding influences of differences in responder proportions for the P:P and P:T groups. 

Univariate test statistics for 𝐻0, and thereby for the comparison between T and P, can be based 

on weighted linear combinations 𝑐𝑤 = ∑ 𝑤ℎ𝑐ℎ
4
ℎ=1  where 𝒘 = (𝑤1, 𝑤2, 𝑤3, 𝑤4)

′ is a vector of 

weights such that all 𝑤ℎ ≥ 0 and ∑ 𝑤ℎ
4
ℎ=1 = 1. In this regard, all 𝑤ℎ = 0.25 corresponds to 

equal weights and 𝒘𝑖𝑛𝑣 = (𝟏′𝑽𝒄,0
−1𝟏)

−1
𝟏′𝑽𝒄,0

−1 corresponds to inverse covariance matrix weights, 

with the latter being optimal in the sense of minimum variance and potentially statistical power 
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under the alternatives to 𝐻0 whereby the 𝑐ℎ express similar non-null differences between T and 

P. With the weights 𝒘, the test statistic for the global null hypothesis 𝐻0 at the one-sided 

significance level 𝛼 is 𝑇𝑤,𝒄 = 𝒘′𝒄 (𝒘′𝑽𝒄,0𝒘)
0.5

⁄ . Under 𝐻0, 𝑇𝑤,𝒄 approximately has a standard 

normal distribution with mean 0 and variance 1. If the one-sided p-value for 𝑇𝑤,𝒄 significantly 

contradicts 𝐻0 in the sense that p < 𝛼 for some specified type 1 error level, such as 𝛼 = 0.025, 

then the closed testing methods of Lehmacher et al. (1991) can be used to test 𝐻0 for subsets of 

the 𝑐ℎ through counterparts of 𝑇𝑤,𝒄 for weighted averages of subsets of the 𝑐ℎ. In this regard, if 

p < 𝛼 for such test statistics for all subsets that include 𝑐ℎ, then statistical significance applies to 

𝑐ℎ in its own right for contradicting 𝐻0 with strong control of type 1 error for the corresponding 

scope of multiple comparisons. Also, in some situations, a subset of the 𝑐ℎ is of more interest for 

the assessment of 𝐻0 than all components of  𝒄, and so it can be assessed directly in its own right 

with particular cases of interest being 𝑐1 and 𝑐4 for the SPCD design, and perhaps 𝑐1, 𝑐2, and 𝑐4 

for other versions of the crossover design with P:P, P:T, and T:T sequence groups.  

 The constraints 𝒄0 = 𝑪0𝒂 = 𝑪0𝑨𝑭̅ for 𝒂 with null expected values regardless of whether 

𝐻0 applies are shown in (4.10) with 𝑪0 in (4.11).  

𝒄0 =

[
 
 
 
 
 
 

(𝑦̅20 − 𝑦̅10)

(𝑦̅30 − 𝑦̅10)

(𝑦̅21 − 𝑦̅11)

(𝑧2̅ − 𝑧1̅)

{
(𝑓2̅1 − 𝑓1̅1)

𝜇𝑧0

} − {
𝜇𝑓10

(𝑧2̅ − 𝑧1̅)

𝜇𝑧0
2

}
]
 
 
 
 
 
 

                    (4.10) 

𝑪0 =

[
 
 
 
 
 
1   0     0       0     0     0     0    0    0   0   0   0
0   0      0        0     0    0   1    0   0    0   0   0
0   1     0        0    0     0    0   0   0   0   0   0
0   0      1        0     0    0   0   0   0   0   0   0

0   0   −
𝜇𝑓10

𝜇𝑧0
2     

1

𝜇𝑧0

   0   0   0   0   0   0   0   0
]
 
 
 
 
 

        (4.11) 
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Let 𝒄+ = [𝒄′, 𝒄0
′ ]′ = [𝑪′, 𝑪0

′ ]′𝒂 = 𝑪+𝒂 denote the combined set of comparisons 𝒄 

pertaining to 𝐻0 and constraints 𝒄0. Under 𝐻0, the covariance structure for 𝒄+ is 𝑽𝒄+,0 =

𝑪+𝑽𝒂,0𝑪+
′ . Since 𝑬{𝒄0} = 𝟎5 regardless of whether 𝐻0 applies, randomization-based covariance 

adjustment for 𝒄 with respect to the constraints 𝒄0 is invoked by fitting the linear model shown in 

(4.12) by weighted least squares with weights based on 𝑽𝒄+,0
−1 , and with “≜” meaning  

𝑬{𝒄+} ≜ [
𝑰4

𝟎5,4
] 𝒃0 = 𝑿𝒃0                   (4.12) 

“is estimated by.” To account for other covariables 𝒙∗0𝑘 at baseline, 𝒄0 in (4.10) is expanded to 

include (𝒙̅20 − 𝒙10) and (𝒙̅30 − 𝒙̅10) where 𝒙̅𝑖0 =
1

𝑛𝑖
∑ 𝑈𝑖𝑘𝒙∗0𝑘

𝑛
𝑘=1 . 

 For the model in (4.12), 𝒃0 = (𝑏01, 𝑏02, 𝑏03, 𝑏04)
′ are covariance adjusted counterparts of 

𝒄, and 𝒃𝟎 = (𝑿′𝑽𝒄+,0
−1 𝑿)

−1
𝑿′𝑽𝒄+,0

−1 𝒄+; also, the covariance matrix for 𝒃𝟎 is 𝑽b0
= (𝑿′𝑽𝒄+,0

−1 𝑿)
−1

. 

As a consequence of the structure of 𝑿 in (4.12), 𝒃𝟎 and 𝑽𝒃0
 can be expressed as shown in (4.13)  

𝒃𝟎 = 𝒄 − (𝑪𝑽𝑎,0𝑪0
′ )(𝑪0𝑽𝑎,0𝑪0

′ )
−1

𝒄0 

𝑽𝒃𝟎
= 𝑽𝒄,0 − (𝑪𝑽𝑎,0𝑪0

′ )(𝑪0𝑽𝑎,0𝑪0
′ )

−1
(𝑪0𝑽𝑎,0𝑪

′)            (4.13) 

= 𝑪 [𝑽𝑎,0 − 𝑽𝑎,0𝑪0
′ (𝑪0𝑽𝑎,0𝑪0

′ )
−1

𝑪0𝑽𝑎,0] 𝑪′ 

so as to show the nature of randomization-based covariance adjustment. Covariance adjusted test 

statistics for 𝐻0 can be based on weighted linear combinations 𝒃𝒘,𝟎 = ∑ 𝑤ℎ𝒃𝒉,𝟎
4
ℎ=1  in ways 

similar to those discussed for 𝒄. In this regard, 𝑇𝑤,𝒃𝟎
= 𝒘′𝒃𝟎/(𝒘

′𝑽𝒃𝟎
𝒘)

0.5
 approximately has 

the normal distribution with mean 0 and variance 1 under 𝐻0. Finally, the unadjusted test 

statistics based on 𝒄 and their randomization-based covariance adjusted counterparts with respect 

to 𝐛𝟎 are applicable to transformations of the elements of the 𝒚∗𝑘 that apply under 𝐻0 such as 
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ranks across subjects in the pooled groups or to dichotomous indicators with the value 1 if some 

criterion, such as (𝑦∗𝑗𝑘 < 𝐿∗ < 𝐿), is satisfied for 𝑗 = 1, 2 and the value 0 if otherwise. 

 Simulation Study 

4.3.1 Simulation Setup 

 The Type I errors and powers of the methods discussed in this chapter were evaluated 

with simulation studies. The responses 𝑌𝑖𝑗 of patients in the i-th group for the j-th period, where 

𝑖 = P:P, P:T, T:T were randomly generated in the manner shown in (4.14) for which 𝑍𝑖1 is an  

[
 𝑌𝑖0 
 𝑌𝑖1 
 𝑌𝑖2 

] = [

 𝑒𝑖0 

 𝑒𝑖1 

 𝑒𝑖2 

] + [

𝜉0

𝜉𝑖1

𝑍𝑖1𝜉𝑖2 + (1 − 𝑍𝑖1)𝜉𝑖3

]                (4.14) 

indicator for a period 1 responder in the i-th group with 𝑍𝑖1 = 1 if  𝑌𝑖1 ≤ 𝐿, 𝑍𝑖1 = 0 if  𝑌𝑖1 > 𝐿 

for 𝐿 as the specified criterion for a responder or not. In (4.14), the 𝒆𝑖 = (𝑒𝑖0, 𝑒𝑖1, 𝑒𝑖2) are 

independently generated, random errors from the trivariate normal distribution with 𝟎3 as the 

common mean for all three groups, and with ∧ in (4.15) as the common covariance matrix for all 

∧ = 𝜎2 [

1 𝜌01 𝜌02

𝜌01 1 𝜌12

𝜌02 𝜌12 1
]              (4.15) 

three groups where 𝜎2 is the common variance for all three periods and 𝜌𝑗𝑗′ is the correlation for 

periods 𝑗 and 𝑗′.  Additionally, 𝜉0 is the common mean at baseline for all three groups; 𝜉𝑖1 is the 

mean for period 1 for the i-th group; 𝜉𝑖2 is an i-th group shift parameter that applies to period 2 

for period 1 responders; and 𝜉𝑖3 is an i-th group shift parameter that applies to period 2 for period 

1 non-responders. 

 For all simulation studies, the specified covariance matrix ∧ had 𝜎2 = 36, with the scope 

of correlations being 𝜌12 = 𝜌13 = 𝜌23 = 0.3, 0.5 as exchangeable structures and 𝜌12 = 𝜌23 =

𝜌13
0.5 = 0.5, 0.7 as autoregressive structures. The specifications for the assessments of type 1 error 
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were 𝜉0 = 40, 𝜉P:P,1 = 𝜉P:T,1 = 𝜉T:T,1 = 35, 𝜉P:P,2 = 𝜉P:T,2 = 𝜉T:T,2 = 32, and 𝜉P:P,3 = 𝜉P:T,3 =

𝜉T:T,3 = 35, with  𝑌𝑖1 ≤ 𝐿 = 33 being the criterion for a period 1 responder in the i-th group. 

Also, with 𝜋𝑖 = 𝐸{𝑍𝑖1} as the probability of responder status for group i, it follows from  

𝜉P:P,1 = 𝜉P:T,1 = 𝜉T:T,1 = 35 that 𝜋P:P = 𝜋P:T = 𝜋T:T = 0.37 for the assessments of type 1 error 

under the global null hypothesis 𝐻0 as specified in Section 4.2. 

 The specifications of the 𝜉𝑖1, 𝜉𝑖2, and 𝜉𝑖3 for the assessments of statistical power are 

shown in Table 4.1. Also, 𝜉0 = 40 and 𝜋P:P = 𝜋P:T = 0.37, but 𝜋T:T = 0.47 so that the 

difference in period 1 responder rates for the T:T group versus the P:P and P:T groups is about 

0.10. From Table 4.1, it follows that ∆1= (𝜉T:T,1 − 𝜉P:P,1) = −1.5, ∆3= (𝜉P:T,2 − 𝜉P:P,2) =

−1.0, and ∆4= (𝜉P:T,3 − 𝜉P:P,3) = −2.0. Since 𝐸{𝑌𝑖2} = {𝜋𝑖𝜉𝑖2 + (1 − 𝜋𝑖)𝜉𝑖3} = 𝜂𝑖, it follows 

that ∆2= (𝜂T:T − 𝜂P:P) = (32.1 − 33.9) = −1.8. Thus, (Δ1, Δ2, Δ3, Δ4) = (−1.5, −1.8, −1,−2) 

is the specification that corresponds to the assessments of statistical power with respect to 

(𝑐1, 𝑐2, 𝑐3, 𝑐4) and (𝑏10, 𝑏20, 𝑏30, 𝑏40); and (Δ1, Δ2, Δ3, Δ4) = (0, 0, 0, 0) corresponds to the 

assessments of type 1 error. 

Table 4.1 Specifications for Assessments of Statistical Power 

Group Period 1 
Period 2 for 

Period 1 Responder 

Period 2 for 

Period 1 Non-

Responder 

P:P 𝜉P:P,1 = 35 𝜉P:P,2 = 32 𝜉P:P,3 = 35 

P:T 𝜉P:T,1 = 35 𝜉P:T,2 = 31 𝜉P:T,3 = 33 

T:T 𝜉T:T,1 = 33.5 𝜉T:T,2 = 30.5 𝜉T:T,3 = 33.5 

 

 The simulations were performed with equal sample sizes 𝑛∗ = 40, 80, 160 patients per 

group, with the total sample sizes respectively being 3𝑛∗ = 120, 240, 480. For each simulation, 

the responses of the baseline, period 1, and period 2 are generated via (4.14) with the previously 
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noted specifications. For testing the hypothesis 𝐻0: Δ𝑤 = 0 𝑣𝑒𝑟𝑠𝑢𝑠 𝐻𝐴: Δ𝑤 ≠ 0 in 

correspondence to 𝑐𝑤 or 𝑏0,𝑤, the determination of p value for the test statistic 𝑇𝑤,𝑐 or 𝑇𝑤𝑏0
 is 

based on reference of its squared value to the chi-square value 𝜒1,1−𝛼
2  where 𝛼 is the specified 

significance level and we chose 𝛼 to be 0.05. The simulation results are based on 50,000 

replicates for the specifications previously stated. The results of Type I error and power from the 

simulations are means of indicator variables for whether 𝑝 ≤ 𝛼 applies for testing 𝐻0, and the 

empirical standard deviation (ESD) is taken as the square root of the variance of the estimated 𝑐𝑤 

or 𝑏𝑤,0  across all simulations, and the average of the estimated standard error (ASE) of 𝑐𝑤 or 

𝑏𝑤,0  in the simulations is provided. 

4.3.2 Simulation Results 

The results that only address Δ1 and Δ4, as is usually the case of interest in the SPCD 

design under the null hypothesis, are displayed in Table 4.2. As shown there, under the null 

hypothesis, the unadjusted and adjusted methods provide unbiased point estimates and 

reasonable estimates of the standard errors of the estimators, as the ASE and ESD are similar. 

Type I errors under all scenarios are well-controlled at the nominal 0.05 level regardless of the 

sample sizes using the unadjusted 𝒄 or covariable adjusted 𝒃𝟎. The MMRM approach of Doros et 

al. (2013) also had its type 1 error evaluated with the simulation studies, and it provided good 

control when the sample size per group is 80 and 160; but it had an elevated type one error when 

the sample size is 40 per group, under each of the different correlation specifications.  

Additionally, the covariable adjusted method 𝒃𝟎 provides variance reduction of 10% to 45%, 

depending on the correlation levels and sample sizes, as shown in the efficiency column.  

