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ABSTRACT 
BRONWYN MEI GUNN: Identification of host and viral factors of arthritic alphavirus 

pathogenesis: the role of mannose binding lectin and the viral N-linked glycans 
(Under the direction of Mark T. Heise) 

 

Arthritogenic alphaviruses such as Ross River virus (RRV) and chikungunya virus 

are mosquito-borne viruses that cause epidemics of debilitating myositis and polyarthritis 

in humans in various areas around the world. Studies conducted in a mouse model of RRV-

induced disease have demonstrated a critical role for the inflammatory response in the 

development of disease. In particular, the host complement system contributes significantly 

to damage within target tissues through activation of CR3-bearing inflammatory cells. 

However, the precise mechanism and ligands leading to complement activation and disease 

following RRV infection are not known. In these studies, we have identified critical roles 

for the host innate immune protein mannose binding lectin (MBL) and the viral N-linked 

glycans in mediating complement activation and disease following RRV infection.  Using 

mice deficient in MBL, we demonstrated that the MBL activation pathway of the host 

complement system is the primary pathway required for complement activation and disease 

following infection. MBL recognizes and binds to terminal carbohydrates, such as mannose 

found on glycosylated viral proteins or on infected cells. The RRV E2 envelope 

glycoprotein contains two N-linked glycosylation sites that are glycosylated with a 

combination of high mannose and complex glycans when replicating in mammalian cells. 

We hypothesized that MBL recognizes the E2 N-linked glycans to activate the complement 

system, leading to disease. Using a panel of RRV mutants lacking one or more envelope 
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glycans, we have found that the RRV E2 N-linked glycans contribute to MBL binding to 

RRV infected cells and development of disease. Viruses lacking either E2 N-linked 

glycosylation sites cause reduced disease in mice, while a virus lacking both sites causes 

very mild disease. In addition, the role of the E2 glycans is independent of replication 

within host tissues and recruitment of inflammatory cells. Rather, the E2 glycans were 

required for MBL deposition and complement activation within target tissues in vivo. 

These results suggest that interactions between the viral N-linked glycans and the MBL 

pathway play a central role in development of severe alphavirus-induced arthritis and may 

be an effective target for therapeutic treatment in patients infected with RRV.  
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CHAPTER ONE:  
INTRODUCTION 

	  
 

1.1. Alphaviruses. 

Alphavirus classification.  

The alphavirus genus is part of the Togaviridae family of enveloped viruses that 

have a single stranded positive sense RNA genome. The Togavirus family is divided into 

two groups, the alphaviruses and the rubiviruses, and the family was initially named for 

their members’ cloak-like appearance under the electron microscope; the word “Toga” is 

Latin for “cloak”. To date, over forty alphaviruses have been identified, many of which 

have been associated with human disease, and can be found on all continents of the globe 

and in a wide range of hosts (78). Rubella virus is the only rubivirus to date, and is an 

important childhood human pathogen. The two genus of Togaviridae are further defined 

by their similar genomic organization with the four nonstructural genes at the 5’ end of 

the genome followed by the structural genes whose expression is driven from a 

subgenomic promoter in the latter third at the 3’ end of the genome. While alphaviruses 

and rubiviruses share similar genome organization and virion structure, they differ 

significantly in replication strategies, types of disease they cause, as well as how they are 

transmitted. Rubella virus is transmitted human to human through aerosol droplets and 

causes a flu-like disease that is characterized by an extensive rash (101), whereas 

alphaviruses are transmitted by arthropod vectors from small mammals to humans and 

are associated with arthritis/myositis or encephalitis (78).  
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Of the forty alphaviruses that have been described, twenty-nine cause human 

disease and are classified into seven distinct antigenic and genetic groups (reviewed in 

(78, 242)). These groups have been classified based on sequence similarity within the E1 

glycoprotein as well as cross-reactivity of sera and members of each complex generally 

share similar disease characteristics (175). The Semliki Forest (SF) complex includes 

many of the arthritic alphaviruses such as the namesake Semliki Forest virus (SFV), Ross 

River virus (RRV), chikungunya virus (CHIKV), and O’nyong nyong virus (ONNV). 

The VEE and EEE complexes encompasses encephalitic viruses such as Venezuelan 

equine encephalitis virus (VEEV), eastern equine encephalitis virus (EEEV), and the 

WEE antigenic complex includes viruses that are associated with both arthritic and 

encephalitic viruses such as Sindbis virus (SINV), and western equine encephalitis virus 

(WEEV). Many aspects of alphavirus biology have been elucidated using two prototype 

alphaviruses: SINV of the WEE antigenic complex and SFV of the SF antigenic complex. 

While there are some differences between these viruses and the other alphaviruses such 

as RRV and CHIKV, the basic biology of replication and structure learned in SINV and 

SFV studies applies to the replication all alphaviruses.  

Of note, alphaviruses were originally categorized with the Flaviviridae family of 

viruses as Group A and B arboviruses, respectively, based upon similarities in 

transmission and disease (125). However, once viruses from both groups were sequenced, 

it became clear that the genome organization was too different to classify them together. 

However, since the disease and transmission of alphaviruses and flaviviruses are similar, 

it has been useful to compare and contrast aspects of disease pathogenesis and interaction 

with both mosquito and mammalian host proteins between the two groups of viruses.  
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Geographic distribution and epidemics. 

Alphaviruses have a global distribution and can be found on all continents. While 

not all alphaviruses are associated with disease pathology, the ones that do cause disease 

are roughly separated into two general groups: the Old World and the New World 

alphaviruses. This grouping is based both on the type of disease associated with each 

virus and geographic location. The Old World alphaviruses are found mostly in Africa, 

Asia, and Oceania and tend to cause polyarthritis and arthralgia in humans. New World 

alphaviruses are found in the Americas and are more closely associated with encephalitis.  

The New World viruses include EEEV, WEEV, and VEEV, and cause 

encephalitis in humans and horses in various regions around the Americas. EEEV has 

been found in parts of eastern North America, as well as parts of Central America and is 

particularly virulent in humans, causing up to 70% mortality in symptomatic cases, and 

the horse fatality rate is 80-90% (42, 206). WEEV is found in western parts of the North 

America and South America, and is reportedly aerosol transmitted as well as mosquito-

borne and has a 10% human fatality rate (78, 180). VEEV has been identified in the 

tropical regions of South America and epizootic outbreaks have involved over 75, 000 

people (185).  

Old world alphaviruses, including CHIKV, RRV, SINV, and ONNV, are present 

throughout parts of Africa and Oceania and are associated with large-scale outbreaks of 

arthritis, arthralgia, myalgia, and rash. CHIKV was first isolated in modern day Tanzania, 

and is currently found throughout India, Southeast Asia, and sub-Saharan Africa, and 

most recently has been associated with epidemic in areas surrounding the Indian Ocean 

that affected upwards of 6 million people (27). ONNV has been found in regions in East 



	   4	  

Africa and caused an epidemic of rash and fever involving 2 million people in 1959 (247). 

RRV is found in Oceania, and is endemic within many areas of Australia and throughout 

Papua New Guinea and the surrounding islands (86). Outbreaks of RRV-induced disease 

have occurred on coastal areas of Western Australia, in the southern states of New South 

Wales and Victoria, as well as within Papua New Guinea, Fiji, and the Cook and 

Solomon Islands affecting over 50, 000 people. SINV exhibits a broad geographic 

distribution and can be found in Northern Europe, Africa, Southeast Asia, and Oceania 

(78).  

The worldwide distribution of alphaviruses that are associated with human disease 

and the ability to cause periodic and explosive outbreaks involving millions of people 

highlight the importance of understanding how these viruses cause disease in order to 

design a vaccine, develop therapeutics, as well as develop appropriate measures to 

prevent infection and future epidemics.  

 

Transmission of alphaviruses. 

Alphaviruses are generally maintained in an enzootic cycle where the viruses 

transmit between their arthropod vectors and a reservoir host organism, usually birds, 

small mammals, or primates. The reservoir hosts vary for the different alphaviruses, but 

generally support high levels of viral replication and viremia that allow for infection of 

the competent arthropod species. The arthropods, typically mosquitoes, become 

persistently infected with the virus, and are capable of transmitting virus through their 

saliva 2-7 days after initial infection (206). Aedes and Culex species are the primary 

enzootic vectors for most alphaviruses, and certain species of Aedes such as Ae. aegypti 
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and Ae. albopictus, as well as the Anopheles mosquitoes can act as additional vectors 

during epidemics (reviewed in (242)).  

Human disease typically occurs through a spillover effect when humans come 

into contact with the infected mosquito or arthropod. Seasonal outbreaks of alphavirus-

induced disease have been noted and are well documented with RRV in Australia, and 

alphaviruses can also enter into an urban epidemic cycle where viruses can transmit 

between humans and the mosquitoes without a reservoir host. This is thought to have 

occurred in nearly every large-scale epidemic of alphavirus-induced disease.  

The factors that affect the emergence of disease to bring on an epidemic can be 

both environmental and genetic. Climatic events, such as unusually heavy rainfall, can 

alter the mosquito vector host range and bring epidemic mosquito vectors into endemic 

regions (240). Genetic changes within the virus genome also play a role in the epidemic 

potential of the virus. The evolution rate of alphaviruses is approximately 1 x 104 

bases/year, which is slower than some other RNA viruses due to the fact that alphaviruses 

are maintained in two disparate hosts (241). Alphaviruses can acquire changes in the 

genome that confer an ability to replicate within an additional mosquito vector or allow 

for more efficient replication within a host organism. Such a change was observed during 

the most recent CHIKV epidemic where a mutation in the E1 glycoprotein allowed for 

spread of the virus from an additional mosquito vector, Ae. albopictus (227).  

 

Clinical disease and pathology of arthritic alphaviruses: Ross River virus.  

Reports of seasonal epidemics of joint swelling and rashes began as early as 1928 

in Australia, but the etiological agent was not identified as RRV until about 1959 (46). 
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There had been additional epidemics noted prior to 1959 throughout the Northern 

Territory, Queensland, and Papua New Guinea during the Second World War, but it was 

not until an epidemic in Murray Valley in Southeast Australia in 1956 that researchers 

began to suspect that the disease was caused by an arbovirus. CHIKV had recently been 

associated with an outbreak of acute virus polyarthritis in Tanganyika (Tanzania) in 

Africa that shared some similarities with the Australian epidemic. The Australian patient 

sera were assayed for cross-reactivity to other group A arbovirus including SFV and 

CHIKV. While some cross-reactivity was observed, Shope and Anderson concluding that 

the outbreak in Australia was due to a yet undescribed group A arbovirus (214). Doherty 

et al then isolated a virus from a pool of trapped Aedes vigilax mosquitoes by the Ross 

River in Northern Queensland, which reacted strongly with patient sera (46). The virus 

isolated was formally named Ross River virus, and the strain isolated was dubbed T48 

(Townsville and mosquito pool 48). T48 is the type strain of RRV and is the strain used 

in the laboratory to study RRV.  

 The largest outbreak of RRV occurred in 1979-1980 when RRV spread to islands 

in the South Pacific, including Fiji, Samoa, and the Cook Islands. An estimated 50, 000 

people throughout the region were infected and presented with arthritis and/or arthralgia. 

RRV was isolated from several patients by several different research groups (1, 191, 225) 

confirming that the epidemic was associated with RRV. The sudden outbreak of infection 

in the region is thought to be due to high levels of viremia in many of the affected 

individuals evaluated (191), and RRV transmission throughout the region was likely 

sustained through a human-mosquito-human transmission cycle.  
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 Annual seasonal outbreaks of RRV-induced disease occur in Australia, most 

notably in Queensland, resulting in about 5000 reported cases of RRV-associated 

polyarthritis each year (86). Incidence of infection correlates with the presence of the 

mosquito vector and most of the infections reported occur in the late summer-early fall. 

The reservoir hosts for RRV are thought to be marsupials such as wallabies and 

kangaroos as well as fruit bats (86).  RRV has been isolated from about 42 different types 

of mosquito but is transmitted to humans primarily Ae. vigilax and Ae. camptorhynchus 

on the coast, and Culex annulirostris in the inland areas (194).  

The incubation period for RRV in humans is thought to be about 7 to 9 days 

following infection by mosquito bite (56). Joint pain and arthritis affecting the ankles, 

wrist, fingers, and knees are the most common symptom in RRV-induced disease in 

humans, and patients have also reported pain in the back, neck, and elbows (86). Myalgia 

is another common symptom reported in patients, and about half of infected patients 

develop a macropapular rash that can cover the torso and limbs. Many patients develop a 

fever, and experience fatigue and malaise that can last for several weeks to months. Less 

common symptoms of RRV-disease include headache, splenomegaly, hematuria, 

photophobia, and sore throat. The disease symptoms can generally last up to three weeks, 

with the joint pain and swelling most severe in the first week, and many patients are 

incapacitated by the debilitating pain and are unable to work during that time. 

Furthermore, many patients continue to have chronic joint pain and arthritic symptoms 

for several months after initial infection (86).  

Analysis of synovial aspirates from RRV-infected patients revealed the presence 

of inflammatory cells within affected joints. In particular, monocytes, macrophages and 
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natural killer (NK) cells were found in the synovial fluid, and the NK cells had equivalent 

cytotoxic activity as those derived from the periphery (91). Activated macrophages 

within the synovium were observed (32, 57), and subsequent studies in mouse models of 

RRV-induced disease demonstrate that the activated macrophages play a critical role in 

development of clinical disease signs (135). In contrast to other arthritic diseases where 

disease is driven in part by immune complexes with antigen, the presence of immune 

complexes was not observed within the synovium of affected joints from RRV-infected 

patients (57, 58).  

 

Clinical disease and pathology of arthritic alphaviruses: Chikungunya virus. 

Chikungunya virus (CHIKV) was first isolated from a patient in Tanganyika, 

which is present day Tanzania, in the early 1950s (188), however it is very likely that the 

epidemics of disease had occurred prior to its identification, and were mistakenly 

attributed to dengue virus (29). The word “chikungunya” means “that which bends up” in 

the Makonde language, and is thought to describe the debilitating symptoms associated 

with virus infection (188).  

 There had been periodic outbreaks of disease between the 1950s and the early 

2000s (221), but it wasn’t until a large-scale epidemic of disease that lasted from 2004 to 

2011 that public health officials and researchers recognized the virus as a significant 

public health threat. The epidemic began in 2004 in Africa and spread to neighboring 

countries and islands in the Indian Ocean. Notably, the virus infected two-thirds of the 

population of the French island La Reunion, and ultimately is estimated to have infected 

over 6 million people during the epidemic (221). While the majority of transmission 
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events occurred in the areas surrounding the Indian Ocean such as India, Sri Lanka, and 

many countries in Southeast Asia, the virus was detected in patients in over 40 countries 

around the world, including the United States and Australia (27). Importantly, sustained 

local transmission of CHIKV between residents who had not visited affected areas 

occurred in regions of Italy and France that were previously free of the virus (181), 

raising fears that the virus may be able to spread to other countries such as United States.   

 A major factor in the ability of CHIKV to re-emerge in such an explosive manner 

is thought to be due to the presence of a single mutation in the E1 glycoprotein at position 

226 (227). This mutation, a change from an alanine to a valine, allowed for more efficient 

entry and replication within an additional mosquito species, Aedes albopictus (227). 

Interestingly, a change at this same amino acid in SFV that confers cholesterol 

independence has been associated with enhanced viral fusion with mosquito cells leading 

to more efficient replication within the mosquito (4, 230). The Ae. albopictus mosquito is 

an aggressive species that lives in urban areas in close proximity to humans and has a 

worldwide distribution. Thus, a natural mutation at E1 226 that allows for efficient 

replication within Ae. albopictus has allowed CHIKV to spread rapidly throughout the 

regions where the mosquito vector was present.  

The onset of CHIKV-induced disease can occur immediately following the 

incubation period that lasts on average 2-4 days. The disease is characterized by 

polyarthritis along with severe arthralgia and myalgia affecting multiple joints, and is 

often accompanied by a high fever (19, 27, 188). Other common symptoms include 

photophobia, headaches, and a rash. The polyarthritis is a prominent feature of the 

disease and up to 95% of patients develop painful symmetrical swelling in multiple joints 
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(19). While many of the main symptoms subside about 1-2 weeks following onset, a 

subset of patients may experience chronic arthralgia for months to years (18). The basis 

for the chronic arthralgia is has been proposed to be due to viral persistence. Indeed, 

CHIKV antigen has been detected in muscle biopsies from patients up to 18 months post 

infection (100), and viral RNA is detectable within joints of mice in a mouse model of 

CHIKV infection up to 3 weeks post infection (159). Similar to RRV, the pathology of 

CHIKV is associated with inflammation into the joints and muscle. Monocytes, 

macrophages, CD4+ T cells, and high levels of NK cells are found within synovial 

aspirates from CHIKV patients (100), and elevated levels of pro-inflammatory cytokines 

such as IL-1β and IL-6 have been associated with severity of clinical disease (166).  

 

In general, the current therapies for CHIKV and RRV-induced disease as well as 

other arthritic alphavirus diseases are merely palliative. Most patients are simply 

administered nonsteroidal anti-inflammatory drugs (NSAIDs), analgesics, and aspirin and 

are advised to rest and engage in physical therapy (86, 221). Given the potential long-

term treatment due to the prolonged nature of the disease, long-term use of NSAIDs is 

not ideal, and development of alternative therapeutics is needed.  

 

1.2. Molecular biology of alphaviruses.  

Genome organization and structure of alphaviruses.  

The genome of alphaviruses is encoded on a capped, positive sense RNA that is 

about 11.5kb in length with a poly adenylated tail and can be translated similar to host 

mRNA (219). The four nonstructural proteins (nsP1, nsP2, nsP3, and nsP4) are encoded 
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at the 5’ end of the genome, and once translated, make up the replicase complex that 

allows for both positive and minus strand genome synthesis. The structural proteins 

(capsid, E3, E2, 6K, and E1) that compose the virion particle are encoded on a 

subgenomic mRNA that is transcribed and translated from the minus strand genomic 

template. The alphavirus genome also has a 5’ UTR and a 3’ UTR that contain virulence 

determinants and are required for efficient genome replication and translation (59, 84, 

245).  

The structure of the alphavirus virion has been determined through cryo-electron 

microscopy (EM) and X-ray reconstructions of SFV, SINV, and CHIKV (87, 88, 133, 

162, 174, 234-236). The virion is approximately 70nm in diameter, and is composed of a 

nucleocapsid core that contains a single copy of genomic RNA, and an outer layer that is 

comprised of a lipid bi-layer derived from the host membrane and an exterior 

glycoprotein shell. The glycoprotein shell on each virion has 240 copies of E1 and E2 

that are organized into of 80 trimeric E1-E2 heterodimers, with E1 lying parallel to the 

lipid bi-layer and E2 protruding to the surface to form spikes. The E2 glycoprotein is 

thought to mediate receptor interaction on the surface of host cells and the E1 

glycoprotein mediates fusion of the virus to the host cell (113).  

 

Overview of the lifecycle of alphaviruses.  

The lifecycle of alphaviruses are outlined in Figure 1.1 and is described in detail 

in subsequent sections. Briefly, alphaviruses enter host cells through receptor-mediated 

endocytosis, and release the viral RNA genome into the cytoplasm following fusion of 

the virus membranes with host membranes in the endosome. Since the alphavirus genome 



	   12	  

is a positive sense, capped RNA, it can be immediately translated by host translational 

machinery. The nonstructural polyprotein forms the viral replicase complex, which 

mediates minus-strand RNA synthesis. From the minus-strand template, additional copies 

of positive strand RNA are generated and either translated or packaged into virions. 

Synthesis of the viral structural proteins from the subgenomic RNA leads to synthesis of 

the capsid protein, which will go on to form the nucleocapsid, and the viral glycoproteins 

are translocated into the ER and then the Golgi, where they undergo post-translational 

modification including glycosylation. The glycoproteins are cleaved in the Golgi, and are 

transported to the plasma membrane. Interactions between the viral glycoproteins and the 

nucleocapsid drive viral budding and egress from the host cell plasma membrane to the 

extracellular milieu.  

 

Entry of alphaviruses into host cells.  

Entry of alphaviruses into host cells is thought to primarily occur through 

receptor-mediated endocytosis through engagement of the alphavirus protein E2 on the 

virion with receptors and attachment factors, although direct fusion of virus with host 

membranes has been proposed (49). While several putative receptors have been identified 

for some alphaviruses, there does not appear to be any one single receptor that mediates 

entry for all alphaviruses. Rather, since alphaviruses can infect a broad range of hosts and 

cell types, the prevailing trend is that alphaviruses can use a diverse set of receptors that 

vary according to cell type and host.   

A ubiquitously expressed membrane laminin receptor was first identified as a 

putative SINV mammalian receptor into BHK-21 cells, and for VEEV into mosquito 
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cells (140, 238). However, the laminin receptor does not appear to mediate entry into all 

types of host cells, such as the chick embryo fibroblasts (238), suggesting either that 

alphaviruses can use multiple receptors or that laminin acts more as an attachment 

receptor rather than a true receptor. Additional host factors have been identified as 

attachment factors that aid entry into particular cell types. Klimstra et al. showed that 

certain members of innate immune receptors called C-type lectins (CLRs) such as DC-

SIGN and L-SIGN, mediate entry of mosquito-derived SINV into dendritic cells (120). 

The type IV α1β1 collagen receptor has been proposed to be a putative receptor for RRV 

(128), as RRV bound specifically to α1β1-coated ELISA plates. However, RRV entry 

into α1-knockout MEFs was not completely abolished, and further supports the overall 

hypothesis that alphavirus can use multiple receptors and attachment factors to gain entry 

into cells. More recently, the ubiquitously expressed divalent metal ion transporter 

NRAMP was identified as a receptor for SINV into both insect (dNRAMP) and 

mammalian cells (NRAMP2) through an RNAi screen in Drosophila cells (190). 

Interestingly, the usage of NRAMP2 was specific to SINV as RRV entry into mammalian 

cells was not dependent on NRAMP2. Thus, the alphavirus receptor is still elusive.  

Of note, heparan sulfate (HS) is also thought to be an attachment receptor for 

alphaviruses, and mutations that confer binding to HS modulate virulence in some 

alphaviruses (67, 195). Passage of alphaviruses in cell culture have led to rapid 

acquisition of mutations in E2 that can introduce basic amino acid residues and alter the 

charge of the glycoprotein, leading to an increase in positive charge within E2 and higher 

efficiency and tighter binding to HS molecules on the cell surface (121).  
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Receptor engagement induces a conformational change in E1 and E2 that allow 

for internalization into the host cell through clathrin-mediated endocytosis (43). 

Subsequent acidification of the endosome destabilizes the E2 and E1 heterodimer and 

exposes the fusion peptide on the distal end of E1 (3, 130). The fusion peptide inserts into 

the host cell membrane and leads to E1 trimerization and subsequent formation of the 

fusion pore by bringing the viral membrane and host membranes together (reviewed in 

(125)). The nucleocapsid is released into the cytoplasm, where it disassociates and 

releases the viral RNA.  Since alphavirus genomic RNA is a capped positive strand RNA, 

it can be translated directly by the host translation machinery. The nonstructural proteins 

are synthesized as a single polyprotein either as nsP123 or nsP1234. The production of 

nsP1234 is a result of read-through of the opal stop codon at the end of nsP3 that occurs 

about 10-20% of the time (219). Many alphaviruses including SINV, RRV, VEEV, 

EEEV, and WEEV contain the opal codon (219). The polyprotein P123 and the viral 

RNA dependent RNA polymerase, nsP4, acts as a replication complex to initiate minus 

strand synthesis of the viral RNA. The polyprotein is then cleaved into mature nsP1, nsP2, 

and nsP3, and these proteins, along with nsP4 can act to generate many copies of the 

positive strand viral RNA for packaging and further replication (125).  

 

Roles of the alphavirus nonstructural proteins. 

While the formal roles of most of the alphavirus nonstructural proteins (nsPs) are 

involved in some aspect of genome replication, nearly all of nsPs are likely to be 

involved modification of the host response in one way or another to modulate infection 

and viral pathogenesis.  
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The alphavirus nsP1 has multiple functions in viral replication. First, it mediates 

association of the viral replicase complex with cell membranes through palmitoylation 

groups on the protein (171). Furthermore, nsP1 acts as a methyltransferase and 

guanylytransferase to cap the viral genomic and subgenomic RNAs (152, 153). 

Eukaryotic mRNAs contain a 5’ cap structure, which is a guanine nucleotide that has 

been methylated at the 7-position (m7G). The 5’ cap has multiple functions in mRNA 

stability and export from the nucleus, as well as promoting translation of the mRNA 

transcript. In order to be efficiently translated from host cells, most viruses also have a 

mechanism to cap their mRNA. Furthermore, cytoplasmic RNA innate immune sensors, 

such as RIG-I, recognize RNA motifs like 5’ triphosphates that are hidden from detection 

by the 5’ cap structure (139). Thus, the capping capacity of nsP1 acts to ensure efficient 

translation of the viral RNAs and serves to evade detection by cytoplasmic RNA sensors. 

Indeed, mutations that affect the capping ability of nsP1 in SINV and RRV induce more 

type I IFN compared to a wild-type virus in a RIG-I/MDA5 dependent manner (38).  

The nsP2 protein is the largest of the alphavirus nonstructural proteins and also 

has multiple functions. The N-terminus of the protein is an RNA helicase that unwinds 

RNA, an NTPase, and a 5’ triphophatase, and the C-terminus of the protein is papain-like 

protease that cleaves the viral nonstructural polyprotein (45, 73, 85, 184, 218, 231). In old 

world alphaviruses, nsP2 is thought to mediate host translational shutoff as a mechanism 

to prevent activation of the type I IFN system (69, 70).   

The function of the alphavirus nsP3 protein has been elusive for a number of 

years. It has an essential role in viral RNA synthesis, and the N-terminus is pretty well 

conserved throughout the different alphaviruses, however, the C-terminus is 
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hypervariable and heavily phosphorylated (125).  A recent study identified a putative role 

for the conserved SH3 domain within the C-terminus of nsP3 and appears to interact with 

amphiphysins and may act to regulate endocytosis and membrane trafficking (165). 

However, the overall role of the protein remains unknown.  

Finally, the nsP4 protein is the RNA dependent RNA polymerase, and is the 

critical for replication. The nsP4 protein may interact with other nsPs through the N-

terminus domain, but the functional consequences of these interactions are currently 

unknown (125, 213).  

 

Synthesis of the alphavirus glycoproteins and viral budding. 

 The structural proteins are encoded on the subgenomic 26S mRNA, which is 

produced at roughly three times the amount of genomic 49S RNA (178). The capsid 

protein is translated first and immediately is cleaved from the polyprotein as it leaves the 

ribosome by the autoprotease activity that resides in the C-terminus (5, 81). Translation 

of the pE2 polyprotein follows capsid protein and contains E3 and E2. The cleavage of 

capsid protein from pE2 allows for the N-terminus of pE2 to translocate across the ER 

membrane, and signal sequences within E2 and 6K allow for 6K and E1, respectively, 

translocation across the membrane (125). Once in the ER lumen, pE2 and E1 undergo 

post-translational modifications. N-linked glycans are added to possible N-linked 

glycosylation sites on pE2 and E1 (discussed in more detail in following sections)(207), 

and palmitoylation occurs on pE2, E1, 6K (17). Maturation of the glycoproteins occurs in 

the Golgi where furin cleaves pE2 to generate E3 and E2 (40). Release of E2 from pE2 

allows for E2 and E1 to form heterodimers and further N-linked oligosaccharide 
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processing occurs. E2 and E1 and then transported through the Golgi together as 

heterodimers, and finally to the plasma membrane by cytoplasmic vesicles (182, 258). 

Once at the plasma membrane, the mature E2-E1 heterodimers trimerize to form the 

glycoprotein spikes and subsequent interaction with the nucleocapsid to inititiate viral 

budding and egress from the host cell (125, 234, 235) The alphavirus glycoprotein spike 

is composed of three E1-E2 heterodimers and is easily visualized on the virion surface by 

cryo-EM.  

Immediately following cleavage from pE2, the capsid protein begins to form the 

nucleocapsid. Capsid dimers form around the viral RNA and the protein interacts with the 

RNA through packaging signals in the viral RNA located within nsP1(244).  To initiate 

budding, the nucleocapsid cores assemble and cluster at the plasma membrane. The 

mature glycoprotein E2-E1 trimer spikes are present on the surface of the plasma 

membrane and the interaction between the cytoplasmic tail of E2 and a hydrophobic 

pocket on capsid promotes formation of the virion and drives viral egress.  

 

1.3. Alphavirus-induced disease. 

Alphavirus pathogenesis models.   

The diseases associated with alphavirus infections generally fall into two 

categories: encephalitic and arthritic. New World alphaviruses are more commonly 

associated with encephalitis and Old World alphaviruses with arthritis. Details of 

alphavirus pathogenesis have been elucidated primarily through the use of mouse models. 

Natural virus isolates associated with clinical disease have been identified through 

isolation either from infected patients or from mosquitoes located around sites of disease 
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outbreaks (78). Many of these isolates have been passaged through suckling mice to 

produce virus capable of efficient replication within the mouse. While both inbred and 

outbred strains of mice have been used to model alphavirus pathogenesis, the C57BL/6 

line of inbred mouse is susceptible to alphavirus infection, and has been used extensively 

in many labs. Virus injected subcutaneously into the rear footpad is thought to first come 

into contact with Langerhans cells and dermal fibroblasts that are resident in the skin 

(141). Since infection of humans occurs by a mosquito bite, it is likely that some of the 

first cells that are infected are dendritic cells, and several host factors such as DC-SIGN 

and L-SIGN, as well as other unknown factors are thought to facilitate this interaction 

(120, 209). The virus replicates locally within the synovial fibroblasts in the ankle and is 

likely spread to the popliteal draining lymph node by infected dendritic cells (141). Once 

in the draining lymph node, the virus seeds a serum viremia and is able to spread 

throughout the host, infecting the various target tissues that are specific for the different 

groups of viruses. Virus is cleared through several mechanisms involving both innate and 

adaptive arms of the immune system. Activation of the type I interferon (IFN) system is 

critical in early control of virus replication for most alphaviruses (197, 202, 245, 248), 

and there is evidence for T cells as well and B cells and antibody in clearance of virus 

within tissues (22, 131).  

 

Encephalitic alphaviruses. 

The pathogenesis of encephalitic alphaviruses such as VEEV, WEEV, EEEV 

have been studied using a combination of young and adult mouse models, and 

recapitulate many neurologic disease symptoms that are observed in human disease (39). 
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While SINV infection in humans leads to arthralgia, SINV infection in mice causes an 

encephalitic disease that has been used to model acute encephalomyelitis, and studies 

from both SINV and VEEV have gained some insight into the mechanisms of disease 

following infection with neurovirulent viruses. Infection of adult mice with wild-type 

strains of VEEV and some strains of SINV causes a lethal neurologic disease (39, 93). 

Virus is thought to enter into the brain from the periphery through transient opening of 

the blood-brain barrier (BBB) (201). The opening of the BBB allows for viral infection of 

neurons and other cell types within the brain, leading to activation of pro-inflammatory 

cytokine response, and subsequent infiltration of inflammatory cells into the brain and 

CNS, leading to development of neurologic disease and eventually, death (203, 204).  

 

Arthritic alphavirus pathogenesis: Ross River virus. 

There have been several mouse models used to study arthritic alphavirus 

pathogenesis. Early studies of RRV pathogenesis used a young mouse model ranging 

from newborn mice to mice 10 days old where mice succumbed to viral infection (155). 

Non-lethal models of disease using older mice have been developed, and the most recent 

mouse model established to study RRV-induced disease was described by Morrison et al. 

(161), and is the mouse model used throughout this dissertation. Twenty-four day old 

C57BL/6 mice are subcutaneously infected with 1000 plaque forming units (PFU) of 

RRV T48 (RR64) in the left rear footpad, and go on to develop disease that is 

characterized primarily by hind-limb dysfunction.   

The initial events following RRV infection are similar other alphaviruses outlined 

above. While virus can be detected in the liver, spleen, brain, heart, and spinal cord, RRV 
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replicates to the highest titers in the skeletal muscle and ankle joints (161). Peak viral titer 

within these tissues occurs at 24-48 hours post infection, and steadily declines throughout 

the course of disease, and is virtually undetectable by plaque assay by 10 days post 

infection (dpi) (161). While peak viral titer occurs within the first 2 days of infection, 

infected mice do not start to exhibit clinical disease signs until about 5 dpi (161). Mice 

begin to show signs of hind limb weakness and altered gait at 5 dpi as determined by a 

grip test (161). By 7 dpi, infected mice begin to lose the ability to grip with their hind 

limbs and a subset of mice display the inability to right. Peak disease severity occurs 

from 10-12 dpi where most infected mice are dragging their hind limbs and are unable to 

right themselves. However, by about 14 dpi mice are beginning to recover and regain use 

of their hind limbs, and then by 21 dpi the infected mice have recovered and are 

indistinguishable from uninfected mice (161).  

 Histopathological analyses of the target tissues within infected mice have shown 

that the disease signs observed in the mice correlate with the induction of the host 

inflammatory response rather than viral titer (135, 161). Inflammatory immune cells such 

as macrophages, monocytes, neutrophils, and eosinophils along with CD8+ and CD4+ T 

cells, B cells and NK cells begin to infiltrate into the tissues starting at about 5 dpi and 

reach peak inflammation by 10 dpi. The infiltration of these cells into tissues is thought to 

mediate tissue damage, and in particular the inflammatory macrophages have a critical 

role in damage within the skeletal muscle. Injection of macrophage-cytotoxic agents such 

as silica, carrageenan, and liposome-covered clodronate dramatically reduced disease 

symptoms in RRV-infected mice (134, 135). Furthermore, macrophage-derived 

inflammatory cytokines and products have been implicated in RRV-pathogenesis. 
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Monocyte chemotactic protein (MCP-1; CCL2) is involved in macrophage recruitment 

and chemotaxis of other immune cells, and inhibition of MCP-1 by administration of 

bindarit into mice abrogated RRV-induced disease by significantly reducing the numbers 

of CD11b+ cells recruited into the skeletal muscle (193).  Another cytokine, macrophage 

migration inhibitory factor (MIF), which acts as a powerful pro-inflammatory cytokine 

that regulates multiple aspects of the host inflammatory response (28), has an important 

role in regulating the infiltration of immune cells into target tissues following RRV 

infection (94). MIF-/- mice show reduced disease and tissue damage following RRV 

infection compared to WT mice, and correlated with a reduction in inflammation in the 

skeletal muscle rather than altering viral titer (94). Finally, arginase I, which is produced 

by alternatively activated macrophages and neutrophils, thwarts clearance of RRV from 

skeletal muscle and ankle joints, and allows for sustained replication and disease at later 

time points (216).  

 All of these studies indicate a critical role for the host inflammatory response in 

mediating RRV-induced disease. However, there are gaps in our understanding regarding 

the underlying mechanisms of how the inflammatory response is initiated and/or 

regulated following RRV infection. Furthermore, the specific RRV ligands that activate 

the inflammatory response have not been identified, thus many aspects of RRV 

pathogenesis remain unknown and understudied.  

 

Arthritic alphavirus pathogenesis: chikungunya virus. 

Development of appropriate CHIKV mouse models have been hampered 

somewhat by the lack of a mouse adapted CHIKV that spreads systemically from the site 
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of infection to replicate in distal tissues. However, several models using two different 

human isolates from the most recent CHIKV epidemic have been described. A young 

mouse model where 14 day old C57BL/6 mice and infected with a CHIKV isolate from 

Sri Lanka exhibits swelling, arthritis, tenosynovitis, and myositis in the injected foot, and 

shares many pathologic characteristics with the human CHIKV disease (159). Similar to 

RRV, CHIKV infection results in inflammation within the joints and skeletal muscle, 

although swelling of the joints occurs following CHIKV infection but is absent during the 

mouse model of RRV-induced disease. Pronounced swelling of the ankles occurs at 2-3 

dpi and 6-7 dpi in the CHIKV mouse model. Analysis of the inflammatory cells 

infiltrating into the leg reveals that NK cells and neutrophils are the predominant 

infiltrating cell types at 5 dpi, although a heterogenous mix of NK cells, neutrophils, 

monocytes/macrophages and CD8+/CD4+ T cells were observed at 7 dpi (159). An older 

mouse model, where both feet of mice are injected with a CHIKV isolate from La 

Reunion Island, demonstrate similar disease characteristics as the young mouse model, 

albeit less pronounced, but may be more amenable to vaccination and therapeutic studies 

(68). Studies using a neonatal mouse model demonstrated the importance of type I IFN in 

protection from lethal CHIKV infection (202), further highlighting the critical role of the 

innate immune system in protection from alphavirus infection.  

 

1.4. The host complement system.  

The innate immune system is generally considered to be the first line of defense 

against invading pathogens and is critical in host protection. The host complement system 

is a branch of innate immunity that has many diverse functions including pathogen 



	   23	  

recognition, signaling, initiation of inflammation, and direct pathogen lysis. The 

complement system is truly a “system” as there are well over thirty extracellular and cell-

associated proteins that help orchestrate the immune response to a given pathogen. A 

general schematic of the complement system is shown in Figure 1.2.  