Under 𝐻0 for no treatment differences, results that additionally address Δ2, the treatment 

difference between P:P and T:T sequences, in addition to the usual Δ1 and Δ4 for the SPCD 
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design, are shown in Table 4.3. These results also show good control of the Type I error. For 

utilizing all available information from a study, a weighted statistic can address all Δ1 to Δ4, with 

equal weighting or inverse variance weighting, and Table 4.4 shows that it controls the type I 

error well at the 0.05 significance level. 

Under the alternative parameter specification in Table 4.1, the powers with the three 

methods are presented in Table 4.5. The covariable adjusted method 𝒃𝟎 and MMRM approach of 

Doros et al. (2013) for addressing Δ1 and Δ4 have similar power, with both having higher power 

than the unadjusted method 𝒄. Under the specification of Δ2 for Table 4.1, when taking Δ2 into 

account in addition to Δ1 and Δ4, the powers are slightly better than without addressing Δ2. 

When considering all the available sources of information with equal weights, the power 

decreases due to smaller Δ3 compared to ∆1, ∆2, ∆4. But when inverse variance weighting is 

used, the power is similar to that when Δ3 is not addressed, mainly because the weight 

corresponding to ∆3 is smaller than those corresponding to ∆1, ∆2, ∆4.

 

 

 



 

 
  

7
3 

Table 4.2 Results from 50, 000 replicate simulations for the test statistics of 𝐻0: 𝛥1 = 𝛥4 = 0 under 𝛥1 = 𝛥2 = 𝛥3 = 𝛥4 = 0 

𝜌 𝑛𝑖 Weight 

Unadjusted  Adjusted MMRM Efficiency 

Bias ASE ESD 
Type I 
error 

Bias ASE ESD 
Type I 
error 

Bias ASE ESD 
Type I 
error 

a/u a/m 

0.3 (EX) 

40 Equal -0.0031 1.005 1.009 0.0491 -0.0013 0.956 0.956 0.0490 -0.0014 0.973 0.977 0.0520 0.90 0.96 
 InvVar -0.0030 0.944 0.950 0.0499 -0.0009 0.898 0.899 0.0490 0.0085 0.908 0.919 0.0526 0.90 0.96 

80 Equal -0.0045 0.712 0.716 0.0500 -0.0042 0.680 0.683 0.0505 -0.0042 0.684 0.688 0.0513 0.91 0.98 
 InvVar -0.0029 0.670 0.671 0.0500 -0.0029 0.639 0.640 0.0492 0.0020 0.641 0.645 0.0515 0.91 0.99 

160 Equal 0.0037 0.504 0.503 0.0488 0.0025 0.482 0.482 0.0497 0.0027 0.483 0.482 0.0494 0.92 1.00 
 InvVar 0.0030 0.474 0.473 0.0494 0.0019 0.454 0.453 0.0500 0.0042 0.453 0.454 0.0506 0.92 1.00 

0.5 (AR) 

40 Equal -0.0027 0.974 0.980 0.0493 -0.0038 0.878 0.883 0.0500 -0.0037 0.912 0.928 0.0542 0.81 0.91 
 InvVar -0.0038 0.929 0.937 0.0495 -0.0052 0.820 0.824 0.0506 0.0021 0.838 0.854 0.0552 0.77 0.93 

80 Equal -0.0026 0.689 0.693 0.0499 -0.0031 0.624 0.627 0.0516 -0.0021 0.642 0.648 0.0540 0.82 0.93 
 InvVar -0.0015 0.659 0.661 0.0504 -0.0029 0.583 0.583 0.0509 0.0016 0.592 0.597 0.0528 0.78 0.96 

160 Equal 0.0029 0.488 0.486 0.0488 0.0032 0.443 0.442 0.0497 0.0026 0.453 0.454 0.0509 0.83 0.95 
 InvVar 0.0029 0.466 0.465 0.0495 0.0037 0.413 0.413 0.0499 0.0052 0.419 0.420 0.0519 0.79 0.97 

0.5 (EX) 

40 Equal -0.0032 0.974 0.980 0.0519 -0.0014 0.857 0.864 0.0514 -0.0022 0.865 0.873 0.0538 0.78 0.98 
 InvVar -0.0026 0.929 0.936 0.0510 -0.0012 0.810 0.816 0.0515 0.0061 0.816 0.829 0.0561 0.76 0.97 

80 Equal 0.0011 0.689 0.692 0.0504 0.0008 0.609 0.613 0.0508 0.0016 0.609 0.612 0.0509 0.78 1.00 
 InvVar 0.0019 0.659 0.660 0.0504 0.0006 0.576 0.578 0.0502 0.0050 0.576 0.580 0.0519 0.77 0.99 

160 Equal 0.0010 0.488 0.484 0.0476 -0.0002 0.432 0.430 0.0486 0.0001 0.429 0.427 0.0489 0.79 1.02 
 InvVar 0.0006 0.466 0.464 0.0474 0.0000 0.409 0.407 0.0488 0.0020 0.407 0.406 0.0496 0.77 1.00 

0.7 (AR) 

40 Equal 0.0003 0.923 0.928 0.0512 0.0011 0.724 0.725 0.0492 0.0001 0.752 0.758 0.0533 0.61 0.91 
 InvVar -0.0011 0.909 0.917 0.0523 0.0005 0.678 0.679 0.0502 0.0052 0.690 0.700 0.0536 0.55 0.94 

80 Equal -0.0017 0.654 0.655 0.0486 -0.0016 0.515 0.516 0.0501 -0.0010 0.529 0.533 0.0519 0.62 0.94 
 InvVar -0.0003 0.645 0.644 0.0483 -0.0009 0.482 0.481 0.0491 0.0018 0.488 0.490 0.0508 0.56 0.96 

160 Equal 0.0046 0.462 0.460 0.0483 0.0025 0.365 0.364 0.0501 -0.0009 0.373 0.376 0.0518 0.63 0.94 
 InvVar 0.0037 0.457 0.454 0.0486 0.0018 0.342 0.341 0.0498 0.0005 0.345 0.346 0.0516 0.56 0.97 

Note: Bias = mean of (estimate-true value); Type I error = rejection rate of null hypothesis (when 𝑍𝑤
2 > 𝜒0.95

2 ); ASE=average standard error; 

ESD=empirical standard deviation. a/u=(adjusted variance) / (unadjusted variance); a/m = (adjusted variance) / (MMRM variance) 
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Table 4.3 Results from 50, 000 simulations for the test statistics of 𝐻0: 𝛥1 = 𝛥3 = 𝛥4 = 0 under 𝛥1 = 𝛥2 = 𝛥3 = 𝛥4 = 0 

𝜌 𝑛𝑖  Weight 

Unadjusted Adjusted Efficiency 

Bias ASE ESD 
Type I 

error 
Bias ASE ESD 

Type I 

error 
a/u 

0.3 

(EX) 

40 Equal -0.0013 1.009 1.015 0.0504 0.0009 0.940 0.942 0.0494 0.86 

 InvVar -0.0030 0.931 0.937 0.0503 -0.0006 0.875 0.877 0.0503 0.88 

80 Equal -0.0016 0.714 0.716 0.0506 -0.0014 0.668 0.670 0.0496 0.87 

 InvVar -0.0019 0.661 0.663 0.0500 -0.0014 0.623 0.624 0.0491 0.89 

160 Equal 0.0022 0.505 0.505 0.0496 0.0009 0.474 0.474 0.0492 0.88 

 InvVar 0.0024 0.468 0.467 0.0502 0.0009 0.443 0.443 0.0496 0.90 

0.5 

(AR) 

40 Equal -0.0053 1.023 1.030 0.0506 -0.0061 0.919 0.922 0.0497 0.80 

 InvVar -0.0035 0.926 0.933 0.0500 -0.0049 0.816 0.821 0.0500 0.77 

80 Equal -0.0013 0.724 0.725 0.0504 -0.0024 0.653 0.654 0.0490 0.81 

 InvVar -0.0016 0.657 0.660 0.0504 -0.0030 0.582 0.583 0.0510 0.78 

160 Equal 0.0034 0.512 0.510 0.0497 0.0037 0.463 0.462 0.0493 0.82 

 InvVar 0.0029 0.466 0.465 0.0495 0.0037 0.413 0.413 0.0496 0.79 

0.5 

(EX) 

40 Equal -0.0051 1.023 1.031 0.0512 -0.0039 0.859 0.865 0.0513 0.70 

 InvVar -0.0030 0.926 0.933 0.0513 -0.0029 0.799 0.805 0.0518 0.74 

80 Equal 0.0010 0.724 0.726 0.0500 -0.0001 0.610 0.613 0.0500 0.71 

 InvVar 0.0018 0.657 0.659 0.0496 0.0002 0.569 0.571 0.0508 0.75 

160 Equal 0.0023 0.512 0.508 0.0477 0.0014 0.433 0.430 0.0470 0.71 

 InvVar 0.0006 0.466 0.463 0.0476 0.0006 0.404 0.402 0.0489 0.75 

0.7 

(AR) 

  

40 Equal 0.0007 1.026 1.033 0.0505 0.0028 0.794 0.795 0.0496 0.59 

 InvVar -0.0014 0.884 0.890 0.0515 -0.0005 0.665 0.667 0.0496 0.56 

80 Equal 0.0002 0.726 0.726 0.0495 -0.0001 0.564 0.563 0.0488 0.60 

 InvVar -0.0016 0.628 0.628 0.0492 -0.0015 0.474 0.474 0.0500 0.57 

160 Equal 0.0030 0.514 0.512 0.0494 0.0009 0.400 0.400 0.0500 0.61 

 InvVar 0.0046 0.445 0.442 0.0489 0.0024 0.337 0.335 0.0491 0.57 

Note: Bias = mean of (estimate-true value); Type I error = rejection rate of null hypothesis (when 𝑍𝑤
2 > 𝜒0.95

2 ); ASE=average standard error; 

ESD=empirical standard deviation. a/u=(adjusted variance) / (unadjusted variance). 
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Table 4.4 Results from 50, 000 replicate simulations for the test statistics of 𝐻0: 𝛥1 = 𝛥3 = 𝛥3 = 𝛥4 = 0 under 𝛥1 = 𝛥2 = 𝛥3 = 𝛥4 = 0 

𝜌 𝑛𝑖 Weight 
Unadjusted Adjusted Efficiency 

Bias ASE ESD Type I 

error 
Bias ASE ESD Type I 

error 
a/u 

0.3 

(EX) 

40 Equal -0.0006 0.980 0.985 0.0505 0.0004 0.917 0.920 0.0496 0.87 

 InvVar -0.0026 0.857 0.862 0.0511 -0.0012 0.809 0.811 0.0504 0.89 

80 Equal -0.0018 0.694 0.694 0.0477 -0.0007 0.653 0.653 0.0491 0.88 

 InvVar -0.0026 0.610 0.610 0.0500 -0.0017 0.578 0.578 0.0493 0.90 

160 Equal 0.0022 0.491 0.490 0.0489 0.0013 0.464 0.464 0.0488 0.89 

 InvVar 0.0028 0.432 0.431 0.0499 0.0017 0.411 0.411 0.0497 0.91 

0.5 

(AR) 

40 Equal -0.0084 0.965 0.968 0.0496 -0.0100 0.881 0.883 0.0505 0.83 

 InvVar -0.0050 0.827 0.833 0.0514 -0.0067 0.738 0.743 0.0517 0.79 

80 Equal -0.0014 0.683 0.682 0.0491 -0.0014 0.627 0.627 0.0480 0.84 

 InvVar -0.0021 0.588 0.590 0.0509 -0.0025 0.527 0.527 0.0501 0.80 

160 Equal 0.0030 0.483 0.481 0.0482 0.0037 0.445 0.443 0.0489 0.85 

 InvVar 0.0025 0.417 0.416 0.0500 0.0036 0.375 0.374 0.0493 0.81 

0.5 

(EX) 

40 Equal -0.0060 0.964 0.970 0.0501 -0.0050 0.824 0.829 0.0499 0.73 

 InvVar -0.0036 0.827 0.831 0.0505 -0.0033 0.725 0.729 0.0509 0.77 

80 Equal 0.0005 0.683 0.685 0.0509 0.0002 0.587 0.590 0.0501 0.74 

 InvVar 0.0014 0.588 0.592 0.0508 0.0006 0.518 0.522 0.0511 0.78 

160 Equal 0.0021 0.483 0.481 0.0492 0.0013 0.416 0.415 0.0494 0.74 

 InvVar 0.0004 0.417 0.416 0.0510 0.0001 0.369 0.367 0.0489 0.78 

0.7 

(AR) 

  

40 Equal 0.0023 0.929 0.935 0.0498 0.0027 0.748 0.750 0.0491 0.64 

 InvVar 0.0006 0.761 0.764 0.0513 -0.0002 0.591 0.592 0.0508 0.60 

80 Equal -0.0020 0.658 0.658 0.0491 -0.0015 0.532 0.532 0.0498 0.65 

 InvVar -0.0035 0.541 0.541 0.0500 -0.0026 0.422 0.422 0.0489 0.61 

160 Equal 0.0018 0.466 0.465 0.0495 0.0006 0.378 0.378 0.0493 0.66 

  InvVar 0.0036 0.384 0.383 0.0503 0.0022 0.300 0.300 0.0497 0.61 

Note: Bias = mean of (estimate-true value); Type I error = rejection rate of null hypothesis (when 𝑍𝑤
2 > 𝜒0.95

2 ); ASE=average 

standard error; ESD=empirical standard deviation. a/u=(adjusted variance) / (unadjusted variance).
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Table 4.5 Results from 50,000 replicate simulations for power of test statistics under the alternative specified in Table 4.1 

𝜌 𝑛𝑖  Weight 
Δ1 and Δ4 Δ1, Δ2, and Δ4 Δ1, Δ2, Δ3, and  Δ4 

Unadjusted Adjusted MMRM Unadjusted Adjusted Unadjusted Adjusted 

0.3 

(EX) 

40 Equal 0.418 0.438 0.443 0.426 0.460 0.368 0.396 

 InvVar 0.426 0.448 0.451 0.434 0.464 0.427 0.459 

80 Equal 0.688 0.721 0.723 0.698 0.745 0.631 0.673 

 InvVar 0.699 0.736 0.733 0.712 0.757 0.712 0.755 

160 Equal 0.931 0.948 0.950 0.936 0.959 0.900 0.927 

 InvVar 0.938 0.955 0.954 0.943 0.963 0.945 0.964 

0.5 

(AR) 

40 Equal 0.441 0.501 0.491 0.418 0.477 0.379 0.424 

 InvVar 0.435 0.510 0.506 0.435 0.506 0.436 0.511 

80 Equal 0.716 0.791 0.775 0.689 0.765 0.644 0.708 

 InvVar 0.711 0.801 0.793 0.714 0.801 0.723 0.807 

160 Equal 0.946 0.974 0.969 0.932 0.966 0.909 0.944 

 InvVar 0.943 0.977 0.976 0.946 0.977 0.951 0.980 

0.5 

(EX) 