Activation of complement is thought to occur through three main pathways: 

classical, lectin, and alternative pathways. Regardless of which pathway activates 

complement, the critical step in complement activation is cleavage of the C3 protein, 

which is central to the complement system (reviewed in (183)). Cleavage of C3 requires 

formation of the C3 convertases that are generated on target pathogens or cells following 

activation through either the classical or the lectin pathway. Cleavage of C3 results first 

in the generation of C3a and C3b, and C3b becomes covalently attached to the target 

surface through recognition of the reactive thioester group that is exposed upon cleavage 

on C3b and carbohydrate groups on the target surface. Interestingly, the specificity of the 

C3 thioester group for carbohydrates, and in particular terminal sugars on 

polysaccharides may have biological relevance since glycosylation on pathogens and 

stressed/infected cells can be different than healthy uninfected cells, and could be an 

additional safety guard to protect host cells from excessive complement activation (199). 

C3a is released and acts as a chemoattractant and anaphylatoxin to aid in activation of 

other arms of the immune response.  

The C3b deposition on the target cell leads to formation of additional C3 

convertases allowing for rapid accumulation of C3b on the surface of the cell. Eventually, 

the C5 convertase is formed (C4b2b3b) to cleave C5 into C5a and C5b. C5b can then 

interact with C6 and C7 to begin the membrane attack complex. The C5bC6C7 complex 
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inserts into the target membrane, allowing for C8 and then C9 to become part of the 

complex and generates a lytic pore called the membrane attack complex (MAC) that 

lyses the target cell. C5a is an additional anaphylatoxin that is released upon cleavage and 

acts on neutrophils and monocytes to induce rapid phagocytosis of opsonized targets. 

In addition to the first C3 cleavage event that generates C3a and C3b, C3b is 

further cleaved by factor I in complex with CR1 that inactivates C3b, but generates iC3b 

and C3c, C3dg and eventually C3f and C3d, which all have biological functions in 

complement to aid in pathogen clearance (183). Perhaps the most effective cleavage 

product is iC3b. The iC3b cleavage product acts to opsonize the target cell and interacts 

with several complement receptors on phagocytic cells to promote phagocytosis and 

leukocyte signaling (183, 233, 251). Interactions with complement receptors such as CR3 

and CR4 lead to enhanced phagocytosis of iC3b-opsonized cells and can trigger signaling 

downstream from both of the receptors (50, 183). CR3-mediated signaling within 

phagocytic cells, such as monocytes/macrophages and neutrophils, can act to initiate and 

enhance cytotoxic effector functions of the cells (173, 232).  

 

The role of complement in alphavirus pathogenesis. 

 The role of the complement system in alphavirus infection is either protective or 

pathologic role depending on the virus. Complement has a protective role in mouse 

models of SINV and VEEV infections, but is pathologic in RRV infection (23, 97, 99, 

158).  

 The role of complement following SINV infection is generally thought to be 

protective. Mice depleted for complement by cobra venom factor administration, which 
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consumes and depletes C3, had elevated levels of SINV in serum and in the brains 

compared to untreated infected controls (97, 98). Interestingly, inflammation in the brains 

of the complement depleted mice was increased compared to controls, and correlated 

with prolonged disease signs, suggesting that complement may also regulate 

inflammation (97). Analysis of the mechanisms of viral control by complement revealed 

that both the classical and alternative pathways were activated upon SINV infection even 

in the absence of virus-specific antibodies (99). Furthermore, mice genetically deficient 

in C5 displayed enhanced susceptibility to SINV infection, suggesting that formation of 

the MAC by complement is very important for control of serum viremia and infection 

within the tissues (96). Interestingly, despite the increase in viral titer with the CNS and 

serum, the C3 depleted mice did not show any enhanced mortality and actually had 

prolonged survival compared to undepleted mice (97), suggesting that there may be some 

pathology associated with presence of C3. The role of the lectin pathway has not been 

evaluated in the context of SINV infection.  

 In the context of VEEV infection, the complement system plays a role in host 

protection (23). Using a non-lethal model of VEEV infection where mice are infected 

with an attenuated strain of VEEV, V3533, Brooke et al. demonstrated that C3-/- mice are 

more susceptible to V3533 compared to WT mice (23). C3-/- mice displayed enhanced 

weight loss, and morbidity compared to WT mice in response to VEEV infection, and 

increased disease correlated with elevated levels of virus in the CNS and the periphery 

and increased inflammation with the brain. Furthermore, the role of complement in 

limiting viral replication and disease appeared to be most important in preventing spread 

of virus into the CNS from the periphery as C3-/- and WT mice inoculated with VEEV 
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directly into the brain showed no difference in mortality. Furthermore, C5-/- mice 

displayed wild-type kinetics and severity of disease, indicating that formation of the 

MAC was not required for limiting viral spread by complement. Instead, it is likely that 

other effector mechanisms involving C3 cleavage products have a key role in protection 

from VEEV infection.  

 The pathology and disease associated with RRV infection in humans and mice is 

primarily mediated by the host inflammatory response. Studies by Morrison et al. 

demonstrated that the complement system is activated following RRV infection (158). 

RRV-infected mice exhibited elevated levels of circulating C3 in the serum compared to 

mock-infected mice, and also had increased amounts of C3 cleavage products in the 

quadriceps muscle and ankle joints (158). In addition, human patients with RRV-induced 

polyarthritis had elevated levels of C3a, indicative of complement activation, within the 

synovial fluid compared to patients with the non-inflammatory arthritis disease 

osteoarthritis. Furthermore, the authors demonstrated that complement activation has a 

critical role in mediating damage and disease within target tissues. Mice deficient in C3, 

which is the central component of the complement system, developed a mild disease 

compared to wild-type mice. Interestingly, viral burden and localization of viral 

replication within the tissues was not affected by the presence or absence of C3, 

suggesting that complement regulated some aspect of inflammation. However, 

histopathologic analysis of both quadriceps muscle and ankle joints indicated the 

presence of inflammatory cells within the tissues, and flow cytometric quantification and 

characterization of the inflammatory cells within the muscle showed that complement did 

not affect the numbers or types of infiltrating inflammatory cells. Furthermore, disease in 
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C5-deficient mice did not differ significantly from WT mice, indicating that formation of 

MAC is not required for disease (Morrison TE and Heise MT, unpublished data).  

 Follow-up studies evaluating the role of other complement proteins in mediating 

RRV-induced disease demonstrated that complement receptor 3 (CR3, CD11b/CD18, 

Mac-1, amb2) contributes to disease (160). CR3 is present on multiple types of immune 

cells, including monocytes, macrophages, neutrophils, DCs, and T cells, and interacts 

with the C3 cleavage factor iC3b (259). Mice deficient in CR3/CD11b exhibited reduced 

RRV-induced disease compared to WT mice, and many aspects of the disease in 

CR3/CD11b-/- were similar to the disease observed in C3-/- mice. Viral burden and the 

amount of inflammatory cells within the tissues were equivalent between CR3/CD11b-/- 

and WT mice, while disease and tissue damage were reduced in CD11b-/- mice.  

Ligation of CR3 by iC3b can induce signaling within CR3-bearing cells in a Syk-

PI3K mediated pathway and can serve to activate pro-inflammatory effector programs 

within the cells (50, 132, 157). Interestingly, expression of a subset of pro-inflammatory 

genes was dependent on both CR3 and C3 following RRV infection (160). The 

calgranulin proteins S100A8 and S100A9 are secreted as heterodimers from activated 

leukocytes, and have been implicated in the pathogenesis of inflammatory arthritis (172). 

Both of these genes are highly expressed in the inflamed quadriceps muscle following 

RRV infection, and their expression is dependent upon both CR3 and C3 (160). While 

further investigation is needed to determine if there is a role for these proteins during 

RRV infection, their complement-dependent expression suggests that the role that 

complement may have in RRV pathogenesis is at the level of activation of pro-

inflammatory effector programs in CR3-bearing cells.  
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 Taken together, these data indicate the complement system can play both a 

protective and a pathologic role following alphavirus infection. In SINV and VEEV 

infection, complement appears to be required to neutralize the viruses and help clear virus 

from the serum, thus limiting spread of the virus into additional tissues. In contrast, 

following RRV infection, the complement system does not neutralize the virus, but rather 

contributes to development of disease through activation of CR3-bearing inflammatory 

cells resulting in the inflammatory tissue destruction and disease. It is not currently clear 

why complement is protective in certain alphavirus infection but pathologic in another, 

but further exploration into the mechanisms of complement activation and identification 

of viral ligands may provide some insight into these processes.  

 

Complement activation pathways. 

There are three main activation pathways of complement: the classical, lectin, and 

alternative pathways. The classical and lectin pathways converge as activation through 

either pathway leads to the formation of the C3 convertase C4b2b. The classical 

activation pathway had initially been thought to activate complement only through 

recognition of IgM and IgG in antibody-antigen immune complexes by the initiator 

molecule C1q, but recent work has demonstrated that C1q can bind to a number of self 

and non-self ligands in addition to immunoglobulins (64, 123). Surface binding of C1q to 

a ligand results in activation of C1r and C1s proteases, and C1s cleaves C4 and C2 to 

generate the C3 convertase C4b2b (183); the classical pathway and lectin pathways are 

indistinguishable at this point. The alternative pathway is initiated through binding of 

factor B (fB) protease to spontaneously hydrolyzed C3 (C3H2O). Subsequent cleavage of 
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C3 within the fB-C3 complex by Factor D generates the alternative C3 convertase, 

C3bBb, which cleaves C3 and activates the complement cascade.  

 

The lectin activation pathway of complement. 

The lectin activation pathway of complement is mediated through the serum 

proteins mannose binding lectin (MBL) and ficolins (L-, M-, and H-ficolin) that act as 

pattern recognition receptors (PRRs). Both MBL and the ficolins contain a collagen-like 

domain in the N-terminus that mediates oligomerization of the structural subunits to form 

higher order structures required for functional complement activation. MBL has a 

carbohydrate recognition domain (CRD) in the C-terminus, whereas ficolins have a 

fibrinogen-like domain that acts in a similar manner to the CRD of MBL (63). The ever-

expanding list of MBL ligands will be discussed in further detail in following sections, 

and the ficolins have been shown to bind to terminal N-acetylglucosamine (GlcNAc) on 

glycosylated proteins on bacteria as well as apoptotic cells (124, 147, 255). MBL, L-

ficolin, and H-ficolin are produced in the liver and circulate within the serum, where as 

M-ficolin is produced by monocytes and granulocytes (63).  

The MBL-associated serine proteases (MASPs) circulate throughout the body in 

association with the ficolins and MBL. There are three MASP proteins (MASP-1, -2, -3), 

however, only MASP-2 has been shown to be able to form the C3 convertase C4b2b to 

activate the complement cascade (192, 226). Interestingly, MASP-1 and MASP-3 have 

been shown to mediate cleavage of Factor D, which is required for activation of 

complement through the alternative pathway (9). Once the PRRs have been engaged 

through the CRD, a conformational change occurs, and allows for the serine proteases to 
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be able to cleave C4 and C2 to generate the C3 convertase C4b2b, cleavage of C3 and 

complement activation.  

Of note, collectin-11 (CL-11) was recently identified as an additional serum 

protein that circulates in association with MASP-1 and/or MASP-3 (83). CL-11 bound to 

several microbial and fungal species including Escherichia coli, Pseudomonas 

aeruginosa, and Candida albicans. Furthermore, CL-11 bound to influenza A virus and 

was able to partially inhibit the entry of virus into cells at high concentrations. The ability 

of CL-11 to activate complement has not yet been demonstrated, but given the microbial 

substrates, association with MASP-1 and/or MASP-3, and levels circulating in serum, it 

is likely that CL-11 will join the complement system as a PRR.  

 

Mannose binding lectin (MBL): structure and ligands. 

MBL was identified as a serum protein that could recognize and bind to 

carbohydrate structures (187), and was subsequently found to be able to activate the 

complement system (105). MBL is produced in primarily in the liver of several 

vertebrates, and has been associated with complement activation in most organisms (48, 

156). There are two human MBL genes, Mbl1 and Mbl2, but only Mbl2 encodes the 

functional MBL protein that activates the complement system. Mice and rats have two 

isoforms of MBL, termed MBL-A and MBL-C, and both appear to be capable of 

activating the complement system, although they have different circulating levels in 

resting animals (138). MBL is an acute phase protein, meaning that the expression and 

production of MBL is elevated following infection or stress (53), and further highlights 

the important role of MBL in host defense.  
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The Mbl2 gene on chromosome 10 encodes the human MBL protein, and the 

functional protein is composed of multimers of the 32 kDa MBL polypeptide. Each 

polypeptide has a calcium-dependent carbohydrate recognition domain (CRD) at the C-

terminus, and a collagenous region that forms into a triple helix with other two 

polypeptides to make up one structural subunit of MBL. Each structural subunit 

maintains a fixed 45Å distance between the three CRDs which allows for binding to the 

carbohydrate ligands (211). While each subunit can bind to the carbohydrate ligands, the 

affinity is relatively low, the oligomerized multimers of MBL are able to bind to larger 

arrays of carbohydrates thus increasing the affinity of binding and allows for activation of 

complement (106). The importance of 45Å spacing of the CRDs is to allow for specific 

binding to certain sugars, namely the hydroxyl groups in the hexose structure in N-

acetylglucosamine, mannose, glucose, and fucose (102). These sugars are commonly the 

terminal carbohydrate residue on microbial glycoproteins and not commonly found on 

mammalian glycoproteins, which favor terminal galactose and sialic acid. The CRDs of 

MBL do not bind to the hexose structure in galactose or sialic acid therefore preventing 

binding and activation of complement, which further adds to the specificity of 

recognition (243).  

MBL was originally thought to recognize terminal sugars present on microbial 

glycosylated proteins, but more recently, several studies have shown that MBL can also 

bind to sugars on self-antigens such as DNA, RNA, phospholipids, and other altered self-

proteins to help mediate phagocytic clearance of apoptotic or necrotic cells (119, 167, 

168, 220).  The presentation of certain self-antigens, such as DNA and RNA, to MBL 

present in circulation may be an additional mechanism that is used to alert the innate 
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immune system to stress and possible infection. MBL is thought to bind to the pentose 

sugars present on free DNA and RNA from either apoptotic or necrotic cells to help 

facilitate phagocytic clearance (168). Similarly, binding of MBL N-acetylglucosamine on 

phospholipids may also serve to enhance recognition and clearance of apoptotic cells 

(119, 126). Thus, MBL has an important role in recognition of pathogens as well as 

damaged host cells that allows for activation of complement and the innate immune 

system.  

 

MBL polymorphisms. 

The levels of circulating MBL in healthy human adults varies substantially 

between individuals and across the population due to several polymorphisms and 

mutations that affect the structure and expression of MBL (reviewed in (47)). The human 

MBL2 gene is encoded on chromosome 10 and is composed of four exons: exon 1 and 2 

encode the collagenous region of the MBL protein required for oligmerization, exon 3 

encodes the neck region, and exon 4 encodes the carbohydrate recognition domain. There 

are several mutations that lie within exon 1 (R52C, G54D, and G57E) that all lead to a 

functional deficiency of MBL (137, 143, 222). The mutation at codons 52 (D variant) 

affects the oligomerization of MBL and prevents formation of the higher order structures 

that are required for complement activation through MBL. The mutations at codons 54 (B 

variant) and 57 (C variant) lead to distortion of the collagenous helix and prevent high 

affinity binding to carbohydrate arrays by MBL. There are also several polymorphisms 

that alter the level of expression of MBL. The polymorphisms are located in the promoter 

of the gene at -550, -221, and +4 (144, 145). Together with the structural mutations, the 
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promoter polymorphisms lead to extreme variation within the human populations and 

serum levels of MBL range from nearly undetectable to 10 µg/ml (47).  

The importance of MBL in mediating host protection from a number of bacterial 

and viral pathogens has been demonstrated by several studies that have evaluated the 

susceptibility of patients who are functionally deficient in MBL to certain pathogens. 

Sumiya et al found that children with recurrent bacterial infections had genetically lower 

levels of MBL compared to healthy children (222), and several studies have shown 

enhanced susceptibility to certain viral infections including heptatitis B virus and HIV 

(25, 52).  

 

Role of MBL in sterile inflammatory diseases. 

Since MBL can bind to both self-antigens such as DNA and phospholipids as well 

as the glycosylated proteins of pathogens, it is not surprising that MBL, like complement, 

can be a double edged sword: required for protection from a number of different 

pathogens, but can also lead to autoimmunity. Indeed, MBL has been associated with 

pathology in sterile inflammatory diseases such as ischemic reperfusion injury (IRI), and 

has been implicated in rheumatoid arthritis (RA).  

 Ischemic reperfusion injury occurs after blood flow is restored to tissues and 

organs after a period of deprivation. The pathology of disease is characterized by 

induction of a pro-inflammatory state within the affected tissue and subsequent 

inflammation that leads to eventual apoptosis, necrosis, and possible permanent tissue 

damage (76). The complement system has long been known to be involved in 

development of myocardial IRI through chemotaxis of leukocytes into the tissue (76, 95), 
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and more recently, the lectin pathway has been shown to have a critical role in mediating 

complement activation following reperfusion (reviewed in (76)). Early in vitro studies 

demonstrated that the oxidative stress induced by IRI on endothelial cells initiated MBL 

and subsequent C3 deposition, likely through altered glycosylation of host proteins on the 

cells (34, 35). Subsequent studies in myocardial, gastrointestinal, and renal reperfusion 

injury animal models using either antibodies to deplete MBL, or MBL-A-/- MBL-C-/- 

(MBL-DKO) and MASP-2-/- mice further demonstrated that MBL and the lectin pathway 

regulated complement activation and subsequent inflammation and damage within the 

reperfused tissues (112, 205, 237).  

 Rheumatoid arthritis is an autoimmune disease that is characterized by chronic 

inflammation within the joints of affected individuals. Autoantibodies are thought to 

contribute to disease in part through activation of the complement system, but several 

studies have evaluated the lectin pathway in disease susceptibility and severity in cohorts 

of RA patients. However, the results from these studies are conflicting as different studies 

found a correlation of low MBL levels in RA patients with both protection and pathology 

(80, 109, 110, 198, 228). Thus, the role of MBL in inflammatory arthritis has not been 

established and remains unclear.  

 

Role of MBL in viral infection: Flaviviruses. 

Flaviviruses such as West Nile virus (WNV) and dengue virus (DENV) are 

mosquito-borne viruses that are a significant cause of disease in humans. The innate 

immune response is critical for host protection from these viruses, and the complement 

system has been demonstrated to play an important role in protection (reviewed in (8)). 
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Mice deficient in C3 are highly susceptible to WNV infection due to a defect in the 

development of a robust adaptive immune response. Neutralizing antibody responses as 

well as CD8+ T cell responses were reduced in C3-/- mice, leading to higher viral titers 

within the CNS of infected mice (149, 150). MBL deficient mice were also more 

susceptible to WNV infection, and MBL deficient serum showed reduced neutralization 

of insect derived virus (61, 62).  

MBL has also been reported to bind to and neutralize DENV, even in the absence 

of complement activation (61), and levels of MBL within human serum directly 

correlated with neutralization of both mosquito and mammalian-derived DENV2 (7), 

suggesting that MBL has a protective role in DENV infection. However, several studies 

analyzing the role of MBL in determining disease severity in DENV-infected patients 

have yielded conflicting results. One study was unable to correlate low levels of MBL 

with patient progression from dengue fever (DF) to the more severe disease dengue 

hemorrhagic fever (DHF), yet other studies found that high levels of MBL were 

associated with DHF, and low levels of MBL protected DHF patients from 

thrombocytopenia (2, 33, 164). From these studies, it is currently unclear the role of MBL 

in determining DENV severity, although experimental evidence suggests that MBL 

contributes to neutralization of DENV and is thus likely to have a protective role 

following DENV infection.  

 

Role of MBL in viral infection: other viruses. 

MBL is thought to contribute to protection from infection by the human 

immunodeficiency virus (HIV). The HIV gp120 glycoprotein is heavily glycosylated 
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with N-linked glycans, and several groups have demonstrated that MBL can bind to both 

lab strains as well as primary isolates of HIV (54, 200). MBL binding to HIV is reported 

to be important in direct neutralization of the virus by preventing binding to host cells, 

although studies differ on the extent of neutralization (54, 254). 

MBL has also been shown to contribute to host protection of several other viral 

infections such as herpes simplex virus-2 (HSV-2), Ebola virus, and SARS-coronavirus 

(65, 107, 111, 257). MBL was found to bind to HSV-2 virions in an ELISA assay, and 

MBL-DKO mice exhibited enhanced viral titer within the liver compared to WT mice 

(65).  Furthermore, serum levels of MBL in asymptomatic HSV-2 patients were elevated 

compared to symptomatic patients and those with recurrent infections, suggesting that 

higher levels of MBL contribute to suppression of virus in human infection (65, 208).  

 MBL can also mediate direct neutralization of virus infection through blocking of 

virus receptor interactions with the host cell. Spear and colleagues have found that MBL 

blocks the interaction between the Ebola and Marburg glycoproteins and the host C-type 

lectin DC-SIGN, which binds to the viral glycoproteins, resulting in reduced infectivity 

into cells (111). In addition, MBL contributed to complement dependent neutralization of 

Ebola and Marburg viruses, and administration of high doses of MBL were able to 

protect mice from a lethal challenge with Ebola virus (111, 154), indicating a protective 

role for MBL in filovirus infection. MBL also been shown to bind to SARS-CoV in vitro, 

and was found to inhibit the virus by specifically binding to the N-linked glycan on the 

tip of the spike protein to block interactions with DC-SIGN (107, 257). Furthermore, 

enhanced susceptibility to SARS-CoV was found in patients with genotypes conferring 
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lower levels of MBL compared to patients with genotypes leading to higher amounts of 

circulating MBL (107).   

 

1.5. The viral N-linked glycans. 

Glycosylation is an important post-translational modification.  

Glycosylation and other forms of post-translational modifications on proteins 

have an important, yet understudied and perhaps underappreciated role in protein 

structure, function, and regulation. On a broader scale, glycosylation of proteins is critical 

to development and function of many organisms, as mutations or deletions of the 

glycosyltransferases required for proper glycosylation frequently result in deleterious 

phenotypes and the inability to glycosylate is lethal (reviewed in (229)). Furthermore, 

differential glycosylation of proteins can introduce a remarkable amount of variation and 

diversity to the form and function of any given protein, thus adding another layer of 

complexity to our already complex and beautiful world.  

The term “glycosylation” used in this dissertation refers to the addition of an 

oligosaccharide, also called a glycan, to a protein at designated sites within the protein by 

enzymes in the ER and the Golgi. There are generally two types of glycosylation on 

polypeptides: N-linked and O-linked glycosylation. Asparagine (N)-linked glycosylation 

is the additional of oligosaccharide at a specific site on the polyprotein indicated by the 

following sequeon: N-(X)-S/T where X is any amino acid except for proline. About two-

thirds of all proteins contain N-linked glycosylation sequences, and about two-thirds of 

those proteins are actually glycosylated at the indicated site (reviewed in (229)). N-linked 

glycosylation begins in the lumen of the ER where a base glycan that consists of a N-
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aceytlglucosamine (GlcNAc) core and branches of terminal mannose residues is 

convalently linked to the polyprotein, and is further processed by glycosidases and 

glycosyltransferases in the Golgi. O-linked glycosylation is commonly found on 

glycoproteins termed mucins and proteins that are secreted into the mucosa. O-linked 

glycosylation is characterized by the addition of GlcNAc to serine/threonine residues in 

the Golgi and does not appear to have any specific sequence that identifies putative sites.  

  The biological functions of glycans can be broadly categorized into the following 

roles: structural role, where glycans are required for proper folding of proteins; a role in 

mediating cell-intrinsic interactions where glycans mediate interactions within the cell 

organism with glycan-binding proteins; and cell-extrinsic roles which involve the 

interactions between foreign organisms such as bacteria, viruses, and fungi. The presence 

of glycans can protect the protein from proteases, antibodies, or premature interactions 

during synthesis and trafficking. HIV is a notable example where the heavy glycosylation 

of gp120 can act as a glycan shield, protecting the virus from antibody-mediated 

neutralization. The cell-extrinsic role of glycans involves recognition and interaction 

between the glycans and glycan-binding proteins on pathogens and other foreign 

molecules. These interactions have a major impact on infectious disease, especially since 

these interactions are required for pathogen entry into a host cell, recognition of a 

pathogen by the immune system, or affect some other aspect of disease.  

 

N-linked glycosylation. 

As the polyprotein is synthesized and translocated into the ER, a base glycan is 

covalently added at putative N-linked sites by the oligosaccharidetransferase (229). The 
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base glycan is a fourteen-sugar oligomannose composed of glucose (Glc3), mannose 

(Man9), and N-aceytlglucosamine (GlcNAc2). As the protein moves through the ER and 

the Golgi, the glycan gets trimmed by glucosidases and mannosidases and then modified 

by various transferases that add different sugar groups (galactose, GlnNAc, sialic acid) 

onto the glycan to generate the final glycan structure (215). There are three main types of 

glycans that are produced: complex, high mannose, and hybrid. While there is a 

staggering amount of diversity within the three types of glycans, there are defining 

characteristic of each type. Complex glycans are characterized by the presence of 

terminal sialic acid residues; high mannose (also can be called oligomannose) glycans 

have terminal mannose residues; and hybrid glycans have a combination of terminal 

mannose and sialic acid residues.  

Complex glycans can have extensive branching that allows for additional glycan 

diversity, and the different branching and terminal carbohydrates modifications are 

dictated in a tissue-specific and cell-lineage dependent manner. The ability to produce 

complex glycans is due to the presence of specific glycosidases and transferases that are 

able to trim down the base glycan, and rebuild with different sugars.  

High mannose glycans are more typically found on glycosylated proteins 

produced from invertebrates. While the base glycan is the same glycan as the one found 

on proteins produced in vertebrate cells, invertebrates do not produce certain glycosidases 

and transferases and thus are unable to produce complex or hybrid glycans. Glycosylation 

in bacteria is quite distinct, but plays a similar role in bacterial protein function, 

interactions, and ultimately pathogenesis.  
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Innate immune recognition of N-linked glycans. 

 Given that bacteria, viruses, parasites, and fungi use glycosylation to modify their 

proteins either for proper folding or interaction with host proteins, it is not surprising that 

there are several different innate immune receptors that recognize non-self or altered 

glycans to activate the immune system. Several Toll-like receptors (TLRs) such as TLR4 

and TLR2 recognize glycoproteins to activate TLR signaling pathways resulting in 

initiation of pro-inflammatory programs and activation of adaptive immunity. TLR4 

recognizes lipopolysaccharide on bacterial cell walls, and has been shown to recognize 

glycoproteins from many different viruses as well, including respiratory syncytial virus 

and MMTV (reviewed in (117)). TLR2 recognizes components of viral glycoproteins as 

well to stimulate innate immunity (reviewed in (6, 117)). However, to date, viral N-

linked glycans present on viral glycoproteins have not been shown to be directly engage 

TLRs, although given their location on the glycoprotein, it is plausible that they might.  

As discussed above, PRRs that activate the complement system such as MBL and 

ficolin also recognize terminal sugar moities. Furthermore, members of the C-type lectin 

family of innate immune proteins are carbohydrate-binding proteins, and act as receptors 

and initiate signaling within myeloid cells (reviewed in (189)). C-type lectins such as 

DC-SIGN, L-SIGN, SIGN-R1, Dectin-2, Langerin, and mannose receptor recognize high 

mannose glycans on bacteria, viruses and fungi to modulate the host response (71). 

Indeed, there have been several studies that demonstrate both protective and pathologic 

roles for C-type lectins during viral infection. Capture of MBL-opsonsized influenza 

virus by SIGN-R1 in lymph nodes contribute to development of a protective humoral 

response by B cells (74). In contrast, another C-type lectin, CLEC5A, has been reported 
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to contribute to the pathogenesis of flaviviruses such as DENV and Japanese encephalitis 

virus through induction of pro-inflammatory cytokines and inflammasome activation (30, 

31, 250). With regard to alphaviruses, DC-SIGN and L-SIGN have reported to be 

attachment factors that mediate entry of mosquito-derived virus into dendritic cells (120). 

The role other members of the C-type lectin family in alphavirus pathogenesis have not 

been evaluated.  

MBL has been shown to directly bind to the N-linked glycans of several viruses 

discussed in earlier sections. Mosquito-derived WNV and DENV are neutralized by MBL 

in part through recognition of the high mannose N-linked glycans on the viral E protein 

on virions leading to complement activation (61). The high mannose and complex 

glycans on HIV gp120 mediate binding and neutralization by MBL both on the virus and 

on the infected cell (90), and a single N-linked glycan on the tip of the SARS-CoV spike 

protein was required for the interaction between the virus and MBL (257). Importantly, 

all of the described interactions between viruses and MBL indicate that the interaction 

between viral N-linked glycans and MBL leads to a protective response following viral 

infection.  

 

The alphavirus N-linked glycans.  

Alphaviruses have three to four N-linked glycosylation sites on the envelope 

glycoproteins. RRV and CHIKV have two E2 N-linked glycans, and one E1 N-linked 

glycan, whereas SINV has two glycans on E2 and two on E1 (219). The functions of 

these N-linked glycans appears to differ between the viruses in terms of viability and 

effects on pathogenesis.  
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The positions of the SINV and RRV glycans have been mapped by cryo-EM 

analysis of the structure of the glycoprotein spike (174). Since E1 lies parallel to the 

virion surface, the E1 glycans are located roughly in between, but below, the E2 

glycoprotein spike (174). The glycans at E2 N200 (RRV) and E2 N196 (SINV) are 

located at the tip of the E2 glycoprotein spike, with the SINV glycan on the top of the 

“petal” structure, and the RRV glycan on the bottom (174). The locations of the glycans 

at E2 N262 (RRV) and E2 N318 (SINV) differ slightly. In SINV, the glycan is closer to 

the lipid bilayer whereas the RRV glycan is in between the glycoprotein spikes. The 

positions of the E2 glycans on the glycoprotein spike, especially the E2 N200 (RRV) and 

E2 N196 (SINV) located on the tip of the spike, make the N-linked glycans attractive 

candidates to interact with host carbohydrate binding proteins.  

The oligosaccharide content and type of glycan present at each of the viral 

glycosylation sites is dependent on the host cell. The glycan composition at each site has 

been determined for both RRV and SINV and is summarized in Table 1.1 (148, 210). 

EndoH and PNGase digestion of mutant viruses that lack the glycosylation sites revealed 

that the RRV E1 N141 and E2 N262 glycans are predominantly complex 

oligosaccharides while replicating in mammalian cells, whereas the E2 N200 glycan is 

high mannose (210). EndoH cleaves glycans in between high mannose branches and the 

GlcNAc core, and PNGase cleaves between GlcNac and the asparagine. Thus, EndoH 

sensitive glycans are high mannose or hybrid, and EndoH resistant glycans are complex. 

In mosquito cells, all of the RRV glycans were either high mannose or hybrid glycans, as 

expected (210).  
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The composition of oligosaccharides for the SINV glycans were determined by 

analysis of purification of the E1 and E2 glycoproteins from virus grown in the presence 

of radiolabeled sugars (148). For SINV replicating in vertebrate cells, the glycans at E1 

N139 and E2 N196 are predominantly complex glycans, whereas the glycan at E1 N245 

can be either a high mannose or complex glycan and the E2 N318 glycan is 

predominantly a high mannose oligosaccharide (26, 148). The differences in 

oligosaccharide composition between the glycans on the same virus when replicating in 

mammalian cells are generally attributed to the availability of the glycan to glycosidases 

and glycosyltransferases as the protein moves through the Golgi. Since the base glycan 

has terminal mannose branches, it is plausible for any given glycan to be inaccessible to a 

particular glycosylation enzyme due to protein structure and folding (104).  

Given the ligand specificity for many carbohydrate-binding proteins such as MBL 

and many of the C-type lectins, the high mannose and complex glycans on the alphavirus 

glycoproteins represent possible ligands to interact with host proteins and activate innate 

immunity. Furthermore, since the E2 glycans are located at the tip of the glycoprotein 

spike, it is possible that interactions between the glycans and host proteins may modulate 

alphavirus pathogenesis and disease.   

 

Role of alphavirus glycans in pathogenesis. 

To date, the only published studies of the role of the alphavirus N-linked glycans 

in disease pathogenesis is in the context of SINV infection. Knight et al. used previously 

described mutants of SINV TE12 that have the glycosylation sites mutated from 

asparagine to a glutamine at each site and evaluated the effect of loss of each glycan in 



	   44	  

cells and in a mouse model of SINV encephalomyelitis (122). Loss of either of the E1 

glycans generally reduced infectivity and replication within BHK-21 cells and 

consequently, virulence in mice compared to SINV WT. Interestingly, loss of either of 

the E2 glycans had the opposite effect and had increased replication within BHK-21 cells, 

virulence in mice, and delayed clearance from the CNS. This increased replication was 

due to enhanced binding of the E2 glycan mutants to HS compared to SINV WT (122). 

Since sialic acid is negatively charged, removal of the glycan likely allowed for tighter 

binding to the negatively charged HS, thus enhancing infectivity and disease. RRV T48 

does not efficiently bind to HS (92), and so it is unclear if loss of the RRV glycans would 

lead to enhanced disease.  

The alphavirus N-linked glycans also interface with the host immune system. In 

particular, the RRV E2 glycans have been shown to be important in induction of type I 

IFN production from dendritic cells (210).  Mosquito cell derived RRV, which has high 

mannose and hybrid glycans, failed to induce type I IFN from myeloid dendritic cells 

compared to mammalian cell derived virus (209). One of the differences between 

mammalian and mosquito-derived virus is differential glycosylation of proteins, 

suggesting a possibility that the N-linked glycans may play a role in type I IFN induction.  

Indeed, infection of mDCs with RRV mutants that lack both E2 N-linked glycosylation 

sites show reduced type I IFN production compared to RRV WT without altering 

infectivity into the cells (210). Interestingly, it appeared that the presence of both of the 

E2 glycans were required for type I IFN induction from mDCs, and suggests that perhaps 

the combination of a high mannose and a complex glycan presented together that activate 

the innate immune response.  
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The studies described above indicate that the alphavirus N-linked glycans can 

interact with host proteins, and in the case of RRV, the glycans can modulate the innate 

immune response and are therefore likely to have an impact on disease pathogenesis. 

However, to date, the role of the N-linked glycans in RRV pathogenesis have not been 

evaluated.  

 

1.6. Dissertation Objectives. 

 The objectives of this dissertation are to identify additional host and viral factors 

that contribute to arthritic alphavirus pathogenesis. The host inflammatory response is 

critical in the development of RRV-induced disease and some host factors that are 

important in mediating disease have been identified. Inflammatory macrophage and 

macrophage products are central in mediating damage within the skeletal muscle leading 

to disease (94, 134, 135, 193). Furthermore, the host complement system has a critical 

role in RRV pathogenesis through activation of CR3-bearing inflammatory cells that 

infiltrate into the skeletal muscle and joints following infection (158, 160). However, it is 

unknown how the complement system is activated following RRV infection.  

 The complement system is activated through three main pathways: the classical, 

the lectin, and the alternative pathways. Given that the complement system plays a 

critical role in RRV pathogenesis, we first sought to determine which pathway of 

complement was required for RRV-induced disease. We evaluated the role of each of the 

three main pathways using mice deficient in the various initiator molecules in RRV 

pathogenesis, and found that the MBL pathway of complement was essential to 

development of disease. We characterized RRV-induced disease in MBL-deficient mice, 
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and found that MBL was required for complement activation and subsequent disease 

following RRV infection, indicating a previously undescribed pathologic role for MBL in 

viral infection (79). Furthermore, analysis of samples from RRV patients showed a 

correlation between higher levels of circulating MBL and severity of disease (79).  

 Given the ligand specificity of MBL for carbohydrates that can be found on N-

linked glycans, we next investigated whether viral N-linked glycans were required for 

RRV-induced disease through activation of the host complement system. Indeed, the 

RRV E2 N-linked glycans were required for development of RRV-induced disease, as a 

virus that lacks both E2 glycans caused mild RRV-induced disease in mice compared to a 

wild-type virus and is similar to the RRV-induced disease observed in MBL and 

complement deficient mice. Consistent with our hypothesis that the E2 glycans mediates 

disease through activation of the lectin pathway of complement, the E2 glycans were 

required for MBL deposition onto infected cells and within infected tissues, leading to 

decreased complement activation and C3 deposition. Together, these studies provide a 

model of RRV pathogenesis where the RRV E2 glycans activate the complement system 

through MBL to cause disease.  

The results of this dissertation identify a critical role for the both MBL and the 

RRV E2 N-linked glycans in mediating severe RRV-induced disease through activation 

of the host complement system. Furthermore, these studies describe novel roles for both 

MBL and the alphavirus N-linked glycans in mediating pathology and disease in viral 

infection, and are among the first sets of studies to explore and evaluate the role of 

interaction between host carbohydrate binding proteins of the innate immune system and 

the viral N-linked glycans.  
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Aims: 

1. Does the mannose-binding lectin pathway of complement contribute to severe 

RRV-induced disease? 

2. Do the RRV E2 N-linked glycans contribute to severe RRV-induced disease? 
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Figure 1.1: Life cycle of alphaviruses. 
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Figure 1.1: Life cycle of alphaviruses. 

Details of each step are discussed within the text. N-linked glycans are represented as red 

and green diamonds. C: capsid; ER: endoplasmic reticulum. Figure adapted from Li et al 

and Jose et al with permissions from Nature Publishing Group and Future Medicine, 

respectively (113, 133).  
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Figure 1.2: The host complement system.  
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Figure 1.2: The host complement system.  

Cartoon schematic of the three main activation pathways of the host complement system. 

Additional details of ligands and stepwise discussion of the complement cascade are 

outlined in the text. Briefly, the classical pathway (top left) is activated though C1q 

recognition of antibodies in immune complexes; the lectin pathway (top middle) is 

activated through MBL and ficolin recognition of carbohydrates; and the alternative 

pathway (top right) is activated through spontaneous cleavage of C3. Activation through 

the classical and lectin pathways results in formation of the classical C3 convertase 

C4b2b (middle left), and activation through the alternative pathway produces the 

alternative C3 convertase BbC3b (middle right). The C3 convertases cleave C3 into C3a, 

C3b, and subsequently C3b is cleaved by factor I to generate iC3b. Effector functions of 

each of the cleavage products are outlined at the bottom, and are discussed in greater 

detail in the text.  
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Table 1.1: N-linked glycans on alphaviruses.  

 

Virus Glycan position Cell type Type of Glycan Ref. 

RRV E2 N200 Mammalian high mannose (210) 

 E2 N262 Mammalian complex (210) 

 E1 N141 Mammalian complex (210) 

 E2 N200 Mosquito high mannose/paucimannose (210) 

 E2 N262 Mosquito high mannose/paucimannose (210) 

 E1 N141 Mosquito high mannose/paucimannose (210) 

     

SINV E2 N196 Mammalian complex (26, 148) 

 E2 N318 Mammalian high mannose (26, 148) 

 E1 N139 Mammalian complex (148) 

 E1 N245 Mammalian high mannose/complex (148) 



 
 
 
 
 

CHAPTER TWO: 
	  

MANNOSE BINDING LECTIN IS REQUIRED FOR ALPHAVIRUS-INDUCED 
ARTHRITIS/MYOSITIS  

 

2.1 Summary  

Mosquito-borne alphaviruses such as chikungunya virus and Ross River virus 

(RRV) are emerging pathogens capable of causing large-scale epidemics of virus-induced 

arthritis and myositis. The pathology of RRV-induced disease in both humans and mice is 

associated with induction of the host inflammatory response within the muscle and joints, 

and prior studies have demonstrated that the host complement system contributes to 

development of disease. In this study, we have used a mouse model of RRV-induced 

disease to identify and characterize which complement activation pathways mediate 

disease progression after infection, and we have identified the mannose binding lectin 

(MBL) pathway, but not the classical or alternative complement activation pathways, as 

essential for development of RRV-induced disease.  MBL deposition was enhanced in 

RRV infected muscle tissue from wild type mice and RRV infected MBL deficient mice 

exhibited reduced disease, tissue damage, and complement deposition compared to wild-

type mice.  In contrast, mice deficient for key components of the classical or alternative 

complement activation pathways still developed severe RRV-induced disease.  Further 

characterization of MBL deficient mice demonstrated that similar to C3-/- mice, viral 
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Mahalingam, and Mark T. Heise. PLoS Pathogens 2012 8(3): e1002586. 	  
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replication and inflammatory cell recruitment were equivalent to wild type animals, 

suggesting that RRV-mediated induction of complement dependent immune pathology is 

largely MBL dependent.  Consistent with these findings, human patients diagnosed with 

RRV disease had elevated serum MBL levels compared to healthy controls, and MBL 

levels in the serum and synovial fluid correlated with severity of disease. These findings 

demonstrate a role for MBL in promoting RRV-induced disease in both mice and humans 

and suggest that the MBL pathway of complement activation may be an effective target 

for therapeutic intervention for humans suffering from RRV-induced arthritis and 

myositis.  

 

2.2 Introduction 

Arthritogenic alphaviruses, such as Ross River virus (RRV) and chikungunya 

virus (CHIKV), are mosquito-borne viruses that cause severe polyarthritis and myositis in 

humans. RRV causes annual disease outbreaks in Australia and has caused sporadic 

epidemics of debilitating polyarthritis, including one outbreak involving over 60,000 

people in Oceania (86). RRV is transmitted to humans primarily by the Aedes and Culex 

species of mosquitoes that generally populate marsh areas, and CHIKV transmission has 

been traditionally mediated by the urban Aedes aegypti, though the virus has recently 

adapted for efficient transmission by the widely distributed Aedes albopictus species 

(227), leading to an increased risk for CHIKV spread into new areas, as illustrated by 

recent outbreaks in Italy and southern France (181). The expansion of CHIKV into an 

additional mosquito vector and the subsequent epidemic has highlighted the ability of the 
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arthritic alphaviruses to move into new geographic areas and cause large-scale outbreaks 

of acute and persistent arthralgia and myalgia in humans.  

RRV-induced arthritic disease presents predominantly as painful stiffness, 

inflammation, and swelling in peripheral joints that can last months after initial infection 

and the host inflammatory response is thought to play a major role in disease 

pathogenesis. Inflammatory monocytes constitute the bulk of leukocytes isolated in 

synovial aspirates from RRV-infected patients (55, 91), and macrophage-cytotoxic drugs 

have been shown to drastically reduce disease progression and severity in mice (134, 

135). In addition, mice lacking C3, the central complement factor that is essential for 

complement activation, exhibit reduced RRV-induced disease and tissue destruction 

(158), implicating a role for complement in development of the disease. Consistent with 

studies in mice, synovial aspirates from patients with RRV-induced arthritis have been 

shown to contain increased levels of the C3 cleavage product C3a (158). Although 

macrophage recruitment to infected tissues is markedly increased after RRV infection, 

the role played by complement is independent of inflammatory cell recruitment. Rather, 

tissue destruction and disease progression requires complement receptor 3 (CR3), 

suggesting that complement interactions with CR3 on inflammatory cells promote tissue 

destruction in RRV-infected tissues (160). However, it is currently unclear how the 

complement system is activated following RRV infection.  

There are three main activation pathways of the complement cascade; the 

classical, alternative, and lectin dependent pathways, that all converge on factor C3 and 

lead to activation of complement effector functions (reviewed in (183)). The classical 

pathway is initiated by C1q interactions with antigen-bound complexes of IgG and IgM, 
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and the proteases C1r and C1s cleave C4 and C2 to generate the C3 convertase C4b2b. 

Binding of factor B (fB) and spontaneously hydrolyzed C3 initiates the alternative 

pathway, and fB binding to C3b leads to formation of the alternative C3 convertase 

C3bBb that can amplify complement activation. In the lectin pathway, mannose binding 

lectin (MBL) or the ficolins bind to carbohydrate moieties on foreign bodies, such as 

viruses, or to host cells and apoptotic cells, and the MBL-associated serine proteases 

(MASPs) cleave C4 and C2 to form the C3 convertase C4b2b. Cleavage and processing 

of C3 by the C3 convertases produce several C3-derived components that are potent 

activators of the immune system. One such component is iC3b, which is a ligand for 

several complement receptors, such as CR3. Binding of iC3b to CR3 on cells such as 

monocytes/macrophages, neutrophils, and NK cells, results in activation of these cells, 

leading to enhanced phagocytosis and cytotoxic activity against iC3b-opsonized cells 

(183). 

MBL is a soluble C-type lectin that can initiate the complement cascade through 

binding of the carbohydrate recognition domains (CRD) to cell-surface sugars expressed 

on bacteria and viruses and some endogenous host ligands (reviewed in (223)). The 

complement system is notorious for having both a protective and pathologic role and 

frequently leads to additional tissue injury and damage once activated. Similarly, MBL 

appears to be able to have the ability to protect as well as harm the host cells. In the 

context of sterile inflammatory diseases such as myocardial and gastrointestinal ischemic 

reperfusion injury, MBL and the lectin pathway mediate development of disease through 

complement-mediated regulation of pro-inflammatory cytokines and inflammation, 

leading to exacerbated pathology and tissue injury (89, 112, 205, 237). In contrast to the 
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pathologic role of MBL in sterile inflammatory diseases, MBL is thought to primarily 

play a protective role in response to infectious pathogens. MBL has been shown to be 

essential for host protection from many different viral and bacterial infections either 

through direct binding to pathogens or by limiting spread through complement effector 

functions. MBL has been shown to bind directly to many different viruses, including 

human immunodeficiency virus (HIV), Ebola virus, and arboviruses such as dengue virus 

and West Nile virus (WNV), and MBL can either directly neutralize these viruses 

through activation of complement or interfere with their binding to host cells (reviewed 

in (217)). Furthermore, studies using mice deficient in both MBL genes (MBL-A-/- and 

MBL-C-/-; MBL-DKO) have revealed that MBL can have a protective role during WNV 

and herpes simplex virus infections (61, 62, 65).  Though MBL neutralizes flaviviruses, 

such as WNV and dengue virus (61), and plays a protective role during WNV infection 

(62), these same studies found no detectable interactions between MBL and alphaviruses, 

suggesting that MBL does not play a protective role during alphavirus infection.  

However, the role of MBL role in the pathogenesis of alphavirus-induced 

arthritis/myositis has not been evaluated.   

The goal of this study was to further assess the role of the host complement 

system in the pathogenesis of alphavirus-induced inflammatory disease and to determine 

which complement activation pathways are required for virus-induced disease. In a 

mouse model of RRV-induced arthritis and myositis, mice deficient in either the classical 

or alternative pathways developed severe disease, while mice deficient in both genes of 

MBL (MBL-DKO) were resistant to disease, suggesting that MBL plays a major role in 

RRV-induced disease. Similar to previous findings with C3-/- mice (158), RRV-infected 
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MBL-DKO mice had similar levels of viral burden and inflammation compared to wild-

type (WT) but exhibited significantly less complement deposition, tissue damage, and 

disease. Further analysis found that MBL levels are enhanced in RRV infected tissues 

and that MBL binds to RRV infected cells, suggesting that RRV infection leads to MBL 

deposition and subsequent complement activation.  Importantly, studies in human 

patients suffering from RRV-induced disease found that levels of MBL were elevated in 

the serum of RRV-infected patients compared to healthy controls. In addition, serum and 

synovial fluid MBL levels correlated with the severity of RRV disease, while no 

differences were observed in classical or alternative pathway activation, suggesting that 

MBL contributes to RRV-induced disease in human populations. 

 

2.3 Materials and Methods 

Ethics Statement. Some of the studies described in this manuscript did involve human 

samples.  For human serum samples, all serum samples had been submitted for diagnostic 

testing with written and oral informed patient consent at CIDMLS, Westmead Hospital 

and The Royal Melbourne Hospital (Melbourne, Australia). Samples were de-identified 

by the testing laboratory before being used in the research project. Synovial samples were 

collected from adult patients (age range, 30–45 years) residing in the Murray-Goulburn 

Valley (Victoria, Australia) who had acute cases of RRV-induced polyarthritis in 

accordance with human subjects protocols approved by the Royal Melbourne Hospital 

Human Ethics Committee.  All individuals received and completed written informed 

consent forms prior to collection of materials.  Mouse studies were performed in strict 

accordance with the recommendations in the Guide for the Care and Use of Laboratory 
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Animals of the National Institutes of Health.  All mouse studies were performed at the 

University of North Carolina (Animal Welfare Assurance # A3410-01) using protocols 

approved by the UNC Institutional Animal Care and Use Committee (IACUC).  All 

studies were performed in a manner designed to minimize pain and suffering in infected 

animals, and any animals that exhibited severe disease signs was euthanized immediately 

in accordance with IACUC approved endpoints. 

 

Viruses and cells. The viral stocks used in this study were generated from the infectious 

clone of the T48 strain of RRV (pRR64), kindly provided by Richard Kuhn (Purdue 

University) as described in (161). Briefly, viral RNA was generated through in vitro 

transcription of SacI-linearized pRR64 using the mMessage mMachine SP6 kit (Ambion) 

and electroportated into BHK-21 cells (ATCC). Viral titer was determined by plaque 

assay on BHK-21 cells.  BHK-21 cells were grown in α-MEM (Gibco) supplemented 

with 10% donor calf serum (DCS), 10% tryptose phosphate, L-glutamine, penicillin, and 

streptomycin. C2C12 cells were grown in DMEM (Gibco) supplemented with 20% fetal 

bovine serum (FBS), L-glutamine, penicillin, and streptomycin prior to differentiating. 

To differeniate cells into myotubes, confluent C2C12 cells were maintained in DMEM 

supplemented with 2% horse serum, L-glutamine, penicillin, and streptomycin.  

 

Mice. All mice used in this study were maintained and bred in house at the University of 

North Carolina (UNC) in accordance with UNC Institutional Animal Care and Use 

Committee guidelines. C57BL/6 and MBL-DKO mice were purchased from The Jackson 

Laboratories (Bar Harbor, ME); C1q-/- mice were a generous gift from Dr. Marina Botto 
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(Imperial College London, UK); fB-/- mice were generously provided by Dr. Charles 

Jennette (UNC). While RRV is classified as a biosafety level-2 agent, due to the exotic 

nature of the virus, all animal studies were performed in a biosafety level-3 facility. 

Twenty-four day old mice were inoculated with 103 PFU of RRV in diluent (phosphate 

buffered saline supplemented with 1% DCS) into the left rear footpad. Mice were 

weighed daily and assigned a clinical score based on hind limb weakness and altered gait 

on the following scale: 0= no disease; 1=mild loss of hind limb grip; 2=moderate loss of 

hind limb grip; 3=severe loss of hind limb grip; 4= no hind limb grip and mild inability to 

right; 5=no hind limb grip and complete inability to right; 6=moribund.  

 

Viral burden analysis. Mice were infected with RRV as described above, and at 

indicated times post infection mice were sacrificed, perfused with 1X PBS, and indicated 

tissues were dissected out, weighed, and homogenized with glass beads in diluent. Viral 

titer within infected tissues were determined by plaque assay on BHK-21 cells from 

tissue homogenates. 

 

In situ hybridization. Mice were infected with RRV as described above, and at indicated 

times post infection mice were sacrificed, perfused with 4% paraformaldehyde (PFA), pH 

7.3. Tissues were paraffin embedded and 5µm sections were generated and in situ 

hybridization was performed as previously described (161) using an RRV-specific or 

EBER-specific 35S-labeled RNA probe.  
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Histological analysis. At desired times post infection, mice were sacrificed and perfused 

with 4% paraformaldehyde (PFA), pH 7.3. Tissues were paraffin embedded and 5µm 

sections were generated and stained with hematoxylin and eosin (H&E) to examine tissue 

pathology and inflammation. Sections were visualized by bright field light microscopy 

(Olympus BX61).  

 

Evans blue dye uptake analysis. At 10 days post infection mice were injected with 1% 

Evans blue dye in PBS into the peritoneal cavity (50µl/10g mouse weight). At 6 hours 

post injection, mice were sacrificed and perfused with 4% PFA. Quadriceps muscle 

tissues were embedded in optimal cutting temperature compound (OCT) and frozen in an 

isopentane histobath, 5µm sections were generated, mounted with ProLong Gold with 

DAPI (Invitrogen) and sections were analyzed by fluorescence microscopy (Olympus 

BX61).  

 

Immunohistochemistry. At 7 dpi, mice were sacrificed and perfused with 4% PFA. 

Quadriceps muscles were removed, paraffin embedded, and 5µm sections were generated. 

Sections were deparaffinized in xylene, rehydrated through an ethanol gradient, and 

probed with a goat anti-mouse C3 polyclonal antibody (1:500 Cappel) using the 

Vectastain ABC-AP kit (Vector Labs, CA) and Vector Blue Alkaline phosphatase 

substrate kit (Vector Labs, CA) according to the manufacturers’ instructions. Sections 

were counterstained with Gill’s hematoxylin.  

 



	   62	  

Immunoblot analysis. At indicated times post infection, mock-infected and RRV-

infected mice were sacrificed, and perfused with 1X PBS. Quadriceps muscles were 

removed and homogenized in radioimmunoprecipitation lysis buffer (RIPA; 50µM Tris 

pH 8.0, 150mM NaCl; 1% NP-40, 0.5% deoxycholate, 0.1% SDS and 1X complete 

protease inhibitor cocktail (Roche)) by glass beads. Protein concentration was determined 

by Bradford protein assay and 25-30µg of protein was run onto a 10% SDS-PAGE gel. 

Protein was transferred onto a PVDF membrane, and membranes were blocked in 5% 

milk, 0.1% Tween-20 in PBS. Membranes were probed with goat anti-mouse MBL-A 

(1:1000 R&D Systems), goat anti-mouse MBL-C (1:1000 R&D Systems), goat anti-

mouse C3 polyclonal antibody (1:1000 Cappel), mouse anti-RRV (1:1000 ATCC), or 

goat anti-mouse actin polyclonal antibody (1:500 SCBT), washed with PBS containing 

0.1% Tween-20 and incubated with rabbit anti-goat antibody or sheep anti-mouse 

antibody conjugated to horseradish peroxidase (1: 10, 000 Sigma). Membranes were 

washed again and protein visualized by ECL (Amersham) according to manufacturer’s 

instructions. Densitometry was performed using ImageJ software (NIH).  

 

MBL deposition onto C2C12 cells. Differentiated C2C12 cells were either mock-

infected or infected at an approximate MOI of 20 with RRV. At 24 hpi, culture medium 

was removed and cells were incubated in differentiation medium containing either 10% 

serum from WT or MBL-DKO mice for an additional 30 minutes. Cells were washed and 

harvested in RIPA lysis buffer, and cell lysates were analyzed by immunoblot analysis.  
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Enzyme Linked Immunosorbent Assay (ELISA).  High binding ELISA plates were 

coated overnight at 4°C with either 10µg/ml mannan (Sigma Aldrich, St. Louis, MO), 5 x 

106 PFU of either mammalian (BHK-21 cells) or mosquito (C6/36 cells) derived virus, or 

mock supernatant from either BHK-21 or C6/36 cells in 1X carbonate buffer. Wells were 

washed with three times with 1X PBS, and subsequently incubated for one hour at room 

temperature in serum from WT mice at 1:20 dilution in gelatin veronal buffer with 

calcium and magnesium (Sigma Aldrich, St. Louis, MO). Wells were washed three times 

with 1X PBS, and incubated in primary antibody against either mouse MBL-C (1:100 

R&D Systems) or against RRV (1:200 ATCC). Wells were washed three times with 1X 

PBS + 0.1% Tween 20 and then incubated in the appropriate HRP-conjugated secondary 

antibody, and developed using TMB substrate (Sigma Aldrich). The OD450nm was 

measured and recorded.  

 

Analysis of infiltrating inflammatory cells by flow cytometry. To determine the 

composition of the inflammatory cell infiltrates within the quadriceps muscle, at 

indicated times post infection mice were sacrificed and perfused with 1X PBS. Both 

quadriceps muscles were removed, minced, and digested with RPMI containing 10% 

fetal bovine serum (FBS), 15mM HEPES, 2.5mg/ml collagenase A (Roche), 1.7mg 

DNase I (Roche) for 2 hours at 37ºC with shaking. Cells were strained through a 40µm 

strainer and washed twice with wash buffer (HBSS containing 1% sodium azide and 1% 

FBS) and total viable cells were determined by trypan blue exclusion. To stain cells for 

flow cytometry, cells were incubated with anti mouse FcγRII/III (2.4G2; BD 

Pharmingen) and stained with combinations of the following antibodies:  fluorescein 
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isothiocyanate (FITC)-conjugated anti-mouse CD3, phycoerythrin (PE)-conjugated anti-

NK1.1, PE-Cy5 anti-CD45 (leukocyte common antigen), PE-Cy7 anti-F4/80, 

Allophycocyanin (APC)-conjugated anti-CD49b, eF450-conjugated anti-CD11b, APC 

anti-major histocompatibility complex class II antigens (MHC II), and eF780-conjugated 

anti-CD45 (B220) (eBiosciences, San Diego, CA), FITC anti-Ly-6G, and PE anti-

SigLecF (BD-Pharmingen, San Diego, CA), and PE-Texas Red-conjugated anti-CD45 

(B220), and PE-Texas Red anti-CD11c (Molecular Bioprobes, Invitrogen). Cells were 

fixed with 2% PFA (pH 7.3) and analyzed on a CyAn flow cytometer (Becton Dickinson), 

and data was analyzed using Summit software.  

 

Gene expression. At 7 dpi following RRV infection, mice were sacrificed and perfused 

with 1X PBS. Quadriceps muscles were removed and homogenized in Trizol (Invitrogen) 

using glass beads. RNA was extracted using Invitrogen PureLink RNA purification kit, 

and mRNA expression of indicated genes was measured by quantitative real-time PCR. 

Raw data values were normalized to 18S rRNA levels.  

 

Patient samples. Convalescent serum samples from five patients presenting with acute, 

serologically confirmed (seroconversion by neutralization, IgM and IgG) RRV-infection 

and thirteen samples from healthy individuals were provided by CIDMLS, Westmead 

Hospital (Sydney, Australia). All serum samples had been submitted for diagnostic 

testing with informed patient consent at CIDMLS, Westmead Hospital and The Royal 

Melbourne Hospital (Melbourne, Australia). Samples were de-identified by the testing 

laboratory before being used in the research project. Needle biopsy was performed to 
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collect synovial fluid samples from adult patients (age range, 30–45 years) residing in the 

Murray-Goulburn Valley (Victoria, Australia) who had acute cases of RRV-induced 

polyarthritis. Samples were collected and prepared aseptically in the laboratories of 

Echuca Hospital (Murray-Goulburn Valley; Victoria, Australia) and The Royal 

Melbourne Hospital and was performed in accordance with The Royal Melbourne 

Hospital Human Ethics Committee. Severe RRV-induced disease was defined as a patient 

presenting with intense swelling, severe joint pain and myalgia affecting both the knee 

joints and joints of the fingers. Mild RRV-induced disease was defined as a patient 

presenting with minor swelling, localized in the knees, and no additional symptoms. For 

osteoarthritis samples, synovial fluid aspirates were obtained from 5 patients with 

osteoarthritis from the John James Hospital (Canberra, Australia). Sample collection was 

performed in accordance with the AustralianCapital Territory Health Community Care 

Human Research Ethics committee. Samples were obtained at the time that knee joint 

arthroplasty was performed, and joints were aspirated before arthrotomy. The diagnosis 

given to patients was primary osteoarthritis with no evidence of an inflammatory 

arthropathy.  These samples were de-identified prior to analysis. 

 Levels of MBL in serum and synovial fluid were determined using a 

commercially available ELISA kit according to the manufacturer’s instructions (R&D 

Systems). Levels of C4a in the synovial fluid was determined using BD OptEIA (BD). 

Bb levels were determined using Microvue Bb Plus (Quidel). The levels of the C1q-C4 

complex were determined as described in (249).  
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Statistical analysis. Clinical scores and percent of starting weight at 10 dpi between C1q-

/-, fB-/-, MBL-DKO, and wild-type mice were analyzed for statistically significant 

differences by Mann-Whitney analysis with multiple comparisons corrections (clinical 

scores; p<0.01 is considered significant), and by one-way ANOVA with Bonferroni’s 

correction (percent of starting weight; p<0.05 is considered significant). Viral burden, 

total number of infiltrating cells, and gene expression data at each time point between 

wild-type and MBL-DKO mice was analyzed for statistically significant differences by 

Mann-Whitney analysis or t-test (p<0.05 is considered significant). Levels of MBL, C4a, 

C1q-C4 complexes, and Bb in serum and synovial fluid from human patients were 

analyzed by Mann-Whitney analysis for statistical significance (p<0.05 is considered 

significant). Statistical analyses were performed using GraphPad Prism 5. 
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2.4 Results  

The MBL pathway is essential for RRV-induced disease and inflammatory tissue 

destruction. 

 Complement activation products are elevated in the synovial fluid of persons 

suffering from RRV-induced arthritis and complement activation is required for virus-

induced arthritis/myositis in a mouse model (158, 160, 161).  Although other 

alphaviruses, such as the neurovirulent Sindbis virus, have been shown to activate 

complement via both the classical and alternative pathways (99), the pathway(s) leading 

to complement activation by arthritic alphaviruses is currently unknown. Therefore, mice 

deficient in key components of the classical (C1q-/-), alternative (factor B, fB-/-), or lectin 

(MBL-A/C-/-, MBL-DKO) pathways were assessed for their susceptibility to RRV-

induced disease. C1q-/-, fB-/-, MBL-DKO, or WT C57BL/6 mice were inoculated with 

RRV in the footpad and assessed for weight loss and scored for hind limb function as 

previously described (161). RRV-infected WT mice showed signs of hind-limb weakness 

by 5 days post infection (dpi) and developed severe hind-limb weakness by 7 dpi through 

10 dpi (Figure 2.1). RRV causes disease independently of B cells and antibody (161), 

suggesting that the classical pathway does not contribute to disease during RRV infection. 

Consistent with this, C1q-/- mice exhibited severe disease signs and hind-limb weakness 

similar to WT animals (Figure 2.1A). Likewise, fB-/- mice developed severe RRV-

induced disease (Figure 2.1A), demonstrating that the alternative pathway of complement 

activation is not required for RRV-induced disease, though it is important to note that 

RRV-infected fB-/- mice tended to develop more severe disease compared to WT mice, 

suggesting that the alternative pathway is activated and may actually play a protective 
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role during RRV infection.  In contrast to C1q-/- and fB-/- mice, MBL-DKO mice infected 

with RRV developed mild hind-limb weakness and exhibited reduced weight loss 

compared to WT mice (Figure 2.1, A and B). Mock-infected WT and MBL-DKO mice 

did not differ in weight gain and showed no signs of disease throughout the course of 

infection (data not shown). While we cannot rule out a minor contribution of the classical 

and alternative activation pathways or activation of the lectin pathway through ficolins in 

development of RRV disease, this data demonstrates that the lectin pathway initiated by 

MBL plays an essential role in driving RRV-induced disease. 

 

MBL contributes to damage within quadriceps muscle.  

Following infection of WT C57BL/6 mice, RRV replicates to high levels within 

both the joints and skeletal muscle and elicits an inflammatory infiltrate into these tissues 

(161).  Following the onset of inflammatory cell infiltration, wild type mice develop 

severe destructive myositis, which is a major aspect of virus-induced disease in this 

mouse model, and we have previously shown that muscle cell killing and disease is 

dependent upon both C3 activation and CR3 (158, 160).  Therefore, to confirm the role of 

MBL in driving RRV-induced disease, inflammatory pathology was assessed within the 

quadriceps muscles of RRV-infected fB-/-, C1q-/-, MBL-DKO, or WT mice by H&E 

staining of paraffin embedded sections. At 10 dpi, a time point of peak RRV disease, we 

observed similar inflammation and tissue pathology in fB-/-, C1q-/-, and WT mice (Figure 

2.2A). Inflammatory cells are present in the quadriceps muscles of infected mice from all 

strains, as indicated by the solid arrowheads. We observed tissue damage in the 

quadriceps muscles in fB-/-, C1q-/-, and WT mice as evidenced by the degeneration of the 
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fibrous architecture of the skeletal muscle. In contrast, RRV infected MBL-DKO mice 

maintained the architecture of the skeletal muscle with very little tissue damage, despite 

the presence of inflammatory cells (Figure 2.2A), which was strikingly similar to 

previous results demonstrating an essential role for C3 in RRV-induced disease (158). To 

confirm that MBL-DKO mice have decreased tissue damage following RRV infection 

compared to WT mice, we used Evans Blue dye (EBD) uptake to detect areas of damage. 

Consistent with the clinical scores and histological analyses at 10 dpi, RRV-infected WT 

mice had abundant EBD positive muscle fibers within the quadriceps muscle whereas 

EBD positive cells were rare in RRV-infected MBL-DKO mice (Figure 2.2B), further 

demonstrating that MBL is required for the induction of tissue damage during RRV-

induced disease. 

 

RRV infection induces MBL deposition onto tissues and cells.  

 To determine if MBL is deposited onto tissues following RRV infection, we 

evaluated tissue homogenates of quadriceps muscle from RRV-infected WT mice at 7 dpi 

for levels of MBL by immunoblot analysis. We observed an increase in the amount of 

MBL in the quadriceps muscle of infected mice compared to that of mock-infected mice 

(Figure 2.3A), indicating that RRV infection results in elevated amounts of MBL within 

target tissues.  Given the enhanced MBL within RRV infected muscle tissue, we next 

evaluated whether MBL would directly bind to RRV or RRV infected cells.  Studies with 

two other alphaviruses, CHIKV and Sindbis virus, found no evidence for interactions 

with MBL, while mosquito derived West Nile virus was efficiently bound and neutralized 

by MBL (61). Consistent with these findings, we were unable to detect direct binding 
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between MBL and either mammalian cell or mosquito cell derived RRV virions by 

ELISA (Figure 2.4A-B) and we also found no evidence for MBL-mediated neutralization 

of RRV (Figure 2.4C). Given the lack of detectable interactions between MBL and the 

RRV virion, we assessed whether MBL bound to RRV-infected cells. Differentiated 

C2C12 murine skeletal muscle cells were infected with RRV for 24 hours and then 

incubated with medium containing either C57BL/6 wild-type serum or MBL-DKO serum 

for 30 minutes. Cell lysates were harvested and analyzed for presence of MBL-C by 

immunoblot analysis. As shown in Figure 2.3B, the amount of MBL-C deposition was 

enhanced in cells infected with RRV compared to mock infected cells, indicating that 

RRV infection results in increased MBL binding to cells. No deposition of MBL was 

detected onto cells incubated with MBL-DKO serum, indicating the specificity of 

detection.  Therefore, though MBL does not appear to interact with the RRV virion, RRV 

infection does lead to MBL deposition on infected cells.    

 

Complement deposition and activation is reduced in RRV-infected MBL-DKO compared 

to WT mice. 

MBL, but not the alternatively or classical complement activation pathways, was 

required for RRV-induced disease and tissue pathology (Figures 2.1 and 2.2), and the 

phenotype in MBL-DKO mice is strikingly similar to C3-/- mice, suggesting that MBL 

plays a major role in driving complement activation during RRV infection.  Therefore, 

we directly assessed whether MBL was required for RRV-dependent complement 

deposition.  Western blot analysis of skeletal muscle from wild type or MBL-DKO mice 

indicated that C3 levels, including the α and β chains of C3 were present at reduced 



	   71	  

levels in the skeletal muscle of RRV infected MBL-DKO mice compared to wild type 

mice (Figure 2.5). However, since inflammatory macrophages produce C3 (20), western 

blot analysis was not able to clearly differentiate between complement deposition within 

the tissue and de novo production of complement by the infiltrating inflammatory cells in 

both wild type and MBL-DKO animals. Therefore, we directly assessed the impact of 

MBL deficiency on complement deposition within the RRV infected muscle by 

performing immunohistochemistry on quadriceps muscle from WT and MBL-DKO mice 

using an anti-mouse C3 antibody. Abundant C3 staining localized to damaged skeletal 

muscle at 7 dpi in WT mice while C3 staining was substantially reduced in muscle from 

RRV-infected MBL-DKO mice (Figure 2.6A).  Importantly, we observed comparable C3 

staining between RRV-infected C1q-/-, fB-/-, and WT mice (Figure 2.6B), suggesting that 

neither C1q nor fB are required for C3 deposition on muscle tissue following RRV 

infection. Therefore, these results suggest that MBL is the major mediator of complement 

activation and deposition within RRV infected muscle tissue.   

 

Viral replication is unaffected in the muscle tissue of MBL-DKO mice.  

Prior studies with C3-/- and CR3-/- mice demonstrated that complement activation 

and CR3-dependent signaling is essential for RRV-induced disease and tissue destruction, 

but complement deficiency had no effect on viral burden or tropism. To determine 

whether this was also the case in MBL-DKO mice, we evaluated WT and MBL-DKO 

mice for viral load within the quadriceps muscles, ankle joints, and serum.  As shown in 

Figure 2.7A, MBL-DKO mice exhibited no significant difference in the amount of 

infectious virus in the quadriceps muscle through days 7 and 10 dpi, which represent the 
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times when RRV-induced muscle destruction peaks.  Furthermore, analysis of the viral 

distribution within wild type and MBL-DKO animals by in situ hybridization found no 

differences in the localization of RRV specific signal between the two mouse strains. 

(Figure 2.7D).  Therefore, the differences in RRV-induced tissue destruction (Figure 

2.2A-B) or C3 deposition (Figure 2.6) within the RRV infected muscle of MBL-DKO 

mice cannot be explained by differences in viral replication.   

In addition to evaluating viral titers within the skeletal muscle, we also assessed 

viral loads within the serum and ankle joints.  Viral titers within the ankle joints were 

similar between MBL-DKO and WT mice through 7 dpi (Figure 2.7B), though we did 

observe a small, but statistically significant decrease in viral titer within the ankle joints 

of MBL-DKO mice compared to wild type mice at day 10 post infection.  MBL-DKO 

mice had higher amounts of virus in the serum at 1 dpi compared to WT mice (Figure 

2.7C), indicating that MBL may play some role in initial control of viremia. However, 

virus was cleared from the serum of infected animals at similar rates in both WT and 

MBL-DKO mice (Figure 2.7C), suggesting that MBL does not play a major role in serum 

clearance of RRV or direct neutralization of virus in the serum. The impact of this initial 

increase in serum viremia in MBL-DKO mice on downstream disease through antibody 

production is unclear, although it is important to note that both RAG-1-/- and µMT mice 

develop disease similar to WT mice (158), indicating that the antibody response is not 

required for development of disease.  
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MBL deficiency does not affect inflammatory cell recruitment, but alters expression of 

inflammatory mediators within the RRV-infected muscle. 

Prior studies demonstrated that complement activation drives inflammatory tissue 

destruction, but does not regulate inflammatory cell recruitment during RRV infection 

(158). However, as MBL may regulate the host inflammatory response independently of 

its effects on complement activation, we quantified and analyzed the inflammatory cell 

populations within the muscle of WT and MBL-DKO animals at 7 and 10 dpi, which are 

the times of peak inflammation in WT mice (161). Consistent with prior findings in C3-/- 

mice, RRV infected MBL-DKO mice exhibited no statistically significant differences in 

either total number of leukocytes (Figure 2.8A) or the composition of the inflammatory 

infiltrates at either 7 or 10 dpi (Figure 2.8B). Representative flow cytometry plots of the 

various cell types are shown in Figure S2.1. The total numbers of CD4+ T cells, CD8+ T 

cells, and NK cells at both 7 and 10 dpi were not significantly different between RRV-

infected WT and MBL-DKO mice (Figure 2.8B). Given the role of inflammatory 

macrophage in development of RRV-induced disease (135), we compared total numbers 

of cells with staining characteristics of inflammatory macrophages (F4/80+ CD11b+ Gr-

1lo B220-) at both 7 and 10 dpi, and observed no difference at 7 dpi, and interestingly, a 

significant increase in numbers of these cells in RRV-infected MBL-DKO mice at 10 dpi. 

While we cannot rule out the possibility that minor populations of inflammatory cells are 

differentially regulated by MBL, these data suggest that MBL does not affect the major 

populations of inflammatory infiltrates recruited to the skeletal muscle following RRV 

infection.  



	   74	  

Although inflammatory cell recruitment was largely unaffected by either MBL or 

C3 deficiency (158) we have previously shown CR3 is also required for RRV-induced 

disease and that a subset of inflammatory genes expressed in the inflamed muscle of 

RRV-infected mice are dependent upon both C3 and CR3, including the calgranulins 

S100A8 and S100A9, IL-6 and the enzyme arginase I (ArgI) (160). Therefore, to 

determine if MBL affected expression of these genes in the same manner as C3 and CR3, 

expression levels were assessed in the quadriceps muscle from both WT and MBL-DKO 

mice at 7 dpi.  As shown in Figure 2.9, RRV-infected WT mice exhibited significantly 

higher expression of S100A8 and S100A9 compared to RRV-infected MBL-DKO mice, 

indicating that expression of these genes is also regulated by MBL during RRV infection. 

Interestingly, the S100A8/S100A9 complex has been associated with inflammatory 

arthritis (reviewed in (172)) however, the role of these proteins in RRV disease requires 

further investigation. Expression of TNFα and IL-1β, which were shown to be C3-

independent (160), were also unaffected in MBL-DKO mice (Figure 2.9). Expression of 

IL-6 and Arg I, which we have previously shown to be C3 and CR3-dependent, were 

unaffected in MBL-DKO mice (IL-6) or slightly reduced (Arg I) (Figure 2.9). Expression 

of these genes may reflect residual complement activation in the absence of MBL (Figure 

S3), though this requires further study. Interestingly, expression of IL-10, which is 

largely C3-independent following RRV infection (160), was dependent on MBL and 

suggests that MBL may be interacting with pathways other than the complement system 

to mediate IL-10 expression (Figure 2.9).  
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Levels of MBL are elevated in RRV patients. 