40 Equal 0.443 0.519 0.529 0.416 0.527 0.376 0.472 

 InvVar 0.434 0.525 0.535 0.436 0.535 0.437 0.539 

80 Equal 0.716 0.805 0.815 0.686 0.815 0.642 0.763 

 InvVar 0.711 0.816 0.820 0.714 0.825 0.722 0.829 

160 Equal 0.948 0.980 0.982 0.933 0.983 0.908 0.968 

 InvVar 0.945 0.982 0.983 0.947 0.984 0.952 0.986 

0.7 

(AR) 

40 Equal 0.478 0.655 0.643 0.414 0.588 0.398 0.541 

 InvVar 0.445 0.656 0.663 0.462 0.662 0.478 0.680 

80 Equal 0.763 0.917 0.907 0.686 0.873 0.676 0.839 

 InvVar 0.727 0.920 0.919 0.750 0.923 0.778 0.935 

160 Equal 0.964 0.997 0.997 0.932 0.992 0.926 0.987 

 InvVar 0.950 0.997 0.997 0.960 0.997 0.970 0.998 

Note: Power = rejection rate of null hypothesis (when 𝑍𝑤
2 > 𝜒0.95

2 ). 
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 Example 

 A hypothetical placebo-controlled pre-randomized two-period study that makes use of the 

P:P, P:T, and T:T sequence groups is created to illustrate an application of the proposed methods 

and to compare them to those from the MMRM method proposed by Doros et al. (2013). The 

example has 240 subjects which are equally assigned to the three sequence groups. Assessments 

of responses occur at the baseline, end of period 1 and period 2, with a lower outcome score 

being more beneficial. At period 1, a score less than 33 is considered as a responder to the 

treatment. The means and standard deviations of the responses are provided in Table 4.6. The 

means of responses at baseline are similar across the three sequence groups, with a slightly larger 

mean in the T:T group. There are 31%, 34%, and 39% of responders in the three groups 

respectively, as shown in the 𝑍̅ row, with only 6% more responders in the test treatment group 

than the placebo group at Period 1. And as the trial continues to the second period, the mean 

responses there for the P:T and T:T groups are almost the same, and the P:P group is slightly 

worse. 

Table 4.6 Mean and Standard Deviation of Outcome 

 Statistics P:P P:T T:T 

𝑌̅0 40.54 40.45 40.80 

SD 5.36 5.57 6.91 

𝑌̅1 35.15 34.92 34.24 

SD 6.17 5.72 6.48 

𝑧̅ 0.31 0.34 0.39 

𝑌̅2 33.98 32.44 32.39 

SD 5.69 5.04 6.13 

 

The estimates using the proposed unadjusted and adjusted methods as well as the 

MMRM method are shown in Table 4.7. The standard errors of the estimates increase as the 

sample sizes decrease, as those pertaining to ∆1 have  the smallest standard errors and  those 
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pertaining to ∆3 have the largest standard errors (since only 30% to 40% of patients are 

responders in period 1). The covariable-adjusted method and the MMRM method provide similar 

estimates for ∆1, the treatment difference at the end of the first period with a value of 0.95, 

whereas the unadjusted estimate is somewhat closer to the null. For the period 1 treatment 

difference only, the p values of 0.289, 0.111, and 0.130 for the unadjusted method, the adjusted 

method, and the MMRM method, respectively, similarly fail to contradict the null hypothesis. 

Table 4.7 Estimates of Δ1 to Δ4 

Method Statistics Δ1 Δ2 Δ3 Δ4 (
Δ1

𝑆𝐸
)
2

 p value 

Unadjusted Etimate -0.791 -1.591 -0.666 -1.731 1.126 0.289 
 SE 0.745 1.033 1.440 1.091   

Adjusted Estimate -0.960 -1.600 -0.467 -1.838 2.535 0.111 
 SE 0.603 0.951 1.385 1.035   

MMRM Estimate -0.951 NA -0.111 -1.909 2.488 0.130 
 SE 0.603 NA 1.546 1.051   

Equal: equal weights; InvVar: Inverse variance weighting. 

 

Importantly, the estimate pertaining to ∆4 for the treatment difference at the end of the 

second period for the placebo non-responders in period 1 is twice as large as that pertaining to ∆1 

and at least three times bigger than that pertaining to ∆3 as the difference for the placebo 

responders; and this indicates that the placebo non-responders, when given the test treatment, are 

more informative than the placebo responders. The comparison that addresses ∆2 for the 

difference between the T:T group and the P:P group also show better improvement than that for 

the first period, and this consideration could possibly contribute to the overall treatment 

comparison if taken into account. 

As shown in Table 4.8, all of the statistics provided by the unadjusted method, except for 

the one accounting for ∆2 with equal weight, fail to contradict the null hypothesis at the 0.05 
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level, mainly due to  somewhat larger variance; but the adjusted method, with any specification 

for ∆’s, and the MMRM method considering Δ1 and Δ4, similarly show significant results at the 

0.05 level. 

Table 4.8 Estimates of Weighted Statistics 

 

Method Statistics Δ1 and Δ4 Δ1, Δ2 and Δ4 Δ1, Δ2 Δ3 and Δ4 

  Equal InvVar Equal InvVar Equal InvVar 

Unadjusted 
Weighted 

estimate 
-1.261 -1.090 -1.371 -1.082 -1.195 -0.967 

 SE 0.661 0.615 0.696 0.615 0.669 0.560 
 P value 0.056 0.077 0.049 0.079 0.074 0.084 

Adjusted 
Weighted 

estimate 
-1.399 -1.199 -1.466 -1.167 -1.216 -1.041 

 SE 0.599 0.521 0.631 0.520 0.620 0.480 
 P value 0.020 0.022 0.020 0.025 0.050 0.030 

MMRM 
Weighted 

estimate 
-1.430 -1.188     

 SE 0.606 0.523     

 P value 0.025 0.031     

Equal: equal weights; InvVar: Inverse variance weighting. 
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 CHAPTER 5: RANDOMIZATION-BASED ANCOVA FOR POINT AND CONFIDENCE 

INTERVAL ESTIMATION IN SEQUENTIAL PARALLEL COMPARISON DESIGN 

(SPCD) 

 Introduction 

 When the global null hypothesis 𝐻0 for the SPCD design is contradicted by test statistics 

in Chapter 4 such as 𝑇𝒘,𝒄 or 𝑇𝒘,𝑏0
, or is not expected to apply, randomization-based covariance 

adjustment can proceed for confidence interval estimation for comparisons between T and P 

through the expansion of the population for inference to an almost infinitely large population of 

𝑁 patients so that the 𝑛 randomized patients included in the trial are conceptually representative 

of this large population in a simple random sampling sense (Koch et al., 1998).  

 Methods 

 In the above setting, the randomization process is comparable to the random assignment 

of 𝑛𝑖 patients to the i-th sequence group for 𝑖 = 1, 2, 3 and (𝑁 − 𝑛) patients to a group without 

random selection for inclusion in the clinical trial. Accordingly, 𝝁𝑖 and 𝑽𝑭𝑖
 in (4.3) become the 

population mean vector and population covariance matrix for the population of 𝑁 patients which 

the 𝑛𝑖 patients in the i-th group are assumed to represent if all 𝑁 patients received the  i-th 

sequence of treatments. Also, with 𝑛 replaced by 𝑁 in (4.1), (4.2), and (4.3), 𝝁𝑖 and 𝑽𝑭𝑖
 have the 

structure shown in (5.1). 

𝝁𝑖 =
1

𝑁
∑ 𝑭𝑖𝑘

𝑁

𝑘=1

,   𝑽𝑭𝑖
=

1

(𝑁 − 1)
∑(𝑭𝑖𝑘 − 𝝁𝑖)(𝑭𝑖𝑘 − 𝝁𝑖′)

′

𝑁

𝑘=1

          (5.1) 

 Also, the sample mean estimator for the i-th group 𝑭̅𝑖 = (∑ 𝑈𝑖𝑘𝑭𝑖𝑘 𝑛𝑖⁄𝑁
𝑘=1 ) applies, 

although the summation only includes the 𝑛𝑖 patients randomized to the i-th group.
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As 𝑁 → ∞, the covariance matrix of the sample mean simplifies to (5.2).  

𝑽𝒂𝒓(𝑭̅𝑖) = (𝑽𝑭𝑖
𝑛𝑖⁄ )                        (5.2) 

𝑪𝒐𝒗(𝑭̅𝑖, 𝑭̅𝑖′) = 0. 

 An unbiased estimator for 𝑽𝒂𝒓(𝑭̅𝑖) is 𝑽̂𝑭̅𝑖
 is as shown in (5.3), since 𝑬{𝑽̂𝑭̅𝑖

} =  𝑽𝒂𝒓(𝑭̅𝑖) 

𝑽̂𝑭̅𝑖
= ∑ 𝑈𝑖𝑘(𝑭𝑖𝑘 − 𝑭̅𝑖)(𝑭𝑖𝑘 − 𝑭̅𝑖)

′ 𝑛𝑖(𝑛𝑖 − 1)⁄

𝑁

𝑘=1

                                                   (5.3) 

=
1

𝑛𝑖(𝑛𝑖 − 1)
{∑[𝑈𝑖𝑘(𝑭𝑖𝑘 − 𝝁𝑖)(𝑭𝑖𝑘 − 𝝁𝑖)

′] − [𝑛𝑖(𝑭̅𝑖 − 𝝁𝑖)(𝑭̅𝑖 − 𝝁𝑖)
′]

𝑁

𝑘=1

}           

can be derived in (5.4), regardless of the large population size 𝑁. 

𝑬{𝑽̂𝑭̅𝑖
} = {[∑ (𝑭𝑖𝑘 − 𝝁𝑖)(𝑭𝑖𝑘 − 𝝁𝑖)

′ 𝑁(𝑛𝑖 − 1)⁄

𝑁

𝑘=1

] − [
(𝑁 − 𝑛𝑖)𝑽𝑭,𝑖

𝑁𝑛𝑖(𝑛𝑖 − 1)
]}          (5.4) 

=
𝑽𝑭,𝑖

𝑁(𝑛𝑖 − 1)
[(𝑁 − 1) −

(𝑁 − 𝑛𝑖)

𝑛𝑖
] = (𝑽𝑭,𝑖 𝑛𝑖⁄ ) = 𝑉𝑎𝑟(𝑭̅𝑖) 

 Thus, 𝑽̂𝑭̅ = 𝑫𝒊𝒂𝒈(𝑽̂𝑭̅1
, 𝑽̂𝑭̅2

, 𝑽̂𝑭̅3
) is the block diagonal estimated covariance matrix for 𝑭̅ 

with the {𝑽̂𝑭̅,𝑖} as its diagonal blocks. 

 Let 𝑭̃𝑖 denote the transformation of 𝑭̅𝑖 whereby the 𝑓𝑖̅𝑗 for 𝑗 = 1, 2 are replaced by 𝑓𝑖𝑗 =

(𝑓𝑖̅𝑗 𝑧𝑖̅⁄ ), and 𝑔̃𝑖2 = (𝑦̅𝑖2 − 𝑓𝑖̅2) (1 − 𝑧𝑖̅)⁄  is also included, as shown in (5.5), with matrices 𝑹1, 𝒓,  

𝑭̃𝑖 = (𝑦̅𝑖0, 𝑦̅𝑖1, 𝑧𝑖̅ , 𝑓𝑖1, 𝑦̅𝑖2, 𝑓𝑖2, 𝑔̃𝑖2)
′
         (5.5) 

= 𝐞𝐱𝐩[𝑹2 𝒍𝒐𝒈(𝑹1𝑭̅𝑖 + 𝒓)],                    

and 𝑹2 as shown in (5.6). 
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𝑹1 =

[
 
 
 
 
 
 
 

 

1
0
0
0
0
0
0
0

  

0
1
0
0
0
0
0
0

  

0
0
1

−1
0
0
0
0

  

0
0
0
0
1
0
0
0

  

0
0
0
0
0
1
0
1

  

0
0
0
0
0
0
1

−1

 

]
 
 
 
 
 
 
 

, 𝒓 =

[
 
 
 
 
 
 
 

 

0
0
0
1
0
0
0
0

 

]
 
 
 
 
 
 
 

, 𝑹2 =

[
 
 
 
 
 
 

 

1
0
0
0
0
0
0

  

0
1
0
0
0
0
0

  

0
0
1

−1
0

−1
0

  

0
0
0
0
0
0

−1

  

0
0
0
1
0
0
0

  

0
0
0
0
1
0
0

  

0
0
0
0
0
1
0

  

0
0
0
0
0
0
1

 

]
 
 
 
 
 
 

      (5.6) 

 By linear Taylor series methods as discussed in Koch et al. (1977), a consistent estimate 

for the covariance matrix of 𝑭̃𝑖 is 𝑽̂𝑭̃𝑖
= 𝑳𝑖𝑽̂𝑭̅𝑖

𝑳𝑖
′ for which 𝑳𝑖 = 𝑫𝑭̃𝑖

𝑹2𝑫(𝑹1𝑭̅𝑖+𝒓)
−1 𝑹1 and 

(𝑹1𝑭̅𝑖 + 𝒓) = (𝑦̅𝑖0, 𝑦̅𝑖1, 𝑧𝑖̅, (1 − 𝑧𝑖̅), 𝑓𝑖̅1, 𝑦̅𝑖2, 𝑓𝑖̅2, (𝑦̅𝑖2 − 𝑓𝑖̅2)
′
). 

 Let 𝑭̃ = (𝑭̃1
′ , 𝑭̃2

′ , 𝑭̃3
′ )

′
. A consistent estimate for the covariance matrix of 𝑭̃ is the block 

diagonal matrix 𝑽̂𝑭̃ = 𝑫𝒊𝒂𝒈(𝑽̂𝑭̃1
, 𝑽̂𝑭̃2

, 𝑽̂𝑭̃3
) with the 𝑽̂𝑭̃𝑖

 as its diagonal blocks. 

 The difference between sequence groups 𝒂̃  =  [(𝑭̃2 − 𝑭̃1)
′
, (𝑭̃3 − 𝑭̃1)

′
]
′

= 𝑨𝑭̃ is 

constructed as shown in (5.7), and a consistent estimate for the covariance matrix of 𝒂̃  

𝒂̃ = 𝑨𝑭̃ = [
−𝑰6 𝑰6 𝟎66

−𝑰6 𝟎66 𝑰6
] 𝑭̃               (5.7) 

is 𝑽̂𝒂̃ = 𝑨𝑽̂𝑭̃𝑨
′ as shown in (5.8).  

𝑽̂𝒂̃ = [
𝑽̂𝑭̃1

+ 𝑽̂𝑭̃2
𝑽̂𝑭̃1

𝑽̂𝑭̃1
𝑽̂𝑭̃1

+ 𝑽̂𝑭̃3

]                      (5.8) 

 For the assessment of 𝐻0 without adjustment for 𝑦10𝑘 = 𝑦20𝑘 = 𝑦30𝑘, 𝑦11𝑘 = 𝑦21𝑘, 

𝑧1𝑘 = 𝑧2𝑘, and 𝑓11𝑘 = 𝑓21𝑘, the potential comparisons of interest for this crossover design are 

shown in (5.9), and they are linear functions 𝒄̃ = 𝑪̃𝒂̃ = 𝑪̃𝑨𝑭̃ of 𝒂̃ with matrix 𝑪̃ as shown in 

(5.10).  
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𝒄̃1 = {𝑦̅31 −
(𝑛1𝑦̅11 + 𝑛2𝑦̅21)

(𝑛1 + 𝑛2)
} 

𝒄̃2 = (𝑦̅32 − 𝑦̅12)                            

𝒄̃3 = (𝑓22 − 𝑓21)                   (5.9) 

𝒄̃4 = (𝑔̃22 − 𝑔̃21)                            

𝑪̃ = [ 

0
0
0
0

  

−
𝑛2

(𝑛1+𝑛2)

0
0
0

    

0
0
0
0

     

0 0
0 0
0 0
0 0

    

0 0
0 0
1 0
0 1

    

0 1
0 0
0 0
0 0

    

0 0
0 0
0 0
0 0

    

0 0
1 0
0 0
0 0

    

0
0
0
0

 ]        (5.10) 

 A consistent estimate for the covariance matrix of 𝒄̃ is 𝑽̂𝒄̃ = 𝑪̃𝑽̂𝒂̃𝑪̃
′. Also, under 𝐻0, 

𝑬𝐴{𝒄̃ | 𝐻0} = 𝟎4 where 𝑬𝐴{   } denotes asymptotic expected value with respect to the distribution 

of 𝒄̃ through the assumed random sampling of patients and the invoked randomization for 

sufficiently large sample size to support its statistical behavior through its linear Taylor series 

approximation. 

Similarly to the previous chapter, for 𝒄̃ = (𝑐̃1, 𝑐̃2, 𝑐̃3, 𝑐̃4)
′, the comparison 𝑐̃1 pertains to T 

versus P in period 1; the comparison  𝑐̃2 pertains to T:T versus P:P in period 2; the 

comparison  𝑐̃3 pertains to P:T versus P:P in period 2 for responders to placebo in period 1; 𝑐̃4 

pertains to P:T versus P:P in period 2 for non-responders to placebo in period 1. Univariate test 

statistics for 𝐻0 and thereby for the comparison between T and P can be based on weighted linear 

combinations 𝑐̃𝑤 = ∑ 𝑤ℎ𝑐̃ℎ
4
ℎ=1  where 𝒘 = (𝑤1, 𝑤2, 𝑤3, 𝑤4)

′ is a vector of weights such that all 

𝑤ℎ ≥ 0 and ∑ 𝑤ℎ
4
ℎ=1 = 1. With the weights 𝒘, the test statistic for the global null hypothesis 𝐻0 

at the two-sided significance level 𝛼 is 𝑇̃𝑤,𝒄̃ = 𝑤′𝒄̃ (𝒘′𝑽𝒄̃𝒘)0.5⁄ . Under 𝐻0, 𝑇̃𝑤,𝒄̃ approximately 

has a standard normal distribution with mean 0 and variance 1. A confidence interval based 
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on  𝑐̃𝑤 can be constructed as [𝑐̃w − 𝑍𝛼

2
√𝑉𝑐w̃

, 𝑐̃w + 𝑍𝛼

2
√𝑉𝑐w̃

], where 𝑍𝛼

2
 is the (1 −

𝛼

2
)th 

percentile of the standard normal distribution and 𝑽𝑐𝑤̃
= 𝒘′𝑽𝑐𝑤̃

𝒘. 

 The constraints 𝒄̃0 = 𝑪̃0𝒂̃ = 𝑪̃0𝑨𝑭̃ for 𝒂̃ with 𝑬𝐴{𝒄̃0} = 0 regardless of whether 𝐻0 

applies are shown in (5.11). 

𝒄̃0 =

[
 
 
 
 
 
(𝑦̅20 − 𝑦̅10)

(𝑦̅30 − 𝑦̅10)

(𝑦̅21 − 𝑦̅11)

(𝑧2̅ − 𝑧1̅)

(𝑓21 − 𝑓11)]
 
 
 
 
 

=

[
 
 
 
 
1 0 0
0 0 0

0 0 0
0 0 0

0 0 0
0 1 0

0 1 0
0 0 1
0 0 0

0 0 0
0 0 0
1 0 0

0 0 0
0 0 0
0 0 0

    

0 0 0
0 0 0
0 0 0

0 0
0 0
0 0

0 0 0
0 0 0

0 0
0 0]

 
 
 
 

𝒂̃ 

= 𝑪̃0𝒂̃                                                                                                                                   (5.11) 

 Let 𝒄̃+ = [𝒄̃′, 𝒄̃0
′ ]′ = [𝑪̃′, 𝑪̃0

′ ]
′
𝒂̃ = 𝑪̃+𝒂̃ denote the combined set of comparisons 𝒄̃ 

pertaining to 𝐻0 and constraints 𝒄̃0. The estimated covariance structure for 𝒄̃+ is 𝑽̂𝒄̃+
= 𝑪̃+𝑽̂𝒂̃𝑪̃+

′ . 

Since 𝑬{𝒄̃0} = 𝟎5 regardless of whether 𝐻0 applies, randomization-based covariance adjustment 

for 𝒄̃ with respect to the constraints 𝒄̃0 is invoked by fitting the linear model shown in (5.12) by  

𝑬{𝒄̃+} ≜ [
𝑰4

𝟎5,4
] 𝒃̃ = 𝑿𝒃̃                             (5.12) 

weighted least squares with weights based on 𝑽̂𝒄̃+

−1 and with “≜” meaning “is estimated by”; and 

𝒃̃ = (𝑏̃1, 𝑏̃2, 𝑏̃3, 𝑏̃4)′ are covariance adjusted counterparts of 𝒄̃, and 𝒃̃ = (𝑿′𝑽̂𝒄̃+

−1𝑿)
−1

𝑿′𝑽̂𝒄̃+

−1𝒄̃+; 

also, the covariance matrix for 𝒃̃ is 𝑽̂𝒃̃ = (𝑿′𝑽̂𝒄̃+

−1𝑿)
−1

. Covariance adjusted test statistics for 𝐻0 

can be based on weighted linear combinations 𝒃̃w = ∑ 𝑤ℎ𝑏̃ℎ
4
ℎ=1  in ways similar to those 

discussed for 𝒄̃. 
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 Simulation Study 

5.3.1 Simulation Setup 

 The Type I errors and powers of the methods discussed in this chapter were evaluated 

with simulation studies. The responses 𝑌𝑖𝑗 of patients in the i-th group for the j-th period, where 

𝑖 = P:P, P:T, T:T, were randomly generated in the manner shown in (5.13) for which 𝑍𝑖1 is an  

[
 𝑌𝑖0 
 𝑌𝑖1 
 𝑌𝑖2 

] = [

 𝑒𝑖0 

 𝑒𝑖1 

 𝑒𝑖2 

] + [

𝜉0

𝜉𝑖1

𝑍𝑖1𝜉𝑖2 + (1 − 𝑍𝑖1)𝜉𝑖3

]                (5.13) 

 

indicator for a period 1 responder in the i-th group with 𝑍𝑖1 = 1 if  𝑌𝑖1 ≤ 𝐿, 𝑍𝑖1 = 0 if  𝑌𝑖1 > 𝐿 

for 𝐿 as the specified criterion for a responder or not. In (5.13), the 𝒆𝑖 = (𝑒𝑖0, 𝑒𝑖1, 𝑒𝑖2) are 

independently generated, random errors from the trivariate normal distribution with 𝟎3 as the 

common mean for all three groups, and with ∧ in (5.14) as the common covariance matrix for all 

∧ = 𝜎2 [

1 𝜌01 𝜌02

𝜌01 1 𝜌12

𝜌02 𝜌12 1
]                        (5.14) 

three groups where 𝜎2 is the common variance for all three periods and 𝜌𝑗𝑗′ is the correlation for 

periods 𝑗 and 𝑗′.  Additionally, 𝜉0 is the common mean at baseline for all three groups; 𝜉𝑖1 is the 

mean for period 1 for the i-th group; 𝜉𝑖2 is an i-th group shift parameter that applies to period 2 

for period 1 responders; and 𝜉𝑖3 is an i-th group shift parameter that applies to period 2 for period 

1 non-responders.  

 For all simulation studies, the specified covariance matrix ∧ had 𝜎2 = 36, with the scope 

of correlations being 𝜌12 = 𝜌13 = 𝜌23 = 0.3, 0.5 as exchangeable structures and 𝜌12 = 𝜌23 =

𝜌13
0.5 = 0.5, 0.7  as autoregressive structures. The specifications for the assessments of type 1 

error were 𝜉0 = 40, 𝜉P:P,1 = 𝜉P:T,1 = 𝜉T:T,1 = 35, 𝜉P:P,2 = 𝜉P:T,2 = 𝜉T:T,2 = 32, and 𝜉P:P,3 =
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𝜉P:T,3 = 𝜉T:T,3 = 35, with  𝑌𝑖1 ≤ 𝐿 = 33 being the criterion for a period 1 responder in the i-th 

group. Also, with 𝜋𝑖 = 𝐸{𝑍𝑖1} as the probability of responder status for group i, it follows from  

𝜉P:P,1 = 𝜉P:T,1 = 𝜉T:T,1 = 35 that 𝜋P:P = 𝜋P:T = 𝜋T:T = 0.37 for the assessments of type 1 error 

under the global null hypothesis 𝐻0 as specified in Section 4.2. 

 The specifications of the 𝜉𝑖1, 𝜉𝑖2, and 𝜉𝑖3 for the assessments of statistical power are 

shown in Table 5.1. Also, 𝜉0 = 40 and 𝜋P:P = 𝜋P:T = 0.37, but 𝜋T:T = 0.47 so that the 

difference in period 1 responder rates for the T:T group versus the P:P and P:T groups is about 

0.10. From Table 5.1, it follows that ∆1= (𝜉T:T,1 − 𝜉P:P,1) = −1.5, ∆3= (𝜉P:T,2 − 𝜉P:P,2) =

−1.0, and ∆4= (𝜉P:T,3 − 𝜉P:P,3) = −2.0. Since 𝐸{𝑌𝑖2} = {𝜋𝑖𝜉𝑖2 + (1 − 𝜋𝑖)𝜉𝑖3} = 𝜂𝑖, it follows 

that ∆2= (𝜂T:T − 𝜂P:P) = (32.1 − 33.9) = −1.8. Thus, (Δ1, Δ2, Δ3, Δ4) = (−1.5, −1.8, −1,−2) 

is the specification that corresponds to the assessments of statistical power with respect to 

(𝑐1, 𝑐2, 𝑐3, 𝑐4) and (𝑏1, 𝑏2, 𝑏3, 𝑏4); and (Δ1, Δ2, Δ3, Δ4) = (0, 0, 0, 0) corresponds to the 

assessments of Type 1 error.  

Table 5.1 Specifications for Assessments of Statistical Power 

Group Period 1 
Period 2 for  

Period 1 Responder 

Period 2 for  

Period 1 Non-

Responder 

P:P 𝜉P:P,1 = 35 𝜉P:P,2 = 32 𝜉P:P,3 = 35 

P:T 𝜉P:T,1 = 35 𝜉P:T,2 = 31 𝜉P:T,3 = 33 

T:T 𝜉T:T,1 = 33.5 𝜉T:T,2 = 30.5 𝜉T:T,3 = 33.5 

 The simulations were performed with equal sample sizes 𝑛∗ = 40, 80, 160 patients per 

group, with the total sample sizes respectively being 3𝑛∗ = 120, 240, 480. For each simulation, 

the responses of the baseline, period 1, and period 2 are generated via (5.13) with the previously 

noted specifications. For testing the hypothesis 𝐻0: Δ𝑤 = 0 𝑣𝑒𝑟𝑠𝑢𝑠 𝐻𝐴: Δ𝑤 ≠ 0 in 

correspondence to 𝑐𝑤 or 𝑏0,𝑤, the determination of p value for the test statistic 𝑇𝑤,𝑐 or 𝑇𝑤𝑏0
 is 
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based on reference of its squared value to the chi-square value 𝜒1,1−𝛼
2  where 𝛼 is the specified 

significance level and we chose 𝛼 to be 0.05. The simulation results are based on 50,000 

replicates for the specifications previously stated. The results of Type I error and power from the 

simulations are means of indicator variables for whether 𝑝 ≤ 𝛼 applies for testing 𝐻0, and the 

empirical standard deviation (ESD) is taken as the square root of the variance of the estimated 𝑐𝑤 

or 𝑏𝑤,0  across all simulations, and the average of the estimated standard error (ASE) of 𝑐𝑤 or 

𝑏𝑤,0  in the simulations is provided.  

5.3.2 Simulation Results 

 The results that address Δ1  and Δ4 only, which is usually the case of interest in the SPCD 

design, under the null hypothesis, are displayed in Table 5.2 with equal weighting and inverse 

variance weighting; and the results under the null that address Δ1, Δ2 and Δ4, and all Δ1 to Δ4, 

are as shown in Tables 5.3 and 5.4 respectively.  

 For closer to nominal control of Type 1 error at the two-sided 0.05 level and closer to 

nominal coverage for the two-sided 0.95 confidence interval, the estimator 𝑉̂𝒄̃+
 for the variance 

of  𝑐̃+ has multiplication by 
𝑁−3  

𝑁−𝑚
, where the subtraction of 𝑚 corresponds to the number of 

sample means estimated from the 3 sequence groups combined; for example, 𝑚 = 7 and 𝑚 = 12 

for the unadjusted approach and covariate-adjusted approach when the test statistic is based on a 

weighted mean to address Δ1 and Δ4 with (𝑚 = 9, 14 for addressing Δ1, Δ2, Δ4 and 𝑚 = 11, 16 

for addressing all Δ1 to Δ4). Accordingly, an approximate F distribution with d.f.=(1, 𝑁 − 𝑚) for 

the p value of hypothesis testing and t-distribution with d. f. = (𝑁 − 𝑛) for confidence interval 

determination is used.  