 Prior studies have shown that the C3 cleavage product C3a is elevated in synovial 

fluid of RRV polyarthritis patients (158). To determine if circulating levels of MBL are 

elevated in RRV-infected patients, we compared serum MBL levels from patients during 

convalescence to serum MBL levels in RRV-seronegative controls. As shown in Figure 

2.10A, RRV patients had significantly higher levels of circulating MBL compared to 

healthy controls. Since MBL levels are highly variable in human populations, we also 

assessed serum and synovial fluid MBL levels in a small cohort of patients clinically 

characterized as having severe or mild RRV-induced polyarthritis. MBL levels correlated 

with severity of RRV disease (Figure 2.10B), with higher levels of MBL observed in 

patients classified as having severe disease. Severity of disease also correlated with 

increased levels of C4a in the synovial fluid (Figure 2.10C), which could result from 

complement activation through either the lectin or classical pathway. However, analysis 

of the level of C1q-C4 complexes formed within the synovial fluid, an activation marker 

of the classical pathway (249), showed no difference between patients with severe or 

mild disease (Figure 2.10C), suggesting that the higher C4a levels in severe RRV disease 

was primarily due to activation through the lectin pathway. In addition, we did not 

observe a difference in levels of Bb, an activation marker of the alternative pathway 

(Figure 2.10C), further supporting the hypothesis that the MBL pathway primarily 

mediates complement activation following RRV infection. Importantly, when we 

assessed MBL levels in a cohort of patients suffering from non-inflammatory 

osteoarthritis, we found no evidence for elevated MBL levels (mean MBL levels of 57.8 

± 24.8 ng/ml [n=5 patients with severe osteoarthritis]) compared to MBL levels of 485 ± 
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163.7 ng/ml in patients with severe RRV induced disease and 218.5 ± 82.4 ng/ml within 

the synovial fluid of patients with mild RRV-induced disease, suggesting that elevated 

levels of MBL are not simply the result of arthritis symptoms within the joints.  Although 

additional studies with a larger cohort of patients are required to determine whether MBL 

levels associate with the severity of RRV-induced arthritis, and whether this effect 

reflects a causal role for MBL in human disease, these results, combined with the 

knockout mouse studies strongly suggest that the MBL pathway of complement 

activation plays a major role in the pathogenesis of RRV-induced inflammatory disease.   
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2.5 Discussion 

Alphaviruses such as CHIKV and RRV represent significant emerging disease 

threats that cause large-scale outbreaks of severe chronic and persistent 

arthralgia/myalgia in human populations.  Though alphavirus-induced arthralgia and 

myalgia is often debilitating, the mechanisms by which these viruses cause 

arthritis/arthralgia are not fully understood.  Previous studies have shown that 

inflammatory macrophages play a major role in the pathogenesis of both RRV and 

CHIKV (68, 135), that the host complement cascade is essential for the induction of 

muscle destruction by these inflammatory cells during RRV infection, and that this 

process is dependent on complement receptor 3 (CR3) (158, 160). The data presented 

here demonstrate that RRV infection results in the deposition of MBL within RRV 

infected tissues, and that MBL, but not the alternative or classical complement activation 

pathways, was essential for RRV induced complement activation and subsequent 

inflammatory tissue destruction and disease.  Consistent with this, humans suffering from 

severe RRV disease exhibited increased levels of MBL, but not markers of the classical 

or alternative complement activation pathways in their synovial fluid.  Therefore, these 

studies demonstrate that MBL plays a key role in promoting the pathogenesis of 

alphavirus-induced inflammatory disease, and suggest that MBL may represent a target 

for therapeutic intervention in the treatment of alphavirus-induced arthritis/myositis.  

MBL has generally been associated with a protective role during viral infection, 

either through its ability to neutralize viruses directly or via the downstream activation of 

complement.  In the context of arbovirus infection, MBL contributes to direct 

neutralization of mosquito-derived West Nile virus and both mammalian and mosquito-
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derived dengue virus through interactions between MBL and viral N-linked glycans (7, 

61), and MBL contributes to protection from West Nile virus-induced disease in vivo 

(62). Though the host complement cascade has been shown to play a protective role 

during neurotropic alphavirus infection (23, 98, 99) these processes are dependent upon 

either the classical or alternative complement activation pathways (99).  Furthermore, 

though Fuchs, et al., found that MBL bound and neutralized WNV virions, they found no 

evidence for MBL interactions with two alphaviruses, CHIKV and Sindbis virus (61), 

which is supported by our inability to demonstrate direct binding or neutralization of 

RRV virions by MBL.  Therefore, our findings demonstrate a novel role for MBL in the 

pathogenesis of alphavirus-induced arthritis/myositis and indicate that this pathway, 

which plays a protective role against many viral infections, is actually a major driver of 

RRV-induced tissue pathology and disease.    

In addition to its prominent role in the pathogenesis of RRV-induced disease, the 

complement cascade is linked to a number of host autoimmune inflammatory disorders, 

including rheumatoid arthritis (reviewed in (103)).  However, the role of MBL in these 

processes is less clear.  Though MBL has been shown to contribute to ischemic injury in 

mouse models of cardiac or intestinal reperfusion injury (89, 112, 205, 237), MBL has 

not been directly linked to inflammatory arthritis.  There are conflicting reports 

associating MBL polymorphisms with rheumatoid arthritis in humans (80, 109, 110, 198, 

228), however in mouse models of collagen-induced arthritis, which serves as a model of 

RA, MBL is dispensable for complement activation and arthritis induction (10, 11).  

Therefore, MBL appears to be playing a unique role in the pathogenesis of RRV-induced 
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arthritis/myositis that is not shared with other arthritic syndromes, though further 

comparisons between these different disease states are needed to clarify this issue.    

The studies presented here demonstrate that MBL-dependent complement 

activation promotes RRV-induced disease and raises several questions relating to the 

mechanism of RRV activation of complement, the role of MBL polymorphisms in 

determining disease severity, and the therapeutic potential of MBL inhibition to treat 

RRV-infected patients. The CRD of MBL recognizes terminal carbohydrates, such as 

mannose and glucose, which can be found on glycosylated proteins in bacteria and 

viruses. The RRV glycoproteins contain three N-linked glycosylation sites that are 

glycosylated with a combination of high mannose and complex glycans (210) and may 

serve as ligands for MBL, leading to complement activation. While we did not observe 

direct binding of MBL to virions, we did observe an increase in the amount of MBL 

deposited onto infected tissues and on virally infected cells (Figure 2.3), indicating that 

some aspect of RRV infection induces MBL deposition and complement activation. 

Alphaviruses bud from the plasma membrane of infected cells and the viral glycoproteins 

are prominently exposed on the surface of the cell. Therefore, it is possible that MBL is 

recognizing and binding to viral glycoproteins on infected tissues during viral egress, 

resulting in complement activation directly onto the tissue rather than binding to free 

virus. Alternatively, viral infection may lead to the modification of host cell N-linked 

glycans or other cellular components, thereby promoting MBL deposition and 

complement activation; however, both of these possibilities require further investigation.   

Given the central role of MBL in development of severe RRV-induced disease, 

specific inhibition of the MBL activation pathway of the complement system in RRV-
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patients may be a strategy to alleviate disease. Current therapy involves administration of 

non-steroidal anti-inflammatory drugs, and given the role that complement plays in 

mediating severe RRV-induced disease, treatment with complement inhibitors may 

provide an attractive alternative to nonspecific anti-inflammatory drugs. However, 

prolonged inhibition of the complement system can leave patients susceptible to other 

infectious diseases, especially as treatment of disease symptoms may require several 

months for some individuals (163). Our results suggest that a more focused approach 

targeting MBL may prove effective in limiting RRV-induced arthralgia/myalgia, while 

limiting the general immune suppression associated with complement inhibition. 

Inhibitors targeting the MBL pathway of complement through inhibition of MASP-2 are 

in development (14), and may be useful in treatment of RRV-induced disease in humans.   

In addition to raising the possibility of targeting MBL in the treatment of RRV or 

other alphavirus-induced arthraligias/myalgias, these studies raise the issue of whether 

polymorphisms in MBL affect susceptibility to RRV-induced disease.  Common genetic 

polymorphisms within the promoter region and exon 1 of the human Mbl2 gene lead to 

variations in serum MBL levels or functional deficiency of MBL (reviewed in (51)). 

Human patients with severe RRV disease have higher levels of MBL within the synovial 

fluid and serum; however, it is unclear if levels of MBL are elevated in response to 

severe RRV infection or if naturally higher levels of MBL contribute to the development 

of severe disease. Preliminary analysis of a small cohort of RRV patients does not 

associate Mbl2 polymorphisms with severity of RRV disease (S. Mahalingam, B. Piraino, 

B. Cameron, L. Herrero, and A. Lloyd, unpublished data), however a larger cohort of 

RRV-infected individuals must be analyzed before we can conclude whether MBL 



	   81	  

polymorphisms associate with RRV-induced disease severity or if up-regulation of MBL 

in response to viral infection contributes to disease pathogenesis in humans.  

 

In summary, the data presented in this study demonstrate the role for MBL in 

promoting severe disease following RRV infection through complement activation and 

subsequent destruction of RRV infected tissue. Numerous studies have shown a 

protective role for MBL and the complement system in response to a diverse set of 

viruses. Our results demonstrate a novel role of MBL following viral infection in which 

MBL contributes to development of severe disease, and these findings suggest that MBL 

may be a therapeutic target for treatment in humans suffering from RRV-induced 

polyarthritis or other alphavirus-induced arthritides.   
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Figure 2.1: MBL is required for development of severe RRV-induced disease and 

tissue damage.  
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Figure 2.1 MBL is required for development of severe RRV-induced disease and 

tissue damage.  

(A-B) Twenty-four day old WT C57BL/6 (solid square, n=6), C1q-/- (open square, n=6), 

fB-/- (solid circle, n=5), or MBL-DKO (open circle, n=6) mice were infected with RRV, 

scored for hind limb function based on a scale described in the Materials and Methods 

(A), and assessed for weight loss (B). Each data point represents the arithmetic mean 

±SD and is representative of at least three independent experiments. We performed a 

Mann-Whitney analysis with multiple comparison corrections (p<0.01 was considered 

significant) on clinical scores at 10 dpi and a one-way ANOVA analysis with 

Bonferroni’s correction on percent of starting weight at 10 dpi (p<0.05 was considered 

significant) to determine significance between the various knock-out lines compared to 

WT **p<0.01; *** p<0.001; n.s. not significant. 
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Figure 2.2: MBL is required for development of severe RRV-induced pathology and 

tissue damage within skeletal muscle.  
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Figure 2.2 MBL is required for development of severe RRV-induced pathology and 

tissue damage within skeletal muscle.  

(A) Twenty-four day old WT C57BL/6, C1q-/-, fB-/-, or MBL-DKO mice were infected 

with RRV. Tissue pathology and inflammation was examined at 10 dpi by H&E staining 

of paraffin embedded sections of quadriceps muscle. A representative section from each 

knockout strain is shown. A section from RRV-infected C3-/- is shown for comparison.  

(B) To assess damage within the muscle, mock or RRV-infected WT or MBL-DKO mice 

were injected with EBD at 10 dpi, and frozen sections were generated. EBD positive 

muscle fibers were identified by fluorescence microscopy. Representative sections of 

mock- and RRV-infected mice are shown and are representative of two independent 

experiments.  
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Figure 2.3: RRV infection induces MBL deposition onto cells 
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Figure 2.3 RRV infection induces MBL deposition onto cells 

(A) To determine if MBL levels are elevated within the quadriceps muscles of RRV-

infected wild-type animals, homogenized quadriceps muscles from either mock- or RRV-

infected WT mice at 7 dpi were analyzed by immunoblot analysis using anti-mouse 

MBL-A, anti-mouse MBL-C, or anti-mouse actin antibodies. Each lane represents an 

individual mouse and is representative of at least three independent experiments. 

Densitometry measurements of bands in immunoblot from three different experiments are 

graphically depicted as arbitrary units normalized to actin (mock n=4; RRV n=9).  

(B) To determine if MBL deposition is enhanced onto RRV-infected cell, differentiated 

C2C12 murine skeletal muscle cells were infected with RRV, and incubated with either 

serum from a WT or MBL-DKO mouse for 30 minutes prior to harvesting. Cells were 

washed, harvested, and lysates were analyzed by immunoblot analysis using anti-mouse 

MBL-C, anti-RRV, or anti-mouse actin antibodies.  
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Figure 2.4: MBL does not bind or neutralize RRV virions. 

A.  

 

B. 

 

C.  
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Figure 2.4 MBL does not bind or neutralize RRV virions. 

(A-B) To determine if MBL could bind to RRV virions directly, a modified sandwich 

ELISA was performed. Wells were coated with mannan (grey bar), mammalian or 

mosquito-derived RRV (solid bar), or mock supernatant (open bar), and were 

subsequently incubated in WT mouse serum as a source of MBL. (A) The amount of 

MBL deposition within the wells was detected by an antibody against mouse MBL-C 

using standard ELISA techniques. (B) The amount of RRV antigen was detected using an 

antibody against the RRV structural proteins. Data is expressed as raw OD450nm values 

normalized to background, and each bar is the arithmetic mean ± SD of three replicates 

and is representative of two independent experiments. 

(C) To determine if RRV could be directly neutralized by complement components 

within serum, 103 PFU of RR64 was incubated with increasing amounts of naïve mouse 

serum from wild-type (solid circle) or MBL-DKO mice (solid square), or heat-inactivated 

wild-type serum (open circle) for 1 hour at 37°C. The number of plaques was determined 

by plaque assay on BHK-21 cells. Each data point represents the arithmetic mean ± SD of 

three replicates and is representative of three independent experiments. 
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Figure 2.5: Complement activation within quadriceps muscle is largely dependent 

on MBL.  
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Figure 2.5. Complement activation within quadriceps muscle is largely dependent 

on MBL.  

To determine if complement activation was dependent on MBL, we analyzed 

homogenized quadriceps muscles from either mock- or RRV-infected WT or MBL-DKO 

mice 7 dpi by immunoblot analysis using an anti-mouse C3 or anti-mouse actin antibody. 

C3 cleavage products are indicated with solid arrowheads. Each lane represents an 

individual mouse, and the western blot is representative of three independent experiments  
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Figure 2.6: MBL is required for C3 deposition following RRV-infection.  

A. 

 

 

B.  
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Figure 2.6. MBL is required for C3 deposition following RRV-infection.  

(A) C3 deposition was assessed by IHC using an anti-mouse C3 antibody on quadriceps 

muscle sections from either mock- or RRV-infected WT or MBL-DKO mice at 7 dpi. C3 

positive areas are stained in blue. A representative section from each strain is shown and 

is representative of two independent experiments. No signal was observed in sections 

incubated with a control goat IgG antibody. 

(B) To determine if either the classical or alternative complement activation pathways 

contribute to C3 deposition following RRV infection, we performed IHC using an anti-

mouse C3 on quadriceps muscle sections from RRV-infected wild-type, C1q-/-, or fB-/- at 

10 dpi. C3 deposition is shown in red for C1q-/- and the wild-type control, and in blue for 

the fB-/- and wild-type control. 5µm thick paraffin-embedded sections were prepared as 

described in the Materials and Methods, with the following modification:  RRV-infected 

C1q-/- and wild-type sections were developed using Vector Red Alkaline phosphatase 

substrate kit (Vector Labs, CA) instead of Vector Blue Alkaline phosphatase substrate kit. 

A representative section from each strain is shown (n=3 for wild-type mice, n=3 for C1q-

/- mice; n= 3 for wild-type mice, n=3 for fB-/- mice) 
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Figure 2.7: MBL deficiency does not affect viral replication or tropism within 

infected tissues.  
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Figure 2.7: MBL deficiency does not affect viral replication or tropism within 
infected tissues.  
 
 C.  

 

 D.  
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Figure 2.7 MBL deficiency does not affect viral replication or tropism within 

infected tissues.  

(A-C) Quadriceps muscle (A), ankle joints (B), and serum (C) from RRV-infected WT 

(solid circles, n=3-9/time point) or MBL-DKO (open circles, n=3-8/time point) mice 

were assayed to determine viral titer at various times post infection. Viral titer was 

determined by plaque assay on BHK-21 cells. Each data point represents the viral titer 

from a single animal; data is combined from two independent experiments. *p<0.05 as 

determined by t-test.  

(D) Tropism within the quadriceps muscle tissue was determined by in situ hybridization 

using RRV-specific probe. We did not detect any signal using an EBER-specific probe 

(data not shown). A representative section from each strain is shown (n=3 for both WT 

and MBL-DKO mice) 
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Figure 2.8: MBL deficiency does not affect inflammatory cell recruitment. 
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Figure 2.8 MBL deficiency does not affect inflammatory cell recruitment. 

(A-B) Leukocytes were isolated from the quadriceps muscle of RRV-infected WT (solid 

circles, n=3-5/time point) or MBL-DKO (open circles, n=3-7/time point) mice at 7 or 10 

dpi. Cells were characterized and quantified by flow cytometry using the markers 

described in the materials and methods. Total numbers of leukocytes (A) and specific 

cells types (B) are shown. A single experiment for each time point is shown. *p<0.05 by 

Mann-Whitney analysis.  
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Figure 2.9: MBL deficiency alters expression of inflammatory mediators within the 

RRV infected muscle.  

 

 

     



	   100	  

Figure 2.9 MBL deficiency alters expression of inflammatory mediators within the 

RRV infected muscle.  

Relative mRNA expression of C3-dependent inflammatory mediators and cytokines 

S100A9, S100A8, Arginase I, and IL-6, and C3-independent cytokines TNFα, IL-1β, and 

IL-10 from quadriceps muscle from RRV-infected WT (solid bar, n=3) or MBL-DKO 

(open bar, n=3) mice by quantitative real-time PCR. Raw data values were normalized to 

18S rRNA levels, log-transformed, and are graphically depicted as fold expression over 

mock-infected mice. Data from a single experiment is shown, but is representative of two 

independent experiments. ***p<0.001; **p<0.005 by t-test.  
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Figure 2.10: Levels of MBL are elevated in RRV patients.  

  A.  

 

B.

 

 

C.
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Figure 2.10 Levels of MBL are elevated in RRV patients. 

(A) Serum from RRV-infected patients (solid circles, n= 5) or healthy sero-negative 

controls (open circles, n=13) were analyzed by ELISA for MBL levels. Each data point 

represents a single individual, and bar represents the median. *p<0.05 by Mann-Whitney 

analysis.  

(B) MBL levels within serum and synovial fluid from patients clinically characterized 

with either severe RRV-induced disease (solid circles, n=6) or mild RRV-induced disease 

(open circles, n=4) were analyzed by ELISA. Each data point represents a single 

individual, and the bar represents the median. **p<0.01 by Mann-Whitney analysis.  

(C) Levels of C4a (left), C1q-C4 complex (middle) and Bb (right) within the synovial 

fluid from patients described in (B) were analyzed by ELISA. *p<0.05 by Mann-Whitney 

analysis.  
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Figure S2.1: Representative flow cytometry plots and gating scheme used to 

characterize inflammatory infiltrates.  

A.  

 

B.  
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Figure S2.1 Representative flow cytometry plots and gating scheme used to 

characterize inflammatory infiltrates.  

(A) To determine the number of leukocytes, we gated on LCA+ cells. To further 

distinguish between NK cells and T cells, we analyzed expression of NK1.1 and CD3 on 

LCA+ lymphocytes. NK1.1+CD3- were classified as NK cells, and NK1.1-CD3+ cells 

were classified as T cells. T cells were further classified into CD4+ and CD8+ T cells 

based on CD4 and CD8 expression. Percentages displayed on plots represent the 

percentage of cells within the indicated gate. (B) To determine the number of 

inflammatory macrophage, we first gated on LCA+ cells, followed by analysis of CD11b 

and B220 expression. Inflammatory macrophage typically stain CD11b+B220-. We 

distinguished inflammatory macrophage from neutrophils within the CD11b+B220- 

population by analyzing F4/80 and Gr-1/Ly-6G expression; inflammatory macrophage 

were defined as CD11b+B220-F4/80+Gr-1lo. Percentages displayed on plots represent the 

percentage of cells within the indicated gate. 



 
 
 
 
 

CHAPTER THREE: 
 

ROSS RIVER VIRUS ENVELOPE N-LINKED GLYCANS CONTRIBUTE TO 
ALPHAVIRUS-INDUCED ARTHRITIS AND MYOSITIS THROUGH 

ACTIVATION OF THE HOST COMPLEMENT SYSTEM.  
 

3.1 Summary 

Mannose binding lectin (MBL) generally plays a protective role during viral infection, 

both through the ability to directly neutralize viruses and its role in activating the host 

complement cascade.  However, in the context of alphavirus-induced arthritis and 

myositis, MBL-mediated complement activation plays a pathologic role by promoting 

virus-induced inflammatory tissue destruction.  To define the mechanisms by which 

MBL contributes to virus-induced disease following Ross River virus (RRV) infection, 

studies were performed to identify specific viral factors were involved in promoting 

MBL-dependent complement activation.  Since MBL recognizes and binds to terminal 

carbohydrates, we hypothesized that one or more of the three N-linked glycosylation sites 

on the RRV envelope glycoproteins acted as ligands for MBL binding and subsequent 

complement activation and disease. Using a panel of RRV mutants lacking one or more 

envelope glycans, we have found that the RRV E2 N-linked glycans were required for 

MBL binding to infected cells and induction of RRV-induced disease.  Animals infected 

with a virus lacking both N-linked glycans on the E2 glycoprotein (E2 N200;262Q) 

exhibited reduced disease, significantly less tissue damage, and decreased MBL binding 
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and complement activation compared to animals infected with the wild type virus.  These 

results demonstrate that interactions between MBL and the viral N-linked glycans play a 

major role in promoting virus induced disease and suggest that targeting these 

interactions may be of benefit in developing potential therapies in the treatment of 

alphavirus-induced arthritis.  

 

3.2 Introduction 

Arthritic alphaviruses such as RRV and chikungunya virus (CHIKV) are 

mosquito-borne viruses that cause outbreaks of debilitating infectious arthritis in many 

regions of the world. These viruses are transmitted to humans primarily by the Aedes and 

Culex species of mosquito and have been found to cause epidemics of disease in both 

urban and rural settings (86). Both RRV and CHIKV share similar disease symptoms that 

are characterized by debilitating polyarthritis and myositis that frequently results in 

painful swelling of the peripheral joints. Studies in both humans and mice have identified 

a critical role for the host inflammatory response in the development of RRV-induced 

arthritis and immunopathology associated with disease (135, 161). In particular, the host 

complement system plays a critical role in development of disease and is thought to act 

not through direct lysis of cells by formation of the terminal complex, but rather through 

activation of CR3-bearing inflammatory cells to mediate direct damage to the inflamed 

tissues (158, 160). Furthermore, we recently demonstrated that the lectin pathway, which 

is one of the three main activation pathways of the complement system, initiated by 

mannose binding lectin (MBL) mediates activation of complement following RRV 

infection and contributes to disease without altering tropism and viral burden (79).  This 
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is in contrast with many other viral systems, such as West Nile virus (WNV), Ebola virus, 

human immunodeficiency virus, and SARS-CoV, where MBL plays a protective role 

during infection, either through direct inhibition of viral infection or via complement 

activation (54, 61, 111, 257).   

MBL-mediated complement activation is initiated by the recognition of terminal 

sugars on glycosylated proteins by the CRD of MBL (reviewed in (223)). Though we 

have previously demonstrated that MBL does not directly bind to free RRV virions, given 

the ligand specificity of MBL, we hypothesized that MBL might interact with the N-

linked glycans on the RRV envelope glycoproteins when they are displayed on the 

surface of infected cells. The alphavirus glycoproteins E1 and E2 contain three to four N-

linked glycosylation sites (Asn - X - Ser/Thr) that are glycosylated with N-linked glycans 

(219). The RRV pE2 and E1 glycoproteins are synthesized and processed through the ER 

and then further processed in the Golgi to generate mature E2-E1 heterodimers. The E2-

E1 heterodimers self-assemble into trimeric spikes at the plasma membrane, and each 

budding alphavirus virion incorporates 80 glycoprotein spikes to make up the viral 

envelope. The E2 glycoprotein is prominently displayed on the surface of the virus and 

on the surface of infected cells, and for most alphaviruses, two of the N-linked glycans 

are located on E2. The positions of the RRV E2 glycans on the glycoprotein spike have 

been mapped: the E2 N200 carbohydrate moiety is located on one side of the tip of the 

protruding E2 “petal”, and the E2 N262 glycan appears to be located between the trimeric 

spikes (174). Thus, the RRV E2 N-linked glycans are surface exposed and are in a key 

position to interact with host proteins. The RRV E2 N-linked glycans are glycosylated 

with a combination of high mannose and complex glycans when produced in mammalian 



	   108	  

cells; the glycan at E2 N200 is either a high mannose or hybrid glycan and the E2 N262 

position is predominantly glycosylated with a complex glycan (210). The role of these N-

linked glycans in arthritic alphavirus pathogenesis to date has not been evaluated.  

 In this study, we have used a panel of mutant viruses that lack one or both of the 

two N-linked glycosylation sites on E2 to demonstrate that the E2 N-linked glycans are 

required for MBL binding to virally infected cells and subsequent induction of virus-

induced disease. While RRV infected cells are readily bound by MBL, this activity was 

lost when the cells were infected with RRV lacking both N-linked glycans on the viral E2 

glycoprotein.  Furthermore, viruses lacking either E2 N-linked glycosylation site cause 

reduced RRV disease in mice, while a virus lacking both sites causes very mild disease. 

Our results supports a model of RRV disease pathogenesis wherein the E2 N-linked 

glycans promote activation of the lectin complement pathway by MBL, resulting in 

activation of CR3-bearing inflammatory cells and subsequent damage within inflamed 

tissues 

 

3.3 Materials and Methods 

Viruses and cells. Wild-type RRV is derived from the infectious clone of RRV T48 

(pRR64), and the E2 N-linked glycan mutants were generated previously by site directed 

mutagenesis of N-linked glycosylation sites in E2 in pRR64 (210). The viral stocks used 

in this study were generated as described in (161). Briefly, viral RNA was generated 

through in vitro transcription of SacI-linearized pRR64 using the mMessage mMachine 

SP6 kit (Ambion) and electroportated into BHK-21 cells (ATCC). Viral titer was 

determined by plaque assay on BHK-21 cells.  BHK-21 cells were grown in α-MEM 
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(Gibco) supplemented with 10% donor calf serum (DCS), 10% tryptose phosphate, L-

glutamine, penicillin, and streptomycin.  Murine myoblast C2C12 cells (ATCC) were 

grown in DMEM supplemented with 20% FBS, L-glutamine, penicillin, and 

streptomycin prior to differentiating. To differentiate cells into myotubes, confluent 

C2C12 cells were maintained in DMEM supplemented with 2% horse serum, L-

glutamine, penicillin, and streptomycin for 96 hours. Primary myoblasts from C57BL/6 

mice were harvested from limbs of 1-day old mice. Skeletal muscle was dissociated using 

type I collagenase (Worthington Biochemicals) and grown in DMEM supplemented with 

6% FBS, L-glutamine, penicillin, streptomycin, and gentamycin. To differentiate cells, 

the medium was replaced with DMEM containing 3% FBS.  

 

MBL deposition onto myotubes. Differentiated myotubes (either C2C12 or primary 

cells from C57BL/6 mice) cells either mock-infected or infected with RRV WT or RRV 

E2 DM at an approximate MOI of 20. At 18 hpi, culture medium was removed and cells 

were incubated in medium containing either 10% serum from WT or MBL-DKO mice 

for an additional 30 minutes. Cells were washed with PBS containing 400mM NaCl and 

harvested in RIPA lysis buffer. Cell lysates were analyzed by immunoblot analysis as 

described below. 

 

Immunoblot analysis. At indicated times post infection, mock-infected and RRV-

infected mice were sacrificed, and perfused with 1X PBS. Quadriceps muscles were 

removed and homogenized in radioimmunoprecipitation lysis buffer (RIPA; 50µM Tris 

pH 8.0, 150mM NaCl; 1% NP-40, 0.5% deoxycholate, 0.1% SDS and 1X complete 
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protease inhibitor cocktail (Roche)) by glass beads. Protein concentration was determined 

by Bradford protein assay and 25-30µg of protein was run onto a 10% SDS-PAGE gel. 

Protein was transferred onto a PVDF membrane, and membranes were blocked in 5% 

milk, 0.1% Tween-20 in PBS. Membranes were probed with goat anti-mouse MBL-A 

(1:1000 R&D Systems), goat anti-mouse MBL-C (1:1000 R&D Systems), goat anti-

mouse C3 polyclonal antibody (1:1000 Cappel), mouse anti-RRV (1:1000 ATCC), or 

goat anti-mouse actin polyclonal antibody (1:500 SCBT), washed with PBS containing 

0.1% Tween-20 and incubated with rabbit anti-goat antibody or sheep anti-mouse 

antibody conjugated to horseradish peroxidase (1: 10, 000 Sigma). Membranes were 

washed again and protein visualized by ECL (Amersham) according to manufacturer’s 

instructions. Densitometry was performed using ImageJ software (NIH).  

 

Immunofluorescence. BHK-21 cells were seeded at 1 x 104 cells/well into an 8-well 

chamber slide. Cells were infected at MOI of 1 with either diluent alone (mock), RRV 

WT or RRV E2 DM. At 12 hpi medium was removed and cells were incubated in HBSS 

with 5mM CaCl2 with or without 10ug/ml rhMBL (R&D Systems) for 30 minutes at 

37°C. Cells were washed 3-4 times with PBS, fixed in 1.5% PFA for 15 minutes, washed 

and incubated in PBS containing 100mM glycine, followed by incubation in 3% BSA in 

PBS with 0.05% Tween 20 containing 10% normal donkey serum. The primary antibody 

incubation with anti-MBL-C (SCBT 1:50) and anti-RRV (ATCC 1:1000) for 1 hour at 

RT. Wells were washed 3 times with PBS with 0.05% Tween 20 and incubated in 

secondary antibody (Alexa Fluor 488-anti mouse 1:1000; Alexa Fluor 594 anti-rabbit 

1:1000). Wells were washed in PBS with 0.05% Tween 20 three times and mounted 
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(ProLong Gold with DAPI, Invitrogen) and imaged by fluorescence microscopy 

(Olympus BX61). Images were processed using ImageJ (NIH).  

 

Mice. All mice used in this study were maintained and bred in house at the University of 

North Carolina (UNC) in accordance with UNC Institutional Animal Care and Use 

Committee guidelines. Mouse studies were performed in strict accordance with the 

recommendations in the Guide for the Care and Use of Laboratory Animals of the 

National Institutes of Health.  All mouse studies were performed at the University of 

North Carolina (Animal Welfare Assurance # A3410-01) using protocols approved by the 

UNC Institutional Animal Care and Use Committee (IACUC).  All studies were 

performed in a manner designed to minimize pain and suffering in infected animals, and 

any animals that exhibited severe disease signs was euthanized immediately in 

accordance with IACUC approved endpoints. C57BL/6 mice were purchased from The 

Jackson Laboratories (Bar Harbor, ME) and bred at UNC.  

 

Infection of mice with RRV. While RRV is classified as a biosafety level-2 agent, due 

to the exotic nature of the virus, all animal studies were performed in a biosafety level-3 

facility. Twenty-four day old mice were inoculated with 103 PFU of RRV strain in 

diluent (phosphate buffered saline supplemented with 1% DCS) into the left rear footpad. 

Mice were weighed daily and assigned a clinical score based on hind limb weakness and 

altered gait on the following scale: 0= no disease; 1=mild loss of hind limb grip; 

2=moderate loss of hind limb grip; 3=severe loss of hind limb grip; 4= no hind limb grip 

and mild inability to right; 5=no hind limb grip and complete inability to right; 
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6=moribund. 

  

Viral burden analysis. Mice were infected with RRV as described above, and at 

indicated times post infection mice were sacrificed, perfused with 1X PBS, and indicated 

tissues were dissected and removed, weighed, and homogenized with glass beads in 

diluent. Viral titer within infected tissues were determined by plaque assay on BHK-21 

cells from tissue homogenates. 

 

Quantitation of RRV genomes. Mice were infected with RRV as described above, and 

at indicated times post infection, mice were sacrificed, perfused with 1X PBS, and the 

quadriceps muscle were dissected and removed, and homogenized with glass beads in 

Trizol (Invitrogen). Total RNA was extracted using Pure Link RNA purification kit 

(Invitrogen), and cDNA was generated from 1µg of RNA using Superscript III reverse 

transcriptase. RRV genomes were amplified using a tagged RRV specific primer by 

quantitative RT-PCR, and absolute numbers of RRV genomes were determined using a 

standard curve of serial dilutions ranging from 108 to 100 copies of RRV genomes.  

 

Histological analysis. At desired times post infection, mice were sacrificed and perfused 

with 4% paraformaldehyde (PFA), pH 7.3. Tissues were paraffin embedded and 5µm 

sections were generated and stained with hematoxylin and eosin (H&E) to examine tissue 

pathology and inflammation. Sections were visualized by bright field light microscopy 

(Olympus BX61).  
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Evans blue dye uptake analysis. At 10 days post infection mice were injected with 1% 

Evans blue dye in PBS into the peritoneal cavity (50µl/10g mouse weight). At 6 hours 

post injection, mice were sacrificed and perfused with 4% PFA. Quadriceps muscle 

tissues were embedded in optimal cutting temperature compound (OCT) and frozen in an 

isopentane histobath, 5µm sections were generated, mounted with ProLong Gold with 

DAPI (Invitrogen) and sections were analyzed by fluorescence microscopy (Olympus 

BX61).  

 

Immunohistochemistry. At 7 dpi, mice were sacrificed and perfused with 4% PFA. 

Quadriceps muscles were removed, paraffin embedded, and 5µm sections were generated. 

Sections were deparaffinized in xylene, rehydrated through an ethanol gradient, and 

probed with a goat anti-mouse C3 polyclonal antibody (1:500 Cappel) using the 

Vectastain ABC-AP kit (Vector Labs, CA) and Vector Blue Alkaline phosphatase 

substrate kit (Vector Labs, CA) according to the manufacturers’ instructions. Sections 

were counterstained with Gill’s hematoxylin.  

 

Analysis of infiltrating inflammatory cells by flow cytometry. To determine the 

composition of the inflammatory cell infiltrates within the quadriceps muscle, at 

indicated times post infection mice were sacrificed and perfused with 1X PBS. Both 

quadriceps muscles were removed, minced, and digested with RPMI containing 10% 

fetal bovine serum (FBS), 15mM HEPES, 2.5mg/ml collagenase A (Roche), 1.7mg 

DNase I (Roche) for 2 hours at 37ºC with shaking. Cells were strained through a 40µm 

strainer and washed twice with wash buffer (HBSS containing 1% sodium azide and 1% 
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FBS) and total viable cells were determined by trypan blue exclusion. To stain cells for 

flow cytometry, cells were incubated with anti-mouse FcγRII/III (2.4G2; BD 

Pharmingen) and stained with combinations of the following antibodies:  fluorescein 

isothiocyanate (FITC)-conjugated anti-mouse CD3, phycoerythrin (PE)-conjugated anti-

NK1.1, PE-Cy5 anti-CD45 (leukocyte common antigen), PE-Cy7 anti-F4/80, 

Allophycocyanin (APC)-conjugated anti-CD49b, eF450-conjugated anti-CD11b, APC 

anti-major histocompatibility complex class II antigens (MHC II), and eF780-conjugated 

anti-CD45 (B220) (eBiosciences, San Diego, CA), FITC anti-Ly-6G, and PE anti-

SigLecF (BD-Pharmingen, San Diego, CA), and PE-Texas Red-conjugated anti-CD45 

(B220), and PE-Texas Red anti-CD11c (Molecular Bioprobes, Invitrogen). Cells were 

fixed with 2% PFA (pH 7.3) and analyzed on a CyAn flow cytometer (Becton Dickinson), 

and data was analyzed using Summit software.  

 

Gene expression. At 7 dpi following RRV infection, mice were sacrificed and perfused 

with 1X PBS. Quadriceps muscles were removed and homogenized in Trizol (Invitrogen) 

using glass beads. RNA was extracted using Invitrogen PureLink RNA purification kit, 

and cDNA was generated using Superscript III reverse transcriptase. Expression of 

indicated genes was measured by quantitative real-time PCR. Raw data values were 

normalized to 18S rRNA levels.  

 

Statistical analysis. Clinical scores and percent of starting weight at 10 dpi between WT 

RRV and the glycan mutants were analyzed for statistically significant differences by 

Mann-Whitney analysis. Viral burden, total number of infiltrating cells, and gene 
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expression data at each time point between the different virus strains was analyzed for 

statistically significant differences either Mann-Whiney analysis, one-way ANOVA, or t-

test (p<0.05 is considered significant). Statistical analyses were performed using 

GraphPad Prism 5.  

 

3.4 Results 

RRV E2 N-linked glycans contribute to MBL deposition onto infected cells.  

We have previously shown that MBL deposition is enhanced on cells following 

RRV infection, suggesting that some aspect of viral infection induces MBL binding to 

infected cells (79). Given the ligand specificity of MBL, we hypothesized that the RRV 

E2 N-linked glycans mediate MBL binding to infected cells, resulting in MBL deposition 

and subsequent complement activation. Although MBL did not directly bind to RRV 

virion particles, we reasoned that the glycoproteins might be in a slightly different 

conformation when they were displayed on the cell surface compared to the virion, and 

that this might allow MBL to bind the N-linked glycans on the viral glycoproteins located 

on the surface of infected cells. While both E1 and E2 contain N-linked glycosylation 

sites, we were primarily interested in evaluating the role of the E2 N-linked glycans due 

to their highly exposed location on the glycoprotein spike.  

To test whether the RRV E2 N-linked glycans contributed to binding of MBL to 

infected cells, we used a previously generated panel of mutant viruses lacking one or both 

of the E2 glycans: RRV E2 N200Q, E2 N262Q, and E2 N200;262Q (E2 DM) (210). 

Differentiated C2C12 myotubes or primary C57BL/6 murine myotubes, which are 

derived from skeletal muscle, were infected with either wild-type RRV (RRV WT) or the 
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glycan mutants for 18 hours. Infected cells were then incubated in medium containing 

serum from either naïve C57BL/6 or MBL-DKO mice for 30 minutes as a source of MBL. 

Cells were then extensively washed to remove unbound MBL and free virus, and cell 

lysates were analyzed by immunoblot for levels of MBL. Consistent with our hypothesis, 

we observed a significant decrease in MBL deposition onto RRV E2 DM-infected C2C12 

cells compared to RRV WT-infected cells (Figure 3.1A), despite similar levels of viral 

replication (Figure 3.1B). Similar results were observed in primary C57BL/6 myotubes 

(Figure 3.1C-D). We did not observe MBL deposition in cells incubated with MBL-DKO 

serum, demonstrating both the specificity of the MBL western blots and indicating that 

we were detecting only exogenously added MBL in the assay, rather than modulation of 

MBL production by the different viruses within the infected cells. Interestingly, infection 

with the viruses lacking each glycan individually showed comparable MBL deposition 

levels to RRV WT (Figure 3.2A-B), indicating that both N-linked glycans contribute to 

MBL deposition onto RRV-infected cells.  To confirm the western blot analysis and 

demonstrate that MBL was binding to virally infected cells in a viral glycan dependent 

manner, we evaluated MBL deposition by fluorescence microscopy. BHK-21 cells were 

infected with either diluent alone (mock-infected), RRV WT or RRV E2 DM for 12 

hours, and subsequently incubated with 10µg/ml of recombinant human MBL for 30 

minutes. Cells were washed extensively, fixed, stained without permeabilization to only 

detect surface localization of MBL (Texas Red) and RRV structural proteins (FITC), and 

imaged by fluorescence microscopy. As shown in Figure 3.3, we observed enhanced 

deposition of MBL onto RRV-infected cells compared to mock-infected cells. Within the 

RRV WT-infected culture, we only observed deposition onto the infected cells and not 
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onto uninfected cells (indicated by white arrowhead), indicating that viral infection 

within the cell induces MBL deposition.  Levels of MBL were reduced on cells infected 

with E2 DM compared to WT, despite comparable levels of RRV antigen between WT 

and E2 DM infection. Taken together, these data support the hypothesis that MBL 

recognizes and binds to the E2 N-linked glycans on the surface of infected cells.  

 

The RRV E2 N-linked glycans contribute to severe disease.  

Given that the E2 N-linked glycans were required for MBL binding to infected 

cells, and since MBL is required for RRV-induced disease (79), we hypothesized that the 

E2 glycans were also required for development of RRV-induced disease. Wild-type 

C57BL/6 mice were infected with either RRV WT or the panel of glycan mutant viruses, 

and mice were weighed and assigned a clinical score as previously described (161). 

Consistent with our previous studies, RRV WT-infected mice began to develop severe 

disease characterized by hind-limb dysfunction by 5 dpi, with peak disease severity from 

7 to 10 dpi (Figure 3.4A), and had reduced weight gain compared to mock-infected mice 

(Figure 3.4B). Mice infected with viruses lacking either one of the E2 glycosylation sites 

(E2 N200Q Figure 3.4A, top; E2 N262Q Figure 3.4A, middle) developed hind-limb 

dysfunction with approximately the same kinetics as WT-infected mice, but the peak 

disease severity was reduced in these mice compared to WT-infected mice. In addition, 

these mice had reduced weight loss compared to WT-infected mice (Figure 3.4B). These 

data suggest that each individual E2 glycan contributes to the severity of RRV-induced 

disease. Interestingly, mice infected with the virus lacking both of the E2 glycans (RRV 

E2 DM) developed a very mild disease with little to no hind-limb dysfunction, and 
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continued to gain weight throughout the course of infection (Figure 3.4A-B, bottom). 

Notably, the disease in the E2 DM-infected mice was remarkably similar to the disease 

induced in MBL-DKO and complement deficient mice (79, 158). Taken together, these 

data indicate while each of the E2 glycans contribute to disease severity individually, 

both of the E2 N-linked glycans are required for development of maximal disease, and 

suggests that the N-linked glycans have a key role in mediating RRV pathogenesis.  

 

RRV lacking one or both E2 N-linked glycans are attenuated for inflammatory pathology 

and tissue damage within quadriceps muscle.  

Infiltration of inflammatory cells into the skeletal muscle is a characteristic of 

RRV-induced disease, and much of the disease observed following RRV infection is due 

to the pathology mediated by inflammatory infiltrates. To assess the role of the E2 

glycans in mediating inflammatory pathology following RRV infection, we analyzed 

H&E stained quadriceps muscle sections from mice infected with either RRV WT or the 

RRV glycan mutants at 10 days post infection. As expected, we observed severe 

inflammatory pathology in the quadriceps of RRV WT-infected mice, as evidenced by 

the destruction of the fibrous architecture of the skeletal muscle and the presence of 

infiltrating cells (Figure 3.5A). We observed the presence of infiltrating cells in the 

quadriceps muscle of mice infected with any of E2 glycan mutant viruses. However, 

consistent with the disease scores, the quadriceps muscles of mice infected with either E2 

N200Q or E2 N262Q had moderate tissue damage that was reduced compared to RRV 

WT-infected mice, as indicated by the presence of intact muscle fibers (Figure 3.5A). In 
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contrast, mice infected with RRV E2 DM had intact skeletal muscle fibers with minimal 

tissue damage despite the presence of infiltrating cells (Figure 3.5A).  

To further confirm that mice infected with the RRV glycan mutants had reduced 

tissue damage we administered Evans blue dye (EBD) into either RRV WT or glycan 

mutant-infected mice at 10 dpi to visualize damaged muscle fibers within the quadriceps 

muscle. EBD is excluded from healthy cells, but taken up by cells with permeabilized 

membranes and is easily visualized by fluorescent microscopy due to its’ fluorescent 

properties; thus, EBD positive tissues indicate tissue damage. As shown in Figure 3.5B, 

we observed abundant EBD positive muscle fibers in quadriceps muscle from RRV WT-

infected mice. Consistent with the reduced clinical scores and pathology in mice infected 

with the glycan mutants, there were fewer EBD positive fibers observed in mice infected 

with either of the single E2 glycans mutants compared to RRV WT-infected mice. 

Furthermore, EBD positive muscle fibers were rare in mice infected with E2 DM, 

suggesting that both glycans are required for tissue damage.  

 

RRV glycan mutants retain ability to replicate in vivo.  

Although the RRV E2 N-linked glycans are dispensable for replication in cell 

culture (210), it is possible that the glycans might be required for efficient viral 

replication and dissemination in vivo. Therefore, we evaluated the viral titer within the 

quadriceps muscle and the ankle joints from either RRV WT, or glycan mutant-infected 

mice at multiple times points post-infection by plaque assay. There was no difference in 

viral titer within the quadriceps and ankle joints at 1 dpi between any of the viruses, 

suggesting that the E2 glycans are not required for initial dissemination to and replication 
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within target tissues (Figure 3.6 A-B). Overall, all of the glycan mutant viruses replicated 

at or near to wild-type levels in target tissues, although there were some differences in 

titer observed at intermediate time points. At 3 dpi, we observed reduced viral titer within 

the quadriceps muscle in mice infected with E2 N200Q and E2 DM compared to WT 

(Figure 3.6A). The E2 N262Q virus did not show any difference in titer compared to 

RRV WT at any time post-infection in either the ankle or the quadriceps muscle. At 5 dpi, 

only the RRV E2 DM titer is reduced in the quadriceps muscle compared to RRV WT, 

but importantly, at time points of severe disease, 7 and 10 dpi, no difference was 

observed in the quadriceps muscle between any of the viruses (Figure 3.6A). Similar 

results were observed in the ankle joints, although there were significant differences in 

titer at day 5 in the ankle joint between RRV E2 DM and RRV WT, but these differences 

were not sustained at time points of peak disease severity (7 or 10 dpi) (Figure 3.6B).  

In order to confirm the plaque assay results, we also performed quantitative real 

time RT-PCR to determine the absolute numbers of RRV genomes per µg of RNA within 

the quadriceps muscle between WT and E2 DM virus at 3 and 5 dpi. We did not observe 

any differences in the number of RRV genomes between the two viruses at 3 dpi (Figure 

3.7A).  This suggests that the overall levels of viral replication within the tissues are 

equivalent between the wild type and mutant virus at this time point. However, consistent 

with reduced viral titer at 5 dpi, we observed a similar decrease in viral RNA at 5 dpi in 

the quadriceps muscle between WT and E2 DM (Figure 3.7B). Taken together, these data 

indicate that the loss of the glycans does not overall affect the ability of the virus 

disseminate to and replicate within target tissues, however the E2 DM does show reduced 

replication at intermediate times in the infection process.    
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The RRV E2 glycan mutants and WT RRV induce equivalent inflammatory responses. 

RRV infection induces an inflammatory response that results in infiltration of 

inflammatory cells into target tissues such as the quadriceps muscle, subsequently leading 

to tissue damage (161). Prior studies demonstrated that even though RRV-infected C3-/- 

and MBL-DKO mice were resistant to virus-induced disease, virus induced inflammatory 

cell recruitment was unaffected in these mice (79, 158).  Therefore, we evaluated the E2 

glycan mutants to determine whether the virus induced disease process was similar to that 

observed in C3 or MBL deficient animals by quantifying and characterized inflammatory 

cell populations from quadriceps muscle of mice infected with the wild type or each of 

the mutant viruses by flow cytometry. At 10 dpi, which is a time point of peak 

inflammation within tissues, we did not observe any differences in the total magnitude 

nor the composition of the inflammatory cell population between RRV WT and the 

glycan mutants (Figure 3.8). Total numbers of leukocytes (as defined by LCA+ staining) 

in the quadriceps muscle were equivalent between mice in all groups (Figure 3.8), 

indicating that the E2 N-linked glycans do not affect infiltration of inflammatory cells 

into skeletal muscle. Furthermore, the numbers of inflammatory macrophage, which are 

thought to drive much of the tissue damage during RRV infection (135), and other cell 

types including CD4+ and CD8+ T cells, NK cells, and neutrophils, were equivalent 

between WT and the glycan mutants (Figure 3.8). These data suggest that loss of the E2 

glycans does not significantly affect the induction of the infiltration or composition of the 

inflammatory cells into the quadriceps muscle following RRV infection.  
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The RRV E2 N-linked glycans contribute to complement activation in quadriceps muscle.  

We have previously shown that complement activation following RRV infection 

is mediated primarily through MBL (79). Given that we observed a decrease in MBL 

deposition within RRV E2 DM-infected cultures, and since the disease phenotype 

induced by E2 DM in WT mice was strikingly similar to the disease induced by WT RRV 

in MBL-DKO mice, we hypothesized that the presence of the E2 glycans contribute to 

MBL deposition and complement activation in the quadriceps muscle following infection. 

MBL-mediated complement activation is initiated by the recognition of terminal sugars 

on glycosylated proteins by the CRD of MBL. Binding of MBL to the ligand leads to 

formation of the C3 convertase C2a4b by the MASPs, resulting in localized C3 

deposition. The C3 convertase cleaves and processes C3 into smaller components, and is 

indicative of complement activation. One such component is iC3b, which opsonizes 

targeted cells and interacts with CR3 to mediate phagocytic uptake by CR3-bearing cells 

(50).  

MBL levels are elevated within quadriceps muscle of RRV-infected mice at 7 dpi 

compared to mock-infected mice (79) and MBL deposition onto infected cells is 

dependent on the E2 glycans (Figures 3.1 and 3.3). Thus, if the RRV E2 glycans mediate 

complement activation through interactions with MBL, we would expect to see reduced 

amounts of MBL in mice infected with RRV E2 DM compared to RRV WT-infected 

mice. To test this, we infected mice with either RRV WT or RRV E2 DM and harvested 

quadriceps muscle at 7 dpi and analyzed the muscle homogenates by western blot for 

MBL-C levels. As shown in Figure 3.9A, RRV WT-infected mice had elevated levels of 

MBL-C in the quadriceps at 7 dpi compared to mock-infected mice, and importantly, we 
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observed reduced levels of MBL in RRV E2 DM-infected mice compared to RRV WT-

infected mice, suggesting that the RRV E2 glycans are required for MBL deposition 

within infected tissues.  

To determine if the reduced levels of MBL within the quadriceps muscle of RRV 

E2 DM infected mice correlated with reduced complement activation, we analyzed 

quadriceps muscle homogenates from RRV WT or RRV E2 DM-infected mice for levels 

of C3 cleavage products by western blot. Consistent with our hypothesis, we observed 

reduced levels of both the alpha and beta chain of C3 in E2 DM-infected mice compared 

to RRV WT-infected mice (Figure 3.9B), indicating that the E2 glycans are required for 

C3 deposition onto infected tissues. Furthermore, the levels of the C3 cleavage product 

iC3b was significantly reduced in E2 DM-infected mice compared to WT-infected mice 

(Figure 3.9B), indicating that the RRV E2 glycans are also required for complement 

activation following RRV infection.   

As western blot analysis of C3 present in quadriceps muscle tissue does not 

distinguish between C3 produced by infiltrating inflammatory monocytes and C3 that is 

deposited onto infected tissues, we wanted to further confirm that the RRV E2 glycans 

are required for C3 deposition onto skeletal muscle following infection by IHC staining 

of C3 on skeletal muscle sections. We infected mice with either RRV WT or E2 DM, and 

generated sections of the quadriceps muscle at 7 dpi. Consistent with results in Figure 

3.9B, we observed a reduction in C3 deposition onto the skeletal muscle from mice 

infected with RRV E2 DM compared to RRV WT (Figure 3.10). 

Prior studies indicate that MBL and the complement system induce expression of 

a subset of inflammatory mediators commonly associated with inflammatory arthritis 
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following RRV infection through CR3 dependent signaling (79, 160). Given that the 

RRV E2 N-linked glycans contribute to complement activation, we hypothesized that 

expression of these inflammatory mediators is also dependent on the glycans. To test this, 

we infected mice with either RRV WT or RRV E2 DM, harvested quadriceps muscles at 

7 dpi, and analyzed mRNA expression of various genes by quantitative real-time PCR. 

Expression of the pro-inflammatory calgranulin proteins S100A8 and S100A9 was 

diminished in MBL-DKO, C3-/-, and CR3-/- mice following RRV infection (79, 160). As 

shown in Figure 3.11, we observed significantly higher expression of S100A8 and 

S100A9 in the quadriceps muscle of RRV WT-infected mice compared to RRV E2 DM-

infected mice at 7 dpi, suggesting that expression of these genes was also dependent on 

the RRV glycans. Furthermore, expression of Arginase I and IL-6, whose expression is 

complement dependent, was also dependent on the E2 glycans (Figure 3.11). These data 

are consistent with the hypothesis that the RRV E2 N-linked glycans contribute for 

complement activation following infection, as they are required for expression of the 

same subset of genes that are complement dependent.  

Expression of the pro-inflammatory cytokine TNFα that is MBL, C3, and CR3-

independent following infection was unchanged between RRV WT and RRV E2 DM-

infected mice (Figure 3.11). However, expression of other C3-independent cytokines IL-

1β and IL-10 was dependent on the presence of the viral N-linked glycans. IL-1β 

expression is induced upon Toll-like receptor engagement (44), and may suggest that the 

viral N-linked glycans are interacting with TLRs to mediate IL-1β induction. 

Interestingly, IL-10 expression was dependent on MBL following RRV infection (79), 

further supporting the hypothesis that the E2 glycans interact with MBL. Taken together, 
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these data suggest that the RRV E2 N-linked glycans regulate expression of a similar 

subset of pro-inflammatory genes as MBL, C3, and CR3, and further supporting the 

hypothesis that the RRV E2 glycans activate the host complement system through MBL.  
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3.5 Discussion 

Mosquito-borne alphaviruses such as RRV and CHIKV are emerging viruses that 

are a significant cause of explosive outbreaks of infectious arthritis in humans. The host 

complement system through the mannose binding lectin pathway plays a critical role in 

mediating development of disease and tissue damage through activation of inflammatory 

cells that infiltrate into the muscle and joints following infection (158, 160).  In this study, 

we demonstrate that the RRV envelope N-linked glycans are a viral ligand for MBL, and 

that this interaction contributes to activation of complement and induction of severe 

virus-induced disease.  

The N-linked glycans on the alphavirus glycoproteins have been implicated in a 

number of viral processes. The E1 glycan is embedded and the E1 glycoproteins mediates 

membrane fusion of the alphaviruses (125, 174), and loss of any of these sites has been 

shown to attenuate both Sindbis virus and Ross River virus replication in mammalian 

cells (174, 210).  Therefore, given the impact of the RRV E1 mutation on viral replication, 

which would have affected our ability to interpret results in vivo, we did not evaluate this 

virus within our study. The E2 glycans, on the other hand, are relatively surface exposed 

and in the case of RRV, do not significantly affect replication within cell culture (174, 

210). The alphavirus E2 glycoprotein is thought to be involved in receptor binding, but 

there has been no direct evidence to suggest that the N-linked glycans mediate receptor 

interaction (125). Studies using glycan mutants of a cell-culture adapted SINV found that 

loss of the SINV E2 glycans actually enhanced binding of virus to mammalian cells, due 

to a loss of negative charge of sialic acid, which is the terminal carbohydrate of complex 

glycans, allowing for tighter binding to heparan sulfate (122). Consequently, SINV 
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lacking either of the E2 glycans displayed enhanced virulence, disease, and viral titer in a 

mouse model of encephalomyelitis (122).  The fact that we did not see a corresponding 

enhancement of virulence with the RRV N-linked glycan mutants likely reflects the 

central role that virus-induced MBL binding and complement activation plays in the 

pathogenesis of RRV-induced disease (79, 158, 160).  Furthermore, unlike the TE12 

strain of Sindbis, which binds heparin sulfate and where the enhanced virulence of N-

linked glycan mutants has been linked to effects on heparin sulfate binding, the wild type 

T48 strain of RRV used in our studies does not efficiently use heparan sulfate as an 

attachment factor to bind to mammalian cells (92).   

The results presented in this study clearly demonstrate that viral N-linked glycans 

promote MBL binding to RRV infected cells and that MBL deposition and subsequent 

complement activation is reduced in tissues from animal infected with the N-linked 

glycan double mutant (Figures 3.1, 3.3 and 3.10).  Given the central role that MBL, 

complement activation, and subsequent inflammatory cell activation plays in the 

pathogenesis of RRV-induced disease (79), it is likely that the major mechanism of 

attenuation for the E2 DM virus is through the lack of MBL activation.  However, given 

that the E2 DM virus did show reduced levels of replication at intermediate times post 

infection (Figure 3.6), we cannot rule out the possibility that at least some of the impact 

on virus-induced disease with the E2 DM virus is due to this transient reduction in viral 

load.  However, it is important to point out that the decrease in viral load on days 3 and 5 

post infection did not affect the recruitment of inflammatory cells into the sites of viral 

replication (Figure 3.8), and that viral loads were indistinguishable on day 7 post 

infection, which is a time when severe disease is readily apparent with the wild type virus 
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(Figure 3.6).  It is also possible that in addition to their effects on MBL, which are crucial 

for disease, that the viral N-linked glycans are also regulating other aspects of the disease 

process.  This possibility is supported by the fact that both of the single mutant viruses, 

which are still capable of promoting MBL binding, were partially attenuated for virus-

induced disease.  Therefore it will be important to evaluate whether one or both of the 

viral N-linked glycans is mediating other interactions, such as interactions with C-type 

lectin receptors, that might also affect virus-induced disease.   

The interaction between MBL and viral N-linked glycans has been demonstrated 

in a number of other virus systems including HIV, SARS-CoV, and WNV (54, 61, 90, 

107, 257). In these systems, MBL recognizes and binds to high mannose glycans on the 

envelope glycoproteins, and leads either to direct neutralization of virus, or aids in 

inhibiting virus infection by prevent or abrogating attachment and entrance into entering 

host cells. In contrast to the protective role of MBL for other viruses, MBL clearly plays 

a pathologic role during RRV infection and these studies provide new insights into the 

role of viral N-linked glycans in driving this pathologic process. Furthermore, studies 

with other viruses have demonstrated that the interaction between MBL and the virus 

particle is important for MBL-mediated neutralization (61, 111, 257). In contrast to those 

studies, we have several lines of evidence that demonstrate MBL interacts with RRV-

infected cells through the E2 N-linked glycans on the surface of the infected cell rather 

than with the virion particle. First, MBL deposition onto infected cells in vitro and within 

infected tissues in vivo are elevated compared to mock-infected (79). Second, MBL 

deposition is reduced in cells and tissues infected with E2 DM RRV compared to WT 

RRV independent of viral replication, indicating that the E2 glycans mediate MBL 
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binding. Finally, we observed MBL deposition onto RRV-infected cell only, which was 

reduced in RRV E2 DM-infected cells. To our knowledge, this is the first demonstration 

where the interaction between the viral N-linked glycans and MBL on the surface of 

infected cells contributes to pathology and disease.  

In addition to providing new insights into the pathogenesis of alphavirus-induced 

arthritis, these findings suggest that targeting interactions between the viral N-linked 

glycans and MBL may have therapeutic potential for treating RRV induced arthritis.  

Blocking the ability of MBL to interact with the viral N-linked glycans or inhibiting 

downstream proteases, such as MASP proteins that mediate subsequent complement 

activation, could prevent the severe pathology associated with RRV induced disease and 

other arthralgia associated alphaviruses, while keeping the protective aspects of the host 

innate immune response intact. Furthermore, given that the viral N-linked glycan mutants 

are attenuated for disease, but not replication, it may be possible to incorporate N-linked 

glycan mutants into live attenuated alphavirus vaccines.  

In summary, we have demonstrated that the interaction between the host innate 

immune protein MBL and the RRV E2 N-linked glycans contribute to the pathogenesis 

of RRV-induced arthritis and myositis through activation of the host complement system. 

Our data suggests that specifically targeting the interaction between the RRV E2 N-

linked glycans and MBL through the use of MBL inhibitors may be an effective 

therapeutic strategy in the treatment of RRV and other virus-induced inflammatory 

diseases.   
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Figure 3.1: The RRV E2 N-linked glycans contribute to MBL deposition onto 

infected cells.  

 

A.  

 

 

B.  

 



	   132	  

Figure 3.1: The RRV E2 N-linked glycans contribute to MBL deposition onto 
infected cells.  
 
 C. 

 

 

 D. 

 



	   133	  

Figure 3.1 The RRV E2 N-linked glycans contribute to MBL deposition onto 

infected cells.  

(A) To determine if the RRV E2 N-linked glycans were required for MBL deposition 

onto infected cells, C2C12 myotubes were infected with either RRV WT or RRV E2 DM 

at an MOI of 20 for 18 hours, and subsequently incubated with either serum from a WT 

or MBL-DKO mouse for 30 minutes prior to harvesting. Cells were washed, harvested, 

and lysates were analyzed by immunoblot analysis using anti-mouse MBL-C, or anti-

mouse actin antibodies. Western blots of MBL-C and actin are shown.  

(B) Infected cell culture supernatants from (A) were assayed to determine viral titer at 18 

hpi between RRV WT (solid bar) and RRV E2 DM (open bar). Viral titer was determined 

by plaque assay on BHK-21 cells, and the bar represents the arithmetic mean ± SD of 

three replicates.  

(C) Primary C57BL/6 myotube cultures were infected with either RRV WT or RRV E2 

DM at an MOI of 20 for 18 hours, and subsequently incubated with either serum from a 

WT or MBL-DKO mouse for 30 minutes prior to harvesting. Cells were washed, 

harvested, and lysates were analyzed by immunoblot analysis using anti-mouse MBL-C, 

or anti-mouse actin antibodies. Western blots of MBL-C and actin are shown.  

(D) Infected cell culture supernatants from (C) were assayed to determine viral titer at 18 

hpi between RRV WT (solid bar) and RRV E2 DM (open bar). Viral titer was determined 

by plaque assay on BHK-21 cells, and the bar represents the arithmetic mean ± SD of 

three replicates.  
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Figure 3.2: Each E2 glycan contributes to MBL deposition onto infected cells 

A.  

 

 

B.  
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Figure 3.2: Each E2 glycan contributes to MBL deposition onto infected cells 

(A-B) To determine if each individual E2 N-linked glycan was required for MBL 

deposition onto infected cells, C2C12 myotubes were infected with either RRV WT, E2 

N200Q, or E2 N262Q  at an MOI of 20 for 18 hours, and subsequently incubated with 

either serum from a WT or MBL-DKO mouse for 30 minutes prior to harvesting. Cells 

were washed, harvested, and lysates were analyzed by immunoblot analysis using anti-

mouse MBL-C, or anti-mouse actin antibodies. Western blots of MBL-C and actin are 

shown (A) and densitometry measurements of bands in immunoblot from three different 

experiments are graphically depicted as arbitrary units normalized to actin (B).  
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Figure 3.3: RRV E2 glycans contribute to MBL deposition onto infected cells.  
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Figure 3.3: RRV E2 glycans contribute to MBL deposition onto infected cells.  

To determine if the E2 glycans regulated MBL deposition onto RRV-infected cells, 

immunofluorescence staining of BHK-21 cells infected with either diluent (mock, top 

row), RRV WT (middle row) or RRV E2 DM (bottom row) at an MOI of 1 for 12 hours. 

Cells were subsequently incubated with 10µg/ml rhMBL-C for 30 minutes, washed, fixed, 

and stained for MBL-C, RRV antigen, and DAPI. Individual panels from left: DIC, 

MBL-C (red), RRV antigen (green), DAPI (blue), and merge. White arrow indicated 

uninfected cell. No MBL-C binding was observed in cells incubated without 10µg/ml of 

MBL-C (data not shown).  
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Figure 3.4 The RRV E2 N-linked glycans contribute to severe disease.  

A. 
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Figure 3.4 The RRV E2 N-linked glycans contribute to severe disease.  

B. 
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Figure 3.4: The RRV E2 N-linked glycans contribute to severe disease.  

(A-B) Twenty-four day old C57BL/6 were either mock-infected, or infected with either 

RRV WT or a RRV glycan mutant. Mice were assigned a clinical score (A) and assessed 

for weight loss (B) as described in the Materials and Methods.  Mice infected with RRV 

WT were compared directly to mice infected with E2 N200Q (top graphs), E2 N262Q 

(middle graphs) or E2 DM (bottom graphs). Each data point represents the arithmetic 

mean ± SD and is representative of at least three independent experiments.  
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Figure 3.5: The RRV E2 N-linked glycans contribute to pathology and tissue 

damage.  

 

A. 

 

 

B. 
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Figure 3.5: The RRV E2 N-linked glycans contribute to pathology and tissue 

damage.  

(A-B) Twenty-four day old WT C57BL/6 mice were infected with either RRV WT, E2 

N200Q, E2 N262Q, or E2 DM.  

(A) Tissue pathology and inflammation was examined at 10 dpi by H&E staining of 

paraffin embedded sections of quadriceps muscle from either RRV WT or the glycn 

mutants. A representative section from mice infected with each virus strain is shown.  

(B) To assess damage within the muscle, mice infected with either RRV WT or the RRV 

glycan mutants were injected with EBD at 10 dpi, and frozen sections were generated. 

EBD positive muscle fibers were identified by fluorescence microscopy. Representative 

sections of each virus strain are shown.  
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Figure 3.6: RRV lacking E2 N-linked glycans retain ability to replicate in vivo 

A.  

 

 

B. 
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Figure 3.6: RRV lacking E2 N-linked glycans retain ability to replicate in vivo 

Quadriceps muscle (A) and ankle joints (B) from mice infected with RRV WT (solid 

circles, n=4-15/time point), RRV E2 N200Q (open circles, n=3-6/time point), RRV E2 

N262Q (solid squares, n=3-5/time point) or RRV E2 DM (open square, n=3-8/time point) 

were assayed to determine viral titer at various times post infection. Viral titer was 

determined by plaque assay on BHK-21 cells. **p<0.01 ***p<0.005 as determined by 

one-way ANOVA analysis  with Bonferroni’s Multiple Comparison test of glycan mutant 

compared to RRV WT.  
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Figure 3.7: Amounts of RRV genomes in quadriceps muscle are equivalent at 3 dpi 

but not 5 dpi between RRV WT and E2 DM.   
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Figure 3.7: Amounts of RRV genomes in quadriceps muscle are equivalent at 3 dpi 

but not 5 dpi between RRV WT and E2 DM.  

(A-B) Mice were infected with either RRV WT or E2 DM to determine absolute numbers 

of RRV genomes per µg of RNA between RRV WT and E2 DM at 3 dpi (A) and 5 dpi 

(B). At indicated times post infection, quadriceps muscle were harvested, RNA was 

isolated and absolute numbers of RRV genomes between RRV WT (solid circles) or E2 

DM (open squares) were quantified by quantitative RT-PCR. **p<0.01 by t-test.  



	   147	  

Figure 3.8: The RRV E2 glycan mutants and WT RRV induce equivalent 

inflammatory responses. 
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Figure 3.8: The RRV E2 glycan mutants and WT RRV induce equivalent 

inflammatory responses. 

 Leukocytes were isolated from the quadriceps muscle of mice infected with either RRV 

WT (solid circles, n=8-16), RRV E2 N200Q (open circles, n=8), RRV E2 N262Q (solid 

square, n=8) or RRV E2 DM (open square, n=8-16) mice at 10 dpi. Cells were 

characterized and quantified by flow cytometry using the markers described in the 

Materials and Methods. Total numbers of leukocytes, inflammatory macrophage and 

other inflammatory cell types are shown. Each data point represents a single animal, and 

data presented in the figure are combined from three independent experiments. *p<0.05 

by one-way ANOVA with Bonferroni’s Multiple Comparison post-test.  
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Figure 3.9: The RRV E2 N-linked glycans contribute to MBL deposition and 

complement activation in quadriceps muscle. 
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Figure 3.9: The RRV E2 N-linked glycans contribute to MBL deposition and 

complement activation in quadriceps muscle. 

(A) Quadriceps muscle homogenates from mock-infected mice or mice infected with 

either RRV WT or RRV E2 DM were analyzed by immunoblot analysis at 7 dpi to 

determine relative levels of MBL. Each lane represents an individual mouse.  

(B) To determine if complement activation differed between mice infected with RRV WT 

or RRV E2 DM, we analyzed homogenized quadriceps muscles from either mock-

infected or infected mice at 7 dpi by immunoblot analysis using an anti-mouse C3 or anti-

mouse actin antibody. C3 cleavage products are indicated with solid arrowheads. Each 

lane represents an individual mouse.  
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Figure 3.10: The RRV E2 glycans contribute to complement deposition in 

quadriceps muscle  
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Figure 3.10: The RRV E2 glycans contribute to complement deposition in 

quadriceps muscle  

C3 deposition was assessed by IHC using an anti-mouse C3 antibody on quadriceps 

muscle sections from mock-infected mice or mice infected with either RRV WT or RRV 

E2 DM at 7 dpi. C3 positive areas are stained in blue. A representative section from each 

strain is shown.  
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Figure 3.11:  RRV E2 glycans contribute to expression of complement dependent 

pro-inflammatory genes 
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Figure 3.11:  RRV E2 glycans contriute to expression of complement dependent pro-

inflammatory genes 

Relative mRNA expression of C3-dependent inflammatory mediators and cytokines 

S100A9, S100A8, Arginase I, and IL-6, and C3-independent cytokines TNFα, IL-1β, and 

IL-10 from quadriceps muscle from mice infected with either RRV WT (solid bar, n=7) 

or E2 DM (open bar, n=8) mice by quantitative real-time PCR. Raw data values were 

normalized to 18S rRNA levels, log-transformed, and are graphically depicted as fold 

expression over mock-infected mice. Data from a single experiment is shown, but is 

representative of two independent experiments. ***p<0.001; **p<0.005 *p<0.05 by t-test.  



 

 
 
 
 

CHAPTER FOUR: 
	  

DISCUSSION AND FUTURE DIRECTIONS 
 

Arthritic alphaviruses such as Ross River virus and chikungunya virus are a 

significant cause of epidemics of infectious arthritis in various areas around the world. 

Patients infected with these viruses experience debilitating polyarthritis, arthalgia and 

myalgia in peripheral joints that can last from weeks to months. Studies in a mouse model 

of RRV-induced disease have demonstrated the central role of the host inflammatory 

response in mediating disease following viral infection. In particular, inflammatory 

macrophages and macrophage products are thought to drive disease through direct 

damage to inflamed tissues. The host complement system, which is a component of the 

innate immune system, plays a critical role in regulating activation of the inflammatory 

cells through CR3-dependent mechanisms (158, 160). However, the precise mechanisms 

and viral ligands that activate complement following RRV infection are not known.  

 

4.1 MBL and the RRV E2 N-linked glycans contribute to RRV-induced disease 

through activation of the host complement system.  

MBL contributes to development of severe RRV-induced disease  

To further investigate how RRV activated the complement system, we first sought 

to determine which activation pathway(s) are involved in complement activation 

following RRV infection using mice deficient in the different initiator molecules of the 
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three main complement activation pathways. We found that the lectin pathway of 

complement, specifically mediated by mannose binding lectin, was the activation 

pathway required for development of RRV-induced disease (Figure 2.1, (79)), and mice 

deficient in the classical pathway initiator molecule C1q or the alternative pathway 

molecule factor B developed disease similar to WT mice, indicating that neither the 

classical or alternative pathways were involved in development of disease. Interestingly, 

these results are consistent with human data that failed to find evidence of immune 

complexes, which activate complement through the classical pathway, in the synovial 

fluid of patients suffering from RRV-induced polyarthritis (57, 58).  

We characterized the disease in mice deficient in both mouse isoforms of MBL 

(MBL-DKO) and found that the disease was very similar to both C3 and CR3 deficient 

mice. Viral burden within the ankle joints and skeletal muscle did not differ between WT 

and MBL-DKO mice (Figure 2.7), indicating that similar to C3, MBL is not required for 

infection or clearance of virus. This is in contrast to the role that MBL has in other 

arboviral systems where MBL contributes to direct neutralization of virions (7, 61). 

Virus-induced inflammation is equivalent between MBL-DKO and WT mice, suggesting 

that MBL does not regulate infiltration of cells into the skeletal muscle (Figure 2.8).  

To determine if MBL regulated complement activation following RRV infection, 

we analyzed deposition of C3 onto quadriceps muscle from WT or MBL-DKO mice. 

Consistent with our hypothesis, MBL-DKO mice had dramatically reduced amounts of 

C3 within the inflamed skeletal muscle compared to WT mice, and consequently had 

decreased levels of C3 cleavage products such as iC3b. Analysis of complement 

dependent expression of pro-inflammatory genes such as the calgranulins S100A8 and 
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S100A9 also showed dependence on MBL, as their expression was reduced in MBL-

DKO mice following RRV infection. 

The C3 cleavage product C3a was found to be elevated in RRV patients compared 

to osteoarthritis patients, suggesting that complement was activated following RRV 

infection in humans (158). We observed elevated levels of MBL within the quadriceps 

muscle as well as in the serum of RRV-infected mice (79). Similarly, we found elevated 

levels of MBL in the serum of RRV patients compared to healthy controls (79), 

suggesting that MBL may have a role in human RRV-induced disease. Circulating levels 

of MBL with the serum levels can rise following bacterial or viral infection since MBL is 

an acute phase protein (53), and thus might be up-regulated following RRV infection. 

 The results presented in this study demonstrate a pathologic role for MBL in 

RRV-induced disease and presents a possible avenue for therapeutic intervention for 

patients suffering from RRV-induced disease. Current treatment of RRV-induced disease 

is merely palliative and patients are often prescribed NSAIDS and rest. A therapeutic that 

that specifically targets the lectin pathway of complement may be an effective approach 

to limit disease pathology and alleviate symptoms caused by RRV infection. 

Pharmacological inhibitors of the lectin pathway, which primarily target and inhibit 

MASP activity, are currently in development, and may be of some use in treatment of 

RRV-induced disease in humans (14). 

 

The role of MBL polymorphisms in severity of RRV-induced disease.   

MBL is a highly polymorphic protein in the human population and 

polymorphisms in the promoter region of the human Mbl2 gene affect expression and 
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production of MBL, leading to a wide range of “normal” baseline MBL levels across the 

human population (47). Given that elevated levels of MBL correlated with severity of 

RRV-induced polyarthritis in humans, it is tempting to speculate that people with MBL 

polymorphisms conferring higher levels of circulating MBL may be at greater risk of 

developing more severe disease in response to RRV infection. Conversely, humans with 

MBL polymorphisms conferring lower levels of MBL may be protected from developing 

severe RRV-induced disease. A small subset of nine patients suffering from RRV-

induced disease has been genotyped to determine if any MBL polymorphism associated 

with severity of disease. Overall, there was no association within this very small subset of 

patients with severity of polyarthritis (79). However, there was a significant association 

with the polymorphism at -550 in the Mbl2 promoter region, which confers higher levels 

of circulating MBL with neurocognitive impairment (S. Mahalingam, B. Piraino, B. 