 As shown in Table 5.2, under the null hypothesis, all three methods provide unbiased 

point estimates and reasonably accurate corresponding standard errors, as the ASE and ESD are 
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similar. When equal weights are used, Type I errors range from 0.0467 to 0.0501 for the 

unadjusted approach, and from 0.0485 to 0.0533 for the covariate adjusted approach, and 0.0489 

to 0.0542 for the MMRM approach of Doros et al. (2013), with the larger Type I errors occurring 

at the 𝑛 = 40 per group and the somewhat smaller than nominal Type I errors at n=160 per 

group for all three approaches. Similar results are observed in the inverse variance weighting to 

the parameters. As shown in the efficiency column, the covariate adjusted and MMRM methods 

have similar variances for estimation, with these being smaller than that for the unadjusted 

method; and thus there is better precision and narrower confidence interval estimation. As shown 

in Table 5.2 vertically, as correlation among the outcomes increases, the variance for the 

estimation decreases in all three approaches of estimation, with a bigger impact in the covariate-

adjusted and MMRM estimators than the unadjusted.  

 Under 𝐻0 for no treatment differences, results that address Δ2, the treatment difference 

between P:P and T:T sequences (in addition to the traditional SPCD design that addresses only 

Δ1 and Δ4) are shown in Table 5.3. Results with inclusion of Δ2 also have good control of the 

Type I error. For utilizing all available information from the study, a weighted statistic that 

addresses all Δ1 to Δ4, with equal weighting or inverse variance weighting, is also considered, 

and there is control for the type I errors at the 0.05 significance level, as shown in Table 5.4.  

 Under the alternative parameter specification in Table 5.1, the nominal coverage of 95% 

confidence interval and the power with the three methods, under scenarios of different sample 

sizes and correlations among outcomes, are presented in Table 5.5. The coverage with equal 

weighting for addressing Δ1 and Δ4 by the unadjusted, adjusted, and MMRM each range from 

0.949 to 0.953, and 0.947 to 0.952, and 0.946 to 0.951, respectively, and they all indicate good 

coverage of the target parameter.  



 

   
  

9
1 

Table 5.2 Results from 50, 000 replicate simulations for the test statistics of 𝐻0: 𝛥1 = 𝛥4 = 0 under 𝛥1 = 𝛥2 = 𝛥3 = 𝛥4 = 0 

𝜌  𝑛𝑖  Weight 
Unadjusted  Adjusted MMRM Efficiency 

Bias ASE ESD Type I Bias ASE ESD Type I  Bias ASE ESD Type I a/u a/m 

0.3 

(EX) 

n=40 Equal -0.0030 1.021 1.014 0.0479 0.0034 0.985 0.992 0.0515 -0.0014 0.973 0.977 0.0520 0.96 1.03 
 InvVar 0.0105 0.958 0.961 0.0495 0.0175 0.921 0.941 0.0543 0.0085 0.908 0.919 0.0526 0.96 1.05 

n=80 Equal -0.0047 0.717 0.718 0.0493 -0.0017 0.690 0.696 0.0523 -0.0042 0.684 0.688 0.0513 0.94 1.02 
 InvVar 0.0040 0.674 0.675 0.0501 0.0065 0.647 0.654 0.0518 0.0020 0.641 0.645 0.0515 0.94 1.03 

n=160 Equal 0.0038 0.506 0.503 0.0486 0.0037 0.486 0.487 0.0502 0.0027 0.483 0.482 0.0494 0.93 1.02 
 InvVar 0.0065 0.476 0.475 0.0492 0.0063 0.456 0.458 0.0507 0.0042 0.453 0.454 0.0506 0.93 1.02 

0.5 

(AR) 

n=40 Equal -0.0026 0.989 0.985 0.0478 -0.0007 0.905 0.915 0.0512 -0.0037 0.912 0.928 0.0542 0.86 0.97 
 InvVar 0.0096 0.942 0.946 0.0489 0.0088 0.841 0.858 0.0539 0.0021 0.838 0.854 0.0552 0.82 1.01 

n=80 Equal -0.0026 0.695 0.694 0.0494 -0.0012 0.634 0.637 0.0517 -0.0021 0.642 0.648 0.0540 0.84 0.97 
 InvVar 0.0052 0.663 0.664 0.0500 0.0046 0.590 0.595 0.0525 0.0016 0.592 0.597 0.0528 0.80 0.99 

n=160 Equal 0.0029 0.490 0.487 0.0482 0.0038 0.446 0.446 0.0502 0.0026 0.453 0.454 0.0509 0.84 0.97 
 InvVar 0.0062 0.468 0.467 0.0490 0.0070 0.416 0.418 0.0513 0.0052 0.419 0.420 0.0519 0.80 0.99 

0.5 

(EX) 

n=40 Equal -0.0031 0.989 0.985 0.0501 0.0019 0.884 0.897 0.0533 -0.0022 0.865 0.873 0.0538 0.83 1.06 
 InvVar 0.0106 0.942 0.945 0.0504 0.0139 0.831 0.851 0.0555 0.0061 0.816 0.829 0.0561 0.81 1.05 

n=80 Equal 0.0010 0.695 0.694 0.0490 0.0028 0.619 0.623 0.0517 0.0016 0.609 0.612 0.0509 0.81 1.04 
 InvVar 0.0086 0.663 0.663 0.0498 0.0085 0.583 0.590 0.0523 0.0050 0.576 0.580 0.0519 0.79 1.03 

n=160 Equal 0.0009 0.489 0.485 0.0467 0.0005 0.435 0.433 0.0485 0.0001 0.429 0.427 0.0489 0.80 1.03 
 InvVar 0.0040 0.468 0.465 0.0477 0.0036 0.411 0.411 0.0489 0.0020 0.407 0.406 0.0496 0.78 1.02 

0.7 

(AR) 

n=40 Equal 0.0002 0.938 0.933 0.0489 0.0036 0.748 0.751 0.0507 0.0001 0.752 0.758 0.0533 0.65 0.98 
 InvVar 0.0113 0.922 0.924 0.0515 0.0104 0.697 0.706 0.0527 0.0052 0.690 0.700 0.0536 0.58 1.02 

n=80 Equal -0.0017 0.659 0.656 0.0473 0.0002 0.524 0.524 0.0505 -0.0010 0.529 0.533 0.0519 0.64 0.97 
 InvVar 0.0061 0.650 0.647 0.0477 0.0046 0.488 0.489 0.0504 0.0018 0.488 0.490 0.0508 0.57 1.00 

n=160 Equal 0.0046 0.464 0.461 0.0482 0.0032 0.368 0.367 0.0503 -0.0009 0.373 0.376 0.0518 0.64 0.96 
 InvVar 0.0069 0.458 0.455 0.0486 0.0043 0.344 0.344 0.0499 0.0005 0.345 0.346 0.0516 0.57 0.98 

Note: Bias = mean of (estimate-true value); Type I error = rejection rate of null hypothesis (when 𝑍𝑤
2 > 𝜒0.95

2 );  ASE=average standard error; 

ESD=empirical standard deviation. a/u=(adjusted variance) / (unadjusted variance); a/m = (adjusted variance) / (MMRM variance). 
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Table 5.3 Results from 50, 000 replicate simulations for the test statistics of 𝐻0: 𝛥1 = 𝛥3 = 𝛥4 = 0 under 𝛥1 = 𝛥2 = 𝛥3 = 𝛥4 = 0 

𝜌  𝑛𝑖  Weight 
Unadjusted  Adjusted Efficiency  

Bias ASE ESD Type I 

error 
Bias ASE ESD Type I 

error 
a/u 

0.3 

(EX) 

n=40 Equal -0.0012 1.033 1.018 0.0466 0.0065 0.976 0.974 0.0491 0.92 
 InvVar -0.0077 0.948 0.958 0.0516 0.0023 0.902 0.926 0.0563 0.94 

n=80 Equal -0.0017 0.723 0.717 0.0485 0.0016 0.680 0.681 0.0498 0.90 
 InvVar -0.0035 0.667 0.670 0.0507 0.0008 0.633 0.641 0.0518 0.92 

n=160 Equal 0.0023 0.508 0.505 0.0488 0.0022 0.478 0.479 0.0487 0.90 
 InvVar 0.0015 0.471 0.469 0.0501 0.0017 0.446 0.448 0.0511 0.91 

0.5 

(AR) 

n=40 Equal -0.0052 1.048 1.032 0.0468 -0.0017 0.955 0.953 0.0490 0.85 
 InvVar -0.0004 0.943 0.954 0.0511 0.0031 0.842 0.867 0.0562 0.83 

n=80 Equal -0.0014 0.733 0.726 0.0478 0.0004 0.665 0.664 0.0487 0.84 
 InvVar -0.0003 0.663 0.667 0.0509 0.0016 0.591 0.598 0.0531 0.80 

n=160 Equal 0.0034 0.515 0.510 0.0486 0.0047 0.467 0.466 0.0491 0.83 
 InvVar 0.0035 0.468 0.467 0.0495 0.0055 0.416 0.419 0.0523 0.80 

0.5 

(EX) 

n=40 Equal -0.0050 1.048 1.034 0.0474 0.0006 0.892 0.896 0.0502 0.75 
 InvVar -0.0004 0.943 0.953 0.0526 0.0012 0.824 0.850 0.0571 0.80 

n=80 Equal 0.0009 0.733 0.727 0.0485 0.0026 0.622 0.622 0.0496 0.73 
 InvVar 0.0029 0.664 0.666 0.0502 0.0026 0.578 0.586 0.0528 0.77 

n=160 Equal 0.0022 0.515 0.508 0.0467 0.0023 0.437 0.433 0.0473 0.73 
 InvVar 0.0012 0.468 0.466 0.0481 0.0015 0.407 0.407 0.0499 0.76 

0.7 

(AR) 

  

n=40 Equal 0.0007 1.051 1.036 0.0467 0.0075 0.825 0.821 0.0486 0.63 
 InvVar 0.0068 0.901 0.909 0.0520 0.0075 0.688 0.703 0.0553 0.60 

n=80 Equal 0.0002 0.735 0.727 0.0476 0.0025 0.575 0.571 0.0487 0.62 
 InvVar 0.0030 0.634 0.635 0.0495 0.0032 0.482 0.486 0.0516 0.59 

n=160 Equal 0.0030 0.517 0.513 0.0485 0.0022 0.403 0.403 0.0504 0.62 

  InvVar 0.0067 0.447 0.444 0.0487 0.0044 0.339 0.339 0.0499 0.58 

Note: Bias = mean of (estimate-true value); Type I error = rejection rate of null hypothesis (when 𝑍𝑤
2 > 𝜒0.95

2 ); 

ASE=average standard error; ESD=empirical standard deviation. a/u=(adjusted variance) / (unadjusted variance). 
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Table 5.4 Results from 50, 000 replicate simulations for the test statistics of 𝐻0: 𝛥1 = 𝛥3 = 𝛥3 = 𝛥4 = 0 under 𝛥1 = 𝛥2 = 𝛥3 = 𝛥4 = 0 

𝜌  𝑛𝑖  Weight 
Unadjusted  Adjusted  Efficiency  

Bias ASE ESD Type I 

error 
Bias ASE ESD Type I 

error 
a/u 

0.3 

(EX) 

n=40 Equal -0.0011 1.011 0.994 0.0468 0.0036 0.958 0.965 0.0518 0.94 
 InvVar -0.0050 0.878 0.892 0.0532 0.0036 0.839 0.870 0.0586 0.95 

n=80 Equal -0.0020 0.705 0.698 0.0465 0.0018 0.667 0.668 0.0491 0.92 
 InvVar -0.0030 0.617 0.621 0.0508 0.0017 0.589 0.598 0.0534 0.93 

n=160 Equal 0.0022 0.495 0.492 0.0476 0.0024 0.468 0.469 0.0495 0.91 
 InvVar 0.0024 0.435 0.435 0.0499 0.0030 0.415 0.417 0.0511 0.92 

0.5 

(AR) 

n=40 Equal -0.0088 0.995 0.977 0.0457 -0.0072 0.920 0.926 0.0514 0.90 
 InvVar -0.0080 0.848 0.863 0.0529 -0.0037 0.765 0.796 0.0589 0.85 

n=80 Equal -0.0011 0.693 0.685 0.0469 0.0009 0.641 0.641 0.0492 0.88 
 InvVar -0.0030 0.596 0.600 0.0514 -0.0001 0.537 0.545 0.0534 0.82 

n=160 Equal 0.0029 0.487 0.482 0.0468 0.0044 0.450 0.448 0.0490 0.87 
 InvVar 0.0020 0.420 0.420 0.0498 0.0044 0.378 0.380 0.0515 0.82 

0.5 

(EX) 

n=40 Equal -0.0062 0.995 0.979 0.0461 -0.0018 0.861 0.871 0.0510 0.79 
 InvVar -0.0061 0.848 0.860 0.0527 0.0005 0.752 0.782 0.0582 0.83 

n=80 Equal 0.0002 0.694 0.689 0.0488 0.0022 0.600 0.603 0.0503 0.77 
 InvVar -0.0001 0.596 0.602 0.0514 0.0026 0.528 0.539 0.0549 0.80 

n=160 Equal 0.0020 0.487 0.482 0.0484 0.0019 0.421 0.419 0.0496 0.76 
 InvVar -0.0002 0.420 0.420 0.0513 0.0010 0.372 0.373 0.0506 0.79 

0.7 

(AR) 

  

n=40 Equal 0.0021 0.959 0.941 0.0456 0.0062 0.782 0.784 0.0497 0.69 
 InvVar -0.0027 0.780 0.790 0.0527 0.0015 0.614 0.633 0.0582 0.64 

n=80 Equal -0.0021 0.669 0.660 0.0461 0.0002 0.544 0.544 0.0497 0.68 
 InvVar -0.0049 0.548 0.550 0.0499 -0.0013 0.430 0.435 0.0517 0.63 

n=160 Equal 0.0019 0.469 0.466 0.0483 0.0015 0.382 0.382 0.0492 0.67 

  InvVar 0.0027 0.386 0.387 0.0506 0.0026 0.303 0.304 0.0514 0.62 

Note: Bias = mean of (estimate-true value); Type I error = rejection rate of null hypothesis (when 𝑍𝑤
2 > 𝜒0.95

2 ); 