Cameron, L. Herrero, and A. Lloyd, unpublished data). While we cannot draw any 

concrete conclusions from such a small data set, the implications from these data is 

people with genotypes conferring higher levels of MBL might be at greater risk for 

developing severe atypical symptoms of RRV-induced disease. Additional studies that 

include a larger cohort of patients are really needed to further address the role of MBL 

polymorphisms in determining severity of RRV-induced disease in humans. Ideally, such 

a study would include patients exhibiting a wide range of disease severity, including 

those who are asymptomatic but have serological evidence of RRV infection.  

Another possible approach to studying the role of MBL polymorphisms in 

determining severity of RRV-induced disease may be to use a panel of genetically 

diverse mice called the Collaborative Cross (CC). The CC is composed of a panel of 
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recombinant inbred mouse lines that have been generated through interbreeding of eight 

different mouse lines (C57BL/6J, A/J, 129s1/SvImJ, NZO/HILtJ, NOD/ShiLtJ, WSB/EiJ, 

PWK/PhJ, and CAST/EiJ) (37). The genotypes and single nucleotide polymorphisms 

present in the CC lines that have been generated through this system represent greater 

than 90% of common mouse genetic diversity, and is currently being used to model 

genetic variation in the human population (186). In particular, our lab has been involved 

in initial studies evaluating the effect of host genetics on susceptibility or protection to 

infectious diseases (Ferris MT et al, manuscript under review). Furthermore, the CC 

provides a powerful tool to be able to evaluate the role of host genetics on viral 

pathogenesis (21, 170). Given the single nucleotide polymorphisms found specifically in 

Mbl2 and expression differences across the CC founder lines, it is likely that this system 

will better allow us to understand the role of MBL polymorphisms in mediating disease 

(118).   

 Liu et al determined the baseline circulating MBL levels in various commonly 

used laboratory mouse strains including some of the founder lines of the CC, and found 

that levels of MBL-A ranged from 5.7µg/ml to 9.4µg/ml and levels of MBL-C ranged 

from 25µg/ml to 91µg/ml (138). The range in MBL levels between the different mouse 

strains suggests that there may be some genetic basis conferring differential MBL 

expression and production. However, not much, if anything, is known about the MBL 

polymorphisms in mice or if they are similar to the human Mbl2 polymorphisms. 

As a preliminary foray into exploring the possibility of using the CC to evaluate 

the role of host genetics, particularly MBL, on RRV pathogenesis, we were interested in 

determining if levels of MBL differed within the founder lines of CC. We performed a 
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western blot analysis of relative amounts of MBL-C present in the serum of both male 

and female naïve mice from each of the founder lines (Figure 4.1). Interestingly, we 

observed a wide range of MBL-C levels across the founder lines as well as between 

males and females within some of the lines. Of note, C57BL/6J mice, which we have 

used as our standard model to study RRV pathogenesis, appeared to have moderate to 

high levels of MBL and develop severe RRV disease, whereas other mouse lines, such as 

the 129s1/SvImJ line, had very low levels of MBL, and develop very mild RRV-induced 

disease, despite similar viral burden within target tissues (Gunn BM, Lotstein AR, and 

Heise MT, unpublished data). However, other strains of mice such as PWK/PhJ, who 

appear to have comparable levels of MBL to the C57BL/6J mice, developed mild disease, 

and suggests that levels of MBL is unlikely to be the sole determinant of disease severity 

following RRV infection. However, while these data are by no means conclusive or 

indicative of the role of lower levels of MBL protecting from disease, they suggest that 

the CC may be a useful tool to experimentally address questions relating to 

polymorphisms of MBL as well as the role of host genetics on RRV pathogenesis.  

 

The RRV E2 N-linked glycans contribute to severe RRV-induced disease through 

activation of the host complement system. 

Since MBL recognizes high mannose carbohydrates, we hypothesized that MBL 

may be recognizing the viral N-linked glycans present on the surface of infected cells. 

MBL does not bind directly to SINV or CHIKV virion particles (61), and we were unable 

to demonstrate direct interaction between either mammalian-derived or mosquito-derived 

RRV virions (79). However, since alphaviruses bud from the plasma membrane of 
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infected cells and the N-linked glycans are also present on the mature RRV glycoprotein 

spikes, we reasoned that it might be possible that MBL was recognizing the arrays of E2 

glycans on the infected cell rather than on the virion. In support of this hypothesis, RRV 

infection resulted in elevated levels of MBL within the quadriceps muscles of infected 

mice as well as onto infected cells (Figure 2.3, (79)). To determine if the E2 glycans 

regulated MBL deposition onto infected cells, we used a virus that had been genetically 

mutated to lack the E2 glycosylation sites and evaluate deposition of MBL onto infected 

cells between the E2 glycan mutant and WT virus. Consistent with our hypothesis, the E2 

glycan mutant-infected cells had reduced MBL deposition compared to WT virus as 

determined by western blot as well as by immunofluorescence despite similar levels of 

virus replication and output in both assays. These data together indicate that the E2 

glycans present on the infected cell regulate extracellular deposition of MBL onto 

infected cells.  

We next evaluated the role of the RRV N-linked glycans in RRV pathogenesis. 

Interestingly, mice infected with viruses that lacked either of the two E2 glycans showed 

reduced disease compared to WT virus; however, the single E2 glycan mutant-infected 

mice still exhibited some level of disease. In contrast, mice infected with a virus that 

lacks both of the E2 glycans E2 N200;262Q (E2 DM), exhibited dramatically reduced 

disease compared to WT mice. Further analysis of the pathology induced by RRV E2 

DM compared to RRV WT showed striking similarity to the disease induced in MBL-

DKO, C3-/-, and CR3-/- following RRV infection. Furthermore, RRV E2 DM-infected 

mice had reduced levels of MBL within the quadriceps muscle as well as reduced C3 

deposition and cleavage products compared to RRV WT-infected mice. Together, these 
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data suggest that the E2 glycans regulate MBL-dependent complement activation leading 

to disease.  

 

Glycans on infected cells versus on the virion.  

 The finding that MBL does not bind to the RRV virion particles, but does appear 

to bind to the E2 glycans on the infected cell, is intriguing in that the glycans should be 

the same on the infected cell and on the virion itself since the glycoproteins at the plasma 

membrane of the infected cell are incorporated into the virion particle. The three CRDs 

that make up each subunit of MBL are separated by a constant distance of 45Å, and thus 

require distinct spacing of carbohydrate ligands to efficiently bind and activate 

complement (211). Thus, one possible explanation for why MBL may recognize the 

infected cell rather than the virion is that the array of viral glycoproteins lying on the 

plasma membrane may provide the particular spacing and repeating array of carbohydrate 

ligands needed to efficiently bind MBL and activate complement whereas the glycans on 

the spherical virion particle may not. Structural analysis of the positions and spacing of 

the glycans on the surface of the infected cell compared to the virus would be needed to 

determine the spacing of the glycans are different between the two scenarios.  

 Recognition of the RRV N-linked glycans on the plasma membrane of the 

infected cell rather than the virion may also partially explain why MBL is pathologic in 

RRV-induced disease but protective in other virus systems. Since alphaviruses bud from 

the plasma membrane, the glycoproteins are prominently displayed on the cell surface, 

and allow for MBL deposition and complement activation directly on the infected host 

cell. Flaviviruses, such a WNV and DENV, bud from the ER and thus the glycoproteins 
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are only ever presented to MBL in virion form (136). Similarly, SARS-CoV forms 

virions within the cytoplasm of infected cells and mature virions are released by 

exocytosis (129). Thus, the interaction of flaviviruses and SARS-CoV with MBL may 

occur outside and away from host cells, and allow for complement activation and 

neutralization only on the virus. In contrast, recognition of the RRV E2 glycans on the 

infected cell by MBL may lead to complement activation on the infected cell, resulting in 

opsonization for killing and/or clearance by monocytes and macrophages.  

 

Other possible ligands that could induce MBL-dependent complement activation 

following RRV infection. 

Our work suggests that the RRV E2 N-linked glycans present on the surface of 

the infected cell act as a ligand for MBL binding and subsequent complement activation. 

However, MBL can bind to carbohydrate ligands that are not necessarily foreign in origin, 

such as N-linked glycans on receptors as well as other host proteins (223). Altered 

glycosylation of self-proteins has been demonstrated in tumor cells and in cells 

undergoing stress, leading to presentation of aberrantly glycosylated proteins on the 

surface of the cell (177, 229). Furthermore, alteration or loss of glycosyltransferase or 

glycosidase expression may lead to incomplete processing of the glycans resulting in 

hybrid or high mannose glycans on proteins being transported to the cell surface.  

Alphaviruses induce host cell transcriptional shutoff, and thus it is possible that 

any proteins undergoing glycosylation at the time of shutoff may be aberrantly 

glycosylated. Some of these proteins may include surface proteins that are still 

transported to the surface of cell and could therefore be able to interact with MBL and 
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other carbohydrate binding proteins. Thus, in addition to recognition of the RRV 

glycoproteins on the surface of the infected cell, it is possible that MBL may also 

recognize aberrantly glycosylated host cell proteins. One possible experiment to address 

this possibility would be to generate the E2 glycan mutations in the context of a virus that 

is unable to induce host transcriptional shutoff, and determine the ability of these viruses 

to induce MBL deposition onto infected cells. Gorchakov et al. described an nsP2 mutant 

of SINV that is defective in its ability to induce shutoff, and a similar mutation could be 

made in RRV (60, 75).  If the shutoff defective mutant virus with the WT glycans is still 

able to induce MBL deposition, while the mutant virus lacking the E2 glycans is not, this 

would provide strong evidence that the E2 glycans themselves are regulating MBL 

deposition onto infected cells.  

 

4.2 Future Directions 

Direct interaction between E2 glycans and MBL 

We have developed two assays to determine if the E2 glycans contribute to MBL 

deposition on the surface of infected cells: western blot analysis of levels of MBL present 

with skeletal muscle cultures infected with either RRV WT or RRV E2 DM, as well as a 

visual analysis by immunofluorescence assay. In these assays, MBL is added 

exogenously to infected cells for 30 minutes to mimic in vivo conditions where MBL 

would interact with extracellular components of infected cells. Results from both assays 

indicate that the E2 glycans contribute to MBL deposition onto infected cells, despite 

similar levels of viral replication and/or viral antigen (Figures 3.1-3.3).  
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While these results indicate the E2 glycans regulate MBL deposition onto infected 

cells, we have not demonstrated a direct interaction between the RRV E2 glycans on the 

surface of the infected cell and MBL. Several additional experiments may be able to help 

determine if there is direct interaction between the glycans and MBL. Co-

immunoprecipitation of the E2 glycoproteins and MBL from cells infected with either 

RRV WT or RRV E2 DM and incubated with exogenously added MBL would determine 

if a direct interaction between the RRV glycoproteins and MBL is dependent on the E2 

glycans in the context of the infection.  

Another approach would be to express either the WT or E2 DM glycoproteins 

from a plasmid and determine MBL deposition in the same assays described above. The 

advantage of this approach would be that the assay evaluates the contribution of the 

glycoproteins alone rather than in the context of viral infection. If MBL deposition occurs 

only onto the cells expressing the WT glycoproteins and not onto the cells expressing the 

E2 DM glycoproteins, it would suggest that the E2 glycans are indeed regulating MBL 

deposition onto the surface of cells. However, it is currently unclear if stable expression 

of the glycoproteins and maintenance of the mature glycoprotein spikes on the plasma 

membrane is feasible. An early study of SFV budding demonstrated that the 

glycoproteins at the plasma membrane do not accumulate in the absence of nucleocapsid 

interactions (256), and if this is the case, negative results would be difficult to interpret, 

since no binding of MBL to even WT glycoproteins could mean either that MBL binds to 

something else on the infected cell, or that the glycoproteins are not being maintained at 

the plasma membrane. IFA staining of unpermeabilized transfected cells for the RRV 
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structural proteins may be able to help determine if the glycoproteins are present on the 

surface of the cell.  

 

MBL crosstalk with toll-like receptor pathways 

The complement system has been recently shown to be involved in crosstalk with 

other innate immune pathways such as the toll-like receptor (TLR) family of receptors 

(82). MBL in particular appears to play a role in modulating signaling from various 

receptors. MBL bound to S. aureus bacteria enhanced signaling by TLR2 and TLR6 to 

generate a specific and robust response to S. aureus infection (108). MBL has also been 

reported to bind to TLR4 through the N-linked glycans on the receptor (212), and one 

study suggests that MBL binding to TLR4 can suppress LPS-induced pro-inflammatory 

responses (239). Intriguingly, TLR4 has a role in mediating RRV-induced disease 

(Neighbours L.M., Long K.M., and Heise M.T., unpublished data), thus it will be 

interesting to determine if MBL-TLR4 interactions contribute to RRV-induced disease.  

 

Role of the complement system in pathogenesis of other arthritic alphaviruses.  

The complement system appears to contribute to protection from encephalitic 

alphavirus infection yet enhances pathology following RRV infection (24, 79, 97, 98). 

However, the role of complement in the pathogenesis other arthritic alphaviruses, such as 

CHIKV, is currently unknown. Preliminary studies analyzing levels of circulating MBL 

in the serum of human CHIKV patients show elevated levels of MBL compared to 

uninfected healthy controls (Herrero, L. and Mahalingham, S., unpublished data). While 

additional studies in both mice and humans are needed to determine if there is a role for 
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MBL and complement in CHIKV pathogenesis, this preliminary data indicating that 

elevated levels of MBL are associated with CHIKV-associated polyarthritis suggest that 

MBL may play a role in other arthritic alphavirus infections.   

Based on the results of the studies of this dissertation indicating a role for the 

RRV E2 glycans in mediating disease, similar mutations in the E2 glycans were 

generated in CHIKV in order to evaluate their potential role in CHIKV pathogenesis. 

Interestingly, the CHIKV mutant virus that lacks both of the E2 glycans (E2 N263; 

345Q) induces a mild disease compared to CHIKV WT in mice, suggesting that the E2 

glycans modulate CHIKV pathogenesis (McGee, C.E. and Heise, M.T., unpublished 

data). Whether the CHIKV E2 glycans regulate complement activation similar to the 

RRV E2 glycans remains to be seen; however this data highlights the importance of the 

viral N-linked glycans in arthritic alphavirus pathogenesis.  

 

4.3 Conclusions and working model 

 The work described in this dissertation has identified critical pathologic roles for 

the host innate immune protein mannose binding lectin and the viral N-linked glycans in 

RRV pathogenesis. In this model, the E2 N-linked glycans on the surface of the infected 

cell induce MBL-dependent complement activation leading to development of RRV-

induced disease. In addition to advancing our understanding of the molecular 

mechanisms that regulate RRV pathogenesis and identifying potential therapeutic targets, 

we have described novel pathologic roles for both MBL and viral N-linked glycans in 

viral pathogenesis.  
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Our current working model of how the interaction between the viral N-linked 

glycans and MBL contributes to RRV-induced disease is outlined in Figure 4.2 and is 

discussed below. As RRV replicates in host cells and tissues, the glycosylated envelope 

glycoproteins are expressed on the plasma membrane of the infected cell. Circulating 

MBL in the serum recognizes and binds to the E2 N-linked glycans that are present on 

the surface of infected cells to activate the complement cascade. Activation of 

complement produces the iC3b cleavage product that serves as a ligand to activate 

infiltrating inflammatory cells through CR3. Activation through CR3 initiates pro-

inflammatory signaling that ultimately results in production of effector molecules and 

proteins that damage and kill iC3b-opsonized cells and tissues, resulting in the 

immunopathology that causes clinical disease.  

Finally, arthritic alphaviruses are an important cause of infectious arthritis in 

many areas around the world, and have the potential to cause explosive epidemics of 

debilitating disease in millions of people. The work presented here advances our 

understanding of the mechanisms that contribute to development of RRV-induced disease, 

and suggest that targeting of MBL and the host complement system may be an effective 

therapeutic target for treatment of RRV and other arthritic alphaviruses.  
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Figure 4.1: MBL levels vary between Collaborative Cross founder strains.  

 

 

 

Figure 4.1:  MBL levels vary between Collaborative Cross founder strains.  

To determine if baseline MBL levels varies between the founder mouse lines of the 

Collaborative Cross, western blot analysis using anti-mouse MBL-C antibodies was 

performed on equal volumes of serum from naïve male (M) and female (F) mice from 

each founder line.  
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Figure 4.2: Current model of how viral N-linked glycans and MBL contribute to 

RRV-induced disease.   
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Figure 4.2: Current model of how viral N-linked glycans and MBL contribute to 

RRV-induced disease.   

As RRV replicates in host cells and tissues, the glycosylated envelope glycoproteins are 

expressed on the plasma membrane of the infected cell (Step 1). Circulating MBL in the 

serum recognizes and binds to the E2 N-linked glycans present on the surface of infected 

cells to activate the complement system (Steps 2-3). Activation of complement produces 

the iC3b cleavage product that serves as a ligand to activate infiltrating inflammatory 

cells through CR3 (Step 3-4). Activation of the cells, indicated by lightening bolts, 

through CR3 initiates pro-inflammatory signaling that ultimately results in production of 

effector molecules and proteins that damage and kill iC3b-opsonized cells and tissues, 

resulting in the immunopathology that causes clinical disease (Step 5). Figure adapted 

from Li et al. with permission from Nature Publishing Group (133).   



APPENDIX: 
 

MECHANISMS OF TYPE I IFN INDUCTION IN MYELOID DENDRITIC 
CELLS BY MAMMALIAN CELL-DERIVED ROSS RIVER VIRUS.  

	  
A1.1 Introduction 

 Arthritic alphaviruses such as Ross River virus and chikungunya viruses are 

mosquito borne viruses that cause explosive epidemics of infectious arthritis in many 

areas around the world. These viruses are transmitted to humans by a mosquito vector 

and thus the virus is capable of infecting and replicating in both vertebrate and mosquito 

cells. The viruses that emerge from each of these different hosts have properties of the 

host cell, and one major difference between vertebrate and invertebrate cells is the 

glycosylation of proteins. As discussed in the introduction of this dissertation, asparagine 

(N)-linked glycosylation of viral proteins varies between mosquito and mammalian cells 

due to the lack of certain glycosidases in mosquito cells. Mosquito and other invertebrate 

cells produce high mannose glycans with mannose as the terminal residue, whereas 

vertebrate cells typically glycosylate proteins with complex or hybrid glycans, which 

have terminal sialic acid (215).  

Early induction of type I interferon (IFN) is important for control of alphavirus 

replication (reviewed in (196)), and one of the major immune cell types capable of 

secreting large amounts of IFN is the dendritic cell (DC) population. DCs in the skin, 

such as Langerhan cells, are thought to be some of the first cells that come into contact 

with alphaviruses following infection by an infected mosquito (141). Prior studies 

demonstrated that mammalian cell-derived alphaviruses induce robust amounts of type I 

IFN from myeloid dendritic cells whereas mosquito cell-derived alphaviruses fail to 
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induce much IFN at all (209). The failure to induce IFN from dendritic cells by the 

mosquito-derived virus was independent of viral replication, and did not appear to occur 

through active suppression of type I IFN induction (209, 210). Rather, the mosquito-

derived virus simply failed to activate IFN induction, whereas the mammalian-derived 

virus did. Additional studies indicated that the N-linked glycans on the mammalian-

derived virus glycoproteins mediate IFN induction from mDCs (210). In particular, the 

two E2 N-linked glycans (E2 N200, N262) together were required for IFN production 

from mDCs. Analysis of the types of glycans that are typically glycosylated at the two 

sites revealed that the glycan at E2 N200 is typically a high mannose glycan, whereas the 

E2 N262 is predominantly a complex or hybrid glycan when produced in a mammalian 

cell (210). Together, this data suggests that the combination of the high mannose glycan 

and the complex glycan together induced IFN from mDCs. However, the mechanism by 

which the viral glycans induce type I IFN is unclear.  

 There are several classes of innate immune receptors that are present on DCs that 

mediate type I IFN production from DCs: the toll-like receptors (TLRs), C-type lectin 

receptors (CLRs), and the RIG-I like receptors (RLRs). These receptors are present either 

on the plasma membrane, within the endosome, or cytoplasmic and are involved in 

pathogen sensing. TLRs are present on the cell membrane as well as in the endosomes 

and engage a diverse set of bacterial, viral, and fungal ligands to induce the type I IFN 

system and NF-kB signaling pathways that initiate pro-inflammatory programs (reviewed 

in REF). While the list of ligands for the various TLRs is constantly growing, it is clear 

that some of the TLRs are activated by carbohydrate ligands. Viral glycoproteins from 
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several different viruses such as respiratory syncytial virus, measles, and human 

cytomegalovirus have been shown to activate TLR2 or TLR4 (15, 16, 36, 127).  

CLRs are an emerging class of innate immune receptors that are typically found 

on the plasma membrane of immune cells and specifically recognize carbohydrate 

structures.  DC-SIGN, CLEC5A, CLEC4A (DCIR) have been shown to interact with 

arboviruses, both flaviviruses and alphaviruses, to modulate pathogenesis (Long, K.M., 

and Heise M.T. manuscript under revision, (30, 31, 120)). Signaling from these receptors 

results in production of cytokines that regulate adaptive immunity (71). In addition, 

activation of certain CLRs leads to modulation of signaling pathways induced by other 

PRRs, such as TLRs (reviewed in (71)).  

RLRs are cytoplasmic sensors that recognize nucleic acid within the cytoplasm 

and are required for type I IFN induction in response to many different viruses (reviewed 

in (139)). While RLRs do not directly recognize carbohydrate and protein structures, 

there is increasing evidence that the there is crosstalk between the RLRs and other PRR 

signaling pathways (179), and thus RLRs may play a secondary role in induction of type I 

IFN as a result of activation through other pathways.  

 In this study, we wanted to identify potential host sensors that recognized the viral 

N-linked glycans, leading to the production of type I IFN from mDCs. Given the 

localization and ligand specificity of the TLRs and CLRs, we hypothesized that these 

families of receptors may be recognizing the N-linked glycans on mammalian derived 

RRV. To determine if any of these sensors had a role in type I IFN induction, we took 

advantage of the availability of mice that are genetically deficient in the several different 

receptors: TLR2, TLR4, MyD88, DC-SIGN, and SIGN-R3. We derived mDCs from 
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these various mouse lines, and infected them with mammalian derived RRV and analyzed 

type I IFN production in the culture supernatant. However, we have not yet identified any 

particular receptor that mediates type I IFN production from mDCs in response to RRV 

infection.  

 

A1.2 Materials and Methods 

Viruses and cells. The viral stocks used in this study were generated from the infectious 

clone of the T48 strain of RRV (pRR64), kindly provided by Richard Kuhn (Purdue 

University) as described in (161). Briefly, viral RNA was generated through in vitro 

transcription of SacI-linearized pRR64 using the mMessage mMachine SP6 kit (Ambion) 

and electroportated into mammalian BHK-21 cells (ATCC). Viral titer was determined 

by plaque assay on BHK-21 cells.  BHK-21 cells were grown in α-MEM (Gibco) 

supplemented with 10% donor calf serum (DCS), 10% tryptose phosphate, L-glutamine, 

penicillin, and streptomycin. C6/36 mosquito cells were grown in. L929 cells were grown 

in α-MEM (Gibco) supplemented with 10% donor calf serum (DCS), 10% tryptose 

phosphate, L-glutamine, penicillin, and streptomycin.  

 

Generation of bone marrow derived dendritic cells (BMDCs). To generate BMDCs, 

bone marrow was extracted from the femurs and tibias of 8-10 week old mice, and 

cultured in low cluster 6-well plates in RPMI-10 (RPMI-1640 with 10% FBS, L-

glutamine, b-mercaptoethanol, gentamicin, and penicillin, and streptomycin). To 

differentiate cells into BMDCs, cells were incubated in varying concentrations of GM-
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CSF and IL-4 for 7 days as described in (209). Cells were either cryo-preserved or used 

immediately for experiments.  

 

Infection of BMDC with RRV. BMDCs were plated at a density of 6 x 105 cells/well in 

RPMI-10 with GM-CSF and IL-4. Cells were infected either with diluent alone (mock) or 

with mammalian-derived RRV (mam-RRV) at an MOI of 10 or 20 for 2 hours in a 600µl 

volume. An addition 400µl of RPMI-10 with GM-CSF and IL-4 was added, and cells 

were incubated an additional 10 or 22 hours at 37C 5% CO2. At indicated time points (12 

hpi or 24 hpi), culture supernatant was harvested by pelleting cells at 13000 RPM for 5 

minutes, and transferring supernatant to a sterile eppendorf tube and stored at -80C until 

ready to assay.  

 

Inhibition of endocytosis using dynasore. To inhibit endocytosis, differentiated 

BMDCs were incubated in RPMI-10 with GM-CSF and IL-4 containing either 80 µM of 

dynasore (Sigma Aldrich, St. Louis, MO) or DMSO vehicle for 30 minutes prior to 

infection with virus, and were maintained in the inhibitor following infection.  

 

Type I IFN bioassay. Interferon bioassay was used to determine amounts of type I IFN 

as described in (209). Briefly, culture supernatants and interferon standards (NIH) were 

acidified to pH<2 with HCl overnight, and pH brought back to a neutral pH of 7-8 by 

NaOH. Samples were then UV-treated for 10 minutes to inactivate any residual virus. 

Samples were titrated by two-fold serial dilution onto L929 cells seeded in 96 well plates 

at a density of 8 x 103 cells/well, and incubated overnight. Following overnight 
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incubation, cells were challenged with EMCV at an MOI of 5 for 24 hours. Cell viability 

was determined by incubation in 6mg/ml of MTT (Sigma) for 3 hours. Residual MTT 

was removed, and the cells were dissolved in 0.4M HCl in isopropanol, and the 

absorbance 570nm of each well was measured on a microplate reader. To determine total 

amounts of IFN in each well, the well number at which had 50% cell viability was 

compared to the IFN standard and converted to international units (IU/ml).   

 

Analysis of percent infection of BMDCs by RRV. Differentiated BMDCs were infected 

as above with either diluent, mam-RRVgfp or mos-RRVgfp at MOI 10. At 12 hpi, cells 

were harvested by pelleting and were fixed in 2% PFA overnight. Cells were analyzed for 

GFP expression on a CyAn flow cytometer (Becton Dickinson), and data was analyzed 

using Summit software.  

 

Statistical analyses. Amounts of type I IFN production were analyzed for statistically 

significant differences by one-way ANOVA or students two tailed t-test between the 

various knockout lines and treatments (p<0.05 is considered significant). Statistical 

analyses were performed using GraphPad Prism 5.  
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A1.3 Results 

Endocytosis of virus is required for type I IFN induction from BMDCs following mam-

RRV infection.  

Active viral replication by mammalian derived RRV was not required for 

induction of type I IFN from mDCs (209), suggesting that a cellular receptor is being 

activated during the entry stage of viral infection. This implies that the virus is interacting 

with the receptor during receptor binding and entry or during the internalization and 

fusion step. Both TLR2 and TLR4 are located at the plasma membrane as well as in the 

endosome and phagosome, where as CLRs are typically found at the plasma membrane. 

Furthermore, signaling through activation of RLRs required viral entry and release of 

viral RNA into the cytoplasm. To determine if type I IFN induction by mam-RRV 

required viral entry into the cell, we used a pharmacological inhibitor of dynamin, 

dynasore, to block clathrin-mediated endocytosis and entry of virus into the cell (142). 

Murine BMDCs were incubated in either 80µM of dynasore or DMSO vehicle prior to 

infection with mam-RRV, and type I IFN production was measured by type I IFN 

bioassay at 12 hpi. As shown in Figure A1.1, we observed a significant decrease in the 

amount of type I IFN production in cells treated with dynasore compared to vehicle 

treatment, indicating that endocytosis and/or viral entry is required for IFN induction 

following mamRRV infection.  
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TLR2 and TLR4 do not contribute to type I IFN induction from mDCs in response to 

mam-RRV.  

 Given that TLR2 and TLR4 can recognize to viral glycoproteins to initiate pro-

inflammatory signaling as well as type I IFN production, we generated BMDCs from 

mice genetically deficient in either TLR2 or TLR4. To determine if either of the receptors 

mediated type I IFN induction from mDCs following mam-RRV infection, we infected 

either WT, TLR2-/- or TLR4-/- BMDCs with mam-RRV and measured type I IFN 

production at 12 hpi by type I IFN bioassay. Consistent with previous studies, mamRRV 

induced robust amounts of type I IFN from WT BMDCs (Figure A1.2). However, the 

induction of type I IFN was not dependent on either TLR2 or TLR4 as both TLR2-/- and 

TLR4-/- BMDCs produced comparable amounts of IFN to WT BMDCs (Figure A1.2).  

 While the results above indicated that neither TLR2 or TLR4 were required for 

IFN induction from mam-RRV infected BMDCs, it is possible that both receptors are 

capable of recognizing the N-linked glycans, and thus could compensate for each other.  

Multiple TLRs, including TLR2 and TLR4, signal through the adaptor protein MyD88, 

and thus we evaluated the production of type I IFN by mam-RRV in MyD88-/- BMDCs. 

As shown in Figure A1.2, MyD88-/- and WT BMDCs induced equivalent amounts of type 

I IFN following mam-RRV infection, suggesting that TLR signaling through MyD88 

does not contribute to type I IFN induction in BMDCs. In addition to ruling out the role 

for TLR2 in IFN induction following mam-RRV infection, the use of MyD88-/- BMDCs 

also ruled out possible roles for TLR7, TLR9, TLR5, and TLR6 in mediating IFN 

induction by mam-RRV, since those receptors signal exclusively through MyD88 (117). 
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DC-SIGN and SIGN-R3 are not required for type I IFN induction from BMDCs following 

mam-RRV infection.  

 Type I IFN induction from mamRRV-infected BMDCs appears to require 

endocytosis and/or viral entry, yet neither TLR2 nor TLR4 mediated IFN induction 

following mamRRV infection, we next evaluated the role of CLRs in type I IFN 

induction. The CLRs DC-SIGN and SIGN-R3 can recognize and bind to high mannose 

glycans, and DC-SIGN has been reported to be an attachment factor for mosquito-derived 

alphaviruses that aids in viral entry into DCs (66, 71, 120). Thus, we hypothesized that 

DC-SIGN or SIGN-R3 mediated type IFN induction from BMDCs following mamRRV 

infection. To test this, we generated BMDCs from WT, DC-SIGN-/-, or SIGN-R3-/- mice, 

and measured type I IFN induction following mam-RRV infection. As shown in Figure 

A1.3A, we did not observe any difference in type I IFN induction between WT, DC-

SIGN-/- or SIGN-R3-/-, suggesting that these receptors do not mediate IFN induction 

following mamRRV infection.  

Mosquito cell-derived RRV infects BMDCs at a much higher efficiency than 

mammalian-cell derived RRV (209), and Klimstra et al. demonstrated that DC-SIGN and 

L-SIGN can act as dendritic cell attachment factors for mosquito cell-derived SINV (120). 

Therefore, we hypothesized that DC-SIGN might mediate efficient entry of mosRRV into 

BMDCs. To test this, we infected WT or DC-SIGN-/- BMDCs with a GFP-expressing 

mosRRV and determined percentage of viral infection by flow cytometry. Consistent 

with prior studies, we observed a significant increase in the number of cells infected with 

mosRRV compared to mamRRV in both the WT and DC-SIGN-/- BMDCs (Figure 

A1.2B). However, we did not observe any difference in the numbers of cells infected 
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with mos-RRV between WT and DC-SIGN-/- BMDCs, suggesting that DC-SIGN does 

not mediate efficient entry of mos-RRV into BMDCs (Figure A1.3B).   

 

A1.4 Discussion and Future Directions 

 Early induction of type I IFN is critical in the control of alphavirus infection. 

Interestingly, mosquito and mammalian cell-derived RRV differentially induce type I 

IFN from myloid dendritic cells, and in particular, the RRV N-linked glycans on 

mammalian cell-derived RRV appear to be responsible for the differential type I IFN 

induction (209, 210). The mechanisms and/or host sensors that drive N-linked glycan 

mediated type I IFN induction are currently unknown. Innate immune pattern recognition 

receptors such as TLRs and CLRs can recognize carbohydrate structures on pathogens to 

activate host immune pathways. In this study we evaluated the role of these receptors in 

mediating type I IFN induction from BMDCs following infection with mam-RRV.  

 Prior studies indicated that viral replication was not necessarily required for IFN 

induction from mDCs (209), and suggests that the receptor involved in N-linked glycan 

recognition was either at the plasma membrane or located within endosomes. To 

distinguish between these two possibilities we used dynasore, which is an inhibitor of 

dynamin and clathrin mediated endocytosis. Our results indicated that endocytosis was 

required for IFN induction from mDCs following RRV infection. Both TLR2 and TLR4, 

which have been shown to recognize viral glycoproteins, can signal from the endosome 

and phagosomes (12). Therefore, we evaluated the role of TLR2 and TLR4 in type I IFN 

induction from mDCs. Surprisingly, neither receptor was required for type I IFN 

induction following mamRRV infection. Similar results were found with MyD88-/- mDCs, 
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suggesting that the MyD88-dependent TLRs do not mediate type I IFN from mDCs, 

definitively ruling out TLR2. While TLR4 signals through MyD88 at the plasma 

membrane, MyD88-independent TLR4 signaling can occur through the adaptor TRIF in 

the phagosome to mediate type I IFN induction (12, 252). We did not evaluate the role of 

TRIF-dependent TLRs in mediating type I IFN from mDCs in this study and needs to be 

tested, but our results with TLR4-/- BMDCs suggests that TLR4, regardless of whether it 

is at the plasma membrane or within phagosomes or endosomes, does not mediate N-

linked glycan dependent type I IFN induction.  

 Since CLRs recognize glycan structures and the CLR DC-SIGN has been shown 

to interact with SINV, we next evaluated the role of DC-SIGN and one of its homologues 

SIGN-R3 in type I IFN from mDCs (120). However, neither DC-SIGN nor SIGN-R3 

mediated type I IFN induction (Figure A1.3A). Furthermore, while DC-SIGN has been 

reported to be an attachment factor that enhances mosquito-derived SINV entry into DCs 

(120), DC-SIGN was not required for mos-RRV entry into DCs (Figure A1.3B). There 

are five mouse homologues to the human DC-SIGN (mouse DC-SIGN, SIGN-R1, SIGN-

R2, SIGN-R3, and SIGN-R4) and while the SIGN-R3 is thought to be the one most 

closely related in carbohydrate binding specificity to the human DC-SIGN (169, 176), it 

is possible that one of the other DC-SIGN homologues can compensate in the absence of 

DC-SIGN in mouse cells and may partially explain our results.  

 RLRs such as RIG-I and MDA-5 contribute to type I IFN induction by 

alphaviruses (Cruz, CC and Heise MT unpublished data, (246, 248)) in fibroblasts. While 

RLRs are activated by RNA ligands and are unlikely to be directly activated by N-linked 

glycans on mamRRV, there is increasing evidence of cross-talk between RLRs and other 
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PRR families such as the NOD-like receptors, who can cross-talk with TLRs (179). 

Given that type I IFN from mDCs by mam-RRV required endocytosis, but not active 

viral replication, it is possible that RLRs may mediate some aspect of type I IFN 

induction by the N-linked glycans through cross talk with another PRR that does engage 

carbohydrates. In this scenario, a two-step induction process is required for type I IFN 

production: initial detection of viral N-linked glycans on incoming viruses by a CLR or 

TLR, subsequent recognition of viral RNA by the RLR, and synergy between the two 

pathways to produce robust amounts of type I IFN. We have not directly evaluated the 

role of IPS-1 or any of the RLRs in this study, and those experiments will need to be 

performed to determine the role of RLRs in mediating type I IFN production in mDCs 

following mam-RRV infection. Additional studies using BMDCs from mice deficient in 

both IPS-1 and various TLRs/CLRs may be useful in determining if there is synergy or 

interaction between the different pathways in type I IFN induction following RRV 

infection.  

 

Future directions 

In this study we have evaluated the role of several of the most likely innate 

immune receptors capable of recognizing viral glycoproteins in mediating type I IFN 

production from mDCs by the N-linked glycans on mamRRV. This has not been an 

exhaustive study by any means, and there are many more candidate receptors that may 

mediate IFN production from mDCs in response to mamRRV. In particular, other CLRs 

are attractive candidates to evaluate for their role in IFN production as well as a potential 

role in viral pathogenesis. For example, Langerin (CLEC4K), which is present on dermal 
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DCs called Langerhan cells that are in the skin, is an attractive candidate because of 

Langerhan cells are likely to be among the first cells to come into contact with mosRRV. 

Other receptors such as CLEC5A and CLEC4A (DCIR) have been shown to either 

interact with arboviruses or play a critical role in inflammatory diseases similar to 

alphavirus-induced arthritic diseases (30, 31, 114).  

Rather than generating BMDCs from mice deficient in all of the different CLRs to 

evaluate their role in IFN induction, an alternative approach to determining if there is a 

role for any given CLR in IFN induction is to first determine if RRV interacts directly 

with candidate CLRs. Chen et al. have described a method to determine direct interaction 

between the carbohydrate recognition domains (CRDs) of various CLRs and viruses 

through expression of the CLR CRD fused to the Fc region of a human IgG and then 

performing an ELISA to determine if the virus bound to the CRD (30). We have taken a 

similar approach and generated constructs containing the CRDs of the CLRs outlined in 

Table A1.1. To produce the CLR.Fc fusion proteins, we transfected the constructs into 

HEK293T cells, and collected the supernatant 72 hours post transfection, and 

subsequently purified the CLR.Fc using a protein G column. The ELISA assay is 

currently undergoing optimization, and thus we do not have any interaction data so far; 

however, this panel of CLR.Fc fusion proteins provides us with a set of reagents to 

explore the roles of CLRs in alphavirus pathogenesis.  

 

In summary, interactions between viral N-linked glycans and the innate immune 

system is an emerging field of study, and there is mounting evidence that these 

interactions play a critical role in modulating the host immune response and viral 
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pathogenesis. Dissecting these interactions by first identifying the host innate immune 

sensors involved in recognition and signaling will help further our understanding of how 

the viral N-linked glycans are sensed by the host, and ultimately their role in 

pathogenesis.  
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Figure A1.1: Endocytosis of virus is required for type I IFN induction from BMDCs 

following mamRRV infection.  

 

 
 
 
 

Figure A1.1 Endocytosis of virus is required for type I IFN induction from BMDCs 

following mamRRV infection.  

To determine if endocytosis was required for induction of type I IFN from mam-RRV, 

murine C57BL/6 BMDCs were incubated in 80µM dynasore (solid bars) or DMSO 

vehicle (open bars) and then either mock infected or infected with mam-RRV for 12 

hours.  Amounts of type I IFN in the culture supernatant at 12 hpi were determined by 

type I IFN bioassay on L929 cells. The bar represents the arithmetic mean ± SD of 

triplicate wells and is representative of at least two independent experiments.  

***p<0.0001 by students t-test.  
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Figure A1.2: TLR2 and TLR4 do not contribute to type I IFN induction from mDCs 

in response to mam-RRV.  

 
 

 

 
 

 
 
Figure A1.2 TLR2 and TLR4 do not contribute to type I IFN induction from mDCs 

in response to mam-RRV.  

BMDCs derived from C57BL/6 WT (black bar), TLR2-/- (open bar), TLR4-/- (light grey 

bar), or MyD88-/- (dark grey bar) were infected with mam-RRV at MOI 20. Amounts of 

type I IFN in the culture supernatant at 12 hpi were determined by type I IFN bioassay on 

L929 cells. n.s. by one-way ANOVA analysis with Bonferroni’s muliple comparisons 

post-test. The bar represents the arithmetic mean ± SD of triplicate wells, and is 

representative of two independent experiments.  
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Figure A1.3: DC-SIGN and SIGN-R3 are not required for type I IFN induction 

from BMDCs following mamRRV infection.  

 
A.   

 
 
 

B.  
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Figure A1.3: DC-SIGN and SIGN-R3 are not required for type I IFN induction 

from BMDCs following mamRRV infection.  

(A) BMDCs from C57BL/6 WT (black bar), DC-SIGN-/- (blue bar), or SIGN-R3-/- 

(grey bar) were infected with mam-RRV at MOI 20. Amounts of type I IFN in the 

culture supernatant at 24 hpi were determined by interferon bioassay on L929 cells. 

The bar represents the arithmetic mean ± SD of triplicate wells. 

(B) BMDCs from C57BL/6 WT, DC-SIGN-/-, or SIGN-R3-/- were infected with 

diluent alone (mock; open bar), mam-RRVgfp (light blue bar) or mos-RRVgfp 

(dark blue bar) at MOI 10. Percent GFP+ cells were determined by flow cytometry. 

The bar represents the arithmetic mean ± SD of triplicate wells.  
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Table A1.1: CLR.Fc fusion constructs.  

C-type Lectin receptor Function Ref. 
CLEC5A/MDL-1 Pro-inflammatory cytokine induction; 

expressed on monocytes/macrophages; roles 
in DENV and JEV pathogenesis, 
inflammatory arthritis 
 

(30, 31, 114) 

CLEC4A/DCIR ITIM containing CLR; expressed on DCs; 
role in CHIKV pathogenesis 

Long, KM and 
Heise MT 
manuscript 

under review, 
(13) 

CLEC4E/Mincle Pro-inflammatory cytokine induction; 
expressed on neutrophils and macrophages 
 

(253) 

DC-SIGN Expressed on DCs, macrophages; attachment 
factor for SINV, HIV, DENV 
 

(72, 120, 224) 

CLEC4M/L-SIGN Expressed on endothelial cells; attachment 
factor for SINV 
 

(120) 

CLEC4K/Langerin Expressed on Langerhan cells; roles in HIV 
pathogenesis 
 

(41, 151) 

CLEC4D/MCL Expressed on monocytes/macrophages; pro-
inflammatory cytokine production 
 

(77) 

CLEC12A/MICL ITIM containing CLR; expressed on DCs, 
moncytes/macrophages 
 

(146) 

DCAR ITAM containing CLR; pro-inflammatory 
cytokine induction; pairs with DCIR 

(115, 116) 

 

Table A1.1 CLR.Fc fusions constructs.  

Initial panel of CLRs that we will evaluate for potential interaction with alphaviruses.  

  



	   191	  

REFERENCES 
 
1. Aaskov, J. G., J. U. Mataika, G. W. Lawrence, V. Rabukawaqa, M. M. 

Tucker, J. A. Miles, and D. A. Dalglish. 1981. An epidemic of Ross River virus 
infection in Fiji, 1979. Am J Trop Med Hyg 30:1053-9. 

2. Acioli-Santos, B., L. Segat, R. Dhalia, C. A. Brito, U. M. Braga-Neto, E. T. 
Marques, and S. Crovella. 2008. MBL2 gene polymorphisms protect against 
development of thrombocytopenia associated with severe dengue phenotype. 
Hum Immunol 69:122-8. 

3. Ahn, A., M. R. Klimjack, P. K. Chatterjee, and M. Kielian. 1999. An epitope 
of the Semliki Forest virus fusion protein exposed during virus-membrane fusion. 
J Virol 73:10029-39. 

4. Ahn, A., R. J. Schoepp, D. Sternberg, and M. Kielian. 1999. Growth and 
stability of a cholesterol-independent Semliki Forest virus mutant in mosquitoes. 
Virology 262:452-6. 

5. Aliperti, G., and M. J. Schlesinger. 1978. Evidence for an autoprotease activity 
of sindbis virus capsid protein. Virology 90:366-9. 

6. Arpaia, N., and G. M. Barton. 2012. Toll-like receptors: key players in antiviral 
immunity. Curr Opin Virol 1:447-54. 

7. Avirutnan, P., R. E. Hauhart, M. A. Marovich, P. Garred, J. P. Atkinson, 
and M. S. Diamond. 2011. Complement-mediated neutralization of dengue virus 
requires mannose-binding lectin. MBio 2. 

8. Avirutnan, P., E. Mehlhop, and M. S. Diamond. 2008. Complement and its role 
in protection and pathogenesis of flavivirus infections. Vaccine 26 Suppl 8:I100-
7. 

9. Banda, N. K., M. Takahashi, B. Levitt, M. Glogowska, J. Nicholas, K. 
Takahashi, G. L. Stahl, T. Fujita, W. P. Arend, and V. M. Holers. 2010. 
Essential role of complement mannose-binding lectin-associated serine proteases-
1/3 in the murine collagen antibody-induced model of inflammatory arthritis. J 
Immunol 185:5598-606. 



	   192	  

10. Banda, N. K., M. Takahashi, K. Takahashi, G. L. Stahl, S. Hyatt, M. 
Glogowska, T. A. Wiles, Y. Endo, T. Fujita, V. M. Holers, and W. P. Arend. 
2011. Mechanisms of mannose-binding lectin-associated serine proteases-1/3 
activation of the alternative pathway of complement. Mol Immunol 49:281-9. 

11. Banda, N. K., J. M. Thurman, D. Kraus, A. Wood, M. C. Carroll, W. P. 
Arend, and V. M. Holers. 2006. Alternative complement pathway activation is 
essential for inflammation and joint destruction in the passive transfer model of 
collagen-induced arthritis. J Immunol 177:1904-12. 

12. Barton, G. M., and J. C. Kagan. 2009. A cell biological view of Toll-like 
receptor function: regulation through compartmentalization. Nat Rev Immunol 
9:535-42. 

13. Bates, E. E., N. Fournier, E. Garcia, J. Valladeau, I. Durand, J. J. Pin, S. M. 
Zurawski, S. Patel, J. S. Abrams, S. Lebecque, P. Garrone, and S. Saeland. 
1999. APCs express DCIR, a novel C-type lectin surface receptor containing an 
immunoreceptor tyrosine-based inhibitory motif. J Immunol 163:1973-83. 

14. Beinrohr, L., J. Dobo, P. Zavodszky, and P. Gal. 2008. C1, MBL-MASPs and 
C1-inhibitor: novel approaches for targeting complement-mediated inflammation. 
Trends Mol Med 14:511-21. 

15. Bieback, K., E. Lien, I. M. Klagge, E. Avota, J. Schneider-Schaulies, W. P. 
Duprex, H. Wagner, C. J. Kirschning, V. Ter Meulen, and S. Schneider-
Schaulies. 2002. Hemagglutinin protein of wild-type measles virus activates toll-
like receptor 2 signaling. J Virol 76:8729-36. 

16. Boehme, K. W., M. Guerrero, and T. Compton. 2006. Human cytomegalovirus 
envelope glycoproteins B and H are necessary for TLR2 activation in permissive 
cells. J Immunol 177:7094-102. 

17. Bonatti, S., G. Migliaccio, and K. Simons. 1989. Palmitylation of viral 
membrane glycoproteins takes place after exit from the endoplasmic reticulum. J 
Biol Chem 264:12590-5. 

18. Borgherini, G., P. Poubeau, A. Jossaume, A. Gouix, L. Cotte, A. Michault, C. 
Arvin-Berod, and F. Paganin. 2008. Persistent arthralgia associated with 
chikungunya virus: a study of 88 adult patients on reunion island. Clin Infect Dis 
47:469-75. 



	   193	  

19. Borgherini, G., P. Poubeau, F. Staikowsky, M. Lory, N. Le Moullec, J. P. 
Becquart, C. Wengling, A. Michault, and F. Paganin. 2007. Outbreak of 
chikungunya on Reunion Island: early clinical and laboratory features in 157 adult 
patients. Clin Infect Dis 44:1401-7. 

20. Botto, M., D. Lissandrini, C. Sorio, and M. J. Walport. 1992. Biosynthesis and 
secretion of complement component (C3) by activated human polymorphonuclear 
leukocytes. J Immunol 149:1348-55. 

21. Bottomly, D., M. T. Ferris, L. D. Aicher, E. Rosenzweig, A. Whitmore, D. L. 
Aylor, B. L. Haagmans, L. E. Gralinski, B. G. Bradel-Tretheway, J. T. Bryan, 
D. W. Threadgill, F. P. de Villena, R. S. Baric, M. G. Katze, M. Heise, and S. 
K. McWeeney. 2012. Expression quantitative trait Loci for extreme host response 
to influenza a in pre-collaborative cross mice. G3 (Bethesda) 2:213-21. 

22. Brooke, C. B., D. J. Deming, A. C. Whitmore, L. J. White, and R. E. 
Johnston. 2010. T cells facilitate recovery from Venezuelan equine encephalitis 
virus-induced encephalomyelitis in the absence of antibody. J Virol 84:4556-68. 

23. Brooke, C. B., A. Schaefer, G. K. Matsushima, L. J. White, and R. E. 
Johnston. 2011. Early activation of the host complement system is required to 
restrict CNS invasion and limit neuropathology during Venezuelan equine 
encephalitis virus infection. J Gen Virol. 

24. Brooke, C. B., A. Schafer, G. K. Matsushima, L. J. White, and R. E. 
Johnston. 2011. Early activation of the host complement system is required to 
restrict central nervous system invasion and limit neuropathology during 
Venezuelan equine encephalitis virus infection. J Gen Virol 93:797-806. 

25. Brown, K. S., S. D. Ryder, W. L. Irving, R. B. Sim, and T. P. Hickling. 2007. 
Mannan binding lectin and viral hepatitis. Immunol Lett 108:34-44. 

26. Burke, D., and K. Keegstra. 1979. Carbohydrate structure of Sindbis virus 
glycoprotein E2 from virus grown in hamster and chicken cells. J Virol 29:546-54. 

27. Burt, F. J., M. S. Rolph, N. E. Rulli, S. Mahalingam, and M. T. Heise. 2012. 
Chikungunya: a re-emerging virus. Lancet 379:662-71. 

28. Calandra, T., and T. Roger. 2003. Macrophage migration inhibitory factor: a 
regulator of innate immunity. Nat Rev Immunol 3:791-800. 



	   194	  

29. Carey, D. E. 1971. Chikungunya and dengue: a case of mistaken identity? J Hist 
Med Allied Sci 26:243-62. 

30. Chen, S. T., Y. L. Lin, M. T. Huang, M. F. Wu, S. C. Cheng, H. Y. Lei, C. K. 
Lee, T. W. Chiou, C. H. Wong, and S. L. Hsieh. 2008. CLEC5A is critical for 
dengue-virus-induced lethal disease. Nature 453:672-6. 

31. Chen, S. T., R. S. Liu, M. F. Wu, Y. L. Lin, S. Y. Chen, D. T. Tan, T. Y. Chou, 
I. S. Tsai, L. Li, and S. L. Hsieh. 2012. CLEC5A regulates Japanese encephalitis 
virus-induced neuroinflammation and lethality. PLoS Pathog 8:e1002655. 

32. Clarris, B. J., R. L. Doherty, J. R. Fraser, E. L. French, and K. D. Muirden. 
1975. Epidemic polyarthritis: a cytological, virological and immunochemical 
study. Aust N Z J Med 5:450-7. 

33. Coffey, L. L., E. Mertens, A. C. Brehin, M. D. Fernandez-Garcia, A. Amara, 
P. Despres, and A. Sakuntabhai. 2009. Human genetic determinants of dengue 
virus susceptibility. Microbes Infect 11:143-56. 

34. Collard, C. D., R. Lekowski, J. E. Jordan, A. Agah, and G. L. Stahl. 1999. 
Complement activation following oxidative stress. Mol Immunol 36:941-8. 

35. Collard, C. D., A. Vakeva, M. A. Morrissey, A. Agah, S. A. Rollins, W. R. 
Reenstra, J. A. Buras, S. Meri, and G. L. Stahl. 2000. Complement activation 
after oxidative stress: role of the lectin complement pathway. Am J Pathol 
156:1549-56. 

36. Compton, T., E. A. Kurt-Jones, K. W. Boehme, J. Belko, E. Latz, D. T. 
Golenbock, and R. W. Finberg. 2003. Human cytomegalovirus activates 
inflammatory cytokine responses via CD14 and Toll-like receptor 2. J Virol 
77:4588-96. 

37. Consortium, C. C. 2012. The genome architecture of the Collaborative Cross 
mouse genetic reference population. Genetics 190:389-401. 

38. Cruz, C. C., M. S. Suthar, S. A. Montgomery, R. Shabman, J. Simmons, R. E. 
Johnston, T. E. Morrison, and M. T. Heise. 2010. Modulation of type I IFN 
induction by a virulence determinant within the alphavirus nsP1 protein. Virology 
399:1-10. 



	   195	  

39. Davis, N. L., F. B. Grieder, J. F. Smith, G. F. Greenwald, M. L. Valenski, D. 
C. Sellon, P. C. Charles, and R. E. Johnston. 1994. A molecular genetic 
approach to the study of Venezuelan equine encephalitis virus pathogenesis. Arch 
Virol Suppl 9:99-109. 

40. de Curtis, I., and K. Simons. 1988. Dissection of Semliki Forest virus 
glycoprotein delivery from the trans-Golgi network to the cell surface in 
permeabilized BHK cells. Proc Natl Acad Sci U S A 85:8052-6. 

41. de Witte, L., A. Nabatov, M. Pion, D. Fluitsma, M. A. de Jong, T. de Gruijl, 
V. Piguet, Y. van Kooyk, and T. B. Geijtenbeek. 2007. Langerin is a natural 
barrier to HIV-1 transmission by Langerhans cells. Nat Med 13:367-71. 

42. Deresiewicz, R. L., S. J. Thaler, L. Hsu, and A. A. Zamani. 1997. Clinical and 
neuroradiographic manifestations of eastern equine encephalitis. N Engl J Med 
336:1867-74. 

43. DeTulleo, L., and T. Kirchhausen. 1998. The clathrin endocytic pathway in 
viral infection. EMBO J 17:4585-93. 

44. Dinarello, C. A. 2009. Immunological and inflammatory functions of the 
interleukin-1 family. Annu Rev Immunol 27:519-50. 

45. Ding, M. X., and M. J. Schlesinger. 1989. Evidence that Sindbis virus NSP2 is 
an autoprotease which processes the virus nonstructural polyprotein. Virology 
171:280-4. 

46. Doherty, R. L., J. G. Carley, M. J. Mackerras, and E. N. Marks. 1963. Studies 
of arthropod-borne virus infections in Queensland. III. Isolation and 
characterization of virus strains from wild-caught mosquitoes in North 
Queensland. Aust J Exp Biol Med Sci 41:17-39. 

47. Dommett, R. M., N. Klein, and M. W. Turner. 2006. Mannose-binding lectin in 
innate immunity: past, present and future. Tissue Antigens 68:193-209. 

48. Drickamer, K., M. S. Dordal, and L. Reynolds. 1986. Mannose-binding 
proteins isolated from rat liver contain carbohydrate-recognition domains linked 
to collagenous tails. Complete primary structures and homology with pulmonary 
surfactant apoprotein. J Biol Chem 261:6878-87. 



	   196	  

49. Edwards, J., and D. T. Brown. 1991. Sindbis virus infection of a Chinese 
hamster ovary cell mutant defective in the acidification of endosomes. Virology 
182:28-33. 

50. Ehlers, M. R. 2000. CR3: a general purpose adhesion-recognition receptor 
essential for innate immunity. Microbes Infect 2:289-94. 

51. Eisen, D. P., and R. M. Minchinton. 2003. Impact of mannose-binding lectin on 
susceptibility to infectious diseases. Clin Infect Dis 37:1496-505. 

52. Eisen, S., A. Dzwonek, and N. J. Klein. 2008. Mannose-binding lectin in HIV 
infection. Future Virol 3:225-233. 

53. Ezekowitz, R. A., L. E. Day, and G. A. Herman. 1988. A human mannose-
binding protein is an acute-phase reactant that shares sequence homology with 
other vertebrate lectins. J Exp Med 167:1034-46. 

54. Ezekowitz, R. A., M. Kuhlman, J. E. Groopman, and R. A. Byrn. 1989. A 
human serum mannose-binding protein inhibits in vitro infection by the human 
immunodeficiency virus. J Exp Med 169:185-96. 

55. Fraser, J. R., and G. J. Becker. 1984. Mononuclear cell types in chronic 
synovial effusions of Ross River virus disease. Aust N Z J Med 14:505-6. 

56. Fraser, J. R., and A. L. Cunningham. 1980. Incubation time of epidemic 
polyarthritis. Med J Aust 1:550-1. 

57. Fraser, J. R., A. L. Cunningham, B. J. Clarris, J. G. Aaskov, and R. Leach. 
1981. Cytology of synovial effusions in epidemic polyarthritis. Aust N Z J Med 
11:168-73. 

58. Fraser, J. R., A. L. Cunningham, J. D. Mathews, and A. Riglar. 1988. 
Immune complexes and Ross River virus disease (epidemic polyarthritis). 
Rheumatol Int 8:113-7. 

59. Frolov, I., R. Hardy, and C. M. Rice. 2001. Cis-acting RNA elements at the 5' 
end of Sindbis virus genome RNA regulate minus- and plus-strand RNA synthesis. 
RNA 7:1638-51. 



	   197	  

60. Frolova, E. I., R. Z. Fayzulin, S. H. Cook, D. E. Griffin, C. M. Rice, and I. 
Frolov. 2002. Roles of nonstructural protein nsP2 and Alpha/Beta interferons in 
determining the outcome of Sindbis virus infection. J Virol 76:11254-64. 

61. Fuchs, A., T. Y. Lin, D. W. Beasley, C. M. Stover, W. J. Schwaeble, T. C. 
Pierson, and M. S. Diamond. 2010. Direct complement restriction of flavivirus 
infection requires glycan recognition by mannose-binding lectin. Cell Host 
Microbe 8:186-95. 

62. Fuchs, A., A. K. Pinto, W. J. Schwaeble, and M. S. Diamond. 2011. The lectin 
pathway of complement activation contributes to protection from West Nile virus 
infection. Virology 412:101-9. 

63. Fujita, T. 2002. Evolution of the lectin-complement pathway and its role in 
innate immunity. Nat Rev Immunol 2:346-53. 

64. Gaboriaud, C., N. M. Thielens, L. A. Gregory, V. Rossi, J. C. Fontecilla-
Camps, and G. J. Arlaud. 2004. Structure and activation of the C1 complex of 
complement: unraveling the puzzle. Trends Immunol 25:368-73. 

65. Gadjeva, M., S. R. Paludan, S. Thiel, V. Slavov, M. Ruseva, K. Eriksson, G. 
B. Lowhagen, L. Shi, K. Takahashi, A. Ezekowitz, and J. C. Jensenius. 2004. 
Mannan-binding lectin modulates the response to HSV-2 infection. Clin Exp 
Immunol 138:304-11. 

66. Galustian, C., C. G. Park, W. Chai, M. Kiso, S. A. Bruening, Y. S. Kang, R. 
M. Steinman, and T. Feizi. 2004. High and low affinity carbohydrate ligands 
revealed for murine SIGN-R1 by carbohydrate array and cell binding approaches, 
and differing specificities for SIGN-R3 and langerin. Int Immunol 16:853-66. 

67. Gardner, C. L., G. D. Ebel, K. D. Ryman, and W. B. Klimstra. 2011. Heparan 
sulfate binding by natural eastern equine encephalitis viruses promotes 
neurovirulence. Proc Natl Acad Sci U S A 108:16026-31. 

68. Gardner, J., I. Anraku, T. T. Le, T. Larcher, L. Major, P. Roques, W. A. 
Schroder, S. Higgs, and A. Suhrbier. 2010. Chikungunya virus arthritis in adult 
wild-type mice. J Virol 84:8021-32. 



	   198	  

69. Garmashova, N., R. Gorchakov, E. Frolova, and I. Frolov. 2006. Sindbis virus 
nonstructural protein nsP2 is cytotoxic and inhibits cellular transcription. J Virol 
80:5686-96. 

70. Garmashova, N., R. Gorchakov, E. Volkova, S. Paessler, E. Frolova, and I. 
Frolov. 2007. The Old World and New World alphaviruses use different virus-
specific proteins for induction of transcriptional shutoff. J Virol 81:2472-84. 

71. Geijtenbeek, T. B., and S. I. Gringhuis. 2009. Signalling through C-type lectin 
receptors: shaping immune responses. Nat Rev Immunol 9:465-79. 

72. Geijtenbeek, T. B., D. S. Kwon, R. Torensma, S. J. van Vliet, G. C. van 
Duijnhoven, J. Middel, I. L. Cornelissen, H. S. Nottet, V. N. KewalRamani, D. 
R. Littman, C. G. Figdor, and Y. van Kooyk. 2000. DC-SIGN, a dendritic cell-
specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 
100:587-97. 

73. Gomez de Cedron, M., N. Ehsani, M. L. Mikkola, J. A. Garcia, and L. 
Kaariainen. 1999. RNA helicase activity of Semliki Forest virus replicase protein 
NSP2. FEBS Lett 448:19-22. 

74. Gonzalez, S. F., V. Lukacs-Kornek, M. P. Kuligowski, L. A. Pitcher, S. E. 
Degn, Y. A. Kim, M. J. Cloninger, L. Martinez-Pomares, S. Gordon, S. J. 
Turley, and M. C. Carroll. 2010. Capture of influenza by medullary dendritic 
cells via SIGN-R1 is essential for humoral immunity in draining lymph nodes. 
Nat Immunol 11:427-34. 

75. Gorchakov, R., E. Frolova, and I. Frolov. 2005. Inhibition of transcription and 
translation in Sindbis virus-infected cells. J Virol 79:9397-409. 

76. Gorsuch, W. B., E. Chrysanthou, W. J. Schwaeble, and G. L. Stahl. 2012. The 
complement system in ischemia-reperfusion injuries. Immunobiology 217:1026-
33. 

77. Graham, L. M., V. Gupta, G. Schafer, D. M. Reid, M. Kimberg, K. M. 
Dennehy, W. G. Hornsell, R. Guler, M. A. Campanero-Rhodes, A. S. Palma, 
T. Feizi, S. K. Kim, P. Sobieszczuk, J. A. Willment, and G. D. Brown. 2012. 
The C-type lectin receptor CLECSF8 (CLEC4D) is expressed by myeloid cells 
and triggers cellular activation through Syk kinase. J Biol Chem 287:25964-74. 



	   199	  

78. Griffin, D. E. 2007. Alphaviruses, p. 1023-1067. In D. M. Knipe, Howley, P. M. 
(ed.), Fields' Virology. Lippincott Williams & Wilkins, Philadelphia. 

79. Gunn, B. M., T. E. Morrison, A. C. Whitmore, L. K. Blevins, L. Hueston, R. 
J. Fraser, L. J. Herrero, R. Ramirez, P. N. Smith, S. Mahalingam, and M. T. 
Heise. 2012. Mannose binding lectin is required for alphavirus-induced 
arthritis/myositis. PLoS Pathog 8:e1002586. 

80. Gupta, B., C. Agrawal, S. K. Raghav, S. K. Das, R. H. Das, V. P. Chaturvedi, 
and H. R. Das. 2005. Association of mannose-binding lectin gene (MBL2) 
polymorphisms with rheumatoid arthritis in an Indian cohort of case-control 
samples. J Hum Genet 50:583-91. 

81. Hahn, C. S., and J. H. Strauss. 1990. Site-directed mutagenesis of the proposed 
catalytic amino acids of the Sindbis virus capsid protein autoprotease. J Virol 
64:3069-73. 

82. Hajishengallis, G., and J. D. Lambris. 2010. Crosstalk pathways between Toll-
like receptors and the complement system. Trends Immunol 31:154-63. 

83. Hansen, S., L. Selman, N. Palaniyar, K. Ziegler, J. Brandt, A. Kliem, M. 
Jonasson, M. O. Skjoedt, O. Nielsen, K. Hartshorn, T. J. Jorgensen, K. 
Skjodt, and U. Holmskov. 2010. Collectin 11 (CL-11, CL-K1) is a MASP-1/3-
associated plasma collectin with microbial-binding activity. J Immunol 185:6096-
104. 

84. Hardy, R. W., and C. M. Rice. 2005. Requirements at the 3' end of the sindbis 
virus genome for efficient synthesis of minus-strand RNA. J Virol 79:4630-9. 

85. Hardy, W. R., and J. H. Strauss. 1989. Processing the nonstructural 
polyproteins of sindbis virus: nonstructural proteinase is in the C-terminal half of 
nsP2 and functions both in cis and in trans. J Virol 63:4653-64. 

86. Harley, D., A. Sleigh, and S. Ritchie. 2001. Ross River virus transmission, 
infection, and disease: a cross-disciplinary review. Clin Microbiol Rev 14:909-32, 
table of contents. 

87. Harrison, S. C., A. David, J. Jumblatt, and J. E. Darnell. 1971. Lipid and 
protein organization in sindbis virus. J Mol Biol 60:533-8. 



	   200	  

88. Harrison, S. C., R. K. Strong, S. Schlesinger, and M. J. Schlesinger. 1992. 
Crystallization of Sindbis virus and its nucleocapsid. J Mol Biol 226:277-80. 

89. Hart, M. L., K. A. Ceonzo, L. A. Shaffer, K. Takahashi, R. P. Rother, W. R. 
Reenstra, J. A. Buras, and G. L. Stahl. 2005. Gastrointestinal ischemia-
reperfusion injury is lectin complement pathway dependent without involving 
C1q. J Immunol 174:6373-80. 

90. Hart, M. L., M. Saifuddin, K. Uemura, E. G. Bremer, B. Hooker, T. 
Kawasaki, and G. T. Spear. 2002. High mannose glycans and sialic acid on 
gp120 regulate binding of mannose-binding lectin (MBL) to HIV type 1. AIDS 
Res Hum Retroviruses 18:1311-7. 

91. Hazelton, R. A., C. Hughes, and J. G. Aaskov. 1985. The inflammatory 
response in the synovium of a patient with Ross River arbovirus infection. Aust N 
Z J Med 15:336-9. 

92. Heil, M. L., A. Albee, J. H. Strauss, and R. J. Kuhn. 2001. An amino acid 
substitution in the coding region of the E2 glycoprotein adapts Ross River virus to 
utilize heparan sulfate as an attachment moiety. J Virol 75:6303-9. 

93. Heise, M. T., D. A. Simpson, and R. E. Johnston. 2000. A single amino acid 
change in nsP1 attenuates neurovirulence of the Sindbis-group alphavirus 
S.A.AR86. J Virol 74:4207-13. 

94. Herrero, L. J., M. Nelson, A. Srikiatkhachorn, R. Gu, S. Anantapreecha, G. 
Fingerle-Rowson, R. Bucala, E. Morand, L. L. Santos, and S. Mahalingam. 
2011. Critical role for macrophage migration inhibitory factor (MIF) in Ross 
River virus-induced arthritis and myositis. Proc Natl Acad Sci U S A 108:12048-
53. 

95. Hill, J. H., and P. A. Ward. 1971. The phlogistic role of C3 leukotactic 
fragments in myocardial infarcts of rats. J Exp Med 133:885-900. 

96. Hirsch, R. L., D. E. Griffin, and J. A. Winkelstein. 1980. Role of complement 
in viral infections: participation of terminal complement components (C5 to C9) 
in recovery of mice from Sindbis virus infection. Infect Immun 30:899-901. 



	   201	  

97. Hirsch, R. L., D. E. Griffin, and J. A. Winkelstein. 1978. The effect of 
complement depletion on the course of Sindbis virus infection in mice. J Immunol 
121:1276-8. 

98. Hirsch, R. L., D. E. Griffin, and J. A. Winkelstein. 1980. The role of 
complement in viral infections. II. the clearance of Sindbis virus from the 
bloodstream and central nervous system of mice depleted of complement. J Infect 
Dis 141:212-7. 

99. Hirsch, R. L., J. A. Winkelstein, and D. E. Griffin. 1980. The role of 
complement in viral infections. III. Activation of the classical and alternative 
complement pathways by Sindbis virus. J Immunol 124:2507-10. 

100. Hoarau, J. J., M. C. Jaffar Bandjee, P. Krejbich Trotot, T. Das, G. Li-Pat-
Yuen, B. Dassa, M. Denizot, E. Guichard, A. Ribera, T. Henni, F. Tallet, M. 
P. Moiton, B. A. Gauzere, S. Bruniquet, Z. Jaffar Bandjee, P. Morbidelli, G. 
Martigny, M. Jolivet, F. Gay, M. Grandadam, H. Tolou, V. Vieillard, P. 
Debre, B. Autran, and P. Gasque. 2010. Persistent chronic inflammation and 
infection by Chikungunya arthritogenic alphavirus in spite of a robust host 
immune response. J Immunol 184:5914-27. 

101. Hobman, T., Chantler, J. . 2007. Rubella Virus. In D. M. Knipe, Howley, P. M. 
(ed.), Fields Virology. Lippincott Williams & Wilkins, Phildelphia. 

102. Hoffmann, J. A., F. C. Kafatos, C. A. Janeway, and R. A. Ezekowitz. 1999. 
Phylogenetic perspectives in innate immunity. Science 284:1313-8. 

103. Holers, V. M. 2003. The complement system as a therapeutic target in 
autoimmunity. Clin Immunol 107:140-51. 

104. Hubbard, S. C. 1988. Regulation of glycosylation. The influence of protein 
structure on N-linked oligosaccharide processing. J Biol Chem 263:19303-17. 

105. Ikeda, K., T. Sannoh, N. Kawasaki, T. Kawasaki, and I. Yamashina. 1987. 
Serum lectin with known structure activates complement through the classical 
pathway. J Biol Chem 262:7451-4. 

106. Iobst, S. T., M. R. Wormald, W. I. Weis, R. A. Dwek, and K. Drickamer. 
1994. Binding of sugar ligands to Ca(2+)-dependent animal lectins. I. Analysis of 



	   202	  

mannose binding by site-directed mutagenesis and NMR. J Biol Chem 
269:15505-11. 

107. Ip, W. K., K. H. Chan, H. K. Law, G. H. Tso, E. K. Kong, W. H. Wong, Y. F. 
To, R. W. Yung, E. Y. Chow, K. L. Au, E. Y. Chan, W. Lim, J. C. Jensenius, 
M. W. Turner, J. S. Peiris, and Y. L. Lau. 2005. Mannose-binding lectin in 
severe acute respiratory syndrome coronavirus infection. J Infect Dis 191:1697-
704. 

108. Ip, W. K., K. Takahashi, K. J. Moore, L. M. Stuart, and R. A. Ezekowitz. 
2008. Mannose-binding lectin enhances Toll-like receptors 2 and 6 signaling from 
the phagosome. J Exp Med 205:169-81. 

109. Jacobsen, S., P. Garred, H. O. Madsen, N. H. Heegaard, M. L. Hetland, K. 
Stengaard-Pedersen, P. Junker, T. Lottenburger, T. Ellingsen, L. 
Smedegaard Andersen, I. Hansen, H. Skjodt, J. K. Pedersen, U. B. Lauridsen, 
A. J. Svendsen, U. Tarp, J. Podenphant, H. Lindegaard, A. Vestergaard, M. 
Ostergaard, and K. Horslev-Petersen. 2009. Mannose-binding lectin gene 
polymorphisms are associated with disease activity and physical disability in 
untreated, anti-cyclic citrullinated peptide-positive patients with early rheumatoid 
arthritis. J Rheumatol 36:731-5. 

110. Jacobsen, S., H. O. Madsen, M. Klarlund, T. Jensen, H. Skjodt, K. E. Jensen, 
A. Svejgaard, and P. Garred. 2001. The influence of mannose binding lectin 
polymorphisms on disease outcome in early polyarthritis. TIRA Group. J 
Rheumatol 28:935-42. 

111. Ji, X., G. G. Olinger, S. Aris, Y. Chen, H. Gewurz, and G. T. Spear. 2005. 
Mannose-binding lectin binds to Ebola and Marburg envelope glycoproteins, 
resulting in blocking of virus interaction with DC-SIGN and complement-
mediated virus neutralization. J Gen Virol 86:2535-42. 

112. Jordan, J. E., M. C. Montalto, and G. L. Stahl. 2001. Inhibition of mannose-
binding lectin reduces postischemic myocardial reperfusion injury. Circulation 
104:1413-8. 

113. Jose, J., J. E. Snyder, and R. J. Kuhn. 2009. A structural and functional 
perspective of alphavirus replication and assembly. Future Microbiol 4:837-56. 

114. Joyce-Shaikh, B., M. E. Bigler, C. C. Chao, E. E. Murphy, W. M. 
Blumenschein, I. E. Adamopoulos, P. G. Heyworth, S. Antonenko, E. P. 



	   203	  

Bowman, T. K. McClanahan, J. H. Phillips, and D. J. Cua. 2010. Myeloid 
DAP12-associating lectin (MDL)-1 regulates synovial inflammation and bone 
erosion associated with autoimmune arthritis. J Exp Med 207:579-89. 

115. Kaden, S. A., S. Kurig, K. Vasters, K. Hofmann, K. S. Zaenker, J. Schmitz, 
and G. Winkels. 2009. Enhanced dendritic cell-induced immune responses 
mediated by the novel C-type lectin receptor mDCAR1. J Immunol 183:5069-78. 

116. Kanazawa, N., K. Tashiro, K. Inaba, and Y. Miyachi. 2003. Dendritic cell 
immunoactivating receptor, a novel C-type lectin immunoreceptor, acts as an 
activating receptor through association with Fc receptor gamma chain. J Biol 
Chem 278:32645-52. 

117. Kawai, T., and S. Akira. 2011. Toll-like receptors and their crosstalk with other 
innate receptors in infection and immunity. Immunity 34:637-50. 

118. Keane, T. M., L. Goodstadt, P. Danecek, M. A. White, K. Wong, B. Yalcin, A. 
Heger, A. Agam, G. Slater, M. Goodson, N. A. Furlotte, E. Eskin, C. Nellaker, 
H. Whitley, J. Cleak, D. Janowitz, P. Hernandez-Pliego, A. Edwards, T. G. 
Belgard, P. L. Oliver, R. E. McIntyre, A. Bhomra, J. Nicod, X. Gan, W. Yuan, 
L. van der Weyden, C. A. Steward, S. Bala, J. Stalker, R. Mott, R. Durbin, I. 
J. Jackson, A. Czechanski, J. A. Guerra-Assuncao, L. R. Donahue, L. G. 
Reinholdt, B. A. Payseur, C. P. Ponting, E. Birney, J. Flint, and D. J. Adams. 
2011. Mouse genomic variation and its effect on phenotypes and gene regulation. 
Nature 477:289-94. 

119. Kilpatrick, D. C. 1998. Phospholipid-binding activity of human mannan-binding 
lectin. Immunol Lett 61:191-5. 

120. Klimstra, W. B., E. M. Nangle, M. S. Smith, A. D. Yurochko, and K. D. 
Ryman. 2003. DC-SIGN and L-SIGN can act as attachment receptors for 
alphaviruses and distinguish between mosquito cell- and mammalian cell-derived 
viruses. J Virol 77:12022-32. 