ASE=average standard error; ESD=empirical standard deviation. a/u=(adjusted variance) / (unadjusted variance). 
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Table 5.5 Results from 50,000 replicate simulations for the coverage of confidence intervals and  power of test statistics under the 

alternative specified in Table 5.1 

𝜌 𝑛𝑖 Weight 

Δ1 and Δ4 Δ1, Δ2, and Δ4 Δ1, Δ2, Δ3, and  Δ4 

Unadjusted Adjusted MMRM Unadjusted Adjusted Unadjusted Adjusted 

CR Power CR Power CR Power CR Power CR Power CR Power CR Power 

0.3 

(EX) 

n=40 Equal 0.952 0.403 0.948 0.425 0.948 0.443 0.954 0.395 0.951 0.431 0.953 0.334 0.948 0.368 
 InvVar 0.950 0.410 0.945 0.435 0.946 0.451 0.948 0.426 0.943 0.457 0.944 0.423 0.939 0.454 

n=80 Equal 0.951 0.679 0.948 0.710 0.949 0.723 0.952 0.681 0.950 0.729 0.953 0.605 0.951 0.647 
 InvVar 0.950 0.691 0.948 0.724 0.947 0.733 0.949 0.706 0.947 0.748 0.947 0.707 0.945 0.747 

n=160 Equal 0.951 0.929 0.950 0.945 0.951 0.950 0.951 0.933 0.951 0.956 0.952 0.887 0.951 0.916 
 InvVar 0.950 0.936 0.949 0.952 0.948 0.954 0.950 0.943 0.949 0.961 0.948 0.943 0.947 0.962 

0.5 

(AR) 

n=40 Equal 0.952 0.422 0.949 0.486 0.946 0.491 0.953 0.385 0.951 0.450 0.954 0.343 0.948 0.395 
 InvVar 0.951 0.419 0.946 0.495 0.944 0.506 0.948 0.425 0.943 0.498 0.945 0.433 0.939 0.506 

n=80 Equal 0.951 0.707 0.948 0.782 0.946 0.775 0.952 0.670 0.951 0.750 0.953 0.618 0.951 0.683 
 InvVar 0.950 0.702 0.947 0.793 0.946 0.793 0.949 0.708 0.947 0.794 0.947 0.721 0.943 0.803 

n=160 Equal 0.952 0.945 0.950 0.972 0.948 0.969 0.952 0.928 0.951 0.963 0.953 0.899 0.951 0.935 
 InvVar 0.950 0.941 0.948 0.975 0.948 0.976 0.950 0.945 0.948 0.976 0.948 0.950 0.947 0.980 

0.5 

(EX) 

n=40 Equal 0.950 0.424 0.947 0.505 0.946 0.529 0.953 0.384 0.950 0.499 0.954 0.342 0.949 0.437 
 InvVar 0.949 0.417 0.943 0.510 0.943 0.535 0.947 0.426 0.942 0.526 0.945 0.434 0.940 0.530 

n=80 Equal 0.951 0.708 0.948 0.797 0.949 0.815 0.951 0.667 0.950 0.802 0.951 0.615 0.950 0.737 
 InvVar 0.950 0.702 0.947 0.807 0.947 0.820 0.949 0.708 0.947 0.819 0.946 0.721 0.942 0.825 

n=160 Equal 0.951 0.946 0.952 0.979 0.951 0.982 0.951 0.928 0.952 0.981 0.952 0.898 0.951 0.962 
 InvVar 0.950 0.944 0.950 0.981 0.949 0.983 0.950 0.946 0.950 0.983 0.948 0.952 0.947 0.985 

0.7 

(AR) 

 

n=40 Equal 0.951 0.456 0.949 0.637 0.947 0.643 0.953 0.380 0.952 0.558 0.955 0.364 0.950 0.507 
 InvVar 0.949 0.427 0.946 0.639 0.946 0.663 0.948 0.449 0.944 0.649 0.946 0.476 0.939 0.671 

n=80 Equal 0.953 0.754 0.950 0.912 0.946 0.907 0.952 0.666 0.952 0.863 0.954 0.651 0.951 0.822 
 InvVar 0.952 0.717 0.949 0.914 0.946 0.919 0.951 0.744 0.947 0.918 0.947 0.779 0.946 0.931 

n=160 Equal 0.952 0.963 0.950 0.997 0.949 0.997 0.951 0.927 0.950 0.991 0.952 0.917 0.951 0.984 

  InvVar 0.951 0.949 0.949 0.997 0.947 0.997 0.952 0.959 0.950 0.997 0.948 0.971 0.946 0.998 

Note: CR = 2 sided coverage rate of the nominal 95% confidence interval; Power = rejection rate of null hypothesis (when 𝑍𝑤
2 > 𝜒0.95

2 ). 
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5.4 Example 

 A hypothetical placebo-controlled pre-randomized two-period study that makes use of the 

P:P, P:T, and T:T sequence groups is created to illustrate an application of the proposed methods 

and to compare them to counterparts from the MMRM method proposed by Doros et al. (2013). 

The example has 240 subjects which are equally assigned to the three sequence groups.  The 

means and standard deviations of the outcomes are provided in Table 5.6. Assessments of 

outcomes occur at the baseline, end of period 1 and period 2, with a smaller outcome score being 

more beneficial. At period 1, a score less than 33 is considered as a responder to the treatment. 

The means of measurements at baseline 𝑌̅0 are similar across the three sequence groups, with a 

slightly larger mean in the T:T group. There are 31%, 34%, and 39% of responders in the three 

groups respectively, as shown in the 𝑧̅ row, with only 6% more responders in the test treatment 

group than the placebo group. And as the trial continues to the second period, the mean 

measurements at the end of this period for the P:T and T:T groups are almost the same, and the 

P:P group is slightly worse than the P:T or T:T group overall.  

Table 5.6 Mean and Standard Deviation of Outcome 

  Statistics P:P P:T T:T 

𝑌̅0 40.54 40.45 40.80 

SD 5.36 5.57 6.91 

𝑌̅1 35.15 34.92 34.24 

SD 6.17 5.72 6.48 

𝑧̅ 0.31 0.34 0.39 

𝑌̅2 33.98 32.44 32.39 

SD 5.69 5.04 6.13 

 

 The estimates using the proposed unadjusted and adjusted methods as well as the 

MMRM method are shown in Table 5.7. The standard errors of the estimates increase as the 

sample sizes decrease, as Δ̂1 has the smallest standard error and  Δ̂3 has the largest standard error 
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(as it only uses about 30% (i.e., the placebo responders) of the sample size in the P:P and P:T 

groups). The covariable-adjusted method provides similar estimates for Δ̂1, the treatment 

difference at the end of the first period, with a value of 0.95, whereas the unadjusted difference is 

slightly smaller because it does not correct for the slight random imbalance of the measurement 

at baseline. For the period 1 treatment difference only, the p values are 0.271 for the unadjusted 

method, 0.098 for the adjusted method, and 0.115 for the MMRM method, and they fail to 

contradict the null hypothesis of no treatment difference.  

Table 5.7 Estimates of ∆1 to ∆4 

Method Statistics Δ1 Δ2 Δ3 Δ4 (
Δ1

𝑆𝐸
)
2

 p value 

Unadjusted Etimate -0.791 -1.591 -0.677 -1.664 1.211 0.271 

 SE 0.719 1.033 1.504 1.074   

Adjusted Estimate -0.955 -1.585 -0.530 -1.749 2.732 0.098 

 SE 0.578 0.937 1.468 1.022   

MMRM Estimate -0.951 NA -0.111 -1.909 2.488 0.115 

 SE 0.603 NA 1.546 1.051   

 

Importantly, estimates for addressing Δ4 for the difference at the end of the second period 

for the placebo non-responders in period 1 are twice as large as those addressing Δ1, and at least 

three times bigger than  those addressing Δ3, the difference for the placebo responders; and these 

considerations show that the placebo non-responders, when given the test treatment, are more 

informative than the placebo responders. The comparisons between the T:T and P:P sequences at 

the second period, which corresponds to Δ2, also show better improvement than that at the first 

period, and this could possibly contribute to the overall treatment comparison if taken into 

consideration.  
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 As shown in Table 5.8, none of the statistics provided by the unadjusted method succeed 

in contradicting the null hypothesis at the 0.05 level, due to a smaller weighted statistic or a 

slightly larger variance; but the adjusted method, except for the one also accounting for Δ3 with 

equal weight, shows significant results at the 0.05 level, and the MMRM method accounting for 

Δ1 and Δ4 also shows significant p-values.  

Table 5.8 Estimates of Weighted Statistics 

Method 

  

Statistics 

  

Δ1 and Δ4 Δ1, Δ2 and Δ4 Δ1, Δ2 Δ3 and Δ4 

Equal InvVar Equal InvVar Equal InvVar 

Unadjusted Weighted 

estimate 
-1.227 -1.054 -1.349 -1.063 -1.181 -0.944 

 SE/F 0.657 0.607 0.691 0.610 0.697 0.566 

  P value 0.063 0.084 0.052 0.083 0.091 0.096 

Adjusted Weighted 

estimate 
-1.352 -1.150 -1.430 -1.132 -1.205 -1.016 

 SE/F 0.611 0.524 0.636 0.526 0.662 0.495 

  P value 0.028 0.029 0.026 0.032 0.070 0.041 

MMRM Weighted 

estimate 
-1.430 -1.188     

 SE 0.606 0.523     

  P value 0.025 0.031         

SE/F: estimated standard error inflated by the F distribution factor 
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 CHAPTER 6: RANDOMIZATION-BASED ANCOVA FOR INFERENCE IN TWO-WAY 

ENRICHMENT DESIGN 

 Introduction 

 This chapter presents extensions of the methods in Chapter 5 to the two-way enrichment 

design (TED) discussed by Ivanova and Tamura (2011). For this purpose, let 𝑖 = 1, 2, 3, 4 index 

P:P, P:T, T:P, T:T as the sequence groups for test treatment T and placebo P in the two periods. 

For this design, treatment comparisons between T and P during the second period are of 

particular interest for placebo non-responders during the first period (i.e., P:T vs. P:P) and test 

treatment responders during the first period (i.e., T:T vs. T:P).  

 Methods 

 Among 𝑛 patients who are eligible for inclusion in the clinical trial, let 𝑛𝑖 denote the 

number of such patients who are randomly assigned to the 𝑖-th sequence group. Also, the 𝑛 =

∑ 𝑛𝑖
4
𝑖=1  patients in the clinical trial are assumed to represent an essentially infinite target 

population in a sense that is conceptually comparable to a simple random sample with 

replacement. Let 𝑗 = 0, 1, 2 index the baseline, period 1, and period 2 for the clinical trial; and let 

𝑌𝑖𝑗𝑘 denote the observed random response during the 𝑗-th period for the 𝑘-th patient in the 𝑖-th 

sequence group according to a non-negative numeric scale. Let 𝑍𝑖𝑘 be a dichotomous responder 

variable for period 1 such that 𝑍𝑖𝑘 = 1 if the 𝑘-th patient in the 𝑖-th group has favorable response 

during the first period in the sense that (0 ≤ 𝑌𝑖1𝑘 ≤ 𝐿) versus 𝑍𝑖𝑘 = 0 if (𝑌𝑖1𝑘 > 𝐿); 

alternatively, the {𝑍𝑖𝑘} could be based on change (or percent change) from baseline. Let 𝐹𝑖𝑗𝑘 =
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𝑍𝑖𝑘𝑌𝑖𝑗𝑘 so as to equal 𝑌𝑖𝑗𝑘 for 𝑗 = 1, 2 for responders in period 1 and to equal 0 for non-

responders in period 1, and let 𝐺𝑖𝑘 = (𝑌𝑖2𝑘 − 𝐹𝑖2𝑘) = (1 − 𝑍𝑖𝑘)𝑌𝑖2𝑘 so as to equal 𝑌𝑖2𝑘 for period 

2 for period 1 non-responders and to equal 0 for period 1 responders. Let 𝑭𝑖𝑘 =

(𝑌𝑖0𝑘, 𝑌𝑖1𝑘, 𝑍𝑖𝑘 , 𝐹𝑖1𝑘, 𝑌𝑖2𝑘, 𝐹𝑖2𝑘)
′ with the assumption of no missing values for its components. 

Also, the 𝑭𝑖𝑘 could be expanded to include one or more other covariables 𝑿𝑖0𝑘 at baseline, such 

as age (in addition to 𝑌𝑖0𝑘); but the presentation is more straightforward without this extension 

because the same considerations apply to both 𝑌𝑖0𝑘 and 𝑿𝑖0𝑘. 

 Let 𝑭̅𝑖 = (∑ 𝑭𝑖𝑘 𝑛𝑖⁄𝑛𝑖
𝑘=1 ) = (𝑌̅𝑖0, 𝑌̅𝑖1, 𝑍̅𝑖, 𝐹̅𝑖1, 𝑌̅𝑖2, 𝐹̅𝑖2)

′ denote the vector of the means of the 

𝑭𝑖𝑘 for the 𝑖-th group; and let 𝑽̂𝑭̅𝑖
 denote the unbiased estimate for its covariance matrix in (6.1). 

𝑽̂𝑭̅𝑖
= ∑ (𝑭𝑖𝑘 − 𝑭̅𝑖)(𝑭𝑖𝑘 − 𝑭̅𝑖)

′ 𝑛𝑖(𝑛𝑖 − 1)⁄

𝑛𝑖

𝑘=1

               (6.1) 

Let 𝑭̅ = (𝑭̅1
′ , 𝑭̅2

′ , 𝑭̅3
′ , 𝑭̅4

′ )′ and let 𝑽̂𝑭̅ = 𝑫𝒊𝒂𝒈(𝑽̂𝑭̅𝑖
, 𝑽̂𝑭̅2

, 𝑽̂𝑭̅3
, 𝑽̂𝑭̅4

) denote its block diagonal 

covariance matrix so as to account for the statistical independence of the {𝑭̅𝑖} and their 

corresponding estimated covariance matrices 𝑽̂𝑭̅𝑖
. 

6.2.1 Estimates for Treatment Comparisons 

 Let 𝑭̃𝑖 denote the transformation in (6.2) whereby the 𝐹̅𝑖𝑗 for 𝑗 = 1, 2 are replaced by 

𝑭̃𝑖 = (𝑌̅𝑖0, 𝑌̅𝑖1, 𝑍̅𝑖, 𝐹̃𝑖1, 𝑌̅𝑖2, 𝐹̃𝑖2, 𝐺̃𝑖2)
′
                   (6.2) 

 𝐹̃𝑖𝑗 = (𝐹̅𝑖𝑗 𝑍̅𝑖⁄ ) and 𝐺̃𝑖2 = (𝑌̅𝑖2 − 𝐹̅𝑖2) (1 − 𝑍̅𝑖)⁄  is also included. In order to apply the linear 

Taylor series methods discussed in Koch et al. (1977) to produce a consistent estimator 𝑽̂𝑭̃𝑖
 for 

the covariance matrix of 𝑭̃𝑖, the transformation of 𝑭̅𝑖 to 𝑭̃𝑖 is expressed as in (6.3) with 𝑹1, 𝒓, 

𝑭̃𝑖 = 𝒆𝒙𝒑[𝑹2 𝒍𝒐𝒈(𝑹1𝑭̅𝑖 + 𝒓)]                         (6.3) 

and 𝑹2 as shown in (6.4) and with 𝒍𝒐𝒈 (and 𝒆𝒙𝒑) being the operation that transforms a vector to  
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𝑹1 =

[
 
 
 
 
 
 
1  0     0    0  0     0
0  1     0    0  0     0
0  0     1    0  0     0
0  0  − 1  0  0     0
0  0     0    1  0     0
0  0     0    0  1     0
0  0     0    0  1 − 1]

 
 
 
 
 
 

, 𝒓 =

[
 
 
 
 
 
 
0
0
0
1
0
0
0]
 
 
 
 
 
 

, 𝑹2 =

[
 
 
 
 
 
 
1  0     0      0  0  0  0  0
0  1     0      0  0  0  0  0
0  0     1      0  0  0  0  0
0  0 − 1     0  1  0  0  0
0  0     0      0  0  1  0  0
0  0 − 1     0  0  0  1  0
0  0     0 − 1  0  0  0  1]

 
 
 
 
 
 

       (6.4) 

the corresponding vector of natural logarithms (and exponentiated values).  