121. Klimstra, W. B., K. D. Ryman, and R. E. Johnston. 1998. Adaptation of 
Sindbis virus to BHK cells selects for use of heparan sulfate as an attachment 
receptor. J Virol 72:7357-66. 

122. Knight, R. L., K. L. Schultz, R. J. Kent, M. Venkatesan, and D. E. Griffin. 
2009. Role of N-linked glycosylation for sindbis virus infection and replication in 
vertebrate and invertebrate systems. J Virol 83:5640-7. 



	   204	  

123. Kojouharova, M., K. Reid, and M. Gadjeva. 2010. New insights into the 
molecular mechanisms of classical complement activation. Mol Immunol 
47:2154-60. 

124. Krarup, A., S. Thiel, A. Hansen, T. Fujita, and J. C. Jensenius. 2004. L-
ficolin is a pattern recognition molecule specific for acetyl groups. J Biol Chem 
279:47513-9. 

125. Kuhn, R. J. 2007. Togaviridae: The Viruses and Their Replication. In D. M. 
Knipe, Howley, P. M. (ed.), Fields' Virology. Lippincott Williams & Wilkins, 
Philadelphia. 

126. Kuroki, Y., T. Honma, H. Chiba, H. Sano, M. Saitoh, Y. Ogasawara, H. 
Sohma, and T. Akino. 1997. A novel type of binding specificity to phospholipids 
for rat mannose-binding proteins isolated from serum and liver. FEBS Lett 
414:387-92. 

127. Kurt-Jones, E. A., L. Popova, L. Kwinn, L. M. Haynes, L. P. Jones, R. A. 
Tripp, E. E. Walsh, M. W. Freeman, D. T. Golenbock, L. J. Anderson, and R. 
W. Finberg. 2000. Pattern recognition receptors TLR4 and CD14 mediate 
response to respiratory syncytial virus. Nat Immunol 1:398-401. 

128. La Linn, M., J. A. Eble, C. Lubken, R. W. Slade, J. Heino, J. Davies, and A. 
Suhrbier. 2005. An arthritogenic alphavirus uses the alpha1beta1 integrin 
collagen receptor. Virology 336:229-39. 

129. Lai, M. M. C., Perlman, S., and Anderson, L.J. 2007. Coronaviridae. In D. M. 
Knipe, Howley, P. M. (ed.), Fields Virology. Lippincott Williams & Wilkins, 
Philadelphia. 

130. Lescar, J., A. Roussel, M. W. Wien, J. Navaza, S. D. Fuller, G. Wengler, and 
F. A. Rey. 2001. The Fusion glycoprotein shell of Semliki Forest virus: an 
icosahedral assembly primed for fusogenic activation at endosomal pH. Cell 
105:137-48. 

131. Levine, B., J. M. Hardwick, B. D. Trapp, T. O. Crawford, R. C. Bollinger, 
and D. E. Griffin. 1991. Antibody-mediated clearance of alphavirus infection 
from neurons. Science 254:856-60. 



	   205	  

132. Li, B., D. J. Allendorf, R. Hansen, J. Marroquin, C. Ding, D. E. Cramer, and 
J. Yan. 2006. Yeast beta-glucan amplifies phagocyte killing of iC3b-opsonized 
tumor cells via complement receptor 3-Syk-phosphatidylinositol 3-kinase 
pathway. J Immunol 177:1661-9. 

133. Li, L., J. Jose, Y. Xiang, R. J. Kuhn, and M. G. Rossmann. 2010. Structural 
changes of envelope proteins during alphavirus fusion. Nature 468:705-8. 

134. Lidbury, B. A., N. E. Rulli, A. Suhrbier, P. N. Smith, S. R. McColl, A. L. 
Cunningham, A. Tarkowski, N. van Rooijen, R. J. Fraser, and S. 
Mahalingam. 2008. Macrophage-derived proinflammatory factors contribute to 
the development of arthritis and myositis after infection with an arthrogenic 
alphavirus. J Infect Dis 197:1585-93. 

135. Lidbury, B. A., C. Simeonovic, G. E. Maxwell, I. D. Marshall, and A. J. 
Hapel. 2000. Macrophage-induced muscle pathology results in morbidity and 
mortality for Ross River virus-infected mice. J Infect Dis 181:27-34. 

136. Lindenbach, B. D., Thiel, H-J., and Rice, C.M. 2007. Flaviviridae: The Viruses 
and Their Replication. In D. M. Knipe, Howley, P. M. (ed.), Fields Virology. 
Lippincott Williams & Wilkins, Philadelphia. 

137. Lipscombe, R. J., M. Sumiya, A. V. Hill, Y. L. Lau, R. J. Levinsky, J. A. 
Summerfield, and M. W. Turner. 1992. High frequencies in African and non-
African populations of independent mutations in the mannose binding protein 
gene. Hum Mol Genet 1:709-15. 

138. Liu, H., L. Jensen, S. Hansen, S. V. Petersen, K. Takahashi, A. B. Ezekowitz, 
F. D. Hansen, J. C. Jensenius, and S. Thiel. 2001. Characterization and 
quantification of mouse mannan-binding lectins (MBL-A and MBL-C) and study 
of acute phase responses. Scand J Immunol 53:489-97. 

139. Loo, Y. M., and M. Gale, Jr. 2011. Immune signaling by RIG-I-like receptors. 
Immunity 34:680-92. 

140. Ludwig, G. V., J. P. Kondig, and J. F. Smith. 1996. A putative receptor for 
Venezuelan equine encephalitis virus from mosquito cells. J Virol 70:5592-9. 

141. MacDonald, G. H., and R. E. Johnston. 2000. Role of dendritic cell targeting in 
Venezuelan equine encephalitis virus pathogenesis. J Virol 74:914-22. 



	   206	  

142. Macia, E., M. Ehrlich, R. Massol, E. Boucrot, C. Brunner, and T. 
Kirchhausen. 2006. Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell 
10:839-50. 

143. Madsen, H. O., P. Garred, J. A. Kurtzhals, L. U. Lamm, L. P. Ryder, S. Thiel, 
and A. Svejgaard. 1994. A new frequent allele is the missing link in the 
structural polymorphism of the human mannan-binding protein. Immunogenetics 
40:37-44. 

144. Madsen, H. O., P. Garred, S. Thiel, J. A. Kurtzhals, L. U. Lamm, L. P. Ryder, 
and A. Svejgaard. 1995. Interplay between promoter and structural gene variants 
control basal serum level of mannan-binding protein. J Immunol 155:3013-20. 

145. Madsen, H. O., M. L. Satz, B. Hogh, A. Svejgaard, and P. Garred. 1998. 
Different molecular events result in low protein levels of mannan-binding lectin 
in populations from southeast Africa and South America. J Immunol 161:3169-75. 

146. Marshall, A. S., J. A. Willment, H. H. Lin, D. L. Williams, S. Gordon, and G. 
D. Brown. 2004. Identification and characterization of a novel human myeloid 
inhibitory C-type lectin-like receptor (MICL) that is predominantly expressed on 
granulocytes and monocytes. J Biol Chem 279:14792-802. 

147. Matsushita, M., Y. Endo, S. Taira, Y. Sato, T. Fujita, N. Ichikawa, M. 
Nakata, and T. Mizuochi. 1996. A novel human serum lectin with collagen- and 
fibrinogen-like domains that functions as an opsonin. J Biol Chem 271:2448-54. 

148. Mayne, J. T., J. R. Bell, E. G. Strauss, and J. H. Strauss. 1985. Pattern of 
glycosylation of Sindbis virus envelope proteins synthesized in hamster and 
chicken cells. Virology 142:121-33. 

149. Mehlhop, E., and M. S. Diamond. 2006. Protective immune responses against 
West Nile virus are primed by distinct complement activation pathways. J Exp 
Med 203:1371-81. 

150. Mehlhop, E., K. Whitby, T. Oliphant, A. Marri, M. Engle, and M. S. 
Diamond. 2005. Complement activation is required for induction of a protective 
antibody response against West Nile virus infection. J Virol 79:7466-77. 



	   207	  

151. Merad, M., F. Ginhoux, and M. Collin. 2008. Origin, homeostasis and function 
of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev 
Immunol 8:935-47. 

152. Mi, S., R. Durbin, H. V. Huang, C. M. Rice, and V. Stollar. 1989. Association 
of the Sindbis virus RNA methyltransferase activity with the nonstructural protein 
nsP1. Virology 170:385-91. 

153. Mi, S., and V. Stollar. 1991. Expression of Sindbis virus nsP1 and 
methyltransferase activity in Escherichia coli. Virology 184:423-7. 

154. Michelow, I. C., C. Lear, C. Scully, L. I. Prugar, C. B. Longley, L. M. 
Yantosca, X. Ji, M. Karpel, M. Brudner, K. Takahashi, G. T. Spear, R. A. 
Ezekowitz, E. V. Schmidt, and G. G. Olinger. 2011. High-dose mannose-
binding lectin therapy for Ebola virus infection. J Infect Dis 203:175-9. 

155. Mims, C. A., F. A. Murphy, W. P. Taylor, and I. D. Marshall. 1973. 
Pathogenesis of Ross River virus infection in mice. I. Ependymal infection, 
cortical thinning, and hydrocephalus. J Infect Dis 127:121-8. 

156. Mizuno, Y., Y. Kozutsumi, T. Kawasaki, and I. Yamashina. 1981. Isolation 
and characterization of a mannan-binding protein from rat liver. J Biol Chem 
256:4247-52. 

157. Mocsai, A., M. Zhou, F. Meng, V. L. Tybulewicz, and C. A. Lowell. 2002. Syk 
is required for integrin signaling in neutrophils. Immunity 16:547-58. 

158. Morrison, T. E., R. J. Fraser, P. N. Smith, S. Mahalingam, and M. T. Heise. 
2007. Complement contributes to inflammatory tissue destruction in a mouse 
model of Ross River virus-induced disease. J Virol 81:5132-43. 

159. Morrison, T. E., L. Oko, S. A. Montgomery, A. C. Whitmore, A. R. Lotstein, 
B. M. Gunn, S. A. Elmore, and M. T. Heise. 2011. A mouse model of 
chikungunya virus-induced musculoskeletal inflammatory disease: evidence of 
arthritis, tenosynovitis, myositis, and persistence. Am J Pathol 178:32-40. 

160. Morrison, T. E., J. D. Simmons, and M. T. Heise. 2008. Complement receptor 
3 promotes severe ross river virus-induced disease. J Virol 82:11263-72. 



	   208	  

161. Morrison, T. E., A. C. Whitmore, R. S. Shabman, B. A. Lidbury, S. 
Mahalingam, and M. T. Heise. 2006. Characterization of Ross River virus 
tropism and virus-induced inflammation in a mouse model of viral arthritis and 
myositis. J Virol 80:737-49. 

162. Mukhopadhyay, S., W. Zhang, S. Gabler, P. R. Chipman, E. G. Strauss, J. H. 
Strauss, T. S. Baker, R. J. Kuhn, and M. G. Rossmann. 2006. Mapping the 
structure and function of the E1 and E2 glycoproteins in alphaviruses. Structure 
14:63-73. 

163. Mylonas, A. D., A. M. Brown, T. L. Carthew, B. McGrath, D. M. Purdie, N. 
Pandeya, P. C. Vecchio, L. G. Collins, I. D. Gardner, F. J. de Looze, E. J. 
Reymond, and A. Suhrbier. 2002. Natural history of Ross River virus-induced 
epidemic polyarthritis. Med J Aust 177:356-60. 

164. Nascimento, E. J., A. M. Silva, M. T. Cordeiro, C. A. Brito, L. H. Gil, U. 
Braga-Neto, and E. T. Marques. 2009. Alternative complement pathway 
deregulation is correlated with dengue severity. PLoS One 4:e6782. 

165. Neuvonen, M., A. Kazlauskas, M. Martikainen, A. Hinkkanen, T. Ahola, and 
K. Saksela. 2011. SH3 domain-mediated recruitment of host cell amphiphysins 
by alphavirus nsP3 promotes viral RNA replication. PLoS Pathog 7:e1002383. 

166. Ng, L. F., A. Chow, Y. J. Sun, D. J. Kwek, P. L. Lim, F. Dimatatac, L. C. Ng, 
E. E. Ooi, K. H. Choo, Z. Her, P. Kourilsky, and Y. S. Leo. 2009. IL-1beta, IL-
6, and RANTES as biomarkers of Chikungunya severity. PLoS One 4:e4261. 

167. Ogden, C. A., A. deCathelineau, P. R. Hoffmann, D. Bratton, B. Ghebrehiwet, 
V. A. Fadok, and P. M. Henson. 2001. C1q and mannose binding lectin 
engagement of cell surface calreticulin and CD91 initiates macropinocytosis and 
uptake of apoptotic cells. J Exp Med 194:781-95. 

168. Palaniyar, N., J. Nadesalingam, H. Clark, M. J. Shih, A. W. Dodds, and K. B. 
Reid. 2004. Nucleic acid is a novel ligand for innate, immune pattern recognition 
collectins surfactant proteins A and D and mannose-binding lectin. J Biol Chem 
279:32728-36. 

169. Park, C. G., K. Takahara, E. Umemoto, Y. Yashima, K. Matsubara, Y. 
Matsuda, B. E. Clausen, K. Inaba, and R. M. Steinman. 2001. Five mouse 
homologues of the human dendritic cell C-type lectin, DC-SIGN. Int Immunol 
13:1283-90. 



	   209	  

170. Peng, X., L. Gralinski, M. T. Ferris, M. B. Frieman, M. J. Thomas, S. Proll, 
M. J. Korth, J. R. Tisoncik, M. Heise, S. Luo, G. P. Schroth, T. M. Tumpey, 
C. Li, Y. Kawaoka, R. S. Baric, and M. G. Katze. 2012. Integrative deep 
sequencing of the mouse lung transcriptome reveals differential expression of 
diverse classes of small RNAs in response to respiratory virus infection. MBio 2. 

171. Peranen, J., P. Laakkonen, M. Hyvonen, and L. Kaariainen. 1995. The 
alphavirus replicase protein nsP1 is membrane-associated and has affinity to 
endocytic organelles. Virology 208:610-20. 

172. Perera, C., H. P. McNeil, and C. L. Geczy. 2010. S100 Calgranulins in 
inflammatory arthritis. Immunol Cell Biol 88:41-9. 

173. Perera, P. Y., T. N. Mayadas, O. Takeuchi, S. Akira, M. Zaks-Zilberman, S. 
M. Goyert, and S. N. Vogel. 2001. CD11b/CD18 acts in concert with CD14 and 
Toll-like receptor (TLR) 4 to elicit full lipopolysaccharide and taxol-inducible 
gene expression. J Immunol 166:574-81. 

174. Pletnev, S. V., W. Zhang, S. Mukhopadhyay, B. R. Fisher, R. Hernandez, D. 
T. Brown, T. S. Baker, M. G. Rossmann, and R. J. Kuhn. 2001. Locations of 
carbohydrate sites on alphavirus glycoproteins show that E1 forms an icosahedral 
scaffold. Cell 105:127-36. 

175. Powers, A. M., A. C. Brault, Y. Shirako, E. G. Strauss, W. Kang, J. H. 
Strauss, and S. C. Weaver. 2001. Evolutionary relationships and systematics of 
the alphaviruses. J Virol 75:10118-31. 

176. Powlesland, A. S., E. M. Ward, S. K. Sadhu, Y. Guo, M. E. Taylor, and K. 
Drickamer. 2006. Widely divergent biochemical properties of the complete set of 
mouse DC-SIGN-related proteins. J Biol Chem 281:20440-9. 

177. Rabinovich, G. A., Y. van Kooyk, and B. A. Cobb. 2012. Glycobiology of 
immune responses. Ann N Y Acad Sci 1253:1-15. 

178. Raju, R., and H. V. Huang. 1991. Analysis of Sindbis virus promoter 
recognition in vivo, using novel vectors with two subgenomic mRNA promoters. 
J Virol 65:2501-10. 

179. Ramos, H. J., and M. Gale, Jr. 2011. RIG-I like receptors and their signaling 
crosstalk in the regulation of antiviral immunity. Curr Opin Virol 1:167-76. 



	   210	  

180. Reed, D. S., T. Larsen, L. J. Sullivan, C. M. Lind, M. G. Lackemeyer, W. D. 
Pratt, and M. D. Parker. 2005. Aerosol exposure to western equine encephalitis 
virus causes fever and encephalitis in cynomolgus macaques. J Infect Dis 
192:1173-82. 

181. Rezza, G., L. Nicoletti, R. Angelini, R. Romi, A. C. Finarelli, M. Panning, P. 
Cordioli, C. Fortuna, S. Boros, F. Magurano, G. Silvi, P. Angelini, M. Dottori, 
M. G. Ciufolini, G. C. Majori, and A. Cassone. 2007. Infection with 
chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370:1840-6. 

182. Rice, C. M., and J. H. Strauss. 1982. Association of sindbis virion glycoproteins 
and their precursors. J Mol Biol 154:325-48. 

183. Ricklin, D., G. Hajishengallis, K. Yang, and J. D. Lambris. 2010. 
Complement: a key system for immune surveillance and homeostasis. Nat 
Immunol 11:785-97. 

184. Rikkonen, M., J. Peranen, and L. Kaariainen. 1994. ATPase and GTPase 
activities associated with Semliki Forest virus nonstructural protein nsP2. J Virol 
68:5804-10. 

185. Rivas, F., L. A. Diaz, V. M. Cardenas, E. Daza, L. Bruzon, A. Alcala, O. De la 
Hoz, F. M. Caceres, G. Aristizabal, J. W. Martinez, D. Revelo, F. De la Hoz, J. 
Boshell, T. Camacho, L. Calderon, V. A. Olano, L. I. Villarreal, D. Roselli, G. 
Alvarez, G. Ludwig, and T. Tsai. 1997. Epidemic Venezuelan equine 
encephalitis in La Guajira, Colombia, 1995. J Infect Dis 175:828-32. 

186. Roberts, A., F. Pardo-Manuel de Villena, W. Wang, L. McMillan, and D. W. 
Threadgill. 2007. The polymorphism architecture of mouse genetic resources 
elucidated using genome-wide resequencing data: implications for QTL discovery 
and systems genetics. Mamm Genome 18:473-81. 

187. Robinson, D., N. C. Phillips, and B. Winchester. 1975. Affinity 
chromatography of human liver alpha-D-mannosidase. FEBS Lett 53:110-2. 

188. Robinson, M. C. 1955. An epidemic of virus disease in Southern Province, 
Tanganyika Territory, in 1952-53. I. Clinical features. Trans R Soc Trop Med 
Hyg 49:28-32. 



	   211	  

189. Robinson, M. J., D. Sancho, E. C. Slack, S. LeibundGut-Landmann, and C. 
Reis e Sousa. 2006. Myeloid C-type lectins in innate immunity. Nat Immunol 
7:1258-65. 

190. Rose, P. P., S. L. Hanna, A. Spiridigliozzi, N. Wannissorn, D. P. Beiting, S. R. 
Ross, R. W. Hardy, S. A. Bambina, M. T. Heise, and S. Cherry. 2011. Natural 
resistance-associated macrophage protein is a cellular receptor for sindbis virus in 
both insect and mammalian hosts. Cell Host Microbe 10:97-104. 

191. Rosen, L., D. J. Gubler, and P. H. Bennett. 1981. Epidemic polyarthritis (Ross 
River) virus infection in the Cook Islands. Am J Trop Med Hyg 30:1294-302. 

192. Rossi, V., S. Cseh, I. Bally, N. M. Thielens, J. C. Jensenius, and G. J. Arlaud. 
2001. Substrate specificities of recombinant mannan-binding lectin-associated 
serine proteases-1 and -2. J Biol Chem 276:40880-7. 

193. Rulli, N. E., A. Guglielmotti, G. Mangano, M. S. Rolph, C. Apicella, A. Zaid, 
A. Suhrbier, and S. Mahalingam. 2009. Amelioration of alphavirus-induced 
arthritis and myositis in a mouse model by treatment with bindarit, an inhibitor of 
monocyte chemotactic proteins. Arthritis Rheum 60:2513-23. 

194. Russell, R. C. 2002. Ross River virus: ecology and distribution. Annu Rev 
Entomol 47:1-31. 

195. Ryman, K. D., C. L. Gardner, C. W. Burke, K. C. Meier, J. M. Thompson, 
and W. B. Klimstra. 2007. Heparan sulfate binding can contribute to the 
neurovirulence of neuroadapted and nonneuroadapted Sindbis viruses. J Virol 
81:3563-73. 

196. Ryman, K. D., and W. B. Klimstra. 2008. Host responses to alphavirus infection. 
Immunol Rev 225:27-45. 

197. Ryman, K. D., W. B. Klimstra, K. B. Nguyen, C. A. Biron, and R. E. 
Johnston. 2000. Alpha/beta interferon protects adult mice from fatal Sindbis 
virus infection and is an important determinant of cell and tissue tropism. J Virol 
74:3366-78. 

198. Saevarsdottir, S., K. Steinsson, G. Grondal, and H. Valdimarsson. 2007. 
Patients with rheumatoid arthritis have higher levels of mannan-binding lectin 
than their first-degree relatives and unrelated controls. J Rheumatol 34:1692-5. 



	   212	  

199. Sahu, A., T. R. Kozel, and M. K. Pangburn. 1994. Specificity of the thioester-
containing reactive site of human C3 and its significance to complement 
activation. Biochem J 302 ( Pt 2):429-36. 

200. Saifuddin, M., M. L. Hart, H. Gewurz, Y. Zhang, and G. T. Spear. 2000. 
Interaction of mannose-binding lectin with primary isolates of human 
immunodeficiency virus type 1. J Gen Virol 81:949-55. 

201. Schafer, A., C. B. Brooke, A. C. Whitmore, and R. E. Johnston. 2011. The 
role of the blood-brain barrier during Venezuelan equine encephalitis virus 
infection. J Virol 85:10682-90. 

202. Schilte, C., T. Couderc, F. Chretien, M. Sourisseau, N. Gangneux, F. Guivel-
Benhassine, A. Kraxner, J. Tschopp, S. Higgs, A. Michault, F. Arenzana-
Seisdedos, M. Colonna, L. Peduto, O. Schwartz, M. Lecuit, and M. L. Albert. 
2010. Type I IFN controls chikungunya virus via its action on nonhematopoietic 
cells. J Exp Med 207:429-42. 

203. Schoneboom, B. A., K. M. Catlin, A. M. Marty, and F. B. Grieder. 2000. 
Inflammation is a component of neurodegeneration in response to Venezuelan 
equine encephalitis virus infection in mice. J Neuroimmunol 109:132-46. 

204. Schoneboom, B. A., M. J. Fultz, T. H. Miller, L. C. McKinney, and F. B. 
Grieder. 1999. Astrocytes as targets for Venezuelan equine encephalitis virus 
infection. J Neurovirol 5:342-54. 

205. Schwaeble, W. J., N. J. Lynch, J. E. Clark, M. Marber, N. J. Samani, Y. M. 
Ali, T. Dudler, B. Parent, K. Lhotta, R. Wallis, C. A. Farrar, S. Sacks, H. Lee, 
M. Zhang, D. Iwaki, M. Takahashi, T. Fujita, C. E. Tedford, and C. M. 
Stover. 2011. Targeting of mannan-binding lectin-associated serine protease-2 
confers protection from myocardial and gastrointestinal ischemia/reperfusion 
injury. Proc Natl Acad Sci U S A 108:7523-8. 

206. Scott, T. W., and S. C. Weaver. 1989. Eastern equine encephalomyelitis virus: 
epidemiology and evolution of mosquito transmission. Adv Virus Res 37:277-328. 

207. Sefton, B. M. 1977. Immediate glycosylation of Sindbis virus membrane proteins. 
Cell 10:659-68. 



	   213	  

208. Seppanen, M., M. L. Lokki, M. Lappalainen, E. Hiltunen-Back, A. T. Rovio, 
S. Kares, M. Hurme, and J. Aittoniemi. 2009. Mannose-binding lectin 2 gene 
polymorphism in recurrent herpes simplex virus 2 infection. Hum Immunol 
70:218-21. 

209. Shabman, R. S., T. E. Morrison, C. Moore, L. White, M. S. Suthar, L. 
Hueston, N. Rulli, B. Lidbury, J. P. Ting, S. Mahalingam, and M. T. Heise. 
2007. Differential induction of type I interferon responses in myeloid dendritic 
cells by mosquito and mammalian-cell-derived alphaviruses. J Virol 81:237-47. 

210. Shabman, R. S., K. M. Rogers, and M. T. Heise. 2008. Ross River virus 
envelope glycans contribute to type I interferon production in myeloid dendritic 
cells. J Virol 82:12374-83. 

211. Sheriff, S., C. Y. Chang, and R. A. Ezekowitz. 1994. Human mannose-binding 
protein carbohydrate recognition domain trimerizes through a triple alpha-helical 
coiled-coil. Nat Struct Biol 1:789-94. 

212. Shimizu, T., C. Nishitani, H. Mitsuzawa, S. Ariki, M. Takahashi, K. Ohtani, 
N. Wakamiya, and Y. Kuroki. 2009. Mannose binding lectin and lung collectins 
interact with Toll-like receptor 4 and MD-2 by different mechanisms. Biochim 
Biophys Acta 1790:1705-10. 

213. Shirako, Y., E. G. Strauss, and J. H. Strauss. 2000. Suppressor mutations that 
allow sindbis virus RNA polymerase to function with nonaromatic amino acids at 
the N-terminus: evidence for interaction between nsP1 and nsP4 in minus-strand 
RNA synthesis. Virology 276:148-60. 

214. Shope, R. E., and S. G. Anderson. 1960. The virus aetiology of epidemic 
exanthem and polyarthritis. Med J Aust 47(1):156-8. 

215. Stanley, P., Schachter, H., and Taniguchi, N. . 2009. N-Glycans. In A. Varki, 
Cummings, R.D., Esko, J.D., et al. (ed.), Essentials of Glycobiology, 2nd edition. 
Cold Spring Laboratory Press, Cold Spring Harbor, NY. 

216. Stoermer, K. A., A. Burrack, L. Oko, S. A. Montgomery, L. B. Borst, R. G. 
Gill, and T. E. Morrison. 2012. Genetic ablation of arginase 1 in macrophages 
and neutrophils enhances clearance of an arthritogenic alphavirus. J Immunol 
189:4047-59. 



	   214	  

217. Stoermer, K. A., and T. E. Morrison. 2011. Complement and viral pathogenesis. 
Virology 411:362-73. 

218. Strauss, E. G., R. J. De Groot, R. Levinson, and J. H. Strauss. 1992. 
Identification of the active site residues in the nsP2 proteinase of Sindbis virus. 
Virology 191:932-40. 

219. Strauss, J. H., and E. G. Strauss. 1994. The alphaviruses: gene expression, 
replication, and evolution. Microbiol Rev 58:491-562. 

220. Stuart, L. M., K. Takahashi, L. Shi, J. Savill, and R. A. Ezekowitz. 2005. 
Mannose-binding lectin-deficient mice display defective apoptotic cell clearance 
but no autoimmune phenotype. J Immunol 174:3220-6. 

221. Suhrbier, A., M. C. Jaffar-Bandjee, and P. Gasque. 2012. Arthritogenic 
alphaviruses--an overview. Nat Rev Rheumatol 8:420-9. 

222. Sumiya, M., M. Super, P. Tabona, R. J. Levinsky, T. Arai, M. W. Turner, 
and J. A. Summerfield. 1991. Molecular basis of opsonic defect in 
immunodeficient children. Lancet 337:1569-70. 

223. Takahashi, K., W. E. Ip, I. C. Michelow, and R. A. Ezekowitz. 2006. The 
mannose-binding lectin: a prototypic pattern recognition molecule. Curr Opin 
Immunol 18:16-23. 

224. Tassaneetrithep, B., T. H. Burgess, A. Granelli-Piperno, C. Trumpfheller, J. 
Finke, W. Sun, M. A. Eller, K. Pattanapanyasat, S. Sarasombath, D. L. Birx, 
R. M. Steinman, S. Schlesinger, and M. A. Marovich. 2003. DC-SIGN 
(CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 
197:823-9. 

225. Tesh, R. B., R. G. McLean, D. A. Shroyer, C. H. Calisher, and L. Rosen. 1981. 
Ross River virus (Togaviridae: Alphavirus) infection (epidemic polyarthritis) in 
American Samoa. Trans R Soc Trop Med Hyg 75:426-31. 

226. Thiel, S., T. Vorup-Jensen, C. M. Stover, W. Schwaeble, S. B. Laursen, K. 
Poulsen, A. C. Willis, P. Eggleton, S. Hansen, U. Holmskov, K. B. Reid, and J. 
C. Jensenius. 1997. A second serine protease associated with mannan-binding 
lectin that activates complement. Nature 386:506-10. 



	   215	  

227. Tsetsarkin, K. A., D. L. Vanlandingham, C. E. McGee, and S. Higgs. 2007. A 
single mutation in chikungunya virus affects vector specificity and epidemic 
potential. PLoS Pathog 3:e201. 

228. van de Geijn, F. E., J. M. Hazes, K. Geleijns, M. Emonts, B. C. Jacobs, B. C. 
Dufour-van den Goorbergh, and R. J. Dolhain. 2008. Mannose-binding lectin 
polymorphisms are not associated with rheumatoid arthritis--confirmation in two 
large cohorts. Rheumatology (Oxford) 47:1168-71. 

229. Varki, A. 2009. Essentials of glycobiology, 2nd ed. Cold Spring Harbor 
Laboratory Press, Cold Spring Harbor, N.Y. 

230. Vashishtha, M., T. Phalen, M. T. Marquardt, J. S. Ryu, A. C. Ng, and M. 
Kielian. 1998. A single point mutation controls the cholesterol dependence of 
Semliki Forest virus entry and exit. J Cell Biol 140:91-9. 

231. Vasiljeva, L., A. Merits, P. Auvinen, and L. Kaariainen. 2000. Identification of 
a novel function of the alphavirus capping apparatus. RNA 5'-triphosphatase 
activity of Nsp2. J Biol Chem 275:17281-7. 

232. Vasudevan, S. S., N. H. Lopes, P. N. Seshiah, T. Wang, C. B. Marsh, D. J. 
Kereiakes, C. Dong, and P. J. Goldschmidt-Clermont. 2003. Mac-1 and Fas 
activities are concurrently required for execution of smooth muscle cell death by 
M-CSF-stimulated macrophages. Cardiovasc Res 59:723-33. 

233. Vetvicka, V., B. P. Thornton, and G. D. Ross. 1996. Soluble beta-glucan 
polysaccharide binding to the lectin site of neutrophil or natural killer cell 
complement receptor type 3 (CD11b/CD18) generates a primed state of the 
receptor capable of mediating cytotoxicity of iC3b-opsonized target cells. J Clin 
Invest 98:50-61. 

234. von Bonsdorff, C. H., and S. C. Harrison. 1978. Hexagonal glycoprotein arrays 
from Sindbis virus membranes. J Virol 28:578-83. 

235. von Bonsdorff, C. H., and S. C. Harrison. 1975. Sindbis virus glycoproteins 
form a regular icosahedral surface lattice. J Virol 16:141-5. 

236. Voss, J. E., M. C. Vaney, S. Duquerroy, C. Vonrhein, C. Girard-Blanc, E. 
Crublet, A. Thompson, G. Bricogne, and F. A. Rey. 2010. Glycoprotein 



	   216	  

organization of Chikungunya virus particles revealed by X-ray crystallography. 
Nature 468:709-12. 

237. Walsh, M. C., T. Bourcier, K. Takahashi, L. Shi, M. N. Busche, R. P. Rother, 
S. D. Solomon, R. A. Ezekowitz, and G. L. Stahl. 2005. Mannose-binding lectin 
is a regulator of inflammation that accompanies myocardial ischemia and 
reperfusion injury. J Immunol 175:541-6. 

238. Wang, K. S., R. J. Kuhn, E. G. Strauss, S. Ou, and J. H. Strauss. 1992. High-
affinity laminin receptor is a receptor for Sindbis virus in mammalian cells. J 
Virol 66:4992-5001. 

239. Wang, M., Y. Chen, Y. Zhang, L. Zhang, X. Lu, and Z. Chen. 2011. Mannan-
binding lectin directly interacts with Toll-like receptor 4 and suppresses 
lipopolysaccharide-induced inflammatory cytokine secretion from THP-1 cells. 
Cell Mol Immunol 8:265-75. 

240. Weaver, S. C., and A. D. Barrett. 2004. Transmission cycles, host range, 
evolution and emergence of arboviral disease. Nat Rev Microbiol 2:789-801. 

241. Weaver, S. C., R. Rico-Hesse, and T. W. Scott. 1992. Genetic diversity and 
slow rates of evolution in New World alphaviruses. Curr Top Microbiol Immunol 
176:99-117. 

242. Weaver, S. C., R. Winegar, I. D. Manger, and N. L. Forrester. 2012. 
Alphaviruses: population genetics and determinants of emergence. Antiviral Res 
94:242-57. 

243. Weis, W. I., K. Drickamer, and W. A. Hendrickson. 1992. Structure of a C-
type mannose-binding protein complexed with an oligosaccharide. Nature 
360:127-34. 

244. Weiss, B., H. Nitschko, I. Ghattas, R. Wright, and S. Schlesinger. 1989. 
Evidence for specificity in the encapsidation of Sindbis virus RNAs. J Virol 
63:5310-8. 

245. White, L. J., J. G. Wang, N. L. Davis, and R. E. Johnston. 2001. Role of 
alpha/beta interferon in Venezuelan equine encephalitis virus pathogenesis: effect 
of an attenuating mutation in the 5' untranslated region. J Virol 75:3706-18. 



	   217	  

246. White, L. K., T. Sali, D. Alvarado, E. Gatti, P. Pierre, D. Streblow, and V. R. 
Defilippis. 2011. Chikungunya virus induces IPS-1-dependent innate immune 
activation and protein kinase R-independent translational shutoff. J Virol 85:606-
20. 

247. Williams, M. C., J. P. Woodall, and J. D. Gillett. 1965. O'nyong-Nyong Fever: 
An Epidemic Virus Diesease in East Africa. Vii. Virus Isolations from Man and 
Serological Studies up to July 1961. Trans R Soc Trop Med Hyg 59:186-97. 

248. Wollish, A. C., M. T. Ferris, L. K. Blevins, Y. M. Loo, M. Gale, Jr., and M. T. 
Heise. 2012. An attenuating mutation in a neurovirulent Sindbis virus strain 
interacts with the IPS-1 signaling pathway in vivo. Virology. 

249. Wouters, D., A. E. Voskuyl, E. T. Molenaar, B. A. Dijkmans, and C. E. Hack. 
2006. Evaluation of classical complement pathway activation in rheumatoid 
arthritis: measurement of C1q-C4 complexes as novel activation products. 
Arthritis Rheum 54:1143-50. 

250. Wu, M. F., S. T. Chen, A. H. Yang, W. W. Lin, Y. L. Lin, N. J. Chen, I. S. 
Tsai, L. Li, and S. L. Hsieh. 2012. CLEC5A is critical for dengue virus-induced 
inflammasome activation in human macrophages. Blood. 

251. Xia, Y., V. Vetvicka, J. Yan, M. Hanikyrova, T. Mayadas, and G. D. Ross. 
1999. The beta-glucan-binding lectin site of mouse CR3 (CD11b/CD18) and its 
function in generating a primed state of the receptor that mediates cytotoxic 
activation in response to iC3b-opsonized target cells. J Immunol 162:2281-90. 

252. Yamamoto, M., S. Sato, H. Hemmi, K. Hoshino, T. Kaisho, H. Sanjo, O. 
Takeuchi, M. Sugiyama, M. Okabe, K. Takeda, and S. Akira. 2003. Role of 
adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. 
Science 301:640-3. 

253. Yamasaki, S., E. Ishikawa, M. Sakuma, H. Hara, K. Ogata, and T. Saito. 
2008. Mincle is an ITAM-coupled activating receptor that senses damaged cells. 
Nat Immunol 9:1179-88. 

254. Ying, H., X. Ji, M. L. Hart, K. Gupta, M. Saifuddin, M. R. Zariffard, and G. 
T. Spear. 2004. Interaction of mannose-binding lectin with HIV type 1 is 
sufficient for virus opsonization but not neutralization. AIDS Res Hum 
Retroviruses 20:327-35. 



	   218	  

255. Zacho, R. M., L. Jensen, R. Terp, J. C. Jensenius, and S. Thiel. 2012. Studies 
of the pattern recognition molecule H-ficolin: specificity and purification. J Biol 
Chem 287:8071-81. 

256. Zhao, H., and H. Garoff. 1992. Role of cell surface spikes in alphavirus budding. 
J Virol 66:7089-95. 

257. Zhou, Y., K. Lu, S. Pfefferle, S. Bertram, I. Glowacka, C. Drosten, S. 
Pohlmann, and G. Simmons. 2010. A single asparagine-linked glycosylation site 
of the severe acute respiratory syndrome coronavirus spike glycoprotein 
facilitates inhibition by mannose-binding lectin through multiple mechanisms. J 
Virol 84:8753-64. 

258. Ziemiecki, A., and H. Garofff. 1978. Subunit composition of the membrane 
glycoprotein complex of Semliki Forest virus. J Mol Biol 122:259-69. 

259. Zipfel, P. F., and C. Skerka. 2009. Complement regulators and inhibitory 
proteins. Nat Rev Immunol 9:729-40. 

 
 
 