 It then follows from Koch et al. (1977) that 𝑽̂𝑭̃𝑖
= 𝑳𝑖𝑽̂𝑭̅𝑖

𝑳𝑖
′ for which 𝑳𝑖 =

𝑫𝑭̃𝑖
𝑹2𝑫(𝑹1𝑭̅1+𝒓)

−1 𝑹1 and (𝑹1𝑭̅1 + 𝒓) = (𝑌̅𝑖0, 𝑌̅𝑖1, 𝑍̅𝑖, (1 − 𝑍̅𝑖), 𝐹̅𝑖1, 𝑌̅𝑖2, 𝐹̅𝑖2, (𝑌̅𝑖2 − 𝐹̅𝑖2))
′
 is a 

consistent estimator for the covariance matrix of 𝑭̃𝑖. Accordingly, for 𝑭̃ = (𝑭̃1
′ , 𝑭̃2

′ , 𝑭̃3
′ , 𝑭̃4

′ )
′
, the 

block diagonal matrix 𝑽̂𝑭̃ = 𝑫𝒊𝒂𝒈(𝑽̂𝑭̃1
, 𝑽̂𝑭̃2

, 𝑽̂𝑭̃3
, 𝑽̂𝑭̃4

) is a consistent estimator for the 

corresponding covariance matrix.  

 For treatment comparisons between T and P, the estimators of interest are shown in (6.5), 

𝑐1 = {
𝑛3𝑌̅31 + 𝑛4𝑌̅41

(𝑛3 + 𝑛4)
−

𝑛1𝑌̅11 + 𝑛2𝑌̅21

(𝑛1 + 𝑛2)
} 

𝑐2 = (𝑌̅42 − 𝑌̅12)                                           

𝑐3 = (𝐹̃22 − 𝐹̃21)                                   (6.5) 

𝑐4 = (𝐺̃22 − 𝐺̃21)                                         

𝑐5 = (𝐹̃42 − 𝐹̃32)                                          

𝑐6 = (𝐺̃42 − 𝐺̃32)                                         

and they are linear functions 𝒄 = 𝑪𝑭̃ of 𝑭̃ with the matrix 𝑪 as shown in (6.6) for which 𝜹7,𝑢 is a 

𝑪 =

[
 
 
 
 
 
 
−𝑝1𝜹7,2

′

−𝜹7,5
′

−𝜹7,6
′

−𝜹7,7
′

𝟎7
′

𝟎7
′

   

−𝑝2𝜹7,2
′

𝟎7
′

𝜹7,6
′

𝜹7,7
′

𝟎7
′

𝟎7
′

   

𝑝3𝜹7,2
′

𝟎7
′

𝟎7
′

𝟎7
′

−𝜹7,6
′

−𝜹7,7
′

   

𝑝4𝜹7,2
′

𝜹7,5
′

𝟎7
′

𝟎7
′

𝜹7,6
′

𝜹7,7
′ ]

 
 
 
 
 
 

               (6.6) 
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(7 × 1) vector with 1 in the 𝑢-th position and 𝑝1 = 𝑛1 (𝑛1 + 𝑛2)⁄ , 𝑝2 = (1 − 𝑝1), 𝑝3 =

𝑛3 (𝑛3 + 𝑛4)⁄ , 𝑝4 = (1 − 𝑝3). A consistent estimator for the covariance matrix of 𝒄 is 𝑽̂𝒄 =

𝑪𝑽𝑭̃𝑪
′. For 𝒄 = (𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6)

′, the comparison 𝑐1 pertains to T versus P in the first 

period; the comparison 𝑐2 pertains to T:T versus P:P in period 2; the comparison 𝑐3 pertains to 

P:T versus P:P in period 2 for responders to placebo in period 1; 𝑐4 pertains to P:T versus P:P in 

period 2 for non-responders to placebo in period 1; the comparison 𝑐5 pertains to T:T versus T:P 

in period 2 for responders to T in period 1; and the comparison 𝑐6 pertains to T:T versus T:P for 

non-responders to T in period 1. Univariate test statistics for the overall comparison between T 

and P can be based on weighted linear combinations 𝑐𝑊 = ∑ 𝑤ℎ𝑐ℎ
6
ℎ=1  where 𝒘 =

(𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6)
′ is a vector of weights such at all 𝑤ℎ ≥ 0 and ∑ 𝑤ℎ

6
ℎ=1 = 1. With the 

weights 𝒘, the test statistic for the overall null hypothesis 𝐻0𝒄 for 𝑬𝑨{𝒄} = 0, where 𝑬𝑨{  } 

denotes asymptotic expected value, is 𝑇𝑤,𝒄 = 𝒘′𝒄 (𝒘′𝑽̂𝒄𝒘)
0.5

⁄ . Under 𝐻0𝒄, 𝑇𝑤,𝒄 approximately 

has the normal distribution with mean 0 and variance 1. A (1 − 𝛼) two-sided confidence interval 

based on 𝑐𝑤 can be constructed as [𝑐𝑤 − 𝑍𝛼 2⁄ √𝑣𝑐𝑤
, 𝑐𝑤 + 𝑍𝛼 2⁄ √𝑣𝑐𝑤

 ] where 𝑍𝛼 2⁄  is the 

(1 − 𝛼 2⁄ ) percentile of the standard normal distribution and 𝑣𝑐𝑤
= 𝒘′𝑽̂𝑐𝒘. Since the 

comparisons of principal interest for the two-way enrichment design are 𝑐1, 𝑐4, and 𝑐5, a 

specification of equal weight for them and 0 weight for 𝑐2, 𝑐3, and 𝑐6 is 𝒘3 = ( (1/3), 0,

0, (1/3), (1/3), 0). Alternatively, the use of other weights for other subsets for 𝒄 is passible, 

with the scope including both equal weights and inverse covariance matrix weights.  

6.2.2 Randomization-Based Covariance Adjusted Estimators 

 The constraints 𝒄0 = 𝑪0𝑭̃ with 𝑬𝑨{𝒄0} = 𝟎 regardless of whether the previously noted 

overall null hypothesis 𝐻0 applies are shown in (6.7) with the matrix 𝑪0 shown in (6.8).  
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𝒄0 =

[
 
 
 
 
 
 
 
 
 
 
(𝑌̅20 − 𝑌̅10)

(𝑌̅30 − 𝑌̅10)

(𝑌̅40 − 𝑌̅10)

(𝑌̅21 − 𝑌̅11)

(𝑌̅41 − 𝑌̅31)

(𝑍̅2 − 𝑍̅1)

(𝑍̅4 − 𝑍̅3)

(𝐹̃21 − 𝐹̃11)

(𝐹̃41 − 𝐹̃31)]
 
 
 
 
 
 
 
 
 
 

                        (6.7) 

𝑪0 =

[
 
 
 
 
 
 
 
 
 
 
−𝜹7,1

′

−𝜹7,1
′

−𝜹7,1
′

−𝜹7,2
′

𝟎7
′

−𝜹7,3
′

𝟎7
′

−𝜹7,4
′

𝟎7
′

   

𝜹7,1
′

𝟎7
′

𝟎7
′

𝜹7,2
′

𝟎7
′

𝜹7,3
′

𝟎7
′

𝜹7,4
′

𝟎7
′

   

𝟎7
′

𝜹7,1
′

𝟎7
′

𝟎7
′

−𝜹7,2
′

𝟎7
′

−𝜹7,3
′

𝟎7
′

−𝜹7,4
′

   

𝟎7
′

𝟎7
′

𝜹7,1
′

𝟎7
′

𝜹7,2
′

𝟎7
′

𝜹7,3
′

𝟎7
′

𝜹7,4
′

]
 
 
 
 
 
 
 
 
 
 

     (6.8) 

 Let 𝒄+ = [𝒄′, 𝒄0
′ ] = [𝑪′, 𝑪0

′ ]′ = 𝑪+𝑭̃ denote the combined set of comparisons 𝒄 pertaining 

to 𝐻0 and constraints 𝒄0. The estimated covariance structure for 𝒄+ is 𝑽̂𝒄+
= 𝑪+𝑽̂𝑭̃𝑪+. Since 

𝑬𝑨{𝒄0} = 𝟎 regardless of whether 𝐻0 applies, randomization-based covariance adjustment for 𝒄 

with respect to the constraints 𝒄0 is invoked by fitting the linear model in (6.9) by weighted least 

𝑬𝑨{𝒄+} = [
𝑰6

𝟎9,6
] 𝒃 = 𝑨𝒃                    (6.9) 

squares with weights based on 𝑽̂𝒄+
 and with “=̂” meaning “is estimated by”. 

 Accordingly, 𝒃 = (𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6)
′ are covariance adjusted counterparts of 𝒄. More 

specifically, 𝒃 = (𝑨′𝑽̂𝒄+
−1𝑨)

−1
𝑨′𝑽̂𝒄+

−1𝒄+. Also, a consistent estimator for the covariance matrix of 

𝒃 is 𝑽̂𝒃 = (𝑨′𝑽̂𝒄+
−1𝑨)

−1
. Covariance adjusted test statistics for 𝐻0 can be based on weighted 

linear combinations 𝒃𝑤 = ∑ 𝑤ℎ𝑏ℎ
6
ℎ=1  in ways similar to those discussed for 𝒄 in Section 2. In 
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this regard, test statistics based on 𝒃𝑤 can have better power than those based on 𝒄𝑤 because of 

their smaller variance via the structure shown in (6.10) for 𝑽̂𝒃. 

𝑽̂𝒃 = 𝑽̂𝒄 − (𝑪𝑽̂𝑭̃𝑪0
′ )(𝑪0𝑽̂𝑭̃𝑪0

′ )
−1

(𝑪0𝑽̂𝑭̃𝑪
′)          (6.10) 
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 CHAPTER 7: RANDOMIZATION-BASED ANCOVA FOR INFERENCE IN 

BILATERAL DESIGN 

 Introduction 

 This chapter presents adaptions of the methods in Chapter 6 to the bilateral design in 

clinical settings such as dermatology whereby patients receive alternative treatments on opposite 

sides of their bodies. For this purpose, let 𝑖 = 1, 2, 3, 4 index P:P, P:T, T:P, T:T as the groups for 

test treatment T and placebo P on the left and right sides. For this design, treatment comparisons 

between T and P on one side are of particular interest for placebo non-responders on the opposite 

side and for test treatment responders on the opposite side. 

 Methods 

 Among 𝑛 patients who are eligible for inclusion in the clinical trial, let 𝑛𝑖 denote the 

number of such patients who are randomly assigned to the 𝑖-th group. Also, the 𝑛 = ∑ 𝑛𝑖
4
𝑖=1  

patients in the clinical trial are assumed to represent an essentially infinite target population in a 

sense that is conceptually comparable to a simple random sample with replacement. Let 𝑗 = 1, 2 

index the left and right sides for a patient; and let 𝑌𝑖𝑗𝑘 denote the observed random response for 

the 𝑗-th side of the 𝑘-th patient in the 𝑖-th group according to a non-negative numerical scale; and 

let 𝑌𝑖𝑗𝑘0 denote the baseline counterpart of 𝑌𝑖𝑗𝑘. Let 𝑍𝑖𝑗𝑘 be a dichotomous responder variable for 

the 𝑗-th side of the 𝑘-th patient in the 𝑖-th group such that 𝑍𝑖𝑗𝑘 = 1 corresponds to favorable 

response in the sense that (0 ≤ 𝑌𝑖𝑗𝑘 ≤ 𝐿) versus 𝑍𝑖𝑗𝑘 = 0 if (𝑌𝑖𝑗𝑘 > 0); alternatively, the 𝑍𝑖𝑗𝑘 

could be based on change (or percent change) from baseline. Let 𝐹𝑖𝑗𝑘 = 𝑍𝑖𝑗′𝑘𝑌𝑖𝑗𝑘 for 𝑗′ ≠ 𝑗 so as 
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to equal 𝑌𝑖𝑗𝑘 for responders on the 𝑗′-th side and to equal 0 for non-responders on the 𝑗′-th side; 

and let 𝐺𝑖𝑗𝑘 = (𝑌𝑖𝑗𝑘 − 𝐹𝑖𝑗𝑘) = (1 − 𝑍𝑖𝑗′𝑘)𝑌𝑖𝑗𝑘 so as to equal 𝑌𝑖𝑗𝑘 for non-responders on the 𝑗′-th 

side and to equal 0 for responders on the 𝑗′-th side. Let 𝑭𝑖𝑘 =

(𝑌𝑖1𝑘0, 𝑌𝑖1𝑘, 𝑍𝑖1𝑘, 𝐹𝑖1𝑘 , 𝑌𝑖2𝑘0, 𝑌𝑖2𝑘, 𝑍𝑖2𝑘, 𝐹𝑖2𝑘)
′ with the assumption of no missing values for its 

components. Also, the 𝑭𝑖𝑘 could be expanded to include one or more covariables 𝑿𝑖0𝑘 at 

baseline, such as age (in addition to 𝑌𝑖𝑗𝑘0); but the presentation is more straightforward without 

this extension because the same considerations apply to both the 𝑌𝑖𝑗𝑘0 and 𝑿𝑖0𝑘. 

 Let 𝑭̅𝑖 = (∑ 𝑭𝑖𝑘
𝑛𝑖
𝑘=1 ) = (𝑌̅𝑖1∗0, 𝑌̅𝑖1, 𝑍̅𝑖1, 𝐹̅𝑖1, 𝑌̅𝑖2∗0, 𝑌̅𝑖2, 𝑍̅𝑖2, 𝐹̅𝑖2)

′ denote the vector of means 

of the 𝑭𝑖𝑘 for the 𝑖-th group; and let 𝑽̂𝑭̅𝑖
 denote the unbiased estimator for its covariance matrix 

in (7.1).  

𝑽̂𝑭̅𝑖
= ∑ (𝑭𝑖𝑘 − 𝑭̅𝑖)(𝑭𝑖𝑘 − 𝑭̅𝑖)

′ 𝑛𝑖(𝑛𝑖 − 1)⁄

𝑛𝑖

𝑘=1

           (7.1) 

 Let 𝑭̅ = (𝑭̅1
′ , 𝑭̅2

′ , 𝑭̅3
′ , 𝑭̅4

′ )′ and let 𝑽̂𝑭̅ = 𝑫𝒊𝒂𝒈(𝑽̂𝑭̅1
, 𝑽̂𝑭̅2

, 𝑽̂𝑭̅3
, 𝑽̂𝑭̅4

) denote its block 

diagonal estimated covariance matrix so as to account for the statistical independence of the {𝑭̅𝑖} 

and their corresponding estimated covariance matrices 𝑽̂𝑭̅𝑖
. 

7.2.1 Estimates for Treatment Comparisons 

 Let 𝑭̃𝑖 denote the transformation in (7.2) whereby the 𝐹̅𝑖𝑗 are replaced by 

𝑭̃𝑖 = (𝑌̅𝑖1∗0, 𝑌̅𝑖1, 𝑍̅𝑖1, 𝐹̃𝑖1, 𝐺̃𝑖1,𝑌̅𝑖2∗0, 𝑌̅𝑖2, 𝑍̅𝑖2, 𝐹̃𝑖2, 𝐺̃𝑖2)
′
                   (7.2) 

𝐹̃𝑖𝑗 = (𝐹̅𝑖𝑗 𝑍̅𝑖𝑗′⁄ ) and the 𝐺̃𝑖𝑗 = (𝑌̅𝑖𝑗 − 𝐹̅𝑖𝑗) (1 − 𝑍̅𝑖𝑗′)⁄  are also included. In order to apply the 

linear Taylor series methods discussed in Koch et al. (1977) to produce a consistent estimator 

𝑽̂𝑭̃𝑖
 for the covariance matrix of 𝑭̃𝑖, the transformation of 𝑭̅𝑖 to 𝑭̃𝑖 is expressed as in (7.3) with 

𝑭̃𝑖 = 𝒆𝒙𝒑[𝑹2 𝒍𝒐𝒈(𝑹1𝑭̅𝑖 + 𝒓)]                              (7.3) 



 

108 
  

𝑹1, 𝒓, and 𝑹2 as shown in (7.4) and with 𝒍𝒐𝒈 (and 𝒆𝒙𝒑) being the operation that transforms a  

𝑹1 =

[
 
 
 
 
 
 
 
 
 
 
 
1
0
0
0
0
0
0
0
0
0
0
0

  

0
1
0
0
0
1
0
0
0
0
0
0

  

0
0
1

−1
0
0
0
0
0
0
0
0

 

0
0
0
0
1

−1
0
0
0
0
0
0

  

0
0
0
0
0
0
1
0
0
0
0
0

   

0
0
0
0
0
0
0
1
0
0
0
1

  

0
0
0
0
0
0
0
0
1

−1
0
0

 

0
0
0
0
0
0
0
0
0
0
1

−1]
 
 
 
 
 
 
 
 
 
 
 

, 𝒓 =

[
 
 
 
 
 
 
 
 
 
 
 

 

0
0
0
1
0
0
0
0
0
1
0
0

 

]
 
 
 
 
 
 
 
 
 
 
 

, 𝑹2 =

[
 
 
 
 
 
 
 
 
 
1
0
0
0
0
0
0
0
0
0

  

0
1
0
0
0
0
0
0
0
0

  

0
0
1
0
0
0
0
0

−1
0

 

0
0
0
0
0
0
0
0
0

−1

  

0
0
0
1
0
0
0
0
0
0

   

0
0
0
0
1
0
0
0
0
0

  

0
0
0
0
0
1
0
0
0
0

  

0
0
0
0
0
0
1
0
0
0

  

0
0
0

−1
0
0
0
1
0
0

  

0
0
0
0

−1
0
0
0
0
0

  

0
0
0
0
0
0
0
0
1
0

  

0
0
0
0
0
0
0
0
0
1]
 
 
 
 
 
 
 
 
 

   (7.4) 

vector to the corresponding vector of natural logarithms (and exponentiated values). It then 

follows that from Koch et al. (1977) that 𝑽̂𝑭̃𝑖
= 𝑳𝑖𝑽̂𝑭̅𝑖

𝑳𝑖
′ for which 𝑳𝑖 = 𝑫𝑭̃𝑖

𝑹2𝑫(𝑹1𝑭̅1+𝒓)
−1 𝑹1 and 

(𝑹1𝑭̅1 + 𝒓) = ( 𝑌̅𝑖1∗0,  𝑌̅𝑖1, 𝑍̅𝑖1, (1 − 𝑍̅𝑖1), 𝐹̅𝑖1, (𝑌̅𝑖1 − 𝐹̅𝑖1), 𝑌̅𝑖2∗0, 𝑌̅𝑖2, 𝑍̅𝑖2, (1 − 𝑍̅𝑖2), 𝐹̅𝑖2, (𝑌̅𝑖2 −

𝐹̅𝑖2))
′
 is a consistent estimator for the covariance matrix of 𝑭̃𝑖. Accordingly, for 𝑭̃ =

(𝑭̃1
′ , 𝑭̃2

′ , 𝑭̃3
′ , 𝑭̃4

′ )
′
, the block diagonal matrix 𝑽̂𝑭̃ = 𝑫𝒊𝒂𝒈(𝑽̂𝑭̃1

, 𝑽̂𝑭̃2
, 𝑽̂𝑭̃3

, 𝑽̂𝑭̃4
) is a consistent 

estimator for the corresponding covariance matrix. 

 For treatment comparisons between T and P, the estimators of interest are shown in (7.5), 

𝒄 =

[
 
 
 
 
 
 
 
𝑐1

𝑐2

𝑐3

𝑐4

𝑐5

𝑐6

𝑐7

𝑐8]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
(𝐹̃31 − 𝐹̃11)

(𝐺̃31 − 𝐺̃11)

(𝐹̃41 − 𝐹̃21)

(𝐺̃41 − 𝐺̃21)

(𝐹̃22 − 𝐹̃12)

(𝐺̃22 − 𝐺̃12)

(𝐹̃42 − 𝐹̃32)

(𝐺̃42 − 𝐺̃32)]
 
 
 
 
 
 
 
 
 
 

              (7.5) 

and they are linear functions 𝒄 = 𝑪𝑭̃ of 𝑭̃ with the matrix 𝑪 as shown in (7.6) where 𝜹10,𝑢 is a 
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𝑪 =

[
 
 
 
 
 
 
 
 
−𝜹10,4

′

−𝜹10,5
′

𝟎10
′

𝟎10
′

−𝜹10,9
′

−𝜹10,10
′

𝟎10
′

𝟎10
′

  

𝟎10
′

𝟎10
′

−𝜹10,4
′

−𝜹10,5
′

𝜹10,9
′

𝜹10,10
′

𝟎10
′

𝟎10
′

  

𝜹10,4
′

𝜹10,5
′

𝟎10
′

𝟎10
′

𝟎10
′

𝟎10
′

−𝜹10,9
′

−𝜹10,10
′

  

𝟎10
′

𝟎10
′

𝜹10,4
′

𝜹10,5
′

𝟎10
′

𝟎10
′

𝜹10,9
′

𝜹10,10
′ ]

 
 
 
 
 
 
 
 

          (7.6) 

(10 × 1) vector with a 1 in the 𝑢-th position. 

 A consistent estimate for the covariance matrix of 𝒄 is 𝑽̂𝒄 = 𝑪𝑽𝑭̃𝑪
′. For 𝒄 =

(𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5, 𝑐6, 𝑐7, 𝑐8)
′, the comparison 𝑐1 and 𝑐2 respectively pertain to T versus P on the 

left for responders and non-responders to P on the right; the comparisons 𝑐5 and 𝑐6 respectively 

pertain to T versus P on the right for responders and non-responders to P on the left; the 

comparisons 𝑐3 and 𝑐4 respectively pertain to T versus P on the left for responders and non-

responders to T on the right; and the comparisons 𝑐7 and 𝑐8 respectively pertain to T versus P on 

the right for responders and non-responders to T on the left. Univariate test statistics for the 

overall comparison between T and P can be based on weighted linear combinations 𝑐𝑤 =

∑ 𝑤ℎ𝑐ℎ
8
ℎ=1  where 𝒘 = (𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6, 𝑤7, 𝑤8)

′ is a vector of weights such at all 𝑤ℎ ≥ 0 

and ∑ 𝑤ℎ
8
ℎ=1 = 1. With the weights 𝒘, the test statistic for the overall null hypothesis 𝐻0𝒄 for 

𝑬𝑨{𝒄} = 0, where 𝑬𝑨{  } denotes asymptotic expected value, is 𝑇𝑤,𝒄 = 𝒘′𝒄 (𝒘′𝑽̂𝒄𝒘)
0.5

⁄ . Under 

𝐻0𝒄, 𝑇𝑤,𝒄 approximately has the normal distribution with mean 0 and variance 1. A (1 − 𝛼) two-

sided confidence interval based on 𝑐𝑤 can be constructed as [𝑐𝑤 − 𝑍𝛼 2⁄ √𝑣𝑐𝑤
, 𝑐𝑤 + 𝑍𝛼 2⁄ √𝑣𝑐𝑤

 ] 

where 𝑍𝛼 2⁄  is the (1 − 𝛼 2⁄ ) percentile of the standard normal distribution and 𝑣𝑐𝑤
= 𝒘′𝑽̂𝑐𝑤

𝒘. 

Since the comparisons of principal interest for the bilateral design are 𝑐2, 𝑐3, 𝑐6, and 𝑐7, a 

specification of equal weight for them and 0 weight for 𝑐1, 𝑐4, 𝑐5, and 𝑐8 is 𝒘4 =
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(0, 0.25, 0.25, 0, 0, 0.25, 0.25, 0). Alternatively, the use of other weights for other subsets for 𝒄 is 

passible, with the scope including both equal weights and inverse covariance matrix weights.  

7.2.2 Randomization-Based Covariance Adjusted Estimators 

The constraints 𝒄0 = 𝑪0𝑭̃ with 𝑬𝑨{𝒄0} = 𝟎 regardless of whether the previously noted 

overall null hypothesis 𝐻0 applies are shown in (7.7) with the matrix 𝑪0 shown in (7.8), although 

𝒄0 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(𝑌̅21∗0 − 𝑌̅11∗0)

(𝑌̅31∗0 − 𝑌̅11∗0)

(𝑌̅41∗0 − 𝑌̅11∗0)

(𝑌̅21 − 𝑌̅11)

(𝑍̅21 − 𝑍̅11)

(𝑌̅41 − 𝑌̅31)

(𝑍̅41 − 𝑍̅31)

(𝑌̅22∗0 − 𝑌̅12∗0)

(𝑌̅32∗0 − 𝑌̅12∗0)

(𝑌̅42∗0 − 𝑌̅12∗0)

(𝑌̅32 − 𝑌̅12)

(𝑍̅32 − 𝑍̅12)

(𝑌̅42 − 𝑌̅22)

(𝑍̅42 − 𝑍̅22) ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                 (7.7) 

𝑪0 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
−𝜹10,1

′

−𝜹10,1
′

−𝜹10,1
′

−𝜹10,2
′

−𝜹10,3
′

𝟎10
′

𝟎10
′

−𝜹10,6
′

−𝜹10,6
′

−𝜹10,6
′

−𝜹10,7
′

−𝜹10,8
′

𝟎10
′

𝟎10
′

  

𝜹10,1
′

𝟎10
′

𝟎10
′

𝜹10,2
′

𝜹10,3
′

𝟎10
′

𝟎10
′

𝜹10,6
′

𝟎10
′

𝟎10
′

𝟎10
′

𝟎10
′

−𝜹10,7
′

−𝜹10,8
′

  

𝟎10
′

𝜹10,1
′

𝟎10
′

𝟎10
′

𝟎10
′

−𝜹10,2
′

−𝜹10,3
′

𝟎10
′

𝜹10,6
′

𝟎10
′

𝜹10,7
′

𝜹10,8
′

𝟎10
′

𝟎10
′

   

𝟎10
′

𝟎10
′

𝜹10,1
′

𝟎10
′

𝟎10
′

𝜹10,2
′

𝜹10,3
′

𝟎10
′

𝟎10
′

𝜹10,6
′

𝟎10
′

𝟎10
′

𝜹10,7
′

𝜹10,8
′

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

         (7.8) 
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this specification does assume that the treatment on the left side does not affect the response on 

the right side, and vice versa. Let 𝒄+ = [𝒄′, 𝒄0
′ ] = [𝑪′, 𝑪0

′ ]′𝑭̃ = 𝑪+𝑭̃ denote the combined set of 

comparisons 𝒄 pertaining to 𝐻0 and constraints 𝒄0. The estimated covariance structure for 𝒄+ is 

𝑽̂𝒄+
= 𝑪+𝑽̂𝑭̃𝑪+. Since 𝑬𝑨{𝒄0} = 𝟎, randomization-based covariance adjustment for 𝒄 with 

respect to the constraints 𝒄0 is invoked by fitting the linear model in (7.9) by weighted least 

𝑬𝑨{𝒄+} = [
𝑰8

𝟎14,8
] 𝒃 = 𝑨𝒃                    (7.9) 

squares with weights based on 𝑽̂𝒄+
−1 and with “=̂” meaning “is estimated by”. 

 Accordingly, 𝒃 = (𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6, 𝑏7, 𝑏8)
′ are covariance adjusted counterparts of 𝒄. 

More specifically, 𝒃 = (𝑨′𝑽̂𝒄+
−1𝑨)

−1
𝑨′𝑽̂𝒄+

−1𝒄+. Also, a consistent estimator for the covariance 

matrix of 𝒃 is 𝑽̂𝒃 = (𝑨′𝑽̂𝒄+
−1𝑨)

−1
. Covariance adjusted test statistics for 𝐻0 can be based on 

weighted linear combinations 𝒃𝑤 = ∑ 𝑤ℎ𝑏ℎ
8
ℎ=1  in ways similar to those discussed for 𝒄 in 

Section 7.2. In this regard, test statistics based on 𝒃𝑤 can have better power than those based on 

𝒄𝑤 because of their smaller variance via the structure shown in (7.10) for 𝑽̂𝒃 (Kawaguchi et al., 

2009). 

𝑽̂𝒃 = 𝑽̂𝒄 − (𝑪𝑽̂𝑭̃𝑪0
′ )(𝑪0𝑽̂𝑭̃𝑪0

′ )
−1

(𝑪0𝑽̂𝑭̃𝑪
′)          (7.10) 
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